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INTRODUCTION TO THE 1992 EDITION

The Principles of Mathematics, Russell’s fourth book, was first published in 1903; it
was reprinted unchanged in 1937 with a new introduction. The original
edition was the first member in one of two series of books that Russell
proposed to write during his lifetime. In the first volume of his Autobiography
(1967), covering the years 1872 to 1914, he recollected one of the most
important days of his life: “I remember a cold bright day in early spring
when I walked by myself in the Tiergarten, and made projects of future work.
I thought that I would write one series of books on the philosophy of the
sciences from pure mathematics to physiology, and another series of books
on social questions. I hoped that the two series might ultimately meet in a
synthesis at once scientific and practical. My scheme was largely inspired by
Hegelian ideas. Nevertheless, I have to some extent followed it in later years,
as much at any rate as could have been expected. The moment was an
important and formative one as regards my purposes.” The year was 1895,
and the city was Berlin, where Russell and his first wife had gone to study
German social democracy. In other writings Russell added that the first series
of books would begin at a very high level of abstraction and gradually
grow more practical, whereas the second set would begin with practical
matters and aim at becoming always more abstract; the final volume in each
series would then be a similar blend of the practical and the abstract, and thus
permit a grand synthesis of the two series in one magnum opus.

Russell was not yet 23 when this vision occurred to him, but, as is clear
from the above quotation, the initial planning of The Principles of Mathematics
had already begun. At other places in his writings he states that his interest in
the foundations of mathematics stemmed from an earlier interest in the
foundations of physics, or “the problem of matter” as he usually referred to



it, which was stymied when he realized the dependence of physics on a
soundly based mathematics. His preliminary examination of the problem of
matter must then have occurred at about the same time as the Tiergarten
experience. By 1895 he already had two books in the works: the first, German
Social Democracy (1896), reported the results of his Berlin studies; the second,
An Essay on the Foundations of Geometry (1897), was his dissertation for a Fellow-
ship at Trinity College, Cambridge. On the strength of it he was elected a
Fellow on 10 October 1895. For book publication it had to be revised, which
accounts for the delay of two years. While he was revising it he began work
on Principles.

There exist in the Bertrand Russell Archives, housed at McMaster University
in Hamilton, Ontario, Canada, a large number of manuscripts documenting
in part his slow progress toward a final version of Principles. The earlier papers
have now been published in Volume 2 of The Collected Papers of Bertrand Russell
(1990), edited by Nicholas Griffin and Albert C. Lewis; the remaining ones
will be published in Volume 3, edited by Greg Moore, which is nearly ready
for publication. Russell entitled the earliest manuscript, which survives only
in part, “An Analysis of Mathematical Reasoning, Being an Inquiry into the
Subject-Matter, the Fundamental Conceptions, and the Necessary Postulates
of Mathematics”. Begun after 1 April 1898, it was finished some time in July
of that year. Griffin notes that it was written when Russell was very much
under the influence of Alfred North Whitehead’s first book, A Treatise on
Universal Algebra with Applications (1898). Whitehead had been one of Russell’s
teachers at Cambridge, and later agreed to collaborate with him in complet-
ing his work on the foundations of mathematics. This early draft, like his
Fellowship dissertation, displays a strong Kantian influence. Russell discussed
this draft at various times with both G. E. Moore and Whitehead; Moore
appears, from the evidence available, to have been more critical of it than
Whitehead. We do not know why Russell abandoned this attempt. Some parts
of it were incorporated in later versions, but large parts of it remain
untouched.

His next attempt was called “On the Principles of Arithmetic”, and the
evidence goes to show that it was also written in 1898, shortly after he had
abandoned the first draft. Only two chapters of this projected book remain:
one incomplete chapter on cardinal numbers, and a complete one on
ordinals. The scope of this project is very much narrower than the first one,
which ranged well beyond arithmetic. When he abandoned this project, for
reasons unknown, he started to write “The Fundamental Ideas and Axioms of
Mathematics”, which was drafted in 1899. There exists a very full synoptic
table of contents for the whole book and a large number of preliminary notes
for various sections of it. Why he abandoned this project also remains a
mystery. It is worth noting that Russell had already developed the habit of

introduction to the 1992 editionxxvi



recycling parts, often large parts, of abandoned manuscripts into new works.
Griffin makes the important point that both the first and third of these
preliminary drafts almost certainly existed at one time in full book-length
form, but they were dismembered by Russell when he found that parts of
them fitted nicely into a later manuscript.

There was still another draft to go before Principles was ready for the
printers. During the years 1899 and 1900 Russell wrote a book which he
called by its published name. In My Philosophical Development (1959), his intel-
lectual autobiography, he wrote that he finished this draft “on the last day of
the nineteenth century—i.e. December 31, 1900”. In his Autobiography he
remarks that he wrote the entire draft, about 200,000 words, during October,
November and December, averaging ten pages of manuscript per day. In view
of the fragmentary nature of the third draft, it seems more likely that he
incorporated large portions of it into this penultimate draft. Only parts of this
draft were later rewritten: Parts III to VI required no changes; Parts I, II and VII
were extensively revised before publication.

In July 1900 Russell and Whitehead attended an International Congress of
Philosophy in Paris, at which Russell read a paper on the idea of order and
absolute position in space and time. This Congress turned out to be of
immense importance for his work on the foundations of mathematics.
Giuseppe Peano also read a paper at the meeting and he attended other
sessions and participated in the ensuing discussions. In his Autobiography
Russell calls the Congress “a turning point in my intellectual life” and gives
the credit to Peano: “In discussions at the Congress I observed that he was
always more precise than anyone else, and that he invariably got the better of
any argument upon which he embarked. As the days went by, I decided that
this must be owing to his mathematical logic.” Peano supplied him with
copies of all his publications and Russell spent August mastering them. In
September he extended Peano’s symbolic notation to the logic of relations.
Nearly every day he found that some problem, such as the correct analysis of
order or of cardinal number, that had baffled him for years yielded to the
new method and a definitive answer to it emerged. On the problems bother-
ing him, he made more progress during that month than he had in the years
preceding it. “Intellectually, the month of September 1900 was the highest
point of my life. I went about saying to myself that now at last I had done
something worth doing, and I had the feeling that I must be careful not to be
run over in the street before I had written it down.” The penultimate draft is
the written record of this extraordinary period.

But within this logical paradise lurked a serpent, and it revealed itself to
Russell during the spring of 1901 when he was polishing his manuscript for
publication. It concerned the notion of class and it arose from premisses
which had been accepted by all logicians from Aristotle onward. Every
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logician had accepted the principle that every predicate determines a class.
The class of human beings, for example, is formed by placing within it all
those things of which it is true to say that they are human beings. Logicians
refer to a class as the extension of a predicate. Russell, in checking a proof that
there was no greatest cardinal number, considered certain peculiar classes. He
noticed that some classes were members of themselves, e.g. the class of
abstract ideas is itself an abstract idea, but most are not, e.g. the class of
bicycles is not itself a bicycle. All of the latter classes have a common
property, namely, that they are non-self-membered; Russell called them
“ordinary” classes. Next he took the predicate, “x is not a member of x”, and
formed a new class, which we may call O (to remind ourselves that these are
ordinary classes), which has as its members all and only those classes which
are not members of themselves. Then he asked whether O was a member of
itself or not, and was both astonished and dismayed at the answer. Suppose,
on the one hand, that O is a member of O, then since all members of O are
non-self-membered, it follows that O is not a member of O. Now suppose, on
the other hand, that O is not a member of O, then it follows directly that O is
a member of O, because all non-self-membered classes are members of O. We
may restate these two conclusions as a paradox: O is a member of O, if, and
only if, O is not a member of O. This is now called Russell’s paradox.

When he discovered the paradox Russell attempted in every way he could
to dispose of it. But all of his attempts failed. He communicated it to other
logicians and found that they were unable to find anything wrong with his
reasoning. Whitehead, indeed, lamented “never glad, confident morning
again”, which only served to deepen Russell’s gloom. But one thing was
clear, large parts of Principles would have to be rewritten. Russell first published
his paradox in Principles (§78). The discovery of the contradiction delayed
publication of his book. If it was at all possible, he wanted to include in the
book a way of taming the paradox. For a year he wrestled with the problem,
trying out one idea after another, but usually coming back to a solution
he called “the theory of types”, as the best of a disappointing lot. Finally, he
decided to delay publication no longer, and he included an appendix in
which he sketched the theory of types as the best remedy for the paradox he
had been able to discover.

In addition to being an original and important book in logic and the
philosophy of mathematics, Principles is also a very solid work in metaphysics.
It is a pity that this fact is not more widely known. Widespread ignorance
of it is in large part traceable to the book’s title. The Principles of Mathematics, with
no sub-title, seems to tell the potential reader that its subject-matter is
confined to mathematics. However, nearly all of the classical metaphysical
problems are considered at length, a notable exception being the problem of
the existence or non-existence of God. Space and time, matter and motion
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and causality, the one and the many, and classes and numbers are all accorded
the Russellian treatment, and he has interesting things to say about all of
them. There is another reason why the book is not widely known for its
metaphysical discussions. When Principia Mathematica (1910–13), which
Russell wrote with Whitehead, was published, it was assumed on all sides
that it superseded Principles. Certainly it did in part, but only in part. Most of
Russell’s metaphysical discussions have no counterparts in Principia. Thus, The
Principles of Mathematics can be read not only as a stepping-stone to Principia
Mathematica, but also as an important account of the way in which Russell
viewed the world, especially at the turn of the century.

John G. Slater
University of Toronto
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INTRODUCTION TO THE SECOND EDITION

“The Principles of Mathematics” was published in 1903, and most of it was
written in 1900. In the subsequent years the subjects of which it treats have
been widely discussed, and the technique of mathematical logic has been
greatly improved; while some new problems have arisen, some old ones have
been solved, and others, though they remain in a controversial condition,
have taken on completely new forms. In these circumstances, it seemed use-
less to attempt to amend this or that, in the book, which no longer expresses
my present views. Such interest as the book now possesses is historical, and
consists in the fact that it represents a certain stage in the development of its
subject. I have therefore altered nothing, but shall endeavour, in this Introduc-
tion, to say in what respects I adhere to the opinions which it expresses, and
in what other respects subsequent research seems to me to have shown them
to be erroneous.

The fundamental thesis of the following pages, that mathematics and logic
are identical, is one which I have never since seen any reason to modify. This
thesis was, at first, unpopular, because logic is traditionally associated with
philosophy and Aristotle, so that mathematicians felt it to be none of their
business, and those who considered themselves logicians resented being
asked to master a new and rather difficult mathematical technique. But such
feelings would have had no lasting influence if they had been unable to find
support in more serious reasons for doubt. These reasons are, broadly speak-
ing, of two opposite kinds: first, that there are certain unsolved difficulties in
mathematical logic, which make it appear less certain than mathematics is
believed to be; and secondly that, if the logical basis of mathematics is
accepted, it justifies, or tends to justify, much work, such as that of Georg
Cantor, which is viewed with suspicion by many mathematicians on account



of the unsolved paradoxes which it shares with logic. These two opposite
lines of criticism are represented by the formalists, led by Hilbert, and the
intuitionists, led by Brouwer.

The formalist interpretation of mathematics is by no means new, but for
our purposes we may ignore its older forms. As presented by Hilbert, for
example in the sphere of number, it consists in leaving the integers
undefined, but asserting concerning them such axioms as shall make possible
the deduction of the usual arithmetical propositions. That is to say, we do not
assign any meaning to our symbols 0, 1, 2, . . . except that they are to have
certain properties enumerated in the axioms. These symbols are, therefore,
to be regarded as variables. The later integers may be defined when 0 is given,
but 0 is to be merely something having the assigned characteristics. Accord-
ingly the symbols 0, 1, 2, . . . do not represent one definite series, but any
progression whatever. The formalists have forgotten that numbers are needed,
not only for doing sums, but for counting. Such propositions as “There were
12 Apostles” or “London has 6,000,000 inhabitants” cannot be interpreted
in their system. For the symbol “0” may be taken to mean any finite integer,
without thereby making any of Hilbert’s axioms false; and thus every
number-symbol becomes infinitely ambiguous. The formalists are like a
watchmaker who is so absorbed in making his watches look pretty that he has
forgotten their purpose of telling the time, and has therefore omitted to
insert any works.

There is another difficulty in the formalist position, and that is as regards
existence. Hilbert assumes that if a set of axioms does not lead to a contradic-
tion, there must be some set of objects which satisfies the axioms; accord-
ingly, in place of seeking to establish existence theorems by producing an
instance, he devotes himself to methods of proving the self-consistency of his
axioms. For him, “existence”, as usually understood, is an unnecessarily
metaphysical concept, which should be replaced by the precise concept of
non-contradiction. Here, again, he has forgotten that arithmetic has practical
uses. There is no limit to the systems of non-contradictory axioms that might
be invented. Our reasons for being specially interested in the axioms that lead
to ordinary arithmetic lie outside arithmetic, and have to do with the applica-
tion of number to empirical material. This application itself forms no part of
either logic or arithmetic; but a theory which makes it a priori impossible
cannot be right. The logical definition of numbers makes their connection
with the actual world of countable objects intelligible; the formalist theory
does not.

The intuitionist theory, represented first by Brouwer and later by Weyl, is a
more serious matter. There is a philosophy associated with the theory, which,
for our purposes, we may ignore; it is only its bearing on logic and math-
ematics that concerns us. The essential point here is the refusal to regard a
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proposition as either true or false unless some method exists of deciding the
alternative. Brouwer denies the law of excluded middle where no such
method exists. This destroys, for example, the proof that there are more real
numbers than rational numbers, and that, in the series of real numbers, every
progression has a limit. Consequently large parts of analysis, which for
centuries have been thought well established, are rendered doubtful.

Associated with this theory is the doctrine called finitism, which calls in
question propositions involving infinite collections or infinite series, on the
ground that such propositions are unverifiable. This doctrine is an aspect of
thorough-going empiricism, and must, if taken seriously, have consequences
even more destructive than those that are recognized by its advocates. Men,
for example, though they form a finite class, are, practically and empirically,
just as impossible to enumerate as if their number were infinite. If the
finitist’s principle is admitted, we must not make any general statement—
such as “All men are mortal”—about a collection defined for its properties,
not by actual mention of all its members. This would make a clean sweep of
all science and of all mathematics, not only of the parts which the intuition-
ists consider questionable. Disastrous consequences, however, cannot be
regarded as proving that a doctrine is false; and the finitist doctrine, if it is to
be disproved, can only be met by a complete theory of knowledge. I do not
believe it to be true, but I think no short and easy refutation of it is possible.

An excellent and very full discussion of the question whether mathematics
and logic are identical will be found in Vol. III of Jörgensen’s “Treatise
of Formal Logic”, pp. 57–200, where the reader will find a dispassionate
examination of the arguments that have been adduced against this thesis,
with a conclusion which is, broadly speaking, the same as mine, namely that,
while quite new grounds have been given in recent years for refusing to
reduce mathematics to logic, none of these grounds is in any degree
conclusive.

This brings me to the definition of mathematics which forms the first
sentence of the “Principles”. In this definition various changes are necessary.
To begin with, the form “p implies q” is only one of many logical forms that
mathematical propositions may take. I was originally led to emphasize this
form by the consideration of Geometry. It was clear that Euclidean and
non-Euclidean systems alike must be included in pure mathematics, and must
not be regarded as mutually inconsistent; we must, therefore, only assert that
the axioms imply the propositions, not that the axioms are true and therefore
the propositions are true. Such instances led me to lay undue stress on impli-
cation, which is only one among truth-functions, and no more important
than the others. Next: when it is said that “p and q are propositions containing
one or more variables”, it would, of course, be more correct to say that they
are propositional functions; what is said, however, may be excused on the
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ground that propositional functions had not yet been defined, and were not
yet familiar to logicians or mathematicians.

I come next to a more serious matter, namely the statement that “neither p
nor q contains any constants except logical constants”. I postpone, for the
moment, the discussion as to what logical constants are. Assuming this
known, my present point is that the absence of non-logical constants, though
a necessary condition for the mathematical character of a proposition, is not
a sufficient condition. Of this, perhaps, the best examples are statements
concerning the number of things in the world. Take, say: “There are at least
three things in the world”. This is equivalent to: “There exist objects x, y, z,
and properties �, ψ, χ, such that x but not y has the property �, x but not z has
the property ψ, and y but not z has the property χ.” This statement can be
enunciated in purely logical terms, and it can be logically proved to be true of
classes of classes of classes: of these there must, in fact, be at least 4, even
if the universe did not exist. For in that case there would be one class, the
null-class; two classes of classes, namely, the class of no classes and the class
whose only member is the null class; and four classes of classes of classes,
namely the one which is null, the one whose only member is the null class of
classes, the one whose only member is the class whose only member is the
null class, and the one which is the sum of the two last. But in the lower
types, that of individuals, that of classes, and that of classes of classes, we
cannot logically prove that there are at least three members. From the very
nature of logic, something of this sort is to be expected; for logic aims at
independence of empirical fact, and the existence of the universe is an empir-
ical fact. It is true that if the world did not exist, logic-books would not exist;
but the existence of logic-books is not one of the premisses of logic, nor can
it be inferred from any proposition that has a right to be in a logic-book.

In practice, a great deal of mathematics is possible without assuming the
existence of anything. All the elementary arithmetic of finite integers and
rational fractions can be constructed; but whatever involves infinite classes of
integers becomes impossible. This excludes real numbers and the whole of
analysis. To include them, we need the “axiom of infinity”, which states that
if n is any finite number, there is at least one class having n members. At the
time when I wrote the “Principles”, I supposed that this could be proved, but
by the time that Dr. Whitehead and I published “Principia Mathematica”, we
had become convinced that the supposed proof was fallacious.

The above argument depends upon the doctrine of types, which, although
it occurs in a crude form in Appendix B of the “Principles”, had not yet
reached the stage of development at which it showed that the existence of
infinite classes cannot be demonstrated logically. What is said as to existence-
theorems in the last paragraph of the last chapter of the “Principles” (pp.
497–8) no longer appears to me to be valid: such existence-theorems, with
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certain exceptions, are, I should now say, examples of propositions which
can be enunciated in logical terms, but can only be proved or disproved by
empirical evidence.

Another example is the multiplicative axiom, or its equivalent, Zermelo’s
axiom of selection. This asserts that, given a set of mutually exclusive classes,
none of which is null, there is at least one class consisting of one representa-
tive from each class of the set. Whether this is true or not, no one knows. It is
easy to imagine universes in which it would be true, and it is impossible to
prove that there are possible universes in which it would be false; but it is also
impossible (at least, so I believe) to prove that there are no possible universes
in which it would be false. I did not become aware of the necessity for
this axiom until a year after the “Principles” was published. This book con-
tains, in consequence, certain errors, for example the assertion, in §119
(p. 124), that the two definitions of infinity are equivalent, which can only
be proved if the multiplicative axiom is assumed.

Such examples—which might be multiplied indefinitely—show that a
proposition may satisfy the definition with which the “Principles” opens,
and yet may be incapable of logical or mathematical proof or disproof. All
mathematical propositions are included under the definition (with certain
minor emendations), but not all propositions that are included are math-
ematical. In order that a proposition may belong to mathematics it must have
a further property: according to some it must be “tautological”, and accord-
ing to Carnap it must be “analytic”. It is by no means easy to get an exact
definition of this characteristic; moreover, Carnap has shown that it is neces-
sary to distinguish between “analytic” and “demonstrable”, the latter being a
somewhat narrower concept. And the question whether a proposition is or
is not “analytic” or “demonstrable” depends upon the apparatus of prem-
isses with which we begin. Unless, therefore, we have some criterion as
to admissible logical premisses, the whole question as to what are logical
propositions becomes to a very considerable extent arbitrary. This is a very
unsatisfactory conclusion, and I do not accept it as final. But before anything
more can be said on this subject, it is necessary to discuss the question of
“logical constants”, which play an essential part in the definition of math-
ematics in the first sentence of the “Principles”.

There are three questions in regard to logical constants: First, are there
such things? Second, how are they defined? Third, do they occur in the
propositions of logic? Of these questions, the first and third are highly
ambiguous, but their various meanings can be made clearer by a little
discussion.

First: Are there logical constants? There is one sense of this question in
which we can give a perfectly definite affirmative answer: in the linguistic or
symbolic expression of logical propositions, there are words or symbols
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which play a constant part, i.e., make the same contribution to the signifi-
cance of propositions wherever they occur. Such are, for example, “or”,
“and”, “not”, “if-then”, “the null-class”, “0”, “1”, “2”, . . . The difficulty is
that, when we analyse the propositions in the written expression of which
such symbols occur, we find that they have no constituents corresponding to
the expressions in question. In some cases this is fairly obvious: not even the
most ardent Platonist would suppose that the perfect “or” is laid up in
heaven, and that the “or’s” here on earth are imperfect copies of the celestial
archetype. But in the case of numbers this is far less obvious. The doctrines
of Pythagoras, which began with arithmetical mysticism, influenced all
subsequent philosophy and mathematics more profoundly than is generally
realized. Numbers were immutable and eternal, like the heavenly bodies;
numbers were intelligible: the science of numbers was the key to the uni-
verse. The last of these beliefs has misled mathematicians and the Board of
Education down to the present day. Consequently, to say that numbers are
symbols which mean nothing appears as a horrible form of atheism. At
the time when I wrote the “Principles”, I shared with Frege a belief in the
Platonic reality of numbers, which, in my imagination, peopled the timeless
realm of Being. It was a comforting faith, which I later abandoned with
regret. Something must now be said of the steps by which I was led to
abandon it.

In Chapter four of the “Principles” it is said that “every word occurring in
a sentence must have some meaning”; and again “Whatever may be an object
of thought, or may occur in any true or false proposition, or can be counted
as one, I call a term. . . . A man, a moment, a number, a class, a relation, a
chimæra, or anything else that can be mentioned, is sure to be a term; and to
deny that such and such a thing is a term must always be false”. This way of
understanding language turned out to be mistaken. That a word “must have
some meaning”—the word, of course, being not gibberish, but one which has
an intelligible use—is not always true if taken as applying to the word in
isolation. What is true is that the word contributes to the meaning of the
sentence in which it occurs: but that is a very different matter.

The first step in the process was the theory of descriptions. According to
this theory, in the proposition “Scott is the author of Waverley”, there is no
constituent corresponding to “the author of Waverley”: the analysis of the
proposition is, roughly: “Scott wrote Waverley, and whoever wrote Waverley
was Scott”; or, more accurately: “The propositional function ‘x wrote Waverley is
equivalent to x is Scott’ is true for all values of x”. This theory swept away the
contention—advanced, for instance, by Meinong—that there must, in the
realm of Being, be such objects as the golden mountain and the round
square, since we can talk about them. “The round square does not exist” had
always been a difficult proposition; for it was natural to ask “What is it that
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does not exist”? and any possible answer had seemed to imply that, in some
sense, there is such an object as the round square, though this object has the
odd property of not existing. The theory of descriptions avoided this and
other difficulties.

The next step was the abolition of classes. This step was taken in “Principia
Mathematica”, where it is said: “The symbols for classes, like those for
descriptions, are, in our system, incomplete symbols; their uses are defined,
but they themselves are not assumed to mean anything at all. . . . Thus classes,
so far as we introduce them, are merely symbolic or linguistic conveniences,
not genuine objects” (Vol. I, pp. 71–2). Seeing that cardinal numbers had
been defined as classes of classes, they also became “merely symbolic or
linguistic conveniences”. Thus, for example, the proposition “1 + 1 = 2”,
somewhat simplified, becomes the following: “Form the propositional func-
tion ‘a is not b, and whatever x may be, x is a γ is always equivalent to x is a or x
is b’; form also the propositional function ‘a is a γ, and, whatever x may be, x is
a γ but is not a is always equivalent to x is b’. Then, whatever γ may be, the
assertion that one of these propositional functions is not always false (for
different values of a and b) is equivalent to the assertion that the other is not
always false.” Here the numbers 1 and 2 have entirely disappeared, and a
similar analysis can be applied to any arithmetical proposition.

Dr. Whitehead, at this stage, persuaded me to abandon points of space,
instants of time, and particles of matter, substituting for them logical
constructions composed of events. In the end, it seemed to result that none of
the raw material of the world has smooth logical properties, but that what-
ever appears to have such properties is constructed artificially in order to have
them. I do not mean that statements apparently about points or instants or
numbers, or any of the other entities which Occam’s razor abolishes, are
false, but only that they need interpretation which shows that their linguistic
form is misleading, and that, when they are rightly analysed, the pseudo-
entities in question are found to be not mentioned in them. “Time consists of
instants”, for example, may or may not be a true statement, but in either case
it mentions neither time nor instants. It may, roughly, be interpreted as
follows: Given any event x, let us define as its “contemporaries” those which
end after it begins, but begin before it ends; and among these let us define as
“initial contemporaries” of x those which are not wholly later than any other
contemporaries of x. Then the statement “time consists of instants” is true if,
given any event x, every event which is wholly later than some contemporary
of x is wholly later than some initial contemporary of x. A similar process of
interpretation is necessary in regard to most, if not all, purely logical
constants.

Thus the question whether logical constants occur in the propositions of
logic becomes more difficult than it seemed at first sight. It is, in fact, a
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question to which, as things stand, no definite answer can be given, because
there is no exact definition of “occurring in” a proposition. But something
can be said. In the first place, no proposition of logic can mention any
particular object. The statement “If Socrates is a man and all men are mortal,
then Socrates is mortal” is not a proposition of logic; the logical proposition
of which the above is a particular case is: “If x has the property of �, and
whatever has the property � has the property ψ, then x has the property ψ,
whatever x, �, ψ may be”. The word “property”, which occurs here, disap-
pears from the correct symbolic statement of the proposition; but “if-then”,
or something serving the same purpose, remains. After the utmost efforts to
reduce the number of undefined elements in the logical calculus, we shall
find ourselves left with two (at least) which seem indispensable: one is
incompatibility; the other is the truth of all values of a propositional function.
(By the “incompatibility” of two propositions is meant that they are not both
true.) Neither of these looks very substantial. What was said earlier about
“or” applies equally to incompatibility; and it would seem absurd to say that
generality is a constituent of a general proposition.

Logical constants, therefore, if we are able to be able to say anything
definite about them, must be treated as part of the language, not as part of
what the language speaks about. In this way, logic becomes much more
linguistic than I believed it to be at the time when I wrote the “Principles”. It
will still be true that no constants except logical constants occur in the verbal
or symbolic expression of logical propositions, but it will not be true that
these logical constants are names of objects, as “Socrates” is intended to be.

To define logic, or mathematics, is therefore by no means easy except in
relation to some given set of premisses. A logical premiss must have certain
characteristics which can be defined: it must have complete generality, in the
sense that it mentions no particular thing or quality; and it must be true in
virtue of its form. Given a definite set of logical premisses, we can define
logic, in relation to them, as whatever they enable us to demonstrate. But (1) it is
hard to say what makes a proposition true in virtue of its form; (2) it is
difficult to see any way of proving that the system resulting from a given set
of premisses is complete, in the sense of embracing everything that we
should wish to include among logical propositions. As regards this second
point, it has been customary to accept current logic and mathematics as a
datum, and seek the fewest premisses from which this datum can be
reconstructed. But when doubts arise—as they have arisen—concerning the
validity of certain parts of mathematics, this method leaves us in the lurch.

It seems clear that there must be some way of defining logic other
than in relation to a particular logical language. The fundamental character-
istic of logic, obviously, is that which is indicated when we say that logical
propositions are true in virtue of their form. The question of demonstrability

introduction to the second editionxxxviii



cannot enter in, since every proposition which, in one system, is deduced
from the premisses might, in another system, be itself taken as a premiss. If
the proposition is complicated, this is inconvenient, but it cannot be impos-
sible. All the propositions that are demonstrable in any admissible logical
system must share with the premisses the property of being true in virtue of
their form; and all propositions which are true in virtue of their form ought
to be included in any adequate logic. Some writers, for example Carnap in his
“Logical Syntax of Language”, treat the whole problem as being more a
matter of linguistic choice than I can believe it to be. In the above-mentioned
work, Carnap has two logical languages, one of which admits the multiplica-
tive axiom and the axiom of infinity, while the other does not. I cannot
myself regard such a matter as one to be decided by our arbitrary choice. It
seems to me that these axioms either do, or do not, have the characteristic of
formal truth which characterizes logic, and that in the former event every
logic must include them, while in the latter every logic must exclude them. I
confess, however, that I am unable to give any clear account of what is meant
by saying that a proposition is “true in virtue of its form”. But this phrase,
inadequate as it is, points, I think, to the problem which must be solved if an
adequate definition of logic is to be found.

I come finally to the question of the contradictions and the doctrine of
types. Henri Poincaré, who considered mathematical logic to be no help in
discovery, and therefore sterile, rejoiced in the contradictions: “La logistique
n’est plus stérile; elle engendre la contradiction!” All that mathematical
logic did, however, was to make it evident that contradictions follow from
premisses previously accepted by all logicians, however innocent of math-
ematics. Nor were the contradictions all new; some dated from Greek times.

In the “Principles”, only three contradictions are mentioned: Burali Forti’s
concerning the greatest ordinal, the contradiction concerning the greatest
cardinal and mine concerning the classes that are not members of themselves
(pp. 323, 366 and 101). What is said as to possible solutions may be
ignored, except Appendix B, on the theory of types; and this itself is only a
rough sketch. The literature on the contradictions is vast, and the subject still
controversial. The most complete treatment of the subject known to me is to
be found in Carnap’s “Logical Syntax of Language” (Kegan Paul, 1937).
What he says on the subject seems to me either right or so difficult to refute
that a refutation could not possibly be attempted in a short space. I shall,
therefore, confine myself to a few general remarks.

At first sight, the contradictions seem to be of three sorts: those that are
mathematical, those that are logical and those that may be suspected of being
due to some more or less trivial linguistic trick. Of the definitely mathemat-
ical contradictions, those concerning the greatest ordinal and the greatest
cardinal may be taken as typical.
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The first of these, Burali Forti’s, is as follows: Let us arrange all ordinal
numbers in order of magnitude; then the last of these, which we will call N, is
the greatest of ordinals. But the number of all ordinals from 0 up to N is N +
1, which is greater than N. We cannot escape by suggesting that the series of
ordinal numbers has no last term; for in that case equally this series itself has
an ordinal number greater than any term of the series, i.e., greater than any
ordinal number.

The second contradiction, that concerning the greatest cardinal, has the
merit of making peculiarly evident the need for some doctrine of types. We
know from elementary arithmetic that the number of combinations of n
things any number at a time is 2n, i.e., that a class of n terms has 2n sub-classes.
We can prove that this proposition remains true when n is infinite. And
Cantor proved that 2n is always greater than n. Hence there can be no greatest
cardinal. Yet one would have supposed that the class containing everything
would have the greatest possible number of terms. Since, however, the num-
ber of classes of things exceeds the number of things, clearly classes of things
are not things. (I will explain shortly what this statement can mean.)

Of the obviously logical contradictions, one is discussed in Chapter X: in
the linguistic group, the most famous, that of the liar, was invented by the
Greeks. It is as follows: Suppose a man says “I am lying”. If he is lying,
his statement is true, and therefore he is not lying; if he is not lying, then,
when he says he is lying, he is lying. Thus either hypothesis implies that it is
contradictory.

The logical and mathematical contradictions, as might be expected, are not
really distinguishable: but the linguistic group, according to Ramsey,* can be
solved by what may be called, in a broad sense, linguistic considerations.
They are distinguished from the logical group by the fact that they introduce
empirical notions, such as what somebody asserts or means; and since these
notions are not logical, it is possible to find solutions which depend upon
other than logical considerations. This renders possible a great simplification
of the theory of types, which, as it emerges from Ramsey’s discussion, ceases
wholly to appear unplausible or artificial or a mere ad hoc hypothesis designed
to avoid the contradictions.

The technical essence of the theory of types is merely this: Given a prop-
ositional function “�x” of which all values are true, there are expressions
for which it is not legitimate to substitute for “x”. For example: All values of
“if x is a man x is a mortal” are true, and we can infer “if Socrates is a man,
Socrates is a mortal”; but we cannot infer “if the law of contradiction is a
man, the law of contradiction is a mortal”. The theory of types declares this
latter set of words to be nonsense, and gives rules as to permissible values of

* Foundations of Mathematics, Kegan Paul, 1931, p. 20 ff.
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“x” in “�x”. In the detail there are difficulties and complications, but the
general principle is merely a more precise form of one that has always been
recognized. In the older conventional logic, it was customary to point out
that such a form of words as “virtue is triangular” is neither true nor false,
but no attempt was made to arrive at a definite set of rules for deciding
whether a given series of words was or was not significant. This the theory of
types achieves. Thus, for example I state above that “classes of things are not
things”. This will mean: “If ‘x is a member of the class α’ is a proposition, and
‘�x’ is a proposition, then ‘�α’ is not a proposition, but a meaningless collec-
tion of symbols.”

There are still many controversial questions in mathematical logic, which,
in the above pages, I have made no attempt to solve. I have mentioned only
those matters as to which, in my opinion, there has been some fairly definite
advance since the time when the “Principles” was written. Broadly speaking,
I still think this book is in the right where it disagrees with what had been
previously held, but where it agrees with older theories it is apt to be wrong.
The changes in philosophy which seem to me to be called for are partly due
to the technical advances of mathematical logic in the intervening thirty-four
years, which had simplified the apparatus of primitive ideas and proposi-
tions, and have swept away many apparent entities, such as classes, points
and instants. Broadly, the result is an outlook which is less Platonic, or less
realist in the mediæval sense of the word. How far it is possible to go in the
direction of nominalism remains, to my mind, an unsolved question, but
one which, whether completely soluble or not, can only be adequately
investigated by means of mathematical logic.

introduction to the second edition xli





PREFACE

The present work has two main objects. One of these, the proof that all pure
mathematics deals exclusively with concepts definable in terms of a very
small number of fundamental logical concepts, and that all its propositions
are deducible from a very small number of fundamental logical principles, is
undertaken in Parts II.—VII. of this Volume, and will be established by strict
symbolic reasoning in Volume . The demonstration of this thesis has, if
I am not mistaken, all the certainty and precision of which mathematical
demonstrations are capable. As the thesis is very recent among mathemat-
icians, and is almost universally denied by philosophers, I have undertaken,
in this volume, to defend its various parts, as occasion arose, against such
adverse theories as appeared most widely held or most difficult to disprove. I
have also endeavoured to present, in language as untechnical as possible, the
more important stages in the deductions by which the thesis is established.

The other object of this work, which occupies Part I., is the explanation of
the fundamental concepts which mathematics accepts as indefinable. This is a
purely philosophical task, and I cannot flatter myself that I have done more
than indicate a vast field of inquiry, and give a sample of the methods by
which the inquiry may be conducted. The discussion of indefinables—which
forms the chief part of philosophical logic—is the endeavour to see clearly,
and to make others see clearly, the entities concerned, in order that the mind
may have that kind of acquaintance with them which it has with redness or
the taste of a pineapple. Where, as in the present case, the indefinables are
obtained primarily as the necessary residue in a process of analysis, it is often
easier to know that there must be such entities than actually to perceive them;
there is a process analogous to that which resulted in the discovery of
Neptune, with the difference that the final stage—the search with a mental



telescope for the entity which has been inferred—is often the most difficult
part of the undertaking. In the case of classes, I must confess, I have failed to
perceive any concept fulfilling the conditions requisite for the notion of class.
And the contradiction discussed in Chapter x. proves that something is amiss,
but what this is I have hitherto failed to discover.

The second volume, in which I have had the great good fortune to secure
the collaboration of Mr A. N. Whitehead, will be addressed exclusively to
mathematicians; it will contain chains of deductions, from the premisses of
symbolic logic through Arithmetic, finite and infinite, to Geometry, in an
order similar to that adopted in the present volume; it will also contain
various original developments, in which the method of Professor Peano,
as supplemented by the Logic of Relations, has shown itself a powerful
instrument of mathematical investigation.

The present volume, which may be regarded either as a commentary
upon, or as an introduction to, the second volume, is addressed in equal
measure to the philosopher and to the mathematician; but some parts will be
more interesting to the one, others to the other. I should advise mathemat-
icians, unless they are specially interested in Symbolic Logic, to begin with
Part IV., and only refer to earlier parts as occasion arises. The following
portions are more specially philosophical: Part I. (omitting Chapter 2.); Part
II., Chapters 11., 15., 16.; 17.; Part III.; Part IV., § 207, Chapters 26., 27., 31;
Part V., Chapters 41., 42., 43.; Part VI., Chapters 50., 51., 52.; Part VII.,
Chapters 53., 54., 55., 57., 58.; and the two Appendices, which belong to
Part I., and should be read in connection with it. Profesor Frege’s work,
which largely anticipates my own, was for the most part unknown to me
when the printing of the present work began; I had seen his Grundgesetze der
Arithmetik, but, owing to the great difficulty of his symbolism, I had failed to
grasp its importance or to understand its contents. The only method, at so
late a stage, of doing justice to his work was to devote an Appendix to it; and
in some points the views contained in the Appendix differ from those in
Chapter 6., especially in §§71, 73, 74. On questions discussed in these
sections, I discovered errors after passing the sheets for the press; these
errors, of which the chief are the denial of the null-class, and the identifica-
tion of a term with the class whose only member it is, are rectified in the
Appendices. The subjects treated are so difficult that I feel little confidence in
my present opinions, and regard any conclusions which may be advocated as
essentially hypotheses.

A few words as to the origin of the present work may serve to show the
importance of the questions discussed. About six years ago, I began an
investigation into the philosophy of Dynamics. I was met by the difficulty
that, when a particle is subject to several forces, no one of the component
accelerations actually occurs, but only the resultant acceleration, of which
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they are not parts; this fact rendered illusory such causation of particulars by
particulars as is affirmed, at first sight, by the law of gravitation. It appeared
also that the difficulty in regard to absolute motion is insoluble on a relational
theory of space. From these two questions I was led to a re-examination of
the principles of Geometry, thence to the philosophy of continuity and infin-
ity, and thence, with a view to discovering the meaning of the word any, to
Symbolic Logic. The final outcome, as regards the philosophy of Dynamics, is
perhaps rather slender; the reason for this is that almost all the problems of
Dynamics appear to me empirical, and therefore outside the scope of such a
work as the present. Many very interesting questions have had to be omitted,
especially in Parts VI. and VII., as not relevant to my purpose, which, for fear
of misunderstandings, it may be well to explain at this stage.

When actual objects are counted, or when Geometry and Dynamics
are applied to actual space or actual matter, or when, in any other way,
mathematical reasoning is applied to what exists, the reasoning employed has
a form not dependent upon the objects to which it is applied being just those
objects that they are, but only upon their having certain general properties. In
pure mathematics, actual objects in the world of existence will never be in
question, but only hypothetical objects having those general properties upon
which depends whatever deduction is being considered; and these general
properties will always be expressible in terms of the fundamental concepts
which I have called logical constants. Thus when space or motion is spoken of
in pure mathematics, it is not actual space or actual motion, as we know them
in experience, that are spoken of, but any entity possessing those abstract
general properties of space or motion that are employed in the reasonings of
geometry or dynamics. The question whether these properties belong, as a
matter of fact, to actual space or actual motion, is irrelevant to pure math-
ematics, and therefore to the present work, being, in my opinion, a purely
empirical question, to be investigated in the laboratory or the observatory.
Indirectly, it is true, the discussions connected with pure mathematics have a
very important bearing upon such empirical questions, since mathematical
space and motion are held by many, perhaps most, philosophers to be
self-contradictory, and therefore necessarily different from actual space and
motion, whereas, if the views advocated in the following pages be valid, no
such self-contradictions are to be found in mathematical space and motion.
But extra-mathematical considerations of this kind have been almost wholly
excluded from the present work.

On fundamental questions of philosophy, my position, in all its chief
features, is derived from Mr G. E. Moore. I have accepted from him the non-
existential nature of propositions (except such as happen to assert existence)
and their independence of any knowing mind; also the pluralism which
regards the world, both that of existents and that of entities, as composed of
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an infinite number of mutually independent entities, with relations which
are ultimate, and not reducible to adjectives of their terms or of the whole
which these compose. Before learning these views from him, I found myself
completely unable to construct any philosophy of arithmetic, whereas their
acceptance brought about an immediate liberation from a large number of
difficulties which I believe to be otherwise insuperable. The doctrines just
mentioned are, in my opinion, quite indispensable to any even tolerably
satisfactory philosophy of mathematics, as I hope the following pages will
show. But I must leave it to my readers to judge how far the reasoning
assumes these doctrines, and how far it supports them. Formally, my prem-
isses are simply assumed; but the fact that they allow mathematics to be true,
which most current philosophies do not, is surely a powerful argument in
their favour.

In Mathematics, my chief obligations, as is indeed evident, are to Georg
Cantor and Professor Peano. If I had become acquainted sooner with the work
of Professor Frege, I should have owed a great deal to him, but as it is I arrived
independently at many results which he had already established. At every
stage of my work, I have been assisted more than I can express by the sugges-
tions, the criticisms and the generous encouragement of Mr A. N. White-
head; he also has kindly read my proofs, and greatly improved the final
expression of a very large number of passages. Many useful hints I owe also to
Mr W. E. Johnson; and in the more philosophical parts of the book I owe
much to Mr G. E. Moore besides the general position which underlies the
whole.

In the endeavour to cover so wide a field, it has been impossible to acquire
an exhaustive knowledge of the literature. There are doubtless many import-
ant works with which I am unacquainted; but where the labour of thinking
and writing necessarily absorbs so much time, such ignorance, however
regrettable, seems not wholly avoidable.

Many words will be found, in the course of discussion, to be defined in
senses apparently departing widely from common usage. Such departures, I
must ask the reader to believe, are never wanton, but have been made with
great reluctance. In philosophical matters, they have been necessitated mainly
by two causes. First, it often happens that two cognate notions are both to be
considered, and that language has two names for the one, but none for the
other. It is then highly convenient to distinguish between the two names
commonly used as synonyms, keeping one for the usual, the other for the
hitherto nameless sense. The other cause arises from philosophical disagree-
ment with received views. Where two qualities are commonly supposed
inseparably conjoined, but are here regarded as separable, the name which
has applied to their combination will usually have to be restricted to one or
other. For example, propositions are commonly regarded as (1) true or false,
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(2) mental. Holding, as I do, that what is true or false is not in general
mental, I require a name for the true or false as such, and this name can
scarcely be other than propositions. In such a case, the departure from usage is
in no degree arbitrary. As regards mathematical terms, the necessity for
establishing the existence-theorem in each case—i.e. the proof that there are
entities of the kind in question—has led to many definitions which appear
widely different from the notions usually attached to the terms in question.
Instances of this are the definitions of cardinal, ordinal and complex num-
bers. In the two former of these, and in many other cases, the definition as a
class, derived from the principle of abstraction, is mainly recommended by
the fact that it leaves no doubt as to the existence-theorem. But in many
instances of such apparent departure from usage, it may be doubted whether
more has been done than to give precision to a notion which had hitherto
been more or less vague.

For publishing a work containing so many unsolved difficulties, my
apology is that investigation revealed no near prospect of adequately resolv-
ing the contradiction discussed in Chapter x., or of acquiring a better insight
into the nature of classes. The repeated discovery of errors in solutions which
for a time had satisfied me caused these problems to appear such as would
have been only concealed by any seemingly satisfactory theories which a
slightly longer reflection might have produced; it seemed better, therefore,
merely to state the difficulties, than to wait until I had become persuaded of
the truth of some almost certainly erroneous doctrine.

My thanks are due to the Syndics of the University Press, and to their
Secretary, Mr R. T. Wright, for their kindness and courtesy in regard to the
present volume.

L,
December, 1902.
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Part I
The Indefinables of Mathematics





1
DEFINITION OF PURE

MATHEMATICS

1. P Mathematics is the class of all propositions of the form “p
implies q”, where p and q are propositions containing one or more variables,
the same in the two propositions, and neither p nor q contains any constants
except logical constants. And logical constants are all notions definable in
terms of the following: implication, the relation of a term to a class of which
it is a member, the notion of such that, the notion of relation and such further
notions as may be involved in the general notion of propositions of the above
form. In addition to these, mathematics uses a notion which is not a constituent
of the propositions which it considers, namely the notion of truth.

2. The above definition of pure mathematics is, no doubt, somewhat
unusual. Its various parts, nevertheless, appear to be capable of exact
justification—a justification which it will be the object of the present work to
provide. It will be shown that whatever has, in the past, been regarded as pure
mathematics, is included in our definition, and that whatever else is included
possesses those marks by which mathematics is commonly though vaguely
distinguished from other studies. The definition professes to be, not an arbi-
trary decision to use a common word in an uncommon signification, but
rather a precise analysis of the ideas which, more or less unconsciously, are
implied in the ordinary employment of the term. Our method will therefore
be one of analysis, and our problem may be called philosophical—in the
sense, that is to say, that we seek to pass from the complex to the simple,
from the demonstrable to its indemonstrable premisses. But in one respect
not a few of our discussions will differ from those that are usually called
philosophical. We shall be able, thanks to the labours of the mathematicians
themselves, to arrive at certainty in regard to most of the questions with



which we shall be concerned; and among those capable of an exact solution
we shall find many of the problems which, in the past, have been involved in
all the traditional uncertainty of philosophical strife. The nature of number,
of infinity, of space, time and motion, and of mathematical inference itself,
are all questions to which, in the present work, an answer professing itself
demonstrable with mathematical certainty will be given—an answer which,
however, consists in reducing the above problems to problems in pure logic,
which last will not be found satisfactorily solved in what follows.

3. The Philosophy of Mathematics has been hitherto as controversial,
obscure and unprogressive as the other branches of philosophy. Although it
was generally agreed that mathematics is in some sense true, philosophers
disputed as to what mathematical propositions really meant: although some-
thing was true, no two people were agreed as to what it was that was true,
and if something was known, no one knew what it was that was known. So
long, however, as this was doubtful, it could hardly be said that any certain
and exact knowledge was to be obtained in mathematics. We find, accord-
ingly, that idealists have tended more and more to regard all mathematics
as dealing with mere appearance, while empiricists have held everything
mathematical to be approximation to some exact truth about which they
had nothing to tell us. This state of things, it must be confessed, was thor-
oughly unsatisfactory. Philosophy asks of Mathematics: What does it
mean? Mathematics in the past was unable to answer, and Philosophy
answered by introducing the totally irrelevant notion of mind. But now
Mathematics is able to answer, so far at least as to reduce the whole of its
propositions to certain fundamental notions of logic. At this point, the dis-
cussion must be resumed by Philosophy. I shall endeavour to indicate what
are the fundamental notions involved, to prove at length that no others occur
in mathematics and to point out briefly the philosophical difficulties
involved in the analysis of these notions. A complete treatment of these
difficulties would involve a treatise on Logic, which will not be found in the
following pages.

4. There was, until very lately, a special difficulty in the principles of
mathematics. It seemed plain that mathematics consists of deductions, and
yet the orthodox accounts of deduction were largely or wholly inapplicable
to existing mathematics. Not only the Aristotelian syllogistic theory, but
also the modern doctrines of Symbolic Logic, were either theoretically
inadequate to mathematical reasoning, or at any rate required such artificial
forms of statement that they could not be practically applied. In this fact lay
the strength of the Kantian view, which asserted that mathematical reasoning
is not strictly formal, but always uses intuitions, i.e. the à priori knowledge of
space and time. Thanks to the progress of Symbolic Logic, especially as
treated by Professor Peano, this part of the Kantian philosophy is now capable
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of a final and irrevocable refutation. By the help of ten principles of deduc-
tion and ten other premisses of a general logical nature (e.g. “implication is a
relation”), all mathematics can be strictly and formally deduced; and all the
entities that occur in mathematics can be defined in terms of those that occur
in the above twenty premisses. In this statement, Mathematics includes
not only Arithmetic and Analysis, but also Geometry, Euclidean and non-
Euclidean, rational Dynamics and an indefinite number of other studies still
unborn or in their infancy. The fact that all Mathematics is Symbolic Logic is
one of the greatest discoveries of our age; and when this fact has been
established, the remainder of the principles of mathematics consists in the
analysis of Symbolic Logic itself.

5. The general doctrine that all mathematics is deduction by logical
principles from logical principles was strongly advocated by Leibniz, who
urged constantly that axioms ought to be proved and that all except a few
fundamental notions ought to be defined. But owing partly to a faulty logic,
partly to belief in the logical necessity of Euclidean Geometry, he was led into
hopeless errors in the endeavour to carry out in detail a view which, in its
general outline, is now known to be correct.* The actual propositions of
Euclid, for example, do not follow from the principles of logic alone; and the
perception of this fact led Kant to his innovations in the theory of knowledge.
But since the growth of non-Euclidean Geometry, it has appeared that pure
mathematics has no concern with the question whether the axioms and
propositions of Euclid hold of actual space or not: this is a question for
applied mathematics, to be decided, so far as any decision is possible, by
experiment and observation. What pure mathematics asserts is merely that
the Euclidean propositions follow from the Euclidean axioms—i.e. it asserts
an implication: any space which has such and such properties has also such
and such other properties. Thus, as dealt with in pure mathematics, the
Euclidean and non-Euclidean Geometries are equally true: in each nothing is
affirmed except implications. All propositions as to what actually exists, like
the space we live in, belong to experimental or empirical science, not to
mathematics; when they belong to applied mathematics, they arise from
giving to one or more of the variables in a proposition of pure mathematics
some constant value satisfying the hypothesis, and thus enabling us, for that
value of the variable, actually to assert both hypothesis and consequent
instead of asserting merely the implication. We assert always in mathematics
that if a certain assertion p is true of any entity x, or of any set of entities x, y, z,
. . ., then some other assertion q is true of those entities; but we do not assert
either p or q separately of our entities. We assert a relation between the
assertions p and q, which I shall call formal implication.

* On this subject, cf. Couturat, La Logique de Leibniz, Paris, 1901.
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6. Mathematical propositions are not only characterized by the fact that
they assert implications, but also by the fact that they contain variables. The
notion of the variable is one of the most difficult with which Logic has to
deal, and in the present work a satisfactory theory as to its nature, in spite of
much discussion, will hardly be found. For the present, I only wish to make it
plain that there are variables in all mathematical propositions, even where at
first sight they might seem to be absent. Elementary Arithmetic might be
thought to form an exception: 1 + 1 = 2 appears neither to contain variables
nor to assert an implication. But as a matter of fact, as will be shown in Part II,
the true meaning of this proposition is: “If x is one and y is one, and x differs
from y, then x and y are two.” And this proposition both contains variables
and asserts an implication. We shall find always, in all mathematical proposi-
tions, that the words any or some occur; and these words are the marks of
a variable and a formal implication. Thus the above proposition may be
expressed in the form: “Any unit and any other unit are two units.” The
typical proposition of mathematics is of the form “� (x, y, z, . . .) implies ψ
(x, y, z, . . .), whatever values x, y, z, . . . may have”; where � (x, y, z, . . .) and ψ
(x, y, z, . . .), for every set of values of x, y, z, . . ., are propositions. It is not
asserted that � is always true, nor yet that ψ is always true, but merely that, in
all cases, when � is false as much as when � is true, ψ follows from it.

The distinction between a variable and a constant is somewhat obscured by
mathematical usage. It is customary, for example, to speak of parameters as
in some sense constants, but this is a usage which we shall have to reject.
A constant is to be something absolutely definite, concerning which there
is no ambiguity whatever. Thus 1, 2, 3, e, π, Socrates, are constants; and so are
man, and the human race, past, present and future, considered collectively.
Proposition, implication, class, etc. are constants; but a proposition, any
proposition, some proposition, are not constants, for these phrases do not
denote one definite object. And thus what are called parameters are simply
variables. Take, for example, the equation ax + by + c = 0, considered as the
equation to a straight line in a plane. Here we say that x and y are variables,
while a, b, c are constants. But unless we are dealing with one absolutely
particular line, say the line from a particular point in London to a particular
point in Cambridge, our a, b, c are not definite numbers, but stand for any
numbers, and are thus also variables. And in Geometry nobody does deal
with actual particular lines; we always discuss any line. The point is that we
collect the various couples x, y into classes of classes, each class being defined
as those couples that have a certain fixed relation to one triad (a, b, c). But
from class to class, a, b, c also vary, and are therefore properly variables.

7. It is customary in mathematics to regard our variables as restricted to
certain classes: in Arithmetic, for instance, they are supposed to stand for
numbers. But this only means that if they stand for numbers, they satisfy some
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formula, i.e. the hypothesis that they are numbers implies the formula. This,
then, is what is really asserted, and in this proposition it is no longer neces-
sary that our variables should be numbers: the implication holds equally
when they are not so. Thus, for example, the proposition “x and y are num-
bers implies (x + y)2 = x2 + 2xy + y2” holds equally if for x and y we substitute
Socrates and Plato:* both hypothesis and consequent, in this case, will be
false, but the implication will still be true. Thus in every proposition of pure
mathematics, when fully stated, the variables have an absolutely unrestricted
field: any conceivable entity may be substituted for any one of our variables
without impairing the truth of our proposition.

8. We can now understand why the constants in mathematics are to be
restricted to logical constants in the sense defined above. The process of
transforming constants in a proposition into variables leads to what is called
generalization, and gives us, as it were, the formal essence of a proposition.
Mathematics is interested exclusively in types of propositions; if a proposition
p containing only constants be proposed, and for a certain one of its terms we
imagine others to be successively substituted, the result will in general be
sometimes true and sometimes false. Thus, for example, we have “Socrates is
a man”; here we turn Socrates into a variable, and consider “x is a man”.
Some hypotheses as to x, for example, “x is a Greek”, insure the truth of “x is
a man”; thus “x is a Greek” implies “x is a man”, and this holds for all values
of x. But the statement is not one of pure mathematics, because it depends
upon the particular nature of Greek and man. We may, however, vary these
too, and obtain: If a and b are classes, and a is contained in b, then “x is an
a” implies “x is a b”. Here at last we have a proposition of pure mathematics,
containing three variables and the constants class, contained in and those involved
in the notion of formal implications with variables. So long as any term in
our proposition can be turned into a variable, our proposition can be general-
ized; and so long as this is possible, it is the business of mathematics to do it.
If there are several chains of deduction which differ only as to the meaning of
the symbols, so that propositions symbolically identical become capable of
several interpretations, the proper course, mathematically, is to form the class
of meanings which may attach to the symbols, and to assert that the formula
in question follows from the hypothesis that the symbols belong to the class
in question. In this way, symbols which stood for constants become trans-
formed into variables, and new constants are substituted, consisting of classes
to which the old constants belong. Cases of such generalization are so fre-
quent that many will occur at once to every mathematician, and innumerable
instances will be given in the present work. Whenever two sets of terms have

* It is necessary to suppose arithmetical addition and multiplication defined (as may be easily
done) so that the above formula remains significant when x and y are not numbers.
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mutual relations of the same type, the same form of deduction will apply to
both. For example, the mutual relations of points in a Euclidean plane are of
the same type as those of the complex numbers; hence plane geometry,
considered as a branch of pure mathematics, ought not to decide whether its
variables are points or complex numbers or some other set of entities having
the same type of mutual relations. Speaking generally, we ought to deal, in
every branch of mathematics, with any class of entities whose mutual rela-
tions are of a specified type; thus the class, as well as the particular term
considered, becomes a variable, and the only true constants are the types of
relations and what they involve. Now a type of relation is to mean, in this
discussion, a class of relations characterized by the above formal identity of
the deductions possible in regard to the various members of the class; and
hence a type of relations, as will appear more fully hereafter, if not already
evident, is always a class definable in terms of logical constants.* We may
therefore define a type of relation as a class of relations defined by some
property definable in terms of logical constants alone.

9. Thus pure mathematics must contain no indefinables except logical
constants, and consequently no premisses, or indemonstrable propositions,
but such as are concerned exclusively with logical constants and with vari-
ables. It is precisely this that distinguishes pure from applied mathematics. In
applied mathematics, results which have been shown by pure mathematics
to follow from some hypothesis as to the variable are actually asserted of
some constant satisfying the hypothesis in question. Thus terms which were
variables become constant, and a new premiss is always required, namely:
this particular entity satisfies the hypothesis in question. Thus for example
Euclidean Geometry, as a branch of pure mathematics, consists wholly of
propositions having the hypothesis “S is a Euclidean space”. If we go on
to: “The space that exists is Euclidean”, this enables us to assert of the space
that exists the consequents of all the hypotheticals constituting Euclidean
Geometry, where now the variable S is replaced by the constant actual space. But
by this step we pass from pure to applied mathematics.

10. The connection of mathematics with logic, according to the above
account, is exceedingly close. The fact that all mathematical constants are
logical constants, and that all the premisses of mathematics are concerned
with these, gives, I believe, the precise statement of what philosophers have
meant in asserting that mathematics is à priori. The fact is that, when once the
apparatus of logic has been accepted, all mathematics necessarily follows. The
logical constants themselves are to be defined only by enumeration, for they
are so fundamental that all the properties by which the class of them might

* One-one, many-one, transitive, symmetrical, are instances of types of relations with which we
shall be often concerned.
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be defined presuppose some terms of the class. But practically, the method
of discovering the logical constants is the analysis of symbolic logic, which
will be the business of the following chapters. The distinction of math-
ematics from logic is very arbitrary, but if a distinction is desired, it may be
made as follows. Logic consists of the premisses of mathematics, together
with all other propositions which are concerned exclusively with logical
constants and with variables but do not fulfil the above definition of math-
ematics (§ 1). Mathematics consists of all the consequences of the above
premisses which assert formal implications containing variables, together
with such of the premisses themselves as have these marks. Thus some of the
premisses of mathematics, e.g. the principle of the syllogism, “if p implies q
and q implies r, then p implies r”, will belong to mathematics, while others,
such as “implication is a relation”, will belong to logic but not to mathemat-
ics. But for the desire to adhere to usage, we might identify mathematics and
logic, and define either as the class of propositions containing only variables
and logical constants; but respect for tradition leads me rather to adhere to
the above distinction, while recognizing that certain propositions belong to
both sciences.

From what has now been said, the reader will perceive that the present
work has to fulfil two objects, first, to show that all mathematics follows from
symbolic logic, and secondly to discover, as far as possible, what are the
principles of symbolic logic itself. The first of these objects will be pursued in
the following Parts, while the second belongs to Part I. And first of all, as a
preliminary to a critical analysis, it will be necessary to give an outline of
Symbolic Logic considered simply as a branch of mathematics. This will
occupy the following chapter
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2
SYMBOLIC LOGIC

11. S or Formal Logic—I shall use these terms as synonyms—is
the study of the various general types of deduction. The word symbolic
designates the subject by an accidental characteristic, for the employment of
mathematical symbols, here as elsewhere, is merely a theoretically irrelevant
convenience. The syllogism in all its figures belongs to Symbolic Logic, and
would be the whole subject if all deduction were syllogistic, as the scholastic
tradition supposed. It is from the recognition of asyllogistic inferences that
modern Symbolic Logic, from Leibniz onward, has derived the motive to
progress. Since the publication of Boole’s Laws of Thought (1854), the subject
has been pursued with a certain vigour, and has attained a very consider-
able technical development.* Nevertheless, the subject achieved almost noth-
ing of utility either to philosophy or to other branches of mathematics, until
it was transformed by the new methods of Professor Peano.† Symbolic Logic
has now become not only absolutely essential to every philosophical logician,
but also necessary for the comprehension of mathematics generally, and even
for the successful practice of certain branches of mathematics. How useful it
is in practice can only be judged by those who have experienced the increase

* By far the most complete account of the non-Peanesque methods will be found in the three
volumes of Schröder, Vorlesungen über die Algebra der Logik, Leipzig, 1890, 1891, 1895.
† See Formulaire de Mathématiques, Turin, 1895, with subsequent editions in later years; also Revue
de Mathématiques, Vol. , No. 1 (1900). The editions of the Formulaire will be quoted as F. 1895
and so on. The Revue de Mathématiques, which was originally the Rivista di Matematica, will be referred
to as R. d. M.



of power derived from acquiring it; its theoretical functions must be briefly
set forth in the present chapter.*

12. Symbolic Logic is essentially concerned with inference in general,†
and is distinguished from various special branches of mathematics mainly by
its generality. Neither mathematics nor symbolic logic will study such special
relations as (say) temporal priority, but mathematics will deal explicitly with
the class of relations possessing the formal properties of temporal priority—
properties which are summed up in the notion of continuity.‡ And the formal
properties of a relation may be defined as those that can be expressed in terms
of logical constants, or again as those which, while they are preserved, permit
our relation to be varied without invalidating any inference in which the
said relation is regarded in the light of a variable. But symbolic logic, in the
narrower sense which is convenient, will not investigate what inferences are
possible in respect of continuous relations (i.e. relations generating continu-
ous series); this investigation belongs to mathematics, but is still too special
for symbolic logic. What symbolic logic does investigate is the general rules
by which inferences are made, and it requires a classification of relations or
propositions only in so far as these general rules introduce particular notions.
The particular notions which appear in the propositions of symbolic logic,
and all others definable in terms of these notions, are the logical constants.
The number of indefinable logical constants is not great: it appears, in fact,
to be eight or nine. These notions alone form the subject-matter of the whole
of mathematics: no others, except such as are definable in terms of the
original eight or nine, occur anywhere in Arithmatic, Geometry or rational
Dynamics. For the technical study of Symbolic Logic, it is convenient to take
as a single indefinable the notion of a formal implication, i.e. of such proposi-
tions as “x is a man implies x is a mortal, for all values of x”—propositions
whose general type is: “� (x) implies ψ (x) for all values of x”, where � (x), ψ
(x), for all values of x, are propositions. The analysis of this notion of formal
implication belongs to the principles of the subject, but is not required for its
formal development. In addition to this notion, we require as indefinables
the following: implication between propositions not containing variables, the
relation of a term to a class of which it is a member, the notion of such that, the
notion of relation and truth. By means of these notions, all the propositions
of symbolic logic can be stated.

* In what follows the main outlines are due to Professor Peano, except as regards relations; even
in those cases where I depart from his views, the problems considered have been suggested to
me by his works.
† I may as well say at once that I do not distinguish between inference and deduction. What is
called induction appears to me to be either disguised deduction or a mere method of making
plausible guesses
‡ See below, Part V, Chap. 36.

11symbolic logic



13. The subject of Symbolic Logic consists of three parts, the calculus of
propositions, the calculus of classes and the calculus of relations. Between the
first two, there is, within limits, a certain parallelism, which arises as follows:
In any symbolic expression, the letters may be interpreted as classes or as
propositions, and the relation of inclusion in the one case may be replaced by
that of formal implication in the other. Thus, for example, in the principle of
the syllogism, if a, b, c be classes, and a is contained in b, b in c, then a is
contained in c; but if a, b, c be propositions, and a implies b, b implies c, then a
implies c. A great deal has been made of this duality, and in the later editions
of the Formulaire, Peano appears to have sacrificed logical precision to its pres-
ervation.* But, as a matter of fact, there are many ways in which the calculus
of propositions differs from that of classes. Consider, for example, the follow-
ing: “If p, q, r are propositions, and p implies q or r, then p implies q or p
implies r.” This proposition is true; but its correlative is false, namely: “If a, b,
c are classes, and a is contained in b or c, then a is contained in b or a is
contained in c.” For example, English people are all either men or women,
but are not all men nor yet all women. The fact is that the duality holds for
propositions asserting of a variable term that it belongs to a class, i.e. such
propositions as “x is a man”, provided that the implication involved be
formal, i.e. one which holds for all values of x. But “x is a man” is itself not a
proposition at all, being neither true nor false; and it is not with such entities
that we are concerned in the propositional calculus, but with genuine prop-
ositions. To continue the above illustration: It is true that, for all values of x,
“x is a man or a woman” either implies “x is a man” or implies “x is a
woman”. But it is false that “x is a man or woman” either implies “x is a
man” for all values of x, or implies “x is a woman” for all values of x. Thus the
implication involved, which is always one of the two, is not formal, since it
does not hold for all values of x, being not always the same one of the two.
The symbolic affinity of the propositional and the class logic is, in fact,
something of a snare, and we have to decide which of the two we are to make
fundamental. Mr McColl, in an important series of papers,† has contended
for the view that implication and propositions are more fundamental than
inclusion and classes; and in this opinion I agree with him. But he does not
appear to me to realize adequately the distinction between genuine prop-
ositions and such as contain a real variable: thus he is led to speak of
propositions as sometimes true and sometimes false, which of course is
impossible with a genuine proposition. As the distinction involved is of

* On the points where the duality breaks down, cf. Schröder, op. cit., Vol. , Lecture 21.
† Cf. “The Calculus of Equivalent Statements”, Proceedings of the London Mathematical Society, Vol.  and
subsequent volumes; “Symbolic Reasoning”, Mind, Jan. 1880, Oct. 1897 and Jan. 1900; “La
Logique Symbolique et ses Applications”, Bibliothèque du Congrès International de Philosophie, Vol. 
(Paris, 1901). I shall in future quote the proceedings of the above Congress by the title Congrès.
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very great importance, I shall dwell on it before proceeding further. A prop-
osition, we may say, is anything that is true or that is false. An expression such
as “x is a man” is therefore not a proposition, for it is neither true nor false. If
we give to x any constant value whatever, the expression becomes a prop-
osition: it is thus as it were a schematic form standing for any one of a whole
class of propositions. And when we say “x is a man implies x is a mortal for all
values of x”, we are not asserting a single implication, but a class of implica-
tions; we have now a genuine proposition, in which, though the letter x
appears, there is no real variable: the variable is absorbed in the same kind of
way as the x under the integral sign in a definite integral, so that the result is
no longer a function of x. Peano distinguishes a variable which appears in this
way as apparent, since the proposition does not depend upon the variable;
whereas in “x is a man” there are different propositions for different values of
the variable, and the variable is what Peano calls real.* I shall speak of proposi-
tions exclusively where there is no real variable: where there are one or more
real variables, and for all values of the variables the expression involved is
a proposition, I shall call the expression a propositional function. The study of
genuine propositions is, in my opinion, more fundamental than that of
classes; but the study of propositional functions appears to be strictly on a par
with that of classes, and indeed scarcely distinguishable therefrom. Peano,
like McColl, at first regarded propositions as more fundamental than classes,
but he, even more definitely, considered propositional functions rather than
propositions. From this criticism, Schröder is exempt: his second volume
deals with genuine propositions, and points out their formal differences from
classes.

A. THE PROPOSITIONAL CALCULUS

14. The propositional calculus is characterized by the fact that all its
propositions have as hypothesis and as consequent the assertion of a mate-
rial implication. Usually, the hypothesis is of the form “p implies p”, etc.,
which (§ 16) is equivalent to the assertion that the letters which occur
in the consequent are propositions. Thus the consequents consist of prop-
ositional functions which are true of all propositions. It is important to
observe that, though the letters employed are symbols for variables, and
the consequents are true when the variables are given values which are
propositions, these values must be genuine propositions, not propositional
functions. The hypothesis “p is a proposition” is not satisfied if for p
we put “x is a man”, but it is satisfied if we put “Socrates is a man” or if we
put “x is a man implies x is a mortal for all values of x”. Shortly, we

* F. 1901, p. 2.
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may say that the propositions represented by single letters in this calculus
are variables, but do not contain variables—in the case, that is to say,
where the hypotheses of the propositions which the calculus asserts are
satisfied.

15. Our calculus studies the relation of implication between propositions.
This relation must be distinguished from the relation of formal implication,
which holds between propositional functions when the one implies the
other for all values of the variable. Formal implication is also involved in this
calculus, but is not explicitly studied: we do not consider propositional
functions in general, but only certain definite propositional functions which
occur in the propositions of our calculus. How far formal implication is
definable in terms of implication simply, or material implication as it may
be called, is a difficult question, which will be discussed in Chapter 3.
What the difference is between the two, an illustration will explain. The
fifth proposition of Euclid follows from the fourth: if the fourth is true,
so is the fifth, while if the fifth is false, so is the fourth. This is a case
of material implication, for both propositions are absolute constants, not
dependent for their meaning upon the assigning of a value to a variable. But
each of them states a formal implication. The fourth states that if x and y be
triangles fulfilling certain conditions, then x and y are triangles fulfilling
certain other conditions, and that this implication holds for all values of x and
y; and the fifth states that if x is an isosceles triangle, x has the angles at the
base equal. The formal implication involved in each of these two propositions
is quite a different thing from the material implication holding between
the propositions as wholes; both notions are required in the propositional
calculus, but it is the study of material implication which specially dis-
tinguishes this subject, for formal implication occurs throughout the whole
of mathematics.

It has been customary, in treatises on logic, to confound the two kinds of
implication, and often to be really considering the formal kind where the
material kind only was apparently involved. For example, when it is said that
“Socrates is a man, therefore Socrates is a mortal”, Socrates is felt as a variable:
he is a type of humanity, and one feels that any other man would have done
as well. If, instead of therefore, which implies the truth of hypothesis and
consequent, we put “Socrates is a man implies Socrates is a mortal”, it
appears at once that we may substitute not only another man, but any other
entity whatever, in the place of Socrates. Thus although what is explicitly
stated, in such a case, is a material implication, what is meant is a formal
implication; and some effort is needed to confine our imagination to material
implication.

16. A definition of implication is quite impossible. If p implies q, then if p
is true q is true, i.e. p’s truth implies q’s truth; also if q is false p is false, i.e. q’s
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falsehood implies p’s falsehood.* Thus truth and falsehood give us merely
new implications, not a definition of implication. If p implies q, then both are
false or both true, or p is false and q true; it is impossible to have q false and p
true, and it is necessary to have q true or p false.† In fact, the assertion that q is
true or p false turns out to be strictly equivalent to “p implies q”; but as
equivalence means mutual implication, this still leaves implication funda-
mental, and not definable in terms of disjunction. Disjunction, on the other
hand, is definable in terms of implication, as we shall shortly see. It follows
from the above equivalence that of any two propositions there must be one
which implies the other, that false propositions imply all propositions, and
true propositions are implied by all propositions. But these are results to be
demonstrated; the premisses of our subject deal exclusively with rules of
inference.

It may be observed that, although implication is indefinable, proposition can
be defined. Every proposition implies itself, and whatever is not a proposition
implies nothing. Hence to say “p is a proposition” is equivalent to saying “p
implies p”; and this equivalence may be used to define propositions. As the
mathematical sense of definition is widely different from that current among
philosophers, it may be well to observe that, in the mathematical sense, a new
propositional function is said to be defined when it is stated to be equivalent
to (i.e. to imply and be implied by) a propositional function which has either
been accepted as indefinable or has been defined in terms of indefinables. The
definition of entities which are not propositional functions is derived from
such as are in ways which will be explained in connection with classes and
relations.

17. We require, then, in the propositional calculus, no indefinables
except the two kinds of implication—remembering, however, that formal
implication is a complex notion, whose analysis remains to be undertaken.
As regards our two indefinables, we require certain indemonstrable proposi-
tions, which hitherto I have not succeeded in reducing to less than ten. Some
indemonstrables there must be; and some propositions, such as the syllo-
gism, must be of the number, since no demonstration is possible without
them. But concerning others, it may be doubted whether they are indemon-
strable or merely undemonstrated; and it should be observed that the method
of supposing an axiom false, and deducing the consequences of this assump-
tion, which has been found admirable in such cases as the axiom of parallels,
is here not universally available. For all our axioms are principles of deduction;

* The reader is recommended to observe that the main implications in these statements are
formal, i.e. “p implies q” formally implies “p’s truth implies q’s truth”, while the subordinate
implications are material.
† I may as well state once for all that the alternatives of a disjunction will never be considered as
mutually exclusive unless expressly said to be so.
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and if they are true, the consequences which appear to follow from the
employment of an opposite principle will not really follow, so that arguments
from the supposition of the falsity of an axiom are here subject to special
fallacies. Thus the number of indemonstrable propositions may be capable of
further reduction, and in regard to some of them I know of no grounds for
regarding them as indemonstrable except that they have hitherto remained
undemonstrated.

18. The ten axioms are the following. (1) If p implies q, then p implies q;*
in other words, whatever p and q may be, “p implies q” is a proposition. (2) If
p implies q, then p implies p; in other words, whatever implies anything is a
proposition. (3) If p implies q, then q implies q; in other words, whatever is
implied by anything is a proposition. (4) A true hypothesis in an implication
may be dropped, and the consequent asserted. This is a principle incapable
of formal symbolic statement, and illustrating the essential limitations of
formalism—a point to which I shall return at a later stage. Before proceeding
further, it is desirable to define the joint assertion of two propositions, or
what is called their logical product. This definition is highly artificial, and
illustrates the great distinction between mathematical and philosophical def-
initions. It is as follows: If p implies p, then, if q implies q, pq (the logical
product of p and q) means that if p implies that q implies r, then r is true. In
other words, if p and q are propositions, their joint assertion is equivalent to
saying that every proposition is true which is such that the first implies that
the second implies it. We cannot, with formal correctness, state our definition
in this shorter form, for the hypothesis “p and q are propositions” is already
the logical product of “p is a proposition” and “q is a proposition”. We can
now state the six main principles of inference, to each of which, owing to its
importance, a name is to be given; of these all except the last will be found in
Peano’s accounts of the subject. (5) If p implies p and q implies q, then pq
implies p. This is called simplification, and asserts merely that the joint assertion
of two propositions implies the assertion of the first of the two. (6) If p
implies q and q implies r, then p implies r. This will be called the syllogism. (7)
If q implies q and r implies r, and if p implies that q implies r, then pq implies r.
This is the principle of importation. In the hypothesis, we have a product of
three propositions; but this can of course be defined by means of the product
of two. The principle states that if p implies that q implies r, then r follows
from the joint assertion of p and q. For example: “If I call on so-and-so, then if
she is at home I shall be admitted” implies “If I call on so-and-so and she is at
home, I shall be admitted”. (8) If p implies p and q implies q, then, if pq
implies r, then p implies that q implies r. This is the converse of the preceding

* Note that the implications denoted by if and then, in these axioms, are formal, while those
denoted by implies are material.
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principle, and is called exportation.* The previous illustration reversed will
illustrate this principle. (9) If p implies q and p implies r, then p implies qr: in
other words, a proposition which implies each of two propositions implies
them both. This is called the principle of composition. (10) If p implies p and q
implies q, then “ ‘p implies q’ implies p” implies p. This is called the principle
of reduction; it has less self-evidence than the previous principles, but is equiva-
lent to many propositions that are self-evident. I prefer it to these, because it
is explicitly concerned, like its predecessors, with implication, and has the
same kind of logical character as they have. If we remember that “p implies q”
is equivalent to “q or not-p”, we can easily convince ourselves that the above
principle is true; for “ ‘p implies q’ implies p” is equivalent to “p or the denial
of ‘q or not-p’ ”, i.e. to “p or ‘p and not q’ ”, i.e. to p. But this way of persuading
ourselves that the principle of reduction is true involves many logical prin-
ciples which have not yet been demonstrated, and cannot be demonstrated
except by reduction or some equivalent. The principle is especially useful in
connection with negation. Without its help, by means of the first nine prin-
ciples, we can prove the law of contradiction; we can prove, if p and q be
propositions, that p implies not-not-p; that “p implies not-q” is equivalent to
“q implies not-p” and to not-pq; that “p implies q” implies “not-q implies not-
p”; that p implies that not-p implies p; that not-p is equivalent to “p implies
not-p”; and that “p implies not-q” is equivalent to “not-not-p implies not-q”.
But we cannot prove without reduction or some equivalent (so far at least as I
have been able to discover) that p or not-p must be true (the law of excluded
middle); that every proposition is equivalent to the negation of some other
proposition; that not-not-p implies p; that “not-q implies not-p” implies “p
implies q”; that “not-p implies p” implies p, or that “p implies q” implies “q or
not-p”. Each of these assumptions is equivalent to the principle of reduction,
and may, if we choose, be substituted for it. Some of them—especially
excluded middle and double negation—appear to have far more self-evidence.
But when we have seen how to define disjunction and negation in terms of
implication, we shall see that the supposed simplicity vanishes, and that, for
formal purposes at any rate, reduction is simpler than any of the possible
alternatives. For this reason I retain it among my premisses in preference to
more usual and more superficially obvious propositions.

19. Disjunction or logical addition is defined as follows: “p or q” is
equivalent to “ ‘p implies q’ implies q”. It is easy to persuade ourselves of this
equivalence, by remembering that a false proposition implies every other; for
if p is false, p does imply q, and therefore, if “p implies q” implies q, it follows

* (7) and (8) cannot (I think) be deduced from the definition of the logical product, because
they are required for passing from “If p is a proposition, then ‘q is a proposition’ implies etc”. to
“If p and q are propositions, then etc”.
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that q is true. But this argument again uses principles which have not yet been
demonstrated, and is merely designed to elucidate the definition by anticipa-
tion. From this definition, by the help of reduction, we can prove that “p or q”
is equivalent to “q or p”. An alternative definition, deducible from the above,
is: “Any proposition implied by p and implied by q is true”, or, in other
words, “ ‘p implies s’ and ‘q implies s’ together imply s, whatever s may be”.
Hence we proceed to the definition of negation: not-p is equivalent to the
assertion that p implies all propositions, i.e. that “r implies r” implies “p
implies r” whatever r may be.* From this point we can prove the laws of
contradiction and excluded middle and double negation, and establish all the
formal properties of logical multiplication and addition—the associative,
commutative and distributive laws. Thus the logic of propositions is now
complete.

Philosophers will object to the above definitions of disjunction and neg-
ation on the ground that what we mean by these notions is something quite
distinct from what the definitions assign as their meanings, and that the
equivalences stated in the definitions are, as a matter of fact, significant prop-
ositions, not mere indications as to the way in which symbols are going to
be used. Such an objection is, I think, well-founded, if the above account is
advocated as giving the true philosophic analysis of the matter. But where a
purely formal purpose is to be served, any equivalence in which a certain
notion appears on one side but not on the other will do for a definition. And
the advantage of having before our minds a strictly formal development is
that it provides the data for philosophical analysis in a more definite shape
than would be otherwise possible. Criticism of the procedure of formal logic,
therefore, will be best postponed until the present brief account has been
brought to an end.

B. THE CALCULUS OF CLASSES

20. In this calculus there are very much fewer new primitive proposi-
tions—in fact, two seem sufficient—but there are much greater difficulties
in the way of non-symbolic exposition of the ideas embedded in our

* The principle that false propositions imply all propositions solves Lewis Carroll’s logical para-
dox in Mind, N. S. No. 11 (1894). The assertion made in that paradox is that, if p, q, r be
propositions, and q implies r, while p implies that q implies not-r, then p must be false, on the
supposed ground that “q implies r” and “q implies not-r” are incompatible. But in virtue of our
definition of negation, if q be false both these implications will hold: the two together, in fact,
whatever proposition r may be, are equivalent to not-q. Thus the only inference warranted by
Lewis Carroll’s premisses is that if p be true, q must be false, i.e. that p implies not-q; and this is the
conclusion, oddly enough, which common sense would have drawn in the particular case which
he discusses.

18 principles of mathematics



symbolism. These difficulties, as far as possible, will be postponed to later
chapters. For the present, I shall try to make an exposition which is to be as
straightforward and simple as possible.

The calculus of classes may be developed by regarding as fundamental the
notion of class, and also the relation of a member of a class to its class. This
method is adopted by Professor Peano, and is perhaps more philosophically
correct than a different method which, for formal purposes, I have found
more convenient. In this method we still take as fundamental the relation
(which, following Peano, I shall denote by ε) of an individual to a class to
which it belongs, i.e. the relation of Socrates to the human race which is
expressed by saying that Socrates is a man. In addition to this, we take as
indefinables the notion of a propositional function and the notion of such that.
It is these three notions that characterize the class-calculus. Something must
be said in explanation of each of them.

21. The insistence on the distinction between ε and the relation of whole
and part between classes is due to Peano, and is of very great importance
to the whole technical development and the whole of the applications to
mathematics. In the scholastic doctrine of the syllogism, and in all previous
symbolic logic, the two relations are confounded, except in the work of
Frege.* The distinction is the same as that between the relation of individual
to species and that of species to genus, between the relation of Socrates to the
class of Greeks and the relation of Greeks to men. On the philosophical nature
of this distinction I shall enlarge when I come to deal critically with the
nature of classes; for the present it is enough to observe that the relation of
whole and part is transitive, while ε is not so: we have Socrates is a man, and
men are a class, but not Socrates is a class. It is to be observed that the class
must be distinguished from the class-concept or predicate by which it is to be
defined: thus men are a class, while man is a class-concept. The relation ε must
be regarded as holding between Socrates and men considered collectively,
not between Socrates and man. I shall return to this point in Chapter 6. Peano
holds that all propositional functions containing only a single variable are
capable of expression in the form “x is an a”, where a is a constant class; but
this view we shall find reason to doubt.

22. The next fundamental notion is that of a propositional function.
Although propositional functions occur in the calculus of propositions, they
are there each defined as it occurs, so that the general notion is not required.
But in the class-calculus it is necessary to introduce the general notion
explicitly. Peano does not require it, owing to his assumption that the form “x
is an a” is general for one variable, and that extensions of the same form are
available for any number of variables. But we must avoid this assumption, and

* See his B. egriffsschrift, Halle, 1879, and Grundgesetze der Arithmetik, Jena, 1893, p. 2.
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must therefore introduce the notion of a propositional function. We may
explain (but not define) this notion as follows: �x is a propositional function
if, for every value of x, �x is a proposition, determinate when x is given. Thus
“x is a man” is a propositional function. In any proposition, however compli-
cated, which contains no real variables, we may imagine one of the terms, not
a verb or adjective, to be replaced by other terms: instead of “Socrates is a
man” we may put “Plato is a man”, “the number 2 is a man”, and so on.*
Thus we get successive propositions all agreeing except as to the one variable
term. Putting x for the variable term, “x is a man” expresses the type of all
such propositions. A propositional function in general will be true for some
values of the variable and false for others. The instances where it is true for all
values of the variable, so far as they are known to me, all express implications,
such as “x is a man implies x is a mortal”; but I know of no à priori reason for
asserting that no other propositional functions are true for all values of the
variable.

23. This brings me to the notion of such that. The values of x which render
a propositional function �x true are like the roots of an equation—indeed the
latter are a particular case of the former—and we may consider all the values
of x which are such that �x is true. In general, these values form a class, and in
fact a class may be defined as all the terms satisfying some propositional
function. There is, however, some limitation required in this statement,
though I have not been able to discover precisely what the limitation is. This
results from a certain contradiction which I shall discuss at length at a later
stage (Chap. 10). The reasons for defining class in this way are, that we require
to provide for the null-class, which prevents our defining a class as a term to
which some other has the relation ε, and that we wish to be able to define
classes by relations, i.e. all the terms which have to other terms the relation
R are to form a class, and such cases require somewhat complicated prop-
ositional functions.

24. With regard to these three fundamental notions, we require two
primitive propositions. The first asserts that if x belongs to the class of terms
satisfying a propositional function �x, then �x is true. The second asserts that
if �x and ψx are equivalent propositions for all values of x, then the class of x’s
such that �x is true is identical with the class of x’s such that ψx is true.
Identity, which occurs here, is defined as follows: x is identical with y if y
belongs to every class to which x belongs, in other words, if “x is a u” implies
“y is a u” for all values of u. With regard to the primitive proposition itself, it
is to be observed that it decides in favour of an extensional view of classes.

* Verbs and adjectives occurring as such are distinguished by the fact that, if they be taken as
variable, the resulting function is only a proposition for some values of the variable, i.e. for such as
are verbs or adjectives respectively. See Chap. 4.
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Two class concepts need not be identical when their extensions are so: man
and featherless biped are by no means identical, and no more are even prime and
integer between 1 and 3. These are class-concepts, and if our axiom is to hold, it
must not be of these that we are to speak in dealing with classes. We must
be concerned with the actual assemblage of terms, not with any concept
denoting that assemblage. For mathematical purposes, this is quite essential.
Consider, for example, the problem as to how many combinations can be
formed of a given set of terms taken any number at a time, i.e. as to how many
classes are contained in a given class. If distinct classes may have the same
extension, this problem becomes utterly indeterminate. And certainly com-
mon usage would regard a class as determined when all its terms are given.
The extensional view of classes, in some form, is thus essential to Symbolic
Logic and to mathematics, and its necessity is expressed in the above axiom.
But the axiom itself is not employed until we come to Arithmetic; at least
it need not be employed, if we choose to distinguish the equality of classes,
which is defined as mutual inclusion, from the identity of individuals.
Formally, the two are totally distinct: identity is defined as above, equality
of a and b is defined by the equivalence of “x is an a” and “x is a b” for all
values of x.

25. Most of the propositions of the class-calculus are easily deduced
from those of the propositional calculus. The logical product or common part
of two classes a and b is the class of x’s such that the logical product of “x is an
a” and “x is a b” is true. Similarly we define the logical sum of two classes (a
or b), and the negation of a class (not-a). A new idea is introduced by the
logical product and sum of a class of classes. If k is a class of classes, its logical
product is the class of terms belonging to each of the classes of k, i.e. the class
of terms x such that “u is a k” implies “x is a u” for all values of u. The logical
sum is the class which is contained in every class in which every class of the
class k is contained, i.e. the class of terms x such that, if “u is a k” implies “u is
contained in c” for all values of u, then, for all values of c, x is a c. And we say
that a class a is contained in a class b when “x is an a” implies “x is a b” for all
values of x. In like manner with the above we may define the product and sum
of a class of propositions. Another very important notion is what is called the
existence of a class—a word which must not be supposed to mean what exist-
ence means in philosophy. A class is said to exist when it has at least one
term. A formal definition is as follows: a is an existent class when and only
when any proposition is true provided “x is an a” always implies it whatever
value we may give to x. It must be understood that the proposition implied
must be a genuine proposition, not a propositional function of x. A class a
exists when the logical sum of all propositions of the form “x is an a” is true,
i.e. when not all such propositions are false.

It is important to understand clearly the manner in which propositions
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in the class-calculus are obtained from those in the propositional calculus.
Consider, for example, the syllogism. We have “p implies q” and “q implies r”
imply “p implies r”. Now put “x is an a”, “x is a b”, “x is a c” for p, q, r, where x
must have some definite value, but it is not necessary to decide what value.
We then find that if, for the value of x in question, x is an a implies x is a b, and
x is a b implies x is a c, then x is an a implies x is a c. Since the value of x is
irrelevant, we may vary x, and thus we find that if a is contained in b, and b in
c, then a is contained in c. This is the class-syllogism. But in applying this
process it is necessary to employ the utmost caution, if fallacies are to be
successfully avoided. In this connection it will be instructive to examine a
point upon which a dispute has arisen between Schröder and Mr McColl.*
Schröder asserts that if p, q, r are propositions, “pq implies r” is equivalent to
the disjunction “p implies r or q implies r”. Mr McColl admits that the disjunc-
tion implies the other, but denies the converse implication. The reason for the
divergence is that Schröder is thinking of propositions and material implica-
tion, while Mr McColl is thinking of propositional functions and formal
implication. As regards propositions, the truth of the principle may be easily
made plain by the following considerations. If pq implies r, then, if either p or
q be false, the one of them which is false implies r, because false propositions
imply all propositions. But if both be true, pq is true, and therefore r is true,
and therefore p implies r and q implies r, because true propositions are
implied by every proposition. Thus in any case, one at least of the proposi-
tions p and q must imply r. (This is not a proof, but an elucidation.) But Mr
McColl objects: Suppose p and q to be mutually contradictory, and r to be the
null proposition, then pq implies r but neither p nor q implies r. Here we are
dealing with propositional functions and formal implication. A propositional
function is said to be null when it is false for all values of x; and the class of x’s
satisfying the function is called the null-class, being in fact a class of no terms.
Either the function or the class, following Peano, I shall denote by Λ. Now let
our r be replaced by Λ, our p by �x, and our q by not-�x, where �x is any
propositional function. Then pq is false for all values of x, and therefore
implies Λ. But it is not in general the case that �x is always false, nor yet
that not-�x is always false; hence neither always implies Λ. Thus the above
formula can only be truly interpreted in the propositional calculus: in the
class-calculus it is false. This may be easily rendered obvious by the following
considerations: Let �x, ψx, χx be three propositional functions. Then “�x . ψx
implies χx” implies, for all values of x, that either �x implies χx or ψx implies
χx. But it does not imply that either �x implies χx for all values of x, or ψx
implies χx for all values of x. The disjunction is what I shall call a variable

* Schröder, Algebra der Logik, Vol. , pp. 258–9; McColl, “Calculus of Equivalent Statements”, fifth
paper, Proc. Lond. Math. Soc., Vol. , p. 182.
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disjunction, as opposed to a constant one: that is, in some cases one alterna-
tive is true, in others the other, whereas in a constant disjunction there is
one of the alternatives (though it is not stated which) that is always true.
Wherever disjunctions occur in regard to propositional functions, they will
only be transformable into statements in the class-calculus in cases where the
disjunction is constant. This is a point which is both important in itself and
instructive in its bearings. Another way of stating the matter is this: In the
proposition: If �x . ψx implies χx, then either �x implies χx or ψx implies χx, the
implication indicated by if and then is formal, while the subordinate implica-
tions are material; hence the subordinate implications do not lead to the
inclusion of one class in another, which results only from formal implication.

The formal laws of addition, multiplication, tautology and negation are the
same as regards classes and propositions. The law of tautology states that no
change is made when a class or proposition is added to or multiplied by itself.
A new feature of the class-calculus is the null-class, or class having no terms.
This may be defined as the class of terms that belong to every class, as the
class which does not exist (in the sense defined above), as the class which is
contained in every class, as the class Λ which is such that the propositional
function “x is a Λ” is false for all values of x, or as the class of x’s satisfying
any propositional function �x which is false for all values of x. All these
definitions are easily shown to be equivalent.

26. Some important points arise in connection with the theory of iden-
tity. We have already defined two terms as identical when the second belongs
to every class to which the first belongs. It is easy to show that this definition is
symmetrical, and that identity is transitive and reflexive (i.e. if x and y, y and z
are identical, so are x and z; and whatever x may be, x is identical with x).
Diversity is defined as the negation of identity. If x be any term, it is necessary
to distinguish from x the class whose only member is x: this may be defined as
the class of terms which are identical with x. The necessity for this distinction,
which results primarily from purely formal considerations, was discovered by
Peano; I shall return to it at a later stage. Thus the class of even primes is not to
be identified with the number 2, and the class of numbers which are the sum
of 1 and 2 is not to be identified with 3. In what, philosophically speaking, the
difference consists, is a point to be considered in Chapter 6.

C. THE CALCULUS OF RELATIONS

27. The calculus of relations is a more modern subject than the calculus
of classes. Although a few hints for it are to be found in De Morgan,* the

* Camb. Phil. Trans., Vol. , “On the Syllogism, No. , and on the Logic of Relations”. Cf. ib. Vol. ,
p. 104; also his Formal Logic (London, 1847), p. 50.

23symbolic logic



subject was first developed by C. S. Peirce.* A careful analysis of mathematical
reasoning shows (as we shall find in the course of the present work) that
types of relations are the true subject-matter discussed, however a bad
phraseology may disguise this fact; hence the logic of relations has a more
immediate bearing on mathematics than that of classes or propositions, and
any theoretically correct and adequate expression of mathematical truths is
only possible by its means. Peirce and Schröder have realized the great
importance of the subject, but unfortunately their methods, being based, not
on Peano, but on the older Symbolic Logic derived (with modifications)
from Boole, are so cumbrous and difficult that most of the applications which
ought to be made are practically not feasible. In addition to the defects of the
old Symbolic Logic, their method suffers technically (whether philosophic-
ally or not I do not at present discuss) from the fact that they regard a relation
essentially as a class of couples, thus requiring elaborate formulae of summa-
tion for dealing with single relations. This view is derived, I think, probably
unconsciously, from a philosophical error: it has always been customary
to suppose relational propositions less ultimate than class-propositions (or
subject-predicate propositions, with which class-propositions are habitually
confounded), and this has led to a desire to treat relations as a kind of class.
However this may be, it was certainly from the opposite philosophical belief,
which I derived from my friend Mr G. E. Moore,† that I was led to a different
formal treatment of relations. This treatment, whether more philosophically
correct or not, is certainly far more convenient and far more powerful as an
engine of discovery in actual mathematics.‡

28. If R be a relation, we express by xRy the propositional function “x has
the relation R to y”. We require a primitive (i.e. indemonstrable) proposition
to the effect that xRy is a proposition for all values of x and y. We then have to
consider the following classes: the class of terms which have the relation R to
some term or other, which I call the class of referents with respect to R; and the
class of terms to which some terms has the relation R, which I call the class of
relata. Thus if R be paternity, the referents will be fathers and the relata will be
children. We have also to consider the corresponding classes with respect to
particular terms or classes of terms: so-and-so’s children, or the children of
Londoners, afford illustrations.

The intensional view of relations here advocated leads to the result that two
relations may have the same extension without being identical. Two relations
R, R'  are said to be equal or equivalent, or to have the same extension, when

* See especially his articles on the Algebra of Logic, American Journal of Mathematics, Vols.  and .
The subject is treated at length by C. S. Peirce’s methods in Schröder, op. cit., Vol. .
† See his article “On the Nature of Judgment”, Mind, N. S. No. 30.
‡ See my articles in R. d. M. Vol. , No. 2 and subsequent numbers.
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xRy implies and is implied by xR' y for all values of x and y. But there is no need
here of a primitive proposition, as there was in the case of classes, in order to
obtain a relation which is determinate when the extension is determinate. We
may replace a relation R by the logical sum or product of the class of relations
equivalent to R, i.e. by the assertion of some or of all such relations; and this is
identical with the logical sum or product of the class of relations equivalent
to R' , if R'  be equivalent to R. Here we use the identity of two classes, which
results from the primitive proposition as to identity of classes, to establish the
identity of two relations—a procedure which could not have been applied to
classes themselves without a vicious circle.

A primitive proposition in regard to relations is that every relation has a
converse, i.e. that, if R be any relation, there is a relation R'  such that xRy is
equivalent to yR' x for all values of x and y. Following Schröder, I shall denote
the converse of R by R. Greater and less, before and after, implying and
implied by, are mutually converse relations. With some relations, such as
identity, diversity, equality, inequality, the converse is the same as the ori-
ginal relation: such relations are called symmetrical. When the converse is
incompatible with the original relations, as in such cases as greater and less, I
call the relation asymmetrical; in intermediate cases, not-symmetrical.

The most important of the primitive propositions in this subject is that
between any two terms there is a relation not holding between any two other
terms. This is analogous to the principle that any term is the only member of
some class; but whereas that could be proved, owing to the extensional view
of classes, this principle, so far as I can discover, is incapable of proof. In this
point, the extensional view of relations has an advantage; but the advantage
appears to me to be outweighed by other considerations. When relations are
considered intensionally, it may seem possible to doubt whether the above
principle is true at all. It will, however, be generally admitted that, of any two
terms, some propositional function is true which is not true of a certain
given different pair of terms. If this be admitted, the above principle follows
by considering the logical product of all the relations that hold between our
first pair of terms. Thus the above principle may be replaced by the following,
which is equivalent to it: If xRy implies x' Ry' , whatever R may be, so long as R
is a relation, then x and x' , y and y'  are respectively identical. But this principle
introduces a logical difficulty from which we have been hitherto exempt,
namely a variable with a restricted field; for unless R is a relation, xRy is not a
proposition at all, true or false, and thus R, it would seem, cannot take all
values, but only such as are relations. I shall return to the discussion of this
point at a later stage.

29. Other assumptions required are that the negation of a relation is a
relation, and that the logical product of a class of relations (i.e. the assertion of
all of them simultaneously) is a relation. Also the relative product of two relations
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must be a relation. The relative product of two relations R, S is the relation
which holds between x and z whenever there is a term y to which x has the
relation R and which has to z the relation S. Thus the relation of a maternal
grandfather to his grandson is the relative product of father and mother; that
of a paternal grandmother to her grandson is the relative product of mother
and father; that of grandparent to grandchild is the relative product of parent
and parent. The relative product, as these instances show, is not in general
commutative, and does not in general obey the law of tautology. The relative
product is a notion of very great importance. Since it does not obey the law of
tautology, it leads to powers of relations: the square of the relation of parent
and child is the relation of grandparent and grandchild, and so on. Peirce and
Schröder consider also what they call the relative sum of two relations R and S,
which holds between x and z, when, if y be any other term whatever, either x
has to y the relation R, or y has to z the relation S. This is a complicated notion,
which I have found no occasion to employ, and which is introduced only in
order to preserve the duality of addition and multiplication. This duality has a
certain technical charm when the subject is considered as an independent
branch of mathematics; but when it is considered solely in relation to the
principles of mathematics, the duality in question appears devoid of all philo-
sophical importance.

30. Mathematics requires, so far as I know, only two other primitive
propositions, the one that material implication is a relation, the other that ε
(the relation of a term to a class to which it belongs) is a relation.* We can
now develop the whole of mathematics without further assumptions or
indefinables. Certain propositions in the logic of relations deserve to be men-
tioned, since they are important, and it might be doubted whether they were
capable of formal proof. If u, v be any two classes, there is a relation R the
assertion of which between any two terms x and y is equivalent to the asser-
tion that x belongs to u and y to v. If u be any class which is not null, there is a
relation which all its terms have to it, and which holds for no other pairs of
terms. If R be any relation, and u any class contained in the class of referents
with respect to R, there is a relation which has u for the class of its referents,
and is equivalent to R throughout that class; this relation is the same as R
where it holds, but has a more restricted domain. (I use domain as synony-
mous with class of referents.) From this point onwards, the development of the
subject is technical: special types of relations are considered, and special
branches of mathematics result.

* There is a difficulty in regard to this primitive proposition, discussed in §§ 53, 94 below.
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D. PEANO’S SYMBOLIC LOGIC

31. So much of the above brief outline of Symbolic Logic is inspired by
Peano, that it seems desirable to discuss his work explicitly, justifying by
criticism the points in which I have departed from him.

The question as to which of the notions of symbolic logic are to be taken
as indefinable, and which of the propositions as indemonstrable, is, as Profes-
sor Peano has insisted,* to some extent arbitrary. But it is important to
establish all the mutual relations of the simpler notions of logic, and to
examine the consequence of taking various notions as indefinable. It is neces-
sary to realize that definition, in mathematics, does not mean, as in phil-
osophy, an analysis of the idea to be defined into constituent ideas. This
notion, in any case, is only applicable to concepts, whereas in mathematics it
is possible to define terms which are not concepts.† Thus also many notions
are defined by symbolic logic which are not capable of philosophical defin-
ition, since they are simple and unanalysable. Mathematical definition consists
in pointing out a fixed relation to a fixed term, of which one term only is
capable: this term is then defined by means of the fixed relation and the fixed
term. The point in which this differs from philosophical definition may be
elucidated by the remark that the mathematical definition does not point out
the term in question, and that only what may be called philosophical insight
reveals which it is among all the terms there are. This is due to the fact that the
term is defined by a concept which denotes it unambiguously, not by actually
mentioning the term denoted. What is meant by denoting, as well as the differ-
ent ways of denoting, must be accepted as primitive ideas in any symbolic
logic:‡ in this respect, the order adopted seems not in any degree arbitrary.

32. For the sake of definiteness, let us now examine one of Profes-
sor Peano’s expositions of the subject. In his later expositions§ he has aban-
doned the attempt to distinguish clearly certain ideas and propositions as
primitive, probably because of the realization that any such distinction is
largely arbitrary. But the distinction appears useful, as introducing greater
definiteness, and as showing that a certain set of primitive ideas and proposi-
tions are sufficient; so, far from being abandoned, it ought rather to be made
in every possible way. I shall, therefore, in what follows, expound one of his
earlier expositions, that of 1897.¶

The primitive notions with which Peano starts are the following: class, the
relation of an individual to a class of which it is a member, the notion of a

* E.g. F. 1901, p. 6; F. 1897, Part I, pp. 62–3.
† See Chap. 4.
‡ See Chap. 5.
§ F. 1901 and R. d. M. Vol. , No. 1 (1900).
¶ F. 1897, Part 1.
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term, implication where both propositions contain the same variables, i.e.
formal implication the simultaneous affirmation of two propositions, the
notion of definition and the negation of a proposition. From these notions,
together with the division of a complex proposition into parts, Peano pro-
fesses to deduce all symbolic logic by means of certain primitive proposi-
tions. Let us examine the deduction in outline.

We may observe, to begin with, that the simultaneous affirmation of two
propositions might seem, at first sight, not enough to take as a primitive idea.
For although this can be extended, by successive steps, to the simultaneous
affirmation of any finite number of propositions, yet this is not all that is
wanted; we require to be able to affirm simultaneously all the propositions
of any class, finite or infinite. But the simultaneous assertion of a class of
propositions, oddly enough, is much easier to define than that of two prop-
ositions (see § 34, (3)). If k be a class of propositions, their simultaneous
affirmation is the assertion that “p is a k” implies p. If this holds, all proposi-
tions of the class are true; if it fails, one at least must be false. We have seen
that the logical product of two propositions can be defined in a highly arti-
ficial manner; but it might almost as well be taken as indefinable, since no
further property can be proved by means of the definition. We may observe,
also, that formal and material implication are combined by Peano into one
primitive idea, whereas they ought to be kept separate.

33. Before giving any primitive propositions, Peano proceeds to some
definitions. (1) If a is a class, “x and y are a’s” is to mean “x is an a and y is an
a”. (2) If a and b are classes, “every a is a b” means “x is an a implies that x is a
b”. If we accept formal implication as a primitive notion, this definition
seems unobjectionable; but it may well be held that the relation of inclusion
between classes is simpler than formal implication, and should not be defined
by its means. This is a difficult question, which I reserve for subsequent
discussion. A formal implication appears to be the assertion of a whole class
of material implications. The complication introduced at this point arises
from the nature of the variable, a point which Peano, though he has done
very much to show its importance, appears not to have himself sufficiently
considered. The notion of one proposition containing a variable implying
another such proposition, which he takes as primitive, is complex, and
should therefore be separated into its constituents; from this separation arises
the necessity of considering the simultaneous affirmation of a whole class of
propositions before interpreting such a proposition as “x is an a implies that x
is a b”. (3) We come next to a perfectly worthless definition, which has been
since abandoned.* This is the definition of such that. The x’s such that x is an a,
we are told, are to mean the class a. But this only gives the meaning of such that

* In consequence of the criticisms of Padoa, R. d. M. Vol. , p. 112.
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when placed before a proposition of the type “x is an a”. Now it is often
necessary to consider an x such that some proposition is true of it, where this
proposition is not of the form “x is an a”. Peano holds (though he does not
lay it down as an axiom) that every proposition containing only one variable
is reducible to the form “x is an a”.* But we shall see (Chap. 10) that at least
one such proposition is not reducible to this form. And in any case, the only
utility of such that is to effect the reduction, which cannot therefore be
assumed to be already effected without it. The fact is that such that contains
a primitive idea, but one which it is not easy clearly to disengage from
other ideas.

In order to grasp the meaning of such that, it is necessary to observe, first
of all, that what Peano and mathematicians generally call one proposition
containing a variable is really, if the variable is apparent, the conjunction of a
certain class of propositions defined by some constancy of form; while if the
variable is real, so that we have a propositional function, there is not a prop-
osition at all, but merely a kind of schematic representation of any proposition
of a certain type. “The sum of the angles of a triangle is two right angles”, for
example, when stated by means of a variable, becomes: Let x be a triangle;
then the sum of the angles of x is two right angles. This expresses the con-
junction of all the propositions in which it is said of particular definite
entities that if they are triangles, the sum of their angles is two right angles.
But a propositional function, where the variable is real, represents any prop-
osition of a certain form, not all such propositions (see §§ 59–62). There is,
for each propositional function, an indefinable relation between propositions
and entities, which may be expressed by saying that all the propositions have
the same form, but different entities enter into them. It is this that gives rise
to propositional functions. Given, for example, a constant relation and a
constant term, there is a one-one correspondence between the propositions
asserting that various terms have the said relation to the said term, and the
various terms which occur in these propositions. It is this notion which is
requisite for the comprehension of such that. Let x be a variable whose values
form the class a, and let f (x) be a one-valued function of x which is a true
proposition for all values of x within the class a, and which is false for all
other values of x. Then the terms of a are the class of terms such that f (x) is a
true proposition. This gives an explanation of such that. But it must always be
remembered that the appearance of having one proposition f (x) satisfied by a
number of values of x is fallacious: f (x) is not a proposition at all, but a
propositional function. What is fundamental is the relation of various prop-
ositions of given form to the various terms entering severally into them as
arguments or values of the variable; this relation is equally required for

* R. d. M. Vol. , No. 1, p. 25; F. 1901, p. 21, § 2, Prop. 4. 0, Note.
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interpreting the propositional function f (x) and the notion such that, but is
itself ultimate and inexplicable. (4) We come next to the definition of the
logical product, or common part, of two classes. If a and b be two classes,
their common part consists of the class of terms x such that x is an a and x is a
b. Here already, as Padoa points out (loc. cit.), it is necessary to extend the
meaning of such that beyond the case where our proposition asserts member-
ship of a class, since it is only by means of the definition that the common
part is shown to be a class.

34. The remainder of the definitions preceding the primitive proposi-
tions are less important, and may be passed over. Of the primitive proposi-
tions, some appear to be merely concerned with the symbolism, and not to
express any real properties of what is symbolized; others, on the contrary, are
of high logical importance.

(1) The first of Peano’s axioms is “every class is contained in itself”. This is
equivalent to “every proposition implies itself”. There seems no way of evad-
ing this axiom, which is equivalent to the law of identity, except the method
adopted above, of using self-implication to define propositions. (2) Next we
have the axiom that the product of two classes is a class. This ought to have
been stated, as ought also the definition of the logical product, for a class of
classes; for when stated for only two classes, it cannot be extended to the
logical product of an infinite class of classes. If class is taken as indefinable, it is
a genuine axiom, which is very necessary to reasoning. But it might perhaps
be somewhat generalized by an axiom concerning the terms satisfying prop-
ositions of a given form: e.g. “the terms having one or more given relations
to one or more given terms form a class”. In Section B, above, the axiom was
wholly evaded by using a generalized form of the axiom as the definition of
class. (3) We have next two axioms which are really only one, and appear
distinct only because Peano defines the common part of two classes instead of
the common part of a class of classes. These two axioms state that, if a, b be
classes, their logical product, ab, is contained in a and is contained in b. These
appear as different axioms, because, as far as the symbolism shows, ab might
be different from ba. It is one of the defects of most symbolisms that they give
an order to terms which intrinsically have none, or at least none that is
relevant. So in this case: if K be a class of classes, the logical product of K
consists of all terms belonging to every class that belongs to K. With this
definition, it becomes at once evident that no order of the terms of K
is involved. Hence if K has only two terms, a and b, it is indifferent whether
we represent the logical product of K by ab or by ba, since the order exists only
in the symbols, not in what is symbolized. It is to be observed that the
corresponding axiom with regard to propositions is, that the simultaneous
assertion of a class of propositions implies any proposition of the class; and
this is perhaps the best form of the axiom. Nevertheless, though an axiom is
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not required, it is necessary, here as elsewhere, to have a means of connecting
the case where we start from a class of classes or of propositions or of
relations with the case where the class results from enumeration of its terms.
Thus although no order is involved in the product of a class of propositions,
there is an order in the product of two definite propositions p, q, and it is
significant to assert that the products pq and qp are equivalent. But this can be
proved by means of the axioms with which we began the calculus of proposi-
tions (§ 18). It is to be observed that this proof is prior to the proof that the
class whose terms are p and q is identical with the class whose terms are q and
p. (4) We have next two forms of syllogism, both primitive propositions. The
first asserts that, if a, b, c be classes, and a is contained in b, and x is an a, then x
is a b; the second asserts that if a, b, c be classes, and a is contained in b, b in c,
then a is contained in c. It is one of the greatest of Peano’s merits to have
clearly distinguished the relation of the individual to its class from the rela-
tion of inclusion between classes. The difference is exceedingly fundamental:
the former relation is the simplest and most essential of all relations, the latter
a complicated relation derived from logical implication. It results from the
distinction that the syllogism in Barbara has two forms, usually confounded:
the one the time-honoured assertion that Socrates is a man, and therefore
mortal, the other the assertion that Greeks are men, and therefore mortal.
These two forms are stated by Peano’s axioms. It is to be observed that, in
virtue of the definition of what is meant by one class being contained in
another, the first form results from the axiom that, if p, q, r be propositions,
and p implies that q implies r, then the product of p and q implies r. This axiom
is now substituted by Peano for the first form of the syllogism:* it is more
general and cannot be deduced from the said form. The second form of the
syllogism, when applied to propositions instead of classes, asserts that impli-
cation is transitive. This principle is, of course, the very life of all chains of
reasoning. (5) We have next a principle of reasoning which Peano calls com-
position: this asserts that if a is contained in b and also in c, then it is contained
in the common part of both. Stating this principle with regard to proposi-
tions, it asserts that if a proposition implies each of two others, then it implies
their joint assertion or logical product; and this is the principle which was
called composition above.

35. From this point, we advance successfully until we require the idea of
negation. This is taken, in the edition of the Formulaire we are considering, as a
new primitive idea, and disjunction is defined by its means. By means of the
negation of a proposition, it is of course easy to define the negation of a class:
for “x is a not-a” is equivalent to “x is not an a”. But we require an axiom to
the effect that not-a is a class, and another to the effect that not-not-a is a.

* See e.g. F. 1901, Part I, § 1, Prop. 3. 3 (p. 10).
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Peano gives also a third axiom, namely: If a, b, c be classes, and ab is contained
in c, and x is an a but not a c, then x is not a b. This is simpler in the form: If p,
q, r be propositions, and p, q together imply r, and q is true while r is false,
then q is false. This would be still further improved by being put in the form:
If q, r are propositions, and q implies r, then not-r implies not-q; a form which
Peano obtains as a deduction. By dealing with propositions before classes or
propositional functions, it is possible, as we saw, to avoid treating negation
as a primitive idea, and to replace all axioms respecting negation by the
principle of reduction.

We come next to the definition of the disjunction or logical sum of two
classes. On this subject Peano has many times changed his procedure. In the
edition we are considering, “a or b” is defined as the negation of the logical
product of not-a and not-b, i.e. as the class of terms which are not both not-a
and not-b. In later editions (e.g. F. 1901, p. 19), we find a somewhat less
artificial definition, namely: “a or b” consists of all terms which belong to
any class which contains a and contains b. Either definition seems logically
unobjectionable. It is to be observed that a and b are classes, and that it
remains a question for philosophical logic whether there is not a quite differ-
ent notion of the disjunction of individuals, as e.g. “Brown or Jones”. I shall
consider this question in Chapter 5. It will be remembered that, when we
begin by the calculus of propositions, disjunction is defined before negation;
with the above definition (that of 1897), it is plainly necessary to take
negation first.

36. The connected notions of the null-class and the existence of a class
are next dealt with. In the edition of 1897, a class is defined as null when it is
contained in every class. When we remember the definition of one class a
being contained in another b (“x is an a” implies “x is a b” for all values of x),
we see that we are to regard the implication as holding for all values, and not
only for those values for which x really is an a. This is a point upon which
Peano is not explicit, and I doubt whether he has made up his mind on it. If
the implication were only to hold when x really is an a, it would not give a
definition of the null-class, for which this hypothesis is false for all values of
x. I do not know whether it is for this reason or for some other that Peano has
since abandoned the definition of the inclusion of classes by means of formal
implication between propositional functions: the inclusion of classes appears
to be now regarded as indefinable. Another definition which Peano has some-
times favoured (e.g. F. 1895, Errata, p. 116) is, that the null-class is the product
of any class into its negation—a definition to which similar remarks apply. In
R. d. M. , No. 1 (§ 3, Prop. 1. 0), the null-class is defined as the class of those
terms that belong to every class, i.e. the class of terms x such that “a is a class”
implies “x is an a” for all values of a. There are of course no such terms x;
and there is a grave logical difficulty in trying to interpret extensionally a
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class which has no extension. This point is one to which I shall return in
Chapter 6.

From this point onward, Peano’s logic proceeds by a smooth development.
But in one respect it is still defective: it does not recognize as ultimate
relational propositions not asserting membership of a class. For this reason,
the definitions of a function* and of other essentially relational notions are
defective. But this defect is easily remedied by applying, in the manner
explained above, the principles of the Formulaire to the logic of relations.†

* E.g. F. 1901, Part I, § 10, Props. 1. 0. 01 (p. 33).
† See my article “Sur la logique des relations”, R. d. M. Vol. , 2 (1901).
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3
IMPLICATION AND FORMAL

IMPLICATION

37. I the preceding chapter I endeavoured to present, briefly and
uncritically, all the data, in the shape of formally fundamental ideas and
propositions, that pure mathematics requires. In subsequent Parts I shall show
that these are all the data by giving definitions of the various mathematical
concepts—number, infinity, continuity, the various spaces of geometry and
motion. In the remainder of Part I, I shall give indications, as best I can, of the
philosophical problems arising in the analysis of the data, and of the direc-
tions in which I imagine these problems to be probably soluble. Some logical
notions will be elicited which, though they seem quite fundamental to
logic, are not commonly discussed in works on the subject; and thus prob-
lems no longer clothed in mathematical symbolism will be presented for the
consideration of philosophical logicians.

Two kinds of implication, the material and the formal, were found to be
essential to every kind of deduction. In the present chapter I wish to examine
and distinguish these two kinds, and to discuss some methods of attempting
to analyse the second of them.

In the discussion of inference, it is common to permit the intrusion of a
psychological element, and to consider our acquisition of new knowledge
by its means. But it is plain that where we validly infer one proposition from
another, we do so in virtue of a relation which holds between the two
propositions whether we perceive it or not: the mind, in fact, is as purely
receptive in inference as common sense supposes it to be in perception of
sensible objects. The relation in virtue of which it is possible for us validly to
infer is what I call material implication. We have already seen that it would be
a vicious circle to define this relation as meaning that if one proposition is



true, then another is true, for if and then already involve implication. The
relation holds, in fact, when it does hold, without any reference to the truth
or falsehood of the propositions involved.

But in developing the consequences of our assumptions as to implication,
we were led to conclusions which do not by any means agree with what is
commonly held concerning implication, for we found that any false prop-
osition implies every proposition and any true proposition is implied by
every proposition. Thus propositions are formally like a set of lengths each
of which is one inch or two, and implication is like the relation “equal to or
less than” among such lengths. It would certainly not be commonly main-
tained that “2 + 2 = 4” can be deduced from “Socrates is a man”, or that
both are implied by “Socrates is a triangle”. But the reluctance to admit such
implications is chiefly due, I think, to preoccupation with formal implica-
tion, which is a much more familiar notion, and is really before the mind,
as a rule, even where material implication is what is explicitly mentioned. In
inferences from “Socrates is a man”, it is customary not to consider the
philosopher who vexed the Athenians, but to regard Socrates merely as a
symbol, capable of being replaced by any other man; and only a vulgar
prejudice in favour of true propositions stands in the way of replacing
Socrates by a number, a table or a plum-pudding. Nevertheless, wherever, as
in Euclid, one particular proposition is deduced from another, material
implication is involved, though as a rule the material implication may be
regarded as a particular instance of some formal implication, obtained by
giving some constant value to the variable or variables involved in the said
formal implication. And although, while relations are still regarded with
the awe caused by unfamiliarity, it is natural to doubt whether any such
relation as implication is to be found, yet, in virtue of the general principles
laid down in Section C of the preceding chapter, there must be a relation
holding between nothing except propositions, and holding between any two
propositions of which either the first is false or the second true. Of the
various equivalent relations satisfying these conditions, one is to be called
implication, and if such a notion seems unfamiliar, that does not suffice to prove
that it is illusory.

38. At this point, it is necessary to consider a very difficult logical prob-
lem, namely, the distinction between a proposition actually asserted, and
a proposition considered merely as a complex concept. One of our indemon-
strable principles was, it will be remembered, that if the hypothesis in
an implication is true, it may be dropped, and the consequent asserted. This
principle, it was observed, eludes formal statement, and points to a certain
failure of formalism in general. The principle is employed whenever a
proposition is said to be proved; for what happens is, in all such cases, that the
proposition is shown to be implied by some true proposition. Another form
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in which the principle is constantly employed is the substitution of a con-
stant, satisfying the hypothesis, in the consequent of a formal implication.
If �x implies ψx for all values of x, and if a is a constant satisfying �x, we
can assert ψa, dropping the true hypothesis �a. This occurs, for example,
whenever any of those rules of inference which employ the hypothesis
that the variables involved are propositions, are applied to particular prop-
ositions. The principle in question is, therefore, quite vital to any kind of
demonstration.

The independence of this principle is brought out by a consideration of
Lewis Carroll’s puzzle, “What the Tortoise said to Achilles”.* The principles
of inference which we accepted lead to the proposition that, if p and q be
propositions, then p together with “p implies q” implies q. At first sight, it
might be thought that this would enable us to assert q provided p is true and
implies q. But the puzzle in question shows that this is not the case, and that,
until we have some new principle, we shall only be led into an endless regress
of more and more complicated implications, without ever arriving at the
assertion of q. We need, in fact, the notion of therefore, which is quite different
from the notion of implies, and holds between different entities. In grammar,
the distinction is that between a verb and a verbal noun, between, say, “A is
greater than B” and “A’s being greater than B”. In the first of these, a prop-
osition is actually asserted, whereas in the second it is merely considered. But
these are psychological terms, whereas the difference which I desire to
express is genuinely logical. It is plain that, if I may be allowed to use the
word assertion in a non-psychological sense, the proposition “p implies q”
asserts an implication, though it does not assert p or q. The p and the q which
enter into this proposition are not strictly the same as the p or the q which are
separate propositions, at least, if they are true. The question is: How does a
proposition differ by being actually true from what it would be as an entity if
it were not true? It is plain that true and false propositions alike are entities of
a kind, but that true propositions have a quality not belonging to false ones, a
quality which, in a non-psychological sense, may be called being asserted. Yet
there are grave difficulties in forming a consistent theory on this point, for if
assertion in any way changed a proposition, no proposition which can
possibly in any context be unasserted could be true, since when asserted
it would become a different proposition. But this is plainly false; for in “p
implies q”, p and q are not asserted, and yet they may be true. Leaving this
puzzle to logic, however, we must insist that there is a difference of some kind
between an asserted and an unasserted proposition.† When we say therefore,
we state a relation which can only hold between asserted propositions, and

* Mind, N. S. Vol. , p. 278.
† Frege (loc. cit.) has a special symbol to denote assertion.
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which thus differs from implication. Wherever therefore occurs, the hypothesis
may be dropped, and the conclusion asserted by itself. This seems to be the
first step in answering Lewis Carroll’s puzzle.

39. It is commonly said that an inference must have premisses and a
conclusion, and it is held, apparently, that two or more premisses are neces-
sary, if not to all inferences, yet to most. This view is borne out, at first sight,
by obvious facts: every syllogism, for example, is held to have two premisses.
Now such a theory greatly complicates the relation of implication, since it
renders it a relation which may have any number of terms, and is sym-
metrical with respect to all but one of them, but not symmetrical with respect
to that one (the conclusion). This complication is, however, unnecessary,
first, because every simultaneous assertion of a number of propositions is itself
a single proposition, and secondly, because, by the rule which we called
exportation, it is always possible to exhibit an implication explicitly as holding
between single propositions. To take the first point first: if k be a class of
propositions, all the propositions of the class k are asserted by the single
proposition “for all values of x, if x implies x, then ‘x is a k’ implies x”, or, in
more ordinary language, “every k is true”. And as regards the second point,
which assumes the number of premisses to be finite, “pq implies r” is equiva-
lent, if q be a proposition, to “p implies that q implies r”, in which latter form
the implications hold explicitly between single propositions. Hence we may
safely hold implication to be a relation between two propositions, not a
relation of an arbitrary number of premisses to a single conclusion.

40. I come now to formal implication, which is a far more difficult
notion than material implication. In order to avoid the general notion of
propositional function, let us begin by the discussion of a particular instance,
say “x is a man implies x is a mortal for all values of x”. This proposition is
equivalent to “all men are mortal”, “every man is mortal” and “any man
is mortal”. But it seems highly doubtful whether it is the same proposition. It
is also connected with a purely intensional proposition in which man is
asserted to be a complex notion of which mortal is a constituent, but this
proposition is quite distinct from the one we are discussing. Indeed, such
intensional propositions are not always present where one class is included in
another: in general, either class may be defined by various different predi-
cates, and it is by no means necessary that every predicate of the smaller class
should contain every predicate of the larger class as a factor. Indeed, it may
very well happen that both predicates are philosophically simple: thus colour
and existent appear to be both simple, yet the class of colours is part of the class
of existents. The intensional view, derived from predicates, is in the main
irrelevant to Symbolic Logic and to Mathematics, and I shall not consider it
further at present.

41. It may be doubted, to begin with, whether “x is a man implies x is a
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mortal” is to be regarded as asserted strictly of all possible terms, or only of
such terms as are men. Peano, though he is not explicit, appears to hold the
latter view. But in this case, the hypothesis ceases to be significant, and
becomes a mere definition of x: x is to mean any man. The hypothesis then
becomes a mere assertion concerning the meaning of the symbol x, and the
whole of what is asserted concerning the matter dealt with by our symbol
is put into the conclusion. The premiss says: x is to mean any man. The
conclusion says: x is mortal. But the implication is merely concerning the
symbolism: since any man is mortal, if x denotes any man, x is mortal. Thus
formal implication, on this view, has wholly disappeared, leaving us the
proposition “any man is mortal” as expressing the whole of what is relevant
in the proposition with a variable. It would now only remain to examine the
proposition “any man is mortal”, and if possible to explain this proposition
without reintroducing the variable and formal implication. It must be con-
fessed that some grave difficulties are avoided by this view. Consider, for
example, the simultaneous assertion of all the propositions of some class k:
this is not expressed by “ ‘x is a k’ implies x for all values of x”. For as it stands,
this proposition does not express what is meant, since, if x be not a prop-
osition, “x is a k” cannot imply x; hence the range of variability of x must be
confined to propositions, unless we prefix (as above, § 39) the hypothesis
“x implies x”. This remark applies generally, throughout the propositional
calculus, to all cases where the conclusion is represented by a single letter:
unless the letter does actually represent a proposition, the implication
asserted will be false, since only propositions can be implied. The point is
that, if x be our variable, x itself is a proposition for all values of x which are
propositions, but not for other values. This makes it plain what the limita-
tions are to which our variable is subject: it must vary only within the range
of values for which the two sides of the principal implication are proposi-
tions, in other words, the two sides, when the variable is not replaced by a
constant, must be genuine propositional functions. If this restriction is not
observed, fallacies quickly begin to appear. It should be noticed that there
may be any number of subordinate implications which do not require that
their terms should be propositions: it is only of the principal implication that
this is required. Take, for example, the first principle of inference: If p implies
q, then p implies q. This holds equally whether p and q be propositions or not;
for if either is not a proposition, “p implies q” becomes false, but does not
cease to be a proposition. In fact, in virtue of the definition of a proposition,
our principle states that “p implies q” is a propositional function, i.e. that it
is a proposition for all values of p and q. But if we apply the principle of
importation to this proposition, so as to obtain “ ‘p implies q’, together
with p, implies q”, we have a formula which is only true when p and q are
propositions: in order to make it true universally, we must preface it by the
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hypothesis “p implies p and q implies q”. In this way, in many cases, if not in
all, the restriction on the variability of the variable can be removed; thus,
in the assertion of the logical product of a class of propositions, the formula
“if x implies x, then ‘x is a k’ implies x” appears unobjectionable, and allows x
to vary without restriction. Here the subordinate implications in the premiss
and the conclusion are material: only the principal implication is formal.

Returning now to “x is a man implies x is a mortal”, it is plain that no
restriction is required in order to insure our having a genuine proposition.
And it is plain that, although we might restrict the values of x to men, and
although this seems to be done in the proposition “all men are mortal”, yet
there is no reason, so far as the truth of our proposition is concerned, why we
should so restrict our x. Whether x be a man or not, “x is a man” is always,
when a constant is substituted for x, a proposition implying, for that value
of x, the proposition “x is a mortal”. And unless we admit the hypothesis
equally in the cases where it is false, we shall find it impossible to deal
satisfactorily with the null-class or with null propositional functions. We
must, therefore, allow our x, wherever the truth of our formal implication
is thereby unimpaired, to take all values without exception; and where any
restriction on variability is required, the implication is not to be regarded
as formal until the said restriction has been removed by being prefixed
as hypothesis. (If ψx be a proposition whenever x satisfies �x, where �x is a
propositional function, and if ψx, whenever it is a proposition, implies χx,
then “ψx implies χx” is not a formal implication, but “�x implies that ψx
implies χx” is a formal implication.)

42. It is to be observed that “x is a man implies x is a mortal” is not a
relation of two propositional functions, but is itself a single propositional
function having the elegant property of being always true. For “x is a man” is,
as it stands, not a proposition at all, and does not imply anything; and we
must not first vary our x in “x is a man”, and then independently vary it in
“x is a mortal”, for this would lead to the proposition that “everything is a
man” implies “everything is a mortal”, which, though true, is not what was
meant. This proposition would have to be expressed, if the language of
variables were retained, by two variables, as “x is a man implies y is a mortal”.
But this formula too is unsatisfactory, for its natural meaning would be:
“If anything is a man, then everything is a mortal.” The point to be
emphasized is, of course, that our x, though variable, must be the same on
both sides of the implication, and this requires that we should not obtain our
formal implication by first varying (say) Socrates in “Socrates is a man”, and
then in “Socrates is a mortal”, but that we should start from the whole
proposition “Socrates is a man implies Socrates is a mortal”, and vary
Socrates in this proposition as a whole. Thus our formal implication asserts a
class of implications, not a single implication at all. We do not, in a word,
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have one implication containing a variable, but rather a variable implication.
We have a class of implications, no one of which contains a variable, and we
assert that every member of this class is true. This is a first step towards the
analysis of the mathematical notion of the variable.

But, it may be asked, how comes it that Socrates may be varied in the
proposition “Socrates is a man implies Socrates is mortal”? In virtue of
the fact that true propositions are implied by all others, we have “Socrates is a
man implies Socrates is a philosopher”; but in this proposition, alas, the
variability of Socrates is sadly restricted. This seems to show that formal
implication involves something over and above the relation of implication,
and that some additional relation must hold where a term can be varied. In
the case in question, it is natural to say that what is involved is the relation of
inclusion between the classes men and mortals—the very relation which was
to be defined and explained by our formal implication. But this view is
too simple to meet all cases, and is therefore not required in any case. A larger
number of cases, though still not all cases, can be dealt with by the notion of
what I shall call assertions. This notion must now be briefly explained, leaving
its critical discussion to Chapter 7.

43. It has always been customary to divide propositions into subject and
predicate; but this division has the defect of omitting the verb. It is true that a
graceful concession is sometimes made by loose talk about the copula, but
the verb deserves far more respect than is thus paid to it. We may say, broadly,
that every proposition may be divided, some in only one way, some in several
ways, into a term (the subject) and something which is said about the
subject, which something I shall call the assertion. Thus “Socrates is a man”
may be divided into Socrates and is a man. The verb, which is the distinguishing
mark of propositions, remains with the assertion; but the assertion itself,
being robbed of its subject, is neither true nor false. In logical discussions, the
notion of assertion often occurs, but as the word proposition is used for it, it
does not obtain separate consideration. Consider, for example, the best state-
ment of the identity of indiscernibles: “If x and y be any two diverse entities,
some assertion holds of x which does not hold of y.” But for the word assertion,
which would ordinarily be replaced by proposition, this statement is one which
would commonly pass unchallenged. Again, it might be said: “Socrates was a
philosopher, and the same is true of Plato.” Such statements require the
analysis of a proposition into an assertion and a subject, in order that there
may be something identical which can be said to be affirmed of two subjects.

44. We can now see how, where the analysis into subject and assertion is
legitimate, to distinguish implications in which there is a term which can be
varied from others in which this is not the case. Two ways of making the
distinction may be suggested, and we shall have to decide between them. It
may be said that there is a relation between the two assertions “is a man”
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and “is a mortal”, in virtue of which, when the one holds, so does the other.
Or again, we may analyse the whole proposition “Socrates is a man implies
Socrates is a mortal” into Socrates and an assertion about him, and say that
the assertion in question holds of all terms. Neither of these theories replaces
the above analysis of “x is a man implies x is a mortal” into a class of material
implications; but whichever of the two is true carries the analysis one step
further. The first theory suffers from the difficulty that it is essential to the
relation of assertions involved that both assertions should be made of the same
subject, though it is otherwise irrelevant what subject we choose. The second
theory appears objectionable on the ground that the suggested analysis of
“Socrates is a man implies Socrates is a mortal” seems scarcely possible. The
proposition in question consists of two terms and a relation, the terms being
“Socrates is a man” and “Socrates is a mortal”; and it would seem that when a
relational proposition is analysed into a subject and an assertion, the subject
must be one of the terms of the relation which is asserted. This objection
seems graver than that against the former view; I shall therefore, at any rate
for the present, adopt the former view, and regard formal implication as
derived from a relation between assertions.

We remarked above that the relation of inclusion between classes is
insufficient. This results from the irreducible nature of relational proposi-
tions. Take e.g. “Socrates is married implies Socrates had a father”. Here it is
affirmed that because Socrates has one relation, he must have another. Or
better still, take “A is before B implies B is after A”. This is a formal implica-
tion, in which the assertions are (superficially at least) concerning different
subjects; the only way to avoid this is to say that both propositions have both
A and B as subjects, which, by the way, is quite different from saying that they
have the one subject “A and B”. Such instances make it plain that the notion
of a propositional function, and the notion of an assertion, are more funda-
mental than the notion of class, and that the latter is not adequate to explain all
cases of formal implication. I shall not enlarge upon this point now, as it will
be abundantly illustrated in subsequent portions of the present work.

It is important to realize that, according to the above analysis of formal
implication, the notion of every term is indefinable and ultimate. A formal
implication is one which holds of every term, and therefore every cannot be
explained by means of formal implication. If a and b be classes, we can
explain “every a is a b” by means of “x is an a implies x is a b”; but the every
which occurs here is a derivative and subsequent notion, presupposing the
notion of every term. It seems to be the very essence of what may be called a
formal truth, and of formal reasoning generally, that some assertion is
affirmed to hold of every term; and unless the notion of every term is admitted,
formal truths are impossible.

45. The fundamental importance of formal implication is brought out
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by the consideration that it is involved in all the rules of inference. This shows
that we cannot hope wholly to define it in terms of material implication,
but that some further element or elements must be involved. We may
observe, however, that, in a particular inference, the rule according to which
the inference proceeds is not required as a premiss. This point has been
emphasized by Mr Bradley;* it is closely connected with the principle of
dropping a true premiss, being again a respect in which formalism breaks
down. In order to apply a rule of inference, it is formally necessary to have a
premiss asserting that the present case is an instance of the rule; we shall
then need to affirm the rule by which we can go from the rule to an instance,
and also to affirm that here we have an instance of this rule, and so on into an
endless process. The fact is, of course, that any implication warranted by a
rule of inference does actually hold, and is not merely implied by the rule.
This is simply an instance of the non-formal principle of dropping a true
premiss: if our rule implies a certain implication, the rule may be dropped
and the implication asserted. But it remains the case that the fact that our
rule does imply the said implication, if introduced at all, must be simply
perceived, and is not guaranteed by any formal deduction; and often it is
just as easy, and consequently just as legitimate, to perceive immediately the
implication in question as to perceive that it is implied by one or more of
the rules of inference.

To sum up our discussion of formal implication: a formal implication, we
said, is the affirmation of every material implication of a certain class; and
the class of material implications involved is, in simple cases, the class of all
propositions in which a given fixed assertion, made concerning a certain
subject or subjects, is affirmed to imply another given fixed assertion con-
cerning the same subject or subjects. Where a formal implication holds, we
agreed to regard it, wherever possible, as due to some relation between the
assertions concerned. This theory raises many formidable logical problems,
and requires, for its defence, a thorough analysis of the constituents of
propositions. To this task we must now address ourselves.

* Logic, Book II, Part I, Chap.  (p. 227).
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4
PROPER NAMES, ADJECTIVES

AND VERBS

46. I the present chapter, certain questions are to be discussed belong-
ing to what may be called philosophical grammar. The study of grammar,
in my opinion, is capable of throwing far more light on philosophical ques-
tions than is commonly supposed by philosophers. Although a grammatical
distinction cannot be uncritically assumed to correspond to a genuine philo-
sophical difference, yet the one is primâ facie evidence of the other, and may
often be most usefully employed as a source of discovery. Moreover, it must
be admitted, I think, that every word occurring in a sentence must have some
meaning: a perfectly meaningless sound could not be employed in the more
or less fixed way in which language employs words. The correctness of
our philosophical analysis of a proposition may therefore be usefully checked
by the exercise of assigning the meaning of each word in the sentence
expressing the proposition. On the whole, grammar seems to me to bring
us much nearer to a correct logic than the current opinions of philosophers;
and in what follows, grammar, though not our master, will yet be taken as
our guide.*

Of the parts of speech, three are specially important: substantives, adjec-
tives and verbs. Among substantives, some are derived from adjectives or
verbs, as humanity from human, or sequence from follows. (I am not speaking
of an etymological derivation, but of a logical one.) Others, such as proper
names, or space, time and matter, are not derivative, but appear primarily as
substantives. What we wish to obtain is a classification, not of words, but of

* The excellence of grammar as a guide is proportional to the paucity of inflexions, i.e. to the
degree of analysis effected by the language considered.



ideas; I shall therefore call adjectives or predicates all notions which are
capable of being such, even in a form in which grammar would call them
substantives. The fact is, as we shall see, that human and humanity denote pre-
cisely the same concept, these words being employed respectively according
to the kind of relation in which this concept stands to the other constituents
of a proposition in which it occurs. The distinction which we require is not
identical with the grammatical distinction between substantive and adjective,
since one single concept may, according to circumstances, be either substan-
tive or adjective: it is the distinction between proper and general names that
we require, or rather between the objects indicated by such names. In every
proposition, as we saw in Chapter 3, we may make an analysis into some-
thing asserted and something about which the assertion is made. A proper
name, when it occurs in a proposition, is always, at least according to one
of the possible ways of analysis (where there are several), the subject that
the proposition or some subordinate constituent proposition is about, and
not what is said about the subject. Adjectives and verbs, on the other hand,
are capable of occurring in propositions in which they cannot be regarded as
subject, but only as parts of the assertion. Adjectives are distinguished by
capacity for denoting—a term which I intend to use in a technical sense to be
discussed in Chapter 5. Verbs are distinguished by a special kind of connec-
tion, exceedingly hard to define, with truth and falsehood, in virtue of which
they distinguish an asserted proposition from an unasserted one, e.g. “Caesar
died” from “the death of Caesar”. These distinctions must now be amplified,
and I shall begin with the distinction between general and proper names.

47. Philosophy is familiar with a certain set of distinctions, all more or
less equivalent: I mean, the distinctions of subject and predicate, substance
and attribute, substantive and adjective, this and what.* I wish now to point
out briefly what appears to me to be the truth concerning these cognate
distinctions. The subject is important, since the issues between monism and
monadism, between idealism and empiricism, and between those who main-
tain and those who deny that all truth is concerned with what exists, all
depend, in whole or in part, upon the theory we adopt in regard to the
present question. But the subject is treated here only because it is essential to
any doctrine of number or of the nature of the variable. Its bearings on
general philosophy, important as they are, will be left wholly out of account.

Whatever may be an object of thought, or may occur in any true or false
proposition, or can be counted as one, I call a term. This, then, is the widest
word in the philosophical vocabulary. I shall use as synonymous with it the
words unit, individual and entity. The first two emphasize the fact that every
term is one, while the third is derived from the fact that every term has being,

* This last pair of terms is due to Mr Bradley.
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i.e. is in some sense. A man, a moment, a number, a class, a relation, a
chimaera, or anything else that can be mentioned, is sure to be a term; and to
deny that such and such a thing is a term must always be false.

It might perhaps be thought that a word of such extreme generality could
not be of any great use. Such a view, however, owing to certain wide-spread
philosophical doctrines, would be erroneous. A term is, in fact, possessed
of all the properties commonly assigned to substances or substantives. Every
term, to begin with, is a logical subject: it is, for example, the subject of
the proposition that itself is one. Again every term is immutable and
indestructible. What a term is, it is, and no change can be conceived in it
which would not destroy its identity and make it another term.* Another
mark which belongs to terms is numerical identity with themselves and
numerical diversity from all other terms.† Numerical identity and diversity
are the source of unity and plurality; and thus the admission of many terms
destroys monism. And it seems undeniable that every constituent of every
proposition can be counted as one, and that no proposition contains less
than two constituents. Term is, therefore, a useful word, since it marks dissent
from various philosophies, as well as because, in many statements, we wish
to speak of any term or some term.

48. Among terms, it is possible to distinguish two kinds, which I shall call
respectively things and concepts. The former are the terms indicated by proper
names, the latter those indicated by all other words. Here proper names are to
be understood in a somewhat wider sense than is usual, and things also are to
be understood as embracing all particular points and instants, and many other
entities not commonly called things. Among concepts, again, two kinds at
least must be distinguished, namely those indicated by adjectives and those
indicated by verbs. The former kind will often be called predicates or class-
concepts; the latter are always or almost always relations. (In intransitive verbs,
the notion expressed by the verb is complex, and usually asserts a definite
relation to an indefinite relatum, as in “Smith breathes”.)

In a large class of propositions, we agreed, it is possible, in one or more
ways, to distinguish a subject and an assertion about the subject. The asser-
tion must always contain a verb, but except in this respect, assertions appear
to have no universal properties. In a relational proposition, say “A is greater
than B”, we may regard A as the subject, and “is greater than B” as the
assertion, or B as the subject and “A is greater than” as the assertion. There are
thus, in the case proposed, two ways of analysing the proposition into subject

* The notion of a term here set forth is a modification of Mr G. E. Moore’s notion of a concept in
his article “On the Nature of Judgment”, Mind, N. S. No. 30, from which notion, however, it
differs in some important respects.
† On identity, see Mr G. E. Moore’s article in the Proceedings of the Aristotelian Society, 1900–1901.
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and assertion. Where a relation has more than two terms, as in “A is here
now”,* there will be more than two ways of making the analysis. But in
some propositions, there is only a single way: these are the subject-predicate
propositions, such as “Socrates is human”. The proposition “humanity
belongs to Socrates”, which is equivalent to “Socrates is human”, is an asser-
tion about humanity: but it is a distinct proposition. In “Socrates is human”,
the notion expressed by human occurs in a different way from that in which it
occurs when it is called humanity, the difference being that in the latter case,
but not in the former, the proposition is about this notion. This indicates that
humanity is a concept, not a thing. I shall speak of the terms of a proposition
as those terms, however numerous, which occur in a proposition and may
be regarded as subjects about which the proposition is. It is a characteristic
of the terms of a proposition that any one of them may be replaced by any
other entity without our ceasing to have a proposition. Thus we shall say that
“Socrates is human” is a proposition having only one term; of the remaining
components of the proposition, one is the verb, the other is a predicate. With
the sense which is has in this proposition, we no longer have a proposition at
all if we replace human by something other than a predicate. Predicates,
then, are concepts, other than verbs, which occur in propositions having only
one term or subject. Socrates is a thing, because Socrates can never occur
otherwise than as a term in a proposition: Socrates is not capable of that
curious twofold use which is involved in human and humanity. Points, instants,
bits of matter, particular states of mind, and particular existents generally,
are things in the above sense, and so are many terms which do not exist, for
example, the points in a non-Euclidean space and the pseudo-existents of a
novel. All classes, it would seem, as numbers, men, spaces, etc., when taken as
single terms, are things; but this is a point for Chapter 6

Predicates are distinguished from other terms by a number of very interest-
ing properties, chief among which is their connection with what I shall call
denoting. One predicate always gives rise to a host of cognate notions: thus in
addition to human and humanity, which only differ grammatically, we have man,
a man, some man, any man, every man, all men,† all of which appear to be genuinely
distinct one from another. The study of these various notions is absolutely
vital to any philosophy of mathematics; and it is on account of them that the
theory of predicates is important.

49. It might be thought that a distinction ought to be made between a
concept as such and a concept used as a term, between, e.g., such pairs as is

* This proposition means “A is in this place at this time”. It will be shown in Part VII that the
relation expressed is not reducible to a two-term relation.
† I use all men as collective, i.e. as nearly synonymous with the human race, but differing therefrom
by being many and not one. I shall always use all collectively, confining myself to every for the
distributive sense. Thus I shall say “every man is mortal”, not “all men are mortal”.
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and being, human and humanity, one in such a proposition as “this is one” and 1
in “1 is a number”. But inextricable difficulties will envelop us if we allow
such a view. There is, of course, a grammatical difference, and this corres-
ponds to a difference as regards relations. In the first case, the concept in
question is used as a concept, that is, it is actually predicated of a term or
asserted to relate two or more terms; while in the second case, the concept is
itself said to have a predicate or a relation. There is, therefore, no difficulty in
accounting for the grammatical difference. But what I wish to urge is, that
the difference lies solely in external relations, and not in the intrinsic
nature of the terms. For suppose that one as adjective differed from 1 as
term. In this statement, one as adjective has been made into a term; hence
either it has become 1, in which case the supposition is self-contradictory;
or there is some other difference between one and 1 in addition to the
fact that the first denotes a concept not a term while the second denotes a
concept which is a term. But in this latter hypothesis, there must be
propositions concerning one as term, and we shall still have to maintain
propositions concerning one as adjective as opposed to one as term; yet all
such propositions must be false, since a proposition about one as adjective
makes one the subject, and is therefore really about one as term. In short, if
there were any adjectives which could not be made into substantives
without change of meaning, all propositions concerning such adjectives
(since they would necessarily turn them into substantives) would be false,
and so would the proposition that all such propositions are false, since
this itself turns the adjectives into substantives. But this state of things is
self-contradictory.

The above argument proves that we were right in saying that terms
embrace everything that can occur in a proposition, with the possible excep-
tion of complexes of terms of the kind denoted by any and cognate words.*
For if A occurs in a proposition, then, in this statement, A is the subject; and
we have just seen that, if A is ever not the subject, it is exactly and numerically
the same A which is not subject in one proposition and is subject in another.
Thus the theory that there are adjectives or attributes or ideal things, or
whatever they may be called, which are in some way less substantial, less
self-subsistent, less self-identical, than true substantives, appears to be wholly
erroneous, and to be easily reduced to a contradiction. Terms which are
concepts differ from those which are not, not in respect of self-subsistence,
but in virtue of the fact that, in certain true or false propositions, they occur
in a manner which is different in an indefinable way from the manner in
which subjects or terms of relations occur.

50. Two concepts have, in addition to the numerical diversity which

* See the next chapter.
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belongs to them as terms, another special kind of diversity which may be
called conceptual. This may be characterized by the fact that two propositions
in which the concepts occur otherwise than as terms, even if, in all other
respects, the two propositions are identical, yet differ in virtue of the fact
that the concepts which occur in them are conceptually diverse. Conceptual
diversity implies numerical diversity, but the converse implication does not
hold, since not all terms are concepts. Numerical diversity, as its name
implies, is the source of plurality, and conceptual diversity is less important
to mathematics. But the whole possibility of making different assertions
about a given term or set of terms depends upon conceptual diversity, which
is therefore fundamental in general logic.

