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 PREFACE     

  Recent progress in the determination of genomic sequences has yielded many 
millions of gene sequences. But what do these sequences tell us, and what 
generalities and rules are governed by them? There is more to life than the 
genomic blueprint of each organism. Life functions within the natural laws 
that we know and those we do not know. It appears that we understand very 
little about genetic contexts required to  “ read ”  these sequences. Mathematics 
can be used to understand life from the molecular level to the level of the 
biosphere. This book is intended to further integrate the mathematics and 
biological sciences. The reader will gain valuable knowledge about mathemati-
cal methods and tools, phenomenological results, and interdisciplinary connec-
tions in the fi elds of molecular genetics, bioinformatics, and informatics. 

 Historically, mathematics, probability, and statistics have been widely used 
in the biological sciences. Science is challenged to understand the system 
organization of the molecular genetics ensemble, with its unique properties of 
reliability and productivity. Disclosing key aspects of this organization consti-
tutes a big step in science about nature as a whole and in creating the most 
productive biotechnologies. Knowledge of this structural organization should 
become a part of mathematical natural science. 

 Advances in mathematical methods and techniques in bioinformatics have 
been growing rapidly. Mathematics has a fundamental role in describing the 
complexities of biological structures, patterns, and processes. Mathematical 
analysis of structures of molecular systems has essential meaning for bioinfor-
matics, biomathematics, and biotechnology. Mathematics is used to elucidate 
trends, patterns, connections, and relationships in a quantitative manner that 
can lead to important discoveries in biology. This book is devoted to drawing 
a closer connection and better integration between mathematical methods and 
biological codes, sequences, structures, networks, and systems biology. It is 
intended for researchers and graduate students who want an overview of the 
fi eld and who want information on the possibilities (and challenges) of the 
interface between mathematics and bioinformatics. In short, the book provides 
a broad overview of the interfaces between mathematics and bioinformatics. 

  ORGANIZATION OF THE BOOK 

 To reach a broad spectrum of readers, this book does not require a deep 
knowledge of mathematics or biology. The reader will learn fundamental 
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x  PREFACE

concepts and methods from mathematics and biology. The book is organized 
into 10 chapters covering mathematical topics in relation to genetic code 
systems, biological sequences, structures and functions, networks and biologi-
cal systems, matrix genetics, cognitive informatics, and the central dogma of 
informatics. Three appendixes, on bioinformatics notations, a historical time 
line of bioinformatics, and a bioinformatics glossary, are included for easy 
reference. 

 Chapter  1  provides an overview of bioinformatics history, genetic code and 
mathematics, background mathematics for bioinformatics, and the big picture 
of bioinformatics – informatics. 

 Chapter  2  is devoted to symmetrical analysis for genetic systems. Genetic 
coding possesses noise immunity. Mathematical theories of noise - immunity 
coding and discrete signal processing are based on matrix methods of repre-
sentation and analysis of information. These matrix methods, which are con-
nected closely to relations of symmetry, are borrowed for a matrix analysis of 
ensembles of molecular elements of the genetic code. A uniform representa-
tion of ensembles of genetic multiplets in the form of matrices of a cumulative 
Kronecker family is described. The analysis of molecular peculiarities of the 
system of nitrogenous bases reveals the fi rst signifi cant relations of symmetry 
in these genetic matrices. It permits one to introduce a natural numbering of 
the multiplets in each of the genetic matrices and to provide a basis for further 
analysis of genetic structures. Connections of the numerated genetic matrices 
with famous matrices of dyadic shifts and with the golden section are 
demonstrated. 

 In Chapter  3  we defi ne biological, mathematical, and binary sequences in 
theoretical computer science. We describe pairwise, multiple, and optimal 
sequence alignment. We discuss the scoring system used to rank alignments, 
the algorithms used to fi nd optimal (or good) scoring alignments, and statisti-
cal methods used to evaluate the signifi cance of an alignment score. 

 Chapter  4  provides an introduction to the structures of DNA, key elements 
of knot theory, such as links, tangles, and knot polynomials, and applications 
of knot theory to the study of closed circular DNA. The physical and chemical 
properties of this type of DNA can be explained in terms of basic character-
istics of a linking number which is invariant under continuous deformation of 
the DNA structure and is the sum of two geometric quantities, twist and 
writhing. 

 In Chapter  5  we introduce protein primary, secondary, tertiary, and quater-
nary structure by geometric means. We also discuss the classifi cation of pro-
teins, physical forces in proteins, protein motion (folding and unfolding), and 
basic methods for secondary and tertiary structure prediction. 

 Chapter  6  covers the topics of network approaches in biological systems. 
These approaches offer the tools to analyze and understand a host of biologi-
cal systems. In particular, within the cell the variety of interactions among 
genes, proteins, and metabolites are captured by network representations. In 
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this chapter we focus our discussion on biological applications of the theory 
of graphs and networks. 

 Chapter  7  covers the topics of biological systems and genetic code systems. 
We explain how the presence of fractal geometry can be used in an analytical 
way to study genetic code systems and predict outcomes in systems, to gener-
ate hypotheses, and to help design experiments. At the end of the chapter we 
discuss the emerging fi eld of systems biology, as well as challenges and per-
spectives in biological systems. 

 Chapter  8  continues the discussion introduced in Chapter  2  on genetic 
matrices and their symmetries and algebraic properties. The algebraic theory 
of coding is one of the modern fi elds of applications of algebra and uses 
matrix algebra intensively. This chapter is devoted to matrix forms of presen-
tations of the genetic code for algebraic analysis of a basic scheme of degen-
eracy of the genetic code. Similar matrix forms are utilized in the theory of 
signal processing and encoding. The Kronecker family of the genetic matri-
ces is investigated, which is based on the genetic matrix [C   A;   U   G], where 
C, A, U, and G are the letters of the genetic alphabet. This matrix in the third 
Kronecker power is the 8    ×    8 matrix, which contains all 64 genetic triplets in 
a strict order with a natural binary numeration of the triplets by numbers 
from 0 to 63. Peculiarities of the basic scheme of the genetic code degener-
acy are refl ected in the symmetrical black - and - white mosaic of this genetic 
8    ×    8 matrix. Unexpectedly, this mosaic matrix is connected algorithmically 
with Hadamard matrices, which are well known in the theory of signal pro-
cessing and encoding, spectral analysis, quantum mechanics, and quantum 
computers. Furthermore, many types of cyclic permutations of genetic ele-
ments lead unexpectedly to reconstruction of initial Hadamard matrices 
into new Hadamard matrices. This demonstrates that matrix algebra is a 
promising instrument and adequate language in bioinformatics and algebraic 
biology. 

 In Chapter  9  we review briefl y the intersections and connections between 
the two emerging fi elds of bioinformatics and cognitive informatics through a 
systems view of emerging pattern, dissipative structure, and evolving cognition 
of living systems. A new type of math - denotational mathematics for cognitive 
informatics is introduced. It is hoped that this brief review will encourage 
further exploration of our understanding of the biological basis of cognition, 
perception, learning, memory, thought, and mind. 

 In Chapter  10  we return to the big picture of informatics introduced in 
Chapter  1 . We propose a general concept of data, information, and knowledge 
and then place the main focus on the process and transition from data to 
information and then to knowledge. We present the concept of the central 
dogma of informatics, in analogy to the central dogma of molecular biology. 

 Each chapter fi nishes with a summary of challenges and perspectives of 
corresponding topics. These summaries are structured to bridge the gaps 
among the interdisciplinary areas, which involve concepts and ideas from a 
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variety of sciences, including biology, biochemistry, physics, computer science, 
and mathematics.  

  THE CHALLENGES 

 The interface between mathematics and bioinformatics and computational 
biology presents challenges and opportunities for both mathematicians and 
biologists. Unique opportunities for research have surfaced within the last 10 
to 20 years, both because of the explosion of biological data with the advent 
of new technologies and because of the availability of advanced and powerful 
computers that can organize the plethora of data. For biology, the possibilities 
range from the level of the cell and molecule to the level of the biosphere. For 
mathematics, the potential is great in traditional applied areas such as statistics 
and differential equations, as well as in such nontraditional areas as knot 
theory. 

 The primary purpose of encouraging biologists and mathematicians to work 
together is to investigate fundamental problems that cannot only be approached 
by biologists or by mathematicians. If this effort is successful, the future may 
produce individuals with both biological skills and mathematical insight and 
facility. At this time such people are rare; it is clear, however, that a greater 
percentage of the training of future biologists must be mathematically ori-
ented. Both disciplines can expect to gain by this effort. Mathematics is the 
 “ lens through which to view the universe ”  and serves to identify important 
details of the biological data and suggest the next series of experiments. 
Mathematicians, on the other hand, can be challenged to develop new math-
ematics in order to perform this function. 

 In this book we explore some of the development and opportunities at the 
interface between biology and mathematics. To mathematicians, the book 
demonstrates that the stimulation of biological data and applications will 
enrich the discipline of mathematics for decades to come, as did applications 
in the past from the physical sciences. To biologists, the book presents the use 
of mathematical approaches to provide insights available for bioinformatics. 
To both communities, the book demonstrates the ferment and excitement of 
a rapidly evolving fi eld — bioinformatics. 
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  1    Bioinformatics and Mathematics         

 Traditionally, the study of biology is from morphology to cytology and then to 
the atomic and molecular level, from physiology to microscopic regulation, 
and from phenotype to genotype. The recent development of bioinformatics 
begins with research on genes and moves to the molecular sequence, then to 
molecular conformation, from structure to function, from systems biology to 
network biology, and further investigates the interactions and relationships 
among, genes, proteins, and structures. This new reverse paradigm sets a theo-
retical starting point for a biological investigation. It sets a new line of inves-
tigation with a unifying principle and uses mathematical tools extensively to 
clarify the ever - changing phenomena of life quantitatively and analytically. 

 It is well known that there is more to life than the genomic blueprint of 
each organism. Life functions within the natural laws that we know and those 
that we do not know. Life is founded on mathematical patterns of the physical 
world. Genetics exploits and organizes these patterns. Mathematical regulari-
ties are exploited by the organic world at every level of form, structure, pattern, 
behavior, interaction, and evolution. Essentially all knowledge is intrinsically 
unifi ed and relies on a small number of natural laws. Mathematics helps us 
understand how monomers become polymers necessary for the assembly of 
cells. Mathematics can be used to understand life from the molecular to the 
biosphere levels, including the origin and evolution of organisms, the nature 
of genomic blueprints, and the universal genetic code as well as ecological 
relationships. 

 Mathematics and biological data have a synergistic relationship. Biological 
information creates interesting problems, mathematical theory and methods 
provide models for understanding them, and biology validates the mathemati-
cal models. A model is a representation of a real system. Real systems are too 
complicated, and observation may change the real system. A good system 
model should be simple, yet powerful enough to capture the behavior of the 
real system. Models are especially useful in bioinformatics. In this chapter 
we provide an overview of bioinformatics history, genetic code and mathemat-
ics, background mathematics for bioinformatics, and the big picture of 
bioinformatics – informatics.  

Mathematics of Bioinformatics: Theory, Practice, and Applications, By Matthew He and 
Sergey Petoukhov
Copyright © 2011 John Wiley & Sons, Inc.
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2  BIOINFORMATICS AND MATHEMATICS

   1.1    INTRODUCTION 

     Mendel ’ s Genetic Experiments and Laws of Heredity     The discovery of 
genetic inheritance by Gregor Mendel back in 1865 was considered as the start 
of bioinformatics history. He did experiments on the cross - fertilization of dif-
ferent colors of the same species. Mendel ’ s genetic experiments with pea 
plants took him eight years (1856 – 1863). During this time, Mendel grew over 
10,000 pea plants, keeping track of progeny number and type. He recorded the 
data carefully and performed mathematical analysis of the data. Mendel illus-
trated that the process of inheritance of traits could be explained more easily 
if it was controlled by factors passed down from generation to generation. He 
concluded that genes come in pairs. Genes are inherited as distinct units, one 
from each parent. He also recorded the segregation of parental genes and their 
appearance in the offspring as dominant or recessive traits. He published his 
results in 1865. He recognized the mathematical patterns of inheritance from 
one generation to the next. Mendel ’ s laws of heredity are usually stated as 
follows: 

   •      The law of segregation.     A gene pair defi nes each inherited trait. Parental 
genes are randomly separated by the sex cells, so that sex cells contain 
only one gene of the pair. Offspring therefore inherit one genetic allele 
from each parent.  

   •      The law of independent assortment.     Genes for different traits are sorted 
from one another in such a way that the inheritance of one trait is not 
dependent on the inheritance of another.  

   •      The law of dominance.     An organism with alternate forms of a gene will 
express the form that is dominant.    

 In 1900, Mendel ’ s work was rediscovered independently by DeVries, 
Correns, and Tschermak, each of whom confi rmed Mendel ’ s discoveries. 
Mendel ’ s own method of research is based on the identifi cation of signifi cant 
variables, isolating their effects, measuring these meticulously, and eventually 
subjecting the resulting data to mathematical analysis. Thus, his work is con-
nected directly to contemporary theories of mathematics, statistics, and physics.  

  Origin of Species     Charles Darwin published  On the Origin of Species by 
Means of Natural Selection  (Darwin,  1859 ) or  “ The Preservation of Favored 
Races in the Struggle for Life. ”  His key work was that evolution occurs 
through the selection of inheritance and involves transmissible rather than 
acquired characteristics between individual members of a species. Darwin ’ s 
landmark theory did not specify the means by which characteristics are inher-
ited. The mechanism of heredity had not been determined at that time.  

  First Genetic Map     In 1910, after the rediscovery of Mendel ’ s work, Thomas 
Hunt Morgan at Columbia University carried out crossing experiments with 
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the fruit fl y ( Drosophila melanogaster ). He proved that the genes responsible 
for the appearance of a specifi c phenotype were located on chromosomes. He 
also found that genes on the same chromosome do not always assort indepen-
dently. Furthermore, he suggested that the strength of linkage between genes 
depended on the distance between them on the chromosome. That is, the 
closer two genes lie to each other on a chromosome, the greater the chance 
that they will be inherited together. Similarly, the farther away they are from 
each other, the greater the chance of that they will be separated in the process 
of crossing over. The genes are separated when a crossover takes place in the 
distance between the two genes during cell division. Morgan ’ s experiments 
also lead to  Drosophila  ’ s unusual position as, to this day, one of the best 
studied organisms and most useful tools in genetic research. In 1911, Alfred 
Sturtevant, then an undergraduate researcher in the laboratory of Thomas 
Hunt Morgan, mapped the locations of the fruit fl y genes, creating the fi rst 
genetic map ever made.  

  Transposable Genetic Elements     In 1944, Barbara McClintock discovered 
that genes can move on a chromosome and can jump from one chromosome 
to another. She studied the inheritance of color and pigment distribution in 
corn kernels at the Carnegie Institution Department of Genetics in Cold 
Spring Harbor, New York. At age 81 she was awarded a Nobel prize. It is 
believed that transposons may be linked to such genetic disorders as hemo-
philia, leukemia, and breast cancer; and transposons may have played a crucial 
role in evolution.  

   DNA  Double Helix     In 1953, James Watson and Francis Crick proposed a 
double - helix model of DNA. DNA is made of three basic components: a sugar, 
an acid, and an organic  “ base. ”  The base was always one of the four nucleo-
tides: adenine (A), cytosine (C), guanine (G), or thymine (T). These four dif-
ferent bases are categorized in two groups: purines (adenine and guanine) and 
pyrimidines (thymine and cytosine). In 1950, Erwin Chargaff found that the 
amounts of adenine (A) and thymine (T) in DNA are about the same, as are 
the amounts of guanine (G) and cytosine (C). These relationships later became 
known as  “ Chargaff ’ s rules ”  and led to much speculation about the three -
 dimensional structure that DNA would have. Rosalind Franklin, a British 
chemist, used the x - ray diffraction technique to capture the fi rst high - quality 
images of the DNA molecule. Franklin ’ s colleague Maurice Wilkins showed 
the pictures to James Watson, an American zoologist, who had been working 
with Francis Crick, a British biophysicist, on the structure of the DNA mole-
cule. These pictures gave Watson and Crick enough information to propose in 
1953 a double - stranded, helical, complementary, antiparallel model for DNA. 
Crick, Watson, and Wilkins shared the 1962 Nobel Prize in Physiology or 
Medicine for the discovery that the DNA molecule has a double - helical struc-
ture. Rosalind Franklin, whose images of DNA helped lead to the discovery, 
died of cancer in 1958 and, under Nobel rules, was not eligible for the prize. 
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In 1957, Francis Crick and George Gamov worked out the  “ central dogma, ”  
explaining how DNA functions to make protein. Their  sequence hypothesis  
posited that the DNA sequence specifi es the amino acid sequence in a protein. 
They also suggested that genetic information fl ows only in one direction, from 
DNA to messenger RNA to protein, the central concept of the central dogma.  

  Genetic Code  (see Appendix  A )      The genetic code was fi nally  “ cracked ”  in 
1966. Marshall Nirenberg, Heinrich Mathaei, and Severo Ochoa demonstrated 
that a sequence of three nucleotide bases, a codon or triplet, determines each 
of the 20 amino acids found in nature. This means that there are 64 possible 
combinations (4 3     =    64) for 20 amino acids. They formed synthetic messenger 
ribonucleic acid (mRNA) by mixing the nucleotides of RNA with a special 
enzyme called polynucleotide phosphorylase. This resulted in the formation 
of a single - stranded RNA in this reaction. The question was how these 64 
genetic codes could code for 20 different amino acids. Nirenberg and Matthaei 
synthesized poly(U) by reacting only uracil nucleotides with the RNA -
 synthesizing enzyme, producing  – UUUU – . They mixed this poly(U) with the 
protein - synthesizing machinery of  Escherichia coli  in vitro and observed the 
formation of a protein. This protein turned out to be a polypeptide of phenyl-
alanine. They showed that a triplet of uracil must code for phenylalanine. 
Philip Leder and Nirenberg found an even better experimental protocol to 
solve this fundamental problem. By 1965 the genetic code was solved almost 
completely. They found that the  “ extra ”  codons are merely redundant: Some 
amino acids have one or two codons, some have four, and some have six. Three 
codons (called  stop codons ) serve as stop signs for RNA - synthesizing 
proteins.  

  First Recombinant  DNA  Molecules     In 1972, Paul Berg of Stanford University 
created the fi rst recombinant DNA molecules by combining the DNA of two 
different organisms. He used a restriction enzyme to isolate a gene from a 
human - cancer - causing monkey virus. Then he used lipase to join the section 
of virus DNA with a molecule of DNA from the bacterial virus lambda, creat-
ing the fi rst recombinant DNA molecule. He realized the risks of his experi-
ment and terminated it temporarily before the recombinant DNA molecule 
was added to  E. coli , where it would have quickly been reproduced. He pro-
posed a one - year moratorium on recombinant DNA studies while safety issues 
were addressed. Berg later resumed his studies of recombinant DNA tech-
niques and was awarded the 1980 Nobel Prize in Chemistry. His experiments 
paved the road for the fi eld of genetic engineering and the modern biotechnol-
ogy industry.  

   DNA  Sequencing and Database     In early 1974, Frederick Sanger from the 
UK Medical Research Council was fi rst to invent DNA - sequencing tech-
niques. During his experiments to uncover the amino acids in bovine insulin, 
he developed the basics of modern sequencing methods. Sanger ’ s approach 
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involved copying DNA strands, which would show the location of the nucleo-
tides in the strands. To apply Sanger ’ s approach, scientists had to analyze the 
composite collections of DNA pieces detected from four test tubes, one for 
each of the nucleotides found in DNA (adenosine, cytosine, thymidine, 
guanine). Then they needed to be arranged in the correct order. This technique 
is very slow and tedious. It takes many years to sequence only a few million 
letters in a string of DNA. Almost simultaneously, the American scientists 
Alan Maxam and Walter Gilbert were creating a different method called the 
 cleavage method . The base for virtually all DNA sequencing was the dideoxy -
 chain - terminating reaction developed by Sanger. 

 In 1978, David Botstein developed restriction - fragment - length polymor-
phisms. Individual human beings differ one base pair in every 500 nucleotides 
or so. The most interesting variations for geneticists are those that are recog-
nized by certain enzymes called  restriction enzymes . Each of these enzymes 
cuts DNA only in the presence of a specifi c sequence (e.g., GAATTC in the 
case of the restriction enzyme EcoR1). This sequence is called a  restriction site . 
The enzyme will bypass the region if it has mutated to GACTTC. Thus, when 
a specifi c restriction enzyme cuts the DNA of different people, it may produce 
fragments of different lengths. These DNA fragments can be separated accord-
ing to size by making them move through a porous gel in an electric fi eld. 
Since the smaller fragments move more rapidly than the larger ones, their sizes 
can be determined by examining their positions in the gel. Variations in their 
lengths are called  restriction - fragment - length polymorphisms . 

 In 1980, Kary Mullis invented polymerase chain reaction (PCR), a method 
for multiplying DNA sequences in vitro. The purpose of PCR is to make a 
huge number of copies of a specifi c DNA fragment, such as a gene. Use of 
thermostable polymerase allows the dissociation of newly formed complemen-
tary DNA and subsequent annealing or hybridization of the primers to the 
target sequence with a minimal loss of enzymatic activity. PCR may be neces-
sary to receive enough starting template for instance sequencing. 

 In 1986, scientists presented a means of detecting ddNTPs with fl uorescent 
tags, which required only a single test tube instead of four. As a result of this 
discovery, the time required to process a given batch of DNA was reduced 
by one - fourth. The amount of sequenced base pairs increased rapidly from 
there on. 

 Established in 1988 as a national resource for molecular biology informa-
tion, the National Center for Biotechnology Information (NCBI) carries out 
diverse responsibilities. NCBI creates public databases, conducts research in 
computational biology, develops software tools for analyzing genome data, 
and disseminates biomedical information: all for a better understanding of 
molecular processes affecting human health and disease. NCBI conducts 
research on fundamental biomedical problems at the molecular level using 
mathematical and computational methods. 

 The European Bioinformatics Institute (EBI) is a nonprofi t academic orga-
nization that forms part of the European Molecular Biology Laboratory 
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(EMBL). The roots of the EBI lie in the EMBL Nucleotide Sequence Data 
Library, which was established in 1980 at the EMBL laboratories in Heidelberg, 
Germany and was the world ’ s fi rst nucleotide sequence database. The original 
goal was to establish a central computer database of DNA sequences rather 
than having scientists submit sequences to journals. What began as a modest 
task of abstracting information from literature soon became a major database 
activity with direct electronic submissions of data and the need for a highly 
skilled informatics staff. The task grew in scale with the start of the genome 
projects, and grew in visibility as the data became relevant to research in the 
commercial sector. It became apparent that the EMBL Nucleotide Sequence 
Data Library needed better fi nancial security to ensure its long - term viability 
and to cope with the sheer scale of the task.  

  Human Genome Project     In 1990, the U.S. Human Genome Project started 
as a 15 - year effort coordinated by the U.S. Department of Energy and the 
National Institutes of Health. The project originally was planned to last 15 
years, but rapid technological advances accelerated the expected completion 
date to 2003. Project goals were to: 

   •      Identify all the genes in human DNA  
   •      Determine the sequences of the 3 billion chemical base pairs that make 

up human DNA  
   •      Store this information in databases  
   •      Improve tools for data analysis  
   •      Transfer related technologies to the private sector  
   •      Address the ethical, legal, and social issues (ELSIs) that may arise from 

the project    

 In 1991, working with Nobel laureate Hamilton Smith, Venter ’ s genomic 
research project (TIGR) created the  shotgunning method . At fi rst the method 
was controversial among Venter ’ s colleagues, who called it crude and inaccu-
rate. However, Venter cross - checked his results by sequencing the genes in 
both directions, achieving a level of accuracy that greatly impressed his initial 
sceptical rivals. Within a year, TIGR published the entire genome of 
 Haemophilus infl uenzae , a bacterium with nearly 2 million nucleotides. 

 The draft human genome sequence was published on February 15, 2001, in 
the journals  Nature  (publically funded Human Genome Project) and  Science  
(Craig Venter ’ s fi rm Celera).    

   1.2    GENETIC CODE AND MATHEMATICS 

 It is known that the secrets of life are more complex than DNA and the genetic 
code. One secret of life is the self - assembly of the fi rst cell with a genetic 
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blueprint that allowed it to grow and divide. Another secret of life may be the 
mathematical control of life as we know it and the logical organization of the 
genetic code and the use of math in understanding life. 

 Mathematics has a fundamental role in understanding the complexities of 
living organisms. For example, the genetic code triplets of three bases in mes-
senger ribonucleic acid (mRNA) that encode for specifi c amino acids during 
the translation process (synthesis of proteins using the genetic code in mRNA 
as the template) have some interesting mathematical logic in their organiza-
tion (Cullman and Labouygues,  1984 ). An examination of this logical organiza-
tion may allow us to better understand the logical assembly of the genetic code 
and life. 

 The genetic code in mRNA is composed of U for uracil, C for cytosine, A 
for adenine, and G for guanine. The genetic code triplets of three bases in 
messenger ribonucleic acid (mRNA) that encode for specifi c amino acids 
during the translation process (synthesis of proteins using the genetic code in 
mRNA as the template) have some interesting and mathematical logic in their 
organization. 

 In the fi rst stage there was an investigation of the  standard genetic code . In 
the past few decades, some other variants of the genetic code were revealed, 
which are described at the Web site  http://www.ncbi.nlm.nih.gov/Taxonomy/
Utils/wprintgc.cgi  and which differ from the standard genetic code in some 
correspondences among 64 triplets, 20 amino acids, and stop codons. One 
noticeable feature of the genetic code is that some amino acids are encoded 
by several different but related base codons or triplets. There are 64 triplets 
or codons. In the case of the standard genetic code, three triplets (UAA, UAG, 
and UGA) are nonsense codons — no amino acid corresponds to their code. 
The remaining 61 codons represent 20 different amino acids. The genetic code 
is encoded in combinations of the four nucleotides found in DNA and then 
RNA. There are 16 possible combinations (4 2 ) of the four nucleotides of 
nucleotide pairs. This would not be suffi cient to code for 20 amino acids 
(Prescott et al.,  1993 ). The solution is mathematically simple. During the self -
 assembly and evolution of life, a code word (codon or triplet) evolved that 
provides for 64 (4 3 ) possible combinations. This simple code determines all the 
proteins necessary for life. 

 The genetic code is also degenerate. For example, up to six different codons 
are available for some amino acid. Another noteworthy aspect of biological 
messages is that minimal information is necessary to encode the messages 
(Peusner,  1974 ), and the messages can be encoded and decoded and put to 
work in amazingly short periods of time. A bacterial  E. coli  cell can grow and 
divide in half an hour, depending on the growth conditions. Mathematically, it 
could not be simpler. 

 Selenocysteine (twenty - fi rst amino acid encoded by the genetic code) codon 
is UGA, normally a stop codon. Selenocysteine is a derivative of cysteine in 
which the sulfur atom is replaced by a selenium atom that is an essential atom 
in a small number of proteins, notably glutathione peroxidase. These proteins 
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are found in prokaryotes and eukaryotes, ranging from  E. coli  to humans. The 
selenocysteine is incorporated into proteins during translation in response to 
the UGA codon. This amino acid is readily oxidized by oxygen. Enzymes 
containing this amino acid must be protected from oxygen. As the oxygen 
concentration increased, the selenocysteine may gradually have been replaced 
by cysteine with the codons UGU and UGC (Madigan et al.,  1997 ). The three -
 base code sometimes differs only in the third base position. For example, the 
genetic code for glycine is GGU, GGC, GGA, or GGG. Only the third base is 
variable. A similar third - base - change pattern exists for the amino acids lysine, 
asparagine, proline, leucine, and phenylalanine. These relationships are not 
random. For example, UUU codes for the same amino acid (phenylalanine) 
as UUC. In some codons the third base determines the amino acid. The second 
base is also important. For example, when the second base is C, the amino acid 
specifi ed comes from a family of four codons for one amino acid, except for 
valine. Biological expression is in the form of coded messages — messages that 
contain the information on shapes of bimolecular structure and biochemical 
reactions necessary for life function. The coded message determines the 
protein, which folds into a shape that requires the minimal amount of energy. 
Therefore, the total energy of attraction and repulsion between atoms is 
minimal. How did this genetic code come to be the code of life as we know 
it? Nature had billions of years to experiment with different coding schemes, 
and eventually adopted the genetic code we have today. 

 It is simple in terms of mathematics. It is also conserved but can be mutated 
at the DNA level and also repaired. The code is thermodynamically possible 
and consistent with the origin, evolution, and diversity of life. Math as applied 
to understanding biology has countless uses. It is used to elucidate trends, pat-
terns, connections, and relationships in a quantitative manner that can lead to 
important discoveries in biology. How can math be used to understand living 
organisms? One way to explore this relationship is to use examples from the 
bacterial world. The reader is also referred to an excellent text by Stewart 
 (1998)  that illustrates how math can be used to elucidate a fuller understand-
ing of the natural world. For example, the exponential growth of bacterial cells 
(1 cell    →    2 cells    →    4 cells    →    8 cells    →    16 cells, and so on) is essential informa-
tion that is one of the foundations of microbiology research. Exponential 
growth over known periods of time is essential in the understanding of bacte-
rial growth in countless areas of research. The ability to use math to describe 
growth per unit of time is an excellent example of the interrelationship between 
math and the capability to understand this aspect of life. For example, the basic 
unit of life is the cell, an entity of 1. Bacteria also multiply by dividing. 
Remember that life is composed of matter, and matter is composed of atoms, 
and that atoms, especially in solids, are arranged in an effi cient manner into 
molecules that minimize the energy needed to take on specifi c confi gurations. 
Often, these arrangements or confi gurations are repeating units of monomers 
that make up polymers. Stewart  (1998)  described it very well in his excellent 
book when he posed the question:  “ What could be more mathematical than 
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DNA? ”  The ability of DNA to replicate itself exactly and at the same time 
change ever so slightly allows evolutionary changes to occur. The mathemati-
cal sequences of four different bases (adenine, thymine, guanine, and cytosine) 
in DNA are the blueprint of life. Again, the order of the four bases determines 
the mRNA sequence, and then the protein that is synthesized. DNA in a cell 
is also capable of replicating itself precisely in a cell. The replicated DNA can 
then partition into each new cell when one cell divides and becomes two cells. 
The DNA can only replicate with the assistance of enzymes that unwind the 
DNA and allow the DNA strands to act as templates for synthesis of the 
second strand. The ability of a cell to unwind its DNA, replicate or copy new 
strands, and then partition them between two new cells has a mathematical 
basis. The four bases are paired in a specifi c manner: A (adenine) with T 
(thymine), C (cytosine) with G (guanine) on the opposite strands along a sugar 
phosphate backbone. Each strand can contain all four bases in any order. 
However, A must bond with T and C with G on opposite strands. This precise 
mathematical pairing must be obeyed. 

 Living organisms also have amazing mathematical order and symmetry. The 
repeating units of fatty acids, glycerol, and phosphate that make up a phos-
pholipid membrane bilayer are one example. An excellent example of math-
ematical symmetry is the S - layer in many Archaea bacterial (prokaryotes 
consisting of methanogens, most extreme halophiles and hyperthermophiles, 
and  Thermoplasma ) cell walls that exhibit a hexagonal confi guration. A cell 
that can assemble the same repeating units countless times is effi cient and 
reduces the numbers of errors incorporated into the assembly. This is exactly 
the characteristic that is needed for a living cell to grow and divide. Yet a little 
bit of change can occur over time. 

 Biochemical reactions in cells are accompanied by gains or losses in energy 
during the reactions. Some of the energy is lost as heat and is not available to 
do work. In humans, heat is used to maintain a normal body temperature. The 
energy available to the cell is expressed as free energy and can be expressed 
as kJ/mol. Without the use of math and units of measurement, it would be 
impossible to describe energy metabolism in cells. Nor would we be able to 
describe the rates of enzyme reactions necessary for the self - assembly and 
functioning of life. Without units of temperature, we would not be able to 
describe the lower, upper, and optimum growth temperatures of specifi c 
microorganisms. The pH ranges for bacterial growth and the optimum pH 
values for enzyme reactions would be unknown without math to describe the 
values. Water availability values and oxygen concentrations would not be able 
to be described for growth of specifi c organisms. The examples are numerous. 
Without the use of math and scientifi c units to express values, our understand-
ing of life would be minimal, and biology would not have made the great 
advances that it has made in the past decades. One central characteristic of 
living organisms is reproduction. From nutrients in their environment, they 
can self - assemble new cells in virtually exact copies. Second, living organisms 
are interdependent on each other and their activities. The Earth ’ s biosphere, 
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with its abundance of oxygen and living organisms, was self - assembled by 
living organisms. 

 From a chaotic lifeless environment on the early Earth, life self - assembled 
with the cell as the basic unit, with mathematically precise order, symmetry, 
and base pairing in DNA as the genetic blueprint and with triplet codons as 
the genetic code for protein synthesis. 

 It is well known that all knowledge is intrinsically unifi ed and lies in a small 
number of natural laws. Math can be used to understand life from the molecu-
lar level to the level of the biosphere. For example, this includes the origin and 
evolution of organisms, the nature of the genomic blueprints, and the universal 
genetic code as well as ecological relationships. Math helps us look for trends, 
patterns, and relationships that may or may not be obvious to scientists. Math 
allows us to describe the dimensions of genes and the sizes of organelles, cells, 
organs, and whole organisms. Without this knowledge, a paucity of information 
would still exist on many aspects of life.  

   1.3    MATHEMATICAL BACKGROUND 

 In this section we provide a general background of major branches of math-
ematics that we discuss in relation to bioinformatics throughout the book. 

     Algebra      Algebra  is the study of structure, relation, and quantity through 
symbolic operations for the systematic solution of equations and inequalities. 
In addition to working directly with numbers, algebra works with symbols, 
variables, and set elements. Addition and multiplication are viewed as general 
operations, and their precise defi nitions lead to advance structures such as 
groups, rings, and fi elds in which algebraic structures are defi ned and investi-
gated axiomatically. Linear algebra studies the specifi c properties of vector 
spaces, including matrices. The properties common to all algebraic structures 
are studied in universal algebra. Axiomatic algebraic systems such as groups, 
rings, fi elds, and algebras over a fi eld are investigated in the presence of a 
geometric structure (a metric or a topology) which is compatible with the 
algebraic structure. In recent years, algebraic structures have been discovered 
within the genetic codes, biological sequences, and biological structures. 
Matrices, polynomials, and other algebraic elements have been applied to 
studies of sequence alignments and protein structures and classifi cations.  

  Abstract Algebra     Abstract algebra extends the familiar concepts from basic 
algebra to more general concepts.  Abstract algebra  deals with the more general 
concept of  sets : a collection of all objects selected by property, specifi c for the 
set under binary operations. Binary operations are the keystone of algebraic 
structures studied in abstract algebra: They form a part of groups, rings, fi elds, 
and more. A  binary operation  is a rule for combining two objects of a given 
type to obtain another object of that type. More precisely, a binary operation 
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on a set  S  is a binary relation that maps elements of the Cartesian product 
 S     ×     S  to  S :

    f S S S: × →   

 Addition ( + ), subtraction ( − ), multiplication ( × ), and division ( ÷ ) can be 
binary operations when defi ned on different sets, as is addition and multiplica-
tion of matrices, vectors, and polynomials. Groups, rings, and fi elds are funda-
mental structures in abstract algebra. 

 A  group  is a combination of a set  S  and a single binary operation  “  *  ”  with 
the following properties: 

   •      An  identity  element  e  exists such that for every member  a  of  S ,  e     *     a  and 
 a     *     e  are both identical to  a .  

   •      Every element has an  inverse : For every member  a  of  S , there exists a 
member  a   − 1  such that  a     *     a   − 1  and  a   − 1     *     a  are both identical to the identity 
element.  

   •      The operation is  associative : If  a ,  b , and  c  are members of  S , then ( a     *     b )    *     c  
is identical to  a     *    ( b     *     c ).  

   •      The set  S  is  closed  under the binary operation  * .    

 For example, the set of integers under the operation of addition is a group. 
In this group, the identity element is 0 and the inverse of any element  a  is its 
negation,  −  a . The associativity requirement is met because for any integers  a , 
 b , and  c , ( a     +     b )    +     c     =     a     +    ( b     +     c ). The integers under the multiplication opera-
tion, however, do not form a group. This is because, in general, the multiplica-
tive inverse of an integer is not an integer. For example, 4 is an integer, but its 
multiplicative inverse is 1/4, which is not an integer. 

 The structures and classifi cations of groups are studied in group theory. A 
major result in this theory is the classifi cation of fi nite simple groups, which is 
thought to classify all of the fi nite simple groups into roughly 30 basic types. 

 Semigroups, monoids, and quasigroups are structures similar to groups, but 
more general. They comprise a set and a closed binary operation, but do not 
necessarily satisfy the other conditions. A  semigroup  has an  associative  binary 
operation but might not have an identity element. A  monoid  is a semigroup 
that does have an identity but might not have an inverse for every element. A 
 quasigroup  satisfi es a requirement that any element can be turned into any 
other by a unique pre -  or postoperation; however, the binary operation might 
not be associative. All are instances of  groupoids , structures with a binary 
operation upon which no further conditions are imposed. All groups are 
monoids, and all monoids are semigroups. 

 Groups have only one binary operation. Rings and fi elds explain the 
behavior of the various types of numbers; they are structures with two opera-
tors. A  ring  has two binary operations,  +  and  × , with    ×    distributive over  + . 
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Distributive property generalized the  distributive law  for numbers and 
specifi es the order in which the operators should be applied. For the integers 
( a     +     b )    ×     c     =     a     ×     c     +     b     ×     c  and  c     ×    ( a     +     b )    =     c     ×     a     +     c     ×     b , and    ×    is said to be 
 distributive  over  + . Under the fi rst operator ( + ), it is commutative (i.e., 
 a     +     b     =     b     +     a ). Under the second operator ( × ) it is associative, but it does not 
need to have the identity or inverse property, so division is not allowed. The 
additive ( + ) identity element is written as 0 and the additive inverse of  a  is 
written as  −  a . Integers with both binary operations  +  and    ×    are an example of 
a ring. 

 A  fi eld  is a ring with the additional property that all the elements, excluding 
0, form an  Abelian group  (have a commutative property) under  × . The multi-
plicative ( × ) identity is written as 1, and the multiplicative inverse of  a  is 
written as  a   − 1 . The rational numbers, the real numbers, and the complex 
numbers are all examples of fi elds. 

 These algebraic structures have been used in the study of genetic codes. 
Group theory has many applications in physics and chemistry, and it is poten-
tially applicable in any situation characterized by symmetry. In chemistry, 
groups are used to classify crystal structures, regular polyhedrals, and the sym-
metries of molecules. The assigned point groups can then be used to determine 
physical properties (such as polarity and chirality) and spectroscopic proper-
ties (particularly useful for Raman spectroscopy and infrared spectroscopy), 
and to construct molecular orbitals.  

  Probability      Probability  is the language of uncertainty. It is the likelihood or 
chance that something is the case or will happen. Probability theory is used 
extensively in areas such as statistics, mathematics, science, philosophy, psy-
chology, and in the fi nancial markets to draw conclusions about the likelihood 
of potential events and the underlying mechanics of complex systems. The 
probability of an event  E  is represented by a real number in the range 0 to 1 
and is denoted by  P ( E ),  p ( E ), or Pr( E ). An impossible event has a probability 
of 0, and a certain event has a probability of 1.  

  Statistics      Statistics  is a mathematical science pertaining to the collection, 
analysis, interpretation or explanation, and presentation of data. Statistical 
methods can be used to summarize or describe a collection of data; this is 
called  descriptive statistics . Descriptive statistics can be used to summarize the 
data, either numerically or graphically, to describe the sample. Basic examples 
of numerical descriptors include the mean and standard deviation. Graphical 
summarizations include various types of charts and graphs. In addition, pat-
terns in the data may be modeled in a way that accounts for randomness and 
uncertainty in the observations, and then used to draw inferences about the 
process or population being studied; this is called  inferential statistics . Inferential 
statistics is used to model patterns in the data, accounting for randomness 
and drawing inferences about the larger population. These inferences may 
take the form of answers to yes/no questions (hypothesis testing), estimates 
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of numerical characteristics (estimation), descriptions of association (correla-
tion), or modeling of relationships (regression). Other modeling techniques 
include ANOVA, time series, and data mining. Both descriptive and inferential 
statistics comprise applied statistics. 

 Probability and statistics have been used successfully to investigate sequence 
analysis, alignments, profi le searches and phylogenetic trees, and many prob-
lems in bioinformatics.  

  Differential Geometry      Differential geometry  is a mathematical discipline 
that uses the methods of differential and integral calculus to study problems 
in geometry. The theory of plane and space curves and of surfaces in three -
 dimensional Euclidean space formed the basis for its initial development. 
Differential geometry has grown into a fi eld concerned more generally with 
geometric structures on differentiable manifolds. It is closely related to dif-
ferential topology and to the geometric aspects of the theory of differential 
equations. In physics, differential geometry is the language in which Einstein ’ s 
general theory of relativity is expressed. According to the theory, the universe 
is a smooth manifold equipped with a pseudo - Riemannian metric, which 
describes the curvature of space – time. Understanding this curvature is essen-
tial for the positioning of satellites into orbit around the Earth. In the biologi-
cal and medical sciences, differential geometry has been used to study protein 
confi rmation and the elasticity of nonrigid objects such as human hearts and 
human faces.  

  Topology      Topology  is the mathematical study of the properties that are 
preserved through deformations, twistings, and stretchings of objects; however, 
tearing is not allowed. A circle is topologically equivalent to an ellipse (into 
which it can be deformed by stretching), and a sphere is equivalent to an 
ellipsoid. Similarly, the set of all possible positions of the hour hand of a clock 
is topologically equivalent to a circle (i.e., a one - dimensional closed curve with 
no intersections that can be embedded in two - dimensional space), the set of 
all possible positions of the hour and minute hands taken together is topologi-
cally equivalent to the surface of a torus (i.e., a two - dimensional surface that 
can be embedded in three - dimensional space), and the set of all possible posi-
tions of the hour, minute, and second hands taken together are topologically 
equivalent to a three - dimensional object. Topology can be used to abstract the 
inherent connectivity of objects while ignoring their detailed form. The math-
ematical defi nition of topology is described here briefl y. 

 Let  X  be any set and let  T  be a family of subsets of  X . Then  T  is a topology 
on  X  if: 

   •      Both the empty set and  X  are elements of  T .  
   •      Any union of arbitrarily many elements of  T  is an element of  T .  
   •      Any intersection of fi nitely many elements of  T  is an element of  T .    

 If  T  is a topology on  X , then  X  together with  T  is called a  topological space . 



14  BIOINFORMATICS AND MATHEMATICS

 All sets in  T  are called  open ; note that, in general, not all subsets of  X  need 
be in  T . A subset of  X  is said to be  closed  if its complement is in  T  (i.e., it is 
open). A subset of  X  may be open, closed, both, or neither. 

 A function or map from one topological space to another is called  continu-
ous  if the inverse image of any open set is open. If the function maps the real 
numbers to the real numbers (both spaces with the standard topology), this 
defi nition of continuous is equivalent to the defi nition of continuous in calcu-
lus. If a continuous function is one - to - one and onto and if the inverse of the 
function is also continuous, the function is called a  homeomorphism , and the 
domain of the function is said to be homeomorphic to the range. Another way 
of saying this is that the function has a natural extension to the topology. If 
two spaces are homeomorphic, they have identical topological properties and 
are considered to be topologically the same. The cube and the sphere are 
homeomorphic, as are the coffee cup and the doughnut. But the circle is not 
homeomorphic to the doughnut. DNA topology and protein topology are 
active research areas.  

  Knot Theory      Knot theory  is the mathematical branch of topology that 
studies mathematical  knots , which are defi ned as embeddings of a circle in 
three - dimensional Euclidean space,  R  3   . This is basically equivalent to a con-
ventional knotted string with the ends joined together to prevent it from 
becoming undone. Two mathematical knots are equivalent if one can be 
transformed into the other via a deformation of  R  3  upon itself (known as an 
 ambient isotopy ); these transformations correspond to manipulations of a 
knotted string that do not involve cutting the string or passing the string 
through itself. 

 Knots can be described in various ways. Given a method of description, 
however, there may be more than one description that represents the same 
knot. For example, a common method of describing a knot is a planar diagram. 
But any given knot can be drawn in many different ways using a planar 
diagram. Therefore, a fundamental problem in knot theory is determining 
when two descriptions represent the same knot. One way of distinguishing 
knots is by using a  knot invariant , a  “ quantity ”  that remains the same even 
with different descriptions of a knot. The concept of a knot has been extended 
to higher dimensions by considering  n  - dimensional spheres in  m  - dimensional 
Euclidean space. 

 The discovery of the Jones polynomial by Vaughan Jones in 1984 revealed 
deep connections between knot theory and mathematical methods in statisti-
cal mechanics and quantum fi eld theory. In the last 30 years, knot theory has 
also become a tool in applied mathematics. Chemists and biologists use knot 
theory to understand, for example, the chirality of molecules and the actions 
of enzymes on DNA. In the last several decades of the twentieth century, 
scientists and mathematicians began fi nding applications of knot theory to 
problems in biology and chemistry. Knot theory can be used to determine 
whether or not a molecule is  chiral  (has  “ handedness ” ). Chemical compounds 
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of different handedness can have drastically differing properties, thalidomide 
being a notable example. More generally, knot theoretic methods have been 
used in studying  topoisomers , topologically different arrangements of the same 
chemical formula. The closely related theory of  tangles  has been used effec-
tively in studying the action of certain enzymes on DNA.  

  Graph Theory      Graph theory  is the study of  graphs , mathematical structures 
used to model pairwise relations between objects from a certain collection. In 
this context a graph is a collection of vertices or  nodes  and a collection of  edges  
that connect pairs of vertices. A graph may be  undirected , meaning that there 
is no distinction between the two vertices associated with each edge, or its 
edges may be  directed  from one vertex to another. A graph structure can be 
extended by assigning a weight to each edge of the graph. Graphs with weights, 
 weighted graphs , are used to represent structures in which pairwise connec-
tions have some numerical values. For example, if a graph represents a road 
network, the weights could represent the length of each road. A digraph with 
weighted edges in the context of graph theory is called a  network . 

 Many applications of graph theory exist in the form of network analysis. 
These split broadly into three categories: 

  1.     Analysis to determine structural properties of a network, such as the 
distribution of vertex degrees and the diameter of the graph. A vast 
number of graph measures exist, and the production of useful ones for 
various domains remains an active area of research.  

  2.     Analysis to fi nd a measurable quantity within the network: for example, 
for a transportation network, the level of vehicular fl ow within any 
portion of it.  

  3.     Analysis of dynamical properties of networks.    

 Graph theory is also used to study molecules in chemistry and biology. In 
chemistry a graph makes a natural model for a molecule, where vertices rep-
resent atoms and edge bonds. This approach is used especially in computer 
processing of molecular structures, ranging from chemical editors to database 
searching.  

  Fractals     A  fractal  is generally  “ a rough or fragmented geometric shape that 
can be split into parts, each of which is (at least approximately) a reduced - size 
copy of the whole, ”  a property called  self - similarity . Because they appear 
similar at all levels of magnifi cation, fractals are often considered to be infi -
nitely complex (in informal terms). Natural objects that approximate fractals 
to a degree include clouds, mountain ranges, lightning bolts, coastlines, and 
snowfl akes. 

 Fractals can also be classifi ed according to their self - similarity. Three types 
of self - similarity are found in fractals: 
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  1.     Exact self - similarity.     This is the strongest type of self - similarity; the 
fractal appears identical at different scales. Fractals defi ned by iterated 
function systems often display exact self - similarity.  

  2.     Quasi - self - similarity.     This is a loose form of self - similarity; the fractal 
appears approximately (but not exactly) identical at different scales. 
Quasi - self - similar fractals contain small copies of the entire fractal in 
distorted and degenerate forms. Fractals defi ned by recurrence relations 
are usually quasi - self - similar but not exactly self - similar.  

  3.     Statistical self - similarity.     This is the weakest type of self - similarity; the 
fractal has numerical or statistical measures that are preserved across 
scales. Most reasonable defi nitions of  fractal  trivially imply some form 
of statistical self - similarity. (A fractal dimension itself is a numerical 
measure that is preserved across scales.) Random fractals are examples 
of fractals that are statistically self - similar, but neither exactly self - similar 
nor quasi - self - similar.    

 Approximate fractals are easily found in nature. These objects display a 
self - similar structure over an extended but fi nite scale range. Examples include 
clouds, snowfl akes, crystals, mountain ranges, lightning, river networks, cauli-
fl ower and broccoli, and systems of blood vessels and pulmonary vessels. 
Coastlines may be loosely considered fractal in nature.  

  Complexities      Complexity theory  and  chaos theory  study systems that are too 
complex to predict their future accurately, but nevertheless, exhibit underlying 
patterns that can help us cope in an increasingly complex world. Science 
usually examines the world by breaking it into smaller and smaller pieces until 
the pieces can be understood. When we use this approach, we often miss the 
bigger picture. Knowing all we can about an individual ant will not teach us 
about how an entire ant colony works. Dissecting a rat will never tell us all 
that we need to know about living rats. Sometimes the way that the parts 
interact is critical to how the entire system works. This is what complexity 
studies. Complexity is relevant to an enormous range of areas of study, includ-
ing traffi c fl ows, earthquakes, the stock market, and systems biology.  

  Rademacher and Walsh Functions     Digital communication uses nonsinusoi-
dal orthogonal functions, Rademacher and Walsh functions being among the 
best known. They are described extentively in the literature (Ahmed and Rao, 
 1975 ; Geadah and Corinthios,  1977 ; Goldberg,  1989a,b ; Peterson and Weldon, 
 1972 ; Sklar,  2001 ; Trahtman and Trahtman,  1975 ; Vose and Wright,  1998 ; 
Waterman,  1999 ; Yarlagadda and Hershey,  1997 ; Zalmanzon,  1989 ). 

  Rademacher functions  are an incomplete set of orthogonal functions intro-
duced by Rademacher in 1922. A Rademacher function of index  m , denoted 
by rad( m ,  t ), is a train of rectangular pulses with 2  m    − 1  cycles in the half - open 
interval [0, 1), taking the values  + 1 or  − 1 (Figure  1.1 ). The exception is 
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rad(0,  t ), which is equal to  + 1 along the entire interval. Rademacher functions 
can be generated using the recurrence relation:
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 The incomplete set of Rademacher functions was completed by Walsh in 1923 
to form a complete orthogonal set of rectangular functions now known as 
 Walsh functions . In the fi eld of digital communication, sets of Walsh functions 
are generally classifi ed into three groups, which differ from one another by 
the order in which individual functions appear: 

  1.     Walsh ordering  
  2.     Dyadic or Paley ordering  
  3.     Natural or Hadamard ordering    

 All these variants of the sets of Walsh functions can be presented in connection 
with relevant Hadamard matrices (see Chapter  8 ). Peculiarities of these 
variants are related closely to the famous Gray code (Ahmed and Rao,  1975 , 
pp. 88 – 93). 

 The complete set of Walsh functions defi ned on the unit interval [0, 1) can 
be divided into two groups of even and odd functions about the point  t     =    0.5. 
These even and odd functions are analogous to the sine and cosine functions, 
respectively. The class of nonsinusoidal orthogonal functions described plays 
an important role in the spectral analysis of signals and in relevant transforms 
of digital signals to provide effective transfer of information.    

     FIGURE 1.1     Rademacher functions.  
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   1.4    CONVERTING DATA TO KNOWLEDGE 

 The biological information we gain allows us to learn about ourselves, about 
our origins, and about our place in the world. We have learned that we are 
quantitatively strongly related to other primates, mice, zebrafi sh, fruit fl ies, 
roundworms, and even yeast. The fi ndings should induce in us some modesty: 
in learning and seeing how much we share with all living organisms. The infor-
mation we are gaining is not just of philosophical interest but is also intended 
to help humanity to lead healthy lives. Knowledge about primitive organisms 
provides much information about shared metabolic features and hints about 
diseases that affect humans in an economically and ethically acceptable 
manner. 

 Knowledge from many scientifi c disciplines and their subfi elds has to be 
integrated to achieve the goals of bioinformatics. It was believed (Wilson, 
 1998 ) that all knowledge is intrinsically unifi ed, and that behind disciplines as 
diverse as physics and biology, and anthropology and the arts, lie a small 
number of natural laws. Applying the knowledge can lead to new scientifi c 
methods, new diagnostics, and new therapeutics. 

 At the beginning of the  “ genomic revolution, ”  a bioinformatics concern was 
the creation and maintenance of a database to store biological information, 
such as nucleotide, amino acid, and protein sequences. Development of this 
type of database involved not only design issues but also the development of 
complex interfaces whereby researchers could both access existing data and 
submit new or revised data. Ultimately, all of this information must be com-
bined to form a comprehensive picture of normal cellular activities. Therefore, 
the fi eld of bioinformatics has evolved such that the most pressing task now 
involves the analysis and interpretation of various types of data, including 
nucleotide, amino acid sequences, protein domains, and protein structures and 
interactions. Important research branches within bioinformatics include the 
development and implementation of tools that enable effi cient access to, and 
use and management of, various types of information and new algorithms and 
statistics with which to assess relationships among members of large data sets, 
such as methods to locate a gene within a sequence, predict protein structure 
and/or function, and cluster protein sequences into families of related 
sequences. The process of converting data to knowledge may be illustrated as 
shown in Figure  1.2 .    

   1.5    THE BIG PICTURE: INFORMATICS 

  Informatics  is the study of the structure, behaviors, and interactions of natural 
and artifi cial computational systems. Informatics studies the representation, 
processing, and communication of information in natural and artifi cial systems. 
It has computational, cognitive, and social aspects. The central notion is the 
transformation of information: whether by computation or communication, 
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whether by organisms or artifacts. Information building blocks are illustrated 
conceptually in Table  1.1 .   

 Understanding informational phenomena such as computation, cognition, 
and communication enables technological advances. In turn, technological 
progress prompts scientifi c enquiry. The science of information and the engi-
neering of information systems develop hand - in - hand. Informatics is the 
emerging discipline that combines the two. In natural and artifi cial systems, 
information is carried at many levels, ranging, for example, from biological 
molecules and electronic devices, through nervous systems and computers, and 
on to societies and large - scale distributed systems. It is characteristic that 
information carried at higher levels is represented by informational processes 
at lower levels. Each of these levels is the proper object of study for some 
discipline of science or engineering. Informatics aims to develop and apply 
fi rm theoretical and mathematical foundations for the features that are 
common to all computational systems. 

 In its attempts to account for phenomena, science progresses by defi ning, 
developing, criticizing, and refi ning new concepts. Informatics is developing its 
own fundamental concepts of communication, knowledge, data, interaction, 

     FIGURE 1.2     Process of converting data to knowledge.  
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  TABLE 1.1    Information Building Blocks (Monomer to 
Polymer) 

   Monomer     Polymer  

  Nucleotides 
    Adenine (A) 
    Cytosine (C) 
    Guanine (G) 
    Thymine/

uracil (T/U)  

  DNA: 
    ACTGGTAGCCTTAGA  …  
 RNA: 
    ACUGGUAGCCUUAGA  …   

  Amino acids 
    Cysteine (Cys) 
    Alanine (Ala) 
    Proline (Pro)  

  Protein: 
    Met – Cys – Gly – Pro – Pro – Arg  …   

  Letters: A, B, C,  …     Words: CAT, GO, FRIEND,  …   
  Symbols: 0, 1    Binary code: 1001011100101  …   
  Monomial: 1,  x ,  x  2 ,  …     Polynomial:  P ( x ),  …   
  Line:  l  1 ,  l  2 ,  l  3 ,  …     Polygons: triangle, rectangle,  …   
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and information, and relating them to such phenomena as computation, 
thought, and language. 

 Informatics has many aspects and encompasses a number of existing aca-
demic disciplines: artifi cial intelligence, cognitive science, and computer 
science. Each takes part of informatics as its natural domain: In broad 
terms, cognitive science concerns the study of natural systems; computer 
science concerns the analysis of computation and the design of computing 
systems; and artifi cial intelligence plays a connecting role, designing systems 
that emulate those found in nature. Informatics also informs and is informed 
by other disciplines, such as mathematics, electronics, biology, linguistics, and 
psychology. Thus, informatics provides a link between disciplines with their 
own methodologies and perspectives, bringing together a common scientifi c 
paradigm, common engineering methods, and a pervasive stimulus from tech-
nological development and practical application. 

     Computational Systems     Computational systems, whether natural or artifi -
cial, are distinguished by their great complexity with regard to both their 
internal structure and behavior, and their rich interaction with the environ-
ment. Informatics seeks to understand and to construct (or reconstruct) such 
systems using analytic, experimental, and engineering methodologies. The 
mixture of observation, theory, and practice will vary between natural and 
artifi cial systems. 

 In natural systems, the object is to understand the structure and behavior 
of a given computational system. Ultimately, the theoretical concepts underly-
ing natural systems are built on observation and are themselves used to predict 
new observations. For artifi cial systems, the object is to build a system that 
performs a given informational function. The theoretical concepts underlying 
artifi cial systems are intended to secure their correct and effi cient design and 
operation. Computer language systems have been evolving and communicat-
ing with biological data as part of computational systems. The computer lan-
guages and their interfaces with various data types are illustrated in Table  1.2 .   

  TABLE 1.2    Communications Between Computer 
Languages and Data Types and BioModules    a     

   Computer Languages     Design Goals  

  FORTRAN    Numerical analysis  
  LISP    Symbolic computation  
  C    System programming  
  C +  +     Objects, speed, compatibility 

with C  
  Java    Objects, Internet  
  Perl    System administration  
  Python    General programming  

     a  BioModules    =    bio    +    languages.   
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 Informatics provides an enormous range of problems and opportunities. 
One challenge is to determine how far, and in what circumstances, theories of 
information processing in artifi cial devices can be applied to natural systems. 
A second challenge is to determine how far principles derived from natural 
systems are applicable to the development of new types of artifi cial systems. 
A third challenge is to explore the many ways in which artifi cial information 
systems can help to solve problems facing humankind and help to improve the 
quality of life for all living things. One can also consider systems of mixed 
character; a question of longer - term interest may be to what extent it is 
helpful to maintain the distinction between natural and artifi cial systems. In 
Chapter  10  we present the evolution, future trends, and the central dogma of 
informatics.    

   1.6    CHALLENGES AND PERSPECTIVES 

 The interaction between biology and mathematics has been a rich area of 
research for more than a century. The interface between them presents chal-
lenges and opportunities for both mathematicians and biologists. Due to the 
explosion of biological data with the advent of new technologies that can 
organize the plethora of data, unique opportunities for research and new chal-
lenges have surfaced within the last 10 to 20 years. For biology, the possibilities 
range from the level of the cell and molecule to the level of the biosphere. For 
mathematics, the potential is great in traditional and nontraditional areas such 
as statistics and differential equations, knot theory, and topology. Stochastic 
processes and Markov chains in statistics have their origins in biological ques-
tions. Galton invented the correlation method based on questions in evolution-
ary biology. The analysis of variance was derived from R. A. Fisher ’ s work in 
agriculture. Modeling the success (survival) over many generations of a family 
name led to the development of the subject of branching processes. The com-
pilation of DNA sequence data led to Kingman ’ s coalescence model and 
Ewens ’  sampling formula. Furthermore, biological applications have stimu-
lated the study of ordinary and partial differential equations, especially regard-
ing problems in chaos, fractal geometry, and bifurcation theory. Further 
interactions between mathematics and biology have presented new opportuni-
ties and challenges. A number of fundamental mathematical and biological 
issues cut across all these challenges. 

   •      How do we incorporate variation among individual units in nonlinear 
systems and biological systems?  

   •      How do we explain the interactions among phenomena that occur on a 
wide range of scales and molecular levels, of space, time, and organiza-
tional complexity?  

   •      What is the relation between pattern and process both in mathematical 
and biological systems?    
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 It is in the analysis of these issues that mathematics is most essential and 
holds the greatest potential. These challenges, such as aggregation of compo-
nents to elucidate the behavior of ensembles, integration across scales, and 
inverse problems, are basic to all sciences, in particular to biological sciences, 
and a variety of techniques exist to deal with them and to begin to solve the 
biological problems that generate them. However, the uniqueness of biological 
systems shaped by evolutionary forces will pose new diffi culties, mandate new 
perspectives, and lead to the development of new mathematics. Algebraic 
biology and matrix genetics for genetic language are presented in Chapters  2  
and  8 , and a denotational mathematics for cognitive informatics is introduced 
in Chapter  9 . The excitement of this area of science is already evident, and is 
sure to grow in the years to come.  
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  2    Genetic Codes, Matrices, and 
Symmetrical Techniques     

     The genetic code is a key to bioinformatics and to a science of biological self -
 organizing on the whole. Modern science faces the necessity of understanding 
and systematically explaining mysterious features of ensembles of molecular 
structures of the genetic code. Why does the genetic alphabet consist of four 
letters? Why does the genetic code encode 20 amino acids? How is the system 
structure of the molecular genetic code connected with known principles of 
quantum mechanics, which were developed to explain phenomena on the 
atomic and molecular levels? Why has nature chosen the special code confor-
mity between 64 genetic triplets and 20 amino acids? Can knowledge about 
the structural essence of the genetic code be useful for mathematical natural 
sciences as a whole? What type of mathematical approach should be chosen 
among many possible approaches to represent and model structuralized 
ensembles of molecules of the genetic code? 

 What direction is chosen to investigate such questions and what types of 
answers it hopes to obtain are important for a science. Achieving deep under-
standing of the genetic code should promote the inclusion of an associated 
science into the fi eld of the existing, developed mathematical natural sciences. 
To provide it, the direction of search should be based on fundamental math-
ematical methods and concepts. Methods and principles of symmetry, and 
matrix analysis, are some of the bases of modern mathematical natural sci-
ences. Apart from structures inherited genetically, morphological structures of 
biological bodies are characterized by many types of symmetry. It is known 
from the history of molecular genetics that investigations of symmetry in 
genetic molecules have produced essential results. Revelations of new sym-
metric structures in molecular - genetic systems produce a set of useful heuristic 
associations due to analogies with known symmetric structures in other scien-
tifi c fi elds, such as quantum mechanics, the theory of digital communication 
and noise - immunity coding, and geometry. 

 Genetic coding possesses noise immunity, which allows descendants to be 
similar to their parents despite strong disturbances and noise in the environ-
ment of biological molecules. It reminds one of the effective noise immunity 
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of modern systems of digital communication and signal processing, which is 
achieved by means of special mathematics. The mathematics is based on matrix 
and symmetric methods of representation and analysis of information signals. 
Is it possible that these mathematical methods, which were developed for 
digital techniques, could be applied adequately to studies of the genetic code? 