51. It is interesting and not unimportant to examine very briefly the
connection of the above doctrine of adjectives with certain traditional views
on the nature of propositions. It is customary to regard all propositions as
having a subject and a predicate, i.e. as having an immediate this, and a general
concept attached to it by way of description. This is, of course, an account of
the theory in question which will strike its adherents as extremely crude; but
it will serve for a general indication of the view to be discussed. This doctrine
develops by internal logical necessity into the theory of Mr Bradley’s Logic,
that all words stand for ideas having what he calls meaning, and that in every
judgment there is a something, the true subject of the judgment, which is not
an idea and does not have meaning. To have meaning, it seems to me, is a
notion confusedly compounded of logical and psychological elements. Words
all have meaning, in the simple sense that they are symbols which stand for
something other than themselves. But a proposition, unless it happens to be
linguistic, does not itself contain words: it contains the entities indicated by
words. Thus meaning, in the sense in which words have meaning, is irrele-
vant to logic. But such concepts as a man have meaning in another sense: they
are, so to speak, symbolic in their own logical nature, because they have the
property which I call denoting. That is to say, when a man occurs in a prop-
osition (e.g. “I met a man in the street”), the proposition is not about the
concept a man, but about something quite different, some actual biped
denoted by the concept. Thus concepts of this kind have meaning in a non-
psychological sense. And in this sense, when we say “this is a man”, we are
making a proposition in which a concept is in some sense attached to what is
not a concept. But when meaning is thus understood, the entity indicated
by John does not have meaning, as Mr Bradley contends;* and even among
concepts, it is only those that denote that have meaning. The confusion is
largely due, I believe, to the notion that words occur in propositions, which in
turn is due to the notion that propositions are essentially mental and are to be

* Logic, Book I, Chap. , §§ 17, 18 (pp. 58–60).
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identified with cognitions. But these topics of general philosophy must be
pursued no further in this work.

52. It remains to discuss the verb, and to find marks by which it is
distinguished from the adjective. In regard to verbs also, there is a twofold
grammatical form corresponding to a difference in merely external relations.
There is the verb in the form which it has as verb (the various inflexions of
this form may be left out of account), and there is the verbal noun, indicated
by the infinitive or (in English) the present participle. The distinction is that
between “Felton killed Buckingham” and “Killing no murder”. By analysing
this difference, the nature and function of the verb will appear.

It is plain, to begin with, that the concept which occurs in the verbal noun
is the very same as that which occurs as verb. This results from the previous
argument, that every constituent of every proposition must, on pain of
self-contradiction, be capable of being made a logical subject. If we say “kills
does not mean the same as to kill”, we have already made kills a subject, and we
cannot say that the concept expressed by the word kills cannot be made a
subject. Thus the very verb which occurs as verb can occur also as subject.
The question is: What logical difference is expressed by the difference of
grammatical form? And it is plain that the difference must be one in external
relations. But in regard to verbs, there is a further point. By transforming the
verb, as it occurs in a proposition, into a verbal noun, the whole proposition
can be turned into a single logical subject, no longer asserted, and no longer
containing in itself truth or falsehood. But here too, there seems to be no
possibility of maintaining that the logical subject which results is a different
entity from the proposition. “Caesar died” and “the death of Caesar” will
illustrate this point. If we ask: What is asserted in the proposition “Caesar
died”? the answer must be “the death of Caesar is asserted”. In that case, it
would seem, it is the death of Caesar which is true or false; and yet neither
truth nor falsity belongs to a mere logical subject. The answer here seems
to be that the death of Caesar has an external relation to truth or falsehood
(as the case may be), whereas “Caesar died” in some way or other contains its
own truth or falsehood as an element. But if this is the correct analysis, it is
difficult to see how “Caesar died” differs from “the truth of Caesar’s death”
in the case where it is true, or “the falsehood of Caesar’s death” in the other
case. Yet it is quite plain that the latter, at any rate, is never equivalent to
“Caesar died”. There appears to be an ultimate notion of assertion, given by
the verb, which is lost as soon as we substitute a verbal noun, and is lost when
the proposition in question is made the subject of some other proposition.
This does not depend upon grammatical form; for if I say “Caesar died is a
proposition”, I do not assert that Caesar did die, and an element which is
present in “Caesar died” has disappeared. Thus the contradiction which was
to have been avoided, of an entity which cannot be made a logical subject,
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appears to have here become inevitable. This difficulty, which seems to be
inherent in the very nature of truth and falsehood, is one with which I do not
know how to deal satisfactorily. The most obvious course would be to say
that the difference between an asserted and an unasserted proposition is not
logical, but psychological. In the sense in which false propositions may be
asserted, this is doubtless true. But there is another sense of assertion, very
difficult to bring clearly before the mind, and yet quite undeniable, in which
only true propositions are asserted. True and false propositions alike are in
some sense entities, and are in some sense capable of being logical subjects;
but when a proposition happens to be true, it has a further quality, over and
above that which it shares with false propositions, and it is this further quality
which is what I mean by assertion in a logical as opposed to a psychological
sense. The nature of truth, however, belongs no more to the principles of
mathematics than to the principles of everything else. I therefore leave this
question to the logicians with the above brief indication of a difficulty.

53. It may be asked whether everything that, in the logical sense we are
concerned with, is a verb, expresses a relation or not. It seems plain that, if
we were right in holding that “Socrates is human” is a proposition having
only one term, the is in this proposition cannot express a relation in the
ordinary sense. In fact, subject-predicate propositions are distinguished by
just this non-relational character. Nevertheless, a relation between Socrates
and humanity is certainly implied, and it is very difficult to conceive the
proposition as expressing no relation at all. We may perhaps say that it is a
relation, although it is distinguished from other relations in that it does not
permit itself to be regarded as an assertion concerning either of its terms
indifferently, but only as an assertion concerning the referent. A similar
remark may apply to the proposition “A is”, which holds of every term
without exception. The is here is quite different from the is in “Socrates is
human”; it may be regarded as complex, and as really predicating Being of A.
In this way, the true logical verb in a proposition may be always regarded as
asserting a relation. But it is so hard to know exactly what is meant by relation
that the whole question is in danger of becoming purely verbal.

54. The twofold nature of the verb, as actual verb and as verbal noun,
may be expressed, if all verbs are held to be relations, as the difference
between a relation in itself and a relation actually relating. Consider, for
example, the proposition “A differs from B”. The constituents of this
proposition, if we analyse it, appear to be only A, difference, B. Yet these
constituents, thus placed side by side, do not reconstitute the proposition.
The difference which occurs in the proposition actually relates A and B,
whereas the difference after analysis is a notion which has no connection
with A and B. It may be said that we ought, in the analysis, to mention the
relations which difference has to A and B, relations which are expressed by is
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and from when we say “A is different from B”. These relations consist in the
fact that A is referent and B relatum with respect to difference. But “A, refer-
ent, difference, relatum, B” is still merely a list of terms, not a proposition. A
proposition, in fact, is essentially a unity, and when analysis has destroyed the
unity, no enumeration of constituents will restore the proposition. The verb,
when used as a verb, embodies the unity of the proposition, and is thus
distinguishable from the verb considered as a term, though I do not know
how to give a clear account of the precise nature of the distinction.

55. It may be doubted whether the general concept difference occurs at all
in the proposition “A differs from B”, or whether there is not rather a specific
difference of A and B, and another specific difference of C and D, which are
respectively affirmed in “A differs from B” and “C differs from D”. In this way,
difference becomes a class-concept of which there are as many instances as there
are pairs of different terms; and the instances may be said, in Platonic phrase,
to partake of the nature of difference. As this point is quite vital in the theory
of relations, it may be well to dwell upon it. And first of all, I must point out
that in “A differs from B” I intend to consider the bare numerical difference in
virtue of which they are two, not difference in this or that respect.

Let us first try the hypothesis that a difference is a complex notion, com-
pounded of difference together with some special quality distinguishing a
particular difference from every other particular difference. So far as the
relation of difference itself is concerned, we are to suppose that no distinction
can be made between different cases; but there are to be different associated
qualities in different cases. But since cases are distinguished by their terms,
the quality must be primarily associated with the terms, not with difference.
If the quality be not a relation, it can have no special connection with the
difference of A and B, which it was to render distinguishable from bare
difference, and if it fails in this it becomes irrelevant. On the other hand, if it
be a new relation between A and B, over and above difference, we shall have to
hold that any two terms have two relations, difference and a specific differ-
ence, the latter not holding between any other pair of terms. This view is a
combination of two others, of which the first holds that the abstract general
relation of difference itself holds between A and B, while the second holds
that when two terms differ they have, corresponding to this fact, a specific
relation of difference, unique and unanalysable and not shared by any other
pair of terms. Either of these views may be held with either the denial or the
affirmation of the other. Let us see what is to be said for and against them.

Against the notion of specific differences, it may be urged that, if differences
differ, their differences from each other must also differ, and thus we are led
into an endless process. Those who object to endless processes will see in this a
proof that differences do not differ. But in the present work, it will be main-
tained that there are no contradictions peculiar to the notion of infinity, and
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that an endless process is not to be objected to unless it arises in the analysis of
the actual meaning of a proposition. In the present case, the process is one of
implications, not one of analysis; it must therefore be regarded as harmless.

Against the notion that the abstract relation of difference holds between A
and B, we have the argument derived from the analysis of “A differs from B”,
which gave rise to the present discussion. It is to be observed that the hypoth-
esis which combines the general and the specific difference must suppose that
there are two distinct propositions, the one affirming the general, the other the
specific difference. Thus if there cannot be a general difference between A and
B, this mediating hypothesis is also impossible. And we saw that the attempt
to avoid the failure of analysis by including in the meaning of “A differs from
B” the relations of difference to A and B was vain. This attempt, in fact, leads
to an endless process of the inadmissible kind; for we shall have to include the
relations of the said relations to A and B and difference, and so on, and in this
continually increasing complexity we are supposed to be only analysing the
meaning of our original proposition. This argument establishes a point of very
great importance, namely, that when a relation holds between two terms, the
relations of the relation to the terms, and of these relations to the relation and
the terms, and so on ad infinitum, though all implied by the proposition affirm-
ing the original relation, form no part of the meaning of this proposition.

But the above argument does not suffice to prove that the relation of A to B
cannot be abstract difference: it remains tenable that, as was suggested to
begin with, the true solution lies in regarding every proposition as having a
kind of unity which analysis cannot preserve, and which is lost even though
it be mentioned by analysis as an element in the proposition. This view has
doubtless its own difficulties, but the view that no two pairs of terms can have
the same relation both contains difficulties of its own and fails to solve the
difficulty for the sake of which it was invented. For, even if the difference of A
and B be absolutely peculiar to A and B, still the three terms A, B, difference of
A from B, do not reconstitute the proposition “A differs from B”, any more
than A and B and difference did. And it seems plain that, even if differences
did differ, they would still have to have something in common. But the most
general way in which two terms can have something in common is by both
having a given relation to a given term. Hence if no two pairs of terms can
have the same relation, it follows that no two terms can have anything in
common, and hence different differences will not be in any definable sense
instances of difference.* I conclude, then, that the relation affirmed between A

* The above argument appears to prove that Mr Moore’s theory of universals with numerically
diverse instances in his paper on Identity (Proceedings of the Aristotelian Society, 1900–1901) must not
be applied to all concepts. The relation of an instance to its universal, at any rate, must be actually
and numerically the same in all cases where it occurs.
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and B in the proposition “A differs from B” is the general relation of differ-
ence, and is precisely and numerically the same as the relation affirmed
between C and D in “C differs from D”. And this doctrine must be held, for
the same reasons, to be true of all other relations; relations do not have
instances, but are strictly the same in all propositions in which they occur.

We may now sum up the main points elicited in our discussion of the verb.
The verb, we saw, is a concept which, like the adjective, may occur in a
proposition without being one of the terms of the proposition, though it
may also be made into a logical subject. One verb, and one only, must occur
as verb in every proposition; but every proposition, by turning its verb into a
verbal noun, can be changed into a single logical subject, of a kind which I
shall call in future a propositional concept. Every verb, in the logical sense of
the word, may be regarded as a relation; when it occurs as verb, it actually
relates, but when it occurs as verbal noun it is the bare relation considered
independently of the terms which it relates. Verbs do not, like adjectives, have
instances, but are identical in all the cases of their occurrence. Owing to the
way in which the verb actually relates the terms of a proposition, every
proposition has a unity which renders it distinct from the sum of its constitu-
ents. All these points lead to logical problems, which, in a treatise on logic,
would deserve to be fully and thoroughly discussed.

Having now given a general sketch of the nature of verbs and adjectives,
I shall proceed, in the next two chapters, to discussions arising out of the
consideration of adjectives, and in Chapter 7 to topics connected with verbs.
Broadly speaking, classes are connected with adjectives, while propositional
functions involve verbs. It is for this reason that it has been necessary to deal
at such length with a subject which might seem, at first sight, to be somewhat
remote from the principles of mathematics.
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5
DENOTING

56. T notion of denoting, like most of the notions of logic, has been
obscured hitherto by an undue admixture of psychology. There is a sense in
which we denote, when we point or describe, or employ words as symbols
for concepts; this, however, is not the sense that I wish to discuss. But the
fact that description is possible—that we are able, by the employment of
concepts, to designate a thing which is not a concept—is due to a logical
relation between some concepts and some terms, in virtue of which such
concepts inherently and logically denote such terms. It is this sense of denoting
which is here in question. This notion lies at the bottom (I think) of all
theories of substance, of the subject-predicate logic, and of the opposition
between things and ideas, discursive thought and immediate perception.
These various developments, in the main, appear to me mistaken, while
the fundamental fact itself, out of which they have grown, is hardly ever
discussed in its logical purity.

A concept denotes when, if it occurs in a proposition, the proposition is not
about the concept, but about a term connected in a certain peculiar way with
the concept. If I say “I met a man”, the proposition is not about a man: this is a
concept which does not walk the streets, but lives in the shadowy limbo of
the logic-books. What I met was a thing, not a concept, an actual man with a
tailor and a bank-account or a public-house and a drunken wife. Again, the
proposition “any finite number is odd or even” is plainly true; yet the concept
“any finite number” is neither odd nor even. It is only particular numbers
that are odd or even; there is not, in addition to these, another entity, any
number, which is either odd or even, and if there were, it is plain that it could
not be odd and could not be even. Of the concept “any number”, almost all the
propositions that contain the phrase “any number” are false. If we wish to



speak of the concept, we have to indicate the fact by italics or inverted
commas. People often assert that man is mortal; but what is mortal will
die, and yet we should be surprised to find in the “Times” such a notice
as the following: “Died at his residence of Camelot, Gladstone Road,
Upper Tooting, on the 18th of June 19—, Man, eldest son of Death and
Sin.” Man, in fact, does not die; hence if “man is mortal” were, as it
appears to be, a proposition about man, it would be simply false. The fact
is, the proposition is about men; and here again, it is not about the
concept men, but about what this concept denotes. The whole theory of
definition, of identity, of classes, of symbolism and of the variable is
wrapped up in the theory of denoting. The notion is a fundamental notion
of logic, and, in spite of its difficulties, it is quite essential to be as clear
about it as possible.

57. The notion of denoting may be obtained by a kind of logical genesis
from subject-predicate propositions, upon which it seems more or less
dependent. The simplest of propositions are those in which one predicate
occurs otherwise than as a term, and there is only one term of which the
predicate in question is asserted. Such propositions may be called subject-
predicate propositions. Instances are: A is, A is one, A is human. Concepts
which are predicates might also be called class-concepts, because they give
rise to classes, but we shall find it necessary to distinguish between the words
predicate and class-concept. Propositions of the subject-predicate type always
imply and are implied by other propositions of the type which asserts that an
individual belongs to a class. Thus the above instances are equivalent to: A is
an entity, A is a unit, A is a man. These new propositions are not identical
with the previous ones, since they have an entirely different form. To begin
with, is is now the only concept not used as a term. A man, we shall find, is
neither a concept nor a term, but a certain kind of combination of certain
terms, namely of those which are human. And the relation of Socrates
to a man is quite different from his relation to humanity; indeed “Socrates
is human” must be held, if the above view is correct, to be not, in the
most usual sense, a judgment of relation between Socrates and humanity,
since this view would make human occur as term in “Socrates is human”. It is,
of course, undeniable that a relation to humanity is implied by “Socrates
is human”, namely the relation expressed by “Socrates has humanity”;
and this relation conversely implies the subject-predicate proposition. But the
two propositions can be clearly distinguished, and it is important to the
theory of classes that this should be done. Thus we have, in the case of every
predicate, three types of propositions which imply one another, namely,
“Socrates is human”, “Socrates has humanity” and “Socrates is a man”.
The first contains a term and a predicate, the second two terms and a
relation (the second term being identical with the predicate of the first
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proposition),* while the third contains a term, a relation, and what I shall call
a disjunction (a term which will be explained shortly).† The class-concept
differs little, if at all, from the predicate, while the class, as opposed to the
class-concept, is the sum or conjunction of all the terms which have the given
predicate. The relation which occurs in the second type (Socrates has human-
ity) is characterized completely by the fact that it implies and is implied by a
proposition with only one term, in which the other term of the relation has
become a predicate. A class is a certain combination of terms, a class-concept
is closely akin to a predicate, and the terms whose combination forms the
class are determined by the class-concept. Predicates are, in a certain sense,
the simplest type of concepts, since they occur in the simplest type of
proposition.

58. There is, connected with every predicate, a great variety of closely
allied concepts, which, in so far as they are distinct, it is important to
distinguish. Starting, for example, with human, we have man, men, all men,
every man, any man, the human race, of which all except the first are twofold,
a denoting concept and an object denoted; we have also, less closely analo-
gous, the notions “a man” and “some man”, which again denote objects‡
other than themselves. This vast apparatus connected with every predicate
must be borne in mind, and an endeavour must be made to give an analysis
of all the above notions. But for the present, it is the property of denoting,
rather than the various denoting concepts, that we are concerned with.

The combination of concepts as such to form new concepts, of greater
complexity than their constituents, is a subject upon which writers on logic
have said many things. But the combination of terms as such, to form what by
analogy may be called complex terms, is a subject upon which logicians, old
and new, give us only the scantiest discussion. Nevertheless, the subject is of
vital importance to the philosophy of mathematics, since the nature both of
number and of the variable turns upon just this point. Six words, of constant
occurrence in daily life, are also characteristic of mathematics: these are the
words all, every, any, a, some and the. For correctness of reasoning, it is essential
that these words should be sharply distinguished one from another; but

* Cf. § 49.
† There are two allied propositions expressed by the same words, namely “Socrates is a-man”
and “Socrates is-a man”. The above remarks apply to the former; but in future, unless the
contrary is indicated by a hyphen or otherwise, the latter will always be in question. The former
expresses the identity of Socrates with an ambiguous individual; the latter expresses a relation of
Socrates to the class-concept man.
‡ I shall use the word object in a wider sense than term, to cover both singular and plural, and also
cases of ambiguity, such as “a man”. The fact that a word can be framed with a wider meaning
than term raises grave logical problems. Cf. § 47.
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the subject bristles with difficulties, and is almost wholly neglected by
logicians.*

It is plain, to begin with, that a phrase containing one of the above six
words always denotes. It will be convenient, for the present discussion, to
distinguish a class-concept from a predicate: I shall call human a predicate, and
man a class-concept, though the distinction is perhaps only verbal. The charac-
teristic of a class-concept, as distinguished from terms in general, is that “x is
a u” is a propositional function when, and only when, u is a class-concept.
It must be held that when u is not a class-concept, we do not have a false
proposition, but simply no proposition at all, whatever value we may give
to x. This enables us to distinguish a class-concept belonging to the null-class,
for which all propositions of the above form are false, from a term which
is not a class-concept at all, for which there are no propositions of the
above form. Also it makes it plain that a class-concept is not a term in the
proposition “x is a u”, for u has a restricted variability if the formula is to
remain a proposition. A denoting phrase, we may now say, consists always
of a class-concept preceded by one of the above six words or some synonym
of one of them.

59. The question which first meets us in regard to denoting is this:
Is there one way of denoting six different kinds of objects, or are the ways of
denoting different? And in the latter case, is the object denoted the same in all
six cases, or does the object differ as well as the way of denoting it? In order
to answer this question, it will be first necessary to explain the differences
between the six words in question. Here it will be convenient to omit the
word the to begin with, since this word is in a different position from the
others, and is liable to limitations from which they are exempt.

In cases where the class defined by a class-concept has only a finite num-
ber of terms, it is possible to omit the class-concept wholly, and indicate
the various objects denoted by enumerating the terms and connecting
them by means of and or or as the case may be. It will help to isolate a part of
our problem if we first consider this case, although the lack of subtlety in
language renders it difficult to grasp the difference between objects indicated
by the same form of words.

Let us begin by considering two terms only, say Brown and Jones. The
objects denoted by all, every, any, a and some † are respectively involved in the
following five propositions. (1) Brown and Jones are two of Miss Smith’s
suitors; (2) Brown and Jones are paying court to Miss Smith; (3) if it was

* On the indefinite article, some good remarks are made by Meinong, “Abstrahiren und
Vergleichen”, Zeitschrift für Psychologie und Physiologie der Sinnesorgane, Vol. , p. 63.
† I intend to distinguish between a and some in a way not warranted by language; the distinction of
all and every is also a straining of usage. Both are necessary to avoid circumlocution.
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Brown or Jones you met, it was a very ardent lover; (4) if it was one of
Miss Smith’s suitors, it must have been Brown or Jones; (5) Miss Smith will
marry Brown or Jones. Although only two forms of words, Brown and Jones and
Brown or Jones, are involved in these propositions, I maintain that five different
combinations are involved. The distinctions, some of which are rather subtle,
may be brought out by the following considerations. In the first proposition,
it is Brown and Jones who are two, and this is not true of either separately;
nevertheless it is not the whole composed of Brown and Jones which is
two, for this is only one. The two are a genuine combination of Brown with
Jones, the kind of combination which, as we shall see in the next chapter, is
characteristic of classes. In the second proposition, on the contrary, what is
asserted is true of Brown and Jones severally; the proposition is equivalent to,
though not (I think) identical with, “Brown is paying court to Miss Smith
and Jones is paying court to Miss Smith”. Thus the combination indicated by
and is not the same here as in the first case: the first case concerned all of
them collectively, while the second concerns all distributively, i.e. each or
every one of them. For the sake of distinction, we may call the first a numerical
conjunction, since it gives rise to number, the second a propositional conjunc-
tion, since the proposition in which it occurs is equivalent to a conjunction
of propositions. (It should be observed that the conjunction of propositions
in question is of a wholly different kind from any of the combinations we
are considering, being in fact of the kind which is called the logical product.
The propositions are combined quâ propositions, not quâ terms.)

The third proposition gives the kind of conjunction by which any is
defined. There is some difficulty about this notion, which seems half-way be-
tween a conjunction and a disjunction. This notion may be further explained
as follows. Let a and b be two different propositions, each of which implies a
third proposition c. Then the disjunction “a or b” implies c. Now let a and b be
propositions assigning the same predicate to two different subjects, then
there is a combination of the two subjects to which the given predicate may
be assigned so that the resulting proposition is equivalent to the disjunction
“a or b”. Thus suppose we have “if you met Brown, you met a very ardent
lover”, and “if you met Jones, you met a very ardent lover”. Hence we infer
“if you met Brown or if you met Jones, you met a very ardent lover”, and
we regard this as equivalent to “if you met Brown or Jones, etc.”. The com-
bination of Brown and Jones here indicated is the same as that indicated by
either of them. It differs from a disjunction by the fact that it implies and is
implied by a statement concerning both; but in some more complicated
instances, this mutual implication fails. The method of combination is, in
fact, different from that indicated by both, and is also different from both
forms of disjunction. I shall call it the variable conjunction. The first form of
disjunction is given by (4): this is the form which I shall denote by a suitor.
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Here, although it must have been Brown or Jones, it is not true that it must
have been Brown, nor yet that it must have been Jones. Thus the proposition
is not equivalent to the disjunction of propositions “it must have been Brown
or it must have been Jones”. The proposition, in fact, is not capable of
statement either as a disjunction or as a conjunction of propositions, except
in the very roundabout form: “if it was not Brown, it was Jones, and if it was
not Jones, it was Brown”, a form which rapidly becomes intolerable when
the number of terms is increased beyond two, and becomes theoretically
inadmissible when the number of terms is infinite. Thus this form of disjunc-
tion denotes a variable term, that is, whichever of the two terms we fix upon,
it does not denote this term, and yet it does denote one or other of them. This
form accordingly I shall call the variable disjunction. Finally, the second form
of disjunction is given by (5). This is what I shall call the constant disjunction,
since here either Brown is denoted, or Jones is denoted, but the alternative is
undecided. That is to say, our proposition is now equivalent to a disjunction
of propositions, namely “Miss Smith will marry Brown, or she will marry
Jones”. She will marry some one of the two, and the disjunction denotes a
particular one of them, though it may denote either particular one. Thus all
the five combinations are distinct.

It is to be observed that these five combinations yield neither terms nor
concepts, but strictly and only combinations of terms. The first yields many
terms, while the others yield something absolutely peculiar, which is neither
one nor many. The combinations are combinations of terms, effected with-
out the use of relations. Corresponding to each combination there is, at least
if the terms combined form a class, a perfectly definite concept, which
denotes the various terms of the combination combined in the specified man-
ner. To explain this, let us repeat our distinctions in a case where the terms to
be combined are not enumerated, as above, but are defined as the terms of a
certain class.

60. When a class-concept a is given, it must be held that the various
terms belonging to the class are also given. That is to say, any term being
proposed, it can be decided whether or not it belongs to the class. In this way,
a collection of terms can be given otherwise than by enumeration. Whether a
collection can be given otherwise than by enumeration or by a class-concept,
is a question which, for the present, I leave undetermined. But the possibility
of giving a collection by a class-concept is highly important, since it enables
us to deal with infinite collections, as we shall see in Part V. For the present,
I wish to examine the meaning of such phrases as all a’s, every a, any a, an a and
some a. All a’s, to begin with, denotes a numerical conjunction; it is definite as
soon as a is given. The concept all a’s is a perfectly definite single concept,
which denotes the terms of a taken all together. The terms so taken have
a number, which may thus be regarded, if we choose, as a property of the
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class-concept, since it is determinate for any given class-concept. Every a, on
the contrary, though it still denotes all the a’s, denotes them in a different
way, i.e. severally instead of collectively. Any a denotes only one a, but it is
wholly irrelevant which it denotes, and what is said will be equally true
whichever it may be. Moreover, any a denotes a variable a, that is, whatever
particular a we may fasten upon, it is certain that any a does not denote that
one; and yet of that one any proposition is true which is true of any a. An a
denotes a variable disjunction: that is to say, a proposition which holds of an
a may be false concerning each particular a, so that it is not reducible to a
disjunction of propositions. For example, a point lies between any point and
any other point; but it would not be true of any one particular point that it lay
between any point and any other point, since there would be many pairs of
points between which it did not lie. This brings us finally to some a, the
constant disjunction. This denotes just one term of the class a, but the term it
denotes may be any term of the class. Thus “some moment does not follow
any moment” would mean that there was a first moment in time, while “a
moment precedes any moment” means the exact opposite, namely, that every
moment has predecessors.

61. In the case of a class a which has a finite number of terms—say a1, a2,
a3, . . an, we can illustrate these various notions as follows:

(1) All a’s denotes a1 and a2 and . . . and an.
(2) Every a denotes a1 and denotes a2 and . . . and denotes an.
(3) Any a denotes a1 or a2 or . . . or an, where or has the meaning that it is

irrelevant which we take.
(4) An a denotes a1 or a2 or . . . or an, where or has the meaning that no one in

particular must be taken, just as in all a’s we must not take any one in
particular.

(5) Some a denotes a1 or denotes a2 or . . . or denotes an, where it is not
irrelevant which is taken, but on the contrary some one particular a must
be taken.

As the nature and properties of the various ways of combining terms are of
vital importance to the principles of mathematics, it may be well to illustrate
their properties by the following important examples.

(α) Let a be a class, and b a class of classes. We then obtain in all six possible
relations of a to b from various combinations of any, a and some. All and
every do not, in this case, introduce anything new. The six cases are as
follows.

(1) Any a belongs to any class belonging to b, in other words, the class a
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is wholly contained in the common part or logical product of the
various classes belonging to b.

(2) Any a belongs to a b, i.e. the class a is contained in any class which
contains all the b’s, or, is contained in the logical sum of all
the b’s.

(3) Any a belongs to some b, i.e. there is a class belonging to b, in which
the class a is contained. The difference between this case and the
second arises from the fact that here there is one b to which every a
belongs, whereas before it was only decided that every a belonged
to a b, and different a’s might belong to different b’s.

(4) An a belongs to any b, i.e. whatever b we take, it has a part in
common with a.

(5) An a belongs to a b, i.e. there is a b which has a part in common with
a. This is equivalent to “some (or an) a belongs to some b”.

(6) Some a belongs to any b, i.e. there is an a which belongs to the
common part of all the b’s, or a and all the b’s have a common part.
These are all the cases that arise here.

(β) It is instructive, as showing the generality of the type of relations here
considered, to compare the above case with the following. Let a, b be two
series of real numbers; then six precisely analogous cases arise.

(1) Any a is less than any b, or, the series a is contained among numbers
less than every b.

(2) Any a is less than a b, or, whatever a we take, there is a b which is
greater, or, the series a is contained among numbers less than a
(variable) term of the series b. It does not follow that some term of
the series b is greater than all the a’s.

(3) Any a is less than some b, or, there is a term of b which is greater
than all the a’s. This case is not to be confounded with (2).

(4) An a is less than any b, i.e. whatever b we take, there is an a which is
less than it.

(5) An a is less than a b, i.e. it is possible to find an a and a b such that the
a is less than the b. This merely denies that any a is greater than any b.

(6) Some a is less than any b, i.e. there is an a which is less than all the b’s.
This was not implied in (4), where the a was variable, whereas here
it is constant.

In this case, actual mathematics have compelled the distinction between
the variable and the constant disjunction. But in other cases, where math-
ematics have not obtained sway, the distinction has been neglected; and the
mathematicians, as was natural, have not investigated the logical nature of the
disjunctive notions which they employed.
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(γ) I shall give one other instance, as it brings in the difference between any
and every, which has not been relevant in the previous cases. Let a and b be
two classes of classes; then twenty different relations between them arise
from different combinations of the terms of their terms. The following
technical terms will be useful. If a be a class of classes, its logical sum
consists of all terms belonging to any a, i.e. all terms such that there is an
a to which they belong, while its logical product consists of all terms
belonging to every a, i.e. to the common part of all the a’s. We have then
the following cases.

(1) Any term of any a belongs to every b, i.e. the logical sum of a is
contained in the logical product of b.

(2) Any term of any a belongs to a b, i.e. the logical sum of a is
contained in the logical sum of b.

(3) Any term of any a belongs to some b, i.e. there is a b which
contains the logical sum of a.

(4) Any term of some (or an) a belongs to every b, i.e. there is an a
which is contained in the product of b.

(5) Any term of some (or an) a belongs to a b, i.e. there is an a which
is contained in the sum of b.

(6) Any term of some (or an) a belongs to some b, i.e. there is a b
which contains one class belonging to a.

(7) A term of any a belongs to any b, i.e. any class of a and any class of
b have a common part.

(8) A term of any a belongs to a b, i.e. any class of a has a part in
common with the logical sum of b.

(9) A term of any a belongs to some b, i.e. there is a b with which any
a has a part in common.

(10) A term of an a belongs to every b, i.e. the logical sum of a and the
logical product of b have a common part.

(11) A term of an a belongs to any b, i.e. given any b, an a can be found
with which it has a common part.

(12) A term of an a belongs to a b, i.e. the logical sums of a and of b have
a common part.

(13) Any term of every a belongs to every b, i.e. the logical product of a
is contained in the logical product of b.

(14) Any term of every a belongs to a b, i.e. the logical product of a is
contained in the logical sum of b.

(15) Any term of every a belongs to some b, i.e. there is a term of b in
which the logical product of a is contained.

(16) A (or some) term of every a belongs to every b, i.e. the logical
products of a and of b have a common part.
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(17) A (or some) term of every a belongs to a b, i.e. the logical product
of a and the logical sum of b have a common part.

(18) Some term of any a belongs to every b, i.e. any a has a part in
common with the logical product of b.

(19) A term of some a belongs to any b, i.e. there is some term of a with
which any b has a common part.

(20) A term of every a belongs to any b, i.e. any b has a part in common
with the logical product of a.

The above examples show that, although it may often happen that there is a
mutual implication (which has not always been stated) of corresponding
propositions concerning some and a, or concerning any and every, yet in other
cases there is no such mutual implication. Thus the five notions discussed in
the present chapter are genuinely distinct, and to confound them may lead to
perfectly definite fallacies.

62. It appears from the above discussion that, whether there are different
ways of denoting or not, the objects denoted by all men, every man, etc. are
certainly distinct. It seems therefore legitimate to say that the whole differ-
ence lies in the objects, and that denoting itself is the same in all cases.
There are, however, many difficult problems connected with the subject,
especially as regards the nature of the objects denoted. All men, which I shall
identify with the class of men, seems to be an unambiguous object, although
grammatically it is plural. But in the other cases the question is not so simple:
we may doubt whether an ambiguous object is unambiguously denoted, or a
definite object ambiguously denoted. Consider again the proposition “I met a
man”. It is quite certain, and is implied by this proposition, that what I met
was an unambiguous perfectly definite man: in the technical language which
is here adopted, the proposition is expressed by “I met some man”. But the
actual man whom I met forms no part of the proposition in question, and is
not specially denoted by some man. Thus the concrete event which happened is
not asserted in the proposition. What is asserted is merely that some one of a
class of concrete events took place. The whole human race is involved in my
assertion: if any man who ever existed or will exist had not existed or been
going to exist, the purport of my proposition would have been different.
Or, to put the same point in more intensional language, if I substitute for
man any of the other class-concepts applicable to the individual whom I had
the honour to meet, my proposition is changed, although the individual in
question is just as much denoted as before. What this proves is, that some man
must not be regarded as actually denoting Smith and actually denoting
Brown, and so on: the whole procession of human beings throughout the ages
is always relevant to every proposition in which some man occurs, and what is
denoted is essentially not each separate man, but a kind of combination of all
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men. This is more evident in the case of every, any and a. There is, then, a
definite something, different in each of the five cases, which must, in a sense,
be an object, but is characterized as a set of terms combined in a certain way,
which something is denoted by all men, every man, any man, a man or some man;
and it is with this very paradoxical object that propositions are concerned in
which the corresponding concept is used as denoting.

63. It remains to discuss the notion of the. This notion has been symbol-
ically emphasized by Peano, with very great advantage to his calculus; but
here it is to be discussed philosophically. The use of identity and the theory
of definition are dependent upon this notion, which has thus the very highest
philosophical importance.

The word the, in the singular, is correctly employed only in relation to a
class-concept of which there is only one instance. We speak of the King, the
Prime Minister, and so on (understanding at the present time); and in such cases
there is a method of denoting one single definite term by means of a concept,
which is not given to us by any of our other five words. It is owing to this
notion that mathematics can give definitions of terms which are not con-
cepts—a possibility which illustrates the difference between mathematical
and philosophical definition. Every term is the only instance of some class-
concept, and thus every term, theoretically, is capable of definition, provided
we have not adopted a system in which the said term is one of our indefina-
bles. It is a curious paradox, puzzling to the symbolic mind, that definitions,
theoretically, are nothing but statements of symbolic abbreviations, irrelevant
to the reasoning and inserted only for practical convenience, while yet, in the
development of a subject, they always require a very large amount of thought,
and often embody some of the greatest achievements of analysis. This fact
seems to be explained by the theory of denoting. An object may be present
to the mind, without our knowing any concept of which the said object is the
instance; and the discovery of such a concept is not a mere improvement in
notation. The reason why this appears to be the case is that, as soon as the
definition is found, it becomes wholly unnecessary to the reasoning to
remember the actual object defined, since only concepts are relevant to our
deductions. In the moment of discovery, the definition is seen to be true,
because the object to be defined was already in our thoughts; but as part of
our reasoning it is not true, but merely symbolic, since what the reasoning
requires is not that it should deal with that object, but merely that it should
deal with the object denoted by the definition.

In most actual definitions of mathematics, what is defined is a class of
entities, and the notion of the does not then explicitly appear. But even in this
case, what is really defined is the class satisfying certain conditions; for a class,
as we shall see in the next chapter, is always a term or conjunction of terms
and never a concept. Thus the notion of the is always relevant in definitions;
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and we may observe generally that the adequacy of concepts to deal with
things is wholly dependent upon the unambiguous denoting of a single term
which this notion gives.

64. The connection of denoting with the nature of identity is important,
and helps, I think, to solve some rather serious problems. The question
whether identity is or is not a relation, and even whether there is such a con-
cept at all, is not easy to answer. For, it may be said, identity cannot be a
relation, since, where it is truly asserted, we have only one term, whereas two
terms are required for a relation. And indeed identity, an objector may urge,
cannot be anything at all: two terms plainly are not identical, and one term
cannot be, for what is it identical with? Nevertheless identity must be some-
thing. We might attempt to remove identity from terms to relations, and say
that two terms are identical in some respect when they have a given relation
to a given term. But then we shall have to hold either that there is strict
identity between the two cases of the given relation, or that the two cases
have identity in the sense of having a given relation to a given term; but the
latter view leads to an endless process of the illegitimate kind. Thus identity
must be admitted, and the difficulty as to the two terms of a relation must be
met by a sheer denial that two different terms are necessary. There must
always be a referent and a relatum, but these need not be distinct; and where
identity is affirmed, they are not so.*

But the question arises: Why is it ever worth while to affirm identity? This
question is answered by the theory of denoting. If we say “Edward VII is the
King”, we assert an identity; the reason why this assertion is worth making is,
that in the one case the actual term occurs, while in the other a denoting con-
cept takes its place. (For purposes of discussion, I ignore the fact that Edwards
form a class, and that seventh Edwards form a class having only one term.
Edward VII is practically, though not formally, a proper name.) Often two
denoting concepts occur, and the term itself is not mentioned, as in the
proposition “the present Pope is the last survivor of his generation”. When a
term is given, the assertion of its identity with itself, though true, is perfectly
futile, and is never made outside the logic-books; but where denoting con-
cepts are introduced, identity is at once seen to be significant. In this case, of
course, there is involved, though not asserted, a relation of the denoting
concept to the term, or of the two denoting concepts to each other. But the is
which occurs in such propositions does not itself state this further relation,
but states pure identity.†

* On relations of terms to themselves, v. inf. Chap. 9, § 95.
† The word is is terribly ambiguous, and great care is necessary in order not to confound
its various meanings. We have (1) the sense in which it asserts Being, as in “A is”; (2) the sense
of identity; (3) the sense of predication, in “A is human”; (4) the sense of “A is a-man” (cf. p. 54,
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65. To sum up. When a class-concept, preceded by one of the six words
all, every, any, a, some, the, occurs in a proposition, the proposition is, as a rule, not
about the concept formed of the two words together, but about an object quite
different from this, in general not a concept at all, but a term or complex of
terms. This may be seen by the fact that propositions in which such concepts
occur are in general false concerning the concepts themselves. At the same
time, it is possible to consider and make propositions about the concepts
themselves, but these are not the natural propositions to make in employing
the concepts. “Any number is odd or even” is a perfectly natural proposition,
whereas “Any number is a variable conjunction” is a proposition only to be
made in a logical discussion. In such cases, we say that the concept in ques-
tion denotes. We decided that denoting is a perfectly definite relation, the same
in all six cases, and that it is the nature of the denoted object and the denoting
concept which distinguishes the cases. We discussed at some length the
nature and the differences of the denoted objects in the five cases in which
these objects are combinations of terms. In a full discussion, it would be
necessary also to discuss the denoting concepts: the actual meanings of these
concepts, as opposed to the nature of the objects they denote, have not been
discussed above. But I do not know that there would be anything further to
say on this topic. Finally, we discussed the, and showed that this notion is
essential to what mathematics calls definition, as well as to the possibility of
uniquely determining a term by means of concepts; the actual use of identity,
though not its meaning, was also found to depend upon this way of denoting
a single term. From this point we can advance to the discussion of classes,
thereby continuing the development of the topics connected with adjectives.

note), which is very like identity. In addition to these there are less common uses, as “to be good
is to be happy”, where a relation of assertions is meant, that relation, in fact, which, where it
exists, gives rise to formal implication. Doubtless there are further meanings which have not
occurred to me. On the meanings of is, cf. De Morgan, Formal Logic, pp. 49, 50.
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6
CLASSES

66. T bring clearly before the mind what is meant by class, and to
distinguish this notion from all the notions to which it is allied, is one
of the most difficult and important problems of mathematical philosophy.
Apart from the fact that dass is a very fundamental concept, the utmost care
and nicety is required in this subject on account of the contradiction to be
discussed in Chapter 10. I must ask the reader, therefore, not to regard as idle
pedantry the apparatus of somewhat subtle discriminations to be found in
what follows.

It has been customary, in works on logic, to distinguish two standpoints,
that of extension and that of intension. Philosophers have usually regarded
the latter as more fundamental, while Mathematics has been held to deal
specially with the former. M. Couturat, in his admirable work on Leibniz,
states roundly that Symbolic Logic can only be built up from the standpoint
of extension;* and if there really were only these two points of view, his
statement would be justified. But as a matter of fact, there are positions
intermediate between pure intension and pure extension, and it is in these
intermediate regions that Symbolic Logic has its lair. It is essential that the
classes with which we are concerned should be composed of terms, and
should not be predicates or concepts, for a class must be definite when its
terms are given, but in general there will be many predicates which attach to
the given terms and to no others. We cannot of course attempt an intensional
definition of a class as the class of predicates attaching to the terms in ques-
tion and to no others, for this would involve a vicious circle; hence the point
of view of extension is to some extent unavoidable. On the other hand, if we

* La Logique de Leibniz, Paris, 1901, p. 387.



take extension pure, our class is defined by enumeration of its terms, and
this method will not allow us to deal, as Symbolic Logic does, with infinite
classes. Thus our classes must in general be regarded as objects denoted by
concepts, and to this extent the point of view of intension is essential. It is
owing to this consideration that the theory of denoting is of such great
importance. In the present chapter we have to specify the precise degree in
which extension and intension respectively enter into the definition and
employment of classes; and throughout the discussion, I must ask the reader
to remember that whatever is said has to be applicable to infinite as well as to
finite classes.

67. When an object is unambiguously denoted by a concept, I shall
speak of the concept as a concept (or sometimes, loosely, as the concept) of
the object in question. Thus it will be necessary to distinguish the concept
of a class from a class-concept. We agreed to call man a class-concept, but
man does not, in its usual employment, denote anything. On the other hand,
men and all men (which I shall regard as synonyms) do denote, and I shall
contend that what they denote is the class composed of all men. Thus man is
the class-concept, men (the concept) is the concept of the class and men (the
object denoted by the concept men) are the class. It is no doubt confusing, at
first, to use class-concept and concept of a class in different senses; but so many
distinctions are required that some straining of language seems unavoidable.
In the phraseology of the preceding chapter, we may say that a class is a
numerical conjunction of terms. This is the thesis which is to be established.

68. In Chapter 2 we regarded classes as derived from assertions, i.e. as all
the entities satisfying some assertion, whose form was left wholly vague.
I shall discuss this view critically in the next chapter; for the present, we may
confine ourselves to classes as they are derived from predicates, leaving
open the question whether every assertion is equivalent to a predication.
We may, then, imagine a kind of genesis of classes, through the successive
stages indicated by the typical propositions “Socrates is human”, “Socrates
has humanity”, “Socrates is a man”, “Socrates is one among men”. Of these
propositions, the last only, we should say, explicitly contains the class as a
constituent; but every subject-predicate proposition gives rise to the other
three equivalent propositions, and thus every predicate (provided it can be
sometimes truly predicated) gives rise to a class. This is the genesis of classes
from the intensional standpoint.

On the other hand, when mathematicians deal with what they call a
manifold, aggregate, Menge, ensemble, or some equivalent name, it is common,
especially where the number of terms involved is finite, to regard the object
in question (which is in fact a class) as defined by the enumeration of
its terms, and as consisting possibly of a single term, which in that case is
the class. Here it is not predicates and denoting that are relevant, but terms
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connected by the word and, in the sense in which this word stands for a
numerical conjunction. Thus Brown and Jones are a class, and Brown singly is a
class. This is the extensional genesis of classes.

69. The best formal treatment of classes in existence is that of Peano.*
But in this treatment a number of distinctions of great philosophical import-
ance are overlooked. Peano, not I think quite consciously, identifies the class
with the class-concept; thus the relation of an individual to its class is,
for him, expressed by is a. For him, “2 is a number” is a proposition in
which a term is said to belong to the class number. Nevertheless, he identifies
the equality of classes, which consists in their having the same terms, with
identity—a proceeding which is quite illegitimate when the class is regarded
as the class-concept. In order to perceive that man and featherless biped are not
identical, it is quite unnecessary to take a hen and deprive the poor bird of
its feathers. Or, to take a less complex instance, it is plain that even prime is
not identical with integer next after 1. Thus when we identify the class with the
class-concept, we must admit that two classes may be equal without being
identical. Nevertheless, it is plain that when two class-concepts are equal,
some identity is involved, for we say that they have the same terms. Thus there
is some object which is positively identical when two class-concepts are
equal; and this object, it would seem, is more properly called the class.
Neglecting the plucked hen, the class of featherless bipeds, every one would
say, is the same as the class of men; the class of even primes is the same as
the class of integers next after 1. Thus we must not identify the class with
the class-concept, or regard “Socrates is a man” as expressing the relation of
an individual to a class of which it is a member. This has two consequences
(to be established presently) which prevent the philosophical acceptance of
certain points in Peano’s formalism. The first consequence is, that there is no
such thing as the null-class, though there are null class-concepts. The second
is, that a class having only one term is to be identified, contrary to Peano’s
usage, with that one term. I should not propose, however, to alter his practice
or his notation in consequence of either of these points; rather I should
regard them as proofs that Symbolic Logic ought to concern itself, as far as
notation goes, with class-concepts rather than with classes.

70. A class, we have seen, is neither a predicate nor a class-concept, for
different predicates and different class-concepts may correspond to the same
class. A class also, in one sense at least, is distinct from the whole composed
of its terms, for the latter is only and essentially one, while the former, where
it has many terms, is, as we shall see later, the very kind of object of which
many is to be asserted. The distinction of a class as many from a class as a
whole is often made by language: space and points, time and instants, the

* Neglecting Frege, who is discussed in the Appendix.
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army and the soldiers, the navy and the sailors, the Cabinet and the Cabinet
Ministers, all illustrate the distinction. The notion of a whole, in the sense of a
pure aggregate which is here relevant, is, we shall find, not always applicable
where the notion of the class as many applies (see Chapter 10). In such cases,
though terms may be said to belong to the class, the class must not be treated
as itself a single logical subject.* But this case never arises where a class can
be generated by a predicate. Thus we may for the present dismiss this compli-
cation from our minds. In a class as many, the component terms, though they
have some kind of unity, have less than is required for a whole. They have, in
fact, just so much unity as is required to make them many, and not enough to
prevent them from remaining many. A further reason for distinguishing
wholes from classes as many is that a class as one may be one of the terms
of itself as many, as in “classes are one among classes” (the extensional
equivalent of “class is a class-concept”), whereas a complex whole can never
be one of its own constituents.

71. Class may be defined either extensionally or intensionally. That is to
say, we may define the kind of object which is a class, or the kind of concept
which denotes a class: this is the precise meaning of the opposition of exten-
sion and intension in this connection. But although the general notion can be
defined in this two-fold manner, particular classes, except when they happen
to be finite, can only be defined intensionally, i.e. as the objects denoted by
such and such concepts. I believe this distinction to be purely psychological:
logically, the extensional definition appears to be equally applicable to infin-
ite classes, but practically, if we were to attempt it, Death would cut short our
laudable endeavour before it had attained its goal. Logically, therefore, exten-
sion and intension seem to be on a par. I will begin with the extensional view.

When a class is regarded as defined by the enumeration of its terms, it is
more naturally called a collection. I shall for the moment adopt this name, as it
will not prejudge the question whether the objects denoted by it are truly
classes or not. By a collection I mean what is conveyed by “A and B” or “A and
B and C”, or any other enumeration of definite terms. The collection is
defined by the actual mention of the terms, and the terms are connected by
and. It would seem that and represents a fundamental way of combining terms,
and that just this way of combination is essential if anything is to result of
which a number other than 1 can be asserted. Collections do not presuppose
numbers, since they result simply from the terms together with and: they
could only presuppose numbers in the particular case where the terms of the
collection themselves presupposed numbers. There is a grammatical difficulty
which, since no method exists of avoiding it, must be pointed out and

* A plurality of terms is not the logical subject when a number is asserted of it: such propositions
have not one subject, but many subjects. See end of § 74.
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allowed for. A collection, grammatically, is singular, whereas A and B, A and B
and C, etc. are essentially plural. This grammatical difficulty arises from the
logical fact (to be discussed presently) that whatever is many in general forms
a whole which is one; it is, therefore, not removable by a better choice of
technical terms.

The notion of and was brought into prominence by Bolzano.* In order to
understand what infinity is, he says, “we must go back to one of the simplest
conceptions of our understanding, in order to reach an agreement concern-
ing the word that we are to use to denote it. This is the conception which
underlies the conjunction and, which, however, if it is to stand out as clearly
as is required, in many cases, both by the purposes of mathematics and by
those of philosophy, I believe to be best expressed by the words: ‘A system
(Inbegriff) of certain things’, or ‘a whole consisting of certain parts’. But we
must add that every arbitrary object A can be combined in a system with any
others B, C, D, . . ., or (speaking still more correctly) already forms a system
by itself,† of which some more or less important truth can be enunciated,
provided only that each of the presentations A, B, C, D, . . . in fact represents a
different object, or in so far as none of the propositions ‘A is the same as B’, ‘A is
the same as C’, ‘A is the same as D’, etc., is true. For if e.g. A is the same as B,
then it is certainly unreasonable to speak of a system of the things A and B.”

The above passage, good as it is, neglects several distinctions which we
have found necessary. First and foremost, it does not distinguish the many
from the whole which they form. Secondly, it does not appear to observe that
the method of enumeration is not practically applicable to infinite systems.
Thirdly, and this is connected with the second point, it does not make any
mention of intensional definition nor of the notion of a class. What we have
to consider is the difference, if any, of a class from a collection on the one
hand, and from the whole formed of the collection on the other. But let us
first examine further the notion of and.

Anything of which a finite number other than 0 or 1 can be asserted would
be commonly said to be many, and many, it might be said, are always of the
form “A and B and C and . . . ”. Here A, B, C, . . . are each one and are all
different. To say that A is one seems to amount to much the same as to say
that A is not of the form “A1 and A2 and A3 and . . . ”. To say that A, B, C, . . .
are all different seems to amount only to a condition as regards the symbols:
it should be held that “A and A” is meaningless, so that diversity is implied by
and, and need not be specially stated.

A term A which is one may be regarded as a particular case of a collection,
namely as a collection of one term. Thus every collection which is many

* Paradoxien des Unendlichen, Leipzig, 1854 (2nd ed., Berlin, 1889), § 3.
† i.e. the combination of A with B, C, D, . . . already forms a system.
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presupposes many collections which are each one: A and B presupposes A and
presupposes B. Conversely some collections of one term presuppose many,
namely those which are complex: thus “A differs from B” is one, but presup-
poses A and difference and B. But there is not symmetry in this respect, for the
ultimate presuppositions of anything are always simple terms.

Every pair of terms, without exception, can be combined in the manner
indicated by A and B, and if neither A nor B be many, then A and B are two.
A and B may be any conceivable entities, any possible objects of thought, they
may be points or numbers or true or false propositions or events or people, in
short anything that can be counted. A teaspoon and the number 3, or a
chimaera and a four-dimensional space, are certainly two. Thus no restriction
whatever is to be placed on A and B, except that neither is to be many.
It should be observed that A and B need not exist, but must, like anything that
can be mentioned, have Being. The distinction of Being and existence is
important, and is well illustrated by the process of counting. What can be
counted must be something, and must certainly be, though it need by no
means be possessed of the further privilege of existence. Thus what we
demand of the terms of our collection is merely that each should be an entity.

The question may now be asked: What is meant by A and B? Does this mean
anything more than the juxtaposition of A with B? That is, does it contain any
element over and above that of A and that of B? Is and a separate concept,
which occurs besides A, B? To either answer there are objections. In the first
place, and, we might suppose, cannot be a new concept, for if it were, it would
have to be some kind of relation between A and B; A and B would then be a
proposition, or at least a propositional concept, and would be one, not two.
Moreover, if there are two concepts, there are two, and no third mediating
concept seems necessary to make them two. Thus and would seem meaning-
less. But it is difficult to maintain this theory. To begin with, it seems rash to
hold that any word is meaningless. When we use the word and, we do not
seem to be uttering mere idle breath, but some idea seems to correspond
to the word. Again some kind of combination seems to be implied by the
fact that A and B are two, which is not true of either separately. When we say
“A and B are yellow”, we can replace the proposition by “A is yellow” and “B
is yellow”; but this cannot be done for “A and B are two”; on the contrary,
A is one and B is one. Thus it seems best to regard and as expressing a definite
unique kind of combination, not a relation, and not combining A and B into a
whole, which would be one. This unique kind of combination will in future
be called addition of individuals. It is important to observe that it applies to terms,
and only applies to numbers in consequence of their being terms. Thus for
the present, 1 and 2 are two, and 1 and 1 is meaningless.

As regards what is meant by the combination indicated by and, it is indis-
tinguishable from what we before called a numerical conjunction. That is,
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A and B is what is denoted by the concept of a class of which A and B are the
only members. If u be a class-concept of which the propositions “A is a u” “B
is a u” are true, but of which all other propositions of the same form are false,
then “all u’s” is the concept of a class whose only terms are A and B; this
concept denotes the terms A, B combined in a certain way, and “A and B” are
those terms combined in just that way. Thus “A and B” are the class, but are
distinct from the class-concept and from the concept of the class.

The notion of and, however, does not enter into the meaning of a class, for a
single term is a class, although it is not a numerical conjunction. If u be a
class-concept, and only one proposition of the form “x is a u” be true, then
“all u’s” is a concept denoting a single term, and this term is the class of
which “all u’s” is a concept. Thus what seems essential to a class is not the
notion of and, but the being denoted by some concept of a class. This brings
us to the intensional view of classes.

72. We agreed in the preceding chapter that there are not different ways
of denoting, but only different kinds of denoting concepts and correspond-
ingly different kinds of denoted objects. We have discussed the kind of
denoted object which constitutes a class; we have now to consider the kind of
denoting concept.

The consideration of classes which results from denoting concepts is more
general than the extensional consideration, and that is in two respects. In the
first place it allows, what the other practically excludes, the admission of infin-
ite classes; in the second place it introduces the null concept of a class. But,
before discussing these matters, there is a purely logical point of some
importance to be examined.

If u be a class-concept, is the concept “all u’s” analysable into two constitu-
ents, all and u, or is it a new concept, defined by a certain relation to u, and no
more complex than u itself? We may observe, to begin with, that “all u’s” is
synonymous with “u’s”, at least according to a very common use of the
plural. Our question is, then, as to the meaning of the plural. The word all has
certainly some definite meaning, but it seems highly doubtful whether it
means more than the indication of a relation. “All men” and “all numbers”
have in common the fact that they both have a certain relation to a class-
concept, namely to man and number respectively. But it is very difficult to
isolate any further element of all-ness which both share, unless we take as this
element the mere fact that both are concepts of classes. It would seem, then,
that “all u’s” is not validly analysable into all and u, and that language, in this
case as in some others, is a misleading guide. The same remark will apply to
every, any, some, a and the.

It might perhaps be thought that a class ought to be considered, not merely
as a numerical conjunction of terms, but as a numerical conjunction denoted
by the concept of a class. This complication, however, would serve no useful
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purpose, except to preserve Peano’s distinction between a single term and the
class whose only term it is—a distinction which is easy to grasp when the
class is identified with the class-concept, but which is inadmissible in our
view of classes. It is evident that a numerical conjunction considered as
denoted is either the same entity as when not so considered, or else is a
complex of denoting together with the object denoted; and the object
denoted is plainly what we mean by a class.

With regard to infinite classes, say the class of numbers, it is to be observed
that the concept all numbers, though not itself infinitely complex, yet denotes
an infinitely complex object. This is the inmost secret of our power to deal
with infinity. An infinitely complex concept, though there may be such,
can certainly not be manipulated by the human intelligence; but infinite
collections, owing to the notion of denoting, can be manipulated without
introducing any concepts of infinite complexity. Throughout the discussions
of infinity in later Parts of the present work, this remark should be borne
in mind: if it is forgotten, there is an air of magic which causes the results
obtained to seem doubtful.

73. Great difficulties are associated with the null-class, and generally
with the idea of nothing. It is plain that there is such a concept as nothing, and
that in some sense nothing is something. In fact, the proposition “nothing is
not nothing” is undoubtedly capable of an interpretation which makes it
true—a point which gives rise to the contradictions discussed in Plato’s
Sophist. In Symbolic Logic the null-class is the class which has no terms at all;
and symbolically it is quite necessary to introduce some such notion. We have
to consider whether the contradictions which naturally arise can be avoided.

It is necessary to realize, in the first place, that a concept may denote
although it does not denote anything. This occurs when there are proposi-
tions in which the said concept occurs, and which are not about the said
concept, but all such propositions are false. Or rather, the above is a first step
towards the explanation of a denoting concept which denotes nothing.
It is not, however, an adequate explanation. Consider, for example, the prop-
osition “chimaeras are animals” or “even primes other than 2 are numbers”.
These propositions appear to be true, and it would seem that they are not
concerned with the denoting concepts, but with what these concepts denote;
yet that is impossible, for the concepts in question do not denote anything.
Symbolic Logic says that these concepts denote the null-class, and that the
propositions in question assert that the null-class is contained in certain other
classes. But with the strictly extensional view of classes propounded above, a
class which has no terms fails to be anything at all: what is merely and solely a
collection of terms cannot subsist when all the terms are removed. Thus we
must either find a different interpretation of classes, or else find a method of
dispensing with the null-class.
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The above imperfect definition of a concept which denotes, but does not
denote anything, may be amended as follows. All denoting concepts, as we
saw, are derived from class-concepts; and a is a class-concept when “x is an a”
is a propositional function. The denoting concepts associated with a will not
denote anything when and only when “x is an a” is false for all values of x.
This is a complete definition of a denoting concept which does not denote
anything; and in this case we shall say that a is a null class-concept, and that
“all a’s” is a null concept of a class. Thus for a system such as Peano’s, in
which what are called classes are really class-concepts, technical difficulties
need not arise; but for us a genuine logical problem remains.

The proposition “chimaeras are animals” may be easily interpreted by
means of formal implication, as meaning “x is a chimaera implies x is an
animal for all values of x”. But in dealing with classes we have been assuming
that propositions containing all or any or every, though equivalent to formal
implications, were yet distinct from them, and involved ideas requiring
independent treatment. Now in the case of chimaeras, it is easy to substitute
the pure intensional view, according to which what is really stated is a rela-
tion of predicates: in the case in question the adjective animal is part of the
definition of the adjective chimerical (if we allow ourselves to use this word,
contrary to usage, to denote the defining predicate of chimaeras). But here
again it is fairly plain that we are dealing with a proposition which implies
that chimaeras are animals, but is not the same proposition—indeed, in the
present case, the implication is not even reciprocal. By a negation we can give
a kind of extensional interpretation: nothing is denoted by a chimaera which is
not denoted by an animal. But this is a very roundabout interpretation. On the
whole, it seems most correct to reject the proposition altogether, while
retaining the various other propositions that would be equivalent to it if there
were chimaeras. By symbolic logicians, who have experienced the utility of
the null-class, this will be felt as a reactionary view. But I am not at present
discussing what should be done in the logical calculus, where the established
practice appears to me the best, but what is the philosophical truth concern-
ing the null-class. We shall say, then, that, of the bundle of normally equiva-
lent interpretations of logical symbolic formulae, the class of interpretations
considered in the present chapter, which are dependent upon actual classes,
fail where we are concerned with null class-concepts, on the ground that
there is no actual null-class.

We may now reconsider the proposition “nothing is not nothing”—a
proposition plainly true, and yet, unless carefully handled, a source of appar-
ently hopeless antinomies. Nothing is a denoting concept, which denotes noth-
ing. The concept which denotes is of course not nothing, i.e. it is not denoted
by itself. The proposition which looks so paradoxical means no more than
this: Nothing, the denoting concept, is not nothing, i.e. is not what itself
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denotes. But it by no means follows from this that there is an actual null-class:
only the null class-concept and the null concept of a class are to be admitted.

But now a new difficulty has to be met. The equality of class-concepts, like
all relations which are reflexive, symmetrical and transitive, indicates an
underlying identity, i.e. it indicates that every class-concept has to some term
a relation which all equal class-concepts also have to that term—the term in
question being different for different sets of equal class-concepts, but the
same for the various members of a single set of equal class-concepts. Now for
all class-concepts which are not null, this term is found in the corresponding
class; but where are we to find it for null class-concepts? To this question
several answers may be given, any of which may be adopted. For we now
know what a class is, and we may therefore adopt as our term the class of
all null class-concepts or of all null propositional functions. These are not
null-classes, but genuine classes, and to either of them all null class-concepts
have the same relation. If we then wish to have an entity analogous to what is
elsewhere to be called a class, but corresponding to null class-concepts, we
shall be forced, wherever it is necessary (as in counting classes) to introduce a
term which is identical for equal class-concepts, to substitute everywhere the
class of class-concepts equal to a given class-concept for the class correspond-
ing to that class-concept. The class corresponding to the class-concept remains
logically fundamental, but need not be actually employed in our symbolism.
The null-class, in fact, is in some ways analogous to an irrational in Arith-
metic: it cannot be interpreted on the same principles as other classes, and
if we wish to give an analogous interpretation elsewhere, we must substitute
for classes other more complicated entities—in the present case, certain cor-
related classes. The object of such a procedure will be mainly technical; but
failure to understand the procedure will lead to inextricable difficulties in the
interpretation of the symbolism. A very closely analogous procedure occurs
constantly in Mathematics, for example with every generalization of number;
and so far as I know, no single case in which it occurs has been rightly
interpreted either by philosophers or by mathematicians. So many instances
will meet us in the course of the present work that it is unnecessary to linger
longer over the point at present. Only one possible misunderstanding must
be guarded against. No vicious circle is involved in the above account of the
null-class; for the general notion of class is first laid down, is found to involve
what is called existence, is then symbolically, not philosophically, replaced by
the notion of a class of equal class-concepts and is found, in this new form,
to be applicable to what corresponds to null class-concepts, since what cor-
responds is now a class which is not null. Between classes simpliciter and classes
of equal class-concepts there is a one-one correlation, which breaks down
in the sole case of the class of null class-concepts, to which no null-class
corresponds; and this fact is the reason for the whole complication.
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74. A question which is very fundamental in the philosophy of Arith-
metic must now be discussed in a more or less preliminary fashion. Is a class
which has many terms to be regarded as itself one or many? Taking the class
as equivalent simply to the numerical conjunction “A and B and C and etc.”, it
seems plain that it is many; yet it is quite necessary that we should be able to
count classes as one each, and we do habitually speak of a class. Thus classes
would seem to be one in one sense and many in another.

There is a certain temptation to identify the class as many and the class as
one, e.g., all men and the human race. Nevertheless, wherever a class consists of
more than one term, it can be proved that no such identification is permis-
sible. A concept of a class, if it denotes a class as one, is not the same as any
concept of the class which it denotes. That is to say, classes of all rational animals,
which denotes the human race as one term, is different from men, which
denotes men, i.e. the human race as many. But if the human race were
identical with men, it would follow that whatever denotes the one must
denote the other, and the above difference would be impossible. We might be
tempted to infer that Peano’s distinction, between a term and a class of which
the said term is the only member, must be maintained, at least when the term
in question is a class.* But it is more correct, I think, to infer an ultimate
distinction between a class as many and a class as one, to hold that the many
are only many, and are not also one. The class as one may be identified with
the whole composed of the terms of the class, i.e., in the case of men, the class
as one will be the human race.

But can we now avoid the contradiction always to be feared, where there is
something that cannot be made a logical subject? I do not myself see any way
of eliciting a precise contradiction in this case. In the case of concepts, we
were dealing with what was plainly one entity; in the present case, we are
dealing with a complex essentially capable of analysis into units. In such a
proposition as “A and B are two”, there is no logical subject: the assertion is
not about A, nor about B, nor about the whole composed of both, but strictly
and only about A and B. Thus it would seem that assertions are not necessarily
about single subjects, but may be about many subjects; and this removes the
contradiction which arose, in the case of concepts, from the impossibility
of making assertions about them unless they were turned into subjects.
This impossibility being here absent, the contradiction which was to be
feared does not arise.

75. We may ask, as suggested by the above discussion, what is to be
said of the objects denoted by a man, every man, some man and any man. Are these
objects one or many or neither? Grammar treats them all as one. But to this

* This conclusion is actually drawn by Frege from an analogous argument: Archiv für syst. Phil., 1,
p. 444. See Appendix.
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view, the natural objection is, which one? Certainly not Socrates, nor Plato,
nor any other particular person. Can we conclude that no one is denoted?
As well might we conclude that every one is denoted, which in fact is true of
the concept every man. I think one is denoted in every case, but in an impartial
distributive manner. Any number is neither 1 nor 2 nor any other particular
number, whence it is easy to conclude that any number is not any one number,
a proposition at first sight contradictory, but really resulting from an ambigu-
ity in any, and more correctly expressed by “any number is not some one
number”. There are, however, puzzles in this subject which I do not yet know
how to solve.

A logical difficulty remains in regard to the nature of the whole composed
of all the terms of a class. Two propositions appear self-evident: (1) two
wholes composed of different terms must be different; (2) a whole com-
posed of one term only is that one term. It follows that the whole composed
of a class considered as one term is that class considered as one term, and
is therefore identical with the whole composed of the terms of the class;
but this result contradicts the first of our supposed self-evident principles.
The answer in this case, however, is not difficult. The first of our principles is
only universally true when all the terms composing our two wholes are
simple. A given whole is capable, if it has more than two parts, of being
analysed in a plurality of ways; and the resulting constituents, so long
as analysis is not pushed as far as possible, will be different for different ways
of analysing. This proves that different sets of constituents may constitute the
same whole, and thus disposes of our difficulty.

76. Something must be said as to the relation of a term to a class
of which it is a member, and as to the various allied relations. One of
the allied relations is to be called ε, and is to be fundamental in Symbolic
Logic. But it is to some extent optional which of them we take as symbolically
fundamental.

Logically, the fundamental relation is that of subject and predicate,
expressed in “Socrates is human”—a relation which, as we saw in Chapter 4,
is peculiar in that the relatum cannot be regarded as a term in the prop-
osition. The first relation that grows out of this is the one expressed by
“Socrates has humanity”, which is distinguished by the fact that here the
relation is a term. Next comes “Socrates is a man”. This proposition, con-
sidered as a relation between Socrates and the concept man, is the one which
Peano regards as fundamental; and his ε expresses the relation is a between
Socrates and man. So long as we use class-concepts for classes in our symbol-
ism, this practice is unobjectionable; but if we give ε this meaning, we must
not assume that two symbols representing equal class-concepts both repre-
sent one and the same entity. We may go on to the relation between Socrates
and the human race, i.e. between a term and its class considered as a whole;
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this is expressed by “Socrates belongs to the human race”. This relation
might equally well be represented by ε. It is plain that, since a class, except
when it has one term, is essentially many, it cannot be as such represented by a
single letter: hence in any possible Symbolic Logic the letters which do
duty for classes cannot represent the classes as many, but must represent either
class-concepts, or the wholes composed of classes, or some other allied single
entities. And thus ε cannot represent the relation of a term to its class as many;
for this would be a relation of one term to many terms, not a two-term
relation such as we want. This relation might be expressed by “Socrates is one
among men”; but this, in any case, cannot be taken to be the meaning of ε.

77. A relation which, before Peano, was almost universally confounded
with ε, is the relation of inclusion between classes, as e.g. between men and
mortals. This is a time-honoured relation, since it occurs in the traditional
form of the syllogism: it has been a battle-ground between intension and
extension, and has been so much discussed that it is astonishing how much
remains to be said about it. Empiricists hold that such propositions mean an
actual enumeration of the terms of the contained class, with the assertion, in
each case, of membership of the containing class. They must, it is to be
inferred, regard it as doubtful whether all primes are integers, since they will
scarcely have the face to say that they have examined all primes one by one.
Their opponents have usually held, on the contrary, that what is meant is a
relation of whole and part between the defining predicates, but turned in the
opposite sense from the relation between the classes: i.e. the defining predi-
cate of the larger class is part of that of the smaller. This view seems far more
defensible than the other; and wherever such a relation does hold between
the defining predicates, the relation of inclusion follows. But two objections
may be made, first, that in some cases of inclusion there is no such relation
between the defining predicates, and secondly, that in any case what is meant
is a relation between the classes, not a relation of their defining predicates.
The first point may be easily established by instances. The concept even prime
does not contain as a constituent the concept integer between 1 and 10; the con-
cept “English King whose head was cut off” does not contain the concept
“people who died in 1649”; and so on through innumerable obvious cases.
This might be met by saying that, though the relation of the defining predi-
cates is not one of whole and part, it is one more or less analogous to
implication, and is always what is really meant by propositions of inclusion.
Such a view represents, I think, what is said by the better advocates of inten-
sion, and I am not concerned to deny that a relation of the kind in question
does always subsist between defining predicates of classes one of which
is contained in the other. But the second of the above points remains
valid as against any intensional interpretation. When we say that men are
mortals, it is evident that we are saying something about men, not about
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the concept man or the predicate human. The question is, then, what exactly are
we saying?

Peano held, in earlier editions of his Formulaire, that what is asserted is the
formal implication “x is a man implies x is a mortal”. This is certainly
implied, but I cannot persuade myself that it is the same proposition. For in
this proposition, as we saw in Chapter 3, it is essential that x should take all
values, and not only such as are men. But when we say “all men are mortals”,
it seems plain that we are only speaking of men, and not of all other imagin-
able terms. We may, if we wish for a genuine relation of classes, regard the
assertion as one of whole and part between the two classes each considered as
a single term. Or we may give a still more purely extensional form to our
proposition, by making it mean: Every (or any) man is a mortal. This prop-
osition raises very interesting questions in the theory of denoting: for it
appears to assert an identity, yet it is plain that what is denoted by every man is
different from what is denoted by a mortal. These questions, however, interest-
ing as they are, cannot be pursued here. It is only necessary to realize clearly
what are the various equivalent propositions involved where one class is
included in another. The form most relevant to Mathematics is certainly the
one with formal implication, which will receive a fresh discussion in the
following chapter.

Finally, we must remember that classes are to be derived, by means of
the notion of such that, from other sources than subject-predicate propositions
and their equivalents. Any propositional function in which a fixed assertion is
made of a variable term is to be regarded, as was explained in Chapter 2, as
giving rise to a class of values satisfying it. This topic requires a discussion
of assertions; but one strange contradiction, which necessitates the care in
discrimination aimed at in the present chapter, may be mentioned at once.

78. Among predicates, most of the ordinary instances cannot be predi-
cated of themselves, though, by introducing negative predicates, it will be
found that there are just as many instances of predicates which are predicable
of themselves. One at least of these, namely predicability, or the property
of being a predicate, is not negative: predicability, as is evident, is predicable,
i.e. it is a predicate of itself. But the most common instances are negative:
thus non-humanity is non-human, and so on. The predicates which are not
predicable of themselves are, therefore, only a selection from among predi-
cates, and it is natural to suppose that they form a class having a defining
predicate. But if so, let us examine whether this defining predicate belongs to
the class or not. If it belongs to the class, it is not predicable of itself, for that
is the characteristic property of the class. But if it is not predicable of itself,
then it does not belong to the class whose defining predicate it is, which is
contrary to the hypothesis. On the other hand, if it does not belong to the
class whose defining predicate it is, then it is not predicable of itself, i.e. it is
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one of those predicates that are not predicable of themselves, and therefore it
does belong to the class whose defining predicate it is—again contrary to the
hypothesis. Hence from either hypothesis we can deduce its contradictory.
I shall return to this contradiction in Chapter 10; for the present, I have intro-
duced it merely as showing that no subtlety in distinguishing is likely to be
excessive.

79. To sum up the above somewhat lengthy discussion. A class, we
agreed, is essentially to be interpreted in extension; it is either a single term,
or that kind of combination of terms which is indicated when terms are
connected by the word and. But practically, though not theoretically, this
purely extensional method can only be applied to finite classes. All classes,
whether finite or infinite, can be obtained as the objects denoted by the
plurals of class-concepts—men, numbers, points, etc. Starting with predi-
cates, we distinguished two kinds of proposition, typified by “Socrates is
human” and “Socrates has humanity”, of which the first uses human as predi-
cate, the second as a term of a relation. These two classes of propositions,
though very important logically, are not so relevant to Mathematics as their
derivatives. Starting from human, we distinguished (1) the class-concept man,
which differs slightly, if at all, from human; (2) the various denoting concepts
all men, every man, any man, a man and some man; (3) the objects denoted by
these concepts, of which the one denoted by all men was called the class as many,
so that all men (the concept) was called the concept of the class; (4) the class as
one, i.e. the human race. We had also a classification of propositions about
Socrates, dependent upon the above distinctions, and approximately parallel
with them: (1) “Socrates is-a man” is nearly, if not quite, identical with
“Socrates has humanity”; (2) “Socrates is a-man” expresses identity between
Socrates and one of the terms denoted by a man; (3) “Socrates is one among
men”, a proposition which raises difficulties owing to the plurality of men;
(4) “Socrates belongs to the human race”, which alone expresses a relation
of an individual to its class, and, as the possibility of relation requires, takes
the class as one, not as many. We agreed that the null-class, which has no
terms, is a fiction, though there are null class-concepts. It appeared through-
out that, although any symbolic treatment must work largely with class-
concepts and intension, classes and extension are logically more fundamental
for the principles of Mathematics; and this may be regarded as our main
general conclusion in the present chapter.
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7
PROPOSITIONAL FUNCTIONS

80. I the preceding chapter an endeavour was made to indicate the kind
of object that is to be called a class, and for purposes of discussion classes
were considered as derived from subject-predicate propositions. This did not
affect our view as to the notion of class itself; but if adhered to, it would
greatly restrict the extension of the notion. It is often necessary to recognize
as a class an object not defined by means of a subject-predicate proposition.
The explanation of this necessity is to be sought in the theory of assertions
and such that.

The general notion of an assertion has been already explained in connec-
tion with formal implication. In the present chapter its scope and legitimacy
are to be critically examined, and its connection with classes and such that is
to be investigated. The subject is full of difficulties, and the doctrines which
I intend to advocate are put forward with a very limited confidence in their
truth.

The notion of such that might be thought, at first sight, to be capable of
definition; Peano used, in fact, to define the notion by the proposition “the
x’s such that x is an a are the class a”. Apart from further objections, to be
noticed immediately, it is to be observed that the class as obtained from such
that is the genuine class, taken in extension and as many, whereas the a in “x is
an a” is not the class, but the class-concept. Thus it is formally necessary, if
Peano’s procedure is to be permissible, that we should substitute for “x’s such
that so-and-so” the genuine class-concept “x such that so-and-so”, which
may be regarded as obtained from the predicate “such that so-and-so” or
rather, “being an x such that so-and-so”, the latter form being necessary
because so-and-so is a propositional function containing x. But when this
purely formal emendation has been made the point remains that such that



must often be put before such propositions as xRa, where R is a given relation
and a a given term. We cannot reduce this proposition to the form “x is an a' ”
without using such that; for if we ask what a'  must be, the answer is: a'  must be
such that each of its terms, and no other terms, have the relation R to a. To
take examples from daily life: the children of Israel are a class defined by a
certain relation to Israel, and the class can only be defined as the terms such
that they have this relation. Such that is roughly equivalent to who or which, and
represents the general notion of satisfying a propositional function. But we
may go further: given a class a, we cannot define, in terms of a, the class of
propositions “x is an a” for different values of x. It is plain that there is a
relation which each of these propositions has to the x which occurs in it, and
that the relation in question is determinate when a is given. Let us call the
relation R. Then any entity which is a referent with respect to R is a prop-
osition of the type “x is an a”. But here the notion of such that is already
employed. And the relation R itself can only be defined as the relation which
holds between “x is an a” and x for all values of x, and does not hold between
any other pairs of terms. Here such that again appears. The point which is
chiefly important in these remarks is the indefinability of propositional func-
tions. When these have been admitted, the general notion of one-valued
functions is easily defined. Every relation which is many-one, i.e. every rela-
tion for which a given referent has only one relatum, defines a function: the
relatum is that function of the referent which is defined by the relation in
question. But where the function is a proposition, the notion involved is
presupposed in the symbolism, and cannot be defined by means of it without
a vicious circle: for in the above general definition of a function propositional
functions already occur. In the case of propositions of the type “x is an a”, if
we ask what propositions are of this type, we can only answer “all proposi-
tions in which a term is said to be a”; and here the notion to be defined
reappears.

81. Can the indefinable element involved in propositional functions be
identified with assertion together with the notion of every proposition con-
taining a given assertion, or an assertion made concerning every term? The
only alternative, so far as I can see, is to accept the general notion of a
propositional function itself as indefinable, and for formal purposes this
course is certainly the best; but philosophically, the notion appears at first
sight capable of analysis, and we have to examine whether or not this
appearance is deceptive.

We saw in discussing verbs, in Chapter 4, that when a proposition is
completely analysed into its simple constituents, these constituents taken
together do not reconstitute it. A less complete analysis of propositions
into subject and assertion has also been considered; and this analysis does
much less to destroy the proposition. A subject and an assertion, if simply
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juxtaposed, do not, it is true, constitute a proposition; but as soon as the
assertion is actually asserted of the subject, the proposition reappears. The
assertion is everything that remains of the proposition when the subject is
omitted: the verb remains an asserted verb, and is not turned into a verbal
noun; or at any rate the verb retains that curious indefinable intricate relation
to the other terms of the proposition which distinguishes a relating relation
from the same relation abstractly considered. It is the scope and legitimacy of
this notion of assertion which is now to be examined. Can every proposition
be regarded as an assertion concerning any term occurring in it, or are
limitations necessary as to the form of the proposition and the way in which
the term enters into it?

In some simple cases, it is obvious that the analysis into subject and asser-
tion is legitimate. In “Socrates is a man”, we can plainly distinguish Socrates
and something that is asserted about him; we should admit unhesitatingly
that the same thing may be said about Plato or Aristotle. Thus we can consider
a class of propositions containing this assertion, and this will be the class of
which a typical number is represented by “x is a man”. It is to be observed
that the assertion must appear as assertion, not as term: thus “to be a man is to
suffer” contains the same assertion, but used as term, and this proposition
does not belong to the class considered. In the case of propositions asserting a
fixed relation to a fixed term, the analysis seems equally undeniable. To be
more than a yard long, for example, is a perfectly definite assertion, and we
may consider the class of propositions in which this assertion is made, which
will be represented by the propositional function “x is more than a yard
long”. In such phrases as “snakes which are more than a yard long”, the
assertion appears very plainly; for it is here explicitly referred to a variable
subject, not asserted of any one definite subject. Thus if R be a fixed relation
and a a fixed term, . . . Ra is a perfectly definite assertion. (I place dots
before the R, to indicate the place where the subject must be inserted in order
to make a proposition.) It may be doubted whether a relational proposition
can be regarded as an assertion concerning the relatum. For my part, I hold
that this can be done except in the case of subject-predicate propositions; but
this question is better postponed until we have discussed relations.*

82. More difficult questions must now be considered. Is such a prop-
osition as “Socrates is a man implies Socrates is a mortal”, or “Socrates has a
wife implies Socrates has a father”, an assertion concerning Socrates or not? It
is quite certain that, if we replace Socrates by a variable, we obtain a prop-
ositional function; in fact, the truth of this function for all values of the
variable is what is asserted in the corresponding formal implication, which
does not, as might be thought at first sight, assert a relation between two

* See § 96.
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propositional functions. Now it was our intention, if possible, to explain
propositional functions by means of assertions; hence, if our intention can be
carried out, the above propositions must be assertions concerning Socrates.
There is, however, a very great difficulty in so regarding them. An assertion
was to be obtained from a proposition by simply omitting one of the terms
occurring in the proposition. But when we omit Socrates, we obtain “. . . is a
man implies . . . is a mortal”. In this formula it is essential that, in restoring
the proposition, the same term should be substituted in the two places where
dots indicate the necessity of a term. It does not matter what term we choose,
but it must be identical in both places. Of this requisite, however, no trace
whatever appears in the would-be assertion, and no trace can appear, since all
mention of the term to be inserted is necessarily omitted. When an x is
inserted to stand for the variable, the identity of the term to be inserted is
indicated by the repetition of the letter x; but in the assertional form no such
method is available. And yet, at first sight, it seems very hard to deny that the
proposition in question tells us a fact about Socrates, and that the same fact is
true about Plato or a plum-pudding or the number 2. It is certainly undeni-
able that “Plato is a man implies Plato is a mortal” is, in some sense or other,
the same function of Plato as our previous proposition is of Socrates. The
natural interpretation of this statement would be that the one proposition has
to Plato the same relation as the other has to Socrates. But this requires that we
should regard the propositional function in question as definable by means of
its relation to the variable. Such a view, however, requires a propositional
function more complicated than the one we are considering. If we represent
“x is a man implies x is a mortal” by �x, the view in question maintains that
�x is the term having to x the relation R, where R is some definite relation. The
formal statement of this view is as follows: For all values of x and y, “y is
identical with �x” is equivalent to “y has the relation R to x”. It is evident that
this will not do as an explanation, since it has far greater complexity than
what it was to explain. It would seem to follow that propositions may have a
certain constancy of form, expressed in the fact that they are instances of a
given propositional function, without its being possible to analyse the pro-
positions into a constant and a variable factor. Such a view is curious and
difficult: constancy of form, in all other cases, is reducible to constancy of
relations, but the constancy involved here is presupposed in the notion of
constancy of relation, and cannot therefore be explained in the usual way.

The same conclusion, I think, will result from the case of two variables.
The simplest instance of this case is xRy, where R is a constant relation, while x
and y are independently variable. It seems evident that this is a propositional
function of two independent variables: there is no difficulty in the notion of
the class of all propositions of the form xRy. This class is involved—or at least
all those members of the class that are true are involved—in the notion of the
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classes of referents and relata with respect to R, and these classes are unhesitat-
ingly admitted in such words as parents and children, masters and servants,
husbands and wives, and innumerable other instances from daily life, as also
in logical notions such as premisses and conclusions, causes and effects, and
so on. All such notions depend upon the class of propositions typified by xRy,
where R is constant while x and y are variable. Yet it is very difficult to regard
xRy as analysable into the assertion R concerning x and y, for the very suf-
ficient reason that this view destroys the sense of the relation, i.e. its direction
from x to y, leaving us with some assertion which is symmetrical with respect
to x and y, such as “the relation R holds between x and y”. Given a relation and
its terms, in fact, two distinct propositions are possible. Thus if we take R itself
to be an assertion, it becomes an ambiguous assertion: in supplying the
terms, if we are to avoid ambiguity, we must decide which is referent and
which relatum. We may quite legitimately regard . . . Ry as an assertion, as
was explained before; but here y has become constant. We may then go on to
vary y, considering the class of assertions . . .Ry for different values of y;
but this process does not seem to be identical with that which is indicated by
the independent variability of x and y in the propositional function xRy.
Moreover, the suggested process requires the variation of an element in an
assertion, namely of y in . . . Ry, and this is in itself a new and difficult notion.

A curious point arises, in this connection, from the consideration, often
essential in actual Mathematics, of a relation of a term to itself. Consider the
propositional function xRx, where R is a constant relation. Such functions are
required in considering, e.g., the class of suicides or of self-made men;
or again, in considering the values of the variable for which it is equal
to a certain function of itself, which may often be necessary in ordinary
Mathematics. It seems exceedingly evident, in this case, that the proposition
contains an element which is lost when it is analysed into a term x and an
assertion R. Thus here again, the propositional function must be admitted as
fundamental.

83. A difficult point arises as to the variation of the concept in a prop-
osition. Consider, for example, all propositions of the type aRb, where a and b
are fixed terms, and R is a variable relation. There seems no reason to doubt
that the class-concept “relation between a and b” is legitimate, and that
there is a corresponding class; but this requires the admission of such prop-
ositional functions as aRb, which, moreover, are frequently required in actual
Mathematics, as, for example, in counting the number of many-one relations
whose referents and relata are given classes. But if our variable is to have, as
we normally require, an unrestricted field, it is necessary to substitute the
propositional function “R is a relation implies aRb”. In this proposition the
implication involved is material, not formal. If the implication were formal,
the proposition would not be a function of R, but would be equivalent to the
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(necessarily false) proposition: “All relations hold between a and b”. Generally
we have some such proposition as “aRb implies � (R) provided R is a rela-
tion”, and we wish to turn this into a formal implication. If � (R) is a
proposition for all values of R, our object is effected by substituting “If ‘R is a
relation’ implies ‘aRb’, then � (R)”. Here R can take all values,* and the if and
then is a formal implication, while the implies is a material implication. If � (R)
is not a propositional function, but is a proposition only when R satisfies ψ
(R), where ψ (R) is a propositional function implied by “R is a relation” for
all values of R, then our formal implication can be put in the form “If ‘R is a
relation’ implies aRb, then, for all values of R, ψ (R) implies � (R)”, where
both the subordinate implications are material. As regards the material impli-
cation “ ‘R is a relation’ implies aRb”, this is always a proposition, whereas aRb
is only a proposition when R is a relation. The new propositional function
will only be true when R is a relation which does hold between a and b: when
R is not a relation, the antecedent is false and the consequent is not a prop-
osition, so that the implication is false; when R is a relation which does not
hold between a and b, the antecedent is true and the consequent false, so that
again the implication is false; only when both are true is the implication true.
Thus in defining the class of relations holding between a and b, the formally
correct course is to define them as the values satisfying “R is a relation implies
aRb”—an implication which, though it contains a variable, is not formal, but
material, being satisfied by some only of the possible values of R. The variable
R in it is, in Peano’s language, real and not apparent.

The general principle involved is: If �x is only a proposition for some
values of x, then “ ‘�x implies �x’ implies �x” is a proposition for all values of
x, and is true when and only when �x is true. (The implications involved are
both material.) In some cases, “�x implies �x” will be equivalent to some
simpler propositional function ψx (such as “R is a relation” in the above
instance), which may then be substituted for it.†

Such a propositional function as “R is a relation implies aRb” appears even
less capable than previous instances of analysis into R and an assertion about
R, since we should have to assign a meaning to “a . . . b”, where the blank
space may be filled by anything, not necessarily by a relation. There is here,
however, a suggestion of an entity which has not yet been considered,
namely the couple with sense. It may be doubted whether there is any such
entity, and yet such phrases as “R is a relation holding from a to b” seem to

* It is necessary to assign some meaning (other than a proposition) to aRb when R is not a
relation.
† A propositional function, though for every value of the variable it is true or false, is not itself
true or false, being what is denoted by “any proposition of the type in question”, which is not
itself a proposition.
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show that its rejection would lead to paradoxes. This point, however, belongs
to the theory of relations, and will be resumed in Chapter 9 (§ 98).

From what has been said, it appears that propositional functions must be
accepted as ultimate data. It follows that formal implication and the inclusion
of classes cannot be generally explained by means of a relation between
assertions, although, where a propositional function asserts a fixed relation to
a fixed term, the analysis into subject and assertion is legitimate and not
unimportant.

84. It only remains to say a few words concerning the derivation of
classes from propositional functions. When we consider the x’s such that �x,
where �x is a propositional function, we are introducing a notion of which,
in the calculus of propositions, only a very shadowy use is made—I mean the
notion of truth. We are considering, among all the propositions of the type �x,
those that are true: the corresponding values of x give the class defined by the
function �x. It must be held, I think, that every propositional function which
is not null defines a class, which is denoted by “x’s such that �x”. There
is thus always a concept of the class, and the class-concept corresponding
will be the singular, “x such that �x”. But it may be doubted—indeed the
contradiction with which I ended the preceding chapter gives reason for
doubting—whether there is always a defining predicate of such classes. Apart
from the contradiction in question, this point might appear to be merely
verbal: “being an x such that �x”, it might be said, may always be taken to be
a predicate. But in view of our contradiction, all remarks on this subject must
be viewed with caution. This subject, however, will be resumed in Chapter 10.

85. It is to be observed that, according to the theory of propositional
functions here advocated, the � in �x is not a separate and distinguishable
entity: it lives in the propositions of the form �x, and cannot survive analysis.
I am highly doubtful whether such a view does not lead to a contradiction,
but it appears to be forced upon us, and it has the merit of enabling us to
avoid a contradiction arising from the opposite view. If � were a distinguish-
able entity, there would be a proposition asserting � of itself, which we may
denote by � (�); there would also be a proposition not-� (�), denying � (�).
In this proposition we may regard � as variable; we thus obtain a prop-
ositional function. The question arises: Can the assertion in this propositional
function be asserted of itself? The assertion is non-assertibility of self, hence
if it can be asserted of itself, it cannot, and if it cannot, it can. This contradic-
tion is avoided by the recognition that the functional part of a propositional
function is not an independent entity. As the contradiction in question is
closely analogous to the other, concerning predicates not predicable of
themselves, we may hope that a similar solution will apply there also.
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8
THE VARIABLE

86. T discussions of the preceding chapter elicited the fundamental
nature of the variable; no apparatus of assertions enables us to dispense with
the consideration of the varying of one or more elements in a proposition
while the other elements remain unchanged. The variable is perhaps the most
distinctively mathematical of all notions; it is certainly also one of the most
difficult to understand. The attempt, if not the deed, belongs to the present
chapter.

The theory as to the nature of the variable, which results from our previous
discussions, is in outline the following. When a given term occurs as term in
a proposition, that term may be replaced by any other while the remaining
terms are unchanged. The class of propositions so obtained have what may be
called constancy of form, and this constancy of form must be taken as a
primitive idea. The notion of a class of propositions of constant form is more
fundamental than the general notion of class, for the latter can be defined in
terms of the former, but not the former in terms of the latter. Taking any term,
a certain member of any class of propositions of constant form will contain
that term. Thus x, the variable, is what is denoted by any term, and �x, the
propositional function, is what is denoted by the proposition of the form � in
which x occurs. We may say that x is the x is any �x, where �x denotes the class
of propositions resulting from different values of x. Thus in addition to
propositional functions, the notions of any and of denoting are presupposed
in the notion of the variable. This theory, which, I admit, is full of difficulties,
is the least objectionable that I have been able to imagine. I shall now set it
forth more in detail.

87. Let us observe, to begin with, that the explicit mention of any, some,
etc., need not occur in Mathematics: formal implication will express all that is



required. Let us recur to an instance already discussed in connection with
denoting, where a is a class and b a class of classes. We have

“Any a belongs to any b” is equivalent to “ ‘x is an a’ implies that ‘u is a b’
implies ‘x is a u’ ”;

“Any a belongs to a b” is equivalent to “ ‘x is an a’ implies ‘there is a b, say
u, such that x is a u’ ”;*

“Any a belongs to some b” is equivalent to “there is a b, say u, such that ‘x
is an a’ implies ‘x is a u’ ”;

and so on for the remaining relations considered in Chapter 5. The question
arises: How far do these equivalences constitute definitions of any, a, some, and
how far are these notions involved in the symbolism itself?

The variable is, from the formal standpoint, the characteristic notion of
Mathematics. Moreover it is the method of stating general theorems, which
always mean something different from the intensional propositions to which
such logicians as Mr Bradley endeavour to reduce them. That the meaning of
an assertion about all men or any man is different from the meaning of an
equivalent assertion about the concept man, appears to me, I must confess, to
be a self-evident truth—as evident as the fact that propositions about John are
not about the name John. This point, therefore, I shall not argue further. That
the variable characterizes Mathematics will be generally admitted, though it
is not generally perceived to be present in elementary Arithmetic. Elementary
Arithmetic, as taught to children, is characterized by the fact that the numbers
occurring in it are constants; the answer to any schoolboy’s sum is obtainable
without propositions concerning any number. But the fact that this is the case
can only be proved by the help of propositions about any number, and thus
we are led from schoolboy’s Arithmetic to the Arithmetic which uses letters
for numbers and proves general theorems. How very different this subject is
from childhood’s enemy may be seen at once in such works as those of
Dedekind† and Stolz.‡ Now the difference consists simply in this, that our
numbers have now become variables instead of being constants. We now
prove theorems concerning n, not concerning 3 or 4 or any other particular
number. Thus it is absolutely essential to any theory of Mathematics to
understand the nature of the variable.

Originally, no doubt, the variable was conceived dynamically, as some-
thing which changed with the lapse of time, or, as is said, as something

* Here “there is a c”, where c is any class, is defined as equivalent to “If p implies p, and ‘x is a c’
implies p for all values of x, then p is true”.
† Was sind und was sollen die Zahlen? Brunswick, 1893.
‡ Allgemeine Arithmetik, Leipzig, 1885.
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which successively assumed all values of a certain class. This view cannot be
too soon dismissed. If a theorem is proved concerning n, it must not be
supposed that n is a kind of arithmetical Proteus, which is 1 on Sundays and 2
on Mondays, and so on. Nor must it be supposed that n simultaneously
assumes all its values. If n stands for any integer, we cannot say that n is 1, nor
yet that it is 2, nor yet that it is any other particular number. In fact, n just
denotes any number, and this is something quite distinct from each and all of
the numbers. It is not true that 1 is any number, though it is true that
whatever holds of any number holds of 1. The variable, in short, requires the
indefinable notion of any which was explained in Chapter 5.

88. We may distinguish what may be called the true or formal variable
from the restricted variable. Any term is a concept denoting the true variable; if
u be a class not containing all terms, any u denotes a restricted variable. The
terms included in the object denoted by the defining concept of a variable are
called the values of the variable: thus every value of a variable is a constant.
There is a certain difficulty about such propositions as “any number is a
number”. Interpreted by formal implication, they offer no difficulty, for they
assert merely that the propositional function “x is a number implies x is a
number” holds for all values of x. But if “any number” be taken to be a
definite object, it is plain that it is not identical with 1 or 2 or 3 or any
number that may be mentioned. Yet these are all the numbers there are, so
that “any number” cannot be a number at all. The fact is that the concept “any
number” does denote one number, but not a particular one. This is just the
distinctive point about any, that it denotes a term of a class, but in an impartial
distributive manner, with no preference for one term over another. Thus
although x is a number, and no one number is x, yet there is here no contra-
diction, so soon as it is recognized that x is not one definite term.

The notion of the restricted variable can be avoided, except in regard to
propositional functions, by the introduction of a suitable hypothesis, namely
the hypothesis expressing the restriction itself. But in respect of propositional
functions this is not possible. The x in �x, where �x is a propositional func-
tion, is an unrestricted variable; but the �x itself is restricted to the class
which we may call �. (It is to be remembered that the class is here funda-
mental, for we found it impossible, without a vicious circle, to discover
any common characteristic by which the class could be defined, since the
statement of any common characteristic is itself a propositional function.)
By making our x always an unrestricted variable, we can speak of the variable,
which is conceptually identical in Logic, Arithmetic, Geometry, and all other
formal subjects. The terms dealt with are always all terms; only the complex
concepts that occur distinguish the various branches of Mathematics.

89. We may now return to the apparent definability of any, some and a, in
terms of formal implication. Let a and b be class-concepts, and consider the
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proposition “any a is a·  b”. This is to be interpreted as meaning “x is an a
implies x is a b”. It is plain that, to begin with, the two propositions do not
mean the same thing: for any a is a concept denoting only a’s, whereas in the
formal implication x need not be an a. But we might, in Mathematics, dis-
pense altogether with “any a is a b”, and content ourselves with the formal
implication: this is, in fact, symbolically the best course. The question to be
examined, therefore, is: How far, if at all, do any and some and a enter into the
formal implication? (The fact that the indefinite article appears in “x is an a”
and “x is a b” is irrelevant, for these are merely taken as typical propositional
functions.) We have, to begin with, a class of true propositions, each assert-
ing of some constant term that if it is an a it is a b. We then consider the
restricted variable, “any proposition of this class”. We assert the truth of any
term included among the values of this restricted variable. But in order to
obtain the suggested formula, it is necessary to transfer the variability from
the proposition as a whole to its variable term. In this way we obtain “x is an a
implies x is b”. But the genesis remains essential, for we are not here express-
ing a relation of two propositional functions “x is an a” and “x is a b”. If this
were expressed, we should not require the same x both times. Only one prop-
ositional function is involved, namely the whole formula. Each proposition
of the class expresses a relation of one term of the propositional function “x is
an a” to one of “x is a b”; and we may say, if we choose, that the whole
formula expresses a relation of any term of “x is an a” to some term of “x is a b”.
We do not so much have an implication containing a variable as a variable
implication. Or again, we may say that the first x is any term, but the second is
some term, namely the first x. We have a class of implications not containing
variables, and we consider any member of this class. If any member is true, the
fact is indicated by introducing a typical implication containing a variable.
This typical implication is what is called a formal implication: it is any member
of a class of material implications. Thus it would seem that any is presupposed
in mathematical formalism, but that some and a may be legitimately replaced
by their equivalents in terms of formal implications.

90. Although some may be replaced by its equivalent in terms of any, it
is plain that this does not give the meaning of some. There is, in fact, a
kind of duality of any and some: given a certain propositional function, if all
terms belonging to the propositional function are asserted, we have any,
while if one at least is asserted (which gives what is called an existence-
theorem), we get some. The proposition �x asserted without comment, as
in “x is a man implies x is a mortal”, is to be taken to mean that �x is
true for all values of x (or for any value), but it might equally well have been
taken to mean that �x is true for some value of x. In this way we might
construct a calculus with two kinds of variable, the conjunctive and the
disjunctive, in which the latter would occur wherever an existence-theorem
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was to be stated. But this method does not appear to possess any practical
advantages.

91. It is to be observed that what is fundamental is not particular prop-
ositional functions, but the class-concept propositional function. A propositional
function is the class of all propositions which arise from the variation of a
single term, but this is not to be considered as a definition, for reasons
explained in the preceding chapter.

92. From propositional functions all other classes can be derived by
definition, with the help of the notion of such that. Given a propositional
function �x, the terms such that, when x is identified with any one of them,
�x is true, are the class defined by �x. This is the class as many, the class in
extension. It is not to be assumed that every class so obtained has a defining
predicate: this subject will be discussed afresh in Chapter 10. But it must be
assumed, I think, that a class in extension is defined by any propositional
function, and in particular that all terms form a class, since many prop-
ositional functions (e.g. all formal implications) are true of all terms. Here, as
with formal implications, it is necessary that the whole propositional func-
tion whose truth defines the class should be kept intact, and not, even where
this is possible for every value of x, divided into separate propositional func-
tions. For example, if a and b be two classes, defined by �x and ψx respect-
ively, their common part is defined by the product �x. ψx, where the product
has to be made for every value of x, and then x varied afterwards. If this is not
done, we do not necessarily have the same x in �x and ψx. Thus we do not
multiply propositional functions, but propositions: the new propositional
function is the class of products of corresponding propositions belonging to
the previous functions, and is by no means the product of �x and ψx. It is
only in virtue of a definition that the logical product of the classes defined by
�x and ψx is the class defined by �x. ψx. And wherever a proposition contain-
ing an apparent variable is asserted, what is asserted is the truth, for all values
of the variable or variables, of the propositional function corresponding to
the whole proposition, and is never a relation of propositional functions.

93. It appears from the above discussion that the variable is a very com-
plicated logical entity, by no means easy to analyse correctly. The following
appears to be as nearly correct as any analysis I can make. Given any prop-
osition (not a propositional function), let a be one of its terms, and let us call
the proposition � (a). Then in virtue of the primitive idea of a propositional
function, if x be any term, we can consider the proposition � (x), which
arises from the substitution of x in place of a. We thus arrive at the class of all
propositions � (x). If all are true, � (x) is asserted simply: � (x) may then be
called a formal truth. In a formal implication, � (x), for every value of x, states an
implication, and the assertion of � (x) is the assertion of a class of implica-
tions, not of a single implication. If � (x) is sometimes true, the values of x
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which make it true form a class, which is the class defined by � (x): the class
is said to exist in this case. If � (x) is false for all values of x, the class defined by
� (x) is said not to exist, and as a matter of fact, as we saw in Chapter 6, there
is no such class, if classes are taken in extension. Thus x is, in some sense, the
object denoted by any term; yet this can hardly be strictly maintained, for
different variables may occur in a proposition, yet the object denoted by any
term, one would suppose, is unique. This, however, elicits a new point in the
theory of denoting, namely that any term does not denote, properly speaking,
an assemblage of terms, but denotes one term, only not one particular def-
inite term. Thus any term may denote different terms in different places. We
may say: any term has some relation to any term; and this is quite a different
proposition from: any term has some relation to itself. Thus variables have a
kind of individuality. This arises, as I have tried to show, from propositional
functions. When a propositional function has two variables, it must be
regarded as obtained by successive steps. If the propositional function � (x, y)
is to be asserted for all values of x and y, we must consider the assertion, for
all values of y, of the propositional function � (a, y), where a is a constant.
This does not involve y, and may be represented by ψ (a). We then vary a, and
assert ψ (x) for all values of x. The process is analogous to double integration;
and it is necessary to prove formally that the order in which the variations are
made makes no difference to the result. The individuality of variables appears
to be thus explained. A variable is not any term simply, but any term as
entering into a propositional function. We may say, if �x be a propositional
function, that x is the term in any proposition of the class of propositions
whose type is �x. It thus appears that, as regards propositional functions, the
notions of class, of denoting, and of any, are fundamental, being presupposed
in the symbolism employed. With this conclusion, the analysis of formal
implication, which has been one of the principal problems of Part I, is carried
as far as I am able to carry it. May some reader succeed in rendering it more
complete, and in answering the many questions which I have had to leave
unanswered.
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9
RELATIONS

94. N after subject-predicate propositions come two types of
propositions which appear equally simple. These are the propositions in
which a relation is asserted between two terms, and those in which two terms
are said to be two. The latter class of propositions will be considered hereafter;
the former must be considered at once. It has often been held that every
proposition can be reduced to one of the subject-predicate type, but this view
we shall, throughout the present work, find abundant reason for rejecting. It
might be held, however, that all propositions not of the subject-predicate type,
and not asserting numbers, could be reduced to propositions containing two
terms and a relation. This opinion would be more difficult to refute, but this
too, we shall find, has no good grounds in its favour.* We may therefore allow
that there are relations having more than two terms; but as these are more
complex, it will be well to consider first such as have two terms only.

A relation between two terms is a concept which occurs in a proposition in
which there are two terms not occurring as concepts,† and in which the
interchange of the two terms gives a different proposition. This last mark is
required to distinguish a relational proposition from one of the type “a and b
are two”, which is identical with “b and a are two”. A relational proposition
may be symbolized by aRb, where R is the relation and a and b are the terms;
and aRb will then always, provided a and b are not identical, denote a different
proposition from bRa. That is to say, it is characteristic of a relation of two
terms that it proceeds, so to speak, from one to the other. This is what may be
called the sense of the relation, and is, as we shall find, the source of order and

* See inf., Part IV, Chap. 25, § 200.
† This description, as we saw above (§ 48), excludes the pseudo-relation of subject to predicate.



series. It must be held as an axiom that aRb implies and is implied by a
relational proposition bR'a, in which the relation R' proceeds from b to a, and
may or may not be the same relation as R. But even when aRb implies and is
implied by bRa, it must be strictly maintained that these are different proposi-
tions. We may distinguish the term from which the relation proceeds as the
referent, and the term to which it proceeds as the relatum. The sense of a relation
is a fundamental notion, which is not capable of definition. The relation
which holds between b and a whenever R holds between a and b will be called
the converse of R, and will be denoted (following Schröder) by R̆. The relation
of R to R̆ is the relation of oppositeness, or difference of sense; and this must
not be defined (as would seem at first sight legitimate) by the above mutual
implication in any single case, but only by the fact of its holding for all cases
in which the given relation occurs. The grounds for this view are derived
from certain propositions in which terms are related to themselves not-
symmetrically, i.e. by a relation whose converse is not identical with itself.
These propositions must now be examined.

95. There is a certain temptation to affirm that no term can be related to
itself; and there is a still stronger temptation to affirm that, if a term can be
related to itself, the relation must be symmetrical, i.e. identical with its con-
verse. But both these temptations must be resisted. In the first place, if no
term were related to itself, we should never be able to assert self-identity,
since this is plainly a relation. But since there is such a notion as identity, and
since it seems undeniable that every term is identical with itself, we must
allow that a term may be related to itself. Identity, however, is still a sym-
metrical relation, and may be admitted without any great qualms. The matter
becomes far worse when we have to admit not-symmetrical relations of
terms to themselves. Nevertheless the following propositions seem undeni-
able; Being is, or has being; 1 is one, or has unity; concept is conceptual: term
is a term; class-concept is a class-concept. All these are of one of the three
equivalent types which we distinguished at the beginning of Chapter 5,
which may be called respectively subject-predicate propositions, propositions
asserting the relation of predication, and propositions asserting membership
of a class. What we have to consider is, then, the fact that a predicate may be
predicable of itself. It is necessary, for our present purpose, to take our
propositions in the second form (Socrates has humanity), since the subject-
predicate form is not in the above sense relational. We may take, as the type of
such propositions, “unity has unity”. Now it is certainly undeniable that the
relation of predication is asymmetrical, since subjects cannot in general be
predicated of their predicates. Thus “unity has unity” asserts one relation of
unity to itself, and implies another, namely the converse relation: unity has to
itself both the relation of subject to predicate, and the relation of predicate to
subject. Now if the referent and the relatum are identical, it is plain that the
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relatum has to the referent the same relation as the referent has to the relatum.
Hence if the converse of a relation in a particular case were defined by mutual
implication in that particular case, it would appear that, in the present case,
our relation has two converses, since two different relations of relatum to
referent are implied by “unity has unity”. We must therefore define the
converse of a relation by the fact that aRb implies and is implied by bR̆a whatever
a and b may be, and whether or not the relation R holds between them. That is
to say, a and b are here essentially variables, and if we give them any constant
value, we may find that aRb implies and is implied by bR' a, where R'  is some
relation other than R̆.

Thus three points must be noted with regard to relations of two terms:
(1) they all have sense, so that, provided a and b are not identical, we can
distinguish aRb from bRa; (2) they all have a converse, i.e. a relation R̆ such that
aRb implies and is implied by bR̆a, whatever a and b may be; (3) some relations
hold between a term and itself, and such relations are not necessarily sym-
metrical, i.e. there may be two different relations, which are each other’s
converses, and which both hold between a term and itself.

96. For the general theory of relations, especially in its mathematical
developments, certain axioms relating classes and relations are of great impor-
tance. It is to be held that to have a given relation to a given term is a
predicate, so that all terms having this relation to this term form a class. It is to
be held further that to have a given relation at all is a predicate, so that all
referents with respect to a given relation form a class. It follows, by consider-
ing the converse relation, that all relata also form a class. These two classes
I shall call respectively the domain and the converse domain of the relation; the
logical sum of the two I shall call the field of the relation.

The axiom that all referents with respect to a given relation form a class
seems, however, to require some limitation, and that on account of the con-
tradiction mentioned at the end of Chapter 6. This contradiction may be
stated as follows. We saw that some predicates can be predicated of them-
selves. Consider now those of which this is not the case. These are the refer-
ents (and also the relata) in what seems like a complex relation, namely the
combination of non-predicability with identity. But there is no predicate
which attaches to all of them and to no other terms. For this predicate will
either be predicable or not predicable of itself. If it is predicable of itself, it is
one of those referents by relation to which it was defined, and therefore, in
virtue of their definition, it is not predicable of itself. Conversely, if it is not
predicable of itself, then again it is one of the said referents, of all of which
(by hypothesis) it is predicable, and therefore again it is predicable of itself.
This is a contradiction, which shows that all the referents considered have no
exclusive common predicate, and therefore, if defining predicates are essen-
tial to classes, do not form a class.
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The matter may be put otherwise. In defining the would-be class of predi-
cates, all those not predicable of themselves have been used up. The common
predicate of all these predicates cannot be one of them, since for each of them
there is at least one predicate (namely itself) of which it is not predicable.
But again, the supposed common predicate cannot be any other predicate, for
if it were, it would be predicable of itself, i.e. it would be a member of the
supposed class of predicates, since these were defined as those of which it is
predicable. Thus no predicate is left over which could attach to all the predicates
considered.

It follows from the above that not every definable collection of terms forms
a class defined by a common predicate. This fact must be borne in mind, and
we must endeavour to discover what properties a collection must have in
order to form such a class. The exact point established by the above contradic-
tion may be stated as follows: A proposition apparently containing only one
variable may not be equivalent to any proposition asserting that the variable
in question has a certain predicate. It remains an open question whether
every class must have a defining predicate.

That all terms having a given relation to a given term form a class defined
by an exclusive common predicate results from the doctrine of Chapter 7,
that the proposition aRb can be analysed into the subject a and the assertion
Rb. To be a term of which Rb can be asserted appears to be plainly a predicate.
But it does not follow, I think, that to be a term of which, for some value of y,
Ry can be asserted, is a predicate. The doctrine of propositional functions
requires, however, that all terms having the latter property should form a
class. This class I shall call the domain of the relation R as well as the class of
referents. The domain of the converse relation will be also called the converse
domain, as well as the class of relata. The two domains together will be called
the field of the relation—a notion chiefly important as regards series. Thus
if paternity be the relation, fathers form its domain, children its converse
domain, and fathers and children together its field.

It may be doubted whether a proposition aRb can be regarded as asserting
aR of b, or whether only R̆a can be asserted of b. In other words, is a relational
proposition only an assertion concerning the referent, or also an assertion
concerning the relatum? If we take the latter view, we shall have, connected
with (say) “a is greater than b”, four assertions, namely “is greater than b”,
“a is greater than”, “is less than a” and “b is less than”. I am inclined myself to
adopt this view, but I know of no argument on either side.

97. We can form the logical sum and product of two relations or of a
class of relations exactly as in the case of classes, except that here we have
to deal with double variability. In addition to these ways of combination, we
have also the relative product, which is in general non-commutative, and
therefore requires that the number of factors should be finite. If R, S be two
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relations, to say that their relative product RS holds between two terms x, z is
to say that there is a term y to which x has the relation R, and which itself has
the relation S to z. Thus brother-in-law is the relative product of wife and
brother or of sister and husband: father-in-law is the relative product of wife
and father, whereas the relative product of father and wife is mother or step-
mother.

98. There is a temptation to regard a relation as definable in extension as
a class of couples. This has the formal advantage that it avoids the necessity for
the primitive proposition asserting that every couple has a relation holding
between no other pair of terms. But it is necessary to give sense to the couple,
to distinguish the referent from the relatum: thus a couple becomes essen-
tially distinct from a class of two terms, and must itself be introduced as a
primitive idea. It would seem, viewing the matter philosophically, that sense
can only be derived from some relational proposition, and that the assertion
that a is referent and b relatum already involves a purely relational proposition
in which a and b are terms, though the relation asserted is only the general
one of referent to relatum. There are, in fact, concepts such as greater, which
occur otherwise than as terms in propositions having two terms (§§ 48, 54);
and no doctrine of couples can evade such propositions. It seems therefore
more correct to take an intensional view of relations, and to identify them
rather with class-concepts than with classes. This procedure is formally more
convenient, and seems also nearer to the logical facts. Throughout Math-
ematics there is the same rather curious relation of intensional and exten-
sional points of view: the symbols other than variable terms (i.e. the variable
class-concepts and relations) stand for intensions, while the actual objects
dealt with are always extensions. Thus in the calculus of relations, it is classes
of couples that are relevant, but the symbolism deals with them by means of
relations. This is precisely similar to the state of things explained in relation to
classes, and it seems unnecessary to repeat the explanations at length.

99. Mr Bradley, in Appearance and Reality, Chapter 3, has based an argument
against the reality of relations upon the endless regress arising from the fact
that a relation which relates two terms must be related to each of them. The
endless regress is undeniable, if relational propositions are taken to be ultim-
ate, but it is very doubtful whether it forms any logical difficulty. We have
already had occasion (§ 55) to distinguish two kinds of regress, the one
proceeding merely to perpetually new implied propositions, the other in the
meaning of a proposition itself; of these two kinds, we agreed that the former,
since the solution of the problem of infinity, has ceased to be objectionable,
while the latter remains inadmissible. We have to inquire which kind of
regress occurs in the present instance. It may be urged that it is part of the
very meaning of a relational proposition that the relation involved should
have to the terms the relation expressed in saying that it relates them, and that
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this is what makes the distinction, which we formerly (§ 54) left
unexplained, between a relating relation and a relation in itself. It may be
urged, however, against this view, that the assertion of a relation between the
relation and the terms, though implied, is no part of the original proposition,
and that a relating relation is distinguished from a relation in itself by the
indefinable element of assertion which distinguishes a proposition from a
concept. Against this it might be retorted that, in the concept “difference of a
and b”, difference relates a and b just as much as in the proposition “a and b
differ”; but to this it may be rejoined that we found the difference of a and b,
except in so far as some specific point of difference may be in question, to be
indistinguishable from bare difference. Thus it seems impossible to prove that
the endless regress involved is of the objectionable kind. We may distinguish,
I think, between “a exceeds b” and “a is greater than b”, though it would be
absurd to deny that people usually mean the same thing by these two prop-
ositions. On the principle, from which I can see no escape, that every
genuine word must have some meaning, the is and than must form part of “a
is greater than b”, which thus contains more than two terms and a relation.
The is seems to state that a has to greater the relation of referent, while the than
states similarly that b has to greater the relation of relatum. But “a exceeds b”
may be held to express solely the relation of a to b, without including any of
the implications of further relations. Hence we shall have to conclude that a
relational proposition aRb does not include in its meaning any relation of a or b
to R, and that the endless regress, though undeniable, is logically quite harm-
less. With these remarks, we may leave the further theory of relations to later
Parts of the present work.
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10
THE CONTRADICTION

100. B taking leave of fundamental questions, it is necessary to
examine more in detail the singular contradiction, already mentioned, with
regard to predicates not predicable of themselves. Before attempting to solve
this puzzle, it will be well to make some deductions connected with it, and to
state it in various different forms. I may mention that I was led to it in the
endeavour to reconcile Cantor’s proof that there can be no greatest cardinal
number with the very plausible supposition that the class of all terms (which
we have seen to be essential to all formal propositions) has necessarily the
greatest possible number of members.*

Let w be a class-concept which can be asserted of itself, i.e. such that “w is a
w”. Instances are class-concept, and the negations of ordinary class-concepts, e.g.
not-man. Then (α ) if w be contained in another class v, since w is a w, w is a v;
consequently there is a term of v which is a class-concept that can be asserted
of itself. Hence by contraposition, (β) if u be a class-concept none of whose
members are class-concepts that can be asserted of themselves, no class-
concept contained in u can be asserted of itself. Hence further, (γ) if u be any
class-concept whatever, and u'  the class-concept of those members of u which
are not predicable of themselves, this class-concept is contained in itself, and
none of its members are predicable of themselves; hence by (β) u'  is not
predicable of itself. Thus u'  is not a u' , and is therefore not a u; for the terms
of u that are not terms of u'  are all predicable of themselves, which u'  is not.
Thus (δ) if u be any class-concept whatever, there is a class-concept contained
in u which is not a member of u, and is also one of those class-concepts that
are not predicable of themselves. So far, our deductions seem scarcely open to

* See Part V, Chap. 43, § 344 ff.



question. But if we now take the last of them, and admit the class of those
class-concepts that cannot be asserted of themselves, we find that this class
must contain a class-concept not a member of itself and yet not belonging to
the class in question.

We may observe also that, in virtue of what we have proved in (β), the class
of class-concepts which cannot be asserted of themselves, which we will call
w, contains as members of itself all its sub-classes, although it is easy to prove
that every class has more sub-classes than terms. Again, if y be any term of w,
and w'  be the whole of w except y, then w' , being a sub-class of w, is not a
w'  but is a w, and therefore is y. Hence each class-concept which is a term of w
has all other terms of w as its extension. It follows that the concept bicycle is a
teaspoon, and teaspoon is a bicycle. This is plainly absurd, and any number of
similar absurdities can be proved.

101. Let us leave these paradoxical consequences, and attempt the exact
statement of the contradiction itself. We have first the statement in terms of
predicates, which has been given already. If x be a predicate, x may or may not
be predicable of itself. Let us assume that “not-predicable of oneself” is a
predicate. Then to suppose either that this predicate is, or that it is not,
predicable of itself, is self-contradictory. The conclusion, in this case, seems
obvious: “not-predicable of oneself” is not a predicate.

Let us now state the same contradiction in terms of class-concepts. A class-
concept may or may not be a term of its own extension. “Class-concept
which is not a term of its own extension” appears to be a class-concept. But
if it is a term of its own extension, it is a class-concept which is not a term
of its own extension, and vice versâ. Thus we must conclude, against appear-
ances, that “class-concept which is not a term of its own extension” is not
a class-concept.

In terms of classes the contradiction appears even more extraordinary. A
class as one may be a term of itself as many. Thus the class of all classes is a
class; the class of all the terms that are not men is not a man, and so on. Do all
the classes that have this property form a class? If so, is it as one a member of
itself as many or not? If it is, then it is one of the classes which, as ones, are
not members of themselves as many, and vice versâ. Thus we must conclude
again that the classes which as ones are not members of themselves as many
do not form a class—or rather, that they do not form a class as one, for the
argument cannot show that they do not form a class as many.

102. A similar result, which, however, does not lead to a contradiction,
may be proved concerning any relation. Let R be a relation, and consider the
class w of terms which do not have the relation R to themselves. Then it is
impossible that there should be any term a to which all of them and no other
terms have the relation R. For, if there were such a term, the propositional
function “x does not have the relation R to x” would be equivalent to “x has
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the relation R to a”. Substituting a for x throughout, which is legitimate since
the equivalence is formal, we find a contradiction. When in place of R we
put ε, the relation of a term to a class-concept which can be asserted of it, we
get the above contradiction. The reason that a contradiction emerges here is
that we have taken it as an axiom that any propositional function containing
only one variable is equivalent to asserting membership of a class defined by
the propositional function. Either this axiom, or the principle that every class
can be taken as one term, is plainly false, and there is no fundamental objec-
tion to dropping either. But having dropped the former, the question arises:
Which propositional functions define classes which are single terms as well as
many, and which do not? And with this question our real difficulties begin.

Any method by which we attempt to establish a one-one or many-one
correlation of all terms and all propositional functions must omit at least one
propositional function. Such a method would exist if all propositional func-
tions could be expressed in the form. . . εu, since this form correlates u with
. . . εu. But the impossibility of any such correlation is proved as follows. Let
�x be a propositional function correlated with x; then, if the correlation
covers all terms, the denial of �x (x) will be a propositional function, since it
is a proposition for all values of x. But it cannot be included in the correlation;
for if it were correlated with a, �a (x) would be equivalent, for all values of x,
to the denial of �x (x); but this equivalence is impossible for the value a, since
it makes �a (a) equivalent to its own denial. It follows that there are more
propositional functions than terms—a result which seems plainly impos-
sible, although the proof is as convincing as any in Mathematics. We shall
shortly see how the impossibility is removed by the doctrine of logical types.

103. The first method which suggests itself is to seek an ambiguity in the
notion of ε. But in Chapter 6 we distinguished the various meanings as far as
any distinction seemed possible, and we have just seen that with each mean-
ing the same contradiction emerges. Let us, however, attempt to state the
contradiction throughout in terms of propositional functions. Every prop-
ositional function which is not null, we supposed, defines a class, and every
class can certainly be defined by a propositional function. Thus to say that a
class as one is not a member of itself as many is to say that the class as one
does not satisfy the function by which itself as many is defined. Since all
propositional functions except such as are null define classes, all will be used
up, in considering all classes having the above property, except such as do not
have the above property. If any propositional function were satisfied by every
class having the above property, it would therefore necessarily be one satis-
fied also by the class w of all such classes considered as a single term. Hence
the class w does not itself belong to the class w, and therefore there must be
some propositional function satisfied by the terms of w but not by w itself.
Thus the contradiction re-emerges, and we must suppose, either that there is
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no such entity as w, or that there is no propositional function satisfied by its
terms and by no others.

It might be thought that a solution could be found by denying the legitim-
acy of variable propositional functions. If we denote by κ�, for the moment,
the class of values satisfying �, our propositional function is the denial of �
(k�), where � is the variable. The doctrine of Chapter 7, that � is not a
separable entity, might make such a variable seem illegitimate; but this objec-
tion can be overcome by substituting for � the class of propositions �x, or the
relation of �x to x. Moreover it is impossible to exclude variable propositional
functions altogether. Wherever a variable class or a variable relation occurs,
we have admitted a variable propositional function, which is thus essential to
assertions about every class or about every relation. The definition of the
domain of a relation, for example, and all the general propositions which
constitute the calculus of relations, would be swept away by the refusal to
allow this type of variation. Thus we require some further characteristic by
which to distinguish two kinds of variation. This characteristic is to be found,
I think, in the independent variability of the function and the argument. In
general, �x is itself a function of two variables, � and x; of these, either may be
given a constant value, and either may be varied without reference to the
other. But in the type of propositional functions we are considering in this
Chapter, the argument is itself a function of the propositional function:
instead of �x, we have � {f(�)}, where f(�) is defined as a function of �. Thus
when � is varied, the argument of which � is asserted is varied too. Thus “x is
an x” is equivalent to: “� can be asserted of the class of terms satisfying �”,
this class of terms being x. If here � is varied, the argument is varied at the
same time in a manner dependent upon the variation of �. For this reason, �
{f(�)}, though it is a definite proposition when x is assigned, is not a prop-
ositional function, in the ordinary sense, when x is variable. Propositional
functions of this doubtful type may be called quadratic forms, because the vari-
able enters into them in a way somewhat analogous to that in which, in
Algebra, a variable appears in an expression of the second degree.

104. Perhaps the best way to state the suggested solution is to say that, if
a collection of terms can only be defined by a variable propositional function,
then, though a class as many may be admitted, a class as one must be denied.
When so stated, it appears that propositional functions may be varied, pro-
vided the resulting collection is never itself made into the subject in the
original propositional function. In such cases there is only a class as many, not
a class as one. We took it as axiomatic that the class as one is to be found
wherever there is a class as many; but this axiom need not be universally
admitted, and appears to have been the source of the contradiction. By
denying it, therefore, the whole difficulty will be overcome.

A class as one, we shall say, is an object of the same type as its terms; i.e. any
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propositional function � (x) which is significant when one of the terms is
substituted for x is also significant when the class as one is substituted. But the
class as one does not always exist, and the class as many is of a different type
from the terms of the class, even when the class has only one term, i.e. there
are propositional functions � (u) in which u may be the class as many, which
are meaningless if, for u, we substitute one of the terms of the class. And so “x
is one among x’s” is not a proposition at all if the relation involved is that of a
term to its class as many; and this is the only relation of whose presence a
propositional function always assures us. In this view, a class as many may be
a logical subject, but in propositions of a different kind from those in which
its terms are subjects; of any object other than a single term, the question
whether it is one or many will have different answers according to the prop-
osition in which it occurs. Thus we have “Socrates is one among men”, in
which men are plural; but “men are one among species of animals”, in which
men are singular. It is the distinction of logical types that is the key to the
whole mystery.*

105. Other ways of evading the contradiction, which might be sug-
gested, appear undesirable, on the ground that they destroy too many quite
necessary kinds of propositions. It might be suggested that identity is intro-
duced in “x is not an x” in a way which is not permissible. But it has been
already shown that relations of terms to themselves are unavoidable, and it
may be observed that suicides or self-made men or the heroes of Smiles’s Self-
Help are all defined by relations to themselves. And generally, identity enters
in a very similar way into formal implication, so that it is quite impossible to
reject it.

A natural suggestion for escaping from the contradiction would be to
demur to the notion of all terms or of all classes. It might be urged that no
such sum-total is conceivable; and if all indicates a whole, our escape from the
contradiction requires us to admit this. But we have already abundantly seen
that if this view were maintained against any term, all formal truth would be
impossible, and Mathematics, whose characteristic is the statement of truths
concerning any term, would be abolished at one stroke. Thus the correct
statement of formal truths requires the notion of any term or every term, but
not the collective notion of all terms.

It should be observed, finally, that no peculiar philosophy is involved in
the above contradiction, which springs directly from common sense, and can
only be solved by abandoning some common-sense assumption. Only the
Hegelian philosophy, which nourishes itself on contradictions, can remain
indifferent, because it finds similar problems everywhere. In any other doc-
trine, so direct a challenge demands an answer, on pain of a confession of

* On this subject, see Appendix.
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impotence. Fortunately, no other similar difficulty, so far as I know, occurs in
any other portion of the Principles of Mathematics.

106. We may now briefly review the conclusions arrived at in Part I. Pure
Mathematics was defined as the class of propositions asserting formal impli-
cations and containing no constants except logical constants. And logical
constants are: implication, the relation of a term to a class of which it is a
member, the notion of such that, the notion of relation and such further
notions as are involved in formal implication, which we found (§ 93) to be
the following: propositional function, class,* denoting, and any or every term.
This definition brought Mathematics into very close relation to Logic, and
made it practically identical with Symbolic Logic. An examination of Sym-
bolic Logic justified the above enumeration of mathematical indefinables. In
Chapter 3 we distinguished implication and formal implication. The former
holds between any two propositions provided the first be false or the second
true. The latter is not a relation, but the assertion, for every value of the
variable or variables, of a propositional function which, for every value of the
variable or variables, asserts an implication. Chapter 4 distinguished what
may be called things from predicates and relations (including the is of predica-
tions among relations for this purpose). It was shown that this distinction is
connected with the doctrine of substance and attributes, but does not lead to
the traditional results. Chapters 5 and 6 developed the theory of predicates.
In the former of these chapters it was shown that certain concepts, derived
from predicates, occur in propositions not about themselves, but about com-
binations of terms, such as are indicated by all, every, any, a, some and the.
Concepts of this kind, we found, are fundamental in Mathematics, and enable
us to deal with infinite classes by means of propositions of finite complexity.
In Chapter 6 we distinguished predicates, class-concepts, concepts of classes,
classes as many and classes as one. We agreed that single terms, or such
combinations as result from and, are classes, the latter being classes as many;
and that classes as many are the objects denoted by concepts of classes, which
are the plurals of class-concepts. But in the present chapter we decided that it
is necessary to distinguish a single term from the class whose only member
it is, and that consequently the null-class may be admitted.

In Chapter 7 we resumed the study of the verb. Subject-predicate prop-
ositions, and such as express a fixed relation to a fixed term, could be
analysed, we found, into a subject and an assertion; but this analysis becomes
impossible when a given term enters into a proposition in a more compli-
cated manner than as referent of a relation. Hence it became necessary to take
propositional function as a primitive notion. A propositional function of one

* The notion of class in general, we decided, could be replaced, as an indefinable, by that of the
class of propositions defined by a propositional function.
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variable is any proposition of a set defined by the variation of a single term,
while the other terms remain constant. But in general it is impossible to
define or isolate the constant element in a propositional function, since what
remains, when a certain term, wherever it occurs, is left out of a proposition,
is in general no discoverable kind of entity. Thus the term in question must
be not simply omitted, but replaced by a variable.

The notion of the variable, we found, is exceedingly complicated. The x is
not simply any term, but any term with a certain individuality; for if not, any
two variables would be indistinguishable. We agreed that a variable is any
term quâ term in a certain propositional function, and that variables are
distinguished by the propositional functions in which they occur, or, in the
case of several variables, by the place they occupy in a given multiply variable
propositional function. A variable, we said, is the term in any proposition of
the set denoted by a given propositional function.

Chapter 9 pointed out that relational propositions are ultimate, and that
they all have sense: i.e. the relation being the concept as such in a proposition
with two terms, there is another proposition containing the same terms and
the same concept as such, as in “A is greater than B” and “B is greater than A”.
These two propositions, though different, contain precisely the same con-
stituents. This is a characteristic of relations, and an instance of the loss
resulting from analysis. Relations, we agreed, are to be taken intensionally,
not as classes of couples.*

Finally, in the present chapter, we examined the contradiction resulting
from the apparent fact that, if w be the class of all classes which as single
terms are not members of themselves as many, then w as one can be proved
both to be and not to be a member of itself as many. The solution suggested
was that it is necessary to distinguish various types of objects, namely terms,
classes of terms, classes of classes, classes of couples of terms, and so on;
and that a propositional function �x in general requires, if it is to have any
meaning, that x should belong to some one type. Thus xεx was held to be
meaningless, because ε requires that the relatum should be a class composed
of objects which are of the type of the referent. The class as one, where
it exists, is, we said, of the same type as its constituents; but a quadratic
propositional function in general appears to define only a class as many, and
the contradiction proves that the class as one, if it ever exists, is certainly
sometimes absent.

* On this point, however, see Appendix.
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Part II
Number





11
DEFINITION OF

CARDINAL NUMBERS

107. W have now briefly reviewed the apparatus of general logical
notions with which Mathematics operates. In the present Part, it is to be
shown how this apparatus suffices, without new indefinables or new postu-
lates, to establish the whole theory of cardinal integers as a special branch of
Logic.* No mathematical subject has made, in recent years, greater advances
than the theory of Arithmetic. The movement in favour of correctness in
deduction, inaugurated by Weierstrass, has been brilliantly continued by
Dedekind, Cantor, Frege and Peano, and attains what seems its final goal by
means of the logic of relations. As the modern mathematical theory is but
imperfectly known even by most mathematicians, I shall begin this Part by
four chapters setting forth its outlines in a non-symbolic form. I shall then
examine the process of deduction from a philosophical standpoint, in order
to discover, if possible, whether any unperceived assumptions have covertly
intruded themselves in the course of the argument.

108. It is often held that both number and particular numbers are
indefinable. Now definability is a word which, in Mathematics, has a precise
sense, though one which is relative to some given set of notions.† Given any
set of notions, a term is definable by means of these notions when, and only
when, it is the only term having to certain of these notions a certain relation

* Cantor has shown that it is necessary to separate the study of Cardinal and Ordinal numbers,
which are distinct entities, of which the former are simpler, but of which both are essential to
ordinary Mathematics. On Ordinal numbers, cf. Chaps. 29, 38, infra.
† See Peano, F. 1901, p. 6 ff. and Padoa, “Théorie Algébrique des Nombres Entiers”, Congrès,
Vol. , p. 314 ff.



which itself is one of the said notions. But philosophically, the word definition
has not, as a rule, been employed in this sense; it has, in fact, been restricted
to the analysis of an idea into its constituents. This usage is inconvenient and,
I think, useless; moreover it seems to overlook the fact that wholes are not, as a
rule, determinate when their constituents are given, but are themselves new
entities (which may be in some sense simple), defined, in the mathematical
sense, by certain relations to their constituents. I shall, therefore, in future,
ignore the philosophical sense, and speak only of mathematical definability. I
shall, however, restrict this notion more than is done by Professor Peano and
his disciples. They hold that the various branches of Mathematics have vari-
ous indefinables, by means of which the remaining ideas of the said subjects
are defined. I hold—and it is an important part of my purpose to prove—that
all Pure Mathematics (including Geometry and even rational Dynamics) con-
tains only one set of indefinables, namely the fundamental logical concepts
discussed in Part I. When the various logical constants have been enumerated,
it is somewhat arbitrary which of them we regard as indefinable, though
there are apparently some which must be indefinable in any theory. But my
contention is, that the indefinables of Pure Mathematics are all of this kind,
and that the presence of any other indefinables indicates that our subject
belongs to Applied Mathematics. Moreover, of the three kinds of definition
admitted by Peano—the nominal definition, the definition by postulates and
the definition by abstraction*—I recognize only the nominal: the others, it
would seem, are only necessitated by Peano’s refusal to regard relations as
part of the fundamental apparatus of logic, and by his somewhat undue haste
in regarding as an individual what is really a class. These remarks will be
best explained by considering their application to the definition of cardinal
numbers.

109. It has been common in the past, among those who regarded num-
bers as definable, to make an exception as regards the number 1, and to
define the remainder by its means. Thus 2 was 1 + 1, 3 was 2 + 1, and so on.
This method was only applicable to finite numbers, and made a tiresome
difference between 1 and other numbers; moreover the meaning of + was
commonly not explained. We are able now-a-days to improve greatly upon
this method. In the first place, since Cantor has shown how to deal with the
infinite, it has become both desirable and possible to deal with the funda-
mental properties of numbers in a way which is equally applicable to finite
and infinite numbers. In the second place, the logical calculus has enabled us
to give an exact definition of arithmetical addition; and in the third place, it
has become as easy to define 0 and 1 as to define any other number. In order
to explain how this is done, I shall first set forth the definition of numbers by

* Cf. Burali-Forti, “Sur les différentes définitions du nombre réel”, Congrès, , p. 294 ff.
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abstraction; I shall then point out formal defects in this definition, and
replace it by a nominal definition.

Numbers are, it will be admitted, applicable essentially to classes. It is
true that, where the number is finite, individuals may be enumerated to
make up the given number, and may be counted one by one without any
mention of a class-concept. But all finite collections of individuals form
classes, so that what results is after all the number of a class. And where the
number is infinite, the individuals cannot be enumerated, but must be
defined by intension, i.e. by some common property in virtue of which
they form a class. Thus when any class-concept is given, there is a certain
number of individuals to which this class-concept is applicable, and the
number may therefore be regarded as a property of the class. It is this view
of numbers which has rendered possible the whole theory of infinity, since
it relieves us of the necessity of enumerating the individuals whose num-
ber is to be considered. This view depends fundamentally upon the notion
of all, the numerical conjunction as we agreed to call it (§ 59). All men, for
example, denotes men conjoined in a certain way; and it is as thus denoted
that they have a number. Similarly all numbers or all points denotes numbers
or points conjoined in a certain way, and as thus conjoined numbers or
points have a number. Numbers, then, are to be regarded as properties of
classes.

The next question is: Under what circumstances do two classes have the
same number? The answer is, that they have the same number when their
terms can be correlated one to one, so that any one term of either corres-
ponds to one and only one term of the other. This requires that there should
be some one-one relation whose domain is the one class and whose converse
domain is the other class. Thus, for example, if in a community all the men
and all the women are married, and polygamy and polyandry are forbidden,
the number of men must be the same as the number of women. It might be
thought that a one-one relation could not be defined except by reference to
the number 1. But this is not the case. A relation is one-one when, if x and x'
have the relation in question to y, then x and x'  are identical; while if x has the
relation in question to y and y' , then y and y'  are identical. Thus it is possible,
without the notion of unity, to define what is meant by a one-one relation.
But in order to provide for the case of two classes which have no terms, it is
necessary to modify slightly the above account of what is meant by saying
that two classes have the same number. For if there are no terms, the terms
cannot be correlated one to one. We must say: Two classes have the same
number when, and only when, there is a one-one relation whose domain
includes the one class, and which is such that the class of correlates of the
terms of the one class is identical with the other class. From this it appears
that two classes having no terms have always the same number of terms; for if
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we take any one-one relation whatever, its domain includes the null-class, and
the class of correlates of the null-class is again the null-class. When two
classes have the same number, they are said to be similar.

Some readers may suppose that a definition of what is meant by saying that
two classes have the same number is wholly unnecessary. The way to find out,
they may say, is to count both classes. It is such notions as this which have,
until very recently, prevented the exhibition of Arithmetic as a branch of Pure
Logic. For the question immediately arises: What is meant by counting? To
this question we usually get only some irrelevant psychological answer, as,
that counting consists in successive acts of attention. In order to count 10, I
suppose that ten acts of attention are required: certainly a most useful defin-
ition of the number 10! Counting has, in fact, a good meaning, which is not
psychological. But this meaning is highly complex; it is only applicable to
classes which can be well-ordered, which are not known to be all classes; and
it only gives the number of the class when this number is finite—a rare
and exceptional case. We must not, therefore, bring in counting where the
definition of numbers is in question.

The relation of similarity between classes has the three properties of being
reflexive, symmetrical and transitive; that is to say, if u, v, w be classes, u
is similar to itself; if u be similar to v, v is similar to u; and if u be similar to v,
and v to w, then u is similar to w. These properties all follow easily from
the definition. Now these three properties of a relation are held by Peano
and common sense to indicate that when the relation holds between two
terms, those two terms have a certain common property, and vice versâ. This
common property we call their number.* This is the definition of numbers
by abstraction.

110. Now this definition by abstraction, and generally the process
employed in such definitions, suffers from an absolutely fatal formal defect: it
does not show that only one object satisfies the definition.† Thus instead of
obtaining one common property of similar classes, which is the number of the
classes in question, we obtain a class of such properties, with no means of
deciding how many terms this class contains. In order to make this point
clear, let us examine what is meant, in the present instance, by a common
property. What is meant is, that any class has to a certain entity, its number, a
relation which it has to nothing else, but which all similar classes (and no
other entities) have to the said number. That is, there is a many-one relation
which every class has to its number and to nothing else. Thus, so far as the

* Cf. Peano, F. 1901, § 32, ·0, Note.
† On the necessity of this condition, cf. Padoa, loc. cit., p. 324. Padoa appears not to perceive,
however, that all definitions define the single individual of a class: when what is defined is a class,
this must be the only term of some class of classes.

114 principles of mathematics



definition by abstraction can show, any set of entities to each of which some
class has a certain many-one relation, and to one and only one of which any
given class has this relation, and which are such that all classes similar to a
given class have this relation to one and the same entity of the set, appear as
the set of numbers, and any entity of this set is the number of some class. If,
then, there are many such sets of entities—and it is easy to prove that there
are an infinite number of them—every class will have many numbers, and the
definition wholly fails to define the number of a class. This argument is
perfectly general, and shows that definition by abstraction is never a logically
valid process.

111. There are two ways in which we may attempt to remedy this defect.
One of these consists in defining as the number of a class the whole class of
entities, chosen one from each of the above sets of entities, to which all
classes similar to the given class (and no others) have some many-one rela-
tion or other. But this method is practically useless, since all entities, without
exception, belong to every such class, so that every class will have as its
number the class of all entities of every sort and description. The other
remedy is more practicable, and applies to all the cases in which Peano
employs definition by abstraction. This method is, to define as the number of
a class the class of all classes similar to the given class. Membership of this
class of classes (considered as a predicate) is a common property of all the
similar classes and of no others; moreover every class of the set of similar
classes has to the set a relation which it has to nothing else, and which
every class has to its own set. Thus the conditions are completely fulfilled by
this class of classes, and it has the merit of being determinate when a class is
given, and of being different for two classes which are not similar. This, then,
is an irreproachable definition of the number of a class in purely logical
terms.

To regard a number as a class of classes must appear, at first sight, a wholly
indefensible paradox. Thus Peano (F. 1901, § 32) remarks that “we cannot
identify the number of [a class] a with the class of classes in question [i.e. the
class of classes similar to a], for these objects have different properties”. He
does not tell us what these properties are, and for my part I am unable to
discover them. Probably it appeared to him immediately evident that a num-
ber is not a class of classes. But something may be said to mitigate the
appearance of paradox in this view. In the first place, such a word as couple or
trio obviously does denote a class of classes. Thus what we have to say is, for
example, that “two men” means “logical product of class of men and
couple”, and “there are two men” means “there is a class of men which is
also a couple”. In the second place, when we remember that a class-concept
is not itself a collection, but a property by which a collection is defined,
we see that, if we define the number as the class-concept, not the class, a
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number is really defined as a common property of a set of similar classes and
of nothing else. This view removes the appearance of paradox to a great
degree. There is, however, a philosophical difficulty in this view, and gener-
ally in the connection of classes and predicates. It may be that there are many
predicates common to a certain collection of objects and to no others. In this
case, these predicates are all regarded by Symbolic Logic as equivalent, and
any one of them is said to be equal to any other. Thus if the predicate were
defined by the collection of objects, we should not obtain, in general, a single
predicate, but a class of predicates; for this class of predicates we should
require a new class-concept, and so on. The only available class-concept
would be “predicability of the given collection of terms and of no others”.
But in the present case, where the collection is defined by a certain relation to
one of its terms, there is some danger of a logical error. Let u be a class; then
the number of u, we said, is the class of classes similar to u. But “similar to u”
cannot be the actual concept which constitutes the number of u; for, if v be
similar to u, “similar to v” defines the same class, although it is a different
concept. Thus we require, as the defining predicate of the class of similar
classes, some concept which does not have any special relation to one or
more of the constituent classes. In regard to every particular number that may
be mentioned, whether finite or infinite, such a predicate is, as a matter of
fact, discoverable; but when all we are told about a number is that it is the
number of some class u, it is natural that a special reference to u should appear
in the definition. This, however, is not the point at issue. The real point is, that
what is defined is the same whether we use the predicate “similar to u” or
“similar to v”, provided u is similar to v. This shows that it is not the class-
concept or defining predicate that is defined, but the class itself whose terms
are the various classes which are similar to u or to v. It is such classes,
therefore, and not predicates such as “similar to u”, that must be taken to
constitute numbers.

Thus, to sum up: Mathematically, a number is nothing but a class of similar
classes: this definition allows the deduction of all the usual properties of
numbers, whether finite or infinite, and is the only one (so far as I know)
which is possible in terms of the fundamental concepts of general logic. But
philosophically we may admit that every collection of similar classes has some
common predicate applicable to no entities except the classes in question,
and if we can find, by inspection, that there is a certain class of such common
predicates, of which one and only one applies to each collection of similar
classes, then we may, if we see fit, call this particular class of predicates the
class of numbers. For my part, I do not know whether there is any such class
of predicates, and I do know that, if there be such a class, it is wholly
irrelevant to Mathematics. Wherever Mathematics derives a common prop-
erty from a reflexive, symmetrical and transitive relation, all mathematical
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purposes of the supposed common property are completely served when it is
replaced by the class of terms having the given relation to a given term; and
this is precisely the case presented by cardinal numbers. For the future, there-
fore, I shall adhere to the above definition, since it is at once precise and
adequate to all mathematical uses.
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12
ADDITION AND

MULTIPLICATION

112. I most mathematical accounts of arithmetical operations we find
the error of endeavouring to give at once a definition which shall be applic-
able to rationals, or even to real numbers, without dwelling at sufficient
length upon the theory of integers. For the present, integers alone will
occupy us. The definition of integers, given in the preceding chapter, obvi-
ously does not admit of extension to fractions; and in fact the absolute
difference between integers and fractions, even between integers and fractions
whose denominator is unity, cannot possibly be too strongly emphasized.
What rational fractions are, and what real numbers are, I shall endeavour to
explain at a later stage; positive and negative numbers also are at present
excluded. The integers with which we are now concerned are not positive,
but signless. And so the addition and multiplication to be defined in this
chapter are only applicable to integers; but they have the merit of being
equally applicable to finite and infinite integers. Indeed, for the present, I
shall rigidly exclude all propositions which involve either the finitude or the
infinity of the numbers considered.

113. There is only one fundamental kind of addition, namely the logical
kind. All other kinds can be defined in terms of this and logical multiplica-
tion. In the present chapter the addition of integers is to be defined by its
means. Logical addition, as was explained in Part I, is the same as disjunction;
if p and q are propositions, their logical sum is the proposition “p or q”, and if
u and v are classes, their logical sum is the class “u or v”, i.e. the class to which
belongs every term which either belongs to u or belongs to v. The logical sum
of two classes u and v may be defined in terms of the logical product of two
propositions, as the class of terms belonging to every class in which both u



and v are contained.* This definition is not essentially confined to two classes,
but may be extended to a class of classes, whether finite or infinite. Thus if k
be a class of classes, the logical sum of the classes composing k (called for
short the sum of k) is the class of terms belonging to every class which
contains every class which is a term of k. It is this notion which underlies
arithmetical addition. If k be a class of classes no two of which have any
common terms (called for short an exclusive class of classes), then the arith-
metical sum of the numbers of the various classes of k is the number of terms
in the logical sum of k. This definition is absolutely general, and applies
equally whether k or any of its constituent classes be finite or infinite. In order
to assure ourselves that the resulting number depends only upon the numbers
of the various classes belonging to k, and not upon the particular class k that
happens to be chosen, it is necessary to prove (as is easily done) that if k'  be
another exclusive class of classes, similar to k, and every member of k is
similar to its correlate in k' , and vice versâ, then the number of terms in the sum
of k is the same as the number in the sum of k' . Thus, for example, suppose k
has only two terms, u and v, and suppose u and v have no common part. Then
the number of terms in the logical sum of u and v is the sum of the number of
terms in u and in v; and if u'  be similar to u, and v'  to v, and u' , v'  have no
common part, then the sum of u'  and v'  is similar to the sum of u and v.