 This chapter is devoted to symmetrical analysis for genetic systems. 
Mathematical theories of noise - immunity coding and discrete signal process-
ing are based on matrix methods of representation and analysis of information. 
These matrix methods, which are connected closely with relations of symmetry, 
are borrowed for a matrix analysis of ensembles of molecular elements of the 
genetic code. In this chapter we describe a uniform representation of ensem-
bles of genetic multiplets in the form of matrixes of a cumulative Kronecker 
family. The analysis of molecular peculiarities of the system of nitrogenous 
bases reveals the fi rst signifi cant relations of symmetry in these genetic matri-
ces. It permits one to introduce a natural numbering of the multiplets in each 
of the genetic matrices and to provide a basis for further analysis of genetic 
structures. Connections of the numerated genetic matrices with famous matri-
ces of dyadic shifts and with the golden section are demonstrated.  

   2.1    INTRODUCTION 

 Due to the wonderful work of many researchers, modern science knows basic 
phenomenological facts about molecular structures of the genetic code, includ-
ing the four - letter genetic alphabet, 64 triplets, and 20 amino acids. The history 
of molecular genetics chronicles attempts to understand and explain these 
phenomenological data from various viewpoints. For example, one can mention 
the famous hypothesis by George Gamow (Ycas,  1969 ) about the reason for 
the existence of 20 amino acids. By this hypothesis, the reason lies in the special 
confi guration of the DNA molecule. Other hypotheses, which have only his-
torical meanings, are also considered in a wealth of literature in the fi eld of 
molecular genetics (e.g., Cantor and Schimmel,  1980 ; Chapevillle and Haenni, 
 1974 ; Karasev,  2003 ; Ratner,  2002 ; Roller,  1974 ; Shults and Schirmer,  1979 ; 
Stent,  1971 ; Watson,  1968 ; Ycas,  1969 ). 

 All living organisms are unifi ed by nature. All of them have identical molec-
ular bases of the system of genetic coding. These bases are amazingly simple. 
For realization of the genetic messages which encode sequences of amino acids 
in proteins, all types of organisms utilize in their molecules of heredity, DNA 
and RNA (ribonucleic acid), an  “ alphabet ”  consisting of four  “ letters ”  or 
nitrogenous bases: adenine (A), cytosine (C), guanine (G), and thymine (T) 
[or uracil (U) in RNA] (Figure  2.1 ). Linear sequences of these four letters on 
strings of DNA and RNA contain the genetic information for protein synthesis 
in all living bodies: from bacteria up to a whale or from a worm up to a bird 
and even humans. One often hears the fi gurative expression that the encyclo-
pedia of life is written in four letters.   
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 This set of four letters is usually considered the elementary alphabet of a 
genetic code. The letters form complementary pairs, C – G and A – U (or A – T), 
because they stand opposite each other in molecules of heredity. The comple-
mentary letters C and G are connected by three hydrogen bonds; the comple-
mentary letters A and U (or A and T) are connected by two hydrogen bonds. 

 Genetic information, which is transferred by DNA and RNA, defi nes the 
primary structure of proteins of biological organisms. Each coded protein 
exists in the form of a chain of 20 amino acids. A sequence of amino acids in 
a protein chain is defi ned by an appropriate sequence of genetic triplets. A 
 triplet  (or a  codon ) is a block of three neighboring nitrogenous bases which 
are disposed along a fi lament of DNA or RNA. A sequence of amino acids in 
any protein is coded by an appropriate sequence of triplets (such a sequence 
of  n  triplets is termed a 3 n  -  multiplet ). 

 The number of types of triplets that can be constructed from the four - letter 
alphabet is equal to 4 3     =    64. Each triplet has its code meaning: It encodes one 
of 20 amino acids or plays the role of a stop or start signal for a process of 
protein synthesis. Each codon has an  anticodon , which consists of the appropri-
ate complementary letters; for example, the triplet CUG has the anticodon 
GAC. 

 The genetic code is termed the  degeneracy code  because its 64 letters 
encode 20 amino acids, and different amino acids are encoded by different 

     FIGURE 2.1     Complementary pairs of the four nitrogenous bases in DNA: A – T 
(adenine and thymine) and C – G (cytosine and guanine). Hydrogen bonds in these pairs 
are shown by dotted lines. Filled circles are atoms of carbon; small open circles are 
atoms of hydrogen; circles with the letter N are atoms of nitrogen; circles with the letter 
O are atoms of oxygen.  
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quantities of triplets. Hypotheses about a connection between this degeneracy 
and the noise immunity of genetic information have existed since the time of 
the discovery of the genetic code. Symmetries in the structures of degeneracy 
of the genetic code are one of the main objects of investigation in this chapter. 
Many dialects of the genetic code exist in biological organisms and their sub-
systems, which differ from each other by some differences in correspondences 
between triplets and objects encoded by them (see details at the NCBI ’ s Web 
site:  http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi ). 

 Proteins are the main dense component of biological organisms. Many 
thousands of types of proteins exist, each possessing its own individual func-
tion. In particular, all biological ferments, which provide phenomenal speeds 
of many biochemical reactions in organisms, are proteins. The entire harmonic 
system of metabolism depends on proteins. All amino acids in proteins are 
connected by the same type of chemical bond, the  peptide bond . 

 The correspondence between triplets and objects encoded by them is 
usually illustrated by a table of size 4    ×    16, which was proposed by Francis 
Crick half a century ago and which is reproduced in many textbooks and 
historical reviews in the fi eld of molecular genetics (e.g., Cantor and Schimmel, 
 1980 ; Frank - Kamenetskiy,  1988 ; Roller,  1974 ; Stent,  1971 ; Watson,  1968 ). Each 
of its 64 tabular cells contains one triplet and an appropriate object (an amino 
acid or stop codon) encoded by this triplet. However, nobody has insisted that 
all the possibilities of the analytical and heuristic representation of systems of 
elements of the genetic code in tabular forms are exhausted by this table. The 
20 amino acids which are encoded genetically and their traditional abbre-
viations are: Ala, alanine; Arg, arginine; Asn, asparagine; Asp, aspartic acid; 
Cys, cysteine; Gln, glutamine; Glu, glutamic acid; Gly, glycine; His, histidine; 
Ile, isoleucine; Leu, leucine; Lys, lysine; Met, methionine; Phe, phenylalanine; 
Pro, proline; Ser, serine; Thr, threonine; Trp, tryptophan; Tyr, tyrosine; and Val, 
valine. 

 Modern science does not know why the alphabet of the genetic language 
has four letters (it could have any other number of letters, in principle), nor 
why just these four nitrogenous bases were chosen by nature as the elements 
of the genetic alphabet from billions of possible chemical compounds. Equally 
unknown is why the quantity of amino acids encoded by the triplets is equal 
to 20. In our opinion, this choice has a deep meaning. Investigations of sym-
metries in structures of the genetic code can help us answer these and other 
important and to understand this meaning. 

 The problem of heritable noise immunity is a general one for all multi-
channel systems of informatics of each organism. Many applied tasks of 
nanotechnology and biotechnology are connected with ensembles of genetic 
molecules: for example, the task of creating DNA computers and DNA 
robotics (Paun et al.,  2006 ; Seeman,  2004 ; Shapiro and Benenson,  2007   ). It is 
necessary to study those peculiarities of ensembles of genetic molecules that 
possess formal analogies with formalisms of digital informatics and its matrix 
mathematics. 
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 Do these mathematical methods give us the ability to enumerate each 
genetic multiplet in a binary manner, taking into account the natural charac-
teristics of the genetic letters A, C, G, U/T? The main thrust of the present 
chapter is primary consideration and substantiation of this effective transfer 
of these methods into the fi eld of molecular genetics. Some initial construc-
tions of matrix genetics with elements of symmetry are introduced below.  

   2.2    MATRIX THEORY AND SYMMETRY PRELIMINARIES 

 A  matrix  (plural:  matrices ) is a rectangular table of  elements  (or  entries ), which 
may be numbers or, more generally, any abstract quantities that can be added 
and multiplied. Matrices are used to describe linear equations, to keep track 
of the coeffi cients of linear transformations, and to record data that depend 
on multiple parameters. Matrices are described by the fi eld of matrix theory. 
They can be added, multiplied, and decomposed in various ways, which also 
makes them a key concept in the fi eld of linear algebra. Initially, a subbranch 
of linear algebra, matrix algebra has grown to cover subjects related to graph 
theory, algebra, combinatorics, and statistics. 

 The entry that lies in the  i th row and the  j th column of a matrix is typically 
referred to as the  i , j , ( i ,  j ), or ( i ,  j )th entry of the matrix. Matrices are usually 
denoted using uppercase letters, while the corresponding lowercase letters, 
with two subscript indices, represent the entries. For example, the ( i ,  j )th entry 
of a matrix  A  is most commonly written  a i   ,   j  . Alternative notations for that entry 
are  A [ i ,  j ] or  A   i,j  . 

 A number of operations can be used to modify matrices:  matrix addition , 
 scalar multiplication , and  transposition  (Table  2.1 ). These are the basic tech-
niques employed to deal with matrices.   

 Familiar properties of numbers extend to these operations of matrices: for 
example, addition is  commutative ; that is, the matrix sum does not depend on 
the order of the summands:  A     +     B     =     B     +     A . The transpose, which does not 
exist for numbers, is also very compatible with addition and scalar multiplica-
tion, as expressed by ( c  A ) T     =     c ( A  T ), as well as ( A     +     B ) T     =     A  T     +     B  T . Finally, 
( A  T ) T     =     A . 

 Symmetry plays an important role in nature. Many structural features of 
molecules are governed by consideration of symmetry. In formal terms, we say 
that an object is  symmetric  with respect to a given mathematical operation if, 
when applied to the object, this operation does not change the object or its 
appearance. Two objects are symmetric to each other with respect to a given 
group of operations if one is obtained from the other by some of the opera-
tions (and vice versa). 

 Symmetries may also be found in living organisms, including humans and 
other animals (see Section  2.5 ). In two - dimensional geometry the main types 
of symmetry of interest are with respect to the basic Euclidean plane isome-
tries: translations, rotations, refl ections, and glide refl ections.  
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  TABLE 2.1    Matrix Operations 

   Operation     Defi nition  

  Addition    Given  m     ×     n  matrices  A  and  B , their  sum   A     +     B  is 
calculated entrywise; i.e., 

   A B A B+( ) = + ≤ ≤ ≤ ≤i j i j i j i m j n, , , , where and1 1   

  Scalar multiplication    Given a matrix  A  and a number (also called a  scalar  in the 
parlance of abstract algebra)  c , the  scalar multiplication 
c  A  is given by multiplying every entry of  A  by  c : 

   c ci j i jA A( ) = ⋅, ,   

  Transpose    The  transpose  of an  m     ×     n  matrix  A  is the  n     ×     m  matrix  A  T  
(also denoted by  A  tr  or  t  A ) formed by turning rows into 
columns and columns into rows: 

   A AT( ) =
i j j i, ,   

  Kronecker (or 
tensor) 
multiplication  

  Given  m     ×     m  matrix  A     =    ( a ij  ) and  n     ×     n  matrix  B     =    ( b ij  ), 
their Kronecker multiplication is  mn     ×     mn  matrix  A   �   B : 

   A B

B B B

B B B
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   2.3    GENETIC CODES AND MATRICES 

 The mechanisms of genetic coding provide the high noise immunity of transfer 
of hereditary information from one generation to the next, despite distur-
bances and noise that exist in biological environments. From the very begin-
ning of the discovery of the genetic code, scientists thought that the structures 
of the code were connected with the noise immunity (noise - proof features) of 
genetic systems (see the review by Ycas,  1969 ). However, when discussing the 
noise immunity of genetic coding, one is usually limited to citing the high 
degree of degeneracy in the code, which is capable of reducing the quantity 
of lethal mutations. 

 But studies have already been done which suppose that the requirement 
for the infl uence of noise immunity on structures of the genetic code is much 
deeper. This area of research uses the developments of the mathematical 
theory of noise - immunity coding, which are applied in the techniques of digital 
communication, in an attempt to understand bioinformatics phenomena. 
In this area the suppositional infl uence of noise immunity can be studied by 
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different methods and in different directions of thought (see, e.g., MacDonaill, 
 2003 ). Our own research, presented in this chapter, which is based on the idea 
of a deep connection between structures of the genetic code and the require-
ment for noise immunity of genetic information, is quite original in the research 
methods used and in the new facts obtained. 

 Let us discuss the noise - immunity property of genetic systems more deeply. 
It seems fantastic, but descendants grow similar to their ancestors due to 
genetic information, despite enormous disturbances and noise in trillions of 
biological molecules. How is it possible to approach this problem of such fan-
tastic noise immunity in molecular genetics? Does modern science have any 
precedents from similar problems of noise immunity? 

 Yes; science has successfully solved a similar task recently: the noise -
 immunity transfer of photos from surfaces of other planets to the Earth. In 
this task, electromagnetic signals, which carry data, should pass through mil-
lions of kilometers of cosmic space full of electromagnetic disturbances. These 
disturbances transform signals tremendously, but modern mathematical tech-
nology permits one to restore a transferred photo qualitatively. 

 The solution to this problem became possible due to the theory of noise -
 immunity coding created by mathematicians. This theory has appeared rather 
recently; initial basic work in this fi eld was published by Hamming in 1950 
(Hamming,  1980 ). The theory of such coding utilizes intensive matrix mathe-
matics, including the representation of sets of signals and codes in the form of 
matrices and their Kronecker powers. Our book describes many interesting 
results in the fi eld of molecular genetics and bioinformatics which were 
obtained by its authors on the basis of such matrix mathematics. The investiga-
tion of the genetic code from the viewpoint of the theory of discrete signals 
is natural because of the discrete character of the code. 

 Coding in modern digital techniques is generally utilized not to prevent 
reading of text by unauthorized users but to provide technical ease of transfer 
of discrete information with high noise immunity, speed, and reliability. The 
most famous example of codes is the Morse code, but of course modern codes 
are much more effective than the Morse code. These codes allow us to transfer 
capacious amounts of information across great distances qualitatively. 
Orthogonal codes, which use Hadamard matrices, is one such code (Ahmed 
and Rao,  1975 ; Blahut,  1985 ; Geadah and Corinthios,  1977 ; Lee and Kaveh, 
 1986 ; Peterson and Weldon,  1972 ; Petoukhov,  2008a,b ; Sklar,  2001 ; Trahtman, 
 1972 ; Trahtman and Trahtman,  1975 ; Yarlagadda and Hershey,  1997 ). Any 
signal transmitted consists of a set of elementary signals (a component of a 
signal vector of an appropriate dimension). The task of the receiver in condi-
tions of noise is the approximate defi nition of a concrete vector signal which 
has been sent from a known set of vector signals (Sklar,  2001 ). Application of 
Hadamard matrices allows us to solve similar problems by means of the spec-
tral decomposition of vector signals and the transfer of their spectra, on the 
basis of which the receiver restores an initial signal. This decomposition utilizes 
orthogonal functions of rows of Hadamard matrices (Ahmed and Rao,  1975 ). 
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 One should emphasize important differences in circumstances: Unlike 
digital techniques, biological organisms solve the task not only to provide noise 
immunity simply, but to provide it in a way that is suitable for transfer of the 
noise - immunity property along a chain of biological generations. 

 In this chapter we pay signifi cant attention to the matrix approach to the 
genetic code, which forms the special investigatory fi eld of matrix genetics. 
Investigations in this fi eld reveal an important role for symmetries in the 
structural organization of molecular ensembles of the genetic code. But why 
have we chosen the matrix approach to studying the genetic system among 
the many other possible approaches? The following six reasons explain this 
matrix choice for studying the genetic code and developing matrix genetics: 

  1.     Information is usually stored in computers in the form of matrices.  
  2.     Noise - immunity codes are constructed on the basis of matrices.  
  3.     Quantum mechanics utilizes matrix operators whose connections can be 

detected in matrix forms of presentation of the genetic code. The signifi -
cance of the matrix approach is emphasized by the fact that quantum 
mechanics arose in a form of matrix mechanics by Werner Heisenberg.  

  4.     Complex and hypercomplex numbers, which are utilized in physics and 
mathematics, possess matrix forms of presentation. The notion of number 
is the main notion of mathematics and the mathematical natural sciences. 
In view of this, investigation of a possible connection of the genetic code 
to multidimensional numbers in their matrix presentations can lead to 
very signifi cant results.  

  5.     Matrix analysis is one of the main investigatory tools in mathematical 
natural sciences. The study of possible analogies between matrices, which 
are specifi c for the genetic code, and famous matrices from other branches 
of sciences can be heuristic and useful.  

  6.     Matrices, which are a union of many components in a single whole, are 
subordinated to certain mathematical operations which determine sub-
stantial connections between collectives of many components. Such con-
nections can be essential for collectives of genetic elements of different 
levels as well.    

 A pioneer work in the fi eld of matrix genetics is the article by Konopelchenko 
and Rumer  (1975) . Let us recall the basic facts about the elements of the 
genetic code, the integral ensemble of which is fi rst investigated in matrix 
genetics. 

  Genetic Alphabet and Multiplets in Genetic Matrices 

 Is it possible to propose a matrix approach to represent all sets of genetic 
multiplets in a well - ordered general form and with an individual binary number 
for each multiplet on the basis of the molecular features of the four letters A, 
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C, G, and U/T of the genetic alphabet? Will such a general form be connected 
with important principles and methods of computer informatics and of noise 
immunity in digital techniques? 

 Positive answers to these questions will be useful in analyzing structural 
properties and symmetries of the genetic system and to reveal analogies 
between principles of the genetic code and computer informatics for many 
theoretical and applied tasks. 

 To get such positive answers, we demonstrate, fi rst, that symmetries in the 
molecular characteristics of the genetic alphabet provide the existence of 
binary subalphabets. The four letters (or the four nitrogenous bases) of the 
genetic alphabet represent specifi c polynuclear constructions with special bio-
chemical properties. The set of these four constructions is not absolutely 
heterogeneous, but it bears a substantial symmetric system of distinctive -
 uniting attributes (or, more precisely,  attribute – antiattribute  pairs). 

 The system of such attributes divides the genetic four - letter alphabet into 
various pairs of three letters, which are equivalent from the viewpoint of one 
of these attributes or its absence: (1) C    =    U and A    =    G (according to the 
binary - opposite attributes  “ pyrimidine ”  or  “ nonpyrimidine, ”  that is, purine); 
(2) A    =    C and G    =    U (according to the attributes amino - mutating or non -
 amino - mutating, under the action of nitrous acid, HNO 2  (Wittmann,  1961 ; 
Ycas,  1969 ), or as given by the attributes  “ keto ”  or  “ amino ”  (Waterman,  1999 ); 
(3) C    =    G and A    =    U (according to the attributes, three or two hydrogen bonds 
are materialized in these complementary pairs). The possibility of such divi-
sion of the genetic alphabet into three binary subalphabets is known from the 
book by Waterman  (1999) . We will utilize these known subalphabets by means 
of a new method in the fi eld of matrix genetics. We will attach appropriate 
binary symbols  “ 0 ”  or  “ 1 ”  to each of the genetic letters from the viewpoint of 
each of these subalphabets. Then we will use these binary symbols for binary 
numbering of the columns and rows of the genetic matrices of the Kronecker 
family. 

 Let us assign the numbers  N     =    1, 2, and 3 to the three types of binary -
 opposite attributes, and let us ascribe to each of the four genetic letters the 
symbol 0  N   (the symbol 1  N  ) in the presence (or absence, correspondingly) of 
the attribute under the number  N  at this letter. As a result, we obtain a rep-
resentation of the genetic four - letter alphabet in the system of its three binary 
subalphabets to attributes (Table  2.2 ). The table shows that on the basis of 
each type of attribute, each of the letters A, C, G, and U/T possesses three 
 “ faces ”  or meanings in the three binary subalphabets. On the basis of each 
type of attribute, the genetic four - letter alphabet is curtailed into a two - letter 
alphabet. For example, on the basis of the fi rst type of binary - opposite attri-
bute, we have (instead of the four - letter alphabet) an alphabet from the two 
letters 0 1  and 1 1 , which one can term the  binary subalphabet to the fi rst type of 
binary attributes .   

 Accordingly, any genetic message as a sequence of the four letters C, A, G, 
and U consists of three parallel and various binary texts or three different 
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sequences of zero and unity (such binary sequences are used for storage and 
transfer of the information in computers). Each of these parallel binary texts, 
based on objective biochemical attributes, can provide its own genetic function 
in organisms. According to our data, the genetic system uses the possibility of 
reading triplets from the viewpoint of different binary subalphabets. This pos-
sibility participates in construction of genetic octet bipolar algebra (or yin –
 yang algebra), which serves as the algebraic model of the genetic code in 
Chapter  8 .  

  Natural System of Numbering the Genetic Multiplets 

 Genetic information is transferred by means of discrete elements: four letters 
of the genetic alphabet, 64 amino acids, and so on. The general theory of pro-
cessing discrete signals encodes the signals by means of special mathematical 
matrices and spectral representation of the signals, with the principal aim of 
increasing the reliability and effi ciency of information transfer (e.g., Ahmed 
and Rao,  1975 ; Sklar,  2001 ). A typical example of such matrices with appropri-
ate properties is the Kronecker family of Hadamard matrices:

    H nn
n

+
( )= −[ ] ( )1 1 1 1 1; , where indicates an integer Kronecker powwer    

(2.1)   

 The simplest Hadamard matrix  H  2     =    [1   1;    − 1   1] is termed the  kernel  of this 
Kronecker family. Rows of Hadamard matrices  (2.1)  form an orthogonal 
system of Walsh functions (see Chapter  1 ), which is used for a spectral pre-
sentation and transfer of discrete signals (Ahmed and Rao,  1975 ; Yarlagadda 
and Hershey,  1997 ). Quantum computers use normalized Hadamard matrixes 

  TABLE 2.2    Three Binary Subalphabets According to Three Types of Binary -
 Opposite Attributes in a Set of Nitrogenous Bases  C ,  A ,  G ,  U     a     

    N      Symbol of a Genetic Letter     C     A     G     U/T  

  1    0 1 , pyrimidines (one ring in a molecule) 
 1 1 , purines (two rings in a molecule)  

  0 1     1 1     1 1     0 1   

  2    0 2 , a letter with amino - mutating property (amino) 
 1 2 , a letter without it (keto)  

  0 2     0 2     1 2     1 2   

  3    0 3 , a letter with three hydrogen bonds 
 1 3 , a letter with two hydrogen bonds  

  0 3     1 3     0 3     1 3   

     a  The following scheme explains graphically the symmetric relations of equivalence between the 
pairs of letters from the viewpoint of the separate attributes 1, 2, and 3:
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        FIGURE 2.2     The fi rst genetic matrices of the Kronecker family  P  (   n   )     =    [C   A;   U   G] (   n   )  
with the binary numbering of their columns and rows on the base of the binary subal-
phabets 1 and 2 from Table  2.2 . The lower matrix is the genomatrix  P  (3)     =    [C   A;   U   G] (3) . 
Each matrix cell contains a symbol of a multiplet, a binary number of this multiplet, 
and its expression in decimal notation. Decimal numbers of columns, rows, and multi-
plets are shown in parentheses.  

in the role of logic gates in connection with the important role of these 
matrixes in quantum mechanics (Nielsen and Chuang,  2001 ). In Chapter  8  we 
describe deep connections between Hadamard matrices and ensembles of 
elements of the genetic code. 

 On the basis of the idea of a possible analogy between discrete signal pro-
cessing in computers and in a genetic code system, one can present the genetic 
four - letter alphabet in the following matrix form:  P     =    [C   A;   U   G]. It is 
obvious that this form is analogous to kernel  (2.1)  of the Kronecker family of 
Hadamard matrices. Then the Kronecker family of matrices with such an 
alphabetical kernel can be considered:

    P nn n( ) ( )= [ ] ( )C A U G where indicates an integer Kronecker pow; , eer    
(2.2)

   

 Figure  2.2  shows the fi rst matrices of such a family. One can see in this fi gure 
that each matrix contains all genetic multiplets of equal length: [C   A;   U   G] (1)  
contains all four monoplets; [C   A;   U   G] (2)  contains all 16 duplets; [C   A;   U   G] (3)  
contains all 64 triplets; and so on. It should be emphasized that in this chapter 
we pay the greatest attention to the genetic alphabet: we consider the alpha-
betical matrices [C   A;   U   G] (   n   )  from different viewpoints persistently, and 
we construct algorithms of matrix transformations on the basis of features of 
the letters A, C, G, and U/T. The genetic alphabet serves as the key structure 
to investigate system properties of the genetic code and its dialects.   

 Such a presentation of ensembles of elements of the genetic code in the 
form of Kronecker families of genetic matrices ( genomatrices  in short) has 
proved to be a useful tool in investigating structures of the genetic code from 
the viewpoint of their analogy with the theory of discrete signal processing 
and noise - immunity coding. The results of matrix genetics reveal hidden inter-
connections, symmetries, and evolutionary invariants in genetic code systems 
(He,  2001 ; He and Petoukhov,  2007, 2009 ; He et al.,  2004 ; Kappraff and 
Petoukhov,  2009   ; Petoukhov,  1999b, 2001a,b, 2003, 2003 – 2004, 2005, 2006, 
2008a,b ; Petoukhov and He,  2009 ). Simultaneously, they testify that genetic 
molecules are the important part of the specifi c maintenance of the noise 
immunity and effi ciency of a discrete information transfer. 

 The Kronecker family of genetic matrices [C   A;   G   U] (   n   )   (2.2)  represents 
all genetic multiplets if the value of  n  is large enough. This family includes the 
genomatrix of the genetic alphabet; the genomatrix of triplets, which encode 
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the amino acids; and the genomatrices of long multiplets, which encode pro-
teins. All of this natural set of genetic multiplets, which have various coding 
functions in the genetic system, appears coordinated with this simple Kronecker 
family of matrices [C   A;   G   U] (   n   )   (2.2) . 

 All  n  - plets, which begin with one of the four letters C, A, U, and G, are 
assigned to one of the four quadrants of an appropriate genomatrix 
[C   A;   G   U] (   n   )  because of the specifi cs of Kronecker multiplication. If one 
does not pay attention to this fi rst letter in the  n  - plets of each matrix quadrant, 
one can see that each quadrant reproduces a previous matrix  P  (   n    − 1)  of this 
Kronecker family. So, speaking fi guratively, each genomatrix of such a family 
possesses information (or  “ memory ” ) about all previous genomatrices of this 
family. 

 It should be noted that each column of the formally constructed genomatrix 
[C   A;   G   U] (3)  (Figure  2.2 ) corresponds to one of the eight classical octets by 
Wittmann  (1961) , which are famous in the history of molecular genetics and 
which refl ect real biochemical properties of elements of the genetic code 
(Ycas,  1969 ). This fact is the fi rst indirect confi rmation of the adequacy of the 
given matrix approach, which refl ects a natural orderliness inside the genetic 
system. 

 Let us demonstrate now that all 64 triplets can be enumerated binarily in 
a natural manner by means of the binary subalphabets (Table  2.2 ), which are 
based on the real structural and biochemical features of the genetic molecules. 
As a result of such natural numbering, all triplets appear arrayed in the geno-
matrix [C   A;   G   U] (3)  in monotonical order on increase of their binary 
numbers. 

 Really, all columns and rows of the matrices in Figure  2.2  are enumer-
ated binarily by the following algorithm. Their numbers are formed auto-
matically if one interprets multiplets of each column from the viewpoint 
of the fi rst binary subalphabet (Table  2.2 ) and if one interprets multiplets 
of each row from the viewpoint of the second binary subalphabet. For 
example, from the viewpoint of the fi rst subalphabet, the triplet CAU pos-
sesses the binary number 010 (all triplets of the same column possess the 
same binary number, which is utilized correspondingly as the general 
number of this column). But from the viewpoint of the second subalphabet, 
the triplet CAU possesses the binary number 001 (all triplets of the same 
row possess the same binary number, which is utilized as the general 
number of this row). One can see in Figure  2.2 , that in such a way, all 
columns and all rows in the genomatrix [C   A;   G   U] (3)  appear renumbered 
and arrayed in monotonic order. 

 Each genetic multiplet obtains its own individual binary number in the 
natural system of numbering the multiplets in matrices [C   A;   G   U] (   n   )  that we 
have described. This multiplet also obtains its own disposition in the appropri-
ate genetic matrix of the Kronecker family. It is obvious that the length of the 
individual binary number for a  n  - plet, which contains  n  letters, is equal to 2 n . 
The fi rst half of this number is the interpretation of letters of the multiplet 



GENETIC CODES AND MATRICES  37

from the viewpoint of the second binary subalphabet (Table  2.2 ), and the 
second part is the interpretation from the viewpoint of the fi rst binary subal-
phabet. For example, the sequence GACUUCACGGUG, which contains nine 
letters, obtains the individual binary number with 9    ×    2    =    18 binary symbols: 
100110001111/110000101101. If one wishes to construct a catalog of genetic 
sequences of various lengths and composition, it can be done on the basis of 
the natural system of numbering the sequences as multiplets. 

 In the genomatrix [C   A;   G   U] (3) , each of 64 triplets has its own number, 
which consists of the association of binary numbers of its row and column (e.g., 
the triplet CAU has the binary number 001010, which is equal to 10 in decimal 
notation). This genomatrix refl ects real interrelations of elements in the set of 
triplets: any codon and its anticodon are disposed in inversion - symmetrical 
manner relative to the center of the genomatrix (Figure  2.2 ). 

 Each codon – anticodon pair (and only such a pair) has the sum of its decimal 
numbers, which is to equal 63 (in binary notation it is equal to 111111). For 
example, the triplet CAU has the decimal number 10, and the complementary 
triplet GUA has the decimal number 53; the sum of these numbers is 63. Each 
sequence of triplets can be presented in the genomatrix  P  (3)  in the form of an 
appropriate trajectory passing through matrix cells with these triplets in series. 
It is obvious that the complementary sequences on the two fi laments of the 
double helix of DNA correspond to two appropriate trajectories in the geno-
matrix [C   A;   G   U] (3) , which are inversion symmetrical to each other relative 
to the center. 

 The genomatrix [C   A;   G   U] (3)  (Figure  2.2 ) coincides with the famous table 
of 64 hexagrams in Fu - Xi ’ s order from the ancient Chinese  “ The Book of 
Changes ”  ( I Ching ), which was written a few thousand years ago. This matrix 
amazed the creator of one of the fi rst computers, Gottfried Leibniz (1646 –
 1716), who considered himself the creator of the system of binary notation, 
but in one moment he suddenly found ancient predecessors relative to this 
system. Leibniz saw in features of the ancient table of 64 hexagrams many 
features similar to his ideas regarding binary systems and universal language. 
 “  Leibniz has seen in this similarity  …  evidence of the preestablished harmony 
and unity of the divine plan for all times and people  ”  (Schutskiy,  1997 , p. 12). 
Modern physics and other branches of science pay attention to  I Ching  and 
other ancient Oriental teachings (see, e.g., Capra,  2000 ; Gell - Mann and 
Ne ’ eman,  2000 ). A possible connection between the genetic code and the 
symbolic system of  I Ching  has been noted in the literature (e.g., Jacob,  1974, 
1977 ; Stent,  1969 ). Our results in the fi eld of matrix genetics confi rm this 
guesswork. 