114. With regard to this definition of a sum of numbers, it is to be
observed that it cannot be freed from reference to classes which have the
numbers in question. The number obtained by summation is essentially the
number of the logical sum of a certain class of classes or of some similar class
of similar classes. The necessity of this reference to classes emerges when one
number occurs twice or more often in the summation. It is to be observed
that the numbers concerned have no order of summation, so that we have no
such proposition as the commutative law: this proposition, as introduced in
Arithmetic, results only from a defective symbolism, which causes an order
among the symbols which has no correlative order in what is symbolized.
But owing to the absence of order, if one number occurs twice in a summa-
tion, we cannot distinguish a first and a second occurrence of the said num-
ber. If we exclude a reference to classes which have the said number, there is
no sense in the supposition of its occurring twice: the summation of a class
of numbers can be defined, but in that case, no number can be repeated. In
the above definition of a sum, the numbers concerned are defined as the
numbers of certain classes, and therefore it is not necessary to decide whether
any number is repeated or not. But in order to define, without reference
to particular classes, a sum of numbers of which some are repeated, it is
necessary first to define multiplication.

* F. 1901, § 2, Prop. 1 ·0.

119addition and multiplication



This point may be made clearer by considering a special case, such as
1 + 1. It is plain that we cannot take the number 1 itself twice over, for there
is one number 1, and there are not two instances of it. And if the logical
addition of 1 to itself were in question, we should find that 1 and 1 is 1,
according to the general principle of Symbolic Logic. Nor can we define
1 + 1 as the arithmetical sum of a certain class of numbers. This method can
be employed as regards 1 + 2, or any sum in which no number is repeated;
but as regards 1 + 1, the only class of numbers involved is the class whose
only member is 1, and since this class has one member, not two, we cannot
define 1 + 1 by its means. Thus the full definition of 1 + 1 is as follows: 1 + 1
is the number of a class w which is the logical sum of two classes u and v
which have no common term and have each only one term. The chief point
to be observed is, that logical addition of classes is the fundamental notion,
while the arithmetical addition of numbers is wholly subsequent.

115. The general definition of multiplication is due to Mr A. N.
Whitehead.* It is as follows. Let k be a class of classes, no two of which have
any term in common. Form what is called the multiplicative class of k, i.e. the
class each of whose terms is a class formed by choosing one and only one
term from each of the classes belonging to k. Then the number of terms in
the multiplicative class of k is the product of all the numbers of the various
classes composing k. This definition, like that of addition given above, has
two merits, which make it preferable to any other hitherto suggested. In the
first place, it introduces no order among the numbers multiplied, so that
there is no need of the commutative law, which, here as in the case of
addition, is concerned rather with the symbols than with what is symbolized.
In the second place, the above definition does not require us to decide,
concerning any of the numbers involved, whether they are finite or infinite.
Cantor has given† definitions of the sum and product of two numbers, which
do not require a decision as to whether these numbers are finite or infinite.
These definitions can be extended to the sum and product of any finite num-
ber of finite or infinite numbers; but they do not, as they stand, allow the
definition of the sum or product of an infinite number of numbers. This
grave defect is remedied in the above definitions, which enable us to pursue
Arithmetic, as it ought to be pursued, without introducing the distinction of
finite and infinite until we wish to study it. Cantor’s definitions have also the
formal defect of introducing an order among the numbers summed or
multiplied: but this is, in his case, a mere defect in the symbols chosen, not in
the ideas which he symbolizes. Moreover it is not practically desirable, in the

* American Journal of Mathematics, Oct. 1902.
† Math. Annalen, Vol. , § 3.
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case of the sum or product of two numbers, to avoid this formal defect, since
the resulting cumbrousness becomes intolerable.

116. It is easy to deduce from the above definitions the usual connection
of addition and multiplication, which may be thus stated. If k be a class of b
mutually exclusive classes, each of which contains a terms, then the logical
sum of k contains a × b terms.* It is also easy to obtain the definition of ab, and
to prove the associative and distributive laws, and the formal laws for powers,
such as abac = ab + c. But it is to be observed that exponentiation is not to be
regarded as a new independent operation, since it is merely an application of
multiplication. It is true that exponentiation can be independently defined, as
is done by Cantor,† but there is no advantage in so doing. Moreover exponen-
tiation unavoidably introduces ordinal notions, since ab is not in general equal
to ba. For this reason we cannot define the result of an infinite number of
exponentiations. Powers, therefore, are to be regarded simply as abbreviations
for products in which all the numbers multiplied together are equal.

From the data which we now possess, all those propositions which hold
equally of finite and infinite numbers can be deduced. The next step, therefore,
is to consider the distinction between the finite and the infinite.

* See Whitehead, loc. cit.
† Loc. cit., § 4.
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13
FINITE AND INFINITE

117. T purpose of the present chapter is not to discuss the philo-
sophical difficulties concerning the infinite, which are postponed to Part V.
For the present I wish merely to set forth briefly the mathematical theory of
finite and infinite as it appears in the theory of cardinal numbers. This is its
most fundamental form, and must be understood before the ordinal infinite
can be adequately explained.*

Let u be any class, and let u'  be a class formed by taking away one term x
from u. Then it may or may not happen that u is similar to u' . For example, if u
be the class of all finite numbers, and u'  the class of all finite numbers
except 0, the terms of u'  are obtained by adding 1 to each of the terms of u,
and this correlates one term of u with one of u'  and vice versâ, no term of either
being omitted or taken twice over. Thus u'  is similar to u. But if u consists of all
finite numbers up to n, where n is some finite number, and u'  consists of all
these except 0, then u'  is not similar to u. If there is one term x which can be
taken away from u to leave a similar class u' , it is easily proved that if any other
term y is taken away instead of x we also get a class similar to u. When it is
possible to take away one term from u and leave a class u'  similar to u, we say
that u is an infinite class. When this is not possible, we say that u is a finite class.
From these definitions it follows that the null-class is finite, since no term can
be taken from it. It is also easy to prove that if u be a finite class, the class
formed by adding one term to u is finite; and conversely if this class is finite,
so is u. It follows from the definition that the numbers of finite classes other
than the null-class are altered by subtracting 1, while those of infinite classes

* On the present topic cf. Cantor, Math. Annalen, Vol. , §§ 5, 6, where most of what follows
will be found.



are unaltered by this operation. It is easy to prove that the same holds of the
addition of 1.

118. Among finite classes, if one is a proper part of another, the one has
a smaller number of terms than the other. (A proper part is a part not the
whole.) But among infinite classes, this no longer holds. This distinction is,
in fact, an essential part of the above definitions of the finite and the infinite.
Of two infinite classes, one may have a greater or a smaller number of terms
than the other. A class u is said to be greater than a class v, or to have a number
greater than that of v, when the two are not similar, but v is similar to a proper
part of u. It is known that if u is similar to a proper part of v, and v to a proper
part of u (a case which can only arise when u and v are infinite), then u is
similar to v; hence “u is greater than v” is inconsistent with “v is greater than
u”. It is not at present known whether, of two different infinite numbers, one
must be greater and the other less. But it is known that there is a least infinite
number, i.e. a number which is less than any different infinite number. This is
the number of finite integers, which will be denoted, in the present work, by
α0.* This number is capable of several definitions in which no mention is
made of the finite numbers. In the first place it may be defined (as is impli-
citly done by Cantor†) by means of the principle of mathematical induction.
This definition is as follows: α0 is the number of any class u which is the
domain of a one-one relation R, whose converse domain is contained in but
not coextensive with u, and which is such that, calling the term to which x
has the relation R the successor of x, if s be any class to which belongs a term of u
which is not a successor of any other term of u, and to which belongs the
successor of every term of u which belongs to s, then every term of u belongs
to s. Or again, we may define α0 as follows. Let P be a transitive and asym-
metrical relation, and let any two different terms of the field of P have the
relation P or its converse. Further let any class u contained in the field of P and
having successors (i.e. terms to which every term of u has the relation P) have
an immediate successor, i.e. a term whose predecessors either belong to u or
precede some term of u; let there be one term of the field of P which has no
predecessors, but let every term which has predecessors have successors and
also have an immediate predecessor; then the number of terms in the field of
P is α0. Other definitions may be suggested, but as all are equivalent it is not
necessary to multiply them. The following characteristic is important: Every
class whose number is α0 can be arranged in a series having consecutive
terms, a beginning but no end, and such that the number of predecessors of

* Cantor employs for this number the Hebrew Aleph with the suffix 0, but this notation is
inconvenient.
† Math. Annalen, Vol. , § 6.
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any term of the series is finite; and any series having these characteristics has
the number α0.

It is very easy to show that every infinite class contains classes whose
number is α0. For let u be such a class, and let x0 be a term of u. Then u is
similar to the class obtained by taking away x0, which we will call the class u1.
Thus u1 is an infinite class. From this we can take away a term x1, leaving an
infinite class u2, and so on. The series of terms x1, x2, . . . is contained in u, and
is of the type which has the number α0. From this point we can advance to an
alternative definition of the finite and the infinite by means of mathematical
induction, which must now be explained.

119. If n be any finite number, the number obtained by adding 1 to n is
also finite, and is different from n. Thus beginning with 0 we can form a
series of numbers by successive additions of 1. We may define finite numbers,
if we choose, as those numbers that can be obtained from 0 by such steps,
and that obey mathematical induction. That is, the class of finite numbers is
the class of numbers which is contained in every class s to which belongs 0
and the successor of every number belonging to s, where the successor of a
number is the number obtained by adding 1 to the given number. Now α0 is
not such a number, since, in virtue of propositions already proved, no such
number is similar to a part of itself. Hence also no number greater than α0 is
finite according to the new definition. But it is easy to prove that every
number less than α0 is finite with the new definition as with the old. Hence
the two definitions are equivalent. Thus we may define finite numbers either
as those that can be reached by mathematical induction, starting from 0 and
increasing by 1 at each step, or as those of classes which are not similar to the
parts of themselves obtained by taking away single terms. These two def-
initions are both frequently employed, and it is important to realize that either
is a consequence of the other. Both will occupy us much hereafter; for the
present it is only intended, without controversy, to set forth the bare outlines
of the mathematical theory of finite and infinite, leaving the details to be
filled in during the course of the work.
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14
THEORY OF FINITE NUMBERS

120. H now clearly distinguished the finite from the infinite, we
can devote ourselves to the consideration of finite numbers. It is customary,
in the best treatises on the elements of Arithmetic,* not to define number or
particular finite numbers, but to begin with certain axioms or primitive
propositions, from which all the ordinary results are shown to follow. This
method makes Arithmetic into an independent study, instead of regarding
it, as is done in the present work, as merely a development, without new
axioms or indefinables, of a certain branch of general Logic. For this reason,
the method in question seems to indicate a lesser degree of analysis than that
adopted here. I shall nevertheless begin by an exposition of the more usual
method, and then proceed to definitions and proofs of what are usually taken
as indefinables and indemonstrables. For this purpose, I shall take Peano’s
exposition in the Formulaire,† which is, so far as I know, the best from the
point of view of accuracy and rigour. This exposition has the inestimable
merit of showing that all Arithmetic can be developed from three funda-
mental notions (in addition to those of general Logic) and five fundamental
propositions concerning these notions. It proves also that, if the three notions
be regarded as determined by the five propositions, these five propositions
are mutually independent. This is shown by finding, for each set of four
out of the five propositions, an interpretation which renders the remaining
proposition false. It therefore only remains, in order to connect Peano’s
theory with that here adopted, to give a definition of the three fundamental

* Except Frege’s Grundgesetze der Arithmetik (Jena, 1893).
† F. 1901, Part II and F. 1899, § 20 ff.F. 1901 differs from earlier editions in making “number
is a class” a primitive proposition. I regard this as unnecessary, since it is implied by “0 is a
number”. I therefore follow the earlier editions.



notions and a demonstration of the five fundamental propositions. When
once this has been accomplished, we will know with certainty that every-
thing in the theory of finite integers follows.

Peano’s three indefinables are 0, finite integer* and successor of. It is assumed,
as part of the idea of succession (though it would, I think, be better to state
it as a separate axiom), that every number has one and only one successor.
(By successor is meant, of course, immediate successor.) Peano’s primitive
propositions are then the following. (1) 0 is a number. (2) If a is a number,
the successor of a is a number. (3) If two numbers have the same successor,
the two numbers are identical. (4) 0 is not the successor of any number. (5) If
s be a class to which belongs 0 and also the successor of every number
belonging to s, then every number belongs to s. The last of these propositions
is the principle of mathematical induction.

121. The mutual independence of these five propositions has been dem-
onstrated by Peano and Padoa as follows.† (1) Giving the usual meanings to
0 and successor, but denoting by number finite integers other than 0, all the
above propositions except the first are true. (2) Giving the usual meanings to
0 and successor, but denoting by number only finite integers less than 10, or less
than any other specified finite integer, all the above propositions are true
except the second. (3) A series which begins by an antiperiod and then
becomes periodic (for example, the digits in a decimal which becomes
recurring after a certain number of places) will satisfy all the above proposi-
tions except the third. (4) A periodic series (such as the hours on the clock)
satisfies all except the fourth of the primitive propositions. (5) Giving to
successor the meaning greater by 2, so that the successor of 0 is 2, and of 2 is 4,
and so on, all the primitive propositions are satisfied except the fifth, which is
not satisfied if s be the class of even numbers including 0. Thus no one of the
five primitive propositions can be deduced from the other four.

122. Peano points out (loc. cit.) that other classes besides that of the finite
integers satisfy the above five propositions. What he says is as follows: “There
is an infinity of systems satisfying all the primitive propositions. They are
all verified, e.g., by replacing number and 0 by number other than 0 and 1. All the
systems which satisfy the primitive propositions have a one-one correspond-
ence with the numbers. Number is what is obtained from all these systems by
abstraction; in other words, number is the system which has all the properties
enunciated in the primitive propositions, and those only.” This observation
appears to me lacking in logical correctness. In the first place, the question
arises: How are the various systems distinguished, which agree in satisfying
the primitive propositions? How, for example, is the system beginning with

* Throughout the rest of this chapter, I shall use number as synonymous with finite integer.
† F. 1899, p. 30.
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1 distinguished from that beginning with 0? To this question two different
answers may be given. We may say that 0 and 1 are both primitive ideas, or at
least that 0 is so, and that therefore 0 and 1 can be intrinsically distinguished,
as yellow and blue are distinguished. But if we take this view—which, by
the way, will have to be extended to the other primitive ideas, number and
succession—we shall have to say that these three notions are what I call
constants, and that there is no need of any such process of abstraction as
Peano speaks of in the definition of number. In this method, 0, number and
succession appear, like other indefinables, as ideas which must be simply
recognized. Their recognition yields what mathematicians call the existence-
theorem, i.e. it assures us that there really are numbers. But this process leaves
it doubtful whether numbers are logical constants or not, and therefore makes
Arithmetic, according to the definition in Part I, Chapter 1, primâ facie a branch
of Applied Mathematics. Moreover it is evidently not the process which Peano
has in mind. The other answer to the question consists in regarding 0, num-
ber and succession as a class of three ideas belonging to a certain class of trios
defined by the five primitive propositions. It is very easy so to state the matter
that the five primitive propositions become transformed into the nominal
definition of a certain class of trios. There are then no longer any indefinables
or indemonstrables in our theory, which has become a pure piece of Logic.
But 0, number and succession become variables, since they are only deter-
mined as one of the class of trios: moreover the existence-theorem now
becomes doubtful, since we cannot know, except by the discovery of at least
one actual trio of this class, that there are any such trios at all. One actual trio,
however, would be a constant, and thus we require some method of giving
constant values to 0, number and succession. What we can show is that, if
there is one such trio, there are an infinite number of them. For by striking
out the first term from any class satisfying the conditions laid down concern-
ing number, we always obtain a class which again satisfies the conditions in
question. But even this statement, since the meaning of number is still in
question, must be differently worded if circularity is to be avoided. Moreover
we must ask ourselves: Is any process of abstraction from all systems satisfy-
ing the five axioms, such as Peano contemplates, logically possible? Every
term of a class is the term it is, and satisfies some proposition which becomes
false when another term of the class is substituted. There is therefore no term
of a class which has merely the properties defining the class and no others.
What Peano’s process of abstraction really amounts to is the consideration of
the class and variable members of it, to the exclusion of constant members.
For only a variable member of the class will have only the properties by
which the class is defined. Thus Peano does not succeed in indicating any
constant meaning for 0, number and succession, nor in showing that any
constant meaning is possible, since the existence-theorem is not proved. His
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only method, therefore, is to say that at least one such constant meaning can
be immediately perceived, but is not definable. This method is not logically
unsound, but it is wholly different from the impossible abstraction which he
suggests. And the proof of the mutual independence of his five primitive
propositions is only necessary in order to show that the definition of the class
of trios determined by them is not redundant. Redundancy is not a logical
error, but merely a defect of what may be called style. My object, in the above
account of cardinal numbers, has been to prove, from general Logic, that
there is one constant meaning which satisfies the above five propositions, and
that this constant meaning should be called number, or rather finite cardinal
number. And in this way, new indefinables and indemonstrables are wholly
avoided; for when we have shown that the class of trios in question has at
least one member, and when this member has been used to define number,
we easily show that the class of trios has an infinite number of members, and
we define the class by means of the five properties enumerated in Peano’s
primitive propositions. For the comprehension of the connection between
Mathematics and Logic, this point is of very great importance, and similar
points will occur constantly throughout the present work.

123. In order to bring out more clearly the difference between Peano’s
procedure and mine, I shall here repeat the definition of the class satisfying
his five primitive propositions, the definition of finite number and the proof,
in the case of finite numbers, of his five primitive propositions.

The class of classes satisfying his axioms is the same as the class of classes
whose cardinal number is α0, i.e. the class of classes, according to my theory,
which is α0. It is most simply defined as follows: α0 is the class of classes u each

of which is the domain of some one-one relation R (the relation of a term to
its successor) which is such that there is at least one term which succeeds no
other term, every term which succeeds has a successor and u is contained in
any class s which contains a term of u having no predecessors and also
contains the successor of every term of u which belongs to s. This definition
includes Peano’s five primitive propositions and no more. Thus of every such
class all the usual propositions in the arithmetic of finite numbers can be
proved: addition, multiplication, fractions, etc. can be defined, and the whole
of analysis can be developed, in so far as complex numbers are not involved.
But in this whole development, the meaning of the entities and relations
which occur is to a certain degree indeterminate, since the entities and
the relation with which we start are variable members of a certain class.
Moreover, in this whole development, nothing shows that there are such
classes as the definition speaks of.

In the logical theory of cardinals, we start from the opposite end. We first
define a certain class of entities, and then show that this class of entities
belongs to the class α0 above defined. This is done as follows. (1) 0 is the class
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of classes whose only member is the null-class. (2) A number is the class of
all classes similar to any one of themselves. (3) 1 is the class of all classes
which are not null and are such that, if x belongs to the class, the class
without x is the null-class; or such that, if x and y belong to the class, then
x and y are identical. (4) Having shown that if two classes be similar, and a
class of one term be added to each, the sums are similar, we define that, if n be
a number, n + 1 is the number resulting from adding a unit to a class of n
terms. (5) Finite numbers are those belonging to every class s to which
belongs 0, and to which n + 1 belongs if n belongs. This completes the
definition of finite numbers. We then have, as regards the five propositions
which Peano assumes: (1) 0 is a number. (2) Meaning n + 1 by the successor
of n, if n be a number, then n + 1 is a number. (3) If n + 1 = m + 1, then n = m.
(4) If n be any number, n + 1 is different from 0. (5) If s be a class, and 0
belongs to this class, and if when n belongs to it, n + 1 belongs to it, then all
finite numbers belong to it. Thus all the five essential properties are satisfied
by the class of finite numbers as above defined. Hence the class of classes
α0 has members, and the class finite number is one definite member of α0. There

is, therefore, from the mathematical standpoint, no need whatever of new
indefinables or indemonstrables in the whole of Arithmetic and Analysis.
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15
ADDITION OF TERMS AND

ADDITION OF CLASSES

124. H now briefly set forth the mathematical theory of cardinal
numbers, it is time to turn our attention to the philosophical questions raised
by this theory. I shall begin by a few preliminary remarks as to the distinction
between philosophy and mathematics, and as to the function of philosophy
in such a subject as the foundations of mathematics. The following observa-
tions are not necessarily to be regarded as applicable to other branches of
philosophy, since they are derived specially from the consideration of the
problems of logic.

The distinction of philosophy and mathematics is broadly one of point
of view: mathematics is constructive and deductive, philosophy is critical,
and in a certain impersonal sense controversial. Wherever we have deductive
reasoning, we have mathematics; but the principles of deduction, the recog-
nition of indefinable entities, and the distinguishing between such entities,
are the business of philosophy. Philosophy is, in fact, mainly a question of
insight and perception. Entities which are perceived by the so-called senses,
such as colours and sounds, are, for some reason, not commonly regarded as
coming within the scope of philosophy, except as regards the more abstract
of their relations; but it seems highly doubtful whether any such exclusion
can be maintained. In any case, however, since the present work is essentially
unconcerned with sensible objects, we may confine our remarks to entities
which are not regarded as existing in space and time. Such entities, if we
are to know anything about them, must be also in some sense perceived,
and must be distinguished one from another; their relations also must be in
part immediately apprehended. A certain body of indefinable entities and
indemonstrable propositions must form the starting-point for any mathemat-



ical reasoning; and it is this starting-point that concerns the philosopher.
When the philosopher’s work has been perfectly accomplished, its results
can be wholly embodied in premisses from which deduction may proceed.
Now it follows from the very nature of such inquiries that results may be
disproved, but can never be proved. The disproof will consist in pointing out
contradictions and inconsistencies; but the absence of these can never
amount to proof. All depends, in the end, upon immediate perception; and
philosophical argument, strictly speaking, consists mainly of an endeavour to
cause the reader to perceive what has been perceived by the author. The
argument, in short, is not of the nature of proof, but of exhortation. Thus the
question of the present chapter: Is there any indefinable set of entities com-
monly called numbers, and different from the set of entities above defined? is
an essentially philosophical question, to be settled by inspection rather than
by accurate chains of reasoning.

125. In the present chapter, we shall examine the question whether the
above definition of cardinal numbers in any way presupposes some more
fundamental sense of number. There are several ways in which this may be
supposed to be the case. In the first place, the individuals which compose
classes seem to be each in some sense one, and it might be thought that a
one-one relation could not be defined without introducing the number 1.
In the second place, it may very well be questioned whether a class which
has only one term can be distinguished from that one term. And in the
third place, it may be held that the notion of class presupposes number in
a sense different from that above defined: it may be maintained that classes
arise from the addition of individuals, as indicated by the word and, and that
the logical addition of classes is subsequent to this addition of individuals.
These questions demand a new inquiry into the meaning of one and of
class, and here, I hope, we shall find ourselves aided by the theories set forth
in Part I.

As regards the fact that any individual or term is in some sense one, this is
of course undeniable. But it does not follow that the notion of one is presup-
posed when individuals are spoken of: it may be, on the contrary, that the
notion of term or individual is the fundamental one, from which that of one is
derived. This view was adopted in Part I, and there seems no reason to reject
it. And as for one-one relations, they are defined by means of identity, with-
out any mention of one, as follows: R is a one-one relation if, when x and x'
have the relation R to y, and x has the relation R to y and y' , then x and x'  are
identical, and so are y and y' . It is true that here x, y, x' , y'  are each one term, but
this is not (it would seem) in any way presupposed in the definition. This
disposes (pending a new inquiry into the nature of classes) of the first of the
above objections.

The next question is as to the distinction between a class containing only
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one member, and the one member which it contains. If we could identify a
class with its defining predicate or class-concept, no difficulty would arise on
this point. When a certain predicate attaches to one and only one term, it is
plain that that term is not identical with the predicate in question. But if two
predicates attach to precisely the same terms, we should say that, although the
predicates are different, the classes which they define are identical, i.e. there is
only one class which both define. If, for example, all featherless bipeds are
men, and all men are featherless bipeds, the classes men and featherless bipeds are
identical, though man differs from featherless biped. This shows that a class cannot
be identified with its class-concept or defining predicate. There might seem
to be nothing left except the actual terms, so that when there is only one
term, that term would have to be identical with the class. Yet for many formal
reasons this view cannot give the meaning of the symbols which stand for
classes in symbolic logic. For example, consider the class of numbers which,
added to 3, give 5. This is a class containing no terms except the number 2.
But we can say that 2 is a member of this class, i.e. it has to the class that
peculiar indefinable relation which terms have to the classes they belong to.
This seems to indicate that the class is different from the one term. The point
is a prominent one in Peano’s Symbolic Logic, and is connected with his
distinction between the relation of an individual to its class and the relation
of a class to another in which it is contained. Thus the class of numbers
which, added to 3, give 5, is contained in the class of numbers, but is not a
number; whereas 2 is a number, but is not a class contained in the class of
numbers. To identify the two relations which Peano distinguishes is to cause
havoc in the theory of infinity, and to destroy the formal precision of many
arguments and definitions. It seems, in fact, indubitable that Peano’s distinc-
tion is just, and that some way must be found of discriminating a term from
a class containing that term only.

126. In order to decide this point, it is necessary to pass to our third
difficulty, and reconsider the notion of class itself. This notion appears to be
connected with the notion of denoting, explained in Part I, Chapter 5. We there
pointed out five ways of denoting, one of which we called the numerical
conjunction. This was the kind indicated by all. This kind of conjunction appears
to be that which is relevant in the case of classes. For example, man being the
class-concept, all men will be the class. But it will not be all men quâ concept
which will be the class, but what this concept denotes, i.e. certain terms
combined in the particular way indicated by all. The way of combination is
essential, since any man or some man is plainly not the class, though either
denotes combinations of precisely the same terms. It might seem as though,
if we identify a class with the numerical conjunction of its terms, we must
deny the distinction of a term from a class whose only member is that term.
But we found in Chapter 10 that a class must be always an object of a different
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logical type from its members, and that, in order to avoid the proposition xεx,
this doctrine must be extended even to classes which have only one member.
How far this forbids us to identify classes with numerical conjunctions, I do
not profess to decide; in any case, the distinction between a term and the
class whose only member it is must be made, and yet classes must be taken
extensionally to the degree involved in their being determinate when their
members are given. Such classes are called by Frege Werthverläufe; and cardinal
numbers are to be regarded as classes in this sense.

127. There is still, however, a certain difficulty, which is this: a class seems
to be not many terms, but to be itself a single term, even when many terms
are members of the class. This difficulty would seem to indicate that the class
cannot be identified with all its members, but is rather to be regarded as the
whole which they compose. In order, however, to state the difficulty in an
unobjectionable manner, we must exclude unity and plurality from the
statement of it, since these notions were to be defined by means of the notion
of class. And here it may be well to clear up a point which is likely to occur
to the reader. Is the notion of one presupposed every time we speak of a term?
A term, it may be said, means one term, and thus no statement can be made
concerning a term without presupposing one. In some sense of one, this prop-
osition seems indubitable. Whatever is, is one: being and one, as Leibniz
remarks, are convertible terms.* It is difficult to be sure how far such state-
ments are merely grammatical. For although whatever is, is one, yet it is
equally true that whatever are, are many. But the truth seems to be that the
kind of object which is a class, i.e. the kind of object denoted by all men, or by
any concept of a class, is not one except where the class has only one term, and
must not be made a single logical subject. There is, as we said in Part I,
Chapter 6, in simple cases an associated single term which is the class as a
whole; but this is sometimes absent, and is in any case not identical with the
class as many. But in this view there is not a contradiction, as in the theory
that verbs and adjectives cannot be made subjects; for assertions can be made
about classes as many, but the subject of such assertions is many, not one
only as in other assertions. “Brown and Jones are two of Miss Smith’s suitors”
is an assertion about the class “Brown and Jones”, but not about this class
considered as a single term. Thus one-ness belongs, in this view, to a certain
type of logical subject, but classes which are not one may yet have assertions
made about them. Hence we conclude that one-ness is implied, but not
presupposed, in statements about a term, and “a term” is to be regarded as an
indefinable.

128. It seems necessary, however, to make a distinction as regards the
use of one. The sense in which every object is one, which is apparently involved

* Ed. Gerhardt, , p. 300.
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in speaking of an object, is, as Frege urges,* a very shadowy sense, since it is
applicable to everything alike. But the sense in which a class may be said to
have one member is quite precise. A class u has one member when u is not
null, and “x and y are u’s” implies “x is identical with y”. Here the one-ness
is a property of the class, which may therefore be called a unit-class. The x
which is its only member may be itself a class of many terms, and this shows
that the sense of one involved in one term or a term is not relevant to Arithmetic,
for many terms as such may be a single member of a class of classes. One,
therefore, is not to be asserted of terms, but of classes having one member in
the above-defined sense; i.e. “u is one”, or better “u is a unit” means “u is not
null, and ‘x and y are u’s’ implies ‘x and y are identical’ ”. The member of u, in
this case, will itself be none or one or many if u is a class of classes; but if u is
a class of terms, the member of u will be neither none nor one nor many, but
simply a term.

129. The commonly received view, as regards finite numbers, is that they
result from counting, or, as some philosophers would prefer to say, from
synthesizing. Unfortunately, those who hold this view have not analysed the
notion of counting: if they had done so, they would have seen that it is very
complex, and presupposes the very numbers which it is supposed to generate.

The process of counting has, of course, a psychological aspect, but this is
quite irrelevant to the theory of Arithmetic. What I wish now to point out is
the logical process involved in the act of counting, which is as follows. When
we say one, two, three, etc., we are necessarily considering some one-one
relation which holds between the numbers used in counting and the objects
counted. What is meant by the “one, two, three” is that the objects indicated
by these numbers are their correlates with respect to the relation which we
have in mind. (This relation, by the way, is usually extremely complex, and is
apt to involve a reference to our state of mind at the moment.) Thus we
correlate a class of objects with a class of numbers; and the class of numbers
consists of all the numbers from 1 up to some number n. The only immediate
inference to be drawn from this correlation is, that the number of objects is
the same as the number of numbers from 1 up to n. A further process is
required to show that this number of numbers is n, which is only true, as a
matter of fact, when n is finite, or, in a certain wider sense, when n is α0 (the
smallest of infinite numbers). Moreover the process of counting gives us no
indication as to what the numbers are, as to why they form a series, or as to
how it is to be proved (in the cases where it is true) that there are n numbers
from 1 up to n. Hence counting is irrelevant in the foundations of Arithmetic;
and with this conclusion, it may be dismissed until we come to order and
ordinal numbers.

* Grundlagen der Arithmetik, Breslau, 1884, p. 40.
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130. Let us return to the notion of the numerical conjunction. It is plain
that it is of such objects as “A and B”, “A and B and C”, that numbers other
than one are to be asserted. We examined such objects, in Part I, in relation to
classes, with which we found them to be identical. Now we must investigate
their relation to numbers and plurality.

The notion to be now examined is the notion of a numerical conjunction
or, more shortly, a collection. This is not to be identified, to begin with, with
the notion of a class, but is to receive a new and independent treatment. By a
collection I mean what is conveyed by “A and B” or “A and B and C”, or any
other enumeration of definite terms. The collection is defined by the actual
mention of the terms, and the terms are connected by and. It would seem that
and represents a fundamental way of combining terms, and it might be urged
that just this way of combination is essential if anything is to result of which a
number other than 1 is to be asserted. Collections do not presuppose num-
bers, since they result simply from the terms together with and: they could
only presuppose numbers in the particular case where the terms of the collection
themselves presupposed numbers. There is a grammatical difficulty which,
since no method exists of avoiding it, must be pointed out and allowed for.
A collection, grammatically, is one, whereas A and B, or A and B and C, are
essentially many. The strict meaning of collection is the whole composed of
many, but since a word is needed to denote the many themselves, I choose to
use the word collection in this sense, so that a collection, according to the usage
here adopted, is many and not one.

As regards what is meant by the combination indicated by and, it gives
what we called before the numerical conjunction. That is A and B is what is
denoted by the concept of a class of which A and B are the only terms, and is
precisely A and B denoted in the way which is indicated by all. We may say,
if u be the class-concept corresponding to a class of which A and B are the
only terms, that “all u’s” is a concept which denotes the terms A, B combined
in a certain way, and A and B are those terms combined in precisely that way.
Thus A and B appears indistinguishable from the class, though distinguishable
from the class-concept and from the concept of the class. Hence if u be a class
of more than one term, it seems necessary to hold that u is not one, but many,
since u is distinguished both from the class-concept and from the whole
composed of the terms of u.* Thus we are brought back to the dependence
of numbers upon classes; and where it is not said that the classes in question
are finite, it is practically necessary to begin with class-concepts and the

* A conclusive reason against identifying a class with the whole composed of its terms is, that
one of these terms may be the class itself, as in the case “class is a class”, or rather “classes are one
among classes”. The logical type of the class class is of an infinite order, and therefore the usual
objection to “xεx” does not apply in this case.
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theory of denoting, not with the theory of and which has just been given. The
theory of and applies practically only to finite numbers, and gives to finite
numbers a position which is different, at least psychologically, from that of
infinite numbers. There are, in short, two ways of defining particular finite
classes, but there is only one practicable way of defining particular infinite
classes, namely by intension. It is largely the habit of considering classes
primarily from the side of extension which has hitherto stood in the way of
a correct logical theory of infinity.

131. Addition, it should be carefully observed, is not primarily a method
of forming numbers, but of forming classes or collections. If we add B to
A, we do not obtain the number 2, but we obtain A and B, which is a
collection of two terms, or a couple. And a couple is defined as follows: u is a
couple if u has terms, and if, if x be a term of u, there is a term of u different
from x, but if x, y be different terms of u, and z differs from x and from y, then
every class to which z belongs differs from u. In this definition, only diversity
occurs, together with the notion of a class having terms. It might no doubt be
objected that we have to take just two terms x, y in the above definition: but as
a matter of fact any finite number can be defined by induction without
introducing more than one term. For, if n has been defined, a class u has n + 1
terms when, if x be a term of u, the number of terms of u which differ from x
is n. And the notion of the arithmetical sum n + 1 is obtained from that of the
logical sum of a class of n terms and a class of one term. When we say
1 + 1 = 2, it is not possible that we should mean 1 and 1, since there is only
one 1: if we take 1 as an individual, 1 and 1 is nonsense, while if we take it as
a class, the rule of Symbolic Logic applies, according to which 1 and 1 is 1.
Thus in the corresponding logical proposition, we have on the left-hand side
terms of which 1 can be asserted, and on the right-hand side we have a
couple. That is, 1 + 1 = 2 means “one term and one term are two terms”, or,
stating the proposition in terms of variables, “if u has one term and v has one
term, and u differs from v, their logical sum has two terms”. It is to be
observed that on the left-hand side we have a numerical conjunction of
propositions, while on the right-hand side we have a proposition concerning
a numerical conjunction of terms. But the true premiss, in the above prop-
osition, is not the conjunction of the three propositions, but their logical
product. This point, however, has little importance in the present connection.

132. Thus the only point which remains is this: Does the notion of a
term presuppose the notion of 1? For we have seen that all numbers except 0
involve in their definitions the notion of a term, and if this in turn involves
1, the definition of 1 becomes circular, and 1 will have to be allowed to be
indefinable. This objection to our procedure is answered by the doctrine of
§ 128, that a term is not one in the sense which is relevant to Arithmetic,
or in the sense which is opposed to many. The notion of any term is a logical
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indefinable, presupposed in formal truth and in the whole theory of the
variable; but this notion is that of the variable conjunction of terms, which in
no way involves the number 1. There is therefore nothing circular in defining
the number 1 by means of the notion of a term or of any term.

To sum up: Numbers are classes of classes, namely of all classes similar to a
given class. Here classes have to be understood in the sense of numerical
conjunctions in the case of classes having many terms; but a class may have no
terms, and a class of one term is distinct from that term, so that a class is not
simply the sum of its terms. Only classes have numbers; of what is commonly
called one object, it is not true, at least in the sense required, to say that it is
one, as appears from the fact that the object may be a class of many terms.
“One object” seems to mean merely “a logical subject in some proposition”.
Finite numbers are not to be regarded as generated by counting, which on
the contrary presupposes them; and addition is primarily logical addition,
first of propositions, then of classes, from which latter arithmetical addition
is derivative. The assertion of numbers depends upon the fact that a class of
many terms can be a logical subject without being arithmetically one. Thus it
appeared that no philosophical argument could overthrow the mathematical
theory of cardinal numbers set forth in Chapters 11 to 14.
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16
WHOLE AND PART

133. F the comprehension of analysis, it is necessary to investigate the
notion of whole and part, a notion which has been wrapped in obscurity—
though not without certain more or less valid logical reasons—by the writers
who may be roughly called Hegelian. In the present chapter I shall do my best
to set forth a straightforward and non-mystical theory of the subject, leaving
controversy as far as possible on one side. It may be well to point out, to
begin with, that I shall use the word whole as strictly correlative to part, so that
nothing will be called a whole unless it has parts. Simple terms, such as
points, instants, colours, or the fundamental concepts of logic, will not be
called wholes.

Terms which are not classes may be, as we saw in the preceding chapter, of
two kinds. The first kind are simple: these may be characterized, though not
defined, by the fact that the propositions asserting the being of such terms
have no presuppositions. The second kind of terms that are not classes, on the
other hand, are complex, and in their case, their being presupposes the being
of certain other terms. Whatever is not a class is called a unit, and thus units
are either simple or complex. A complex unit is a whole; its parts are other
units, whether simple or complex, which are presupposed in it. This suggests
the possibility of defining whole and part by means of logical priority, a
suggestion which, though it must be ultimately rejected, it will be necessary
to examine at length.

134. Wherever we have a one-sided formal implication, it may be urged,
if the two propositional functions involved are obtainable one from the other
by the variation of a single constituent, then what is implied is simpler than
what implies it. Thus “Socrates is a man” implies “Socrates is a mortal”, but
the latter proposition does not imply the former: also the latter proposition is



simpler than the former, since man is a concept of which mortal forms part.
Again, if we take a proposition asserting a relation of two entities A and B, this
proposition implies the being of A and the being of B, and the being of the
relation, none of which implies the proposition, and each of which is simpler
than the proposition. There will only be equal complexity—according to the
theory that intension and extension vary inversely as one another—in cases
of mutual implication, such as “A is greater than B” and “B is less than A”.
Thus we might be tempted to set up the following definition: A is said to be
part of B when B is implies A is, but A is does not imply B is. If this definition
could be maintained, whole and part would not be a new indefinable, but
would be derivative from logical priority. There are, however, reasons why
such an opinion is untenable.

The first objection is, that logical priority is not a simple relation: implica-
tion is simple, but logical priority of A to B requires not only “B implies A”,
but also “A does not imply B”. (For convenience, I shall say that A implies B
when A is implies B is.) This state of things, it is true, is realized when A is part
of B; but it seems necessary to regard the relation of whole to part as some-
thing simple, which must be different from any possible relation of one
whole to another which is not part of it. This would not result from the above
definition. For example, “A is greater and better than B” implies “B is less than
A”, but the converse implication does not hold: yet the latter proposition is
not part of the former.*

Another objection is derived from such cases as redness and colour. These
two concepts appear to be equally simple: there is no specification, other and
simpler than redness itself, which can be added to colour to produce redness,
in the way in which specifications will turn mortal into man. Hence A is red is no
more complex than A is coloured, although there is here a one-sided implica-
tion. Redness, in fact, appears to be (when taken to mean one particular
shade) a simple concept, which, although it implies colour, does not contain
colour as a constituent. The inverse relation of extension and intension, there-
fore, does not hold in all cases. For these reasons, we must reject, in spite of
their very close connection, the attempt to define whole and part by means of
implication.

135. Having failed to define wholes by logical priority, we shall not, I
think, find it possible to define them at all. The relation of whole and part is,
it would seem, an indefinable and ultimate relation, or rather, it is several
relations, often confounded, of which one at least is indefinable. The relation
of a part to a whole must be differently discussed according to the nature
both of the whole and of the parts. Let us begin with the simplest case, and
proceed gradually to those that are more elaborate.

* See Part IV, Chap. 27.
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(1) Whenever we have any collection of many terms, in the sense explained
in the preceding chapter, there the terms, provided there is some non-
quadratic propositional function which they all satisfy, together form a
whole. In the preceding chapter we regarded the class as formed by all the
terms, but usage seems to show no reason why the class should not equally be
regarded as the whole composed of all the terms in those cases where there is
such a whole. The first is the class as many, the second the class as one. Each of
the terms then has to the whole a certain indefinable relation,* which is one
meaning of the relation of whole and part. The whole is, in this case, a whole
of a particular kind, which I shall call an aggregate: it differs from wholes of
other kinds by the fact that it is definite as soon as its constituents are known.

(2) But the above relation holds only between the aggregate and the single
terms of the collection composing the aggregate: the relation to our aggre-
gate of aggregates containing some but not all the terms of our aggregate, is a
different relation, though also one which would be commonly called a rela-
tion of part to whole. For example, the relation of the Greek nation to the
human race is different from that of Socrates to the human race; and the
relation of the whole of the primes to the whole of the numbers is different
from that of 2 to the whole of the numbers. This most vital distinction is due
to Peano.† The relation of a subordinate aggregate to one in which it is
contained can be defined, as was explained in Part I, by means of implication
and the first kind of relation of part to whole. If u, v be two aggregates, and for
every value of x “x is a u” implies “x is a v”, then, provided the converse
implication does not hold, u is a proper part (in the second sense) of v. This
sense of whole and part, therefore, is derivative and definable.

(3) But there is another kind of whole, which may be called a unity. Such a
whole is always a proposition, though it need not be an asserted proposition.
For example, “A differs from B”, or “A’s difference from B”, is a complex of
which the parts are A and B and difference; but this sense of whole and part is
different from the previous senses, since “A differs from B” is not an aggre-
gate, and has no parts at all in the first two senses of parts. It is parts in this
third sense that are chiefly considered by philosophers, while the first two
senses are those usually relevant in symbolic logic and mathematics. This
third sense of part is the sense which corresponds to analysis: it appears to be
indefinable, like the first sense—i.e., I know no way of defining it. It must be
held that the three senses are always to be kept distinct: i.e., if A is part of B in
one sense, while B is part of C in another, it must not be inferred (in general)

* Which may, if we choose, be taken as Peano’s ε. The objection to this meaning for ε is that not
every propositional function defines a whole of the kind required. The whole differs from the
class as many by being of the same type as its terms.
† Cf. e.g. F. 1901, § 1, Prop. 4. 4, note (p. 12).
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that A is part of C in any of the three senses. But we may make a fourth general
sense, in which anything which is part in any sense, or part in one sense of
part in another, is to be called a part. This sense, however, has seldom, if ever,
any utility in actual discussion.

136. The difference between the kinds of wholes is important, and illus-
trates a fundamental point in Logic. I shall therefore repeat it in other words.
Any collection whatever, if defined by a non-quadratic propositional func-
tion, though as such it is many, yet composes a whole, whose parts are the
terms of the collection or any whole composed of some of the terms of the
collection. It is highly important to realize the difference between a whole
and all its parts, even in this case where the difference is a minimum. The
word collection, being singular, applies more strictly to the whole than to all
the parts; but convenience of expression has led me to neglect grammar, and
speak of all the terms as the collection. The whole formed of the terms of the
collection I call an aggregate. Such a whole is completely specified when all its
simple constituents are specified; its parts have no direct connection inter se,
but only the indirect connection involved in being parts of one and the same
whole. But other wholes occur, which contain relations or what may be
called predicates, not occurring simply as terms in a collection, but as relating
or qualifying. Such wholes are always propositions. These are not completely
specified when their parts are all known. Take, as a simple instance, the
proposition “A differs from B”, where A and B are simple terms. The simple
parts of this whole are A and B and difference; but the enumeration of these
three does not specify the whole, since there are two other wholes composed
of the same parts, namely the aggregate formed of A and B and difference, and
the proposition “B differs from A”. In the former case, although the whole
was different from all its parts, yet it was completely specified by specifying
its parts; but in the present case, not only is the whole different, but it is not
even specified by specifying its parts. We cannot explain this fact by saying
that the parts stand in certain relations which are omitted in the analysis; for
in the above case of “A differs from B”, the relation was included in the
analysis. The fact seems to be that a relation is one thing when it relates and
another when it is merely enumerated as a term in a collection. There are
certain fundamental difficulties in this view, which however I leave aside as
irrelevant to our present purpose.*

Similar remarks apply to A is, which is a whole composed of A and Being,
but is different from the whole formed of the collection A and Being. A is one
raises the same point, and so does A and B are two. Indeed all propositions raise
this point, and we may distinguish them among complex terms by the fact
that they raise it.

* See Part I, Chap. 4, esp. § 54.
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Thus we see that there are two very different classes of wholes, of which
the first will be called aggregates, while the second will be called unities. (Unit is a
word having a quite different application, since whatever is a class which is
not null, and is such that, if x and y be members of it, x and y are identical, is a
unit.) Each class of wholes consists of terms not simply equivalent to all their
parts; but in the case of unities, the whole is not even specified by its parts.
For example, the parts A, greater than, B, may compose simply an aggregate, or
either of the propositions “A is greater than B”, “B is greater than A”. Unities
thus involve problems from which aggregates are free. As aggregates are more
specially relevant to mathematics than unities, I shall in future generally
confine myself to the former.

137. It is important to realize that a whole is a new single term, distinct
from each of its parts and from all of them: it is one, not many,* and is related
to the parts, but has a being distinct from theirs. The reader may perhaps be
inclined to doubt whether there is any need of wholes other than unities; but
the following reasons seem to make aggregates logically unavoidable. (1) We
speak of one collection, one manifold, etc., and it would seem that in all
these cases there really is something that is a single term. (2) The theory of
fractions, as we shall shortly see, appears to depend partly upon aggregates.
(3) We shall find it necessary, in the theory of extensive quantity, to assume
that aggregates, even when they are infinite, have what may be called magni-
tude of divisibility, and that two infinite aggregates may have the same num-
ber of terms without having the same magnitude of divisibility: this theory,
we shall find, is indispensable in metrical geometry. For these reasons, it
would seem, the aggregate must be admitted as an entity distinct from all its
constituents, and having to each of them a certain ultimate and indefinable
relation.

138. I have already touched on a very important logical doctrine, which
the theory of whole and part brings into prominence—I mean the doctrine
that analysis is falsification. Whatever can be analysed is a whole, and we have
already seen that analysis of wholes is in some measure falsification. But it is
important to realize the very narrow limits of this doctrine. We cannot con-
clude that the parts of a whole are not really its parts, nor that the parts are
not presupposed in the whole in a sense in which the whole is not presup-
posed in the parts, nor yet that the logically prior is not usually simpler than
the logically subsequent. In short, though analysis gives us the truth, and
nothing but the truth, it can never give us the whole truth. This is the only
sense in which the doctrine is to be accepted. In any wider sense, it becomes
merely a cloak for laziness, by giving an excuse to those who dislike the
labour of analysis.

* I.e. it is of the same logical type as its simple parts.
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139. It is to be observed that what we called classes as one may always,
except where they contain one term or none, or are defined by quadratic
propositional functions, be interpreted as aggregates. The logical product of
two classes as one will be the common part (in the second of our three
senses) of the two aggregates, and their sum will be the aggregate which is
identical with or part of (again in the second sense) any aggregate of which
the two given aggregates are parts, but is neither identical with nor part of
any other aggregate.* The relation of whole and part, in the second of our
three senses, is transitive and asymmetrical, but is distinguished from other
such relations by the fact of allowing logical addition and multiplication. It is
this peculiarity which forms the basis of the Logical Calculus as developed by
writers previous to Peano and Frege (including Schröder).† But wherever
infinite wholes are concerned it is necessary, and in many other cases it
is practically unavoidable, to begin with a class-concept or predicate or
propositional function, and obtain the aggregate from this. Thus the theory
of whole and part is less fundamental logically than that of predicates or
class-concepts or propositional functions; and it is for this reason that the
consideration of it has been postponed to so late a stage.

* Cf. Peano, F. 1901, § 2, Prop. 1·0 (p. 19).
† See e.g. his Algebra der Logik, Vol.  (Leipzig, 1890).
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17
INFINITE WHOLES

140. I the present chapter the special difficulties of infinity are not to
be considered: all these are postponed to Part V. My object now is to consider
two questions: (1) Are there any infinite wholes? (2) If so, must an infinite
whole which contains parts in the second of our three senses be an aggregate
of parts in the first sense? In order to avoid the reference to the first, second
and third senses, I propose henceforward to use the following phraseology: a
part in the first sense is to be called a term of the whole;* a part in the second
sense is to be called a part simply; and a part in the third sense will be called a
constituent of the whole. Thus terms and parts belong to aggregates, while
constituents belong to unities. The consideration of aggregates and unities,
where infinity is concerned, must be separately conducted. I shall begin with
aggregates.

An infinite aggregate is an aggregate corresponding to an infinite class,
i.e. an aggregate which has an infinite number of terms. Such aggregates are
defined by the fact that they contain parts which have as many terms as
themselves. Our first question is: Are there any such aggregates?

Infinite aggregates are often denied. Even Leibniz, favourable as he was to
the actual infinite, maintained that, where infinite classes are concerned, it is
possible to make valid statements about any term of the class, but not about all
the terms, nor yet about the whole which (as he would say) they do not
compose.† Kant, again, has been much criticized for maintaining that space is
an infinite given whole. Many maintain that every aggregate must have a
finite number of terms, and that where this condition is not fulfilled there is

* A part in this sense will also be sometimes called a simple or indivisible part.
† Cf. Phil. Werke, ed. Gerhardt, , p. 315; also , p. 338, , pp. 144–5.



no true whole. But I do not believe that this view can be successfully
defended. Among those who deny that space is a given whole, not a few
would admit that what they are pleased to call a finite space may be a given
whole, for instance, the space in a room, a box, a bag or a book-case. But
such a space is only finite in a psychological sense, i.e. in the sense that we can
take it in at a glance: it is not finite in the sense that it is an aggregate of a
finite number of terms, nor yet a unity of a finite number of constituents.
Thus to admit that such a space can be a whole is to admit that there are
wholes which are not finite. (This does not follow, it should be observed,
from the admission of material objects apparently occupying finite spaces, for
it is always possible to hold that such objects, though apparently continuous,
consist really of a large but finite number of material points.) With respect to
time, the same argument holds: to say, for example, that a certain length of
time elapses between sunrise and sunset, is to admit an infinite whole, or
at least a whole which is not finite. It is customary with philosophers to
deny the reality of space and time, and to deny also that, if they were real,
they would be aggregates. I shall endeavour to show, in Part VI, that these
denials are supported by a faulty logic, and by the now resolved difficulties of
infinity. Since science and common sense join in the opposite view, it will
therefore be accepted; and thus, since no argument à priori can now be
adduced against infinite aggregates, we derive from space and time an
argument in their favour.

Again, the natural numbers, or the fractions between 0 and 1, or the sum-
total of all colours, are infinite, and seem to be true aggregates: the position
that, although true propositions can be made about any number, yet there are
no true propositions about all numbers, could be supported formerly, as
Leibniz supported it, by the supposed contradictions of infinity, but has
become, since Cantor’s solution of these contradictions, a wholly unneces-
sary paradox. And where a collection can be defined by a non-quadratic
propositional function, this must be held, I think, to imply that there is a
genuine aggregate composed of the terms of the collection. It may be
observed also that, if there were no infinite wholes, the word Universe would
be wholly destitute of meaning.

141. We must, then, admit infinite aggregates. It remains to ask a more
difficult question, namely: Are we to admit infinite unities? The question may
also be stated in the form: Are there any infinitely complex propositions? This
question is one of great logical importance, and we shall require much care
both in stating and in discussing it.

The first point is to be clear as to the meaning of an infinite unity. A unity
will be infinite when the aggregate of all its constituents is infinite, but this
scarcely constitutes the meaning of an infinite unity. In order to obtain the
meaning, we must introduce the notion of a simple constituent. We may
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observe, to begin with, that a constituent of a constituent is a constituent of
the unity, i.e. this form of the relation of part to whole, like the second, but
unlike the first form, is transitive. A simple constituent may now be defined as
a constituent which itself has no constituents. We may assume, in order to
eliminate the question concerning aggregates, that no constituent of our
unity is to be an aggregate, or, if there be a constituent which is an aggregate,
then this constituent is to be taken as simple. (This view of an aggregate is
rendered legitimate by the fact that an aggregate is a single term, and does not
have that kind of complexity which belongs to propositions.) With this the
definition of a simple constituent is completed.

We may now define an infinite unity as follows: A unity is finite when, and
only when, the aggregate of its simple constituents is finite. In all other cases
a unity is said to be infinite. We have to inquire whether there are any such
unities.*

If a unity is infinite, it is possible to find a constituent unity, which again
contains a constituent unity, and so on without end. If there be any unities of
this nature, two cases are primâ facie possible. (1) There may be simple con-
stituents of our unity, but these must be infinite in number. (2) There may be
no simple constituents at all, but all constituents, without exception, may
be complex; or, to take a slightly more complicated case, it may happen
that, although there are some simple constituents, yet these and the unities
composed of them do not constitute all the constituents of the original unity.
A unity of either of these two kinds will be called infinite. The two kinds,
though distinct, may be considered together.

An infinite unity will be an infinitely complex proposition: it will not be
analysable in any way into a finite number of constituents. It thus differs
radically from assertions about infinite aggregates. For example, the prop-
osition “any number has a successor” is composed of a finite number of
constituents: the number of concepts entering into it can be enumerated, and
in addition to these there is an infinite aggregate of terms denoted in the way
indicated by any, which counts as one constituent. Indeed it may be said that
the logical purpose which is served by the theory of denoting is, to enable
propositions of finite complexity to deal with infinite classes of terms: this
object is effected by all, any and every, and if it were not effected, every general
proposition about an infinite class would have to be infinitely complex. Now,
for my part, I see no possible way of deciding whether propositions of
infinite complexity are possible or not; but this at least is clear, that all the
propositions known to us (and, it would seem, all propositions that we can
know) are of finite complexity. It is only by obtaining such propositions
about infinite classes that we are enabled to deal with infinity; and it is a

* In Leibniz’s philosophy, all contingent things are infinite unities.

146 principles of mathematics



remarkable and fortunate fact that this method is successful. Thus the ques-
tion whether or not there are infinite unities must be left unresolved; the
only thing we can say, on this subject, is that no such unities occur in any
department of human knowledge, and therefore none such are relevant to the
foundations of mathematics.

142. I come now to our second question: Must an infinite whole which
contains parts be an aggregate of terms? It is often held, for example, that
spaces have parts, and can be divided ad lib., but that they have no simple parts,
i.e. they are not aggregates of points. The same view is put forward as regards
periods of time. Now it is plain that, if our definition of a part by means of
terms (i.e. of the second sense of part by means of the first) was correct, the
present problem can never arise, since parts only belong to aggregates. But it
may be urged that the notion of part ought to be taken as an indefinable, and
that therefore it may apply to other wholes than aggregates. This will require
that we should add to aggregates and unities a new kind of whole, corres-
ponding to the second sense of part. This will be a whole which has parts in
the second sense, but is not an aggregate or a unity. Such a whole seems to be
what many philosophers are fond of calling a continuum, and space and time
are often held to afford instances of such a whole.

Now it may be admitted that, among infinite wholes, we find a distinction
which seems relevant, but which, I believe, is in reality merely psychological.
In some cases, we feel no doubt as to the terms, but great doubt as to the
whole, while in others, the whole seems obvious, but the terms seem a
precarious inference. The ratios between 0 and 1, for instance, are certainly
indivisible entities; but the whole aggregate of ratios between 0 and 1 seems
to be of the nature of a construction or inference. On the other hand, sensible
spaces and times seem to be obvious wholes; but the inference to indivisible
points and instants is so obscure as to be often regarded as illegitimate. This
distinction seems, however, to have no logical basis, but to be wholly
dependent on the nature of our senses. A slight familiarity with coordinate
geometry suffices to make a finite length seem strictly analogous to the
stretch of fractions between 0 and 1. It must be admitted, nevertheless, that in
cases where, as with the fractions, the indivisible parts are evident on inspec-
tion, the problem with which we are concerned does not arise. But to infer
that all infinite wholes have indivisible parts merely because this is known to
be the case with some of them, would certainly be rash. The general problem
remains, therefore, namely: Given an infinite whole, is there a universal
reason for supposing that it contains indivisible parts?

143. In the first place, the definition of an infinite whole must not be
held to deny that it has an assignable number of simple parts which do not
reconstitute it. For example, the stretch of fractions from 0 to 1 has three
simple parts, ⅓, ½, ⅔. But these do not reconstitute the whole, that is, the
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whole has other parts which are not parts of the assigned parts or of the sum
of the assigned parts. Again, if we form a whole out of the number 1 and a
line an inch long, this whole certainly has one simple part, namely 1. Such a
case as this may be excluded by asking whether every part of our whole either
is simple or contains simple parts. In this case, if our whole be formed by
adding n simple terms to an infinite whole, the n simple terms can be taken
away, and the question can be asked concerning the infinite whole which is
left. But again, the meaning of our question seems hardly to be: Is our infinite
whole an actual aggregate of innumerable simple parts? This is doubtless an
important question, but it is subsequent to the question we are asking, which
is: Are there always simple parts at all? We may observe that, if a finite
number of simple parts be found, and taken away from the whole, the
remainder is always infinite. For if not, it would have a finite number; and
since the term of two finite numbers is finite, the original whole would then
be finite. Hence if it can be shown that every infinite whole contains one
simple part, it follows that it contains an infinite number of them. For, taking
away the one simple part, the remainder is an infinite whole, and therefore
has a new simple part, and so on. It follows that every part of the whole either
is simple, or contains simple parts, provided that every infinite whole has at
least one simple part. But it seems as hard to prove this as to prove that every
infinite whole is an aggregate.

If an infinite whole be divided into a finite number of parts, one at least of
these parts must be infinite. If this be again divided, one of its parts must be
infinite, and so on. Thus no finite number of divisions will reduce all the
parts to finitude. Successive divisions give an endless series of parts, and in
such endless series there is (as we shall see in Parts IV and V) no manner of
contradiction. Thus there is no method of proving by actual division that
every infinite whole must be an aggregate. So far as this method can show,
there is no more reason for simple constituents of infinite wholes than for a
first moment in time or a last finite number.

But perhaps a contradiction may emerge in the present case from the
connection of whole and part with logical priority. It certainly seems a
greater paradox to maintain that infinite wholes do not have indivisible parts
than to maintain that there is no first moment in time or furthest limit to
space. This might be explained by the fact that we know many simple terms,
and some infinite wholes undoubtedly composed of simple terms, whereas
we know of nothing suggesting a beginning of time or space. But it may
perhaps have a more solid basis in logical priority. For the simpler is always
implied in the more complex, and therefore there can be no truth about the
more complex unless there is truth about the simpler. Thus in the analysis
of our infinite whole, we are always dealing with entities which would not be
at all unless their constituents were. This makes a real difference from the
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time-series, for example: a moment does not logically presuppose a previous
moment, and if it did it would perhaps be self-contradictory to deny a first
moment, as it has been held (for the same reason) self-contradictory to deny
a First Cause. It seems to follow that infinite wholes would not have Being at
all, unless there were innumerable simple Beings whose Being is presupposed
in that of the infinite wholes. For where the presupposition is false, the
consequence is false also. Thus there seems a special reason for completing
the infinite regress in the case of infinite wholes, which does not exist where
other asymmetrical transitive relations are concerned. This is another instance
of the peculiarity of the relation of whole and part: a relation so important
and fundamental that almost all our philosophy depends upon the theory we
adopt in regard to it.

The same argument may be otherwise stated by asking how our infinite
wholes are to be defined. The definition must not be infinitely complex, since
this would require an infinite unity. Now if there is any definition which is of
finite complexity, this cannot be obtained from the parts, since these are
either infinitely numerous (in the case of an aggregate) or themselves as
complex as the whole (in the case of a whole which is not an aggregate). But
any definition which is of finite complexity will necessarily be intensional,
i.e. it will give some characteristic of a collection of terms. There seems to be
no other known method of defining an infinite whole, or of obtaining such a
whole in a way not involving any infinite unity.

The above argument, it must be admitted, is less conclusive than could be
wished, considering the great importance of the point at issue. It may, how-
ever, be urged in support of it that all the arguments on the other side depend
upon the supposed difficulties of infinity, and are therefore wholly fallacious;
also that the procedure of Geometry and Dynamics (as will be shown in
Parts VI and VII) imperatively demands points and instants. In all applica-
tions, in short, the results of the doctrine here advocated are far simpler,
less paradoxical, and more logically satisfactory, than those of the opposite
view. I shall therefore assume, throughout the remainder of this work, that all
the infinite wholes with which we shall have to deal are aggregates of terms.
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18
RATIOS AND FRACTIONS

144. T present chapter, in so far as it deals with relations of integers,
is essentially confined to finite integers: those that are infinite have no rela-
tions strictly analogous to what are usually called ratios. But I shall distinguish
ratios, as relations between integers, from fractions, which are relations
between aggregates, or rather between their magnitudes of divisibility; and
fractions, we shall find, may express relations which hold where both aggre-
gates are infinite. It will be necessary to begin with the mathematical
definition of ratio, before proceeding to more general considerations.

Ratio is commonly associated with multiplication and division, and in
this way becomes indistinguishable from fractions. But multiplication and
division are equally applicable to finite and infinite numbers, though in the
case of infinite numbers they do not have the properties which connect them
with ratio in the finite case. Hence it becomes desirable to develop a theory
of ratio which shall be independent of multiplication and division.

Two finite numbers are said to be consecutive when, if u be a class having
one of the numbers, and one term be added to u, the resulting class has the
other number. To be consecutive is thus a relation which is one-one and
asymmetrical. If now a number a has to a number b the nth power of this
relation of consecutiveness (powers of relations being defined by relative
multiplication), then we have a + n = b. This equation expresses, between
a and b, a one-one relation which is determinate when n is given. If now the
mth power of this relation holds between a'  and b' , we shall have a' + mn = b' .
Also we may define mn as 0 + mn. If now we have three numbers a, b, c such
that ab = c, this equation expresses between a and c a one-one relation which
is determinate when b is given. Let us call this relation B. Suppose we have
also a' b' = c. Then a has to a'  a relation which is the relative product of B and



the converse of B' , where B'  is derived from b'  as B was derived from b. This
relation we define as the ratio of a'  to a. This theory has the advantage that it
applies not only to finite integers, but to all other series of the same type,
i.e. all series of the type which I call progressions.

145. The only point which it is important, for our present purpose, to
observe as regards the above definition of ratios is, that they are one-one
relations between finite integers, which are with one exception asymmetrical,
which are such that one and only one holds between any specified pair of
finite integers, which are definable in terms of consecutiveness, and which
themselves form a series having no first or last term and having a term, and
therefore an infinite number of terms, between any two specified terms.
From the fact that ratios are relations it results that no ratios are to be identi-
fied with integers: the ratio of 2 to 1, for example, is a wholly different entity
from 2. When, therefore, we speak of the series of ratios as containing
integers, the integers said to be contained are not cardinal numbers, but
relations which have a certain one-one correspondence with cardinal num-
bers. The same remark applies to positive and negative numbers. The nth
power of the relation of consecutiveness is the positive number + n, which is
plainly a wholly different concept from the cardinal number n. The confusion
of entities with others to which they have some important one-one relation
is an error to which mathematicians are very liable, and one which has
produced the greatest havoc in the philosophy of mathematics. We shall find
hereafter innumerable other instances of the same error, and it is well to
realize, as early as possible, that any failure in subtlety of distinctions is sure,
in this subject at least, to cause the most disastrous consequences.

There is no difficulty in connecting the above theory of ratio with the usual
theory derived from multiplication and division. But the usual theory does not
show, as the present theory does, why the infinite integers do not have ratios
strictly analogous to those of finite integers. The fact is, that ratio depends
upon consecutiveness, and consecutiveness as above defined does not exist
among infinite integers, since these are unchanged by the addition of 1.

It should be observed that what is called addition of ratios demands a
new set of relations among ratios, relations which may be called positive
and negative ratios, just as certain relations among integers are positive and
negative integers. This subject, however, need not be further developed.

146. The above theory of ratio has, it must be confessed, a highly arti-
ficial appearance, and one which makes it seem extraordinary that ratios
should occur in daily life. The fact is, it is not ratios, but fractions, that occur,
and fractions are not purely arithmetical, but are really concerned with
relations of whole and part.

Propositions asserting fractions show an important difference from those
asserting integers. We can say A is one, A and B are two, and so on; but we
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cannot say A is one-third, or A and B are two-thirds. There is always need
of some second entity, to which our first has some fractional relation. We say
A is one-third of C, A and B together are two-thirds of C, and so on. Fractions,
in short, are either relations of a simple part to a whole, or of two wholes to
one another. But it is not necessary that the one whole, or the simple part,
should be part of the other whole. In the case of finite wholes, the matter
seems simple: the fraction expresses the ratio of the number of parts in the
one to the number in the other. But the consideration of infinite wholes will
show us that this simple theory is inadequate to the facts.

147. There is no doubt that the notion of half a league, or half a day, is a
legitimate notion. It is therefore necessary to find some sense for fractions
in which they do not essentially depend upon number. For, if a given period
of twenty-four hours is to be divided into two continuous portions, each of
which is to be half of the whole period, there is only one way of doing this:
but Cantor has shown that every possible way of dividing the period into two
continuous portions divides it into two portions having the same number of
terms. There must be, therefore, some other respect in which two periods of
twelve hours are equal, while a period of one hour and another of twenty-
three hours are unequal. I shall have more to say upon this subject in Part III;
for the present I will point out that what we want is of the nature of a
magnitude, and that it must be essentially a property of ordered wholes. I
shall call this property magnitude of divisibility. To say now that A is one-half of B
means: B is a whole, and if B be divided into two similar parts which have
both the same magnitude of divisibility as each other, then A has the same
magnitude of divisibility as each of these parts. We may interpret the fraction
½ somewhat more simply, by regarding it as a relation (analogous to ratio so
long as finite wholes are concerned) between two magnitudes of divisibility.
Thus finite integral fractions (such as n/1) will measure the relation of the
divisibility of an aggregate of n terms to the divisibility of a single term; the
converse relation will be 1/n. Thus here again we have a new class of entities
which is in danger of being confused with finite cardinal integers, though in
reality quite distinct. Fractions, as now interpreted, have the advantage (upon
which all metrical geometry depends) that they introduce a discrimination
of greater and smaller among infinite aggregates having the same number of
terms. We shall see more and more, as the logical inadequacy of the usual
accounts of measurement is brought to light, how absolutely essential the
notion of magnitude of divisibility really is. Fractions, then, in the sense in
which they may express relations of infinite aggregates—and this is the sense
which they usually have in daily life—are really of the nature of relations
between magnitudes of divisibility; and magnitudes of divisibility are only
measured by number of parts where the aggregates concerned are finite. It
may also be observed (though this remark is anticipatory) that, whereas
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ratios, as above defined, are essentially rational, fractions, in the sense here
given to them, are also capable of irrational values. But the development of
this topic must be left for Part V.

148. We may now sum up the results obtained in Part II. In the first four
chapters, the modern mathematical theory of cardinal integers, as it results
from the joint labours of arithmeticians and symbolic logicians, was briefly
set forth. Chapter 11 explained the notion of similar classes, and showed that
the usual formal properties of integers result from defining them as classes
of similar classes. In Chapter 12, we showed how arithmetical addition and
multiplication both depend upon logical addition, and how both may be
defined in a way which applies equally to finite and infinite numbers, and
to finite and infinite sums and products, and which moreover introduces
nowhere any idea of order. In Chapter 13, we gave the strict definition of
an infinite class, as one which is similar to a class resulting from taking away
one of its terms; and we showed in outline how to connect this definition
with the definition of finite numbers by mathematical induction. The special
theory of finite integers was discussed in Chapter 14, and it was shown how
the primitive propositions, which Peano proves to be sufficient in this sub-
ject, can all be deduced from our definition of finite cardinal integers. This
confirmed us in the opinion that Arithmetic contains no indefinables or
indemonstrables beyond those of general logic.

We then advanced, in Chapter 15, to the consideration of philosophical
questions, with a view of testing critically the above mathematical deduc-
tions. We decided to regard both term and a term as indefinable, and to define
the number 1, as well as all other numbers, by means of these indefinables
(together with certain others). We also found it necessary to distinguish a
class from its class-concept, since one class may have several different class-
concepts. We decided that a class consists of all the terms denoted by the
class-concept, denoted in a certain indefinable manner; but it appeared that
both common usage and the majority of mathematical purposes would allow
us to identify a class with the whole formed of the terms denoted by the
class-concept. The only reasons against this view were, the necessity of dis-
tinguishing a class containing only one term from that one term, and the
fact that some classes are members of themselves. We found also a distinction
between finite and infinite classes, that the former can, while the latter can-
not, be defined extensionally, i.e. by actual enumeration of their terms. We
then proceeded to discuss what may be called the addition of individuals, i.e.
the notion involved in “A and B”; and we found that a more or less independ-
ent theory of finite integers can be based upon this notion. But it appeared
finally, in virtue of our analysis of the notion of class, that this theory was
really indistinguishable from the theory previously expounded, the only
difference being that it adopted an extensional definition of classes.
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Chapter 16 dealt with the relation of whole and part. We found that there
are two indefinable senses of this relation, and one definable sense, and that
there are two correspondingly different sorts of wholes, which we called
unities and aggregates respectively. We saw also that, by extending the notion
of aggregates to single terms and to the null-class, we could regard the whole
of the traditional calculus of Symbolic Logic as an algebra specially applicable
to the relations of wholes and parts in the definable sense. We considered next,
in Chapter 17, the notion of an infinite whole. It appeared that infinite
unities, even if they be logically possible, at any rate never appear in anything
accessible to human knowledge. But infinite aggregates, we found, must be
admitted; and it seemed that all infinite wholes which are not unities must be
aggregates of terms, though it is by no means necessary that the terms should
be simple. (They must, however, owing to the exclusion of infinite unities, be
assumed to be of finite complexity.)

In Chapter 18, finally, we considered ratios and fractions: the former were
found to be somewhat complicated relations of finite integers, while the
latter were relations between the divisibilities of aggregates. These divis-
ibilities being magnitudes, their further discussion belongs to Part III, in
which the general nature of quantity is to be considered.
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Part III
Quantity





19
THE MEANING OF MAGNITUDE

149. A the traditional problems of mathematical philosophy, few
are more important than the relation of quantity to number. Opinion as to
this relation has undergone many revolutions. Euclid, as is evident from his
definitions of ratio and proportion, and indeed from his whole procedure,
was not persuaded of the applicability of numbers to spatial magnitudes.
When Des Cartes and Vieta, by the introduction of co-ordinate Geometry,
made this applicability a fundamental postulate of their systems, a new
method was founded, which, however fruitful of results, involved, like most
mathematical advances of the seventeenth century, a diminution of logical
precision and a loss in subtlety of distinction. What was meant by measure-
ment, and whether all spatial magnitudes were susceptible of a numerical
measure, were questions for whose decision, until very lately, the necessary
mathematical instrument was lacking; and even now much remains to be
done before a complete answer can be given. The view prevailed that number
and quantity were the objects of mathematical investigation, and that the two
were so similar as not to require careful separation. Thus number was applied
to quantities without any hesitation, and conversely, where existing numbers
were found inadequate to measurement, new ones were created on the
sole ground that every quantity must have a numerical measure.

All this is now happily changed. Two different lines of argument, conducted
in the main by different men, have laid the foundations both for large
generalizations, and for thorough accuracy in detail. On the one hand,
Weierstrass, Dedekind, Cantor, and their followers, have pointed out that, if
irrational numbers are to be significantly employed as measures of quantita-
tive fractions, they must be defined without reference to quantity; and the
same men who showed the necessity of such a definition have supplied the



want which they had created. In this way, during the last thirty or forty
years, a new subject, which has added quite immeasurably to theoretical
correctness, has been created, which may legitimately be called Arithmetic;
for, starting with integers, it succeeds in defining whatever else it requires—
rationals, limits, irrationals, continuity, and so on. It results that, for all Algebra
and Analysis, it is unnecessary to assume any material beyond the integers,
which, as we have seen, can themselves be defined in logical terms. It is this
science, far more than non-Euclidean Geometry, that is really fatal to the
Kantian theory of à priori intuitions as the basis of mathematics. Continuity
and irrationals were formerly the strongholds of the school who may be
called intuitionists, but these strongholds are theirs no longer. Arithmetic has
grown so as to include all that can strictly be called pure in the traditional
mathematics.

150. But, concurrently with this purist’s reform, an opposite advance
has been effected. New branches of mathematics, which deal neither with
number nor with quantity, have been invented; such are the Logical Calculus,
Projective Geometry, and—in its essence—the Theory of Groups. Moreover
it has appeared that measurement—if this means the correlation, with num-
bers, of entities which are not numbers or aggregates—is not a prerogative of
quantities: some quantities cannot be measured, and some things which are
not quantities (for example anharmonic ratios projectively defined) can be
measured. Measurement, in fact, as we shall see, is applicable to all series of
a certain kind—a kind which excludes some quantities and includes some
things which are not quantities. The separation between number and quan-
tity is thus complete: each is wholly independent of the other. Quantity,
moreover, has lost the mathematical importance which it used to possess,
owing to the fact that most theorems concerning it can be generalized so
as to become theorems concerning order. It would therefore be natural
to discuss order before quantity. As all propositions concerning order can,
however, be established independently for particular instances of order, and
as quantity will afford an illustration, requiring slightly less effort of abstrac-
tion, of the principles to be applied to series in general; as, further, the theory
of distance, which forms a part of the theory of order, presupposes somewhat
controversial opinions as to the nature of quantity, I shall follow the more
traditional course, and consider quantity first. My aim will be to give, in the
present chapter, a theory of quantity which does not depend upon number,
and then to show the peculiar relation to number which is possessed by
two special classes of quantities, upon which depends the measurement of
quantities wherever this is possible. The whole of this Part, however—and it
is important to realize this—is a concession to tradition; for quantity, we
shall find, is not definable in terms of logical constants, and is not properly a
notion belonging to pure mathematics at all. I shall discuss quantity because
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it is traditionally supposed to occur in mathematics, and because a thorough
discussion is required for disproving this supposition; but if the supposition
did not exist, I should avoid all mention of any such notion as quantity.

151. In fixing the meaning of such a term as quantity or magnitude, one
is faced with the difficulty that, however one may define the word, one
must appear to depart from usage. This difficulty arises wherever two charac-
teristics have been commonly supposed inseparable which, upon closer
examination, are discovered to be capable of existing apart. In the case of
magnitude, the usual meaning appears to imply (1) a capacity for the rela-
tions of greater and less, (2) divisibility. Of these characteristics, the first is
supposed to imply the second. But as I propose to deny the implication, I
must either admit that some things which are indivisible are magnitudes,
or that some things which are greater or less than others are not magnitudes.
As one of these departures from usage is unavoidable, I shall choose the
former, which I believe to be the less serious. A magnitude, then, is to be
defined as anything which is greater or less than something else.

It might be thought that equality should be mentioned, along with greater
and less, in the definition of magnitude. We shall see reason to think,
however—paradoxical as such a view may appear—that what can be greater
or less than some term, can never be equal to any term whatever, and vice versâ.
This will require a distinction, whose necessity will become more and more
evident as we proceed, between the kind of terms that can be equal and the
kind that can be greater or less. The former I shall call quantities, the latter
magnitudes. An actual footrule is a quantity: its length is a magnitude. Magni-
tudes are more abstract than quantities: when two quantities are equal, they
have the same magnitude. The necessity of this abstraction is the first point to
be established.

152. Setting aside magnitudes for the moment, let us consider quan-
tities. A quantity is anything which is capable of quantitative equality to
something else. Quantitative equality is to be distinguished from other kinds,
such as arithmetical or logical equality. All kinds of equality have in common
the three properties of being reflexive, symmetrical and transitive, i.e. a term
which has this relation at all has this relation to itself; if A has the relation to B,
B has it to A; if A has it to B, and B to C, A has it to C.* What it is that
distinguishes quantitative equality from other kinds, and whether this kind of
equality is analysable, is a further and more difficult question, to which we
must now proceed.

* On the independence of these three properties, see Peano, Revue de Mathématique, , p. 22. The
reflexive property is not strictly necessary; what is properly necessary and what is alone (at first
sight at any rate) true of quantitative equality, is, that there exists at least one pair of terms having
the relation in question. It follows then from the other two properties that each of these terms
has to itself the relation in question.
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There are, so far as I know, three main views of quantitative equality. There
is (1) the traditional view, which denies quantity as an independent idea, and
asserts that two terms are equal when, and only when, they have the same
number of parts. (2) There is what may be called the relative view of quantity,
according to which equal, greater and less are all direct relations between
quantities. In this view we have no need of magnitude, since sameness of
magnitude is replaced by the symmetrical and transitive relation of equality.
(3) There is the absolute theory of quantity, in which equality is not a direct
relation, but is to be analysed into possession of a common magnitude, i.e. into
sameness of relation to a third term. In this case there will be a special kind of
relation of a term to its magnitude; between two magnitudes of the same kind
there will be the relation of greater and less; while equal, greater and less will
apply to quantities only in virtue of their relation to magnitudes. The difference
between the second and third theories is exactly typical of a difference which
arises in the case of many other series, and notably in regard to space and
time. The decision is, therefore, a matter of very considerable importance.

153. (1) The kind of equality which consists in having the same number
of parts has been already discussed in Part II. If this be indeed the meaning of
quantitative equality, then quantity introduces no new idea. But it may be
shown, I think, that greater and less have a wider field than whole and part,
and an independent meaning. The arguments may be enumerated as follows:
(α) we must admit indivisible quantities; (β) where the number of simple
parts is infinite, there is no generalization of number which will give the
recognized results as to inequality; (γ) some relations must be allowed to
be quantitative, and relations are not even conceivably divisible; (δ) even
where there is divisibility, the axiom that the whole is greater than the part
must be allowed to be significant, and not a result of definition.

(α) Some quantities are indivisible. For it is generally admitted that some
psychical existents, such as pleasure and pain, are quantitative. If now equal-
ity means sameness in the number of indivisible parts, we shall have to regard
a pleasure or a pain as consisting of a collection of units, all perfectly simple,
and not, in any significant sense, equal inter se; for the equality of compound
pleasures results on this hypothesis, solely from the number of simple ones
entering into their composition, so that equality is formally inapplicable to
indivisible pleasures. If, on the other hand, we allow pleasures to be infinitely
divisible, so that no unit we can take is indivisible, then the number of units
in any given pleasure is wholly arbitrary, and if there is to be any equality of
pleasures, we shall have to admit that any two units may be significantly
called equal or unequal.* Hence we shall require for equality some meaning

* I shall never use the word unequal to mean merely not equal, but always to mean greater or less, i.e.
not equal, though of the same kind of quantities.
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other than sameness as to the number of parts. This latter theory, however,
seems unavoidable. For there is not only no reason to regard pleasures as
consisting of definite sums of indivisible units, but further—as a candid
consideration will, I think, convince anyone—two pleasures can always be
significantly judged equal or unequal. However small two pleasures may be,
it must always be significant to say that they are equal. But on the theory I am
combating, the judgment in question would suddenly cease to be significant
when both pleasures were indivisible units. Such a view seems wholly
unwarrantable, and I cannot believe that it has been consciously held by
those* who have advocated the premisses from which it follows.

(β) Some quantities are infinitely divisible, and in these, whatever defin-
ition we take of infinite number, equality is not coextensive with sameness
in the number of parts. In the first place, equality or inequality must always
be definite: concerning two quantities of the same kind, one answer must
be right and the other wrong, though it is often not in our power to decide
the alternative. From this it follows that, where quantities consist of an infin-
ite number of parts, if equality or inequality is to be reduced to number of
parts at all, it must be reduced to number of simple parts; for the number of
complex parts that may be taken to make up the whole is wholly arbitrary.
But equality, for example in Geometry, is far narrower than sameness in the
number of parts. The cardinal number of parts in any two continuous
portions of space is the same, as we know from Cantor; even the ordinal
number or type is the same for any two lengths whatever. Hence if there is to
be any spatial inequality of the kind to which Geometry and common-sense
have accustomed us, we must seek some other meaning for equality than that
obtained from the number of parts. At this point I shall be told that the
meaning is very obvious: it is obtained from superposition. Without trench-
ing too far on discussions which belong to a later part, I may observe (a) that
superposition applies to matter, not to space, (b) that as a criterion of
equality, it presupposes that the matter superposed is rigid, (c) that rigidity
means constancy as regards metrical properties. This shows that we cannot,
without a vicious circle, define spatial equality by superposition. Spatial
magnitude is, in fact, as indefinable as every other kind; and number of parts,
in this case as in all others where the number is infinite, is wholly inadequate
even as a criterion.

(γ) Some relations are quantities. This is suggested by the above discussion
of spatial magnitudes, where it is very natural to base equality upon distances.
Although this view, as we shall see hereafter, is not wholly adequate, it is yet
partly true. There appear to be in certain spaces, and there certainly are in

* E.g. Mr Bradley, “What do we mean by the Intensity of Psychical States?” Mind, N. S. Vol. ; see
esp. p. 5.
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some series (for instance that of the rational numbers), quantitative relations
of distance among the various terms. Also similarity and difference appear to
be quantities. Consider for example two shades of colour. It seems undeniable
that two shades of red are more similar to each other than either is to a shade
of blue; yet there is no common property in the one case which is not found
in the other also. Red is a mere collective name for a certain series of shades,
and the only reason for giving a collective name to this series lies in the close
resemblance between its terms. Hence red must not be regarded as a common
property in virtue of which two shades of red resemble each other. And since
relations are not even conceivably divisible, greater and less among relations
cannot depend upon number of parts.

(δ) Finally, it is well to consider directly the meanings of greater and
less on the one hand, and of whole and part on the other. Euclid’s axiom, that
the whole is greater than the part, seems undeniably significant; but on the
traditional view of quantity, this axiom would be a mere tautology. This
point is again connected with the question whether superposition is to be
taken as the meaning of equality, or as a mere criterion. On the latter view,
the axiom must be significant, and we cannot identify magnitude with
number of parts.*

154. (2) There is therefore in quantity something over and above the
ideas which we have hitherto discussed. It remains to decide between
the relative and absolute theories of magnitude.

The relative theory regards equal quantities as not possessed of any com-
mon property over and above that of unequal quantities, but as distinguished
merely by the mutual relation of equality. There is no such thing as a magni-
tude, shared by equal quantities. We must not say: This and that are both a
yard long; we must say: This and that are equal, or are both equal to the
standard yard in the Exchequer. Inequality is also a direct relation between
quantities, not between magnitudes. There is nothing by which a set of equal
quantities are distinguished from one which is not equal to them, except
the relation of equality itself. The course of definition is, therefore, as follows:
We have first a quality or relation, say pleasure, of which there are various
instances, specialized, in the case of a quality, by temporal or spatio-temporal
position, and in the case of a relation, by the terms between which it holds.
Let us, to fix ideas, consider quantities of pleasure. Quantities of pleasure
consist merely of the complexes pleasure at such a time, and pleasure at such another
time (to which place may be added, if it be thought that pleasures have position
in space). In the analysis of a particular pleasure, there is, according to the
relational theory, no other element to be found. But on comparing these

* Compare, with the above discussion, Meinong, Ueber die Bedeutung des Weber’schen Gesetzes,
Hamburg and Leipzig, 1896; especially Chap. , § 3.
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particular pleasures, we find that any two have one and only one of three
relations, equal, greater and less. Why some have one relation, some another,
is a question to which it is theoretically and strictly impossible to give an
answer; for there is, ex hypothesi, no point of difference except temporal or
spatio-temporal position, which is obviously irrelevant. Equal quantities of
pleasure do not agree in any respect in which unequal ones differ: it merely
happens that some have one relation and some another.

This state of things, it must be admitted, is curious, and it becomes still
more so when we examine the indemonstrable axioms which the relational
theory obliges us to assume. They are the following (A, B, C being all quan-
tities of one kind):

(a) A = B, or A is greater than B, or A is less than B.
(b) A being given, there is always a B, which may be identical with A, such

that A = B.
(c) If A = B, then B = A.
(d) If A = B and B = C, then A = C.
(e) If A is greater than B, then B is less than A.
(f ) If A is greater than B, and B is greater than C, then A is greater than C.
(g) If A is greater than B, and B = C, then A is greater than C.
(h) If A = B, and B is greater than C, then A is greater than C.

From (b), (c), and (d) it follows that A = A.* From (e) and (f ) it follows
that, if A is less than B, and B is less than C, then A is less than C; from (c), (e),
and (h) it follows that, if A is less than B, and B = C, then A is less than C; from
(c), (e), and (g) it follows that, if A = B, and B is less than C, then A is less than
C. (In the place of (b) we may put the axiom: If A be a quantity, then A = A.)
These axioms, it will be observed, lead to the conclusion that, in any
proposition asserting equality, excess, or defect, an equal quantity may be
substituted anywhere without affecting the truth or falsehood of the
proposition. Further, the proposition A = A is an essential part of the theory.
Now the first of these facts strongly suggests that what is relevant in quantita-
tive propositions is not the actual quantity, but some property which it shares
with other equal quantities. And this suggestion is almost demonstrated by
the second fact, A = A. For it may be laid down that the only unanalysable
symmetrical and transitive relation which a term can have to itself is identity,
if this be indeed a relation. Hence the relation of equality should be analys-
able. Now to say that a relation is analysable is to say either that it consists of
two or more relations between its terms, which is plainly not the case here, or

* This does not follow from (c) and (d) alone, since they do not assert that A is ever equal to B.
See Peano, loc. cit.
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that, when it is said to hold between two terms, there is some third term to
which both are related in ways which, when compounded, give the original
relation. Thus to assert that A is B’s grandparent is to assert that there is some
third person C, who is A’s son or daughter and B’s father or mother. Hence if
equality be analysable, two equal terms must both be related to some third
term; and since a term may be equal to itself, any two equal terms must have
the same relation to the third term in question. But to admit this is to admit the
absolute theory of magnitude.

A direct inspection of what we mean when we say that two terms are equal
or unequal will reinforce the objections to the relational theory. It seems
preposterous to maintain that equal quantities have absolutely nothing in
common beyond what is shared by unequal quantities. Moreover unequal
quantities are not merely different: they are different in the specific manner
expressed by saying that one is greater, the other less. Such a difference seems
quite unintelligible unless there is some point of difference, where unequal
quantities are concerned, which is absent where quantities are equal. Thus
the relational theory, though apparently not absolutely self-contradictory, is
complicated and paradoxical. Both the complication and the paradox, we
shall find, are entirely absent in the absolute theory.

155. (3) In the absolute theory, there is, belonging to a set of equal
quantities, one definite concept, namely a certain magnitude. Magnitudes are
distinguished among concepts by the fact that they have the relations of
greater and less (or at least one of them) to other terms, which are therefore
also magnitudes. Two magnitudes cannot be equal, for equality belongs to
quantities, and is defined as possession of the same magnitude. Every magni-
tude is a simple and indefinable concept. Not any two magnitudes are one
greater and the other less; on the contrary, given any magnitude, those which
are greater or less than that magnitude form a certain definite class, within
which any two are one greater and the other less. Such a class is called a kind of
magnitude. A kind of magnitude may, however, be also defined in another
way, which has to be connected with the above by an axiom. Every magnitude
is a magnitude of something—pleasure, distance, area, etc.—and has thus a
certain specific relation to the something of which it is a magnitude. This
relation is very peculiar, and appears to be incapable of further definition. All
magnitudes which have this relation to one and the same something (e.g.
pleasure) are magnitudes of one kind; and with this definition, it becomes
an axiom to say that, of two magnitudes of the same kind, one is greater and
the other less.

156. An objection to the above theory may be based on the relation of a
magnitude to that whose magnitude it is. To fix our ideas, let us consider
pleasure. A magnitude of pleasure is so much pleasure, such and such an
intensity of pleasure. It seems difficult to regard this, as the absolute theory
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demands, as a simple idea: there seem to be two constituents, pleasure and
intensity. Intensity need not be intensity of pleasure, and intensity of pleasure
is distinct from abstract pleasure. But what we require for the constitution of
a certain magnitude of pleasure is, not intensity in general, but a certain
specific intensity; and a specific intensity cannot be indifferent of pleasure or
of something else. We cannot first settle how much we will have, and then
decide whether it is to be pleasure or mass. A specific intensity must be of a
specific kind. Thus intensity and pleasure are not independent and coordinate
elements in the definition of a given amount of pleasure. There are different
kinds of intensity, and different magnitudes in each kind; but magnitudes in
different kinds must be different. Thus it seems that the common element,
indicated by the term intensity or magnitude, is not any thing intrinsic, that can
be discovered by analysis of a single term, but is merely the fact of being one
term in a relation of inequality. Magnitudes are defined by the fact that they
have this relation, and they do not, so far as the definition shows, agree in
anything else. The class to which they all belong, like the married portion of
a community, is defined by mutual relations among its terms, not by a
common relation to some outside term—unless, indeed, inequality itself
were taken as such a term, which would be merely an unnecessary complica-
tion. It is necessary to consider what may be called the extension or field of
a relation, as well as that of a class-concept: and magnitude is the class which
forms the extension of inequality. Thus magnitude of pleasure is complex, because
it combines magnitude and pleasure; but a particular magnitude of pleasure
is not complex, for magnitude does not enter into its concept at all. It is only a
magnitude because it is greater or less than certain other terms; it is only a
magnitude of pleasure because of a certain relation which it has to pleasure.
This is more easily understood where the particular magnitude has a special
name. A yard, for instance, is a magnitude because it is greater than a foot; it
is a magnitude of length, because it is what is called a length. Thus all
magnitudes are simple concepts, and are classified into kinds by their relation
to some quality or relation. The quantities which are instances of a magni-
tude are particularized by spatio-temporal position or (in the case of relations
which are quantities) by the terms between which the relation holds.
Quantities are not properly greater or less, for the relations of greater and
less hold between their magnitudes, which are distinct from the quantities.

When this theory is applied in the enumeration of the necessary axioms,
we find a very notable simplification. The axioms in which equality appears
have all become demonstrable, and we require only the following (L, M, N
being magnitudes of one kind):

(a) No magnitude is greater or less than itself.
(b) L is greater than M or L is less than M.
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(c) If L is greater than M, then M is less than L.
(d) If L is greater than M and M is greater than N, then L is greater than N.

The difficult axiom which we formerly called (b) is avoided, as are the other
axioms concerning equality; and those that remain are simpler than our
former set.

157. The decision between the absolute and relative theories can be
made at once by appealing to a certain general principle, of very wide appli-
cation, which I propose to call the principle of Abstraction. This principle
asserts that, whenever a relation, of which there are instances, has the two
properties of being symmetrical and transitive, then the relation in question
is not primitive, but is analysable into sameness of relation to some other
term; and that this common relation is such that there is only one term at
most to which a given term can be so related, though many terms may be so
related to a given term. (That is, the relation is like that of son to father: a man
may have many sons, but can have only one father.)

This principle, which we have already met with in connection with
cardinals, may seem somewhat elaborate. It is, however, capable of proof, and
is merely a careful statement of a very common assumption. It is generally
held that all relations are analysable into identity or diversity of content.
Though I entirely reject this view, I retain, so far as symmetrical transitive
relations are concerned, what is really a somewhat modified statement of
the traditional doctrine. Such relations, to adopt more usual phraseology, are
always constituted by possession of a common property. But a common
property is not a very precise conception, and will not, in most of its ordinary
significations, formally fulfil the function of analysing the relations in
question. A common quality of two terms is usually regarded as a predicate
of those terms. But the whole doctrine of subject and predicate, as the only
form of which propositions are capable, and the whole denial of the ultimate
reality of relations are rejected by the logic advocated in the present work.
Abandoning the word predicate, we may say that the most general sense which
can be given to a common property is this: A common property of two terms
is any third term to which both have one and the same relation. In this
general sense, the possession of a common property is symmetrical, but not
necessarily transitive. In order that it may be transitive, the relation to
the common property must be such that only one term at most can be
the property of any given term.* Such is the relation of a quantity to its
magnitude, or of an event to the time at which it occurs: given one term of
the relation, namely the referent, the other is determinate, but given the

* The proof of these assertions is mathematical, and depends upon the Logic of Relations; it will
be found in my article “Sur la Logique des Relations”, R. d. M. , No. 2, § 1, Props. 6. 1, and 6. 2.
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other, the one is by no means determinate. Thus it is capable of demonstra-
tion that the possession of a common property of the type in question always
leads to a symmetrical transitive relation. What the principle of abstraction
asserts is the converse, that such relations only spring from common proper-
ties of the above type.* It should be observed that the relation of the terms to
what I have called their common property can never be that which is usually
indicated by the relation of subject to predicate, or of the individual to its
class. For no subject (in the received view) can have only one predicate, and
no individual can belong to only one class. The relation of the terms to their
common property is, in general, different in different cases. In the present
case, the quantity is a complex of which the magnitude forms an element: the
relation of the quantity to the magnitude is further defined by the fact that
the magnitude has to belong to a certain class, namely that of magnitudes.
It must then be taken as an axiom (as in the case of colours) that two
magnitudes of the same kind cannot coexist in one spatio-temporal place, or
subsist as relations between the same pair of terms; and this supplies the
required uniqueness of the magnitude. It is such synthetic judgments of
incompatibility that lead to negative judgments; but this is a purely logical
topic, upon which it is not necessary to enlarge in this connection.

158. We may now sum up the above discussion in a brief statement of
results. There are a certain pair of indefinable relations, called greater and less;
these relations are asymmetrical and transitive, and are inconsistent the one
with the other. Each is the converse of the other, in the sense that, whenever
the one holds between A and B, the other holds between B and A. The terms
which are capable of these relations are magnitudes. Every magnitude has a
certain peculiar relation to some concept, expressed by saying that it is a
magnitude of that concept. Two magnitudes which have this relation to the
same concept are said to be of the same kind; to be of the same kind is the
necessary and sufficient condition for the relations of greater and less. When
a magnitude can be particularized by temporal, spatial, or spatio-temporal
position, or when, being a relation, it can be particularized by taking into a
consideration a pair of terms between which it holds, then the magnitude so
particularized is called a quantity. Two magnitudes of the same kind can never
be particularized by exactly the same specifications. Two quantities which
result from particularizing the same magnitude are said to be equal.

Thus our indefinables are (1) greater and less, (2) every particular
magnitude. Our indemonstrable propositions are:

* The principle is proved by showing that, if R be a symmetrical transitive relation, and a a term
of the field of R, a has, to the class of terms to which it has the relation R taken as a whole, a
many-one relation which, relationally multiplied by its converse, is equal to R. Thus a magnitude
may, so far as formal arguments are concerned, be identified with a class of equal quantities.
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(1) Every magnitude has to some term the relation which makes it of a
certain kind.

(2) Any two magnitudes of the same kind are one greater and the other less.
(3) Two magnitudes of the same kind, if capable of occupying space or time,

cannot both have the same spatio-temporal position; if relations, can
never be both relations between the same pair of terms.

(4) No magnitude is greater than itself.
(5) If A is greater than B, B is less than A, and vice versâ.
(6) If A is greater than B and B is greater than C, then A is greater than C.*

Further axioms characterize various species of magnitudes, but the above
seem alone necessary to magnitude in general. None of them depend in any
way upon number or measurement; hence we may be undismayed in the
presence of magnitudes which cannot be divided or measured, of which, in
the next chapter, we shall find an abundance of instances.

Note to Chapter 19. The work of Herr Meinong on Weber’s Law, already
alluded to, is one from which I have learnt so much, and with which I so
largely agree, that it seems desirable to justify myself on the points in which I
depart from it. This work begins (§ 1) by a characterization of magnitude as
that which is limited towards zero. Zero is understood as the negation of
magnitude, and after a discussion, the following statement is adopted (p. 8):

“That is or has magnitude, which allows the interpolation of terms between
itself and its contradictory opposite.”

Whether this constitutes a definition, or a mere criterion, is left doubtful
(ib.), but in either case, it appears to me to be undesirable as a fundamental
characterization of magnitude. It derives support, as Herr Meinong points
out (p. 6 n.), from its similarity to Kant’s “Anticipations of Perception”.† But
it is, if I am not mistaken, liable to several grave objections. In the first place,
the whole theory of zero is most difficult, and seems subsequent, rather than
prior, to the theory of other magnitudes. And to regard zero as the contra-
dictory opposite of other magnitudes seems erroneous. The phrase should
denote the class obtained by negation of the class “magnitudes of such and
such a kind”; but this obviously would not yield the zero of that kind of
magnitude. Whatever interpretation we give to the phrase, it would seem to
imply that we must regard zero as not a magnitude of the kind whose zero it
is. But in that case it is not less than the magnitudes of the kind in question,

* It is not necessary in (5) and (6) to add “A, B, C being magnitudes”, for the above relations of
greater and less are what define magnitudes, and the addition would therefore be tautological.
† Reine Vernunft, ed. Hartenstein (1867), p. 158.
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and there seems no particular meaning in saying that a lesser magnitude is
between zero and a greater magnitude. And in any case, the notion of between, as
we shall see in Part IV, demands asymmetrical relations among the terms
concerned. These relations, it would seem, are, in the case of magnitude,
none other than greater and less, which are therefore prior to the betweenness
of magnitudes, and more suitable to definition. I shall endeavour at a later
stage to give what I conceive to be the true theory of zero; and it will then
appear how difficult this subject is. It can hardly be wise, therefore, to intro-
duce zero in the first account of magnitude. Other objections might be urged,
as, for instance, that it is doubtful whether all kinds of magnitude have a zero;
that in discrete kinds of magnitude, zero is unimportant; and that among
distances, where the zero is simply identity, there is hardly the same relation
of zero to negation or non-existence as in the case of qualities such as
pleasure. But the main reason must be the logical inversion involved in the
introduction of between before any asymmetrical relations have been specified
from which it could arise. This subject will be resumed in Chapter 22.
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20
THE RANGE OF QUANTITY

159. T questions to be discussed in the present chapter are these:
What kinds of terms are there which, by their common relation to a number
of magnitudes, constitute a class of quantities of one kind? Have all such
terms anything else in common? Is there any mark which will ensure that a
term is thus related to a set of magnitudes? What sorts of terms are capable
of degree, or intensity, or greater and less?

The traditional view regards divisibility as a common mark of all terms
having magnitude. We have already seen that there is no à priori ground for
this view. We are now to examine the question inductively, to find as many
undoubted instances of quantities as possible, and to inquire whether they
all have divisibility or any other common mark.

Any term of which a greater or less degree is possible contains under it a
collection of magnitudes of one kind. Hence the comparative form in gram-
mar is primâ facie evidence of quantity. If this evidence were conclusive, we
should have to admit that all, or almost all, qualities are susceptible of magni-
tude. The praises and reproaches addressed by poets to their mistresses would
afford comparatives and superlatives of most known adjectives. But some
circumspection is required in using evidence of this grammatical nature.
There is always, I think, some quantitative comparison wherever a comparative
or superlative occurs, but it is often not a comparison as regards the quality
indicated by grammar.

“O ruddier than the cherry,
O sweeter than the berry,
O nymph more bright
Than moonshine light,”



are lines containing three comparatives. As regards sweetness and brightness,
we have, I think, a genuine quantitative comparison; but as regards ruddiness,
this may be doubted. The comparative here—and generally where colours
are concerned—indicates, I think, not more of a given colour, but more
likeness to a standard colour. Various shades of colour are supposed to be
arranged in a series, such that the difference of quality is greater or less
according as the distance in the series is greater or less. One of these shades
is the ideal “ruddiness”, and others are called more or less ruddy according
as they are nearer to or further from this shade in the series. The same
explanation applies, I think, to such terms as whiter, blacker, redder. The true
quantity involved seems to be, in all these cases, a relation, namely the rela-
tion of similarity. The difference between two shades of colour is certainly a
difference of quality, not merely of magnitude; and when we say that one
thing is redder than another, we do not imply that the two are of the same
shade. If there were no difference of shade, we should probably say one
was brighter than the other, which is quite a different kind of comparison. But
though the difference of two shades is a difference of quality, yet, as the
possibility of serial arrangement shows, this difference of quality is itself
susceptible to degrees. Each shade of colour seems to be simple and unana-
lysable; but neighbouring colours in the spectrum are certainly more similar
than remote colours. It is this that gives continuity to colours. Between two
shades of colour, A and B, we should say, there is always a third colour C;
and this means that C resembles A or B more than B or A does. But for such
relations of immediate resemblance, we should not be able to arrange colours
in series. The resemblance must be immediate, since all shades of colour are
unanalysable, as appears from any attempt at description or definition.* Thus
we have an indubitable case of relations which have magnitude. The differ-
ence or resemblance of two colours is a relation, and is a magnitude; for it
is greater or less than other differences or resemblances.

160. I have dwelt upon this case of colours, since it is one instance of a
very important class. When any number of terms can be arranged in a series,
it frequently happens that any two of them have a relation which may, in a
generalized sense, be called a distance. This relation suffices to generate a serial
arrangement, and is always necessarily a magnitude. In all such cases, if the
terms of the series have names, and if these names have comparatives, the
comparatives indicate, not more of the term in question, but more likeness
to that term. Thus, if we suppose the time-series to be one in which there is

* On the subject of the resemblances of colours, see Meinong, “Abstrahiren und Vergleichen”,
Zeitschrift f. Psych. u. Phys. d. Sinnesorgane, Vol. , p. 72 ff. I am not sure that I agree with the whole of
Meinong’s argument, but his general conclusion, “dass die Umfangscollective des Aehnlichen
Allgemeinheiten darstellen, an denen die Abstraction wenigstens unmittelbar keinen Antheil
hat” (p. 78), appears to me to be a correct and important logical principle.
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distance, when an event is said to be more recent than another, what is meant
is that its distance from the present was less than that of the other. Thus
recentness is not itself a quality of the time or of the event. What are quantita-
tively compared in such cases are relations, not qualities. The case of colours
is convenient for illustration, because colours have names, and the difference
of two colours is generally admitted to be qualitative. But the principle is
of very wide application. The importance of this class of magnitudes, and
the absolute necessity of clear notions as to their nature, will appear more
and more as we proceed. The whole philosophy of space and time, and the
doctrine of so-called extensive magnitudes, depend throughout upon a clear
understanding of series and distance.

Distance must be distinguished from mere difference or unlikeness. It
holds only between terms in a series. It is intimately connected with order,
and implies that the terms between which it holds have an ultimate and
simple difference, not one capable of analysis into constituents. It implies also
that there is a more or less continuous passage, through other terms belong-
ing to the same series, from one of the distant terms to the other. Mere
difference per se appears to be the bare minimum of a relation, being in fact a
precondition of almost all relations. It is always absolute, and is incapable of
degrees. Moreover it holds between any two terms whatever, and is hardly to
be distinguished from the assertion that they are two. But distance holds only
between the members of certain series, and its existence is then the source
of the series. It is a specific relation, and it has sense; we can distinguish the
distance of A from B from that of B from A. This last mark alone suffices to
distinguish distance from bare difference.

It might perhaps be supposed that, in a series in which there is distance,
although the distance AB must be greater than or less than AC, yet the distance
BD need not be either greater or less than AC. For example, there is obviously
more difference between the pleasure derivable from £5 and that derivable
from £100 than between that from £5 and that from £20. But need there be
either equality or inequality between the difference for £1 and £20 and that
for £5 and £100? This question must be answered affirmatively. For AC is
greater or less than BC, and BC is greater or less than BD; hence AC, BC and
also BC, BD are magnitudes of the same kind. Hence AC, BD are magnitudes
of the same kind, and if not identical, one must be the greater and the other
the less. Hence, when there is distance in a series, any two distances are
quantitatively comparable.

It should be observed that all the magnitudes of one kind form a series,
and that their distances, therefore, if they have distances, are again magni-
tudes. But it must not be supposed that these can, in general, be obtained by
subtraction, or are of the same kind as the magnitudes whose differences they
express. Subtraction depends, as a rule, upon divisibility, and is therefore in
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general inapplicable to indivisible quantities. The point is important, and
will be treated in detail in the following chapter.

Thus nearness and distance are relations which have magnitude. Are there
any other relations having magnitude? This may, I think, be doubted.* At
least I am unaware of any other such relation, though I know no way of
disproving their existence.

161. There is a difficult class of terms, usually regarded as magnitudes,
apparently implying relations, though certainly not always relational. These
are differential coefficients, such as velocity and acceleration. They must be
borne in mind in all attempts to generalize about magnitude, but owing to
their complexity they require a special discussion. This will be given in Part V;
and we shall then find that differential coefficients are never magnitudes, but
only real numbers, or segments in some series.

162. All the magnitudes dealt with hitherto have been, strictly speaking,
indivisible. Thus the question arises: Are there any divisible magnitudes?
Here I think a distinction must be made. A magnitude is essentially one, not
many. Thus no magnitude is correctly expressed as a number of terms. But
may not the quantity which has magnitude be a sum of parts, and the magni-
tude a magnitude of divisibility? If so, every whole consisting of parts will
be a single term possessed of the property of divisibility. The more parts it
consists of, the greater is its divisibility. On this supposition, divisibility is a
magnitude, of which we may have a greater or less degree; and the degree of
divisibility corresponds exactly, in finite wholes, to the number of parts. But
though the whole which has divisibility is of course divisible, yet its divisibil-
ity, which alone is strictly a magnitude, is not properly speaking divisible.
The divisibility does not itself consist of parts, but only of the property of
having parts. It is necessary, in order to obtain divisibility, to take the whole
strictly as one, and to regard divisibility as its adjective. Thus although, in this
case, we have numerical measurement, and all the mathematical consequences
of division, yet, philosophically speaking, our magnitude is still indivisible.

There are difficulties, however, in the way of admitting divisibility as a
kind of magnitude. It seems to be not a property of the whole, but merely a
relation to the parts. It is difficult to decide this point, but a good deal may be
said, I think, in support of divisibility as a simple quality. The whole has a
certain relation, which for convenience we may call that of inclusion, to all
its parts. This relation is the same whether there be many parts or few; what
distinguishes a whole of many parts is that it has many such relations of
inclusion. But it seems reasonable to suppose that a whole of many parts
differs from a whole of few parts in some intrinsic respect. In fact, wholes
may be arranged in a series according as they have more or fewer parts, and

* Cf. Meinong, Ueber die Bedeutung des Weber’schen Gesetzes, Hamburg and Leipzig, 1896, p. 23.
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the serial arrangement implies, as we have already seen, some series of prop-
erties differing more or less from each other, and agreeing when two wholes
have the same finite number of parts, but distinct from number of parts in
finite wholes. These properties can be none other than greater or less degrees
of divisibility. Thus magnitude of divisibility would appear to be a simple
property of a whole, distinct from the number of parts included in the whole,
but correlated with it, provided this number be finite. If this view can be
maintained, divisibility may be allowed to remain as a numerically measur-
able, but not divisible, class of magnitudes. In this class we should have to
place lengths, areas and volumes, but not distances. At a later stage, however,
we shall find that the divisibility of infinite wholes, in the sense in which this
is not measured by cardinal numbers, must be derived through relations in
a way analogous to that in which distance is derived, and must be really a
property of relations.*

Thus it would appear, in any case, that all magnitudes are indivisible. This
is one common mark which they all possess, and so far as I know, it is the
only one to be added to those enumerated in Chapter 19. Concerning the
range of quantity, there seems to be no further general proposition. Very
many simple non-relational terms have magnitude, the principal exceptions
being colours, points, instants and numbers.

163. Finally, it is important to remember that, on the theory adopted
in Chapter 19, a given magnitude of a given kind is a simple concept, having
to the kind a relation analogous to that of inclusion in a class. When the kind
is a kind of existents, such as pleasure, what actually exists is never the kind,
but various particular magnitudes of the kind. Pleasure, abstractly taken, does
not exist, but various amounts of it exist. This degree of abstraction is essen-
tial to the theory of quantity: there must be entities which differ from each
other in nothing except magnitude. The grounds for the theory adopted
may perhaps appear more clearly from a further examination of this case.

Let us start with Bentham’s famous proposition: “Quantity of pleasure
being equal, pushpin is as good as poetry.” Here the qualitative difference of
the pleasures is the very point of the judgment; but in order to be able to
say that the quantities of pleasure are equal, we must be able to abstract the
qualitative differences, and leave a certain magnitude of pleasure. If this
abstraction is legitimate, the qualitative difference must be not truly a differ-
ence of quality, but only a difference of relation to other terms, as, in the
present case, a difference in the causal relation. For it is not the whole pleas-
urable states that are compared, but only—as the form of the judgment aptly
illustrates—their quality of pleasure. If we suppose the magnitude of pleasure
to be not a separate entity, a difficulty will arise. For the mere element of

* See Chap. 47.
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pleasure must be identical in the two cases, whereas we require a possible
difference of magnitude. Hence we can neither hold that only the whole
concrete state exists, and any part of it is an abstraction, nor that what exists is
abstract pleasure, not magnitude of pleasure. Nor can we say: We abstract,
from the whole states, the two elements magnitude and pleasure. For then we
should not get a quantitative comparison of the pleasures. The two states
would agree in being pleasures, and in being magnitudes. But this would not
give us a magnitude of pleasure; and it would give a magnitude to the states
as a whole, which is not admissible. Hence we cannot abstract magnitude in
general from the states, since as wholes they have no magnitude. And we
have seen that we must not abstract bare pleasure, if we are to have any
possibility of different magnitudes. Thus what we have to abstract is a magni-
tude of pleasure as a whole. This must not be analysed into magnitude and
pleasure, but must be abstracted as a whole. And the magnitude of pleasure
must exist as a part of the whole pleasurable states, for it is only where there
is no difference save at most one of magnitude that quantitative comparison
is possible. Thus the discussion of this particular case fully confirms the
theory that every magnitude is unanalysable, and has only the relation analo-
gous to inclusion in a class to that abstract quality or relation of which it is
a magnitude.

Having seen that all magnitudes are indivisible, we have next to consider
the extent to which numbers can be used to express magnitudes, and the
nature and limits of measurement.
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21
NUMBERS AS EXPRESSING

MAGNITUDES: MEASUREMENT

164. I is one of the assumptions of educated common-sense that two
magnitudes of the same kind must be numerically comparable. People are apt
to say that they are thirty per cent healthier or happier than they were,
without any suspicion that such phrases are destitute of meaning. The pur-
pose of the present chapter is to explain what is meant by measurement,
what are the classes of magnitudes to which it applies and how it is applied
to those classes.

Measurement of magnitudes is, in its most general sense, any method by
which a unique and reciprocal correspondence is established between all or
some of the magnitudes of a kind and all or some of the numbers, integral,
rational, or real, as the case may be. (It might be thought that complex
numbers ought to be included; but what can only be measured by complex
numbers is in fact always an aggregate of magnitudes of different kinds, not a
single magnitude.) In this general sense, measurement demands some one-
one relation between the numbers and magnitudes in question—a relation
which may be direct or indirect, important or trivial, according to circum-
stances. Measurement in this sense can be applied to very many classes of
magnitudes; to two great classes, distances and divisibilities, it applies, as
we shall see, in a more important and intimate sense.

Concerning measurement in the most general sense, there is very little to
be said. Since the numbers form a series, and since every kind of magnitude
also forms a series, it will be desirable that the order of the magnitudes
measured should correspond to that of the numbers, i.e. that all relations
of between should be the same for magnitudes and their measures. Wherever
there is a zero, it is well that this should be measured by the number



zero. These and other conditions, which a measure should fulfil if possible,
may be laid down; but they are of practical rather than theoretical
importance.

165. There are two general metaphysical opinions, either of which, if
accepted, shows that all magnitudes are theoretically capable of measurement
in the above sense. The first of these is the theory that all events either are, or
are correlated with, events in the dynamical causal series. In regard to the so-
called secondary qualities, this view has been so far acted upon by physical
science that it has provided most of the so-called intensive quantities that
appear in space with spatial, and thence numerical, measures. And with
regard to mental quantities the theory in question is that of psychophysical
parallelism. Here the motion which is correlated with any psychical quantity
always theoretically affords a means of measuring that quantity. The other
metaphysical opinion, which leads to universal measurability, is one sug-
gested by Kant’s “Anticipations of Perception”,* namely that, among inten-
sive magnitudes, an increase is always accompanied by an increase of reality.
Reality, in this connection, seems synonymous with existence; hence the
doctrine may be stated thus: Existence is a kind of intensive magnitude, of
which, where a greater magnitude exists, there is always more than where a
less magnitude exists. (That this is exactly Kant’s doctrine seems improbable;
but it is at least a tenable view.) In this case, since two instances of the same
magnitude (i.e. two equal quantities) must have more existence than one,
it follows that, if a single magnitude of the same kind can be found having
the same amount of existence as the two equal quantities together, then that
magnitude may be called double that of each of the equal quantities. In this
way all intensive magnitudes become theoretically capable of measurement.
That this method has any practical importance it would be absurd to main-
tain; but it may contribute to the appearance of meaning belonging to
twice as happy. It gives a sense, for example, in which we may say that a child
derives as much pleasure from one chocolate as from two acid drops; and
on the basis of such judgments the hedonistic Calculus could theoretically
be built.

There is one other general observation of some importance. If it be main-
tained that all series of magnitudes are either continuous in Cantor’s sense,
or are similar to series which can be chosen out of continuous series, then
it is theoretically possible to correlate any kind of magnitudes with all or
some of the real numbers, so that the zeros correspond, and the greater
magnitudes correspond to the greater numbers. But if any series of magni-
tudes, without being continuous, contains continuous series, then such a

* Reine Vernunft, ed. Hart. (1867), p. 160. The wording of the first edition illustrates better than
that of the second the doctrine to which I allude. See e.g. Erdmann’s edition, p. 161.
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series of magnitudes will be strictly and theoretically incapable of measure-
ment by the real numbers.*

166. Leaving now these somewhat vague generalities, let us examine the
more usual and concrete sense of measurement. What we require is some
sense in which we may say that one magnitude is double of another. In the
above instances this sense was derived by correlation with spatio-temporal
magnitudes, or with existence. This presupposed that in these cases a mean-
ing had been found for the phrase. Hence measurement demands that, in
some cases, there should be an intrinsic meaning to the proposition “this
magnitude is double of that”. (In what sense the meaning is intrinsic will
appear as we proceed.) Now so long as quantities are regarded as inherently
divisible, there is a perfectly obvious meaning to such a proposition: a magni-
tude A is double of B when it is the magnitude of two quantities together,
each of these having the magnitude B. (It should be observed that to divide
a magnitude into two equal parts must always be impossible, since there are
no such things as equal magnitudes.) Such an interpretation will still apply
to magnitudes of divisibility; but since we have admitted other magnitudes,
a different interpretation (if any) must be found for these. Let us first examine
the case of divisibilities, and then proceed to the other cases where measure-
ment is intrinsically possible.

167. The divisibility of a finite whole is immediately and inherently
correlated with the number of simple parts in the whole. In this case, although
the magnitudes are even now incapable of addition of the sort required, the
quantities can be added in the manner explained in Part II. The addition
of two magnitudes of divisibility yields merely two magnitudes, not a new
magnitude. But the addition of two quantities of divisibility, i.e. two wholes,
does yield a new single whole, provided the addition is of the kind which
results from logical addition by regarding classes as the wholes formed by
their terms. Thus there is a good meaning in saying that one magnitude of
divisibility is double of another, when it applies to a whole containing twice
as many parts. But in the case of infinite wholes, the matter is by no means
so simple. Here the number of simple parts (in the only senses of infinite
number hitherto discovered) may be equal without equality in the magni-
tude of divisibility. We require here a method which does not go back to
simple parts. In actual space, we have immediate judgments of equality as
regards two infinite wholes. When we have such judgments, we can regard
the sum of n equal wholes as n times each of them; for addition of wholes
does not demand their finitude. In this way numerical comparison of some
pairs of wholes becomes possible. By the usual well-known methods, by
continual subdivision and the method of limits, this is extended to all pairs of

* See Part V, Chap. 33 ff.
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wholes which are such that immediate comparisons are possible. Without
these immediate comparisons, which are necessary both logically and psy-
chologically,* nothing can be accomplished: we are always reduced in the last
resort to the immediate judgment that our foot-rule has not greatly changed
its size during measurement, and this judgment is prior to the results of
physical science as to the extent to which bodies do actually change their
sizes. But where immediate comparison is psychologically impossible, we
may theoretically substitute a logical variety of measurement, which, how-
ever, gives a property not of the divisible whole, but of some relation or class
of relations more or less analogous to those that hold between points in space.

That divisibility, in the sense required for areas and volumes, is not a
property of a whole, results from the fact (which will be established in Part VI)
that between the points of a space there are always relations which generate a
different space. Thus two sets of points which, with regard to one set of
relations, form equal areas, form unequal areas with respect to another set, or
even form one an area and the other a line or a volume. If divisibility in the
relevant sense were an intrinsic property of wholes, this would be impossible.
But this subject cannot be fully discussed until we come to Metrical Geometry.

Where our magnitudes are divisibilities, not only do numbers measure
them, but the difference of two measuring numbers, with certain limitations,
measures the magnitude of the difference (in the sense of dissimilarity)
between the divisibilities. If one of the magnitudes be fixed, its difference
from the other increases as the difference of the measuring numbers increases;
for this difference depends upon the difference in the number of parts. But I
do not think it can be shown generally that, if A, B, C, D be the numbers
measuring four magnitudes, and A − B = C − D, then the differences of the
magnitudes are equal. It would seem, for instance, that the difference between
one inch and two inches is greater than that between 1001 inches and 1002
inches. This remark has no importance in the present case, since differences
of divisibility are never required; but in the case of distances it has a curious
connection with non-Euclidean Geometry. But it is theoretically important to
observe that, if divisibility be indeed a magnitude—as the equality of areas
and volumes seems to require—then there is strictly no ground for saying
that the divisibility of a sum of two units is twice as great as that of one unit.
Indeed this proposition cannot be strictly taken, for no magnitude is a sum of
parts, and no magnitude therefore is double of another. We can only mean
that the sum of two units contains twice as many parts, which is an arith-
metical, not a quantitative, judgment, and is adequate only in the case where
the number of parts is finite, since in other cases the double of a number is
in general equal to it. Thus even the measurement of divisibility by numbers

* Cf. Meinong, op. cit., pp. 63–4.
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contains an element of convention; and this element, we shall find, is still
more prominent in the case of distances.

168. In the above case we still had addition in one of its two funda-
mental senses, i.e. the combination of wholes to form a new whole. But in
other cases of magnitude we do not have any such addition. The sum of two
pleasures is not a new pleasure, but is merely two pleasures. The sum of two
distances is also not properly one distance. But in this case we have an exten-
sion of the idea of addition. Some such extension must always be possible
where measurement is to be effected in the more natural and restricted sense
which we are now discussing. I shall first explain this generalized addition
in abstract terms, and then illustrate its application to distances.

It sometimes happens that two quantities, which are not capable of add-
ition proper, have a relation, which has itself a one-one relation to a quantity
of the same kind as those between which it holds. Supposing a, b, c to be such
quantities, we have, in the case supposed, some proposition aBc, where B is
a relation which uniquely determines and is uniquely determined by some
quantity b of the same kind as that to which a and c belong. Thus for example
two ratios have a relation, which we may call their difference, which is itself
wholly determined by another ratio, namely the difference, in the arith-
metical sense, of the two given ratios. If α, β , γ be terms in a series in which
there is distance, the distances αβ , αγ have a relation which is measured by

(though not identical with) the distance βγ. In all such cases, by an extension
of addition, we may put a + b = c in place of aBc. Wherever a set of quantities
have relations of this kind, if further aBc implies bAc, so that a + b = b + a,
we shall be able to proceed as if we had ordinary addition, and shall be able
in consequence to introduce numerical measurement.

The conception of distance will be discussed fully in Part IV, in connection
with order: for the present I am concerned only to show how distances come
to be measurable. The word will be used to cover a far more general concep-
tion than that of distance in space. I shall mean by a kind of distance a set of
quantitative asymmetrical relations of which one and only one holds between
any pair of terms of a given class; which are such that, if there is a relation of
the kind between a and b, and also between b and c, then there is one of the
kind between a and c, the relation between a and c being the relative product
of those between a and b, b and c; this product is to be commutative, i.e.
independent of the order of its factors; and finally, if the distance ab be greater
than the distance ac, then, d being any other member of the class, db is greater
than dc. Although distances are thus relations, and therefore indivisible and
incapable of addition proper, there is a simple and natural convention by
which such distances become numerically measurable.

The convention is this. Let it be agreed that, when the distances a0a1, a1a2 . . .
an−1an are all equal and in the same sense, then a0an is said to be n times each of
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the distances a0a1, etc., i.e. is to be measured by a number n times as great. This
has generally been regarded as not a convention, but an obvious truth;
owing, however, to the fact that distances are indivisible, no distance is really
a sum of other distances, and numerical measurement must be in part con-
ventional. With this convention, the numbers corresponding to distances,
where there are such numbers, become definite, except as to a common
factor dependent upon the choice of a unit. Numbers are also assigned by this
method to the members of the class between which the distances hold; these
numbers have, in addition to the arbitrary factor, an arbitrary additive con-
stant, depending upon the choice of origin. This method, which is capable
of still further generalization, will be more fully explained in Part IV. In order
to show that all the distances of our kind, and all the terms of our set, can
have numbers assigned to them, we require two further axioms, the axiom
of Archimedes and what may be called the axiom of linearity.*

169. The importance of the numerical measurement of distance, at least
as applied to space and time, depends partly upon a further fact, by which it
is brought into relation with the numerical measurement of divisibility. In all
series there are terms intermediate between any two whose distance is not
the minimum. These terms are determinate when the two distant terms are
specified. The intermediate terms may be called the stretch from a0 to an.† The
whole composed of these terms is a quantity, and has a divisibility measured
by the number of terms, provided their number is finite. If the series is such
that the distances of consecutive terms are all equal, then, if there are n − 1
terms between a0 and an, the measure of the distance is proportional to n.
Thus, if we include in the stretch one of the end terms, but not the other, the
measures of the stretch and the distance are proportional, and equal stretches
correspond to equal distances. Thus the number of terms in the stretch meas-
ures both the distance of the end terms and the amount of divisibility of the
whole stretch. When the stretch contains an infinite number of terms, we
estimate equal stretches as explained above. It then becomes an axiom, which
may or may not hold in a given case, that equal stretches correspond to equal
distances. In this case, coordinates measure two entirely distinct magnitudes,
which, owing to their common measure, are perpetually confounded.

170. The above analysis explains a curious problem which must have
troubled most people who have endeavoured to philosophize about Geom-
etry. Starting from one-dimensional magnitudes connected with the straight

* See Part IV, Chap. 31. This axiom asserts that a magnitude can be divided into n equal parts,
and forms part of Du Bois Reymond’s definition of linear magnitude. See his Allgemeine Functionen-
theorie (Tübingen, 1882), Chap. , § 16; also Bettazzi, Teoria delle Grandezze (Pisa, 1890), p. 44. The
axiom of Archimedes asserts that, given any two magnitudes of a kind, some finite multiple
of the lesser exceeds the greater.
† Called Strecke by Meinong, op. cit., e.g. p. 22.
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line, most theories may be divided into two classes, those appropriate to areas
and volumes, and those appropriate to angles between lines or planes. Areas
and volumes are radically different from angles, and are generally neglected
in philosophies which hold to relational views of space or start from project-
ive Geometry. The reason for this is plain enough. On the straight line, if, as
is usually supposed, there is such a relation as distance, we have two philo-
sophically distinct but practically conjoined magnitudes, namely the distance
and the divisibility of the stretch. The former is similar to angles; the latter,
to areas and volumes. Angles may also be regarded as distances between
terms in a series, namely between lines through a point or planes through a
line. Areas and volumes, on the contrary, are sums, or magnitudes of divisi-
bility. Owing to the confusion of the two kinds of magnitude connected with
the line, either angles, or else areas and volumes, are usually incompatible
with the philosophy invented to suit the line. By the above analysis, this
incompatibility is at once explained and overcome.*

171. We thus see how two great classes of magnitudes—divisibilities and
distances—are rendered amenable to measure. These two classes practically
cover what are usually called extensive magnitudes, and it will be convenient
to continue to allow the name to them. I shall extend this name to cover all
distances and divisibilities, whether they have any relation to space and time
or not. But the word extensive must not be supposed to indicate, as it usually
does, that the magnitudes so designated are divisible. We have already seen
that no magnitude is divisible. Quantities are only divisible into other quantities
in the one case of wholes which are quantities of divisibility. Quantities
which are distances, though I shall call them extensive, are not divisible into
smaller distances; but they allow the important kind of addition explained
above, which I shall call in future relational addition.†

All other magnitudes and quantities may be properly called intensive.
Concerning these, unless by some causal relation, or by means of some more
or less roundabout relation such as those explained at the beginning of the
present chapter, numerical measurement is impossible. Those mathematicians
who are accustomed to an exclusive emphasis on numbers, will think that
not much can be said with definiteness concerning magnitudes incapable of
measurement. This, however, is by no means the case. The immediate judg-
ments of equality, upon which (as we saw) all measurements depend, are
still possible where measurement fails, as are also the immediate judgments
of greater and less. Doubt only arises where the difference is small; and all

* In Part VI, we shall find reason to deny distance in most spaces. But there is still a distinction
between stretches, consisting of the terms of some series, and such quantities as areas and
volumes, where the terms do not, in any simple sense, form a one-dimensional series.
† Not to be confounded with the relative addition of the Algebra of Relatives. It is connected
rather with relative multiplication.
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that measurement does, in this respect, is to make the margin of doubt
smaller—an achievement which is purely psychological, and of no philo-
sophical importance. Quantities not susceptible to numerical measurement
can thus be arranged in a scale of greater and smaller magnitudes, and this is
the only strictly quantitative achievement of even numerical measurement.
We can know that one magnitude is greater than another, and that a third
is intermediate between them; also, since the differences of magnitudes are
always magnitudes, there is always (theoretically, at least) an answer to the
question whether the difference of one pair of magnitudes is greater than,
less than, or the same as the difference of another pair of the same kind. And
such propositions, though to the mathematician they may appear approxi-
mate, are just as precise and definite as the propositions of Arithmetic. Without
numerical measurement, therefore, the quantitative relations of magnitudes
have all the definiteness of which they are capable—nothing is added, from
the theoretical standpoint, by the assignment of correlated numbers. The
whole subject of the measurement of quantities is, in fact, one of more
practical than theoretical importance. What is theoretically important in it is
merged in the wider question of the correlation of series, which will occupy
us much hereafter. The chief reason why I have treated the subject thus at
length is derived from its traditional importance, but for which it might
have been far more summarily treated.
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22
ZERO

172. T present chapter is concerned, not with any form of the numer-
ical zero, nor yet with the infinitesimal, but with the pure zero of magnitude.
This is the zero which Kant has in mind, in his refutation of Mendelssohn’s
proof of the immortality of the soul.* Kant points out that an intensive
magnitude, while remaining of the same kind, can become zero; and that,
though zero is a definite magnitude, no quantity whose magnitude is zero
can exist. This kind of zero, we shall find, is a fundamental quantitative
notion, and is one of the points in which the theory of quantity presents
features peculiar to itself. The quantitative zero has a certain connection both
with the number 0 and with the null-class in Logic, but it is not (I think)
definable in terms of either. What is less universally realized is its complete
independence of the infinitesimal. The latter notion will not be discussed
until the following chapter.

The meaning of zero, in any kind of quantity, is a question of much
difficulty, upon which the greatest care must be bestowed, if contradictions
are to be avoided. Zero seems to be definable by some general characteristic,
without reference to any special peculiarity of the kind of quantity to which
it belongs. To find such a definition, however, is far from easy. Zero seems to be
a radically distinct conception according as the magnitudes concerned are
discrete or continuous. To prove that this is not the case, let us examine
various suggested definitions.

173. (1) Herr Meinong (op. cit., p. 8) regards zero as the contradictory
opposite of each magnitude of its kind. The phrase “contradictory opposite”
is one which is not free from ambiguity. The opposite of a class, in symbolic

* Kritik der Reinen Vernunft, ed. Hartenstein, p. 281 ff.



logic, is the class containing all individuals not belonging to the first class;
and hence the opposite of an individual should be all other individuals. But
this meaning is evidently inappropriate: zero is not everything except one
magnitude of its kind, nor yet everything except the class of magnitudes of its
kind. It can hardly be regarded as true to say that a pain is a zero pleasure. On
the other hand, a zero pleasure is said to be no pleasure, and this is evidently
what Herr Meinong means. But although we shall find this view to be correct,
the meaning of the phrase is very difficult to seize. It does not mean some-
thing other than pleasure, as when our friends assure us that it is no pleasure
to tell us our faults. It seems to mean what is neither pleasure, nor yet
anything else. But this would be merely a cumbrous way of saying nothing, and
the reference to pleasure might be wholly dropped. This gives a zero which is
the same for all kinds of magnitude, and if this be the true meaning of zero,
then zero is not one among the magnitudes of a kind, nor yet a term in the
series formed by magnitudes of a kind. For though it is often true that there is
nothing smaller than all the magnitudes of a kind, yet it is always false that
nothing itself is smaller than all of them. This zero, therefore, has no special
reference to any particular kind of magnitude, and is incapable of fulfilling
the functions which Herr Meinong demands of it.* The phrase, however, as
we shall see, is capable of an interpretation which avoids this difficulty. But let
us first examine some other suggested meanings of the word.

174. (2) Zero may be defined as the least magnitude of its kind. Where a
kind of magnitude is discrete, and generally when it has what Professor
Bettazzi calls a limiting magnitude of the kind,† such a definition is insuffi-
cient. For in such a case, the limiting magnitude seems to be really the least of
its kind. And in any case, the definition gives rather a characteristic than a true
definition, which must be sought in some more purely logical notion, for
zero cannot fail to be in some sense a denial of all other magnitudes of the
kind. The phrase that zero is the smallest of magnitudes is like the phrase
which De Morgan commends for its rhetoric: “Achilles was the strongest of
all his enemies.” Thus it would be obviously false to say that 0 is the least of
the positive integers, or that the interval between A and A is the least interval
between any two letters of the alphabet. On the other hand, where a kind of
magnitude is continuous, and has no limiting magnitude, although we have
apparently a gradual and unlimited approach to zero, yet now a new objec-
tion arises. Magnitudes of this kind are essentially such as have no minimum.
Hence we cannot without express contradiction take zero as their minimum.
We may, however, avoid this contradiction by saying that there is always a
magnitude less than any other, but not zero, unless that other be zero. This

* See note to Chap. 19, supra.
† Teoria delle Grandezze, Pisa, 1890, p. 24.
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emendation avoids any formal contradiction, and is only inadequate because
it gives rather a mark of zero than its true meaning. Whatever else is a
magnitude of the kind in question might have been diminished; and we wish
to know what it is that makes zero obviously incapable of any further dimin-
ution. This the suggested definition does not tell us, and therefore, though it
gives a characteristic which often belongs to no other magnitude of the kind,
it cannot be considered philosophically sufficient. Moreover, where there are
negative magnitudes, it precludes us from regarding these as less than zero.

175. (3) Where our magnitudes are differences or distances, zero has, at
first sight, an obvious meaning, namely identity. But here again, the zero so
defined seems to have no relation to one kind of distances rather than
another: a zero distance in time would seem to be the same as a zero distance
in space. This can, however, be avoided, by substituting, for identity simply,
identity with some member of the class of terms between which the dis-
tances in question hold. By this device, the zero of any class of relations
which are magnitudes is made perfectly definite and free from contradiction;
moreover we have both zero quantities and zero magnitudes, for if A and B be
terms of the class which has distances, identity with A and identity with B are
distinct zero quantities.* This case, therefore, is thoroughly clear. And yet the
definition must be rejected: for it is plain that zero has some general logical
meaning, if only this could be clearly stated, which is the same for all classes
of quantities; and that a zero distance is not actually the same concept as
identity.

176. (4) In any class of magnitudes which is continuous, in the sense of
having a term between any two, and which also has no limiting magnitude,
we can introduce zero in the manner in which real numbers are obtained
from rationals. Any collection of magnitudes defines a class of magnitudes
less than all of them. This class of magnitudes can be made as small as we
please, and can actually be made to be the null-class, i.e. to contain no mem-
bers at all. (This is effected, for instance, if our collection consists of all
magnitudes of the kind.) The classes so defined form a series, closely related
to the series of original magnitudes, and in this new series the null-class is
definitely the first term. Thus taking the classes as quantities, the null-class is a
zero quantity. There is no class containing a finite number of members, so
that there is not, as in Arithmetic, a discrete approach to the null-class; on the
contrary, the approach is (in several senses of the word) continuous. This
method of defining zero, which is identical with that by which the real
number zero is introduced, is important, and will be discussed in Part V. But
for the present we may observe that it again makes zero the same for all kinds
of magnitude, and makes it not one among the magnitudes whose zero it is.

* On this point, however, see § 55 above.
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177. (5) We are compelled, in this question, to face the problem as to
the nature of negation. “No pleasure” is obviously a different concept from
“no pain”, even when these terms are taken strictly as mere denials of pleas-
ure and pain respectively. It would seem that “no pleasure” has the same
relation to pleasure as the various magnitudes of pleasure have, though it has
also, of course, the special relation of negation. If this be allowed, we see that,
if a kind of magnitudes be defined by that of which they are magnitudes, then
no pleasure is one among the various magnitudes of pleasure. If, then, we are to
hold to our axiom, that all pairs of magnitudes of one kind have relations of
inequality, we shall be compelled to admit that zero is less than all other
magnitudes of its kind. It seems, indeed, to be rendered evident that this must
be admitted, by the fact that zero is obviously not greater than all other magni-
tudes of its kind. This shows that zero has a connection with less which it does
not have with greater. And if we adopt this theory, we shall no longer accept
the clear and simple account of zero distances given above, but we shall hold
that a zero distance is strictly and merely no distance, and is only correlated with
identity.

Thus it would seem that Herr Meinong’s theory, with which we began, is
substantially correct; it requires emendation, on the above view, only in this,
that a zero magnitude is the denial of the defining concept of a kind of
magnitudes, not the denial of any one particular magnitude, or of all of them.
We shall have to hold that any concept which defines a kind of magnitudes
defines also, by its negation, a particular magnitude of the kind, which is
called the zero of that kind, and is less than all other members of the kind.
And we now reap the benefit of the absolute distinction which we made
between the defining concept of a kind of magnitude, and the various
magnitudes of the kind. The relation which we allowed between a particular
magnitude and that of which it is a magnitude was not identified with the
class-relation, but was held to be sui generis; there is thus no contradiction, as
there would be in most theories, in supposing this relation to hold between
no pleasure and pleasure, or between no distance and distance.

178. But finally, it must be observed that no pleasure, the zero magnitude,
is not obtained by the logical denial of pleasure, and is not the same as the
logical notion of not pleasure. On the contrary, no pleasure is essentially a quantita-
tive concept, having a curious and intimate relation to logical denial, just as 0
has a very intimate relation to the null-class. The relation is this, that there is
no quantity whose magnitude is zero, so that the class of zero quantities is the
null-class.* The zero of any kind of magnitude is incapable of that relation
to existence or to particulars, of which the other magnitudes are capable.

* This must be applied in correction of what was formerly said about zero distances.
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But this is a synthetic proposition, to be accepted only on account of its
self-evidence. The zero magnitude of any kind, like the other magnitudes, is
properly speaking indefinable, but is capable of specification by means of its
peculiar relation to the logical zero.
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23
INFINITY, THE INFINITESIMAL

AND CONTINUITY

179. A all mathematical ideas present one great difficulty: the
difficulty of infinity. This is usually regarded by philosophers as an antinomy,
and as showing that the propositions of mathematics are not metaphysically
true. From this received opinion I am compelled to dissent. Although all
apparent antinomies, except such as are quite easily disposed of, and such
as belong to the fundamentals of logic, are, in my opinion, reducible to the
one difficulty of infinite number, yet this difficulty itself appears to be soluble
by a correct philosophy of any, and to have been generated very largely by
confusions due to the ambiguity in the meaning of finite integers. The prob-
lem in general will be discussed in Part V; the purpose of the present chapter
is merely to show that quantity, which has been regarded as the true home of
infinity, the infinitesimal and continuity, must give place, in this respect, to
order; while the statement of the difficulties which arise in regard to quantity
can be made in a form which is at once ordinal and arithmetical, but involves
no reference to the special peculiarities of quantity.

180. The three problems of infinity, the infinitesimal and continuity, as
they occur in connection with quantity, are closely related. None of them can
be fully discussed at this stage, since all depend essentially upon order, while
the infinitesimal depends also upon number. The question of infinite quan-
tity, though traditionally considered more formidable than that of zero, is in
reality far less so, and might be briefly disposed of, but for the great devotion
commonly shown by philosophers to a proposition which I shall call the
axiom of finitude. Of some kinds of magnitude (for example ratios, or dis-
tances in space and time), it appears to be true that there is a magnitude
greater than any given magnitude. That is, any magnitude being mentioned,



another can be found which is greater than it. The deduction of infinity from
this fact is, when correctly performed, a mere fiction to facilitate compres-
sion in the statement of results obtained by the method of limits. Any class u
of magnitudes of our kind being defined, three cases may arise: (1) There
may be a class of terms greater than any of our class u, and this new class of
terms may have a smallest member; (2) there may be such a class, but it may
have no smallest member; (3) there may be no magnitudes which are greater
than any term of our class u. Supposing our kind of magnitudes to be one in
which there is no greatest magnitude, case (2) will always arise where the
class u contains a finite number of terms. On the other hand, if our series be
what is called condensed in itself, case (2) will never arise when u is an infinite
class, and has no greatest term; and if our series is not condensed in itself,
but does have a term between any two, another which has this property can
always be obtained from it.* Thus all infinite series which have no greatest
term will have limits, except in case (3). To avoid circumlocution, case (3) is
defined as that in which the limit is infinite. But this is a mere device, and it
is generally admitted by mathematicians to be such. Apart from special cir-
cumstances, there is no reason, merely because a kind of magnitudes has no
maximum, to admit that there is an infinite magnitude of the kind, or that
there are many such. When magnitudes of a kind having no maximum are
capable of numerical measurement, they very often obey the axiom of
Archimedes, in virtue of which the ratio of any two magnitudes of the
kind is finite. Thus, so far, there might appear to be no problem connected
with infinity.

But at this point the philosopher is apt to step in, and to declare that, by all
true philosophic principles, every well-defined series of terms must have a
last term. If he insists upon creating this last term, and calling it infinity,
he easily deduces intolerable contradictions, from which he infers the
inadequacy of mathematics to obtain absolute truth. For my part, however, I
see no reason for the philosopher’s axiom. To show, if possible, that it is not
a necessary philosophic principle, let us undertake its analysis, and see what
it really involves.

The problem of infinity, as it has now emerged, is not properly a quantita-
tive problem, but rather one concerning order. It is only because our magni-
tudes form a series having no last term that the problem arises: the fact that
the series is composed of magnitudes is wholly irrelevant. With this remark
I might leave the subject to a later stage. But it will be worth while now to
elicit, if not to examine, the philosopher’s axiom of finitude.

181. It will be well, in the first place, to show how the problem concern-
ing infinity is the same as that concerning continuity and the infinitesimal.

* This will be further explained in Part V, Chap. 36.
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For this purpose, we shall find it convenient to ignore the absolute zero, and
to mean, when we speak of any kind of magnitudes, all the magnitudes of
the kind except zero. This is a mere change of diction, without which intoler-
able repetitions would be necessary. Now there certainly are some kinds of
magnitude where the three following axioms hold:

(1) If A and B be any two magnitudes of the kind, and A is greater than B,
there is always a third magnitude C such that A is greater than C and C
greater than B. (This I shall call, for the present, the axiom of continuity.)

(2) There is always a magnitude less than any given magnitude B.
(3) There is always a magnitude greater than any given magnitude A.

From these it follows:—

(1) That no two magnitudes of the kind are consecutive.
(2) That there is no least magnitude.
(3) That there is no greatest magnitude.

The above propositions are certainly true of some kinds of magnitude;
whether they are true of all kinds remains to be examined. The following
three propositions, which directly contradict the previous three, must be
always true, if the philosopher’s axiom of finitude is to be accepted:

(a) There are consecutive magnitudes, i.e. magnitudes such that no
other magnitude of the same kind is greater than the less and less
than the greater of the two given magnitudes.

(b) There is a magnitude smaller than any other of the same kind.
(c) There is a magnitude greater than any other of the same kind.*

As these three propositions directly contradict the previous three, it would
seem that both sets cannot be true. We have to examine the grounds for both,
and let one set of alternatives fall.

182. Let us begin with the propositions (a), (b), (c), and examine the
nature of their grounds.

(a) A definite magnitude A being given, all the magnitudes greater than A
form a series, whose differences from A are magnitudes of a new kind. If

* Those Hegelians who search for a chance of an antinomy may proceed to the definition of zero
and infinity by means of the above propositions. When (2) and (b) both hold, they may say, the
magnitude satisfying (b) is called zero; when (3) and (c) both hold, the magnitude satisfying (c)
is called infinity. We have seen, however, that zero is to be otherwise defined, and has to be
excluded before (2) becomes true; while infinity is not a magnitude of the kind in question at
all, but merely a piece of mathematical shorthand. (Not infinity in general, that is, but infinite
magnitude in the cases we are discussing.)
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there be a magnitude B consecutive to A, its difference from A will be the least
magnitude of its kind, provided equal stretches correspond to equal distances
in the series. And conversely, if there be a smallest difference between two
magnitudes, A, B, then these two magnitudes must always be consecutive; for
if not, any intermediate magnitude would have a smaller difference from A
than B has. Thus if (b) is universally true, (a) must also be true; and con-
versely, if (a) is true, and if the series of magnitudes be such that equal
stretches correspond to equal distances, then (b) is true of the distances
between the magnitudes considered. We might rest content with the reduc-
tion of (a) to (b), and proceed to the proof of (b); but it seems worth while
to offer a direct proof, such as presumably the finitist philosopher has in
his mind.

Between A and B there is a certain number of magnitudes, unless A and
B are consecutive. The intermediate magnitudes all have order, so that in
passing from A to B all the intermediate magnitudes would be met with. In
such an enumeration, there must be some magnitude which comes next after
any magnitude C; or, to put the matter otherwise, since the enumeration
has to begin, it must begin somewhere, and the term with which it begins
must be the magnitude next to A. If this were not the case, there would be
no definite series; for if all the terms have an order, some of them must be
consecutive.

In the above argument, what is important is its dependence upon number.
The whole argument turns upon the principle by which infinite number is
shown to be self-contradictory, namely: A given collection of many terms must contain
some finite number of terms. We say: All the magnitudes between A and B form a
given collection. If there are no such magnitudes, A and B are consecutive,
and the question is decided. If there are such magnitudes, there must be
a finite number of them, say n. Since they form a series, there is a definite way
of assigning to them the ordinal numbers from 1 to n. The mth and (m + 1)th
are then consecutive.

If the axiom in italics be denied, the whole argument collapses; and this,
we shall find, is also the case as regards (b) and (c).

(b) The proof here is precisely similar to the proof of (a). If there are no
magnitudes less than A, then A is the least of its kind, and the question is
decided. If there are any, they form a definite collection, and therefore (by our
axiom) have a finite number, say n. Since they form a series, ordinal numbers
may be assigned to them growing higher as the magnitudes become more
distant from A. Thus the nth magnitude is the smallest of its kind.

(c) The proof here is obtained as in (b), by considering the collection of
magnitudes greater than A. Thus everything depends upon our axiom, with-
out which no case can be made out against continuity, or against the absence
of a greatest and least magnitude.
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As regards the axiom itself, it will be seen that it has no particular reference
to quantity, and at first sight it might seem to have no reference to order. But
the word finite, which occurs in it, requires definition; and this definition, in
the form suited to the present discussion, has, we shall find, an essential
reference to order.

183. Of all the philosophers who have inveighed against infinite number,
I doubt whether there is one who has known the difference between finite
and infinite numbers. The difference is simply this. Finite numbers obey the
law of mathematical induction; infinite numbers do not. That is to say, given
any number n, if n belongs to every class s to which 0 belongs, and to which
belongs also the number next after any number which is an s, then n is finite;
if not, not. It is in this alone, and in its consequences, that finite and infinite
numbers differ.*

The principle may be otherwise stated thus: If every proposition which
holds concerning 0, and also holds concerning the immediate successor
of every number of which it holds, holds concerning the number n, then n is
finite; if not, not. This is the precise sense of what may be popularly expressed
by saying that every finite number can be reached from 0 by successive steps,
or by successive additions of 1. This is the principle which the philosopher
must be held to lay down as obviously applicable to all numbers, though he
will have to admit that the more precisely his principle is stated, the less
obvious it becomes.

184. It may be worth while to show exactly how mathematical induction
enters into the above proofs. Let us take the proof of (a), and suppose there
are n magnitudes between A and B. Then to begin with, we supposed these
magnitudes capable of enumeration, i.e. of an order in which there are con-
secutive terms and a first term, and a term immediately preceding any term
except the first. This property presupposes mathematical induction, and was
in fact the very property in dispute. Hence we must not presuppose the
possibility of enumeration, which would be a petitio principii. But to come to
the kernel of the argument: we supposed that, in any series, there must be a
definite way of assigning ordinal numbers to the terms. This property
belongs to a series of one term, and belongs to every series having m + 1
terms, if it belongs to every series having m terms. Hence, by mathematical
induction, it belongs to all series having a finite number of terms. But if it be
allowed that the number of terms may not be finite, the whole argument
collapses.

As regards (b) and (c), the argument is similar. Every series having a finite

* It must, however, be mentioned that one of these consequences gives a logical difference
between finite and infinite numbers, which may be taken as an independent definition. This has
been already explained in Part II, Chap. 13, and will be further discussed in Part V.
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number of terms can be shown by mathematical induction to have a first and
last term; but no way exists of proving this concerning other series, or of
proving that all series are finite. Mathematical induction, in short, like the
axiom of parallels, is useful and convenient in its proper place; but to suppose
it always true is to yield to the tyranny of mere prejudice. The philosopher’s
finitist arguments, therefore, rest on a principle of which he is ignorant,
which there is no reason to affirm, and every reason to deny. With this
conclusion, the apparent antinomies may be considered solved.

185. It remains to consider what kinds of magnitude satisfy the proposi-
tions (1), (2), (3). There is no general principle from which these can be
proved or disproved, but there are certainly cases where they are true, and
others where they are false. It is generally held by philosophers that numbers
are essentially discrete, while magnitudes are essentially continuous. This we
shall find to be not the case. Real numbers possess the most complete con-
tinuity known, while many kinds of magnitude possess no continuity at all.
The word continuity has many meanings, but in mathematics it has only two—
one old, the other new. For present purposes the old meaning will suffice.
I therefore set up, for the present, the following definition:

Continuity applies to series (and only to series) whenever these are such that
there is a term between any two given terms.* Whatever is not a series, or a
compound of series, or whatever is a series not fulfilling the above condition,
is discontinuous.

Thus the series of rational numbers is continuous, for the arithmetic mean
of two of them is always a third rational number between the two. The letters
of the alphabet are not continuous.

We have seen that any two terms in a series have a distance, or a stretch
which has magnitude. Since there are certainly discrete series (e.g. the alpha-
bet), there are certainly discrete magnitudes, namely, the distances or the
stretches of terms in discrete series. The distance between the letters A and C
is greater than that between the letters A and B, but there is no magnitude
which is greater than one of these and less than the other. In this case, there is
also a greatest possible and a least possible distance, so that all three proposi-
tions (1), (2), (3) fail. It must not be supposed, however, that the three
propositions have any necessary connection. In the case of the integers, for
example, there are consecutive distances, and there is a least possible distance,
namely, that between consecutive integers, but there is no greatest possible
distance. Thus (3) is true, while (1) and (2) are false. In the case of the series
of notes, or of colours of the rainbow, the series has a beginning and end, so

* The objection to this definition (as we shall see in Part V) is, that it does not give the usual
properties of the existence of limits to convergent series which are commonly associated with
continuity. Series of the above kind will be called compact, except in the present discussion.
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that there is a greatest distance; but there is no least distance, and there is a
term between any two. Thus (1) and (2) are true, while (3) is false. Or again,
if we take the series composed of zero and the fractions having one for
numerator, there is a greatest distance, but no least distance, though the
series is discrete. Thus (2) is true, while (1) and (3) are false. And other
combinations might be obtained from other series.

Thus the three propositions (1), (2), (3), have no necessary connection,
and all of them, or any selection, may be false as applied to any given kind of
magnitude. We cannot hope, therefore, to prove their truth from the nature of
magnitude. If they are ever to be true, this must be proved independently,
or discovered by mere inspection in each particular case. That they are some-
times true, appears from a consideration of the distances between terms of
the number-continuum or of the rational numbers. Either of these series is
continuous in the above sense, and has no first or last term (when zero is
excluded). Hence its distances or stretches fulfil all three conditions. The
same might be inferred from space and time, but I do not wish to anticipate
what is to be said of these. Quantities of divisibility do not fulfil these condi-
tions when the wholes which are divisible consist of a finite number of
indivisible parts. But where the number of parts is infinite in a whole class of
differing magnitudes, all three conditions are satisfied, as appears from the
properties of the number-continuum.

We thus see that the problems of infinity and continuity have no essential
connection with quantity, but are due, where magnitudes present them at
all, to characteristics depending upon number and order. Hence the discus-
sion of these problems can only be undertaken after the pure theory of order
has been set forth.* To do this will be the aim of the following Part.

186. We may now sum up the results obtained in Part III. In Chapter 19
we determined to define a magnitude as whatever is either greater or less than
something else. We found that magnitude has no necessary connection with
divisibility, and that greater and less are indefinable. Every magnitude, we
saw, has a certain relation—analogous to, but not identical with, that of
inclusion in a class—to a certain quality or relation; and this fact is expressed
by saying that the magnitude in question is a magnitude of that quality or
relation. We defined a quantity as a particular contained under a magnitude, i.e.
as the complex consisting of a magnitude with a certain spatio-temporal
position, or with a pair of terms between which it is a relation. We decided,
by means of a general principle concerning transitive symmetrical relations,
that it is impossible to content ourselves with quantities, and deny the further
abstraction involved in magnitudes; that equality is not a direct relation
between quantities, but consists in being particularizations of the same

* Cf. Couturat, “Sur la Définition du Continu”, Revue de Métaphysique et de Morale, 1900.
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magnitude. Thus equal quantities are instances of the same magnitude. Simi-
larly greater and less are not direct relations between quantities, but between
magnitudes: quantities are only greater and less in virtue of being instances
of greater and less magnitudes. Any two magnitudes which are of the same
quality or relation are one greater, the other less; and greater and less are
asymmetrical transitive relations.

Among the terms which have magnitude are not only many qualities, but
also asymmetrical relations by which certain kinds of series are constituted.
These may be called distances. When there are distances in a series, any two
terms of the series have a distance, which is the same as, greater than, or less
than, the distance of any two other terms in the series. Another peculiar
class of magnitudes discussed in Chapter 20 is constituted by the degrees of
divisibility of different wholes. This, we found, is the only case in which
quantities are divisible, while there is no instance of divisible magnitudes.

Numerical measurement, which was discussed in Chapter 21, required,
owing to the decision that most quantities and all magnitudes are indivisible,
a somewhat unusual treatment. The problem lies, we found, in establishing
a one-one relation between numbers and the magnitudes of the kind to be
measured. On certain metaphysical hypotheses (which were neither accepted
nor rejected), this was found to be always theoretically possible as regards
existents actual or possible, though often not practically feasible or import-
ant. In regard to two classes of magnitudes, namely divisibilities and distances,
measurement was found to proceed from a very natural convention, which
defines what is meant by saying (what can never have the simple sense which
it has in connection with finite wholes and parts) that one such magnitude
is double of, or n times, another. The relation of distance to stretch was
discussed, and it was found that, apart from a special axiom to that effect,
there was no à priori reason for regarding equal distances as corresponding to
equal stretches.

In Chapter 22 we discussed the definition of zero. The problem of zero
was found to have no connection with that of the infinitesimal, being in fact
closely related to the purely logical problem as to the nature of negation. We
decided that, just as there are the distinct logical and arithmetical negations,
so there is a third fundamental kind, the quantitative negation; but that this is
negation of that quality or relation of which the magnitudes are, not of
magnitude of that quality or relation. Hence we were able to regard zero as
one among the magnitudes contained in a kind of magnitude, and to dis-
tinguish the zeroes of different kinds. We showed also that quantitative
negation is connected with logical negation by the fact that there cannot be
any quantities whose magnitude is zero.

In the present chapter the problems of continuity, the infinite, and the
infinitesimal, were shown to belong, not specially to the theory of quantity,
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but to those of number and order. It was shown that, though there are kinds
of magnitude in which there is no greatest and no least magnitude, this fact
does not require us to admit infinite or infinitesimal magnitudes; and that
there is no contradiction in supposing a kind of magnitudes to form a series
in which there is a term between any two, and in which, consequently, there
is no term consecutive to a given term. The supposed contradiction was
shown to result from an undue use of mathematical induction—a principle,
the full discussion of which presupposes the philosophy of order.
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Part IV
Order





24
THE GENESIS OF SERIES

187. T notion of order or series is one with which, in connection
with distance, and with the order of magnitude, we have already had to deal.
The discussion of continuity in the last chapter of Part III showed us that this
is properly an ordinal notion, and prepared us for the fundamental import-
ance of order. It is now high time to examine this concept on its own account.
The importance of order, from a purely mathematical standpoint, has been
immeasurably increased by many modern developments. Dedekind, Cantor
and Peano have shown how to base all Arithmetic and Analysis upon series of
a certain kind—i.e. upon those properties of finite numbers in virtue of
which they form what I shall call a progression. Irrationals are defined (as we
shall see) entirely by the help of order; and a new class of transfinite ordinals
is introduced, by which the most important and interesting results are
obtained. In Geometry, von Staudt’s quadrilateral construction and Pieri’s
work on Projective Geometry have shown how to give points, lines and
planes an order independent of metrical considerations and of quantity;
while descriptive Geometry proves that a very large part of Geometry
demands only the possibility of serial arrangement. Moreover the whole
philosophy of space and time depends upon the view we take of order. Thus a
discussion of order, which is lacking in the current philosophies, has become
essential to any understanding of the foundations of mathematics.

188. The notion of order is more complex than any hitherto analysed.
Two terms cannot have an order, and even three cannot have a cyclic order.
Owing to this complexity, the logical analysis of order presents considerable
difficulties. I shall therefore approach the problem gradually, considering, in
this chapter, the circumstances under which order arises, and reserving for
the second chapter the discussion as to what order really is. This analysis will



raise several fundamental points in general logic, which will demand con-
siderable discussion of an almost purely philosophical nature. From this I
shall pass to more mathematical topics, such as the types of series and the
ordinal definition of numbers, thus gradually preparing the way for the
discussion of infinity and continuity in the following Part.

There are two different ways in which order may arise, though we shall
find in the end that the second way is reducible to the first. In the first, what
may be called the ordinal element consists of three terms a, b, c, one of which
(b say) is between the other two. This happens whenever there is a relation of a
to b and of b to c, which is not a relation of b to a, of c to b, or of c to a. This is
the definition, or better perhaps, the necessary and sufficient condition, of
the proposition “b is between a and c”. But there are other cases of order
where, at first sight, the above conditions are not satisfied, and where between
is not obviously applicable. These are cases where we have four terms a, b, c, d,
as the ordinal element, of which we can say that a and c are separated by
b and d. This relation is more complicated, but the following seems to charac-
terize it: a and c are separated from b and d, when there is an asymmetrical
relation which holds between a and b, b and c, c and d, or between a and d, d
and c, c and b, or between c and d, d and a, a and b; while if we have the first
case, the same relation must hold either between d and a, or else between
both a and c, and a and d; with similar assumptions for the other two cases.*
(No further special assumption is required as to the relation between a and c
or between b and d; it is the absence of such an assumption which prevents
our reducing this case to the former in a simple manner.) There are cases—
notably where our series is closed—in which it seems formally impossible to
reduce this second case to the first, though this appearance, as we shall see, is
in part deceptive. We have to show, in the present chapter, the principal ways
in which series arise from collections of such ordinal elements.

Although two terms alone cannot have an order, we must not assume that
order is possible except where there are relations between two terms. In all
series, we shall find, there are asymmetrical relations between two terms. But
an asymmetrical relation of which there is only one instance does not consti-
tute order. We require at least two instances for between, and at least three for
separation of pairs. Thus although order is a relation between three or four
terms, it is only possible where there are other relations which hold between
pairs of terms. These relations may be of various kinds, giving different ways
of generating series. I shall now enumerate the principal ways with which I
am acquainted.

189. (1) The simplest method of generating a series is as follows. Let
there be a collection of terms, finite or infinite, such that every term (with the

* This gives a sufficient but not a necessary condition for the separation of couples.
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possible exception of a single one) has to one and only one other term of the
collection a certain asymmetrical relation (which must of course be intransi-
tive), and that every term (with again one possible exception, which must
not be the same as the term formerly excepted) has also to one and only one
other term of the collection the relation which is the converse of the former
one.* Further, let it be assumed that, if a has the first relation to b, and b to c,
then c does not have the first relation to a. Then every term of the collection
except the two peculiar terms has one relation to a second term, and the
converse relation to a third, while these terms themselves do not have to each
other either of the relations in question. Consequently, by the definition of
between, our first term is between our second and third terms. The term to
which a given term has one of the two relations in question is called next after
the given term; the term to which the given term has the converse relation is
called next before the given term. Two terms between which the relations in
question hold are called consecutive. The exceptional terms (when they exist)
are not between any pair of terms; they are called the two ends of the series,
or one is called the beginning and the other the end. The existence of the one
does not imply that of the other—for example the natural numbers have a
beginning but no end—and neither need exist—for example, the positive
and negative integers together have neither.†

The above method may perhaps become clear by a formal exhibition. Let
R be one of our relations, and let its converse be denoted by R̆.‡ Then if e be
any term of our set, there are two terms d, f, such that e R̆ d, c R f, i.e. such that
d R e, e R f. Since each term only has the relation R to one other, we cannot have
d R f; and it was one of the initial assumptions that we were not to have f R d.
Hence e is between d and f.§ If a be a term which has only the relation R, then
obviously a is not between any pair of terms. We may extend the notion of
between by defining that, if c be between b and d, and d between c and e, then c
or d will be said to be also between b and e. In this way, unless we either reach
an end or come back to the term with which we started, we can find any
number of terms between which and b the term c will lie. But if the total
number of terms be not less than seven, we cannot show in this way that of
any three terms one must be between the other two, since the collection may
consist of two distinct series, of which, if the collection is finite, one at least
must be closed, in order to avoid more than two ends.

* The converse of a relation is the relation which must hold between y and x when the given
relation holds between x and y.
† The above is the only method of generating series given by Bolzano, “Paradoxien des
Unendlichen”, § 7.
‡ This is the notation adopted by Professor Schröder.
§ The denial of d R f is only necessary to this special method, but the denial of f R d is essential to
the definition of between.
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This remark shows that, if the above method is to give a single series, to
which any term of our collection is to belong, we need a further condition,
which may be expressed by saying that the collection must be connected. We
shall find means hereafter of expressing this condition without reference to
number, but for the present we may content ourselves by saying that our
collection is connected when, given any two of its terms, there is a certain
finite number (not necessarily unique) of steps from one term to the next, by
which we can pass from one of our two terms to the other. When this
condition is fulfilled, we are assured that, of any three terms of our collection,
one must be between the other two.

Assuming now that our collection is connected, and therefore forms a
single series, four cases may arise: (a) our series may have two ends, (b) it may
have one end, (c) it may have no end and be open, (d) it may have no end and
be closed. Concerning (a), it is to be observed that our series must be finite.
For, taking the two ends, since the collection is connected, there is some finite
number n of steps which will take us from one end to the other, and hence
n + 1 is the number of terms of the series. Every term except the two ends is
between them, and neither of them is between any other pair of terms. In case
(b), on the other hand, our collection must be infinite, and this would hold
even if it were not connected. For suppose the end which exists to have the
relation R, but not R̆. Then every other term of the collection has both rela-
tions, and can never have both to the same term, since R is asymmetrical.
Hence the term to which (say) e has the relation R is not that to which it had
the relation R̆, but is either some new term, or one of e’s predecessors. Now it
cannot be the end-term a, since a does not have the relation R̆ to any term. Nor
can it be any term which can be reached by successive steps from a without
passing through e, for if it were, this term would have two predecessors,
contrary to the hypothesis that R is a one-one relation. Hence, if k be any term
which can be reached by successive steps from a, k has a successor which is
not a or any of the terms between a and k; and hence the collection is infinite,
whether it be connected or not. In case (c), the collection must again be
infinite. For here, by hypothesis, the series is open—i.e., starting from any
term e, no number of steps in either direction brings us back to e. And there
cannot be a finite limit to the number of possible steps, since, if there were,
the series would have an end. Here again, it is not necessary to suppose the
series connected. In case (d), on the contrary, we must assume connection. By
saying that the series is closed, we mean that there exists some number n of
steps by which, starting from a certain term a, we shall be brought back to a. In
this case, n is the number of terms, and it makes no difference with which
term we start. In this case, between is not definite except where three terms are
consecutive, and the series contains more than three terms. Otherwise, we
need the more complicated relation of separation.
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190. (2) The above method, as we have seen, will give either open or
closed series, but only such as have consecutive terms. The second method,
which is now to be discussed, will give series in which there are no consecu-
tive terms, but will not give closed series.* In this method we have a transitive
asymmetrical relation P, and a collection of terms any two of which are such
that either xPy or yPx. When these conditions are satisfied our terms necessar-
ily form a single series. Since the relation is asymmetrical, we can distinguish
xPy from yPx, and the two cannot both subsist.† Since P is transitive, xPy and
yPz involve xPz. It follows that P̆ is also asymmetrical and transitive.‡ Thus
with respect to any term x of our collection, all other terms of the collection
fall into two classes, those for which xPy, and those for which zPx. Calling
these two classes π̆x and πx respectively, we see that, owing to the transitive-
ness of P, if y belongs to the class π̆x, π̆y is contained in π̆x; and if z belongs to
the class πx, πz is contained in πx. Taking now two terms x, y, for which xPy,
all other terms fall into three classes: (1) Those belonging to πx, and there-
fore to πy; (2) those belonging to π̆y, and therefore to π̆x; (3) those belonging
to π̆x but not to π̆y. If z be of the first class, we have zPx, zPy; if v be of the
second, xPv and yPv; if w be of the third, xPw and wPy. The case yPu and uPx
is excluded: for xPy, yPu imply xPu, which is inconsistent with uPx. Thus we
have, in the three cases, (1) x is between z and y; (2) y is between x and v;
(3) w is between x and y. Hence any three terms of our collection are such
that one is between the other two, and the whole collection forms a single
series. If the class (3) contains no terms, x and y are said to be consecutive;
but many relations P can be assigned, for which there are always terms in the
class (3). If for example P be before, and our collection be the moments in a
certain interval, or in all time, there is a moment between any two of our
collection. Similarly in the case of the magnitudes which, in the last chapter
of Part III, we called continuous. There is nothing in the present method, as
there was in the first, to show that there must be consecutive terms, unless the
total number of terms in our collection be finite. On the other hand, the
present method will not allow closed series; for owing to the transitiveness of

* The following method is the only one given by Vivanti in the Formulaire de Mathématiques (1895),
, § 2, No. 7; also by Gilman, “On the properties of a one-dimensional manifold”, Mind, N. S.
Vol. . We shall find that it is general in a sense in which none of our other methods are so.
† I use the term asymmetrical as the contrary, rather than the contradictory, of symmetrical. If xPy,
and the relation is symmetrical, we have always yPx; if asymmetrical, we never have yPx. Some
relations—e.g. logical implication—are neither symmetrical nor asymmetrical. Instead of assum-
ing P to be asymmetrical, we may make the equivalent assumption that it is what Professor Peirce
calls an aliorelative, i.e. a relation which no term has to itself. (This assumption is not equivalent to
asymmetry in general, but only when combined with transitiveness.)
‡ P may be read precedes, and P̆ may be read follows, provided no temporal or spatial ideas are
allowed to intrude themselves.
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the relation P, if the series were closed, and x were any one of its terms, we
should have xPx, which is impossible because P is asymmetrical. Thus in a
closed series, the generating relation can never be transitive.* As in the for-
mer method, the series may have two ends, or one, or none. In the first case
only, it may be finite; but even in this case it may be infinite, and in the other
two cases it must be so.

191. (3) A series may be generated by means of distances, as was already
partially explained in Part III, and as we shall see more fully hereafter. In this
case, starting with a certain term x, we are to have relations, which are
magnitudes, between x and a number of other terms y, z. . . . According as
these relations are greater or less, we can order the corresponding terms. If
there are no similar relations between the remaining terms y, z, . . ., we
require nothing further. But if these have relations which are magnitudes of
the same kind, certain axioms are necessary to insure that the order may be
independent of the particular term from which we start. Denoting by xz the
distance of x and z, if xz is less than xw, we must have yz less than yw. A
consequence, which did not follow when x was the only term that had a
distance, is that the distances must be asymmetrical relations, and those
which have one sense must be considered less than zero. For “xz is less than
xw” must involve “wz is less than ww”, i.e. wz is less than 0. In this way the
present case is practically reduced to the second; for every pair of terms x, y
will be such that xy is less than 0 or else xy is greater than 0; and we may put
in the first case yPx, in the second xPy. But we require one further axiom in
order that the arrangement may be thus effected unambiguously. If xz = yw,
and zw' = xy, w and w' must be the same point. With this further axiom, the
reduction to case (2) becomes complete.

192. (4) Cases of triangular relations are capable of giving rise to order.
Let there be a relation R which holds between y and (x, z), between z and
(y, u), between u and (z, w), and so on. Between is itself such a relation, and this
might therefore seem the most direct and natural way of generating order.
We should say, in such a case, that y is between x and z, when the relation R
holds between y and the couple x, z. We should need assumptions concerning
R which should show that, if y is between x and z, and z between y and w, then
y and z are each between x and w. That is, if we have yR (x, w), zR (y, w), we must
have yR (x, w) and zR (x, w). This is a kind of three-term transitiveness. Also if y
be between x and w, and z between y and w, then z must be between x and w,
and y between x and z: that is, if yR (x, w) and zR (y, w), then zR (x, w) and yR
(x, z). Also yR (x, z) must be equivalent to yR (z, x).† With these assumptions,
an unambiguous order will be generated among any number of terms such

* For more precise statements, see Chap. 28.
† See Peano, I Principii di Geometria, Turin, 1889, Axioms , , , .
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that any triad has the relation R. Whether such a state of things can ever be
incapable of further analysis, is a question which I leave for the next chapter.

193. (5) We have found hitherto no way of generating closed continu-
ous series. There are, however, instances of such series, e.g. angles, the elliptic
straight line, the complex numbers with a given modulus. It is therefore
necessary to have some theory which allows of their possibility. In the
case where our terms are asymmetrical relations, as straight lines are, or are
correlated uniquely and reciprocally with such relations, the following
theory will effect this object. In other cases, the sixth method (below) seems
adequate to the end in view.

Let x, y, z . . . be a set of asymmetrical relations, and let R be an asym-
metrical relation which holds between any two x, y or y, x except when y is
the converse relation to x. Also let R be such that, if it holds between x and y, it
holds between y and the converse of x; and if x be any term of the collection,
let all the terms to which x has either of the relations R, R̆ be terms of the
collection. All these conditions are satisfied by angles, and whenever they are
satisfied, the resulting series is closed. For xRy implies yRx̆, and hence x̆Ry̆, and
thence y̆Rx; so that by means of relations R it is possible to travel from x back
to x. Also there is nothing in the definition to show that our series cannot be
continuous. Since it is closed, we cannot apply universally the notion of
between; but the notion of separation can be always applied. The reason why it
is necessary to suppose that our terms either are, or are correlated with,
asymmetrical relations, is, that such series often have antipodes, opposite terms
as they may be called; and that the notion of opposite seems to be essentially
bound up with that of the converse of an asymmetrical relation.

194. (6) In the same way in which, in (4), we showed how to construct
a series by relations of between, we can construct a series directly by four-term
relations of separation. For this purpose, as before, certain axioms are neces-
sary. The following five axioms have been shown by Vailati* to be sufficient,
and by Padoa to possess ordered independence, i.e. to be such that none can
be deduced from its predecessors.† Denoting “a and b separate c from d” by
ab || cd, we must have:

(α) ab || cd is equivalent to cd || ab;
(β) ab || cd is equivalent to ab || dc;
(γ) ab || cd excludes ac || bd;
(δ) For any four terms of our collection, we must have ab || cd, or ac || bd, or

ad || bc;
(ε) If ab || cd, and ac || be, then ac || de.

* Rivista di Matematica, , pp. 76, 183.
† Ibid. p. 185.
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By means of these five assumptions, our terms a, b, c, d, e . . . acquire an
unambiguous order, in which we start from a relation between two pairs of
terms, which is undefined except to the extent to which the above assump-
tions define it. The further consideration of this case, as generally of the
relation of separation, I postpone to a later stage.

The above six methods of generating series are the principal ones with
which I am acquainted, and all other methods, so far as I know, are reducible
to one of these six. The last alone gives a method of generating closed
continuous series whose terms neither are, nor are correlated with, asym-
metrical relations.* This last method should therefore be applied in projective
and elliptic Geometry, where the correlation of the points on a line with
the lines through a point appears to be logically subsequent to the order of
the points on a line. But before we can decide whether these six methods
(especially the fourth and sixth) are irreducible and independent, we must
discuss (what has not hitherto been analysed) the meaning of order, and the
logical constituents (if any) of which this meaning is compounded. This will
be done in the following chapter.

* See Chap. 28.
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25
THE MEANING OF

ORDER

195. W have now seen under what circumstances there is an order
among a set of terms, and by this means we have acquired a certain inductive
familiarity with the nature of order. But we have not yet faced the question:
What is order? This is a difficult question, and one upon which, so far as I
know, nothing at all has been written. All the authors with whom I am
acquainted are content to exhibit the genesis of order; and since most of
them give only one of the six methods enumerated in Chapter 24, it is easy
for them to confound the genesis of order with its nature. This confusion is
rendered evident to us by the multiplicity of the above methods; for it is
evident that we mean by order something perfectly definite, which, being
generated equally in all our six cases, is clearly distinct from each and all of
the ways in which it may be generated, unless one of these ways should turn
out to be fundamental, and the others to be reducible to it. To elicit this
common element in all series, and to broach the logical discussions con-
nected with it, is the purpose of the present chapter. This discussion is of
purely philosophical interest, and might be wholly omitted in a mathematical
treatment of the subject.

In order to approach the subject gradually, let us separate the discussion of
between from that of separation of couples. When we have decided upon the
nature of each of these separately, it will be time to combine them, and
examine what it is that both have in common. I shall begin with between, as
being the simpler of the two.

196. Between may be characterized (as in Chapter 24) as a relation of
one term y to two others x and z, which holds whenever x has to y, and
y has to z, some relation which y does not have to x, nor z to y, nor z to



x.* These conditions are undoubtedly sufficient for betweenness, but it may be
questioned whether they are necessary. Several possible opinions must be dis-
tinguished in this respect. (1) We may hold that the above conditions give the
very meaning of between, that they constitute an actual analysis of it, and not
merely a set of conditions insuring its presence. (2) We may hold that between
is not a relation of the terms x, y, z at all, but a relation of the relation of y to x
to that of y to z, namely the relation of difference of sense. (3) We may hold
that between is an indefinable notion, like greater and less; that the above condi-
tions allow us to infer that y is between x and z, but that there may be other
circumstances under which this occurs, and even that it may occur without
involving any relation except diversity among the pairs (x, y), (y, z), (x, z). In
order to decide between these theories, it will be well to develop each in
turn.

197. (1) In this theory, we define “y is between x and z” to mean: “There
is a relation R such that xRy, yRz but not yRx, zRy”; and it remains a question
whether we are to add “not zRx”. We will suppose to begin with that this
addition is not made. The following propositions will be generally admitted
to be self-evident: (α) If y be between x and z, and z between y and w, then y is
between x and w; (β) if y be between x and z, and w between x and y, then y is
between w and z. For brevity, let us express “y is between x and z” by the
symbol xyz. Then our two propositions are: (α) xyz and yzw imply xyw; (β) xyz
and xwy imply wyz. We must add that the relation of between is symmetrical so
far as the extremes are concerned: i.e. xyz implies zyx. This condition follows
directly from our definition. With regard to the axioms (α) and (β), it is to be
observed that between, on our present view, is always relative to some relation
R, and that the axioms are only assumed to hold when it is the same relation R
that is in question in both the premisses. Let us see whether these axioms are
consequences of our definition. For this purpose, let us write R̄ for not-R.

xyz means xRy, yRz, yR̄x, zR̄y.
yzw means yRz, zRw, zR̄y, wR̄z.

Thus yzw only adds to xyz the two conditions zRw, wR̄z. If R is transitive, these
conditions insure xyw; if not, not. Now we have seen that some series are
generated by one-one relations R, which are not transitive. In these cases,
however, denoting by R2 the relation between x and z implied by xRy, yRz, and
so on for higher powers, we can substitute a transitive relation R'  for R, where

* The condition that z does not have to x the relation in question is comparatively inessential,
being only required in order that, if y be between x and z, we may not have x between y and z, or z
between x and y. If we are willing to allow that in such cases, for example, as the angles of a
triangle, each is between the other two, we may drop the condition in question altogether. The
other four conditions, on the contrary, seem more essential.
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R'  means “some positive power of R”. In this way, if xyz holds for a relation
which is some definite power of R, then xyz holds for R' , provided only that no
positive power of R is equivalent to R̆. For, in this latter event, we should have
yR' x whenever xR' y, and R'  could not be substituted for R in the explanation of
xyz. Now this condition, that the converse of R is not to be a positive power of
R, is equivalent to the condition that our series is not to be closed. For if R̆ =
Rn, then RR̆ = Rn + 1; but since R is a one-one relation, RR̆ implies the relation of
identity. Thus n + 1 steps bring us back from x to x, and our series is a closed
series of n + 1 terms. Now we have agreed already that between is not properly
applicable to closed series. Hence this condition, that R̆ is not to be a power of
R, imposes only such restrictions upon our axiom (α) as we should expect it
to be subject to.

With regard to (β), we have

xyz = xRy · yRz · yR̄x · zR̄y.
xwy = xRw · wRy · wR̄x · yR̄w.

The case contemplated by this axiom is only possible if R be not a one-one
relation, since we have xRy and xRw. The deduction wyz is here an immediate
consequence of the definition, without the need of any further conditions.

It remains to examine whether we can dispense with the condition zR̄x in
the definition of between. If we suppose R to be a one-one relation, and zRx to
be satisfied, we shall have

xyz = xRy . yRz . zR̄y. yR̄x,

and we have further by hypothesis zRx, and since R is one-one, and xRy, we
have xR̄z. Hence, in virtue of the definition, we have yzx; and similarly we shall
obtain zxy. If we now adhere to our axiom (α), we shall have xzx, which is
impossible; for it is certainly part of the meaning of between that the three
terms in the relation should be different, and it is impossible that a term
should be between x and x. Thus we must either insert our condition zR̄x, or
we must set up the new condition in the definition, that x and z are to be
different. (It should be observed that our definition implies that x is different
from y and y from z; for if not, xRy would involve yRx, and yRz would involve
zRy.) It would seem preferable to insert the condition that x and z are to be
different: for this is in any case necessary, and is not implied by zR̄x. This
condition must then be added to our axiom (α); xyz and yzw are to imply xyw,
unless x and w are identical. In axiom (β), this addition is not necessary, since
it is implied in the premisses. Thus the condition zR̄x is not necessary, if we
are willing to admit that xyz is compatible with yzx—an admission which
such cases as the angles of a triangle render possible. Or we may insert, in
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place of zR̄x, the condition which we found necessary before to the universal
validity of our axiom (α), namely that no power of R is to be equivalent to the
converse of R: for if we have both xyz and yzx, we shall have (so far at least as
x, y, z are concerned) R2 = R̆, i.e. if xRy and yRz, then zRx. This last course seems
to be the best. Hence in all cases where our first instance of between is defined
by a one-one relation R, we shall substitute the relation R' , which means
“some positive power of R”. The relation R'  is then transitive, and the condi-
tion that no positive power of R is to be equivalent to R̆ is equivalent to the
condition that R'  is to be asymmetrical. Hence, finally, the whole matter is
simplified into the following:

To say that y is between x and z is equivalent to saying that there is some
transitive asymmetrical relation which relates both x and y, and y and z.

This short and simple statement, as the above lengthy argument shows,
contains neither more nor less than our original definition, together with the
emendations which we gradually found to be necessary. The question
remains, however: Is this the meaning of between?

198. A negative instance can be at once established if we allow the
phrase: R is a relation between x and y. The phrase, as the reader will have
observed, has been with difficulty excluded from the definitions of between,
which its introduction would have rendered at least verbally circular. The
phrase may have none but a linguistic importance, or again it may point to a
real insufficiency in the above definition. Let us examine the relation of
a relation R to its terms x and y. In the first place, there certainly is such a
relation. To be a term which has the relation R to some other term is certainly
to have a relation to R, a relation which we may express as “belonging to the
domain of R”. Thus if xRy, x will belong to the domain of R, and y to that of
R̆. If we express this relation between x and R, or between y and R̆, by E, we
shall have xER, yER̆. If further we express the relation of R to R̆ by I, we shall
have R̆IR and RIR̆. Thus we have xER, yEIR. Now EI is by no means the converse
of E, and thus the above definition of between, if for this reason only, does not
apply; also neither E nor EI is transitive. Thus our definition of between is
wholly inapplicable to such a case. Now it may well be doubted whether
between, in this case, has at all the same meaning as in other cases. Certainly we
do not in this way obtain series: x and y are not, in the same sense as R,
between R and other terms. Moreover, if we admit relations of a term to itself,
we shall have to admit that such relations are between a term and itself, which
we agreed to be impossible. Hence we may be tempted to regard the use of
between in this case as due to the linguistic accident that the relation is usually
mentioned between the subject and the object, as in “A is the father of B”. On
the other hand, it may be urged that a relation does have a very peculiar
relation to the pair of terms which it relates, and that between should denote a
relation of one term to two others. To the objection concerning relations of a
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term to itself, it may be answered that such relations, in any system, constitute
a grave logical difficulty; that they would, if possible, be denied philosophic
validity; and that even where the relation asserted is identity, there must be
two identical terms, which are therefore not quite identical. As this raises a
fundamental difficulty, which we cannot discuss here, it will be prudent to
allow the answer to pass.* And it may be further urged that use of the same
word in two connections points always to some analogy, the extent of which
should be carefully indicated by those who deny that the meaning is the same
in both cases; and that the analogy here is certainly profounder than the mere
order of words in a sentence, which is, in any case, far more variable in this
respect than the phrase that a relation is between its terms. To these remarks,
however, it may be retorted that the objector has himself indicated the precise
extent of the analogy: the relation of a relation to its terms is a relation of one
term to two others, just as between is, and this is what makes the two cases
similar. This last retort is, I think, valid, and we may allow that the relation of
a relation to its terms, though involving a most important logical problem, is
not the same as the relation of between by which order is to be constituted.

Nevertheless, the above definition of between, though we shall be ultimately
forced to accept it, seems, at first sight, scarcely adequate from a philo-
sophical point of view. The reference to some asymmetrical relation is vague,
and seems to require to be replaced by some phrase in which no such
undefined relation appears, but only the terms and the betweenness. This
brings us to the second of the above opinions concerning between.

199. (2) Between, it may be said, is not a relation of three terms at all, but a
relation of two relations, namely difference of sense. Now if we take this view,
the first point to be observed is, that we require the two opposite relations,
not merely in general, but as particularized by belonging to one and the same
term. This distinction is already familiar from the case of magnitudes and
quantities. Before and after in the abstract do not constitute between: it is only
when one and the same term is both before and after that between arises: this
term is then between what it is before and what it is after. Hence there is a
difficulty in the reduction of between to difference of sense. The particularized
relation is a logically puzzling entity, which in Part I (§ 55) we found it
necessary to deny; and it is not quite easy to distinguish a relation of two
relations, particularized as belonging to the same term, from a relation of the
term in question to two others. At the same time, great advantages are secured
by this reduction. We get rid of the necessity for a triangular relation, to
which many philosophers may object, and we assign a common element to
all cases of between, namely difference of sense, i.e. the difference between an
asymmetrical relation and its converse.

* Cf. § 95.

213the meaning of order



200. The question whether there can be an ultimate triangular relation is
one whose actual solution is both difficult and unimportant, but whose
precise statement is of very great importance. Philosophers seem usually to
assume—though not, so far as I know, explicitly—that relations never have
more than two terms; and even such relations they reduce, by force or guile,
to predications. Mathematicians, on the other hand, almost invariably speak
of relations of many terms. We cannot, however, settle the question by a
simple appeal to mathematical instances, for it remains a question whether
these are, or are not, susceptible of analysis. Suppose, for example, that the
projective plane has been defined as a relation of three points: the phil-
osopher may always say that it should have been defined as a relation of a
point and a line, or of two intersecting lines—a change which makes little or
no mathematical difference. Let us see what is the precise meaning of the
question. There are among terms two radically different kinds, whose differ-
ence constitutes the truth underlying the doctrine of substance and attribute.
There are terms which can never occur except as terms; such are points,
instants, colours, sounds, bits of matter, and generally terms of the kind of
which existents consist. There are, on the other hand, terms which can occur
otherwise than as terms; such are being, adjectives generally and relations.
Such terms we agreed to call concepts.* It is the presence of concepts not
occurring as terms which distinguishes propositions from mere concepts; in
every proposition there is at least one more concept than there are terms. The
traditional view—which may be called the subject-predicate theory—holds
that in every proposition there is one term, the subject, and one concept
which is not a term, the predicate. This view, for many reasons, must be
abandoned.† The smallest departure from the traditional opinion lies in hold-
ing that, where propositions are not reducible to the subject-predicate form,
there are always two terms only, and one concept which is not a term. (The
two terms may, of course, be complex, and may each contain concepts which
are not terms.) This gives the opinion that relations are always between only
two terms; for a relation may be defined as any concept which occurs in a
proposition containing more than one term. But there seems no à priori reason
for limiting relations to two terms, and there are instances which lead to an
opposite view. In the first place, when the concept of a number is asserted of a
collection, if the collection has n terms, there are n terms, and only one
concept (namely n) which is not a term. In the second place, such relations
as those of an existent to the place and time of its existence are only reducible
by a very cumbrous method to relations of two terms.‡ If, however, the
reduction be held essential, it seems to be always formally possible, by

* See Part I, Chap. 4.
† See The Philosophy of Leibniz, by the present author, Cambridge, 1900; Chapter II, § 10.
‡ See Part VII, Chap. 54.
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compounding part of the proposition into one complex term, and then
asserting a relation between this part and the remainder, which can be simi-
larly reduced to one term. There may be cases where this is not possible, but I
do not know of them. The question whether such a formal reduction is to be
always undertaken is not, however, so far as I have been able to discover, one
of any great practical or theoretical importance.

201. There is thus no valid à priori reason in favour of analysing between into
a relation of two relations, if a triangular relation seems otherwise preferable.
The other reason in favour of the analysis of between is more considerable. So
long as between is a triangular relation of the terms, it must be taken either as
indefinable, or as involving a reference to some transitive asymmetrical relation.
But if we make between consist essentially in the opposition of two relations
belonging to one term, there seems to be no longer any undue indeterminate-
ness. Against this view we may urge, however, that no reason now appears why
the relations in question should have to be transitive, and that—what is more
important—the very meaning of between involves the terms, for it is they, and
not their relations, that have order. And if it were only the relations that were
relevant, it would not be necessary, as in fact it is, to particularize them by the
mention of the terms between which they hold. Thus on the whole, the
opinion that between is not a triangular relation must be abandoned.

202. (3) We come now to the view that between is an ultimate and
indefinable relation. In favour of this view it might be urged that, in all our
ways of generating open series, we could see that cases of between did arise,
and that we could apply a test to suggested definitions. This seems to show
that the suggested definitions were merely conditions which imply relations
of between, and were not true definitions of this relation. The question: Do
such and such conditions insure that y shall be between x and z?, is always one
which we can answer, without having to appeal (at least consciously) to any
previous definition. And the unanalysable nature of between may be supported
by the fact that the relation is symmetrical with respect to the two extremes,
which was not the case with the relations of pairs from which between was
inferred. There is, however, a very grave difficulty in the way of such a view,
and that is, that sets of terms have many different orders, so that in one we
may have y between x and z, while in another we have x between y and z.*
This seems to show that between essentially involves reference to the relations
from which it is inferred. If not, we shall at least have to admit that these
relations are relevant to the genesis of series; for series require imperatively
that there should be at most one relevant relation of between among three

* This case is illustrated by the rational numbers, which may be taken in order of magnitude, or
in one of the orders (e.g. the logical order) in which they are denumerable. The logical order is
the order 1, 2, 1/2, 3, 1/3, 2/3, 4, . . . . . .
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terms. Hence we must, apparently, allow that between is not the sole source of
series, but must always be supplemented by the mention of some transitive
asymmetrical relation with respect to which the betweenness arises. The
most that can be said is, that this transitive asymmetrical relation of two terms
may itself be logically subsequent to, and derived from, some relation of
three terms, such as those considered in Chapter 24, in the fourth way of
generating series. When such relations fulfil the axioms which were then
mentioned, they lead of themselves to relations between pairs of terms. For
we may say that b precedes c when acd implies bcd, and that b follows c when
abd implies cbd, where a and d are fixed terms. Though such relations are
merely derivative, it is in virtue of them that between occurs in such cases.
Hence we seem finally compelled to leave the reference to an asymmetrical
relation in our definition. We shall therefore say:

A term y is between two terms x and z with reference to a transitive
asymmetrical relation R when xRy and yRz. In no other case can y be said
properly to be between x and z; and this definition gives not merely a
criterion, but the very meaning of betweenness.

203. We have next to consider the meaning of separation of couples.
This is a more complicated relation than between, and was but little considered
until elliptic Geometry brought it into prominence. It has been shown by
Vailati* that this relation, like between, always involves a transitive asymmetrical
relation of two terms; but this relation of a pair of terms is itself relative to
three other fixed terms of the set, as, in the case of between, it was relative to
two fixed terms. It is further sufficiently evident that wherever there is a
transitive asymmetrical relation, which relates every pair of terms in a collec-
tion of not less than four terms, there are pairs of couples having the
relation of separation. Thus we shall find it possible to express separation, as
well as between, by means of transitive asymmetrical relations and their terms.
But let us first examine directly the meaning of separation.

We may denote the fact that a and c are separated by b and d by the symbol
abcd. If, then, a, b, c, d, e be any five terms of the set we require the following
properties to hold of the relation of separation (of which, it will be observed,
only the last involves five terms):

1. abcd = badc.
2. abcd = adcb.
3. abcd excludes acbd.
4. We must have abcd or acdb or adbc.
5. abcd and acde together imply abde.†

* Rivista di Matematica, , pp. 75–78. See also Pieri, I Principii della Geometria di Posizione, Turin, 1898, § 7.
† These five properties are taken from Vailati, loc. cit. and ib. p. 183.
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These properties may be illustrated by the consideration of five points on a
circle, as in the accompanying figure. Whatever relation of two pairs of terms
possesses these properties we shall call a relation of separation between the
pairs. It will be seen that the relation is symmetrical, but not in general
transitive.

204. Wherever we have a transitive asymmetrical relation R between any
two terms of a set of not less than four terms, the relation of separation
necessarily arises. For in any series, if four terms have the order abcd, then a
and c are separated by b and d; and every transitive asymmetrical relation,
as we have seen, provided there are at least two consecutive instances of it,
gives rise to a series. Thus in this case, separation is a mere extension of
between: if R be asymmetrical and transitive, and aRb, bRc, cRd, then a and c are
separated by b and d. The existence of such a relation is therefore a sufficient
condition of separation.

It is also a necessary condition. For, suppose a relation of separation
to exist, and let a, b, c, d, e be five terms of the set to which the relation
applies. Then, considering a, b, c as fixed, and d and e as variable, twelve
cases may arise. In virtue of the five fundamental properties, we may intro-
duce the symbol abcde to denote that, striking out any one of these five letters,
the remaining four have the relation of separation which is indicated by the
resulting symbol. Thus by the fifth property, abcd and acde imply abcde.* Thus
the twelve cases arise from permuting d and e, while keeping a, b, c fixed.
(It should be observed that it makes no difference whether a letter appears at
the end or the beginning: i.e. abcde is the same case as eabcd. We may therefore
decide not to put either d or e before a.) Of these twelve cases, six will have d
before e, and six will have e before d. In the first six cases, we say that, with
respect to the sense abc, d precedes e; in the other six cases, we say that
e precedes d. In order to deal with limiting cases, we shall say further that
a precedes every other term, and that b precedes c.† We shall then find that
the relation of preceding is asymmetrical and transitive, and that every pair of
terms of our set is such that one precedes and the other follows. In this way
our relation of separation is reduced, formally at least, to the combination of
“a precedes b”, “b precedes c” and “c precedes d”.

The above reduction is for many reasons highly interesting. In the first
place, it shows the distinction between open and closed series to be some-
what superficial. For although our series may initially be of the sort which is
called closed, it becomes, by the introduction of the above transitive relation,
an open series, having a for its beginning, but having possibly no last term,
and not in any sense returning to a. Again it is of the highest importance in

* The argument is somewhat tedious, and I therefore omit it. It will be found in Vailati, loc. cit.
† Pieri, op. cit. p. 32.
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Geometry, since it shows how order may arise on the elliptic straight line, by
purely projective considerations, in a manner which is far more satisfactory
than that obtained from von Staudt’s construction.* And finally, it is of great
importance as unifying the two sources of order, between and separation; since
it shows that transitive asymmetrical relations are always present where either
occurs, and that either implies the other. For, by the relation of preceding, we
can say that one term is between two others, although we started solely from
separation of pairs.

205. At the same time, the above reduction (and also, it would seem, the
corresponding reduction in the case of between) cannot be allowed to be more
than formal. That is, the three terms a, b, c by relation to which our transitive
asymmetrical relation was defined, are essential to the definition, and cannot
be omitted. The reduction shows no reason for supposing that there is any
transitive asymmetrical relation independent of all other terms than those
related, though it is arbitrary what other terms we choose. And the fact that
the term a, which is not essentially peculiar, appears as the beginning of the
series, illustrates this fact. Where there are transitive asymmetrical relations
independent of all outside reference, our series cannot have an arbitrary
beginning, though it may have none at all. Thus the four-term relation of
separation remains logically prior to the resulting two-term relation, and
cannot be analysed into the latter.

206. But when we have said that the reduction is formal, we have
not said that it is irrelevant to the genesis of order. On the contrary, it is
just because such a reduction is possible that the four-term relation leads to
order. The resulting asymmetrical transitive relation is in reality a relation
of five terms; but when three of these are kept fixed, it becomes asymmetrical
and transitive as regards the other two. Thus although between applies to
such series, and although the essence of order consists, here as elsewhere,
in the fact that one term has, to two others, converse relations which are
asymmetrical and transitive, yet such an order can only arise in a collection
containing at least five terms, because five terms are needed for the character-
istic relation. And it should be observed that all series, when thus explained,
are open series, in the sense that there is some relation between pairs of
terms, no power of which is equal to its converse, or to identity.

207. Thus finally, to sum up this long and complicated discussion: The
six methods of generating series enumerated in Chapter 24 are all genu-
inely distinct; but the second is the only one which is fundamental, and the
other five agree in this, that they are all reducible to the second. Moreover, it is

* The advantages of this method are evident from Pieri’s work quoted above, where many things
which seemed incapable of projective proof are rigidly deduced from projective premisses. See
Part VI, Chap. 45.
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solely in virtue of their reducibility to the second that they give rise to order.
The minimum ordinal proposition, which can always be made wherever
there is an order at all, is of the form: “y is between x and z”; and this
proposition means; “There is some asymmetrical transitive relation which
holds between x and y and between y and z.” This very simple conclusion
might have been guessed from the beginning; but it was only by discussing
all the apparently exceptional cases that the conclusion could be solidly
established.
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26
ASYMMETRICAL RELATIONS

208. W have now seen that all order depends upon transitive asym-
metrical relations. As such relations are of a kind which traditional logic is
unwilling to admit, and as the refusal to admit them is one of the main
sources of the contradictions which the Critical Philosophy has found in
mathematics, it will be desirable, before proceeding further, to make an
excursion into pure logic, and to set forth the grounds which make the
admission of such relations necessary. At a later stage (in Part VI, Chap. 51),
I shall endeavour to answer the general objections of philosophers to relations;
for the present, I am concerned only with asymmetrical relations.

Relations may be divided into four classes, according as they do or do not
possess either of two attributes, transitiveness* and symmetry. Relations such
that xRy always implies yRx are called symmetrical; relations such that xRy, yRz
together always imply xRz are called transitive. Relations which do not possess
the first property I shall call not symmetrical; relations which do possess the
opposite property, i.e. for which xRy always excludes yRx, I shall call asym-
metrical. Relations which do not possess the second property I shall call not
transitive; those which possess the property that xRy, yRz always exclude xRz I
shall call intransitive. All these cases may be illustrated from human relation-
ships. The relation brother or sister is symmetrical, and is transitive if we allow
that a man may be his own brother, and a woman her own sister. The relation
brother is not symmetrical, but is transitive. Half-brother or half-sister is sym-
metrical but not transitive. Spouse is symmetrical but intransitive; descendant is
asymmetrical but transitive. Half-brother is not symmetrical and not transitive;

* This term appears to have been first used in the present sense by De Morgan; see Camb. Phil.
Trans., , p. 104; , p. 346. The term is now in general use.



if third marriages were forbidden, it would be intransitive. Son-in-law is
asymmetrical and not transitive; if second marriages were forbidden, it
would be intransitive. Brother-in-law is not symmetrical and not transitive.
Finally, father is both asymmetrical and intransitive. Of not-transitive but not
intransitive relations there is, so far as I know, only one important instance,
namely diversity; of not-symmetrical but not asymmetrical relations there
seems to be similarly only one important instance, namely implication. In other
cases, of the kind that usually occur, relations are either transitive or intransi-
tive, and either symmetrical or asymmetrical.

209. Relations which are both symmetrical and transitive are formally of
the nature of equality. Any term of the field of such a relation has the relation
in question to itself, though it may not have the relation to any other term.
For denoting the relation by the sign of equality, if a be of the field of the
relation, there is some term b such that a = b. If a and b be identical, then a = a.
But if not, then, since the relation is symmetrical, b = a; since it is transitive,
and we have a = b, b = a, it follows that a = a. The property of a relation which
insures that it holds between a term and itself is called by Peano reflexiveness,
and he has shown, contrary to what was previously believed, that this prop-
erty cannot be inferred from symmetry and transitiveness. For neither of
these properties asserts that there is a b such that a = b, but only what follows
in case there is such a b; and if there is no such b, then the proof of a = a fails.*
This property of reflexiveness, however, introduces some difficulty. There
is only one relation of which it is true without limitation, and that is identity.
In all other cases, it holds only of the terms of a certain class. Quantitative
equality, for example, is only reflexive as applied to quantities; of other
terms, it is absurd to assert that they have quantitative equality with them-
selves. Logical equality, again, is only reflexive for classes, or propositions, or
relations. Simultaneity is only reflexive for events, and so on. Thus, with any
given symmetrical transitive relation, other than identity, we can only assert
reflexiveness within a certain class; and of this class, apart from the principle
of abstraction (already mentioned in Part III, Chap. 19, and shortly to
be discussed at length), there need be no definition except as the extension
of the transitive symmetrical relation in question. And when the class is
so defined, reflexiveness within that class, as we have seen, follows from
transitiveness and symmetry.

210. By introducing what I have called the principle of abstraction,† a
somewhat better account of reflexiveness becomes possible. Peano has

* See e.g. Revue de Mathématiques, T. , p. 22; Notations de Logique Mathématique, Turin, 1894, p. 45, F.
1901, p. 193.
† An axiom virtually identical with this principle, but not stated with the necessary precision,
and not demonstrated, will be found in De Morgan, Camb. Phil. Trans., Vol. , p. 345.
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defined* a process which he calls definition by abstraction, of which, as he
shows, frequent use is made in Mathematics. This process is as follows: when
there is any relation which is transitive, symmetrical and (within its field)
reflexive, then, if this relation holds between u and v, we define a new entity
� (u), which is to be identical with � (v). Thus our relation is analysed into
sameness of relation to the new term � (u) or � (v). Now the legitimacy of
this process, as set forth by Peano, requires an axiom, namely the axiom that,
if there is any instance of the relation in question, then there is such an entity
as � (u) or � (v). This axiom is my principle of abstraction, which, precisely
stated, is as follows: “Every transitive symmetrical relation, of which there is
at least one instance, is analysable into joint possession of a new relation to a
new term, the new relation being such that no term can have this relation to
more than one term, but that its converse does not have this property.” This
principle amounts, in common language, to the assertion that transitive
symmetrical relations arise from a common property, with the addition that
this property stands, to the terms which have it, in a relation in which
nothing else stands to those terms. It gives the precise statement of the
principle, often applied by philosophers, that symmetrical transitive relations
always spring from identity of content. Identity of content is, however, an
extremely vague phrase, to which the above proposition gives, in the present
case, a precise signification, but one which in no way answers the purpose of
the phrase, which is, apparently, the reduction of relations to adjectives of the
related terms.

It is now possible to give a clearer account of the reflexive property. Let R
be our symmetrical relation, and let S be the asymmetrical relation which two
terms having the relation R must have to some third term. Then the prop-
osition xRy is equivalent to this: “There is some term a such that xSa and ySa.”
Hence it follows that, if x belongs to what we have called the domain of S,
i.e. if there is any term a such that xSa, then xRx; for xRx is merely xSa and xSa. It
does not of course follow that there is any other term y such that xRy, and thus
Peano’s objections to the usual proof of reflexiveness are valid. But by means
of the analysis of symmetrical transitive relations, we obtain the proof of the
reflexive property, together with the exact limitation to which it is subject.

211. We can now see the reason for excluding from our accounts of the
methods of generating series a seventh method, which some readers may
have expected to find. This is the method in which position is merely rela-
tive—a method which, in Chap. 19, § 154, we rejected as regards quantity.
As the whole philosophy of space and time is bound up with the question
as to the legitimacy of this method, which is in fact the question as to
absolute and relative position, it may be well to give an account of it here, and

* Notations de Logique Mathématique, p. 45.
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to show how the principle of abstraction leads to the absolute theory of
position.

If we consider such a series as that of events, and if we refuse to allow
absolute time, we shall have to admit three fundamental relations among
events, namely, simultaneity, priority and posteriority. Such a theory may be
formally stated as follows: Let there be a class of terms, such that any two,
x and y, have either an asymmetrical transitive relation P, or the converse
relation P̆, or a symmetrical transitive relation R. Also let xRy, yPz imply xPz,
and let xPy, yRz imply xPz. Then all the terms can be arranged in a series, in
which, however, there may be many terms which have the same place in the
series. This place, according to the relational theory of position, is nothing
but the transitive symmetrical relation R to a number of other terms. But it
follows from the principle of abstraction that there is some relation S, such
that, if xRy, there is some one entity t for which xSt, ySt. We shall then find that
the different entities t, corresponding to different groups of our original
terms, also form a series, but one in which any two different terms have an
asymmetrical relation (formally, the product S̆RS). These terms t will then be
the absolute positions of our x’s and y’s, and our supposed seventh method of
generating series is reduced to the fundamental second method. Thus there
will be no series having only relative position, but in all series it is the
positions themselves that constitute the series.*

212. We are now in a position to meet the philosophic dislike of relations.
The whole account of order given above, and the present argument concern-
ing abstraction, will be necessarily objected to by those philosophers—and
they are, I fear, the major part—who hold that no relations can possess
absolute and metaphysical validity. It is not my intention here to enter upon
the general question, but merely to exhibit the objections to any analysis of
asymmetrical relations.

It is a common opinion—often held unconsciously, and employed in
argument, even by those who do not explicitly advocate it—that all proposi-
tions, ultimately, consist of a subject and a predicate. When this opinion is
confronted by a relational proposition, it has two ways of dealing with it, of
which the one may be called monadistic, the other monistic. Given, say, the
proposition aRb, where R is some relation, the monadistic view will analyse
this into two propositions, which we may call ar1 and br2, which give to a and
b respectively adjectives supposed to be together equivalent to R. The monis-
tic view, on the contrary, regards the relation as a property of the whole
composed of a and b, and as thus equivalent to a proposition which we may
denote by (ab)r. Of these views, the first is represented by Leibniz and (on the

* A formal treatment of relative position is given by Schröder, Sur une extension de l’idée d’ordre, Congrès,
Vol. , p. 235.
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whole) by Lotze, the second by Spinoza and Mr Bradley. Let us examine these
views successively, as applied to asymmetrical relations; and for the sake of
definiteness, let us take the relations of greater and less.

213. The monadistic view is stated with admirable lucidity by Leibniz in
the following passage:*

“The ratio or proportion between two lines L and M may be conceived
three several ways; as a ratio of the greater L to the lesser M; as a ratio of the
lesser M to the greater L; and lastly, as something abstracted from both, that is,
as the ratio between L and M, without considering which is the antecedent, or
which the consequent; which the subject, and which the object. . . . In the
first way of considering them, L the greater, in the second M the lesser, is the
subject of that accident which philosophers call relation. But which of them
will be the subject, in the third way of considering them? It cannot be said
that both of them, L and M together, are the subject of such an accident; for if
so, we should have an accident in two subjects, with one leg in one, and the
other in the other; which is contrary to the notion of accidents. Therefore we
must say that this relation, in this third way of considering it, is indeed out of
the subjects; but being neither a substance nor an accident, it must be a mere
ideal thing, the consideration of which is nevertheless useful.”

214. The third of the above ways of considering the relation of greater
and less is, roughly speaking, that which the monists advocate, holding, as
they do, that the whole composed of L and M is one subject, so that their way
of considering ratio does not compel us, as Leibniz supposed, to place it
among bipeds. For the present our concern is only with the first two ways.
In the first way of considering the matter, we have “L is (greater than M)”,
the words in brackets being considered as an adjective of L. But when we
examine this adjective it is at once evident that it is complex: it consists, at
least, of the parts greater and M, and both these parts are essential. To say that L
is greater does not at all convey our meaning, and it is highly probable that M
is also greater. The supposed adjective of L involves some reference to M; but
what can be meant by a reference the theory leaves unintelligible. An adjec-
tive involving a reference to M is plainly an adjective which is relative to M,
and this is merely a cumbrous way of describing a relation. Or, to put the
matter otherwise, if L has an adjective corresponding to the fact that it is
greater than M, this adjective is logically subsequent to, and is merely derived
from, the direct relation of L to M. Apart from M, nothing appears in the
analysis of L to differentiate it from M; and yet, on the theory of relations in
question, L should differ intrinsically from M. Thus we should be forced, in
all cases of asymmetrical relations, to admit a specific difference between the
related terms, although no analysis of either singly will reveal any relevant

* Phil. Werke, Gerhardt’s ed., Vol. , p. 401.
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property which it possesses and the other lacks. For the monadistic theory
of relations, this constitutes a contradiction; and it is a contradiction which
condemns the theory from which it springs.*

Let us examine further the application of the monadistic theory to quanti-
tative relations. The proposition “A is greater than B” is to be analysable into
two propositions, one giving an adjective to A, the other giving one to B. The
advocate of the opinion in question will probably hold that A and B are
quantities, not magnitudes, and will say that the adjectives required are
the magnitudes of A and B. But then he will have to admit a relation between
the magnitudes, which will be as asymmetrical as the relation which the
magnitudes were to explain. Hence the magnitudes will need new adjectives,
and so on ad infinitum; and the infinite process will have to be completed
before any meaning can be assigned to our original proposition. This kind of
infinite process is undoubtedly objectionable, since its sole object is to
explain the meaning of a certain proposition, and yet none of its steps bring
it any nearer to that meaning.† Thus we cannot take the magnitudes of A and
B as the required adjectives. But further, if we take any adjectives whatever
except such as have each a reference to the other term, we shall not be able,
even formally, to give any account of the relation, without assuming just such
a relation between the adjectives. For the mere fact that the adjectives are
different will yield only a symmetrical relation. Thus if our two terms have
different colours we find that A has to B the relation of differing in colour, a
relation which no amount of careful handling will render asymmetrical. Or if
we were to recur to magnitudes, we could merely say that A and B differ in
magnitude, which gives us no indication as to which is the greater. Thus the
adjectives of A and B must be, as in Leibniz’s analysis, adjectives having a
reference each to the other term. The adjective of A must be “greater than B”,
and that of B must be “less than A”. Thus A and B differ, since they have
different adjectives—B is not greater than B, and A is not less than A—but the
adjectives are extrinsic, in the sense that A’s adjective has reference to B,
and B’s to A. Hence the attempted analysis of the relation fails, and we are
forced to admit what the theory was designed to avoid, a so-called “external”
relation, i.e. one implying no complexity in either of the related terms.

* See a paper on “The Relations of Number and Quantity”, Mind, N.S. No. 23. This paper was
written while I still adhered to the monadistic theory of relations: the contradiction in question,
therefore, was regarded as inevitable. The following passage from Kant raises the same point:
“Die rechte Hand ist der linken ähnlich und gleich, und wenn man blos auf eine derselben allein
sieht, auf die Proportion der Lage der Theile unter einander und auf die Grösse des Ganzen, so
muss eine vollständige Beschreibung der einen in allen Stücken auch von der andern gelten.”
(Von dem ersten Grunde des Unterschiedes der Gegenden im Raume, ed. Hart. Vol. , p. 389.)
† Where an infinite process of this kind is required we are necessarily dealing with a proposition
which is an infinite unity, in the sense of Part II, Chap. 17.
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The same result may be proved of asymmetrical relations generally, since it
depends solely upon the fact that both identity and diversity are symmetrical.
Let a and b have an asymmetrical relation R, so that aRb and bR̆a. Let the
supposed adjectives (which, as we have seen, must each have a reference to
the other term) be denoted by β  and α respectively. Thus our terms become
αβ  and βα. α involves a reference to a, and β  to b; and α and β  differ, since the

relation is asymmetrical. But a and b have no intrinsic difference correspond-
ing to the relation R, and prior to it; or, if they have, the points of difference
must themselves have a relation analogous to R, so that nothing is gained.
Either α or β  expresses a difference between a and b, but one which, since
either α or β  involves reference to a term other than that whose adjective it is,
so far from being prior to R, is in fact the relation R itself. And since α and β
both presuppose R, the difference between α and β  cannot be used to supply
an intrinsic difference between a and b. Thus we have again a difference
without a prior point of difference. This shows that some asymmetrical
relations must be ultimate, and that at least one such ultimate asymmetrical
relation must be a component in any asymmetrical relation that may be
suggested.

It is easy to criticize the monadistic theory from a general standpoint, by
developing the contradictions which spring from the relations of the terms to
the adjectives into which our first relation has been analysed. These consider-
ations, which have no special connection with asymmetry, belong to general
philosophy, and have been urged by advocates of the monistic theory. Thus
Mr Bradley says of the monadistic theory:* “We, in brief, are led by a prin-
ciple of fission which conducts us to no end. Every quality in relation has, in
consequence, a diversity within its own nature, and this diversity cannot
immediately be asserted of the quality. Hence the quality must exchange its
unity for an internal relation. But, thus set free, the diverse aspects, because
each something in relation, must each be something also beyond. This diver-
sity is fatal to the internal unity of each; and it demands a new relation, and so
on without limit.” It remains to be seen whether the monistic theory, in
avoiding this difficulty, does not become subject to others quite as serious.

215. The monistic theory holds that every relational proposition aRb
is to be resolved into a proposition concerning the whole which a and b
compose—a proposition which we may denote by (ab)r. This view, like the
other, may be examined with special reference to asymmetrical relations, or
from the standpoint of general philosophy. We are told, by those who advo-
cate this opinion, that the whole contains diversity within itself, that it syn-
thesizes differences, and that it performs other similar feats. For my part, I am
unable to attach any precise significance to these phrases. But let us do our best.

* Appearance and Reality, 1st edition, p. 31.
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The proposition “a is greater than b”, we are told, does not really say
anything about either a or b, but about the two together. Denoting the whole
which they compose by (ab), it says, we will suppose, “(ab) contains diversity
of magnitude”. Now to this statement—neglecting for the present all general
arguments—there is a special objection in the case of asymmetry. (ab) is
symmetrical with regard to a and b, and thus the property of the whole will
be exactly the same in the case where a is greater than b as in the case where b
is greater than a. Leibniz, who did not accept the monistic theory, and had
therefore no reason to render it plausible, clearly perceived this fact, as
appears from the above quotation. For, in his third way of regarding ratio, we
do not consider which is the antecedent, which the consequent; and it is
indeed sufficiently evident that, in the whole (ab) as such, there is neither
antecedent nor consequent. In order to distinguish a whole (ab) from a
whole (ba), as we must do if we are to explain asymmetry, we shall be forced
back from the whole to the parts and their relation. For (ab) and (ba) consist
of precisely the same parts, and differ in no respect whatever save the sense of
the relation between a and b. “a is greater than b” and “b is greater than a” are
propositions containing precisely the same constituents, and giving rise
therefore to precisely the same whole; their difference lies solely in the
fact that greater is, in the first case, a relation of a to b, in the second, a relation
of b to a. Thus the distinction of sense, i.e. the distinction between an
asymmetrical relation and its converse, is one which the monistic theory of
relations is wholly unable to explain.

Arguments of a more general nature might be multiplied almost indefin-
itely, but the following argument seems peculiarly relevant. The relation of
whole and part is itself an asymmetrical relation, and the whole—as monists
are peculiarly fond of telling us—is distinct from all its parts, both severally
and collectively. Hence when we say “a is part of b”, we really mean, if the
monistic theory be correct, to assert something of the whole composed of a
and b, which is not to be confounded with b. If the proposition concerning
this new whole be not one of whole and part there will be no true judgments
of whole and part, and it will therefore be false to say that a relation between
the parts is really an adjective of the whole. If the new proposition is one of
whole and part, it will require a new one for its meaning, and so on. If, as a
desperate measure, the monist asserts that the whole composed of a and b is
not distinct from b, he is compelled to admit that a whole is the sum (in the
sense of Symbolic Logic) of its parts, which, besides being an abandonment
of his whole position, renders it inevitable that the whole should be
symmetrical as regards its parts—a view which we have already seen to be
fatal. And hence we find monists driven to the view that the only true whole,
the Absolute, has no parts at all, and that no propositions in regard to it
or anything else are quite true—a view which, in the mere statement,
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unavoidably contradicts itself. And surely an opinion which holds all proposi-
tions to be in the end self-contradictory is sufficiently condemned by the fact
that, if it be accepted, it also must be self-contradictory.

216. We have now seen that asymmetrical relations are unintelligible on
both the usual theories of relation.* Hence, since such relations are involved
in Number, Quantity, Order, Space, Time and Motion, we can hardly hope
for a satisfactory philosophy of Mathematics so long as we adhere to the
view that no relation can be “purely external”. As soon, however, as we
adopt a different theory, the logical puzzles, which have hitherto obstructed
philosophers, are seen to be artificial. Among the terms commonly regarded
as relational, those that are symmetrical and transitive—such as equality
and simultaneity—are capable of reduction to what has been vaguely called
identity of content, but this in turn must be analysed into sameness of rela-
tion to some other term. For the so-called properties of a term are, in fact,
only other terms to which it stands in some relation; and a common property
of two terms is a term to which both stand in the same relation.

The present long digression into the realm of logic is necessitated by the
fundamental importance of order, and by the total impossibility of explaining
order without abandoning the most cherished and widespread of philosophic
dogmas. Everything depends, where order is concerned, upon asymmetry
and difference of sense, but these two concepts are unintelligible to the
traditional logic. In the next chapter we shall have to examine the connection
of difference of sense with what appears in Mathematics as difference of sign.
In this examination, though some pure logic will still be requisite, we shall
approach again to mathematical topics; and these will occupy us wholly
throughout the succeeding chapters of this Part.

* The grounds of these theories will be examined from a more general point of view in Part VI,
Chap. 51.
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27
DIFFERENCE OF SENSE AND

DIFFERENCE OF SIGN

217. W have now seen that order depends upon asymmetrical relations,
and that these always have two senses, as before and after, greater and less,
east and west, etc. The difference of sense is closely connected (though not
identical) with the mathematical difference of sign. It is a notion of funda-
mental importance in Mathematics, and is, so far as I can see, not explicable
in terms of any other notions. The first philosopher who realized its import-
ance would seem to be Kant. In the Versuch den Begriff der negativen Grösse in die
Weltweisheit einzuführen (1763), we find him aware of the difference between
logical opposition and the opposition of positive and negative. In the discus-
sion Von dem ersten Grunde des Unterschiedes der Gegenden im Raume (1768), we find a
full realization of the importance of asymmetry in spatial relations, and a
proof, based on this fact, that space cannot be wholly relational.* But it seems
doubtful whether he realized the connection of this asymmetry with differ-
ence of sign. In 1763 he certainly was not aware of the connection, since he
regarded pain as a negative amount of pleasure, and supposed that a great
pleasure and a small pain can be added to give a lesser pleasure†—a view
which seems both logically and psychologically false. In the Prolegomena
(§ 13), as is well known, he made the asymmetry of spatial relations a
ground for regarding space as a mere form of intuition, perceiving, as
appears from the discussion of 1768, that space could not consist, as Leibniz
supposed, of mere relations among objects, and being unable, owing to his
adherence to the logical objection to relations discussed in the preceding

* See especially ed. Hart, Vol. II, pp. 386, 391.
† Ed. Hart, Vol. II, p. 83.



chapter, to free from contradiction the notion of absolute space with
asymmetrical relations between its points. Although I cannot regard this later
and more distinctively Kantian theory as an advance upon that of 1768, yet
credit is undoubtedly due to Kant for having first called attention to the
logical importance of asymmetrical relations.

218. By difference of sense I mean, in the present discussion at least, the
difference between an asymmetrical relation and its converse. It is a funda-
mental logical fact that, given any relation R, and any two terms a, b, there are
two propositions to be formed of these elements, the one relating a to b
(which I call aRb), the other (bRa) relating b to a. These two propositions are
always different, though sometimes (as in the case of diversity) either implies
the other. In other cases, such as logical implication, the one does not imply
either the other or its negation; while in a third set of cases, the one implies
the negation of the other. It is only in cases of the third kind that I shall speak
of difference of sense. In these cases, aRb excludes bRa. But here another
fundamental logical fact becomes relevant. In all cases where aRb does not
imply bRa there is another relation, related to R, which must hold between b
and a. That is, there is a relation R̆ such that aRb implies bRa; and further, bR̆a
implies aRb. The relation of R to R̆ is difference of sense. This relation is one-
one, symmetrical and intransitive. Its existence is the source of series, of the
distinction of signs, and indeed of the greater part of mathematics.

219. A question of considerable importance to logic, and especially to
the theory of inference, may be raised with regard to difference of sense. Are
aRb and bR̆a really different propositions, or do they only differ linguistically?
It may be held that there is only one relation R, and that all necessary distinc-
tions can be obtained from that between aRb and bRa. It may be said that,
owing to the exigencies of speech and writing, we are compelled to mention
either a or b first, and that this gives a seeming difference between “a is
greater than b” and “b is less than a”; but that, in reality, these two proposi-
tions are identical. But if we take this view we shall find it hard to explain the
indubitable distinction between greater and less. These two words have certainly
each a meaning, even when no terms are mentioned as related by them. And
they certainly have different meanings, and are certainly relations. Hence if
we are to hold that “a is greater than b” and “b is less than a” are the same
proposition, we shall have to maintain that both greater and less enter into each
of these propositions, which seems obviously false; or else we shall have to
hold that what really occurs is neither of the two, but that third abstract
relation mentioned by Leibniz in the passage quoted above. In this case the
difference between greater and less would be one essentially involving a refer-
ence to the terms a and b. But this view cannot be maintained without
circularity; for neither the greater nor the less is inherently the antecedent,
and we can only say that, when the greater is the antecedent, the relation is
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greater; when the less, the relation is less. Hence, it would seem, we must admit
that R and R̆ are distinct relations. We cannot escape this conclusion by the
analysis into adjectives attempted in the last chapter. We there analysed aRb
into aβ  and bα. But, corresponding to every b, there will be two adjectives, β

and β̆, and corresponding to every a there will also be two, α and ᾰ. Thus if R
be greater, α will be “greater than A” and ᾰ “less than A”, or vice versâ. But the
difference between α and ᾰ presupposes that between greater and less,
between R and R̆, and therefore cannot explain it. Hence R and R̆ must be
distinct, and “aRb implies bR̆a” must be a genuine inference.

I come now to the connection between difference of sense and difference
of sign. We shall find that the latter is derivative from the former, being a
difference which only exists between terms which either are, or are correl-
ated with, asymmetrical relations. But in certain cases we shall find some
complications of detail which will demand discussion.

The difference of signs belongs, traditionally, only to numbers and
magnitudes, and is intimately associated with addition. It may be allowed that
the notation cannot be usefully employed where there is no addition, and
even that, where distinction of sign is possible, addition in some sense is in
general also possible. But we shall find that the difference of sign has no very
intimate connection with addition and subtraction. To make this clear, we
must, in the first place, clearly realize that numbers and magnitudes which
have no sign are radically different from such as are positive. Confusion on
this point is quite fatal to any just theory of signs.

220. Taking first finite numbers, the positive and negative numbers arise
as follows.* Denoting by R the relation between two integers in virtue of
which the second is next after the first, the proposition mRn is equivalent
to what is usually expressed by m + 1 = n. But the present theory will apply
to progressions generally and does not depend upon the logical theory of
cardinals developed in Part II. In the proposition mRn, the integers m and n are
considered, as when they result from the logical definition, to be wholly
destitute of sign. If now mRn and nRp, we put mR2p; and so on for higher
powers. Every power of R is an asymmetrical relation, and its converse is
easily shown to be the same power of R̆ as it is itself of R. Thus mRaq is
equivalent to qR̆am. These are the two propositions which are commonly
written m + a = q and q − a = m. Thus the relations Ra, R̆a are the true positive
and negative integers; and these, though associated with a, are both wholly
distinct from it. Thus in this case the connection with difference of sense is
obvious and straightforward.

221. As regards magnitudes, several cases must be distinguished. We

* I give the theory briefly here, as it will be dealt with more fully and generally in the chapter on
Progressions, § 233.
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have (1) magnitudes which are not either relations or stretches, (2) stretches,
(3) magnitudes which are relations.

(1) Magnitudes of this class are themselves neither positive nor negative.
But two such magnitudes, as explained in Part III, determine either a distance
or a stretch, and these are always positive or negative. These are moreover
always capable of addition. But since our original magnitudes are neither
relations nor stretches, the new magnitudes thus obtained are of a different
kind from the original set. Thus the difference of two pleasures, or the
collection of pleasures intermediate between two pleasures, is not a pleasure,
but in the one case a relation, in the other a class.

(2) Magnitudes of divisibility in general have no sign, but when they are
magnitudes of stretches they acquire sign by correlation. A stretch is dis-
tinguished from other collections by the fact that it consists of all the terms of
a series intermediate between two given terms. By combining the stretch
with one sense of the asymmetrical relation which must exist between its
end-terms, the stretch itself acquires sense, and becomes asymmetrical. That
is, we can distinguish (1) the collection of terms between a and b without
regard to order, (2) the terms from a to b, (3) the terms from b to a. Here (2)
and (3) are complex, being compounded of (1) and one sense of the consti-
tutive relation. Of these two, one must be called positive, the other negative.
Where our series consists of magnitudes, usage and the connection with
addition have decided that, if a is less than b, (2) is positive and (3) is negative.
But where, as in Geometry, our series is not composed of magnitudes, it
becomes wholly arbitrary which is to be positive and which negative. In
either case, we have the same relation to addition, which is as follows. Any
pair of collections can be added to form a new collection, but not any pair of
stretches can be added to form a new stretch. For this to be possible the end
of one stretch must be consecutive to the beginning of the other. In this way,
the stretches ab, bc can be added to form the stretch ac. If ab, bc have the same
sense, ac is greater than either; if they have different senses, ac is less than
one of them. In this second case the addition of ab and bc is regarded as the
subtraction of ab and cb, bc and cb being negative and positive respectively. If
our stretches are numerically measurable, addition or subtraction of their
measures will give the measure of the result of adding or subtracting the
stretches, where these are such as to allow addition or subtraction. But
the whole opposition of positive and negative, as is evident, depends upon
the fundamental fact that our series is generated by an asymmetrical relation.

(3) Magnitudes which are relations may be either symmetrical or asym-
metrical relations. In the former case, if a be a term of the field of one of
them, the other terms of the various fields, if certain conditions are fulfilled,*

* Cf. § 245.
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may be arranged in series according as their relations to a are greater or
smaller. This arrangement may be different when we choose some term other
than a; for the present, therefore, we shall suppose a to be chosen once for all.
When the terms have been arranged in a series, it may happen that some or
all places in the series are occupied by more than one term; but in any case
the assemblage of terms between a and some other term m is definite, and
leads to a stretch with two senses. We may then combine the magnitude of
the relation of a to m with one or other of these two senses, and so obtain an
asymmetrical relation of a to m, which, like the original relation, will have
magnitude. Thus the case of symmetrical relations may be reduced to that
of asymmetrical relations. These latter lead to signs, and to addition and
subtraction, in exactly the same way as stretches with sense; the only differ-
ence being that the addition and subtraction are now of the kind which, in
Part III, we called relational. Thus in all cases of magnitudes having sign, the
difference between the two senses of an asymmetrical relation is the source
of the difference of sign.

The case which we discussed in connection with stretches is of funda-
mental importance in Geometry. We have here a magnitude without sign, an
asymmetrical relation without magnitude, and some intimate connection
between the two. The combination of both then gives a magnitude which has
sign. All geometrical magnitudes having sign arise in this way. But there is
a curious complication in the case of volumes. Volumes are, in the first
instance, signless quantities; but in analytical Geometry they always appear as
positive or negative. Here the asymmetrical relations (for there are two)
appear as terms, between which there is a symmetrical relation, but one
which yet has an opposite of a kind very similar to the converse of an
asymmetrical relation. This relation, as an exceptional case, must be here
briefly discussed.

222. The descriptive straight line is a serial relation in virtue of which
the points of the line form a series.* Either sense of the descriptive straight
line may be called a ray, the sense being indicated by an arrow. Any two
non-coplanar rays have one or other of two relations, which may be called
right and left-handedness respectively.† This relation is symmetrical but not
transitive, and is the essence of the usual distinction of right and left. Thus the
relation of the upward vertical to a line from north to east is right-handed,
and to a line from south to east is left-handed. But though the relation is
symmetrical, it is changed into its opposite by changing either of the terms
of the relation into its converse. That is, denoting right-handedness by R,

* See Part VI.
† The two cases are illustrated in the figure. The difference is the same as that between the two
sorts of coordinate axes.
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left-handedness by L (which is not R̆), if A and B be two rays which are
mutually right-handed, we shall have

ARB, ĂLB, ALB̆, ĂRB̆, BRA, B̆LA, BLĂ, B̆RĂ.

That is, every pair of non-coplanar straight lines gives rise to eight such
relations, of which four are right-handed, and four left-handed. The differ-
ence between L and R, though not, as it stands, a difference of sense, is,
nevertheless, the difference of positive and negative, and is the reason why
the volumes of tetrahedra, as given by determinants, always have signs. But
there is no difficulty in following the plain man’s reduction of right and
left to asymmetrical relations. The plain man takes one of the rays (say A)
as fixed—when he is sober, he takes A to be the upward vertical—and then
regards right and left as properties of the single ray B, or, what comes to
the same thing, as relations of any two points which determine B. In this
way, right and left become asymmetrical relations, and even have a limited
degree of transitiveness, of the kind explained in the fifth way of generat-
ing series (in Chapter 24). It is to be observed that what is fixed must be
a ray, not a mere straight line. For example, two planes which are not
mutually perpendicular are not one right and the other left with regard to
their line of intersection, but only with regard to either of the rays belong-
ing to this line.* But when this is borne in mind, and when we consider,
not semi-planes, but complete planes, through the ray in question, right
and left become asymmetrical and each other’s converses. Thus the signs
associated with right and left, like all other signs, depend upon the asym-
metry of relations. This conclusion, therefore, may now be allowed to be
general.

223. Difference of sense is, of course, more general than difference of
sign, since it exists in cases with which mathematics (at least at present) is
unable to deal. And difference of sign seems scarcely applicable to relations
which are not transitive, or are not intimately connected with some transitive
relation. It would be absurd, for example, to regard the relation of an event to
the time of its occurrence, or of a quantity to its magnitude, as conferring a

* This requires that the passage from the one plane to the other should be made via one of the
acute angles made by their intersection.
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difference of sign. These relations are what Professor Schröder calls erschöpft,*
i.e. if they hold between a and b, they can never hold between b and some
third term. Mathematically, their square is null. These relations, then, do not
give rise to difference of sign.

All magnitudes with sign, so the above account has led us to believe, are
either relations or compound concepts into which relations enter. But what
are we to say of the usual instances of opposites: good and evil, pleasure and
pain, beauty and ugliness, desire and aversion? The last pair are very complex,
and if I were to attempt an analysis of them, I should emit some universally
condemned opinions. With regard to the others, they seem to me to have an
opposition of a very different kind from that of two mutually converse
asymmetrical relations, and analogous rather to the opposition of red and
blue, or of two different magnitudes of the same kind. From these opposi-
tions, which are constituted by what may be called synthetic incompatibil-
ity,† the oppositions above mentioned differ only in the fact that there are
only two incompatible terms, instead of a whole series. The incompatibility
consists in the fact that two terms which are thus incompatible cannot coexist
in the same spatio-temporal place, or cannot be predicates of the same
existent, or, more generally, cannot both enter into true propositions of a
certain form, which differ only in the fact that one contains one of the
incompatibles while the other contains the other. This kind of incompatibil-
ity (which usually belongs, with respect to some class of propositions, to the
terms of a given series) is a most important notion in general logic, but is by
no means to be identified with the difference between mutually converse
relations. This latter is, in fact, a special case of such incompatibility; but it is
the special case only that gives rise to the difference of sign. All difference
of sign—so we may conclude our argument—is primarily derived from
transitive asymmetrical relations, from which it may be extended by
correlation to terms variously related to such relations;‡ but such extensions
are always subsequent to the original opposition derived from difference
of sense.

* Algebra der Logik, Vol. III, p. 328. Professor Peirce calls such relations non-repeating (reference in
Schröder, ib.).
† See The Philosophy of Leibniz, by the present author (Cambridge 1900), pp. 19, 20.
‡ Thus in mathematical Economics, pleasure and pain may be taken as positive and negative
without logical error, by the theory (whose psychological correctness we need not examine) that
a man must be paid to endure pain, and must pay to obtain pleasure. The opposition of pleasure
and pain is thus correlated with that of money paid and money received, which is an opposition
of positive and negative in the sense of elementary Arithmetic.
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28
ON THE DIFFERENCE BETWEEN

OPEN AND CLOSED SERIES

224. W have now come to the end of the purely logical discussions
concerned with order, and can turn our attention with a free mind to the
more mathematical aspects of the subject. As the solution of the most ancient
and respectable contradictions in the notion of infinity depends mainly upon
a correct philosophy of order, it has been necessary to go into philosophical
questions at some length—not so much because they are relevant, as because
most philosophers think them so. But we shall reap our reward throughout
the remainder of this work.

The question to be discussed in this chapter is this: Can we ultimately
distinguish open from closed series, and if so, in what does the distinction
consist? We have seen that, mathematically, all series are open, in the sense
that all are generated by an asymmetrical transitive relation. But philosophic-
ally, we must distinguish the different ways in which this relation may arise,
and especially we must not confound the case where this relation involves
no reference to other terms with that where such terms are essential. And
practically, it is plain that there is some difference between open and closed
series—between, for instance, a straight line and a circle, or a pedigree and a
mutual admiration society. But it is not quite easy to express the difference
precisely.

225. Where the number of terms in the series is finite, and the series is
generated in the first of the ways explained in Chapter 24, the method of
obtaining a transitive relation out of the intransitive relation with which we
start is radically different according as the series is open or closed. If R be the
generating relation, and n be the number of terms in our series, two cases
may arise. Denoting the relation of any term to the next but one by R2, and



so on for higher powers, the relation Rn can have only one of two values, zero
and identity. (It is assumed that R is a one-one relation.) For starting with the
first term, if there be one, Rn−1 brings us to the last term; and thus Rn gives no
new term, and there is no instance of the relation Rn. On the other hand, it
may happen that, starting with any term, Rn brings us back to that term again.
These two are the only possible alternatives. In the first case, we call the series
open; in the second, we call it closed. In the first case, the series has a definite
beginning and end; in the second case, like the angles of a polygon, it has
no peculiar terms. In the first case, our transitive asymmetrical relation is
the disjunctive relation “a power of R not greater than the (n − 1)th”. By
substituting this relation, which we may call R' , for R, our series becomes of
the second of the six types. But in the second case no such simple reduction
to the second type is possible. For now, the relation of any two terms a and m
of our series may be just as well taken to be a power of R̆ as a power of R, and
the question which of any three terms is between the other two becomes
wholly arbitrary. We might now introduce, first the relation of separation of
four terms, and then the resulting five-term relation explained in Chapter
25. We should then regard three of the terms in the five-term relation as
fixed, and find that the resulting relation of the other two is transitive and
asymmetrical. But here the first term of our series is wholly arbitrary, which
was not the case before; and the generating relation is, in reality, one of five
terms, not one of two. There is, however, in the case contemplated, a simpler
method. This may be illustrated as follows: In an open series, any two terms a
and m define two senses in which the series may be described, the one in
which a comes before m, and the other in which m comes before a. We can
then say of any two other terms c and g that the sense of the order from c to g
is the same as that of the order from a to m, or different, as the case may be. In
this way, considering a and m fixed, and c and g variable, we get a transitive
asymmetrical relation between c and g, obtained from a transitive sym-
metrical relation of the pair c, g to the pair a, m (or m, a, as the case may be).
But this transitive symmetrical relation can, by the principle of abstraction,
be analysed into possession of a common property, which is, in this case, the
fact that a, m and c, g have the generating relation with the same sense. Thus
the four-term relation is, in this case, not essential. But in a closed series, a
and m do not define a sense of the series, even when we are told that a is to
precede m: we can start from a and get to m in either direction. But if now we
take a third term d, and decide that we are to start from a and reach m taking d
on the way, then a sense of the series is defined. The stretch adm includes one
portion of the series, but not the other. Thus we may go from England to New
Zealand either by the east or by the west; but if we are to take India on the
way, we must go by the east. If now we consider any other term, say k, this
will have some definite position in the series which starts with a and reaches
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m by way of d. In this series, k will come either between a and d, or between d
and m, or after m. Thus the three-term relation of a, d, m seems in this case
sufficient to generate a perfectly definite series. Vailati’s five-term relation
will then consist in this, that with regard to the order adm, k comes before (or
after) any other term l of the collection. But it is not necessary to call in this
relation in the present case, since the three-term relation suffices. This three-
term relation may be formally defined as follows. There is between any two
terms of our collection a relation which is a power of R less than the nth. Let
the relation between a and d be Rx, that between a and m Ry. Then if x is less
than y, we assign one sense to adm; if x is greater than y, we assign the other.
There will be also between a and d the relation R̆n−x, and between a and m the
relation R̆n−y. If x is less than y, then n − x is greater than n − y; hence
the asymmetry of the two cases corresponds to that of R and R̆. The terms of
the series are simply ordered by correlation with their numbers x and y, those
with smaller numbers preceding those with larger ones. Thus there is here no
need of the five-term relation, everything being effected by the three-term
relation, which is itself reduced to an asymmetrical transitive relation of two
numbers. But the closed series is still distinguished from the open one by the
fact that its first term is arbitrary.

226. A very similar discussion will apply to the case where our series is
generated by relations of three terms. To keep the analogy with the one-one
relation of the above case, we will make the following assumptions. Let
there be a relation B of one term to two others, and let the one term be called
the mean, the two others the extremes. Let the mean be uniquely determined
when the extremes are given, and let one extreme be uniquely determined by
the mean and the other extreme. Further let each term that occurs as mean
occur also as extreme, and each term that occurs as extreme (with at most
two exceptions) occur also as mean. Finally, if there be a relation in which c is
mean, and b and d are extremes, let there be always (except when b or d is one
of the two possible exceptional terms) a relation in which b is the mean and c
one of the extremes, and another in which d is the mean and c one of the
extremes. Then b and c will occur together in only two relations. This fact
constitutes a relation between b and c, and only one other term besides b will
have this new relation to c. By means of this relation, if there are two
exceptional terms, or if, our collection being infinite, there is only one, we
can construct an open series. If our two-term relation be asymmetrical, this is
sufficiently evident; but the same result can be proved if our two-term rela-
tion is symmetrical. For there will be at either end, say a, an asymmetrical
relation of a to the only term which is the mean between a and some other
term. This relation multiplied by the nth power of our two-term relation,
where n + 1 is any integer less than the number of terms in our collection,
will give a relation which holds between a and a number (not exceeding
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n + 1) of terms of our collection, of which terms one and only one is such
that no number less than n gives a relation of a to this term. Thus we obtain a
correlation of our terms with the natural numbers, which generates an open
series with a for one of its ends. If, on the other hand, our collection has no
exceptional terms, but is finite, then we shall obtain a closed series. Let
our two-term relation be P, and first suppose it symmetrical. (It will be
symmetrical if our original three-term relation was symmetrical with regard
to the extremes.) Then every term c of our collection will have the relation P
to two others, which will have to each other the relation P2. Of all the
relations of the form Pm which hold between two given terms, there will
be one in which m is least: this may be called the principal relation of our two
terms. Let the number of terms of the collection be n. Then every term of our
collection will have to every other a principal relation Px, where x is some
integer not greater than n/2. Given any two terms c and g of the collection,
provided we do not have cPn/2g (a case which will not arise if n be odd), let us
have cPxg, where x is less than n/2. This assumption defines a sense of the
series, which may be shown as follows. If cPyk, where y is also less than n/2,
three cases may arise, assuming y is greater than x. We may have gPy−xk; or, if
x + y is less than n/2, we may have gPx + yk, or, if x + y is greater than n/2, we
may have gP(n/2) − x − yk. (We choose always the principal relation.) These three
cases are illustrated in the accompanying figure. We shall say, in these three
cases, that, with regard to the sense cg, (1) k comes after c and g, (2) and (3) k
comes before c and g. If y is less than x, and kPx − yg, we shall say that k is
between c and g in the sense cg. If n is odd, this covers all possible cases. But if n
is even, we have to consider the term c' , which is such that cPn/2c' . This term is,
in a certain sense, antipodal to c; we may define it as the first term in the series
when the above method of definition is adopted. If n is odd, the first term will
be that term of class (3) for which cP(n − 1)/2k. Thus the series acquires a
definite order, but one in which, as in all closed series, the first term is
arbitrary.

227. The only remaining case is that where we start from four-term
relations, and the generating relation has, strictly speaking, five terms. This is
the case of projective Geometry. Here the series is necessarily closed; that is,
in choosing our three fixed terms for the five-term relation, there is never any
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restriction upon our choice; and any one of these three may be defined to be
the first.

228. Thus, to sum up: Every series being generated by a transitive
asymmetrical relation between any two terms of the series, a series is open
when it has either no beginning, or a beginning which is not arbitrary; it is
closed when it has an arbitrary beginning. Now if R be the constitutive
relation, the beginning of the series is a term having the relation R but not the
relation R̆. Whenever R is genuinely a two-term relation, the beginning, if it
exists, must be perfectly definite. It is only when R involves some other term
(which may be considered fixed) besides the two with regard to which it is
transitive and asymmetrical (which are to be regarded as variable), that
the beginning can be arbitrary. Hence in all cases of closed series, though
there may be an asymmetrical one-one relation if the series is discrete, the
transitive asymmetrical relation must be one involving one or more fixed terms
in addition to the two variable terms with regard to which it generates the
series. Thus although, mathematically, every closed series can be rendered
open, and every open series closed, yet there is, in regard to the nature of the
generating relation, a genuine distinction between them—a distinction,
however, which is of philosophical rather than mathematical importance.
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29
PROGRESSIONS AND
ORDINAL NUMBERS

229. I is now time to consider the simplest type of infinite series,
namely that to which the natural numbers themselves belong. I shall post-
pone to the next Part all the supposed difficulties arising out of the infinity
of such series, and concern myself here only to give the elementary theory of
them in a form not presupposing numbers.*

The series now to be considered are those which can be correlated, term
for term, with the natural numbers, without requiring any change in the
order of the terms. But since the natural numbers are a particular case of such
series, and since the whole of Arithmetic and Analysis can be developed
out of any one such series, without any appeal to number, it is better to give a
definition of progressions which involves no appeal to number.

A progression is a discrete series having consecutive terms, and a beginning
but no end, and being also connected. The meaning of connection was explained
in Chapter 24 by means of number, but this explanation cannot be given
now. Speaking popularly, when a series is not connected it falls into two or
more parts, each being a series for itself. Thus numbers and instants together
form a series which is not connected, and so do two parallel straight lines.
Whenever a series is originally given by means of a transitive asymmetrical
relation, we can express connection by the condition that any two terms of
our series are to have the generating relation. But progressions are series of
the kind that may be generated in the first of our six ways, namely, by an

* The present chapter closely follows Peano’s Arithmetic. See Formulaire de Mathématiques, Vol. II,
§ 2. I have given a mathematical treatment of the subject in R. d. M., Vols. VII and VIII. The subject
is due, in the main, to Dedekind and Georg Cantor.



asymmetrical one-one relation. In order to pass from this to a transitive
relation, we before employed numbers, defining the transitive relation as any
power of the one-one relation. This definition will not serve now, since
numbers are to be excluded. It is one of the triumphs of modern mathematics
to have adapted an ancient principle to the needs of this case.

The definition which we want is to be obtained from mathematical induc-
tion. This principle, which used to be regarded as a mere subterfuge for
eliciting results of which no other proof was forthcoming, has gradually
grown in importance as the foundations of mathematics have been more
closely investigated. It is now seen to be the principle upon which depend,
so far as ordinals are concerned, the commutative law and one form of the
distributive law.* This principle, which gives the widest possible extension
to the finite, is the distinguishing mark of progressions. It may be stated as
follows:

Given any class of terms s, to which belongs the first term of any
progression, and to which belongs the term of the progression next after any
term of the progression belonging to s, then every term of the progression
belongs to s.

We may state the same principle in another form. Let � (x) be a prop-
ositional function, which is a determinate proposition as soon as x is given.
Then � (x) is a function of x, and will in general be true or false according to
the value of x. If x be a member of a progression, let seq x denote the term
next after x. Let � (x) be true when x is the first term of a certain progression,
and let � (seq x) be true whenever �(x) is true, where x is any term of the
progression. It then follows, by the principle of mathematical induction, that
� (x) is always true if x be any term of the progression in question.

The complete definition of a progression is as follows. Let R be any
asymmetrical one-one relation, and u a class such that every term of u has the
relation of R to some term also belonging to the class u. Let there be at least
one term of the class u which does not have the relation R̆ to any term of u. Let
s be any class to which belongs at least one of the terms of u which do not
have the relation R̆ to any term of u, and to which belongs also every term of
u which has the relation R̆ to some term belonging to both u and s; and let u
be such as to be wholly contained in any class s satisfying the above condi-
tions. Then u, considered as ordered by the relation R, is a progression.†

230. Of such progressions, everything relevant to finite Arithmetic can
be proved. In the first place, we show that there can only be one term of u

* Namely (α + β)γ = αβ + αγ. The other form, α(β + γ) = αβ + αγ, holds also for infinite ordinal

numbers, and is thus independent of mathematical induction.
† It should be observed that a discrete open series generated by a transitive relation can always be
reduced, as we saw in the preceding chapter, to one generated by an asymmetrical one-one
relation, provided only that the series is finite or a progression.
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which does not have the relation R̆ to any term of u. We then define the term
to which x has the relation R as the successor of x (x being a u), which may
be written seq x. The definitions and properties of addition, subtraction,
multiplication, division, positive and negative terms and rational fractions
are easily given; and it is easily shown that between any two rational fractions
there is always a third. From this point it is easy to advance to irrationals and
the real numbers.*

Apart from the principle of mathematical induction, what is chiefly
interesting about this process is, that it shows that only the serial or ordinal
properties of finite numbers are used by ordinary mathematics, what may be
called the logical properties being wholly irrelevant. By the logical properties
of numbers, I mean their definition by means of purely logical ideas. This
process, which has been explained in Part II, may be here briefly recapitu-
lated. We show, to begin with, that a one-one correlation can be effected
between any two null classes, or between any two classes u, v which are such
that, if x is a u, and x' differs from x, then x' cannot be a u, with a like condition
for v. The possibility of such one-one correlation we call similarity of the two
classes u, v. Similarity, being symmetrical and transitive, must be analysable
(by the principle of abstraction) into possession of a common property. This
we define as the number of either of the classes. When the two classes u, v have
the above-defined property, we say their number is one; and so on for higher
numbers; the general definition of finite numbers demanding mathematical
induction, or the non-similarity of whole and part, but is always given in
purely logical terms.

It is numbers so defined that are used in daily life, and that are essential to
any assertion of numbers. It is the fact that numbers have these logical proper-
ties that makes them important. But it is not these properties that ordinary
mathematics employs, and numbers might be bereft of them without any
injury to the truth of Arithmetic and Analysis. What is relevant to mathemat-
ics is solely the fact that finite numbers form a progression. This is the reason
why mathematicians—e.g. Helmholtz, Dedekind and Kronecker—have
maintained that ordinal numbers are prior to cardinals; for it is solely the
ordinal properties of number that are relevant. But the conclusion that
ordinals are prior to cardinals seems to have resulted from a confusion.
Ordinals and cardinals alike form a progression, and have exactly the same
ordinal properties. Of either, all Arithmetic can be proved without any appeal
to the other, the propositions being symbolically identical, but different in
meaning. In order to prove that ordinals are prior to cardinals, it would be
necessary to show that the cardinals can only be defined in terms of the
ordinals. But this is false, for the logical definition of the cardinals is wholly

* See my article on the Logic of Relations, R. d. M., VII.
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independent of the ordinals.* There seems, in fact, to be nothing to choose,
as regards logical priority, between ordinals and cardinals, except that the
existence of the ordinals is inferred from the series of cardinals. The ordinals,
as we shall see in the next paragraph, can be defined without any appeal to
the cardinals; but when defined, they are seen to imply the cardinals.
Similarly, the cardinals can be defined without any appeal to the ordinals;
but they essentially form a progression, and all progressions, as I shall now
show, necessarily imply the ordinals.

231. The correct analysis of ordinals has been prevented hitherto by the
prevailing prejudice against relations. People speak of a series as consisting
of certain terms taken in a certain order, and in this idea there is commonly
a psychological element. All sets of terms have, apart from psychological
considerations, all orders of which they are capable; that is, there are serial
relations, whose fields are a given set of terms, which arrange those terms in
any possible order. In some cases, one or more serial relations are specially
prominent, either on account of their simplicity, or of their importance. Thus
the order of magnitude among numbers, or of before and after among
instants, seems emphatically the natural order, and any other seems to be
artificially introduced by our arbitrary choice. But this is a sheer error.
Omnipotence itself cannot give terms an order which they do not possess
already: all that is psychological is the consideration of such and such an order.
Thus when it is said that we can arrange a set of terms in any order we please,
what is really meant is, that we can consider any of the serial relations whose
field is the given set, and that these serial relations will give between them
any combinations of before and after that are compatible with transitiveness
and connection. From this it results that an order is not, properly speaking, a
property of a given set of terms, but of a serial relation whose field is the
given set. Given the relation, its field is given with it; but given the field, the
relation is by no means given. The notion of a set of terms in a given order is
the notion of a set of terms considered as the field of a given serial relation;
but the consideration of the terms is superfluous, and that of the relation
alone is quite sufficient.

We may, then, regard an ordinal number as a common property of sets of
serial relations which generate ordinally similar series. Such relations have
what I shall call likeness, i.e. if P, Q be two such relations, their fields can be so
correlated term for term that two terms of which the first has to the second
the relation P will always be correlated with two terms of which the first has
to the second the relation Q, and vice versâ. As in the case of cardinal numbers,†

* Professor Peano, who has a rare immunity from error, has recognized this fact. See Formulaire,
1898, 210, note (p. 39).
† Cf. § 111.
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so here, we may, in virtue of the principle of abstraction, define the ordinal
number of a given finite serial relation as the class of like relations. It is easy to
show that the generating relations of progressions are all alike; the class of
such relations will be the ordinal number of the finite integers in order of
magnitude. When a class is finite, all series that can be formed of its terms are
ordinally similar, and are ordinally different from series having a different
cardinal number of terms. Hence there is a one-one correlation of finite
ordinals and cardinals, for which, as we shall see in Part V, there is no analogy
in respect of infinite numbers. We may therefore define the ordinal number n
as the class of serial relations whose domains have n terms, where n is a finite
cardinal. It is necessary, unless 1 is to be excluded, to take domains instead of
fields here, for no relation which implies diversity can have one term in its
field, though it may have none. This has a practical inconvenience, owing to
the fact that n + 1 must be obtained by adding one term to the field; but the
point involved is one for conventions as to notation, and is quite destitute of
philosophical importance.

232. The above definition of ordinal numbers is direct and simple, but
does not yield the notion of “nth”, which would usually be regarded as the
ordinal number. This notion is far more complex: a term is not intrinsically
the nth, and does not become so by the mere specification of n − 1 other
terms. A term is the nth in respect of a certain serial relation, when, in respect
of that relation, the term in question has n − 1 predecessors. This is the
definition of “nth”, showing that this notion is relative, not merely to pre-
decessors, but also to a specified serial relation. By induction, the various
finite ordinals can be defined without mentioning the cardinals. A finite serial
relation is one which is not like (in the above sense) any relation implying it
but not equivalent to it; and a finite ordinal is one consisting of finite serial
relations. If n be a finite ordinal, n + 1 is an ordinal such that, if the last term*
of a series of the type n + 1 be cut off, the remainder, in the same order, is of
the type n. In more technical language, a serial relation of the type n + 1 is
one which, when confined to its domain instead of its field, becomes of the
type n. This gives by induction a definition of every particular finite ordinal,
in which cardinals are never mentioned. Thus we cannot say that ordinals
presuppose cardinals, though they are more complex, since they presuppose
both serial and one-one relations, whereas cardinals only presuppose one-one
relations.

Of the ordinal number of the finite ordinals in order of magnitude, several
equivalent definitions may be given. One of the simplest is, that this number
belongs to any serial relation, which is such that any class contained in its

* The last term of a series (if it exists) is the term belonging to the converse domain but not to
the domain of the generating relation, i.e. the term which is after but not before other terms.
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field and not null has a first term, while every term of the series has an
immediate successor, and every term except the first has an immediate
predecessor. Here, again, cardinal numbers are in no way presupposed.

Throughout the above discussions our serial relations are taken to be
transitive, not one-one. The one-one relations are easily derived from the
transitive ones, while the converse derivation is somewhat complicated.
Moreover the one-one relations are only adequate to define finite series, and
thus their use cannot be extended to the study of infinite series unless they
are taken as derivative from the transitive ones.

233. A few words concerning positive and negative ordinals seem to be
here in place. If the first n terms of a progression be taken away (n being any
finite number), the remainder still form a progression. With regard to the
new progression, negative ordinals may be assigned to the terms that have
been abstracted; but for this purpose it is convenient to regard the beginning
of the smaller progression as the 0th term. In order to have a series giving any
positive or negative ordinal, we need what may be called a double progres-
sion. This is a series such that, choosing any term x out of it, two progressions
start from x, the one generated by a serial relation R, the other by R̆. To x we
shall then assign the ordinal 0, and to the other terms we shall assign positive
or negative ordinals according as they belong to the one or the other of
the two progressions starting from x. The positive and negative ordinals
themselves form such a double progression. They express essentially a rela-
tion to the arbitrarily chosen origin of the two progressions, and + n and − n
express mutually converse relations. Thus they have all the properties which
we recognize in Chapter 27 as characterizing terms which have signs.
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30
DEDEKIND’S THEORY

OF NUMBER

234. T theory of progressions and of ordinal numbers, with which
we have been occupied in the last chapter, is due in the main to two men—
Dedekind and Cantor. Cantor’s contributions, being specially concerned with
infinity, need not be considered at present; and Dedekind’s theory of
irrationals is also to be postponed. It is his theory of integers of which I wish
now to give an account—the theory, that is to say, which is contained in his
“Was sind und was sollen die Zahlen?”* In reviewing this work, I shall not adhere
strictly to Dedekind’s phraseology. He appears to have been, at the time of
writing, unacquainted with symbolic logic; and although he invented as
much of this subject as was relevant to his purpose, he naturally adopted
phrases which were not usual, and were not always so convenient as their
conventional equivalents.

The fundamental ideas of the pamphlet in question are these:† (1) the
representation (Abbildung) of a system (21); (2) the notion of a chain (37); (3)
the chain of an element (44); (4) the generalized form of mathematical
induction (59); (5) the definition of a singly infinite system (71). From these
five notions Dedekind deduces numbers and ordinary Arithmetic. Let us first
explain the notions, and then examine the deduction.

235. (1) A representation of a class u is any law by which, to every term of u,
say x, corresponds some one and only one term �(x). No assumption is made,

* 2nd ed. Brunswick, 1893 (1st ed. 1887). The principal contents of this book, expressed by
the Algebra of Relations, will be found in my article in R. d. M., VII, 2, 3.
† The numbers in brackets refer, not to pages, but to the small sections into which the work
is divided.



to begin with, as to whether �(x) belongs to the class u, or as to whether �(x)
may be the same as �(y), when x and y are different terms of u. The definition
thus amounts to this:

A representation of a class u is a many-one relation, whose domain contains u,
by which terms, which may or may not also belong to u, are correlated one
with each of the terms of u.* The representation is similar when, if x differs
from y, both being u’s, then �(x) differs from �(y); that is, when the relation
in question is one-one. He shows that similarity between classes is reflexive,
symmetrical and transitive, and remarks (34) that classes can be classified by
similarity to a given class—a suggestion of an idea which is fundamental in
Cantor’s work.

236. (2) If there exists a relation, whether one-one or many-one, which
correlates with a class u only terms belonging to that class, then this relation is
said to constitute a representation of u in itself (36), and with respect to this
relation u is called a chain (37). That is to say, any class u is, with respect
to any many-one relation, a chain, if u is contained in the domain of the
relation, and the correlate of a u is always itself a u. The collection of correlates
of a class is called the image (Bild) of the class. Thus a chain is a class whose
image is part or the whole of itself. For the benefit of the non-mathematical
reader, it may be not superfluous to remark that a chain with regard to a
one-one relation, provided it has any term not belonging to the image of
the chain, cannot be finite, for such a chain must contain the same number
of terms as a proper part of itself.†

237. (3) If a be any term or collection of terms, there may be, with
respect to a given many-one relation, many chains in which a is contained.
The common part of all these chains, which is denoted by a0, is what
Dedekind calls the chain of a (44). For example, if a be the number n, or any set
of numbers of which n is the least, the chain of a with regard to the relation
“less by 1” will be all numbers not less than n.

238. (4) Dedekind now proceeds (59) to a theorem which is a general-
ized form of mathematical induction. This theorem is as follows: Let a be any
term or set of terms contained in a class s, and let the image of the common
part of s and the chain of a be also contained in s; then it follows that the chain
of a is contained in s. This somewhat complicated theorem may become
clearer by being put in other language. Let us call the relation by which the
chain is generated (or rather the converse of this relation) succession, so that

* A many-one relation is one in which, as in the relation of a quantity to its magnitude, the
right-hand term, to which the relation is, is uniquely determined when the left-hand term is
given. Whether the converse holds is left undecided. Thus a one-one relation is a particular case
of a many-one relation.
† A proper part (Echter Theil) is a phrase analogous to “proper fraction”; it means a part not the
whole.
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the correlate or image of a term will be its successor. Let a be a term which
has a successor, or a collection of such terms. A chain in general (with regard
to succession) will be any set of terms such that the successor of any one of
them also belongs to the set. The chain of a will be the common part of all
the chains containing a. Then the data of the theorem inform us that a is
contained in s, and, if any term of the chain of a be an s, so is its successor; and
the conclusion is, that every term in the chain of a is an s. This theorem, as is
evident, is very similar to mathematical induction, from which it differs, first
by the fact that a need not be a single term, secondly by the fact that the
constitutive relation need not be one-one, but may be many-one. It is a most
remarkable fact that Dedekind’s previous assumptions suffice to demonstrate
this theorem.

239. (5) I come next to the definition of a singly infinite system or class
(71). This is defined as a class which can be represented in itself by means of
a one-one relation, and which is further such as to be the chain, with regard
to this one-one relation, of a single term of the class not contained in the
image of the class. Calling the class N, and the one-one relation R, there are, as
Dedekind remarks, four points in this definition. (1) The image of N is
contained in N; that is, every term to which an N has the relation R is an N. (2)
N is the chain of one of its terms. (3) This one term is such that no N has the
relation R to it, i.e. it is not the image of any other term of N. (4) The relation
R is one-one, in other words, the representation is similar. The abstract
system, defined simply as possessing these properties, is defined by Dedekind
as the ordinal numbers (73). It is evident that his singly infinite system is
the same as what we called a progression, and he proceeds to deduce the various
properties of progressions, in particular mathematical induction (80), which
follows from the above generalized form. One number m is said to be less
than another n, when the chain of n is contained in the image of the chain of
m (89); and it is shown (88, 90) that of two different numbers, one must
be the less. From this point everything proceeds simply.

240. The only further point that seems important for our present
purpose is the definition of cardinals. It is shown (132) that all singly infinite
systems are similar to each other and to the ordinals, and that conversely
(133) any system which is similar to a singly infinite system is singly infinite.
When a system is finite, it is similar to some system Zn, where Zn means all
the numbers from 1 to n both inclusive; and vice versâ (160). There is only one
number n which has this property in regard to any given finite system, and
when considered in relation to this property it is called a cardinal number, and
is said to be the number of elements of which the said system consists (161).
Here at last we reach the cardinal numbers. Their dependence on ordinals, if
I may venture to interpret Dedekind, is as follows: owing to the order of the
ordinals, every ordinal n defines a class of ordinals Zn, consisting of all that do
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not succeed it. They may be defined as all that are not contained in the image
of the chain of n. This class of ordinals may be similar to another class, which
is then said to have the cardinal number n. But it is only because of the order
of the ordinals that each of them defines a class, and thus this order is
presupposed in obtaining cardinals.

241. Of the merits of the above deduction it is not necessary for me
to speak, for they are universally acknowledged. But some points call for
discussion. In the first case, Dedekind proves mathematical induction, while
Peano regards it as an axiom. This gives Dedekind an apparent superiority,
which must be examined. In the second place, there is no reason, merely
because the numbers which Dedekind obtains have an order, to hold that
they are ordinal numbers; in the third place, his definition of cardinals is
unnecessarily complicated, and the dependence of cardinals upon order is
only apparent. I shall take these points in turn.

As regards the proof of mathematical induction, it is to be observed that
it makes the practically equivalent assumption that numbers form the chain
of one of them. Either can be deduced from the other, and the choice as to
which is to be an axiom, which a theorem, is mainly a matter of taste. On the
whole, though the consideration of chains is most ingenious, it is somewhat
difficult, and has the disadvantage that theorems concerning the finite class of
numbers not greater than n as a rule have to be deduced from corresponding
theorems concerning the infinite class of numbers greater than n. For these
reasons, and not because of any logical superiority, it seems simpler to begin
with mathematical induction. And it should be observed that, in Peano’s
method, it is only when theorems are to be proved concerning any number
that mathematical induction is required. The elementary Arithmetic of our
childhood, which discusses only particular numbers, is wholly independent
of mathematical induction; though to prove that this is so for every particular
number would itself require mathematical induction. In Dedekind’s method,
on the other hand, propositions concerning particular numbers, like general
propositions, demand the consideration of chains. Thus there is, in Peano’s
method, a distinct advantage of simplicity, and a clearer separation between
the particular and the general propositions of Arithmetic. But from a purely
logical point of view, the two methods seem equally sound; and it is to be
remembered that, with the logical theory of cardinals, both Peano’s and
Dedekind’s axioms become demonstrable.*

242. On the second point, there is some deficiency of clearness in what
Dedekind says. His words are (73): “If in the contemplation of a singly infinite
system N, ordered by a representation �, we disregard entirely the peculiar
nature of the elements, retaining only the possibility of distinguishing them,

* Cf. Chap. 13.
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and considering only the relations in which they are placed by the ordering
representation �, then these elements are called natural numbers or ordinal numbers
or simply numbers.” Now it is impossible that this account should be quite
correct. For it implies that the terms of all progressions other than the
ordinals are complex, and that the ordinals are elements in all such terms,
obtainable by abstraction. But this is plainly not the case. A progression can be
formed of points or instants, or of transfinite ordinals, or of cardinals, in
which, as we shall shortly see, the ordinals are not elements. Moreover it is
impossible that the ordinals should be, as Dedekind suggests, nothing but the
terms of such relations as constitute a progression. If they are to be anything
at all, they must be intrinsically something; they must differ from other
entities as points from instants, or colours from sounds. What Dedekind
intended to indicate was probably a definition by means of the principle of
abstraction, such as we attempted to give in the preceding chapter. But a
definition so made always indicates some class of entities having (or being) a
genuine nature of their own, and not logically dependent upon the manner
in which they have been defined. The entities defined should be visible, at
least to the mind’s eye; what the principle asserts is that, under certain
conditions, there are such entities, if only we knew where to look for them.
But whether, when we have found them, they will be ordinals or cardinals, or
even something quite different, is not to be decided off-hand. And in any
case, Dedekind does not show us what it is that all progressions have in
common, nor give any reason for supposing it to be the ordinal numbers,
except that all progressions obey the same laws as ordinals do, which would
prove equally that any assigned progression is what all progressions have
in common.

243. This brings us to the third point, namely the definition of cardinals
by means of ordinals. Dedekind remarks in his preface (p. ix) that many will
not recognize their old friends the natural numbers in the shadowy shapes
which he introduces to them. In this, it seems to me, the supposed persons
are in the right—in other words, I am one among them. What Dedekind
presents to us is not the numbers, but any progression: what he says is true of
all progressions alike, and his demonstrations nowhere—not even where he
comes to cardinals—involve any property distinguishing numbers from
other progressions. No evidence is brought forward to show that numbers
are prior to other progressions. We are told, indeed, that they are what
all progressions have in common; but no reason is given for thinking that
progressions have anything in common beyond the properties assigned in the
definition, which do not themselves constitute a new progression. The fact is
that all depends upon one-one relations, which Dedekind has been using
throughout without perceiving that they alone suffice for the definition
of cardinals. The relation of similarity between classes, which he employs
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consciously, combined with the principle of abstraction, which he implicitly
assumes, suffice for the definition of cardinals; for the definition of ordinals
these do not suffice; we require, as we saw in the preceding chapter, the
relation of likeness between well-ordered serial relations. The definition of
particular finite ordinals is effected explicitly in terms of the corresponding
cardinals: if n be a finite cardinal number, the ordinal number n is the class
of serial relations which have n terms in their domain (or in their field, if
we prefer this definition). In order to define the notion of “nth”, we need,
besides the ordinal number n, the notion of powers of a relation, i.e. of the
relative product of a relation multiplied into itself a finite number of times.
Thus if R be any one-one serial relation, generating a finite series or a
progression, the first term of the field of R (which field we will call r) is the
term belonging to the domain, but not to the converse domain, i.e., having
the relation R but not the relation R̆. If r has n or more terms, where n is a finite
number, the nth term of r is the term to which the first term has the relation
Rn − 1, or, again, it is the term having the relation R̆n − 1 but not the relation R̆n.
Through the notion of powers of a relation, the introduction of cardinals
is here unavoidable; and as powers are defined by mathematical induction,
the notion of nth, according to the above definition, cannot be extended
beyond finite numbers. We can however extend the notion by the following
definition: If P be a transitive aliorelative generating a well-ordered series p,
the nth term of p is the term x such that, if P'  be the relation P limited to x
and its predecessors, then P'  has the ordinal number n. Here the dependence
upon cardinals results from the fact that the ordinal n can, in general, only be
defined by means of the cardinal n.

It is important to observe that no set of terms has inherently one order
rather than another, and that no term is the nth of a set except in relation to a
particular generating relation whose field is the set or part of the set. For
example, since in any progression, any finite number of consecutive terms
including the first may be taken away, and the remainder will still form
a progression, the ordinal number of a term in a progression may be dimin-
ished to any smaller number we choose. Thus the ordinal number of a term is
relative to the series to which it belongs. This may be reduced to a relation to
the first term of the series; and lest a vicious circle should be suspected, it may
be explained that the first term can always be defined non-numerically. It is,
in Dedekind’s singly infinite system, the only term not contained in the
image of the system; and generally, in any series, it is the only term which has
the constitutive relation with one sense, but not with the other.* Thus the

* Though when the series has two ends, we have to make an arbitrary selection as to which
we will call first, which last. The obviously non-numerical nature of last illustrates that of its
correlative, first.
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relation expressed by nth is not only a relation to n, but also to the first term of
the series; and first itself depends upon the terms included in the series, and
upon the relation by which they are ordered, so that what was first may cease
to be so, and what was not first may become so. Thus the first term of a series
must be assigned, as is done in Dedekind’s view of a progression as the chain
of its first term. Hence nth expresses a four-cornered relation between the
term which is nth, an assigned term (the first), a generating serial relation
and the cardinal number n. Thus it is plain that ordinals, either as classes of
like serial relations, or as notions like “nth”, are more complex than cardinals;
that the logical theory of cardinals is wholly independent of the general
theory of progressions, requiring independent development in order to show
that the cardinals form a progression; and that Dedekind’s ordinals are not
essentially either ordinals or cardinals, but the members of any progression
whatever. I have dwelt on this point, as it is important, and my opinion is at
variance with that of most of the best authorities. If Dedekind’s view were
correct, it would have been a logical error to begin, as this work does, with
the theory of cardinal numbers rather than with order. For my part, I do not
hold it an absolute error to begin with order, since the properties of progres-
sions, and even most of the properties of series in general, seem to be largely
independent of number. But the properties of number must be capable of
proof without appeal to the general properties of progressions, since cardinal
numbers can be independently defined, and must be seen to form a progres-
sion before theorems concerning progressions can be applied to them. Hence
the question, whether to begin with order or with numbers, resolves itself
into one of convenience and simplicity; and from this point of view, the
cardinal numbers seem naturally to precede the very difficult considerations
as to series which have occupied us in the present Part.
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31
DISTANCE

244. T notion of distance is one which is often supposed essential
to series,* but which seldom receives precise definition. An emphasis on
distance characterizes, generally speaking, those who believe in relative
position. Thus Leibniz, in the course of his controversy with Clarke, remarks:

“As for the objection, that space and time are quantities, or rather things
endowed with quantity, and that situation and order are not so: I answer,
that order also has its quantity; there is that in it which goes before, and
that which follows; there is distance or interval. Relative things have their
quantity, as well as absolute ones. For instance, ratios or proportions in
mathematics have their quantity, and are measured by logarithms; and yet
they are relations. And therefore, though time and space consist in relations,
yet they have their quantity.”†

In this passage, the remark: “There is that which goes before, and that
which follows; there is distance or interval,” if considered as an inference, is
a non sequitur; the mere fact of order does not prove that there is distance or
interval. It proves, as we have seen, that there are stretches, that these
are capable of a special form of addition closely analogous to what I have
called relational addition, that they have sign and that (theoretically at
least) stretches which fulfil the axioms of Archimedes and of linearity are
always capable of numerical measurement. But the idea, as Meinong rightly
points out, is entirely distinct from that of stretch. Whether any particular
series does or does not contain distances, will be, in most compact series (i.e.
such as have a term between any two), a question not to be decided by

* E.g. by Meinong, op. cit. § 17.
† Phil. Werke, Gerhardt’s ed. Vol. , p. 404.



argument. In discrete series there must be distance; in others, there may
be—unless, indeed, they are series obtained from progressions as the
rationals or the real numbers are obtained from the integers, in which case
there must be distance. But we shall find that stretches are mathematically
sufficient, and that distances are complicated and unimportant.

245. The definition of distance, to begin with, is no easy matter. What
has been done hitherto towards this end is chiefly due to non-Euclidean
Geometry;* something also has been done towards settling the definition by
Meinong.† But in both these cases, there is more concern for numerical
measurement of distance than for its actual definition. Nevertheless, distance
is by no means indefinable. Let us endeavour to generalize the notion as
much as possible. In the first place, distance need not be asymmetrical; but
the other properties of distance always allow us to render it so, and we may
therefore take it to be so. Secondly, a distance need not be a quantity or a
magnitude; although it is usually taken to be such, we shall find the taking it
so to be irrelevant to its other properties, and in particular to its numerical
measurement. Thirdly, when distance is taken asymmetrically, there must
be only one term to which a given term has a given distance, and the con-
verse relation to the given distance must be a distance of the same kind. (It
will be observed that we must first define a kind of distance, and proceed
thence to the general definition of distance.) Thus every distance is a one-one
relation; and in respect to such relations it is convenient to respect the
converse of a relation as its −1th power. Further the relative product of two
distances of a kind must be a distance of the same kind. When the two
distances are mutually converse, their product will be identity, which is thus
one among distances (their zero, in fact), and must be the only one which is
not asymmetrical. Again the product of two distances of a kind must be
commutative.‡ If the distances of a kind be magnitudes, they must form a
kind of magnitude—i.e. any two must be equal or unequal. If they are not
magnitudes, they must still form a series generated in the second of our six
ways, i.e. every pair of different distances must have a certain asymmetrical
relation, the same for all pairs except as regards sense. And finally, if Q be this
relation, and R1 QR2 (R1, R2, being distances of the kind), then if R3 be any
other distance of the kind, we must have R1 R3 QR2 R3. All these properties, so
far as I can discover, are independent; and we ought to add a property of the
field, namely this: any two terms, each of which belongs to the field of some
distance of the kind (not necessarily the same for both), have a relation

* See e.g. Whitehead, Universal Algebra, Cambridge, 1898, Book , Chap. .
† Op. cit. Section .
‡ This is an independent property; consider for instance the difference between “maternal
grandfather” and “paternal grandmother”.
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which is a distance of the kind. Having now defined a kind of distance, a
distance is any relation belonging to some kind of distance; and thus the
work of definition seems completed.

The notion of distance, it will be seen, is enormously complex. The prop-
erties of distances are analogous to those of stretches with sign, but are far
less capable of mutual deduction. The properties of stretches corresponding
to many of the above properties of distances are capable of proof. The differ-
ence is largely due to the fact that stretches can be added in the elementary
logical (not arithmetical) way, whereas distances require what I have called
relational addition, which is much the same as relative multiplication.

246. The numerical measurement of distances has already been partially
explained in Part III. It requires, as we saw, for its full application, two further
postulates, which, however, do not belong to the definition of distances, but
to certain kinds of distances only. These are, the postulate of Archimedes:
given any two distances of a kind, there exists a finite integer n such that the
nth power of the first distance is greater than the second distance; and Du Bois
Reymond’s postulate of linearity: any distance has an nth root, where n is any
integer (or any prime, whence the result follows for any integer). When
these two postulates are satisfied, we can find a meaning for Rx, where R is a
distance of the kind other than identity, and x is any real number.* Moreover,
any distance of the kind is of the form Rx, for some value of x. And x is, of
course, the numerical measure of the distance.

In the case of series generated in the first of our six ways, the various
powers of the generating relation R give the distances of terms. These various
powers, as the reader can see for himself, verify all the above characteristics of
distances. In the case of series generated from progressions as rationals or
real numbers from integers, there are always distances; thus in the case of
the rationals themselves, which are one-one relations, their differences,
which are again rationals, measure or indicate relations between them, and
these relations are of the nature of distances. And we shall see, in Part V, that
these distances have some importance in connection with limits. For numer-
ical measurement in some form is essential to certain theorems about limits,
and the numerical measurement of distances is apt to be more practically
feasible than that of stretches.

247. On the general question, however, whether series unconnected
with number—for instance spatial and temporal series—are such as to
contain distances, it is difficult to speak positively. Some things may be said

* The powers of distances are here understood in the sense resulting from relative multiplication;
thus if a and b have the same distance as b and c, this distance is the square root of the distance of a
and c. The postulate of linearity, whose expression in ordinary language is: “every linear quantity
can be divided into n equal parts, where n is any integer”, will be found in Du Bois Reymond’s
Allgemeine Functionentheorie (Tübingen, 1882), p. 46.
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against this view. In the first place, there must be stretches, and these must
be magnitudes. It then becomes a sheer assumption—which must be set
up as an axiom—that equal stretches correspond to equal distances. This
may, of course, be denied, and we might even seek an interpretation of
non-Euclidean Geometry in the denial. We might regard the usual coordin-
ates as expressing stretches, and the logarithms of their anharmonic ratios
as expressing distances; hyperbolic Geometry, at least, might thus find a
somewhat curious interpretation. Herr Meinong, who regards all series as
containing distances, maintains an analogous principle with regard to dis-
tance and stretch in general. The distance, he thinks, increases only as the
logarithm of the stretch. It may be observed that, where the distance itself is
a rational number (which is possible, since rationals are one-one relations),
the opposite theory can be made formally convenient by the following fact.
The square of a distance, as we saw generally, is said to be twice as great as the
distance whose square it is. We might, where the distance is a rational, say
instead that the stretch is twice as great, but that the distance is truly the square of
the former distance. For where the distance is already numerical, the usual
interpretation of numerical measurement conflicts with the notation R2. Thus
we shall be compelled to regard the stretch as proportional to the logarithm
of the distance. But since, outside the theory of progressions, it is usually
doubtful whether there are distances, and since, in almost all other series,
stretches seem adequate for all the results that are obtainable, the retention of
distance adds a complication for which, as a rule, no necessity appears. It is
therefore generally better, at least in a philosophy of mathematics, to eschew
distances except in the theory of progressions, and to measure them, in that
theory, merely by the indices of the powers of the generating relation. There
is no logical reason, so far as I know, to suppose that there are distances
elsewhere, except in a finite space of two dimensions and in a projective
space; and if there are, they are not mathematically important. We shall see
in Part VI how the theory of space and time may be developed without
presupposing distance; the distances which appear in projective Geometry
are derivative relations, not required in defining the properties of our space;
and in Part V we shall see how few are the functions of distance with regard
to series in general. And as against distance it may be remarked that, if every
series must contain distances, an endless regress becomes unavoidable, since
every kind of distance is itself a series. This is not, I think, a logical objection,
since the regress is of the logically permissible kind; but it shows that great
complications are introduced by regarding distances as essential to every
series. On the whole, then, it seems doubtful whether distances in general
exist; and if they do, their existence seems unimportant and a source of very
great complications.

248. We have now completed our review of order, in so far as is possible
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without introducing the difficulties of continuity and infinity. We have seen
that all order involves asymmetrical transitive relations, and that every series
as such is open. But closed series, we found, could be distinguished by the
mode of their generation, and by the fact that, though they always have a first
term, this term may always be selected arbitrarily. We saw that asymmetrical
relations must be sometimes unanalysable, and that when analysable, other
asymmetrical relations must appear in the analysis. The difference of sign, we
found, depends always upon the difference between an asymmetrical relation
and its converse. In discussing the particular type of series which we called
progressions, we saw how all Arithmetic applies to every such series, and
how finite ordinals may be defined by means of them. But though we
found this theory to be to a certain extent independent of the cardinals, we
saw no reason to agree with Dedekind in regarding cardinals as logically
subsequent to ordinals. Finally, we agreed that distance is a notion which is
not essential to series, and of little importance outside Arithmetic. With this
equipment, we shall be able, I hope, to dispose of all the difficulties which
philosophers have usually found in infinity and continuity. If this can be
accomplished, one of the greatest of philosophical problems will have been
solved. To this problem Part V is to be devoted.
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Part V
Infinity and Continuity





32
THE CORRELATION OF SERIES

249. W come now to what has been generally considered the funda-
mental problem of mathematical philosophy—I mean, the problem of
infinity and continuity. This problem has undergone, through the labours of
Weierstrass and Cantor, a complete transformation. Since the time of Newton
and Leibniz, the nature of infinity and continuity had been sought in discus-
sions of the so-called Infinitesimal Calculus. But it has been shown that this
Calculus is not, as a matter of fact, in any way concerned with the infini-
tesimal, and that a large and most important branch of mathematics is
logically prior to it. The problem of continuity, moreover, has been to a great
extent separated from that of infinity. It was formerly supposed—and herein
lay the real strength of Kant’s mathematical philosophy—that continuity had
an essential reference to space and time, and that the Calculus (as the word
fluxion suggests) in some way presupposed motion or at least change. In this
view, the philosophy of space and time was prior to that of continuity, the
Transcendental Aesthetic preceded the Transcendental Dialectic and the anti-
nomies (at least the mathematical ones) were essentially spatio-temporal. All
this has been changed by modern mathematics. What is called the arithmeti-
zation of mathematics has shown that all the problems presented, in this
respect, by space and time, are already present in pure arithmetic. The theory
of infinity has two forms, cardinal and ordinal, of which the former springs
from the logical theory of number; the theory of continuity is purely ordinal.
In the theory of continuity and the ordinal theory of infinity, the problems
that arise are not specially concerned with numbers, but with all series of
certain types which occur in arithmetic and geometry alike. What makes the
problems in question peculiarly easy to deal with in the case of numbers
is, that the series of rationals, which is what I shall call a compact series, arises



from a progression, namely that of the integers, and that this fact enables us
to give a proper name to every term of the series of rationals—a point in
which this series differs from others of the same type. But theorems of the
kind which will occupy us in most of the following chapters, though
obtained in arithmetic, have a far wider application, since they are purely
ordinal, and involve none of the logical properties of numbers. That is to say,
the idea which the Germans call Anzahl, the idea of the number of terms in
some class, is irrelevant, save only in the theory of transfinite cardinals—an
important but very distinct part of Cantor’s contributions to the theory of
infinity. We shall find it possible to give a general definition of continuity, in
which no appeal is made to the mass of unanalysed prejudice which Kantians
call “intuition”; and in Part VI we shall find that no other continuity is
involved in space and time. And we shall find that, by a strict adherence to the
doctrine of limits, it is possible to dispense entirely with the infinitesimal,
even in the definition of continuity and the foundations of the Calculus.

250. It is a singular fact that, in proportion as the infinitesimal has been
extruded from mathematics, the infinite has been allowed a freer develop-
ment. From Cantor’s work it appears that there are two respects in which
infinite numbers differ from those that are finite. The first, which applies
to both cardinals and ordinals, is, that they do not obey mathematical induc-
tion—or rather, they do not form part of a series of numbers beginning with
1 or 0, proceeding in order of magnitude, containing all numbers intermedi-
ate in magnitude between any two of its terms, and obeying mathematical
induction. The second, which applies only to cardinals, is, that a whole of
an infinite number of terms always contains a part consisting of the same
number of terms. The first respect constitutes the true definition of an infinite
series, or rather of what we may call an infinite term in a series: it gives the
essence of the ordinal infinite. The second gives the definition of an infinite
collection, and will doubtless be pronounced by the philosopher to be plainly
self-contradictory. But if he will condescend to attempt to exhibit the contra-
diction, he will find that it can only be proved by admitting mathematical
induction, so that he has merely established a connection with the ordinal
infinite. Thus he will be compelled to maintain that the denial of mathemat-
ical induction is self-contradictory; and as he has probably reflected little, if at
all, on this subject, he will do well to examine the matter before pronouncing
judgment. And when it is admitted that mathematical induction may be
denied without contradiction, the supposed antinomies of infinity and con-
tinuity one and all disappear. This I shall endeavour to prove in detail in the
following chapters.

251. Throughout this Part we shall often have occasion for a notion which
has hitherto been scarcely mentioned, namely the correlation of series. In the
preceding Part we examined the nature of isolated series, but we scarcely

262 principles of mathematics



considered the relations between different series. These relations, however,
are of an importance which philosophers have wholly overlooked, and math-
ematicians have but lately realized. It has long been known how much could
be done in Geometry by means of homography, which is an example of
correlation; and it has been shown by Cantor how important it is to know
whether a series is denumerable, and how similar two series capable of
correlation are. But it is not usually pointed out that a dependent variable and
its independent variable are, in most mathematical cases, merely correlated
series, nor has the general idea of correlation been adequately dealt with. In
the present work only the philosophical aspects of the subject are relevant.

Two series s, s'  are said to be correlated when there is a one-one relation
R coupling every term of s with a term of s' , and vice versâ, and when, if x, y be
terms of s, and x precedes y, then their correlates x' , y'  in s'  are such that x'
precedes y' . Two classes or collections are correlated whenever there is a one-
one relation between the terms of the one and the terms of the other, none
being left over. Thus two series may be correlated as classes without being
correlated as series; for correlation as classes involves only the same cardinal
number, whereas correlation as series involves also the same ordinal type—a
distinction whose importance will be explained hereafter. In order to dis-
tinguish these cases, it will be well to speak of the correlation of classes as
correlation simply, and of the correlation of series as ordinal correlation.
Thus whenever correlation is mentioned without an adjective, it is to be
understood as being not necessarily ordinal. Correlated classes will be called
similar; correlated series will be called ordinally similar; and their generating
relations will be said to have the relation of likeness.

Correlation is a method by which, when one series is given, others may
be generated. If there be any series whose generating relation is P, and any
one-one relation which holds between any term x of the series and some
term which we may call xR, then the class of terms xR will form a series of the
same type as the class of terms x. For suppose y to be any other term of our
original series, and assume xPy. Then we have xRR̆x, xPy and yRyR. Hence
xRR̆PRyR. Now it may be shown* that if P be transitive and asymmetrical, so is
R̆PR; hence the correlates of terms of the P-series form a series whose generat-
ing relation is R̆PR. Between these two series there is ordinal correlation, and
the series have complete ordinal similarity. In this way a new series, similar
to the original one, is generated by any one-one relation whose field includes
the original series. It can also be shown that, conversely, if P, P'  be the
generating relations of two similar series, there is a one-one relation R, whose
domain is the field of P, which is such that P' = R̆PR.

* See my article in R. d. M., Vol. , No. 2.
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252. We can now understand a distinction of great importance, namely
that between self-sufficient or independent series, and series by correlation.
In the case just explained there is perfect mathematical symmetry between
the original series and the series by correlation; for, if we denote by Q the
relation R̆PR, we shall find P = RQR̆. Thus we may take either the Q-series or
the P-series as the original, and regard the other as derivative. But if it should
happen that R, instead of being one-one, is many-one, the terms of the field
of Q, which we will call q, will have an order in which there is repetition, the
same term occurring in different positions corresponding to its different
correlates in the field of P, which we will call p. This is the ordinary case of
mathematical functions which are not linear. It is owing to preoccupation
with such series that most mathematicians fail to realize the impossibility, in
an independent series, of any recurrence of the same term. In every sentence
of print, for example, the letters acquire an order by correlation with the
points of space, and the same letter will be repeated in different positions.
Here the series of letters is essentially derivative, for we cannot order the
points of space by relation to the letters: this would give us several points in
the same position, instead of one letter in several positions. In fact, if P be a
serial relation, and R be a many-one relation whose domain is the field of
P, and Q = R̆PR, then Q has all the characteristics of a serial relation except that
of implying diversity; but RQR̆ is not equivalent to P, and thus there is a lack of
symmetry. It is for this reason that inverse functions in mathematics, such as
sin− 1x, are genuinely distinct from direct functions, and require some device
or convention before they become unambiguous. Series obtained from a
many-one correlation, as q was obtained above, will be called series by correl-
ation. They are not genuine series, and it is highly important to eliminate
them from discussions of fundamental points.

253. The notion of likeness corresponds, among relations, to similarity
among classes. It is defined as follows: Two relations P, Q are like when there
is a one-one relation S such that the domain of S is the field of P, and Q = S̆PS.
This notion is not confined to serial relations, but may be extended to all
relations. We may define the relation-number of a relation P as the class of all
relations that are like P; and we can proceed to a very general subject which
may be called relation-arithmetic. Concerning relation-numbers we can
prove those of the formal laws of addition and multiplication that hold
for transfinite ordinals, and thus obtain an extension of a part of ordinal
arithmetic to relations in general. By means of likeness we can define a finite
relation as one which is not like any proper part of itself—a proper part
of a relation being a relation which implies it but is not equivalent to it. In
this way we can completely emancipate ourselves from cardinal arithmetic.
Moreover the properties of likeness are in themselves interesting and
important. One curious property is that, if S be one-one and have the field of
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P for its domain, the above equation Q = S̆PS is equivalent to SQ = PS or to
QS̆ = S̆P. *

254. Since the correlation of series constitutes most of the mathematical
examples of functions, and since function is a notion which is not often
clearly explained, it will be well at this point to say something concerning the
nature of this notion. In its most general form, functionality does not differ
from relation. For the present purpose it will be well to recall two technical
terms, which were defined in Part I. If x has a certain relation to y, I shall call x
the referent, and y the relatum, with regard to the relation in question. If now x
be defined as belonging to some class contained in the domain of the rela-
tion, then the relation defines y as a function of x. That is to say, an independ-
ent variable is constituted by a collection of terms, each of which can be
referent in regard to a certain relation. Then each of these terms has one or
more relata, and any one of these is a certain function of its referent, the
function being defined by the relation. Thus father defines a function, pro-
vided the independent variable be a class contained in that of male animals
who have or will have propagated their kind; and if A be the father of B, B is
said to be a function of A. What is essential is an independent variable, i.e. any
term of some class, and a relation whose extension includes the variable.
Then the referent is the independent variable, and its function is any one of
the corresponding relata.

But this most general idea of a function is of little use in mathematics.
There are two principal ways of particularizing the function: first, we may
confine the relations to be considered to such as are one-one or many-one,
i.e. such as give to every referent a unique relatum; secondly, we may confine
the independent variable to series. The second particularization is very
important, and is specially relevant to our present topics. But as it almost
wholly excludes functions from Symbolic Logic, where series have little
importance, we may as well postpone it for a moment while we consider the
first particularization alone.

The idea of function is so important, and has been so often considered
with exclusive reference to numbers, that it is well to fill our minds with
instances of non-numerical functions. Thus a very important class of func-
tions are propositions containing a variable.† Let there be some proposition
in which the phrase “any a” occurs, where a is some class. Then in place of
“any a” we may put x, where x is an undefined member of the class a—in
other words, any a. The proposition then becomes a function of x, which is
unique when x is given. This proposition will, in general, be true for some
values of x and false for others. The values for which the function is true form

* On this subject see my article in R. d. M., Vol. , especially Nos. 2, 6.
† These are what in Part I we called propositional functions.
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what might be called, by analogy with Analytic Geometry, a logical curve.
This general view may, in fact, be made to include that of Analytic Geometry.
The equation of a plane curve, for example, is a propositional function which
is a function of two variables x and y, and the curve is the assemblage of
points which give to the variables values that make the proposition true. A
proposition containing the word any is the assertion that a certain prop-
ositional function is true for all values of the variable for which it is signifi-
cant. Thus “any man is mortal” asserts that “x is a man implies x is a mortal”
is true for all values of x for which it is significant, which may be called the
admissible values. Propositional functions, such as “x is a number”, have the
peculiarity that they look like propositions, and seem capable of implying
other propositional functions, while yet they are neither true nor false. The
fact is, they are propositions for all admissible values of the variable, but not
while the variable remains a variable, whose value is not assigned; and
although they may, for every admissible value of the variable, imply the
corresponding value of some other propositional function, yet while the
variable remains as a variable they can imply nothing. The question concern-
ing the nature of a propositional function as opposed to a proposition, and
generally of a function as opposed to its values, is a difficult one, which can
only be solved by an analysis of the nature of the variable. It is important,
however, to observe that propositional functions, as was shown in Chapter
7, are more fundamental than other functions, or even than relations. For
most purposes, it is convenient to identify the function and the relation, i.e.,
if y = f (x) is equivalent to xRy, where R is a relation, it is convenient to speak
of R as the function, and this will be done in what follows; the reader,
however, should remember that the idea of functionality is more funda-
mental than that of relation. But the investigation of these points has been
already undertaken in Part I, and enough has been said to illustrate how a
proposition may be a function of a variable.

Other instances of non-numerical functions are afforded by dictionaries.
The French for a word is a function of the English, and vice versâ, and both are
functions of the term which both designate. The press-mark of a book in
a library catalogue is a function of the book, and a number in a cipher is a
function of the word for which it stands. In all these cases there is a relation
by which the relatum becomes unique (or, in the case of languages, generally
unique) when the referent is given; but the terms of the independent variable
do not form a series, except in the purely external order resulting from the
alphabet.

255. Let us now introduce the second specification, that our independent
variable is to be a series. The dependent variable is then a series by correlation,
and may be also an independent series. For example, the positions occupied by
a material point at a series of instants form a series by correlation with the
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instants, of which they are a function; but in virtue of the continuity of
motion, they also form, as a rule, a geometrical series independent of all
reference to time. Thus motion affords an admirable example of the correl-
ation of series. At the same time it illustrates a most important mark by which,
when it is present, we can tell that a series is not independent. When the time is
known, the position of a material particle is uniquely determined; but when
the position is given, there may be several moments, or even an infinite num-
ber of them, corresponding to the given position. (There will be an infinite
number of such moments if, as is commonly said, the particle has been at rest
in the position in question. Rest is a loose and ambiguous expression, but I
defer its consideration to Part VII.) Thus the relation of the time to the position
is not strictly one-one, but may be many-one. This was a case considered in our
general account of correlation, as giving rise to dependent series. We inferred,
it will be remembered, that two correlated independent series are math-
ematically on the same level, because if P, Q be their generating relations, and R
the correlating relation, we infer P = RQR̆ from Q = R̆PR. But this inference fails
as soon as R is not strictly one-one, since then we no longer have RR̆ contained
in 1’, where 1’ means identity. For example, my father’s son need not be
myself, though my son’s father must be. This illustrates the fact that, if R be
a many-one relation, RR̆ and R̆R must be carefully distinguished: the latter is
contained in identity, but not the former. Hence whenever R is a many-one
relation, it may be used to form a series by correlation, but the series so formed
cannot be independent. This is an important point, which is absolutely fatal
to the relational theory of time.* For the present let us return to the case of
motion. When a particle describes a closed curve, or one which has double
points, or when the particle is sometimes at rest during a finite time, then the
series of points which it occupies is essentially a series by correlation, not
an independent series. But, as I remarked above, a curve is not only obtainable
by motion, but is also a purely geometrical figure, which can be defined
without reference to any supposed material point. When, however, a curve is
so defined, it must not contain points of rest: the path of a material point
which sometimes moves, but is sometimes at rest for a finite time, is different
when considered kinematically and when considered geometrically; for
geometrically the point in which there is rest is one, whereas kinematically it
corresponds to many terms in the series.