 So the natural system of numbering the genetic triplets and their cells in 
the genomatrix [C   A;   G   U] (3)  has already been known for thousands of years. 
From a historical viewpoint it can be called an ancient Chinese system. The 
matrix approach to the genetic code, in addition to being an object of research 
and matrix mathematics, leads unexpectedly to historical analogies and 
connections.  
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  Genetic Multiplets and Matrices of Diadic Shifts 

 Next we describe the connection between numerated genomatrices  P  (   n   )  (Figure 
 2.2 ) and the matrices of dyadic shifts long known in the theory of discrete 
signal processing. The theory of discrete signal processing utilizes broadly the 
special mathematical operation of modulo - 2 addition for binary numbers. 
Modulo - 2 addition is a fundamental operation for binary variables. By defi ni-
tion, the modulo - 2 addition of two numbers written in binary notation is made 
in a bitwise manner in accordance with the following rules:

    0 0 0 0 1 1 1 0 1 1 1 0+ = + = + = + =, , ,     (2.3)   

 For example, modulo - 2 addition of two binary numbers 110 and 101, which 
are equal to 6 and 5, respectively, in decimal notation, gives the result 
110    �    101    =    011, which is equal to 3 in decimal notation ( �  is the symbol for 
modulo - 2 addition). The series of binary numbers

    000 001 010 011 100 101 110 111, , , , , , ,     (2.4)  

forms a  diadic group , in which modulo - 2 addition serves as the group opera-
tion (Harmut,  1989 ). The distance in this symmetry group is known as the 
 Hamming distance . Since the Hamming distance satisfi es the conditions of a 
metric group, the diadic group is a metric group. The modulo - 2 addition of any 
two binary numbers from  (2.4)  always results in a new number from the same 
series. The number 000 serves as the unit element of this group: for example, 
010    �    000    =    010. The reverse element for any number in this group is the 
number itself: for example, 010    �    010    =    000. 

 The series  (2.4)  is transformed by modulo - 2 addition with the binary number 
001 into a new series with a new sequence of the same numbers:

    001 000 011 010 101 100 111 110, , , , , , ,     (2.5)   

 Such changes in the initial binary sequence, produced by modulo - 2 addition 
of its members with any binary numbers  (2.4) , are termed  diadic shifts  (Ahmed 
and Rao,  1975 ; Harmut,  1989 ). If any system of elements demonstrates its con-
nection with diadic shifts, it indicates that the structural organization of its 
system is related to the logic of modulo - 2 addition. 

 Let us use modulo - 2 addition to create the binary numbers of columns and 
rows for all cells in the genomatrix  P  (3)  in Figure  2.2 . For example, the cell 
disposed in column 110 and row 101 obtains the binary number 011 by means 
of such addition. As a result, a numeric matrix   PDIAD

3( )  arises (Figure  2.3 ).   
 The 8    ×    8 matrix   PDIAD

3( )  is bisymmetrical because it is symmetrical relative 
to both diagonals. This matrix contains only eight binary numbers, which are 
equal to 0, 1, 2, 3, 4, 5, 6, and 7 in decimal notation. Each of these numbers 
occupies eight matrix cells from 64 numerated cells (see Figure  2.2 ). The sum 
of the numbers of these eight matrix cells is equal to 252 in decimal notation 
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for each case. For example, the number 5 occupies those eight matrix cells on 
Figure  2.3 , which are numerated individually on Figure  2.2  by the numbers 5, 
12, 23, 30, 33, 40, 51, and 58. The sum of these eight numbers is equal to 252. 
The left and right halves (and the upper and lower halves) of this matrix   PDIAD

3( )  
are inversion - symmetrical to each other in the sense of the binary inversion 
relative to their three - digit numbers in matrix cells (by defi nition, the binary 
inversion interchanges the binary symbols 1 and 0 with each other). For this 
reason, the modulo - 2 addition of such binary numbers, which exist in any two 
mirror - symmetrical cells of this matrix, gives the binary number 111. For 
example, a cell with the number 001 in the left half of the matrix has a mirror -
 symmetrical cell in its right half with the number 110 always. Their sum in the 
sense of modulo - 2 addition is equal to 001    �    110    =    111. 

 By an analogical algorithm of modulo - 2 addition, the entire family of matri-
ces of dyadic shifts   P n

DIAD
( ) , where  n     =    2, 4, 5,  …  , can be constructed from the 

genomatrices  P  (   n   )  (Figure  2.2 ). All such matrices   P n
DIAD
( )  are bisymmetrical as 

well. Each of matrices   P n
DIAD
( )  is the matrix form of presentation of a particular 

case of special hypercomplex numbers, termed  hyperbolic matrions  (Petoukhov, 
 2008a ; Petoukhov and He,  2009 ). 

 Do such matrices   P n
DIAD
( )  have any connection with the theory of discrete 

signal processing? Yes, they have. The matrix   PDIAD
3( )  and other analogical matri-

ces   P n
DIAD
( )  have long been known in information theory under the name  matri-

ces of dyadic shifts  (see, e.g., Ahmed and Rao,  1975 ). They are fundamentals 
of some special methods of analysis and synthesis of signals as vectors. In 
computer informatics, matrices of dyadic shifts are constructed by means of 
modulo - 2 addition without utilizing Kronecker multiplication of matrices, 
which we have used to obtain the Kronecker family of the genomatrices  P  (   n   )  

     FIGURE 2.3     Bisymmetrical matrix   PDIAD
3( )  of dyadic shifts. Parentheses contain expres-

sions of numbers in decimal notation.  
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of all multiplets from the 2    ×    2 matrix of the genetic alphabet (Figure  2.2 ). 
One can note that the analogical 8    ×    8 matrix of diadic shifts is constructed 
from the table of 64 hexagrams of  I Ching  (Petoukhov,  2008a ; Petoukhov and 
He,  2009 ). 

 It should be emphasized especially that dyadic shifts are one of the ele-
ments of an interesting theory, which is described in a book about applications 
of methods of information theory in physics (Harmut,  1989 ). This theory uti-
lizes the notions of dyadic spaces, dyadic metrics, and dyadic coordinates in 
connection with special codes. The relation of the genetic code to this theory 
is one of the prospective topics in the fi eld of matrix genetics for investigations 
in the future. 

 Now let us pay attention to the block character of the matrices of dyadic 
shifts   P n

DIAD
( ) . Each 2  n      ×    2  n   matrix   P n

DIAD
( )  is a system of fractal kind. It contains 

four block matrices, each of which has the size 2    ×    2. Two such block matrices, 
which are disposed along each diagonal, are identical to each other always. For 
this reason, the lower half of each 2  n      ×    2  n   matrix   P n

DIAD
( )  can be produced from 

its upper half algorithmically by a cyclic shift. In this sense, each block matrix 
  P n

DIAD
( )  is a matrix of the cyclic shift of its 2    ×    2 blocks and is crosswise in 

character. 
 Two quadrants along the main diagonal contain identical block elements, 

which are 2  n    − 1     ×    2  n    − 1  matrices of a dyadic shift. Matrix cells along the second 
diagonal contain identical block elements in a form of 2  n    − 1     ×    2  n    − 1  matrices also, 
elements of which are changed only by addition of the number 2  n    − 1  relative to 
elements of the 2  n    − 1     ×    2  n    − 1  matrices along the main diagonal. In turn, these 
2  n    − 1     ×    2  n    − 1  matrices are the block matrices of the cyclic shift, which are cross-
wise in character; and so on. 

 For example, the 2 3     ×    2 3  matrix   PDIAD
3( )  in Figure  2.3  is the block matrix of the 

cyclic shift relative to its 2    ×    2 quadrants. Identical quadrants, which are dis-
posed along the main diagonal, are 2 2     ×    2 2  matrices of the dyadic shift with the 
elements 0, 1, 2, and 3. Another type of identical block in the form of the 2 2     ×    2 2  
quadrants with elements 4, 5, 6, and 7 are disposed along the second diagonal. 
They differ from the fi rst 2 2     ×    2 2  quadrants by addition of the number 2 2  to 
their elements only. In turn, each of these 2 2     ×    2 2  quadrants of the matrix   PDIAD

3( )  
in Figure  2.3  is the block matrix of the cyclic shift of its 2    ×    2 blocks. 

 In connection with cyclic shifts in the genetic matrices described, one can 
mention  cyclic codes , which are based on cyclic shifts (Peterson and Weldon, 
 1972 ; Sklar,  2001 ). Cyclic codes are usually considered to be one of the most 
interesting codes in the fi eld of digital techniques due to their mathematical 
properties. Some modern publications in the fi eld of molecular genetics analyze 
the question of a possible important participation of cyclic codes in systems 
of genetic coding (Arques and Michel,  1996, 1997 ; Frey and Michel,  2003, 2006 ; 
Stambuk,  1999 ). 

 Returning to the crosswise character of genetic matrices of diadic shifts 
  P n

DIAD
( )  (Figure  2.3 ), which reminds one of the crosswise character of chromo-

somes to some extent, we note that genetic inherited constructions of physi-



GENETIC MATRICES, HYDROGEN BONDS, AND THE GOLDEN SECTION  41

ological systems (including sensory - motion systems) demonstrate similar 
crosswise structures for unknown reasons. For example, the connection 
between the hemispheres of the human brain and the halves of the human 
body possesses a similar crosswise character: The left hemisphere serves the 
right half of the body and the right hemisphere serves the left half (Figure  2.4 ) 
(Annett,  1985, 1992 ; Gazzaniga,  1995 ; Hellige,  1993 ). The system of optic 
cranial nerves from two eyes possesses crosswise structures as well: The optic 
nerves transfer information about the right half of the fi eld of vision into the 
left hemisphere of brain, and transfer information about the left half of the 
fi eld of vision into the right hemisphere. The same is true for the hearing 
system (Penrose,  1989 , Chap.  9 ). One can suppose that these inherited physi-
ological phenomena are connected with genetic crosswise structures, which 
include, in particular, crosswise matrices of dyadic shifts and octet bipolar 
matrices (see Chapter  8 ) to provide noise - immunity properties of genetic 
systems.     

   2.4    GENETIC MATRICES, HYDROGEN BONDS, AND 
THE GOLDEN SECTION 

 Until this moment we analyzed the symbolic genetic matrices. In this 
paragraph we analyze numeric genetic matrices, which are produced from 
the symbolic genomatrices. What are some reasons to consider numeric 
genomatrices? 

 Many materials demonstrate that the Kronecker product of matrices is 
useful for analysis of the genetic code and is adequate for its structure. 

     FIGURE 2.4     Crosswise schemes of some morpho - functional structures in the human 
organism.  Left:  crosswise connections of brain hemispheres with the left and right 
halves of a human body.  Middle:  crosswise structure of optic nerves from eyes to brain. 
 Right:  a chromosome.  

L R
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But the Kronecker product possesses some distinctive properties, which are 
connected with eigenvalues of matrices: eigenvalues of the Kronecker product 
 A     �     B  for two matrices  A  and  B   , whose eigenvalues  α   i   and  β   k   are equal to 
the products   α βi k*  of these eigenvalues. This property gives an additional 
reason to introduce the notion of the Kronecker product into mathematics 
(Bellman  ,  1960 ). But if eigenvalues are so important for the theme of Kronecker 
products, one should investigate numeric genomatrices, which possess eigen-
values (symbolic matrices do not possess eigenvalues). 

 We would also like to investigate genetic sequences from the viewpoint of 
the theory of digital signal processing. This theory presents a signal in the 
form of a sequence of its numerical values in points of reference. Discrete 
signals are interpreted as vectors of multidimensional spaces: a value of the 
signal at each time point (a moment of reference) is interpreted as the value 
of one of the coordinates of multidimensional space of signals (Trahtman, 
 1972 ). The theory of discrete signal processing is the geometrical science of 
multidimensional spaces to some extent. The number of dimensions of such 
a space is equal to the quantity of moments of references for the signal. 
Appropriate metric notions and other necessary things for providing the reli-
ability, velocity, and economy of information transfer are introduced in these 
multidimensional vector spaces. For example, important information notions 
of the energy and power of a discrete signal are correspondingly the square 
of the length of the vector signal and the same square of the length of the 
vector signal, which is divided by the number of dimensions. Various signals 
and their ensembles are compared as geometrical objects of such metric mul-
tidimensional spaces. 

 These methods underlie technologies of signal intelligence and pattern 
recognition, detections and corrections of information mistakes, artifi cial intel-
ligence and robotic learning, and so on. If we wish to use the methods of the 
theory of discrete signal processing to analyze genetic structures, we should 
learn to turn from the symbolic genetic matrices and genetic sequences to their 
numerical analogies. 

 The method, which is utilized in this chapter for such a turn, replaces the 
letter symbols A, C, G, and U(T) of the genetic alphabet by quantitative 
parameters of these nitrogenous bases, which determine their physical –
 chemical role (Petoukhov,  2001a ). First, these symbols are replaced in this 
chapter by numbers of the hydrogen bonds, which have long been thought to 
be important participants in the transfer of genetic information. Each molecu-
lar element of the genetic code is a component of a harmonic system of genetic 
coding. Its molecular parameters are coordinated with quantitative parame-
ters of other elements of this system. Quantitative characteristics of separate 
elements should be investigated as part of the set of quantitative characteris-
tics of a system ensemble of elements. The matrix approach has long been 
known to be very effective for system investigations: for example, in the fi elds 
of quantum mechanics and the physics of elementary particles. In the fi eld of 
matrix genetics, this approach unites parameters of a set of separate elements 
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not only in a general matrix, but in the entire family of genetic matrices, which 
embraces sets of multiplets of different lengths (Figure  2.2 ). In this way, hidden 
connections between parameters of separate parts of the united genetic system 
can be revealed, together with their relations to famous physical and mathe-
matical constants and other objects. 

 Let us consider the numerical genomatrices of hydrogen bonds of the 
nitrogenous bases. The hydrogen bonds of complementary letters of the genetic 
alphabet have long been recognized for their important information. In addi-
tion, hydrogen plays the main role in the composition of the universe, where 
of each 100 atoms, 93 are atoms of hydrogen and where the  chemical infl uence 
of omnipresent hydrogen is the defi ning factor  (Ponnamperuma  ,  1972 ). Thus, 
investigation of a possible meaning for hydrogen bonds in genetic information 
is of special interest. 

 The complementary letters C and G have three hydrogen bonds (C    =    G    =    3), 
and the complementary letters A and U have two hydrogen bonds (A    =    U    =    2). 
Let us replace each multiplet in the Kronecker family of the genomatrices 
 P  (   n   )     =    [C   A;   U   G] (3)  by the product of these numbers of its hydrogen bonds. 
In this case we get the Kronecker family of the multiplicative matrices marked 
as   P n n

MULT
( ) ( )= [ ]3 2 2 3;  conditionally. For example, the triplet CAU will be 

replaced by the number 12 ( =    3    ×    2    ×    2) in the genomatrix   PMULT
3( ) . Figure  2.5  

demonstrates the three initial genomatrices from the Kronecker family of 
genomatrices [3   2;   2   3] (   n   )  constructed in this way. The numerical characteris-
tics of each genomatrix [3   2;   2   3] (   n   )  are connected with the quint ratio 3   :   2; 
for this reason we call such genomatrices  quint genomatrices .   

 All matrices   P n
MULT
( )  are nonsingular. They are symmetrical relative to both 

diagonals and can be termed  bisymmetric matrices . All rows and all columns 
of this matrix differ from each other by the sequences of their numbers. But 
the sums of all numbers in the cells of each row and each column in any 
matrix   P n

MULT
( )  are identical. For example, in the case of the matrix   PMULT

3( ) , these 

     FIGURE 2.5     Beginning of the family of quint multiplicative genomatrices 
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( ) ( )= [ ]3 2 2 3; , which are based on the product of the numbers of hydrogen bonds 

(C    =    G    =    3, A    =    U    =    2).  
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sums are 125    =    5 3 , and the total sum of numbers inside the matrix is 1000. The 
rank of this matrix is 8. Its determinant is 5 12 . Eigenvalues of   PMULT

3( )  are 1, 5, 
5, 5, 5 2 , 5 2 , 5 2 , and 5 3 . The matrix   PMULT

3( )  has four types of numbers only: 8, 12, 
18, and 27. Certain laws are observed in their disposition, which are connected 
with a few interesting properties of this matrix, including the property of 
invariance of its numerical mosaic under many mathematical operations (see 
below). 

  Numerical Genomatrices and the Golden Section 

 In biology, a genetic system provides the self - reproduction of biological organ-
isms in their generations. In mathematics, the  golden section  (or  divine propor-
tion ) and its properties were a mathematical symbol of self - reproduction from 
the Renaissance and have been studied by Leonardo da Vinci, Johannes 
Kepler, and many other prominent thinkers (see the details at the Web site 
 “ Museum of Harmony and Golden Section, ”   http://www.goldenmuseum.com ). 
Is there any connection between these two systems? Yes, and we demonstrate 
here such an unexpected connection. 

 The golden section has the value  ϕ     =    (1    +    5 0.5 )/2    =    1.618.  …  (Sometimes 
the  inverse  of this value is called the golden section in the literature.) If the 
simplest genetic matrix,   PMULT

1( ) , is raised to the power   1
2  in the ordinary sense 

(i.e., if we take the square root), the result is the bisymmetric matrix 
  Φ = ( )( )PMULT

1 1 2
, the matrix elements of which are equal to the golden section 

and to its inverse value. And if any other genomatrix   P n n
MULT
( ) ( )= [ ]3 2 2 3;  

is raised to the power   1
2  in the ordinary sense, the result is the bisymmetric 

matrix   Φ n nP( ) ( )= ( )MULT
1 2

, the matrix elements of which are equal to the golden 
section in various integer powers with elements of symmetry among these 
powers (Figure  2.6 ). For example, the matrix   ΦMULT MULT

3 1 2( ) ( )= ( )P n  has only two 
pairs of inverse numbers:  ϕ  1  and  ϕ   − 1 ,  ϕ  3  and  ϕ   − 3  (Figure  2.6 ). Matrices with 
matrix elements, all of which are equal to golden section  ϕ  in different powers 
only, can be referred to as  golden matrices . Figuratively speaking, the quint 
genomatrices have a secret substrate from the golden matrices. The product 
of all numbers in any row and any column of these golden matrices is 1. The 
matrices   P n

MULT
( )  and  Φ  (   n   )  are connected with matrices of diadic shifts by means 

of the character of the disposition of their elements.   
 The matrix elements of the matrix   Φ n nP( ) ( )= ( )MULT

1 2
 can be constructed 

directly from a combination of  ϕ  and  ϕ   − 1  using the following algorithm. We 
take a corresponding multiplet of the matrix  P  (   n   )     =    [C   A;   U   G] (   n   )  and change 
its letters C and G to  ϕ . Then we take the letters A and U in this multiplet 
and change each of them to  ϕ   − 1 . As a result, we obtain a chain with  n  links, 
where each link is  ϕ  or  ϕ   − 1 . The product of all such links gives the value 
of corresponding matrix elements in the matrix  Φ  (   n   ) . For example, for the 
matrix   Φ 3 3 1 2( ) ( )= ( )PMULT , let us calculate a matrix element which is disposed at 
the same place as the triplet CAU in the matrix [C   A;   U   G] (3)     =     P  (3) . According 
to the algorithm described, one should change the letter C to  ϕ  and the letters 
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A and U to  ϕ   − 1 . In the example considered, we obtain the following product: 
( ϕ     ×     ϕ   − 1     ×     ϕ   − 1 )    =     ϕ   − 1 . This is the desired value of the matrix element considered 
for the matrix  Φ  (3)  in Figure  2.6   . 

 A ratio between adjacent numbers in numerical sequences inside each such 
matrix  Φ  (   n   )  (e.g.,  …    ϕ   − 3  ,   ϕ   − 1  ,   ϕ  1  ,   ϕ  3  ,  … ) is equal to   ϕ  2   always. The same ratio   ϕ  2   
exists in regular 5 - stars as a ratio between sides of the adjacent stars entered 
in each other (this pentagram is the ancient symbol of health). 

 The golden section is presented in fi ve - symmetrical objects of biological 
bodies (e.g., fl owers), which are present widely in living nature but are forbid-
den in classical crystallography. It exists as well in many fi gures of modern 
generalized crystallography: quasicrystals by Shechtman, Penrose ’ s mosaics 
(Penrose,  1989 ), dodecahedrons of ensembles of water molecules, icosahedron 
fi gures of viruses, and biological phyllotaxis laws, for example. 

 One can propose a new principal  matrix - genetic  defi nition of the golden 
section on the basis of the matrix specifi cs of genetic code systems: The golden 
section  ϕ  and its inverse value  ϕ   − 1  are single matrix elements of a bisymmetri-
cal matrix  Φ  MULT , which is the square root of such a bisymmetrical 2    ×    2 matrix 
 P  MULT,  the elements of which are genetic numbers of hydrogen bonds 
(C    =    G    =    3, A    =    U    =    2) and which has a positive determinant. 

 This matrix - genetic defi nition does not use traditional elements of defi ni-
tion of the golden section: line segments, their proportions, and so on. Probably, 
many realizations of the golden section in nature are related to its matrix 
essence and its matrix representation. It should be investigated specially and 
systematically, where in natural systems and phenomena we have the bisym-
metric matrix  P  MULT  with its matrix elements 3 and 2 in a direct or masked 
form (e.g., in the form of such pairs of numbers as 6 and 4, or 9 and 6, or 12 
and 8, with the same 3   :   2 proportion which is so frequent for ratios of elements 

     FIGURE 2.6     Beginning of the Kronecker family of the golden matrices 
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in genetic codes). One can, in this way, hope to discover many new system 
phenomena and connections between them in nature. 

 The new theme of the golden section in genetic matrices seems to be impor-
tant because many inherited physiological systems and processes are con-
nected with it. It is known that proportions of a golden section characterize 
many physiological processes: cardiovascular processes, respiratory processes, 
electric activities of brain, locomotion activity, and so on. The golden section 
has long been described and investigated as a phenomenon of aesthetic per-
ception as well. Taking these facts into account, the golden section should be 
considered as a candidate for the role of one of the base elements in an inher-
ited interlinking of the physiological subsystems, which provides unity of an 
organism. The matrix relation between the golden section  ϕ  and signifi cant 
parameters of genetic codes testifi es in favor of a molecular genetics that 
provides such physiological phenomena. One can hope that the algebra of 
bisymmetric genetic matrices, which are connected with the theme of the 
golden section, will be useful for explanation and in the numerical forecasting 
of separate parameters in different physiological subsystems of biological 
organisms with their cooperative essence and golden section phenomena. 

 The Kronecker families of the golden and quint genomatrices are con-
nected with the famous Pascal triangle by means of quantities of equal numbers, 
which are presented in sequences of matrices of increasing size. As is evident 
from Figure  2.2 , the golden 2    ×    2 matrix contains one number  ϕ  1  and one 
number  ϕ   − 1 ; the 2 2     ×    2 2  matrix contains one number  ϕ  2 , one number  ϕ   − 2 , and 
two numbers  ϕ  0 ; the 2 3     ×    2 3  matrix contains one number  ϕ  3 , one number  ϕ   − 3 , 
three numbers  ϕ , three numbers  ϕ   − 1 , and so on. With the appropriate arrange-
ment, which is shown in Table  2.3 , Pascal ’ s triangle is formed.   

 The molecular system of the genetic alphabet is constructed by nature such 
that other genetic matrices play the role of quint and golden matrices for other 
parameters. An example is that of the quantities of atoms in the molecular 
rings of pyrimidines and purines: The ring of purine contains six atoms, and 
the ring of pyrimidine contains nine atoms (Figure  2.1 ). From the viewpoint 
of these types of parameters, C    =    U    =    6 and A    =    G    =    9. The ratio 9   :   6    =    3   :   2 is 
equal to the quint. Thus, the symbolic matrices [A   C;   U   G] (   n   ) , [G   C;   U   A] (   n   ) , 

  TABLE 2.3    Pascal ’ s Triangle for Quantities of Iterative Types of Numbers in the 
Kronecker Family of the Golden Matrices from Figure  2.6  

   Matrix Size     Pascal ’ s Triangle   a     

  2 1     ×    2 1  
 2 2     ×    2 2  
 2 3     ×    2 3  
 2 4     ×    2 4  
  …  …   

   1 ( ϕ  1 )       1 ( ϕ   − 1 ) 
  1 ( ϕ  2 )       2 ( ϕ  0 )        1 ( ϕ   − 2 ) 
  1 ( ϕ  3 )       3 ( ϕ  1 )        3 ( ϕ   − 1 )       1 ( ϕ   − 3 ) 
  1 ( ϕ  4 )       4 ( ϕ  2 )        6 ( ϕ  0 )       4 ( ϕ   − 2 )       1 ( ϕ   − 4 ) 
  …  …  …  …  …  …  …  …  …  …  …  …  …  …  …  …  …  …  …  …   

     a  The parentheses contain iterative numbers in the matrix of corresponding size.   
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[A   U;   C   G] (   n   ) , and [G   U;   A   C] (   n   )  become the threefold quint matrixes in the 
Kronecker power  n  in case of the replacement of their symbolic elements by 
the numbers 9 and 6. The square root of such numeric matrices is obviously 
connected with the golden matrices. 

 A biological organism is the master in the use of a set of parallel informa-
tion channels. It is enough to point out the many sensory channels by means 
of which we obtain sensory information simultaneously: visual, acoustical, 
tactile, and so on. It is probable that many types of genetic matrices are used 
by an organism in parallel information channels as well. 

 The theory of discrete signal processing utilizes the important notions of 
the energy and power of signals (details of which were provided earlier in the 
chapter). If one interprets any row of the quint genomatrix   P n n

MULT
( ) ( )= [ ]3 2 2 3;  

as a vector signal, the energy of such a vector signal is equal to 13  n   and its 
power is equal to (13/2)  n  . If one interprets any row of the golden genomatrix 
 Φ  (   n   )     =    ([C   A;   U   G] (   n   ) ) 0.5  as a vector signal, the energy of the vector signal 
would equal 3  n   and its power would be (3/2)  n  , where the quint ratio partici-
pates. The family of the quint genomatrices is connected with the Pythagorean 
musical scale (Petoukhov,  2006, 2008a ; Petoukhov and He,  2009 ). 

 The bisymmetric genomatrices  Φ  (   n   )  and   P n
MULT
( )  have an unexpected group -

 invariant property, which is connected with multiplications of matrices and can 
be termed the  mosaic - invariant property . We will explain this property using 
the matrix   PMULT

3( )  from Figure  2.5  as an example. This matrix consists of only 
four numbers: 8, 12, 18, and 27, with their special disposition. The numbers 8 
and 27 are disposed separately at matrix diagonals in the form of a diagonal 
cross. The number 12 is disposed in matrix cells, a set of which produces a 
special mosaic. Such a mosaic can be referred to conditionally as the  symbol  
69 (note that the numbers 6 and 9 are famous in  I Ching  as traditional symbols 
of yin and yang, respectively, but such a coincidence can be accidental.) The 
number 18 is disposed in matrix cells, a set of which produces a mirror -
 symmetrical mosaic in comparison with a 69 - mosaic of the previous case. 
Figure  2.7  demonstrates these two cases by means of the set of dark matrix 
cells with the number 12 (left matrix) and with the number 18 (right matrix).   

     FIGURE 2.7     Mosaic of cells with number 12 ( left , the dark cells) and number 18 
( right ) from the multiplicative matrix   PMULT

3( )  (Figure  2.5 ).  
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 It is known that if an arbitrary octet matrix with four types of numbers as 
its matrix elements is raised to the power  n , the resulting matrix will usually 
have many more types of numbers with very different dispositions (up to 64 
types of numbers for 64 matrix cells). But our bisymmetrical genetic matrices 
have the unexpected property of invariance of their numerical mosaic 
after the operation of raising to the power  n . For example, if the octet matrix 
  PMULT

3( )  is raised to the power of 2, the resulting octet matrix   PMULT
3 2( )( )  will 

have a new set of four numbers 2197, 2028, 1872, and 1728 (instead of the 
initial four numbers 27, 18, 12, and 8) with the same disposition inside the octet 
matrix. 

 It is essential that this beautiful property of invariance of the numeric 
mosaic of the genetic matrix is independent of values of numbers. This prop-
erty is realized for such matrices with the arbitrary set of four numbers  a ,  b , 
 c , and  d  if they are located in the same manner inside a matrix. Moreover, if 
we have one matrix  X  with a set of four numbers  a ,  b ,  c , and  d , and another 
matrix  Y  with another set of four numbers  k ,  m ,  p , and  q , the product of these 
matrices will be the matrix  Z     =     XY  with a set of four numbers  r ,  g ,   υ  , and  z  
and with the same mosaic of their disposition (Figure  2.8 ).   

 It is obvious that the four symbols (e.g.,  a ,  b ,  c ,  d ) in such matrices can be 
not only ordinary numbers, but also such arbitrary mathematical objects as 
complex numbers, matrices, or functions of time (e.g.,  a     =     R    cos    wt ,  b     =     T    sin    wt , 
 … ). The mosaic - invariant property of these genetic matrices is an expression 
of the cooperative behavior of its elements, not the result of the individual 
behavior of each type of element. This property is reminiscent of some aspects 
of the cooperative behavior of the elements of biological organisms. This 
property is explained by the fact that the matrices described are matrix forms 
of presentation of a special type of hypercomplex number, the  hyperbolic 
matrions  (for details, see Petoukhov,  2008a ; Petoukhov and He,  2009 ). 

 A mathematical analogy exists between the bisymmetric 2    ×    2 genomatri-
ces and the famous matrices of the hyperbolic turn, which are also bisymmetri-
cal: [sh( x )   ch( x );   ch( x )   sh( x )], where sh( x ) and ch( x ) are the hyperbolic sine 
and cosine. This analogy gives us the opportunity to interpret normalized 

     FIGURE 2.8     Multiplication of mosaic - invariant matrices  X  and  Y  gives a new matrix 
 Z  with the same mosaic of the disposition of its four types of numbers. Cells with the 
numbers  b ,  m , and  s  in the matrices  X ,  Y , and  Z  are shaded.  
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bisymmetric genomatrices in connection with hyperbolic turns, which have the 
following applications in physics and mathematics: 

   •      The rotation of pseudo - Euclidean space  
   •      The special theory of relativity  
   •      The geometric theory of logarithms, where properties of logarithms are 

introduced by hyperbolic turns (Shervatov  ,  1954 )  
   •      The theory of solitons of the sine - Gordon equation    

 In particular, this coincidence of the genomatrices with the matrices of 
hyperbolic turns refl ects the structural connections of the genetic code with 
the famous psychophysical Weber – Fechner law.   

   2.5    SYMMETRICAL PATTERNS, MOLECULAR GENETICS, 
AND BIOINFORMATICS 

 Symmetry in biological systems, in particular in the form of biological bodies, 
caused continuing interest to be expressed by thinkers for centuries as one of 
the most remarkable and mysterious phenomena of nature (e.g., Thompson 
d ’ Arcy,  1942 ; Weyl,  1952 ), and the work of many modern scientists is devoted 
to it as well. Problems of biological symmetries at a macromolecular level were 
considered in a special Nobel symposium (Engstrom and Strandberg,  1968 ), 
in which the important role of symmetry in biological research was empha-
sized. School programs in biology include consideration of numerous exam-
ples: rotary, transmitting, and mirror symmetries, symmetries of scale similarity 
in biological bodies such as fl owers and sprouts of plants, and support - motion 
systems of animals. 