The above discussion of motion illustrates, in a non-numerical instance, a
case which normally occurs among the functions of pure mathematics. These
functions (when they are functions of a real variable) usually fulfil the follow-
ing conditions: Both the independent and the dependent variable are classes

* See my article “Is position in Time and Space absolute or relative?” Mind, July 1901.
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of numbers, and the defining relation of the function is many-one.* This case
covers rational functions, circular and elliptic functions of a real variable
and the great majority of the direct functions of pure mathematics. In all
such cases, the independent variable is a series of numbers, which may be
restricted in any way we please—to positive numbers, rationals, integers,
primes or any other class. The dependent variable consists also of numbers,
but the order of these numbers is determined by their relation to the corres-
ponding term of the independent variable, not by that of the numbers form-
ing the dependent variable themselves. In a large class of functions the two
orders happen to coincide; in others, again, where there are maxima and
minima at finite intervals, the two orders coincide throughout a finite stretch,
then they become exactly opposite throughout another finite stretch, and so
on. If x be the independent variable, y the dependent variable, and the consti-
tutive relation be many-one, the same number y will, in general, be a func-
tion of, i.e. correspond to, several numbers x. Hence the y-series is essentially
by correlation, and cannot be taken as an independent series. If, then, we
wish to consider the inverse function, which is defined by the converse
relation, we need certain devices if we are still to have correlation of series.
One of these, which seems the most important, consists in dividing the
values of x corresponding to the same value of y into classes, so that (what
may happen) we can distinguish (say) n different x’s, each of which has a
distinct one-one relation to y, and is therefore simply reversible. This is the
usual course, for example, in distinguishing positive and negative square
roots. It is possible wherever the generating relation of our original function
is formally capable of exhibition as a disjunction of one-one relations. It is
plain that the disjunctive relation formed of n one-one relations, each of
which contains in its domain a certain class u, will, throughout the class u, be
an n-one relation. Thus it may happen that the independent variable can be
divided into n-classes, within each of which the defining relation is one-one,
i.e. within each of which there is only one x having the defining relation to a
given y. In such cases, which are usual in pure mathematics, our many-one
relation can be made into a disjunction of one-one relations, each of which
separately is reversible. In the case of complex functions, this is, mutatis
mutandis, the method of Riemann surfaces. But it must be clearly remembered
that, where our function is not naturally one-one, the y which appears as
dependent variable is ordinally distinct from the y which appears as
independent variable in the inverse function.

The above remarks, which will receive illustration as we proceed, have
shown, I hope, how intimately the correlation of series is associated with

* I omit for the present complex variables, which, by introducing dimensions, lead to complica-
tions of an entirely distinct kind.

268 principles of mathematics



the usual mathematical employment of functions. Many other cases of the
importance of correlation will meet us as we proceed. It may be observed that
every denumerable class is related by a one-valued function to the finite
integers, and vice versá. As ordered by correlation with the integers, such a class
becomes a series having the type of order which Cantor calls w. The funda-
mental importance of correlation to Cantor’s theory of transfinite numbers
will appear when we come to the definition of the transfinite ordinals.

256. In connection with functions, it seems desirable to say something
concerning the necessity of a formula for definition. A function was origin-
ally, after it had ceased to be merely a power, essentially something that could
be expressed by a formula. It was usual to start with some expression contain-
ing a variable x, and to say nothing to begin with as to what x was to be,
beyond a usually tacit assumption that x was some kind of number. Any
further limitations upon x were derived, if at all, from the formula itself; and
it was mainly the desire to remove such limitations which led to the various
generalizations of number. This algebraical generalization* has now been
superseded by a more ordinal treatment, in which all classes of numbers are
defined by means of the integers, and formulae are not relevant to the pro-
cess. Nevertheless, for the use of functions, where both the independent
and the dependent variables are infinite classes, the formula has a certain
importance. Let us see what is its definition.

A formula, in its most general sense, is a proposition, or more properly
a propositional function, containing one or more variables, a variable being
any term of some defined class, or even any term without restriction. The
kind of formula which is relevant in connection with functions of a single
variable is a formula containing two variables. If both variables are defined,
say one as belonging to the class u, the other as belonging to the class v, the
formula is true or false. It is true if every u has to every v the relation expressed
by the formula; otherwise it is false. But if one of the variables, say x, be
defined as belonging to the class u, while the other, y, is only defined by the
formula, then the formula may be regarded as defining y as a function of x.
Let us call the formula Pxy. If in the class u there are terms x such that there is
no term y which makes Pxy a true proposition, then the formula, as regards
those terms, is impossible. We must therefore assume that u is a class every
term of which will, for a suitable value of y, make the proposition Pxy true. If,
then, for every term x of u, there are some entities y, which make Pxy true, and
others which do not do so, then Pxy correlates to every x a certain class of
terms y. In this way y is defined as a function of x.

But the usual meaning of formula in mathematics involves another element,

* Of which an excellent account will be found in Couturat, De l’Infini Mathématique, Paris, 1896,
Part I, Book II.
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which may also be expressed by the word law. It is difficult to say precisely
what this element is, but it seems to consist in a certain degree of intensional
simplicity of the proposition Pxy. In the case of two languages, for example, it
would be said that there is no formula connecting them, except in such cases
as Grimm’s law. Apart from the dictionary, the relation which correlates
words in different languages is sameness of meaning; but this gives no
method by which, given a word in one language, we can infer the corres-
ponding word in the other. What is absent is the possibility of calculation.
A formula, on the other hand (say y = 2x), gives the means, when we know x,
of discovering y. In the case of languages, only enumeration of all pairs
will define the dependent variable. In the case of an algebraical formula, the
independent variable and the relation enable us to know all about the
dependent variable. If functions are to extend to infinite classes, this state of
things is essential, for enumeration has become impossible. It is therefore
essential to the correlation of infinite classes, and to the study of functions of
infinite classes, that the formula Pxy should be one in which, given x, the class
of terms y satisfying the formula should be one which we can discover. I am
unable to give a logical account of this condition, and I suspect it of being
purely psychological. Its practical importance is great, but its theoretical
importance seems highly doubtful.

There is, however, a logical condition connected with the above, though
perhaps not quite identical with it. Given any two terms, there is some
relation which holds between those two terms and no others. It follows that,
given any two classes of terms u, v, there is a disjunctive relation which any
one term of u has to at least one term of v, and which no term not belonging
to u has to any term. By this method, when two classes are both finite, we can
carry out a correlation (which may be one-one, many-one or one-many)
which correlates terms of these classes and no others. In this way any set of
terms is theoretically a function of any other; and it is only thus, for example,
that diplomatic ciphers are made up. But if the number of terms in the class
constituting the independent variable be infinite, we cannot in this way prac-
tically define a function, unless the disjunctive relation consists of relations
developed one from the other by a law, in which case the formula is merely
transferred to the relation. This amounts to saying that the defining relation
of a function must not be infinitely complex, or, if it be so, must be itself a
function defined by some relation of finite complexity. This condition,
though it is itself logical, has again, I think, only psychological necessity, in
virtue of which we can only master the infinite by means of a law of order.
The discussion of this point, however, would involve a discussion of the
relation of infinity to order—a question which will be resumed later, but
which we are not yet in a position to treat intelligently. In any case, we may
say that a formula containing two variables and defining a function must, if
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it is to be practically useful, give a relation between the two variables by
which, when one of them is given, all the corresponding values of the other
can be found; and this seems to constitute the mathematical essence of all
formulae.

257. There remains an entirely distinct logical notion of much import-
ance in connection with limits, namely the notion of a complete series. If R be
the defining relation of a series, the series is complete when there is a term
x belonging to the series, such that every other term which has to x either the
relation R or the relation R̆ belongs to the series. It is connected (as was
explained in Part IV) when no other terms belong to the series. Thus a
complete series consists of those terms, and only those terms, which have the
generating relation or its converse to some one term, together with that one
term. Since the generating relation is transitive, a series which fulfils this
condition for one of its terms fulfils it for all of them. A series which is
connected but not complete will be called incomplete or partial. Instances of
complete series are the cardinal integers, the positive and negative integers
and zero, the rational numbers, the moments of time or the points on a
straight line. Any selection from such a series is incomplete with respect to
the generating relations of the above complete series. Thus the positive num-
bers are an incomplete series, and so are the rationals between 0 and 1. When
a series is complete, no term can come before or after any term of the series
without belonging to the series; when the series is incomplete, this is no
longer the case. A series may be complete with respect to one generating
relation, but not with respect to another. Thus the finite integers are a com-
plete series when the series is defined by powers of the relation of con-
secutiveness, as in the discussion of progressions in Part IV; but when they are
ordered by correlation with whole and part, they form only part of the series
of finite and transfinite integers, as we shall see hereafter. A complete series
may be regarded as the extension of a term with respect to a given relation,
together with this term itself; and owing to this fact it has, as we shall find,
some important differences from ordinally similar incomplete series. But
it can be shown, by the Logic of Relations, that any incomplete series can be
rendered complete by a change in the generating relation, and vice versâ. The
distinction between complete and incomplete series is, therefore, essentially
relative to a given generating relation.
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33
REAL NUMBERS

258. T philosopher may be surprised, after all that has already been
said concerning numbers, to find that he is only now to learn about real
numbers; and his surprise will be turned to horror when he learns that real is
opposed to rational. But he will be relieved to learn that real numbers are really
not numbers at all, but something quite different.

The series of real numbers, as ordinarily defined, consists of the whole
assemblage of rational and irrational numbers, the irrationals being defined
as the limits of such series of rationals as have neither a rational nor an
infinite limit. This definition, however, introduces grave difficulties, which
will be considered in the next chapter. For my part I see no reason whatever
to suppose that there are any irrational numbers in the above sense; and if
there are any, it seems certain that they cannot be greater or less than rational
numbers. When mathematicians have effected a generalization of number
they are apt to be unduly modest about it—they think that the difference
between the generalized and the original notions is less than it really is. We
have already seen that the finite cardinals are not to be identified with the
positive integers, nor yet with the ratios of the natural numbers to 1, both of
which express relations, which the natural numbers do not. In like manner
there is a real number associated with every rational number, but distinct
from it. A real number, so I shall contend, is nothing but a certain class of
rational numbers. Thus the class of rationals less than ½ is a real number,
associated with, but obviously not identical with, the rational number ½. This
theory is not, so far as I know, explicitly advocated by any other author,
though Peano suggests it, and Cantor comes very near to it.* My grounds in

* Cf. Cantor, Math. Annalen, Vol. , § 10; Peano, Rivista di Matematica, Vol. , pp. 126–140, esp.
p. 133.



favour of this opinion are, first, that such classes of rationals have all the
mathematical properties commonly assigned to real numbers, secondly, that
the opposite theory presents logical difficulties which appear to me insuper-
able. The second point will be discussed in the next chapter; for the present
I shall merely expound my own view, and endeavour to show that real num-
bers, so understood, have all the requisite characteristics. It will be observed
that the following theory is independent of the doctrine of limits, which will
only be introduced in the next chapter.

259. The rational numbers in order of magnitude form a series in which
there is a term between any two. Such series, which in Part III we provision-
ally called continuous, must now receive another name, since we shall have
to reserve the word continuous for the sense which Cantor has given to it. I
propose to call such series compact.* The rational numbers, then, form a
compact series. It is to be observed that, in a compact series, there are an
infinite number of terms between any two, there are no consecutive terms
and the stretch between any two terms (whether these be included or not) is
again a compact series. If now we consider any one rational number,† say r,
we can define, by relation to r, four infinite classes of rationals: (1) those less
than r, (2) those not greater than r, (3) those greater than r, (4) those not less
than r. (2) and (4) differ from (1) and (3) respectively solely by the fact that
the former contain r, while the latter do not. But this fact leads to curious
differences of properties. (2) has a last term, while (1) has none; (1) is
identical with the class of rational numbers less than a variable term of (1),
while (2) does not have this characteristic. Similar remarks apply to (3) and
(4), but these two classes have less importance in the present case than in (1)
and (2). Classes of rationals having the properties of (1) are called segments.
A segment of rationals may be defined as a class of rationals which is not null,
nor yet coextensive with the rationals themselves (i.e. which contains some
but not all rationals), and which is identical with the class of rationals less
than a (variable) term of itself, i.e. with the class of rationals x such that there
is a rational y of the said class such that x is less than y.‡ Now we shall find
that segments are obtained by the above method, not only from single ration-
als, but also from finite or infinite classes of rationals, with the proviso, for
infinite classes, that there must be some rational greater than any member of
the class. This is very simply done as follows.

Let u be any finite or infinite class of rationals. Then four classes may be

* Such series are called by Cantor überall dicht.
† I shall for simplicity confine myself entirely to rationals without sign. The extension to such as
are positive or negative presents no difficulty whatever.
‡ See Formulaire de Mathématiques, Vol. , Part , § 61 (Turin, 1899).
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defined by relation to u,* namely (1) those less than every u, (2) those less
than a variable u, (3) those greater than every u, (4) those greater than a
variable u, i.e. those such that for each a term of u can be found which is
smaller than it. If u be a finite class, it must have a maximum and a minimum
term; in this case the former alone is relevant to (2) and (3), the latter alone
to (1) and (4). Thus this case is reduced to the former, in which we had only
a single rational. I shall therefore assume in future that u is an infinite class,
and further, to prevent reduction to our former case, I shall assume, in con-
sidering (2) and (3), that u has no maximum, that is, that every term of u is
less than some other term of u; and in considering (1) and (4), I shall assume
that u has no minimum. For the present I confine myself to (2) and (3), and I
assume, in addition to the absence of a maximum, the existence of rationals
greater than any u, that is, the existence of the class (3). Under these circum-
stances, the class (2) will be a segment. For (2) consists of all rationals which
are less than a variable u; hence, in the first place, since u has no maximum,
(2) contains the whole of u. In the second place, since every term of (2) is less
than some u, which in turn belongs to (2), every term of (2) is less than some
other term of (2); and every term less than some term of (2) is a fortiori less
than some u, and is therefore a term of (2). Hence (2) is identical with the
class of terms less than some term of (2), and is therefore a segment.

Thus we have the following conclusion: If u be a single rational, or a class
of rationals all of which are less than some fixed rational, then the rationals
less than u, if u be a single term, or less than a variable term of u, if u be a class
of terms, always form a segment of rationals. My contention is, that a seg-
ment of rationals is a real number.

260. So far, the method employed has been one which may be employed
in any compact series. In what follows, some of the theorems will depend
upon the fact that the rationals are a denumerable series. I leave for the
present the disentangling of the theorems dependent upon this fact, and
proceed to the properties of segments of rationals.

Some segments, as we have seen, consist of the rationals less than some
given rational. Some, it will be found, though not so defined, are nevertheless
capable of being so defined. For example, the rationals less than a variable
term of the series ·9, ·99, ·999, etc., are the same as the rationals less than 1.
But other segments, which correspond to what are usually called irrationals,
are incapable of any such definition. How this fact has led to irrationals we
shall see in the next chapter. For the present I merely wish to point out the
well-known fact that segments are not capable of a one-one correlation with
rationals. There are classes of rationals defined as being composed of all terms

* Eight classes may be defined, but four are all that we need.
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less than a variable term of an infinite class of rationals, which are not definable
as all the rationals less than some one definite rational.* Moreover there are
more segments than rationals, and hence the series of segments has continu-
ity of a higher order than the rationals. Segments form a series in virtue of the
relation of whole and part, or of logical inclusion (excluding identity). Any
two segments are such that one of them is wholly contained in the other, and
in virtue of this fact they form a series. It can be easily shown that they form a
compact series. What is more remarkable is this: if we apply the above process
to the series of segments, forming segments of segments by reference to
classes of segments, we find that every segment of segments can be defined as
all segments contained in a certain definite segment. Thus the segment of
segments defined by a class of segments is always identical with the segment
of segments defined by some one segment. Also every segment defines a
segment of segments which can be defined by an infinite class of segments.
These two properties render the series of segments perfect, in Cantor’s lan-
guage; but the explanation of this term must be left till we come to the
doctrine of limits.

We might have defined our segments as all rationals greater than some
term of a class u of rationals. If we had done this, and inserted the conditions
that u was to have no minimum, and that there were to be rationals less than
every u, we should have obtained what may be called upper segments, as
distinguished from the former kind, which may be called lower segments.
We should then have found that, corresponding to every upper segment,
there is a lower segment which contains all rationals not contained in the
upper segment, with the occasional exception of a single rational. There will
be one rational not belonging to either the upper or the lower segment,
when the upper segment can be defined as all rationals greater than a single
rational. In this case, the corresponding lower segment will consist of all
rationals less than this single rational, which will itself belong to neither
segment. Since there is a rational between any two, the class of rationals not
greater than a given rational cannot ever be identical with the class of ration-
als less than some other; and a class of rationals having a maximum can never
be a segment. Hence it is impossible, in the case in question, to find a lower
segment containing all the rationals not belonging to the given upper seg-
ment. But when the upper segment cannot be defined by a single rational, it
will always be possible to find a lower segment containing all rationals not
belonging to the upper segment.

Zero and infinity may be introduced as limiting cases of segments, but in
the case of zero the segment must be of the kind which we called (1) above,
not of the kind (2) hitherto discussed. It is easy to construct a class of

* Cf. Part I, Chap. 5, p. 60.
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rationals such that some term of the class will be less than any given rational.
In this case, the class (1) will contain no terms, and will be the null-class. This
is the real number zero, which, however, is not a segment, since a segment
was defined as a class which is not null. In order to introduce zero as a class of
the kind which we called (2), we should have to start with a null class of
rationals. No rational is less than a term of a null class of rationals, and thus
the class (2), in such a case, is null. Similarly the real number infinity may be
introduced. This is identical with the whole class of rationals. If we have any
class u of rationals such that no rational is greater than all u’s, then every
rational is contained in the class of rationals less than some u. Or again, if we
have a class of rationals of which a term is less than any assigned rational, the
resulting class (4) (of terms greater than some u) will contain every rational,
and will thus be the real number infinity. Thus both zero and infinity may
be introduced as extreme terms among the real numbers, but neither is a
segment according to the definition.

261. A given segment may be defined by many different classes of
rationals. Two such classes u and v may be regarded as having the segment as a
common property. Two infinite classes u and v will define the same lower
segment if, given any u, there is a v greater than it, and given any v, there is a u
greater than it. If each class has no maximum, this is also a necessary condition.
The classes u and v are then what Cantor calls coherent (zusammengehörig). It can
be shown, without considering segments, that the relation of being coherent
is symmetrical and transitive,* whence we should infer, by the principle of
abstraction, that both have to some third term a common relation which
neither has to any other term. This third term, as we see from the preceding
discussion, may be taken to be the segment which both define. We may
extend the word coherent to two classes u and v, of which one defines an upper
segment, the other a lower segment, which between them include all ration-
als with at most one exception. Similar remarks, mutatis mutandis, will still
apply in this case.

We have now seen that the usual properties of real numbers belong to
segments of rationals. There is therefore no mathematical reason for dis-
tinguishing such segments from real numbers. It remains to set forth, first the
nature of a limit, then the current theories of irrationals, and then the objec-
tions which make the above theory seem preferable.

Note. The above theory is virtually contained in Professor Peano’s article
already referred to (“Sui Numeri Irrazionali”, Rivista di Matematica, , pp. 126–
140), and it was from this article, as well as from the Formulaire de Mathématiques,
that I was led to adopt the theory. In this article, separate definitions of real

* Cf. Cantor, Math. Annalen, , and Rivista di Matematica, , pp. 158, 159.
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numbers (§ 2, No. 5) and of segments (§ 8, ·0) are given, which makes it
seem as though the two were distinguished. But after the definition of seg-
ments, we find the remark (p. 133): “Segments so defined differ only in
nomenclature from real numbers.” Professor Peano proceeds first to give
purely technical reasons for distinguishing the two by the notation, namely
that the addition, subtraction, etc. of real numbers is to be differently con-
ducted from analogous operations which are to be performed on segments.
Hence it would appear that the whole of the view I have advocated is con-
tained in this article. At the same time, there is some lack of clearness, since it
appears from the definition of real numbers that they are regarded as the
limits of classes of rationals, whereas a segment is in no sense a limit of a class
of rationals. Also it is nowhere suggested—indeed, from the definition of real
numbers the opposite is to be inferred—that no real number can be a
rational, and no rational can be a real number. And this appears where he
points out (p. 134) that 1 differs from the class of proper fractions (which is
no longer the case as regards the real number 1, when this is distinguished
both from the integer 1 and from the rational number 1 : 1), or that we say
1 is less than √2 (in which case, I should say, 1 must be interpreted as the
class of proper fractions, and the assertion must be taken to mean: the proper
fractions are some, but not all, of the rationals whose square is less than 2).
And again he says (ib.): “The real number, although determined by, and
determining, a segment u, is commonly regarded as the extremity, or end, or
upper limit, of the segment”; whereas there is no reason to suppose that
segments not having a rational limit have a limit at all. Thus although he
confesses (ib.) that a complete theory of irrationals can be constructed by
means of segments, he does not seem to perceive the reasons (which will be
given in the next chapter) why this must be done—reasons which, in fact, are
rather philosophical than mathematical.
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34
LIMITS AND IRRATIONAL

NUMBERS

262. T mathematical treatment of continuity rests wholly upon the
doctrine of limits. It has been thought by some mathematicians and some
philosophers that this doctrine had been superseded by the Infinitesimal
Calculus, and that this has shown true infinitesimals to be presupposed in
limits.* But modern mathematics has shown, conclusively as it seems to me,
that such a view is erroneous. The method of limits has more and more
emerged as fundamental. In this chapter, I shall first set forth the general
definition of a limit, and then examine its application to the creation of
irrationals.

A compact series we defined as one in which there is a term between
any two. But in such a series it is always possible to find two classes of terms
which have no term between them, and it is always possible to reduce one
of these classes to a single term. For example, if P be the generating relation
and x any term of the series, then the class of terms having to x the relation
P is one between which and x there is no term.† The class of terms so defined
is one of the two segments determined by x; the idea of a segment is one
which demands only a series in general, not necessarily a numerical series.
In this case, if the series be compact, x is said to be the limit of the class;
when there is such a term as x, the segment is said to be terminated, and thus
every terminated segment in a compact series has its defining term as a limit.

* This is the view, for instance, of Cohen, Das Princip der Infinitesimal-Methode und seine Geschichte, Berlin,
1883; see pp. 1, 2.
† It is perhaps superfluous to explain that a term is between two classes u, v, when it has the
relation P to every term of u, and the relation P̆ to every term of v, or vice versû.



But this does not constitute a definition of a limit. To obtain the general
definition of a limit, consider any class u contained in the series generated
by P. Then the class u will in general, with respect to any term x not belonging
to it, be divisible into two classes, that whose terms have to x the relation
P (which I shall call the class of terms preceding x), and that whose terms
have to x the relation P̆ (which I shall call the class of terms following x). If x
be itself a term of u, we consider all the terms of u other than x, and these are
still divisible into the above two classes, which we may call πu x and π̆u x
respectively. If, now, πu x be such that, if y be any term preceding x, there is a
term of πu x following y, i.e. between x and y, then x is a limit of πu x. Similarly
if π̆u x be such that, if z be any term after x, there is a term of π̆u x between x and
z, then x is a limit of π̆u x. We now define that x is a limit of u if it is a limit of
either πu x or π̆u x. It is to be observed that u may have many limits, and that all
the limits together form a new class contained in the series generated by P.
This is the class (or rather this, by the help of certain further assumptions,
becomes the class) which Cantor designates as the first derivative of the
class u.

263. Before proceeding further, it may be well to make some general
remarks of an elementary character on the subject of limits. In the first place,
limits belong usually to classes contained in compact series—classes which
may, as an extreme case, be identical with the compact series in question. In
the second place, a limit may or may not belong to the class u of which it is a
limit, but it always belongs to some series in which u is contained, and if it is
a term of u, it is still a limit of the class consisting of all terms of u except itself.
In the third place, no class can have a limit unless it contains an infinite
number of terms. For, to revert to our former division, if u be finite, πu x and
π̆u x will both be finite. Hence each of them will have a term nearest to x, and
between this term and x no term of u will lie. Hence x is not a limit of u; and
since x is any term of the series, u will have no limits at all. It is common to
add a theorem that every infinite class, provided its terms are all contained
between two specified terms of the series generated by P, must have at least
one limit; but this theorem, we shall find, demands an interpretation in terms
of segments, and is not true as it stands. In the fourth place, if u be co-extensive
with the whole compact series generated by P, then every term of this series
is a limit of u. There can be no other terms that are limits in the same sense,
since limits have only been defined in relation to this compact series. To
obtain other limits, we should have to regard the series generated by P as
forming part of some other compact series—a case which, as we shall see,
may arise. In any case, if u be any compact series, every term of u is a limit
of u; whether u has also other limits, depends upon further circumstances.
A limit may be defined generally as a term which immediately follows (or
precedes) some class of terms belonging to an infinite series, without

279limits and irrational numbers



immediately following (or preceding, as the case may be) any one term of
the series. In this way, we shall find, limits may be defined generally in all
infinite series which are not progressions—as, for instance, in the series of
finite and transfinite integers.

264. We may now proceed to the various arithmetical theories of
irrationals, all of which depend upon limits. We shall find that, in the exact
form in which they have been given by their inventors, they all involve an
axiom, for which there are no arguments, either of philosophical necessity or
of mathematical convenience; to which there are grave logical objections; and
of which the theory of real numbers given in the preceding chapter is wholly
independent.

Arithmetical theories of irrationals could not be treated in Part II, since
they depend essentially upon the notion of order. It is only by means of them
that numbers become continuous in the sense now usual among mathemat-
icians; and we shall find in Part VI that no other sense of continuity is required
for space and time. It is very important to realize the logical reasons for which
an arithmetical theory of irrationals is imperatively necessary. In the past, the
definition of irrationals was commonly effected by geometrical consider-
ations. This procedure was, however, highly illogical; for if the application of
numbers to space is to yield anything but tautologies, the numbers applied
must be independently defined; and if none but a geometrical definition
were possible, there would be, properly speaking, no such arithmetical
entities as the definition pretended to define. The algebraical definition, in
which irrationals were introduced as the roots of algebraic equations having
no rational roots, was liable to similar objections, since it remained to be
shown that such equations have roots; moreover this method will only yield
the so-called algebraic numbers, which are an infinitesimal proportion of the
real numbers, and do not have continuity in Cantor’s sense, or in the sense
required by Geometry. And in any case, if it is possible, without any further
assumption, to pass from Arithmetic to Analysis, from rationals to irrationals,
it is a logical advance to show how this can be done. The generalizations of
number—with the exception of the introduction of imaginaries, which must
be independently effected—are all necessary consequences of the admission
that the natural numbers form a progression. In every progression the terms
have two kinds of relations, the one constituting the general analogue
of positive and negative integers, the other that of rational numbers. The
rational numbers form a denumerable compact series; and segments of a
denumerable compact series, as we saw in the preceding chapter, form a
series which is continuous in the strictest sense. Thus all follows from the
assumption of a progression. But in the present chapter we have to examine
irrationals as based on limits; and in this sense, we shall find that they do not
follow without a new assumption.
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There are several somewhat similar theories of irrational numbers. I will
begin with that of Dedekind.*

265. Although rational numbers are such that, between any two, there is
always a third, yet there are many ways of dividing all rational numbers into
two classes, such that all numbers of one class come after all numbers of the
other class, and no rational number lies between the two classes, while yet
the first class has no first term and the second has no last term. For example,
all rational numbers, without exception, may be classified according as their
squares are greater or less than 2. All the terms of both classes may be
arranged in a single series, in which there exists a definite section, before
which comes one of the classes, and after which comes the other. Continuity
seems to demand that some term should correspond to this section. A number
which lies between the two classes must be a new number, since all the old
numbers are classified. This new number, which is thus defined by its pos-
ition in a series, is an irrational number. When these numbers are introduced,
not only is there always a number between any two numbers, but there is a
number between any two classes of which one comes wholly after the other,
and the first has no minimum, while the second has no maximum. Thus we
can extend to numbers the axiom by which Dedekind defines the continuity
of the straight line (op. cit. p. 11):—

“If all the points of a line can be divided into two classes such that every
point of one class is to the left of every point of the other class, then there
exists one and only one point which brings about this division of all points
into two classes, this section of the line into two parts.”

266. This axiom of Dedekind’s is, however, rather loosely worded, and
requires an emendation suggested by the derivation of irrational numbers.
If all the points of a line are divided into two classes, no point is left over
to represent the section. If all be meant to exclude the point representing
the section, the axiom no longer characterizes continuous series, but
applies equally to all series, e.g. the series of integers. The axiom must be
held to apply, as regards the division, not to all the points of the line, but to
all the points forming some compact series, and distributed throughout the
line, but consisting only of a portion of the points of the line. When this
emendation is made, the axiom becomes admissible. If, from among the
terms of a series, some can be chosen out to form a compact series which
is distributed throughout the previous series; and if this new series can
always be divided in Dedekind’s manner into two portions, between which
lies no term of the new series, but one and only one term of the original
series, then the original series is continuous in Dedekind’s sense of the word.
The emendation, however, destroys entirely the self-evidence upon which

* Stetigkeit und irrationale Zahlen, 2nd ed., Brunswick, 1892.
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alone Dedekind relies (p. 11) for the proof of his axiom as applied to the
straight line.

Another somewhat less complicated emendation may be made, which
gives, I think, what Dedekind meant to state in his axiom. A series, we may say,
is continuous in Dedekind’s sense when, and only when, if all the terms of
the series, without exception, be divided into two classes, such that the
whole of the first class precedes the whole of the second, then, however the
division be effected, either the first class has a last term, or the second class
has a first term, but never both. This term, which comes at one end of one of
the two classes, may then be used, in Dedekind’s manner, to define the
section. In discrete series, such as that of finite integers, there is both a last
term of the first class and a first term of the second class;* while in compact
series such as the rationals, where there is not continuity, it sometimes hap-
pens (though not for every possible division) that the first class has no last
term and the last class has no first term. Both these cases are excluded by the
above axiom. But I cannot see any vestige of self-evidence in such an axiom,
either as applied to numbers or as applied to space.

267. Leaving aside, for the moment, the general problem of continuity,
let us return to Dedekind’s definition of irrational numbers. The first question
that arises is this: What right have we to assume the existence of such num-
bers? What reason have we for supposing that there must be a position
between two classes of which one is wholly to the right of the other, and of
which one has no minimum and the other no maximum? This is not true of
series in general, since many series are discrete. It is not demanded by the
nature of order. And, as we have seen, continuity in a certain sense is possible
without it. Why then should we postulate such a number at all? It must be
remembered that the algebraical and geometrical problems, which irrationals
are intended to solve, must not here be brought into the account. The exist-
ence of irrationals has, in the past, been inferred from such problems. The
equation x2 − 2 = 0 must have a root, it was argued, because, as x grows from
0 to 2, x2 − 2 increases, and is first negative and then positive; if x changes
continuously, so does x − 2; hence x2 − 2 must assume the value 0 in passing
from negative to positive. Or again, it was argued that the diagonal of unit
square has evidently a precise and definite length x, and that this length is such
that x2 − 2 = 0. But such arguments were powerless to show that x is truly a
number. They might equally well be regarded as showing the inadequacy of
numbers to Algebra and Geometry. The present theory is designed to prove
the arithmetical existence of irrationals. In its design, it is preferable to the
previous theories; but the execution seems to fall short of the design.

* If the series contains a proper part which is a progression, it is only true in general, not without
exception, that the first class must have a last term.

282 principles of mathematics



Let us examine in detail the definition of √2 by Dedekind’s method. It is a
singular fact that, although a rational number lies between any two single
rational numbers, two classes of rational numbers may be defined so that no
rational number lies between them, though all of one class are higher than all
of the other. It is evident that one at least of these classes must consist of an
infinite number of terms. For if not, we could pick out the two of opposite
kinds which were nearest together, and insert a new number between them.
This one would be between the two classes, contrary to the hypothesis. But
when one of the classes is infinite, we may arrange all or some of the terms in
a series of terms continually approaching the other class, without reaching it,
and without having a last term. Let us, for the moment, suppose our infinite
class to be denumerable. We then obtain a denumerable series of numbers an,
all belonging to the one class, but continually approaching the other class. Let
B be a fixed number of the other class. Then between an and B there is always
another rational number; but this may be chosen to be another of the a’s, say
an + 1; and since the series of a’s is infinite, we do not necessarily obtain, in
this way, any number not belonging to the series of a’s. In the definition of
irrationals, the series of b’s is also infinite. Moreover, if the b’s also be
denumerable, any rational number between an and bm, for suitable values of
p and q, either is an + p or bm + q, or else lies between an + p and an + p + 1 or between
bm + q and bm + q 1. In fact, an + p always lies between an and bm. By successive steps,
no term is obtained which lies between all the b’s and all the a’s. Nevertheless,
both the a’s and the b’s are convergent. For, let the a’s increase, while the b’s
diminish. Then bn − an and bn + 1 continually diminish, and therefore an + 1 − an,
which is less than either, is less than a continually diminishing number.
Moreover this number diminishes without limit; for if bn − an had a limit ε,
the number an + ε/2 would finally lie between the two classes. Hence an + 1 − an

becomes finally less than any assigned number. Thus the a’s and b’s are both
convergent. Since, moreover, their difference may be made less than any
assigned number ε, they have the same limit, if they have any. But this limit
cannot be a rational number, since it lies between all the a’s and all the b’s.
Such seems to be the argument for the existence of irrationals. For example, if

x = √2 + 1, x2 − 2x − 1 = 0.

Thus

x = 2 + 1/x = 2 +
1

2 +
1

x
, and x − 1 = 1 +

1

2 +
1

2 +
1

x
= etc.

The successive convergents to the continued fraction 1 +
1

2 +
1

2 +
1

2 + . . .
 are
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such that all the odd convergents are less than all the even convergents, while
the odd convergents continually grow, and the even ones continually dimin-
ish. Moreover the difference between the odd and the next even convergent
continually diminishes. Thus both series, if they have a limit, have the same
limit, and this limit is defined as √2.

But the existence of a limit, in this case, is evidently a sheer assumption. In
the beginning of this chapter, we saw that the existence of a limit demands a
larger series of which the limit forms part. To create the limit by means of the
series whose limit is to be found would therefore be a logical error. It is
essential that the distance from the limit should diminish indefinitely. But
here, it is only the distance of consecutive terms which is known to diminish
indefinitely. Moreover all the a’s are less than bn. Hence they continually differ
less and less from bn. But whatever n may be, bn cannot be the limit of the a’s
for bn + 1 lies between bn and all the a’s. This cannot prove that a limit exists, but
only that, if it existed, it would not be any one of the a’s or b’s, nor yet any
other rational number. Thus irrationals are not proved to exist, but may be
merely convenient fictions to describe the relations of the a’s and b’s.

268. The theory of Weierstrass concerning irrationals is somewhat simi-
lar to that of Dedekind. In Weierstrass’s theory, we have a series of terms a1,
a2, . . ., an, . . ., such that Σ an, for all values of n, is less than some given
number. This case is presented, e.g., by an infinite decimal. The fraction
3·14159 . . ., however many terms we take, remains less than 3·1416. In this
method, as Cantor points out,* the limit is not created by the summation,

but must be supposed to exist already in order that 
�

�
1

 an may be defined

by means of it. This is the same state of things as we found in Dedekind’s
theory: series of rational numbers cannot prove the existence of irrational
numbers as their limits, but can only prove that, if there is a limit, it must be
irrational.

Thus the arithmetical theory of irrationals, in either of the above forms, is
liable to the following objections. (1) No proof is obtained from it of the
existence of other than rational numbers, unless we accept some axiom of
continuity different from that satisfied by rational numbers; and for such an
axiom we have as yet seen no ground. (2) Granting the existence of irration-
als, they are merely specified, not defined, by the series of rational numbers
whose limits they are. Unless they are independently postulated, the series in
question cannot be known to have a limit; and a knowledge of the irrational
number which is a limit is presupposed in the proof that it is a limit. Thus,
although without any appeal to Geometry, any given irrational number can

* Mannichfaltigkeitslehre, p. 22. I quote Weierstrass’s theory from the account in Stolz, Vorlesungen über
allgemeine Arithmetik, I.
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be specified by means of an infinite series of rational numbers, yet, from rational
numbers alone, no proof can be obtained that there are irrational numbers
at all, and their existence must be proved from a new and independent
postulate.

Another objection to the above theory is that it supposes rationals and
irrationals to form part of one and the same series generated by relations of
greater and less. This raises the same kind of difficulties as we found to result,
in Part II, from the notion that integers are greater or less than rationals, or
that some rationals are integers. Rationals are essentially relations between
integers, but irrationals are not such relations. Given an infinite series of
rationals, there may be two integers whose relation is a rational which limits
the series, or there may be no such pair of integers. The entity postulated as
the limit, in this latter case, is no longer of the same kind as the terms of the
series which it is supposed to limit; for each of them is, while the limit is not,
a relation between two integers. Of such heterogeneous terms, it is difficult
to suppose that they can have relations of greater and less; and in fact, the
constitutive relation of greater and less, from which the series of rationals
springs, has to receive a new definition for the case of two irrationals, or of a
rational and an irrational. This definition is, that an irrational is greater than a
rational, when the irrational limits a series containing terms greater than the
given rational. But what is really given here is a relation of the given rational
to a class of rationals, namely the relation of belonging to the segment
defined by the series whose limit is the given irrational. And in the case of
two irrationals, one is defined to be greater than the other when its defining
series contains terms greater than any terms of the defining series of the
other—a condition which amounts to saying that the segment corresponding
to the one contains as a proper part the segment corresponding to the other.
These definitions define a relation quite different from the inequality of two
rationals, namely the logical relation of inclusion. Thus the irrationals cannot
form part of the series of rationals, but new terms corresponding to the
rationals must be found before a single series can be constructed. Such terms,
as we saw in the last chapter, are found in segments; but the theories of
Dedekind and Weierstrass leave them still to seek.

269. The theory of Cantor, though not expressed, philosophically speak-
ing, with all the requisite clearness, lends itself more easily to the interpret-
ation which I advocate, and is specially designed to prove the existence of
limits. He remarks* that, in his theory, the existence of the limit is a strictly
demonstrable proposition; and he strongly emphasizes the logical error
involved in attempting to deduce the existence of the limit from the series

* Op. cit., p. 24.
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whose limit it is (ib., p. 22).* Cantor starts by considering what he calls
fundamental series (which are the same as what I have called progressions)
contained in a larger series. Each of these fundamental series is to be wholly
ascending or wholly descending. Two such series are called coherent (zusam-
mengehörig) under the following circumstances:—

(1) If both are ascending, and after any term of either there is always a term
of the other;

(2) If both are descending, and before any term of either there is always a
term of the other;

(3) If one is ascending, the other descending, and the one wholly precedes
the other, and there is at most one term which is between the two funda-
mental series.

The relation of being coherent is symmetrical, in virtue of the definition;
and Cantor shows that it is transitive. In the article from which the above
remarks are extracted, Cantor is dealing with more general topics than the
definition of irrationals. But the above general account of coherent series will
help us to understand the theory of irrationals. This theory is set forth as
follows in the Mannichfaltigkeitslehre (p. 23 ff.):—

A fundamental series of rationals is defined as a denumerable series such
that, given any number ε, there are at most a finite number of terms in the
series the absolute values of whose differences from subsequent terms exceed
ε. That is to say, given any number ε, however small, any two terms of the
series which both come after a certain term have a difference which lies
between + ε and − ε. Such series must be of one of three kinds: (1) any
number ε being mentioned, the absolute values of the terms, from some term
onwards, will all be less than ε, whatever ε may be; (2) from some term
onwards, all the terms may be greater than a certain positive number ρ; (3)
from some term onwards, all the terms may be less than a certain negative
number − ρ. A real number b is to be defined by the fundamental series,
and is said in the first case to be zero, in the second to be positive and in
the third to be negative. To define the addition, etc., of these new real num-
bers, we observe that, if aν, a'ν be the νth terms of two fundamental series, the
series whose νth term is aν + a'ν or aν − a'ν or aν × a'ν is also a fundamental series;
while if the real number defined by the series (aν)† is not zero, (a'ν/aν) also

* Cantor’s theory of irrationals will be found in op. cit., p. 23, and in Stolz, Vorlesungen über allgemeine
Arithmetik, I, 7. I shall follow, to begin with, a later account, which seems to me clearer; this
forms § 10 in an article contained in Math. Annalen, , and in Rivista di Matematica, .
† The symbol (aν) denotes the whole series whose νth term is aν, not this term alone.
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defines a fundamental series. If b, b'  be the real numbers defined by the series
(aν), (a'ν), the real numbers defined by (aν + a'ν), (aν − a'ν), (aν × a'ν) and (a'ν/aν)
are defined to be b + b' , b − b' , b × b'  and b' /b respectively. Hence we proceed
to the definitions of equal, greater and less among real numbers. We define
that b = b'  means b − b' = 0; b > b'  means that b − b'  is positive; and b < b'
means that b − b'  is negative—all terms which have been already defined.
Cantor remarks further that in these definitions one of the numbers may be
rational. This may be formally justified, in part, by the remark that a
denumerable series whose terms are all one and the same rational number is
a fundamental series, according to the definition; hence in constructing the
differences aν − a'ν, by which b − b'  is defined, we may put some fixed rational
a in place of a'ν for all values of ν. But the consequence that we can define b − a
does not follow, and that for the following reason. There is absolutely nothing
in the above definition of the real numbers to show that a is the real number
defined by a fundamental series whose terms are all equal to a. The only
reason why this seems self-evident is, that the definition by limits is
unconsciously present, making us think that, since a is plainly the limit of a
series whose terms are all equal to a, therefore a must be the real number
defined by such a series. Since, however, Cantor insists—rightly, as I think—
that his method is independent of limits, which, on the contrary, are to be
deduced from it (pp. 24–5), we must not allow this preconception to weigh
with us. And the preconception, if I am not mistaken, is in fact erroneous.
There is nothing in the definitions above enumerated to show that a real
number and a rational number can ever be either equal or unequal, and there
are very strong reasons for supposing the contrary. Hence also we must reject
the proposition (p. 24) that, if b be the real number defined by a fundamental
series (aν), then

Lim
ν = ∞

 aν = b.

Cantor is proud of the supposed fact that his theory renders this proposition
strictly demonstrable. But, as we have seen, there is nothing to show that a
rational can be subtracted from a real number, and hence the supposed proof
is fallacious. What is true, and what has all the mathematical advantages of the
above theorem, is this: connected with every rational a there is a real number,
namely that defined by the fundamental series whose terms are all equal to a;
if b be the real number defined by a fundamental series (aν) and if bν be the
real number defined by a fundamental series whose terms are all equal to aν,
then (bν) is a fundamental series of real numbers whose limit is b. But from
this we cannot infer, as Cantor supposes (p. 24), that Lim aν exists; this will
only be true in the case where (aν) has a rational limit. The limit of a series of
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rationals either does not exist, or is rational; in no case is it a real number. But
in all cases a fundamental series of rationals defines a real number, which is
never identical with any rational.

270. Thus to sum up what has been said on Cantor’s theory: By proving
that two fundamental series may have the relation of being coherent, and that
this relation is symmetrical and transitive, Cantor shows, by the help of the
principle of abstraction (which is tacitly assumed), that two such series both
have some one relation to one third term, and to no other. This term, when
our series consist of rationals, we define as the real number which both
determine. We can then define the rules of operation for real numbers, and
the relations of equal, greater and less between them. But the principle of
abstraction leaves us in doubt as to what the real numbers really are. One
thing, however, seems certain. They cannot form part of any series containing
rationals, for the rationals are relations between integers, while the real num-
bers are not so; and the constitutive relation in virtue of which rationals form
a series is defined solely by means of the integers between which they are
relations, so that the same relation cannot hold between two real numbers, or
between a real and a rational number. In this doubt as to what real numbers
may be, we find that segments of rationals, as defined in the preceding
chapter, fulfil all the requirements laid down in Cantor’s definition, and also
those derived from the principle of abstraction. Hence there is no logical
ground for distinguishing segments of rationals from real numbers. If they
are to be distinguished, it must be in virtue of some immediate intuition, or
of some wholly new axiom, such as, that all series of rationals must have a
limit. But this would be fatal to the uniform development of Arithmetic and
Analysis from the five premisses which Peano has found sufficient, and
would be wholly contrary to the spirit of those who have invented the arith-
metical theory of irrationals. The above theory, on the contrary, requires no
new axiom, for if there are rationals, there must be segments of rationals; and
it removes what seems, mathematically, a wholly unnecessary complication,
since, if segments will do all that is required of irrationals, it seems superflu-
ous to introduce a new parallel series with precisely the same mathematical
properties. I conclude, then, that an irrational actually is a segment of ration-
als which does not have a limit; while a real number which would be com-
monly identified with a rational is a segment which does have a rational
limit; and this applies, e.g., to the real number defined by a fundamental series
of rationals whose terms are all equal. This is the theory which was set forth
positively in the preceding chapter, and to which, after examining the cur-
rent theories of irrationals, we are again brought back. The greater part of it
applies to compact series in general; but some of the uses of fundamental
series, as we shall see hereafter, presuppose either numerical measurement of
distances or stretches, or that a denumerable compact series is contained in
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our series in a certain manner.* The whole of it, however, applies to any
compact series obtained from a progression as the rationals are obtained
from the integers; and hence no property of numbers is involved beyond the
fact that they form a progression.

* See Chapter 36.
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35
CANTOR’S FIRST DEFINITION

OF CONTINUITY

271. T notion of continuity has been treated by philosophers, as a
rule, as though it were incapable of analysis. They have said many things
about it, including the Hegelian dictum that everything discrete is also
continuous and vice versâ.* This remark, as being an exemplification of Hegel’s
usual habit of combining opposites, has been tamely repeated by all his
followers. But as to what they meant by continuity and discreteness, they
preserved a discreet and continuous silence; only one thing was evident, that
whatever they did mean could not be relevant to mathematics, or to the
philosophy of space and time.

In the last chapter of Part III, we agreed provisionally to call a series
continuous if it had a term between any two. This definition usually satisfied
Leibniz,† and would have been generally thought sufficient until the revo-
lutionary discoveries of Cantor. Nevertheless there was reason to surmise,
before the time of Cantor, that a higher order of continuity is possible. For,
ever since the discovery of incommensurables in Geometry—a discovery of
which is the proof set forth in the tenth Book of Euclid—it was probable that
space had continuity of a higher order than that of the rational numbers,
which, nevertheless, have the kind of continuity defined in Part III. The kind
which belongs to the rational numbers, and consists in having a term
between any two, we have agreed to call compactness; and to avoid confusion,
I shall never again speak of this kind as continuity. But that other kind of
continuity, which was seen to belong to space, was treated, as Cantor

* Logic, Wallace’s Translation, p. 188; Werke, , p. 201.
† Phil. Werke, Gerhardt’s ed., Vol. , p. 515. But cf. Cassirer, Leibniz’ System, Berlin, 1901, p. 183.



remarks,* as a kind of religious dogma, and was exempted from that con-
ceptual analysis which is requisite to its comprehension. Indeed it was often
held to show, especially by philosophers, that any subject-matter possessing it
was not validly analysable into elements. Cantor has shown that this view is
mistaken, by a precise definition of the kind of continuity which must belong
to space. This definition, if it is to be explanatory of space, must, as he rightly
urges,† be effected without any appeal to space. We find, accordingly, in his
final definition, only ordinal notions of a general kind, which can be fully
exemplified in Arithmetic. The proof that the notion so defined is precisely
the kind of continuity belonging to space, must be postponed to Part VI.
Cantor has given his definition in two forms, of which the earlier is not purely
ordinal, but involves also either number or quantity. In the present chapter,
I wish to translate this earlier definition into language as simple and
untechnical as possible, and then to show how series which are continuous in
this sense occur in Arithmetic, and generally in the theory of any progression
whatever. The later definition will be given in the following chapter.

272. In order that a series should be continuous, it must have two char-
acteristics: it must be perfect and cohesive (zusammenhängend, bien enchaînée).‡
Both these terms have a technical meaning requiring considerable explan-
ation. I shall begin with the latter.

(1) Speaking popularly, a series is cohesive, or has cohesion, when it
contains no finite gaps. The precise definition, as given by Cantor, is as
follows: “We call T a cohesive collection of points, if for any two points t and t'
of T, for a number ε given in advance and as small as we please, there are
always, in several ways, a finite number of points t1, t2, . . . tν, belonging to T,
such that the distances tt1, t1t2, t2t3, . . . tνt'  are all less than ε.”§ This condition,
it will be seen, has essential reference to distance. It is not necessary that the
collection considered should consist of numbers, nor that ε should be a
number. All that is necessary is, that the collection should be a series in which
there are distances obeying the axiom of Archimedes and having no min-
imum, and that ε should be an arbitrary distance of the kind presented by the
series. If the series be the whole field of some asymmetrical transitive rela-
tion, or if it be the whole of the terms having a certain asymmetrical transi-
tive relation to a given term, we may substitute stretch for distance; and even
if the series be only part of such a series, we may substitute the stretch in the
complete series of which our series forms part. But we must, in order to give

* Mannichfaltigkeitslehre, p. 28.
† Acta Math., , p. 403.
‡ Acta Math., , pp. 405, 406; Mannichfaltigkeitslehre, p. 31.
§ The words “in several ways” seem superfluous. They are omitted by Vivanti: see Formulaire de
Mathématiques, Vol. , , § 1, No. 22.
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any meaning to cohesion, have something numerically measurable. How far
this condition is necessary, and what can be done without it, I shall show at
a later stage. It is through this condition that our discussions of quantity and
measurement, in Part III, become relevant to the discussion of continuity.

If the distances or stretches in our series do not obey the axiom of
Archimedes, there are some among them that are incapable of a finite numer-
ical measure in terms of some others among them. In this case, there is no
longer an analogy of the requisite kind with either the rational or the real
numbers, and the series is necessarily not cohesive. For let δ, d be two dis-
tances; let them be such that, for any finite number n, n δ is less than d. In this
case, if δ be the distance ε, and d be the distance tt' , it is plain that the
condition of cohesion cannot be satisfied. Such cases actually occur, and—
what seems paradoxical—they can be created by merely interpolating terms
in certain cohesive series. For example, the series of segments of rationals is
cohesive; and when these segments have rational limits, the limits are not
contained in them. Add now to the series what may be called the completed
segments, i.e. the segments having rational limits together with their limits.
These are new terms, forming part of the same series, since they have the
relation of whole and part to the former terms. But now the difference
between a segment and the corresponding completed segment consists of
a single rational, while all other differences in the series consist of an infinite
number of rationals. Thus the axiom of Archimedes fails, and the new series
is not cohesive.

The condition that distances in the series are to have no minimum is
satisfied by real or rational numbers; and it is necessary, if cohesion is to be
extended to non-numerical series, that, when any unit distance is selected,
there should be distances whose numerical measure is less than ε, where ε is
any rational number. For, if there be a minimum distance, we cannot make
our distances tt1, t1 t2 . . . less than this minimum, which is contrary to the
definition of cohesion. And there must not only be no minimum to distances
in general, but there must be no minimum to distances from any given term.
Hence every cohesive series must be compact, i.e. must have a term between
any two.

It must not be supposed, however, that every compact series is cohesive.
Consider, for example, the series formed of 0 and 2 − m/n, where m, n are any
integers such that m is less than n. Here there is a term between any two, but
the distance from 0 cannot be made less than 1. Hence the series, though
compact, is not cohesive. This series, however, is not complete, being part
only of the series of rationals, by means of which its distances are measured.
In a complete series, the conditions are somewhat different. We must dis-
tinguish two cases, according as there are or are not distances. (a) If there are
distances, and equal distances do not correspond to equal stretches, it may
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happen that, though the series is compact, the distances from some term
never become less than some finite distance. This case would be presented by
magnitudes, if we were to accept Meinong’s opinion that the distance of any
finite magnitude from zero is always infinite (op. cit. p. 84). It is presented by
numbers, if we measure distances (as there are many reasons for doing) by
log x/y. Thus in this case, with regard to distances, the series is not cohesive,
though it is complete and compact. (b) If there are no distances, but only
stretches, then, assuming the axiom of Archimedes, any stretch will be less
than nε, for a suitable value of n. Hence, dividing the stretch into n parts, one
at least of these will be less than ε. But there is no way of proving that all can
be made less than ε, unless we assume either the axiom of linearity (that any
stretch can be divided into n equal parts), or a more complicated but more
general axiom, to the effect that a stretch d can be divided into n parts, each
of which is greater than d/(n + 1) and less than d/(n − 1), whatever integer n
may be. With this axiom and the axiom of Archimedes, a complete compact
series must be cohesive; but these two axioms together render completeness
superfluous and compactness redundant. Thus we see that cohesion is in
almost all cases a condition distinct from compactness. Compactness is purely
serial, while cohesion has essential reference to numbers or to the conditions
of numerical measurement. Cohesion implies compactness, but compactness
never implies cohesion, except in the sole case of the complete series of
rationals or real numbers.

273. (2) To explain what is meant by a perfect series is more difficult.
A series is perfect when it coincides with its first derivative.* To explain this
definition, we must examine the notion of the derivatives of a series,† and this
demands an explanation of a limiting-point of a series. Speaking generally, the
terms of a series are of two kinds, those which Cantor calls isolated points, and
those which he calls limiting-points. A finite series has only isolated points;
an infinite series must define at least one limiting-point, though this need
not belong to the series. A limiting-point of a series is defined by Cantor to be
a term such that, in any interval containing the term, there are an infinite
number of terms of the series (ib. p. 343). The definition is given in terms of
the points on a line, but it has no essential reference to space. The limiting-
point may or may not be a term of the original series. The assemblage of all
limiting-points is called the first derivative of the series. The first derivative of
the first derivative is called the second derivative, and so on. Peano gives the
definition of the first derivative of a class of real numbers as follows: Let u be
a class of real numbers, and let x be a real number (which may or may not
be a u) such that the lower limit of the absolute values of the differences of

* Acta Math, , p. 405.
† Ib., pp. 341–4.
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x from terms of u other than x is zero; then the class of terms x satisfying this
condition is the first derivative of u.* This definition is virtually identical
with that of Cantor, but it brings out more explicitly the connection of the
derivative with limits. A series, then, is perfect, when it consists of exactly the
same terms as its first derivative; i.e. when all its points are limiting-points,
and all its limiting-points belong to it.

274. But with regard to the latter point, namely, that all limiting-points
of the series must belong to it, some explanation is necessary. Take, for
example, the series of rational numbers. Every rational number is the limit of
some series of rational numbers, and thus the rationals are contained in their
first derivative. But as regards those series of rationals which do not have a
rational limit, we agreed in the preceding chapter that they do not have a
limit at all. Hence all series of rationals which have a limit have a rational
limit, and therefore, by the letter of the definition, the rationals should form a
perfect series. But this is not the case. Cantor, as we saw in connection with
irrationals, believes, what we were compelled to regard as erroneous, that
every series fulfilling certain conditions, which may be called the conditions
of convergency, must have a limit. Hence he regards those series of rationals
which have no rational limit as having an irrational limit, and as therefore
having a limit not belonging to the series of rationals; and therefore the series
of rationals does not contain all the terms of its first derivative. In fact, the first
derivative of the rational numbers is held to be the real numbers. But when
we regard the real numbers as segments of rationals, it is impossible to take
this view; and when we deny the existence-theorem for limits, it is necessary
to modify Cantor’s definition of perfection.† This modification we must
now examine.

What we must say is, that a series is perfect when all its points are limiting-
points, and when further, any series being chosen out of our first series, if
this new series is of the sort which is usually regarded as defining a limit,
then it actually has a limit belonging to our first series. To make this statement
precise, we must examine what are the conditions usually considered as
defining a limit. In the case of denumerable series, they are simple, and have
already been set forth. They come to this, that, given any distance ε, however
small, all the terms of our series after some definite term, say the mth, are
such that any two of them have a difference whose absolute value is less than
ε. This statement, it will be seen, involves either number or quantity, i.e. it is
not purely ordinal. It is a curious fact that, though the supposed condition for
the existence of a limit cannot, by our present method, be stated in purely
ordinal terms, the limit of a denumerable series, if there be one, can always

* Formulaire, Vol. , No. 3 (1899), § 71, 1·0 and 4·0.
† This point is ably discussed by Couturat, Revue de Mét. et de Morale, March, 1900, p. 167.
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be defined in purely ordinal terms. I shall distinguish Cantor’s fundamental
series in a compact series into progressions and regressions, according as
earlier terms have to later ones always the relation P, or always the relation P̆
(where P is the generating relation of the compact series in which the said
progressions and regressions are contained). The compact series is further
assumed to be complete. A term x is then the limit of a progression, if every
term of the progression has to x the relation P, while every term which has to
x the relation P also has this relation to some term of the progression. This
definition, it will be seen, is purely ordinal; and a similar definition will apply
to a regression.

Let us examine next what are the usual conditions for the existence of
a limit to a non-denumerable series. When we come to examine non-
numerical series, we shall find it inconvenient to be restricted to denumerable
series, and therefore it will be well to consider other series at once. Here, of
course, if any denumerable series contained in our larger series fulfils the
conditions for a limit, there will be a corresponding definition of a limiting-
point in our larger series. And the upper or lower limit of the whole or part
of our larger series, if there is one, may be defined exactly as in the case of
a progression or a regression. But general conditions for the existence of a
limit cannot be laid down, except by reference to denumerable series con-
tained in our larger series. And it will be observed that Cantor’s definition of
a limiting-point assumes the existence of such a point, and cannot be turned
into a definition of the conditions under which there are such points. This
illustrates the great importance of Cantor’s fundamental series.

The method of segments will, however, throw some light on this matter.
We saw in Chapter 33 that any class of terms in a series defines a segment,
and that this segment sometimes can, but sometimes cannot, be defined by a
single term. When it can be so defined, this term is its upper limit: and if this
term does not belong to the class by which the segment was defined, then it
is also the upper limit of that class. But when the segment has no upper limit,
then the class by which the segment was defined also has no upper limit. In
all cases, however—and this is one of the chief virtues of segments—the
segment defined by an infinite class which has no upper limit is the upper
limit of the segments defined by the several members of the class. Thus,
whether or not the class has an upper limit, the segments which its various
terms define always have one—provided, that is, that the compact series in
which the class is contained has terms coming after all terms of the class.

We can now express, without assuming the existence of limits in cases
where this is not demonstrable, what is meant by a series containing its first
derivative. When any class of terms is contained in a compact series, the
conditions which are commonly said to insure the existence of an upper
limit to the class, though they do not insure this, do insure an upper limit to
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the class of segments defined by the several members of the class. And as
regards lower limits, the same proposition holds concerning what we called
upper segments. Hence we may define: A class u of terms forming the whole
or part of a series is perfect when each of the terms of u is the upper or lower
limit of some class contained in u, and when, if v be any class contained in u,
and the lower segments defined by the several members of v have an upper
limit, or the upper segments have a lower limit, this limiting segment is one
of those that can be defined by a single term of u, i.e. have a term of u for their
upper or lower limit respectively. This definition, it must be admitted, is
more complicated than Cantor’s, but it is free from the unjustifiable assump-
tion of the existence of limits.

We may repeat the definition of perfection in what is perhaps less difficult
language. Given any series, and any class of terms u contained in this series,
there are an upper and a lower segment corresponding to every term of u.
Any infinite set of terms v being chosen out of u, there are certain conditions
which are commonly said to insure that v has an upper limit, which, it is
admitted, may belong neither to u, nor to the series in which u is contained.
What these conditions do insure, however, is that the class of lower segments
corresponding to v has an upper limit. If the series is perfect, v will have an
upper limit whenever the corresponding class of segments has one, and this
upper limit of v will be a term of u. The definition of perfection requires
that this should hold both for upper and lower limits, and for any class v
contained in u.

275. As the question concerning the existence of limits, which has
necessitated the above complication, is one of some philosophical import-
ance, I shall repeat the arguments against assuming the existence of limits in
the class of series to which the rational numbers belong. Where a series is
imperfect, while its first derivative is perfect, there the first derivative is
logically prior to its own formation. That is to say, it is only by presupposing
the perfect series that it can be shown to be the derivative of the imperfect
series. We have already seen that this is the case with individual irrational
numbers; it is easy to see that the principle is general. Wherever the derivative
contains a term not belonging to the original series, that term is the limit of
some denumerable series forming an integral part of the first series. If this
series with a limit has the general term an, then—wording the definition so
as not to apply only to series of numbers—there is always a definite number
m, for any specified distance ε, however small, such that, if n is greater than m,
the distance between an + p and an is less than ε, whatever positive integer p may
be. From this it is inferred that the series (an) has a limit, and it is shown that,
in many cases, this limit cannot belong to the series out of which the series
(an) was chosen. But the inference that there is a limit is precarious. It may be
supported either by previous knowledge of the term which is the limit, or by

296 principles of mathematics



some axiom necessitating the existence of such a term. When the term which
is the limit is independently known, it may be easily shown to be the limit.
But when it is not known, it cannot be proved to exist at all, unless we
introduce some axiom of continuity. Such an axiom is introduced by Dede-
kind, but we saw that his axiom is unsatisfactory. The principle of abstraction,
which shows that two coherent series have something in common, is fully
satisfied by segments. And in some cases, among which is that of the ration-
als, it seems that the constitutive relation of the imperfect series cannot hold
between any terms not belonging to this series, so that the existence of limits
not belonging to the series is wholly impossible. For a limit must have a
certain position in a series of which the series which it limits forms part, and
this requires some constitutive relation of which the limit, as well as the
terms limited, must be capable. An independent complete series, such as the
rationals, cannot, in fact, have any limiting-points not belonging to it. For, if R
be the constitutive relation, and two terms a, b, have the relation R, any third
term c, which has this relation or its converse to either, and therefore both, of
the terms a, b, belongs to the same series as a and b. But the limit, if it exists,
must have the constitutive relation to the terms which it limits; hence it must
belong to the complete series to which they belong. Hence any series which
has actual limiting-points not belonging to it is only part of some complete
series; and a complete series which is not perfect is one in which the limits
defined in the usual way, but not belonging to the series, do not exist at all.
Hence, in any complete series, either some definable limits do not exist, or
the series contains its first derivative.

In order to render the arbitrariness of assuming the existence of limits still
more evident, let us endeavour to set up an axiom of continuity more
irreproachable than Dedekind’s. We shall find that it can still be denied with
perfect impunity.

When a number of positions in a series continually differ less and less from
each other, and are known to be all on one side of some given position, there
must exist (so our axiom might run) some position to which they approxi-
mate indefinitely, so that no distance can be specified so small that they will
not approach nearer than by this distance. If this axiom be admitted, it will
follow that all imperfect series, whose first derivatives are perfect, presuppose
these first derivatives, and are to be regarded as selections from them. Let us
examine the consequences of denying our axiom in the case of a series of
numbers. In this case, the unwary might suppose, the position next to all the
terms an, but not belonging to them, would be (say) p, where p − an is greater
than ε, for a suitable value of ε, whatever n may be. But if our series is
compact, there is a term between p and p − ε, say p' . Thus p' − an is less than
p − an, whatever n may be. Thus p'  is nearer all the a’s than p is, contrary to the
hypothesis. But the above denial was not direct, and the fact that it seemed
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correct illustrates the fallacies which in this subject are hard to avoid. The
axiom is: There is a term to which the a’s approach as near as we like.
The denial was: There is a term nearest to the a’s, but at a finite distance. The
denial should have been: There is no term to which the a’s approach as near
as we like. In other words, whatever term we specify, say p, there is some
finite distance ε, such that p − an is greater than ε, whatever an may be. This is
true in the case of series of rational numbers which have no rational limit. In
this case, there is no term nearest to the a’s, but at a finite distance, while also,
whatever term beyond all the a’s we specify (except where our series has a
rational limit), none of the a’s approach nearer to this term than by a certain
finite distance ε. Every term beyond the a’s is at more than some finite
distance from all of them, but there is no finite distance which every term
beyond the a’s exceeds. The introduction of irrationals introduces symmetry
into this odd state of things, so that there is a term to which the a’s approach
indefinitely, as well as a series of terms indefinitely approaching the a’s.
When irrationals are not admitted, if we have a term p after all the a’s, and a
small distance ε, then, if ε be specified, p can be chosen so that p − an is less
than ε, whatever n may be; but if p be specified, an ε can always be found
(except when the limit is rational) so that p − an is greater than ε, whatever n
may be. This state of things, though curious, is not self-contradictory. The
admission of irrationals, as opposed to segments, is thus logically unneces-
sary; as it is also mathematically superfluous, and fatal to the theory of ration-
als, there are no reasons in its favour, and strong reasons against it. Hence,
finally, any axiom designed to show the existence of limits in cases where
they cannot otherwise be shown to exist, is to be rejected; and Cantor’s
definition of perfection must be modified as above. This conclusion will,
in future, be regarded as established.

Having now analysed Cantor’s earlier definition of continuity, I shall pro-
ceed to examine his later ordinal definition, and the application of its various
portions to series more general than those of numbers, showing, if possible,
the exact points in which these various portions are required.
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36
ORDINAL CONTINUITY*

276. T definition of continuity which we examined in the preceding
chapter was, as we saw, not purely ordinal; it demanded, in at least two
points, some reference to either numbers or numerically measurable magni-
tudes. Nevertheless continuity seems like a purely ordinal notion; and this has
led Cantor to construct a definition which is free from all elements extrane-
ous to order.† I shall now examine this definition, as well as others which
may be suggested. We shall find that, so long as all references to number and
quantity are excluded, there are theorems of great importance, especially as
regards fundamental series, which, with any suggested ordinal definition
except that of Cantor, remain indemonstrable, and are presumably sometimes
false‡—a fact from which the merits of Cantor’s definition, now to be given,
are apparent.

277. Cantor’s definition of the continuum in his later article§ is as
follows. We start (§ 9) from the type of series presented by the rational
numbers greater than 0 and less than 1, in their order of magnitude. This type
we call η. A series of this type we define by the following marks. (1) It is
denumerable, that is, by taking its terms in a suitable order (which, however,
must be different from that in which they are given), we can give them a one-
one correspondence with the finite integers. (2) The series has no first or last

* The present chapter deals with the same subject as M. Couturat’s article, “Sur la définition du
Continu”, Revue de Métaphysique et de Morale, March, 1900. I agree in the main with this article, in
which much of what I said in the preceding chapter, and shall say in this, will be found.
† Math. Annalen, .
‡ Mathematical proofs of such theorems as are not already well known will be found in R. d. M.,
, 3.
§ Math. Annalen, , § 11.



term. (3) There is a term between any two, i.e. the series is compact (überall
dicht). It is then proved that these three characteristics completely define the
type of order presented by the rationals, that is to say, there is a one-one
correspondence, between any two series having these three properties, in
which earlier terms correspond to earlier terms, and later ones to later ones.
This is established by the use of mathematical induction, which is applicable
in virtue of the fact that series of this type are denumerable. Thus all series
which are denumerable, endless,* and compact, are ordinally similar. We
now proceed (§ 10) to the consideration of fundamental series contained in
any one-dimensional series M. We show (as has been already explained) what
is meant by calling two fundamental series coherent, and we give an ordinal
definition of the limit of a fundamental series, namely, in the case of a
progression, the limit comes after the whole progression, but every term
before the limit comes before some term of the progression; with a
corresponding definition for the limit of a regression. We prove that no
fundamental series can have more than one limit, and that, if a fundamental
series has a limit, this is also the limit of all coherent series; also that two
fundamental series, of which one is part of the other, are coherent. Any term
of M which is the limit of some fundamental series in M is called a principal
term of M. If all the terms of M are principal terms, M is called condensed in itself
(insichdicht). If every fundamental series in M has a limit in M, M is called
closed (abgeschlossen).† If M is both closed and condensed in itself, it is perfect.
All these properties, if they belong to M, belong to any series which is
ordinally similar to M. With these preparations, we advance at last to the
definition of the continuum (§ 11). Let θ be the type of the series to which
belong the real numbers from 0 to 1, both inclusive. Then θ, as we know, is a
perfect type. But this alone does not characterize θ. It has further the property
of containing within itself a series of the type η, to which the rationals
belong, in such a way that between any two terms of the θ-series there are
terms of the η-series. Hence the following definition of the continuum:

A one-dimensional continuum M is a series which (1) is perfect, (2)
contains within itself a denumerable series S of which there are terms
between any two terms of M.

In this definition, it is not necessary to add the other properties which are
required to show that S is of the type η. For if S had a first or last term, this
would be also the first or last term of M; hence we could take it away from S,
and the remaining series would still satisfy the condition (2), but would have
no first or last term; and the condition (2) together with (1) insures that S
is a compact series. Cantor proves that any series M satisfying the above

* I.e. having neither a beginning nor an end.
† Not to be confounded with the elementary sense of a closed series discussed in Part IV.
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conditions is ordinally similar to the number-continuum, i.e. the real num-
bers from 0 to 1, both inclusive; and hence it follows that the above definition
includes precisely the same class of series as those that were included in his
former definition. He does not assert that his new definition is purely ordinal,
and it might be doubted, at first sight, whether it is so. Let us see for ourselves
whether any extra-ordinal notions are contained in it.

278. The only point as to which any doubt could arise is with regard to
the condition of being denumerable. To be a denumerable collection is to be a
collection whose terms are all the terms of some progression. This notion, so
far, is purely ordinal. But in the case supposed, that of the rationals or of any
ordinally similar series, the terms forming the series must be capable of two
orders, in one of which they form a compact series, while in the other they
form a progression. To discover whether or not a given set of terms is capable
of these two orders, will in general demand other than ordinal conditions;
nevertheless, the notion itself is purely ordinal. Now we know, from the
similarity of all such series to the series of rationals (which involves only
ordinal ideas), that no such series is perfect. But it remains to be seen
whether we can prove this without appealing to the special properties of
the rationals which result from there being a series in which there is distance.
We know, as a matter of fact, that no denumerable series can be perfect,* but
we want here a purely ordinal proof of this theorem. Such a proof, however,
is easily given. For take the terms of our denumerable compact series S in the
order in which they form a progression, and in this order call them u. Starting
with the first in this order, which we will call x0, there must be one which, in
the other order S, follows this term. Take the first such term, x1, as the second
in a fundamental series v. This term has a finite number of predecessors in the
progression u, and therefore has successors in S which are also successors in u;
for the number of successors in S is always infinite. Take the first of these
common successors, say x2, as the third term of our fundamental series v.
Proceeding in this way, we can construct an ascending fundamental series in
S, the terms of which have the same order in u as in S. This series cannot have
a limit in S, for each term xn succeeds, in S, every term which precedes it in u.
Hence any term of S will be surpassed by some term xn of our fundamental
series v, and hence this fundamental series has no limit in S. The theorem that
a denumerable endless series cannot be perfect is, therefore, purely ordinal.
From this point onwards there is no difficulty, and our former theory of
segments enables us to state the matter simply. Given a denumerable, endless,
compact series S, construct all the segments defined by fundamental series in
S. These form a perfect series, and between any two terms of the series of
segments there is a segment whose upper (or lower) limit is a term of S.

* Acta Mathematica, , p. 409.
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Segments of this kind, which may be called rational segments, are a series of
the same type as S, and are contained in the whole series of segments in the
required manner. Hence the ordinal definition of the continuum is complete.

279. It must not be supposed that continuity as above defined can only
be exemplified, in Arithmetic, by the devious course from integers to ration-
als, and thence to real numbers. On the contrary, the integers themselves
can be made to illustrate continuity. Consider all possible infinite classes of
integers, and let them be arranged on the following plan. Of two classes u, v,
of which the smallest number in u is less than the smallest in v, u comes first.
If the first n terms of u and v are identical, but the (n + 1)th terms are different,
that which has the smaller (n + 1)th term is to come first. This series has a
first term, namely, the whole class of the integers, but no last term. Any
completed segment of the series, however, is a continuous series, as the
reader can easily see for himself. The denumerable compact series contained
in it is composed of those infinite classes which contain all numbers greater
than some number, i.e. those containing all but a finite number of numbers.
Thus classes of finite integers alone suffice to generate continuous series.

280. The above definition, it will be observed, depends upon progres-
sions. As progressions are the very essence of discreteness, it seems
paradoxical that we should require them in defining continuity.* And, after
all, as it is certain that people have not in the past associated any precise idea
with the word continuity, the definition we adopt is, in some degree, arbitrary.
Series having the properties enumerated in Cantor’s definition would gener-
ally be called continuous, but so would many others which his definition
excludes. In any case it will be a valuable inquiry to ask what can be done by
compact series without progressions.

Let u be any endless compact series, whose generating relation is P, and
concerning which nothing further is known. Then, by means of any term or
any class of terms in u, we can define a segment of u. Let us denote by U the
class of all lower segments of u. A lower segment, it may be well to repeat, is a
class v of terms contained in u, not null, and not coextensive with u, and such
that v has no last term, and every term preceding a v is a v. In the converse
case, when v has no first term, and every term following a v is a v, v is called an
upper segment. It is then easy to prove that every segment consists of all the
terms preceding (or following) either some single term of u, or a variable
term of some class of terms of u; and that every single term, and every class of
terms, defines an upper and a lower segment in this manner. Then, if V

* Mr Whitehead has shown that the following simpler definition is equivalent to Cantor’s. A
series is continuous when (1) every segment, upper or lower, has a limit, and the series has a first
and a last term; (2) a denumerable compact series is contained in it in such a way that there are
terms of this latter series between any two terms of our original series. In this definition,
progressions are relevant only in defining a denumerable series.
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denote the class of upper segments, it is easy to prove that both U and V are
again endless compact series, whose generating relation is that of whole or
part; while if u has one or two ends, so have U and V, though the end-terms
are not segments according to the definition. If we now proceed to the
consideration of segments in U or V (U say), we shall find that the segment of
U’s defined by any class whatever of U’s can always be defined by a single U,
which, if the class is infinite and has no last term, is the upper limit of the
class, and which, in all cases, is the logical sum of all the members of the
class—members which, it must be remembered, are all themselves classes
contained in u.* Hence all classes contained in U and having no last term have
an upper limit in U; and also (what is a distinct proposition) all classes
contained in U and having no first term have a lower limit in U, except in the
case where the lower limit is the logical zero or null-class; and the lower limit
is always the logical product of all the classes composing the class which it
limits. Thus by adding to U the null-class, we insure that U shall be a closed
series. There is a sense in which U is condensed in itself, namely, this: every
term of U is the upper limit of a suitably chosen class contained in U, for
every term is the upper limit of the segment of U’s which it defines; and every
term of U is a lower limit of the class of those U’s of which it is a proper part.
But there is absolutely no proof, so far at least as I have been able to discover,
that every term of U is the upper or lower limit of a fundamental series. There is
no à priori reason why, in any series, the limit of any class should always be
also the limit of a fundamental series; this seems, in fact, to be a prerogative
of series of the types to which rationals and real numbers respectively belong.
In our present case, at least, though our series is, in the above general sense,
condensed in itself, there seems no reason for supposing its terms to be all of
them limits of fundamental series, and in this special sense the series may not
be condensed in itself.

281. It is instructive to examine the result of confining the terms of U to
such segments as can be defined by fundamental series. In this case it is well
to consider, in addition to upper and lower segments, their supplements, as
they may be called, of which I shall shortly give the definition. Let a compact
series v be given, generated by a transitive asymmetrical relation P, and let u
be any fundamental series in v. If earlier terms of u have to later ones the
relation P, I shall call u a progression; if the relation P̆, I shall call u a regression. If
now w be any class whatever contained in v, w defines, as we have already
seen, four other classes in v, namely: (1) the class of terms before every w,

* The definition of the logical sum of the members of a class of classes, in a form not involving
finitude, is, I believe, due to Peano. It is as follows: let w be a class of classes; then the logical sum
of the members of w is the class of terms x such that there is some class belonging to w, to which
x belongs. See Formulaire, Vol. , Part I (1897), No. 461.
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which I shall call wπ; (2) the class of terms after every w, which I shall call wπ̆;
(3) the class of terms before some w, which I shall call πw; (4) the class of
terms after some w, which I shall call π̆w. The classes (3) and (4) are lower
and upper segments respectively; the classes (1) and (2) are supplements to
(4) and (3) respectively, and I shall call them supplemental segments. When
w has an upper limit, this is the first term of wπ̆ and thus wπ̆ is not a segment,
since no upper segment has a first term. But when w has no upper limit, then,
whether w be finite or infinite, wπ̆ is a segment. Similar remarks apply to
lower limits. If w has a last term, this belongs neither to πw nor to wπ̆, but all
other terms of v belong to one or other class; if w has no last term, all terms of
v belong to πw or wπ̆. Similar remarks apply to wπ and π̆w. Applying these
general definitions to the cases of progressions and regressions, we shall
find that, for a progression, only the classes (2) and (3) are important; for a
regression, only the classes (1) and (4). The question where a progression
begins or a regression ends is quite unimportant. Since a progression has no
last term, and a regression no first term, the segment defined by either,
together with its supplement, contains every term of v. Whether progressions
and regressions in v have limits always, sometimes, or never, there seems no
way of deciding from the given premisses. I have not been able to discover an
instance of a compact series where they never have limits, but I cannot find
any proof that such an instance is impossible.

Proceeding now to classes of segments, as we proceeded before to our class
U, we have here four such classes to consider, namely: (1) The class vπ, each
of whose terms is the class uπ defined by some regression u, i.e., the terms of v
which come before all the terms of some regression in v; (2) the class vπ̆,
consisting of all the classes uπ̆ defined by progressions u; (3) the class πv, whose
terms are πu, where u is some progression; (4) the class vπ, whose terms are uπ,
where u is some regression. Each of these four classes is a class of classes, for its
terms are classes contained in v. Each of the four is itself a compact series.
There is no way of proving, so far as I know, that (1) and (3), or (2) and (4),
have any common terms. Each pair would have a common term if v contained a
progression and a regression which were coherent, and had no limit in v, but
there is no way of discovering whether this case ever arises in the given series v.

When we come to examine whether the four classes thus defined are
condensed in themselves, we obtain the most curious results. Every funda-
mental series in any one of the four classes has a limit, but not necessarily
in the series of which its terms are composed, and conversely, every term
of each of our four classes is the limit of a fundamental series, but not
necessarily of a series contained in the same class to which the limiting term
belongs. The state of things, in fact, is as follows:

Every progression in vπ or πv has a limit in πv.
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Every progression in vπ̆ or π̆v has a limit in π̆v.
Every regression in vπ or πv has a limit in vπ.
Every regression in vπ̆ or π̆v has a limit in vπ̆.
Every term of vπ is the limit of a regression in vπ and of one in πv.
Every term of vπ̆ is the limit of a regression in vπ̆ and of one in π̆v.
Every term of πv is the limit of a progression in vπ and of one in πv.
Every term of π̆v is the limit of a progression in vπ̆ and of one in π̆v.
Hence vπ is identical with the class of limits of regressions in vπ or πv;
vπ̆ is identical with the class of limits of regressions in vπ̆ or π̆v;
πv is identical with the class of limits of progression in vπ or πv;
π̆v is identical with the class of limits of progressions in π̆v or vπ̆.

Thus each of our four classes has a kind of one-sided perfection; two of the
four are perfect on one side, the other two on the other. But I cannot prove of
any one of the four classes that it is wholly perfect. We might attempt the
combination of vπ and πv, and also of vπ̆ and π̆v. For vπ and πv together form
one series, whose generating relation is still whole and part. This series will
be perfect, and will contain the limits alike of progressions and of regressions
in itself. But this series may not be compact; for if there be any progression u
and regression u'  in v, which both have the same limit in v (a case which, as
we know, occurs in some compact series), then πu and u' π will be consecutive
terms of the series formed of πv and vπ together, for u' π will contain the
common limit, while πu will not contain it, but all other terms of v will
belong to both or to neither. Hence when our series is compact, we cannot
show that it is perfect; and when we have made it perfect, we can show that
it may not be compact. And a series which is not compact can hardly be
called continuous.

Although we can prove that, in our original compact series v, there are
an infinite number of progressions coherent with a given progression and
having no term in common with it, we cannot prove that there is even one
regression coherent with a given progression; nor can we prove that any
progression or regression in v has a limit, or that any term of v is a limit of
a progression or regression. We cannot prove that any progression u and
regression u'  are such that πu = u' π, nor yet that πu and u' π may differ by only
a single term of v. Nor, finally, can we prove that any single progression in vπ
has a limit in vπ, with similar propositions concerning the other three classes
vπ̆, πv, π̆v. At least, I am unable to discover any way of proving any of these
theorems, though in the absence of instances of the falsity of some of them it
seems not improbable that these may be demonstrable.

If it is the fact—as it seems to be—that, starting only from a compact
series, so many of the usual theorems are indemonstrable, we see how fun-
damental is the dependence of Cantor’s ordinal theory upon the condition
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that the compact series from which we start is to be denumerable. As soon as
this assumption is made, it becomes easy to prove all those of the above
propositions which hold concerning the types η and θ respectively. This is a
fact which is obviously of considerable philosophical importance; and it is
with a view of bringing it out clearly that I have dwelt so long upon compact
series which are not assumed to be denumerable.

282. The remark which we made just now, that two compact series may
be combined to form one which sometimes has consecutive terms, is rather
curious, and applies equally to continuity as defined by Cantor. Segments of
rationals form a continuous series, and so do completed segments (i.e. seg-
ments together with their limits); but the two together form a series which is
not compact, and therefore not continuous. It is certainly contrary to the
usual idea of continuity that a continuous series should cease to be so merely
by the interpolation of new terms between the old ones. This should, accord-
ing to the usual notions, make our series still more continuous. It might be
suggested that, philosophically speaking, a series cannot be called continuous
unless it is complete, i.e. contains a certain term together with all the terms
having to the given term a specified asymmetrical transitive relation or
its converse. If we add this condition, the series of segments of rationals is not
complete with regard to the relation by which we have hitherto regarded it as
generated, since it does not consist of all classes of rationals to which a given
segment has the relation of whole and part, and each of which contains all
terms less than any one of its terms—this condition is also satisfied by com-
pleted segments. But every series is complete with regard to some relation,
simple or complex. This is the reason why completeness need not, from a
mathematical standpoint, be mentioned in the definition of continuity, since
it can always be insured by a suitable choice of the generating relation.

We have now seen in what Cantor’s definition of continuity consists, and we
have seen that, while instances fulfilling the definition may be found in
Arithmetic, the definition itself is purely ordinal—the only datum required is a
denumerable compact series. Whether or not the kind of series which Cantor
defines as continuous is thought to be the most similar to what has hitherto
been vaguely denoted by the word, the definition itself, and the steps leading
to it, must be acknowledged to be a triumph of analysis and generalization.

Before entering upon the philosophical questions raised by the continuum,
it will be well to continue our review of Cantor’s most remarkable theorems,
by examining next his transfinite cardinal and ordinal numbers. Of the two
problems with which this Part is concerned, we have hitherto considered
only continuity; it is now time to consider what mathematics has to say
concerning infinity. Only when this has been accomplished, shall we be in a
position adequately to discuss the closely allied philosophical problems of
infinity and continuity.
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37
TRANSFINITE CARDINALS

283. T mathematical theory of infinity may almost be said to begin
with Cantor. The Infinitesimal Calculus, though it cannot wholly dispense
with infinity, has as few dealings with it as possible, and contrives to hide it
away before facing the world. Cantor has abandoned this cowardly policy,
and has brought the skeleton out of its cupboard. He has been emboldened
in this course by denying that it is a skeleton. Indeed, like many other
skeletons, it was wholly dependent on its cupboard, and vanished in the
light of day. Speaking without metaphor, Cantor has established a new
branch of Mathematics, in which, by mere correctness of deduction, it is
shown that the supposed contradictions of infinity all depend upon extend-
ing, to the infinite, results which, while they can be proved concerning finite
numbers, are in no sense necessarily true of all numbers. In this theory, it is
necessary to treat separately of cardinals and ordinals, which are far more
diverse in their properties when they are transfinite than when they are
finite. Following the same order as previously—the order which seems to
me to be alone philosophically correct—I shall begin with transfinite
cardinals.*

284. The transfinite cardinals, which are also called powers, may be
defined in the first place so as to include the finite cardinals, leaving it to be
investigated in what respects the finite and the transfinite are distinguished.
Thus Cantor gives the following definition.†

“We call the power or cardinal number of M that general idea which, by
means of our active faculty of thought, is deduced from the collection M, by

* This is the order followed in Math. Annalen, , but not in the Mannich-faltigkeitslehre.
† Math. Annalen, , § 1.



abstracting from the nature of its diverse elements and from the order in
which they are given.”

This, it will be seen, is merely a phrase indicating what is to be spoken of,
not a true definition. It presupposes that every collection has some such
property as that indicated—a property, that is to say, independent of the
nature of its terms and of their order; depending, we might feel tempted to
add, only upon their number. In fact, number is taken by Cantor to be a
primitive idea, and it is, in his theory, a primitive proposition that every
collection has a number. He is therefore consistent in giving a specification of
number which is not a formal definition.

By means, however, of the principle of abstraction, we can give, as we saw
in Part II, a formal definition of cardinal numbers. This method, in essentials,
is given by Cantor immediately after the above informal definition. We have
already seen that, if two classes be called similar when there is a one-one
relation which couples every term of either with one and only one term of
the other, then similarity is symmetrical and transitive, and is reflexive for all
classes. A one-one relation, it should be observed, can be defined without any
reference to number, as follows: A relation is one-one when, if x has the
relation to y, and x'  differs from x, y'  from y, then it follows that x'  does not
have the relation to y, nor x to y' . In this there is no reference to number; and
the definition of similarity also is therefore free from such reference. Since
similarity is reflexive. transitive and symmetrical, it can be analysed into
the product of a many-one relation and its converse, and indicates at least one
common property of similar classes. This property, or, if there be several, a
certain one of these properties, we may call the cardinal number of similar
classes, and the many-one relation is that of a class to the number of its
terms. In order to fix upon one definite entity as the cardinal number of a
given class, we decide to identify the number of a class with the whole class
of classes similar to the given class. This class, taken as a single entity, has, as
the proof of the principle of abstraction shows, all the properties required of
a cardinal number. The method, however, is philosophically subject to the
doubt resulting from the contradiction set forth in Part I, Chapter 10.*

In this way we obtain a definition of the cardinal number of a class. Since
similarity is reflexive for classes, every class has a cardinal number. It might
be thought that this definition would only apply to finite classes, since, to
prove that all terms of one class are correlated with all of another, complete
enumeration might be thought necessary. This, however, is not the case, as
may be seen at once by substituting any for all—a word which is generally
preferable where infinite classes are concerned. Two classes u, v are similar
when there is some one-one relation R such that, if x be any u, there is some

* See Appendix.
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term y of v such that xRy; and if y'  be any v, there is some term x'  of u such that
x'  Ry' . Here there is no need whatever of complete enumeration, but only of
propositions concerning any u and any v. For example, the points on a given
line are similar to the lines through a given point and meeting the given line;
for any point on the given line determines one and only one line through
the given point, and any line through the given point meeting the given line
determines one and only one point on the given line. Thus where our classes
are infinite, we need some general proposition about any term of either class
to establish similarity, but we do not need enumeration. And in order to
prove that every (or any) class has a cardinal number, we need only the
observation that any term of any class is identical with itself. No other general
proposition about the terms of a class is requisite for the reflexive property
of similarity.

285. Let us now examine the chief properties of cardinal numbers. I
shall not give proofs of any of these properties, since I should merely
repeat what has been said by Cantor. Considering first their relations to
classes, we may observe that, if there be two sets of classes which are
similar in pairs, and no two of the one set have any common part, nor yet
any two of the other set, then the logical sum of all the classes of one set is
similar to the logical sum of all the classes of the other set. This prop-
osition, familiar in the case of finite classes, holds also of infinite classes.
Again, the cardinal number of a class u is said to be greater than that of a
class v, when no part of v is similar to u, but there is a part of u which is
similar to v. In this case, also, the number of v is said to be less than that of
u. It can be proved that, if there is a part of u which is similar to v, and a
part of v which is similar to u, then u and v are similar.* Thus equal,
greater, and less are all incompatible with each other, all transitive, and the
last two asymmetrical. We cannot prove at all simply—and it seems more
or less doubtful whether we can prove at all—that of two different cardinal
numbers one must be greater and the other less.† It is to be observed that
the definition of greater contains a condition not required in the case of
finite cardinals. If the number of v be finite, it is sufficient that a proper
part of u should be similar to v. But among transfinite cardinals this is not
sufficient. For the general definition of greater, therefore, both parts are
necessary. This difference between finite and transfinite cardinals results
from the defining difference of finite and infinite, namely that when the
number of a class is not finite, it always has a proper part which is similar

* Bernstein and Schröder’s theorem; for proofs see Borel, Leçons sur la théorie des fonctions, Paris,
1898, Note I, and Zermelo, Göttinger Nachrichten, 1901, pp. 34–38.
† Cantor’s grounds for holding that this is so are vague, and do not appear to me to be valid. They
depend upon the postulate that every class is the field of some well-ordered relation. See Cantor,
Math. Annalen, , note to § 2.
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to the whole; that is, every infinite class contains a part (and therefore an
infinite number of parts) having the same number as itself. Certain particu-
lar cases of this proposition have long been known, and have been
regarded as constituting a contradiction in the notion of infinite number.
Leibniz, for example, points out* that, since every number can be doubled,
the number of numbers is the same as the number of even numbers,
whence he deduces that there is no such thing as infinite number. The first
to generalize this property of infinite collections, and to treat it as not
contradictory, was, so far as I know, Bolzano.† But the strict proof of the
proposition, when the finite cardinals are defined by means of mathemat-
ical induction, as well as the demonstration that it is not contradictory, are
due to Cantor and Dedekind. The proposition itself may be taken as the
definition of the transfinite among cardinal numbers, for it is a property
belonging to all of them, and to none of the finite cardinals.‡ Before
examining this property further, however, we must acquire a more intimate
acquaintance with the other properties of cardinal numbers.

286. I come now to the strictly arithmetical properties of cardinals, i.e.
their addition, multiplication, etc.§ The addition of numbers is defined,
when they are transfinite, exactly as it was defined in the case of finite
numbers, namely by means of logical addition. The number of the logical
sum of two classes which have no common term is the sum of the num-
bers of the two classes. This can be extended by successive steps to any
finite number of classes; for an infinite number of classes, forming a class
of classes, the sum of their numbers, if no two have any common term, is
still the number of their logical sum—and the logical sum of any class of
classes, finite or infinite, is logically definable. For sums of two or three
numbers, so defined, the commutative and associative laws still hold, i.e.
we still have

a + b = b + a and a + (b + c) = (a + b) + c.

The multiplication of two numbers is thus defined by Cantor: If M and N be two
classes, we can combine any element of M with any element of N to form a
couple (m, n); the number of all such couples is the product of the numbers
of M and N. If we wish to avoid the notion of a couple in the definition, we
may substitute the following:¶ let u be a class of classes, a in number; let each
of these classes belonging to u contain b terms; and let no two of these classes

* Gerhardt’s ed. I, p. 338.
† Paradoxien des Unendlichen, § 21.
‡ See Dedekind, Was sind und was sollen die Zahlen? No. 64.
§ Cantor, Math. Annalen, , § 3; Whitehead, American Journal of Math. Vol. , No. 4.
¶ Vivanti, Théorie des Ensembles, Formulaire de Mathématiques, Vol. , Part , § 2, No. 4.
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have any common term; then ab is the number of the logical sum of all these
classes. This definition is still purely logical, and avoids the notion of a couple.
Multiplication so defined obeys the commutative, associative, and distributive
laws, i.e. we have

ab = ba, a (bc) = (ab) c, a (b + c) = ab + ac.

Hence addition and multiplication of cardinals, even when these are trans-
finite, satisfy all the elementary rules of Arithmetic.

The definition of powers of a number (ab) is also effected logically (ib. § 4).
For this purpose, Cantor first defines what he calls a covering (Belegung) of one
class N by another M. This is a law by which, to every element n of N is joined
one and only one element m of M, but the same element m may be joined to
many elements of N. That is, a Belegung is a many-one relation, whose domain
includes N, and which correlates with the terms of N always terms of M. If a
be the number of terms in M, b the number in N, then the number of all such
many-one relations is defined to be ab. It is easy to see that, for finite numbers,
this definition agrees with the usual one. For transfinite numbers, indices
have still the usual properties, i.e.

abac = ab + c, acbc = (ab)c, (ab)c = abc.

In the case where a = 2, ab is capable of a simpler definition, deduced from
the above. If a = 2, 2b will be the number of ways in which b terms can be
related each to one of two terms. Now when those which are related to one
of the two are given, the rest are related to the other. Hence it is enough, in
each case, to specify the class of terms related to one of the two. Hence we get
in each case a class chosen out of the b terms, and in all cases we get all such
classes. Hence 2b is the number of classes that can be formed out of b terms, or
the number of combinations of b things any number at a time—a familiar
theorem when b is finite, but still true when b is transfinite. Cantor has a proof
that 2b is always greater than b—a proof which, however, leads to difficulties
when b is the number of all classes, or, more generally, when there is some
collection of b terms in which all the sets chosen out of the b terms are
themselves single terms of b.*

The definitions of multiplication given by Cantor and Vivanti require that
the number of factors in a product should be finite; and this makes it
necessary to give a new and independent definition of powers, if the
exponent is allowed to be infinite. Mr A. N. Whitehead† has given a

* See Chapter 43, infra.
† American Journal of Mathematics, loc. cit.
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definition of multiplication which is free from this restriction, and therefore
allows powers to be defined in the ordinary way as products. He has also
found proofs of the formal laws when the number of summands, brackets,
or factors is infinite. The definition of a product is as follows: Let k be a class
of classes, no two of which have any terms in common. Choose out, in
every possible way, one term and only one from each of the classes compos-
ing k. By doing this in all possible ways, we get a class of classes, called the
multiplicative class of k. The number of terms in this class is defined to
be the product of the numbers of terms in the various classes which are
members of k. Where k has a finite number of members, it is easy to see that
this agrees with the usual definition. Let u, v, w be the members of k, and let
them have respectively α, β , γ terms. Then one term can be chosen out of u
in α ways: for every way there are β  ways of choosing one term out of v, and
for every way of choosing one term out of u and one out of v, there are γ
way of choosing one out of ω. Hence there are α β γ ways of choosing
one term out of each, when multiplication is understood in its usual sense.
The multiplicative class is an important notion, by means of which transfinite
cardinal Arithmetic can be carried a good deal further than Cantor has
carried it.

287. All the above definitions apply to finite and transfinite integers
alike, and, as we see, the formal laws of Arithmetic still hold. Transfinite
integers differ from finite ones, however, both in the properties of their
relation to the classes of which they are the numbers, and also in regard to the
properties of classes of the integers themselves. Classes of numbers have, in
fact, very different properties according as the numbers are all finite or are
in part at least transfinite.

Among transfinite cardinals, some are particularly important, especially
the number of finite numbers, and the number of the continuum. The num-
ber of finite numbers, it is plain, is not itself a finite number; for the class finite
number is similar to the class even finite number, which is a part of itself. Or again
the same conclusion may be proved by mathematical induction—a principle
which also serves to define finite numbers, but which, being of a more
ordinal nature, I shall not consider until the next chapter. The number of
finite numbers, then, is transfinite. This number Cantor denotes by the
Hebrew Aleph with the suffix 0; for us it will be more convenient to denote it
by α0. Cantor proves that this is the least of all the transfinite cardinals. This
results from the following theorems (loc. cit. § 6):

(A) Every transfinite collection contains others as parts whose number is α0.
(B) Every transfinite collection which is part of one whose number is α0, also

has the number α0.
(C) No finite collection is similar to any proper part of itself.
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(D) Every transfinite collection is similar to some proper part of itself.*

From these theorems it follows that no transfinite number is less than the
number of finite numbers. Collections which have this number are said to
be denumerable, because it is always possible to count such collections, in the
sense that, given any term of such a collection, there is some finite number n
such that the given term is the nth. This is merely another way of saying that
all the terms of a denumerable collection have a one-one correlation with the
finite numbers, which again is equivalent to saying that the number of
the collection is the same as that of the finite numbers. It is easy to see that
the even numbers, the primes, the perfect squares, or any other class of
finite numbers having no maximum, will form a denumerable series. For,
arranging any such class in order of magnitude, there will be a finite number
of terms, say n, before any given term, which will thus be the (n + 1)th term.
What is more remarkable is, that all the rationals, and even all real roots of
equations of a finite degree and with rational coefficients (i.e. all algebraic
numbers), form a denumerable series. And even an n-dimensional series of
such terms, where n is a finite number, or the smallest transfinite ordinal, is
still denumerable.† That the rational numbers are denumerable can be easily
seen, by arranging them in the order in which those with smaller sum of
numerator and denominator precede those with larger sum, and of those
with equal sums, those with the smaller numerators precede those with
larger ones. Thus we get the series

1, 1/2, 2, 1/3, 3, 1/4, 2/3, 3/2, 4, 1/5 . . .

This is a discrete series, with a beginning and no end; every rational number
will occur in this series, and will have a finite number of predecessors. In
the other cases the proof is rather more difficult.

All denumerable series have the same cardinal number α0, however differ-
ent they may appear. But it must not be supposed that there is no number
greater than α0. On the contrary, there is an infinite series of such numbers.‡
The transfinite cardinals are asserted by Cantor to be well-ordered, that is,
such that every one of them except the last of all (if there be a last) has an
immediate successor, and so has every class of them which has any numbers
at all after it. But they do not all have an immediate predecessor; for example,

* Theorems C and D require that the finite should be defined by mathematical induction, or else
they become tautologous.
† See Acta Mathematica, II, pp. 306, 313, 326.
‡ See Jahresbericht der deutschen Mathematiker-Vereinigung , 1892; Rivista di Matematica, , pp. 165–7.
Cantor’s assertion that there is no greatest transfinite cardinal is open to question. See Chap.
43, infra.
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α0 itself has no immediate predecessor. For if it had one, this would have to be
the last of the finite numbers; but we know that there is no last finite number.
But Cantor’s grounds for his assertion that the cardinals are well-ordered
seem insufficient, so that for the present this must remain an open question.

288. Of the transfinite numbers other than α0, the most important is the
number of the continuum. Cantor has proved that this number is not α0,*
and hopes to prove that it is α1†—a hope which, though he has long cher-
ished it, remains unfulfilled. He has shown that the number of the continuum
is 2α0‡—a most curious theorem; but it must still remain doubtful whether
this number is α1, though there are reasons which rendered this probable.§
As to the definition of α1 and of the whole succession of transfinite cardinals,
this is a matter which is better postponed until we have discussed the trans-
finite ordinals. It must not be supposed that we can obtain a new transfinite
cardinal by merely adding one to it, or even by adding any finite number or
α0. On the contrary, such puny weapons cannot disturb the transfinite car-
dinals. It is known that in the case of α0 and a certain class of transfinite
cardinals, a number is equal to its double; also that in the case of α0 and a
presumably different class of transfinite cardinals, a number is equal to its
square. The sum of two numbers belonging to the former of these classes
is equal to the greater of the two numbers. It is not known whether all
transfinite cardinals belong to one or both of these classes.¶

289. It may be asked: In what respect do the finite and transfinite
cardinals together form a single series? Is not the series of finite numbers

* Acta Math. , p. 308.
† Ib. p. 404, α1 is the number next after α0.

‡ Math. Annalen, , § 4, note.
§ See Couturat, De l’lnfini Mathématique, Paris, 1896, p. 655. The ground alleged by Cantor for
identifying the second power with that of the continuum is, that every infinite linear collection
of points has either the first power, or that of the continuum, whence it would seem to follow
that the power of the continuum must be the next after the first. (Math. Annalen, 23, p. 488; see also
Acta Math., .) But the inference seems somewhat precarious. Consider, for example, the follow-
ing analogy: in a compact series, the stretch determined by two terms consists either of an
infinite number of terms, or, when the two terms coincide, of one term only, and never of a
finite number of terms other than one. But finite stretches are presented by other types of series,
e.g. progressions.

The theorem that the number of the continuum is 2α0 results very simply from the proposition
of Chapter 36, that infinite classes of finite integers form a continuous series. The number of
all classes of finite integers is 2α0 (vide supra), and the number of finite classes is α0. Hence the

number of all infinite classes of finite integers is 2α0 for the subtraction of α0 does not diminish

any number greater than α0; 2α0 is therefore the number of the continuum. To prove that this

number is α1 it would therefore be sufficient to show that the number of infinite classes of finite

integers is the same as the number of types of series that can be formed of all the finite integers;
for the latter number, as we shall see in the next chapter, is α1.

¶ Cf. Whitehead, loc. cit. pp. 392–4.
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complete in itself, without the possibility of extending its generating rela-
tion? If we define the series of integers by means of the generating relation of
differing by one—the method which is most natural when the series is to be
considered as a progression—then, it must be confessed, the finite integers
form a complete series, and there is no possibility of adding terms to them.
But if, as is appropriate in the theory of cardinals, we consider the series as
arising by correlation with that of whole and part among classes of which the
integers can be asserted, then we see that this relation does extend beyond
finite numbers. There are an infinite number of infinite classes in which any
given finite class is contained; and thus, by correlation with these, the num-
ber of the given finite class precedes that of any one of the infinite classes.
Whether there is any other sense in which all integers, finite and transfinite,
form a single series, I leave undecided; the above sense would be sufficient to
show that there is no logical error in regarding them as a single series, if it
were known that of any two cardinals one must be the greater. But it is now
time to turn our attention to the transfinite ordinals.
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38
TRANSFINITE ORDINALS

290. T transfinite ordinals are, if possible, even more interesting and
remarkable than the transfinite cardinals. Unlike the latter, they do not obey
the commutative law, and their arithmetic is therefore quite different from
elementary arithmetic. For every transfinite cardinal, or at any rate for any
one of a certain class, there is an infinite collection of transfinite ordinals,
although the cardinal number of all ordinals is the same as or less than that of
all cardinals. The ordinals which belong to series whose cardinal number is
α0 are called the second class of ordinals; those corresponding to α1 are called

the third class, and so on. The ordinal numbers are essentially classes of
series, or better still, classes of generating relations of series; they are defined,
for the most part, by some relation to mathematical induction. The finite
ordinals, also, may be conceived as types of series: for example, the ordinal
number n may be taken to mean “a serial relation of n terms;” or, in popular
language, n terms in a row. This is an ordinal notion, distinct from “nth”, and
logically prior to it.* In this sense, n is the name of a class of serial relations. It
is this sense, not that expressed by “nth”, which is generalized by Cantor so as
to apply to infinite series.

291. Let us begin with Cantor’s definition of the second class of ordinal
numbers.†

“It is now to be shown”, he says, “how we are led to the definitions of the
new numbers, and in what way are obtained the natural sections, which I call
classes of numbers, in the absolutely endless series of real integers. . . . The series
(1) of positive real whole numbers 1, 2, 3, . . . ν, . . . arises from repeated

* Cf. supra Part IV, Chap. 29, §§ 231, 232.
† Mannichfaltigkeitslehre, § 11, pp. 32, 33.



positing and combination of units which are presupposed and regarded as
equal; the number ν is the expression both for a certain finite amount (Anzahl)
of such successive positings, and for the combination of the units posited
into a whole. Thus the formation of finite real whole numbers rests on the
addition of a unit to a number which has already been formed; I call this
moment, which, as we shall see immediately, also plays an essential part in
the formation of the higher integers, the first principle of formation. The amount
(Anzahl) of possible numbers ν of the class (1) is infinite, and there is no
greatest among them. Thus however contradictory it would be to speak of a
greatest number of the class (1), there is yet nothing objectionable in imagin-
ing a new number, which we will call ω, which is to express that the whole
collection (1) is given by its law in its natural order of succession. (In the
same way as ν expresses the combination of a certain finite amount of units
into a whole.) It is even permissible to think of the newly created number
ω as a limit, towards which the numbers ν tend, if by this nothing else is
understood but that ω is the first integer which follows all the numbers ν, i.e.
is to be called greater than each of the numbers ν. By allowing further
additions of units to follow the positing of the number ω we obtain, by the
help of the first principle of formation, the further numbers

ω + 1, ω + 2, . . . . . . . . . ω + ν, . . . . . . . . .;

Since here again we come to no greatest number, we imagine a new one,
which we may call 2ω, and which is to be the first after all previous numbers
ν and ω + ν.

‘The logical function which has given us the two numbers ω and 2ω is
evidently different from the first principle of formation; I call it the second
principle of formation of real integers, and define it more exactly as follows: If we
have any determinate succession of defined real integers, among which there
is no greatest number, by means of this second principle of formation a new
number is created, which is regarded as the limit of those numbers, i.e. is
defined as the next number greater than all of them.”

The two principles of formation will be made clearer by considering that
an ordinal number is merely a type or class of series, or rather of their
generating relations. Thus if we have any series which has no last term, every
part of such a series which can be defined as all the terms up to and including
a certain term of the series will have a last term. But since the series itself
has no last term, it is of a different type from any such part or segment of
itself. Hence the ordinal number representing the series as a whole must be
different from that representing any such segment of itself, and must be a
number having no immediate predecessor, since the series has no last term.
Thus ω is simply the name of the class progression, or of the generating
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relations of series of this class. The second principle of formation, in short,
is that by which we define a certain type of series having no last term.
Considering the ordinals preceding any ordinal α which is obtained by the
second principle as representing segments of a series represented by α,
the ordinal α itself represents the limit of such segments; and as we saw
before, the segments always have a limit (provided they have no maximum),
even when the original series has none.*

In order to define a class among transfinite ordinals (of which, as is evident,
the succession is infinite), Cantor introduces what he calls a principle of
limitation (Hemmungsprincip).† According to this principle, the second class of
ordinals is to consist only of those whose predecessors, from 1 upwards,
form a series of the first power, i.e. a series whose cardinal number is α0, or
one whose terms, in a suitable order, have a one-one relation to the finite
integers. It is then shown that the power, or cardinal number, of the second
class of ordinals as a whole, is different from α0 (p. 35), and is further the
very next cardinal number after α0 (p. 37). What is meant by the next cardinal
number to α0 results clearly from the following proposition (p. 38): “If M be
any well-defined collection of the power of the second class of numbers, and
if any infinite portion M of M be taken, then either the collection M'  can be
considered as a simply infinite series, or it is possible to establish a unique
and reciprocal correspondence between M and M' .” That is to say, any part of
a collection of the second power is either finite, or of the first power, or of the
second; and hence there is no power between the first and second.

292. Before proceeding to the addition, multiplication, etc., of ordinals,
it will be well to take the above propositions, as far as possible, out of their
mathematical dress, and to state, in ordinary language, exactly what it is they
mean. As for the ordinal ω, this is simply the name for the class of generating
relations of progressions. We have seen how a progression is defined: it is a
series which has a first term, and a term next after each term, and which
obeys mathematical induction. By mathematical induction itself we can show
that every part of a progression, if it has a last term, has some finite ordinal
number n, where n denotes the class of series consisting of n terms in order;
while every part which has no last term is itself a progression; also we
can show (what is indeed obvious) that no finite ordinal will represent a
progression. Now progressions are a perfectly definite class of series, and the
principle of abstraction shows that there is some entity to which all of them

* On the segments of well-ordered series see Cantor’s article in Math. Annalen, , § 13. It is
important to observe that the ordinals above explained are analogous, in their genesis, to the real
numbers considered as segments (vide Chap. 33, supra). Here, as there, the existence of ω is not
open to question when the segment-theory is adopted, whereas on any other theory the
existence-theorem is indemonstrable and unplausible.
† Mannichfaltigkeitslehre, p. 34.

318 principles of mathematics



have a relation which they have to nothing else—for all progressions are
ordinally similar (i.e. have a one-one relation such that earlier terms are
correlated with earlier ones, and later with later), and ordinal similarity
is symmetrical, transitive and (among series) reflexive. This entity, to which
the principle of abstraction points, may be taken to be the type or class
of serial relations, since no series can belong to more than one type of series.
The type to which progressions belong, then, is what Cantor calls ω.
Mathematical induction, starting from any finite ordinal, can never reach ω,
since ω is not a member of the class of finite ordinals. Indeed, we may define
the finite ordinals or cardinals—and where series are concerned, this seems
the best definition—as those which, starting from 0 or 1, can be reached by
mathematical induction. This principle, therefore, is not to be taken as an
axiom or postulate, but as the definition of finitude. It is to be observed that,
in virtue of the principle that every number has an immediate successor, we
can prove that any assigned number, say, 10,937, is finite—provided, of
course, that the number assigned is a finite number. That is to say, every
proposition concerning 10,937 can be proved without the use of mathemat-
ical induction, which, as most of us can remember, was not mentioned in the
Arithmetic of our childhood. There is therefore no kind of logical error in
using the principle as a definition of the class, of finite numbers, nor is there a
shadow of a reason for supposing that the principle applies to all ordinal or
all cardinal numbers.

At this point, a word to the philosophers may be in season. Most of them
seem to suppose that the distinction between the finite and the infinite is one
whose meaning is immediately evident, and they reason on the subject as
though no precise definitions were needed. But the fact is, that the distinction
of the finite from the infinite is by no means easy, and has only been brought
to light by modern mathematicians. The numbers 0 and 1 are capable of
logical definition, and it can be shown logically that every number has a
successor. We can now define finite numbers either by the fact that mathemat-
ical induction can reach them, starting from 0 or 1—in Dedekind’s language,
that they form the chain of 0 or 1—or by the fact that they are the numbers of
collections such that no proper part of them has the same number as the
whole. These two conditions may be easily shown to be equivalent. But they
alone precisely distinguish the finite from the infinite, and any discussion of
infinity which neglects them must be more or less frivolous.

293. With regard to numbers of the second class other than ω, we may
make the following remark. A collection of two or more terms is always,
except possibly for some very large infinite collections, the field of more
than one serial relation. Men may be arranged by their rank, age, wealth or
in alphabetical order: all these relations among men generate series, and each
places mankind in a different order. But when a collection is finite, all
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possible orders give one and the same ordinal number, namely that corres-
ponding to the cardinal number of the collection. That is to say, all series
which can be formed of a certain finite number of terms are ordinally similar.
With infinite series, this is quite different. An infinite collection of terms
which is capable of different orders may belong, in its various orders, to quite
different types. We have already seen that the rationals, in one order, form a
compact series with no beginning or end, while in another order they form
a progression. These are series of entirely different types; and the same
possibility extends to all infinite series. The ordinal type of a series is not
changed by the interchange of two consecutive terms, nor, consequently, in
virtue of mathematical induction, by any finite number of such interchanges.
The general principle is, that the type of a series is not changed by what may
be called a permutation. That is, if P be a serial relation by which the terms of u
are ordered, R a one-one relation whose domain and whose converse domain
are both u, then R̆PR is a serial relation of the same type as P; and all serial
relations whose field is u, and which are of the same type as P, are of the
above form R̆PR. But by a rearrangement not reducible to a permutation, the
type, in general, is changed. Consider, for example, the natural numbers, first
in their natural order, and then in the order in which 2 comes first, then
all the higher numbers in their natural order, and last of all 1. In the first
order, the natural numbers form a progression; in the second, they form a
progression together with a last term. In the second form, mathematical
induction no longer applies; there are propositions which hold of 2, and of
every subsequent finite number, but not of 1. The first form is the type of any
fundamental series of the kind we considered in Chapter 36; the second
is the type of any such series together with its limit. Cantor has shown that
every denumerable collection can be given an order which corresponds to
any assigned ordinal number of the second class.* Hence the second class of
ordinal numbers may be defined as all the types of well-ordered series in
which any one given denumerable collection can be arranged by means of
different generating relations. The possibility of such different types depends
upon the fundamental property of infinite collections, that an infinite part
of an infinite collection can always be found, which will have a one-one
correlation with the whole. If the original collection was a series, the part, by
this correlation, becomes a series ordinally similar to the whole: the remain-
ing terms, if added after all the terms of the infinite part, will then make the
whole ordinally different from what it was.†

* Acta Math., , p. 394.
† The remaining terms, if they be finite in number, will often not alter the type if added at the
beginning; but if they be infinite, they will in general alter it even then. This will soon be more
fully explained.
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We may assimilate the theory of ordinals to that of cardinals as follows.
Two relations will be said to be like when there is a one-one relation S, whose
domain is the field of one of them (P), and which is such that the other
relation is S̆PS. If P be a well-ordered relation, i.e. one which generates a
well-ordered series, the class of relations like P may be defined as the ordinal
number of P. Thus ordinal numbers result from likeness among relations
as cardinals from similarity among classes.

294. We can now understand the rules for the addition and multiplica-
tion of transfinite ordinals. Both operations obey the associative, but not
the commutative, law. The distributive law is true, in general, only in the form

γ (α + β) = γα + γβ ,

where α + β , α, β  are multipliers.* That addition does not obey the commuta-

tive law may be easily seen. Take for example ω + 1 and 1 + ω. The first
denotes a progression followed by a single term: this is the type presented by
a progression and its limit, which is different from a simple progression.
Hence ω + 1 is a different ordinal from ω. But 1 + ω denotes a progression
preceded by a single term, and this is again a progression. Hence 1 + ω = ω, but
1 + ω does not equal ω + 1.† The numbers of the second class are, in fact, of
two kinds, (1) those which have an immediate predecessor, (2) those which
have none. Numbers such as ω, ω.2, ω.3, . . . ω2, ω3 . . . ωω . . . have no
immediate predecessor. If any of these numbers be added to a finite number,
the same transfinite number reappears; but if a finite number be added to any
of these numbers, we get a new number. The numbers with no predecessor
represent series which have no end, while those which have a predecessor
represent series which have an end. It is plain that terms added at the
beginning of a series with no end leave it endless; but the addition of a
terminating series after an endless one produces a terminating series, and
therefore a new type of order. Thus there is nothing mysterious about these
rules of addition, which simply express the type of series resulting from
the combination of two given series.

Hence it is easy to obtain the rules of subtraction.‡ If α is less than β , the
equation

α + ξ = β

* Mannichfaltigkeitslehre, p. 39; α + β  will be the type of a series consisting of two parts, namely a

part of the type α followed by a part of the type β ; γα will be the type of a series consisting of a

series of the type α of series of the type γ. Thus a series composed of two progressions is of the

type ω.2.
† Math. Annalen, , § 8.
‡ Mannichfaltigkeitslehre, p. 39.
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has always one and only one solution in ξ, which we may represent by β − α.
This gives the type of series that must be added after α to produce β . But the
equation

ξ + α = β

will sometimes have no solution, and at other times an infinite number of
solutions. Thus the equation

ξ + ω = ω + 1

has no solution at all: no number of terms added at the beginning of a
progression will produce a progression together with a last term. In fact, in
the equation ξ + α = β , if α represents an endless type, while β  represents a

terminating type, it is sufficiently evident that terms added before α can never
produce a terminating type, and therefore can never produce the type β . On
the other hand, if we consider the equation

ξ + ω = ω.2

this will be satisfied by ξ = ω + n, where n is zero or any finite number.
For n before the second ω will coalesce with this to form ω, and thus
ω + n + ω = ω.2. In this case, therefore, ξ has an infinite number of values. In
all such cases, however, the possible values of ξ have a minimum, which is a
sort of principal value of the difference between β  and α. Thus subtraction is
of two kinds, according as we seek a number which, added to α, will give β ,
or a number to which α may be added so as to give β . In the first case,
provided α is less than β , there is always a unique solution; in the second case,
there may be no solution, and there may be an infinite number of solutions.

295. The multiplication of ordinals is defined as follows.* Let M and N be
two series of the types α and β . In N, in place of each element n, substitute a
series Mn of the type α; and let S be the series formed of all the terms of all
series Mn, taken in the following order: (1) any two elements of S which
belong to the same series Mn are to preserve the order they had in Mn; two
elements which belong to different series Mn, Mn'  are to have the order which
n and n'  have in N. Then the type of S depends only upon α and β , and
is defined to be their product αβ , where α is the multiplicand, and β  the

multiplicator. It is easy to see that products do not always obey the commuta-
tive law. For example, 2. ω is the type of series presented by

* Math. Annalen, , § 8.
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e1, f1; e2, f2; e3, f3; . . . ev, fν; . . . . . .

which is a progression, so that 2.ω = ω. But ω.2 is the type

e1, e2, e3 . . . eν, . . .; f1, f2, f3, . . . fν, . . .

which is a combination of two progressions, but not a single progression.
In the former series, there is only one term, e1, which has no immediate
predecessor; in the latter there are two, e1 and f1.

Of division, as of subtraction, two kinds must be distinguished.* If there
are three ordinals α, β , γ, such that β = αγ, then the equation β = αξ has no

other solution than ξ = γ, and we may therefore denote γ by β/α.† But the
equation β = ξα, if soluble at all, may have several or even an infinity of roots;
of which, however, one is always the smallest. This smallest root is denoted
by β//α.

Multiplication of ordinals is the process of representing a series of series as
a single series, each series being taken as a whole, and preserving its place in
the series of series. Division, on the other hand, is the process of splitting up a
single series into a series of series, without altering the order of its terms.
Both these processes have some importance in connection with dimensions.
Division, as is plain, is only possible with some types of series; those with
which it is not possible may be called primes. The theory of primes is inter-
esting, but it is not necessary for us to go into it.‡

296. Every rational integral or exponential function of ω is a number of
the second class, even when such numbers as ωω, ωω2, etc., occur.§ But it must
not be supposed that all types of denumerable series are capable of such a
form. For example, the type η, which represents the rationals in order of
magnitude,¶ is wholly incapable of expression in terms of ω. Such a type is
not called by Cantor an ordinal number. The term ordinal number is reserved for
well-ordered series, i.e. such as have the following two properties:�

I. There is in the series F a first term.

* Mannichfaltigkeitslehre, p. 40.
† Cantor has changed his notation in regard to multiplication: formerly, in α.β , α was the

multiplicator, and β  the multiplicand; now, the opposite order is adopted. In following older
works, except in actual quotations, I have altered the order to that now adopted.
‡ See Mannichfaltigkeitslehre, p. 40.
§ On the exponential function, see Math. Annalen, , §§ 18–20.
¶ Math. Annalen, , § 9.
� Math. Annalen, , § 12. The definition may be replaced by the following, which is equivalent
to it: a series is well-ordered if every class contained in the series (except of course the null-class)
has a first term.
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II. If F'  is a part of F, and if F possesses one or more terms which come after
all the terms of F' , then there is a term f'  of F which immediately follows
F' , so that there is no term of F before f'  and after all terms of F' .

All possible functions of ω and finite ordinals only, to the exclusion of other
types such as that of the rationals, represent well-ordered series, though the
converse does not hold. In every well-ordered series, there is a term next after
any given term, except the last term if there be one; and provided the series is
infinite, it always contains parts which are progressions. A term which comes
next after a progression has no immediate predecessor, and the type of the
segment formed of its predecessors is of what is called the second species.
The other terms have immediate predecessors, and the type of the segments
formed of their predecessors are said to be of the first species.

297. The consideration of series which are not well-ordered is import-
ant, though the results have far less affinity to Arithmetic than in the case of
well-ordered series. Thus the type η is not expressible as a function of ω,
since all functions of ω represent series with a first term, whereas η has no
first term, and all functions of ω represent series in which every term has an
immediate successor, which again is not the case with η. Even the series of
negative and positive integers and zero cannot be expressed in terms of ω,
since this series has no beginning. Cantor defines for this purpose a serial type
*ω, which may be taken as the type of a regression (ib. § 7). The definition of a
progression, as we have seen, is relative to some one-one aliorelative P.†
When P̆ generates a progression, this progression with respect to P̆ is a
regression with respect to P, and its type, considered as generated by P,
is denoted by *ω. Thus the whole series of negative and positive integers is of
the type *ω + ω. Such a series can be divided anywhere into two progres-
sions, generated by converse relations; but in regard to one relation, it is not
reducible to any combination of progressions. Such a series is completely
defined, by the methods of Part IV, as follows: P is a one-one aliorelative; the
field of P is identical with that of P̆; the disjunctive relation “some finite
positive power of P” is transitive and asymmetrical; and the series consists of
all terms having this relation or its converse to a given term together with
the given term. The class of series corresponding to any transfinite ordinal
type may always be thus defined by the methods of Part IV; but where a
type cannot be expressed as a function of ω or *ω or both, it will usually
be necessary, if we are to define our type completely, either to bring in a
reference to some other relation, in regard to which the terms of our series
form a progression, or to specify the behaviour of our series with respect to

† An aliorelative is a relation which no term can have to itself. This term is due to Pierce. See
Schröder, Algebra u. Logik der Relative, p. 131.
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limits. Thus the type of the series of rationals is not defined by specifying that
it is compact, and has no beginning or end; this definition applies also, for
example, to what Cantor calls the semi-continuum, i.e. the continuum with
its ends cut off. We must add that the rationals are denumerable, i.e. that, with
respect to another relation, they form a progression. I doubt whether, in
this case, the behaviour of the rationals with regard to limits can be used for
definition. Their chief characteristics in this respect are: (1) that they
are condensed in themselves, i.e. every term of them is the limit of certain
progressions and regressions; (2) in any interval, a progression or a regres-
sion which has no limit is contained. But both these characteristics belong to
the series of irrational numbers, i.e. to the series obtained by omitting all
rationals from the series of real numbers; yet this series is not denumerable.
Thus it would seem that we cannot define the type η, to which the rationals
belong, without reference to two generating relations. The type η is that of
endless compact series whose terms, with reference to another relation, form
a progression.

From the last remark, we see clearly the importance of the correlation of
series, with which we began the discussions of Part V. For it is only by means
of correlation that the type of the rationals, and hence the continuum, can be
defined. Until we bring in some other relation than that by which the order
of magnitude among rationals arises, there is nothing to distinguish the type
of the rationals from that of the irrationals.

298. The consideration of ordinals not expressible as functions of ω

shows clearly that ordinals in general are to be considered—as I suggested at
the beginning of this chapter—as classes or types of serial relations, and to
this view Cantor himself now apparently adheres; for in the article in the
Mathematische Annalen, Vol. , he speaks of them always as types of order,
not as numbers, and in the following article (Math. Annalen, , § 12), he
definitely restricts ordinal numbers to well-ordered series. In his earlier writ-
ings, he confined himself more to functions of ω, which bear many analogies
to more familiar kinds of numbers. These are, in fact, types of order which
may be presented by series of finite and transfinite cardinals which begin
with some cardinal. But other types of order, as we have now seen, have very
little resemblance to numbers.

299. It is worth while to repeat the definitions of general notions
involved in terms of what may be called relation-arithmetic.* If P, Q be two
relations such that there is a one-one relation S whose domain is the field of P
and which is such that Q = S̆PS, then P and Q are said to be like. The class of
relations like P, which I denote by λP, is called P’s relation-number. If the fields of
P and Q have no common terms, P + Q is defined to be P or Q or the relation

* Cf. Part IV, Chap. 29, § 231.
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which holds between any term of the field of P and any term of the field of Q,
and between no other terms. Thus P + Q is not equal to Q + P. Again λP + λQ
is defined as λ (P + Q). For the summation of an infinite number of relations,
we require an aliorelative whose field is composed of relations whose fields
are mutually exclusive. Let P be such a relation, p its field, so that p is a class of
relations. Then ΣPp is to denote either one of the relations of the class p or the
relation of any term belonging to the field of some relation Q of the class p to
a term belonging to the field of another relation R (of the class p) to which Q
has the relation P. (If P be a serial relation, and p a class of serial relations, ΣPp
will be the generating relation of the sum of the various series generated by
terms of p taken in the order generated by P.) We may define the sum of
the relation-numbers of the various terms of p as the relation-number of ΣPp.
If all the terms of p have the same relation-number, say α, and if β  be the
relation-number of P, α × β  will be defined to be the relation-number of ΣPp.
Proceeding in this way, it is easy to prove generally the three formal laws
which hold of well-ordered series, namely:

(α + β) + γ =  α + (β + γ)

α (β + γ) = αβ + αγ

(αβ ) γ = α (βγ).

The proofs are very closely analogous to those discovered by Mr Whitehead
for cardinal numbers (Amer. Journal of Math., Vol. ); but they differ by the
fact that no method has yet been discovered for defining an infinite product
of relation-numbers, or even of ordinal numbers.

300. It is to be observed that the merit of the above method is that it
allows no doubt as to existence-theorems—a point in which Cantor’s work
leaves something to be desired. As this is an important matter, and one in
which philosophers are apt to be sceptical, I shall here repeat the argument in
outline. It may be shown, to begin with, that no finite class embraces all
terms: this results, with a little care, from the fact that, since 0 is a cardinal
number, the number of numbers up to and including a finite number n is
n + 1. Further, if n be a finite number, n + 1 is a new finite number different
from all its predecessors. Hence finite cardinals form a progression, and
therefore the ordinal number ω and the cardinal number α0 exist (in the
mathematical sense). Hence, by mere rearrangements of the series of
finite cardinals, we obtain all ordinals of Cantor’s second class. We may now
define the ordinal number ω1 as the class of serial relations such that, if u be a
class contained in the field of one of them, to say that u has successors implies
and is implied by saying that u has α0 terms or a finite number of terms; and it
is easy to show that the series of ordinals of the first and second classes in
order of magnitude is of this type. Hence the existence of ω1 is proved; and α1
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is defined to be the number of terms in a series whose generating relation is
of the type ω1. Hence we can advance to ω2 and α2 and so on, and even to ωω

and αω, whose existence can be similarly proved: ωω will be the type of
generating relation of a series such that, if u be a class contained in the series,
to say that u has successors is equivalent to saying that u is finite or has, for a
suitable finite value of n, αn terms. This process gives us a one-one correlation
of ordinals with cardinals: it is evident that, by extending the process, we can
make each cardinal which can belong to a well-ordered series correspond to
one and only one ordinal. Cantor assumes as an axiom that every class is the
field of some well-ordered series, and deduces that all cardinals can be correl-
ated with ordinals by the above method. This assumption seems to me
unwarranted, especially in view of the fact that no one has yet succeeded in
arranging a class of 2α0 terms in a well-ordered series. We do not know that of
any two different cardinal numbers one must be the greater, and it may be
that 2α0 is neither greater nor less than α1 and α2 and their successors, which

may be called well-ordered cardinals because they apply to well-ordered
classes.

301. There is a difficulty as regards the type of the whole series of
ordinal numbers. It is easy to prove that every segment of this series is
well-ordered, and it is natural to suppose that the whole series is also
well-ordered. If so, its type would have to be the greatest of all ordinal
numbers, for the ordinals less than a given ordinal form, in order of magni-
tude, a series whose type is the given ordinal. But there cannot be a greatest
ordinal number, because every ordinal is increased by the addition of 1. From
this contradiction, M. Burali-Forti, who discovered it,* infers that of two
different ordinals, as of two different cardinals, it is not necessary that one
should be greater and the other less. In this, however, he consciously contra-
dicts a theorem of Cantor’s which affirms the opposite.† I have examined this
theorem with all possible care, and have failed to find any flaw in the proof.‡
But there is another premiss in M. Burali-Forti’s argument, which appears to
me more capable of denial, and that is, that the series of all ordinal numbers
is well-ordered. This does not follow from the fact that all its segments are
well-ordered, and must, I think, be rejected, since, so far as I know, it is
incapable of proof. In this way, it would seem, the contradiction in question
can be avoided.

302. We may now return to the subject of the successive derivatives of a
series, already briefly discussed in Chapter 36. This forms one of the most

* “Una questione sui numeri transfiniti”, Rendiconti del circolo Matematico di Palermo, Vol.  (1897).
† Theorem  of § 13 of Cantor’s article in Math. Annalen, Vol. .
‡ I have reproduced the proof in symbolic form, in which errors are more easily detected, in
R. d. M., Vol. , Prop. 5.47 of my article.
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interesting applications of those ordinals which are functions of ω, and may
even be used as an independent method of defining them. We have already
seen how, from a series P, its first derivative is obtained.* The first derivative
of P, which is denoted by P' , is the class of its limiting points. P'' , the second
derivative of P' , consists of the limiting-points of P' , and so on. Every infinite
collection has at least one limiting-point: for example, ω is the limit of the
finite ordinals. By induction we can define any derivative of finite order Pν. If
Pν consists of a finite number of points, Pν + 1 vanishes; if this happens for any
finite number v, P is said to be of the 1st genus and the vth species. But it may
happen that no Pν vanishes, and in this case all finite derivatives may have
common points. The points which all have in common form a collection
which is defined as Pω. It is to be observed that Pω is thus defined without
requiring the definition of ω. A term x belongs to Pω if, whatever finite
integer ν may be, x belongs to Pν. It is to be observed that, though P'  may
contain points not belonging to P, yet subsequent derivatives introduce no
new points. This illustrates the creative nature of the method of limits, or
rather of segments: when it is first applied, it may yield new terms, but later
applications give no further terms. That is, there is an intrinsic difference
between a series which has been, or may have been, obtained as the deriva-
tive of some other series, and one not so obtainable. Every series which
contains its first derivative is itself the derivative of an infinite number of
other series.† The successive derivatives, like the segments determined by the
various terms of a regression, form a series in which each term is part of each
of its predecessors; hence Pω, if it exists, is the lower limit of all the derivatives
of finite order. From Pω it is easy to go on to Pω + ν, Pω.2, etc. Series can be
actually constructed in which any assigned derivative, finite or transfinite of
the second class, is the first to vanish. When none of the finite derivatives
vanishes, P is said to be of the second genus. It must not be inferred, however,
that P is not denumerable. On the contrary, the first derivative of the rationals
is the number-continuum, which is perfect, so that all its derivatives are
identical with itself; yet the rationals, as we know, are denumerable. But when
Pν vanishes, P is always denumerable, if v be finite or of the second class.

The theory of derivatives is of great importance to the theory of real
functions,‡ where it practically enables us to extend mathematical induction
to any ordinal of the second class. But for philosophy, it seems unnecessary to
say more of it than is contained in the above remarks and in those of Chapter

* What follows is extracted from Acta Math. , pp. 341–360. I shall assume for simplicity that all
definable limits exist, i.e. that a series has a limit whenever the corresponding segments have one.
I have shown in Chapter 36 how to state results so as to avoid this assumption; but the necessary
circumlocution is tiresome.
† Formulaire de Mathématiques, Vol. , Part , § 71, 4–8.
‡ See Dini, Theorie der Functionen, Leipzig, 1892; esp. Chap.  and Translator’s preface.
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36. Popularly speaking, the first derivative consists of all points in whose
neighbourhood an infinite number of terms of the collection are heaped up;
and subsequent derivatives give, as it were, different degrees of concentration
in any neighbourhood. Thus it is easy to see why derivatives are relevant to
continuity: to be continuous, a collection must be as concentrated as possible
in every neighbourhood containing any terms of the collection. But such
popular modes of expression are incapable of the precision which belongs to
Cantor’s terminology.
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39
THE INFINITESIMAL CALCULUS

303. T Infinitesimal Calculus is the traditional name for the differen-
tial and integral calculus together, and as such I have retained it; although, as
we shall shortly see, there is no allusion to, or implication of, the infinitesimal
in any part of this branch of mathematics.

The philosophical theory of the Calculus has been, ever since the subject
was invented, in a somewhat disgraceful condition. Leibniz himself—who,
one would have supposed, should have been competent to give a correct
account of his own invention—had ideas, upon this topic, which can only
be described as extremely crude. He appears to have held that, if metaphysical
subtleties are left aside, the Calculus is only approximate, but is justified
practically by the fact that the errors to which it gives rise are less than
those of observation.* When he was thinking of Dynamics, his belief in
the actual infinitesimal hindered him from discovering that the Calculus
rests on the doctrine of limits, and made him regard his dx and dy as
neither zero, nor finite, nor mathematical fictions, but as really representing
the units to which, in his philosophy, infinite division was supposed to
lead.† And in his mathematical expositions of the subject, he avoided
giving careful proofs, contenting himself with the enumeration of rules.‡
At other times, it is true, he definitely rejects infinitesimals as philosophi-
cally valid;§ but he failed to show how, without the use of infinitesimals,
the results obtained by means of the Calculus could yet be exact, and

* Cf. Mathematical Works, Gerhardt’s ed. , pp. 91–93; Phil. Works, Gerhardt’s ed. , p. 282.
† See Math. Works, Gerhardt’s ed. , pp. 235, 247, 252.
‡ See Math. Works, Gerhardt’s ed., Vol. , pp. 220 ff.
§ E.g. Phil. Works, Gerhardt’s ed. , p. 305. Cf. Cassirer, Leibniz’ System (Marburg, 1902), pp. 206–7.



not approximate. In this respect, Newton is preferable to Leibniz: his
Lemmas* give the true foundation of the Calculus in the doctrine of limits,
and, assuming the continuity of space and time in Cantor’s sense, they give
valid proofs of its rules so far as spatio-temporal magnitudes are concerned.
But Newton was, of course, entirely ignorant of the fact that his Lemmas
depend upon the modern theory of continuity; moreover, the appeal to time
and change, which appears in the word fluxion, and to space, which appears
in the Lemmas, was wholly unnecessary, and served merely to hide the fact
that no definition of continuity had been given. Whether Leibniz avoided
this error, seems highly doubtful: it is at any rate certain that, in his first
published account of the Calculus, he defined the differential coefficient by
means of the tangent to a curve. And by his emphasis on the infinitesimal,
he gave a wrong direction to speculation as to the Calculus, which misled
all mathematicians before Weierstrass (with the exception, perhaps, of
De Morgan), and all philosophers down to the present day. It is only in the
last thirty or forty years that mathematicians have provided the requisite
mathematical foundations for a philosophy of the Calculus; and these founda-
tions, as is natural, are as yet little known among philosophers, except in
France.† Philosophical works on the subject, such as Cohen’s Princip der
Infinitesimalmethode und seine Geschichte,‡ are vitiated, as regards the constructive
theory, by an undue mysticism, inherited from Kant, and leading to such
results as the identification of intensive magnitude with the extensive infini-
tesimal.§ I shall examine in the next chapter the conception of the infini-
tesimal, which is essential to all philosophical theories of the Calculus hiterto
propounded. For the present, I am only concerned to give the constructive
theory as it results from modern mathematics.

304. The differential coefficient depends essentially upon the notion of
a continuous function of a continuous variable. The notion to be defined is
not purely ordinal; on the contrary, it is applicable, in the first instance, only
to series of numbers, and thence, by extension, to series in which distances
or stretches are numerically measureable. But first of all we must define a
continuous function.

We have already seen (Chap. 32) what is meant by a function of a variable,
and what is meant by a continuous variable (Chap. 36). If the function is
one-valued, and is only ordered by correlation with the variable, then, when
the variable is continuous, there is no sense in asking whether the function is
continuous; for such a series by correlation is always ordinally similar to its

* Principia, Part I, Section .
† See Couturat, De l’Infini Mathématique, passim.
‡ Berlin, 1883. The historical part of this work, it should be said, is admirable.
§ Op. cit. p. 15.
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prototype. But when, as where the variable and the field of the function are
both classes of numbers, the function has an order independent of correl-
ation, it may or may not happen that the values of the function, in the order
obtained by correlation, form a continuous series in the independent order.
When they do so in any interval, the function is said to be continuous in that
interval. The precise definitions of continuous and discontinuous functions,
where both x and f(x) are numerical, are given by Dini* as follows. The
independent variable x is considered to consist of the real numbers, or of all
the real numbers in a certain interval; f(x), in the interval considered, is to be
one-valued, even at the end-points of the interval, and is to be also composed
of real numbers. We then have the following definitions, the function being
defined for the interval between α and β , and a being some real number in
this interval.

“We call f(x) continuous for x = a, or in the point a, in which it has the value
f(a), if for every positive number σ, different from 0, but as small as we
please, there exists a positive number ε, different from 0, such that, for all
values of δ which are numerically less than ε, the difference f(a + δ) − f(a) is
numerically less than σ. In other words, f(x) is continuous in the point x = a,
where it has the value f(a), if the limit of its values to the right and left of a
is the same, and equal to f(a).”

“Again, f(x) is discontinuous for x = a, if, for any† positive value of σ, there is
no corresponding positive value of ε such that, for all values of δ which are
numerically less than ε, f(a + δ) − f(a) is always less than σ; in other words,
f(x) is discontinuous for x = a, when the values f(a + h) of f(x) to the right of
a, and the values f(a − h) of f(x) to the left of a, the one and the other, have
no determinate limits, or, if they have such, these are different on the two
sides of a; or, if they are the same, they differ from the value f(a), which the
function has in the point a.”

These definitions of the continuity and discontinuity of a function, it
must be confessed, are somewhat complicated; but it seems impossible
to introduce any simplification without loss of rigour. Roughly, we may say
that a function is continuous in the neighbourhood of a, when its values as
it approaches a approach the value f(a), and have f(a) for their limit both to
left and right. But the notion of the limit of a function is a somewhat more
complicated notion than that of a limit in general, with which we have been
hitherto concerned. A function of a perfectly general kind will have no limit
as it approaches any given point. In order that it should have a limit as
x approaches a from the left, it is necessary and sufficient that, if any number
ε be mentioned, any two values of f(x), when x is sufficiently near to a, but

* Op. cit. § 30, pp. 50, 51.
† The German (not the Italian) has every instead of any, but this is a slip.
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less than a, will differ by less than ε; in popular language, the value of the
function does not make any sudden jumps as x approaches a from the left.
Under similar circumstances, f(x) will have a limit as it approaches a from the
right. But these two limits, even when both exist, need not be equal either to
each other or to f(a), the value of the function when x = a. The precise condi-
tion for a determinate finite limit may be thus stated:*

“In order that the values of y to the right or left of a finite number a (for
instance to the right) should have a determinate and finite limit, it is neces-
sary and sufficient that, for every arbitrarily small positive number σ, there
should be a positive number ε, such that the difference ya + ε − ya + δ between
the value ya + ε of y for x = a + ε, and the value ya + δ, which corresponds to the
value a + δ of x, should be numerically less than σ, for every δ which is
greater than 0 and less than ε.”

It is possible, instead of thus defining the limit of a function, and then
discussing whether it exists, to define generally a whole class of limits.† In
this method, a number z belongs to the class of limits of y for x = a, if,
within any interval containing a, however small, y will approach nearer to z
than by any given difference. Thus, for example, sin 1/x, as x approaches
zero, will take every value from −1 to +1 (both inclusive) in every finite
interval containing zero, however small. Thus the interval from −1 to +1
forms, in this case, the class of limits for x = 0. This method has the advan-
tage that the class of limits always exists. It is then easy to define the limit as
the only member of the class of limits, in case this class should happen to
have only one member. This method seems at once simpler and more
general.

305. Being now agreed as to the meaning of a continuous function, and
of the limit of a function, we can attack the question of the derivative of a
function, or differential coefficient. It was formerly supposed that all con-
tinuous functions could be differentiated, but this is now known to be
erroneous. Some can be differentiated everywhere, others everywhere except
in one point, others have everywhere a differential on the right, but some-
times none on the left, others contain an infinite number of points, in any
finite interval, in which they cannot be differentiated, though in an infinitely
greater number of points they can be differentiated, others lastly—and these
are properly the most general class—cannot be differentiated anywhere at
all.‡ But the conditions under which a function may be differentiated,
though they are of some importance to the philosophy of space and of

* Dini, op. cit. p. 38.
† See Peano, Rivista di Matematica, , pp. 77–79; Formulaire, Part , § 78, 1.0.
‡ See Dini, op. cit. Chaps. , , ; Encyklopädie der math. Wissenschaften, Band , Heft  (Leipzig,
1899), esp. pp. 20–22.
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motion, need not greatly concern us here; and in any case, we must first know
what a differential is.

If f(x) be a function which is finite and continuous at the point x, then it
may happen that the fraction

{f(x + δ) − f(x)}/δ

has a definite limit as δ approaches to zero. If this does happen, the limit is
denoted by f '(x), and is called the derivative or differential of f(x) in the point
x. If, that is to say, there be some number z such that, given any number ε
however small, if δ be any number less than some number η, but positive,
then {f(x ± δ) − f(x)}/ ± δ differs from z by less than ε, then z is the deriva-
tive of f(x) in the point x. If the limit in question does not exist, then f(x) has
no derivative at the point x. If f(x) be not continuous at this point, the limit
does not exist; if f(x) be continuous, the limit may or may not exist.

306. The only point which it is important to notice at present is, that
there is no implication of the infinitesimal in this definition. The number δ
is always finite, and in the definition of the limit there is nothing to imply the
contrary. In fact, {f(x + δ) − f(x)}/δ, regarded as a function of δ, is wholly
indeterminate when δ = 0. The limit of a function for a given value of the
independent variable is, as we have seen, an entirely different notion from its
value for the said value of the independent variable, and the two may or may
not be the same number. In the present case, the limit may be definite, but
the value for δ = 0 can have no meaning. Thus it is the doctrine of limits that
underlies the Calculus, and not any pretended use of the infinitesimal. This
is the only point of philosophic importance in the present subject, and it
is only to elicit this point that I have dragged the reader through so much
mathematics.

307. Before examining the infinitesimal on its own account, it remains
to define the definite integral, and to show that this, too, does not involve
the infinitesimal. The indefinite integral, which is the mere converse of the
differential, is of no importance to us; but the definite integral has an
independent definition, which must be briefly examined.

Just as the derivative of a function is the limit of a fraction, so the definite
integral is the limit of a sum.* The definite integral may be defined as fol-
lows: Let f(x) be a function which is one-valued and finite in the interval α to
β  (both inclusive). Divide this interval into any n portions by means of the

* The definition of the definite integral differs little in different modern works. Cp. Dini, op. cit.
§§ 178–181; Jordan, Cours d’Analyse, Vol.  (Paris, 1893), Chap. 1, §§ 41–58; Encyklopädie der
mathematischen Wissenschaften, , A. 2, § 31. The definition as the limit of a sum is more consonant
with Leibniz’s views than that as the inverse of a derivative, but was banished by Bernoulli and
Euler, and only brought back by Cauchy. See references in the last-mentioned place.
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(n − 1) points x1,x2, . . . xn − 1, and denote by δ1, δ2, . . . δn the n intervals
x1 − α, x1 − x2, . . . β − x n − 1. In each of these intervals, δs, take any one of the
values, say f(ζs), which f(x) assumes in this interval, and multiply this value

by the interval δs. Now form the sum �
n

1

 f(ζs) δs. This sum will always be

finite. If now, as n increases, this sum tends to one definite limit, however f(ζs)
may be chosen in its interval, and however the intervals be chosen (provided
only that all are less than any assigned number for sufficiently great values of
n)—then this one limit is called the definite integral of f(x) from α to β . If
there is no such limit, f(x) is not integrable from α to β .

308. As in the case of the derivative, there is only one important remark
to make about this definition. The definite integral involves neither the infin-
ite nor the infinitesimal, and is itself not a sum, but only and strictly the limit
of a sum. All the terms which occur in the sum whose limit is the definite
integral are finite, and the sum itself is finite. If we were to suppose the limit
actually attained, it is true, the number of intervals would be infinite, and the
magnitude of each would be infinitesimal; but in this case, the sum becomes
meaningless. Thus the sum must not be regarded as actually attaining its
limit. But this is a respect in which series in general agree. Any series which
always ascends or always descends and has no last term cannot reach its limit;
other infinite series may have a term equal to their limit, but if so, this is a
mere accident. The general rule is, that the limit does not belong to the series
which it limits; and in the definition of the derivative and the definite integral
we have merely another instance of this fact. The so-called infinitesimal calcu-
lus, therefore, has nothing to do with the infinitesimal, and has only indirectly
to do with the infinite—its connection with the infinite being, that it involves
limits, and only infinite series have limits.

The above definitions, since they involve multiplication and division, are
essentially arithmetical. Unlike the definitions of limits and continuity, they
cannot be rendered purely ordinal. But it is evident that they may be at once
extended to any numerically measurable magnitudes, and therefore to all
series in which stretches or distances can be measured. Since spaces, times
and motions are included under this head, the Calculus is applicable to
Geometry and Dynamics. As to the axioms involved in the assumption that
geometrical and dynamical functions can be differentiated and integrated, I
shall have something to say at a later stage. For the present, it is time to make
a critical examination of the infinitesimal on its own account.
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40
THE INFINITESIMAL AND THE

IMPROPER INFINITE

309. U recent times, it was universally believed that continuity, the
derivative, and the definite integral, all involved actual infinitesimals, i.e. that
even if the definitions of these notions could be formally freed from explicit
mention of the infinitesimal, yet, where the definitions applied the actual
infinitesimal must always be found. This belief is now generally abandoned.
The definitions which have been given in previous chapters do not in any
way imply the infinitesimal, and this notion appears to have become math-
ematically useless. In the present chapter, I shall first give a definition of the
infinitesimal, and then examine the cases where this notion arises. I shall
end by a critical discussion of the belief that continuity implies the
infinitesimal.

The infinitesimal has, in general, been very vaguely defined. It has been
regarded as a number or magnitude which, though not zero, is less than any
finite number or magnitude. It has been the dx or dy of the Calculus, the time
during which a ball thrown vertically upwards is at rest at the highest point
of its course, the distance between a point on a line and the next point, etc.,
etc. But none of these notions are at all precise. The dx and dy, as we saw in the
last chapter, are nothing at all: dy/dx is the limit of a fraction whose numerator
and denominator are finite, but is not itself a fraction at all. The time during
which a ball is at rest at its highest point is a very complex notion, involving
the whole philosophic theory of motion; in Part VII we shall find, when this
theory has been developed, that there is no such time. The distance between
consecutive points presupposes that there are consecutive points—a view
which there is every reason to deny. And so with most instances—they afford
no precise definition of what is meant by the infinitesimal.