 Principles of symmetry have played an important role in the x - ray analysis 
of genetic molecules, as a result of which the concept of the double helix of 
DNA was developed in the famous work by Crick and Watson (Roller,  1974 ; 
Watson and Crick,  1953 ). Also, living substances are traditionally compared 
with crystals to reveal similarities and differences between them. For example, 
Schr ö dinger  (1955)  considered a living substance to be an aperiodic crystal. 
But all crystallography is based on principles of symmetry; crystallography has 
given a powerful impulse to the development and application of methods of 
symmetry in the mathematical natural sciences, including mathematical 
biology. New discoveries in crystallography frequently generate new hypoth-
eses and discussions regarding the role of symmetry in crystals and living 
substances. The discovery of quasicrystals (Shechtman et al.,  1984 ), which were 
connected to mosaics by Penrose  (1989, 2004) , with pentagrams (penta -
 symmetry) and with the golden section, can serve as an example here. This 
discovery has drawn the attention of researchers again to fi ve - symmetries, 
which exist widely in biological bodies (e.g., colors, starfi sh) and which are 
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forbidden in classical crystallography, with its principles of dense packing, 
one type of confi guration unit. 

 The development of biological knowledge is accompanied by revealing new 
facts of subordination of very different biological objects to principles of sym-
metry on very different levels of their organization. Many biological concepts 
that have been affi rmed in science or that sometimes cause critical discussions 
are connected to some extent with the question of biological symmetry: 
the law of homologous series (Vavilov,  1922 ); theories of morphogenetic fi elds; 
the hypothesis by Vernadsky  (1965)  regarding the non - Euclidean geometry 
of living matter; and conceptions about the morphogenetic conditionality of 
many psychological phenomena, including the phenomenon of aesthetic pref-
erence of the golden section, which is connected with Fibonacci numbers and 
morphogenetic laws of phyllotaxis (see the reviews of phyllotaxis in books by 
Jean,  1994  and Jean and Barabe,  2001 ). 

 Molecular biology has discovered the existence of fundamental problems of 
symmetry and of left – right dissymmetry on the level of biological molecules. 
On the other hand, development of the theory of symmetry has raised questions 
about new types of symmetry: for example, of non - Euclidean symmetry in 
biological bodies (see reviews by Petoukhov,  1981, 1989 ). Modeling biological 
phenomena on the basis of modern theories of nonlinear dynamics enters into 
the biological models at the highest levels of symmetry, which were known 
earlier in the fi elds of mathematics and physics. For example, the solitonic model 
of the macrobiological phenomena involves symmetries of Lorentz transforma-
tions from the special theory of relativity (Petoukhov,  1999a ). It is no doubt 
that principles of symmetry were, are, and will continue to be a major compo-
nent in the development of biology. They will play an increasing role in theo-
retical biology because of their status as one of the fundamentals of modern 
natural mathematical sciences as a whole (Bernal et al.,  1972 ; Birss,  1964 ; 
Darvas,  2007 ; Fujita,  1991 ; Gardner,  1991 ; Hahn,  1989, 1998 ; Hargittai,  1986, 
1989 ; Hargittai and Hargittai,  1994 ; Kappraff,  2002 ; Leyton,  1992 ; Loeb,  1971, 
1993 ; Mainzer,  1988 ; Mandelbrot,  1983 ; Marcus,  1990, 2006 ; Miller,  1972 ; Moller 
and Swaddle,  1997 ; Ne ’ eman,  1999, 2002   ; Ne ’ eman and Kirsh,  1986 ; Petoukhov, 
 1981 ; Rosen,  1983   ,  1995 ; Shubnikov and Koptsik,  1974 ; Stewart and Golubitsky, 
 1992 ; Weyl,  1931, 1946, 1952 ; Wigner,  1965, 1967, 1970 ). Such a fundamental 
status for the principles of symmetry is connected with the famous Erlangen 
program by Klein and with the process of geometrization of physics (Lochak, 
 1994 ; Weyl,  1952 ). This process of geometrization has led to the interpretation 
of many basic theories of physics as theories of symmetry: The special theory 
of relativity, quantum mechanics, the theory of conservation laws, theories of 
elementary particles, and some other parts of modern physics are examples. 

 Investigations of symmetries are most relevant when science does not know 
how to create a theory of a concrete natural system. Biological organisms 
belong to a category of very complex natural systems. The variety of organisms 
is very numerous. They differ from each other vastly in many aspects: by their 
size, appearance, types of motions, and so on. But to humanity ’ s surprise, 
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molecular genetics has discovered that from a molecular - genetic viewpoint, all 
organisms are equivalent to each other by their basic genetic structure. Due 
to this revolutionary discovery, a great unifi cation of all biological organisms 
has taken place in science, and information - genetic lines of investigation 
have become one of the most effective not only in biology, but in science as a 
whole. It is essential that a basic system of genetic coding is strikingly simple. 
Its simplicities and its orderliness throw down a challenge to specialists in 
many scientifi c fi elds, including specialists in the theory of symmetry and 
antisymmetry. 

 It should be noted that the fantastic successes of molecular genetics have 
been defi ned in particular by the disclosure of phenomenological facts of sym-
metry in molecular constructions of the genetic code and by a skillful use of 
these facts in theoretical modeling. An outstanding example is the discovery 
of a symmetrological fact, refl ected in the famous rule by Chargaff, of an equal-
ity of quantities of nitrogenous bases in their appropriate pairs (adenine –
 thymine and cytosine – guanine) in molecules of DNA in a variety of organisms. 
This phenomenological rule was used skillfully in the theoretic modeling of 
the double helix of DNA by Crick and Watson using additional symmetro-
logical principles (Roller,  1974 ). Many specialists from many countries around 
the world now work in this very attractive fi eld of investigation of symmetries 
in the genetic code and bioinformatics (Arques and Michel,  1994, 1996, 
1997 ; Bakhtiarov,  2001 ; Chernavskiy,  2000 ; Dragovich and Dragovich,  2007 ; 
Frank - Kamenetskiy,  1988 ; Hargittai,  2001 ; He,  2001 ; He and Petoukhov,  2007 ; 
He et al.,  2004, 2005 ; Jimenes - Montano,  2005 ; Karasev,  2003 ; Karasev et al., 
 2005 ; Kargupta,  2001 ; Khrennikov and Kozyrev,  2007 ; Konopelchenko and 
Rumer,  1975 ; MacDonaill,  2003, 2005 ; Makovskiy,  1992 ; Marcus,  2001, 2007 ; 
Negadi,  2001, 2005, 2006 ; Petoukhov,  1990, 2001a,b, 2003, 2003 – 2004, 2005, 
2006, 2008a,b ; Ratner,  2002 ; Shcherbak,  1988 ; Stambuk,  1999 ; Stambuk et al., 
 2005 ; Szabo and He,  2006 ; Szabo et al.,  2005 ; Waterman,  1999 ; Yang,  2001, 2005 ). 

 From an information viewpoint, biological organisms are informational 
essences. They obtain genetic information from their ancestors and transmit it 
to their descendants. In the biological literature we often come across the 
statement that living organisms are the texts of a molecular level of their 
organization. Just from an information - hereditary point of view, all living 
organisms are wonderfully unifi ed: All have identical bases of genetic coding. 
A conception of the informational nature of living organisms is refl ected in 
the words:  “ If you want to understand life, don ’ t think about vibrant, throbbing 
gels and oozes, think about information technology ”  (Dawkins,  1991 ). Or 
another citation, which presents a similar direction of thought:  “ Notions of 
 ‘ information ’  or  ‘ valuable information ’  are not utilized in the physics of non -
 biological nature because they are not needed there. On the contrary, in 
biology the notions of  ‘ information ’  and especially  ‘ valuable information ’  are 
main ones; understanding and description of phenomena in biological nature 
are impossible without these notions. A specifi city of  ‘ living substance ’  lies in 
these notions ”  (Chernavskiy,  2000 ). 
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 In the attempt to reveal the genetic code, the theoretical problem of a 
 “ bioinformation evolution ”  has arisen. This problem exists alongside ideas 
about chemical evolution and is very signifi cant for understanding biological 
life. Informatics began to be used in concepts of the origin of life and in theo-
retical biology only in the past few decades. Now modern science hopes to 
obtain a deeper and more substantive understanding of life and its origin from 
the viewpoint of bioinformatics. In our opinion, modern investigations in the 
fi eld of bioinformatics form the foundation of future theoretical biology. 
Therefore, the problem of the maximum union of molecular - genetic knowl-
edge with the mathematics of the theory of discrete signal processing is espe-
cially relevant. 

 Bioinformatics can lead to deeper knowledge regarding the questions of 
what life is and why life exists. An investigation of symmetrical and structural 
analogies between computer informatics and genetic informatics is one of the 
important tasks of modern science in connection with the creation of DNA 
computers and with the development of bioinformatics. The development of 
bioinformatics and its applications requires an appropriate mathematical 
model of structural ensembles of genetic elements. The methods of symmetry 
can be one of the most useful in creating such a model. In this chapter we 
demonstrate the usefulness of methods of symmetry to study the genetic code 
and to develop effective matrix approaches in the fi eld of genetic coding. 

 We should note that many attempts have been made to construct mathe-
matical models or biochemical explanations of separate features of the genetic 
code. One of the most historically famous attempts to answer questions regard-
ing the 20 amino acids was made by George Gamow more than 50 years ago 
(Gamow,  1954 ; Gamow and Metropolis,  1954 ). He proposed an explanation 
based on morphological character: that this quantity of amino acids is defi ned 
by the molecular confi guration of the double helix of DNA, which possesses 
the appropriate quantity of hollows along the double helix. A few initial 
attempts at an explanation of features of the genetic code have been presented 
(Stent,  1971 ; Ycas,  1969 ). 

 Some mathematical, and other approaches to the genetic code have been 
proposed in the literature (Cristea,  2002, 2004, 2005 ; Dragovich and Dragovich, 
 2007 ; He,  2001 ; Jimenes - Montano,  2005 ; Karasev,  2003 ; Khrennikov and 
Kozyrev,  2007 ; Konopelchenko and Rumer,  1975 ; MacDonaill,  2003, 2005 ; 
Negadi,  2005, 2006 ; Petoukhov,  2001a,b, 2003, 2003 – 2004, 2005, 2006, 2008a,b ; 
Ratner,  2002 ; Shcherbak,  1988 ; Stambuk,  1999 ; Waterman,  1999 ; Yang,  2001, 
2005 ; etc.). Each of these attempts was important for the general advancement 
of the science leading to understanding the genetic code. This work was very 
useful because it has shown the specifi city of the code and its differences from 
many other natural systems, the diffi culties in modeling its features to obtain 
a fruitful model, the multiplicity of approaches in attempts at such modeling, 
the importance of the decision to perform this task, and so on. These publica-
tions have drawn the attention of many young researchers to this fundamental 
problem. Despite many interesting publications, the general situation in under-
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standing the genetic code is characterized by the following words, which are 
also cited in the preface:  “ What do we have now in the 10 million nucleotide 
of sequence data determined to date?  …  We have the program that runs the 
cellular machinery, but we know very little about how to read it. Bench biolo-
gists, by experiment and by close association with the data, have found mean-
ingful patterns. Theoreticians, by careful reasoning and use of collections of 
data, have found others, but we still understand frustratingly little ”  (Fickett 
and Burks,  1989 ). It is clear that new efforts should be made to study the 
structural organization of the genetic code from the viewpoint of informatics 
and the mathematical natural sciences. 

 There is one more consequence as a result of revealing the connection 
between the genetic matrices  P  (   n   )  and the matrices of diadic shifts   P n

DIAD
( )  (Figure 

 2.3   ). This consequence concerns utilizing the notions and formalisms of diadic 
spaces, diadic metrics, and so on (Harmut,  1989 ), which are known in the fi eld 
of computer informatics and in the new fi elds of matrix genetics and bioinfor-
matics. Speculation by Stent  (1969)  and Jacob  (1974)  of a possible relation 
between the genetic code and the symbolic system of the ancient Chinese 
 I Ching  has resulted in new material for further examination. 

 Investigations of ensembles of elements of the genetic code with their sym-
metrical features have led to the construction of the Kronecker family of 
genetic matrices. This matrix family presents all sets of genetic multiplets in a 
well - ordered general form, where each multiplet obtains its own individual 
number in binary notation on the basis of the molecular characteristics of the 
genetic letters A, C, G, and U/T. Such a general form is connected with impor-
tant principles and methods of computer informatics and of noise immunity 
in digital techniques. It gives new mathematical insight into the study of 
genetic systems and their connections with computer informatics and the 
algebraic theory of coding. For example, incipient indications were obtained 
that the logics of structures of the genetic code are related to logical modulo - 2 
addition.  

   2.6    CHALLENGES AND PERSPECTIVES 

 An understanding of the genetic code and the origin and evolution of all life -
 forms is critically dependent on our ability to analyze the historical data and 
to reconstruct phylogenetic relationships and connections among species at 
various levels of organization. The current status of the fi eld offers limited 
methods for this reconstruction, and only one method provides a measure of 
uncertainty in the fi nal tree structure. The diffi culty of reconstruction grows 
exponentially with the number of initial data points, and efforts at resolution 
pose challenging problems in mathematics and computation. Mathematics can 
play a crucial role in connecting different levels of organization. Computational 
and algorithmic advances can speed up development of the subject immea-
surably. Biologists seek explanations of supramolecular phenomena at the 
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molecular level. For example, embryogenesis involves the coordinated move-
ment and differentiation of cell populations in terms of chemistry and genetics. 
To understand organismal biology, it is important that we understand how 
high - level coherent organization results from mechanisms operating at the 
molecular level. The fundamental question is to build from one level to another. 
What mechanisms could bridge this gap? 

 Modeling developmental and dynamic processes are challenging and excit-
ing. Nonlinear systems of partial differential equations have been employed 
to model these processes. For example, reaction diffusion equations have 
stimulated the creation of new mathematics to study the wide spectrum of 
solution behaviors exhibited by these equations. The Navier – Stokes equations 
on fl uid fl ows possess a rich solution behavior. The methods developed for 
Navier – Stokes equations quite often are not adequate to cope with the new 
models that arise in biology, but bifurcation theory, linear analysis, and singular 
perturbation methods have already revealed new phenomena. Numerical 
simulation techniques related to these processes are valuable and need further 
refi nement. Mechanochemical models for biological quantities concerning 
pattern formation have been developed. Murray  (1989)  provided a general 
survey of these and other pattern formation models. Numerical simulation, 
particularly with mechanochemical models, is challenging even in two dimen-
sions. Biological applications require solutions in three - dimensional domains 
whose sizes change in time. We need to develop new analytical and numerical 
simulation techniques and visualization methods to explore the solution 
behaviors of such models. Recent advances in experimental biology such as 
recombinant DNA technology and computer - enhanced imaging have created 
new databases. These data sets are so extensive and complex that math-
ematical approaches are essential to understand these data sets and make 
sense of them. 

 Biologists use the confocal scanning laser microscope and gene sequencers 
to gather data into a database. The modern computer graphics technology 
allows us to display the dynamic behavior of a mathematical model in the 
same form as that in which experimental data are stored. The graphical visu-
alization of models makes it possible to compare the behavior of a quantita-
tive model with the data sets and yields the most compelling medium of 
communication between mathematical modelers and biologists. One may 
now obtain three - dimensional stereo reconstructions of the temporal evolu-
tion and spatial expression pattern of genes. Similarly, it is possible to observe 
intracellular and intercellular events. A model of early pattern formation and/
or morphogenesis (Edgar et al.,  1989 ) in the  Drosophila  embryo could 
produce the same output that confocal microscopy gathered as input. The 
challenge is to understand how the gene network results in a globally coher-
ent spatial pattern as a consequence of temporal biochemical dynamics. In 
recent years, recombinant DNA technology advances have produced 
molecular - level databases documenting a complex network of genes that 
code for proteins that control the expression of other genes. Given the com-
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plexity of genetic networks, mathematical analysis may be the only way to 
synthesize the global picture from molecular - level parts. Mathematics can 
compute the macroscopic pattern formation consequences of this molecular -
 level information. Along with mathematical models, computer graphics are 
used to visualize data and dynamic behavior. For example, it has been shown 
that a network of cross - regulating genes regulates early development in 
 Drosophila . The cell motility is driven by the cellular cytoskeleton, whose 
mechanochemical regulation is controlled by a network of regulatory mole-
cules. Mathematics provides a framework for connecting information at the 
micro level to macro - level observations. According to the classical local acti-
vation lateral inhibition mechanism (Keller and Segel,  1970 ; Oster and 
Murray,  1989 ), spatial patterns can be created. Turing  (1952)  proposed a 
chemical mechanism for pattern formation (but not morphogenesis). In this 
model, activator and inhibitor morphogens diffuse at different rates and react 
with one another. Mathematical analysis shows how spatially heterogeneous 
patterns of morphogen concentration can arise. Another grand challenge is 
that of molecular evolution. 

 Many challenging and important problems remain to be solved in the appli-
cation of population genetic theory to molecular evolution. The existing 
methods of population genetics, such as the neutral theory, which were devel-
oped to describe variations at single loci, require restructuring to address 
questions that arise in the analysis of DNA sequence data. Advances in com-
puting power have revolutionized measurement techniques, which generate 
an abundance of biological data and a need for concomitant advances in 
quantitative methods of analysis. The interface between experimentation, 
mathematics, and computations is manifested at every stage of scientifi c inves-
tigation. A biological investigation often results in a proposal for a class of 
mathematical models. Such models may provide insight into the molecular 
processes (which need not be observable experimentally) and may also suggest 
new experiments. Collaborations between biologists and statisticians are 
essential in developing statistical and other modeling methods for research in 
biology.  
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  3    Biological Sequences, Sequence 
Alignment, and Statistics     

     Biological sequences comprise primarily  DNA sequences  (also called  genetic 
sequences  or  nucleotide sequences ) and  amino acid sequences  (also called 
 peptide sequences  or  protein sequences ). DNA sequences direct the formation 
of amino acid sequences and determine the expression and regulation of genes. 
They determine the main aspects of the life process. Amino acid sequences 
determine the structures and functions of proteins. The abundant biological 
sequence data provide us with the most important information regarding life. 
Life is a manifestation of a combination of information, substance, and move-
ment. Obtaining the sequence data is an initial step toward an understanding 
of these data. Biologists often produce biological sequence alignments in a 
manual manner using knowledge of DNA and protein structure and evolution. 
In bioinformatics, a sequence alignment is a way of arranging the primary 
sequences of DNA, RNA, or protein to identify regions of similarity that may 
be a consequence of a functional, structural, or evolutionary relationship 
between sequences. A true alignment of biological sequences is one that 
refl ects the evolutionary relationship between two or more sequences that 
share a common ancestor. 

 In this chapter we defi ne biological sequences, mathematical sequences, and 
binary sequences in theoretical computer science. We describe pairwise 
sequence alignment, multiple sequence alignment, and optimal sequence 
alignment. We discuss the scoring system used to rank alignments, the algo-
rithms used to fi nd optimal (or good) scoring alignments, and the statistical 
methods used to evaluate the signifi cance of an alignment score.  

   3.1    INTRODUCTION 

 A  DNA  or  genetic sequence  is a succession of letters representing the primary 
structure of a real or hypothetical DNA molecule or strand, with the capacity 
to carry information. The possible letters are A, C, G, and T, representing the 
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four nucleotide subunits of a DNA strand: adenine, cytosine, guanine, and 
thymine bases covalently linked to a phospho - backbone. In the typical case, 
the sequences are printed abutting one another without gaps, as in the sequence 
AAAGTCTGAC, going from 5 ′  to 3 ′  from left to right. A succession of any 
number of nucleotides greater than four is liable to be called a sequence. With 
regard to its biological function, which may depend on context, a sequence 
may be  sense  or  antisense , and either coding or noncoding. DNA sequences 
may also contain  “ junk DNA. ”  

 In some special cases, letters other than A, T, C, and G are present in a 
sequence. These letters represent ambiguity. The rules of the International 
Union of Pure and Applied Chemistry (IUPAC) are as follows:

   A adenine=  

   C cytosine=  

   G guanine=  

   T thymine=  

   R GA purine= ( ) 
   Y TC pyrimidine= ( ) 

   K GT keto= ( ) 
   M AC amino= ( ) 

 A peptide or  amino acid sequence  is the order in which amino acid residues, 
connected by peptide bonds, lie in a chain in peptides and proteins. The 
sequence is generally reported from the N - terminal end, which contains a free 
amino group, to the C - terminal end, which contains a free carboxyl group. A 
peptide sequence is often called a  protein sequence  if it represents the primary 
structure of a protein. Amino acids are the basic structural building units of 
proteins. They form short polymer chains called  peptides  or longer chains 
called either  polypeptides  or  proteins . The process of such formation from an 
mRNA template, known as  translation , is part of protein biosynthesis. Twenty 
amino acids are encoded by the standard genetic code (Table  3.1 ). Proteins 
are defi ned by their unique sequence of amino acid residues; this sequence is 
the primary structure of the protein. Just as the letters of the alphabet can be 
combined to form an almost endless variety of words, amino acids can be 
linked in varying sequences to form a vast variety of proteins.    

   3.2    MATHEMATICAL SEQUENCES 

 In mathematics, a  sequence  is an ordered list of objects (or events). It contains 
 members  (also called  elements  or  terms ), and the number of members (possibly 

   S GC strong bonds= ( ) 

   W AT weak bonds= ( ) 

   B GTC all but A= ( ) 

   D GAT all but C= ( ) 

   H ACT all but G= ( ) 

   V GCA all but T= ( ) 

   
N AGCT any= ( )
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infi nite) is called the  length  of the sequence. Unlike a set, order matters, and 
exactly the same elements can appear multiple times at different positions in 
the sequence. 

 In the language of manoids, a fi nite set, called an  alphabet  is denoted by  Σ . 
For example,  Σ     =    {0, 1} is an alphabet of binary numbers, and  Σ     =    {A, C, G, T} is 
an alphabet of DNA basis. Let  I     =    {1, 2, 3,  …  ,  n } be a set of natural numbers. A 
sequence  I  (also called a  word  or  string ) of length  n  ( n     ≥    0) over the alphabet  Σ  
is a mapping  a :  I     →     Σ  denoted by  a     =    ( a  1 ,  a  2 ,  …  ,  a n  ), where  a i      =     a ( i ). If the 
sequence length is  n     =    0, we call this sequence the  empty sequence  and denote it 
by  ∈ . The set of all sequences over the alphabet  S  sequence is denoted by  S  * . For 
example, genetic or DNA sequences are sequences over the alphabet of nucleo-
tides, and amino acid sequences are sequences over the alphabet of amino acids. 

 An  infi nite sequence  over  S  is a mapping from  I  *     =    {1, 2,  … } (the set of 
natural numbers without 0) to  S . 

 A  subsequence  of a given sequence is a sequence formed from the sequence 
by deleting some of the elements without disturbing the relative positions of 
the remaining elements. 

 If the terms of the sequence are a subset of an ordered set, a  monotonically 
increasing sequence  is one for which each term is greater than or equal to the 
term before it; if each term is strictly greater than the one preceding it, the 

  TABLE 3.1    Standard Amino Acid Abbreviations    a     

   Amino Acid     Three - Letter Abbreviation     One - Letter Abbreviation  

  Alanine    Ala    a  
  Arginine    Arg    r  
  Asparagine    Asn    n  
  Aspartic acid    Asp    d  
  Cysteine    Cys    c  
  Glutamic acid    Glu    e  
  Glutamine    Gln    q  
  Glycine    Gly    g  
  Histidine    His    h  
  Isoleucine    Ile    i  
  Leucine    Leu    l  
  Lysine    Lys    k  
  Methionine    Met    m  
  Phenylalanine    Phe    f  
  Proline    Pro    p  
  Serine    Ser    s  
  Threonine    Thr    t  
  Tryptophan    Trp    w  
  Tyrosine    Tyr    y  
  Valine    Val    v  

     a  See Appendix  A  for more information on amino acids  .   
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sequence is called  strictly monotonically increasing . A  monotonically decreas-
ing sequence  is defi ned similarly. Any sequence fulfi lling the monotonicity 
property is called  monotonic  or  monotone . This is a special case of the more 
general notion of monotonic function. 

 The terms  nondecreasing  and  nonincreasing  are used to avoid any possible 
confusion with  strictly increasing  and  strictly decreasing , respectively. If the 
terms of a sequence are integers, the sequence is an  integer sequence . If 
the terms of a sequence are polynomials, the sequence is a  polynomial 
sequence . 

 If  S  is endowed with a topology, it becomes possible to consider conver-
gence of an infi nite sequence in  S . Such considerations involve the concept of 
the limit of a sequence. 

 In theoretical computer science, infi nite sequences of digits (or characters) 
drawn from a fi nite alphabet are of particular interest. They are often referred 
to simply as sequences (as opposed to fi nite strings). Infi nite binary sequences, 
for instance, are infi nite sequences of bits (characters drawn from the alphabet 
{0, 1}). The set  C     =    {0, 1}  ∞   of all infi nite binary sequences is sometimes called 
the  Cantor space . 

 An infi nite binary sequence can represent a formal language (a set of 
strings) by setting the  n th bit of the sequence to 1 if and only if the  n th string 
is in the language. Therefore, the study of complexity classes, which are sets of 
languages, may be regarded as the study of sets of infi nite sequences. 

 An infi nite sequence drawn from the alphabet {0, 1,  …  ,  b     −    1} may also 
represent a real number expressed in the base -  b  positional number system. 
This equivalence is often used to bring the techniques of real analysis to bear 
on complexity classes.  

   3.3    SEQUENCE ALIGNMENT 

 The foundation of sequence alignment and analysis is based on the fact that 
biological sequences develop from preexisting sequences instead of being 
invented by nature from the beginning. The sequence of a gene can be altered 
in a number of ways. Three types of changes can occur at any given position 
within a sequence. Gene mutations have varying effects on health, depending 
on where they occur and whether they alter the function of essential proteins. 
Structurally, mutations can be classifi ed as follows: 

   •       Point mutations , often caused by chemicals or the malfunction of DNA 
replication, involve the exchange of a single nucleotide for another. Most 
common is the transition that exchanges a purine for a purine (A    ↔    G) 
or a pyrimidine for a pyrimidine (C    ↔    T).  

   •       Insertions  add one or more extra nucleotides into the DNA. They are 
usually caused by transposable elements or errors during replication of 
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repeating elements (e.g., AT repeats). Insertions in the coding region of 
a gene may alter the splicing of the mRNA (splice site mutation) or cause 
a shift in the reading frame (frame shift), both of which can signifi cantly 
alter the gene product. Insertions can be reverted by excision of the 
transposable element.  

   •       Deletions  remove one or more nucleotides from the DNA. Like inser-
tions, these mutations can alter the reading frame of the gene. Note that 
a deletion is not the exact opposite of an insertion; the former is quite 
random, whereas the latter consists of a specifi c sequence inserting at 
locations that are not entirely random or even quite narrowly defi ned.    

 An alignment between two (or more) sequences is a pairwise (multiple) 
comparison between the characters of each sequence. The basic sequence 
analysis is to ask if two or more sequences are related. A true alignment of 
biological sequences is one that refl ects the evolutionary relationship between 
two or more homologies, which are sequences that share a common ancestor. 
The key issues to sequence alignments are: 

   •      What sorts of alignment should be considered  
   •      The scoring system used to rank alignments  
   •      The algorithm used to fi nd optimal (or good) scoring alignments  
   •      The statistical methods used to evaluate the signifi cance of an alignment 

score    

 Here we fi rst demonstrate the scope of alignments (the number of 
alignments) to show that alignment is a diffi cult problem. Later we describe 
major optimal methods of pairwise sequence alignment and multiple 
sequence alignment. The alignment algorithms are given at the end of the 
chapter. 

  Number of Alignments 

 Let  a     =     a  1  a  2   …   a m   and  b     =     b  1  b  2   …   b n   be two sequences over an alphabet  Σ  of 
length  n  and  m . An alignment of the sequences  a  and  b  is a pair of sequences 
  a* * * *= a a am1 2 �  and   b* * * *= b b bm1 2 �  of equal length l, defi ned by inserting 
blanks in the sequences  a  and  b  over the extended alphabet  Σ  *     =     Σ     ∪    { · }. The 
alignment of  a  *  and  b  *  is represented in tabular form:

    a a aL1 2* * *�  

    b b bL1 2* * *�  

where max{ m ,  n }    ≤     L     ≤     m     +     n . When  L     =     m     +     n , the alignment is given by
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    a a aL1 2* * *� �− − −  

    − − −� �b b bL1 2* * *  

 For example, two alignments of the sequences ACCGTT and AGCCCCT 
are

    A C C G T T−  

    A G C C C C T 

and

    A C C G T T− −  

    A G C C C C T−   

 A column that contains two identical characters is called a  match , a column 
that contains two different nonblank characters is called a  mismatch , and a 
column that contains a blank is called an  indel  (insertion/deletion). A common 
question is to fi nd how many alignments are possible between the two 
sequences  a  and  b . To answer this question, we defi ne  f ( i ,  j )    =    number of all 
possible alignments of one sequence of  i  characters with another sequence of 
 j  characters. The idea is to focus on the end of alignment. Two sequences end 
in exactly one of three ways: 

     

   Case 1     Case 2     Case 3  

   …    am*     …    am*     …   –   
   …   –      …    bn*     …    bn*  

 The fi rst end alignment corresponds to an indel of   am*. There exist  f ( n     −    1, 
 m ) alignments of the earlier part of the sequence. The second end alignment 
corresponds to a match or mismatch. There exist  f ( m     −    1,  n     −    1) alignments. 
The last end alignment corresponds to an indel of   bn*. There exists  f ( m ,  n     −    1) 
alignments of the earlier part of the sequence. Therefore, the total number of 
alignments  f ( m ,  n ) satisfi es the following recurrence relation:

    f m n f m n f m n f m n, , , ,( ) = −( ) + − −( ) + −( )1 1 1 1   

 This recurrence relation was derived by Waterman  (1999)  and it was dem-
onstrated that this number increases rapidly. For example, two sequences of 
length 1000 have

    f 1000 1000 10767 4, .( ) ≈ …  

alignments.  
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  Pairwise Sequence Alignment 

 Pairwise sequence alignment methods are used to fi nd the best - matching 
piecewise (local) or global alignments of two query sequences. Pairwise align-
ments can only be used between two sequences at a time, but they are effi cient 
to calculate and are often used for methods that do not require extreme preci-
sion (such as searching a database for sequences with high homology to a 
query). The three primary methods of producing pairwise alignments are 
global alignment, local alignment, and global – local alignment.  

  Global Alignment 

  Global alignments , which attempt to align every residue in every sequence, are 
most useful when the sequences in a query set are similar and of roughly equal 
size. It provides the common means to measure the degree of overall similarity 
between two sequences. FASTA (FAST ALL) developed by Pearson and 
Lipman  (1988)  is a heuristic algorithm for global sequence alignment. It is 
used widely to align a query sequence against all sequences of a database. 
We describe here a commonly used algorithm for optimal global alignment. 
We point out that the optimal alignments depend on the input sequences and 
the algorithm parameters. The algorithm parameters assigned to matches, 
mismatches, and indels are determined by experience. 

 Optimal sequence alignment is closely related to the problem of fi nding the 
optimal edit distance in binary code. This is an old problem in coding theory 
introduced by Levenshtein  (1966) . The theory of semigroups and manoids 
provides the mathematical background for the manipulation of words over a 
fi nite alphabet. 

 Let  a     =     a  1  a  2   …   a m   and  b     =     b  1  b  2   …   b n   be two sequences over the alphabet 
 Σ  *  of approximately the same length. We defi ne the similarity scores  s ( a ,  b ) 
over the alphabet  Σ  *  as follows: 

  1.      s ( a ,  a )    >    0 for all  a   
  2.      s ( a ,  b )    <    0 for some ( a ,  b ) pairs  
  3.      s ( a ,  – )    =     s ( – ,  a )    =     −  g ( a ) [ −  g ( a ) is the indel penalty associated with  a ]    

 The global pairwise similarity alignment problem is to fi nd the maximum 
similarity between the two sequences:

    S s a bi i
i

L

a b, max ( *, *)( ) =
=
∑

1

 

where the maximum is over all alignments. Here the individual score  s ( x ,  y ) 
may be defi ned as

    s x y
p

q q
x y

x y

, log ,( ) =  
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where  p x   ,   y   is the probability that the characters  x  and  y  occur as an aligned 
column pair in a pairwise alignment of the match model, defi ned as

    P a b M px y, ,( ) = ∏  

and  q x   is the relative frequency of the character  x  to occur in the sequences  a  
and  b  in the random model  R , defi ned as

    P a b R q qx y,( ) = ∏ ∏   

 For both match and random models, we used the conditional probability 
notation  P ( A | B ). The conditional probability is the probability of some event 
 A , given the occurrence of some other event  B , defi ned as follows:

    P A B
P A B

P B
( ) =

∩( )
( )   

 Multiplying through, this becomes

    P A B P B P A B( ) ( ) = ∩( ) 

which can be generalized to

    P A B C P A P B A P C A B∩ ∩( ) = ( ) ( ) ∩( )  

 In addition to similarity measures, we also mention the commonly used 
distance measure that can be used as a score function for sequence alignment. 
The distance measure can be defi ned for the global pairwise distance align-
ment. Let  d ( a ,  b ) be the distance over the alphabet  Σ  *  as follows: 

  1.      d ( a ,  a )    =    0 for all  a   
  2.      d ( a ,  b )    =     d ( b ,  a ), cost of a mutation of  a  into  b   
  3.      d ( a ,  – )    =     d ( – ,  a )    =     g ( a ), positive cost of inserting or deleting of the char-

acter  a     

 Defi ne

    D d a bi i
i

L

a b, min ( *, *)( ) =
=
∑

1

 

where the minimum is over all alignments of  a  with  b . The main results on 
global pairwise alignment are stated below. 
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   Theorem 3.1   (Optimal Global Similarity Alignment)     Let  a     =     a  1  a  2   …   a m   and 
 b     =     b  1  b  2   …   b n   be two sequences over the alphabet  Σ , defi ne

    S i j S a a a b b bi j, ,( ) = ( )1 2 1 2� �  

and set

    S S j s b S i s ak
k

j

k
k

i

0 0 0 0 0
1 1

, , , , , , ,( ) = ( ) = −( ) ( ) = −( )
= =

∑ ∑   

 Then

    S i j S i j s a S i j s a b S i j si i j, max , , , , , , ,( ) = −( ) + −( ) − −( ) + ( ) −( ) + −1 1 1 1 ,, bj( ){ }   

 In particular,

    S a b S m n, ,( ) = ( )    

 Similarly, we have 

   Theorem 3.2   (Optimal Global Distance Alignment)     Let  a     =     a  1  a  2   …   a m   and 
 b     =     b  1  b  2   …   b n   be two sequences over the alphabet  Σ , defi ne

    D i j D a a a b b bi j, ,( ) = ( )1 2 1 2� �  

and set

    D D j d b D i d ak
k

j

k
k

i

0 0 0 0 0
1 1

, , , , , , ,( ) = ( ) = −( ) ( ) = −( )
= =

∑ ∑   

 Then

   D i j D i j d a D i j d a b D i j di i j, min , , , , , , ,( ) = −( ) + −( ) − −( ) + ( ) −( ) + −1 1 1 1 ,, bj( ){ }   

 In particular,

    D a b D m n, ,( ) = ( )    

 We illustrate the similarity alignment by the following examples. 

   Example 3.1     Consider two sequences, UAUAAU and AUAUAUAU, and 
score matches with a value of 2 and mismatches and indels with a value of  − 1. 
The matrix  D  is      
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 The optimal alignment score for these two sequences is  D (6, 8)    =    10.    

  Local Alignment 

 Biological sequences often contain similar subsequences that are preserved 
during the course of evolution. Local alignments are more useful for dissimilar 
sequences that are suspected to contain regions of similarity or similar sequence 
motifs within their larger sequence context. The problem of fi nding highly 
related subsequences of two sequences is accomplished by local alignment. 
The Smith – Waterman algorithm is a general local alignment method also 
based on dynamic programming. With suffi ciently similar sequences, there is 
no difference between local and global alignments. The BLAST (Basic Local 
Alignment Sequence Tool) is a fast heuristic algorithm for local alignment 
developed by Altschul et al.  (1990) . BLAST fi nds regions of similarity. Here 
we consider only the subsequences of consecutive elements. Any subsequence 
of a sequence  a  1  a  2   …   a m   has the form  a i a i    + 1   …   a m    +    k   for some 1    ≤     i     ≤     m  and 
 k     ≤     m     −     i . We present the optimal local alignment developed in the Smith –
 Waterman algorithm (Smith and Waterman,  1981 ). Let  a     =     a  1  a  2   …   a m   and 
 b     =     b  1  b  2   …   b n   be two sequences over the alphabet  Σ . Defi ne

    S ij kl S a a b bi j k l, ,( ) = ( )� �   

 What is the maximum similarity between subsequences of  a  and  b ? That is, 
fi nd

    L a b S ij kl S a a b b i j m k l ni j k l, max , , ,( ) = ( ) = ( ) ≤ ≤ ≤ ≤ ≤ ≤{ }� � 1 1   

   Theorem 3.3   (Optimal Local Alignment)     Let  a     =     a  1  a  2   …   a m   and  b     =     b  1  b  2  
 …   b n   be two sequences over the alphabet  Σ . Defi ne

    L i i m, ,0 0 0( ) = ≤ ≤  

    L j j n0 0 0, ,( ) = ≤ ≤  

    D  
  i   

    j      0 
  —   

   1 
 A  

   2 
 U  

   3 
 A  

   4 
 U  

   5 
 A  

   6 
 U  

   7 
 A  

   8 
 U  

  0     —     0     − 1     − 2     − 3     − 4     − 5     − 6     − 7     − 8  
  1    U     − 1     − 1    1    0     − 1     − 2     − 3     − 4     − 5  
  2    A     − 2    1    0    3    2    1    0     − 1     − 2  
  3    U     − 3    0    3    2    5    4    3    2    1  
  4    A     − 4     − 1    2    5    4    7    6    5    4  
  5    A     − 5     − 2    1    4    4    6    6    8    7  
  6    U     − 6     − 3    0    3    6    5    8    7    10  
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and

    
L i j L i j s a b L i j s a

L i j

i j i, max , , , , , , ,

,

( ) = − −( ) + ( ) −( ) + −( ){
−( )
0 1 1 1

1 ++ −( ) ≤ ≤ ≤ ≤ }s b i m j nj, ,1 1
 

where  s ( x ,  y )    ≥    0 if  x  and  y  match;  s ( x ,  y )    ≤    0 if  x  and  y  do not match or one 
of them is a blank. 

 Then

    L j l S a a b b i j m k l ni j k l, max , , ,( ) = ( ) ≤ ≤ ≤ ≤ ≤ ≤{ }0 1 1� �   

 Each maximal entry  L ( j  * ,  l  * ) of the array  L  corresponds to an optimal local 
alignment of the sequences  a  and  b .   

   Example 3.2     Consider the sequences GGTATGG and CCCTTTTCCC and 
score the matches with the value of 5, mismatches with the value of  − 4, and 
indels with the values of  − 7. The matrix  L  is then given as follows:      

 The optimal local alignment score for these two sequences is  L (5, 6)    =    6. This 
score leads to the optimal local alignment

    T A T 

    T T T     

  Global – Local Alignment 

  Global – local alignment  ( hybrid alignment ) compares a sequence with the 
subsequences of another sequence. This can be especially useful when the 
downstream part of one sequence overlaps with the upstream part of the other 
sequence. In this case, neither global nor local alignment is entirely appropri-
ate: A global alignment would attempt to force the alignment to extend beyond 

    L  
  i   

    j      0 
  —   

   1 
 C  

   2 
 C  

   3 
 C  

   4 
 T  

   5 
 T  

   6 
 T  

   7 
 C  

   8 
 C  

   9 
 C  

  0     —     0    0    0    0    0    0    0    0    0    0  
  1    G    0    0    0    0    0    0    0    0    0    0  
  2    G    0    0    0    0    0    0    0    0    0    0  
  3    T    0    0    0    0    5    5    5    0    0    0  
  4    A    0    0    0    0    0    1    1    1    0    0  
  5    T    0    0    0    0    5    5    6    0    0    0  
  6    G    0    0    0    0    0    2    1    2    0    0  
  7    G    0    0    0    0    0    0    0    0    0    0  
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the region of overlap, while a local alignment might not fully cover the region 
of overlap (Lipman et al.,  1984 ). Here we present an optimal global – local 
alignment. 

 Let  a     =     a  1  a  2   …   a m   and  b     =     b  1  b  2   …   b n   be two sequences of different length 
over the alphabet  Σ . Here we let  m     ≤     n . The problem is to fi nd the maximum 
matching of the shorter sequence with the longer one. That is, fi nd

    H S b b k l mk la b a, max ,( ) = ( ) ≤ ≤ ≤{ }� 1   

   Theorem 3.4   (Optimal Global – Local Alignment)     Let  a     =     a  1  a  2   …   a m   and 
 b     =     b  1  b  2   …   b n   be two sequences over the alphabet  Σ . Defi ne

    H j j m0 0 0, ,( ) = ≤ ≤  

    H i s a i nk
k

i

, , ,0 0
1

( ) = −( ) ≤ ≤
=

∑  

and

    
H i j H i j s a b H i j s a

H i j s

i j i, max , , , , , ,

,

( ) = − −( ) + ( ) −( ) + −( ){
−( ) +

1 1 1

1 −−( ) ≤ ≤ ≤ ≤ }, ,b i m j nj 1 1
 

where  s ( x ,  y )    ≥    0 if  x  and  y  match;  s ( x ,  y )    ≤    0 if  x  and  y  do not match or one 
of them is a blank. 

 Then

    H i j S a a b b i m k j ni i k j, max , ,( ) = ( ) ≤ ≤ ≤ ≤ ≤{ }� � 1 1   

 In particular,

    H H m j j na b, max ,( ) = ( ) ≤ ≤{ }1     

   Example 3.3     Consider the sequences AUUA and UAAUAAU and score the 
matches with a value of 5 and mismatches and indels with a value of  − 4. The 
matrix  H  is given as follows:      

    H  
  i   

    j      0 
  —   

   1 
 U  

   2 
 A  

   3 
 A  

   4 
 U  

   5 
 A  

   6 
 A  

   7 
 U  

  0     —     0    0    0    0    0    0    0    0  
  1    A     − 4     − 4    5    5    1    5    5    1  
  2    U     − 8    1    1    1    10    6    2    10  
  3    U     − 12     − 3     − 3     − 3    6    6    2    7  
  4    A     − 16     − 7    2    2    2    11    11    7  
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 The optimal alignment score for these two sequences is given by the maximum 
entries  H (4, 5)    =     H (4, 6)    =    11. This alignment leads to the respective optimal 
global – local alignments:

    A U U A 

    A U A A 

and

    A U U A 

    A A U A     

  Multiple Sequence Alignment 

 Multiple sequence alignment is an extension of pairwise alignment used to 
incorporate more than two sequences at a time. Multiple sequence alignment 
invalues aligning a number of sequences simultaneously to determine common 
features among a collection of sequences. Multiple alignments are often used 
to identify conserved sequence regions across a group of sequences hypo-
thesized to be related evolutionarily. Such conserved sequence motifs can be 
used in conjunction with structural and mechanistic information to locate the 
catalytic active sites of enzymes. To identify the common features, one needs 
to determine an optimal alignment for the entire collection of sequences. 
Multiple sequence alignments are computationally diffi cult to produce, and 
most formulations of the problem lead to NP - complete combinatorial optimi-
zation problems (Deken,  1983 ). Nevertheless, the utility of these alignments 
in bioinformatics has led to the development of a variety of methods suitable 
for aligning three or more sequences. 

 Let  Ω     =    ( a  1  a  2   …   a   k  ) be a family of sequences over the alphabet  Σ ,

    a a a n1 11 1 1= �  

    � 

    a a ak k knk= 1 �  

and   Σ* ( * * *)= a a a1 2 � k  be a corresponding family of sequences of equal length 
l over the extended alphabet  Σ  *     =     Σ     ∪    { · },

    a a a l1 11 1* * *= �  

    � 

    a a ak k kl* * *= 1 �  

by inserting blanks, where max{ n  1 ,  n  2 ,  …  ,  n k  }    ≤    l    ≤     n  1     +     n  2     +     …     +     n k  . 
 For example, a multiple alignment of the three sequences AAGAA, 

ATAATG, and CTGGG is
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A A G A A A

A T A A T G

C T G G G

−
−

− −   

 The optimal global alignment is to fi nd the maximum similarity between these 
sequences  Ω  in terms of a scoring function  s ( Ω  * ), that is,

    S is a multiple alignment ofΩ Ω Ω Ω( ) = ( ){ }max * *s  

where

    s s a ai ki
i

l

Ω* ( *, , * )( ) =
=
∑ 1

1

…  

is the sum of scores of the columns. Here it is assumed that the columns of the 
alignment are statistically independent. We are now in a position to state the 
optimal multiple sequence alignment result. 

   Theorem 3.5   (Optimal Global Multiple Sequence Alignment)     Let  Ω     =    
( a  1  a  2   …   a   k  ) be a family of sequences over the alphabet  Σ ,

    a a a n1 11 1 1= �  

    � 
    a a ak k knk= 1 �  

and  B     =    ( b  1 ,  …  ,  b k  ) be a binary vector over {0, 1} and defi ne  b  *  x     =     x  if  b     =    1 
and  b  *  x     =     −  x  if  b     =    0. For all index vectors ( i  1 ,  …  ,  i k  ), defi ne

    S i i S i b i b s b a b ak k k i k kik1 1 1 1 1 1, , max{ , , ( * , , * )}… … …( ) = − −( ) +  

where the maximum is taken over all nonzero binary vectors  B . Also, we set

    S 0 0 0, ,…( ) =   

 Then

    S i i S a a a ak i k kik1 11 1 11, , , , , , ,… … … …( ) = ( )  

 In particular,

    S S n nkΩ( ) = ( )1, ,…     

   Example 3.4     Figure  3.1  is a representation of a protein multiple sequence 
alignment produced using ClustalW (Chenna et al.,  2003 ). The sequences are 



     FIGURE 3.1     First 90 positions of the alignment. The shadings represent the amino acid conservation according to the properties and 
distribution of amino acid frequencies in each column. Note the two completely conserved residues arginine (R) and lysine (K), marked 
with asterisks at the top of the alignment.  
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instances of the acidic ribosomal protein P0 homolog (L10E) encoded by the 
 Rplp0  gene from multiple organisms. The protein sequences were obtained 
through SwissProt searching using the gene name. This was generated by 
Miguel Andrade, February 2006 (UTC).      

  Profi le and Sequence Alignment 

 Profi le analysis has long been a useful tool in fi nding and aligning distantly 
related sequences and in identifying known sequence domains in new 
sequences. Basically, a  profi le  is a description of the consensus of a multiple 
sequence alignment. It represents the common characteristics of a family 
of similar sequences where any single sequence is just one realization of a 
family ’ s characteristics. It uses a position - specifi c scoring system to capture 
information about the degree of conservation at various positions in the 
multiple alignment. The profi le method has several advantages over most 
sequence comparison methods. Since the profi le represents the alignment of 
a number of known sequences, it contains information that defi nes where 
the family of sequences is conserved and where it is variable. Comparison 
of a new sequence to a profi le search can emphasize similarity to conserved 
regions while tolerating diversity in variable regions. This makes it a much 
more sensitive and specifi c method for database searching than pairwise 
methods, such as those used by BLAST or FastA, that use position -
 independent scoring. 

   Example 3.5     Consider an optimal profi le - sequence alignment that aligns a 
sequence against a profi le. Let  Ω     =    ( a  1  a  2   …   a   k  ) be a family of sequences over 
the alphabet  Σ  and   Ω* ( * * *)= a a a1 2 � k  be a corresponding family of sequences 
of equal length l over the extended alphabet  Σ  *     =     Σ     ∪    { · }:

    a a a l1 11 1* * *= �  

    � 
    a a ak k kl* * *= 1 �   

 The profi le of the alignment  Ω  *  is a sequence of  l  probability distributions 
 P   j      =    ( p j   ,   x  ) on the alphabet  Σ  *  such that  p j   ,   x   is the relative frequency of the 
character  x  to occur in the  j th column of the alignment. We denote the profi le 
of the alignment  Ω  *  by   P P PL* * ( * *)Ω( ) = 1 � . An alignment of the profi le 
 P ( Ω  * ) and the sequence   a* * *= a aL1 �  is a pair of sequences

    P PL1* *�  

    a aL1* *�   
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 A blank in the profi le  P  * ( Ω  * ) is the probability distribution denoted by  –  p :

   1 

   0 

   � 

   0 

which assigns probability 1 to the blank and probability 0 to all other charac-
ters. The optimal profi le - sequence alignment is to fi nd the maximum similarity 
between the profi le  P  and the sequence  a , that is,

    S sP a P* a* P* a* P a, max , , ,( ) = ( ) ( ) ( ){ }is an alignment of  

where  s ( P  * ,  a  * ) is a score function that may be defi ned as

    s s a x pi x
xi

l

P* a*, ( *, )
*

( ) =
∈=
∑∑

Ω1

 

with an individual similarity score  s ( a ,  x ) on the alphabet  Σ  *  and a score 
between the probability distribution  p     =    ( p x  ) on the alphabet  Ω  *  and the char-
acter  x  in  Σ  * .   

   Theorem 3.6   (Optimal Profi le - Sequence Alignment)     Let  P     =     p  1  p  2   …   p   n   be 
the profi le of a multiple sequence alignment and  a     =     a  1  a  2   …   a n   be a sequence 
over the alphabet  Σ  * . Defi ne

    S i j S a a a i m j ni j, , , ,( ) = ( ) ≤ ≤ ≤ ≤p p p1 2 1 2 1 1� �  

and set

    S S i s p S j s ak
k

i

k
k

j

0 0 0 0 0
1 1

, , , , , , ,( ) = ( ) = −( ) ( ) = −( )
= =

∑ ∑ p   

 Then

    S i j S i j s S i j s a S i j si i j, max , , , , , , ,( ) = −( ) + −( ) − −( ) + ( ) −( ) + −1 1 1 1p p pp, aj( ){ }  

 In particular,

    S S m nP a, ,( ) = ( )    

   Example 3.6     Consider the sequences AGCA, AGAGA, ACCG, and CGGC 
over the DNA alphabet. The multiple alignment
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A G C A

A G A G A

A C C G

C G G C

−

−
−

 

has the following profi le  P : 
     

  0    0    3/4    0    0  
  3/4    0    1/4    0    1/2  
  1/4    1/4    0    1/2    1/4  
  0    3/4    0    1/2    1/4  
  0    0    0    0    0  

 where the columns are labeled in turn by  – , A, C, G, and T. The profi le  P  can 
be viewed as a column stochastic matrix. 

 An alignment between this profi le and the sequence AACCT is

    p p p p p1 2 3 4 5 −p 

    A A C C T−   

 A blank in the profi le must be inserted into all sequences of the corresponding 
multiple alignment, so the resulting multiple alignment is

    

A G C A

A G A G A

A C C G

C G G C

A A C C T

− −
−

− −
− −
−

    

 Next we present an optimal profi le - to - profi le alignment in terms of the 
distance scoring function. 

   Theorem 3.7   (Optimal Profi le - to - Profi le Alignment)     Let  P     =     p  1  p  2   …   p   m   be 
the profi le of a multiple sequence alignment and  Q     =     q  1  q  2   …   q   n   be the second 
profi le of a multiple sequence alignment over the alphabet  Σ  * . Then defi ne

    D d d p qi i
i

l

P Q P Q P Q, min *, * ( *, *) *, *( ) = ( ) ( )
=
∑=  is an alignment 

1

oof P Q,( )⎧
⎨
⎩

⎫
⎬
⎭

 

as the minimum distance between the profi les  P  and  Q . Let
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    D i j D i m j ni j, , , ,( ) = ( ) ≤ ≤ ≤ ≤p p p q q q1 2 1 2 1 1� �  

and set

    D D i d p D j d qk
k

i

k
k

i

0 0 0 0 0
1 1

, , , , , , ,( ) = ( ) = −( ) ( ) = −( )
= =

∑ ∑p p   

 Then

    
D i j D i j d D i j

s S i j

i

i j

, min , , , ,

, , ,

 p( ) = −( ) + −( ) − −( ) +{
( ) −( )

1 1 1

1

p

p q ++ −( )}d jp, q
  

 In particular,

    D D m nP Q, ,( ) = ( )      

   3.4    SEQUENCE ANALYSIS AND FURTHER DISCUSSION 

 Now we know how to fi nd an optimal alignment. A major concern when inter-
preting alignment results is whether similarity between sequences is biologi-
cally signifi cant. Good alignments can occur by chance alone. Many chance 
mechanisms are involved in the creation of these data. How do we know if it 
is a biologically meaningful alignment, especially when the similarity is only 
marginal? Here we present two approaches. One is the classical approach 
based on the traditional statistical approach of calculating the chance of a 
match score greater than the value observed. The other is the Bayesian 
approach, based on a comparison of models. 

 Under even the simplest random models and scoring systems, very little is 
known about the random distribution of optimal global alignment scores 
(Deken,  1983 ). Monte Carlo experiments can provide rough distributional 
results for some specifi c scoring systems and sequence compositions (Reich 
et al.,  1984 ), but these cannot be generalized easily. 

 Therefore, one of the few methods available for assessing the statistical 
signifi cance of a particular global alignment is to generate many random 
sequence pairs of the appropriate length and composition, and calculate the 
optimal alignment score for each (Altschul and Erickson,  1985 ; Fitch,  1983 ). 
Although it is then possible to express the score of interest in terms of standard 
deviations from the mean, it is a mistake to assume that the relevant distribu-
tion is normal and convert this  Z  - value into a  P  - value; the tail behavior of 
global alignment scores is unknown. The most that one can say reliably is that 
if 100 random alignments have scores inferior to the alignment of interest, the 
 P  - value in question is probably less than 0.01. One further pitfall to avoid is 
exaggerating the signifi cance of a result found among multiple tests. When 
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many alignments have been generated (e.g., in a database search), the signifi -
cance of the best must be discounted accordingly. An alignment with a  P  - value 
of 0.0001 in the context of a single trial may be assigned a  P  - value of 0.1 only 
if it was selected as the best among 1000 independent trials. 

 However, unlike those of global alignments, statistics for the scores of local 
alignments are well understood. This is particularly true for local alignments 
lacking gaps, which we consider fi rst. Such alignments were precisely those 
sought by the original BLAST database search programs (Altschul et al.,  1990 ) 
from each of the two sequences being compared. A modifi cation of the Smith –
 Waterman  (1981)  or Sellers  (1984)  algorithms will fi nd all segment pairs whose 
scores cannot be improved by extension or trimming. These are called  high -
 scoring segment pairs  (HSPs). To analyze how high a score is likely to rise by 
chance, a model of random sequences is needed. For proteins, the simplest 
model chooses the amino acid residues in a sequence independently, with 
specifi c background probabilities for the various residues. Additionally, the 
score expected for aligning a random pair of amino acid is required to be 
negative. Were this not the case, long alignments would tend to have high 
scores independent of whether the segments aligned were related, and the 
statistical theory would break down. Just as the sum of a large number of 
independent identically distributed (i.i.d.) random variables tends to a normal 
distribution, the maximum of a large number of i.i.d. random variables tends 
to an extreme value distribution (Gumbel,  1958 ). (We elide the many technical 
points required to make this statement rigorous.) In studying optimal local 
sequence alignments, we are essentially dealing with the latter case (Dembo 
et al.,  1994 ; Karlin and Altschul,  1990 ). In the limit of suffi ciently large sequence 
lengths  m  and  n , the statistics of HSP scores are characterized by two para-
meters,  K  and  λ  (lambda). Most simply, the expected number of HSPs with a 
score of at least  S  is given by the formula  E     =     K mn e   -  λ    S  . We call this the  E  -  value 
for the score S . 

 This formula makes eminently intuitive sense. Doubling the length of either 
sequence should double the number of HSPs attaining a given score. Also, for 
an HSP to attain the score 2 x , it must attain the score  x  twice in a row, so one 
expects  E  to decrease exponentially with the score. The parameters  K  and  λ  
can be thought of simply as natural scales for the search space size and the 
scoring system, respectively. 

 The other approach is based on a comparison of models. 

  1.      Hidden Markov model  (HMM).   This is a statistical model in which the 
system being modeled is assumed to be a Markov process with unknown 
parameters, and the challenge is to determine the hidden parameters from the 
observable parameters. The extracted model parameters can then be used to 
perform further analysis: for example, for pattern recognition applications. In 
a regular Markov model, the state is directly visible to the observer, and there-
fore the state transition probabilities are the only parameters. In a  hidden  
Markov model, the state is not directly visible, but variables infl uenced by the 
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state are visible. Each state has a probability distribution over the possible 
output tokens. Therefore, the sequence of tokens generated by an HMM gives 
some information about the sequence of states. Hidden Markov models are 
especially well known for their application in temporal pattern recognition, 
such as speech, handwriting, gesture recognition, musical score following, 
partial discharges, and bioinformatics.  

  2.      Profi le hidden Markov models.    These have several advantages over stan-
dard profi les. Profi le HMMs have a formal probabilistic basis and have a 
consistent theory behind gap and insertion scores, in contrast to standard 
profi le methods, which use heuristic methods. HMMs apply a statistical method 
to estimate the true frequency of a residue at a given position in the alignment 
from its observed frequency, whereas standard profi les use the observed fre-
quency itself to assign the score for that residue. This means that a profi le 
HMM derived from only 10 to 20 aligned sequences can be equivalent in 
quality to a standard profi le created from 40 to 50 aligned sequences. In 
general, producing good profi le HMMs requires less skill and manual interven-
tion than does producing good standard profi les.  

  3.      Pattern discovery.    Given a sequence of data such as a DNA or amino 
acid sequence, a motif or pattern is a repeating subsequence. Such repeated 
subsequences often have important biological signifi cance, and hence discov-
ering such motifs in various biological databases turns out to be a very impor-
tant problem in computational biology. Of course, in biological applications 
the various occurrences of a pattern in the given sequence may not be exact, 
so it is important to be able to discover motifs even in the presence of small 
errors. Various tools are now available for carrying out automatic pattern 
discovery. This is usually the fi rst step toward a more sophisticated task such 
as gene fi nding in DNA or secondary structure prediction in protein sequences 
at the system level.  

  4.      Scoring functions.    The choice of a scoring function that refl ects biologi-
cal or statistical observations about known sequences is important in produc-
ing good alignments. Protein sequences are frequently aligned using substitution 
matrices that refl ect the probabilities of given character - to - character substitu-
tions. A series of matrices called  PAM  (point accepted mutation)  matrices , 
originally defi ned by Margaret Dayhoff and sometimes referred to as  Dayhoff 
matrices ) explicitly encode evolutionary approximations regarding the rates 
and probabilities of particular amino acid mutations. Another common series 
of scoring matrices, known as BLOSUM (blocks substitution matrix), encodes 
empirically derived substitution probabilities (Durbin et al.,  1998 ). Variants of 
both types of matrices are used to detect sequences with differing levels of 
divergence, thus allowing users of BLAST or FASTA to restrict searches to 
more closely related matches or to expand to detect more divergent sequences 
(Durbin et al.,  1998 ). Gap penalties account for the introduction of a gap — 
in the evolutionary model, an insertion or deletion mutation — in both nucleo-
tide and protein sequences, and therefore the penalty values should be 
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proportional to the rate expected for such mutations. The quality of the align-
ments produced therefore depends on the quality of the scoring function. It 
can be very useful and instructive to try the same alignment several times with 
different choices for scoring matrix and/or gap penalty values, and to compare 
the results. Regions where the solution is weak or nonunique can often be 
identifi ed by observing which regions of the alignment are robust to variations 
in alignment parameters.  

  5.      Structural alignments.    These are usually specifi c to protein and some-
times RNA sequences, and use information about the secondary and tertiary 
structure of the protein or RNA molecule to aid in aligning the sequences. 
These methods can be used for two or more sequences and typically produce 
local alignments; however, because they depend on the availability of struc-
tural information, they can only be used for sequences whose corresponding 
structures are known (usually through x - ray crystallography or NMR spectros-
copy). Because both protein and RNA structure is more evolutionarily con-
served than is sequence (Chothia and Lesk,  1986 ), structural alignments can 
be more reliable between sequences that are very distantly related and that 
have diverged so extensively that sequence comparison cannot reliably detect 
their similarity.    

 Structural alignments are used as the gold standard in evaluating align-
ments for homology - based protein structure prediction (Zhang and Skolnick, 
 2005 ) because they explicitly align regions of the protein sequence that are 
structurally similar rather than relying exclusively on sequence information. 
However, clearly, structural alignments cannot be used in structure prediction 
because at least one sequence in the query set is the target to be modeled, for 
which the structure is not known. It has been shown that given the structural 
alignment between a target and a template sequence, highly accurate models 
of the target protein sequence can be produced; a major stumbling block in 
homology - based structure prediction is the production of structurally accurate 
alignments given only sequence information. 

 We are witnessing the emergence of the  “ data - rich ”  era in biology. The 
myriad data available, ranging from sequence strings to complex phenotypic 
and disease - relevant data, pose a huge challenge to modern biology. The stan-
dard paradigm in biology that deals with  “ hypothesis to experimentation 
(low - throughput data) to models ”  is gradually being replaced by  “ data to 
hypothesis to models and experimentation to more data and models. ”  And 
unlike data in physical sciences, those in the biological sciences are almost 
guaranteed to be highly heterogeneous and incomplete. To make signifi cant 
advances in this data - rich era, it is essential that there be robust data reposi-
tories that allow interoperable navigation, query, and analysis across diverse 
data, a plug - and - play tools environment that will facilitate seamless interplay 
of tools and data, and versatile user interfaces that will allow biologists to 
visualize and present the results of analysis in the most intuitive and user -
 friendly manner. We address below several challenges posed by the enormous 
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need for scientifi c data integration in biology, with specifi c examples and strat-
egies. The issues that need to be addressed may include: 

   •      Architecture of data and knowledge repositories  
   •      Databases (fl at, relational, and object - oriented; which is most 

appropriate?)  
   •      The imminent need for ontologies in biology  
   •      The middle layer (how to design it)  
   •      Applications and integration of applications into the middle layer  
   •      Reduction and analysis of data (the largest challenge!)  
   •      How to integrate legacy knowledge with data  
   •      User interfaces (Web browser and beyond)    

 The complex and diverse nature of biology mandates that there is no  “ one 
solution fi ts all ”  model for the issues listed above. Although there is a need to 
have similar solutions across multiple disciplines within biology, the dichotomy 
of having to deal with the context, which is everything in some cases, poses 
severe design challenges. For example, can a system that describes cellular 
signaling also describe developmental genetics? Can the ontologies that span 
different areas (e.g., anatomy, gene and protein data, cellular biology) be com-
patible and connective? Can the detailed biological knowledge accrued pains-
takingly over decades be integrated easily with high - throughput data? These 
are only few of the questions that arise in designing and building modern data 
and knowledge systems in biology.  