310. There is, so far as I know, only one precise definition, which renders
the infinitesimal a purely relative notion, correlative to something arbitrarily
assumed to be finite. When, instead, we regard what had been taken to be
infinitesimal as finite, the correlative notion is what Cantor calls the improper
infinite (Uneigentlich-Unendliches). The definition of the relation in question is
obtained by denying the axiom of Archimedes, just as the transfinite was
obtained by denying mathematical induction. If P, Q be any two numbers, or
any two measurable magnitudes, they are said to be finite with respect to each
other when, if P be the lesser, there exists a finite integer n such that nP is
greater than Q. The existence of such an integer constitutes the axiom of
Archimedes and the definition of relative finitude. It will be observed that it
presupposes the definition of absolute finitude among numbers—a defin-
ition which, as we have seen, depends upon two points, (1) the connection
of 1 with the logical notion of simplicity, or of 0 with the logical notion of
the null-class; (2) the principle of mathematical induction. The notion of
relative finitude is plainly distinct from that of absolute finitude. The latter
applies only to numbers, classes and divisibilities, whereas the former applies
to any kind of measurable magnitude. Any two numbers, classes, or divis-
ibilities, which are both absolutely finite are also relatively finite; but the
converse does not hold. For example, ω and ω.2, an inch and a foot, a day
and a year, are relatively finite pairs, though all three consist of terms which
are absolutely infinite.

The definition of the infinitesimal and the improper infinite is then as
follows. If P, Q be two numbers, or two measurable magnitudes of the same
kind, and if, n being any finite integer whatever, nP is always less than Q, then
P is infinitesimal with respect to Q, and Q is infinite with respect to P. With
regard to numbers, these relative terms are not required; for if, in the case
supposed, P is absolutely finite, then Q is absolutely infinite; while if it were
possible for Q to be absolutely finite, P would be absolutely infinitesimal—a
case, however, which we shall see reason to regard as impossible. Hence I
shall assume in future that P and Q are not numbers, but are magnitudes of
a kind of which some, at least, are numerically measurable. It should be
observed that, as regards magnitudes, the axiom of Archimedes is the only
way of defining, not only the infinitesimal, but the infinite also. Of a magni-
tude not numerically measurable, there is nothing to be said except that it is
greater than some of its kind, and less than others; but from such proposi-
tions infinity cannot be obtained. Even if there be a magnitude greater than
all others of its kind, there is no reason for regarding it as infinite. Finitude
and infinity are essentially numerical notions, and it is only by relation to
numbers that these terms can be applied to other entities.

311. The next question to be discussed is: What instances of infinitesimals
are to be found? Although there are far fewer instances than was formerly
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supposed, there are yet some that are important. To begin with, if we have
been right in regarding divisibility as a magnitude, it is plain that the divisi-
bility of any whole containing a finite number of simple parts is infinitesimal
as compared with one containing an infinite number. The number of parts
being taken as the measure, every infinite whole will be greater than n times
every finite whole, whatever finite number n may be. This is therefore a
perfectly clear instance. But it must not be supposed that the ratio of the
divisibilities of two wholes, of which one at least is transfinite, can be meas-
ured by the ratio of the cardinal numbers of their simple parts. There are two
reasons why this cannot be done. The first is, that two transfinite cardinals do
not have any relation strictly analogous to ratio; indeed, the definition of ratio
is effected by means of mathematical induction. The relation of two transfinite
cardinals α, γ expressed by the equation αβ = γ bears a certain resemblance to

integral ratios, and αβ =γδ may be used to define other ratios. But ratios so
defined are not very similar to finite ratios. The other reason why infinite
divisibilities must not be measured by transfinite numbers is, that the whole
must always have more divisibility than the part (provided the remaining part
is not relatively infinitesimal), though it may have the same transfinite num-
ber. In short, divisibilities, like ordinals, are equal, so long as the wholes are
finite, when and only when the cardinal numbers of the wholes are the same;
but the notion of magnitude of divisibility is distinct from that of cardinal
number, and separates itself visibly as soon as we come to infinite wholes.

Two infinite wholes may be such that one is infinitely less divisible than
the other. Consider, for example, the length of a finite straight line and the
area of the square upon that straight line; or the length of a finite straight line
and the length of the whole straight line of which it forms part (except in
finite spaces); or an area and a volume; or the rational numbers and the real
numbers; or the collection of points on a finite part of a line obtainable by
von Staudt’s quadrilateral construction, and the total collection of points
on the said finite part.* All these are magnitudes of one and the same
kind, namely divisibilities, and all are infinite divisibilities; but they are of
many different orders. The points on a limited portion of a line obtainable
by the quadrilateral construction form a collection which is infinitesimal
with respect to the said portion; this portion is ordinally infinitesimal† with
respect to any bounded area; any bounded area is ordinally infinitesimal
with respect to any bounded volume; and any bounded volume (except in
finite spaces) is ordinally infinitesimal with respect to all space. In all these
cases, the word infinitesimal is used strictly according to the above defini-
tion, obtained from the axiom of Archimedes. What makes these various

* See Part VI, Chap. 45.
† See Part VI, Chap. 47, § 397.
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infinitesimals somewhat unimportant, from a mathematical standpoint, is,
that measurement essentially depends upon the axiom of Archimedes, and
cannot, in general, be extended by means of transfinite numbers, for the
reasons which have just been explained. Hence two divisibilities, of which
one is infinitesimal with respect to the other, are regarded usually as different
kinds of magnitude; and to regard them as of the same kind gives no advan-
tage save philosophic correctness. All of them, however, are strictly instances
of infinitesimals, and the series of them well illustrates the relativity of the
term infinitesimal.

An interesting method of comparing certain magnitudes, analogous to the
divisibilities of any infinite collections of points, with those of continuous
stretches is given by Stolz,* and a very similar but more general method is
given by Cantor.† These methods are too mathematical to be fully explained
here, but the gist of Stolz’s method may be briefly explained. Let a collection
of points x'  be contained in some finite interval a to b. Divide the interval into
any number n of parts, and divide each of these parts again into any number
of parts, and so on; and let the successive divisions be so effected that all parts
become in time less than any assigned number δ. At each stage, add together
all the parts that contain points of x' . At the mth stage, let the resulting sum be
Sm. Then subsequent divisions may diminish this sum, but cannot increase it.
Hence as the number of divisions increases, Sm must approach a limit L. If x'  is
compact throughout the interval, we shall have L = b − a; if any finite deriva-
tive of x'  vanishes, L = 0. L obviously bears an analogy to a definite integral;
but no conditions are required for the existence of L. But L cannot be identi-
fied with the divisibility; for some compact series, e.g. that of rationals, are
less divisible than others, e.g. the continuum, but give the same value of L.

312. The case in which infinitesimals were formerly supposed to be
peculiarly evident is that of compact series. In this case, however, it is possible
to prove that there can be no infinitesimal segments,‡ provided numerical
measurement be possible at all—and if it be not possible, the infinitesimal, as
we have seen, is not definable. In the first place, it is evident that the segment
contained between two different terms is always infinitely divisible; for since
there is a term c between any two a and b, there is another d between a and c,
and so on. Thus no terminated segment can contain a finite number of terms.
But segments defined by a class of terms may (as we saw in Chapter 34)
have no limiting term. In this case, however, provided the segment does not
consist of a single term a, it will contain some other term b, and therefore an
infinite number of terms. Thus all segments are infinitely divisible. The next

* Math. Annalen, 23, “Ueber einen zu einer unendlichen Punktmenge gehörigen Grenzwerth”.
† Ib. “Ueber unendliche lineare Punktmannigfaltigkeiten”, No. 6.
‡ See Peano, Rivista di Matematica, Vol. , pp. 58–62.
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point is to define multiples of segments. Two terminated segments can be
added by placing a segment equal to the one at the end of the other to form a
new segment; and if the two were equal, the new one is said to be double of
each of them. But if the two segments are not terminated, this process cannot
be employed. Their sum, in this case, is defined by Professor Peano as the
logical sum of all the segments obtained by adding two terminated segments
contained respectively in the two segments to be added.* Having defined this
sum, we can define any finite multiple of a segment. Hence we can define the
class of terms contained in some finite multiple of our segment, i.e. the logical
sum of all its finite multiples. If, with respect to all greater segments, our
segment obeys the axiom of Archimedes, then this new class will contain all
terms that come after the origin of our segment. But if our segment be
infinitesimal with respect to any other segment, then the class in question
will fail to contain some points of this other segment. In this case, it is shown
that all transfinite multiples of our segment are equal to each other. Hence it
follows that the class formed by the logical sum of all finite multiples of our
segment, which may be called the infinite multiple of our segment, must be
a non-terminated segment, for a terminated segment is always increased by
being doubled. “Each of these results”, so Professor Peano concludes, “is in
contradiction with the usual notion of a segment. And from the fact that the
infinitesimal segment cannot be rendered finite by means of any actually
infinite multiplication, I conclude, with Cantor, that it cannot be an element
in finite magnitudes” (p. 62). But I think an even stronger conclusion is
warranted. For we have seen that, in compact series, there is, corresponding
to every segment, a segment of segments, and that this is always terminated
by its defining segment; further that the numerical measurement of segments
of segments is exactly the same as that of simple segments; whence, by
applying the above result to segments of segments, we obtain a definite
contradiction, since none of them can be unterminated, and an infinitesimal
one cannot be terminated.

In the case of the rational or the real numbers, the complete knowledge
which we possess concerning them renders the non-existence of infini-
tesimals demonstrable. A rational number is the ratio of two finite integers,
and any such ratio is finite. A real number other than zero is a segment of the
series of rationals; hence if x be a real number other than zero, there is a class
u, not null, of rationals such that, if y is a u, and z is less than y, z is an x, i.e.
belongs to the segment which is x. Hence every real number other than zero
is a class containing rationals, and all rationals are finite; consequently every
real number is finite. Consequently if it were possible, in any sense, to speak
of infinitesimal numbers, it would have to be in some radically new sense.

* Loc. cit. p. 61, No. 9.
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313. I come now to a very difficult question, on which I would gladly
say nothing—I mean, the question of the orders of infinity and infinitesimal-
ity of functions. On this question the greatest authorities are divided: Du Bois
Reymond, Stolz, and many others, maintaining that these form a special class
of magnitudes, in which actual infinitesimals occur, while Cantor holds
strongly that the whole theory is erroneous.* To put the matter as simply as
possible, consider a function f(x) whose limit, as x approaches zero, is zero. It
may happen that, for some finite real number α, the ratio f(x)/xα has a finite
limit as x approaches zero. There can be only one such number, but there may
be none. Then α, if there is such a number, may be called the order to which
f(x) becomes infinitesimal, or the order of smallness of f(x) as x approaches
zero. But for some functions, e.g. 1/log x, there is no such number α. If α be

any finite real number, the limit of 1/xα logx, as x approaches zero, is infinite.
That is, when x is sufficiently small, 1/xα log x is very large, and may be made
larger than any assigned number by making x sufficiently small—and this
whatever finite number α may be. Hence, to express the order of smallness of
1/log x, it is necessary to invent a new infinitesimal number, which may be
denoted by 1/g. Similarly we shall need infinitely great numbers to express
the order of smallness of (say) e−1/x as x approaches zero. And there is no end
to the succession of these orders of smallness: that of 1/log (log x), for
example, is infinitely smaller than that of 1/log x, and so on. Thus we have a
whole hierarchy of magnitudes, of which all in any one class are infinitesimal
with respect to all in any higher class, and of which one class only is formed
of all the finite real numbers.

In this development, Cantor finds a vicious circle; and though the question
is difficult, it would seem that Cantor is in the right. He objects (loc. cit.) that
such magnitudes cannot be introduced unless we have reason to think that
there are such magnitudes. The point is similar to that concerning limits; and
Cantor maintains that, in the present case, definite contradictions may be
proved concerning the supposed infinitesimals. If there were infinitesimal
numbers j, then even for them we should have

Limx = 0 1/ (log x. xj) = 0

since xj must ultimately exceed ½. And he shows that even continuous, dif-
ferentiable and uniformly growing functions may have an entirely ambiguous
order of smallness or infinity: that, in fact, for some such functions, this order
oscillates between infinite and infinitesimal values, according to the manner
in which the limit is approached. Hence we may, I think, conclude that these

* See Du Bois Reymond, Allgemeine Functionentheorie (1882), p. 279 ff.; Stolz, Allgemeine Arithmetik,
Part  (Leipzig, 1885), Section , Anhang; Cantor, Rivista di Matematica, v, pp. 104–8.
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infinitesimals are mathematical fictions. And this may be reinforced by the
consideration that, if there were infinitesimal numbers, there would be infini-
tesimal segments of the number-continuum, which we have just seen to
be impossible.

314. Thus to sum up what has been said concerning the infinitesimal,
we see, to begin with, that it is a relative term, and that, as regards magni-
tudes other than divisibilities, or divisibilities of wholes which are infinite
in the absolute sense, it is not capable of being other than a relative term.
But where it has an absolute meaning, there this meaning is indistinguish-
able from finitude. We saw that the infinitesimal, though completely useless
in mathematics, does occur in certain instances—for example, lengths of
bounded straight lines are infinitesimal as compared to areas of polygons,
and these again as compared to volumes of polyhedra. But such genuine cases
of infinitesimals, as we saw, are always regarded by mathematics as magni-
tudes of another kind, because no numerical comparison is possible, even by
means of transfinite numbers, between an area and a length, or a volume and
an area. Numerical measurement, in fact, is wholly dependent upon the axiom
of Archimedes, and cannot be extended as Cantor has extended numbers.
And finally we saw that there are no infinitesimal segments in compact series,
and—what is closely connected—that orders of smallness of functions are
not to be regarded as genuine infinitesimals. The infinitesimal, therefore—so
we may conclude—is a very restricted and mathematically very unimportant
conception, of which infinity and continuity are alike independent.
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41
PHILOSOPHICAL ARGUMENTS

CONCERNING THE
INFINITESIMAL

315. W have now completed our summary review of what mathematics
has to say concerning the continuous, the infinite and the infinitesimal. And
here, if no previous philosophers had treated of these topics, we might leave
the discussion, and apply our doctrines to space and time. For I hold the
paradoxical opinion that what can be mathematically demonstrated is true.
As, however, almost all philosophers disagree with this opinion, and as many
have written elaborate arguments in favour of views different from those
above expounded, it will be necessary to examine controversially the princi-
pal types of opposing theories, and to defend, as far as possible, the points
in which I differ from standard writers. For this purpose, the work of Cohen
already referred to will be specially useful, not only because it deals explicitly
with our present theme, but also because, largely owing to its historical
excellence, certain very important mathematical errors, which it appears to
me to contain, have led astray other philosophers who have not an acquaint-
ance with modern mathematics at first hand.*

316. In the above exposition, the differential appeared as a philosophic-
ally unimportant application of the doctrine of limits. Indeed, but for its
traditional importance, it would scarcely have deserved even mention. And
we saw that its definition nowhere involves the infinitesimal. The dx and dy of
a differential are nothing in themselves, and dy/dx is not a fraction. Hence, in

* For example, Mr Latta, in his article “On the Relations of the Philosophy of Spinoza and that
of Leibniz”, Mind, N. S. No. 31.



modern works on the Calculus, the notation f'  (x) has replaced dy/dx, since
the latter form suggests erroneous notions. The notation f'  (x), it may be
observed, is more similar to Newton’s y·, and its similarity is due to the fact
that, on this point, modern mathematics is more in harmony with Newton
than with Leibniz. Leibniz employed the form dy/dx because he believed in
infinitesimals; Newton, on the other hand, definitely asserts that his fluxion
is not a fraction. “Those ultimate ratios”, he says, “with which quantities
vanish are not truly the ratios of ultimate quantities, but limits towards
which the ratios of quantities decreasing without limit do always converge,
and to which they approach nearer than by any given difference.”*

But when we turn to such works as Cohen’s, we find the dx and the dy
treated as separate entities, as real infinitesimals, as the intensively real elem-
ents of which the continuum is composed (pp. 14, 28, 144, 147). The view
that the Calculus requires infinitesimals is apparently not thought open to
question; at any rate, no arguments whatever are brought up to support it.
This view is certainly assumed as self-evident by most philosophers who
discuss the Calculus. Let us see for ourselves what kind of grounds can be
urged in its favour.

317. Many arguments in favour of the view in question are derived by
most writers from space and motion—arguments which Cohen to some
extent countenances (pp. 34, 37), though he admits that the differential can
be obtained from numbers alone, which however, following Kant, he
regards as implying time (pp. 20, 21). Since the analysis of space and
motion is still to come, I shall confine myself for the present to such argu-
ments as can be derived from purely numerical instances. For the sake of
definiteness, I shall as far as possible extract the opinions to be controverted
from Cohen.

318. Cohen begins (p. 1) by asserting that the problem of the infini-
tesimal is not purely logical: it belongs rather to Epistemology, which is
distinguished, I imagine, by the fact that it depends upon the pure intuitions
as well as the categories. This Kantian opinion is wholly opposed to the
philosophy which underlies the present work; but it would take us too far
from our theme to discuss it here, and I mention it chiefly to explain the
phraseology of the work we are examining. Cohen proceeds at once to reject
the view that the infinitesimal calculus can be independently derived by
mathematics from the method of limits. This method, he says (p. 1), “consists
in the notion that the elementary conception of equality must be completed
by the exact notion of the limit. Thus in the first place the conception of
equality is presupposed. . . . Again, in the second place, the method of

* Principia, Bk , Section , Lemma , Scholium. The whole Scholium is highly important, though
portions of it are less free from error than the passage quoted in the text.
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limits presupposes the conception of magnitude. . . . But in the presupposed
conception of magnitude the limiting magnitude is at the same time presup-
posed. The equality which is defined in the elementary doctrine of magnitude
pays no attention to these limiting magnitudes. For it, magnitudes count as
equal if and although their difference consists in a limiting magnitude. Hence
the elementary conception of equality must be—this is the notion of the
method of limits—not so much completed as corrected by the exact conception
of the limit. Equality is to be regarded as an earlier stage of the limiting
relation.”*

319. I have quoted this passage in full, because its errors are typical of
those to which non-mathematicians are liable in this question. In the first
place, equality has no relevance to limits. I imagine that Cohen has in mind
such cases as a circle and the inscribed polygon, where we cannot say that the
circle is equal to any of the polygons, but only that it is their limit; or, to take
an arithmetical instance, a convergent series whose sum is π or √2. But in all
such instances there is much that is irrelevant and adventitious, and there are
many unnecessary complications. The absolutely simplest instance of a limit
is ω considered as the limit of the ordinal numbers. There is here certainly no
kind of equality. Yet in all cases where limits are defined by progressions—
and these are the usual cases—we have a series of the type presented by

the finite ordinals together with ω. Consider, for example, the series 2 − 1

n
together with 2, the n being capable of all positive integral finite values. Here
the series is of the same type as before, and here, as before, 2 is the limit of
the series. But here—and this is what has misled Cohen—the difference
between 2 and the successive terms of the series becomes less than any
assigned magnitude, and thus we seem to have a sort of extended quality

between 2 and the late terms of the series 2 − 1

n
. But let us examine this. In

the first place, it depends upon the fact that rationals are a series in which we
have distances which are again rationals. But we know that distances are
unnecessary to limits, and that stretches are equally effective. Now considering

stretches, 2 is the limit of 2 − 1

n
 because no rational comes between 2 and all

terms of the series 2 − 1

n
—precisely the sense in which ω is the limit of the

finite integers. And it is only because 2 − 1

n
 forms a progression, i.e. is similar

to the series of finite integers, that we know its limit to be 2. The fact that
the terms, as we advance, differ little from 2, depends either upon our having
a series in which there is distance, which is a fortuitous and irrelevant
circumstance, or upon the fact that the successive stretches up to 2 may be

* Or ratio: the German is Grenzverhältniss.
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made less than any assigned stretch up to 2, which follows from the notion of
a limit, but has nothing to do with equality. And whenever our series which
is to have a limit is part of a series which is a function of ω, the stretch from
any term to the limit is always infinite in the only sense in which such series
have infinite stretches; and in a very real sense the stretch grows no smaller as
we approach the limit, for both the ordinal and the cardinal number of its
terms remain constant.

We have seen so fully already in what sense, and how far, magnitude is
involved in limits, that it seems unnecessary to say much on this subject here.
Magnitude is certainly not involved in the sense, which is undoubtedly that
intended by Cohen, that the limit and the terms limited must be magnitudes.
Every progression which forms part of a series which is a function of ω, and
in which there are terms after the progression, has a limit, whatever may be
the nature of the terms. Every endless series of segments of a compact series
has a limit, whatever may be the nature of the compact series. Now of course
in all series we have magnitudes, namely the divisibilities of stretches; but it
is not of these that we find the limit. Even in the case of segments, the limit is
an actual segment, not the magnitude of a segment; and what is relevant is
only that the segments are classes, not that they are quantities. But the distinc-
tion of quantities and magnitudes is, of course, wholly foreign to Cohen’s
order of ideas.

320. But we now come to a greater error. The conception of magnitude,
Cohen says, which is presupposed in limits, in turn presupposes limiting
magnitudes. By limiting magnitudes, as appears from the context, he means
infinitesimals, the ultimate differences, I suppose, between the terms of a
series and its limit. What he means seems to be, that the kinds of magnitude
which lead to limits are compact series, and that, in compact series, we must
have infinitesimals. Every point in this opinion is mistaken. Limits, we have
just seen, need not be limits of magnitudes; segments of a compact series, as
we saw in the preceding chapter, cannot be infinitesimal; and limits do not
in any way imply that the series in which they occur are compact. These
points have been so fully proved already that it is unnecessary to dwell upon
them.

321. But the crowning mistake is the supposition that limits introduce a
new meaning of equality. Among magnitudes, equality, as we saw in Part III,
has an absolutely rigid and unique meaning: it applies only to quantities,
and means that they have the same magnitude. There is no question of
approximation here: what is meant is simply absolute logical identity of
magnitude. Among numbers (which Cohen probably regards as magnitudes),
there is no such thing as equality. There is identity, and there is the relation
which is usually expressed by the sign of equality, as in the equation
2 × 3 = 6. This relation had puzzled those who endeavoured to philosophize
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about Arithmetic, until it was explained by Professor Peano.* When one term
of the equation is a single number, while the other is an expression com-
posed of two or more numbers, the equation expresses the fact that the class
defined by the expression contains only one term, which is the single num-
ber on the other side of the equation. This definition again is absolutely rigid:
there is nothing whatever approximate in it, and it is incapable of any modifi-
cation by infinitesimals. I imagine that what Cohen means may be expressed
as follows. In forming a differential coefficient, we consider two numbers
x and x + dx, and two others y and y + dy. In elementary Arithmetic, x and
x + dx would count as equal, but not in the Calculus. There are, in fact, two
ways of defining equality. Two terms may be said to be equal when their ratio
is unity, or when their difference is zero. But when we allow real infini-
tesimals dx, x and x + dx will have the ratio unity, but will not have zero for
their difference, since dx is different from absolute zero. This view, which I
suggest as equivalent to Cohen’s, depends upon a misunderstanding of limits
and the Calculus. There are in the Calculus no such magnitudes as dx and
dy. There are finite differences ∆x and ∆y, but no view, however elementary,
will make x equal to x + ∆x. There are ratios of finite differences, ∆y/∆x, and
in cases where the derivative of y exists, there is one real number to which
∆y/∆x can be made to approach as near as we like by diminishing ∆x and ∆y.
This single real number we choose to denote by dy/dx; but it is not a fraction,
and dx and dy are nothing but typographical parts of one symbol. There is no
correction whatever of the notion of equality by the doctrine of limits; the
only new element introduced is the consideration of infinite classes of terms
chosen out of a series.

322. As regards the nature of the infinitesimal, we are told (p. 15) that
the differential, or the inextensive, is to be identified with the intensive,
and the differential is regarded as the embodiment of Kant’s category of
reality. This view (in so far as it is independent of Kant) is quoted with
approval from Leibniz; but to me, I must confess, it seems destitute of all
justification. It is to be observed that dx and dy, if we allow that they are
entities at all, are not to be identified with single terms of our series, nor yet
with differences between consecutive terms, but must be always stretches
containing an infinite number of terms, or distances corresponding to such
stretches. Here a distinction must be made between series of numbers and
series in which we have only measurable distances or stretches. The latter is
the case of space and time. Here dx and dy are not points or instants, which
alone would be truly inextensive; they are primarily numbers, and hence
must correspond to infinitesimal stretches or distances—for it would be
preposterous to assign a numerical ratio to two points, or—as in the case of

* See e.g. Riv. di Mat., , p. 35.
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velocity—to a point and an instant. But dx and dy cannot represent the dis-
tances of consecutive points, nor yet the stretch formed by two consecutive
points. Against this we have, in the first place, the general ground that our
series must be regarded as compact, which precludes the idea of consecutive
terms. To evade this, if we are dealing with a series in which there are only
stretches, not distances, would be impossible: for to say that there are always
an infinite number of intermediate points except when the stretch consists of
a finite number of terms would be a mere tautology. But when there is
distance, it might be said that the distance of two terms may be finite or
infinitesimal, and that, as regards infinitesimal distances, the stretch is not
compact, but consists of a finite number of terms. This being allowed for the
moment, our dx and dy may be made to be the distances of consecutive points,
or else the stretches composed of consecutive points. But now the distance of
consecutive points, supposing for example that both are on one straight line,
would seem to be a constant, which would give dy/dx = ±1. We cannot
suppose, in cases where x and y are both continuous, and the function y is
one-valued, as the Calculus requires, that x and x + dx are consecutive, but not
y and y + dy; for every value of y will be correlated with one and only one
value of x, and vice versâ; thus y cannot skip any supposed intermediate values
between y and y + dy. Hence, given the values of x and y, even supposing the
distances of consecutive terms to differ from place to place, the value of dy/dx
will be determinate; and any other function y'  which, for some value of x, is
equal to y, will, for that value, have an equal derivative, which is an absurd
conclusion. And leaving these mathematical arguments, it is evident, from the
fact that dy and dx are to have a numerical ratio, that if they be intensive
magnitudes, as is suggested, they must be numerically measurable ones: but
how this measurement is effected, it is certainly not easy to see. This point
may be made clearer by confining ourselves to the fundamental case in which
both x and y are numbers. If we regard x and x + dx as consecutive, we must
suppose either that y and y + dy are consecutive, or that they are identical, or
that there are a finite number of terms between them, or that there are an
infinite number. If we take stretches to measure dx and dy, it will follow that
dy/dx must be always zero, or integral, or infinite, which is absurd. It will even
follow that, if y is not constant, dy/dx must be ±1. Take for example y = x2,
where x and y are positive real numbers. As x passes from one number to the
next, y must do so likewise; for to every value of y corresponds one of x, and y
grows as x grows. Hence if y skipped the number next to any one of its values,
it could never come back to pick it up; but we know that every real number is
among the values of y. Hence y and y + dy must be consecutive, and dy/dx = 1.
If we measure by distances, not stretches, the distance dy must be fixed when
y is given, and the distance dx when x is given. Now if x = 1, y = 1, dy/dx = 2;
but, since x and y are the same number, dx and dy must be equal, since
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each is the distance to the next number: therefore dy/dx = 1, which is absurd.
Similarly, if we take for y a decreasing function, we shall find dy/dx = − 1.
Hence the admission of consecutive numbers is fatal to the Calculus; and
since the Calculus must be maintained, the Calculus is fatal to consecutive
numbers.

323. The notion that there must be consecutive numbers is reinforced
by the idea of continuous change, which is embodied in calling x and y
“variables”. Change in time is a topic which we shall have to discuss at a later
stage, but which has, undoubtedly, greatly influenced the philosophy of the
Calculus. People picture a variable to themselves—often unconsciously—as
successively assuming a series of values, as might happen in a dynamical
problem. Thus they might say: How can x pass from x1 to x2, without passing
through all intermediate values? And in this passage, must there not be a next
value, which it assumes on first leaving the value x1? Everything is conceived
on the analogy of motion, in which a point is supposed to pass through all
intermediate positions in its path. Whether or not this view of motion is
correct, I do not now decide: at any rate it is irrelevant where a fundamental
point in the theory of continuous series is concerned, since time and the
path of motion must both be continuous series, and the properties of such
series must be decided before appealing to motion to confirm our views.
For my part, to return to Cohen, I must confess, it seems evident that inten-
sive magnitude is something wholly different from infinitesimal extensive
magnitude: for the latter must always be smaller than finite extensive magni-
tudes, and must therefore be of the same kind with them; while intensive
magnitudes seem never in any sense smaller than any extensive magnitudes.
Thus the metaphysical theory by which infinitesimals are to be rescued
seems, both mathematically and philosophically, destitute of grounds in its
favour.

324. We cannot, then, agree with the following summary of Cohen’s
theory (p. 28): “That I may be able to posit an element in and for itself, is the
desideratum, to which corresponds the instrument of thought reality. This instru-
ment of thought must first be set up, in order to be able to enter into that
combination with intuition, with the consciousness of being given, which is com-
pleted in the principle of intensive magnitude. This presupposition of intensive
reality is latent in all principles, and must therefore be made independent.
This presupposition is the meaning of reality and the secret of the concept of the differential.”
What we can agree to, and what, I believe, confusedly underlies the above
statement, is, that every continuum must consist of elements or terms; but
these, as we have just seen, will not fulfil the function of the dx and dy which
occur in old-fashioned accounts of the Calculus. Nor can we agree that “this
finite” (i.e. that which is the object of physical science) “can be thought as a
sum of those infinitesimal intensive realities, as a definite integral” (p. 144). The
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definite integral is not a sum of elements of a continuum, although there are
such elements: for example, the length of a curve, as obtained by integration,
is not the sum of its points, but strictly and only the limit of the lengths
of inscribed polygons. The only sense which can be given to the sum of
the points of the curve is the logical class to which they all belong, i.e. the
curve itself, not its length. All lengths are magnitudes of divisibility of
stretches, and all stretches consist of an infinite number of points; and any
two terminated stretches have a finite ratio to each other. There is no such
thing as an infinitesimal stretch; if there were, it would not be an element of
the continuum; the Calculus does not require it, and to suppose its existence
leads to contradictions. And as for the notion that in every series there
must be consecutive terms, that was shown, in the last chapter of Part III,
to involve an illegitimate use of mathematical induction. Hence infinitesimals
as explaining continuity must be regarded as unnecessary, erroneous and
self-contradictory.
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42
THE PHILOSOPHY OF THE

CONTINUUM

325. T word continuity has borne among philosophers, especially since
the time of Hegel, a meaning totally unlike that given to it by Cantor. Thus
Hegel says:* “Quantity, as we saw, has two sources: the exclusive unit, and
the identification or equalization of these units. When we look, therefore, at
its immediate relation to self, or at the characteristic of selfsameness made
explicit by abstraction, quantity is Continuous magnitude; but when we look at
the other characteristic, the One implied in it, it is Discrete magnitude.” When
we remember that quantity and magnitude, in Hegel, both mean “cardinal
number”, we may conjecture that this assertion amounts to the following:
“Many terms, considered as having a cardinal number, must all be members
of one class; in so far as they are each merely an instance of the class-concept,
they are indistinguishable one from another, and in this aspect the whole
which they compose is called continuous; but in order to their maniness, they
must be different instances of the class-concept, and in this aspect the whole
which they compose is called discrete.” Now I am far from denying—indeed I
strongly hold—that this opposition of identity and diversity in a collection
constitutes a fundamental problem of Logic—perhaps even the fundamental
problem of philosophy. And being fundamental, it is certainly relevant to the
study of the mathematical continuum as to everything else. But beyond this
general connection, it has no special relation to the mathematical meaning of
continuity, as may be seen at once from the fact that it has no reference
whatever to order. In this chapter, it is the mathematical meaning that is to be
discussed. I have quoted the philosophic meaning only in order to state

* Smaller Logic, § 100, Wallace’s Translation, p. 188.



definitely that this is not here in question; and since disputes about words are
futile, I must ask philosophers to divest themselves, for the time, of their
habitual associations with the word, and allow it no signification but that
obtained from Cantor’s definition.

326. In confining ourselves to the arithmetical continuum, we conflict
in another way with common preconceptions. Of the arithmetical con-
tinuum, M. Poincaré justly remarks:* “The continuum thus conceived is
nothing but a collection of individuals arranged in a certain order, infinite in
number, it is true, but external to each other. This is not the ordinary concep-
tion, in which there is supposed to be, between the elements of the con-
tinuum, a sort of intimate bond which makes a whole of them, in which the
point is not prior to the line, but the line to the point. Of the famous formula,
the continuum is unity in multiplicity, the multiplicity alone subsists, the
unity has disappeared.”

It has always been held to be an open question whether the continuum
is composed of elements; and even when it has been allowed to contain
elements, it has been often alleged to be not composed of these. This latter
view was maintained even by so stout a supporter of elements in every-
thing as Leibniz.† But all these views are only possible in regard to such
continua as those of space and time. The arithmetical continuum is an
object selected by definition, consisting of elements in virtue of the defin-
ition, and known to be embodied in at least one instance, namely the
segments of the rational numbers. I shall maintain in Part VI that spaces
afford other instances of the arithmetical continuum. The chief reason for
the elaborate and paradoxical theories of space and time and their continu-
ity, which have been constructed by philosophers, has been the supposed
contradictions in a continuum composed of elements. The thesis of the
present chapter is, that Cantor’s continuum is free from contradictions.
This thesis, as is evident, must be firmly established, before we can allow
the possibility that spatio-temporal continuity may be of Cantor’s kind. In
this argument, I shall assume, as proved the thesis of the preceding chapter,
that the continuity to be discussed does not involve the admission of actual
infinitesimals.

327. In this capricious world, nothing is more capricious than post-
humous fame. One of the most notable victims of posterity’s lack of judgment
is the Eleatic Zeno. Having invented four arguments, all immeasurably subtle
and profound, the grossness of subsequent philosophers pronounced him to
be a mere ingenious juggler, and his arguments to be one and all sophisms.
After two thousand years of continual refutation, these sophisms were

* Revue de Métaphysique et de Morale, Vol. , p. 26.
† See The Philosophy of Leibniz, by the present author, Chap. .
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reinstated, and made the foundation of a mathematical renaissance, by a
German professor, who probably never dreamed of any connection between
himself and Zeno. Weierstrass, by strictly banishing all infinitesimals, has at
last shown that we live in an unchanging world, and that the arrow, at every
moment of its flight, is truly at rest. The only point where Zeno probably
erred was in inferring (if he did infer) that, because there is no change,
therefore the world must be in the same state at one time as at another. This
consequence by no means follows, and in this point the German professor
is more constructive than the ingenious Greek. Weierstrass, being able to
embody his opinions in mathematics, where familiarity with truth eliminates
the vulgar prejudices of common sense, has been able to give to his proposi-
tions the respectable air of platitudes; and if the result is less delightful to the
lover of reason than Zeno’s bold defiance, it is at any rate more calculated to
appease the mass of academic mankind.

Zeno’s arguments are specially concerned with motion, and are not there-
fore, as they stand, relevant to our present purpose. But it is instructive to
translate them, so far as possible, into arithmetical language.*

328. The first argument, that of dichotomy, asserts: “There is no motion,
for what moves must reach the middle of its course before it reaches the
end.” That is to say, whatever motion we assume to have taken place, this
presupposes another motion, and this in turn another, and so on ad infinitum.
Hence there is an endless regress in the mere idea of any assigned motion.
This argument can be put into an arithmetical form, but it appears then far
less plausible. Consider a variable x which is capable of all real (or rational)
values between two assigned limits, say 0 and 1. The class of its values is an
infinite whole, whose parts are logically prior to it: for it has parts, and it
cannot subsist if any of the parts are lacking. Thus the numbers from 0 to 1
presuppose those from 0 to 1/2, these presuppose the numbers from 0 to 1/4,
and so on. Hence, it would seem, there is an infinite regress in the notion of
any infinite whole; but without such infinite wholes, real numbers cannot
be defined, and arithmetical continuity, which applies to an infinite series,
breaks down.

This argument may be met in two ways, either of which, at first sight,
might seem sufficient, but both of which are really necessary. First, we
may distinguish two kinds of infinite regresses, of which one is harmless.
Secondly, we may distinguish two kinds of whole, the collective and the

* Not being a Greek scholar, I pretend to no first-hand authority as to what Zeno really did say or
mean. The form of his four arguments which I shall employ is derived from the interesting
article of M. Noël, “Le mouvement et les arguments de Zénon d’Elée”, Revue de Métaphysique et de
Morale, Vol. , pp. 107–125. These arguments are in any case well worthy of consideration, and as
they are, to me, merely a text for discussion, their historical correctness is of little importance.
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distributive, and assert that, in the latter kind, parts of equal complexity with
the whole are not logically prior to it. These two points must be separately
explained.

329. An infinite regress may be of two kinds. In the objectionable kind,
two or more propositions join to constitute the meaning of some proposition;
of these constituents, there is one at least whose meaning is similarly com-
pounded; and so on ad infinitum. This form of regress commonly results from
circular definitions. Such definitions may be expanded in a manner analogous
to that in which continued fractions are developed from quadratic equations.
But at every stage the term to be defined will reappear, and no definition will
result. Take for example the following: “Two people are said to have the same
idea when they have ideas which are similar; and ideas are similar when they
contain an identical part.” If an idea may have a part which is not an idea,
such a definition is not logically objectionable; but if part of an idea is an
idea, then, in the second place where identity of ideas occurs, the definition
must be substituted; and so on. Thus wherever the meaning of a proposition is
in question, an infinite regress is objectionable, since we never reach a prop-
osition which has a definite meaning. But many infinite regresses are not of
this form. If A be a proposition whose meaning is perfectly definite, and A
implies B, B implies C, and so on, we have an infinite regress of a quite un-
objectionable kind. This depends upon the fact that implication is a synthetic
relation, and that, although, if A be an aggregate of propositions, A implies
any proposition which is part of A, it by no means follows that any prop-
osition which A implies is part of A. Thus there is no logical necessity, as
there was in the previous case, to complete the infinite regress before A
acquires a meaning. If, then, it can be shown that the implication of the parts
in the whole, when the whole is an infinite class of numbers, is of this latter
kind, the regress suggested by Zeno’s argument of dichotomy will have lost
its sting.

330. In order to show that this is the case, we must distinguish wholes
which are defined extensionally, i.e. by enumerating their terms, from such as
are defined intensionally, i.e. as the class of terms having some given relation
to some given term, or, more simply, as a class of terms. (For a class of terms,
when it forms a whole, is merely all terms having the class-relation to a class-
concept.)* Now an extensional whole—at least so far as human powers
extend—is necessarily finite: we cannot enumerate more than a finite num-
ber of parts belonging to a whole, and if the number of parts be infinite,
this must be known otherwise than by enumeration. But this is precisely
what a class-concept effects: a whole whose parts are the terms of a class is
completely defined when the class-concept is specified; and any definite

* For precise statements, v. supra, Part I, Chaps. 6 and 10.
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individual either belongs, or does not belong, to the class in question. An
individual of the class is part of the whole extension of the class, and is
logically prior to this extension taken collectively; but the extension itself is
definable without any reference to any specified individual, and subsists as a
genuine entity even when the class contains no terms. And to say, of such
a class, that it is infinite, is to say that, though it has terms, the number of
these terms is not any finite number—a proposition which, again, may be
established without the impossible process of enumerating all finite numbers.
And this is precisely the case of the real numbers between 0 and 1. They form
a definite class, whose meaning is known as soon as we know what is meant
by real number, 0, 1 and between. The particular members of the class, and the
smaller classes contained in it, are not logically prior to the class. Thus the
infinite regress consists merely in the fact that every segment of real or
rational numbers has parts which are again segments; but these parts are not
logically prior to it, and the infinite regress is perfectly harmless. Thus the
solution of the difficulty lies in the theory of denoting and the intensional
definition of a class. With this an answer is made to Zeno’s first argument as it
appears in Arithmetic.

331. The second of Zeno’s arguments is the most famous: it is the one
which concerns Achilles and the tortoise. “The slower”, it says, “will never be
overtaken by the swifter, for the pursuer must first reach the point whence
the fugitive is departed, so that the slower must always necessarily remain
ahead.” When this argument is translated into arithmetical language, it is
seen to be concerned with the one-one correlation of two infinite classes. If
Achilles were to overtake the tortoise, then the course of the tortoise would
be part of that of Achilles; but, since each is at each moment at some point of
his course, simultaneity establishes a one-one correlation between the posi-
tions of Achilles and those of the tortoise. Now it follows from this that the
tortoise, in any given time, visits just as many places as Achilles does; hence—
so it is hoped we shall conclude—it is impossible that the tortoise’s path
should be part of that of Achilles. This point is purely ordinal, and may be
illustrated by Arithmetic. Consider, for example, 1 + 2x and 2 + x, and let x lie
between 0 and 1, both inclusive. For each value of 1 + 2x there is one and
only one value of 2 + x, and vice versâ. Hence as x grows from 0 to 1, the
number of values assumed by 1 + 2x will be the same as the number assumed
by 2 + x. But 1 + 2x started from 1 and ends at 3, while 2 + x started from 2
and ends at 3. Thus there should be half as many values of 2 + x as of 1 + 2x.
This very serious difficulty has been resolved, as we have seen, by Cantor; but
as it belongs rather to the philosophy of the infinite than to that of the
continuum, I leave its further discussion to the next chapter.

332. The third argument is concerned with the arrow. “If everything is
in rest or in motion in a space equal to itself, and if what moves is always in
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the instant, the arrow in its flight is immovable.” This has usually been
thought so monstrous a paradox as scarcely to deserve serious discussion. To
my mind, I must confess, it seems a very plain statement of a very elementary
fact, and its neglect has, I think, caused the quagmire in which the phil-
osophy of change has long been immersed. In Part VII, I shall set forth a
theory of change which may be called static, since it allows the justice of
Zeno’s remark. For the present, I wish to divest the remark of all reference to
change. We shall then find that it is a very important and very widely applic-
able platitude, namely: “Every possible value of a variable is a constant.” If x
be a variable which can take all values from 0 to 1, all the values it can take are
definite numbers, such as 1/2 or 1/3, which are all absolute constants. And
here a few words may be inserted concerning variables. A variable is a fun-
damental concept of logic, as of daily life. Though it is always connected with
some class, it is not the class, nor a particular member of the class, nor yet the
whole class, but any member of the class. On the other hand, it is not the
concept “any member of the class”, but it is that (or those) which this concept
denotes. On the logical difficulties of this conception, I need not now
enlarge; enough has been said on this subject in Part I. The usual x in Algebra,
for example, does not stand for a particular number, nor for all numbers,
nor yet for the class number. This may be easily seen by considering some
identity, say

(x + 1)2 = x2 + 2x + 1.

This certainly does not mean what it would become if, say, 391 were substi-
tuted for x, though it implies that the result of such a substitution would be a
true proposition. Nor does it mean what results from substituting for x the
class-concept number, for we cannot add 1 to this concept. For the same
reason, x does not denote the concept any number: to this, too, 1 cannot be
added. It denotes the disjunction formed by the various numbers; or at least
this view may be taken as roughly correct.* The values of x are then the terms
of the disjunction; and each of these is a constant. This simple logical fact
seems to constitute the essence of Zeno’s contention that the arrow is always
at rest.

333. But Zeno’s argument contains an element which is specially applic-
able to continua. In the case of motion, it denies that there is such a thing as a
state of motion. In the general case of a continuous variable, it may be taken as
denying actual infinitesimals. For infinitesimals are an attempt to extend to
the values of a variable the variability which belongs to it alone. When once it
is firmly realized that all the values of a variable are constants, it becomes easy

* See Chap. 8, esp. §93.
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to see, by taking any two such values, that their difference is always finite, and
hence that there are no infinitesimal differences. If x be a variable which may
take all real values from 0 to 1, then, taking any two of these values, we see
that their difference is finite, although x is a continuous variable. It is true the
difference might have been less than the one we chose; but if it had been, it
would still have been finite. The lower limit to possible differences is zero,
but all possible differences are finite; and in this there is no shadow of
contradiction. This static theory of the variable is due to the mathematicians,
and its absence in Zeno’s day led him to suppose that continuous change was
impossible without a state of change, which involves infinitesimals and the
contradiction of a body’s being where it is not.

334. The last of Zeno’s arguments is that of the measure. This is closely
analogous to one which I employed in the preceding chapter, against those
who regard dx and dy as distances of consecutive terms. It is only applicable, as
M. Noël points out (loc. cit. p. 116), against those who hold to indivisibles
among stretches, the previous arguments being held to have sufficiently
refuted the partisans of infinite divisibility. We are now to suppose a set of
discrete moments and discrete places, motion consisting in the fact that at
one moment a body is in one of these discrete places, in another at another.

a b c d
· · · ·
a' b' c' d'
· · · ·
a'' b'' c'' d''
· · · ·

a b c d
· · · ·

a' b' c' d'
· · · ·

a'' b'' c'' d''
· · · ·

Imagine three parallel lines composed of the points a,b, c, d; a' , b' , c' , d' ; a'' ,
b''  c'' , d''  respectively. Suppose the second line, in one instant, to move all its
points to the left by one place, while the third moves them all one place to the
right. Then although the instant is indivisible, c' , which was over c'' , and is
now over a'' , must have passed b''  during the instant; hence the instant is
divisible, contra hyp. This argument is virtually that by which I proved, in the
preceding chapter, that, if there are consecutive terms, then dy/dx = ± 1
always; or rather, it is this argument together with an instance in which
dy/dx = 2. It may be put thus: Let y, z be two functions of x, and let
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dy/dx = − 1. Then 
d

dx
 (y − z) = 2, which contradicts the principle that the value

of every derivative must be ±1. To the argument in Zeno’s form, M. Evellin,
who is an advocate of indivisible stretches, replies that a''  and b' , do not cross
each other at all.* For if instants are indivisible—and this is the hypothesis—
all we can say is, that at one instant a'  is over a'' , in the next, c' , is over a'' .
Nothing has happened between the instants, and to suppose that a''  and b'
have crossed is to beg the question by a covert appeal to the continuity of
motion. This reply is valid, I think, in the case of motion; both time and space
may, without positive contradiction, be held to be discrete, by adhering
strictly to distances in addition to stretches. Geometry, Kinematics and
Dynamics become false; but there is no very good reason to think them true.
In the case of Arithmetic, the matter is otherwise, since no empirical question
of existence is involved. And in this case, as we see from the above argument
concerning derivatives, Zeno’s argument is absolutely sound. Numbers are
entities whose nature can be established beyond question; and among num-
bers, the various forms of continuity which occur cannot be denied without
positive contradiction. For this reason the problem of continuity is better
discussed in connection with numbers than in connection with space, time
or motion.

335. We have now seen that Zeno’s arguments, though they prove a very
great deal, do not prove that the continuum, as we have become acquainted
with it, contains any contradictions whatever. Since his day the attacks on the
continuum have not, so far as I know, been conducted with any new or more
powerful weapons. It only remains, therefore, to make a few general remarks.

The notion to which Cantor gives the name of continuum may, of course, be
called by any other name in or out of the dictionary, and it is open to every one
to assert that he himself means something quite different by the continuum.
But these verbal questions are purely frivolous. Cantor’s merit lies, not in
meaning what other people mean, but in telling us what he means himself—
an almost unique merit, where continuity is concerned. He has defined,
accurately and generally, a purely ordinal notion, free, as we now see, from
contradictions, and sufficient for all Analysis, Geometry and Dynamics. This
notion was presupposed in existing mathematics, though it was not known
exactly what it was that was presupposed. And Cantor, by his almost
unexampled lucidity, has successfully analysed the extremely complex nature
of spatial series, by which, as we shall see in Part VI, he has rendered possible a
revolution in the philosophy of space and motion. The salient points in the
definition of the continuum are (1) the connection with the doctrine of

* Revue de Métaphysique et de Morale, Vol. , p. 386.

358 principles of mathematics



limits, (2) the denial of infinitesimal segments. These two points being borne
in mind, the whole philosophy of the subject becomes illuminated.

336. The denial of infinitesimal segments resolves an antinomy which
had long been an open scandal, I mean the antinomy that the continuum
both does and does not consist of elements. We see now that both may be
said, though in different senses. Every continuum is a series consisting of
terms, and the terms, if not indivisible, at any rate are not divisible into new
terms of the continuum. In this sense there are elements. But if we take
consecutive terms together with their asymmetrical relation as constituting
what may be called (though not in the sense of Part IV) an ordinal element,
then, in this sense, our continuum has no elements. If we take a stretch to be
essentially serial, so that it must consist of at least two terms, then there are no
elementary stretches; and if our continuum be one in which there is distance,
then likewise there are no elementary distances. But in neither of these cases
is there the slightest logical ground for elements. The demand for consecutive
terms springs, as we saw in Part III, from an illegitimate use of mathematical
induction. And as regards distance, small distances are no simpler than large
ones, but all, as we saw in Part III, are alike simple. And large distances do not
presuppose small ones: being intensive magnitudes, they may exist where
there are no smaller ones at all. Thus the infinite regress from greater to
smaller distances or stretches is of the harmless kind, and the lack of elements
need not cause any logical inconvenience. Hence the antinomy is resolved,
and the continuum, so far at least as I am able to discover, is wholly free from
contradictions.

It only remains to inquire whether the same conclusion holds concerning
the infinite—an inquiry with which this Fifth Part will come to a close.
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43
THE PHILOSOPHY OF THE

INFINITE

337. I our previous discussions of the infinite we have been compelled
to go into so many mathematical points that there has been no adequate
opportunity for purely philosophical treatment of the question. In the
present chapter, I wish, leaving mathematics aside, to inquire whether any
contradiction can be found in the notion of the infinite.

Those who have objected to infinity have not, as a rule, thought it worth
while to exhibit precise contradictions in it. To have done so is one of the
great merits of Kant. Of the mathematical antinomies, the second, which is
concerned, essentially, with the question whether or not the continuum has
elements, was resolved in the preceding chapter, on the supposition that
there may be an actual infinite—that is, it was reduced to the question of
infinite number. The first antinomy is concerned with the infinite, but in an
essentially temporal form; for Arithmetic, therefore, this antinomy is irrele-
vant, except on the Kantian view that numbers must be schematized in time.
This view is supported by the argument that it takes time to count, and
therefore without time we could not know the number of anything. By this
argument we can prove that battles always happen near telegraph wires,
because if they did not we should not hear of them. In fact, we can prove
generally that we know what we know. But it remains conceivable that we
don’t know what we don’t know; and hence the necessity of time remains
unproved.

Of other philosophers, Zeno has already been examined in connection
with the continuum; and the paradox which underlies Achilles and the tor-
toise will be examined shortly. Plato’s Parmenides—which is perhaps the best
collection of antinomies ever made—is scarcely relevant here, being con-



cerned with difficulties more fundamental than any that have to do with
infinity. And as for Hegel, he cries wolf so often that when he gives the alarm
of a contradiction we finally cease to be disturbed. Leibniz, as we have seen,
gives as a contradiction the one-one correlation of whole and part, which
underlies the Achilles. This is, in fact, the only point on which most argu-
ments against infinity turn. In what follows I shall put the arguments in a
form adapted to our present mathematical knowledge; and this will prevent
me from quoting them from any classic opponents of infinity.

338. Let us first recapitulate briefly the positive theory of the infinite to
which we have been led. Accepting as indefinable the notion proposition and
the notion constituent of a proposition, we may denote by �(a) a proposition in
which a is a constituent. We can then transform a into a variable x, and
consider �(x), where �(x) is any proposition differing from �(a), if at all,
only by the fact that some other object appears in the place of a; �(x) is what
we called a propositional function. It will happen, in general, that �(x) is true for
some values of x and false for others. All the values of x, for which �(x) is true,
form what we called the class defined by �(x); thus every propositional func-
tion defines a class, and the actual enumeration of the members of a class is
not necessary for its definition. Again, without enumeration we can define
the similarity of two classes: two classes u, v are similar when there is a one-
one relation R such that “x is a u” always implies “there is a v to which x has
the relation R”, and “y is a v” always implies “there is a u which has the
relation R to y”. Further, R is a one-one relation if xRy, xRz together always
imply that y is identical with z, and xRz, yRz together always imply that x is
identical with y; and “x is identical with y” is defined as meaning “every
propositional function which holds of x also holds of y”. We now define the
cardinal number of a class u as the class of all classes which are similar to u;
and every class has a cardinal number, since “u is similar to v” is a prop-
ositional function of v, if v be variable. Moreover u itself is a member of its
cardinal number, since every class is similar to itself. The above definition of a
cardinal number, it should be observed, is based upon the notion of prop-
ositional functions, and nowhere involves enumeration; consequently there is
no reason to suppose that there will be any difficulty as regards the numbers
of classes whose terms cannot be counted in the usual elementary fashion.
Classes can be divided into two kinds, according as they are or are not similar
to proper parts of themselves. In the former case they are called infinite, in the
latter finite. Again, the number of a class defined by a propositional function
which is always false is called 0; 1 is defined as the number of a class u such
that there is a term x, belonging to u, such that “y is a u and y differs from x” is
always false; and if n be any number, n + 1 is defined as the number of a class u
which has a member x, such that the propositional function “y is a u and y
differs from x” defines a class whose number is n. If n is finite, n + 1 differs

361the philosophy of the infinite



from n; if not, not. In this way, starting from 0, we obtain a progression of
numbers, since any number n leads to a new number n + 1. It is easily proved
that all the numbers belonging to the progression which starts from 1 and is
generated in this way are different; that is to say, if n belongs to this progres-
sion, and m be any one of its predecessors, a class of n terms cannot have a
one-one correlation with one of m terms. The progression so defined is the
series of finite numbers. But there is no reason to think that all numbers can be
so obtained; indeed it is capable of formal proof that the number of the finite
numbers themselves cannot be a term in the progression of finite numbers. A
number not belonging to this progression is called infinite. The proof that n
and n + 1 are different numbers proceeds from the fact that 0 and 1, or 1 and
2, are different numbers, by means of mathematical induction; if n and n + 1
be not terms of this progression, the proof fails; and what is more, there is
direct proof of the contrary. But since the previous proof depended upon
mathematical induction, there is not the slightest reason why the theorem
should extend to infinite numbers. Infinite numbers cannot be expressed,
like finite ones, by the decimal system of notation, but they can be dis-
tinguished by the classes to which they apply. The finite numbers being all
defined by the above progression, if a class u has terms, but not any finite
number of terms, then it has an infinite number. This is the positive theory
of infinity.

339. That there are infinite classes is so evident that it will scarcely be
denied. Since, however, it is capable of formal proof, it may be as well to prove
it. A very simple proof is that suggested in the Parmenides, which is as follows.
Let it be granted that there is a number 1. Then 1 is, or has Being, and
therefore there is Being. But 1 and Being are two: hence there is a number 2;
and so on. Formally, we have proved that 1 is not the number of numbers; we
prove that n is the number of numbers from 1 to n, and that these numbers
together with Being form a class which has a new finite number, so that n is
not the number of finite numbers. Thus 1 is not the number of finite num-
bers; and if n − 1 is not the number of finite numbers, no more is n. Hence the
finite numbers, by mathematical induction, are all contained in the class of
things which are not the number of finite numbers. Since the relation of
similarity is reflexive for classes, every class has a number; therefore the class
of finite numbers has a number which, not being finite, is infinite. A better
proof, analogous to the above, is derived from the fact that, if n be any finite
number, the number of numbers from 0 up to and including n is n + 1,
whence it follows that n is not the number of numbers. Again, it may be
proved directly, by the correlation of whole and part, that the number of
propositions or concepts is infinite.* For of every term or concept there is an

* Cf. Bolzano, Paradoxien des Unendlichen, § 13; Dedekind, Was sind und was sollen die Zahlen?, No. 66.
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idea, different from that of which it is the idea, but again a term or concept.
On the other hand, not every term or concept is an idea. There are tables, and
ideas of tables; numbers, and ideas of numbers; and so on. Thus there is a
one-one relation between terms and ideas, but ideas are only some among
terms. Hence there is an infinite number of terms and of ideas.*

340. The possibility that whole and part may have the same number of
terms is, it must be confessed, shocking to common-sense. Zeno’s Achilles
ingeniously shows that the opposite view also has shocking consequences;
for if whole and part cannot be correlated term for term, it does strictly
follow that, if two material points travel along the same path, the one follow-
ing the other, the one which is behind can never catch up: if it did, we
should have, correlating simultaneous positions, a unique and reciprocal
correspondence of all the terms of a whole with all the terms of a part.
Common-sense, therefore, is here in a very sorry plight; it must choose
between the paradox of Zeno and the paradox of Cantor. I do not propose to
help it, since I consider that, in the face of proofs, it ought to commit suicide
in despair. But I will give the paradox of Cantor a form resembling that of
Zeno. Tristram Shandy, as we know, took two years writing the history of the
first two days of his life, and lamented that, at this rate, material would
accumulate faster than he could deal with it, so that he could never come to
an end. Now I maintain that, if he had lived for ever, and not wearied of his
task, then, even if his life had continued as eventfully as it began, no part of
his biography would have remained unwritten. This paradox, which, as I
shall show, is strictly correlative to the Achilles, may be called for convenience
the Tristram Shandy.

In cases of this kind, no care is superfluous in rendering our arguments
formal. I shall therefore set forth both the Achilles and the Tristram Shandy in
strict logical shape.

I. (1) For every position of the tortoise there is one and only one of Achil-
les; for every position of Achilles there is one and only one of the
tortoise.

(2) Hence the series of positions occupied by Achilles has the same
number of terms as the series of positions occupied by the tortoise.

(3) A part has fewer terms than a whole in which it is contained and
with which it is not coextensive.

(4) Hence the series of positions occupied by the tortoise is not a proper
part of the series of positions occupied by Achilles.

II. (1) Tristram Shandy writes in a year the events of a day.

* It is not necessary to suppose that the ideas of all terms exist, or form part of some mind; it is
enough that they are entities.
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(2) The series of days and years has no last term.
(3) The events of the nth day are written in the nth year.
(4) Any assigned day is the nth, for a suitable value of n.
(5) Hence any assigned day will be written about.
(6) Hence no part of the biography will remain unwritten.
(7) Since there is a one-one correlation between the times of happening

and the times of writing, and the former are part of the latter, the
whole and the part have the same number of terms.

Let us express both these paradoxes as abstractly as possible. For this pur-
pose, let u be a compact series of any kind, and let x be a variable which
can take all values in u after a certain value, which we will call 0. Let f(x) be a
one-valued function of x, and x a one-valued function of f(x); also let all the
values of f(x) belong to u. Then the arguments are the following.

I. Let f(0) be a term preceding 0; let f(x) grow as x grows, i.e. if x P x'  (where
P is the generating relation), let f(x) P f(x' ). Further let f(x) take all values in
u intermediate between any two values of f(x). If, then, for some value a of x,
such that 0 P a, we have f(a) = a, then the series of values of f(x) will be
all from f(0) to a, while that of x will be only the terms from 0 to a, which
are a part of those from f(0) to a. Thus to suppose f(a) = a is to suppose a
one-one correlation, term for term, of whole and part, which Zeno and
common-sense pronounce impossible.

II. Let f(x) be a function which is 0 when x is 0, and which grows uni-
formly as x grows, our series being one in which there is measurement. Then
if x takes all values after 0, so does f(x); and if f(x) takes all such values, so
does x. The class of values of the one is therefore identical with that of the
other. But if at any time the value of x is greater than that of f(x), since f(x)
grows at a uniform rate, x will always be greater than f(x). Hence for any
assigned value of x, the class of values of f(x) from 0 to f(x) is a proper part of
the values of x from 0 to x. Hence we might infer that all the values of f(x)
were a proper part of all the values of x; but this, as we have seen, is fallacious.

These two paradoxes are correlative. Both, by reference to segments, may
be stated in terms of limits. The Achilles proves that two variables in a con-
tinuous series, which approach equality from the same side, cannot ever have
a common limit; the Tristram Shandy proves that two variables which start
from a common term, and proceed in the same direction, but diverge more
and more, may yet determine the same limiting class (which, however, is not
necessarily a segment, because segments were defined as having terms
beyond them). The Achilles assumes that whole and part cannot be similar,
and deduces a paradox; the other, starting from a platitude, deduces that
whole and part may be similar. For common-sense, it must be confessed, this
is a most unfortunate state of things.
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341. There is no doubt which is the correct course. The Achilles must be
rejected, being directly contradicted by Arithmetic. The Tristram Shandy
must be accepted, since it does not involve the axiom that the whole cannot
be similar to the part. This axiom, as we have seen, is essential to the proof of
the Achilles; and it is an axiom doubtless very agreeable to common-sense.
But there is no evidence for the axiom except supposed self-evidence, and its
admission leads to perfectly precise contradictions. The axiom is not only
useless, but positively destructive, in mathematics, and against its rejection
there is nothing to be set except prejudice. It is one of the chief merits of
proofs that they instil a certain scepticism as to the result proved. As soon as it
was found that the similarity of whole and part could be proved to be impos-
sible for every finite whole,* it became not unplausible to suppose that for
infinite wholes, where the impossibility could not be proved, there was in
fact no such impossibility. In fact, as regards the numbers dealt with in daily
life—in engineering, astronomy, or accounts, even those of Rockefeller
and the Chancellor of the Exchequer—the similarity of whole and part is
impossible; and hence the supposition that it is always impossible is easily
explained. But the supposition rests on no better foundation than that for-
merly entertained by the inductive philosophers of Central Africa, that all
men are black.

342. It may be worth while, as helping to explain the difference between
finite and infinite wholes, to point out that whole and part are terms capable
of two definitions where the whole is finite, but of only one of these, at least
practically, where the whole is infinite.† A finite whole may be taken collect-
ively, as such and such individuals, A, B, C, D, E say. A part of this whole may
be obtained by enumerating some, but not all, of the terms composing the
whole; and in this way a single individual is part of the whole. Neither the
whole nor its parts need be taken as classes, but each may be defined by
extension, i.e. by enumeration of individuals. On the other hand, the whole
and the parts may be both defined by intension, i.e. by class-concepts. Thus
we know without enumeration that Englishmen are part of Europeans; for
whoever is an Englishman is a European, but not vice versâ. Though this might
be established by enumeration, it need not be so established. When we come
to infinite wholes, this twofold definition disappears, and we have only the
definition by intension. The whole and the part must both be classes, and
the definition of whole and part is effected by means of the notions of a
variable and of logical implication. If a be a class-concept, an individual of a is
a term having to a that specific relation which we call the class-relation. If
now b be another class such that, for all values of x, “x is an a” implies “x is

* The finite being here defined by mathematical induction, to avoid tautology.
† Cf. § 330.
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a b”, then the extension of a (i.e. the variable x) is said to be part of the
extension of b.* Here no enumeration of individuals is required, and the
relation of whole and part has no longer that simple meaning which it had
where finite parts were concerned. To say now that a and b are similar, is to say
that there exists some one-one relation R fulfilling the following conditions:
if x be an a, there is a term y of the class b such that xRy; if y'  be a b, there is a
term x'  of the class a such that x' Ry. Although a is part of b, such a state of
things cannot be proved impossible, for the impossibility could only be
proved by enumeration, and there is no reason to suppose enumeration
possible. The definition of whole and part without enumeration is the key to
the whole mystery. The above definition, which is due to Professor Peano, is
that which is naturally and necessarily applied to infinite wholes. For
example, the primes are a proper part of the integers, but this cannot be
proved by enumeration. It is deduced from “if x be a prime, x is a number”,
and “if x be a number, it does not follow that x is a prime”. That the class of
primes should be similar to the class of numbers only seems impossible
because we imagine whole and part defined by enumeration. As soon as we
rid ourselves of this idea the supposed contradiction vanishes.

343. It is very important to realize, as regards ω or α0, that neither has a
number immediately preceding it. This characteristic they share with all
limits, for the limit of a series is never immediately preceded by any term of
the series which it limits. But ω is in some sense logically prior to other
limits, for the finite ordinal numbers together with ω present the formal type
of a progression together with its limit. When it is forgotten that ω has no
immediate predecessor, all sorts of contradictions emerge. For suppose n to be
the last number before ω; then n is a finite number, and the number of finite
numbers is n + 1. In fact, to say that ω has no predecessor is merely to say that
the finite numbers have no last term. Though ω is preceded by all finite
numbers, it is not preceded immediately by any of them: there is none next
to ω. Cantor’s transfinite numbers have the peculiarity that, although there is
one next after any assigned number, there is not always one next before. Thus
there seem to be gaps in the series. We have the series 1, 2, 3, . . . ν, . . .,
which is infinite and has no last term. We have another series ω, ω + 1,
ω + 2, . . . ω + ν, . . . which equally is infinite and has no last term. This
second series comes wholly after the first, though there is no one term of the
first which ω immediately succeeds. This state of things may, however, be
paralleled by very elementary series, such as the series whose general terms
are 1 − 1/ν and 2 − 1/ν, where ν may be any finite integer. The second series
comes wholly after the first, and has a definite first term, namely 1. But
there is no term of the first series which immediately precedes 1. What is

* See Peano, Rivista di Matematica, , or Formulaire, Vol. , Part I.
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necessary, in order that the second series should come after the first, is that
there should be some series in which both are contained. If we call an ordinal
part of a series any series which can be obtained by omitting some of the
terms of our series without changing the order of the remaining terms, then
the finite and transfinite ordinals all form one series, whose generating rela-
tion is that of ordinal whole and part among the series to which the various
ordinals apply. If ν be any finite ordinal, series of the type ν are ordinal parts
of progressions; similarly every series of the type ω + 1 contains a progression
as an ordinal part. The relation ordinal part is transitive and asymmetrical, and
thus the finite and transfinite ordinals all belong to one series. The existence
of ω (in the mathematical sense of existence) is not open to question, since ω
is the type of order presented by the natural numbers themselves. To deny ω
would be to affirm that there is a last finite number—a view which, as we
have seen, leads at once to definite contradictions. And when this is admitted,
ω + 1 is the type of the series of ordinals including ω, i.e. of the series whose
terms are all series of integers from 1 up to any finite number together with
the whole series of integers. Hence all the infinite hierarchy of transfinite
numbers easily follows.

344. The usual objections to infinite numbers, and classes, and series,
and the notion that the infinite as such is self-contradictory, may thus be
dismissed as groundless. There remains, however, a very grave difficulty,
connected with the contradiction discussed in Chapter 10 This difficulty does
not concern the infinite as such, but only certain very large infinite classes.
Briefly, the difficulty may be stated as follows. Cantor has given a proof * that
there can be no greatest cardinal number, and when this proof is examined, it
is found to state that, if u be a class, the number of classes contained in u is
greater than the number of terms of u, or (what is equivalent), if α be any
number, 2α is greater than α. But there are certain classes concerning which it
is easy to give an apparently valid proof that they have as many terms as
possible. Such are the class of all terms, the class of all classes, or the class of
all propositions. Thus it would seem as though Cantor’s proof must contain
some assumption which is not verified in the case of such classes. But when
we apply the reasoning of his proof to the cases in question, we find ourselves
met by definite contradictions, of which the one discussed in Chapter 10 is
an example.† The difficulty arises whenever we try to deal with the class of all
entities absolutely, or with any equally numerous class; but for the difficulty
of such a view, one would be tempted to say that the conception of the
totality of things, or of the whole universe of entities and existents, is in some

* He has, as a matter of fact, offered two proofs, but we shall find that one of them is not cogent.
† It was in this way that I discovered this contradiction; a similar one is given at the end of
Appendix B.

367the philosophy of the infinite



way illegitimate and inherently contrary to logic. But it is undesirable to
adopt so desperate a measure as long as hope remains of some less heroic
solution.

It may be observed, to begin with, that the class of numbers is not, as
might be supposed, one of those in regard to which difficulties occur. Among
finite numbers, if n were the number of numbers, we should have to infer that
n − 1 was the greatest of numbers, so that there would be no number n at all.
But this is a peculiarity of finite numbers. The number of numbers up to and
including α0 is α0, but this is also the number of numbers up to and including

αβ, where β  is any finite ordinal or any ordinal applicable to a denumerable
well-ordered series. Thus the number of numbers up to and including α,
where α is infinite, is usually less than α, and there is no reason to suppose

that the number of all numbers is the greatest number. The number of num-
bers may be less than the greatest number, and no contradiction arises from
the fact (if it be a fact) that the number of individuals is greater than the
number of numbers.

But although the class of numbers causes no difficulty, there are other
classes with which it is very hard to deal. Let us first examine Cantor’s proofs
that there is no greatest cardinal number, and then discuss the cases in which
contradictions arise.

345. In the first of Cantor’s proofs,* the argument depends upon the
supposed fact that there is a one-one correspondence between the ordinals
and the cardinals.† We saw that, when we consider the cardinal number of
the series of the type represented by any ordinal, an infinite number of
ordinals correspond to one cardinal—for example, all ordinals of the second
class, which form a non-denumerable collection, correspond to the single
cardinal α0. But there is another method of correlation, in which only one
ordinal corresponds to each cardinal. This method results from considering
the series of cardinals itself. In this series, α0 corresponds to ω, α1 to ω + 1,

and so on: there is always one and only one ordinal to describe the type of
series presented by the cardinals from 0 up to any one of them. It seems to be
assumed that there is a cardinal for every ordinal, and that no class can have so
many terms that no well-ordered series can have a greater number of terms.
For my part I do not see any grounds for either supposition, and I do see
definite grounds against the latter. For every term of a series must be an
individual, and must be a different individual (a point often overlooked)
from every other term of the series. It must be different, because there are no
instances of an individual: each individual is absolutely unique, and in the
nature of the case only one. But two terms in a series are two, and are

* Mannichfultigkeitslehre, p. 44.
† Cf. supra, Chap. 38, § 300.
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therefore not one and the same individual. This most important point is
obscured by the fact that we do not, as a rule, fully describe the terms of our
series. When we say: Consider a series a, b, c, d, b, d, e, a, . . ., where terms are
repeated at intervals—such a series, for example, as is presented by the digits
in a decimal—we forget the theorem that where there is repetition our series
is only obtainable by correlation; that is, the terms do not themselves have an
order, but they have a one-many (not one-one) relation to terms which have
an order.* Hence if we wish for a genuine series we must either go back to
the series with which our terms are correlated, or we must form the complex
terms compounded of those of the original series and those of the correlated
series in pairs. But in either of these series there is no repetition. Hence every
ordinal number must correspond to a series of individuals, each of which
differs from each other. Now it may be doubted whether all individuals form
a series at all: for my part I cannot discover any transitive asymmetrical
relation which holds between every pair of terms. Cantor, it is true, regards it
as a law of thought that every definite aggregate can be well-ordered; but I see
no ground for this opinion. But allowing this view, the ordinals will have a
perfectly definite maximum, namely that ordinal which represents the type
of series formed by all terms without exception.† If the collection of all terms
does not form a series it is impossible to prove that there must be a maximum
ordinal, which in any case there are reasons for denying.‡ But in this case we
may legitimately doubt whether there are as many ordinals as there are car-
dinals. Of course, if all cardinals form a well-ordered series, then there must
be an ordinal for each cardinal. But although Cantor professes that he has a
proof that of two different cardinals one must be the greater (Math. Annalen,
, § 2), I cannot persuade myself that he does more than prove that there
is a series, whose terms are cardinals of which any one is greater or less than
any other. That all cardinals are in this series I see no reason to think. There
may be two classes such that it is not possible to correlate either with a part of
the other; in this case the cardinal number of the one will be neither equal to,
greater than, nor less than, that of the other. If all terms belong to a single
well-ordered series, this is impossible; but if not, I cannot see any way of
showing that such a case cannot arise. Thus the first proof that there is no
cardinal which cannot be increased seems to break down.

346. The second of the proofs above referred to§ is quite different, and is
far more definite. The proof is interesting and important on its own account,

* See Chap. 32, supra.
† On the maximum ordinal, see Burali-Forti, “Una questione sui numeri transfiniti”, Rendiconti del
circolo matematico di Palermo, 1897. Also my article in R. d. M., Vol. , p. 43 note.
‡ Cf. Chap. 38, § 301.
§ Jahresbericht der deutschen Mathematiker-Vereinigung, . (1892), p. 77.
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and will be produced in outline. The article in which it occurs consists of
three points: (1) a simple proof that there are powers higher than the first,
(2) the remark that this method of proof can be applied to any power, (3) the
application of the method to prove that there are powers higher than that of
the continuum.* Let us examine the first of the above points, and then see
whether the method is really general.

Let m and w, Cantor says, be two mutually exclusive characters, and con-
sider a collection M of elements E, where each element E is a denumerable
collection, x1, x2,. . .xn,. . ., and each x is either an m or a w. (The two char-
acters m and w may be considered respectively as greater and less than some
fixed term. Thus the x’s may be rational numbers, each of which is an m when
it is greater than 1, and a w when it is less than 1. These remarks are logically
irrelevant, but they make the argument easier to follow.) The collection M is
to consist of all possible elements E of the above description. Then M is not
denumerable, i.e. is of a power higher than the first. For let us take any
denumerable collection of E’s, which are defined as follows:

E1 = (a11, a12, . . . a1n, . . .)
E2 = (a21, a22, . . . a2n, . . .)
. . . . . . . . . . . . . . . . . . . . . .
Ep = (ap1, ap2, . . . apn, . . .)
. . . . . . . . . . . . . . . . . . . .

where the a’s are each an m or a w in some determinate manner. (For
example, the first p terms of Ep might be m’s, the rest all w’s. Or any other law
might be suggested, which insures that the E’s of our series are all different.)
Then however our series of E’s be chosen, we can always find a term
E0, belonging to the collection M, but not to the denumerable series of E’s. For
let E0 be the series (b1, b2,. . .bn . . .), where, for every n, bn is different from
ann—i.e. if ann is an m, bn is a w, and vice versâ. Then every one of our denumerable
series of E’s contains at least one term not identical with the corresponding
term of E0, and hence E0 is not any one of the terms of our denumerable series
of E’s. Hence no such series can contain all the E’s, and therefore the E’s are
not denumerable, i.e. M has a power higher than the first.

We need not stop to examine the proof that there is a power higher than
that of the continuum, which is easily obtained from the above proof. We
may proceed at once to the general proof that, given any collection whatever,
there is a collection of a higher power. This proof is quite as simple as the
proof of the particular case. It proceeds as follows. Let u be any class, and
consider the class K of relations such that, if R be a relation of the class, every

* Power is synonymous with cardinal number: the first power is that of the finite integers, i.e. α0.
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term of the class u has the relation R either to 0 or to 1. (Any other pair of
terms will do as well as 0 and 1.) Then the class K has a higher power than the
class u. To prove this, observe in the first place that K has certainly not a lower
power; for, if x be any u, there will be a relation R of the class K such that every
u except x has the relation R to 0, but x has this relation to 1. Relations of this
kind, for the various values of x, form a class having a one-one correlation
with the terms of u, and contained in the class K. Hence K has at least the same
power as u. To prove that K has a greater power, consider any class contained
in K and having a one-one correlation with u. Then any relation of this class
may be called Rx, where x is some u—the suffix x denoting correlation with x.
Let us now define a relation R'  by the following conditions: for every term x
of u for which x has the relation Rx to 0, let x have the relation R'  to 1; and for
every term y of u for which y has the relation Ry to 1, let y have the relation R'
to 0. Then R'  is defined for all terms of u, and is a relation of the class K; but it
is not any one of the relations Rx. Hence, whatever class contained in K and of
the same power as u we may take, there is always a term of K not belonging to
this class; and therefore K has a higher power than u.

347. We may, to begin with, somewhat simplify this argument, by elim-
inating the mention of 0 and 1 and relations to them. Each of the relations of
the class K is defined when we know which of the terms of u have this relation
to 0, that is, it is defined by means of a class contained in u (including the
null-class and u itself). Thus there is one relation of the class K for every class
contained in u, and the number of K is the same as that of classes contained in
u. Thus if k be any class whatever, the logical product ku is a class contained
in u, and the number of K is that of ku, where k is a variable which may be any
class. Thus the argument is reduced to this: that the number of classes con-
tained in any class exceeds the number of terms belonging to the class.*

Another form of the same argument is the following. Take any relation R
which has the two properties (1) that its domain, which we will call ρ, is
equal to its converse domain, (2) that no two terms of the domain have
exactly the same set of relata. Then by means of R, any term of ρ is correlated
with a class contained in ρ, namely the class of relata to which the said term is
referent; and this correlation is one-one. We have to show that at least one
class contained in ρ is omitted in this correlation. The class omitted is the
class w which consists of all terms of the domain which do not have the
relation R to themselves, i.e. the class w which is the domain of the logical
product of R and diversity. For, if y be any term of the domain, and therefore
of the converse domain, y belongs to w if it does not belong to the class
correlated with y, and does not belong to w in the contrary case. Hence w is

* The number of classes contained in a class which has α members is 2α; thus the argument shows

that 2α is always greater than α.
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not the same class as the correlate of y; and this applies to whatever term y we
select. Hence the class w is necessarily omitted in the correlation.

348. The above argument, it must be confessed, appears to contain no
dubitable assumption. Yet there are certain cases in which the conclusion
seems plainly false. To begin with the class of all terms. If we assume, as was
done in § 47, that every constituent of every proposition is a term, then
classes will be only some among terms. And conversely, since there is, for
every term, a class consisting of that term only, there is a one-one correlation
of all terms with some classes. Hence the number of classes should be the
same as the number of terms.* This case is adequately met by the doctrine of
types,† and so is the exactly analogous case of classes and classes of classes.
But if we admit the notion of all objects‡ of every kind, it becomes evident
that classes of objects must be only some among objects, while yet Cantor’s
argument would show that there are more of them than there are objects. Or
again, take the class of propositions. Every object can occur in some prop-
osition, and it seems indubitable that there are at least as many propositions
as there are objects. For, if u be a fixed class, “x is a u” will be a different
proposition for every different value of x; if, according to the doctrine of
types, we hold that, for a given u, x has a restricted range if “x is a u” is to
remain significant, we only have to vary u suitably in order to obtain proposi-
tions of this form for every possible x, and thus the number of propositions
must be at least as great as that of objects. But classes of propositions are only
some among objects, yet Cantor’s argument shows that there are more of
them than there are propositions. Again, we can easily prove that there are
more propositional functions than objects. For suppose a correlation of all
objects and some propositional functions to have been affected, and let �x be
the correlate of x. Then “not-�x(x)”, i.e. “�x does not hold of x”, is a prop-
ositional function not contained in the correlation; for it is true or false of x
according as �x is false or true of x, and therefore it differs from �x for every
value of x. But this case may perhaps be more or less met by the doctrine
of types.

349. It is instructive to examine in detail the application of Cantor’s
argument to such cases by means of an actual attempted correlation. In the
case of terms and classes, for example, if x be not a class, let us correlate it
with ιx, i.e. the class whose only member is x, but if x be a class, let us
correlate it with itself. (This is not a one-one, but a many-one correlation, for

* This results from the theorem of Schröder and Bernstein, according to which, if u be similar to
a part of v, and v to a part of u, then u and v must be similar. See Borel, Leçons sur la Théorie des Fonctions
(Paris, 1898), p. 102 ff.
† See Chapter 10 and Appendix B.
‡ For the use of the word object see p. 55, note.
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x and ιx are both correlated with ιx; but it will serve to illustrate the point in
question.) Then the class which, according to Cantor’s argument, should be
omitted from the correlation, is the class w of those classes which are not
members of themselves; yet this, being a class, should be correlated with
itself. But w, as we saw in Chapter 10, is a self-contradictory class, which both
is and is not a member of itself. The contradiction, in this case, can be solved
by the doctrine of types; but the case of propositions is more difficult. In this
case, let us correlate every class of propositions with the proposition which is
its logical product; by this means we appear to have a one-one relation of all
classes of propositions to some propositions. But applying Cantor’s argu-
ment, we find that we have omitted the class w of those propositions which
are logical products, but are not members of the classes of propositions
whose logical products they are. This class, according to the definition of our
correlation, should be correlated with its own logical product, but on exam-
ining this logical product, we find that it both is and is not a member of the
class w whose logical product it is.

Thus the application of Cantor’s argument to the doubtful cases yields
contradictions, though I have been unable to find any point in which the
argument appears faulty. The only solution I can suggest is, to accept the
conclusion that there is no greatest number and the doctrine of types, and to
deny that there are any true propositions concerning all objects or all proposi-
tions. Yet the latter, at least, seems plainly false, since all propositions are at
any rate true or false, even if they had no other common properties. In this
unsatisfactory state, I reluctantly leave the problem to the ingenuity of the
reader.

350. To sum up the discussions of this Part: We saw, to begin with, that
irrationals are to be defined as those segments of rationals which have no
limit, and that in this way analysis is able to dispense with any special axiom
of continuity. We saw that it is possible to define, in a purely ordinal manner,
the kind of continuity which belongs to real numbers, and that continuity
so defined is not self-contradictory. We found that the differential and inte-
gral calculus has no need of the infinitesimal, and that, though some forms
of infinitesimal are admissible, the most usual form, that of infinitesimal
segments in a compact series, is not implied by either compactness or
continuity, and is in fact self-contradictory. Finally we discussed the philo-
sophical questions concerning continuity and infinity, and found that the
arguments of Zeno, though largely valid, raise no sort of serious difficulty.
Having grasped clearly the twofold definition of the infinite, as that which
cannot be reached by mathematical induction starting from 1, and as that
which has parts which have the same number of terms as itself—definitions
which may be distinguished as ordinal and cardinal respectively—we found
that all the usual arguments, both as to infinity and as to continuity, are
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fallacious, and that no definite contradiction can be proved concerning either,
although certain special infinite classes do give rise to hitherto unsolved
contradictions.

It remains to apply to space, time, and motion, the three chief results
of this discussion, which are (1) the impossibility of infinitesimal segments,
(2) the definition of continuity, and (3) the definition and the consistent
doctrine of the infinite. These applications will, I hope, persuade the reader
that the above somewhat lengthy discussions have not been superfluous.
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Part VI
Space





44
DIMENSIONS AND COMPLEX

NUMBERS

351. T discussions of the preceding Parts have been concerned with
two main themes, the logical theory of numbers and the theory of one-
dimensional series. In the first two Parts, it was shown how, from the
indispensable apparatus of general logical notions, the theory of finite
integers and of rational numbers without sign could be developed. In the
third Part, a particular case of order, namely the order of magnitude, was
examined on its own account, and it was found that most of the problems
arising in the theory of quantity are purely ordinal. In the fourth Part, the
general nature of one-dimensional series was set forth, and it was shown that
all the arithmetical propositions obtained by means of the logical theory of
finite numbers could also be proved by assuming that the finite integers
form a series of the kind which we called a progression. In the fifth Part,
we examined the problems raised by endless series and by compact series—
problems which, under the names of infinity and continuity, have defied
philosophers ever since the dawn of abstract thought. The discussion of these
problems led to a combination of the logical and ordinal theories of Arith-
metic, and to the rejection, as universally valid, of two connected principles
which, following Cantor, we regarded as definitions of the finite, not as
applicable to all collections or series. These two principles were: (1) if one
class be wholly contained in, but not coextensive with, another, then the one
has not the same number of terms as the other; (2) mathematical induction,
which is purely ordinal, and may be stated as follows: a series generated by
a one-one relation, and having a first term, is such that any property, belong-
ing to the first term and to the successor of any possessor of the property,
belongs to every term of the series. These two principles we regarded as



definitions of finite classes and of progressions or finite series respectively,
but as inapplicable to some classes and some series. This view, we found,
resolves all the difficulties of infinity and continuity, except a purely logical
difficulty as to the notion of all classes. With this result, we completed the
philosophical theory of one-dimensional series.

352. But in all our previous discussions, large branches of mathematics
have remained unmentioned. One of the generalizations of number, namely
complex numbers, has been excluded completely, and no mention has been
made of the imaginary. The whole of Geometry, also, has been hitherto
foreign to our thoughts. These two omissions were connected. Not that we
are to accept a geometrical, i.e. spatial, theory of complex numbers: this
would be as much out of place as a geometrical theory of irrationals.
Although this Part is called Space, we are to remain in the region of pure
mathematics: the mathematical entities discussed will have certain affinities
to the space of the actual world, but they will be discussed without any
logical dependence upon these affinities. Geometry may be considered as a
pure à priori science, or as the study of actual space. In the latter sense, I hold
it to be an experimental science, to be conducted by means of careful meas-
urements. But it is not in this latter sense that I wish to discuss it. As a branch
of pure mathematics, Geometry is strictly deductive, indifferent to the choice
of its premisses and to the question whether there exist (in the strict sense)
such entities as its premisses define. Many different and even inconsistent
sets of premisses lead to propositions which would be called geometrical,
but all such sets have a common element. This element is wholly summed
up by the statement that Geometry deals with series of more than one
dimension. The question what may be the actual terms of such series is
indifferent to Geometry, which examines only the consequences of the rela-
tions which it postulates among the terms. These relations are always such as
to generate a series of more than one dimension, but have, so far as I can see,
no other general point of agreement. Series of more than one dimension I
shall call multiple series: those of one dimension will be called simple. What is
meant by dimensions I shall endeavour to explain in the course of the
present chapter. At present, I shall set up, by anticipation, the following
definition: Geometry is the study of series of two or more dimensions. This definition, it
will be seen, causes complex numbers to form part of the subject-matter of
Geometry, since they constitute a two-dimensional series; but it does not
show that complex numbers have any logical dependence upon actual space.

The above definition of Geometry is, no doubt, somewhat unusual, and
will produce, especially upon Kantian philosophers, an appearance of wilful
misuse of words. I believe, however, that it represents correctly the present
usage of mathematicians, though it is not necessary for them to give an
explicit definition of their subject. How it has come to bear this meaning,
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may be explained by a brief historical retrospect, which will illustrate also the
difference between pure and applied mathematics.

353. Until the nineteenth century, Geometry meant Euclidean Geometry,
i.e. a certain system of propositions deduced from premisses which were
supposed to describe the space in which we live. The subject was pursued
very largely because (what is no doubt important to the engineer) its results
were practically applicable in the existent world, and embodied in themselves
scientific truths. But in order to be sure that this was so, one of two things
was necessary. Either we must be certain of the truth of the premisses on
their own account, or we must be able to show that no other set of premisses
would give results consistent with experience. The first of these alternatives
was adopted by the idealists and was especially advocated by Kant. The
second alternative represents, roughly, the position of empiricists before the
non-Euclidean period (among whom we must include Mill). But objections
were raised to both alternatives. For the Kantian view, it was necessary to
maintain that all the axioms are self-evident—a view which honest people
found it hard to extend to the axiom of parallels. Hence arose a search for
more plausible axioms, which might be declared à priori truths. But, though
many such axioms were suggested, all could sanely be doubted, and the
search only led to scepticism. The second alternative—the view that no other
axioms would give results consistent with experience—could only be tested
by a greater mathematical ability than falls to the lot of most philosophers.
Accordingly the test was wanting until Lobatchewsky and Bolyai developed
their non-Euclidean system. It was then proved, with all the cogency of
mathematical demonstration, that premisses other than Euclid’s could give
results empirically indistinguishable, within the limits of observation, from
those of the orthodox system. Hence the empirical argument for Euclid
was also destroyed. But the investigation produced a new spirit among
Geometers. Having found that the denial of Euclid’s axiom of parallels led to
a different system, which was self-consistent, and possibly true of the actual
world, mathematicians became interested in the development of the con-
sequences flowing from other sets of axioms more or less resembling
Euclid’s. Hence arose a large number of Geometries, inconsistent, as a rule,
with each other, but each internally self-consistent. The resemblance to
Euclid required in a suggested set of axioms has gradually grown less, and
possible deductive systems have been more and more investigated on their
own account. In this way, Geometry has become (what it was formerly
mistakenly called) a branch of pure mathematics, that is to say, a subject in
which the assertions are that such and such consequences follow from such
and such premisses, not that entities such as the premisses describe actually
exist. That is to say, if Euclid’s axioms be called A, and P be any proposition
implied by A, then, in the Geometry which preceded Lobatchewsky, P itself
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would be asserted, since A was asserted. But now-a-days, the geometer would
only assert that A implies P, leaving A and P themselves doubtful. And he
would have other sets of axioms, A1, A2 . . . implying P1, P2 . . . respectively:
the implications would belong to Geometry, but not A1 or P1 or any of the other
actual axioms and propositions. Thus Geometry no longer throws any direct
light on the nature of actual space. But indirectly, the increased analysis and
knowledge of possibilities, resulting from modern Geometry, has thrown
immense light upon our actual space. Moreover it is now proved (what is
fatal to the Kantian philosophy) that every Geometry is rigidly deductive, and
does not employ any forms of reasoning but such as apply to Arithmetic and
all other deductive sciences. My aim, in what follows, will be to set forth first,
in brief outlines, what is philosophically important in the deductions which
constitute modern Geometry, and then to proceed to those questions, in
the philosophy of space, upon which mathematics throws light. In the first
section of this Part, though I shall be discussing Geometries as branches of
pure mathematics, I shall select for discussion only those which throw the
most light either upon actual space, or upon the nature of mathematical
reasoning. A treatise on non-Euclidean Geometry is neither necessary nor
desirable in a general work such as the present, and will therefore not be
found in the following chapters.

354. Geometry, we said, is the study of series which have more than one
dimension. It is now time to define dimensions, and to explain what is meant
by a multiple series. The relevance of our definition to Geometry will appear
from the fact that the mere definition of dimensions leads to a duality closely
analogous to that of projective Geometry.

Let us begin with two dimensions. A series of two dimensions arises as
follows. Let there be some asymmetrical transitive relation P, which generates
a series u1. Let every term of u1 be itself an asymmetrical transitive relation,
which generates a series. Let all the field of P form a simple series of asym-
metrical relations, and let each of these have a simple series of terms for its
field. Then the class u2 of terms forming the fields of all the relations in the
series generated by P is a two-dimensional series. In other words, the total
field of a class of asymmetrical transitive relations forming a simple series
is a double series. But instead of starting from the asymmetrical relation P,
we may start from the terms. Let there be a class of terms u2, of which any
given one (with possibly one exception) belongs to the field of one and only
one of a certain class u1 of serial relations. That is if x be a term of u2, x is also
a term of the field of some relation of the class u1. Now further let u1 be a
series. Then u2 will be a double series. This seems to constitute the definition
of two-dimensional series.

To obtain three dimensions, we have only to suppose that u2 itself consists
of series, or of asymmetrical transitive relations. Or, starting with the terms of
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the three-dimensional series, let any term of a certain class u3 belong to one
and only one series (again with one possible exception, which may belong to
many series) of a certain class u2. Let every term of u2 be a term of some series
belonging to a class u1 of series, and let u1 itself be a simple series. Then u3 is a
triple series, or a series of three dimensions. Proceeding in this way, we obtain
the definition of n dimensions, which may be given as follows: Let there be
some series u1 whose terms are all themselves serial relations. If x1 be any term
of u1, and x2 any term of the field of x1, let x2 be again a serial relation, and so
on. Proceeding to x3, x4, etc., let xn − 1, however obtained, be always a relation
generating a simple series. Then all the terms xn belonging to the field of any
serial relation xn − 1, form an n-dimensional series. Or, to give the definition
which starts from the terms: Let un be a class of terms, any one of which, xn

say, belongs to the field of some serial relation, xn − 1 say, which itself belongs
to a definite class un − 1 of serial relations. Let each term xn in general belong to
the field of only one serial relation xn − 1 (with exceptions which need not be
discussed at present). Let un − 1 lead to a new class un − 2 of serial relations, in
exactly the way in which un led to un − 1. Let this proceed until we reach a class
u1, and let u1 be a simple series. Then un is a series of n dimensions.

355. Before proceeding further, some observations on the above def-
initions may be useful. In the first place, we have just seen that alternative
definitions of dimensions suggest themselves, which have a relation analo-
gous to what is called duality in projective Geometry. How far this analogy
extends, is a question which we cannot discuss until we have examined
projective Geometry. In the second place, every series of n dimensions
involves series of all smaller numbers of dimensions, but a series of (n − 1)
dimensions does not in general imply one of n dimensions. In the second
form of the definition of n dimensions, the class un − 1 is a series of (n − 1)
dimensions, and generally, if m be less than n, the class un − m is a series of
(n − m) dimensions. And in the other method, all possible terms xn − 1 together
form a series of (n − 1) dimensions, and so on. In the third place, if n be
finite, a class which is an n-dimensional series is also a one-dimensional
series. This may be established by the following rules: In the class u1, which is
a simple series, preserve the order unchanged. In u2, keep the internal order
of each series unchanged, and place that series before which comes before in
u1, and that after which comes after in u1. Thus u2 is converted into a simple
series. Apply now the same process to u3, and so on. Then by mathematical
induction, if n be finite, or be any infinite ordinal number, un can be converted
into a simple series. This remarkable fact, which was discovered, for finite
numbers and ω, by Cantor,* has a very important bearing on the foundations

* Cantor has proved, not only that a simple series can be so formed, but that, if n be not greater
than ω, and the constituent series all have the same cardinal number, this is also the cardinal
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of Geometry. In the fourth place, the definition of n dimensions can be
extended to the case where n is ω, the first of the transfinite ordinals. For this
purpose, it is only necessary to suppose that, whatever finite number m we
may take, any um will belong to some simple series of series um + 1; and that
the sequence of classes of series so obtained obeys mathematical induction,
and is therefore a progression. Then the number of dimensions is ω. This case
brings out, what does not appear so clearly from the case of a finite number
of dimensions, that the number of dimensions is an ordinal number.

356. There are very many ways of generating multiple series, as there
are of generating simple series. The discussion of these various ways is not,
however, of great importance, since it would follow closely the discussion of
Part IV, Chapter 24. Instances will meet us in the course of our examination
of the various Geometries; and this examination will give opportunities of
testing our definition of dimensions. For the present, it is only important to
observe that dimensions, like order and continuity, are defined in purely
abstract terms, without any reference to actual space. Thus when we say that
space has three dimensions, we are not merely attributing to it an idea which
can only be obtained from space, but we are effecting part of the actual
logical analysis of space. This will appear more clearly from the applicability
of dimensions to complex numbers, to which we must now turn our
attention.

357. The theory of imaginaries was formerly considered a very import-
ant branch of mathematical philosophy, but it has lost its philosophical
importance by ceasing to be controversial. The examination of imaginaries
led, on the Continent, to the Theory of Functions—a subject which, in spite
of its overwhelming mathematical importance, appears to have little interest
for the philosopher. But among ourselves the same examination took a more
abstract direction: it led to an examination of the principles of symbolism,
the formal laws of addition and multiplication and the general nature of a
Calculus. Hence arose a freer spirit towards ordinary Algebra, and the possi-
bility of regarding it (like ordinary Geometry) as one species of a genus. This
was the guiding spirit of Sir William Hamilton, De Morgan, Jevons and
Peirce—to whom, as regards the result, though not as regards the motive, we
must add Boole and Grassmann. Hence the philosophy of imaginaries
became merged in the far wider and more interesting problems of Universal
Algebra.* These problems cannot, in my opinion, be dealt with by starting
with the genus, and asking ourselves: what are the essential principles of any
Calculus? It is necessary to adopt a more inductive method, and examine the

number of the resultant series: i.e. an n-dimensional space has the same cardinal number of
points as a finite portion of a line. See Acta Math., , p. 314 ff.

* See Whitehead, Universal Algebra, Cambridge, 1898; especially Book I.
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various species one by one. The mathematical portion of this task has been
admirably performed by Mr Whitehead: the philosophical portion is
attempted in the present work. The possibility of a deductive Universal
Algebra is often based upon a supposed principle of the Permanence of Form.
Thus it is said, for example, that complex numbers must, in virtue of this
principle, obey the same laws of addition and multiplication as real numbers
obey. But as a matter of fact there is no such principle. In Universal Algebra,
our symbols of operation, such as + and ×, are variables, the hypothesis of
any one Algebra being that these symbols obey certain prescribed rules. In
order that such an Algebra should be important, it is necessary that there
should be at least one instance in which the suggested rules of operation are
verified. But even this restriction does not enable us to make any general
formal statement as to all possible rules of operation. The principle of the
Permanence of Form, therefore, must be regarded as simply a mistake: other
operations than arithmetical addition may have some or all of its formal
properties, but operations can easily be suggested which lack some or all of
these properties.

358. Complex numbers first appeared in mathematics through the alge-
braical generalization of number. The principle of this generalization is the
following: Given some class of numbers, it is required that numbers should
be discovered or invented which will render soluble any equation in one
variable, whose coefficients are chosen from the said class of numbers. Start-
ing with positive integers, this method leads at once, by means of simple
equations alone, to all rational numbers positive and negative. Equations of
finite degrees will give all the so-called algebraic numbers, but to obtain
transcendent numbers, such as e and π, we need equations which are not of
any finite degree. In this respect the algebraical generalization is very inferior
to the arithmetical, since the latter gives all irrationals by a uniform method,
whereas the former, strictly speaking, will give only the algebraic numbers.
But with regard to complex numbers, the matter is otherwise. No arith-
metical problem leads to these, and they are wholly incapable of arithmetical
definition. But the attempt to solve such equations as x2 + 1 = 0, or
x2 + x + 1 = 0, at once demands a new class of numbers, since, in the whole
domain of real numbers, none can be found to satisfy these equations. To
meet such cases, the algebraical generalization defined new numbers by
means of the equations whose roots they were. It showed that, assuming
these new numbers to obey the usual laws of multiplication, each of them fell
into two parts, one real, the other the product of some real number and a
fixed number of the new kind. This fixed number could be chosen arbitrarily,
and was always taken to be one of the square roots of −1. Numbers thus
composed of two parts were called complex numbers, and it was shown that
no algebraic operation upon them could lead to any new class of numbers.

383dimensions and complex numbers



What is still more remarkable, it was proved that any further generalization
must lead to numbers disobeying some of the formal laws of Arithmetic.*
But the algebraical generalization was wholly unable (as it was, in truth, at
every previous stage) to prove that there are such entities as those which it
postulated. If the said equations have roots, then the roots have such and such
properties; this is all that the algebraical method allows us to infer. There is,
however, no law of nature to the effect that every equation must have a root; on
the contrary, it is quite essential to be able to point out actual entities which
do have the properties demanded by the algebraical generalization.

359. The discovery of such entities is only to be obtained by means of
the theory of dimensions. Ordinary complex numbers form a series of two
dimensions of a certain type, which happen to occur as roots of equations in
which the coefficients are real. Complex numbers of a higher order represent
a certain type of n-dimensional series, but here there is no algebraical prob-
lem concerning real numbers which they are required to solve. As a matter of
fact, however, the algebraical generalization, as we have seen, does not tell us
what our new entities are, nor whether they are entities at all: moreover it
encourages the erroneous view that complex numbers whose imaginary part
vanishes are real numbers. This error is analogous to that of supposing that
some real numbers are rational, some rationals integral and positive integers
identical with signless integers. All the above errors having been exposed at
length, the reader will probably be willing to admit the corresponding error
in the present case. No complex number, then, is a real number, but each is a
term in some multiple series. It is not worth while to examine specially the
usual two-dimensional complex numbers, whose claims, as we have seen, are
purely technical. I shall therefore proceed at once to systems with n units. I
shall give first the usual purely formal definition,† then the logical objections
to this definition and then the definition which I propose to substitute.

Let n different entities, e1, e2, . . . . . . en, which we may call elements or
units, be given; and let each be capable of association with any real number,
or, in special cases, with any rational or any integer. In this way let entities αrer

arise, where αr is a number, and αrer differs from αses unless r = s and αr = αs.

That is, if either the numerical or the non-numerical parts of αrer and αses be

different, then the wholes are different. Further, let there be a way of combin-
ing α1e1, α2e2, . . ., αnen, for each set of values α1, α2, . . . αn, to form a new

entity. (The class whose members are α1e1, α2e2, . . . αnen will be such an

entity.) Then the combination, which may be written as

a = α1e1 + α2e2 + α3e3 + . . . + αnen,

* See Stolz, Allgemeine Arithmetik, , Section 1, § 10.
† See Stolz, ibid. , Section 1. § 9.
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is a complex number of the nth order. The arrangement of the component
terms α1e1, α2e2, . . . αnen may or may not be essential to the definition; but the

only thing always essential is, that the combination should be such that a
difference in any one or more of the numbers α1, α2, . . . αn insures a differ-

ence in the resulting complex number.
360. The above definition suffers from the defect that it does not point

out any one entity which is the complex number defined by a set of real
numbers. Given two real numbers, a, b, the two complex numbers a + ib,
b + ia are determinate; and it is desirable that such determinateness should
appear in the general definition of complex numbers of any order. But the e’s
in the above definition are variables, and the suggested complex number is
only determinate when the e’s are specified as well as the α’s. Where, as in
metrical Geometry or in the Dynamics of a finite system of particles, there
are important meanings for the e’s, we may find that complex numbers in the
above sense are important. But no special interpretation can give us the com-
plex number associated with a given set of real numbers. We might take as the
complex number the class of all such entities as the above for all possible
values of the e’s; but such a class would be too general to serve our purposes.
A better method seems to be the following.

We wish a complex number of the nth order to be specified by the enu-
meration of n real numbers in a certain order, i.e. by the numbers α1, α2, . . .

αn, where the order is indicated by the suffix. But we cannot define a complex
number as a series of n real numbers, because the same real number may
recur, i.e. αr and αs need not be different whenever r and s are different. Thus

what defines a real number is a one-many relation whose domain consists of
real numbers and whose converse domain consists of the first n integers
(or, in the case of a complex number of infinite order, of all the integers); for
the suffix in αr indicates correlation with the integer r. Such one-many rela-
tions may be defined to be the complex numbers, and in this way a purely
arithmetical definition is obtained. The n-dimensional series of complex
numbers of order n results from arranging all complex numbers which differ
only as to (say) αr in the order of the real numbers which are αr in the various

cases.
In order that complex numbers in the sense defined by Stolz should have

any importance, there must be some motive for considering assemblages of
terms selected out of continua. Such a motive exists in a metrical space of n
dimensions, owing to a circumstance which is essential to the utility, though
not to the definition, of complex numbers. Let a collection of entities
(points) be given, each of which has to each of the entities e1, e2, . . . ea a
numerically measurable relation (distance), and let each be uniquely defined
by the n relations which it has to e1, e2, . . . en. Then the complex number a will
represent one of this collection of entities, and the elements e1, e2, . . . en will
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themselves be terms of the collection.* Thus there is a motive for considering
the numbers α, which in the general case is practically absent.† But what
is essential to observe, and what applies equally to the usual complex
numbers of Algebra, is this: our numbers are not purely arithmetical, but
involve essential reference to a plurality of dimensions. Thus we have def-
initely passed beyond the domain of Arithmetic, and this was my reason for
postponing the consideration of complex numbers to this late stage.

* e1 is not identical with 1 × e1 + 0 × e2 +  . . . . The former is a point, the latter a complex
number.
† In geometrical applications, it is usual to consider only the ratios α1: α2: . . .: αn as relevant. In this

case, our series has only (n − 1) dimensions.
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45
PROJECTIVE GEOMETRY

361. T foundations of Geometry have been subjected, in recent times,
to a threefold scrutiny. First came the work of the non-Euclideans, which
showed that various axioms, long known to be sufficient for certain results,
were also necessary, i.e. that results inconsistent with the usual results but
consistent with each other followed from the denial of those axioms. Next
came the work of Dedekind and Cantor on the nature of continuity, which
showed the necessity of investigating carefully the prerequisites of analytical
Geometry. Lastly, a great change has been introduced by the Italian work on
closed series, mentioned in Part IV, in virtue of which we are able, given a
certain type of relation between four points of a line, to introduce an order
of all the points of a line. The work of the non-Euclideans has, by this time,
produced probably almost all the modifications that it is likely to produce
in the foundations, while the work of Dedekind and Cantor only becomes
relevant at a fairly advanced stage of Geometry. The work on closed series, on
the contrary, being very recent, has not yet been universally recognized,
although, as we shall see in the present chapter, it has enormously increased
the range of pure projective Geometry.

362. In the discussions of the present Part, I shall not divide Geometries,
as a rule, into Euclidean, hyperbolic, elliptic, and so on, though I shall of
course recognize this division and mention it whenever it is relevant. But
this is not so fundamental a division as another, which applies, generally
speaking, within each of the above kinds of Geometry, and corresponds to a
greater logical difference. The above kinds differ, not in respect of the inde-
finables with which we start, nor yet in respect of the majority of the axioms,
but only in respect of comparatively few and late axioms. The three kinds
which I wish to discuss differ both in respect of the indefinables and in



respect of the axioms, but unlike the three previous kinds, they are, roughly
speaking, mutually compatible. That is to say, given a certain body of geo-
metrical propositions concerning a certain number of entities, it is more
or less arbitrary which of the entities we take as indefinable and which of the
propositions as indemonstrable. But the logical differences which result from
different selections are very great, and the systems of deductions to which
different selections lead must be separately discussed.

All Geometries, as commonly developed, agree in starting with points as
indefinables. That is, there is a certain class-concept point (which need not be
the same in different Geometries), of which we assume that there are at
least two, or three, or four instances, according to circumstances. Further
instances, i.e. further points, result from special assumptions in the various
cases. Where the three great types of Geometry begin to diverge is as regards
the straight line. Projective Geometry begins with the whole straight line, i.e. it
asserts that any two points determine a certain class of points which is also
determined by any two other members of the class. If this class be regarded
as determined in virtue of a relation between the two points, then this
relation is symmetrical. What I shall call Descriptive Geometry, on the con-
trary, begins with an asymmetrical relation, or a line with sense, which may
be called a ray; or again it may begin by regarding two points as determin-
ing the stretch of points between them. Metrical Geometry, finally, takes the
straight line in either of the above senses, and adds either a second relation
between any two points, namely distance, which is a magnitude, or else the
consideration of stretches as magnitudes. Thus in regard to the relations of
two points, the three kinds of Geometry take different indefinables, and have
corresponding differences of axioms. Any one of the three, by a suitable
choice of axioms, will lead to any required Euclidean or non-Euclidean
space; but the first, as we shall see, is not capable of yielding as many
propositions as result from the second or the third. In the present chapter, I
am going to assume that set of axioms which gives the simplest form of
projective Geometry; and I shall call any collection of entities satisfying
these axioms a projective space. We shall see in the next chapter how to obtain a
set of entities forming a projective space from a set forming a Euclidean or
hyperbolic space; projective space itself is, so far as it goes, indistinguish-
able from the polar form of elliptic space. It is defined, like all math-
ematical entities, solely by the formal nature of the relations between its
constituents, not by what those constituents are in themselves. Thus we
shall see in the following chapter that the “points” of a projective space
may each be an infinite class of straight lines in a non-projective space. So
long as the “points” have the requisite type of mutual relations, the definition
is satisfied.

363. Projective Geometry assumes a class of entities, called points, to
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which it assigns certain properties.* In the first place, there are to be at least
two different points, a and b say. These two points are to determine a certain
class of points, their straight line, which we will call ab. This class is deter-
mined by b and a, as well as by a and b, i.e. there is no order of a and b
involved; moreover a (and therefore b) is itself a member of the class. Further,
the class contains at least one point other than a and b; if c be any such point,
then b belongs to the class ac, and every point of ac belongs to ab. With these
assumptions it follows† that, if c, d be any points of ab, then cd and ab
coincide—i.e. any two points of a line determine that line, or two lines
coincide if they have two points in common.

Before proceeding further, let us consider for a moment what is meant by
saying that two points determine a class of points. This expression is often
thought to require no explanation, but as a matter of fact it is not a perfectly
precise statement. The precise statement of what is meant is this: There is a
certain definite relation (K say) which holds between any couple of points
and one and only one corresponding class of points. Without some such
definite relation, there could be no question of two points determining a
class. The relation K may be ultimate and indefinable, in which case we need
the above properties of the class ab. We may obtain, however, a derivative
relation between two points, b and c say, namely that of being both collinear
with a given point a. This relation will be transitive and symmetrical, but will
always involve reference to a term other than those (b and c) which are its
terms. This suggests, as a simplification, that instead of a relation K between a
couple of points and a class of points, we might have a relation R between the
two points a and b. If R be a symmetrical aliorelative, transitive so far as its
being an aliorelative will permit (i.e. if aRb and bRc imply aRc, unless a and c are
identical), the above properties of the straight line will belong to the class of
terms having to a the relation R together with a itself. This view seems simpler
than the former, and leads to the same results. Since the view that the straight
line is derived from a relation of two points is the simpler, I shall in general
adopt it. Any two points a, b have, then, a relation Rab; a, c have a relation Rac. If
Rab and Rac are identical, while b and c differ, Rbc is identical with both Rab and Rac;
if not, not. It is to be observed that the formal properties of any such relation
R are those belonging to the disjunction of an asymmetrical transitive relation
and its converse—e.g. greater or less, before or after, etc. These are all sym-
metrical aliorelatives, and are transitive so far as their being aliorelatives will
permit. But not all relations of the type in question are analysable into a
transitive asymmetrical relation or its converse; for diversity, which is of the

* In what follows, I am mainly indebted to Pieri, I Principii della Geometria di Posizione. Turin, 1898.
This is, in my opinion, the best work on the present subject.
† Pieri, op. cit. § 1, prop. 25.
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above type, is not so analysable. Hence to assume that the straight line can be
generated by an asymmetrical relation and its converse is a new assumption,
characteristic of what I shall call Descriptive Geometry. For the present, such
an assumption would be out of place. We have, then, two indefinables,
namely point, and the relation R or K.* No others are required in projective
space.

364. The next point is the definition of the plane. It is one of the merits
of projective space that, unlike other spaces, it allows a very simple and easy
definition of the plane. For this purpose, we need a new axiom, namely: If a, b
be two distinct points, there is at least one point not belonging to ab. Let
this be c. Then the plane is the class of points lying on any line determined by
c and any point x of ab. That is, if x be any point of ab, and y any point of cx,
then y is a point of the plane cab; and if y be a point of the plane cab, then there
is some point x in ab such that y is a point of cx. It is to be observed that this
definition will not apply to the Euclidean or hyperbolic plane, since in these
two lines may fail to intersect. The exclusion of Euclidean and hyperbolic
space results from the following axiom:† “If a, b, c be three non-collinear
points, and a'  be a point of bc other than b and c, b'  a point of ac other than a
and c, then there is a point common to aa'  and bb' .” By means of this axiom we
can prove that the plane cab is the same as the plane abc or bac, and generally
that, if d, e, f be any three non-collinear points of abc, the plane def coincides
with the plane abc; we can also show that any two lines in a plane intersect.

365. We can now proceed to the harmonic range and von Staudt’s quad-
rilateral construction. Given three collinear points a, b, c take any two points u,
v collinear with c but not on ab. Construct the points of intersection au . bv and
av . bu; join these points, and let the line joining them meet ab in d. This
construction is called the quadrilateral construction. If we now assume that
outside the plane abu there is at least one point, we can prove that the point d
is independent of u and v, and is uniquely determined by a, b, c. The point d is
called the harmonic of c with respect to a and b, and the four points are said to
form a harmonic range. The uniqueness‡ of the above construction—the
proof of which, it should be observed, requires a point not in the plane of
the construction§—is the fundamental proposition of projective Geometry.
It gives a relation which may hold between four points of a line, and which,
when two are given, is one-one as regards the other two. Denoting “c and d

* We shall see in Chap. 49 that these notions, which are here provisionally undefined, are
themselves variable members of definable classes.
† Pieri, op. cit, § 3, p. 9.
‡ The proof of the uniqueness of the quadrilateral construction will be found in any text-book of
Projective Geometry, e.g. in Cremona’s (Oxford 1893), Chap. .
§ A proof that this proposition requires three dimensions is easily derivable from a theorem
given by Hilbert, Grundlagen der Geometrie, p. 51 (Gauss-Weber Festschrift, Leipzig, 1899).
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are harmonic with respect to a and b” by cHabd, the following properties of the
relation are important: (1) cHabd implies dHabc, i.e. Hab is symmetrical; (2) cHabd
implies aHcdb, i.e. the relation of the pairs ab, cd is symmetrical; (3) cHabd
implies that c and d are different points, i.e. Hab is an aliorelative. This last
property is independent of the others, and has to be introduced by an
axiom.*

Having obtained the harmonic range, we may proceed in two different
directions. We may regard the harmonic relation as a relation of two pairs of
points: hence, by keeping one of the pairs fixed, we obtain what is called an
involution. Or we may regard the harmonic relation, as in the symbol cHabd, as
a relation between two points, which involves a reference to two others. In
this way, regarding a, b, c, as fixed, we obtain three new points d, e, f on the
line ab by the relations cHabd, aHbce, bHacf. Each of these may be used, with two of
the previous points, to determine a fourth point, and so on. This leads to
what Möbius† calls a net, and forms the method by which Klein‡ introduces
projective coordinates. This construction gives also the method of defining
an harmonic ratio. These two directions in which projective Geometry may
be developed must be separately pursued to begin with. I shall take the
former first.

366. By means of the harmonic relation, we define an involution. This
consists of all pairs of points which are harmonic conjugates with respect to
two fixed points.§ That is to say, if a, b be the two fixed points, an involution is
composed of all pairs of points x, y such that xHaby. If four points x, y, x' , y'  be
given, it may or may not happen that there exist two points a, b such that xHaby
and x'  Haby' . The possibility of finding such points a, b constitutes a certain
relation of x, y to x' , y' . It is plain that this relation sometimes holds, for it
holds when x, y are respectively identical with x' , y' . It is plain also that it
sometimes does not hold; for if x and y be identical, but not x'  and y' , then the
relation is impossible. Pieri¶ has shown how, by means of certain axioms, this
relation of four terms may be used to divide the straight line into two seg-
ments with respect to any two of its points, and to generate an order of all the
points on a line. (It must be borne in mind that, in projective Geometry, the

* See Fano, Giornale di Matimatiche, Vol. 30; Pieri, op. cit. § 4, p. 17 and Appendix. Fano has proved
the necessity of the above axiom in the only conclusive manner, by constructing a system
satisfying all the previous axioms, but not this one. The discovery of its necessity is due to him.
A simpler but equivalent axiom is that our space contains at least one line on which there are
more than three points.
† Barycentrischer Calcul, Section , Chap. .
‡ Math. Anna·len, 4, 6, 7, 37; Vorlesungen über nicht-Euklidische Geometrie, Göttingen, 1893, Vol. , p. 308 ff.
§ In what follows, only involutions with real double points are in question.
¶ Op. cit. §§ 5, 6, 7. Pieri’s method was presumably suggested by von Staudt. Cf. Geometrie der
Lage, § 16: especially No. 216.
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points of a line do not have an order to begin with.) This projective order is
obtained as follows.

367. Given any three different points a, b, c on a line, consider the class of
points x such that a and c, b and x are each harmonic conjugates with respect
to some pair of points y, y'—in other words, a and c, b and x are pairs in an
involution whose double points are y, y' . Here y, y'  are supposed variable: that
is, if any such points can be found, x is to belong to the class considered. This
class contains the point b, but not a or c. Let us call it the segment (abc). Let us
denote the relation of b to x (a and c being fixed) by bQacx. Then Qac is
symmetrical, and also bQacx implies aQbxc. We have here a relation of four
points, from which, as we saw in Part IV, Chapter 24, an order will result
if certain further axioms are fulfilled. Three such axioms are required, and are
given by Pieri as follows.

(1) If d is on the line ab, but does not belong to the segment (abc), and does
not coincide with a or with c, then d must belong to the segment (bca). (If d
coincides with c, we know already that d belongs to the segment (bca). This
case is therefore excluded from the axiom to avoid a superfluity of assump-
tions.) In virtue of this axiom, if a, b, c, d be distinct points on a line, we must
have either bQacd or cQabd. It follows that we must have either bQacd or aQbcd. Thus
at least two Q-relations hold between any four distinct collinear points. (2) If
a, b, c be distinct collinear points, and d be a point belonging to both the
segments (bca) and (cab), then d cannot belong to the segment (abc). That is,
of the three segments to which d may belong, it never belongs to more than
two. From this and the previous axiom it results that, if d be distinct from a, b
and c, then d belongs to two and only two of the three segments defined by a,
b and c. (3) If a, b, c be distinct collinear points, and d a point, other than b, of
the segment (abc), and e a point of the segment (adc), then e is a point of the
segment (abc). (Here again, the condition that d is to be other than b is
required only to avoid superfluity, not for the truth of the axiom.) In terms of
Q, this axiom states that bQacd and dQace imply bQace; that is, Qac is transitive. We
saw already that Qac is symmetrical. We can now prove that, by means of this
relation, all points of the line except a and c are divided into two classes,
which we may call (ac)1 and (ac)2. Any two points in the same class have the
relation Qac, any two in different classes have not. The division into two classes
results from the fact that, if we do not have bQacd, nor yet dQace (b, d, e being
points other than a and c), then we do have bQace. That is to say, Qac has the
formal properties of sameness of sign, and divides the line into two classes,
just as sameness of sign divides numbers into positive and negative.

The opposite of Qac, which I shall denote by Tac, corresponds in like manner
to difference of sign. Tac is not to denote the mere negation of Qac, but the fact
of belonging to different segments. That is, bTacd means that d does not
coincide with a or c, that d lies in the line ac, but not in the segment (abc).
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Then bTacd may be taken as meaning that b and d are separated by a and c. It is
a relation which has the formal properties of separation of couples, as enu-
merated in Part IV, Chapter 24. If a, b, c, d, e be five distinct points in one
straight line, we have the following properties of the T-relation. (1) bTacd is
equivalent to dTacb, aTbdc, cTbda, cTdba, etc. (2) We have one and only one of the
three relations aTbcd, aTbdc, aTcdb. (3) dTacb implies dTace or eTacb.*

By comparing the above properties of T with those of separation of
couples, it will be seen that T leads to a closed series (in the sense of Part IV),
i.e. to a series in which there is a first term, but this first term is arbitrary. The
definition of the generating relation of the series (which involves, as in the
general case, three fixed points) is given by Pieri as follows. With regard to
the natural order abc, a precedes every other point of the line; c precedes every
point d not belonging to (abc) and not coinciding with a or c, i.e. every point d
such that dTacb; a general point d precedes a general point e if dQacb and eQadc, or
if dTacb and eTadc, i.e. if d belongs to the segment (abc) and e to the segment
(acd), or if b and d are separated by a and c, and likewise c and e by a and d. It is
then shown, that of any two points of the line, one precedes the other, and
that the relation is transitive and asymmetrical; hence all the points of the line
acquire an order.

Having now obtained an order among our points, we can introduce an
axiom of continuity, to which Pieri† gives a form analogous to that of Dede-
kind’s axiom, namely: If any segment (abc) be divided into two parts h and k,
such that, with regard to the order abc, every point of h precedes every point
of k, while h and k each contain at least one point, then there must be in (abc)
at least one point x such that every point of (abc) which precedes x belongs to
h, and every point of (abc) which follows x belongs to k. It follows from this
axiom that every infinite class contained in (abc) and having no last (or first)
term has a limit, which is either a point of (abc) or c (or a); and it is easy to
prove that, when h and k are given, there can be only one such point as x in
the axiom.

By means of the projective segment, it is easy to define triangles and
tetrahedra. Three points determine four triangles, which between them con-
tain all the points of the plane, and have no common points except the angles.
Also we can define harmonic transformations, and prove their properties
without any further axiom.‡ Only one other axiom is required to complete
our Geometry, namely: A plane and a line not in the plane always have a

* This last property affords an instance (almost the only one known to me) where Peirce’s
relative addition occurs outside the Algebra of Relatives. “dTace or eTacb” is the relative sum of Tac

and Tac, if d, e, and b be variable. This property results formally from regarding Tac as the negation
of the transitive relation Qac.
† Op. cit. § 9, p. 7.
‡ These developments will be found in Pieri, loc. cit. §§ 8, 10.
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common point. This amounts to the axiom of three dimensions. Nothing
is altered, in what precedes, by denying it, and proceeding to a space of n
dimensions or of an infinite number of dimensions. This last, in fact, requires
fewer axioms than a space of three dimensions.*

368. Let us now resume the other direction in which projective Geom-
etry may be developed, in which we start from three fixed points on a line,
and examine all the points obtainable from these three by successive quadri-
lateral constructions. We do not here, as in the development we have been
examining, require any new axiom; but there is a corresponding restriction
in the results obtainable. In order to give projective Geometry its fullest
possible development we must combine the results of both directions.

Confining ourselves, to begin with, to one straight line, let us see how to
construct a net and introduce projective coordinates. Denoting by aHbcd, as
before, the proposition “a and d are harmonic conjugates with respect to b
and c”, we can, by the quadrilateral construction, when a, b, c are given,
determine the only point d satisfying this proposition. We next construct the
point e for which bHcde, then f for which dHcef, g for which eHcf g, and so on. In
this way we obtain a progression of points on our line, such that any three
consecutive points, together with c, form a harmonic range. With our former
definition of a segment, all these points will belong to the segments (abc) and
(bca). We may number these points, beginning with a, 0, 1, 2, . . ., n, . . . .
Since c does not belong to the progression, we may assign to it the number
∞.† Consider next the points obtained as follows. Let d'  be such that d'  Habc, let
e'  Had' b, f'  Hae' d' , and so on. We have thus a new progression of points, such that
any three consecutive points together with a form a harmonic range, and
all belonging to the segments (abc), (cab). To these points let us assign the
numbers 1/n in order. Similarly we can construct a progression belonging to
the two segments (cab), (bca), and assign to them the negative integers. By
proceeding in a similar manner with any triad of points so obtained, we can
obtain more and more points. The principle adopted in assigning numbers to
points (a principle which, from our present standpoint, has no motive save
convenience) is the following: if p, q, r be the numbers assigned to three
points already constructed, and s be the number to be assigned to the har-
monic conjugate (supposed not previously constructed) of the q-point with

respect to the p-point and the r-point, then we are to have 
p − q

r − q�
p − s

r − s
= − 1.

* Pieri, § 12.
† We must not assign to c the definite number ω, since we cannot assume, without further
axioms, that c is the limit of our progression. Indeed, so long as we exclude Pieri’s three axioms
above mentioned, we do not know, to begin with, that c has any ordinal relation to the terms of
our progression.
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In this manner, we can find one and only one point of our line for each
rational number, positive or negative.* Thus we obtain a denumerable end-
less compact series of points on our line. Whether these are all the points of
our line or not, we cannot decide without a further axiom. If our line is to be
a continuous series, or a collection of the power of the continuum, we must
of course assume points not obtainable by quadrilateral constructions, how-
ever often repeated, which start with three given elements. But as the defin-
ition of our space is optional, we may, if we like, content ourselves with a
rational space, and introduce an axiom to the effect that all points of our line
can be obtained from three given points.

369. Before proceeding further, it may be well to point out a logical
error, which is very apt to be committed, and has been committed, I think,
even by Klein.† So long as Pieri’s three axioms above enumerated are not
assumed, our points have no order but that which results from the net, whose
construction has just been explained. Hence only rational points (i.e. such as,
starting from three given points, have rational coordinates) can have an order
at all. If there be any other points, there can be no sense in which these can be
limits of series of rational points, nor any reason for assigning irrational
coordinates to them. For a limit and the series which it limits must both
belong to some one series; but in this case, the rational points form the whole
of the series. Hence other points (if there be any) cannot be assigned as limits
of series of rational points. The notion that this can be done springs merely
from the habit of assuming that all the points of a line form a series, without
explicitly stating this or its equivalent as an axiom. Indeed, just as we found
that series of rationals properly have no limit except when they happen to
have a rational limit, so series of points obtainable by the quadrilateral con-
struction will not have limits, quâ terms of the series obtained from the
quadrilateral construction, except where they happen to have a limit within
this series, i.e. when their coordinates have a rational limit. At this point,
therefore, it is highly desirable to introduce Pieri’s three axioms, in virtue of
which all the points of a line have an order. We shall find that, in the natural
order cab, the order of the rational points, resulting from Pieri’s axioms, is
the same as that of their coordinates assigned on the above principle.‡ Thus
we have only to assume that all infinite series of rational points have limits,
as parts of Pieri’s series, and that all points are either rational or limits of
rational series, in order to show that our straight line has continuity in

* On this subject, see Klein, Vorlesungen über nicht-Euklidische Geometrie, p. 338 ff., where proofs will be
found.
† e.g. Op. cit. p. 344.
‡ This has the one exception that e came last in the order of the quadrilateral constructions, and
comes first in Pieri’s order. This may be remedied by the simple device of giving c the coordinate
− ∞ instead of ∞.
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Cantor’s sense. In this case we shall assign to non-rational points the
irrational numbers corresponding to the series which such points limit.

370. Returning now to the quadrilateral construction, we define as the
anharmonie ratio of four points whose coordinates are p, q, r, s the number
p − q

r − q�
p − s

r − s
. It can be shown that this number is independent of the choice of

our three original points a, b, c. It expresses the series of quadrilateral con-
structions required to obtain s when p, q, r are given, and thus expresses a
purely projective relation of the four points. By the introduction of irrational
points, in the manner just explained, it follows that any four points on a line
have an anharmonic ratio. (This cannot possibly be proved without Pieri’s
three axioms or some equivalent to them.) The anharmonic ratio is unaltered
by any linear transformation, i.e. by substituting for every point x the point
whose coordinate is (αx + β )/(γx + δ ), where α, β , γ, δ are any fixed numbers

such that αδ − βγ is not zero. From this point we can at last advance to what
was formerly the beginning of projective Geometry, namely the operation of
projection, to which it owes its name.

It can be shown that, if p, r be harmonic conjugates with respect to q, s, and
p, q, r, s be joined to some point o, and if op, oq, or, os meet any line in p' , q' , r' , s' ,
then p' , r'  are harmonic conjugates with respect to q' , s' . Hence we can show
that all anharmonic ratios are unaltered by the above operation. Similarly if
l be any straight line not coplanar with pqrs, and the planes lp, lq, lr, ls meet any
line not coplanar with l in p' , q' , r' , s' , these four points will have the same
anharmonic ratio as p, q, r, s. These facts are expressed by saying that anhar-
monic ratio is unaltered by projection. From this point we can proceed to the
assignment of coordinates to any point in space.*

371. To begin with a plane, take three points a, b, c not in one straight
line, and assign coordinates in the above manner to the points of ab, ac. Let p
be any point of the plane abc, but not on the line bc. Then if cp meets ab in p1,
and bp meets ac in p2, and x, y are the coordinates of p1, p2 respectively, let (x, y)
be the two coordinates of p. In this way all points of the plane not on bc
acquire coordinates. To avoid this restriction, let us introduce three homo-
geneous coordinates, as follows. Take any four points a, b, c, e in a plane, no
three of which are collinear; let ae meet bc in e1, be meet ca in e2, ce meet ab in e3.
Assign coordinates to the points of bc, ca, ab as before, giving the coordinate
1 to e1, e2, e3, and in ab giving 0 to a, and ∞ to b, and similarly for the other
sides. In place of the single coordinate x of any point of bc, let us introduce the
homogeneous coordinates x2, x3, where x = x2/x3. If now p be any point of the
plane abc, let ap meet bc in p1, bp meet ca in p2, and cp meet ab in p3. Let x2, x3 be

* See Pasch, Neuere Geometrie, § 22; Klein, Math. Annalen, 37.
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the homogeneous coordinates of p1, x3, x1 those of p2; then x1, x2 will be those
of p3.* Hence we may assign x1, x2, x3 as homogeneous coordinates of p. In like
manner we can assign four homogeneous coordinates to any point of space.
We can also assign coordinates to the lines through a point, or the planes
through a line, or all the planes of space, by means of the anharmonic ratios
of lines and planes.† It is easy to show that, in point-coordinates, a plane has
a linear equation, and a linear equation represents a plane; and that, in plane-
coordinates, a point has a linear equation, and a linear equation represents
a point. Thus we secure all the advantages of analytical Geometry. From this
point onwards, the subject is purely technical, and ceases to have philosophic
interest.

372. It is now time to ask ourselves what portions of the Geometry to
which we are accustomed are not included in projective Geometry. In the
first place, the series of points on a line, being obtained from a four-term
relation, is closed in the sense of Part IV. That is, the order of points requires
three fixed points to be given before it can be defined. The practical effect of
this is, that given only three points on a line, no one of them is between
the other two. This is a definite difference between projective space and
Euclidean or hyperbolic space. But it is easy to exaggerate this difference. We
saw in Part IV that, wherever a series is generated by a two-term relation,
there is also the four-term relation of separation of couples, by which we can
generate a closed series consisting of the same terms. Hence in this respect
the difference does not amount to an inconsistency. Euclidean and hyperbolic
spaces contain what projective space contains, and something more besides.
We saw that the relation by which the projective straight line is defined has
the formal properties of “P or P̆”, where P is transitive and asymmetrical.
If the said relation be actually of this form, we shall have an open series with
respect to P, and of three collinear points one will be between the other two.
It is to be observed that, where the straight line is taken to be essentially
closed, as in elliptic space, between must be excluded where three points only
are given. Hence elliptic space, in this respect, is not only consistent with the
projective axioms, but contains nothing more than they do.

It is when we come to the plane that actual inconsistencies arise between
projective Geometry and Euclidean or hyperbolic Geometry. In projective
space, any two lines in a plane interesect; in the Euclidean and hyperbolic
Geometries, this does not occur. In elliptic Geometry, any two lines in a plane
intersect; but in the antipodal form they intersect twice. Thus only the polar
form wholly satisfies the projective axioms. Analogous considerations apply

* See Pasch, loc. cit.
† The anharmonic ratio of four lines through a point or of four planes through a line is that of
the four points in which they meet any line.
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to the intersection of two planes, or of a line and a plane. These differences
render the projective definition of a plane inapplicable to Euclidean and
hyperbolic spaces, and render the theory of these spaces far more complicated
than that of projective space.

Finally, in metrical Geometry it is assumed either that two points have a
quantitative relation called distance, which is determined when the points are
given, or that stretches satisfy axioms in virtue of which their divisibilities
become numerically measurable. In this point, even elliptic space differs from
projective space, though the difference is of the nature of an addition, not an
inconsistency. But this matter cannot be discussed until we have examined
metrical Geometry, when we shall be in a position to examine also the
projective theory of distance to more advantage than is at present possible.

373. A few words may be added concerning the principle of duality.
This principle states, in three dimensions, that the class of planes is also a
projective space, the intersection of two planes being, as before, the straight
line, and the intersection of three non-collinear planes taking the place of
the point. In n dimensions, similarly, a projective space results from all sub-
classes of (n − 1) dimensions. Such a duality, as we saw in Chapter 44,
belongs always to n-dimensional series as such. It would seem (though this is
only a conjecture) that projective Geometry employs the smallest number of
axioms from which it is possible to generate a series of more than two
dimensions, and that projective duality therefore flows from that of dimen-
sions in general. Other spaces have properties additional to those required to
make them n-dimensional series, and in other spaces, accordingly, duality is
liable to various limitations.

398 principles of mathematics



46
DESCRIPTIVE GEOMETRY

374. T subject which I have called descriptive Geometry is not, as a
rule, sharply distinguished from projective Geometry. These two terms, and
the term “Geometry of Position”, are commonly used as synonyms. But it
seems improper to include in projective Geometry any property which is not
unaltered by projection, and it is by the introduction of one such property
that I wish to define the subject of the present chapter. We have seen that, in
projective space, three points on a line are not such that a definite one of
them is between the other two. The simplest possible proposition involving
between, in projective Geometry, requires four points, and is as follows: “If a, b,
c be distinct collinear points, and d is on ac, but does not belong to the
segment (abc), nor yet coincide with a or c, then, with regard to the order abc,
c is between b and d.” When we reflect that the definition of the segment (abc)
involves the quadrilateral construction—which demands, for its proof, a
point outside its own plane, and four pairs of triangles in perspective—we
shall admit that the projective method of generating order is somewhat com-
plicated. But at any rate the ordinal propositions which result are unaltered by
projection. The elementary sense of between, on the contrary, which is to be
introduced in the present chapter, is in general not unaltered by projection.*

* The present subject is admirably set forth by Pasch, Neuere Geometrie, Leipzig, 1882, with whose
empirical pseudo-philosophical reasons for preferring it to projective Geometry, however, I by
no means agree (see Einleitung and § 1). It is carried further, especially as regards the definition of
the plane, by Peano, I Principii di Geometria logicamente esposti, Turin, 1889. For the definition of the
whole line by means of its various segments, see Peano’s note in Rivista di Matematica, , pp. 58–62.
See also his article “Sui fondamenti della Geometria”, ib. , p. 51 ff., and Vailati, “Sui Principi
fondamentali della Geometria della retta”, Riv. d. Mat., , pp. 71–75. Whatever, in the following
pages, is not controversial, will be found in the above sources.



In descriptive Geometry, we start, as before, with points, and as before, any
two points determine a class of points. But this class now consists only of the
points between the two given points. What is to be understood by between is not
explained by any writer on this subject except Vailati, in terms of a transitive
asymmetrical relation of two points; and Vailati’s explanation is condemned
by Peano,* on the ground that between is a relation of three points, not of two
only. This ground, as we know from Part IV, is inadequate and even irrelevant.
But on the subject of relations, even the best mathematicians go astray, for
want, I think, of familiarity with the Logic of Relations. In the present case,
as in that of projective Geometry, we may start either with a relation of
two points, or with a relation between a pair and a class of points: either
method is equally legitimate, and leads to the same results, but the former
is far simpler. Let us examine first the method of Pasch and Peano, then that
of Vailati.

375. We start, in the former method, with two indefinables, point and
between. If a, b, c be three points, and c is between a and b, we say that c is an ab,
or belongs to the class of points ab. Professor Peano has enumerated, with his
usual care, the postulates required as regards the class ab.† In the first place,
the points a and b must be distinct, and when they are so, there always is
a point between them. If c is between a and b, it is also between b and a: a itself
(and therefore b) is not between a and b. We now introduce a new definition.
If a, b be any two distinct points, then a' b is the class of all points c such that b
is between a and c. Similarly b' a will be the class of points d such that a is
between b and d. We then proceed to new postulates. If a and b be distinct
points, a' b must contain at least one point. If a, b, c, d be points, and c is
between a and d, b between a and c, then b is between a and d. If b and c be
between a and d, b is between a and c, or identical with c, or between c and d. If
c, d belong to a' b, then either c and d are identical, or c is between b and d, or d
is between b and c. If b is between a and c, and c is between b and d, then c is
between a and d. This makes in all nine postulates with regard to between. Peano
confesses‡ that he is unable to prove that all of them are independent: hence
they are only shown to be sufficient, not necessary. The complete straight line
(ab) is defined as b' a and a and ab and b and a' b; that is, (1) points between
which and b the point a lies; (2) the point a; (3) points between a and
b; (4) the point b; (5) points between which and a the point b lies.

Concerning this method, we may observe to begin with that it is very
complicated. In the second place, we must remark, as before, that the phrase
“two points determine a class of points” must be expanded as follows: “There is

* Riv. di Mat. , p. 62.
† lb. , p. 55 ff.
‡ lb. p. 62.
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a certain specific relation K, to whose domain belongs every couple of distinct
points. K is a many-one relation, and the relatum, corresponding to a couple
of points as referent, is a class of points.” In the third place, we may observe
that the points of the line only acquire order by relation to the segments
which they terminate, and that these acquire order by the relation of whole
and part, or logical inclusion. Let a, b be any two points, and consider the class
of points ab or b or a' b. Let c, d be any two distinct points of this class. Then
either ac is a proper part of ad, or ad is a proper part of ac. Here ac and ad may be
called segments, and we see that segments whose origin is a and whose limits
belong to ab or b or a' b form a series in virtue of the transitive asymmetrical
relation of whole and part. By correlation with these segments, their extrem-
ities also acquire an order; and it is easy to prove that this order is unchanged
when we substitute for a any point of ab' . But the order still results, as it always
must, from a transitive asymmetrical relation of two terms, and nothing is
gained by not admitting such a relation immediately between points.

376. Passing now to what I have called Vailati’s theory, we find a very
great simplification. We may state the present theory (which is not in every
detail identical with that of Vailati) as follows. There is a certain class, which
we will call K, of transitive asymmetrical relations. Between any two points
there is one and only one relation of the class K. If R be a relation of the class
K, R̆ is also a relation of this class. Every such relation R defines a straight line;
that is, if a, b be two points such that aRb, then a belongs to the straight line ρ.
(I use the corresponding Greek letter to denote the domain of a relation; thus
if S be a relation, σ is the class of terms having the relation S to some term or
other.) If aRb, then there is some point c such that aRc and cRb; also there is
a point d such that bRd. Further, if a, b be any two distinct points belonging to
ρ, then either aRb or bRa. With this apparatus we have all that we require.

We may do well to enumerate formally the above definition of the class K,
or rather the postulates concerning its members—for K itself is not defined. I
may remark to begin with that I define the field of a class of relations as the
logical sum of the fields of the constituent relations; and that, if K be the class,
I denote its field by k. Then the axioms we require are as follows.

(1) There is a class of relations K, whose field is defined to be the class point.
(2) There is at least one point.

If R be any term of K we have,
(3) R is an aliorelative.
(4) R̆ is a term of K.
(5) R2 = R.
(6) ρ̆ (the domain of R̆) is contained in ρ.
(7) Between any two points there is one and only one relation of the class K.
(8) If a, b be points of ρ, then either aRb or bRa.
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The mutual independence of these axioms is easy to see. But let us first
briefly sketch the proof that they give all the required results. Since there is,
by (2), at least one point, and since by (1) this point has some relation of the
class K, and since by (3) all relations of the class K are aliorelatives, it follows
that there is some term, other than the one point, to which this one point has
a relation R of the class K. But since R̆, by (4), is a relation of the class K, it
follows that the term to which the one point is so related is also a point.
Hence there are at least two distinct points. Let a, b be two distinct points, and
let R be the one relation of the class K between a and b. Thus we have aRb. But
we do not have bRa, for if we did, since R2 = R, by (5), we should have aRa,
which contradicts (3). Thus R and R̆ are always different, i.e. each is asym-
metrical. Since R2 = R, aRb and bRc imply aRc, i.e. R is transitive. Hence the
points which have to a the relation R or R̆, together with a itself, form a series.
Since R = R2, aRb implies that there is some point c such that aRc, cRb; i.e. the
series generated by R is compact. Since, by (6), ρ̆ is contained in ρ, aRb implies
that there is some point c such that bRc. Applying the same argument to
R̆, there is a point d such that dRa. Thus we have ρ = ρ, and the field of R has no
beginning or end. By (8), the field of R is what, in Part IV, we called a
connected series, that is, it does not fall apart into two or more detached
portions, but of any two of its terms one is before and the other after. By (7),
if there be more than one relation of the class K, the fields of two such
relations cannot, unless one is the converse of the other, have more than one
point in common. The field of one relation of the class K is called a straight line;
and thus (7) assures us that two straight lines have at most one common
point, while (8) assures us that, if ab, cd be the same line, so are ac and bd. Thus
it is proved that our axioms are sufficient for the geometry of a line, while
(7) goes beyond a single line, but is inserted here because it does not imply
the existence of points outside a single line, or of more than one relation of the
class K. It is most important to observe that, in the above enumeration of
fundamentals, there is only one indefinable, namely K, not two as in Peano’s
system.

377. With regard to the mutual independence of the axioms, it is to
be observed that (1) is not properly an axiom, but the assumption of our
indefinable K. (2) may obviously be denied while all the others are main-
tained. If (3) be denied, and R be taken to be the symmetrical relation of
projective Geometry, together with identity with some term of ρ, we obtain
projective Geometry, which is different from the present system, but self-
consistent. If (4) be denied, all the rest can be maintained; the only difficulty
is as regards (7), for if aRb, and R̆ is not a term of K, b will not have to a any
relation of the class K, unless indeed it has one which is not R̆, which seems to
be not contradictory. As regards (5), we may deny either that R is contained
in R2, or that R2 is contained in R. To deny the former makes our series not
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compact, to which there is no logical objection. The latter, but not the former,
is false as regards angles,* which can be made to satisfy all the other axioms
here laid down. (6) will become false if our lines have last terms: thus the
space on the left of a plane, together with this plane, will satisfy all the axioms
except (6). As regards (7), it is plainly independent of all the rest; it consists
of two parts, (a) the assertion that between any two points there is at least one
relation of the class K, (b) the assertion that there is not more than one such
relation between two given points. If we consider a Euclidean and a hyper-
bolic space together, all the axioms will be true except (a). If we combine
two different classes K1, K2 of relations of the above kind, such that k1 = k2, (b)
alone will be false. Nevertheless it seems plain that (b) cannot be deduced
from the other axioms. As regards (8), it alone is false if we take for K the class
of directions in Euclidean space, in which a set of parallel lines all have the
same direction. Thus the necessity of all except one of our axioms is strictly
proved, and that of this one is highly probable.

378. We saw that the above method enabled us to content ourselves with
one indefinable, namely the class of relations K. But we may go further, and
dispense altogether with indefinables. The axioms concerning the class K
were all capable of statement in terms of the logic of relations. Hence we can
define a class C of classes of relations, such that every member of C is a class of
relations satisfying our axioms. The axioms then become parts of a definition,
and we have neither indefinables nor axioms. If K be any member of the class
C, and k be the field of K, then k is a descriptive space, and every term of k is a
descriptive point. Here every concept is defined in terms of general logical
concepts. The same method can be applied to projective space, or to any other
mathematical entity except the indefinables of logic. This is, indeed, though
grammatically inconvenient, the true way, philosophically speaking, to define
mathematical notions. Outside logic, indefinables and primitive propositions
are not required by pure mathematics, and should therefore, strictly speaking,
not be introduced. This subject will be resumed in Chapter 49.

379. The two ways of defining the straight line—that of Pasch and
Peano, and that which I have just explained—seem equally legitimate, and
lead to the same consequences. The choice between them is therefore of
no mathematical importance. The two methods agree in enabling us, in terms
of two points only, to define three parts of a straight line, namely the part
before a (b' a), the part between a and b (ab), and the part after b (a' b). This is a
point in which descriptive Geometry differs from projective Geometry: there
we had, with respect to a and b, only two segments of the straight line ab, and
these could not be defined without reference to another point c of the line,
and to the quadrilateral construction.

* See Part IV, chap. 24.
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The straight line may be regarded either as the class of points forming the
field of a relation R, or as this relation itself. For the sake of distinction, it will
be well to call the relation R a ray, since this word suggests a sense; R̆ will then
be the opposite ray. In considering a number of lines all passing through one
point O, it will be well to give the name of ray also to the class of points to
which O has some relation R, i.e. to those points of a line through O which lie
on one side of O. Those on the other side of O will then be the opposite ray.
The context will show in which sense the word is used.

380. I come now to the plane. Easy as it is to define the plane in projective
space, its definition when the line is not a closed series, or rather, when we
wish to call coplanar some pairs of lines which do not intersect, is a matter of
some difficulty. Pasch* takes the plane, or rather a finite portion of the plane,
as a new indefinable. It is, however, capable of definition, as, following Peano,
I shall now show.

We need, to begin with, some new axioms. First, if ρ be any straight line,
there is at least one point not belonging to ρ. Next, if a, b, c be three points not
in one straight line, and d be a point of bc between b and c, e a point of ad
between a and d, then be will meet ac in a point f and e will be between b and f, f
between a and c. Again, a, b, c, d being as before, if f be a point between a and c,
then ad and bf will intersect in a point e between a and d and between b and f.†
We now define what may be regarded as the product (in a geometrical sense)
of a point and a figure. If a be any point, and k any figure, ak is to denote the
points which lie on the various segments between a and the points of k. That
is, if p be any point of k, and x any point of the segment ap, then x belongs to
the class ak. This definition may be applied even when a is a point of k, and k is
a straight line or part of one. The figure ak will then be the whole line or some
continuous portion of it. Peano now proves, by purely logical transform-
ations, that, if a, b, c be distinct non-collinear points, a (bc) = b (ac). This figure
is called the triangle abc, and is thus wholly determined by its three defining
points. It is also shown that, if p, q be points of the segments ab, ac respectively,
the segment pq is wholly contained in the triangle abc. After some more
theorems, we come to a new definition. If a be a point, and k any figure (i.e.
class of points), a' k is to denote all the points between which and a lies some
point of k, that is, as Peano remarks, the whole shadow of k if a be an illumin-
ated point. Thus if a, b, c be non-collinear points, a'  (bc) will represent the class
of points beyond bc and bounded by ab, ac produced. This enables us to define
the plane (abc) as consisting of the straight lines bc, ca, ab, the triangle abc and

* Op. cit. § 2.
† Riv. di Mat., , p. 64.
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the figures a' bc, b' ca, c' ab, b' c' a, c' a' b, a' b' c.* It is then easy to show that any other
three points of the plane define the same plane, and that the line joining two
points of a plane lies wholly in the plane. But in place of the proposition that
any two lines in a plane intersect, we have a more complicated proposition,
namely: If a, b, c, d be coplanar points, no three of which are collinear, then
either the lines ab, cd intersect, or ac, bd do so, or ad, bc do so.