   3.5    CHALLENGES AND PERSPECTIVES 

 Although the human genome project has great potential, theoretical work is 
essential for sequencing and mapping all genomes, human and nonhuman, 
animal and plant. Mathematical and computational advances provide dramatic 
efforts in sequencing and mapping. Specifi c comparative analyses of the 
genomes of diverse organisms can increase our understanding of the natural 
world. For example, when a DNA sequence is determined, it is examined for 
a variety of sequence features known to be important: tRNAs, rRNAs, protein 
coding regions — introns and regulatory regions, promoters, and enhancers. It 
is often quite diffi cult to identify them, as these sequence features are not 
identical in all organisms. Even the widely studied bacterium  Escherichia coli  
promoter sequences cannot be identifi ed with certainty. As more and more 
DNA is sequenced, it becomes increasingly important to have accurate 
methods to identify these regions, without many false positives. Statistics and 
mathematics should make signifi cant contributions in this area. 

 One of the most common comparative methods of biological sequences is 
pairwise alignment. However, multiple sequence alignments remain a serious 
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problem, with a long computation time. Heuristic methods that align by build-
ing up pairwise alignments have been proposed, but they often fail to give 
good multiple alignments. Closely coupled with multiple alignment is the 
construction of evolutionary trees. Closely related sequences should be neigh-
bors with few changes between them. DNA sequences are collected in the 
GenBank database, and protein sequences are collected in the Protein 
Identifi cation Resource (PIR). When a new DNA sequence is determined, 
GenBank is searched for approximate similarities with the new sequence. 
Translations of the DNA sequence into the corresponding amino acid sequence 
are used to search the protein database. Sensitive search methods require time 
and space proportional to the product of the sequences being compared. 
Searching GenBank (now more than 40    ×    10 6  bases) with a 5000 - bp sequence 
requires time proportional to 2    ×    10 11  with traditional search techniques. 
Lipman and Pearson  (1985)  have developed techniques that greatly reduce 
the time needed. Using their techniques, one can screen the databases rou-
tinely with new sequences on IBM PCs, for example. These methods rapidly 
locate diagonals where possible similarities might lie and then perform more 
sensitive alignments. This family of programs (FASTA, FASTN, etc.) are the 
most widely used sequence analysis programs and have accounted for many 
important discoveries. An example of the impact of such analysis is the unex-
pected homology between an oncogene and a growth factor. This discovery 
became the basis of the molecular theory of carcinogenesis. 

 Many current and future challenges for statistics and probability that are 
motivated by questions in molecular biology, genetics, and molecular evolution 
will require new techniques and theories. One such set of challenges involves 
the use of DNA sequence data to reconstruct phylogenetic trees, analyze 
genetically complex traits, and study other problems. As more and more DNA 
sequence data are accumulated, patterns arise and exploratory data analysis 
techniques need to be developed to look through the wealth of data for pat-
terns. The ordering and frequency of the four nucleotides are not random 
(even in noncoding regions). To compare two sequences of DNA or protein 
(or to compare a given sequence with a databank) and to look for matches or 
similarities requires the creation of new algorithms. Comparisons can answer 
both evolutionary and functional questions. Are sequences descended from a 
common ancestral sequence? Do they serve similar functions? One problem 
has been to calculate the probability of a long matching region between two 
DNA sequences, where some level of dependence occurs as a result of over-
lapping regions. Strong limit laws have been established that give rates for the 
longest matching sequences between different sequences (with a given propor-
tion of mismatches) as the length of the sequences increases. Detailed distri-
butional behavior has been obtained using the Chen – Stein method of 
approximation by a Poisson random variable. These new distributional results 
are now used as a basis for statistical tests. Arratia et al.  (1990)  contains a 
snapshot of current mathematical work on these questions. 
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 More sensitive sequence analysis can be obtained by dynamic programming 
methods. In part they are used after the diagonals are located in the FASTN 
and FASTA programs. Here similar sequence elements are aligned with 
positive scores, and dissimilar elements are aligned with negative scores. 
Complicating the analysis are insertions and deletions, which also receive 
negative scores. The challenge of the problem is to arrange two sequences into 
the maximum number of scoring alignments. Additional diffi culty arises from 
the fact that slightly similar regions of DNA or protein sequences might lie in 
otherwise unrelated sequences. Despite the complex nature of the problem, 
an effi cient algorithm (Smith and Waterman,  1981 ) has been devised and is 
widely used. 

 The problem of sequence comparison creates a related statistical problem 
of estimating  p  - values (attained signifi cance levels) for the alignment scores. 
The set of possible alignment scores from two sequences are dependent 
random variables, since they result from overlapping sequence segments. 
Another area of mathematical research that will be stimulated by biology is 
the probabilistic theory of discrete and dynamic structures. While the scattered 
beginnings of this fi eld have extended over the past three decades, the major 
developments are yet to come. Illustrative developments in the fi eld include 
random graphs and random directed graphs, interacting particle systems, sto-
chastic cellular automata, products of random matrices, and nonlinear dynami-
cal systems with random coeffi cients. For example, Erd ö s and R é nyi  (1960)  
created the fi eld of random graphs to model apparently random connections 
in neural tissue. Erd ö s and R é nyi discovered numerous examples of  “ phase 
transitions, ”  and many more have been discovered since (see Bollob á s,  1985 ).  
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  4    Structures of  DNA  and 
Knot Theory     

     It is well known that DNA is the genetic material of all cells, containing coded 
information about cellular molecules and processes. DNA consists of two 
polynucleotide strands twisted around each other in a double helix. DNA 
packing can be visualized as two very long strands that have been intertwined 
millions of times, tied into knots, and subjected to successive coiling. DNA is 
involved in transcribing proteins that direct cell growth and activities. However, 
DNA is tightly packed into genes and chromosomes. For replication or tran-
scription to take place, DNA must fi rst unpack itself so that it can interact with 
enzymes. However, replication and transcription are much easier to accom-
plish if the DNA is neatly arranged rather than tangled up in knots. Enzymes 
are essential to unpacking DNA. Enzymes act to slice through individual knots 
and reconnect strands in a more orderly way. Enzymes maintain the proper 
geometry and topology during the transformation and also  “ cut ”  the DNA 
strands and recombine the loose ends. 

 Mathematics can be used to model these complicated processes. In this 
chapter we provide an introduction to the structures of DNA; key elements 
of knot theory, such as links, tangles, and knot polynomials; and applications 
of knot theory to the study of closed circular DNA. The physical and chemical 
properties of this type of DNA can be explained in terms of basic character-
istics of the linking number, which is invariant under continuous deformation 
of the DNA structure and is the sum of two geometric quantities, twist and 
writhing. This chapter is in no way exhaustive of all the topological applica-
tions in DNA structures. For comprehensive coverage of the topology of DNA, 
readers should consult the excellent survey articles in the fi eld (e.g., Sumners, 
 1987, 1990, 1992 ).  

   4.1    INTRODUCTION 

 DNA is a double - stranded molecule composed of two polarized strands (of 
deoxyribonucleotide polymers) which run in opposite directions (termed 
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 antiparallel ) and wind around a central, common axis. One is entwined about 
the other such that an overall helical shape results (known as a  plectonemic 
helix ). Both are wound in a right - handed manner. This structure is to be con-
trasted with a  paranemic helix , in which a pair of coils lie side by side without 
interwinding. The strands are occasionally distinguished as the Watson strand 
and the Crick strand. 

 In the case of the molecular structure of eukaryotic chromosomes in each 
human cell, two meztres of DNA is packaged into the cell nucleus. To access 
the information, the DNA must be unwound as a double helix and needs to 
be  “ spread out ”  in the nucleus. However, during cell division (mitosis), in 
order to move the strands around, they are packaged into dense bundles as 
follows : 

   •       Nucleosome formation  (beads on a string): 2.5 loops of DNA wrapped 
around core DNA  

   •       Solenoid formation  (beaded string is coiled): six nucleosomes per sole-
noid coil  

   •       Supercoiling  (coil of solenoids is itself coiled): the coiled coil is then 
folded, as in a mitotic chromosome (i.e., a 10,000 - fold reduction in length)    

 Each nucleotide base of one strand is paired with a nucleotide base on the 
other strand to create a stable structure of the two polymers. The pairing of 
the four types of bases (A, T, C, G) by hydrogen bonds is not random: An A 
pairs with a T and a G pairs with a C. The bases on the outside of the helix 
are exposed to solvent within two grooves along the helix, the major groove 
and the minor groove. It is within these grooves that DNA interacts with other 
molecules. The three structural variations of these grooves (A, B and Z DNA), 
which differ in the relationship between the bases and the helical axis, offer 
one mechanism by which reactivity of DNA is modulated: 

   •      B - DNA.     This is fully hydrated DNA, the most common encountered in 
vivo. Owing to the location of the helical axis in the center of the base 
pairs, the edges of the base pairs are about equally deep in the interior.  

   •      A - DNA.     When B - DNA is dehydrated, there is a reversible structural 
change in A - DNA.  

   •      Z - DNA.     Unlike B - DNA and A - DNA, Z - DNA is a left - handed helix. The 
conformational change from B - DNA to Z - DNA is one mechanism for 
relief of the torsional strain found in B - DNA in vivo and may serve as a 
switch mechanism to regulate gene expression.    

 In circular double - helix DNA (closed circular ccDNA), the strands are 
joined covalently to form a circular duplex molecule. The geometry of such an 
assembly is such that its number of coils cannot be changed without fi rst break-
ing one of its strands. This topological  “ dilemma ”  is resolved within the cell —
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 to ensure proper biological functioning — by specialized enzymes that unknot, 
untwist, and unwind the DNA to enable replication and then re - form the 
compact mode thereafter. 

  Forms of  DNA  

    1.     Supercoiled (or knotted) DNA.     Double - stranded circular (or linear) DNA 
can have tertiary or higher - order structure. Superhelicity is therefore some-
times referred to as DNA ’ s tertiary structure. Supercoils refer to the DNA 
structure in which the two strands of circular DNA twist around each other. 
This is termed  supercoiling ,  supertwisting , or  superhelicity  — meaning the 
coiling of a coil, also understood in terms of knots. Only topologically closed 
domains (such as a covalently closed circle) can undergo supercoiling. A linear 
molecule can have topological domains as long as there is a region of the DNA 
bounded by constraints on the rotation of the DNA double helix. Eukaryotic 
DNAs in association with nuclear proteins acquire superhelical conformation 
in chromosomes. Adding a twist to the DNA (as catalyzed by an enzyme) 
imposes a strain. A DNA segment so strained that it is closed into a circle 
would then contort into a fi gure eight (or its topological equivalent) — the 
simplest supercoil. This is the shape that circular DNA assumes to accommo-
date one too many or one too few helical twists. For each additional helical 
twist that is accommodated, the lobes will show one more rotation about their 
axis. Such superhelicity results in more compact structures. In any other natu-
rally found geometry, the DNA is either under -  or overwound. Its helical axis 
does not lie in a plane or on the surface of a sphere because of writhing and 
twisting. This is the physical solution to the potential (torsional) energy mini-
mization problem. Supercoiling can therefore be:  

  a.     Negative (right - handed).     Supercoils formed by a defi cit in link, called 
negative supercoils, result from underwinding, unwinding, or subtractive 
twisting of the DNA helix. The two lobes of the fi gure eight then 
appear rotated counterclockwise with respect to each other. All naturally 
occurring double - stranded DNAs are negatively supercoiled. Negative 
supercoiling facilitates DNA - strand separation during replication, 
recombination, and transcription. All the naturally occurring double -
 stranded DNAs are negatively supercoiled (including bacterial and viral 
circular duplex DNAs).  

  b.     Positive (left - handed).     Supercoils formed by an increase in link, called 
positive supercoils, result from tighter winding or overwinding of the 
DNA helix, resulting in extrahelical twists. The two lobes of the fi gure 
eight then appear rotated clockwise with respect to each other. This 
would compact DNA as effectively as negative supercoiling but would 
make strand separation much more diffi cult.   

 In nondividing eukaryotic cells, chromosomal DNA is wrapped around 
a nucleosome core which consists of highly basic proteins called  histones . 
The DNA is wrapped around the nucleosome in a left - handed solenoidal 
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arrangement. This negative supercoiling is one of the forms taken up by under-
wound DNA.  

  2.     Relaxed DNA.     Circular DNA without superhelical twist is known as a 
relaxed molecule. DNA in its relaxed (ideal) state usually assumes the B con-
fi guration. In a relaxed double - helical segment of DNA, the two strands twist 
around the helical axis once every 10.6 base pairs of sequence. Relaxed, closed 
circular DNA is defi ned as DNA that has no supercoils when constrained to 
lie fl at in a plan. The following structures are consistent with the relaxed state: 
(a) linear DNA (either straight or curved); (b) closed circular DNA, provided 
that its axis lies in a plane or on the surface of a sphere.    

 Supercoiling is thus vital to two major functions. It helps pack large circular 
rings of DNA into a small space by making the rings highly compact. It also 
helps in the unwinding of DNA required for its replication and transcription. 
Supercoiled DNA is thus the biologically active form. The normal biological 
functioning of DNA occurs only if it is in the proper topological state.   

   4.2    KNOT THEORY PRELIMINARIES 

  Knots 

 A  knot  is a closed continuous curve in space that does not intersect itself 
anywhere. When a knot is deformed (i.e., stretched, compressed, bent, or 
twisted), but not cut or torn, all the deformed curves will be considered to be 
the same as the original closed knotted curve. The simplest knot of all is the 
unknotted circle, called an  unknot  or  trivial knot  and denoted  C . The next 
simplest knot is called a  trefoil knot  (Figure  4.1 ).   

 In a projection of a knot into a plane, we call the places where the knot 
crosses itself in the graphs the  crossings  of the projection. The crossing number 
of a knot  K , denoted  c ( K ), is the smallest number of crossings that occur in 
any projection of the knot. If a knot is  nontrivial , it has more than one crossing 
in a projection. A fi gure - eight knot (Figure  4.2 ) has four crossings.   

     FIGURE 4.1     Trefoil knot.  
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 An orientation on a knot is defi ned by choosing a direction to travel around 
the knot. This direction is denoted by placing coherently directed arrows along 
the projection of the knot in the direction of our choice. We then say that the 
knot is  oriented . Certain types of knots possess knot projections in which cross-
ings alternate between under -  and overpasses as one travels around the knot 
in a fi xed direction. We call this type of knot an  alternating knot . The trefoil 
knot and the fi gure - eight knot are alternating. 

 Given two projections of knots and assuming that the two projections do 
not overlap, one can compose a new knot by deleting a small arc from each 
knot projection and then connecting the four ending points by two new arcs, 
as in Figure  4.3 . The resulting knot is called the  composition  (or knot sum) of 
the two knots, denoted  K  1  #  K  2  (or  K  1     +     K  2 ).   

 A knot that can be expressed as the composition of two nontrivial knots is 
called a  composite knot . The unknot is not a composite knot. The knots that 
make up a composite knot are called  factor knots . The unknot or trivial knot 
may also be called an  identity knot , as the composition of a knot  K  with an 
unknot is again  K  (i.e.,  K     +     C     =     K ). A knot that is not the composition of any 
two nontrivial knots is called a  prime knot . Both the trefoil and fi gure - eight 
knots are prime knots. It is often possible to combine two prime knots to create 
two different composite knots, depending on the orientation of the two. 
Schubert  (1949)  showed that every knot can be decomposed uniquely (up to 
the order in which the decomposition is performed) as a knot sum of prime 
knots. There is no known formula for giving the number of distinct prime 
knots as a function of the number of crossings. Rolfsen  (1976)    has provided a 

     FIGURE 4.2     Figure - eight knot.  

     FIGURE 4.3     Composition (sum) of  K  1  and  K  2 .  

+ =
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pictorial enumeration of prime knots of up to 10 crossings. The  k th knot having 
 n  crossings in this (arbitrary) ordering of knots is given the symbol  n k  . Table 
 4.1  summarizes a number of named prime knots.   

 Suppose that we have two projections of the same knot. If we made a knot 
out of string that modeled the fi rst of the two projections, we should be able 
to rearrange the string to resemble the second projection. We call this process 
of continuous deformation of the rearranging of the string through three -
 dimensional space without letting it pass through itself,  ambient isotopy . 
Deformation of a knot projection is called  planar isotopy  if it deforms the 
projection plane. 

 Reidemeister was the fi rst person to prove rigorously that knots exist 
which are distinct from an unknot. He did this in the 1930s by showing that 
all knot deformations can be reduced to a sequence of three types of moves 
(Figure  4.4 ): 

  1.      Twist move  (type I Reidemeister move): to put in, or take out, a twist in 
a knot  

  2.      Poke move  (type II Reidemeister move): to either add or remove two 
crossings  

  TABLE 4.1    Prime Knots 

   Knot Symbol     Prime Knot     Knot Projection  

  0 1     Unknot  
      

  3 1     Trefoil knot  

      

  4 1     Figure - eight knot  

      

  5 1     Solomon ’ s seal knot  

      

  6 1     Stevedore ’ s knot  
      

  6 2     Miller Institute 
knot        
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  3.      Slide move  (type III Reidemeister move): to slide a strand of a knot from 
one side of a crossing to the other side      

 These moves are most commonly called  Reidemeister moves , although the 
term  equivalence moves  is sometimes used. If two projections represent the 
same knot, there must be a sequence of Reidemeister moves to get from 
the one projection to the other.  

  Links 

 Next we consider a set of several knots. A  link  is the union of a fi nite number 
of disjoint knots in three - dimensional space. A knot will be considered a link 
of one component. Four common links — the trivial link (or unlink), the Hopf 
link, the Whitehead link, and the Borromean link — are shown in Table  4.2 . The 
notation and ordering follow Rolfsen  (1976)   , with   ck

r  denoting the  k th  r  -
 component link with crossing number  c .   

 Two links are considered to be the same if we can deform the one link to 
the other link without ever having any one of the knots intersect itself or any 
of the other loops in the process. That is, two links are considered equal if they 
are isotopic. Many statements about knots also apply to links. This may be a 
good reason to extend the study to links. However, the most important ratio-
nale for including links is that certain operations that we will consider leave 
invariant the class of links, but not the class of knots.  

  Linking Number 

 Next, we defi ne an important number known as the  linking number . Let  K  1  
and  K  2  be two components in a link  L , and choose an orientation on each 

     FIGURE 4.4     Reidemeister moves.  
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     FIGURE 4.5     Computing the linking number.  

Type I:  +1 Type II -1 

  TABLE 4.2    Links 

   Link Number     Link Name     Link Diagram  

     01
2     Trivial link  

    ...   

     21
2     Hopf link  

      

     51
2     Whitehead link  

      

     62
3     Borromean link (rings)  

      

component. Then at each crossing between the two components, we count a 
 + 1 for each crossing of the fi rst type, and a  − 1 for each crossing of the second 
type (Figure  4.5 ). In other words, to each of these crossings is associated an 
index number of  + 1 or  − 1, according to the direction in which the tangent 
vector to the top curve must be rotated to coincide with the tangent vector to 
the bottom curve. If the rotation is clockwise, the index number is  − 1, and if 
it is counterclockwise, the index number is  + 1. Adding all the indices associated 
with all the crossings and dividing by 2 gives the link number of two knots 
denoted by  L ( K  1 ,  K  2 ). Formally, a linking number is defi ned as the sum of  + 1 
crossings and  − 1 crossings over all crossings between the two links divided by 
2 calculated by the formula

    L K K p
p

1 2
1
2

,( ) = ( )
∈ ∩
∑ ε
α β
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where  α     ∩     β  is the set of crossings of  α  with  β , and  ε ( p ) is the sign of the 
crossing. The linking number of a splittable two - component link is always 0. 
The linking number has four major properties: 

  1.     The linking number  L ( K  1 ,  K  2 ) is a property of the curves in space and is 
independent of the planar projection.  

  2.     The linking number  L ( K  1 ,  K  2 ) is unchanged if either of the curves is 
deformed continuously, provided that no breaks are made in either 
curve. Moreover, the Reidemeister moves do not affect the linking 
number.  

  3.     The linking number  L ( K  1 ,  K  2 ) changes sign if the direction of one of the 
curves is reversed.  

  4.     The linking number  L ( K  1 ,  K  2 ) changes sign if a pair of curves is refl ected 
in a plane.      

 It is well known that the linking number is an invariant of the oriented links; 
that is, once the orientations are selected on the two components of the link, 
the linking number is unchanged by ambient isotopy. In special cases in which 
two oriented curves  K  1  and  K  2  bound a ribbonlike surface, the linking number 
 L ( K  1 ,  K  2 ) is the sum of two geometric quantities: twist  T ( K  1 ,  K  2 ), and writhe 
 W ( K  1 ).

    L K K T K K W K1 2 1 2 1, ,( ) = ( ) + ( )    (4.1)   

 This important characteristic, together with the invariance of the linking 
number, have been applied to the study of circular DNA structure (Adams, 
 1994 ). 

 Basically, the twist  T ( K  1 ,  K  2 ) of one curve  K  1  about another curve  K  2  mea-
sures the magnitude of the spinning of  K  1  around K 2 . The twist of helices about 
a linear axis is the number of times the helix ( K  1 ) resolves about the axis ( K  2 ). 
This number,  T ( K  1 ,  K  2 )    >    0 if the helix  K  1  is right - handed and  T ( K  1 , K 2 )    <    0 if 
the helix  K  1  is left - handed, as illustrated in Figure  4.6 .   

 For the more general cases in which  K  2  is not linear, or planar, the defi nition 
of the twist is much more complex, for the concept is no longer geometrically 
obvious. To defi ne the twist in the general case, we need the ribbonlike surface 
joining and bounded by the two curves called the  corresponding surface . We 
assume this surface to be differentiable near the curve  K  2  so that there is a 
tangent plane to the surface at every point of  K  2 . Let  T  be the unit tangent 
vector to the curve  K  2  at a point  x  and  V  be a unit vector perpendicular to  T  
at  x  and tangent to the surface at  x  pointing in the direction of  K  1 . Their cross -
 product  T     ×     V  is a unit vector perpendicular to the surface at  x . It varies along 
with point  x  along the curve  K  2 . The twist of  K  1  around  K  2  is defi ned to be the 
measure of the total change of  V  in the direction of  T     ×     V  as  x  moves along 
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the entire curve  K  2 . This is given by the line integral (normalized in turns) over 
the curve  K  2 :

    T K K T V dV
K

1 2
1

2 2
,( ) = ×( )∫π

    (4.2)   

 This integral is not necessarily an integer. It changes under deformations 
of either the curve  K  2  or the corresponding surface. Since the cross - product 
operation is not commutative, the twist depends on the ordering of the curves. 
The twist of  K  1  about  K  2  is not necessarily the twist of  K  2  about  K  1 . 

 The writhing number of a curve  K  1 , denoted by  W ( K  1 ), is a knot property, 
defi ned as the sum of crossings  p  of a curve  K  1 ,

    W K p
p C K

1

1

( ) = ( )
∈ ( )
∑ ε     (4.3)  

where  ε ( p ) is defi ned to be  ± 1 if the overpass slants from top left to bottom 
right or bottom left to top right, and  C ( K  1 ) is the set of crossings of an oriented 
curve as illustrated in Figure  4.7 .   

 The proof of this equation is beyond our scope in this chapter. The main 
characteristic of this fundamental equation should be noted. The linking 
number  L ( K  1 ,  K  2 ) is a topological invariant. However, the twist number  T ( K  1 , 
 K  2 ) and writhing number  W ( K  2 ) are not, and in fact, vary under deformation. 
Therefore, whereas the twist and a change in writhing could increase or 
increase linking, the linking number is invariant under deformation.  

  Tangle 

 A  tangle  in a knot or link projection is a region in the projection plane sur-
rounded by a circle such that the knot or link crosses the circle exactly four 
times (Figure  4.8 ). We will always think of the four points where the knot or 
link crosses the circle as occurring in the four compass directions NW, NE, SW, 

     FIGURE 4.6     Twist of helices about a linear axis.  

K1 K1 K2 K2 K1K2

 T(K1, K2) =+1/2 T(K1, K2) = -1/2 T(K1, K2) = -1 



KNOT THEORY PRELIMINARIES  99

and SE. The tangles can be used to build blocks of knot and link projections. 
Understanding tangles will be very useful in understanding knots.   

 Two tangles are  equivalent  if a sequence of Reidemeister moves can be used 
to transform one into the other while keeping the four string endpoints fi xed 
and not allowing strings to pass outside the circle. The simplest tangles are the 
 ∞  - tangle (trivial) and 0 - tangle (trivial), shown in Figure  4.8 . The family of 
tangles that can be converted to the trivial tangled by moving the endpoints 
of the strings is the family of  rational tangles . Equivalently, a rational tangle is 
one in which the strings can continuously be deformed (fi xing the endpoints) 
entirely into the boundary 2 - sphere of the 3 - ball, with no string passing through 
itself or through another string. An algebraic tangle is any tangle obtained by 
additions and multiplications of rational tangles. Rational tangles form a 
homologous family of two - string confi gurations in a 3 - sphere and formed by 
a pattern of plectonemic supercoiling of pairs of strings. 

 The rational tangle may be represented by an even or an odd number of 
integers. If the rational tangle is represented by an even or odd number of 
integers, we start with two vertical or horizontal strings (i.e., the  ∞  tangle/0 
tangle) and alternately twist the two bottom/right - hand endpoints appropri-
ately, followed by twisting the two right - hand/bottom endpoints appropriately. 
The equivalence between two rational tangles is well connected, with  contin-
ued fractions  corresponding to the integers. Suppose that we have two rational 

     FIGURE 4.7     Writhe index.  
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     FIGURE 4.8     Tangles.  
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tangles  T  1  and  T  2  given by the sequences of integers  i ,  j ,  k ,  …  ,  l ,  m  and  n ,  p , 
 q ,  …  ,  r ,  s . The two rational tangles  T  1  and  T  2  are equivalent if and only if the 
corresponding continued fractions  m     +    1/[ l     +    1/( l   ·  ·  ·  1/[ k     +    1/( j     +    1/ i )])] for  T  1  
and  s     +    1/[ r     +    1/( r   ·  ·  ·  1/[ q     +    1/( p     +    1/ n )])] for  T  2  are equal. The proof of this 
result is beyond the scope of the book. For the proof, see the book by Burde 
and Zieschang  (1985)   . 

 One can use rational tangles to construct new tangles by the multiplication 
and addition operations. We call the resulting tangle an  algebraic tangle . 
Although many tangles are algebraic, there are tangles that are not algebraic. 
While discussing tangles, there is another way to obtain new knots, called 
 mutation . Suppose that we have a knot  K  formed from two tangles. We cut the 
knot open along four points on each of the four strings coming out of  T  2 , fl ip-
ping  T  2  over, and gluing the four strings back together. We could also cut the 
four strings coming out of  T  2 , fl ip  T  2  left to right, and then glue the strings back 
together. We can also do both operations in turn: It ’ s as if we rotated the tangle 
180 °  and then reglued it. Any of these three operations is called a mutation, 
and the three resulting knots together with the original knot are called  mutants  
of one another. Figure  4.9  shows two famous mutants, called the  Kinoshita  –
  Terasaka mutants .   

 Although mutation can turn one knot into another, it cannot turn a non-
trivial knot into a trivial knot. The mutants and tangles will be used to help us 
understand knotting in DNA. The mathematics of tangles has been applied to 
model protein – DNA binding. A tangle consists of strings properly embedded 
in a three - dimensional ball. The protein complex can be thought of as a three -
 dimensional ball, while the DNA segments bound by the protein complex can 
be thought of as strings embedded within the ball. This simple model can be 
used to determine the topology of protein - bound DNA. 

 In the 1980s, biochemists discovered knotting in DNA molecules. 
Concurrently, synthetic chemists realized that it is possible to create knotted 
molecules, where the type of knot determined the properties of the molecules. 
To perform various biological functions such as replication, transcription, and 
recombination, DNA has to be utilized. The knotting and tangling in the DNA 

     FIGURE 4.9     Kinoshita – Terasaka mutants.  
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molecules make the performance of these functional processes diffi cult, yet 
there must be a way of manipulating the tangled masses of DNA molecules. 
Applications of knot theory to DNA structures are discussed in the next 
section.  

  Knot Polynomials 

 Next, we introduce knot polynomials and compute the knot polynomial from 
a projection of the knot. We ’ ll note that any two different projections of the 
same knot yield the same polynomials. So the polynomial is an invariant of 
the knot. A knot invariant in the form of a polynomial such as the Alexander 
polynomial and the Jones polynomial are discussed in detail. 

 A  polynomial  is a mathematical expression involving a sum of powers in 
one or more variables multiplied by coeffi cients. A polynomial in one variable 
(i.e., a univariate polynomial) with constant coeffi cients is given by

    a x a x a x an
n + + + +� 2

2
1 0    (4.4)   

 A  Laurent polynomial  with coeffi cients is an algebraic object that is typi-
cally expressed in the form
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 A Laurent polynomial is an algebraic object in the sense that it is treated as 
a polynomial except that the indeterminant  t  can also have negative powers. 

 The  Alexander polynomial  is a knot invariant discovered in 1923 by J. W. 
Alexander (Alexander,  1928   ). The Alexander polynomial remained the  only  
known knot polynomial until the Jones polynomial was discovered in 1984. 
Unlike the Alexander polynomial, the more powerful Jones polynomial  does,  
in most cases, distinguish handedness. 

 The notation [ a     +     b     +     c     +   ·  ·  · ] is an abbreviation for the Alexander polyno-
mial of a knot

    a b x x c x x+ +( ) + +( ) +− −1 2 2 �  

 The notation can be extended for links (Figure  4.10 ), in which case one or 
more matrices are used to generate the corresponding multivariate Alexander 
polynomial (Rolfsen,  1976   , p. 389).   

 A second knot polynomial, the  Jones polynomial , was discovered sub-
sequently. Unlike the fi rst - discovered Alexander polynomial, can sometimes 
distinguish handedness. Jones polynomials are Laurent polynomials in  t  
assigned to an  R  3  knot. The Jones polynomials are denoted  V L  ( t ) for links, 
 V k  ( t ) for knots, and normalized so that

    V tunknot ( ) = 1  
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 For example, the right -  and left - hand trefoil knots have the polynomials

    V t t t ttrefoil ( ) = + −3 4  

    V t t t ttrefoil* ( ) = + −− − −1 3 4  

respectively.   

   4.3     DNA  KNOTS AND LINKS 

 Geneticists have discovered that DNA can form knots and links that can be 
described mathematically. By understanding knot theory more completely, 
scientists are becoming more able to comprehend the massive complexity 
involved in the life and reproduction of the cell. The particular fascination in 
this process for geneticists is the fact that chemical changes occur in the DNA 
strand as a result of this process. Changes in the DNA structure due to the 
actions of these enzymes have required geneticists to use very advanced math-
ematical topology (which includes knot theory) and geometry in their study 
of molecular biology. 

  Descriptive Properties Associated with Supercoiling 

  Supercoiling  is an abstract mathematical property and represents the sum of 
twist and writhe.  Supercoil  is seldom used as a noun with reference to DNA 
topology. It is the combination of twists and writhes that imparts supercoiling, 
and these occur in response to a change in the linking number. A coiled struc-
ture is at a higher energy (less stable). When the linking number is reduced in 
closed circular DNA, the molecule supercoils by minimizing twisting and 
bending. To partially relieve the strain introduced by the change in linking 
number (a  “ defi cit ”  in the link), the DNA must distort in other ways —
 compensating with a change in twist or writhe. These are, physically, the two 
ways that the DNA can do so. The relationship of twist, writhe, and supercoil-
ing is expressed by the equation  S     =     T     +     W  (known as  White ’ s formula ). Twist 
and writhe are geometric quantities. Unusually, link as a topological property 
is equal to the sum of two geometric properties. Their values change if the 

     FIGURE 4.10     Links.  
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ribbon is deformed in space. Link, twist, and writhe can be either positive or 
negative. Link is always an integer, whereas twist and writhe can take any real 
values. 