381. Having successfully defined the plane, we can now advance to solid
Geometry. For this we need, to begin with, the axiom: Given any plane, there
is at least one point outside the plane. We can then define a tetrahedron
exactly as we defined a triangle. But in order to know that two planes, which
have a point in common, have a line in common, we need a new axiom,
which shows that the space we are dealing with has three dimensions. In
projective space, this axiom was simply that a line and a plane always have at
least one point in common. But here, no such simple axiom holds. The
following is given by Peano (loc. cit. p. 74): If p be a plane, and a a point not on
p, and b a point of a' p (i.e. a point such that the segment ab contains a point of
p, or, in common language, a point on the other side of the plane from a),
then if x be any point, either x lies on the plane, or the segment ax contains a
point of the plane, or else the segment bx contains a point of the plane. By
adding to this, finally, an axiom of continuity, we have all the apparatus of
three-dimensional descriptive Geometry.†

382. Descriptive Geometry, as above defined, applies equally to Euclidean
and to hyperbolic space: none of the axioms mentioned discriminate
between these two. Elliptic space, on the contrary, which was included in
projective Geometry, is here excluded. It is impossible, or rather, it has hith-
erto proved so, to set up a general set of axioms which will lead to a general
Geometry applying to all three spaces, for at some point our axioms must
lead to either an open or a closed series of points on a line. Such a general
Geometry can be constructed symbolically, but this results from giving dif-
ferent interpretations to our symbols, the indefinables in one interpretation
being definable in another, and vice versá. This will become plain by examining
the method in which projective Geometry is made applicable to the space
above defined, which, for want of a better name, I shall call descriptive space.

383. When we try to apply projective Geometry to descriptive space, we
are met by the difficulty that some of the points required in a construction

* The figure b' (c' a), or b' c' a, represents the angle between ba and ca both produced, as may be seen
from the definition.
† I confine myself as a rule to three dimensions, since a further extension has little theoretic
interest. Three dimensions are far more interesting than two, because, as we have seen, the
greater part of projective Geometry—i.e. everything dependent upon the quadrilateral construc-
tion—is impossible with less than three dimensions, unless the uniqueness of the quadrilateral
construction be taken as an axiom.
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may not exist. Thus in the quadrilateral construction, given three points a, b,
c, the fourth point d may not exist at all. We can prove as before that, if it
exists, it is unique, and so with other projective propositions: they become
hypothetical, since the construction indicated is not always possible. This has
led to the introduction of what are called ideal elements (points, lines and
planes), by means of which it becomes possible to state our projective the-
orems generally. These ideal elements have a certain analogy to complex
numbers in Algebra—an analogy which in analytical Geometry becomes
very close. Before explaining in detail how these elements are introduced, it
may be well to state the logical nature of the process. By means of the points,
lines and planes of descriptive Geometry, we define a new set of entities,
some of which correspond (i.e. have a one-one relation) to our points, lines
and planes respectively, while others do not. These new entities we call ideal
points, lines and planes; and we find that they have all the properties of
projective points, lines and planes. Hence they constitute a projective space,
and all projective propositions apply to them. Since our ideal elements are
defined by means of the elements of descriptive space, projective proposi-
tions concerning these ideal elements are theorems concerning descriptive
space, though not concerning its actual points, lines and planes. Pasch, who
has given the best account of the way in which ideal elements are to be
defined,* has not perceived (or, at any rate, does not state) that no ideal point
is an actual point, even where it has a one-one relation to an actual point, and
that the same holds of lines and planes. This is exactly the same remark as we
have had to make concerning rationals, positive numbers, real numbers and
complex numbers, all of which are supposed, by the mathematician, to con-
tain the cardinals or the ordinals, whereas no one of them can ever be one of
the cardinals or ordinals. So here, an ideal element is never identical with an
actual point, line or plane. If this be borne in mind, the air of magic which
surrounds the usual expositions disappears.

384. An ideal point is defined as follows. Consider first the class of all
the lines passing through some point, called the vertex. This class of lines is
called a sheaf of lines (Strahlenbündel). A sheaf so defined has certain properties
which can be stated without reference to the vertex.† Such are, for example,
the following: Through any point (other than the vertex) there is one and
only one line of the sheaf; and any two lines of the sheaf are coplanar. All the
properties of a sheaf, which can be stated without reference to the vertex, are
found to belong to certain classes of lines having no vertex, and such that no
two of the class intersect. For these a simple construction can be given, as

* Op. cit. §§ 6–8.
† These are enumerated by Killing, Grundlagen der Geometrie, Vol.  (Paderborn, 1898), p. 82.
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follows.* Let l, m be any two lines in one plane, A any point not in this plane.
Then the planes Al, Am have a line in common. The class of such lines, for all
possible points A outside the plane lm, has the properties above alluded to,
and the word sheaf is extended to all classes of lines so defined. It is plain that
if l, m intersect, the sheaf has a vertex; if not, it has none. Thus, in Euclidean
space, all the lines parallel to a given line form a sheaf which has no vertex.
When our sheaf has no vertex, we define an ideal point by means of the sheaf.
But this must not be supposed to be really a point: it is merely another name
for the sheaf itself, and so, when our sheaf has a vertex, if we are to make
propositions in which ideal points occur, we must substitute the sheaf for its
vertex. That is, an ideal point is simply a sheaf, and no sheaf is an actual point.

Concerning sheaves of lines we may observe the following points. Any two
straight lines in one plane uniquely determine a sheaf. Two sheaves both
having a vertex always determine a line, namely that joining the vertices,
which is common to both sheaves. Three sheaves, of which one at least has a
vertex, determine a plane, unless they are collinear. A line and a plane always
have a common sheaf, and so have three planes of which two at least have a
common point.

385. Thus sheaves of lines have some projective properties, in relation to
lines and planes, which are lacking to points. In order to obtain entities with
further projective properties, we must, to begin with, replace our lines by
ideal lines. For this purpose we must first define pencils of planes (axial
pencils, Ebenenbüschel). An axial pencil consists, in the first instance, of all the
planes through a given straight line, called the axis. But as in the case of
sheaves, it is found that such a figure has many properties independent of the
axis, and that these properties all belong to certain other classes of planes, to
which the name of pencil is therefore extended. These figures are defined as
follows.† Let A, B be two sheaves of lines. Let D be a point not on the line (if
there be one) common to the two sheaves A, B. Then A, B, D determine
uniquely a plane, which we may call ABD, or P (say). This will be the plane
containing those lines of A and B that pass through D. Any other point E, not
in the plane P, will determine a different plane ABE, or Q. The class of planes
so obtained, by varying D or E, is a pencil of planes, and has all the properties
of a pencil having a real axis, except those in which the axis is explicitly
mentioned. Any two planes P and Q belonging to the pencil completely
determine it. Moreover, in place of A and B above, we may substitute any
other sheaves of lines A' , B' , belonging to both P and Q. (A sheaf belongs to a
plane when one of its lines lies in the plane.) Any two sheaves belonging to
both P and Q will serve to define the pencil of planes, and will belong to every

* Pasch, op. cit. § 5.
† Pasch, op. cit. § 7.
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plane of the pencil. Hence if, in place of actual points, we substitute ideal
points, i.e. sheaves of lines, every pencil of planes has an axis, consisting of
a certain collection of sheaves of lines, any two of which define the pencil.
This collection of sheaves is called an ideal line.*

386. Substituting ideal points and lines for actual ones, we find that we
have now made a further advance towards projective space. Two ideal points
determine one and only one ideal line; a given plane is determined by any
three of its ideal points which do not belong to one ideal line, but three ideal
points do not always determine a plane. Two ideal lines in a plane always have
a common ideal point, and so have a plane and an ideal line. Also two planes
always have a common ideal line, and three planes always have either a
common ideal point or a common ideal line. The only point where our space
is not strictly projective is in regard to planes. There is a plane through any
two ideal points and one actual point, or through an ideal point and an actual
line. If there is a plane at all through three non-collinear ideal points, or
through an ideal line and an ideal point not on the line, then there is only one
such plane; but in some cases there is no such plane. To remedy this, we must
introduce one more new class of entities, namely ideal planes.

The definition of ideal planes† is comparatively simple. If A, B, C be any
three ideal points, D an ideal point on the ideal line AB, and E on AC, then the
ideal line DE has an ideal point in common with BC, whether there be an
actual plane determined by A, B, C or not. Thus if B, C, D be any three ideal
points, and E any other ideal point such that BD, CE intersect, then BC, DE
intersect, and so do BE, CD. Hence, if B, C, D be not collinear, we define the
ideal plane BCD as that class of ideal points E which are such that the ideal
lines BD, CE intersect.

For the sake of clearness, let us repeat this definition in terms of our
original points, lines and planes, without the use of the word ideal. Given
three sheaves of lines B, C, D, which are not all contained in a common pencil
of planes, let E be another sheaf of lines such that there is a sheaf of lines
common to the two pencils of planes BD, CE. Then the class of all sheaves E
satisfying this condition is called the ideal plane BCD.

The usual properties of planes are easily proved concerning our new ideal
planes, as that any three of their points determine them, that the ideal line
joining two of their ideal points is wholly contained in them, and so forth. In
fact, we find now that the new points, lines and planes constitute a projective
space, with all the properties described in the preceding chapter. The

* For logical purposes, it is better to define the ideal line as the class of ideal points associated
with a sheaf of planes, than as the sheaf itself, for we wish a line to be, as in projective Geometry,
a class of points.
† Pasch, op. cit. § 8.
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elementary order of points on a line, with which we began, has disappeared,
and a new order has to be generated by means of the separation of couples.*
Thus all projective Geometry becomes available; and wherever our ideal
points, lines and planes correspond to actual ones, we have a corresponding
projective proposition concerning the latter.

387. I have explained this development at length, partly because it shows
the very wide applicability of projective Geometry, partly because it affords a
good instance of the emphasis which mathematics lays upon relations. To the
mathematician, it is wholly irrelevant what his entities are, so long as they
have relations of a specified type. It is plain, for example, that an instant is a
very different thing from a point; but to the mathematician as such there is
no relevant distinction between the instants of time and the points on a line.
So in our present instance, the highly complex notion of a sheaf of lines—an
infinite class of infinite classes—is philosophically very widely dissimilar to
the simple notion of a point. But since classes of sheaves can be formed,
having the same relations to their constituent sheaves that projective lines and
planes have to projective points, a sheaf of lines in descriptive space is, for
mathematical purposes, a projective point. It is not, however, even for math-
ematical purposes, a point of descriptive space, and the above transformation
clearly shows that descriptive space is not a species of projective space, but a
radically distinct entity. And this is, for philosophy, the principal result of the
present chapter.

It is a remarkable fact, which the above generation of a projective space
demonstrates, that if we remove from a projective space all the points of a
plane, or all the points on one side of a closed quadric,† the remaining points
form a descriptive space, Euclidean in the first case, hyperbolic in the second.
Yet, in ordinary metrical language, the projective space is finite, while the
part of it which is descriptive is infinite. This illustrates the comparatively
superficial nature of metrical notions.

* See Pasch, op. cit. § 9.
† For the projective definition of a surface of the second order (quadric) in a projective space cf.
Reye, Geometrie der Lage (Hanover, 1868), Part , Lecture . A quadric is closed if there are points
not on it such that all straight lines through them cut the quadric. Such points are within the
quadric.
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47
METRICAL GEOMETRY

388. T subject of the present chapter is elementary Geometry, as
treated by Euclid or by any other author prior to the nineteenth century.
This subject includes the usual analytical Geometry, whether Euclidean or
non-Euclidean; it is distinguished from projective and descriptive Geom-
etry, not by any opposition corresponding to that of Euclid and non-Euclid,
but by its method and its indefinables. The question whether its indefin-
ables can, or cannot, be defined in terms of those of projective and descrip-
tive Geometry, is a very difficult one, which I postpone to the following
chapter. For the present, I shall develop the subject straightforwardly, in a
manner as similar to Euclid’s as is consistent with the requisite generality
and with the avoidance of fallacies. Metrical Geometry is logically sub-
sequent to the two kinds which we have examined, for it necessarily
assumes one or other of these two kinds, to which it merely adds further
specifications. I shall, as a rule, assume descriptive Geometry, mentioning
projective Geometry only in connection with points in which it shows
important metrical differences from descriptive Geometry. In the former
case, all the first twenty-six propositions of Euclid will hold. In the latter,
the first, seventh, sixteenth and seventeenth require modification; for these
propositions assume, in one form or another, that the straight line is not a
closed series. Propositions after the twenty-sixth—or, with a suitable defin-
ition of parallels, after the twenty-eighth—depend, with few exceptions,
upon the postulate of parallels, and are therefore not to be assumed
generally.

389. Since Euclid still has popularly, and even with mathematicians, a
reputation for rigour, in virtue of which his circumlocution and long-
windedness are condoned, it may be worth while to point out, to begin with,



a few of the errors in his first twenty-six propositions.* To begin with the first
proposition. There is no evidence whatever that the circles which we are told
to construct intersect, and if they do not, the whole proposition fails. Euclid’s
problems are often regarded as existence-theorems, and from this point
of view, it is plain, the assumption that the circles in question intersect is
precisely the same as the assumption that there is an equilateral triangle on a
given base. And in elliptic space, where the straight line is a closed series, the
construction fails when the length of the base exceeds half the length of
the whole straight line. As regards the second and third propositions, there is
nothing to be said, except that they are not existence-theorems. The corres-
ponding existence-theorem—i.e. on any straight line, in either direction
from a given point on the line, there is a point whose distance from the given
point is equal to a given distance—is equivalent to the postulate concerning
the circle, and is thus prior to the second and third propositions. With regard
to the fourth, there is a great deal to be said; indeed Euclid’s proof is so bad
that he would have done better to assume this proposition as an axiom.† As
the issues raised by this proof are of great importance, both to mathematics
and to philosophy, I shall set forth its fallacies at some length.

390. The fourth proposition is the first in which Euclid employs the
method of superposition—a method which, since he will make any détour to
avoid it,‡ he evidently dislikes, and rightly, since it has no logical validity,
and strikes every intelligent child as a juggle. In the first place, to speak of
motion implies that our triangles are not spatial, but material. For a point of
space is a position, and can no more change its position than the leopard can
change his spots. The motion of a point of space is a phantom directly
contradictory to the law of identity: it is the supposition that a given point
can be now one point and now another. Hence motion, in the ordinary sense,
is only possible to matter, not to space. But in this case superposition proves
no geometrical property. Suppose that the triangle ABC is by the window, and
the side AB consists of the column of mercury in a thermometer; suppose also
that DEF is by the fire. Let us apply ABC to DEF as Euclid directs, and let AB just
cover DE. Then we are to conclude that ABC and DEF, before the motion, were
equal in all respects. But if we had brought DEF to ABC, no such result would
have followed. But how foolish! I shall be told; of course ABC and DEF are to
be both rigid bodies. Well and good. But two little difficulties remain. In the
first place—and for my opponent, who is an empirical philosopher, this

* Cf. Killing, op. cit. Vol. , Section 5.
† This course is actually adopted, as regards the equality of the remaining angles, by Hilbert,
Grundlagen der Geometrie (Festschrift zur Feier der Enthüllung des Gauss-Weber Denkmals, Leipzig,
1899), p. 12.
‡ Cf. Killing, loc. cit. § 2.
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point is serious—it is as certain as anything can be that there are no rigid
bodies in the universe. In the second place—and if my opponent were not an
empiricist, he would find this objection far more fatal—the meaning of
rigidity presupposes a purely spatial metrical equality, logically independent
of matter. For what is meant by a rigid body? It is one which, throughout a
continuous portion of time, preserves all its metrical properties unchanged.
Hence we incur a most fatally vicious circle if we attempt to define metrical
properties by rigidity. If αβγ be a material triangle, which occupies at one
time the space ABC, at another the space A' B' C' , to say that αβγ is rigid means
that, however the two times be chosen (within some assigned period), the
triangles ABC, A' B' C'  are equal in all respects. If we are to avoid this conclusion,
we must define rigidity in some wholly non-geometrical manner. We may
say, for example, that a rigid body means one which is made of steel, or of
brass. But then it becomes a logical error to regard brass eternal as slave to
mortal rage; and if we define equal spaces as those which can be occupied
by one and the same rigid body, the propositions of metrical Geometry will
be one and all false.

The fact is that motion, as the word is used by geometers, has a meaning
entirely different from that which it has in daily life, just as a variable, in
mathematics, is not something which changes, but is usually, on the con-
trary, something incapable of change. So it is with motion. Motion is a certain
class of one-one relations, each of which has every point of space for its
extension, and each of which has a converse also belonging to the class. That
is, a motion is a one-one relation, in which the referent and the relatum are
both points, and in which every point may appear as referent and again as
relatum. A motion is not this only: on the contrary, it has this further charac-
teristic, that the metrical properties of any class of referents are identical with
those of the corresponding class of relata. This characteristic, together with
the other, defines a motion as used in Geometry, or rather, it defines a motion
or a reflexion; but this point need not be elucidated at present. What is clear
is, that a motion presupposes the existence, in different parts of space, of
figures having the same metrical properties, and cannot be used to define
those properties. And it is this sense of the word motion, not the usual material
sense, which is relevant to Euclid’s use of superposition.

391. Returning now to Euclid’s fourth proposition, we see that the
superposition of ABC on DEF involves the following assumptions. (1) On the
line DE there is a point E, on either side of D, such that DE = AB. This is
provided for by the postulate about the circle. (2) On either side of the ray DE,
there is a ray DF such that the angle EDF is equal to the angle BAC. This is
required for the possibility of a triangle DEF such as the enunciation
demands, but no axiom from which this follows can be found in Euclid. The
problem, to construct an angle EDF equal to BAC, does not occur till I. 23, and

412 principles of mathematics



there I. 4 is used in the proof. Hence the present assumption must be added
to Euclid’s axioms. It now follows that on DF there is a point F such that
DF = AC. Hence the possibility of two such triangles as the enunciation
demands is established. But in order to prove that DEF is equal in all respects
to ABC, we need a further axiom, namely: With one angle at D, one side along
the ray DE, and the other side of the right (or left) of DE, there exists a triangle
which is equal in all respects to the triangle ABC.* This is, in fact, the exact
assumption which is concealed in the method of superposition. With this
assumption, it finally becomes possible to prove that DEF is the triangle
satisfying the above conditions and equal in all respects to ABC.

The next remark concerns I. 6. Here Euclid first employs an axiom of
which he is wholly unconscious, though it is very essential to his system,
namely: If OA, OB, OC be three rays which meet a straight line not passing
through O in A, B, C respectively, and if B be between A and C, then the angle
AOB is less than the angle AOC. This axiom, it will be seen, is not applicable in
projective space, since it presupposes that the line is not a closed series. In I. 7,
if this proposition is to apply to hyperbolic space, we require further the
axiom: If three non-intersecting lines in one plane meet two lines in A, B, C;
A' , B' , C' , respectively; and if B be between A and C; then B'  is between A'  and
C' . Also it may be observed that Euclid gives no definition of the two sides of a
line, a notion which again presupposes that the straight line is not a closed
series. And with regard to angles, I. 7 requires sufficient axioms to show that
they are a series of the kind explained in Part IV, Chapter 24; or else we
must assume the descriptive axiom of the last chapter, to the effect that, if
A, B, C, D be coplanar points, no three of which are collinear, there is a point
common to the stretches AB, CD, or to AC, BD, or to AD, BC. All these assump-
tions will be found implicit in I. 7, as may be seen by attempting a symbolic
proof in which no figure is used.

Similar remarks apply to I. 16. In I. 12 it is assumed that a circle must meet
a line in two points, if at all. But enough has been said to show that Euclid
is not faultless, and that his explicit axioms are very insufficient. Let us, then,
make an independent examination of metrical Geometry.

392. Metrical Geometry is usually said to be distinguished by the intro-
duction of quantity. It is sufficient for the characterization of metrical Geom-
etry to observe that it introduces, between every pair of points, a relation
having certain properties in virtue of which it is numerically measurable—i.e.
such that numbers can be given a one-one correspondence with the various
relations of the class in question. The class of relations is called distance, and
will be regarded, though this is not strictly necessary, as a class of magnitudes.
Some of the properties of distance are as follows.

* See Pasch, op. cit. § 13, Grundsatz . The whole § is excellent.
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(1) Every pair of points has one and only one distance.
(2) Distances are symmetrical relations.
(3) On a given straight line through a given point, there are two and only

two points at a given distance from the given point.
(4) There is no maximum distance.
(5) The distance of a point from itself is zero.*
(6) There is no minimum to the distance between distinct points.
(7) If d, δ be two given distances, and A0, A1, A2, . . . An, . . . be distinct

points on a straight line, whose distances one from the next are all δ, then for
some value of n, A0An is greater than d.

(8) If A0, An be any two points, there exist n − 1 distinct points (whatever
integer n may be) on the straight line A0An, such that the distances of each
from the next, of A0 from the first, and of An from the last, are all equal.†

393. It may be observed that, if we admit the axiom that the whole is
greater than the part, the properties (1), (4), (5) and (6) belong to stretches,
while (2) becomes admissible by abstracting from the sense of a stretch.
With regard to the remaining properties, (3), (7) and (8), there is nothing in
descriptive Geometry to show whether or not they belong to stretches. Hence
we may, if we choose, regard these three properties as axioms regarding
stretches, and drop the word distance altogether. I believe that this represents
the simplest course, and, as regards actual space, the most correct. At the same
time, there is no contradiction in regarding distances as new relations distinct
from stretches.‡ If we identify distance and stretch, what distinguishes met-
rical from descriptive Geometry is primarily the three additional axioms
(3), (7) and (8), applied to a new indefinable, namely, the magnitude of
divisibility of a stretch. This is not properly a notion of pure mathematics,
since it cannot be derived from our original apparatus of logical notions. On
the other hand, distance is not indefinable, being a class of one-one relations
with certain assignable properties. On this point either course is logically
permissible, but only distance can be introduced into pure mathematics in
the strict sense in which the word is used in this work.

The above axioms are required for showing that all distances are numeric-
ally measurable in terms of any standard distance.§ It is not necessary that
distances should be magnitudes, or even relations; all that is essential is that
distances should form a series with certain properties. If the points of a line

* See Part III, Chap. 22.
† Further properties of distance will be added later on.
‡ Stretches are, of course, not properly relations; but this point is irrelevant in the present
discussion.
§ See Part IV, Chap. 31.
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form a continuous series, then distances do so also, in virtue of (3); thus all
signless real numbers will be required for their measurement.

394. Assuming that distance and stretch are distinct, it may be asked
whether distances do not suffice for generating order on the straight line,
without the need of any asymmetrical transitive relation of points. This repre-
sents, I think, the usual view of philosophers; but it is by no means easy to
decide whether it represents a tenable view. It might perhaps be thought that
(2) might be dropped, and distance regarded as an asymmetrical relation. So
long as we confine our attention to one line, this view seems unobjectionable.
But as soon as we consider the fact that distances on different lines may be
equal, we see that the difference of sense between AB and BA is not relevant to
distance, since there is no such difference between distances on different
lines. Thus if CD be a distance on another line, CD may be equal both to AB
and BA, and hence AB and BA must be equal, not opposite, distances. And the
same thing may be made evident by considering a sphere. For this certainly
consists of points at a given distance from the centre; and thus points at
opposite ends of a diameter must have the same distance from the centre.
Distance, then, is symmetrical; but it does not follow that the order on a line
cannot be generated by distance. Let A, B be given points on a line, and let
C, C'  be two points on AB whose distances from A are equal, and less than AB.
If we now set up the axiom that either BC or BC'  is less than AB, while the
other, BC'  or BC, is greater than AB, we shall, I think, after some further
axioms, be able to generate order without any other relation than distance. If
A, B, C be three collinear points such that the distances AC, CB are both less
than AB, then we shall say that C is between A and B. If A, B, C'  be points such
that AC' , AB are both less than BC' , then we shall say that A is between B and
C' . If, finally, A, B, C''  be points such that AB, BC''  are both less than AC'' , we
shall say that B is between A and C'' . It remains to see whether, as the gener-
ation of a series requires, one of these always happens. Let A, B, C be any three
collinear points. First suppose, if possible, that the distances AB, BC, CA are all
equal. This case is not excluded by anything hitherto assumed; we require,
therefore, the further axiom that, if AB, BC be equal, AC is not equal to either
of them; and I think it will be prudent to assume that AC is greater than either.
Thus the case of two equal distances and one less than either is excluded. Of
the three distances AB, BC, AC, therefore, one must be the greatest: let this be
AC. Then in virtue of the definition, B will be between A and C. But our
difficulties are not at an end. For we require further that any point between A
and B shall be between A and C; and that, if A be between D and C, B shall be
between D and C. With regard to the first point, if E be between A and B, AE
and EB are less than AB, and therefore less than AC. But nothing assures us that
EC is less than AC. For this purpose we need a new axiom, which will be just
what we set out to prove, namely: If AE, EB be both less than AB, and AB, BC be

415metrical geometry



both less than AC, then EC is less than AC. Finally, to prove that, if A be
between D and C, and B between A and C, then B is between D and C. Here DA,
AC are less than DC, and AB, BC are less than AC. Hence BC is less than DC; but
nothing proves BD less than DC. For this we shall need a new axiom, and then
at last our order will be definite. But the process, as is evident, is extremely
complicated.

395. Moreover we still need a method of defining the straight line. Pieri
has shown, in an admirable memoir,* how to deduce metrical geometry by
taking point and motion as the only indefinables. In § 390, we objected to the
introduction of motion, as usually effected, on the ground that its definition
presupposes metrical properties; but Pieri escapes this objection by not defin-
ing motion at all, except through the postulates assumed concerning it. The
straight line joining two points is the class of points that are unchanged
by a motion which leaves the two points fixed. The sphere, the plane, per-
pendicularity, the order of points on a line, etc. are easily defined. This
procedure is logically unimpeachable, and is probably the simplest possible
for elementary geometry. But we must now return to the consideration of
other suggested systems.

There is a method, invented by Leibniz† and revived by Frischauf‡ and
Peano,§ in which distance alone is fundamental, and the straight line is
defined by its means. In this method distances are given to begin with as a
class of relations which are the field of a certain transitive asymmetrical
relation (greater and smaller); if we assume this relation to be continuous,
distances will be measurable; all distances have the same domain and
the same converse domain, namely all the points of the space in question; the
locus of points equidistant from two fixed points is called a plane, and the
intersection of two non-coincident planes, when it is not null, is called a
straight line. (The definition of the straight line given by Peano¶ is as follows:
The straight line ab is the class of points x such that any point y, whose
distances from a and b are respectively equal to the distances of x from a and
b, must be coincident with x.) Leibniz, who invented this method, failed,
according to Couturat, to prove that there are straight lines, or that a straight
line is determined by any two of its points. Peano has not, so far as I am
aware, succeeded in proving either of these propositions, but it is of course
possible to introduce them by means of axioms. Frischauf professes to dem-
onstrate them, but his proofs are very informal, and it is difficult to know

* Della geometria elementare como sistema ipotetico deduttico, Turin, 1899.
† Cf. Couturat, La Logique de Leibniz, Paris, 1901, Chap. , esp. p. 420.
‡ Absolute Geometrie nach Johann Bolyai, Anhang.
§ Accademia Reale delle Scienze di Torino, 1902–3, “La Geometria basata sulle idee di punto e distanza”.
¶ loc. cit.
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what axioms he is assuming. In any case, however, the definitions prove that,
by a sufficient use of axioms, it is possible to construct a geometry in which
distance is fundamental, and the straight line derivative. The method is so
complicated as to be not practically desirable; but its logical possibility is
nevertheless important.

396. It is thus plain that the straight line must be independent of dis-
tance, while distance may be independent of the straight line. Taking both as
symmetrical relations, we can, by a very complicated series of axioms, succeed
in generating order on the straight line and in explaining the addition and
measurement of distances. But this complication, in most spaces,* is logically
unnecessary, and is wholly avoided by deriving distances from stretches. We
now start, as in descriptive Geometry, with an asymmetrical transitive rela-
tion by which the straight line is both defined and shown to be a series. We
define as the distance of two points A and B the magnitude of divisibility of the
stretch from A to B or B to A—for divisibility is a signless magnitude. Divisi-
bility being a kind of magnitude, any two distances will be equal or unequal.
As with all divisibilities, the sum of the divisibilities of AB and EF is the
divisibility of the logical sum of the classes AB and EF, provided these classes
have no common part. If they have a common part, we substitute for EF a
stretch E' F'  equal to it and having no part in common with AB. The difference
of the distances AB, EF (supposing AB the greater) is the divisibility of a
stretch CD which, added logically to EF, and having no part in common with
EF, produces a stretch equal to AB. It follows at once that, if A, B, C be
collinear, and B be between A and C, AB + BC = AC and AC − AB = BC. No
further axiom is required for these propositions. For the proposition that, if
AB = A' B' , and CD = C' D' , then AB + CD = A' B' + C' D' , we require only the gen-
eral axiom, applicable to all divisibilities, that the sums of equals are equal.
Thus by the help of the axioms (3), (7), (8) above, we have everything that
is required for the numerical measurement (theoretically speaking) of all
distances in terms of any given distance, and for the proof that change of unit
involves multiplication throughout by a common factor.

397. With regard to magnitude of divisibility, in the sense in which this
is relevant to metrical Geometry, it is important to realize that it is an ordinal
notion, expressing a property of relations, not of their fields. We wish to say
that a stretch of two inches has twice as much divisibility as a stretch of one
inch, and that an area is infinitely more divisible than a stretch. Now, if we are
dealing (as will be assumed in this discussion) with a continuous space, every
stretch, area or volume is a class of 2α0 terms; and considered as a class, it is
the field of an infinite number of relations beside that (or those) belonging to
it in respect of the space we are considering. The habit of allowing the

* The only exceptions known to me are finite spaces of two dimensions. See Chap. 49.
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imagination to dwell upon actual space has made the order of points appear
in some way intrinsic or essential, and not merely relative to one of many
possible ordering relations. But this point of view is not logical: it arises, in
regard to actual space, only from the fact that the generating relations of
actual space have a quite peculiar connection with our perceptions, and,
through the continuity of motion, with time. From the standpoint of logic,
no one of the relations having a given field has any preeminence, and the
points of actual space, like any other class of 2α0 terms, form, with regard to
other sets of generating relations, other sorts of continuous spaces—indeed
any other continuous space, having any finite number of dimensions, or even
ω dimensions, can be formed of the points of a Euclidean space by attending
to other generating relations.

From this it follows that magnitude of divisibility, if it is to distinguish a
long stretch from a short one, or an area from a stretch, must be a property of
the relations involved, not of the class of points composing the area or the
stretch. It is not quite easy to define the exact property which is required; for
any two stretches are ordinally similar. We require some sense for the equality
or inequality of the relations whose fields are the given stretches. Where
coordinates (i.e. a correlation of the points of a line with the real numbers)
have been already introduced, we may define the magnitude of a stretch as
the difference of the coordinates of its end-points or its limits (according as
the stretch has ends or not); but if this is done, the magnitudes of stretches
will depend upon the necessarily more or less arbitrary plan upon which we
have introduced our coordinates. This is the course adopted in the projective
theory of distance—a course which has the merit of making metrical Geom-
etry a logical development from projective axioms alone (see next chapter).
The other course that may be adopted is, to assume that the generating
relations of any two stretches have either a symmetrical transitive relation
(equality), or an asymmetrical transitive relation or its converse (greater or
less). Certain axioms will be required, as, for example, that if the points A, B,
C, D are collinear, and AC is greater than AD, then BC is greater than BD.* The
relations of equal, greater and less may be regarded as defined by these
axioms, and the common property of the generating relations of those
stretches that are equal to a given stretch may be defined as the magnitude of
divisibility of the said generating relations. The sense in which an area has
infinitely more divisibility than a stretch is that, if n be any finite integer, and
n stretches equal to a given stretch be removed from an area, there always
remains an area, however great n may be. What is important to observe, in the
above discussion, is that the logical parity of all the orders of which a class of
terms is capable makes it necessary to regard the magnitudes with which

* Stretches are here regarded as having sign, so that, if AC is greater than AD, CA is less than DA.
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metrical Geometry deals as belonging to relations or classes of relations, not,
as is commonly supposed, to the class of points forming their fields.

398. In elliptic space, where the straight line is a closed series, the
attempt to make distance independent of stretch leads to still further compli-
cations. We now no longer have the axiom that, if A, B, C be collinear, we
cannot have AB = BC = CA; and we have to recognize two distances between
every pair of points, which, when distance is taken as fundamental, becomes
extremely awkward. We may however avoid admitting two distances by refus-
ing to regard the greater of the two as properly a distance. This will then be
only a stretch. If two distances are admitted, one is always greater than the
other, except in a limiting case, when both are the lower limit of the greater
distances and the upper limit of the lesser distances. Further if a, b, c, d be any
four distinct points, the greater of the two distances ab is always greater than
the lesser of the two distances cd. Thus the whole class of greater distances
may be banished, and only greater stretches be admitted.

We must now proceed as follows. Distances are a class of symmetrical
relations, which are magnitudes of one kind, having a maximum, which is a
one-one relation whose field is all points, and a minimum, which is the
distance of any point from itself. Every point on a given line has a given
distance other than the maximum or minimum from two and only two other
points on the line. If a, b, c, d be four distinct points on one line, we shall say
that a and c are separated by b and d in the following four cases, of which
(1) and (2) and also (3) and (4) are not mutually exclusive:

(1) If ab < ac . bc < ac . ad > ac.
(2) If ab < ac . bc < ac . dc > ac.
(3) If ab > ac . ad < ac . dc < ac.
(4) If bc > ac . ad < ac . dc < ac.

We then need Vailati’s five axioms enumerated in Part IV, Chap. 24, in
order to generate a closed series from the separation of couples so defined.
Thus it is possible, though by a somewhat complicated process, to generate a
closed series of points on a line by means of the symmetrical relation of
distance.

I shall not work out in further detail the consequences of this hypothesis in
elliptic space, but proceed at once to the hypothesis that distances are the
magnitudes of stretches. When the number of dimensions exceeds two,
the polar form of elliptic space is merely projective space together with the
necessary metrical axioms; the antipodal form is a space in which two anti-
podal points together have the properties of a single projective point.
Neglecting the latter, to which similar remarks will apply, I shall confine
myself to the polar form. Since this is a projective space, every pair of points
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determines two segments on the line joining the points. The sum of these
two segments, together with the two points, is the whole line, and therefore
constant. It is an axiom that all complete straight lines have the same divisibil-
ity. The divisibility of either segment is a distance between the two points:
when the two distances are equal, either may be called the distance; when they
are unequal, it will be convenient to call the smaller the distance, except in
special problems. The whole theory then proceeds as in the case of descrip-
tive space. But it is important to observe that, in elliptic space, the quadrilateral
construction and the generation of order, being prior to stretches, are prior to
distances, and are presupposed in metrical Geometry.

399. So far, therefore, metrical Geometry introduces three new axioms,
and one new indefinable. The stretch in every series is a quantity, and metrical
Geometry merely introduces such axioms as make all stretches of points
measurable. A few words may be useful as to the sense in which, in a theor-
etical discussion, the word measurement is to be understood. The actual applica-
tion of the foot-rule is here not in question, but only those properties of pure
space which are presupposed in the use of the foot-rule. A set of magnitudes
is theoretically measurable when there is a one-one relation between them and
some or all numbers; it is practically measurable when, given any magnitude,
we can discover, with a certain margin of error, what the number is to which
our magnitude has the relation in question. But how we are to discover this is
a subsequent question, presupposing that there is such a proposition to be
discovered, and soluble, if at all, by empirical means to be invented in the
laboratory. With practical measurement, then, we are not at all concerned in
the present discussion.

400. I come now to a more difficult question than distance, namely the
question as to the definition of angle. Here, to begin with, we must deal with
rays, not with whole straight lines. The ray may be taken either as an asym-
metrical relation, or as the half-line on one side of a given point on a line. The
latter usage is very convenient, and I shall frequently employ it. Elementary
Geometry assumes that two rays starting from the same point determine a
certain magnitude, called the angle between them. This magnitude may,
however, be defined in various ways. In the first place, we must observe that,
since the rays in a plane through a point form a closed series, every pair of
rays through a point defines two stretches of rays. Of these, however, one
stretch contains the opposites of both rays, while the other stretch contains
the opposites of neither—except, indeed, in the one case where the two rays
are each other’s opposites. This case is met by Euclid’s postulate that all right
angles are equal—a postulate, however, which is now known to be demon-
strable.* Omitting this case, the angle between two rays may be defined as

* See e.g. Killing, op. cit. Vol. , p. 171. A strict proof will be found in Hilbert, op. cit. p. 16.
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that stretch of rays through their intersection which is bounded by the two
rays and does not contain the opposite of either, i.e. if A, B be the rays, and Ă, B̆
their opposites, the angle is the class of rays C which are separated from Ă or B̆
by A and B. We might also, but for an objection to be mentioned shortly,
define the angle as all the points on such rays. A definition equivalent to this
last, but simpler in form, and avoiding the mention of the opposite rays, is
the following.* Let a, b be any two points of the rays A, B, and let c be any
point of the stretch ab. Then the class of points c, for all possible positions of
a and b on their respective rays, is the angle between A and B. That is, every
pair of intersecting rays divides the plane of the rays into two parts: the part
defined as above is the angle. Or rather, the part so defined is the angle as
a quantity: the angle as a magnitude is the divisibility of this part. But to these
latter definitions we shall find fatal objections, and we shall find it necessary
to adhere to the definition as a stretch of rays.

401. Thus angle, like distance, is not a new indefinable, but like distance,
it requires some new axioms. The angle between a ray A and its opposite A'
cannot be defined as above, but may be defined as the logical sum of the
angles between A and B, B and A'  respectively. This limiting angle is greater
than any other at the point, being in fact the whole half of the plane on one
side of the straight line AA' . If the angles between A and B, B and A'  are equal,
each is called a right angle. (That there are such angles, can be proved if we
assume continuity.) Two intersecting straight lines make four angles, which
are equal in pairs. The order of a collection of rays through a point in a plane
may be obtained by correlation with the points where these rays intersect a
given straight line, provided there is any straight line which all of them
intersect. But since rays through a point in a plane form a closed series, while
the points on a line do not, we require a four-term relation for the former
order. The following definition seems adequate. Given four rays OA, OB, OC,
OD through a point O and in one plane, if these all meet a certain straight line
in A, B, C, D respectively, and A and C are separated by B and D, then OA and
OC are said to be separated by OB and OD. In projective space this suffices. But
in descriptive space we must provide for other cases. Thus if OA, OB, OC meet
the given line, and B is between OA and OC, while OD does not meet the given
line, then OA and OC are again said to be separated by OB and OD. If, finally,
OA'  and OB'  be the opposites of OA and OB, then OA and OA'  are separated by
OB and OB' . In virtue of the descriptive axioms of the preceding chapter, the
order among the rays so obtained will be unambiguous, i.e. independent of
our choice of the line ABC, and will cover all cases.

But now we need axioms analogous to those which, in the case of distance,
were numbered (3), (7) and (8). At any given point in a given ray, there must

* Killing, op. cit. , p. 169.
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be, in a given plane, two and only two rays, on opposite sides of the given
ray (i.e. separated from each other by the given ray and its opposite), which
make a given angle with the given ray; and angles must obey the axioms of
Archimedes and of linearity. But in addition to these axioms, which insure
that angles shall be numerically measurable, we must have some method of
connecting the measure of angles with that of distances, such as is required
for the solution of triangles. Does this require a new axiom? Euclid appears to
obtain this, by means of I. 47, II. 12 and II. 13, without any fresh axiom. For
this result we depend upon the propositions on the congruence of triangles
(I. 4, 8, 26), which demand only, as we saw, the axiom that, with one angle at
a given point, and one side along a given ray through that point, there exist
two and only two triangles in a given plane through the ray (one on each side
of the given ray), which are equal in all respects to a given triangle. Thus it
would seem that no fresh axioms are required for angles in a plane.

402. With regard to the definition of an angle as a portion of a plane, it is
necessary (as in many other cases), if we retain this definition, somewhat to
restrict the axiom that the whole is greater than the part. If a whole A has two
parts B, C, which together constitute A, and if C be infinitesimal with respect
to A, then B will be equal to A. This case occurs in a plane under the following
circumstances. Let O, O'  be any two points, OP, O' P'  lines in one plane and
making equal angles with the ray OO' .* Then in Euclidean or hyperbolic space
these lines OP, O' P'  will not intersect; thus the angle between OO'  and O' P'  will
be part of the angle O' OP. Hence the above restriction is necessary as regards
the axiom that the whole is greater than the part.

In Euclidean space this answer is sufficient, since, if OP makes with OO'  a
less angle than O' P'  does, OP and O' P'  will intersect. But in hyperbolic space, OP
and O' P'  may not intersect even then. Hence if we adhere to the above defin-
ition of angle, we shall have to hold that the whole may be less than the part.
This, however, is intolerable, and shows that the definition in question must
be rejected. We may, however, still regard angle as the stretch of rays; for the
rays in the angle at O'  are not part of the rays in the angle at O. Hence it is only
as a stretch of rays, or as the magnitude of such a stretch, that an angle can be
properly defined.

As showing, in a curious manner, the increased power of deduction which
results from the above axioms concerning distances and angles, we may
remark that the uniqueness of the quadrilateral construction, which before
could not be proved without three dimensions, can now be proved, as
regards all constructions in one plane, without any assumption of points
outside that plane. Nothing is easier than to prove this proposition by the

* The angle between the rays OO' , O' P'  is what Euclid would call the angle between OO'  produced
and O' P' .
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methods of elementary coordinate Geometry. Thus although projective
Geometry, as an independent science, requires three dimensions, any project-
ive proposition concerning plane figures can be metrically proved, if the above
axioms hold, for a two-dimensional space.

403. As regards figures of three dimensions, angles between planes and
solid angles can be defined exactly as rectilinear angles were defined. Moreover
fresh axioms will not be required, for the measurement of such angles can be
deduced from the data we already possess.

With regard to areas and volumes some remarks seem necessary. Areas and
volumes, like angles, are classes of points when taken as quantities, and
divisibilities when taken as magnitudes. For areas and volumes we do not
require afresh the axioms of Archimedes and of linearity, but we require one
axiom apiece to give a criterion of equal areas and volumes, i.e. to connect
their equality with that of distances and angles. Such an axiom is supplied, as
regards areas, by the axiom that two congruent triangles have the same area,
and as regards volumes, by the corresponding axiom concerning tetrahedra.
But the existence of congruent tetrahedra, like that of congruent triangles,
demands an axiom. For this purpose, Pasch* gives the following general
axiom: If two figures are congruent, and a new point be added to one of
them, a new point can be added to the other so that the two new figures are
congruent. This axiom allows us to infer congruent tetrahedra from congruent
triangles; and hence the measurement of volumes proceeds smoothly.

404. In three dimensions, a curious fact has to be taken account of,
namely, the disjunction of right and left-handedness, or of clockwise and
counter-clockwise. This fact is itself of a descriptive nature, and may be
defined as follows. Between two non-coplanar rays, or between four non-
coplanar points taken in an assigned order, there is always one of two oppos-
ite relations, which may be called right and left. The formal properties of
these relations have been explained in Part IV (§ 222); for the present I am
concerned with their geometrical consequences. In the first place, they cause
volumes to become magnitudes with sign, in exactly the way in which dis-
tances on a straight line have sign when compounded with their sense. But in
the case of distances, since not all are on one straight line, we could not thus
compound distance and sense generally: we should require, for a compound,
some more general notion than sense, such as vectors supply. Here, on the
contrary, since, in a three-dimensional space, all volumes have one or other
of two senses, the compound can be made for all volumes. Thus if the volume
of the tetrahedron abcd has one sign, that of bacd will have the opposite sign.
This is the familiar geometrical fact that the determinant giving the volume
of a tetrahedron abcd has one or other sign according as the sense of abcd is the

* Op. cit. p. 109.
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same as or different from that of OXYZ, where O is the origin and X, Y, Z any
positive points on the axes. It is this fact, also, which gives signs to angular
momentum in Dynamics. The importance of the fact (which itself seems to
be an independent axiom) is this, that it makes a distinction between two
figures whose metrical properties are all identical. It is this distinction which
puzzled Kant, who, like most of his contemporaries, supposed all geometrical
facts to be metrical. In itself, the fact would be no more puzzling than the
distinction between the stretches AB and BA, which are metrically indis-
tinguishable. But it becomes puzzling when metrical equality is supposed
to result from motion and superposition. In our former definition of motion
(§ 390) we omitted (as was then observed) a condition essential to its
definition. Not only must two congruent figures be metrically equal, but
there must be a continuous series of equal figures leading from the one to the
other. Or, what amounts to the same thing, if a, b, c, d and a' , b' , c' , d'  be
homologous non-coplanar points in the two figures, the tetrahedra abcd,
a' b' c' d'  must have the same sense. In the case of equal and opposite tetrahedra,
these conditions fail. For there is no gradual transition from clockwise to
counter-clockwise; thus at some point in the series a sudden jump would be
necessary. No motion will transform abcd into a tetrahedron metrically equal
in all respects, but with the opposite sense. In this fact, however, there seems,
to my mind, to be nothing mysterious, but merely a result of confining
ourselves to three dimensions. In one dimension, the same would hold of
distances with opposite sense; in two dimensions, of areas. It is only to those
who regard motion as essential to the notion of metrical equality that
right and left-handedness form a difficulty; in our theory, they are rather a
confirmation than a stumbling-block.

With this we may end our brief review of metrical Geometry, leaving it to
the next chapter to discuss its relation to projective Geometry and the project-
ive theory of distance and angle.
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48
RELATION OF METRICAL

TO PROJECTIVE AND
DESCRIPTIVE GEOMETRY

405. I the present chapter I wish to discuss two questions. First, can
projective and descriptive Geometry be established without any metrical
presuppositions, or even without implying metrical properties? Secondly,
can metrical Geometry be deduced from either of the others, or, if not, what
unavoidable novelties does it introduce? The previous exposition has already
dogmatically assumed certain answers to these questions, but we are now to
examine critically the various possible answers.

The distinction between projective and descriptive Geometry is very
recent, and is of an essentially ordinal nature. If we adopt the view—which,
as we saw, is the simpler of two legitimate views—that the straight line is
defined by a certain relation between any two of its points, then in projec-
tive Geometry this relation is symmetrical, while in descriptive Geometry
it is asymmetrical. Beyond this we have the difference that, in projective
Geometry, a line and a plane, two planes, or two lines in a plane, always
intersect, while in descriptive Geometry the question whether this is the
case or not is left open. But these differences are not very important for our
present purpose, and it will therefore be convenient to speak of projective
and descriptive Geometry together as non-quantitative Geometry.

The logical independence of non-quantitative Geometry is now scarcely
open to question. We have seen, in Chapters 45 and 46, how it may be built up
without any reference whatever to quantitative considerations. Quantity, in
fact, though philosophers appear still to regard it as very essential to mathe-
matics, does not occur in pure mathematics, and does occur in many cases



not at present amenable to mathematical treatment. The notion which does
occupy the place traditionally assigned to quantity is order; and this notion, we
saw, is present in both kinds of non-quantitative Geometry. But the purity of
the notion of order has been much obscured by the belief that all order
depends upon distance—a belief which, though it is entertained by so excel-
lent a writer as Meinong, we have seen to be false. Distance being essentially
quantitative, to admit that series depend upon distance is to admit that order
depends upon quantity. But this view leads at once to an endless regress,
since distances have an order of magnitude, which would have to be derived
from new distances of distances, and so on. And positively, an asymmetrical
transitive relation suffices to generate a series, but does not imply distance.
Hence the fact that the points of a line form a series does not show that
Geometry must have metrical presuppositions, and no such presuppositions
appear in the detail of projective or descriptive Geometry.

406. But although non-quantitative Geometry, as it now exists, is plainly
independent of everything metrical, the historical development of the subject
has tended greatly to obscure this independence. A brief historical review of
the subject may be useful in showing the relation of the more modern to
the more traditional methods.

In Euclid, and in Greek geometers generally, hardly any descriptive the-
orems are to be found. One of the earliest discoveries of an important
descriptive theorem was the one named after Pascal.* Gradually it was found
that propositions which assert points to be collinear or lines to be concur-
rent, or propositions concerning tangents, poles and polars, and similar mat-
ters, were unaltered by projection; that is, any such property belonging to a
plane figure would belong also to the projection or shadow of this figure
from any point on to any plane. All such properties (as, for instance, those
common to all conies) were called projective or descriptive. Among these
properties was anharmonic ratio, which was defined as follows. If A, B, C, D

be four points on one straight line, their anharmonic ratio is 
AB

CB�
AD

CD
; if OA,

OB, OC, OD be four lines through a point, their anharmonic ratio is
sin AOB

sin COB�
sin AOD

sin COD
. In Chasles’s great work on descriptive Geometry, and even

in most recent works (such as Cremona’s projective Geometry), this defin-
ition will be found at a very early stage in the development of the subject,
together with a proof that anharmonic ratio is unaltered by projection. But
such a definition is itself metrical, and cannot therefore be used to found a
subject independent of metrical Geometry. With other portions of what used

* If a hexagon be inscribed in a conic, the three pairs of opposite sides intersect in collinear
points.
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to be called descriptive or projective Geometry, the same lack of independ-
ence will be found. Consider, for example, the definition of a conic. To define
it as a curve of the second degree would require projective coordinates,
which there was no known method of introducing. To define it as a curve
meeting any straight line in not more than two points would require the
distinction of real and imaginary points, for if we confine ourselves to real
points there are innumerable curves other than conics which satisfy the
definition. But imaginary points are, in ordinary metrical Geometry, imagin-
ary coordinates, for which there is no purely geometrical interpretation; thus
without projective coordinates, our definition again fails. To define a conic as
the locus of points P for which the anharmonic ratio of PA, PB, PC, PD (where
A, B, C, D are fixed points) is constant, again involves metrical considerations,
so long as we have no projective definition of anharmonic ratio. And the same
dependence upon metrical Geometry appears as regards any other projective
or descriptive theorem, so long as the traditional order of ideas is adhered to.

The true founder of non-quantitative Geometry is von Staudt.* It was he
who introduced the definition of a harmonic range by means of the quadri-
lateral construction, and who rendered it possible, by repetitions of this
construction, to give projective definitions of all rational anharmonic ratios.†
These definitions indicate the succession of quadrilateral constructions
required in order to obtain a fourth point from three given points; thus,
though they are essentially numerical, they have no reference whatever to
quantity. But there remained one further step, before projective Geometry
could be considered complete, and this step was taken by Pieri. In Klein’s
account, it remains doubtful whether all sets of four collinear points have
an anharmonic ratio, and whether any meaning can be assigned to irrational
anharmonic ratios. For this purpose, we require a method of generating
order among all the points of a line. For, if there be no order but that obtained
from Klein’s method, there is no sense in which we can regard a point
not obtained by that method as the limit of a series of points which are so
obtained, since the limit and the series which it limits must always both
belong to some one series. Hence there will be no way of assigning irrational
coordinates to the points which do not have rational coordinates. There is, of
course, no projective reason for supposing that there are such points; but
there are metrical reasons, and in any case it is well, if possible, to be able to
deal projectively with a continuous space. This is effected by Pieri, with the
help of certain new axioms, but without any new indefinables. Thus at last
the long process by which projective Geometry has purified itself from every
metrical taint is completed.

* Geometrie der Lage, Nürnberg, 1847; Beiträge zur Geometrie der Lage, ib. 1856, 1857, 1860.
† This step, I believe, is due to Klein. See Math. Annalen, Vols. , , .
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407. Projective Geometry, having achieved its own independence, has,
however, embarked upon a career of foreign aggrandisement; and in this we
shall, I think, though on the whole favourable, be obliged to make some
slight reservations. The so-called projective theory of distance aims at proving
that metrical is merely a branch of projective Geometry, and that distances
are merely logarithms of certain anharmonic ratios. If this theory be correct,
there is not a special subject of metrical Geometry, and the axioms by which,
in the preceding chapter, we distinguished this subject, must be con-
sequences of projective axioms. Let us examine the manner in which this
result is obtained.*

We have already seen how to assign coordinates to every point of a line in
projective space, and how to define the anharmonic ratio of any four points.
We have seen also how to obtain a projective from a descriptive space. In a
descriptive space, when an ideal point has a real correlative (i.e. when it is
a sheaf of lines which has a vertex), we assign to the real point the coordi-
nate which belongs to the ideal point considered as belonging to a projective
space. In this way, the coordinate Geometry of the two spaces becomes
very similar, the difference being that, in projective space, every real set of
coordinates gives a real point, whereas, in descriptive space, this holds of each
coordinate only within certain limits (both of which limits are excluded). In
what follows, therefore, remarks concerning projective space will apply also
to descriptive space except when the contrary is expressly stated.

Let us consider the anharmonic ratios of all ranges axby, where a, b are fixed
points and x, y variable points on our line. Let α, ξ, β , η be the coordinates of

these points. Then 
ξ − α

ξ − β
�η − α

η − β
 will be the anharmonic ratio of the four

points, which since α, β  are constants, may be conveniently denoted by (ξη).
If now ζ be the coordinate of any other point z, we have

(ζη) (ηζ) = (ξζ).

Hence

log (ξη) + log (ηζ) = log (ξζ).

Thus the logarithm of the anharmonic ratio in question has one of the
essential properties of distance, namely additiveness. If xy, yz, xz be the dis-
tances of x, y, z taken as having sign, we must have

xy + yz = xz.

* The projective theory of distance and angle is due to Cayley (Sixth Memoir upon Quantics, 1859)
and to Klein (Math. Annalen, Vols. , , , ). A fuller discussion than the following will
be found in my Foundations of Geometry, Cambridge, 1897, §§ 30–38.
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We have also log (ξξ) = 0 and log (ξη) = − log (ηξ), which are two further
properties of distance. From these properties (of which the third follows
from the other two) it is easy to show that all properties of distances which
have no reference to the fixed points a, b belong to the logarithm in question.
Hence, if the distances of points from a and b can also be made, by a suitable
choice of a and b, to agree with those derived from the logarithm, we shall
be able to identify distance with this logarithm. In this way—so it is con-
tended—metrical Geometry may be wholly brought under the projective
sway; for a similar theory applies to angles between lines or planes.

408. Let us consider first the case where our projective points are the
ideal points of a descriptive space. Let x be considered fixed, and distinct
from a and b. Let y be moved so that η becomes more and more nearly equal
to β . Then as η approaches β , log (ξη) will be always finite, but will assume
values exceeding any that may be assigned. This is mathematically expressed
by saying that, if ξ be any number other than α and β , then log (ξβ) is
infinite. (If ξ be equal to α or β , log (ξα) and log (ξβ) are indeterminate;

this case will therefore be supposed excluded in what follows.) Hence a and
b must be at an infinite distance from every point except each other; and
their distance from each other is indeterminate. Again x and y must not be
separated by a and b, i.e. y must belong to the segment axb, if we wish the
distance to be real; for if ξ − α and ξ − β  have the same sign, η − α and η − β

must also have the same sign, but if ξ − α and ξ − β  have different signs,
η − α and η − β  must also have different signs; and these conditions amount
to the same as the condition that y must belong to the segment axb. Hence if
we insist that any two real points (i.e. points which are not merely ideal) are
to have a real distance (i.e. a distance measured by a number which is not
complex or purely imaginary), we shall require a and b to fulfil the follow-
ing conditions: (1) they must be ideal points to which no real ones corres-
pond; (2) they must be the two limits of the series of those ideal points to
which real points do correspond. These two conditions include all that has
been said. For, in the first place, there is no real distance of any point from α
or β ; hence α and β  must not be coordinates of real points. In the second
place, on one of the two segments defined by a and b, there is a real distance
xy however near ξ or η may approach to α or β ; hence a and b are the limits
of the ideal points to which real ones correspond. In the third place, it
follows from the last proposition that all ideal points to which real ones
correspond belong to one of the two segments ab, and all ideal points to
which no real ones correspond (except a and b themselves) belong to the
other of the two segments ab. When these conditions are satisfied, the func-
tion log (ξη) will have all the properties which are required for a measure
of distance.

The above theory is only applicable to descriptive space, for it is only there

429projective theory of metrics



that we have a distinction between ideal and actual points. And in descriptive
space we begin with an asymmetrical transitive relation by which order is
generated on the straight line. Before developing a theory which is applicable
to pure projective space, let us examine a little further the above theory,
which may be called the descriptive theory of distance.

In the first place, the ideal points to which real ones correspond, which
for shortness I shall call proper points, form part of the whole series of
ideal points, which is closed. The proper points are a semi-continuous por-
tion of this closed series, i.e. they have all the properties of a continuum
except that of having two ends. It may happen that there is only one ideal
point which is not proper, or it may happen that there are many. In the
former case, the one purely ideal point will be the limit of the proper points
in both directions. This is the case of Euclidean space, for in Euclidean
space there is only one sheaf of lines to which a given line belongs and which
has no vertex, namely the sheaf of lines parallel to the given line. Hence
in this case the points a and b must be taken to be identical. The function
log (ξη) is then zero for all values of ξ and η, and is therefore useless as a
measure of distance. But by a familiar process of proceeding to the limit, we
can, in this case, obtain the value ξ − η for the distance.* This is the usual
measure of elementary Geometry; and for the distance of two points in a
plane or in space we should similarly obtain the usual formula in this case.
We see here the exact meaning of the common phrase that, in Euclidean
space, + ∞ is the same as − ∞, or that the two ends of a line coincide. The fact
is, of course, that the line has no ends, but that it determines only one ideal
point which is not proper, and that this is the limit of proper ideal points
in both directions: when it is added to the proper ideal points, we obtain
a closed continuous series of sheaves to which the line in question belongs.
In this way, a somewhat cryptic expression is found to have a very simple
interpretation.

But it may happen also—and this is the case of hyperbolic space—that
there are many improper ideal points on a line. In this case, the proper ideal
points will have two different limits; these will be the sheaves of Lobatchew-
sky’s parallels in the two directions. In this case, our function log (ξη) re-
quires no modification, but expresses distance as it stands. The ideal points
a and b are distinct, which is commonly expressed by saying that our line
has two real and distinct points at infinity.

Thus in descriptive space, in which our coordinates are obtained by
correlation with those of the derived projective space, it is always possible
to define a certain function of our projective coordinates which will fulfil
the conditions required for a measure of distance. These conditions may be

* See e.g. Klein, Vorlesungen über nicht Euklidische Geometrie, Göttingen, 1893, Vol. , pp. 151 ff.
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enumerated as follows.* (1) Every pair of real points is to have a distance
whose measure is real and finite, and vanishes only when the two points
coincide. (2) If x, y, z are collinear, and y lies between x and z, the sum of the
measures of xy and yz is to be the measure of xz. (3) As the ideal point
corresponding to y approaches the ideal point which is the limit of proper
ideal points, while x remains fixed, the absolute value of the measure of xy
is to grow without limit.

It may well be asked, however, why we should desire to define a function
of two variable points possessing these properties. If the mathematician
replies that his only object is amusement, his procedure will be logically
irreproachable, but extremely frivolous. He will, however, scarcely make this
reply. We have, as a matter of fact, the notion of a stretch, and, in virtue of the
general axiom that every class has some magnitude of divisibility, we know
that the stretch has magnitude. But we do not know, without a special
assumption to that effect, that the stretch fulfils the axioms of Archimedes
and of linearity. When once these are assumed, the above properties of the
measure of distance become properties which must belong to the measure of
stretch. But if these two axioms are not assumed, there is no reason why there
should be any magnitude having a measure possessing the above four charac-
teristics. Thus the descriptive theory of distance, unless we regard it as purely
frivolous, does not dispense with the need of the above axioms. What it does
show—and this fact is extremely remarkable—is that, if stretches are numer-
ically measurable, then they are measured by a constant multiple of the
logarithm of the anharmonic ratio of the two ideal points associated with the
ends of the stretch together with the two ideal points which limit the series
of proper ideal points; or, in case the latter pair are identical, the stretch is
measured by a function obtained as the limit of the above when the said pair
approach to identity and the constant factor increases without limit. This is
a most curious result, but it does not obviate the need for the axioms which
distinguish metrical Geometry. The same conclusion follows as regards met-
rical Geometry in a plane or in three dimensions; but here new complications
are introduced, which are irrelevant to the present issue, and will therefore
not be discussed.

It is important to realize that the reference to two fixed ideal points, intro-
duced by the descriptive theory of distance, has no analogue in the nature of
distance or stretch itself. This reference is, in fact, a convenient device, but
nothing more. The stretch, in descriptive space, is completely defined by its
end-points, and in no way requires a reference to two further ideal points.
And as descriptive Geometry starts with the stretch, it would be a needless

* Cf. Whitehead, Universal Algebra, Bk. , Chap. . I confine myself in the text to distances on
one straight line.
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complication to endeavour subsequently to obtain a definition of stretch in
terms of four points. In short, even if we had a projective theory of distance
in descriptive space, this would still be not purely projective, since the whole
projective space composed of ideal elements is derived from axioms which
do not hold in projective space.

409. It remains to examine the projective theory of distance in projective
space. The theory we have hitherto examined, since it used the distinction
of real and ideal elements, was descriptive, not projective; we have now to
examine the corresponding theory for pure projective Geometry. Here there
are no ideal elements of the above sort associated with our line; if, therefore,
α and β  be real and distinct numbers, they will be the coordinates of real and
distinct points. Hence there will be real points x, y which will be separated
by a and b, and will have an imaginary measure of distance. To this there
could be no objection, but for the fact that we wish our measure to be the
measure of a stretch. This is the reason why it is desired that any two real
points should have a real measure of distance. In order to insure this result
in a pure projective space, it is necessary that α and β  should not be the co-
ordinates of points at all, but should be conjugate complex numbers. It is
further necessary that the constant multiple of the logarithm should be a pure
imaginary. We then find that the distance of two real points always has a real
measure, which is an inverse cosine.* In a projective space, the condition (2)
of p. 424 introduces complications, since between has not, as in descriptive
space, a simple meaning. The definition of between in this case is dealt with
fully by Mr Whitehead in his Universal Algebra (§ 206).

410. But if such a function is to be properly geometrical, and to give
a truly projective theory of distance, it will be necessary to find some geo-
metrical entity to which our conjugate complex numbers α and β  corres-
pond. This can be done by means of involutions. Although, in a projective
space, there are no ideal points, yet there are what may be called ideal point-
pairs. In Chapter 14 we considered involutions with real double points: if
a, b be two points on a line, all point-pairs x, x'  such that x, x'  are harmonic
conjugates with respect to a, b form an involution. In this case, x and x'  are
said to be conjugate; a and b are each self-conjugate, and are called the double
points of the involution. But there are also involutions without real double
points. The general definition of an involution may be given as follows (sub-
stituting the relation of x to x'  for the pair x, x' ): An involution of points is a
symmetrical one-one relation, other than identity, whose domain and con-
verse domain are the same straight line, and which is such that any class of
referents is projectively similar to the corresponding class of relata. Such a

* This is the form originally given by Cayley in the Sixth Memoir upon Quantics. The simpler
logarithmic form is due to Klein.
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relation is either strictly an aliorelative, or is a self-relative as regards two and
only two points, namely the double points of the involution. For every pair of
distinct points on the line as double points there will be one and only one
involution: all point-pairs (using this expression so as to exclude the identity
of the two points of the pair) have a one-one correlation with some involu-
tions. Thus involutions may be called ideal point-pairs: those that correspond
to an actual point-pair are called hyperbolic, the others elliptic. Thus an ideal
point-pair is one and indivisible, being in fact a one-one relation. Two proper
ideal point-pairs have an anharmonic ratio defined by their respective double
points: two improper ideal point-pairs, or a proper and an improper ideal
point-pair, have an analogous projective relation, which is measured by the
function obtained as above from the supposition that α and β  are conjugate
complex numbers. This function may be called the anharmonic ratio of the
two ideal point-pairs. If one be fixed and improper, the other variable and
proper, an imaginary multiple of the logarithm of the resulting anharmonic
ratio has the properties required for a measure of the distance of the actual
point-pair corresponding to the proper ideal point-pair. This gives the pure
projective theory of distance. But to this theory, as anything more than a
technical development, there are the same objections as in the case of descrip-
tive space; i.e. unless there be some magnitude determined by every actual
point-pair, there is no reason for the process by which we obtain the above
measure of distance; and if there is such a magnitude, then the above process
gives merely the measure, not the definition, of the magnitude in question.
Thus stretch or distance remains a fundamental entity, of which the proper-
ties are such that the above method gives a measure of it, but not a definition.*

411. There is however another and a simpler way of introducing met-
rical notions into a projective space, and in this way distance becomes a
natural accompaniment of the introduction of coordinates. Let p, q, r be three
fixed points, abc a line not passing through p or q or r but in the plane pqr. Let qr
pass through a, rp through b, pq through c. Let R1 be the relation which holds
between x and y when these are points on abc, and xr, yq meet on ap; and let R2,
R3 be similarly defined. Then a Möbius net may be regarded as constructed by
repetitions of the relations R1, R2, R3. We shall have, if xR1y, yR1z, then xHayz. We
can define the square root of R1, or any power of R1 whose index is a positive
or negative power of 2. Further, if s is any point of qr, and xR1' y means that x
and y are on abc and xr, ys meet on ap, then R1R1' = R1' R1. From these proposi-
tions, which are proved by pure projective methods, it follows that if α and β
be numbers, we may define R1

α + β to mean R1
α R1

β, provided R1
α and R1

β have
been already defined; whence, since R1

2n can be defined if n is a positive or

* On the above method of introducing imaginaries in projective Geometry, see von Staudt,
Beiträge zur Geometrie der Lage, , § 7.
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negative integer, all rational powers of R1 can be defined, and irrational
powers can be defined as limits. Hence, if x be any real number, positive or
negative, we can define R1

x, for we may identify R1
− x with R̆1

x. We may now
take this relation R1

x as the distance of any two points between which it holds,
and regard x as the measure of the distance. We shall find that distances so
defined have the usual properties of Euclidean distances, except that the
distance of a from any other point is infinite. Thus on a projective line any
two points do actually have a relation which may be called distance, and in
this sense a projective theory of metrical properties can be justified. But I do
not know whether this method can be extended to a plane or to space.

To sum up: Although the usual so-called projective theory of distance, both
in descriptive and in projective space, is purely technical, yet such spaces do
necessarily possess metrical properties, which can be defined and deduced
without new indefinables or indemonstrables. But metrical Geometry, as an
independent subject, requires the new idea of the magnitude of divisibility
of a series, which is indefinable, and does not belong, properly speaking, to
pure mathematics. This idea is applied to stretches, angles, areas, etc., and it is
assumed that all the magnitudes dealt with obey the axioms of Archimedes
and linearity. Without these axioms, many of the usual metrical propositions
cannot be proved in the usual metrical manner; with these axioms, the usual
kind of elementary Geometry becomes possible, and such results as the
uniqueness of the quadrilateral construction can be proved without three
dimensions. Thus there is a genuinely distinct science of metrical Geometry,
but, since it introduces a new indefinable, it does not belong to pure math-
ematics in the sense in which we have used the word in this work. It does not,
as is often supposed, require distances and angles as new relations between
points or lines or planes, but stretches and magnitudes of divisibility suffice
throughout. On the other hand, projective and descriptive Geometry are
both independent of all metrical assumptions, and allow the development
of metrical properties out of themselves; hence, since these subjects belong
to pure mathematics, the pure mathematician should adopt their theory of
metrical matters. There is, it is true, another metrical Geometry, which does
work with distances, defined as one-one relations having certain properties,
and this subject is part of pure mathematics; but it is terribly complicated,
and requires a bewildering number of axioms. Hence the deduction of
metrical properties from the definition of a projective or descriptive space
has real importance, and, in spite of appearances to the contrary, it affords,
from the point of view of pure mathematics, a genuine simplification and
unification of method.
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49
DEFINITIONS OF VARIOUS

SPACES

412. I the preceding discussions of different Geometries, I have usually,
for the sake of convenience, adhered to the distinction between definitions
and indefinables on the one hand, and axioms or postulates on the other. But
this distinction, in pure mathematics, has no validity except as regards the
ideas and propositions of Logic. In pure mathematics, all the propositions
state logical implications containing a variable. This is, in fact, the definition,
or part of the definition, of pure mathematics. The implications stated must
flow wholly from the propositions of Logic, which are prior to those of other
branches of mathematics. Logic and the rest of pure mathematics are dis-
tinguished from applied mathematics by the fact that, in it, all the constants
are definable in terms of some eight fundamental notions, which we agreed
to call logical constants. What distinguishes other branches of mathematics
from Logic is merely complication, which usually takes the form of a hypoth-
esis that the variable belongs to some rather complicated class. Such a class
will usually be denoted by a single symbol; and the statement that the class in
question is to be represented by such and such a symbol is what mathemat-
icians call a definition. That is to say, a definition is no part of mathematics at all,
and does not make any statement concerning the entities dealt with by math-
ematics, but is simply and solely a statement of a symbolic abbreviation: it is
a proposition concerning symbols, not concerning what is symbolized. I do
not mean, of course, to affirm that the word definition has no other meaning,
but only that this is its true mathematical meaning. All mathematics is built
up by combinations of a certain number of primitive ideas, and all its
propositions can, but for the length of the resulting formulae, be explicitly
stated in terms of these primitive ideas; hence all definitions are theoretically



superfluous. But further, when Logic is extended, as it should be, so as to
include the general theory of relations, there are, I believe, no primitive
ideas in mathematics except such as belong to the domain of Logic. In the
previous chapters of this Part, I have spoken, as most authors do, of certain
indefinables in Geometry. But this was a concession, and must now be
rectified. In mathematics, two classes of entities which have internal rela-
tions of the same logical type are equivalent. Hence we are never dealing
with one particular class of entities, but with a whole class of classes,
namely, with all classes having internal relations of some specified type. And
by the type of a relation I mean its purely logical properties, such as are
denoted by the words one-one, transitive, symmetrical, and so on. Thus for
example we defined the class of classes called progression by certain logical
characteristics of the internal relations of terms of any class which is a
progression, and we found that finite Arithmetic, in so far as it deals with
numbers, and not with the terms or classes of which numbers can be
asserted, applies equally to all progressions. And when it is realized that all
mathematical ideas, except those of Logic, can be defined, it is seen also that
there are no primitive propositions in mathematics except those of Logic.
The so-called axioms of Geometry, for example, when Geometry is con-
sidered as a branch of pure mathematics, are merely the protasis in the
hypotheticals which constitute the science. They would be primitive prop-
ositions if, as in applied mathematics, they were themselves asserted; but so
long as we only assert hypotheticals (i.e. propositions of the form “A implies
B”) in which the supposed axioms appear as protasis, there is no reason to
assert the protasis, nor, consequently, to admit genuine axioms. My object in
the present chapter is to execute the purely formal task imposed by these
considerations, and to set forth the strict definitions of various spaces, from
which, without indefinables and without primitive propositions, the various
Geometries will follow. I shall content myself with the definition of some of
the more important spaces, since my object is chiefly to show that such
definitions are possible.

413. (1) Projective Space of three dimensions. A projective space of three dimen-
sions is any class of entities such that there are at least two members of the
class; between any two distinct members there is one and only one sym-
metrical aliorelative, which is connected, and is transitive so far as its being
an aliorelative will permit, and has further properties to be enumerated
shortly; whatever such aliorelative may be taken, there is a term of the pro-
jective space not belonging to the field of the said aliorelative, which field is
wholly contained in the projective space, and is called, for shortness, a straight
line, and is denoted by ab, if a, b be any two of its terms; every straight line
which contains two terms contains at least one other term; if a, b, c be any
three terms of the projective space, such that c does not belong to the class ab,
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then there is at least one term of the projective space not belonging to any
class cx, where x is any term of ab; under the same circumstances, if a'  be a
term of bc, b'  a term of ac, the classes aa' , bb'  have a common part; if d be any
term, other than a and b, of the class ab, and u, v any two terms such that d
belongs to the class uv, but neither u nor v belongs to the class ab, and if y be
the only term of the common part of au and bv, z the only term of the
common part of av and bu, x the only term of the common part of yz and ab,
then x is not identical with d (under these circumstances it may be proved that
the term x is independent of u and v, and is uniquely determined by a, b, d;
hence x and d have a symmetrical one-one relation which may be denoted,
for brevity, by xHabd; if y, e be two further terms of the projective space,
belonging to the class xd, and such that there are two terms g, h of the class xd
for which we have gHxdh and gHyeh, then we write for shortness yQxde to express
this relation of the four terms x, d, y, e); a projective space is such that the
relation Qxd, whatever terms of the space x and d may be, is transitive; also that,
if a, b, c, d be any four distinct terms of one straight line, two and only two of
the propositions aQbcd, aQbdc, aQcdb will hold; from these properties of project-
ive space it results that the terms of a line form a series; this series is continu-
ous in the sense defined in § 277; finally, if a, b, c, d, e be any five terms of
a projective space, there will be in the class ae at least one term x, and in the
class cd at least one term y, such that x belongs to the class by.

This is a formal definition of a projective space of three dimensions. What-
ever class of entities fulfils this definition is a projective space. I have enclosed
in brackets a passage in which no new properties of projective space are
introduced, which serves only the purpose of convenience of language. There
is a whole class of projective spaces, and this class has an infinite number of
members. The existence-theorem may be proved to begin with, by construct-
ing a projective space out of complex numbers in the purely arithmetical
sense defined in § 360. We then know that the class of projective spaces has
at least four members, since we know of four sub-classes contained under
it, each of which has at least one member. In the first place, we have the
above arithmetical space. In the second place, we have the projective space of
descriptive Geometry, in which the terms of the projective space are sheaves
of lines in the descriptive space. In the third place, we have the polar form of
elliptic space, which is distinguished by the addition of certain metrical
properties of stretches, consistent with, but not implied by, the definition of
projective space; in the fourth place, we have the antipodal form of elliptic
Geometry, in which the terms of the projective space are pairs of terms of the
said elliptic space. And any number of varieties of projective space may be
obtained by adding properties not inconsistent with the definition—for
example, by insisting that all planes are to be red or blue. In fact, every class of
2α0 terms (i.e. of the number of terms in a continuous series) is a projective
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space; for when two classes are similar, if one is the field of a certain relation,
the other will be the field of a like relation. Hence by correlation with a
projective space, any class of 2α0 terms becomes itself a projective space. The
fact is, that the standpoint of line-Geometry is more fundamental where
definition is concerned: a projective space would be best defined as a class
K of relations whose fields are straight lines satisfying the above conditions.
This point is strictly analogous to the substitution of serial relations for series
which we found desirable in Part IV. When a set of terms are to be regarded
as the field of a class of relations, it is convenient to drop the terms and
mention only the class of relations, since the latter involve the former, but
not the former the latter.

It is important to observe that the definition of a space, as of most other
entities of a certain complexity, is arbitrary within certain limits. For if there
be any property which implies and is implied by one or more of the proper-
ties used in the definition, we may make a substitution of the new property
in place of the one or more in question. For example, in place of defining
the line by a relation between points, it is possible to define the line as a
class having a certain relation to a couple of points. In such cases, we can only
be guided by motives of simplicity.

It seems scarcely necessary to give a formal definition of descriptive or
metrical space, since the above model serves to show how such a definition
might be constructed. I shall instead give a definition of Euclidean space. This
I shall give in a form which is inappropriate when Euclidean space is con-
sidered as the limit of certain non-Euclidean spaces, but is very appropriate
to quaternions and the vector Calculus. This form has been adopted by
Peano,* and leads to a very simple account of the Euclidean axioms. I shall
not strictly follow Peano, but my account will be very similar to his.

414. (2) Euclidean space of three dimensions. A Euclidean space of three dimen-
sions is a class of terms containing at least two members, and such that any
two of them have one and only one asymmetrical one-one relation of a class,
which will be called the class of vectors, defined by the following character-
istics:† the converse of a vector, or the relative product of two vectors, is a
vector; if a given vector holds between a and b, c and d, then the vector which
holds between a and c is the same as that which holds between b and d; any
term of the space has any assigned relation of the class to at least one term of
the space; if the nth power (where n is any integer) of any vector of the class
is identity, then the vector itself is identity; there is a vector whose nth power

* “Analisi della Teoria dei vettori”, Turin, 1898 (Accademia Reale delle Scienze di Torino).
† For the convenience of the reader, it may be well to observe that this relation corresponds to
that of having a given distance in a given direction—direction being taken in the sense in which
all parallel lines have the same direction.
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is a given vector; any two vectors have one and only one symmetrical relation
of a certain class having the following properties: the relation of any two
vectors is measured by a real number, positive or negative, and is such that
the relation of a vector to itself is always measured by a positive number,
and that the measure of the relation of the relative product of two vectors to
a third vector is the sum of the measures of their several relations to the
third vector; there is a vector satisfying the definition of an irrational power
of a vector given below; there are vectors which are not relative products of
powers of two given vectors; if i, j, k be three vectors, no one of which is
a relative product of powers of one or both of the others, then all vectors
are relative products of powers of i, j, k.

The only points calling for explanation here are the notion of an irrational
power of a vector and the measurable relation of two vectors. All rational
powers are definite; for every vector has an nth root, and the nth root has an
mth power, which is the m/nth power of the original vector. But it does not
follow that real powers which are not rational can be defined. The definition
of limits of classes of vectors given by Peano* is, when translated into
relational language, the following. Let u be a class of real numbers, x0 a
number belonging to the derivative of u. Let some one-one relation subsist
between all u’s and some or all vectors; and let v be the class of vectors
correlative to u. Then the vector a is said to be the limit of the class v as x
approaches x0 in the class u, when the limit of the measure of the relation to
itself of the vector which, multiplied relatively into a, will give the correlate
to x in the class v, is zero. The point of this definition is the use of the order
obtained among vectors by means of the measurable relation which each has
to itself. Thus suppose we have a progression x1, x2, . . . xn, . . . of rational
numbers, and suppose these to be respectively the measures of the relations
to themselves of the vectors a1, a2, . . . an, . . . . Then if x be the limit of x1, x2,
. . . xn, . . ., there is to be a vector whose relation to itself is measured by x, and
this is to be the limit of the vectors a1, a2, . . . an, . . .; and thus irrational
powers of a vector become definable. The other point to be examined is the
measurable relation between two vectors. This relation measures, in terms
of elementary Geometry, the product of the two stretches represented by the
vectors into the cosine of the angle between them; it is, in the language of
the calculus of extension, the internal product of the two vectors. To say that
the relation is measurable in terms of real numbers means, in the sense in
which this statement is employed, that all such relations have a one-one
relation to some or all of the real numbers; hence, from the existence of
irrational powers, it follows that all such relations form a continuous series;
to say that the relation of a vector to itself is always measured by a positive

* Op. cit. p. 22.
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number means that there exists a section (in Dedekind’s sense) of the con-
tinuous series of relations, such that all those relations that vectors can have
to themselves appear on one side of the section; while it can be proved that
the relation which defines the section is that which the vector identity has
to itself.

This definition is, of course, by no means the only one which can be given
of Euclidean space, but it is, I think, the simplest. For this reason, and also
because it belongs to an order of ideas which, being essentially Euclidean, is
foreign to the methods of previous chapters, I have thought it worth while
to insert it here.

415. As another example which may serve to enlarge our ideas, I shall
take the space invented by Clifford, or rather the space which is formally
analogous to his surface of zero curvature and finite extent.* I shall first
briefly explain the nature of this space, and then proceed to a formal defin-
ition. Spaces of the type in question may have any number of dimensions, but
for the sake of simplicity I shall confine myself to two dimensions. In this
space, most of the usual Euclidean properties hold as regards figures not
exceeding a certain size; that is to say, the sum of the angles of a triangle is
two right angles, and there are motions, which may be called translations, in
which all points travel along straight lines. But in other respects, the space is
very different from Euclidean space. To begin with, the straight line is a closed
series, and the whole space has a finite area. In the second place, every motion
is a translation; a circular transformation (i.e. one which preserves distances
from a certain fixed point unaltered) is never a motion, i.e. never leaves every
distance unaltered; but all translations can, as in Euclidean space, be com-
pounded out of translations in two fixed directions. In this space, as in Euclid,
we have parallels, i.e. straight lines which remain at a constant distance apart,
and can be simultaneously described in a motion; also straight lines can be
represented by linear equations. But the formula for distance is quite unlike
the Euclidean formula. Thus if πk be the length of the whole straight line, and
(x, y), (x' , y' ) be the coordinates of any two points (choosing a system in
which the straight line has a linear equation), then if ω be the angle between
the lines x = 0, y = 0, the distance of the two points in question is d, where

cos
d

k
= cos (x − x' ) cos (y − y' ) − cos ω sin (x − x' ) sin (y − y' ).

and the formula for the angle between two lines is similarly complicated. We
may, in order to lead to these results, set up the following definition.

* On the general subject of the spaces of which this is the simplest example, see Klein, Math.
Annalen, , pp. 554–565, and Killing, Grundlagen der Geometrie, Vol. , Chap. .
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(3) Clifford’s space of two dimensions. A Clifford’s space of two dimensions is a
class of at least two terms, between any two of which there are two relations
of different classes, called respectively distance and direction, and possessing
the following properties: a direction is a symmetrical aliorelative, transitive so
far as its being an aliorelative will permit, but not connected; a term of the
space together with all the terms to which the said term has a given relation
of direction form what is called a straight line; no straight line contains all the
terms of the space; every term of the space has any assigned relation of
direction to some but not all other terms of the space; no pair of terms has
more than one relation of direction; distances are a class of symmetrical rela-
tions forming a continuous series, having two ends, one of which is identity;
all distances except identity are intransitive aliorelatives; every term of the
space has any assigned relation of distance to some but not all of the terms of
the space; any given term of the space has any given distance and direction
from two and only two other terms of the space, unless the given distance
be either end of the series of distances; in this case, if the given distance be
identity, there is no term having this distance and also the given direction
from the given term, but if the distance be the other end of the series, there
is one and only one term having the given distance and the given direction
from the given term; distances in one straight line have the properties, men-
tioned in Chapter 47, required for generating an order among the terms of
one straight line; the only motions, i.e. one-one relations whose domain and
converse domain are each the space in question and which leave all distances
among the relata the same as those among the corresponding referents, are
such as consist in combining a given distance, a given direction and one of
the two senses of the series constituting a straight line; and every such com-
bination is equivalent to the relative product of some distance in one fixed
direction with some distance in another fixed direction, both taken with a
suitable sense; finally all possible directions form a single closed continuous
series in virtue of mutual relations.

This completes, I think, the definition of a Clifford’s space of two dimen-
sions. It is to be observed that, in this space, distance cannot be identified
with stretch, because (1) we have only two dimensions, so that we cannot
generate a closed series of terms on a line by means of projective methods,*
(2) the line is to be closed, so that we cannot generate order on the straight
line by the descriptive method. It is for similar reasons that both directions
and distances have to be taken as symmetrical relations; thus it is only after an
order has been generated on a line that we can distinguish two senses, which

* Mr W. E. Johnson has pointed out to me that this difficulty might be overcome by introducing
the uniqueness of the quadrilateral construction by a special axiom—a method which would
perhaps be simpler than the above.
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may be associated with direction to render it asymmetrical, and with dis-
tances in a given direction to give them signs. It is important to observe that,
when distance is taken as independent of the straight line, it becomes neces-
sary, in order to distinguish different spaces, to assign some property or
properties of the one-one relations or transformations which leave distances
unchanged. This method has been adopted by Lie in applying to Geometry
the theory of continuous groups,* and has produced, in his hands and those
of Klein, results of the greatest interest to non-Euclidean Geometry. But since,
in most spaces, it is unnecessary to take distance as indefinable, I have been
able, except in this instance of Clifford’s space,† to adopt a simpler method of
specifying spaces. For this reason, it was important to consider briefly some
such space as Clifford’s, in order to give an instance of the use of distance,
and of what geometers call motion, in the definition of a space.

Enough has now been said, I hope, to show that the definition of a kind of
space is always possible in purely logical terms, and that new indefinables are
not required. Not only are the actual terms composing a space irrelevant, and
only their relations important, but even the relations do not require indi-
vidual determination, but only specification as members of certain logical
classes of relations. These logical classes are the elements used in geometrical
definitions, and these are definable in terms of the small collection of inde-
finables out of which the logical calculus (including that of relations) is built
up. This result, which holds throughout pure mathematics, was the principal
object of the present chapter.

* Leipziger Berichte, 1890.
† If I had defined an elliptic space of two dimensions, I should have had to take distance as
distinct from stretch, because the projective generation of order fails in two dimensions.
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50
THE CONTINUITY OF SPACE

416. I has been commonly supposed by philosophers that the continu-
ity of space was something incapable of further analysis, to be regarded as a
mystery, not critically inspected by the profane intellect. In Part V, I asserted
that Cantor’s continuity is all that we require in dealing with space. In the
present chapter, I wish to make good this assertion, in so far as is possible
without raising the question of absolute and relative position, which I reserve
for the next chapter.

Let us begin with the continuity of projective space. We have seen that the
points of descriptive space are ordinally similar to those of a semi-continuous
portion of a projective space, namely to the ideal points which have real
correlatives. Hence the continuity of descriptive space is of the same kind as
that of projective space, and need not, therefore, be separately considered. But
metrical space will require a new discussion.

It is to be observed that Geometries, as they are treated now-a-days, do not
begin by assuming spaces with an infinite number of points; in fact, space is,
as Peano remarks,* a word with which Geometry can very easily dispense.
Geometries begin by assuming a class-concept point, together with certain
axioms from which conclusions can be drawn as to the number of points. So,
in projective Geometry, we begin with the assumption that there are at least
two points, and that any two points determine a class of points, the straight
line, to which they and at least one other point belong. Hence we have three
points. We now introduce the new assumption that there is at least one point
not on any given straight line. This gives us a fourth point, and since there
must be points on the lines joining it to our previous points, we obtain three

* Riv. di Mat., Vol. , p. 52.



more points—seven in all. Hence we can obtain an infinite denumerable
series of points and lines, but we cannot, without a further assumption, prove
that there are more than three points on any one line. Four points on a line
result from the assumption that, if b and d be harmonic with respect to a and
c, then b and d are distinct. But in order to obtain an infinite number of points
on a line, we need the further assumptions from which the projective order
results.* These assumptions necessitate a denumerable series of points on our
line. With these, if we chose, we might be content. Such a series of points is
obtained by successive quadrilateral constructions; and if we chose to define
a space in which all points on a line could be obtained by successive quadri-
lateral constructions starting with any three points of the line, no contradic-
tion would emerge. Such a space would have the ordinal type of the positive
rationals and zero: the points on a line would form a compact denumerable
series with one end. The extension, introduced by assuming that the series
of points is continuous, is only necessary if our projective space is to possess
the usual metrical properties—if, that is to say, there is to be a stretch, with
one end and its straight line given, which is to be equal to any given stretch.
With only rational points, this property (which is Euclid’s postulate of the
existence of the circle) cannot hold universally. But for pure projective pur-
poses, it is irrelevant whether our space possesses or does not possess this
property. The axiom of continuity itself may be stated in either of the two
following forms. (1) All points on a line are limits of series of rational points,
and all infinite series of rational points have limits; (2) if all points of a line be
divided into two classes, of which one wholly precedes the other, then either
the first class has a last term, or the last has a first term, but both do not
happen. In the first of these ways, the continuity which results is exactly
Cantor’s, but the second, which is Dedekind’s definition, is a necessary,
not a sufficient, condition for Cantor’s continuity. Adopting this first defin-
ition, the rational points, omitting their first term, form an endless compact
denumerable series; all points form a perfect series; and between any two
points there is a rational point, which is precisely the ordinal definition of
continuity.† Thus if a projective space is to have continuity at all, it must
have the kind of continuity which belongs to the real numbers.

417. Let us consider next the continuity of a metrical space; and, for the
sake of definiteness, let us take Euclidean space. The question is here more
difficult, for continuity is not usually introduced by an axiom ad hoc, but
appears to result, in some sense, from the axioms of distance. It was already
known to Plato that not all lengths are commensurable, and a strict proof of
this fact is contained in the tenth book of Euclid. But this does not take us

* Cf. Pieri, op. cit. § 6, Prop. 1.
† See Part V, Chap. 36.
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very far in the direction of Cantor’s continuity. The gist of the assertion that
not all lengths are commensurable, together with the postulate of the circle,
may be expressed as follows. If AB, AC be two lengths along the same straight
line, it may happen that, if AB be divided into m equal parts, and AC into n
equal parts, then, however m and n may be chosen, one of the parts of AB will
not be equal to one of the parts of AC, but will be greater for some values of
m and n, and less for others; also lengths equal to either may be taken along
any given line and with any given end-points.* But this fact by no means
proves that the points on a line are not denumerable, since all algebraic
numbers are denumerable. Let us see, then, what our axioms allow us to infer.

In Greek Geometry there were two great sources of irrationals, namely, the
diagonal of a square and the circumference of a circle. But there could be no
knowledge that these are irrationals of different kinds, the one being meas-
ured by an algebraic number, the other by a transcendent number. No general
method was known for constructing any assigned algebraic number,† still
less for constructing an assigned transcendent number. And so far as I know,
such methods, except by means of limits, are still wanting. Some algebraic
and some transcendent numbers can be constructed geometrically without
the use of limits, but the constructions are isolated, and do not follow any
general plan. Hence, for the present, it cannot be inferred from Euclid’s
axioms that space has continuity in Cantor’s sense, or that the points of space
are not denumerable. Since the introduction of analytic Geometry, some
equivalent assumption has been always tacitly made. For example, it has been
assumed that any equation which is satisfied by real values of the variables
will represent a figure in space; and it seems even to be universally supposed
that to every set of real Cartesian coordinates a point must correspond. These
assumptions were made, until quite recent times, without any discussion at
all, and apparently without any consciousness that they were assumptions.

When once these assumptions are recognized as such, it becomes apparent
that, here as in projective space, continuity must be introduced by an axiom
ad hoc. But as against the philosophers, we may make the following remark.
Cantor’s continuity is indubitably sufficient to satisfy all metrical axioms, and
the only question is, whether existent space need have continuity of so high
an order. In any case, if measurement is to be theoretically possible, space
must not have a greater continuity than that of the real numbers.

The axiom that the points on a line form a continuous series may be put in
the form which results from amending Dedekind, or in the form that a line
is a perfect series. In the first form, every section of the line is definable by a

* A length is not synonymous with a segment, since a length is regarded as essentially termin-
ated. But a length is, for present purposes, synonymous with a stretch or a distance.
† For shortness, I shall identify numbers with the lengths which they measure.
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single point, which is at one end of one of the parts produced by the section,
while the other part has no end. In the second form, which is preferable
because, unlike the first, it completely defines the ordinal type, every infinite
series of points has a limit, and every point is a limiting point. It is not
necessary to add that the line has cohesion,* for this results from the axioms
of Archimedes and of linearity, which are in any case essential to measure-
ment. Whether the axiom of continuity be true as regards our actual space, is
a question which I see no means of deciding. For any such question must be
empirical, and it would be quite impossible to distinguish empirically what
may be called a rational space from a continuous space. But in any case there
is no reason to think that space has a higher power than that of the continuum.

418. The axiom of continuity enables us to dispense with the postulate
of the circle, and to substitute for it the following pair. (1) On any straight
line there is a point whose distance from a given point on the line is less
than a given distance. (2) On any straight line there is a point whose distance
from a given point on or off the line is greater than a given distance. From
these two assumptions, together with continuity, the existence of the circle
can be proved. Since it is not possible, conversely, to deduce continuity from
the circle, and since much of analytic Geometry might be false in a dis-
continuous space, it seems a distinct advance to banish the circle from our
initial assumptions, and substitute continuity with the above pair of axioms.

419. There is thus no mystery in the continuity of space, and no need
of any notions not definable in Arithmetic. There is, however, among most
philosophers, a notion that, in space, the whole is prior to the parts;† that
although every length, area, or volume can be divided into lengths, areas, or
volumes, yet there are no indivisibles of which such entities are composed.
According to this view, points are mere fictions, and only volumes are genuine
entities. Volumes are not to be regarded as classes of points, but as wholes
containing parts which are never simple. Some such view as this is, indeed,
often put forward as giving the very essence of what should be called con-
tinuity. This question is distinct from the question of absolute and relative
position, which I shall discuss in the following chapter. For, if we regard
position as relative, our present question will arise again concerning con-
tinuous portions of matter. This present question is, in fact, essentially con-
cerned with continuity, and may therefore be appropriately discussed here.

The series which arise in Arithmetic, whether continuous or not, are
essentially composed of terms—integers, rationals, real numbers, etc. And
where we come near to the continuity of space, as in the case of the real
numbers, each real number is a segment or infinite class of rationals, and

* See Part V, Chap. 35.
† Cf. Leibniz, Phil. Werk· e (Gerhardt), , p. 379; , p. 491; also my Philosophy of Leibniz, Chap. .
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no denial that a segment is composed of elements is possible. In this case,
we start from the elements and gradually construct various infinite wholes.
But in the case of space, we are told, it is infinite wholes that are given to
begin with; the elements are only inferred, and the inference, we are assured,
is very rash. This question is in the main one of Logic. Let us see how
the above view is supported.

Those who deny indivisible points as constituents of space have had, in the
past, two lines of argument by which to maintain their denial. They had the
difficulties of continuity and infinity, and they had the way in which space is
presented in what, according to their school, they called intuition or sensa-
tion or perception. The difficulties of continuity and infinity, as we saw in
Part V, are a thing of the past; hence this line of argument is no longer open to
those who deny points. As regards the other argument, it is extremely dif-
ficult to give it a precise form—indeed I suspect that it is impossible. We
may take it as agreed that everything spatial, of whose existence we become
immediately aware in sensation or intuition, is complex and divisible. Thus
the empirical premiss, in the investigation of space, is the existence of divis-
ible entities with certain properties. But here it may be well to make a little
digression into the meaning of an empirical premiss.

420. An empirical premiss is a proposition which, for some reason or
for no reason, I believe, and which, we may add, is existential. Having agreed
to accept this proposition, we shall usually find, on examination, that it is
complex, and that there are one or more sets of simpler propositions from
which it may be deduced. If P be the empirical premiss, let A be the class of
sets of propositions (in their simplest form) from which P may be deduced;
and let two members of the class A be considered equivalent when they imply
one another. From the truth of P we infer the truth of one set of the class A. If
A has only one member, that member must be true. But if there are many
members of the class A, not all equivalent, we endeavour to find some other
empirical premiss P' , implied by all sets of simple propositions of the class A' .
If now it should happen that the classes A and A'  have only one common
member, and the other members of A are inconsistent with the other mem-
bers of A' , the common member must be true. If not, we seek a new empirical
premiss P'' , and so on. This is the essence of induction.* The empirical prem-
iss is not in any essential sense a premiss, but is a proposition which we
wish our deduction to arrive at. In choosing the premisses of our deduc-
tion, we are only guided by logical simplicity and the deducibility of our
empirical premiss.

421. Applying these remarks to Geometry, we see that the common
desire for self-evident axioms is entirely mistaken. This desire is due to the

* Cf. Couturat, La Logique de Leibniz, Paris, 1901, p. 270.
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belief that the Geometry of our actual space is an à priori science, based on
intuition. If this were the case, it would be properly deducible from self-
evident axioms, as Kant believed. But if we place it along with other sciences
concerning what exists, as an empirical study based upon observation, we see
that all that can be legitimately demanded is that observed facts should follow
from our premisses, and, if possible, from no set of premisses not equivalent
to those which we assume. No one objects to the law of gravitation as being
not self-evident, and similarly, when Geometry is taken as empirical, no one
can legitimately object to the axiom of parallels—except, of course, on the
ground that, like the law of gravitation, it need only be approximately true
in order to yield observed facts. It cannot be maintained that no premisses
except those of Euclidean Geometry will yield observed results; but others
which are permissible must closely approximate to the Euclidean premisses.
And so it is with continuity: we cannot prove that our actual space must be
continuous, but we cannot prove that it is not so, and we can prove that a
continuous space would not differ in any discoverable manner from that in
which we live.

422. To return from this digression: we agreed that the empirical prem-
isses, as regards the continuity of space, are concerned always with divisible
entities which have divisible parts. The question before us is whether we are
to infer from this that the logical premisses for the science of existing space
(i.e. the definition of existing space) may or must be concerned with divisible
entities. The question whether our premisses must be concerned with divis-
ible entities is fully answered, in the negative, by actual Geometry, where, by
means of indivisible points, a space empirically indistinguishable from that
in which we live is constructed. The only reasons hitherto alleged by philo-
sophers against regarding this answer as satisfactory, are either such as were
derived from the difficulties of infinity and continuity, or such as were based
upon a certain logical theory of relations. The former have been already
disproved; the latter will be discussed in the next chapter. The question
whether our premisses may be concerned with divisible entities is far more
difficult, and can be answered only by means of the logical discussions of
Part II. Whatever is complex, we then decided (§ 143), must be composed
of simple elements; and this conclusion carries us a long way towards the
decision of our present question. But it does not quite end our doubts. We
distinguished, in Part II, two kinds of wholes, namely aggregates and unities. The
former may be identified, at any rate for present purposes, with classes, while
the latter seem to be indistinguishable from propositions. Aggregates consist
of units from whose addition (in the sense presupposed in Arithmetic) they
result; unities, on the contrary, are not reconstituted by the addition of their
constituents. In all unities, one term at least is either a predicated predicate
or a relating relation; in aggregates, there is no such term. Now what is really
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maintained by those who deny that space is composed of points is, I imagine,
the view that space is a unity, whose constituents do not reconstitute it. I
do not mean to say that this view is consciously held by all who make the
denial in question, but that it seems the only view which renders the said
denial reasonable.

Before discussing this opinion, it is necessary to make a distinction. An
aggregate may be an aggregate of unities, and need by no means be an
aggregate of simple terms. The question whether a space is an aggregate of
unities or of simple terms is mathematically, though not philosophically,
irrelevant; the difference of the two cases is illustrated by the difference
between an independent projective space and the projective space defined
in terms of the elements of a descriptive space. For the present, I do not wish
to discuss whether points are unities or simple terms, but whether space is
or is not an aggregate of points.

This question is one in which confusions are very liable to occur, and have,
I think, actually occurred among those who have denied that a space is an
aggregate. Relations are, of course, quite essential to a space, and this has led
to the belief that a space is, not only its terms, but also the relations relating
them. Here, however, it is easy to see that, if a space be the field of a certain
class of relations, then a space is an aggregate; and if relations are essential to
the definition of a space, there must be some class of relations having a field
which is the space. The relations essential to Geometry will not hold between
two spatially divisible terms: there is no straight line joining two volumes,
and no distance between two surfaces. Thus, if a space is to be defined by
means of a class of relations, it does not follow, as is suggested, that a space is
a unity, but rather, on the contrary, that it is an aggregate, namely the field
of the said class of relations. And against any view which starts from volumes
or surfaces, or indeed anything except points and straight lines, we may urge,
with Peano,* that the distinction between curves, surfaces, and volumes, is
only to be effected by means of the straight line, and requires, even then, the
most elaborate developments.† There is, therefore, no possibility of any def-
inite Geometry without points, no logical reason against points and strong
logical reasons in their favour. We may therefore take it as proved that, if we
are to construct any self-consistent theory of space, we must hold space to be
an aggregate of points, and not a unity which is indefinable as a class. Space
is, in fact, essentially a class, since it cannot be defined by enumeration of its
terms, but only by means of its relation to the class-concept point. Space is

* Riv. di Mat., , p. 53.
† Cf. Peano, “Sur une courbe qui remplit toute une aire plane”, Math. Annalen, , where it is
shown that a continuous curve can be made to pass through all the points of the area of a square,
or, for that matter, of the volume of a cube.
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nothing but the extension of the concept point, as the British army is the exten-
sion of the concept British soldier; only, since the number of points is infinite,
Geometry is unable to imitate the Army-List by the issue of a Space-List.

Space, then, is composed of points; and if analytical Geometry is to be
possible, the number of points must be either equal to, or less than, the
number of the continuum. If the number be less, some propositions of the
accepted Geometry will be false; but a space in which the number of points
is equal to the number of finite numbers, and in which the points of a line
form a series ordinally similar to the rationals, will, with suitable axioms, be
empirically indistinguishable from a continuous space, and may be actual.
Thus Arithmetic, as enlarged by Cantor, is undoubtedly adequate to deal
with Geometry; the only question is, whether the more elaborate parts of its
machinery are required. It is in number that we become certain of the con-
tinuum; among actual existents, so far as present evidence shows, continuity
is possible, but cannot be rendered certain and indubitable.
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51
LOGICAL ARGUMENTS

AGAINST POINTS

423. I has been an almost universal opinion among philosophers, ever
since the time of Leibniz, that a space composed of points is logically
impossible. It is maintained that the spatial relations with which we have
been concerned do not hold between spatial points, which essentially and
timelessly have the relations which they do have, but between material
points, which are capable of motion, i.e. of a change in their spatial rela-
tions. This is called the theory of relative position, whereas the theory of
spatial points is called the theory of absolute position. Those who advocate
relative position usually also maintain that matter and spatial relations, on
account of certain contradictions supposed to be found in them, are not
real, but belong only to the world of appearance. This is, however, a further
point, which need not be explicitly discussed in what follows. Apart from
this point, the issue between the absolute and relative theories may be stated
as follows: The absolute theory holds that there are true propositions in
which spatial relations are asserted to hold timelessly between certain terms,
which may be called spatial points; the relational theory holds that every
true proposition asserting a spatial relation involves a time at which this
relation holds between its terms, so that the simplest spatial propositions
assert triangular relations of a time and two terms, which may be called
material points.

The question as to which of these two theories applies to the actual world
is, like all questions concerning the actual world, in itself irrelevant to pure
mathematics.* But the argument against absolute position usually takes the

* Some arguments on this point will be found in the earlier part of my paper, “Is position in 



form of maintaining that a space composed of points is logically inadmis-
sible, and hence issues are raised which a philosophy of mathematics must
discuss. In what follows, I am concerned only with the question: Is a space
composed of points self-contradictory? It is true that, if this question be
answered in the negative, the sole ground for denying that such a space exists
in the actual world is removed; but this is a further point, which, being
irrelevant to our subject, will be left entirely to the sagacity of the reader.

424. The arguments against the absolute theory are, in my opinion, one
and all fallacious. They are best collected in Lotze’s Metaphysic (§ 108 ff.). They
are there confused with arguments for the subjectivity of space—an entirely
distinct question, as should have been evident from the fact that Kant, in the
Critique, appears to have advocated the theory of absolute position.† Omitting
arguments only bearing on this latter point, we have the following summary
of Lotze’s arguments against absolute space.

(1) Relations only are either (α) as presentations in a relating conscious-
ness, or (β) as internal states in the real elements which are said to stand in
these relations (§ 109).

(2) The being of empty space is neither the being which works effects
(which belongs to a thing), nor the mere validity of a truth, nor the fact of
being presented by us. What kind of being is it then? (§ 109).

(3) All points are exactly alike, yet every pair have a relation peculiar to
themselves; but being exactly like every other pair, the relation should be the
same for all pairs (§ 111).

(4) The being of every point must consist in the fact that it distinguishes
itself from every other, and takes up an invariable position relatively to every
other. Hence the being of space consists in an active mutual conditioning of
its various points, which is really an interaction (§ 110).

(5) If the relations of points were a mere fact, they could be altered, at least
in thought; but this is impossible: we cannot move points or imagine holes in
space. This impossibility is easily explained by a subjective theory (§ 110).

(6) If there are real points, either (α) one point creates others in appropri-
ate relations to itself, or (β) it brings already existing points into appropriate
relations, which are indifferent to their natures (§ 111).

425. (1) All these arguments depend, at bottom, upon the first, the
dogma concerning relations. As it is of the essence of the absolute theory
to deny this dogma, I shall begin by examining it at some length.‡ “All

Time and Space absolute or relative?” Mind, N.S., No. 39; the later portions of this paper are
here reprinted.

† Cf. Vaihinger, Commentar, pp. 189–190.
‡ The logical opinions which follow are in the main due to Mr G. E. Moore, to whom I owe also
my first perception of the difficulties in the relational theory of space and time.
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relations”, Lotze tells us, “only are as presentations in a relating conscious-
ness, or as internal states in the real elements which, as we are wont to say,
stand in these relations.” This dogma Lotze regards as self-evident, as indeed
he well may; for I doubt if there is one anterior philosopher, unless it be Plato,
who does not, consciously or unconsciously, employ the dogma as an essen-
tial part of his system. To deny it, therefore, is a somewhat hardy undertaking.
Let us, nevertheless, examine the consequences to which the dogma leads us.

It would seem that, if we accept the dogma, we must distinguish two kinds
of relations, (α) those which are presentations in a relating consciousness,
and (β) those which are internal states of the elements supposed to be
related. These may be ultimately identical, but it will be safer in the mean
time to treat them as different. Let us begin with those which are only
presentations in a relating consciousness. These presentations, we must
suppose, are beliefs in propositions asserting relations between the terms
which appear related. For it must be allowed that there are beliefs in such
propositions, and only such beliefs seem capable of being regarded as presen-
tations in which relations have their being. But these beliefs, if the relations
believed to hold have no being except in the beliefs themselves, are necessar-
ily false. If I believe A to be B’s father, when this is not the case, my belief is
erroneous; and if I believe A to be west of B, when westerliness in fact exists
only in my mind, I am again mistaken. Thus this first class of relations has no
validity whatever, and consists merely in a collection of mistaken beliefs. The
objects concerning which the beliefs are entertained are as a matter of fact
wholly unrelated; indeed there cannot even be objects, for the plural implies
diversity, and all beliefs in the relation of diversity must be erroneous. There
cannot even be one object distinct from myself, since this would have to have
the relation of diversity to me, which is impossible. Thus we are committed,
so far as this class of relations goes, to a rigid monism.

But now, what shall we say of the second class of relations, those namely
which are reducible to internal states of the apparently related objects? It
must be observed that this class of relations presupposes a plurality of objects
(two at least), and hence involves the relation of diversity. Now we have seen
that, if there be diversity, it cannot be a relation of the first class; hence it must
itself be of the second class. That is, the mere fact that A is different from B
must be reducible to internal states of A and B. But is it not evident that,
before we can distinguish the internal states of A from those of B, we must
first distinguish A from B?, i.e. A and B must be different, before they can have
different states? If it be said that A and B are precisely similar, and are yet two,
it follows even more evidently that their diversity is not due to difference of
internal states, but is prior to it. Thus the mere admission that there are
internal states of different things destroys the theory that the essence of
relations is to be found in these states. We are thus brought back to the notion
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that the apparent relations of two things consist in the internal states of one
thing, which leads us again to the rigid monism implied in the first type
of relation.

Thus the theory of relations propounded by Lotze is, in fact, a theory that
there are no relations. This has been recognized by the most logical adherents
of the dogma—e.g. Spinoza and Mr Bradley—who have asserted that there
is only one thing, God or the Absolute, and only one type of proposition,
namely that ascribing predicates to the Absolute. In order to meet this
development of the above theory of relations, it will be necessary to examine
the doctrine of subject and predicate.

426. Every proposition, true or false—so the present theory contends—
ascribes a predicate to a subject, and—what is a corollary from the above—
there is only one subject. The consequences of this doctrine are so strange,
that I cannot believe they have been realized by those who maintain it. The
theory is in fact self-contradictory. For if the Absolute has predicates, then
there are predicates; but the proposition “there are predicates” is not one
which the present theory can admit. We cannot escape by saying that the
predicates merely qualify the Absolute; for the Absolute cannot be qualified
by nothing, so that the proposition “there are predicates” is logically prior to
the proposition “the Absolute has predicates”. Thus the theory itself
demands, as its logical prius, a proposition without a subject and a predicate;
moreover this proposition involves diversity, for even if there be only one
predicate, this must be different from the one subject. Again, since there is a
predicate, the predicate is an entity, and its predicability of the Absolute is a
relation between it and the Absolute. Thus the very proposition which was to
be non-relational turns out to be, after all, relational, and to express a relation
which current philosophical language would describe as purely external. For
both subject and predicate are simply what they are—neither is modified by
its relation to the other. To be modified by the relation could only be to have
some other predicate, and hence we should be led into an endless regress. In
short, no relation ever modifies either of its terms. For if it holds between A
and B, then it is between A and B that it holds, and to say that it modifies A and
B is to say that it really holds between different terms C and D. To say that two
terms which are related would be different if they were not related, is to say
something perfectly barren; for if they were different, they would be other,
and it would not be the terms in question, but a different pair, that would be
unrelated. The notion that a term can be modified arises from neglect to
observe the eternal self-identity of all terms and all logical concepts, which
alone form the constituents of propositions.* What is called modification

* See Mr G. E. Moore’s paper on “The Nature of Judgment”, Mind, N.S., Vol. . Also supra,
§§ 47, 48, where the view adopted differs somewhat from Mr Moore’s.
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consists merely in having at one time, but not at another, some specific
relation to some other specific term; but the term which sometimes has and
sometimes has not the relation in question must be unchanged, otherwise it
would not be that term which had ceased to have the relation.

The general objection to Lotze’s theory of relations may be thus summed
up. The theory implies that all propositions consist in the ascription of a
predicate to a subject, and that this ascription is not a relation. The objection
is, that the predicate is either something or nothing. If nothing, it cannot
be predicated, and the pretended proposition collapses. If something, predi-
cation expresses a relation, and a relation of the very kind which the theory
was designed to avoid. Thus in either case the theory stands condemned,
and there is no reason for regarding relations as all reducible to the subject-
predicate form.

427. (2) I come now to the second of Lotze’s objections to empty space.
This is again of a somewhat abstract logical character, but it is far easier to
dispose of, since it depends upon a view more or less peculiar to Lotze. There
are, it says, three and only three kinds of being, no one of which belongs to
space. These are (α) the being of things, which consists in activity or the
power to produce effects; (β) the validity of a truth; (γ) the being which
belongs to the contents of our presentations.

The answer to this is, that there is only one kind of being, namely, being
simpliciter, and only one kind of existence, namely, existence simpliciter. Both
being and existence, I believe, belong to empty space; but being alone is
relevant to the refutation of the relational theory—existence belongs to the
question which Lotze confounds with the above, namely, as to the reality or
subjectivity of space. It may be well first to explain the distinction of being
and existence, and then to return to Lotze’s three kinds of being.

Being is that which belongs to every conceivable term, to every possible
object of thought—in short to everything that can possibly occur in any
proposition, true or false, and to all such propositions themselves. Being
belongs to whatever can be counted. If A be any term that can be counted as
one, it is plain that A is something, and therefore that A is. “A is not” must
always be either false or meaningless. For if A were nothing, it could not be
said not to be; “A is not” implies that there is a term A whose being is denied,
and hence that A is. Thus unless “A is not” be an empty sound, it must
be false—whatever A may be, it certainly is. Numbers, the Homeric gods,
relations, chimeras and four-dimensional spaces all have being, for if they
were not entities of a kind, we could make no propositions about them. Thus
being is a general attribute of everything, and to mention anything is to show
that it is.

Existence, on the contrary, is the prerogative of some only amongst beings.
To exist is to have a specific relation to existence—a relation, by the way,
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which existence itself does not have. This shows, incidentally, the weakness
of the existential theory of judgment—the theory, that is, that every prop-
osition is concerned with something that exists. For if this theory were true,
it would still be true that existence itself is an entity, and it must be admitted
that existence does not exist. Thus the consideration of existence itself leads
to non-existential propositions, and so contradicts the theory. The theory
seems, in fact, to have arisen from neglect of the distinction between exist-
ence and being. Yet this distinction is essential, if we are ever to deny the
existence of anything. For what does not exist must be something, or it would
be meaningless to deny its existence; and hence we need the concept of
being, as that which belongs even to the non-existent.

Returning now to Lotze’s three kinds of being, it is sufficiently evident
that his views involve hopeless confusions.

(α) The being of things, Lotze thinks—following Leibniz here as else-
where—consists in activity. Now activity is a highly complex notion, which
Lotze falsely supposed unanalysable. But at any rate it is plain that, if there be
activity, what is active must both be and exist, in the senses explained above.
It will also be conceded, I imagine, that existence is conceptually distinguish-
able from activity. Activity may be a universal mark of what exists, but can
hardly be synonymous with existence. Hence Lotze requires the highly
disputable proposition that whatever exists must be active. The true answer to
this proposition lies (1) in disproving the grounds alleged in its favour, (2) in
proving that activity implies the existence of time, which cannot be itself
active. For the moment, however, it may suffice to point out that, since
existence and activity are logically separable, the supposition that something
which is not activity exists cannot be logically absurd.

(β) The validity of a truth—which is Lotze’s second kind of being—is is
in reality no kind of being at all. The phrase, in the first place, is ill-chosen—
what is meant is the truth of a truth, or rather the truth of a proposition.
Now the truth of a proposition consists in a certain relation to truth, and
presupposes the being of the proposition. And as regards being, false proposi-
tions are on exactly the same level, since to be false a proposition must
already be. Thus validity is not a kind of being, but being belongs to valid and
invalid propositions alike.

(γ) The being which belongs to the contents of our presentations is a
subject upon which there exists everywhere the greatest confusion. This kind
is described by Lotze as “ein Vorgestelltwerden durch uns”. Lotze presumably holds
that the mind is in some sense creative—that what it intuits acquires, in some
sense, an existence which it would not have if it were not intuited. Some such
theory is essential to every form of Kantianism—to the belief, that is, that
propositions which are believed solely because the mind is so made that we
cannot but believe them may yet be true in virtue of our belief. But the whole
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theory rests, if I am not mistaken, upon neglect of the fundamental distinc-
tion between an idea and its object. Misled by neglect of being, people have
supposed that what does not exist is nothing. Seeing that numbers, relations,
and many other objects of thought, do not exist outside the mind, they
have supposed that the thoughts in which we think of these entities actually
create their own objects. Every one except a philosopher can see the differ-
ence between a post and my idea of a post, but few see the difference
between the number 2 and my idea of the number 2. Yet the distinction is as
necessary in one case as in the other. The argument that 2 is mental requires
that 2 should be essentially an existent. But in that case it would be particular,
and it would be impossible for 2 to be in two minds, or in one mind at two
times. Thus 2 must be in any case an entity, which will have being even if it
is in no mind.* But further, there are reasons for denying that 2 is created by
the thought which thinks it. For, in this case, there could never be two
thoughts until some one thought so; hence what the person so thinking
supposed to be two thoughts would not have been two, and the opinion,
when it did arise, would be erroneous. And applying the same doctrine to 1;
there cannot be one thought until some one thinks so. Hence Adam’s first
thought must have been concerned with the number 1; for not a single
thought could precede this thought. In short, all knowledge must be recogni-
tion, on pain of being mere delusion; Arithmetic must be discovered in just
the same sense in which Columbus discovered the West Indies, and we no
more create numbers than he created the Indians. The number 2 is not purely
mental, but is an entity which may be thought of. Whatever can be thought of
has being, and its being is a precondition, not a result, of its being thought of.
As regards the existence of an object of thought, however, nothing can be
inferred from the fact of its being thought of, since it certainly does not exist
in the thought which thinks of it. Hence, finally, no special kind of being
belongs to the objects of our presentations as such. With this conclusion,
Lotze’s second argument is disposed of.

428. (3) Lotze’s third argument has been a great favourite, ever since
Leibniz introduced it. All points, we are told, are exactly alike, and therefore
any two must have the same mutual relation as any other two; yet their
mutual distances must differ, and even, according to Lotze (though in this, in
the sense in which he seems to mean it, he is mistaken), the relation of every
pair must be peculiar to that pair. This argument will be found to depend
again upon the subject-predicate logic which we have already examined.
To be exactly alike can only mean—as in Leibniz’s Identity of Indiscern-
ibles—not to have different predicates. But when once it is recognized that
there is no essential distinction between subjects and predicates, it is seen that

* Cf. Frege, Grundgesetze der Arithmetik, p. xviii.
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any two simple terms simply differ immediately—they are two, and this is
the sum-total of their differences. Complex terms, it is true, have differences
which can be revealed by analysis. The constituents of the one may be A, B, C,
D, while those of the other are A, E, F, G. But the differences of B, C, D from E,
F, G are still immediate differences, and immediate differences must be the
source of all mediate differences. Indeed it is a sheer logical error to suppose
that, if there were an ultimate distinction between subjects and predicates,
subjects could be distinguished by differences of predicates. For before two
subjects can differ as to predicates, they must already be two; and thus the
immediate diversity is prior to that obtained from diversity of predicates.
Again, two terms cannot be distinguished in the first instance by difference of
relation to other terms; for difference of relation presupposes two distinct
terms, and cannot therefore be the ground of their distinctness. Thus if there
is to be any diversity at all, there must be immediate diversity, and this kind
belongs to points.

Again, points have also the subsequent kind of diversity consisting in
difference of relation. They differ not only, as Lotze urges, in their relations to
each other, but also in their relations to the objects in them. Thus they seem
to be in the same position as colours, sounds, or smells. Two colours, or two
simple smells, have no intrinsic difference save immediate diversity, but have,
like points, different relations to other terms.

Wherein, then, lies the plausibility of the notion that all points are exactly
alike? This notion is, I believe, a psychological illusion, due to the fact that we
cannot remember a point, so as to know it when we meet it again. Among
simultaneously presented points it is easy to distinguish; but though we are
perpetually moving, and thus being brought among new points, we are
quite unable to detect this fact by our senses, and we recognize places only by
the objects they contain. But this seems to be a mere blindness on our part—
there is no difficulty, so far as I can see, in supposing an immediate difference
between points, as between colours, but a difference which our senses are
not constructed to be aware of. Let us take an analogy: Suppose a man with a
very bad memory for faces: he would be able to know, at any moment,
whether he saw one face or many, but he would not be aware whether he had
ever seen any of the faces before. Thus he might be led to define people by the
rooms in which he saw them, and to suppose it self-contradictory that new
people should come to his lectures, or old people cease to do so. In the latter
point, at least, it will be admitted by lecturers that he would be mistaken. And
as with faces, so with points—inability to recognize them must be attributed,
not to the absence of individuality, but merely to our incapacity.

429. (4) Lotze’s fourth argument is an endeavour to effect a reductio ad
absurdum, by proving that, on the absolute theory, points must interact. The
being of every point, Lotze contends, must consist in the fact that it
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distinguishes itself from every other, and takes up an invariable position
relatively to every other. Many fallacies are contained in this argument. In
the first place, there is what may be called the ratiocinator’s fallacy, which
consists in supposing that everything has to be explained by showing that it is
something else. Thus the being of a point, for Lotze, must be found in
its difference from other points, while, as a matter of fact, its being is simply
its being. So far from being explained by something else, the being of a point
is presupposed in all other propositions about it, as e.g. in the proposition
that the point differs from other points. Again, the phrase that the point
distinguishes itself from all other points seems to be designed to imply some
kind of self-assertion, as though the point would not be different unless it
chose to differ. This suggestion helps out the conclusion, that the relations
between points are in reality a form of interaction. Lotze, believing as he does
that activity is essential to existence, is unable to imagine any other relation
between existents than that of interaction. How hopelessly inapplicable
such a view is, will appear from an analysis of interaction. Interaction is an
enormously complex notion, presupposing a host of other relations, and
involving, in its usual form, the distinction of a thing from its qualities—a
distinction dependent on the subject-predicate logic already criticized. Inter-
action, to begin with, is either the simultaneous action of A on B and B on A,
or the action of the present states of A and B conjointly on their states at the
next instant. In either case it implies action. Action generally may be defined
as a causal relation between one or more states of one or more things at the
present instant and one or more states of the same or different things at a
subsequent instant. When there is only one thing in both cases, the action is
immanent if the thing be the same in cause and effect, transient if the cause
be in one thing and the effect in another. In order to speak of action, rather
than causality simply, it is necessary to suppose things enduring for a certain
time, and having changing states. Thus the notion of interaction presupposes
the following relations: (1) diversity between things; (2) diversity between
the states of things; (3) simultaneity; (4) succession; (5) causality; (6) the
relation of a thing to its states. This notion, involving, as a moment’s inspec-
tion shows, six simpler relations in its analysis, is supposed to be the
fundamental relation! No wonder absurdities are produced by such a suppos-
ition. But the absurdities belong to Lotze, not to space. To reduce the relations
of points to interactions, on the ground that interaction is the type of all
relations, is to display a complete incapacity in the simplest problems of
analysis. The relations of points are not interactions, any more than before
and after, or diversity, or greater and less, are interactions. They are eternal
relations of entities, like the relation of 1 to 2 or of interaction itself to
causality. Points do not assign positions to each other, as though they were
each other’s pew-openers: they eternally have the relations which they have,
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just like all other entities. The whole argument, indeed, rests upon an absurd
dogma, supported by a false and scholastic logic.

430. (5) The fifth argument seems to be designed to prove the Kantian
apriority of space. There are, it says, necessary propositions concerning space,
which show that the nature of space is not a “mere fact”. We are intended to
infer that space is an à priori intuition, and a psychological reason is given why
we cannot imagine holes in space. The impossibility of holes is apparently
what is called a necessity of thought. This argument again involves much
purely logical discussion. Concerning necessities of thought, the Kantian
theory seems to lead to the curious result that whatever we cannot help
believing must be false. What we cannot help believing, in this case, is some-
thing as to the nature of space, not as to the nature of our minds. The
explanation offered is, that there is no space outside our minds; whence it is
to be inferred that our unavoidable beliefs about space are all mistaken.
Moreover we only push one stage farther back the region of “mere fact”, for
the constitution of our minds remains still a mere fact.

The theory of necessity urged by Kant, and adopted here by Lotze, appears
radically vicious. Everything is in a sense a mere fact. A proposition is said to
be proved when it is deduced from premisses; but the premisses, ultimately,
and the rule of inference, have to be simply assumed. Thus any ultimate
premiss is, in a certain sense, a mere fact. On the other hand, there seems to
be no true proposition of which there is any sense in saying that it might have
been false. One might as well say that redness might have been a taste and not
a colour. What is true, is true; what is false, is false; and concerning funda-
mentals, there is nothing more to be said. The only logical meaning of
necessity seems to be derived from implication. A proposition is more or less
necessary according as the class of propositions for which it is a premiss is
greater or smaller.* In this sense the propositions of logic have the greatest
necessity, and those of geometry have a high degree of necessity. But this
sense of necessity yields no valid argument from our inability to imagine
holes in space to the conclusion that there cannot really be any space at all
except in our imaginations.

431. (6) The last argument may be shortly disposed of. If points be
independent entities, Lotze argues—so I interpret him—that we can imagine
a new point coming into existence. This point, then, must have the appropri-
ate relations to other points. Either it creates the other points with the
relations, or it merely creates the relations to already existing points. Now it
must be allowed that, if there be real points, it is not self-contradictory to
suppose some of them non-existent. But strictly speaking, no single prop-
osition whatever is self-contradictory. The nearest approach would be “No

* Cf. G. E. Moore, “Necessity”, Mind, N.S., No. 35.
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proposition is true”, since this implies its own truth. But even here, it is not
strictly self-contradictory to deny the implication. Everywhere we come
upon propositions accepted because they are self-evident, and for no other
reason: the law of contradiction itself is such a proposition. The mutual
implication of all the points of space seems to be another; the denial of some
only among points is rejected for the same reason as the assertion that such
and such a proposition is both true and false, namely, because both are
obviously untrue. But if, per impossible, a point previously missing were to
come into existence, it would not create new points, but would have the
appropriate relations to already existing points. The point, in fact, would have
already had being, and as an entity would have eternally had to other points
the same relations as it has when it comes into existence. Thus Lotze’s argu-
ment on this, as on other points, depends upon a faulty logic, and is easily
met by more correct views as to the nature of judgment.

I conclude, from the above discussion, that absolute position is not
logically inadmissible, and that a space composed of points is not self-
contradictory. The difficulties which used to be found in the nature of
infinity depended upon adherence to one definite axiom, namely, that a
whole must have more terms than a part; those in the nature of space, on the
other hand, seem to have been derived almost exclusively from general logic.
With a subject-predicate theory of judgment, space necessarily appears to
involve contradictions; but when once the irreducible nature of relational
propositions is admitted, all the supposed difficulties vanish like smoke.*
There is no reason, therefore, so far as I am able to perceive, to deny the
ultimate and absolute philosophical validity of a theory of geometry which
regards space as composed of points, and not as a mere assemblage of
relations between non-spatial terms.

* Cf. my Philosophy of Leibniz, Cambridge, 1900, Chap. .
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52
KANT’S THEORY OF SPACE

432. I the present chapter I do not propose to undertake a minute or
textual examination of Kant’s opinions; this has been done elsewhere, and
notably in Vaihinger’s monumental commentary, so well that it need not be
done over again here. It is only the broad outlines of the Kantian doctrine that
I wish to discuss. This doctrine, more or less modified, has held the field for
over a century, and has won a nearly universal acceptance. As my views are,
on almost every point of mathematical theory, diametrically opposed to
those of Kant, it becomes necessary explicitly to defend the opinions in
which I differ from him.* In this I shall pay special attention to what Kant
calls the transcendental arguments, i.e. those derived from the nature of
mathematics.

433. Broadly speaking, the way in which Kant seeks to deduce his theory
of space from mathematics (especially in the Prolegomena) is as follows.
Starting from the question: “How is pure mathematics possible?” Kant first
points out that all the propositions of mathematics are synthetic. He infers
hence that these propositions cannot, as Leibniz had hoped, be proved by
means of a logical calculus; on the contrary, they require, he says, certain
synthetic à priori propositions, which may be called axioms, and even then (it
would seem) the reasoning employed in deductions from the axioms is
different from that of pure logic. Now Kant was not willing to admit that
knowledge of the external world could be obtained otherwise than by
experience; hence he concluded that the propositions of mathematics all deal

* The theory of space which I shall discuss will be that of the Critique and the Prolegomena.
Pre-critical works, and the Metaphysische Anfangsgründe der Naturwissenschaft (which differs from the
Critique on this point), will not be considered.



with something subjective, which he calls a form of intuition. Of these forms
there are two, space and time; time is the source of Arithmetic, space of
Geometry. It is only in the forms of time and space that objects can be
experienced by a subject; and thus pure mathematics must be applicable to all
experience. What is essential, from the logical point of view, is, that the à priori
intuitions supply methods of reasoning and inference which formal logic
does not admit; and these methods, we are told, make the figure (which
may of course be merely imagined) essential to all geometrical proofs. The
opinion that time and space are subjective is reinforced by the antinomies,
where Kant endeavours to prove that, if they be anything more than forms of
experience, they must be definitely self-contradictory.

In the above outline I have omitted everything not relevant to the
philosophy of mathematics. The questions of chief importance to us, as
regards the Kantian theory, are two, namely, (1) are the reasonings in
mathematics in any way different from those of Formal Logic? (2) are there
any contradictions in the notions of time and space? If these two pillars of
the Kantian edifice can be pulled down, we shall have successfully played the
part of Samson towards his disciples.

434. The question of the nature of mathematical reasoning was obscured
in Kant’s day by several causes. In the first place, Kant never doubted for
a moment that the propositions of logic are analytic, whereas he rightly
perceived that those of mathematics are synthetic. It has since appeared that
logic is just as synthetic as all other kinds of truth; but this is a purely
philosophical question, which I shall here pass by.* In the second place,
formal logic was, in Kant’s day, in a very much more backward state than at
present. It was still possible to hold, as Kant did, that no great advance
had been made since Aristotle, and that none, therefore, was likely to occur in
the future. The syllogism still remained the one type of formally correct
reasoning; and the syllogism was certainly inadequate for mathematics. But
now, thanks mainly to the mathematical logicians, formal logic is enriched by
several forms of reasoning not reducible to the syllogism,† and by means of
these all mathematics can be, and large parts of mathematics actually have
been, developed strictly according to the rules. In the third place, in Kant’s
day, mathematics itself was, logically, very inferior to what it is now. It is
perfectly true, for example, that any one who attempts, without the use of
the figure, to deduce Euclid’s seventh proposition from Euclid’s axioms, will
find the task impossible; and there probably did not exist, in the eighteenth
century, any single logically correct piece of mathematical reasoning, that is
to say, any reasoning which correctly deduced its result from the explicit

* See my Philosophy of Leibniz, § 11.
† See Chap. 2 supra, esp. § 18.
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premisses laid down by the author. Since the correctness of the result seemed
indubitable, it was natural to suppose that mathematical proof was something
different from logical proof. But the fact is, that the whole difference lay in
the fact that mathematical proofs were simply unsound. On closer examin-
ation, it has been found that many of the propositions which, to Kant, were
undoubted truths, are as a matter of fact demonstrably false.* A still larger
class of propositions—for instance, Euclid’s seventh proposition mentioned
above—can be rigidly deduced from certain premisses, but it is quite doubt-
ful whether the premisses themselves are true or false. Thus the supposed
peculiarity of mathematical reasoning has disappeared.

The belief that the reasonings of Geometry are in any way peculiar has
been, I hope, sufficiently refuted already by the detailed accounts which have
been given of these reasonings, and especially by Chapter 49. We have seen
that all geometrical results follow, by the mere rules of logic, from the def-
initions of the various spaces. And as regards the opinion that Arithmetic
depends upon time, this too, I hope, has been answered by our accounts of
the relation of Arithmetic to Logic. Indeed, apart from any detail, it seems to
be refuted by the simple observation that time must have parts, and therefore
plurality, whole and part, are prior to any theory of time. All mathematics, we
may say—and in proof of our assertion we have the actual development of
the subject—is deducible from the primitive propositions of formal logic:
these being admitted, no further assumptions are required.

But admitting the reasonings of Geometry to be purely formal, a Kantian
may still maintain that an à priori intuition assures him that the definition of
three-dimensional Euclidean space, alone among the definitions of possible
spaces, is the definition of an existent, or at any rate of an entity having some
relation to existents which other spaces do not have. This opinion is, strictly
speaking, irrelevant to the philosophy of mathematics, since mathematics is
throughout indifferent to the question whether its entities exist. Kant
thought that the actual reasoning of mathematics was different from that of
logic; the suggested emendation drops this opinion, and maintains merely a
new primitive proposition, to the effect that Euclidean space is that of the
actual world. Thus, although I do not believe in any immediate intuition
guaranteeing any such primitive proposition, I shall not undertake the refuta-
tion of this opinion. It is enough, for my purpose, to have shown that no such
intuition is relevant in any strictly mathematical proposition.

435. It remains to discuss the mathematical antinomies. These are
concerned with infinity and continuity, which Kant supposed to be specially
spatio-temporal. We have already seen that this view is mistaken, since both
occur in pure Arithmetic. We have seen also in Part V (especially in Chapter

* For example, the proposition that every continuous function can be differentiated.
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42) that the supposed antinomies of infinity and continuity, in their arith-
metical form, are soluble; it remains to prove the same conclusion concern-
ing Kant’s spatio-temporal form. The third and fourth antinomies are not
relevant here, since they involve causality; only the first two, therefore, will be
examined.

First Antinomy. Thesis: “The world has a beginning in time, and as regards
space also is enclosed within limits.” This statement is not concerned with
pure time and pure space, but with the things in them. The proof, such as it
is, applies in the first instance to time only, and is effected by reductio ad
absurdum. “For assume”, it says, “that the world has no beginning in time, then
an eternity has passed away (abgelaufen) before every given point of time, and
consequently an infinite series of conditions of the things in the world has
happened. But the infinity of a series consists in this, that it can never be
completed by successive synthesis. Consequently an infinite past series of
things in the world (Weltreihe) is impossible, and a beginning of the world is a
necessary condition of its existence, which was first to be proved.”

This argument is difficult to follow, and suggests a covert appeal to
causality and the supposed necessity for a first cause. Neglecting this aspect of
the argument, it would seem that, like most of the arguments against infinity,
it fails to understand the use of the class-concept and the word any. It is
supposed—so it would seem—that the events preceding a given event ought
to be definable by extension, which, if their number is infinite, is obviously
not the case. “Completion by successive synthesis” seems roughly equivalent
to enumeration, and it is true that enumeration of an infinite series is practic-
ally impossible. But the series may be none the less perfectly definable, as the
class of terms having a specified relation to a specified term. It then remains a
question, as with all classes, whether the class is finite or infinite; and in the
latter alternative, as we saw in Part V, that there is nothing self-contradictory.
In fact, to elicit a contradiction, it would be necessary to state as an axiom that
every class must have a finite number of terms—an axiom which can be
refuted, and for which there are no grounds. It seems, however, that previous
events are regarded by Kant as causes of later ones, and that the cause is
supposed to be logically prior to the effect. This, no doubt, is the reason for
speaking of conditions, and for confining the antinomy to events instead of
moments. If the cause were logically prior to the effect, this argument would,
I think, be valid; but we shall find, in Part VII, that cause and effect are on the
same logical level. Thus the thesis of the first antinomy, in so far as it concerns
time, must be rejected as false, and the argument concerning space, since it
depends upon that regarding time, falls also.

Antithesis. “The world has no beginning, and no limits in space, but is
infinite both in respect of time and space.” The proof of this proposition
assumes the infinity of pure time and space, and argues that these imply
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events and things to fill them. This view was rejected, as regards space, in the
preceding chapter, and can be disproved, as regards time, by precisely similar
arguments; it is in any case irrelevant to our contention, since no proof
is offered that time and space are themselves infinite. This, in fact, seems
incapable of proof, since it depends upon the merely self-evident axiom that
there is a moment before any given moment, and a point beyond any given
point. But as no converse proof is valid, we may, in this instance, regard the
self-evident as true. Whether events had a beginning, and whether matter is
bounded by empty space, are questions which, if our philosophy of space
and time be sound, no argument independent of causality can decide.

Second Antinomy. Thesis: “Every complex substance in the world consists of
simple parts, and nothing exists anywhere except the simple, or what is
composed of simple parts.” Here, again, the argument applies to things in
space and time, not to space and time themselves. We may extend it to space
and time, and to all collections, whether existent or not. It is indeed obvious
that the proposition, true or false, is concerned purely with whole and part,
and has no special relation to space and time. Instead of a complex substance,
we might consider the numbers between 1 and 2, or any other definable
collection. And with this extension, the proof of the proposition must,
I think, be admitted; only that terms or concepts should be substituted for
substances, and that, instead of the argument that relations between substances
are accidental (zufällig), we should content ourselves with saying that relations
imply terms, and complexity implies relations.

Antithesis. “No complex thing in the world consists of simple parts, and
nothing simple exists in it anywhere.” The proof of this proposition, as of
the first antithesis, assumes, what is alone really interesting to us, the corres-
ponding property of space. “Space”, Kant says, “does not consist of simple
parts, but of spaces.” This dogma is regarded as self-evident, though all
employment of points shows that it is not universally accepted. It appears to
me that the argument of the thesis, extended as I have just suggested, applies
to pure space as to any other collection, and demonstrates the existence of
simple points which compose space. As the dogma is not argued, we can only
conjecture the grounds upon which it is held. The usual argument from
infinite division is probably what influenced Kant. However many parts we
divide a space into, these parts are still spaces, not points. But however many
parts we divide the stretch of ratios between 1 and 2 into, the parts are still
stretches, not single numbers. Thus the argument against points proves that
there are no numbers, and will equally prove that there are no colours or
tones. All these absurdities involve a covert use of the axiom of finitude, i.e.
the axiom that, if a space does consist of points, it must consist of some finite
number of points. When once this is denied, we may admit that no finite
number of divisions of a space will lead to points, while yet holding every
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space to be composed of points. A finite space is a whole consisting of simple
parts, but not of any finite number of simple parts. Exactly the same thing
is true of the stretch between 1 and 2. Thus the antinomy is not specially
spatial, and any answer which is applicable in Arithmetic is applicable here
also. The thesis, which is an essential postulate of Logic, should be accepted,
while the antithesis should be rejected.

Thus Kant’s antinomies do not specially involve space and time: any other
continuous series, including that of real numbers, raises the same problems.
And what is more, the properties of space and time, to which Kant appeals,
are general properties of such series. Other antinomies than Kant’s—e.g. that
concerning absolute and relative position, or concerning the straight line as
both a relation and a collection of points—have been solved in the preceding
chapters of this Part. Kant’s antinomies, which involve the difficulties of
infinity, are by far the most serious, and these being essentially arithmetical,
have been already solved in Part V.

436. Before proceeding to matter and motion, let us briefly recapitulate
the results of this Part. Geometry, we said, is the study of series having
more than one dimension; and such series arise wherever we have a series
whose terms are series. This subject is important in pure mathematics,
because it gives us new kinds of order and new methods of generating order.
It is important in applied mathematics, because at least one series of several
dimensions exists, namely, space. We found that the abstract logical method,
based upon the logic of relations, which had served hitherto, was still
adequate, and enabled us to define all the classes of entities which mathemat-
icians call spaces, and to deduce from the definitions all the propositions of
the corresponding Geometries. We found that the continuity and infinity of a
space can always be arithmetically defined, and that no new indefinables
occur in Geometry. We saw that the philosophical objections to points raised
by most philosophers are all capable of being answered by an amended logic,
and that Kant’s belief in the peculiarity of geometrical reasoning, and in
the existence of certain antinomies peculiar to space and time, has been
disproved by the modern realization of Leibniz’s universal characteristic.
Thus, although we discussed no problems specially concerned with what
actually exists, we incidentally answered all the arguments usually alleged
against the existence of an absolute space. Since common sense affirms this
existence, there seems therefore no longer any reason for denying it; and
this conclusion, we shall find, will give us the greatest assistance in the
philosophy of Dynamics.
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Part VII
Matter and Motion





53
MATTER

437. T nature of matter, even more than that of space, has always been
regarded as a cardinal problem of philosophy. In the present work, however,
we are not concerned with the question: What is the nature of the matter
that actually exists? We are concerned merely with the analysis of rational
Dynamics considered as a branch of pure mathematics, which introduces its
subject-matter by definition, not by observation of the actual world. Thus we
are not confined to laws of motion which are empirically verified: non-
Newtonian Dynamics, like non-Euclidean Geometry, must be as interesting
to us as the orthodox system. It is true that philosophical arguments against
the reality of matter usually endeavour to raise logical objections to the
notion of matter, and these objections, like the objections to absolute space,
are relevant to a discussion of mathematical principles. But they need not
greatly concern us at this stage, as they have mostly been dealt with inciden-
tally in the vindication of space. Those who have agreed that a space com-
posed of points is possible, will probably agree also that matter is possible.
But the question of possibility is in any case subsequent to our immediate
question, which is: What is matter? And here matter is to mean, matter as it
occurs in rational Dynamics, quite independently of all questions as to its
actual existence.

438. There is—so we decided in Part VI—no logical implication of other
entities in space. It does not follow, merely because there is space, that there-
fore there are things in it. If we are to believe this, we must believe it on new
grounds, or rather on what is called the evidence of the senses. Thus we are
here taking an entirely new step. Among terms which appear to exist, there
are, we may say, four great classes: (1) instants, (2) points, (3) terms which
occupy instants but not points, (4) terms which occupy both points and



instants. It seems to be the fact that there are no terms which occupy points
but not instants. What is meant by occupying a point or an instant, analysis
cannot explain; this is a fundamental relation, expressed by in or at, asym-
metrical and intransitive, indefinable and simple. It is evident that bits of
matter are among the terms of (4). Matter or materiality itself, the class-
concept, is among the terms which do not exist, but bits of matter exist both
in time and in space. They do not, however, form the whole of class (4): there
are, besides, the so-called secondary qualities, at least colours, which exist in
time and space, but are not matter. We are not called upon to decide as to the
subjectivity of secondary qualities, but at least we must agree that they differ
from matter. How, then, is matter to be defined?

439. There is a well-worn traditional answer to this question. Matter, we
are told, is a substance, a thing, a subject, of which secondary qualities are the
predicates. But this traditional answer cannot content us. The whole doctrine
of subject and predicate, as we have already had occasion to argue, is radically
false, and must be abandoned. It may be questioned whether, without it, any
sense other than that of Chapter 4 can be made of the notion of thing. We are
sometimes told that things are organic unities, composed of many parts
expressing the whole and expressed in the whole. This notion is apt to
replace the older notion of substance, not, I think, to the advantage of precise
thinking. The only kind of unity to which I can attach any precise sense—
apart from the unity of the absolutely simple—is that of a whole composed
of parts. But this form of unity cannot be what is called organic; for if the
parts express the whole or the other parts, they must be complex, and there-
fore themselves contain parts; if the parts have been analysed as far as pos-
sible, they must be simple terms, incapable of expressing anything except
themselves. A distinction is made, in support of organic unities, between
conceptual analysis and real division into parts. What is really indivisible, we
are told, may be conceptually analysable. This distinction, if the conceptual
analysis be regarded as subjective, seems to me wholly inadmissible. All
complexity is conceptual in the sense that it is due to a whole capable of
logical analysis, but is real in the sense that it has no dependence upon the
mind, but only upon the nature of the object. Where the mind can dis-
tinguish elements, there must be different elements to distinguish; though,
alas! there are often different elements which the mind does not distinguish.
The analysis of a finite space into points is no more objective than the analysis
(say) of causality into time-sequence + ground and consequent, or of equal-
ity into sameness of relation to a given magnitude. In every case of analysis,
there is a whole consisting of parts with relations; it is only the nature of the
parts and the relations which distinguishes different cases. Thus the notion of
an organic whole in the above sense must be attributed to defective analysis,
and cannot be used to explain things.
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It is also said that analysis is falsification, that the complex is not equivalent
to the sum of its constituents and is changed when analysed into these. In this
doctrine, as we saw in Parts I and II, there is a measure of truth, when what is
to be analysed is a unity. A proposition has a certain indefinable unity,
in virtue of which it is an assertion; and this is so completely lost by analysis
that no enumeration of constituents will restore it, even though itself be
mentioned as a constituent. There is, it must be confessed, a grave logical
difficulty in this fact, for it is difficult not to believe that a whole must be
constituted by its constituents. For us, however, it is sufficient to observe that
all unities are propositions or propositional concepts, and that consequently
nothing that exists is a unity. If, therefore, it is maintained that things are
unities, we must reply that no things exist.

440. Thus no form of the notion of substance seems applicable to
the definition of matter. The question remains: How and why is matter
distinguished from the so-called secondary qualities? It cannot, I think, be
distinguished as belonging to a different logical class of concepts; the only
classes appear to be things, predicates and relations, and both matter and the
secondary qualities belong to the first class. Nevertheless the world of dynam-
ics is sharply distinguished from that of the secondary qualities, and the
elementary properties of matter are quite different from those of colours. Let
us examine these properties with a view to definition.

The most fundamental characteristic of matter lies in the nature of its
connection with space and time. Two pieces of matter cannot occupy the
same place at the same moment, and the same piece cannot occupy two
places at the same moment, though it may occupy two moments at the same
place. That is, whatever, at a given moment, has extension, is not an indivis-
ible piece of matter: division of space always implies division of any matter
occupying the space, but division of time has no corresponding implication.
(These properties are commonly attributed to matter: I do not wish to assert
that they do actually belong to it.) By these properties, matter is distinguished
from whatever else is in space. Consider colours for example: these possess
impenetrability, so that no two colours can be in the same place at the same
time, but they do not possess the other property of matter, since the same
colour may be in many places at once. Other pairs of qualities, as colour and
hardness, may also coexist in one place. On the view which regarded matter
as the subject of which qualities were attributes, one piece of colour was
distinguished from another by the matter whose attribute it was, even when
the two colours were exactly similar. I should prefer to say that the colour is
the same, and has no direct relation to the matter in the place. The relation is
indirect, and consists in occupation of the same place. (I do not wish to
decide any moot questions as to the secondary qualities, but merely to show
the difference between the common-sense notions of these and of matter
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respectively.) Thus impenetrability and its converse seem to characterize mat-
ter sufficiently to distinguish it from whatever else exists in space. Two pieces
of matter cannot occupy the same place and the same time, and one piece
of matter cannot occupy two places at the same time. But the latter property
must be understood of a simple piece of matter, one which is incapable of
analysis or division.

Other properties of matter flow from the nature of motion. Every piece of
matter persists through time: if it exists once, it would seem that it must
always exist. It either retains its spatial position, or changes it continuously,
so that its positions at various times form a continuous series in space. Both
these properties require considerable discussion, which will follow at a later
stage. They are purely kinematical, i.e. they involve none of the so-called laws
of motion, but only the nature of motion itself.

A controversy has always existed, since early Greek times, as to the possibil-
ity of a vacuum. The question whether there is a vacuum cannot, I think,
be decided on philosophical grounds, i.e. no decision is possible from the
nature of matter or of motion. The answer belongs properly to Science, and
therefore none will be suggested here.

We may sum up the nature of matter as follows. Material unit is a class-
concept, applicable to whatever has the following characteristics: (1) A simple
material unit occupies a spatial point at any moment; two units cannot
occupy the same point at the same moment, and one cannot occupy two
points at the same moment. (2) Every material unit persists through time; its
positions in space at any two moments may be the same or different; but if
different, the positions at times intermediate between the two chosen must
form a continuous series. (3) Two material units differ in the same immedi-
ate manner as two points or two colours; they agree in having the relation of
inclusion in a class to the general concept matter, or rather to the general
concept material unit. Matter itself seems to be a collective name for all pieces of
matter, as space for all points and time for all instants. It is thus the peculiar
relation to space and time which distinguishes matter from other qualities,
and not any logical difference such as that of subject and predicate, or sub-
stance and attribute.

441. We can now attempt an abstract logical statement of what rational
Dynamics requires its matter to be. In the first place, time and space may
be replaced by a one-dimensional and n-dimensional series respectively.
Next, it is plain that the only relevant function of a material point is to
establish a correlation between all moments of time and some points of
space, and that this correlation is many-one. So soon as the correlation is
given, the actual material point ceases to have any importance. Thus we may
replace a material point by a many-one relation whose domain is a certain
one-dimensional series, and whose converse domain is contained in a certain
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three-dimensional series. To obtain a material universe, so far as kinematical
considerations go, we have only to consider a class of such relations subject to
the condition that the logical product of any two relations of the class is to
be null. This condition insures impenetrability. If we add that the one-
dimensional and the three-dimensional series are to be both continuous, and
that each many-one relation is to define a continuous function, we have all
the kinematical conditions for a system of material particles, generalized and
expressed in terms of logical constants.
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54
MOTION

442. M has been written concerning the laws of motion, the possi-
bility of dispensing with Causality in Dynamics, the relativity of motion and
other kindred questions. But there are several preliminary questions, of great
difficulty and importance, concerning which little has been said. Yet these
questions, speaking logically, must be settled before the more complex prob-
lems usually discussed can be attacked with any hope of success. Most of the
relevant modern philosophical literature will illustrate the truth of these
remarks: the theories suggested usually repose on a common dogmatic basis,
and can be easily seen to be unsatisfactory. So long as an author confines
himself to demolishing his opponents, he is irrefutable; when he constructs
his own theory, he exposes himself, as a rule, to a similar demolition by the
next author. Under these circumstances, we must seek some different path,
whose by-ways remain unexplained. “Back to Newton” is the watchword of
reform in this matter. Newton’s scholium to the definitions contains argu-
ments which are unrefuted, and so far as I know, irrefutable: they have been
before the world two hundred years, and it is time they were refuted or
accepted. Being unequal to the former, I have adopted the latter alternative.

The concept of motion is logically subsequent to that of occupying a place
at a time, and also to that of change. Motion is the occupation, by one entity,
of a continuous series of places at a continuous series of times. Change is the
difference, in respect of truth or falsehood, between a proposition concern-
ing an entity and a time T and a proposition concerning the same entity and
another time T', provided that the two propositions differ only by the fact that
T occurs in the one where T' occurs in the other. Change is continuous when
the propositions of the above kind form a continuous series correlated with a
continuous series of moments. Change thus always involves (1) a fixed entity,



(2) a three-cornered relation between this entity, another entity, and some
but not all, of the moments of time. This is its bare minimum. Mere existence
at some but not all moments constitutes change on this definition. Consider
pleasure, for example. This, we know, exists at some moments, and we may
suppose that there are moments when it does not exist. Thus there is a
relation between pleasure, existence, and some moments, which does not
subsist between pleasure, existence, and other moments. According to the
definition, therefore, pleasure changes in passing from existence to non-
existence or vice versâ. This shows that the definition requires emendation, if it
is to accord with usage. Usage does not permit us to speak of change except
where what changes is an existent throughout, or is at least a class-concept
one of whose particulars always exists. Thus we should say, in the case of
pleasure, that my mind is what changes when the pleasure ceases to exist. On
the other hand, if my pleasure is of different magnitudes at different times,
we should say the pleasure changes its amount, though we agreed in Part III
that not pleasure, but only particular amounts of pleasure, are capable of
existence. Similarly we should say that colour changes, meaning that there are
different colours at different times in some connection; though not colour,
but only particular shades of colour, can exist. And generally, where both the
class-concept and the particulars are simple, usage would allow us to say, if a
series of particulars exists at a continuous series of times, that the class-
concept changes. Indeed it seems better to regard this as the only kind of
change, and to regard as unchanging a term which itself exists throughout a
given period of time. But if we are to do this, we must say that wholes
consisting of existent parts do not exist, or else that a whole cannot preserve
its identity if any of its parts be changed. The latter is the correct alternative,
but some subtlety is required to maintain it. Thus people say they change
their minds; they say that the mind changes when pleasure ceases to exist in
it. If this expression is to be correct, the mind must not be the sum of its
constituents. For if it were the sum of all its constituents throughout time, it
would be evidently unchanging; if it were the sum of its constituents at one
time, it would lose its identity as soon as a former constituent ceased to exist
or a new one began to exist. Thus if the mind is anything, and if it can
change, it must be something persistent and constant, to which all constitu-
ents of a psychical state have one and the same relation. Personal identity
could be constituted by the persistence of this term, to which all a person’s
states (and nothing else) would have a fixed relation. The change of mind
would then consist merely in the fact that these states are not the same at
all times.

Thus we may say that a term changes, when it has a fixed relation to a
collection of other terms, each of which exists at some part of time, while all
do not exist at exactly the same series of moments. Can we say, with this
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definition, that the universe changes? The universe is a somewhat ambiguous
term: it may mean all the things that exist at a single moment, or all the
things that ever have existed or will exist, or the common quality of whatever
exists. In the two former senses it cannot change; in the last, if it be other than
existence, it can change. Existence itself would not be held to change, though
different terms exist at different times; for existence is involved in the notion
of change as commonly employed, which applies only in virtue of the differ-
ence between the things that exist at different times. On the whole, then, we
shall keep nearest to usage if we say that the fixed relation, mentioned at the
beginning of this paragraph, must be that of a simple class-concept to simple
particulars contained under it.

443. The notion of change has been much obscured by the doctrine of
substance, by the distinction between a thing’s nature and its external rela-
tions, and by the pre-eminence of subject-predicate propositions. It has been
supposed that a thing could, in some way, be different and yet the same: that
though predicates define a thing, yet it may have different predicates at differ-
ent times. Hence the distinction of the essential and the accidental, and a
number of other useless distinctions, which were (I hope) employed precisely
and consciously by the scholastics, but are used vaguely and unconsciously by
the moderns. Change, in this metaphysical sense, I do not at all admit. The
so-called predicates of a term are mostly derived from relations to other
terms; change is due, ultimately, to the fact that many terms have relations to
some parts of time which they do not have to others. But every term is
eternal, timeless and immutable; the relations it may have to parts of time are
equally immutable. It is merely the fact that different terms are related to
different times that makes the difference between what exists at one time and
what exists at another. And though a term may cease to exist, it cannot cease
to be; it is still an entity, which can be counted as one, and concerning which
some propositions are true and others false.

444. Thus the important point is the relation of terms to the times they
occupy, and to existence. Can a term occupy a time without existing? At first
sight, one is tempted to say that it can. It is hard to deny that Waverley’s
adventures occupied the time of the ’45, or that the stories in the 1,001
Nights occupy the period of Harun al Raschid. I should not say, with Mr
Bradley, that these times are not parts of real time; on the contrary, I should
give them a definite position in the Christian Era. But I should say that the
events are not real, in the sense that they never existed. Nevertheless, when a
term exists at a time, there is an ultimate triangular relation, not reducible to
a combination of separate relations to existence and the time respectively.
This may be shown as follows. If “A exists now” can be analysed into “A is
now” and “A exists”, where exists is used without any tense, we shall have to
hold that “A is then” is logically possible even if A did not exist then; for if

478 principles of mathematics



occupation of a time be separable from existence, a term may occupy a time
at which it does not exist, even if there are other times when it does exist.
But, on the theory in question, “A is then” and “A exists” constitute the very
meaning of “A existed then”, and therefore, when these two propositions are
true, A must have existed then. This can only be avoided by denying the
possibility of analysing “A exists now” into a combination of two-term
relations; and hence non-existential occupation of a time, if possible at all, is
radically different from the existential kind of occupation.

It should be observed, however, that the above discussion has a merely
philosophical interest, and is strictly irrelevant to our theme. For existence,
being a constant term, need not be mentioned, from a mathematical point of
view, in defining the moments occupied by a term. From the mathematical
point of view, change arises from the fact that there are propositional func-
tions which are true of some but not all moments of time, and if these
involve existence, that is a further point with which mathematics as such
need not concern itself.

445. Before applying these remarks to motion, we must examine the
difficult idea of occupying a place at a time. Here again we seem to have an
irreducible triangular relation. If there is to be motion, we must not analyse
the relation into occupation of a place and occupation of a time. For a moving
particle occupies many places, and the essence of motion lies in the fact that
they are occupied at different times. If “A is here now” were analysable into
“A is here” and “A is now”, it would follow that “A is there then” is analys-
able into “A is there” and “A is then”. If all these propositions were
independent, we could combine them differently: we could, from “A is now”
and “A is there”, infer “A is there now”, which we know to be false, if A is a
material point. The suggested analysis is therefore inadmissible. If we are
determined to avoid a relation of three terms, we may reduce “A is here now”
to “A’s occupation of this place is now”. Thus we have a relation between this
time and a complex concept, A’s occupation of this place. But this seems
merely to substitute another equivalent proposition for the one which it
professes to explain. But mathematically, the whole requisite conclusion is
that, in relation to a given term which occupies a place, there is a correlation
between a place and a time.

446. We can now consider the nature of motion, which need not, I
think, cause any great difficulty. A simple unit of matter, we agreed, can only
occupy one place at one time. Thus if A be a material point, “A is here now”
excludes “A is there now”, but not “A is here then”. Thus any given moment
has a unique relation, not direct, but viâ A, to a single place, whose occupation
by A is at the given moment; but there need not be a unique relation
of a given place to a given time, since the occupation of the place may fill
several times. A moment such that an interval containing the given moment
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otherwise than as an end-point can be assigned, at any moment within which
interval A is in the same place, is a moment when A is at rest. A moment when
this cannot be done is a moment when A is in motion, provided A occupies
some place at neighbouring moments on either side. A moment when there
are such intervals, but all have the said moment as an end-term, is one of
transition from rest to motion or vice versâ. Motion consists in the fact that, by
the occupation of a place at a time, a correlation is established between places
and times; when different times, throughout any period however short,
are correlated with different places, there is motion; when different times,
throughout some period however short, are all correlated with the same
place, there is rest.

We may now proceed to state our doctrine of motion in abstract logical
terms, remembering that material particles are replaced by many-one relations
of all times to some places, or of all terms of a continuous one-dimensional
series t to some terms of a continuous three-dimensional series s. Motion
consists broadly in the correlation of different terms of t with different terms
of s. A relation R which has a single term of s for its converse domain
corresponds to a material particle which is at rest throughout all time. A
relation R which correlates all the terms of t in a certain interval with a single
term of s corresponds to a material particle which is at rest throughout the
interval, with the possible exclusion of its end-terms (if any), which may be
terms of transition between rest and motion. A time of momentary rest is
given by any term for which the differential coefficient of the motion is zero.
The motion is continuous if the correlating relation R defines a continuous
function. It is to be taken as part of the definition of motion that it is continu-
ous, and that further it has first and second differential coefficients. This is an
entirely new assumption, having no kind of necessity, but serving merely the
purpose of giving a subject akin to rational Dynamics.

447. It is to be observed that, in consequence of the denial of the infini-
tesimal, and in consequence of the allied purely technical view of the deriva-
tive of a function, we must entirely reject the notion of a state of motion.
Motion consists merely in the occupation of different places at different times,
subject to continuity as explained in Part V. There is no transition from place
to place, no consecutive moment or consecutive position, no such thing as
velocity except in the sense of a real number which is the limit of a certain set
of quotients. The rejection of velocity and acceleration as physical facts (i.e. as
properties belonging at each instant to a moving point, and not merely real
numbers expressing limits of certain ratios) involves, as we shall see, some
difficulties in the statement of the laws of motion; but the reform introduced
by Weierstrass in the infinitesimal calculus has rendered this rejection
imperative.
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55
CAUSALITY

448. A  controversy has existed in recent times, among those who
are interested in the principles of Dynamics, on the question whether the
notion of causality occurs in the subject or not. Kirchoff* and Mach, and, in
our own country, Karl Pearson, have upheld the view that Dynamics is purely
descriptive, while those who adhere to the more traditional opinion maintain
that it not merely registers sequences, but discovers causal connections. This
controversy is discussed in a very interesting manner in Professor James
Ward’s Naturalism and Agnosticism, in which the descriptive theory is used to
prove that Dynamics cannot give metaphysical truths about the real world.
But I do not find, either in Professor Ward’s book or elsewhere, a very clear
statement of the issue between the two schools. The practical mathematical
form of the question arises as regards force, and in this form, there can be no
doubt that the descriptive school are in the right: the notion of force is one
which ought not to be introduced into the principles of Dynamics. The
reasons for this assertion are quite conclusive. Force is the supposed cause of
acceleration: many forces are supposed to concur in producing a resultant
acceleration. Now an acceleration, as was pointed out at the end of the
preceding chapter, is a mere mathematical fiction, a number, not a physical
fact; and a component acceleration is doubly a fiction, for, like the compon-
ent of any other vector sum, it is not part of the resultant, which alone could
be supposed to exist. Hence a force, if it be a cause, is the cause of an effect
which never takes place. But this conclusion does not suffice to show that
causality never occurs in Dynamics. If the descriptive theory were strictly
correct, inferences from what occurs at some times to what occurs at others

* Vorlesungen über mathematische Physik, Leipzig, 1883, Vorrede.



would be impossible. Such inferences must involve a relation of implication
between events at different times, and any such relation is in a general sense
causal. What does appear to be the case is, that the only causality occurring in
Dynamics requires the whole configuration of the material world as a datum,
and does not yield relations of particulars to particulars, such as are usually
called causal. In this respect, there is a difficulty in interpreting such seeming
causation of particulars by particulars as appears, for example, in the law of
gravitation. On account of this difficulty, it will be necessary to treat caus-
ation at some length, examining first the meaning to be assigned to the
causation of particulars by particulars as commonly understood, then the
meaning of causality which is essential to rational Dynamics and finally
the difficulty as regards component acceleration.

449. The first subject of the present chapter is the logical nature of causal
propositions. In this subject there is a considerable difficulty, due to the
fact that temporal succession is not a relation between events directly, but
only between moments.* If two events could be successive, we could regard
causation as a relation of succession holding between two events without
regard to the time at which they occur. If “A precedes B” (where A and B are
actual or possible temporal existents) be a true proposition, involving no
reference to any actual part of time, but only to temporal succession, then we
say A causes B. The law of causality would then consist in asserting that, among
the things which actually precede a given particular existent B now, there is
always one series of events at successive moments which would necessarily
have preceded B then, just as well as B now; the temporal relations of B to the
terms of this series may then be abstracted from all particular times, and
asserted per se.

Such would have been the account of causality, if we had admitted
that events can be successive. But as we have denied this, we require a differ-
ent and more complicated theory. As a preliminary, let us examine some
characteristics of the causal relation.

A causal relation between two events, whatever its nature may be, certainly
involves no reference to constant particular parts of time. It is impossible that
we should have such a proposition as “A causes B now, but not then”. Such a
proposition would merely mean that A exists now but not then, and therefore
B will exist at a slightly subsequent moment, though it did not exist at a time
slightly subsequent to the former time. But the causal relation itself is eternal:
if A had existed at any other time, B would have existed at the subsequent
moment. Thus “A causes B” has no reference to constant particular parts
of time.

Again, neither A nor B need ever exist, though if A should exist at any

* See my article in Mind, N.S., No. 39, “Is position in time and space absolute or relative?”
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moment, B must exist at a subsequent moment, and vice versâ. In all Dynamics
(as I shall prove later) we work with causal connections; yet, except when
applied to concrete cases, our terms are not existents. Their non-existence is,
in fact, the mark of what is called rational Dynamics. To take another
example: All deliberation and choice, all decisions as to policies, demand the
validity of causal series whose terms do not and will not exist. For the rational
choice depends upon the construction of two causal series, only one of
which can be made to exist. Unless both were valid, the choice could have no
foundation. The rejected series consists of equally valid causal connections,
but the events connected are not to be found among existents. Thus all
statesmanship, and all rational conduct of life, is based upon the method of
the frivolous historical game, in which we discuss what the world would be
if Cleopatra’s nose had been half an inch longer.

A causal relation, we have seen, has no essential reference to existence, as to
particular parts of time. But it has, none the less, some kind of connection
with both. If one of its terms is among existents, so is the other; if one is non-
existent, the other is also non-existent. If one of the terms is at one moment,
the other is at a later or earlier moment. Thus if A causes B, we have also “A’s
existence implies B’s” and “A’s being at this moment implies B’s being at a
subsequent moment”. These two propositions are implied by “A causes B”;
the second, at least, also implies “A causes B”, so that we have here a mutual
implication. Whether the first also implies “A causes B” is a difficult ques-
tion. Some people would hold that two moments of time, or two points of
space, imply each other’s existence; yet the relation between these cannot be
said to be causal.

It would seem that whatever exists at any part of time has causal relations.
This is not a distinguishing characteristic of what exists, since we have
seen that two non-existent terms may be cause and effect. But the absence of
this characteristic distinguishes terms which cannot exist from terms which
might exist. Excluding space and time, we may define as a possible existent any
term which has a causal relation to some other term. This definition excludes
numbers, and all so-called abstract ideas. But it admits the entities of
rational Dynamics, which might exist, though we have no reason to suppose
that they do.

If we admit (what seems undeniable) that whatever occupies any given
time is both a cause and an effect, we obtain a reason for either the infinity or
the circularity of time, and a proof that, if there are events at any part of time,
there always have been and always will be events. If, moreover, we admit that
a single existent A can be isolated as the cause of another single existent B,
which in turn causes C, then the world consists of as many independent
causal series as there are existents at any one time. This leads to an absolute
Leibnizian monadism—a view which has always been held to be paradoxical,
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and to indicate an error in the theory from which it springs. Let us, then,
return to the meaning of causality, and endeavour to avoid the paradox of
independent causal series.

450. The proposition “A causes B” is, as it stands, incomplete. The only
meaning of which it seems capable is “A’s existence at any time implies B’s
existence at some future time”. It has always been customary to suppose that
cause and effect must occupy consecutive moments; but as time is assumed to
be a compact series, there cannot be any consecutive moments, and the
interval between any two moments will always be finite. Thus in order to
obtain a more complete causal proposition, we must specify the interval
between A and B. A causal connection then asserts that the existence of A at
any one time implies the existence of B after an interval which is independent
of the particular time at which A existed. In other words, we assert: “There is
an interval t such that A’s existence at any time t1 implies B’s existence at a
time t1 + t.” This requires the measurement of time, and consequently
involves either temporal distance, or magnitude of divisibility, which last we
agreed to regard as not a motion of pure mathematics. Thus if our measure
is effected by means of distance, our proposition is capable of the generaliza-
tion which is required for a purely logical statement.

451. A very difficult question remains—the question which, when the
problem is precisely stated, discriminates most clearly between monism and
monadism. Can the causal relation hold between particular events, or does it
hold only between the whole present state of the universe and the whole
subsequent state? Or can we take a middle position, and regard one group of
events now as casually connected with one group at another time, but not
with any other events at that other time?

I will illustrate this difficulty by the case of gravitating particles. Let there
be three particles A, B, C. We say that B and C both cause accelerations in A,
and we compound these two accelerations by the parallelogram law. But this
composition is not truly addition, for the components are not parts of the
resultant. The resultant is a new term, as simple as its components, and not
by any means their sum. Thus the effects attributed to B and C are never
produced, but a third term different from either is produced. This, we may
say, is produced by B and C together, taken as one whole. But the effect which
they produce as a whole can only be discovered by supposing each to pro-
duce a separate effect: if this were not supposed, it would be impossible to
obtain the two accelerations whose resultant is the actual acceleration. Thus
we seem to reach an antinomy: the whole has no effect except what results
from the effects of the parts, but the effects of the parts are non-existent.

The examination of this difficulty will rudely shake our cherished
prejudices concerning causation. The laws of motion, we shall find, actually
contradict the received view, and demand a quite different and far more

484 principles of mathematics



complicated view. In Dynamics, we shall find (1) that the causal relation
holds between events at three times, not at two; (2) that the whole state of the
material universe at two of the three times is necessary to the statement of a
causal relation. In order to provide for this conclusion, let us re-examine
causality in a less conventional spirit.

452. Causality, generally, is the principle in virtue of which, from a
sufficient number of events at a sufficient number of moments, one or more
events at one or more new moments can be inferred. Let us suppose, for
example, that, by means of the principle, if we are given e1 events at a time t1,
e2 at a time t2, . . . en at a time tn, then we can infer en + 1 events at a time tn + 1. If,
then, er + 1 ≥ er, and if the times tr are arbitrary, except that tr + 1 is after tr, it
follows that, from the original data, we can infer certain events at all future
times. For we may choose e1 of the events e2, . . . en of the events en + 1, and infer
en + 1 events at a new time tn + 2. Hence by means of our supposed law, inference
to future times is assured. And if, for any value of r, er + 1 > er, then more than
en + 1 events can be inferred at the time tn + 2, since there are several ways of
choosing er events out of er + 1 events. But if for any value of r, er + 1 > er, then
inference to the past becomes in general impossible. In order that an unambigu-
ous inference to the past may be possible, it is necessary that the implication
should be reciprocal, i.e. that e1 events at time t1 should be implied by e2 at
t2 . . . en + 1 at tn + 1. But some inference to the past is possible without this
condition, namely, that at time t1 there were e1 events implying, with the
others up to tn, the en + 1 events at time tn + 1. But even this inference soon fails if,
for any value of r, er + 1 > er, since, after inferring e1 events at time t1, er for the
next inference takes the place of er + 1, but is too small to allow the inference.
Thus if unambiguous inference to any part of time is to be possible, it is
necessary and sufficient (1) that any one of the n + 1 groups of events should
be implied by the other n̄ groups; (2) that er = er + 1 for all values of r. Since
causality demands the possibility of such inference, we may take these two
conditions as satisfied.

Another somewhat complicated point is the following. If e1 e2 . . . en cause
en + 1, and e2 . . . en + 1, cause en + 2 and so on, we have an independent causal
series, and a return to monadism, though the monad is now complex, being
at each moment a group of events. But this result is not necessary. It may
happen that only certain groups e1 e2 . . . en allow inference to en + 1, and that e2

e3 . . . en, en + 1 is not such a group. Thus suppose e' 1 e' 2 . . . e' 4 simultaneous with
e1 . . . en, and causing e' n + 1. It may be that e2 e3 . . . en e' n + 1 and e' 2 e' 3 . . . e' n en + 1

form the next causal groups, causing en + 2 and e' n + 2 respectively. In this way no
independent causal series will arise, in spite of particular causal sequences.
This however remains a mere possibility, of which, so far as I know, no
instance occurs.

Do the general remarks on the logical nature of causal propositions still
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hold good? Must we suppose the causal relation to hold directly between the
events e1 e2 . . . en + 1, and merely to imply their temporal succession? There
are difficulties in this view. For, having recognized that consecutive times
are impossible, it has become necessary to assume finite intervals of time
between e1 and e2, e2 and e3 etc. Hence the length of these intervals must be
specified, and thus a mere reference to events, without regard to temporal
position, becomes impossible. All we can say is, that only relative position is
relevant. Given a causal relation in which the times are tr, this relation will still
be valid for times T + tr. Thus the ultimate statement seems to be: given m
events at any moment, m other events at a moment whose distance from the
first is specified, and so on till we have n groups of events, then m new events
can be inferred at any new moment whose distance from the first is specified,
provided m and n have suitable values, and the groups of events be suitably
chosen—where, however, the values to be assigned to m and n may depend
upon the nature of the events in question. For example, in a material system
consisting of N particles, we shall have m = N, n = 2. Here m depends upon the
nature of the material system in question. What circumstances obtain in
Psychology, it is as yet impossible to say, since psychologists have failed to
establish any strict causal laws.

Thus rational Dynamics assume that, in an independent material system,
the configurations at any two moments imply the configuration at any other
moment. This statement is capable of translation into the language of pure
mathematics, as we shall see in the next chapter. But it remains a question
what we are to say concerning such causation of particulars by particulars as
appears to be involved in such principles as the law of gravitation. But this
discussion must be postponed until we have examined the so-called laws
of motion.
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56
DEFINITION OF A

DYNAMICAL WORLD

453. B proceeding to the laws of motion, which introduce new
complications of which some are difficult to express in terms of pure math-
ematics, I wish briefly to define in logical language the dynamical world as
it results from previous chapters.

Let t be a one-dimensional continuous series, s a three-dimensional con-
tinuous series, which we will not assume to be Euclidean as yet. If R be a
many-one relation whose domain is t and whose converse domain is con-
tained in s, then R defines a motion of a material particle. The indestructibility
and ingenerability of matter are expressed in the fact that R has the whole of t
for its field. Let us assume further that R defines a continuous function in s.

In order to define the motions of a material system, it is only necessary to
consider a class of relations having the properties assigned above to R, and
such that the logical product of any two of them is null. This last condition
expresses impenetrability. For it asserts that no two of our relations relate the
same moment to the same point, i.e. no two particles can be at the same place
at the same time. A set of relations fulfilling these conditions will be called a
class of kinematical motions.

With these conditions, we have all that kinematics requires for the defin-
ition of matter; and if the descriptive school were wholly in the right, our
definition would not add the new condition which takes us from kinematics
to kinetics. Nevertheless this condition is essential to inference from events at
one time to events at another, without which Dynamics would lose its dis-
tinctive feature.

454. A generalized form of the statement of causality which we require
is the following: A class of kinetic motions is a class of kinematical motions such



that, given the relata of the various component relations at n given times, the
relata at all times are determinate. In ordinary Dynamics we have n = 2, and
this assumption may be made without the loss of any interesting generality.
Our assertion then amounts to saying that there is a certain specific many-one
relation which holds between any two configurations and their times and any
third time, as referent, and the configuration at the third time as relatum;
in ordinary language, given two configurations at two given times, the
configuration at any other time is determinate. Formally, the principle of
causality in this form may be stated as follows. If R be a relation which is any
one of our motions, and t any time, let Rt be the relation holding only
between t and the term to which t has the relation R. If K be the whole class of
motions, let Kt be the whole class of such terms as Rt. Then Kt expresses the
configuration of the system at the time t. Now let t' , t''  be any other two times.
Then K is a class of kinetic motions if there is a many-one relation S, the same
for any three times, which holds between the class whose terms are t, t' , t'' , Kt,
Kt' , as referent and the configuration Kt''  as relatum.

The particular causal laws of the particular universe considered are given
when S is given, and vice versâ.* We may treat of a whole set of universes
agreeing in having the same S, i.e. the same causal laws, and differing only in
respect of the distribution of matter, i.e. the class K. This is the ordinary
procedure of rational Dynamics, which commonly defines its S in the way
believed to apply to the actual world, and uses its liberty only to imagine
different material systems.

It will be observed that, owing to the rejection of the infinitesimal, it
is necessary to give an integrated form to our general law of causality.
We cannot introduce velocities and accelerations into statements of general
principles, though they become necessary as soon as we descend to the laws
of motion. A large part of Newton’s laws, as we shall see in the next chapter,
is contained in the above definition, but the third law introduces a radical
novelty, and gives rise to the difficulty as to the causation of particulars by
particulars, which we have mentioned but not yet examined.

* In the Dynamics applicable to the actual world, the specification of S requires the notion
of mass.
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57
NEWTON’S LAWS OF MOTION

455. T present chapter will adopt, for the moment, a naïve attitude
towards Newton’s Laws. It will not examine whether they really hold, or
whether there are other really ultimate laws applying to the ether; its problem
is merely to give those laws a meaning.

The first thing to be remembered is—what physicists now-a-days will
scarcely deny—that force is a mathematical fiction, not a physical entity. The
second point is that, in virtue of the philosophy of the calculus, acceleration
is a mere mathematical limit, and does not itself express a definite state of
an accelerated particle. It may be remembered that, in discussing derivatives,
we inquired whether it was possible to regard them otherwise than as
limits—whether, in fact, they could be treated as themselves fractions. This we
found impossible. In this conclusion there was nothing new, but its applica-
tion in Dynamics will yield much that is distinctly new. It has been customary
to regard velocity and acceleration as physical facts, and thus to regard the
laws of motion as connecting configuration and acceleration. This, however,
as an ultimate account, is forbidden to us. It becomes necessary to seek a
more integrated form for the laws of motion, and this form, as is evident,
must be one connecting three configurations.

456. The first law of motion is regarded sometimes as a definition of
equal times. This view is radically absurd. In the first place, equal times have
no definition except as times whose magnitude is the same. In the second
place, unless the first law told us when there is no acceleration (which it does
not do), it would not enable us to discover what motions are uniform. In the
third place, if it is always significant to say that a given motion is uniform,
there can be no motion by which uniformity is defined. In the fourth place,
science holds that no motion occurring in nature is uniform; hence there



must be a meaning of uniformity independent of all actual motions—and
this definition is, the description of equal absolute distances in equal absolute
times.

The first law, in Newton’s form, asserts that velocity is unchanged in the
absence of causal action from some other piece of matter. As it stands, this law
is wholly confused. It tells us nothing as to how we are to discover causal
action, or as to the circumstances under which causal action occurs. But an
important meaning may be found for it, by remembering that velocity is a
fiction, and that the only events that occur in any material system are the
various positions of its various particles. If we then assume (as all the laws
of motion tacitly do) that there is to be some relation between different
configurations, the law tells us that such a relation can only hold between three
configurations, not between two. For two configurations are required for
velocity, and another for change of velocity, which is what the law asserts to
be relevant. Thus in any dynamical system, when the special laws (other than
the laws of motion) which regulate that system are specified, the configur-
ation at any given time can be inferred when two configurations at two given
times are known.

457. The second and third laws introduce the new idea of mass; the third
also gives one respect in which acceleration depends upon configuration.

The second law as it stands is worthless. For we know nothing about the
impressed force except that it produces change of motion, and thus the law
might seem to be a mere tautology. But by relating the impressed force to
the configuration, an important law may be discovered, which is as follows.
In any material system consisting of n particles, there are certain constant
coefficients (masses) m1, m2 . . . mn to be associated with these particles
respectively; and when these coefficients are considered as forming part of
the configuration, then m1 multiplied by the corresponding acceleration is a
certain function of the momentary configuration; this is the same function
for all times and all configurations. It is also a function dependent only upon
the relative positions: the same configuration in another part of space will
lead to the same accelerations. That is, if xr, yr, zr be the coordinates of mr at
time t, we have xr = fr (t) etc., and

m1 ẍ1 = F (m1, m2, m3, . . . mn, x2 − x1, x3 − x1 . . . xn − x1, y2 − y1, . . .).

This involves the assumption that x1 = f1(r) is a function having a second
differential coefficient ẍ1; the use of the equation involves the further assump-
tion that ẍ1 has a first and second integral. The above, however, is a very
specialized form of the second law; in its general form, the function F may
involve other coefficients than the masses, and velocities as well as positions.

458. The third law is very interesting, and allows the analysis of F into a
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vector sum of functions each depending only on m1 and one other particle mr

and their relative position. It asserts that the acceleration of m1 is made up
of component accelerations having special reference respectively to m2,
m3 . . . mn; and if these components be f12, f13, . . . f1n, it asserts that the acceler-
ation of any other particle mr has a corresponding component fr1 such that

mr fr1 = − m1 f1r.

This law leads to the usual properties of the centre of mass. For if ẍ12 be the
x-component of f12, we have m1 ẍ12 + m2 ẍ21 = 0, and thus

�
r

�
s

mr ẍrs = 0.

Again, the special reference of f12 to m2 can only be a reference to the mass m2,
the distance r12, and the direction of the line 12; for these are the only
intrinsic relations of the two particles. It is often specified as part of the third
law that the acceleration is in the direction 12, and this seems worthy to be
included, as specifying the dependence of f12 upon the line 12. Thus f12 is
along 12, and

f12 = � (m1, m2, r12),
f21 = � (m2, m1, − r12)

and

m1 � (m1, m2, r12) = − m2 � (m2, m1, − r12),

or, measuring f12 from 1 towards 2, and f21 from 2 towards 1, both will have
the same sign, and

m1 � (m1, m2, r12) = m2 � (m2, m1, r12).

Hence m1 � (m1, m2, r12) is a symmetrical function of m1 and m2, say

ψ (m1, m2, r12).

Thus

f12 =
1

m1

ψ (m1, m2, r12),
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f21 =
1

m2

ψ (m1, m2, r12).

Thus the resultant acceleration of each particle is analysable into com-
ponents depending only upon itself and one other particle; but this analysis
applies only to the statement in terms of acceleration. No such analysis is
possible when we compare, not configuration and acceleration, but three
configurations. At any moment, though the change of distance and straight
line 12 is not due to m1 and m2 alone, yet the acceleration of m1 consists of
components each of which is the same as it would be if there were only one
other particle in the field. But where a finite time is in question this is no
longer the case. The total change in the position of m1 during a time t is not
what it would have been if m2 had first operated alone for a time t, then m3

alone and so on. Thus we cannot speak of any total effect of m2 or of m3; and
since momentary effects are fictions, there are really no independent effects
of separate particles on m1. The statement by means of accelerations is to be
regarded as a mathematical device, not as though there really were an actual
acceleration which is caused in one particle by one other. And thus we escape
the very grave difficulty which we should otherwise have to meet, namely,
that the component accelerations, not being (in general) parts of the resultant
acceleration, would not be actual even if we allowed that acceleration is an
actual fact.

459. The first two laws are completely contained in the following state-
ment: In any independent system, the configuration at any time is a function
of that time and of the configurations at two given times, provided we include
in configuration the masses of the various particles composing the system.
The third law adds the further fact that the configuration can be analysed into
distances and straight lines; the function of the configuration which repre-
sents the acceleration of any particle is a vector-sum of functions containing
only one distance, one straight line, and two masses each—moreover, if we
accept the addition to the third law spoken of above, each of these functions
is a vector along the join of the two particles which enter into it. But for this
law, it might happen that the acceleration of m1 would involve the area of the
triangle 1 2 3, or the volume of the tetrahedron 1 2.3 4; and but for this law,
we should not have the usual properties of the centre of mass.

The three laws together, as now expounded, give the greater part of the law
of gravitation; this law merely tells us that, so far as gravitation is concerned,
the above function

ψ (m1, m2, r12) = m1 m2 / r12
2.
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It should be remembered that nothing is known, from the laws of motion, as
to the form of ψ, and that we might have e.g. ψ = 0 if r12 > R. If ψ had this
form, provided R were small compared to sensible distances, the world would
seem as though there were no action at a distance.

It is to be observed that the first two laws, according to the above analysis,
merely state the general form of the law of causality explained in Chapter 55.
From this it results that we shall be able, with the assumptions commonly
made as to continuity and the existence of first and second derivatives, to
determine a motion completely when the configuration and velocities at
a given instant are given; and in particular, these data will enable us to
determine the acceleration at the given instant. The third law and the law of
gravitation together add the further properties that the momentary acceler-
ations depend only upon the momentary configuration, not upon the momen-
tary velocities, and that the resultant acceleration of any particle is the
vector-sum of components each dependent only on the masses and distances
of the given particle and one other.

The question whether Newtonian Dynamics applies in such problems as
those of the motion of the ether is an interesting and important one; but in so
far as it deals with the truth or falsehood of the laws of motion in relation to
the actual world, it is for us irrelevant. For us, as pure mathematicians, the
laws of motion and the law of gravitation are not properly laws at all, but
parts of the definition of a certain kind of matter.

460. By the above account the view of causality which has usually
satisfied philosophers is contravened in two respects, (1) in that the relation
embodied in a causal law holds between three events, not between two; (2)
in that the causal law has the unity of a formula or function, i.e. of a constant
relation, not merely that derived from repetition of the same cause. The first
of these is necessitated by modern theories of the infinitesimal calculus; the
second was always necessary, at least since Newton’s time. Both demand
some elucidation.

(1) The whole essence of dynamical causation is contained in the
following equation: if t1, t2 be specified times, C1, C2 the corresponding
configurations of any self-contained system, and C the configuration at any
time t, then

C = F (C1, t1, C2, t2, t)

(a compressed form for as many equations as C has coordinates). The form
of F depends only upon the number of particles and the dynamical laws of
the system, not upon the choice of C1 or C2. The cause must be taken to
be the two configurations C1 and C2, and the interval t2 − t1 may be any we
please. Further t may fall between t1 and t2, or before both. The effect is any
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single one of the coordinates of the system at time t, or any collection of these
coordinates; but it seems better to regard each coordinate as one effect, since
each is given in one equation. Thus the language of cause and effect has
to be greatly strained to meet the case, and seems scarcely worth preserving.
The cause is two states of the whole system, at times as far apart as we
please; the effect is one coordinate of the system at any time before, after or
between the times in the cause. Nothing could well be more unlike the views
which it has pleased philosophers to advocate. Thus on the whole it is not
worth while preserving the word cause: it is enough to say, what is far less
misleading, that any two configurations allow us to infer any other.

(2) The causal law regulating any system is contained in the form of F.
The law does not assert that one event A will always be followed by another B;
if A be the configuration of the system at one time, nothing can be inferred as
to that at another; the configuration might recur without a recurrence of any
configuration that formerly followed it. If A be two configurations whose
distance in time is given, then indeed our causal law does tell us what con-
figurations will follow them, and if A recurred, so would its consequences.
But if this were all that our causal law told us, it would afford cold comfort,
since no configuration ever does actually recur. Moreover, we should need an
infinite number of causal laws to meet the requirements of a system which
has successively an infinite number of configurations. What our law does is
to assert that an infinite class of effects have each the same functional relation
to one of an infinite class of causes; and this is done by means of a formula.
One formula connects any three configurations, and but for this fact continu-
ous motions would not be amenable to causal laws, which consist in specifi-
cations of the formula.

461. I have spoken hitherto of independent systems of n particles. It
remains to examine whether any difficulties are introduced by the fact that, in
the dynamical world, there are no independent systems short of the material
universe. We have seen that no effect can be ascribed, within a material
system, to any one part of the system; the whole system is necessary for any
inference as to what will happen to one particle. The only effect traditionally
attributed to the action of a single particle on another is a component acceler-
ation; but (α) this is not part of the resultant acceleration, (β) the resultant
acceleration itself is not an event, or a physical fact, but a mere mathematical
limit. Hence nothing can be attributed to particular particles. But it may be
objected that we cannot know the whole material universe, and that, since no
effect is attributable to any part as such, we cannot consequently know any-
thing about the effect of the whole. For example, in calculating the motions
of planets, we neglect the fixed stars; we pretend that the solar system is the
whole universe. By what right, then, do we assume that the effects of this
feigned universe in any way resemble those of the actual universe?
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The answer to this question is found in the law of gravitation. We can show
that, if we compare the motions of a particle in a number of universes
differing only as regards the matter at a greater distance than R, while much
within this distance all of them contain much matter, then the motion of
the particle in question relative to the matter well within the distance R will
be approximately the same in all the universes.* This is possible because, by
the third law, a kind of fictitious analysis into partial effects is possible. Thus
we can approximately calculate the effect of a universe of which part only is
known. We must not say that the effect of the fixed stars is insensible, for we
assume that they have no effect per se; we must say that the effect of a universe
in which they exist differs little from that of one in which they do not exist;
and this we are able to prove in the case of gravitation. Speaking broadly, we
require (recurring to our previous function �) that, if ε be any number,
however small, there should be some distance R such that, recurring to our

previous function �, if 
d

ds
 denote differentiation in any direction, then

d

ds �
∞

r
� (r) dr < ε if r > R.

When this condition is satisfied, the difference between the relative acceler-
ations of two particles within a certain region, which results from assuming
different distributions of matter at a distance greater than R from a certain
point within the region, will have an assignable upper limit; and hence there
is an upper limit to the error incurred by pretending that there is no matter
outside the space of radius R. Hence approximation becomes possible in spite
of the fact that the whole universe is involved in the exact determination of
any motion.

The above leads to two observations of some interest. First, no law which
does not satisfy the above inequality is capable of being practically applied or
tested. The assumption that gravity varies as the direct distance, for example,
could only be tested in a finite universe. And in all phenomena, such as those
of electricity, we must assume, where the total effect is a sum or integral, or is
calculated by means of a sum or integral, that the portion contributed to
relative motions by large values of r is small. Secondly, the denial of any
partial effect of a part is quite necessary if we are to apply our formulae to an
infinite universe in the form of integrals. For an integral is not really an
infinite sum, but the limit of a finite sum. Thus if each particle had a partial
effect, the total effect of an infinite number of particles would not be an

* This is true only of relative, not of absolute motions.
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integral. But though an integral cannot represent an infinite sum, there seems
no reason whatever why it should not represent the effect of a universe which
has an infinite number of parts. If there are finite volumes containing an
infinite number of particles, the notion of mass must be modified so as to
apply no longer to single particles, but to infinite classes of particles. The
density at a point will then be not the mass of that point, but the differential
coefficient, at the point, of the mass with respect to the volume.

It should be observed that the impossibility of an independent system
short of the whole universe does not result from the laws of motion, but
from the special laws, such as that of gravitation, which the laws of motion
lead us to seek.

462. The laws of motion, to conclude, have no vestige of self-evidence;
on the contrary, they contradict the form of causality which has usually been
considered evident. Whether they are ultimately valid, or are merely
approximate generalizations, must remain doubtful; the more so as, in all
their usual forms, they assume the truth of the axiom of parallels, of which
we have so far no evidence. The laws of motion, like the axiom of parallels in
regard to space, may be viewed either as parts of a definition of a class of
possible material universes, or as empirically verified assertions concerning
the actual material universe. But in no way can they be taken as à priori truths
necessarily applicable to any possible material world. The à priori truths
involved in Dynamics are only those of logic: as a system of deductive
reasoning, Dynamics requires nothing further, while as a science of what
exists, it requires experiment and observation. Those who have admitted a
similar conclusion in Geometry are not likely to question it here; but it is
important to establish separately every instance of the principle that know-
ledge as to what exists is never derivable from general philosophical con-
siderations, but is always and wholly empirical.
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58
ABSOLUTE AND RELATIVE

MOTION

463. I the justly famous scholium to the definitions, Newton has stated,
with admirable precision, the doctrine of absolute space, time and motion.
Not being a skilled philosopher, he was unable to give grounds for his views,
except an empirical argument derived from actual Dynamics. Leibniz, with
an unrivalled philosophical equipment, controverted Newton’s position in
his letters against Clarke;* and the victory, in the opinion of subsequent
philosophers, rested wholly with Leibniz. Although it would seem that Kant,
in the Transcendental Aesthetic, inclines to absolute position in space, in
the Metaphysische Anfangsgründe der Naturwissenschaft he quite definitely adopts the
relational view. Not only other philosophers, but also men of science, have
been nearly unanimous in rejecting absolute motion, the latter on the ground
that it is not capable of being observed, and cannot therefore be a datum in an
empirical study.

But a great difficulty has always remained as regards the argument from
absolute rotation, adduced by Newton himself. This argument, in spite of a
definite assertion that all motion is relative, is accepted and endorsed by Clerk
Maxwell.† It has been revived and emphasized by Heymans,‡ combated by
Mach,§ Karl Pearson¶ and many others, and made part of the basis of a

* Phil. Werke, ed. Gerhardt, Vol. .
† Matter and Motion, Art. . Contrast Art. .
‡ Die Gesetze und Elemente des wissenschaftlichen Denkens, Leyden, 1890.
§ Die Mechanik in ihrer Entwickelung, Leipzig, 1883. (Translated, London, 1902.)
¶ Grammar of Science, London, 1892. (2nd edition, 1900.)



general attack on Dynamics in Professor Ward’s Naturalism and Agnosticism. Let us
first state the argument in various forms, and then examine some of the
attempts to reply to it. For us, since absolute time and space have been
admitted, there is no need to avoid absolute motion, and indeed no possibil-
ity of doing so. But if absolute motion is in any case unavoidable, this affords
a new argument in favour of the justice of our logic, which, unlike the logic
current among philosophers, admits and even urges its possibility.

464. If a bucket containing water is rotated, Newton observes, the water
will become concave and mount up the sides of the bucket. But if the bucket
be left at rest in a rotating vessel, the water will remain level in spite of the
relative rotation. Thus absolute rotation is involved in the phenomenon in
question. Similarly, from Foucault’s pendulum and other similar experi-
ments, the rotation of the earth can be demonstrated, and could be demon-
strated if there were no heavenly bodies in relation to which the rotation
becomes sensible. But this requires us to admit that the earth’s rotation is
absolute. Simpler instances may be given, such as the case of two gravitating
particles. If the motion dealt with in Dynamics were wholly relative, these
particles, if they constituted the whole universe, could only move in the
line joining them, and would therefore ultimately fall into one another. But
Dynamics teaches that, if they have initially a relative velocity not in the line
joining them, they will describe conics about their common centre of
gravity as focus. And generally, if acceleration be expressed in polars, there
are terms in the acceleration which, instead of containing several differen-
tials, contain squares of angular velocities: these terms require absolute
angular velocity, and are inexplicable so long as relative motion is
adhered to.

If the law of gravitation be regarded as universal, the point may be stated as
follows. The laws of motion require to be stated by reference to what have
been called kinetic axes: these are in reality axes having no absolute acceler-
ation and no absolute rotation. It is asserted, for example, when the third law
is combined with the notion of mass, that, if m, m' be the masses of two
particles between which there is a force, the component accelerations of the
two particles due to this force are in the ratio m2 : m1. But this will only be true
if the accelerations are measured relative to axes which themselves have no
acceleration. We cannot here introduce the centre of mass, for, according to
the principle that dynamical facts must be, or be derived from, observable
data, the masses, and therefore the centre of mass, must be obtained from the
acceleration, and not vice versâ. Hence any dynamical motion, if it is to obey
the laws of motion, must be referred to axes which are not subject to any
forces. But, if the law of gravitation be accepted, no material axes will satisfy
this condition. Hence we shall have to take spatial axes, and motions relative to
these are of course absolute motions.

498 principles of mathematics



465. In order to avoid this conclusion, C. Neumann* assumes as an
essential part of the laws of motion the existence, somewhere, of an
absolutely rigid “Body Alpha”, by reference to which all motions are to be
estimated. This suggestion misses the essence of the discussion, which is
(or should be) as to the logical meaning of dynamical propositions, not as to
the way in which they are discovered. It seems sufficiently evident that, if it is
necessary to invent a fixed body, purely hypothetical and serving no purpose
except to be fixed, the reason is that what is really relevant is a fixed place, and
that the body occupying it is irrelevant. It is true that Neumann does not
incur the vicious circle which would be involved in saying that the Body Alpha
is fixed, while all motions are relative to it; he asserts that it is rigid, but
rightly avoids any statement as to its rest or motion, which, in his theory,
would be wholly unmeaning. Nevertheless, it seems evident that the question
whether one body is at rest or in motion must have as good a meaning as
the same question concerning any other body; and this seems sufficient to
condemn Neumann’s suggested escape from absolute motion.

466. A development of Neumann’s views is undertaken by Streintz,†
who refers motions to what he calls “fundamental bodies” and “fundamental
axes”. These are defined as bodies or axes which do not rotate and are
independent of all outside influences. Streintz follows Kant’s Anfangsgründe in
regarding it as possible to admit absolute rotation while denying absolute
translation. This is a view which I shall discuss shortly, and which, as we shall
see, though fatal to what is desired of the relational theory, is yet logically
tenable, though Streintz does not show that it is so. But apart from this
question, two objections may be made to his theory. (1) If motion means
motion relative to fundamental bodies (and if not, their introduction is no
gain from a logical point of view), then the law of gravitation becomes
strictly meaningless if taken to be universal—a view which seems impossible
to defend. The theory requires that there should be matter not subject to any
forces, and this is denied by the law of gravitation. The point is not so much
that universal gravitation must be true, as that it must be significant—whether
true or false is an irrelevant question. (2) We have already seen that absolute
accelerations are required even as regards translations, and that the failure to
perceive this is due to overlooking the fact that the centre of mass is not a
piece of matter, but a spatial point which is only determined by means of
accelerations.

467. Somewhat similar remarks apply to Mr W. H. Macaulay’s article on
“Newton’s Theory of Kinetics”.‡ Mr Macaulay asserts that the true way to

* Die Galilei-Newtonsche Theorie, Leipzig, 1870, p. 15.
† Die physikalischen Grundlagen der Mechanik, Leipzig, 1883; see esp. pp. 24, 25.
‡ Bulletin of the American Math. Soc., Vol. . (1896–7). For a later statement of Mr Macaulay’s
views, see Art. Motion, Laws of, in the new volumes of the Encycl. Brit. (Vol. ).
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state Newton’s theory (omitting points irrelevant to the present issue) is as
follows: “Axes of reference can be so chosen, and the assignment of masses
so arranged, that a certain decomposition of the rates of change of momenta,
relative to the axes, of all the particles of the universe is possible, namely one
in which the components occur in pairs; the members of each pair belonging
to two different particles, and being opposite in direction, in the line joining
the particles, and equal in magnitude” (p. 368). Here again, a purely logical
point remains. The above statement appears unobjectionable, but it does not
show that absolute motion is unnecessary. The axes cannot be material, for all
matter is or may be subject to forces, and therefore unsuitable for our pur-
pose; they cannot even be defined by any fixed geometrical relation to matter.
Thus our axes will really be spatial; and if there were no absolute space, the
suggested axes could not exist. For apart from absolute space, any axes would
have to be material or nothing. The axes can, in a sense, be defined by relation
to matter, but not by a constant geometrical relation; and when we ask what
property is changed by motion relative to such axes, the only possible answer
is that the absolute position has changed. Thus absolute space and absolute
motion are not avoided by Mr Macaulay’s statement of Newton’s laws.

468. If absolute rotation alone were in question, it would be possible,
by abandoning all that recommends the relational theory to philosophers and
men of science, to keep its logical essence intact. What is aimed at is to state
the principles of Dynamics in terms of sensible entities. Among these we find
the metrical properties of space, but not straight lines and planes. Collinearity
and coplanarity may be included, but if a set of collinear material points
change their straight line, there is no sensible intrinsic change. Hence all
advocates of the relational theory, when they are thorough, endeavour, like
Leibniz,* to deduce the straight line from distance. For this there is also
the reason that the field of a given distance is all space, whereas the field of
the generating relation of a straight line is only that straight line, whence the
latter, but not the former, makes an intrinsic distinction among the points of
space, which the relational theory seeks to avoid. Still, we might regard
straight lines as relations between material points, and absolute rotation would
then appear as change in a relation between material points, which is logically
compatible with a relational theory of space. We should have to admit, how-
ever, that the straight line was not a sensible property of two particles between
which it was a relation; and in any case, the necessity for absolute trans-
lational accelerations remains fatal to any relational theory of motion.

469. Mach† has a very curious argument by which he attempts to refute
the grounds in favour of absolute rotation. He remarks that, in the actual

* See my article “Recent Work on Leibniz”, in Mind, 1903.
† Die Mechanik in ihrer Entwickelung, 1st edition, p. 216.
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world, the earth rotates relating to the fixed stars, and that the universe is not
given twice over in different shapes, but only once, and as we find it. Hence
any argument that the rotation of the earth could be inferred if there were no
heavenly bodies is futile. This argument contains the very essence of empiri-
cism, in a sense in which empiricism is radically opposed to the philosophy
advocated in the present work.* The logical basis of the argument is that all
propositions are essentially concerned with actual existents, not with entities
which may or may not exist. For if, as has been held throughout our previous
discussions, the whole dynamical world with its laws can be considered
without regard to existence, then it can be no part of the meaning of these laws
to assert that the matter to which they apply exists, and therefore they can be
applied to universes which do not exist. Apart from general arguments, it is
evident that the laws are so applied throughout rational Dynamics, and that,
in all exact calculations, the distribution of matter which is assumed is not
that of the actual world. It seems impossible to deny significance to such
calculations; and yet, if they have significance, if they contain propositions
at all, whether true or false, then it can be no necessary part of their meaning to
assert the existence of the matter to which they are applied. This being so, the
universe is given, as an entity, not only twice, but as many times as there are
possible distributions of matter, and Mach’s argument falls to the ground.
The point is important, as illustrating a respect in which the philosophy here
advocated is to be reckoned with idealism and not with empiricism, in spite
of the contention that what exists can only be known empirically.

Thus, to conclude: Absolute motion is essential to Dynamics, and involves
absolute space. This fact, which is a difficulty in current philosophies, is for
us a powerful confirmation of the logic upon which our discussions have
been based.

* Cf. Art. “Nativism” in the Dictionary of Philosophy and Psychology, edited by Baldwin, Vol. , 1902.
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59
HERTZ’S DYNAMICS

470. W have seen that Newton’s Laws are wholly lacking in self-
evidence—so much so, indeed, that they contradict the law of causation in
a form which has usually been held to be indubitable. We have seen also that
these laws are specially suggestive of the law of gravitation. In order to
eliminate what, in elementary Dynamics, is specially Newtonian, from what
is really essential to the subject, we shall do well to examine some attempts
to re-state the fundamental principles in a form more applicable to such
sciences as Electricity. For this purpose the most suitable work seems to be
that of Hertz.*

The fundamental principles of Hertz’s theory are so simple and so admir-
able that it seems worth while to expound them briefly. His object, like that
of most recent writers, is to construct a system in which there are only three
fundamental concepts, space, time and mass. The elimination of a fourth
concept, such as force or energy, though evidently demanded by theory, is
difficult to carry out mathematically. Hertz seems, however, to have overcome
the difficulty in a satisfactory manner. There are, in his system, three stages
in the specification of a motion. In the first stage, only the relations of space
and time are considered: this stage is purely kinematical. Matter appears here
merely as a means of establishing, through the motion of a particle, a one-
one correlation between a series of points and a series of instants. At this stage
a collection of n particles has 3n coordinates, all so far independent: the
motions which result when all are regarded as independent are all the thinkable
motions of the system. But before coming to kinetics, Hertz introduces an
intermediate stage. Without introducing time, there are in any free material

* Principien der Mechanik, Leipzig, 1894.



system direct relations between space and mass, which form the geometrical
connections of the system. (These may introduce time in the sense of involv-
ing velocities, but they are independent of time in the sense that they are
expressed at all times by the same equations, and that these do not contain the
time explicitly.) Those among thinkable motions which satisfy the equations
of connection are called possible motions. The connections among the parts
of a system are assumed further to be continuous in a certain well-defined
sense (p. 89). It then follows that they can be expressed by homogeneous
linear differential equations of the first order among the coordinates. But now
a further principle is needed to discriminate among possible motions, and
here Hertz introduces his only law of motion, which is as follows:

“Every free system persists in its state of rest or of uniform motion in
a straightest path.”

This law requires some explanation. In the first place, when there are in a
system unequal particles, each is split into a number of particles proportional
to its mass. By this means all particles become equal. If now there are n
particles, their 3n coordinates are regarded as the coordinates of a point in
space of 3n dimensions. The above law then asserts that, in a free system, the
velocity of this representative point is constant, and its path from a given
point to another neighbouring point in a given direction is that one, among
the possible paths through these two points, which has the smallest curva-
ture. Such a path is called a natural path, and motion in it is called a natural
motion.

471. It will be seen that this system, though far simpler and more
philosophical in form than Newton’s, does not differ very greatly in regard to
the problems discussed in the preceding chapter. We still have, what we
found to be the essence of the law of inertia, the necessity for three configur-
ations in order to obtain a causal relation. This broad fact must reappear in
every system at all resembling ordinary Dynamics, and is exhibited in the
necessity for differential equations of the second order, which pervades all
Physics. But there is one very material difference between Hertz’s system and
Newton’s—a difference which, as Hertz points out, renders an experimental
decision between the two at least theoretically possible. The special laws,
other than the laws of motion, which regulate any particular system, are for
Newton laws concerning mutual accelerations, such as gravitation itself. For
Hertz, these special laws are all contained in the geometrical connections of
the system, and are expressed in equations involving only velocities (v. p. 48).
This is a considerable simplification, and is shown by Hertz to be more
conformable to phenomena in all departments except where gravitation is
concerned. It is also a great simplification to have only one law of motion,
instead of Newton’s three. But for the philosopher, so long as this law
involves second differentials (which are introduced through the curvature),
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it is a comparatively minor matter that the special laws of special systems
should be of the first order.

The definition of mass as number of particles, it should be observed, is a
mere mathematical device, and is not, I think, regarded by Hertz as anything
more (v. p. 54). Not only must we allow the possibility of incommensurable
masses, but even if this difficulty were overcome, it would still remain signifi-
cant to assert that all our ultimate particles were equal. Mass would therefore
still be a variety of magnitude, only that all particles would happen to be of
the same magnitude as regards their mass. This would not effect any theor-
etical simplification, and we shall do well, therefore, to retain mass as an
intensive quantity of which a certain magnitude belongs to a certain particle,
without any implication that the particle is divisible. There is, in fact, no valid
ground for denying ultimately different masses to different particles. The
whole question is, indeed, purely empirical, and the philosopher should, in
this matter, accept passively what the physicist finds requisite.

With regard to ether and its relations to matter, a similar remark seems
to be applicable. Ether is, of course, matter in the philosophical sense; but
beyond this the present state of Science will scarcely permit us to go. It should
be observed, however, that in Electricity, as elsewhere, our equations are of
the second order, thus indicating that the law of inertia, as interpreted in the
preceding chapter, still holds good. This broad fact seems, indeed, to be the
chief result, for philosophy, of our discussion of dynamical principles.

472. Thus to sum up, we have two principal results:
(1) In any independent system, there is a relation between the configur-

ations at three given times, which is such that, given the configuration at two
of the times, the configuration at the third time is determinate.

(2) There is no independent system in the actual world except the whole
material universe; but if two universes which have the same causal laws as the
actual universe differ only in regard to the matter at a great distance from
a given region, the relative motions within this region will be approximately
the same in the two universes—i.e. an upper limit can be found for the
difference between the two sets of motions.

These two principles apply equally to the Dynamics of Newton and to that
of Hertz. When these are abandoned, other principles will give a science
having but little resemblance to received Dynamics.

473. One general principle, which is commonly stated as vital to
Dynamics, deserves at least a passing mention. This is the principle that the
cause and effect are equal. Owing to pre-occupation with quantity and ignor-
ance of symbolic logic, it appears to have not been perceived that this state-
ment is equivalent to the assertion that the implication between cause and
effect is mutual. All equations, at bottom, are logical equations, i.e. mutual
implications; quantitative equality between variables, such as cause and
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effect, involves a mutual formal implication. Thus the principle in question
can only be maintained if cause and effect be placed on the same logical level,
which, with the interpretation we were compelled to give to causality, it is no
longer possible to do. Nevertheless, when one state of the universe is given,
any two others have a mutual implication; and this is the source of the various
laws of conservation which pervade Dynamics, and give the truth underlying
the supposed equality of cause and effect.

474. We may now review the whole course of the arguments contained
in the present work. In Part I, an attempt is made to analyse the nature of
deduction, and of the logical concepts involved in it. Of these, the most
puzzling is the notion of class, and from the contradiction discussed in
Chapter 10 (though this is perhaps soluble by the doctrine of types*), it
appeared that a tenable theory as to the nature of classes is very hard to
obtain. In subsequent Parts, it was shown that existing pure mathematics
(including Geometry and Rational Dynamics) can be derived wholly from
the indefinables and indemonstrables of Part I. In this process, two points are
specially important: the definitions and the existence-theorems. A definition
is always either the definition of a class, or the definition of the single mem-
ber of a unit class: this is a necessary result of the plain fact that a definition
can only be effected by assigning a property of the object or objects to be
defined, i.e. by stating a propositional function which they are to satisfy. A
kind of grammar controls definitions, making it impossible e.g. to define
Euclidean Space, but possible to define the class of Euclidean spaces. And
wherever the principle of abstraction is employed, i.e. where the object to be
defined is obtained from a transitive symmetrical relation, some class of
classes will always be the object required. When symbolic expressions are
used, the requirements of what may be called grammar become evident, and
it is seen that the logical type of the entity defined is in no way optional.

The existence-theorems of mathematics—i.e. the proofs that the various
classes defined are not null—are almost all obtained from Arithmetic. It may
be well here to collect the more important of them. The existence of zero is
derived from the fact that the null-class is a member of it; the existence of
1 from the fact that zero is a unit-class (for the null-class is its only member).
Hence, from the fact that, if n be a finite number, n + 1 is the number of
numbers from 0 to n (both inclusive), the existence-theorem follows for all
finite numbers. Hence, from the class of the finite cardinal numbers them-
selves, follows the existence of α0, the smallest of the infinite cardinal num-
bers; and from the series of finite cardinals in order of magnitude follows the
existence of ω, the smallest of infinite ordinals. From the definition of the
rational numbers and of their order of magnitude follows the existence of η,

* See Appendix B.
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the type of endless compact denumerable series; thence, from the segments
of the series of rationals, the existence of the real numbers, and of θ, the type
of continuous series. The terms of the series of well-ordered types are proved
to exist from the two facts: (1) that the number of well-ordered types from
0 to α is α + 1, (2) that if u be a class of well-ordered types having no

maximum, the series of all types not greater than every u is itself of a type
greater than every u. From the existence of θ, by the definition of complex
numbers (Chapter 44), we prove the existence of the class of Euclidean
spaces of any number of dimensions; thence, by the process of Chapter 46,
we prove the existence of the class of projective spaces, and thence, by remov-
ing the points outside a closed quadric, we prove the existence of the class of
non-Euclidean descriptive (hyperbolic) spaces. By the methods of Chapter
48, we prove the existence of spaces with various metrical properties.
Lastly, by correlating some of the points of a space with all the terms of a
continuous series in the ways explained in Chapter 56, we prove the exist-
ence of the class of dynamical worlds. Throughout this process, no entities
are employed but such as are definable in terms of the fundamental logical
constants. Thus the chain of definitions and existence-theorems is complete,
and the purely logical nature of mathematics is established throughout.

506 principles of mathematics



Appendices



LIST OF ABBREVIATIONS

BP. Ueber die Begriffsschrift des Herrn Peano und meine eigene. Berichte der math.-
physischen Classe der Königl. Sächs, Gesellschaft der Wissenschaften
zu Leipzig (1896).

Bs. Begriffsschrift. Eine der arithmetischen nachgebildete Formelsprache
des reinen Denkens. Halle a/S, 1879.

BuG. Ueber Begriff und Gegenstand. Vierteljahrschrift für wiss. Phil.,  2
(1892).

FT. Ueber formale Theorien der Arithmetik. Sitzungsberichte der Jenaischen
Gesellschaft für Medicin und Naturwissenschaft, 1885.

FuB. Function und Begriff. Vortrag gehalten in der Sitzung vom 9. Januar, 1891,
der Jenaischen Gesellschaft für Medicin und Naturwissenschaft.
Jena, 1891.

Gg. Grundgesetze der Arithmetik. Begriffsschriftlich abgeleitet. Vol. . Jena,
1893. Vol. . 1903.

Gl. Grundlagen der Arithmetik. Eine logisch-mathematische Untersuchung
über den Begriff der Zahl. Breslau, 1884.

KB. Kritische Beleuchtung einiger Punkte in E. Schröder’s Vorlesungen über die Algebra der
Logik. Archiv für syst. Phil., Vol.  (1895).

SuB. Ueber Sinn und Bedeutung. Zeitschrift für Phil. und phil. Kritik, vol. 100
(1892).



Appendix A

THE LOGICAL AND ARITHMETICAL DOCTRINES OF FREGE

475. T work of Frege, which appears to be far less known than it
deserves, contains many of the doctrines set forth in Parts I and II of the
present work, and where it differs from the views which I have advocated,
the differences demand discussion. Frege’s work abounds in subtle distinc-
tions, and avoids all the usual fallacies which beset writers on Logic. His
symbolism, though unfortunately so cumbrous as to be very difficult to
employ in practice, is based upon an analysis of logical notions much more
profound than Peano’s, and is philosophically very superior to its more
convenient rival. In what follows, I shall try briefly to expound Frege’s
theories on the most important points, and to explain my grounds for
differing where I do differ. But the points of disagreement are very few
and slight compared to those of agreement. They all result from difference
on three points: (1) Frege does not think that there is a contradiction in the
notion of concepts which cannot be made logical subjects (see § 49 supra);
(2) he thinks that, if a term a occurs in a proposition, the proposition can
always be analysed into a and an assertion about a (see Chapter 7); (3)
he is not aware of the contradiction discussed in Chapter 10. These are
very fundamental matters, and it will be well here to discuss them afresh,
since the previous discussion was written in almost complete ignorance of
Frege’s work.

Frege is compelled, as I have been, to employ common words in technical
senses which depart more or less from usage. As his departures are frequently
different from mine, a difficulty arises as regards the translation of his terms.
Some of these, to avoid confusion, I shall leave untranslated, since every



English equivalent that I can think of has been already employed by me in
a slightly different sense.

The principal heads under which Frege’s doctrines may be discussed are
the following: (1) meaning and indication; (2) truth-values and judgment;
(3) Begriff and Gegenstand; (4) classes; (5) implication and symbolic logic;
(6) the definition of integers and the principle of abstraction; (7) mathemat-
ical induction and the theory of progressions. I shall deal successively with
these topics.

476. Meaning and indication. The distinction between meaning (Sinn) and
indication (Bedeutung)* is roughly, though not exactly, equivalent to my dis-
tinction between a concept as such and what the concept denotes (§ 96).
Frege did not possess this distinction in the first two of the works under
consideration (the Begriffsschrift and the Grundlagen der Arithmetik); it appears
first in BuG. (cf. p. 198), and is specially dealt with in SuB. Before making the
distinction, he thought that identity has to do with the names of objects
(Bs. p. 13): “A is identical with B” means, he says, that the sign A and the
sign B have the same signification (Bs. p. 15)—a definition which, verbally
at least, suffers from circularity. But later he explains identity in much the
same way as it was explained in § 64. “Identity”, he says, “calls for reflection
owing to questions which attach to it and are not quite easy to answer. Is it
a relation? A relation between Gegenstände or between names or signs of
Gegenstände?” (SuB. p. 25). We must distinguish, he says, the meaning, in
which is contained the way of being given, from what is indicated (from the
Bedeutung). Thus “the evening star” and “the morning star” have the same
indication, but not the same meaning. A word ordinarily stands for its indica-
tion; if we wish to speak of its meaning, we must use inverted commas or
some such device (pp. 27–8). The indication of a proper name is the object
which it indicates; the presentation which goes with it is quite subjective;
between the two lies the meaning, which is not subjective and yet is not
the object (p. 30). A proper name expresses its meaning, and indicates its indica-
tion (p. 31).

This theory of indication is more sweeping and general than mine, as
appears from the fact that every proper name is supposed to have the two sides.
It seems to me that only such proper names as are derived from concepts by
means of the can be said to have meaning, and that such words as John merely
indicate without meaning. If one allows, as I do, that concepts can be objects
and have proper names, it seems fairly evident that their proper names, as a
rule, will indicate them without having any distinct meaning; but the oppos-
ite view, though it leads to an endless regress, does not appear to be logically

* I do not translate Bedeutung by denotation, because this word has a technical meaning different
from Frege’s, and also because bedeuten, for him, is not quite the same as denoting for me.
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impossible. The further discussion of this point must be postponed until
we come to Frege’s theory of Begriffe.

477. Truth-values and Judgment. The problem to be discussed under this head
is the same as the one raised in § 52,* concerning the difference between
asserted and unasserted propositions. But Frege’s position on this question
is more subtle than mine, and involves a more radical analysis of judgment.
His Begriffsschrift, owing to the absence of the distinction between meaning
and indication, has a simpler theory than his later works. I shall therefore
omit it from the discussions.

There are, we are told (Gg. p. x), three elements in judgment: (1) the
recognition of truth, (2) the Gedanke, (3) the truth-value (Wahrheitswerth).
Here the Gedanke is what I have called an unasserted proposition—or rather,
what I called by this name covers both the Gedanke alone and the Gedanke
together with its truth-value. It will be well to have names for these two
distinct notions; I shall call the Gedanke alone a propositional concept; the truth-
value of a Gedanke I shall call an assumption.† Formally at least, an assumption
does not require that its content should be a propositional concept: whatever
x may be, “the truth of x” is a definite notion. This means the true if x is true,
and if x is false or not a proposition it means the false (FuB. p. 21). In like
manner, according to Frege, there is “the falsehood of x”; these are not
assertions and negations of propositions, but only assertions of truth or of
falsity, i.e. negation belongs to what is asserted, and is not the opposite of
assertion.‡ Thus we have first a propositional concept, next its truth or falsity
as the case may be, and finally the assertion of its truth or falsity. Thus in a
hypothetical judgment, we have a relation, not of two judgments, but of two
propositional concepts (SuB. p. 43).

This theory is connected in a very curious way with the theory of meaning
and indication. It is held that every assumption indicates the true or the false
(which are called truth-values), while it means the corresponding prop-
ositional concept. The assumption “22 = 4” indicates the true, we are told,
just as “22” indicates 4§ (FuB. p. 13; SuB. p. 32). In a dependent clause, or
where a name occurs (such as Odysseus) which indicates nothing, a sentence
may have no indication. But when a sentence has a truth-value, this is its
indication. Thus every assertive sentence (Behauptungssatz) is a proper name,
which indicates the true or the false (SuB. pp. 32–4; Gg. p. 7). The sign of

* This is the logical side of the problem of Annahmen, raised by Meinong in his able work on
the subject, Leipzig, 1902. The logical, though not the psychological, part of Meinong’s work
appears to have been completely anticipated by Frege.
† Frege, like Meinong, calls this an Annahme: FuB. p. 21.
‡ Gg. p. 10. Cf. also Bs. p. 4.
§ When a term which indicates is itself to be spoken of, as opposed to what it indicates, Frege
uses inverted commas. Cf. § 56.
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judgment (Urtheilstrich) does not combine with other signs to denote an
object; a judgment indicates nothing, but asserts something. Frege has a
special symbol for judgment, which is something distinct from and add-
itional to the truth-value of a propositional concept (Gg. pp. 9–10).

478. There are some difficulties in the above theory which it will be well
to discuss. In the first place, it seems doubtful whether the introduction of
truth-values marks any real analysis. If we consider, say, “Caesar died”, it
would seem that what is asserted is the propositional concept “the death of
Caesar”, not “the truth of the death of Caesar”. This latter seems to be merely
another propositional concept, asserted in “the death of Caesar is true”,
which is not, I think, the same proposition as “Caesar died”. There is great
difficulty in avoiding psychological elements here, and it would seem that
Frege has allowed them to intrude in describing judgment as the recognition
of truth (Gg. p. ). The difficulty is due to the fact that there is a psychological
sense of assertion, which is what is lacking in Meinong’s Annahmen, and that
this does not run parallel with the logical sense. Psychologically, any prop-
osition, whether true or false, may be merely thought of, or may be actually
asserted: but for this possibility, error would be impossible. But logically,
true propositions only are asserted, though they may occur in an unasserted
form as parts of other propositions. In “p implies q”, either or both of the
propositions p, q may be true, yet each, in this proposition, is unasserted in a
logical, and not merely in a psychological, sense. Thus assertion has a definite
place among logical notions, though there is a psychological notion of asser-
tion to which nothing logical corresponds. But assertion does not seem to
be a constituent of an asserted proposition, although it is, in some sense,
contained in an asserted proposition. If p is a proposition, “p’s truth” is a
concept which has being even if p is false, and thus “p’s truth” is not the same
as p asserted. Thus no concept can be found which is equivalent to p asserted,
and therefore assertion is not a constituent in p asserted. Yet assertion is not a
term to which p, when asserted, has an external relation; for any such relation
would need to be itself asserted in order to yield what we want. Also a
difficulty arises owing to the apparent fact, which may however be doubted,
that an asserted proposition can never be part of another proposition: thus, if
this be a fact, where any statement is made about p asserted, it is not really
about p asserted, but only about the assertion of p. This difficulty becomes
serious in the case of Frege’s one and only principle of inference (Bs. p. 9):
“p is true and p implies q; therefore q is true”.* Here it is quite essential that
there should be three actual assertions, otherwise the assertion of proposi-
tions deduced from asserted premisses would be impossible; yet the three
assertions together form one proposition, whose unity is shown by the word

* Cf. supra, § 18, (4) and § 38.
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therefore, without which q would not have been deduced, but would have been
asserted as a fresh premiss.

It is also almost impossible, at least to me, to divorce assertion from truth,
as Frege does. An asserted proposition, it would seem, must be the same as
a true proposition. We may allow that negation belongs to the content of a
proposition (Bs. p. 4), and regard every assertion as asserting something to
be true. We shall then correlate p and not-p as unasserted propositions, and
regard “p is false” as meaning “not-p is true”. But to divorce assertion from
truth seems only possible by taking assertion in a psychological sense.

479. Frege’s theory that assumptions are proper names for the true or
the false, as the case may be, appears to me also untenable. Direct inspection
seems to show that the relation of a proposition to the true or the false is
quite different from that of (say), “the present King of England” to Edward
VII. Moreover, if Frege’s view were correct on this point, we should have to
hold that in an asserted proposition it is the meaning, not the indication, that
is asserted, for otherwise, all asserted propositions would assert the very same
thing, namely the true (for false propositions are not asserted). Thus asserted
propositions would not differ from one another in any way, but would be all
strictly and simply identical. Asserted propositions have no indication (FuB.
p. 21), and can only differ, if at all, in some way analogous to meaning. Thus
the meaning of the unasserted proposition together with its truth-value must
be what is asserted, if the meaning simply is rejected. But there seems no
purpose in introducing the truth-value here: it seems quite sufficient to say
that an asserted proposition is one whose meaning is true, and that to say the
meaning is true is the same as to say the meaning is asserted. We might then
conclude that true propositions, even when they occur as parts of others, are
always and essentially asserted, while false propositions are always unas-
serted, thus escaping the difficulty about therefore discussed above. It may also
be objected to Frege that “the true” and “the false”, as opposed to truth and
falsehood, do not denote single definite things, but rather the classes of true
and false propositions respectively. This objection, however, would be met
by his theory of ranges, which correspond approximately to my classes;
these, he says, are things, and the true and the false are ranges (v. inf.).

480. Begriff and Gegenstand. Functions. I come now to a point in which Frege’s
work is very important, and requires careful examination. His use of the
word Begriff does not correspond exactly to any notion in my vocabulary,
though it comes very near to the notion of an assertion as defined in §43, and
discussed in Chapter 7. On the other hand, his Gegenstand seems to corres-
pond exactly to what I have called a thing (§ 48). I shall therefore translate
Gegenstand by thing. The meaning of proper name seems to be the same for him
as for me, but he regards the range of proper names as confined to things,
because they alone, in his opinion, can be logical subjects.
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Frege’s theory of functions and Begriffe is set forth simply in FuB, and
defended against the criticisms of Kerry* in BuG. He regards functions—
and in this I agree with him—as more fundamental than predicates and
relations; but he adopts concerning functions the theory of subject and asser-
tion which we discussed and rejected in Chapter 7. The acceptance of
this view gives a simplicity to his exposition which I have been unable to
attain; but I do not find anything in his work to persuade me of the legitim-
acy of his analysis.

An arithmetical function, e.g. 2x3 + x, does not denote, Frege says, the result
of an arithmetical operation, for that is merely a number, which would be
nothing new (FuB. p. 5). The essence of a function is what is left when the x
is taken away, i.e., in the above instance, 2 ( )3 + ( ). The argument x does not
belong to the function, but the two together make a whole (ib. p. 6). A
function may be a proposition for every value of the variable; its value is
then always a truth-value (p. 13). A proposition may be divided into two
parts, as “Caesar” and “conquered Gaul”. The former Frege calls the argument,
the latter the function. Any thing whatever is a possible argument for a function
(p. 17). (This division of propositions corresponds exactly to my subject and
assertion as explained in §43, but Frege does not restrict this method of analy-
sis as I do in Chapter 7.) A thing is anything which is not a function, i.e.
whose expression leaves no empty place. The two following accounts of the
nature of a function are quoted from the earliest and one of the latest of
Frege’s works respectively.

(1) “If in an expression, whose content need not be propositional (beur-
theilbar), a simple or composite sign occurs in one or more places, and we
regard it as replaceable, in one or more of these places, by something else, but
by the same everywhere, then we call the part of the expression which
remains invariable in this process a function, and the replaceable part we call
its argument” (Bs. p. 16).

(2) “If from a proper name we exclude a proper name, which is part or
the whole of the first, in some or all of the places where it occurs, but in
such a way that these places remain recognizable as to be filled by one and
the same arbitrary proper name (as argument positions of the first kind), I
call what we thereby obtain the name of a function of the first order with
one argument. Such a name, together with a proper name which fills the
argument-places, forms a proper name” (Gg. p. 44).

The latter definition may become plainer by the help of some examples.
“The present king of England” is, according to Frege, a proper name, and
“England” is a proper name which is part of it. Thus here we may regard
England as the argument, and “the present king of” as function. Thus we

* Vierteljahrschrift für wiss. Phil., vol. , pp. 249–307.

514 principles of mathematics



are led to “the present king of x”. This expression will always have a meaning,
but it will not have an indication except for those values of x which at
present are monarchies. The above function is not propositional. But
“Caesar conquered Gaul” leads to “x conquered Gaul”; here we have a prop-
ositional function. There is here a minor point to be noticed: the asserted
proposition is not a proper name, but only the assumption is a proper
name for the true or the false (v. supra); thus it is not “Caesar conquered
Gaul” as asserted, but only the corresponding assumption that is involved in
the genesis of a propositional function. This is indeed sufficiently obvious,
since we wish x to be able to be any thing in “x conquered Gaul”, whereas
there is no such asserted proposition except when x did actually perform
this feat. Again consider “Socrates is a man implies Socrates is a mortal”.
This (unasserted) is, according to Frege, a proper name for the true. By
varying the proper name “Socrates”, we can obtain three propositional func-
tions, namely “x is a man implies Socrates is a mortal”, “Socrates is a man
implies x is a mortal”, “x is a man implies x is a mortal”. Of these the first
and third are true for all values of x, the second is true when and only when
x is a mortal.

By suppressing in like manner a proper name in the name of a function of
the first order with one argument, we obtain the name of a function of the
first order with two arguments (Gg. p. 44). Thus e.g. starting from “1 < 2”,
we get first “x < 2”, which is the name of a function of the first order with
one argument, and thence “x < y”, which is the name of a function of the
first order with two arguments. By suppressing a function in like manner,
Frege says, we obtain the name of a function of the second order (Gg. p. 44).
Thus e.g. the assertion of existence in the mathematical sense is a function of
the second order: “There is at least one value of x satisfying �x” is not a
function of x, but may be regarded as a function of �. Here � must on no
account be a thing, but may be any function. Thus this proposition, con-
sidered as a function of �, is quite different from functions of the first order,
by the fact that the possible arguments are different. Thus given any prop-
osition, say f(a), we may consider either f(x), the function of the first order
resulting from varying a and keeping f constant, or � (a), the function of the
second order got by varying f and keeping a fixed; or, finally, we may consider
� (x), in which both f and a are separately varied. (It is to be observed that
such notions as � (a), in which we consider any proposition concerning
a, are involved in the identity of indiscernibles as stated in § 43.) Functions
of the first order with two variables, Frege points out, express relations (Bs.
p. 17); the referent and the relatum are both subjects in a relational prop-
osition (Gl. p. 82). Relations, just as much as predicates, belong, Frege rightly
says, to pure logic (ib. p. 83).

481. The word Begriff is used by Frege to mean nearly the same thing as
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propositional function (e.g. FuB. p. 28);* when there are two variables, the Begriff is
a relation. A thing is anything not a function, i.e. anything whose expression
leaves no empty place (ib. p. 18). To Frege’s theory of the essential cleavage
between things and Begriffe, Kerry objects (loc. cit. p. 272 ff.) that Begriffe
also can occur as subjects. To this Frege makes two replies. In the first place, it
is, he says, an important distinction that some terms can only occur as sub-
jects, while others can occur also as concepts, even if Begriffe can also occur
as subjects (BuG. p. 195). In this I agree with him entirely; the distinction is
the one employed in §§ 48, 49. But he goes on to a second point which
appears to me mistaken. We can, he says, have a concept falling under a
higher one (as Socrates falls under man, he means, not as Greek falls under
man); but in such cases, it is not the concept itself, but its name, that is in
question (BuG. p. 195). “The concept horse”, he says, is not a concept, but a
thing; the peculiar use is indicated by inverted commas (ib. p. 196). But a few
pages later he makes statements which seem to involve a different view. A
concept, he says, is essentially predicative even when something is asserted
of it: an assertion which can be made of a concept does not fit an object.
When a thing is said to fall under a concept, and when a concept is said to
fall under a higher concept, the two relations involved, though similar, are
not the same (ib. p. 201). It is difficult to me to reconcile these remarks with
those of p. 195; but I shall return to this point shortly.

Frege recognizes the unity of a proposition: of the parts of a propositional
concept, he says, not all can be complete, but one at least must be incomplete
(ungesättigt) or predicative, otherwise the parts would not cohere (ib. p. 205).
He recognizes also, though he does not discuss, the oddities resulting from
any and every and such words: thus he remarks that every positive integer is
the sum of four squares, but “every positive integer” is not a possible value of
x in “x is the sum of four squares”. The meaning of “every positive integer”,
he says, depends upon the context (Bs. p. 17)—a remark which is doubtless
correct, but does not exhaust the subject. Self-contradictory notions are
admitted as concepts: F is a concept if “a falls under the concept F” is a
proposition whatever thing a may be (Gl. p. 87). A concept is the indication
of a predicate; a thing is what can never be the whole indication of a predi-
cate, though it may be that of a subject (BuG. p. 198).

482. The above theory, in spite of close resemblance, differs in some
important points from the theory set forth in Part I above. Before examining
the differences, I shall briefly recapitulate my own theory.

Given any propositional concept, or any unity (see § 136), which may in
the limit be simple, its constituents are in general of two sorts: (1) those

* “We have here a function whose value is always a truth-value. Such functions with one
argument we have called Begriffe; with two, we call them relations.” Cf. Gl. pp. 82–3.
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which may be replaced by anything else whatever without destroying the
unity of the whole; (2) those which have not this property. Thus in “the
death of Caesar”, anything else may be substituted for Caesar, but a proper
name must not be substituted for death, and hardly anything can be substi-
tuted for of. Of the unity in question, the former class of constituents will be
called terms, the latter concepts. We have then, in regard to any unity, to consider
the following objects:

(1) What remains of the said unity when one of its terms is simply removed,
or, if the term occurs several times, when it is removed from one or
more of the places in which it occurs, or, if the unity has more than one
term, when two or more of its terms are removed from some or all of
the places where they occur. This is what Frege calls a function.

(2) The class of unities differing from the said unity, if at all, only by the fact
that one of its terms has been replaced, in one or more of the places
where it occurs, by some other terms, or by the fact that two or more
of its terms have been thus replaced by other terms.

(3) Any member of the class (2).
(4) The assertion that every member of the class (2) is true.
(5) The assertion that some member of the class (2) is true.
(6) The relation of a member of the class (2) to the value which the variable

has in that member.

The fundamental case is that where our unity is a propositional concept.
From this is derived the usual mathematical notion of function, which might
at first sight seem simpler. If f(x) is not a propositional function, its value for a
given value of x (f(x) being assumed to be one-valued) is the term y satisfying
the propositional function y = f(x), i.e. satisfying, for the given value of x,
some relational proposition; this relational proposition is involved in the
definition of f(x), and some such propositional function is required in the
definition of any function which is not propositional.

As regards (1), confining ourselves to one variable, it was maintained in
Chapter 7 that, except where the proposition from which we start is pred-
icative or else asserts a fixed relation to a fixed term, there is no such entity:
the analysis into argument and assertion cannot be performed in the manner
required. Thus what Frege calls a function, if our conclusion was sound, is
in general a non-entity. Another point of difference from Frege, in which,
however, he appears to be in the right, lies in the fact that I place no restric-
tion upon the variation of the variable, whereas Frege, according to the
nature of the function, confines the variable to things, functions of the first
order with one variable, functions of the first order with two variables, func-
tions of the second order with one variable, and so on. There are thus for him
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an infinite number of different kinds of variability. This arises from the fact
that he regards as distinct the concept occurring as such and the concept
occurring as term, which I (§ 49) have identified. For me, the functions,
which cannot be values of variables in functions of the first order, are non-
entities and false abstractions. Instead of the rump of a proposition con-
sidered in (1), I substitute (2) or (3) or (4) according to circumstances. The
ground for regarding the analysis into argument and function as not always
possible is that, when one term is removed from a propositional concept,
the remainder is apt to have no sort of unity, but to fall apart into a set of
disjointed terms. Thus what is fundamental in such a case is (2). Frege’s
general definition of a function, which is intended to cover also functions
which are not propositional, may be shown to be inadequate by considering
what may be called the identical function, i.e. x as a function of x. If we follow
Frege’s advice, and remove x in hopes of having the function left, we find that
nothing is left at all; yet nothing is not the meaning of the identical function.
Frege wishes to have the empty places where the argument is to be inserted
indicated in some way; thus he says that in 2x3 + x the function is 2( )3 + ( ).
But here his requirement that the two empty places are to be filled by the
same letter cannot be indicated: there is no way of distinguishing what we
mean from the function involved in 2x3 + y. The fact seems to be that we
want the notion of any term of a certain class, and that this is what our empty
places really stand for. The function, as a single entity, is the relation (6)
above; we can then consider any relatum of this relation, or the assertion
of all or some of the relata, and any relation can be expressed in terms of
the corresponding referent, as “Socrates is a man” is expressed in terms of
Socrates. But the usual formal apparatus of the calculus of relations cannot be
employed, because it presupposes propositional functions. We may say that a
propositional function is a many-one relation which has all terms for the
class of its referents, and has its relata contained among propositions:* or, if
we prefer, we may call the class of relata of such a relation a propositional
function. But the air of formal definition about these statements is fallacious,
since propositional functions are presupposed in defining the class of refer-
ents and relata of a relation.

Thus by means of propositional functions, propositions are collected into
classes. (These classes are not mutually exclusive.) But we may also collect
them into classes by the terms which occur in them: all propositions contain-
ing a given term a will form a class. In this way we obtain propositions
concerning variable propositional functions. In the notation � (x), the � is
essentially variable; if we wish it not to be so, we must take some particular
proposition about x, such as “x is a class” or “x implies x”. Thus � (x)

* Not all relations having this property are propositional functions; v. inf.
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essentially contains two variables. But, if we have decided that � is not a
separable entity, we cannot regard � itself as the second variable. It will be
necessary to take as our variable either the relation of x to � (x), or else the
class of propositions � (y) for different values of y but for constant �. This does
not matter formally, but it is important for logic to be clear as to the meaning
of what appears as the variation of �. We obtain in this way another division
of propositions into classes, but again these classes are not mutually exclusive.

In the above manner, it would seem, we can make use of propositional
functions without having to introduce the objects which Frege calls func-
tions. It is to be observed, however, that the kind of relation by which prop-
ositional functions are defined is less general than the class of many-one
relations having their domain coextensive with terms and their converse
domain contained in propositions. For in this way any proposition would, for
a suitable relation, be relatum to any term, whereas the term which is referent
must, for a propositional function, be a constituent of the proposition which
is its relatum.* This point illustrates again that the class of relations involved
is fundamental and incapable of definition. But it would seem also to show
that Frege’s different kinds of variability are unavoidable, for in considering
(say) � (2), where � is variable, the variable would have to have as its range
the above class of relations, which we may call propositional relations. Otherwise,
� (2) is not a proposition, and is indeed meaningless, for we are dealing
with an indefinable, which demands that � (2) should be the relatum of
2 with regard to some propositional relation. The contradiction discussed in
Chapter 10 seems to show that some mystery lurks in the variation of prop-
ositional functions; but for the present, Frege’s theory of different kinds of
variables must, I think, be accepted.

483. It remains to discuss afresh the question whether concepts can be
made into logical subjects without change of meaning. Frege’s theory, that
when this appears to be done it is really the name of the concept that is
involved, will not, I think, bear investigation. In the first place, the mere
assertion “not the concept, but its name, is involved”, has already made the
concept a subject. In the second place, it seems always legitimate to ask:
“what is it that is named by this name?” If there were no answer, the name
could not be a name; but if there is an answer, the concept, as opposed to
its name, can be made a subject. (Frege, it may be observed, does not seem
to have clearly disentangled the logical and linguistic elements of naming:
the former depend upon denoting, and have, I think, a much more restricted
range than Frege allows them.) It is true that we found difficulties in the
doctrine that everything can be a logical subject: as regards “any a”, for
example, and also as regards plurals. But in the case of “any a”, there is

* The notion of a constituent of a proposition appears to be a logical indefinable.
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ambiguity, which introduces a new class of problems; and as regards plurals,
there are propositions in which the many behave like a logical subject
in every respect except that they are many subjects and not one only (see
§§ 127, 128). In the case of concepts, however, no such escapes are possible.
The case of asserted propositions is difficult, but it met, I think, by holding
that an asserted proposition is merely a true proposition, and is therefore
asserted wherever it occurs, even when grammar would lead to the opposite
conclusion. Thus, on the whole, the doctrine of concepts which cannot be
made subjects seems untenable.

484. Classes. Frege’s theory of classes is very difficult, and I am not sure
that I have thoroughly understood it. He gives the name Werthverlauf * to an
entity which appears to be nearly the same as what I call the class as one. The
concept of the class, and the class as many, does not appear in his exposition.
He differs from the theory set forth in Chapter 6 chiefly by the fact that he
adopts a more intensional view of classes than I have done, being led thereto
mainly by the desirability of admitting the null-class and of distinguishing a
term from a class whose only member it is. I agree entirely that these two
objects cannot be attained by an extensional theory, though I have tried to
show how to satisfy the requirements of formalism (§§ 69, 73).

The extension of a Begriff, Frege says, is the range of a function whose value
for every argument is a truth-value (FuB. p. 16). Ranges are things, whereas
functions are not (ib. p. 19). There would be no null-class, if classes were
taken in extension; for the null-class is only possible if a class is not a collec-
tion of terms (KB. pp. 436–7). If x be a term, we cannot identify x, as the
extensional view requires, with the class whose only member is x; for sup-
pose x to be a class having more than one member, and let y, z be two
different members of x; then if x is identical with the class whose only
member is x, y and z will both be members of this class, and will therefore be
identical with x and with each other, contrary to the hypothesis.† The exten-
sion of a Begriff has its being in the Begriff itself, not in the individuals falling
under the Begriff (ib. p. 451). When I say something about all men, I say
nothing about some wretch in the centre of Africa, who is in no way indi-
cated, and does not belong to the indication of man (p. 454). Begriffe are prior
to their extension, and it is a mistake to attempt, as Schröder does, to base
extension on individuals; this leads to the calculus of regions (Gebiete), not
to Logic (p. 455).

What Frege understands by a range, and in what way it is to be conceived
without reference to objects, he endeavours to explain in his Grundgesetze der
Arithmetik. He begins by deciding that two propositional functions are to have

* I shall translate this as range.
† Ib. p. 444. Cf. supra, § 74.
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the same range when they have the same value for every value of x, i.e. for
every value of x both are true or both false (pp. 7, 14) This is laid down as a
primitive proposition. But this only determines the equality of ranges, not
what they are in themselves. If X (ξ) be a function which never has the same
value for different values of ξ and if we denote by �'  the range of �x, we shall
have X (�' ) = X (ψ' ) when and only when �'  and ψ'  are equal, i.e. when and
only when �x and ψx always have the same value. Thus the conditions for the
equality of ranges do not of themselves decide what ranges are to be (p. 16).
Let us decide arbitrarily—since the notion of a range is not yet fixed—that
the true is to be the range of the function “x is true” (as an assumption,
not an asserted proposition), and the false is to be the range of the function
“x = not every term is identical with itself”. It follows that the range of �x is
the true when and only when the true and nothing else falls under the Begriff
�x; the range of �x is the false when and only when the false and nothing else
falls under the Begriff �x; in other cases, the range is neither the true nor the
false (pp. 17–18). If only one thing falls under a concept, this one thing is
distinct from the range of the concept in question (p. 18, note)—the reason
is the same as that mentioned above.

There is an argument (p. 49) to prove that the name of the range of a
function always has an indication, i.e. that the symbol employed for it is never
meaningless. In view of the contradiction discussed in Chapter 10, I should be
inclined to deny a meaning to a range when we have a proposition of the
form � [f(�)], where f is constant and � variable, or of the form fx (x), where
x is variable and fx is a propositional function which is determinate when x is
given, but varies from one value of x to another—provided, when fx is ana-
lysed into things and concepts, the part dependent on x does not consist only
of things, but contains also at least one concept. This is a very complicated
case, in which, I should say, there is no class as one, my only reason for saying
so being that we can thus escape the contradiction.

485. By means of variable propositional functions, Frege obtains a defin-
ition of the relation which Peano calls ε, namely the relation of a term to a
class of which it is a member.*. The definition is as follows: “aεu” is to mean
the term (or the range of terms if there be none or many) x such that there is
a propositional function � which is such that u is the range of � and �a is
identical with x (p. 53). It is observed that this defines aεu whatever things a
and u may be. In the first place, suppose u to be a range. Then there is at least
one � whose range is u, and any two whose range is u are regarded by Frege
as identical. Thus we may speak of the function � whose range is u. In this
case, aεu is the proposition �a, which is true when a is a member of u, and is
false otherwise. If, in the second place, u is not a range, then there is no such

* Cf. §§ 21, 76, supra.
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propositional function as �, and therefore aεu is the range of a propositional
function which is always false, i.e. the null-range. Thus aεu indicates the true
when u is a range and a is a member of u; aεu indicates the false when u is a
range and a is not a member of u; in other cases, aεu indicates the null-range.

It is to be observed that from the equivalence of xεu and xεv for all values of
x we can only infer the identity of u and v when u and v are ranges. When they
are not ranges, the equivalence will always hold, since xεu and xεv are the null-
range for all values of x; thus if we allowed the inference in this case, any two
objects which are not ranges would be identical, which is absurd. One might
be tempted to doubt whether u and v must be identical even when they are
ranges: with an intensional view of classes, this becomes open to question.

Frege proceeds (p. 55) to an analogous definition of the propositional
function of three variables which I have symbolized as x R y, and here again he
gives a definition which does not place any restrictions on the variability of R.
This is done by introducing a double range, defined by a propositional function
of two variables; we may regard this as a class of couples with sense.* If then R
is such a class of couples, and if (x; y) is a member of this class, x R y is to hold;
in other cases it is to be false or null as before. On this basis, Frege success-
fully erects as much of the logic of relations as is required for his Arithmetic;
and he is free from the restrictions on the variability of R which arise from
the intensional view of relations adopted in the present work (cf. § 83).

486. The chief difficulty which arises in the above theory of classes is as
to the kind of entity that a range is to be. The reason which led me, against
my inclination, to adopt an extensional view of classes, was the necessity of
discovering some entity determinate for a given propositional function, and
the same for any equivalent propositional function. Thus “x is a man” is
equivalent (we will suppose) to “x is a featherless biped”, and we wish to
discover some one entity which is determined in the same way by both these
propositional functions. The only single entity I have been able to discover is
the class as one—except the derivative class (also as one) of propositional
functions equivalent to either of the given propositional functions. This latter
class is plainly a more complex notion, which will not enable us to dispense
with the general notion of class; but this more complex notion (so we agreed
in § 73) must be substituted for the class of terms in the symbolic treatment,
if there is to be any null-class and if the class whose only member is a given
term is to be distinguished from that term. It would certainly be a very great
simplification to admit, as Frege does, a range which is something other than
the whole composed of the terms satisfying the propositional function in
question; but for my part, inspection reveals to me no such entity. On this

* Neglecting, for the present, our doubts as to there being any such entity as a couple with
sense, cf. § 98.
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ground, and also on account of the contradiction, I feel compelled to adhere to
the extensional theory of classes, though not quite as set forth in Chapter 6.

487. That some modification in that doctrine is necessary, is proved by
the argument of KB. p. 444. This argument appears capable of proving that a
class, even as one, cannot be identified with the class of which it is the only
member. In § 74, I contended that the argument was met by the distinction
between the class as one and the class as many, but this contention now
appears to me mistaken. For this reason, it is necessary to re-examine the
whole doctrine of classes.

Frege’s argument is as follows. If a is a class of more than one term, and if
a is identical with the class whose only term is a, then to be a term of a is the
same thing as to be a term of the class whose only term is a, whence a is the
only term of a. This argument appears to prove not merely that the extensional
view of classes is inadequate, but rather that it is wholly inadmissible. For
suppose a to be a collection, and suppose that a collection of one term is
identical with that one term. Then, if a can be regarded as one collection, the
above argument proves that a is the only term of a. We cannot escape by
saying that ε is to be a relation to the class-concept or the concept of the class
or the class as many, for if there is any such entity as the class as one, there
will be a relation, which we may call ε, between terms and their classes as
one. Thus the above argument leads to the conclusion that either (α) a collec-
tion of more than one term is not identical with the collection whose only
term it is, or (β) there is no collection as one term at all in the case of a
collection of many terms, but the collection is strictly and only many. One
or other of these must be admitted in virtue of the above argument.

488. (α) To either of these views there are grave objections. The former
is the view of Frege and Peano. To realize the paradoxical nature of this view,
it must be clearly grasped that it is not only the collection as many, but the
collection as one, that is distinct from the collection whose only term it is.
(I speak of collections, because it is important to examine the bearing of
Frege’s argument upon the possibility of an extensional standpoint.) This
view, in spite of its paradox, is certainly the one which seems to be required
by the symbolism. It is quite essential that we should be able to regard a class
as a single object, that there should be a null-class, and that a term should not
(in general, at any rate) be identical with the class of which it is the only
member. It is subject to these conditions that the symbolic meaning of class has
to be interpreted. Frege’s notion of a range may be identified with the collec-
tion as one, and all will then go well. But it is very hard to see any entity such
as Frege’s range, and the argument that there must be such an entity gives us
little help. Moreover, in virtue of the contradiction, there certainly are cases
where we have a collection as many, but no collection as one (§ 104). Let
us then examine (β), and see whether this offers a better solution.
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(β) Let us suppose that a collection of one term is that one term, and that a
collection of many terms is (or rather are) those many terms, so that there is
not a single term at all which is the collection of the many terms in question.
In this view there is, at first sight at any rate, nothing paradoxical, and it has
the merit of admitting universally what the Contradiction shows to be some-
times the case. In this case, unless we abandon one of our fundamental
dogmas, ε will have to be a relation of a term to its class-concept, not to its
class; if a is a class-concept, what appears symbolically as the class whose only
term is a will (one might suppose) be the class-concept under which falls
only the concept a, which is of course (in general, if not always) different
from a. We shall maintain, on account of the contradiction, that there is not
always a class-concept for a given propositional function �x, i.e. that there is
not always, for every �, some class-concept a such that xεa is equivalent to �x
for all values of x; and the cases where there is no such class-concept will be
cases in which � is a quadratic form.

So far, all goes well. But now we no longer have one definite entity which
is determined equally by any one of a set of equivalent propositional
functions, i.e. there is, it might be urged, no meaning of class left which is
determined by the extension alone. Thus, to take a case where this leads to
confusion, if a and b be different class-concepts such that xεa and xεb are
equivalent for all values of x, the class-concept under which a falls and noth-
ing else will not be identical with that under which falls b and nothing else.
Thus we cannot get any way of denoting what should symbolically corres-
pond to the class as one. Or again, if u and v be similar but different classes,
“similar to u” is a different concept from “similar to v”; thus, unless we can
find some extensional meaning for class, we shall not be able to say that the
number of u is the same as that of v. And all the usual elementary problems as
to combinations (i.e. as to the number of classes of specified kinds contained
in a given class) will have become impossible and even meaningless. For
these various reasons, an objector might contend, something like the class as
one must be maintained; and Frege’s range fulfils the conditions required. It
would seem necessary therefore to accept ranges by an act of faith, without
waiting to see whether there are such things.

Nevertheless, the non-identification of the class with the class as one,
whether in my form or in the form of Frege’s range, appears unavoidable,
and by a process of exclusion the class as many is left as the only object which
can play the part of a class. By a modification of the logic hitherto advocated
in the present work, we shall, I think, be able at once to satisfy the require-
ments of the Contradiction and to keep in harmony with common sense.*

* The doctrine to be advocated in what follows is the direct denial of the dogma stated in
§ 70, note.

524 principles of mathematics



489. Let us begin by recapitulating the possible theories of classes which
have presented themselves. A class may be identified with (α) the predicate,
(β) the class concept, (γ) the concept of the class, (δ) Frege’s range, (ε) the
numerical conjunction of the terms of the class, (ζ) the whole composed of
the terms of the class.

Of these theories, the first three, which are intensional, have the defect that
they do not render a class determinate when its terms are given. The other
three do not have this defect, but they have others. (δ) suffers from a doubt as
to there being such an entity, and also from the fact that, if ranges are terms,
the contradiction is inevitable. (ε) is logically unobjectionable, but is not a
single entity, except when the class has only one member. (ζ) cannot always
exist as a term, for the same reason as applies against (δ); also it cannot be
identified with the class on account of Frege’s argument.*

Nevertheless, without a single object† to represent an extension, Math-
ematics crumbles. Two propositional functions which are equivalent for all
values of the variable may not be identical, but it is necessary that there
should be some object determined by both. Any object that may be proposed,
however, presupposes the notion of class. We may define class optatively as
follows: A class is an object uniquely determined by a propositional function,
and determined equally by any equivalent propositional function. Now we
cannot take as this object (as in other cases of symmetrical transitive relations)
the class of propositional functions equivalent to a given propositional func-
tion, unless we already have the notion of class. Again, equivalent relations,
considered intensionally, may be distinct: we want therefore to find some
one object determined equally by any one of a set of equivalent relations. But
the only objects that suggest themselves are the class of relations or the class
of couples forming their common range; and these both presuppose class.
And without the notion of class, elementary problems, such as “how many
combinations can be formed of m objects n at a time?” become meaningless.
Moreover, it appears immediately evident that there is some sense in saying
that two class-concepts have the same extension, and this requires that there
should be some object which can be called the extension of a class-concept.
But it is exceedingly difficult to discover any such object, and the contradic-
tion proves conclusively that, even if there be such an object sometimes, there
are propositional functions for which the extension is not one term.

The class as many, which we numbered (ε) in the above enumeration, is
unobjectionable, but is many and not one. We may, if we choose, represent
this by a single symbol: thus xεu will mean “x is one of the u’s”. This must not
be taken as a relation of two terms, x and u, because u as the numerical

* Archiv . p. 444.
† For the use of the word object in the following discussion, see § 58, note.
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conjunction is not a single term, and we wish to have a meaning for xεu
which would be the same if for u we substituted an equal class v, which
prevents us from interpreting u intensionally. Thus we may regard “x is one
of the u’s” as expressing a relation of x to many terms, among which x is
included. The main objection to this view, if only single terms can be sub-
jects, is that, if u is a symbol standing essentially for many terms, we cannot
make u a logical subject without risk of error. We can no longer speak, one
might suppose, of a class of classes; for what should be the terms of such a
class are not single terms, but are each many terms.* We cannot assert a
predicate of many, one would suppose, except in the sense of asserting it of
each of the many; but what is required here is the assertion of a predicate
concerning the many as many, not concerning each nor yet concerning the
whole (if any) which all compose. Thus a class of classes will be many
many’s; its constituents will each be only many, and cannot therefore in any
sense, one might suppose, be single constituents. Now I find myself forced
to maintain, in spite of the apparent logical difficulty, that this is precisely
what is required for the assertion of number. If we have a class of classes, each
of whose members has two terms, it is necessary that the members should
each be genuinely two-fold, and should not be each one. Or again, “Brown
and Jones are two” requires that we should not combine Brown and Jones
into a single whole, and yet it has the form of a subject-predicate proposition.
But now a difficulty arises as to the number of members of a class of classes.
In what sense can we speak of two couples? This seems to require that each
couple should be a single entity; yet if it were, we should have two units, not
two couples. We require a sense for diversity of collections, meaning thereby,
apparently, if u and v are the collections in question, that xεu and xεv are not
equivalent for all values of x.

490. The logical doctrine which is thus forced upon us is this: The
subject of a proposition may be not a single term, but essentially many terms;
this is the case with all propositions asserting numbers other than 0 and 1.
But the predicates or class-concepts or relations which can occur in proposi-
tions having plural subjects are different (with some exceptions) from those
that can occur in propositions having single terms as subjects. Although a
class is many and not one, yet there is identity and diversity among classes,
and thus classes can be counted as though each were a genuine unity; and in
this sense we can speak of one class and of the classes which are members of
a class of classes. One must be held, however, to be somewhat different when
asserted of a class from what it is when asserted of a term; that is, there is a
meaning of one which is applicable in speaking of one term, and another which

* Wherever the context requires it, the reader is to add “provided the class in question (or all
the classes in question) does not consist of a single term”.
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is applicable in speaking of one class, but there is also a general meaning
applicable to both cases. The fundamental doctrine upon which all rests is the
doctrine that the subject of a proposition may be plural, and that such plural
subjects are what is meant by classes which have more than one term.*

It will now be necessary to distinguish (1) terms, (2) classes, (3) classes of
classes, and so on ad infinitum; we shall have to hold that no member of one set
is a member of any other set, and that xεu requires that x should be of a set of
a degree lower by one than the set to which u belongs. Thus xεx will become
a meaningless proposition; and in this way the contradiction is avoided.

491. But we must now consider the problem of classes which have one
member or none. The case of the null-class might be met by a bare denial—
this is only inconvenient, not self-contradictory. But in the case of classes
having only one term, it is still necessary to distinguish them from their sole
members. This results from Frege’s argument, which we may repeat as fol-
lows. Let u be a class having more than one term; let ıu be the class of classes
whose only member is u. Then ıu has one member, u has many; hence u and ıu
are not identical. It may be doubted, at first sight, whether this argument is
valid. The relation of x to u expressed by xεu is a relation of a single term to
many terms; the relation of u to ıu expressed by uεıu is a relation of many
terms (as subject) to many terms (as predicate).† This is, so an objector
might contend, a different relation from the previous one; and thus the
argument breaks down. It is in different senses that x is a member of u and that
u is a member of ıu; thus u and ıu may be identical in spite of the argument.

This attempt, however, to escape from Frege’s argument, is capable of
refutation. For all the purposes of Arithmetic, to begin with, and for many of
the purposes of logic, it is necessary to have a meaning for ε which is equally
applicable to the relation of a term to a class, of a class to a class of classes, and
so on. But the chief point is that, if every single term is a class, the proposition
xεx, which gives rise to the Contradiction, must be admissible. It is only by
distinguishing x and ıx, and insisting that in xεu the u must always be of a type
higher by one than x, that the contradiction can be avoided. Thus, although
we may identify the class with the numerical conjunction of its terms, wher-
ever there are many terms, where there is only one term we shall have to
accept Frege’s range as an object distinct from its only term. And having done
this, we may of course also admit a range in the case of a null propositional
function. We shall differ from Frege only in regarding a range as in no case a
term, but an object of a different logical type, in the sense that a propositional
function � (x), in which x may be any term, is in general meaningless if for x
we substitute a range; and if x may be any range of terms, � (x) will in general

* Cf. §§ 128, 132 supra.
† The word predicate is here used loosely, not in the precise sense defined in § 48.
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be meaningless if for x we substitute either a term or a range of ranges of
terms. Ranges, finally, are what are properly to be called classes, and it is
of them that cardinal numbers are asserted.

492. According to the view here advocated, it will be necessary, with
every variable, to indicate whether its field of significance is terms, classes,
classes of classes, or so on.* A variable will not be able, except in special cases,
to extend from one of these sets into another; and in xεu, the x and the u must
always belong to different types; ε will not be a relation between objects of
the same type, but εε

√ or εRε
√ † will be, provided R is so. We shall have to

distinguish also among relations according to the types to which their
domains and converse domains belong; also variables whose fields include
relations, these being understood as classes of couples, will not as a rule
include anything else, and relations between relations will be different in type
from relations between terms. This seems to give the truth—though in a
thoroughly extensional form—underlying Frege’s distinction between terms
and the various kinds of functions. Moreover the opinion here advocated
seems to adhere very closely indeed to common sense.

Thus the final conclusion is, that the correct theory of classes is even more
extensional than that of Chapter 6; that the class as many is the only object
always defined by a propositional function, and that this is adequate for
formal purposes; that the class as one, or the whole composed of the terms of
the class, is probably a genuine entity except where the class is defined by a
quadratic function (see § 103), but that in these cases, and in other cases
possibly, the class as many is the only object uniquely defined.

The theory that there are different kinds of variables demands a reform in
the doctrine of formal implication. In a formal implication, the variable does
not, in general, take all the values of which variables are susceptible, but only
all those that make the propositional function in question a proposition. For
other values of the variable, it must be held that any given propositional
function becomes meaningless. Thus in xεu, u must be a class, or a class of
classes, or etc., and x must be a term if u is a class, a class if u is a class of
classes, and so on; in every propositional function there will be some range
permissible to the variable, but in general there will be possible values for
other variables which are not admissible in the given case. This fact will
require a certain modification of the principles of Symbolic Logic; but it
remains true that, in a formal implication, all propositions belonging to a
given propositional function are asserted.

With this we come to the end of the more philosophical part of Frege’s
work. It remains to deal briefly with his Symbolic Logic and Arithmetic; but

* See Appendix B.
† On this notation, see §§ 28, 97.
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here I find myself in such complete agreement with him that it is hardly
necessary to do more than acknowledge his discovery of propositions which,
when I wrote, I believed to have been new.

493. Implication and Symbolic Logic. The relation which Frege employs as
fundamental in the logic of propositions is not exactly the same as what I have
called implication: it is a relation which holds between p and q whenever q is
true or p is not true, whereas the relation which I employ holds whenever p and
q are propositions, and q is true or p is false. That is to say, Frege’s relation holds
when p is not a proposition at all, whatever q may be; mine does not hold unless
p and q are propositions. His definition has the formal advantage that it avoids
the necessity for hypotheses of the form “p and q are propositions”; but it has
the disadvantage that it does not lead to a definition of proposition and of neg-
ation. In fact, negation is taken by Frege as indefinable; proposition is introduced
by means of the indefinable notion of a truth-value. Whatever x may be, “the
truth-value of x” is to indicate the true if x is true, and the false in all other
cases. Frege’s notation has certain advantages over Peano’s, in spite of the fact
that it is exceedingly cumbrous and difficult to use. He invariably defines
expressions for all values of the variable, whereas Peano’s definitions are often
preceded by a hypothesis. He has a special symbol for assertion, and he is able
to assert for all values of x a propositional function not stating an implication,
which Peano’s symbolism will not do. He also distinguishes, by the use of
Latin and German letters respectively, between any proposition of a certain
propositional function and all such propositions. By always using implica-
tions, Frege avoids the logical product of two propositions, and therefore has
no axioms corresponding to Importation and Exportation.* Thus the joint
assertion of p and q is the denial of “p implies not-q”.

494. Arithmetic. Frege gives exactly the same definition of cardinal num-
bers as I have given, at least if we identify his range with my class.† But
following his intensional theory of classes, he regards the number as a prop-
erty of the class-concept, not of the class in extension. If u be a range, the
number of u is the range of the concept “range similar to u”. In the Grundlagen
der Arithmetik, other possible theories of number are discussed and dismissed.
Numbers cannot be asserted of objects, because the same set of objects may
have different numbers assigned to them (Gl. p. 29); for example, one army is
so many regiments and such another number of soldiers. This view seems to
me to involve too physical a view of objects: I do not consider the army to be
the same object as the regiments. A stronger argument for the same view is
that 0 will not apply to objects, but only to concepts (p. 59). This argument
is, I think, conclusive up to a certain point; but it is satisfied by the view of the

* See § 18, (7), (8).
† See Gl. pp. 79, 85; Gg. p. 57, Df. Z.
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symbolic meaning of classes set forth in §73. Numbers themselves, like other
ranges, are things (p. 67). For defining numbers as ranges, Frege gives the
same general ground as I have given, namely what I call the principle of
abstraction.* In the Grundgesetze der Arithmetik, various theorems in the founda-
tions of cardinal Arithmetic are proved with great elaboration, so great that it
is often very difficult to discover the difference between successive steps in a
demonstration. In view of the contradiction of Chapter 10, it is plain that some
emendation is required in Frege’s principles; but it is hard to believe that it
can do more than introduce some general limitation which leaves the details
unaffected.

495. In addition to his work on cardinal numbers, Frege has, already in
the Begriffsschrift, a very admirable theory of progressions, or rather of all series
that can be generated by many-one relations. Frege does not confine himself
to one-one relations: as long as we move in only one direction, a many-one
relation also will generate a series. In some parts of his theory, he even deals
with general relations. He begins by considering, for any relation f (x, y),
functions F which are such that, if f (x, y) holds, then F (x) implies F (y). If
this condition holds, Frege says that the property F is inherited in the f-series
(Bs. pp. 55–58). From this he goes on to define, without the use of numbers,
a relation which is equivalent to “some positive power of the given relation”.
This is defined as follows. The relation in question holds between x and y if
every property F, which is inherited in the f-series and is such that f (x, z)
implies F (z) for all values of z, belongs to y (Bs. p. 60). On this basis, a non-
numerical theory of series is very successfully erected, and is applied in Gg.
to the proof of propositions concerning the number of finite numbers and
kindred topics. This is, so far as I know, the best method of treating such
questions, and Frege’s definition just quoted gives, apparently, the best form
of mathematical induction. But as no controversy is involved, I shall not
pursue this subject any further.

Frege’s works contain much admirable criticism of the psychological
standpoint in logic, and also of the formalist theory of mathematics, which
believes that the actual symbols are the subject-matter dealt with, and that
their properties can be arbitrarily assigned by definition. In both these points,
I find myself in complete agreement with him.

496. Kerry (loc. cit.) has criticized Frege very severely, and professes to
have proved that a purely logical theory of Arithmetic is impossible (p. 304).
On the question whether concepts can be made logical subjects, I find myself
in agreement with his criticisms; on other points, they seem to rest on mere
misunderstandings. As these are such as would naturally occur to any one
unfamiliar with symbolic logic, I shall briefly discuss them.

* Gl. p. 79; cf. § 111 supra.
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The definition of numbers as classes is, Kerry asserts, a �στερον πρ�τερον.
We must know that every concept has only one extension, and we must know
what one object is; Frege’s numbers, in fact, are merely convenient symbols
for what are commonly called numbers (p. 277). It must be admitted, I think,
that the notion of a term is indefinable (cf. § 132 supra), and is presupposed in
the definition of the number 1. But Frege argues—and his argument at least
deserves discussion—that one is not a predicate, attaching to every imaginable
term, but has a less general meaning, and attaches to concepts (Gl. p. 40).
Thus a term is not to be analysed into one and term, and does not presuppose
the notion of one (cf. § 72 supra). As to the assumption that every concept has
only one extension, it is not necessary to be able to state this in language
which employs the number 1: all we need is, that if �x and ψx are equivalent
propositions for all values of x, then they have the same extension—a primi-
tive proposition whose symbolic expression in no way presupposes the
number 1. From this it follows that if a and b are both extensions of �x, a and
b are identical, which again does not formally involve the number 1. In like
manner, other objections to Frege’s definition can be met.

Kerry is misled by a certain passage (Gl. p. 80, note) into the belief that
Frege identifies a concept with its extension. The passage in question appears
to assert that the number of u might be defined as the concept “similar to u”
and not as the range of this concept; but it does not say that the two def-
initions are equivalent.

There is a long criticism of Frege’s proof that 0 is a number, which reveals
fundamental errors as to the existential import of universal propositions. The
point is to prove that, if u and v are null-classes, they are similar. Frege defines
similarity to mean that there is a one-one relation R such that “x is a u”
implies “there is a v to which x stands in the relation R”, and vice versa. (I
have altered the expressions into conformity with my usual language.) This,
he says, is equivalent to “there is a one-one relation R such that ‘x is a u’ and
‘there is no term of v to which x stands in the relation R’ cannot both be true,
whatever value x may have, and vice versa”; and this proposition is true if “x
is a u” and “y is a v” are always false. This strikes Kerry as absurd (pp. 287–9).
Similarity of classes, he thinks, implies that they have terms. He affirms that
Frege’s assertion above is contradicted by a later one (Gl. p. 89): “If a is a u,
and nothing is a v, then ‘a is a u’ and ‘no term is a v which has the relation
R to a’ are both true for all values of R.” I do not quite know where Kerry
finds the contradiction; but he evidently does not realize that false proposi-
tions imply all propositions and that universal propositions have no existen-
tial import, so that “all a is b” and “no a is b” will both be true if a is the
null-class.

Kerry objects (p. 290, note) to the generality of Frege’s notion of relation.
Frege asserts that any proposition containing a and b affirms a relation
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between a and b (Gl. p. 83); hence Kerry (rightly) concludes that it is self-
contradictory to deny that a and b are related. So general a notion, he says, can
have neither sense nor purpose. As for sense, that a and b should both be
constituents of one proposition seems a perfectly intelligible sense; as for
purpose, the whole logic of relations, indeed the whole of mathematics, may
be adduced in answer. There is, however, what seems at first sight to be a
formal disproof of Frege’s view. Consider the propositional function “R and S
are relations which are identical, and the relation R does not hold between
R and S”. This contains two variables, R and S; let us suppose that it is equiva-
lent to “R has the relation T to S”. Then substituting T for both R and S, we
find, since T is identical with T, that “T does not have the relation T to T” is
equivalent to “T has the relation T to T”. This is a contradiction, showing that
there is no such relation as T. Frege might object to this instance, on the
ground that it treats relations as terms; but his double ranges, which, like
single ranges, he holds to be things, will bring out the same result. The point
involved is closely analogous to that involved in the Contradiction: it was
there shown that some propositional functions with one variable are not
equivalent to any propositional function asserting membership of a fixed
class, while here it is shown that some containing two variables are not
equivalent to the assertion of any fixed relation. But the refutation is the same
in the case of relations as it was in the previous case. There is a hierarchy of
relations according to the type of objects constituting their fields. Thus rela-
tions between terms are distinct from those between classes, and these again
are distinct from relations between relations. Thus no relation can have itself
both as referent and as relatum, for if it be of the same order as the one, it
must be of a higher order than the other; the proposed propositional func-
tion is therefore meaningless for all values of the variables R and S.

It is affirmed (p. 291) that only the concepts of 0 and 1, not the objects
themselves, are defined by Frege. But if we allow that the range of a Begriff is
an object, this cannot be maintained; for the assigning of a concept will carry
with it the assigning of its range. Kerry does not perceive that the uniqueness
of 1 has been proved (ib.): he thinks that, with Frege’s definition, there might
be several 1’s. I do not understand how this can be supposed: the proof of
uniqueness is precise and formal.

The definition of immediate sequence in the series of natural numbers is
also severely criticized (p. 292 ff.). This depends upon the general theory of
series set forth in Bs. Kerry objects that Frege has defined “F is inherited in
the f-series”, but has not defined “the f-series” nor “F is inherited”. The latter
essentially ought not to be defined, having no precise sense; the former is
easily defined, if necessary, as the field of the relation f. This objection is
therefore trivial. Again, there is an attack on the definition: “y follows x in the
f-series if y has all the properties inherited in the f-series and belonging to all
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terms to which x has the relation f ”.* This criterion, we are told, is of
doubtful value, because no catalogue of such properties exists, and further
because, as Frege himself proves, following x is itself one of these properties,
whence a vicious circle. This argument, to my mind, radically misconceives
the nature of deduction. In deduction, a proposition is proved to hold con-
cerning every member of a class, and may then be asserted of a particular
member: but the proposition concerning every does not necessarily result
from enumeration of the entries in a catalogue. Kerry’s position involves
acceptance of Mill’s objection to Barbara, that the mortality of Socrates is a
necessary premiss for the mortality of all men. The fact is, of course, that
general propositions can often be established where no means exist of cata-
loguing the terms of the class for which they hold; and even, as we have
abundantly seen, general propositions fully stated hold of all terms, or, as in
the above case, of all functions, of which no catalogue can be conceived.
Kerry’s argument, therefore, is answered by a correct theory of deduction;
and the logical theory of Arithmetic is vindicated against its critics.

Note. The second volume of Gg., which appeared too late to be noticed
in the Appendix, contains an interesting discussion of the contradiction
(pp. 253–265), suggesting that the solution is to be found by denying that
two propositional functions which determine equal classes must be equiva-
lent. As it seems very likely that this is the true solution, the reader is strongly
recommended to examine Frege’s argument on the point.

* Kerry omits the last clause, wrongly; for not all properties inherited in the f-series belong to all
its terms; for example, the property of being greater than 100 is inherited in the number-series.
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Appendix B

THE DOCTRINE OF TYPES

497. T doctrine of types is here put forward tentatively, as affording
a possible solution of the contradiction; but it requires, in all probability, to
be transformed into some subtler shape before it can answer all difficulties.
In case, however, it should be found to be a first step towards the truth, I shall
endeavour in this Appendix to set forth its main outlines, as well as some
problems which it fails to solve.

Every propositional function �(x)—so it is contended—has, in addition to
its range of truth, a range of significance, i.e. a range within which x must lie
if �(x) is to be a proposition at all, whether true or false. This is the first point
in the theory of types; the second point is that ranges of significance form
types, i.e. if x belongs to the range of significance of �(x), then there is a class
of objects, the type of x, all of which must also belong to the range of signifi-
cance of �(x), however � may be varied; and the range of significance is
always either a single type or a sum of several whole types. The second point
is less precise than the first, and the case of numbers introduces difficulties;
but in what follows its importance and meaning will, I hope, become plainer.

A term or individual is any object which is not a range. This is the lowest
type of object. If such an object—say a certain point in space—occurs in a
proposition, any other individual may always be substituted without loss of
significance. What we called, in Chapter 6, the class as one, is an individual,
provided its members are individuals: the objects of daily life, persons, tables,
chairs, apples, etc., are classes as one. (A person is a class of psychical
existents, the others are classes of material points, with perhaps some refer-
ence to secondary qualities.) These objects, therefore, are of the same type as



simple individuals. It would seem that all objects designated by single words,
whether things or concepts, are of this type. Thus e.g. the relations that occur
in actual relational propositions are of the same type as things, though
relations in extension, which are what Symbolic Logic employs, are of a
different type. (The intensional relations which occur in ordinary relational
propositions are not determinate when their extensions are given, but the
extensional relations of Symbolic Logic are classes of couples.) Individuals
are the only objects of which numbers cannot be significantly asserted.

The next type consists of ranges or classes of individuals. (No ordinal ideas
are to be associated with the word range.) Thus “Brown and Jones” is an object
of this type, and will in general not yield a significant proposition if substi-
tuted for “Brown” in any true or false proposition of which Brown is a
constituent. (This constitutes, in a kind of way, a justification for the gram-
matical distinction of singular and plural; but the analogy is not close, since
a range may have one term or more, and where it has many, it may yet appear
as singular in certain propositions.) If u be a range determined by a prop-
ositional function �(x), not-u will consist of all objects for which �(x) is false,
so that not-u is contained in the range of significance of �(x), and contains
only objects of the same type as the members of u. There is a difficulty in
this connection, arising from the fact that two propositional functions �(x),
ψ(x) may have the same range of truth u, while their ranges of significance
may be different; thus not-u becomes ambiguous. There will always be a
minimum type within which u is contained, and not-u may be defined as the
rest of this type. (The sum of two or more types is a type; a minimum type is
one which is not such a sum.) In view of the Contradiction, this view seems
the best; for not-u must be the range of falsehood of “x is a u”, and “x is an x”
must be in general meaningless; consequently “x is a u” must require that x
and u should be of different types. It is doubtful whether this result can be
insured except by confining ourselves, in this connection, to minimum types.

There is an unavoidable conflict with common sense in the necessity for
denying that a mixed class (i.e. one whose members are not all of the same
minimum type) can ever be of the same type as one of its members. Consider,
for example, such phrases as “Heine and the French”. If this is to be a class
consisting of two individuals, “the French” must be understood as “the
French nation”, i.e., as the class as one. If we are speaking of the French as
many, we get a class consisting not of two members, but of one more than
there are Frenchmen. Whether it is possible to form a class of which one
member is Heine, while the other is the French as many, is a point to which
I shall return later; for the present it is enough to remark that, if there be such
a class, it must, if the Contradiction is to be avoided, be of a different type
both from classes of individuals and from classes of classes of individuals.

The next type after classes of individuals consists of classes of classes of
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individuals. Such are, for example, associations of clubs; the members of such
associations, the clubs, are themselves classes of individuals. It will be con-
venient to speak of classes only where we have classes of individuals, of classes of
classes only where we have classes of classes of individuals, and so on. For the
general notion, I shall use the word range. There is a progression of such types,
since a range may be formed of objects of any given type, and the result is
a range of higher type than its members.

A new series of types begins with the couple with sense. A range of such
types is what Symbolic Logic treats as a relation: this is the extensional view of
relations. We may then form ranges of relations, or relations of relations, or
relations of couples (such as separation in Projective Geometry),* or relations
of individuals to couples, and so on; and in this way we get, not merely a
single progression, but a whole infinite series of progressions. We have also
the types formed of trios, which are the members of triple relations taken in
extension as ranges; but of trios there are several kinds that are reducible
to previous types. Thus if �(x, y, z) be a propositional function, it may be a
product of propositions �1(x) · �2(y) · �3(z) or a product �1(x) · �2(y, z), or a
proposition about x and the couple (y, z), or it may be analysable in other
analogous ways. In such cases, a new type does not arise. But if our prop-
osition is not so analysable—and there seems no à priori reason why it should
always be so—then we obtain a new type, namely the trio. We can form ranges
of trios, couples of trios, trios of trios, couples of a trio and an individual, and
so on. All these yield new types. Thus we obtain an immense hierarchy of
types, and it is difficult to be sure how many there may be; but the method
of obtaining new types suggests that the total number is only α0 (the
number of finite integers), since the series obtained more or less resembles
the series of rationals in the order 1, 2, . . ., n, . . ., 1/2, 1/3, . . ., 1/n, . . .,
2/3, . . ., 2/5, . . .2/(2n + 1), . . . This, however, is only a conjecture.

Each of the types above enumerated is a minimum type; i.e., if �(x) be a
propositional function which is significant for one value of x belonging to
one of the above types, then �(x) is significant for every value of x belonging
to the said type. But it would seem—though of this I am doubtful—that the
sum of any number of minimum types is a type, i.e. is a range of significance
for certain propositional functions. Whether or not this is universally true,
all ranges certainly form a type, since every range has a number; and so do
all objects, since every object is identical with itself.

Outside the above series of types lies the type proposition; and from this as
starting-point a new hierarchy, one might suppose, could be started; but
there are certain difficulties in the way of such a view, which render it
doubtful whether propositions can be treated like other objects.

* Cf. § 203.
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498. Numbers, also, are a type lying outside the above series, and pre-
senting certain difficulties, owing to the fact that every number selects certain
objects out of every other type of ranges, namely those ranges which have the
given number of members. This renders the obvious definition of 0 errone-
ous; for every type of range will have its own null-range, which will be a
member of 0 considered as a range of ranges, so that we cannot say that
0 is the range whose only member is the null-range. Also numbers require a
consideration of the totality of types and ranges; and in this consideration
there may be difficulties.

Since all ranges have numbers, ranges are a range; consequently xεx is some-
times significant, and in these cases its denial is also significant. Consequently
there is a range w of ranges for which xεx is false: thus the Contradiction
proves that this range w does not belong to the range of significance of xεx.
We may observe that xεx can only be significant when x is of a type of infinite
order, since, in xεu, u must always be of a type higher by one than x; but the
range of all ranges is of course of a type of infinite order.

Since numbers are a type, the propositional function “x is not a u”, where u
is a range of numbers, must mean “x is a number which is not a u”; unless,
indeed, to escape this somewhat paradoxical result, we say that, although
numbers are a type in regard to certain propositions, they are not a type
in regard to such propositions as “u is contained in v” or “x is a u”. Such a
view is perfectly tenable, though it leads to complications of which it is
hard to see the end.

That propositions are a type results from the fact—if it be a fact—that only
propositions can significantly be said to be true or false. Certainly true pro-
positions appear to form a type, since they alone are asserted (cf. Appendix A.
§ 479). But if so, the number of propositions is as great as that of all objects
absolutely, since every object is identical with itself, and “x is identical with
x” has a one-one relation to x. In this there are, however, two difficulties.
First, what we called the propositional concept appears to be always an indi-
vidual; consequently there should be no more propositions than individuals.
Secondly, if it is possible, as it seems to be, to form ranges of propositions,
there must be more such ranges than there are propositions, although such
ranges are only some among objects (cf. § 343). These two difficulties are
very serious, and demand a full discussion.

499. The first point may be illustrated by somewhat simpler ones. There
are, we know, more classes than individuals; but predicates are individuals.
Consequently not all classes have defining predicates. This result, which is
also deducible from the Contradiction, shows how necessary it is to dis-
tinguish classes from predicates, and to adhere to the extensional view of
classes. Similarly there are more ranges of couples than there are couples, and
therefore more than there are individuals; but verbs, which express relations
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intensionally, are individuals. Consequently not every range of couples forms
the extension of some verb, although every such range forms the extension
of some propositional function containing two variables. Although, there-
fore, verbs are essential in the logical genesis of such propositional func-
tions, the intensional standpoint is inadequate to give all the objects which
Symbolic Logic regards as relations.

In the case of propositions, it seems as though there were always an associ-
ated verbal noun which is an individual. We have “x is identical with x” and
“the self-identity of x”, “x differs from y” and “the difference of x and y”; and
so on. The verbal noun, which is what we called the propositional concept,
appears on inspection to be an individual; but this is impossible, for “the self-
identity of x” has as many values as there are objects, and therefore more
values than there are individuals. This results from the fact that there are
propositions concerning every conceivable object, and the definition of iden-
tity shows (§ 26) that every object concerning which there are propositions,
is identical with itself. The only method of evading this difficulty is to deny
that propositional concepts are individuals; and this seems to be the course to
which we are driven. It is undeniable, however, that a propositional concept
and a colour are two objects; hence we shall have to admit that it is possible to
form mixed ranges, whose members are not all of the same type, but such
ranges will be always of a different type from what we may call pure ranges,
i.e. such as have only members of one type. The propositional concept seems,
in fact, to be nothing other than the proposition itself, the difference being
merely the psychological one that we do not assert the proposition in the
one case, and do assert it in the other.

500. The second point presents greater difficulties. We cannot deny that
there are ranges of propositions, for we often wish to assert the logical
product of such ranges; yet we cannot admit that there are more ranges than
propositions. At first sight, the difficulty might be thought to be solved by
the fact that there is a proposition associated with every range of propositions
which is not null, namely the logical product of the propositions of the
range;* but this does not destroy Cantor’s proof that a range has more sub-
ranges than members. Let us apply the proof by assuming a particular one-one
relation, which associates every proposition p which is not a logical product
with the range whose only member is p, while it associates the product of all
propositions with the null-range of propositions, and associates every other

* It might be doubted whether the relation of ranges of propositions to their logical products is
one-one or many-one. For example, does the logical product of p and q and r differ from that of pq
and r? A reference to the definition of the logical product (p. 21) will set this doubt at rest; for the
two logical products in question, though equivalent, are by no means identical. Consequently
there is a one-one relation of all ranges of propositions to some propositions, which is directly
contradictory to Cantor’s theorem.
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logical product of propositions with the range of its own factors. Then the
range w which, by the general principle of Cantor’s proof, is not correlated
with any proposition, is the range of propositions which are logical products,
but are not themselves factors of themselves. But, by the definition of the
correlating relation, w ought to be correlated with the logical product of w. It
will be found that the old contradiction breaks out afresh; for we can prove
that the logical product of w both is and is not a member of w. This seems to
show that there is no such range as w; but the doctrine of types does not show
why there is no such range. It seems to follow that the Contradiction requires
further subtleties for its solution; but what these are, I am at a loss to imagine.

Let us state this new contradiction more fully. If m be a class of proposi-
tions, the proposition “every m is true” may or may not be itself an m. But
there is a one-one relation of this proposition to m: if n be different from m,
“every n is true” is not the same proposition as “every m is true”. Consider
now the whole class of propositions of the form “every m is true”, and having
the property of not being members of their respective m’s. Let this class be w,
and let p be the proposition “every w is true”. If p is a w, it must possess the
defining property of w; but this property demands that p should not be a w.
On the other hand, if p be not a w, then p does possess the defining property
of w, and therefore is a w. Thus the contradiction appears unavoidable.

In order to deal with this contradiction, it is desirable to reopen the ques-
tion of the identity of equivalent propositional functions and of the nature of
the logical product of two propositions. These questions arise as follows. If m
be a class of propositions, their logical product is the proposition “every m is
true”, which I shall denote by ∧ ‘m. If we now consider the logical product of
the class of propositions composed of m together with ∧ ‘m, this is equivalent
to “Every m is true and every m is true,” i.e. to “every m is true” i.e. to ∧ ‘m. Thus
the logical product of the new class of propositions is equivalent to a member
of the new class, which is the same as the logical product of m. Thus if we
identify equivalent propositional functions (∧ ‘m being a propositional func-
tion of m), the proof of the above contradiction fails, since every proposition
of the form ∧ ‘m is the logical product both of a class of which it is a member
and of a class of which it is not a member.

But such an escape is, in reality, impracticable, for it is quite self-evident
that equivalent propositional functions are often not identical. Who will
maintain, for example, that “x is an even prime other than 2” is identical with
“x is one of Charles II’s wise deeds or foolish sayings”? Yet these are equiva-
lent, if a well-known epitaph is to be credited. The logical product of all the
propositions of the class composed of m and ∧ “m is “Every proposition which
either is an m or asserts that every m is true, is true”; and this is not identical
with “every m is true”, although the two are equivalent. Thus there seems
no simple method of avoiding the contradiction in question.
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The close analogy of this contradiction with the one discussed in Chapter 10
strongly suggests that the two must have the same solution, or at least very
similar solutions. It is possible, of course, to hold that propositions them-
selves are of various types, and that logical products must have propositions
of only one type as factors. But this suggestion seems harsh and highly
artificial.

To sum up: it appears that the special contradiction of Chapter 10 is solved
by the doctrine of types, but that there is at least one closely analogous
contradiction which is probably not soluble by this doctrine. The totality of
all logical objects, or of all propositions, involves, it would seem, a funda-
mental logical difficulty. What the complete solution of the difficulty may
be, I have not succeeded in discovering; but as it affects the very foundations
of reasoning, I earnestly commend the study of it to the attention of all
students of logic.
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32, 38, 88
Propositions xliii, xlv, xlvi–xlvii 213,

510, 530–2; cardinal number of
372; contradiction as to number
of 535; existential theory of viii,
455–6, 501; infinite complexity
146; subject and assertion 83–8,
106, 514–15; unity of 51, 52, 107,
140, 473, 516

Pure mathematics xxxiii, xliii, xlv, 3,
106, 112, 403, 435, 463, 505

Quadratic forms 104, 524, 528
Quadrics 409, 506
Quadrilateral construction 338,

390; in metrical geometry 422–3
Quantity 159; addition of 180, 182;

and infinity 189; does not occur
in pure mathematics 158, 425;
not always divisible 160, 170;
range of 170–5; relation to
number 157, 158, 160; sometimes
a relation 161, 172

Quaternions 438

Ranges 513, 520–5, 527–8, 529–32;
double 522, 532; extensional vs
intensional 535, 536; of variables
38, 528; quantity 170–5

Ratio 150–4, 340; anharmonic 158,
257, 396–7, 426–8, 431, 433

Rays 233, 404, 420; order of 421
Reality, Kant’s category of 347, 349
Reduction 17
Referent 24, 97, 99, 265
Regress, endless 36, 99, 225, 353–4
Regression 295, 303, 324
Relation 3, 95–100, 107; as class of

couples 99, 522; converse
domain of 98, 99; domain of 26,
98, 99; field of 98; finite 264;
fundamental 112; in itself and as
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Relation–Contd.
relating 49, 100; of a relation to
its terms 99; of a term to itself
86, 97, 98, 105; particularized by
its terms 52n, 53, 213; peculiar to
two terms 25–6, 99, 270; when
analyzable 163

Relation-number 264, 325–6
Relations: asymmetrical 25, 202,

205n, 220–8; converse of 25, 96,
97, 203n, 230; difference from
numbers 95; extensional view of
99, 535, 536; as functions of two
variables 515, 532; intensional
view of 24–5, 535; intransitive
220; many-one 114, 248n;
monistic and monadistic
theories of 223–7; non-repeating
235n; not-symmetrical 25, 96,
220; not-transitive 220; one-one
113, 131, 308; propositional 519;
reality of viii, 99, 223, 226, 449;
reflexive 114, 159n, 221, 222;
sense of 86, 95, 99, 107, 227,
229; serial 244; symmetrical 25,
96, 114, 205n, 220; transitive 114,
205, 220; triangular 206, 213,
478, 479; types of 8, 24, 409,
442; with assigned domains 26,
270; see also Verbs

Relatum 24, 45, 51, 65, 78, 83, 84,
86, 96–100, 107, 265, 266, 401,
412, 488

Representation, of a system 247
Resemblance, immediate 171
Rest 267
Reye 409n
Riemann, Georg 268
Right and left 233, 423
Rigidity 411
Rotation, absolute 497–501

Schröder, Ernst 10n, 12n, 13, 22, 24,
25, 26, 96, 143, 203n, 223n, 235,
309n, 324n, 372n

Segments 273, 364; and limits 295;
completed 292, 306; in
descriptive geometry 400, 403;

in projective geometry 391–4;
infinitesimal 339, 359, 373; of
compact series 302–5; of well-
ordered series 318n

Semi-continuum 325
Separation see Couples
Series 201; and distance 206; and

triangular relations 206; by
correlation 264, 368; closed 204,
206, 207, 236–40, 300, 387, 393;
coherent 276, 286, 300; cohesive
291; compact 194n, 205, 261, 273
279, 280, 288–9, 292 302–6;
complete 271, 306; continuous
207, 273, 290–3; denumerable
299, 301; fundamental 286, 300;
independent 264; infinite 206,
241; perfect 275, 291, 293, 296,
300; simple and multiple 378;
well-ordered 314, 323, 326, 368,
369

Sheaves of lines 407
Sign, difference of 229–35
Similarity: of classes 113, 251, 263,

308, 361; of null-classes 531; see
also Part

Simplification 16
Some (concept), distinguished

from a 57n, 59
Space: à priori 460; absolute 229,

230, 452, 467, 471, 501; actual 8;
an infinite aggregate 144, 449;
and existence vii, 464, 467;
continuity of 443–50; empty 452,
455, 466; Euclidean 8; finite and
infinite 409; subjective 452

Spaces: Clifford’s, defined 440;
Euclidean, defined 438;
projective, defined 436

Spinoza, Baruch 224, 454
Staudt, Karl von 291, 218, 338, 390,

391n, 427, 433n
Stolz, Otto 90, 284n, 286n, 339,

341, 384n, 385
Straight lines: and distance 416,

500; descriptive 400–4; elliptic
207; ideal 406, 408; kinds of 388,
397; metrical 416; projective
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387–98, 393, 397; segments of
descriptive 401, 403; segments
of projective 391

Streintz, Heinrich 499
Stretch 181, 182, 232, 256, 291, 347,

359, 414–24, 431
Sub-classes, number contained in a

given class 371, 535
Subject, and predicate 48, 55–6, 78,

95, 213, 223, 454, 457, 478; logical
and plural 70, 77, 135, 137, 526

Substance 44, 45, 478
Substantives 43–5, 47
Such that (concept) 3, 11, 19, 20, 28,

29, 80, 83
Sum, logical 21; relative 26
Superposition 161–2, 411–13, 424
Syllogism 4, 9, 10, 12, 15, 16, 19, 22,

31, 37, 79, 463
Symbolic Logic 4, 5, 9, 10–33
System, singly infinite 247, 249

Tautology, law of 23, 26
Terms 44, 45, 56n, 153, 213, 454–5,

478, 517–18, 527–8; addition of
130–7; cardinal number of 367,
371; combinations of 56–7; four
classes of 471–2; of a proposition
45, 95, 213; of a whole 144;
principal, in a series 300; simple
and complex 138

Tetrahedra 234, 492, 393, 405
Than (concept) 100
The (concept) 64
Therefore (concept) 36, 513
Things 45, 106, 472, 513; and

change 478
Time: absolute 223; as infinite

aggregate 145; Kant’s theory of
463, 464; relational theory of 267

Totality 367, 537, 540
Transcendental Aesthetic 261
Transcendental Dialectic 261
Triangles 393, 399, 404
Trios 127–8
Tristram Shandy, paradox of 363–5
Truth 3, 35–6, 49, 512–13; absolute

190

Truth-values 512–14, 516n, 520, 529
Two 136; not mental 457
Types, logical 103, 104, 107, 133,

140n, 372, 373, 527, 534–40;
minimum 535, 536; mixed 535,
538; number of 537; of infinite
order 537

Types, ordinal 263, 325

Unequal 160n
Unit 138, 142; material 474
Unities 140, 448; infinite 145, 225n;

organic 472

Vacuum 474
Vaihinger, Hans 452n, 462
Vailati, Giovanni 207, 216, 217n,

238, 399n, 400, 401, 419
Validity 456; absolute 223
Variable 5, 6–7, 89–94, 107, 266;

and generality 90; apparent and
real 13; as concept 86;
conjunctive and disjunctive 92;
does not vary 90, 349, 355; in
arithmetic 90; independent 265;
individuality of 94; range of 38,
528; restricted 91

Vectors 423 438–40; sum 481,
491–3

Velocity 480, 489–90
Verbs 20, 36, 40, 43–5, 49–53, 106;

and relations 49, 537–8
Vieta, Franciscus 157
Vivanti 205n, 291n, 310n, 311
Volumes 233, 338, 423, 446, 449

Ward, James 481, 498
Weierstrass, Karl 111, 157, 261, 285,

331, 353, 480; on irrationals 284
Whitehead, Alfred North xxxiv,

xxxvii, xliv, xlvi, 120, 121n, 255n,
302n, 310n, 311, 314n, 326, 382n,
383, 431n, 432

Wholes 78, 138; as aggregates or
unities 147, 446; and
enumeration 365–6; and logical
priority 138, 148; collective and
distributive 353–6; distinct from
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Wholes–Contd.
all their parts 142, 142,
227; distinct from classes as
many 69–70, 135; infinite
144–9, 338, 354; two kinds of
139

Zeno 352–8, 360, 363, 364, 373;
argument of arrow 353, 355–6;

argument of dichotomy 353, 354;
argument of measure 357–8

Zero 168–9, 176–7, 184–8; absolute
191, 347; and existence 187n; and
negation 187, 196; as minimum
185; as null-segment 186, 275–6;
Meinong’s theory of 184–5, 187;
of distance 186

Zermelo, Ernst 309n
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