  1.     Writhing.     Global contortions of circular DNA are described as  writhe . 
The writhing number describes the supertwisting or supercoiling of the helix 
in space. It is the number of turns that the duplex axis makes about the super-
helix axis. Writhe describes the supercoiling, the coiling of the DNA coil. It is 
a measure of the DNA ’ s superhelicity (supercoiling) and can be positive or 
negative. Writhe is a measure of the coiling, bending, or nonplanarity of the 
axis of the double helix. A right - handed coil is assigned a negative number 
(negative supercoiling) and a left - handed coil is assigned a positive number 
(positive supercoiling). When a molecule is relaxed and contains no supercoils, 
the linking number    =    the twist number since  W     =    0. The linking number of 
relaxed DNA is  L     =     N /10.5  , where  N  is the number of base pairs in the DNA 
fragment.  

  2.     Twisting.     Twist is the number of helical turns in the DNA: that is, the 
complete revolutions that one polynucleotide strand makes about the duplex 
axis in the particular conformation under consideration. Twist is normally the 
number of base pairs divided by 10.4: that is, the number of bases per turn of 
the helix. Twist is altered by deformation and is a local phenomenon. The total 
twist is the sum of all the local twists. Twist is a measure of deformation due 
to a twisting motion. Twist and writhe are interconvertible. In part because 
chromosomes may be very large, segments in the middle may act as if their 
ends are anchored. As a result, they may be unable to distribute excess twist 
to the rest of the chromosome or to absorb twist to recover from underwind-
ing; the segments may become supercoiled, in other words. In response to 
supercoiling, they will assume an amount of writhe, just as if their ends were 
joined.  

  3.     Linking number.     This is a topological property that determines the 
degree of supercoiling. It defi nes the number of times a strand of DNA winds 
in the right - handed direction around the helix axis when the axis is constrained 
to lie in a plane. It is the number of times that one DNA strand crosses about 
the other when the DNA is made to lie fl at on a plane. If both strands are 
covalently intact, the linking number cannot change. Link is thus a topological 
invariant, remaining unaltered even if the two curves are deformed in space —
 as long as neither is cut. Topology theory indicates that the sum of  T  and  W  
equals the linking number:  L     =     T     +     W . For example, in the circular DNA of 
5400 base pairs, the linking number is 5400/10    =    540. When a molecule is 
relaxed and contains no supercoils, the linking number    =    the twist number 
since  W     =    0. Thus, if there is no supercoiling,  W     =    0 and  T     =     L     =    540. If there 
is positive supercoiling,  W     =     + 20 and  T     =     L     −     W     =    520. In special cases in 
which the axis of the double helix remains in a plane or on the surface of a 
sphere, twist equals the linking number and there is no writhe, but all other 
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cases are considerably more complex. Supercoiling can even be caused by an 
increase in the linking number (although this does not occur in nature).  

  4.     Density.     The density of supercoiling is useful to defi ne as a property that 
distinguishes DNAs varying signifi cantly in size. Superhelical density is the 
number of supercoils per turn of helix. It is denoted by the Greek letter sigma 
and is defi ned as the number of turns that have been added or subtracted in 
the supercoiled DNA compared to the relaxed state, divided by the total 
number of turns in the DNA if it were relaxed (which would normally be 
bp/10.5). Typically, sigma is between  − 0.05 and  − 0.07 (5 to 7% underwinding) 
in isolated natural DNA.  

  5.     Link - altering enzymes.     The functionality of DNA is related to its topol-
ogy, which is maintained by enzymes that are capable of altering it. Nature has 
come up with particular enzymes that control the knottedness (as well as other 
topological states such as twist - induced supercoiling) of DNA. The exact 
ability of these enzymes to locate a knot in a circular DNA is an unresolved 
question in molecular biology. Known as topoisomerases, these enzymes 
change the structure by altering the DNA link of a molecule. This is achieved 
by breaking one of the strands temporarily, passing the other strand through 
it and then resealing the bonds. This effectively changes the linking number in 
the DNA. The enzymes are of two types:  

  a.     Type 1.     These function by creating transient single - strand breaks in 
DNA, altering the link by one, cutting one strand, and passing the other 
strand through the break.  

  b.     Type 2.     These alter the link by two, by breaking both strands of the 
double helix at the same time and passing a segment of the double helix 
through the break.   

 Many topoisomerase enzymes sense supercoiling and either generate or 
dissipate it as they change DNA topology.     

  Energy Associated with Various Structures 

 The energy of a molecule changes if there is a change in pitch (i.e., the number 
of bases per full turn) or bending of the double - helix ring. Even a small change 
in the pitch of DNA results in a large increase in energy 

  1.     Minimum energy.     Linear DNA assumes the B - confi guration because it 
is the confi guration of minimum energy. Linear molecules of DNA assume a 
confi guration known as the b - confi guration. Deviation from this relaxed state 
increases the energy of the DNA molecule, although circular DNA of large 
diameter increases it least.  

  2.     Higher energy.     In the ring form, too, the DNA double helix tries to attain 
the state of minimum energy. The DNA ring approximates the b - confi guration 
of the linear molecule while trying to attain the state of minimum energy. This 
packaging of DNA deforms it physically, thereby increasing its energy. Such 
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an increase in stored (potential) energy within the molecule is then available 
to drive reactions such as the unwinding events that occur during DNA rep-
lication and transcription. Too much stored energy is not necessarily a good 
thing, though. In nature, this problem is addressed by having DNA form super-
coils, in which the helical axis of the DNA curves itself into a coil. Supercoiling 
or the formation of a superhelix structure minimizes the excess energy that 
builds up when DNA molecules are deformed during the packing process.    

 At this point, we should mention that supercoiling is not necessarily the 
only solution to the problem of normalizing the number of bases pairs per 
helix in an unwound piece of DNA. You could also separate the two strands 
by breaking the hydrogen bonds between complementary bases in contiguous 
base pairs until the remaining DNA has the correct number of bases per turn. 
In terms of energy needed, though, it requires a lot more energy to break the 
hydrogen bonds than to supercoil. Nevertheless, strand separation does occur 
during replication and transcription, and it turns out that it is the physics of 
the underwinding that facilitates strand separation. Cruciform structures also 
require some unpairing of the base pairs, and again, it is the underwinding that 
maintains the required strand separation.   

   4.4    CHALLENGES AND PERSPECTIVES 

 We can gain insight into the unknotting of DNA by using principles of topol-
ogy. Topologists study the invariant properties of geometric objects, such as 
knots. Tightly packed DNA in the genes must quickly unknot itself in order 
for replication or transcription to occur. Principles of topology give cell biolo-
gists a quantitative, powerful, and invariant way to measure the properties of 
DNA. Principles of knot theory have helped elucidate the mechanisms by 
which enzymes unpack DNA. Additionally, topological methods have been 
infl uential in determining the left - handed winding of DNA around histones. 
Measuring changes in a crossing number have also been instrumental in under-
standing the termination of DNA replication and the role of enzymes in 
recombination. In the area of DNA structure, several subareas are particularly 
amenable to mathematical analysis: 

   •      A complete analysis of the packaging of DNA in chromatin. Only fi rst -
 order coiling into core nucleosomes is understood. By far the largest 
compaction of DNA comes from higher - order folding.  

   •      Presentation of the topological invariants that describe the structure of 
DNA and its enzymatic transformations. The goal is to be able to predict 
the structure of interstate or products from enzymatic mechanisms and 
in turn to predict mechanisms from structure.  

   •      An analysis of the reciprocal interaction between secondary and higher -
 order structures. This includes the phenomena of bending, looping, and 
phasing.    
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 This work has implications for both biology and mathematics. Mathematics 
will be affected in both topology and geometry. Renewed interest in the study 
of embedding invariants for graphs has occurred because of the enumeration 
and classifi cation topoisomers; the study of random knots has been used to 
study macromolecules in dilute solution, and tangle calculus and Dehn surgery 
theory have been used in the study of DNA enzyme mechanisms. 

 In the study of kinetoplast DNA, topology and the theory of interacting 
particles have been brought together in a unique way. Finally, in the study of 
DNA – protein interactions, theorems from differential geometry and differen-
tial topology have been recast in different frameworks to solve helical period-
icity problems. Determination of the confi guration of closed circular DNA 
brings together the fi elds of geometry and topology and nonlinear partial dif-
ferential equations, or topology and Monte Carlo techniques. These will 
involve extensive use of computational techniques, including the creation of 
new codes to use nonlinear partial differential equations to solve elasticity 
problems for closed circular rods. 

 Differential geometry is the branch of mathematics that applies the methods 
of differential calculus to study the differential invariants of manifolds. 
Topology is the mathematical study of shape. It defi nes and quantizes proper-
ties of space that remain invariant under deformation. These two fi elds have 
been used extensively to characterize many of the basic physical and chemical 
properties of DNA. Specifi c examples of particular note follow. 

 The recent review of Dickerson  (1989)  summarizes how such geometric 
concepts as tilt, roll, shear, and propeller twist have been used to describe the 
secondary structure of DNA (i.e., the actual helical stacking of the bases, which 
forms a linear segment of DNA). In addition, these concepts can be used to 
describe the interaction of DNA with ligands such as intercalating drugs 
(Wang et al.,  1983 ). 

 From the time that closed circular DNA was discovered, it has been clear 
that such DNA exhibits physical and chemical properties that differ in funda-
mental ways from those of related linear DNA. Using differential geometry 
and topology, both molecular biologists and mathematicians have been able 
to explain many of the properties of these molecules from two basic charac-
teristics of the linking number: fi rst, that it is invariant under deformations; 
and second, that it is the sum of the two geometric quantities, twist and writhe 
(White,  1969 ). Among the major applications are: 

   •      An explanation for and extent of supercoiling in a variety of closed 
DNAs (Bauer,  1978 )  

   •      An analysis of the enzymes that change the topology of a DNA chain 
(Cozzarelli,  1980 ; Wasserman and Cozzarelli,  1986 )  

   •      An estimation of the extent of winding in nucleosomes (Travers and 
Klug,  1987 )  

   •      A determination of the free energy associated with supercoiling (Depew 
and Wang,  1975 )  
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   •      Quantitative analysis of the binding of proteins and small ligands to DNA 
(Wang et al.,  1983 )  

   •      A determination of the helical repeat of DNA in solution and DNA 
wrapped on protein surfaces (White et al.,  1988 )  

   •      A determination of the average structure of supercoiled DNA in solution 
(Boles et al.,  1990 )    

 Topology and, in particular, knot and link theory of closed space curves 
have been used extensively to elucidate additional intertwining of closed 
DNA caused by catenation of two closed duplexes or knotting of a single 
duplex. In particular, recent developments in polynomial invariants for links 
and knots have been used to describe the structure of DNA and to charac-
terize the action of recombinases (Wasserman and Cozzarelli,  1986 ; White 
et al.,  1987 ). 

 Additional areas of mathematics recently have developed interactions with 
biology. Three - dimensional topology and low - dimensional differential geom-
etry are two examples. Theorems about the global topological invariants of 
curves and ribbons in three - dimensional space have been instrumental in 
studying the structural conformation of closed circular DNA. These mathe-
matical ideas apply to supercoiling in closed DNA, topoisomerases, nucleo-
some winding, the free energy associated with supercoiling, and binding 
between proteins and DNA. These applications were carried out by experi-
mentalists, often in collaboration with mathematicians. As collaborative work 
continues and our knowledge of the role of conformational changes of biologi-
cal macromolecules grows, the biological problems to be solved become more 
complicated and the mathematical questions deepen. For example, molecular 
biology has renewed interest in embedding invariants for graphs (used in 
studying topoisomers), the study of random knots (used to study solutions of 
macromolecules), and the tangle calculus (used in the study of the DNA 
enzyme mechanism). 

 Structural biology includes analysis of the topological and geometric struc-
ture of DNA and proteins. It also includes molecular dynamics simulation and 
drug design. Basic work must be done related to the structure and folding of 
crystalline and hydrated proteins. For many proteins, the structure is dictated 
by the sequence, so this area is closely related to genomics. Molecules are in 
continual motion in nature, but nuclear magnetic resonance spectroscopy 
(NMR) and x - ray crystallography necessarily involve snapshots. Mathematical 
and computational methods are essential to complement experimental struc-
tural biology by allowing the addition of motion to molecular structures. 

 Mathematics has made perhaps its most important contribution to cellular 
and molecular biology in the area of structural biology. This area is at the 
interface of three disciplines — biology, mathematics, and physics — because its 
success has involved the use of sophisticated physical methods to determine 
the structures of biologically important macromolecules, their assembly into 
specialized particles and organelles, and even at higher levels of organization 
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more recently. A wide array of methods have been employed, but we focus on 
the two most powerful of these, x - ray crystallography and NMR, but with a 
mention of other methods. 

 Mathematics plays three roles. First, computational methods lie at the heart 
of these techniques because a large amount of information about local areas 
or short distances is encrypted in the raw data, and it is a major computational 
task to deduce a structure. Second, new mathematical methods of analysis are 
continually being developed to improve ways of determining the structure. 
Third, increasingly sophisticated computer graphics have been developed in 
response to the need to display and interpret such structure. 

 In crystallography the actual process of data collection has been enhanced 
by modern methods of detection (e.g., area detectors) and the use of intense 
synchrotron sources so that data collection per se is rarely rate limiting. Also, 
the use of modern techniques of recombinant DNA has greatly facilitated the 
isolation of material for crystallization. 

 Until the development of two - dimensional NMR in 1978 by Richard Ernst, 
the use of nuclear magnetic resonance for studying the structure of biological 
macromolecules was limited by the need to represent too much information 
in a limited space. With the pioneering development of the ability to represent 
NMR spectra in two frequency domains, it became possible to resolve the 
spectra of small proteins and oligonucleotides. A key benefi t was that cross 
peaks, resulting from magnetic interactions of nuclei close to one another, 
could be measured. Since these cross peaks contained spatial information, 
there was an immediate movement to determine the structure of these mol-
ecules at atomic resolution. The technique has been remarkably effective. The 
structures of a number of proteins and oligonucleotides have been determined. 
The use of NMR to determine structures has proven to be an important 
complement to x - ray crystallography because the structures of many biologi-
cally important molecules [e.g., zinc fi ngers by Klevit  (1991) , Summers  (1991) , 
and Lee et al.  (1991) ] have resisted attempts at crystallization; these structures 
must be studied in solution. The success of this technique has been critically 
dependent on mathematics, beginning with the theoretical underpinnings by 
Ernst. The determination of structures is dependent on the mathematical 
technique of distance geometry that calculates all structures consistent with 
the distance constraints obtained from the NMR experiment. Other methods 
have included molecular dynamics and more recently the use by Altman and 
Jardetzky  (1989)  and Altman et al.  (1991)  of a Kalman fi lter to sample con-
formational space. There are signifi cant limitations to two - dimensional NMR 
for structure determinations. First, the resolution obtained from NMR is less 
than that obtained from the best x - ray structures and is not suffi cient to show 
in detail active sites of biologically important molecules. A major mathemati-
cal challenge is to obtain such detailed structural information from structures 
that are basically undetermined. One important approach is to use the struc-
ture to backcalculate the NMR data and, by iteration, improve resolution. 
Better computational techniques could extend the limit. 
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 One cannot overestimate the importance of solving structures at atomic 
resolution. It has led directly to an understanding of the replication of DNA 
and its supercoiling in chromatin; the basis of protein and nucleic acid second-
ary, tertiary, and quaternary structures; how proteins act as enzymes and anti-
bodies; and how electron transfer is achieved. 

 The area of molecular geometry and its interface with visualization has 
been underrepresented in research to date. This research, which would benefi t 
from the involvement of geometers and would probably contribute to new 
mathematics, is a major limiting area in structural biology, especially in drug 
design and protein folding. As noted above, new methods will enhance the use 
of NMR for the determination of structures. Signifi cant advances for solving 
the phase problem mathematically are being pursued. Important advances are 
being made in the fi eld of computer - aided drug design. 

 Related to the structure of crystalline and hydrated proteins is the question 
of how proteins fold. For many proteins the folded structure and organelle 
formation (e.g., ribosomes) are dictated by the sequence. Reduction of the 
folding code has resisted intense efforts, but very recently important new 
approaches have been developed that have revealed signifi cant new informa-
tion. For example, two laboratories have shown that relatively short polypep-
tides can have signifi cant secondary structure. This fi nding is important because 
it validates a piecemeal approach to protein folding, where secondary struc-
ture can be considered apart from tertiary structure. The second is the mini-
malist approach of DeGrado et al.  (1989) , in which model structures with 
predicted motifs are synthesized by chemical means. Experimental advances 
such as these, together with the explosive expansion of the available data and 
the development of more powerful decoding methods, means that members 
of families of protein folding codes will soon be readily identifi able. Once 
again this area requires mathematical innovation. 

 Three - dimensional structures as determined by x - ray crystallography and 
NMR are static since these techniques derive a single average structure. In 
nature, molecules are in continual motion; it is this motion that allows them to 
function (a static molecule is as functional as a static automobile). Mathematical 
and computational methods have been able to complement experimental struc-
tural biology by adding motion to the molecular structure. These techniques 
have been able to bring molecules to life in a most realistic manner, reproducing 
experimental data of a wide range of structural, energetic, and kinetic proper-
ties. Systems studied have extended from pure liquid water, through small 
solutes in water, to entire proteins and segments of DNA in solution. 

 The methods used for these calculations provide a glimpse of how simula-
tion can be used generally in biology. Starting with a three - dimensional struc-
ture, a mathematical formulation for the forces between atoms gives the total 
force on each atom. These net forces are then used in Newton ’ s second law of 
motion to give the accelerations, which are then integrated to give a numerical 
trajectory. The trajectory provides a complete description of the system, giving 
the position and velocity of every atom as a function of time. It is remarkable 
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that simple forces and classical mechanics seem to give such a faithful picture 
of molecular motion. 

 In summary, many doubts and suspicions exist in understanding of the 
genetic language. How was life information accumulated and evolved in the 
DNA sequence? How can we understand the possible function of the large 
amount of nongenic DNA in the genome and extract life information from 
the DNA sequence under the background of strong noises? What principle 
governs the functional networks in a genome? How can we predict the molec-
ular structure from its sequence information?  
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  5    Protein Structures, Geometry, 
and Topology     

     Proteins play crucial roles in almost every biological process. They are respon-
sible in one form or another for a variety of physiological functions. They 
function as catalysts, they transport and store other molecules (e.g., oxygen), 
they provide mechanical support and immune protection, they generate 
movement, they transmit nerve impulses, and they control growth and differ-
entiation. Proteins are linear polymers built of monomer units called  amino 
acids . The construction of a vast array of macromolecules from a limited 
number of monomer building blocks is a recurring theme in biochemistry. 
Does protein function depend on the linear sequence of amino acids? The 
function of a protein is directly dependent on its three - dimensional structure. 
Remarkably, proteins fold up spontaneously into three - dimensional structures 
that are determined by the sequence of amino acids in the protein polymer. 
Thus, proteins are the embodiment of the transition from the one - dimensional 
world of sequences to the three - dimensional world of molecules capable of 
diverse activities. 

 In this chapter we introduce protein primary structures, secondary struc-
tures, tertiary structure, and quaternary structure by geometric means. We also 
discuss the classifi cation of proteins, physical forces in proteins, protein motion 
(folding and unfolding), and basic methods for secondary structure and ter-
tiary structure prediction.  

   5.1    INTRODUCTION 

 A protein comprises a sequence of amino acids, which are the building blocks 
of proteins. There are 20 amino acids that commonly appear in proteins. 
Recently, a twenty - fi rst naturally occurring amino acid was found (Atkins and 
Gesteland,  2002 ). Each amino acid is represented by one or more sequences 
of three RNA nucleotides, known as a  codon  or  triplet . The combination of 
four possible nucleotides in groups of three yields 64 codons. Amino acids are 
coded by more than one codon. An  organelle  performs the translation of 
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mRNA into proteins. The process of translation is coordinated by start and 
stop codons.  Start codons  signal the location on the RNA molecule where 
translation should begin, while  stop codons  signal the location where the 
translation should terminate. Once the chain of amino acids that made up a 
particular protein is assembled, the protein disassociates from the organelle 
and folds into a specifi c three - dimensional structure. The chain of several 
amino acids is referred to as a  peptide . Longer chains are often called  poly-
peptides  or  proteins . Proteins are synthesized as linear polymers (chains). The 
order of the amino acids in a protein ’ s primary sequence plays an important 
role in determining its secondary structure and, ultimately, its tertiary struc-
ture. The sequence of amino acids that comprises a protein completely deter-
mines its three – dimensional shape, its physical and chemical properties, and 
ultimately, its biological function. Proteins perform a variety of functions in 
the cell, covering all aspects of cellular functions, from metabolism to growth 
to division. Most proteins are fully biologically active when folded into their 
native globular structure, and understanding the forces behind this process is 
one of the most important questions in biology. 

 In this chapter we present the basic concepts of geometry and topology, 
followed by protein primary structures, secondary structures, tertiary structure, 
and quaternary structure by geometric means. We also discuss the classifi cation 
of proteins, physical forces in proteins, protein motion (folding and unfolding), 
and basic methods (optimization and statistical methods) for secondary struc-
ture and tertiary structure prediction.  

   5.2    COMPUTATIONAL GEOMETRY AND TOPOLOGY 
PRELIMINARIES 

  Computational Geometry 

  Computational geometry  is the study of effi cient algorithms to solve geometric 
problems, such as: Given  N  points in a plane, what is the fastest way to fi nd 
the nearest neighbor of a point? Given  N  straight lines, fi nd the lines that 
intersect. Computational geometry emerged from the fi eld of algorithm design 
and analysis in the late 1970s. It has grown into a recognized discipline. The 
success of the fi eld as a research discipline can, on the one hand, be explained 
by the beauty of the problems studied and the solutions obtained, and, on the 
other hand, by the many application domains — computer graphics, geographic 
information systems, robotics, proteins, and others — in which geometric algo-
rithms play a fundamental role. 

 The connections and interactions between molecular modeling and com-
putational geometry have been growing recently. Many questions in molecu-
lar modeling can be understood geometrically in terms of arrangements of 
spheres in three dimensions. Problems include computing properties of such 
arrangements, such as their volume and topology, testing intersections and 
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collisions between molecules, fi nding offset surfaces, data structures for com-
puting interatomic forces and performing molecular dynamics simulations, 
and computer graphic algorithms for rendering molecular models accurately 
and effi ciently. Computational geometry can also be used as a tool for study-
ing topology and architecture of macromolecules and macromolecular 
complexes. Here we introduce briefl y the common terms and algorithmic 
problems in computational geometry. Detailed descriptions may be found in 
Skiena  (2008) . 

  Polygon     A  polygon  is a collection of line segments that form a cycle and do 
not cross each other. A polygon can be represented as a sequence of points. 
For example, the points

    0 0 0 1 1 1 1 0, , , , , , ,( ) ( ) ( ) ( )   

 form a square. The line segments of the polygon connect adjacent points in 
the list, together with one additional segment connecting the fi rst and last 
points. A  simple polygon  is one in which no two segments cross. A  convex 
polygon  is one in which any two points inside the polygon can be connected 
by a line segment that does not cross the polygons. The smallest convex 
polygon containing a collection of points is known as a  convex hull .  

  Convex Hull     The  convex hull  of a set of points  S  in  n  dimensions is the 
intersection of all convex sets containing  S . Finding the convex hull of a set of 
points is  the  most elementarily interesting problem in computational geometry, 
just as the minimum spanning tree is the most elementarily interesting problem 
in graph algorithms. It arises because the hull quickly captures a rough idea 
of the shape or extent of a data set. Convex hull also serves as a fi rst prepro-
cessing step to many, if not most, geometric algorithms. For example, consider 
the problem of fi nding the diameter of a set of points, which is the pair of 
points a maximum distance apart. The diameter will always be the distance 
between two points on the convex hull. The convex hull representation has 
recently been used for supervised classifi cation of protein structures (Wang 
et al.,  2006a,b, 2008 ). Specifi cally, the novel patterns based on convex hull 
representation are fi rst extracted from a protein structure, then the classifi ca-
tion system is constructed and machine learning methods such as neural net-
works and hidden Markov models are employed (Wang et al.,  2008 ).  

  Triangulation      Triangulation  is the division of a surface or plane polygon into 
a set of triangles, usually with the restriction that each triangle side is shared 
entirely by two adjacent triangles. Triangulation is a fundamental problem in 
computational geometry, because the fi rst step in working with complicated 
geometric objects is to break them into simple geometric objects. The simplest 
geometric objects are triangles in two dimensions, and tetrahedra in three. 
Classical applications of triangulation include fi nite - element analysis and com-
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puter graphics. Recently, triangulation has been applied to computation of a 
molecular surface (Ryu et al.,  2007a,b ,  2009 )  . A molecular surface is used for 
both the visualization of a molecule and the computation of various molecular 
properties, such as the area and volume of a protein, which are important for 
studying problems such as protein docking and folding.  

  Voronoi Diagram      Voronoi diagrams  represent the region of infl uence 
around each of a given set of sites. Given a set  S  of points  p  1 ,  …  ,  p n  , Voronoi 
diagrams decompose the space into regions around each point, such that all 
the points in the region around  p i   are closer to  p i   than to any other point in 
 S . It involves partitioning a plane with points into convex polygons such that 
each polygon contains exactly one generating point, and every point in a given 
polygon is closer to its generating point than to any other. A Voronoi diagram 
is sometimes known as a  Dirichlet tessellation . The cells are called  Dirichlet 
regions ,  Thiessen polytopes , or  Voronoi polygons . Voronoi diagrams have been 
used to compute molecular surfaces on proteins (Ryu et al.,  2007a,b   ).  

  Nearest - Neighbor Search      Nearest - neighbor search  (or  similarity search ) is a 
search to quickly fi nd the nearest neighbor of a query point; that is, given a 
set  S  of  n  points in  d  dimensions and a query point  q , which point in  S  is closest 
to  q ? Nearest - neighbor search is important in classifi cation. Such nearest -
 neighbor classifi ers are widely used, often in high - dimensional spaces. The 
vector - quantization method of image compression partitions an image into 
8    ×    8 pixel regions. This method uses a predetermined library of several thou-
sand 8    ×    8 pixel tiles and replaces each image region by the most similar library 
tile. The most similar tile is the point in 64 - dimensional space that is closest to 
the image region in question. Compression is achieved by reporting the identi-
fi er of the closest library tile instead of the 64 pixels, at some loss of image 
fi delity. The nearest - neighbor search has been used to approximate the protein 
structure (Lotan and Schwarzer,  2004 ).  

  Polygon Partitioning      Polygon partitioning  is an important preprocessing 
step for many geometric algorithms, because most geometric problems are 
simpler and faster on convex objects than on nonconvex objects. Given a 
polygon or polyhedron  P , how can  P  be partitioned into a small number of 
simple (typically, convex) pieces? It is easier to work with the pieces indepen-
dently than with the original object.  

  Shape Similarity      Shape similarity  is a problem that underlies much of 
pattern recognition. Given two polygonal shapes,  P  1  and  P  2 , how similar are 
 P  1  and  P  2 ? Defi nition of similarity is application dependent. There is no single 
algorithmic approach that can solve all shape - matching problems. Consider a 
system for optical character recognition (OCR). We have a known library of 
shape models representing letters and the unknown shapes we obtain by scan-
ning a page. We seek to identify an unknown shape by matching it to the most 
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similar shape model. The shape similarity measures are widely used in protein 
structure comparison and prediction (Lotan and Schwarzer,  2004 ; Sael et al., 
 2008 ).   

  Topology 

  Topology  is a branch of mathematics that can be defi ned as the study of quali-
tative properties of certain objects (called  topological spaces ) that are invari-
ant under certain types of transformations (called  continuous maps ), especially 
those properties that are invariant under a certain type of equivalence (called 
 homeomorphism ). The mathematical defi nition of topology is described briefl y 
here. 

 Let  X  be any set and let  T  be a family of subsets of  X . Then  T  is a topology 
on  X  if: 

   •      Both the empty set and  X  are elements of  T .  
   •      Any union of arbitrarily many elements of  T  is an element of  T .  
   •      Any intersection of fi nitely many elements of  T  is an element of  T .    

 If  T  is a topology on  X , then  X  together with  T  is called a  topological 
space . 

 All sets in  T  are called  open ; note that in general not all subsets of  X  need 
be in  T . A subset of  X  is said to be  closed  if its complement is in  T  (i.e., it is 
open). A subset of  X  may be open, closed, both, or neither. 

 A function or map from one topological space to another is called  continu-
ous  if the inverse image of any open set is open. If the function maps the real 
numbers to the real numbers (both spaces with the standard topology), 
this defi nition of continuous is equivalent to the defi nition of continuous in 
calculus. If a continuous function is one - to - one and onto and if the inverse of 
the function is also continuous, the function is called a  homeomorphism  and 
the domain of the function is said to be  homeomorphic  to the range. Another 
way of saying this is that the function has a natural extension to the topology. 
If two spaces are homeomorphic, they have identical topological properties 
and are considered to be topologically the same. A cube and a sphere are 
homeomorphic, as are a coffee cup and a doughnut. But the circle is not 
homeomorphic to the doughnut. DNA topology and protein topology are 
active research areas. 

  Mathematical Space      Mathematical space  is an informal term for any of many 
different types of sets with added structure. Mathematical spaces often form 
a hierarchy (i.e., one space may inherit all the characteristics of a parent space). 
For example, all inner product spaces are also normed vector spaces, all 
normed vector spaces are also metric spaces, and all metric spaces are topo-
logical spaces, because the inner product induces a norm on the inner product 
space such that
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    x x x= < >,  

and so on.  

  Mathematical Optimization     In mathematics programming, an  optimization 
problem  is a problem of fi nding the  best  solution from all feasible solutions. 
More formally, an optimization problem has the general form

    min max
x S x S

f x f x
∈ ∈

( ) ( )or     (5.1)  

where: 

   •       f ( x ) is a real - valued function defi ned on the space  R n  , called an  objective 
function .  

   •       S  is a subset of the space  R n  , called a  feasible set .  
   •      The points  x  *  in  S  are called  feasible .    

 A point  x  *  in  S  is said to be a local minimum of the  f ( x ) if

    f x f x x S x x x* *( ) ≤ ( ) ∀ ∈ ∩ − < >{ }, , ,δ δ 0     (5.2)   

 A point  x  *  in  S  is said to be a global minimum of the function  f ( x ) if

    f x f x x S*( ) ≤ ( ) ∀ ∈     (5.3)   

 Local and global maximum points can be defi ned similarly. Maximization and 
minimization are related by the relation

    max , min ,f x x S f x x S( ) ∀ ∈{ } = − − ( ) ∀ ∈{ }     (5.4)   

 Therefore, any maximization problem can be converted into an equivalent 
minimization problem, and vice versa.    

   5.3    PROTEIN STRUCTURES AND PREDICTION 

 In this section we begin with a discussion on amino acids and present their 
three - dimensional geometric shapes. We introduce protein primary, secondary, 
tertiary, and quaternary structure by geometric means. 

  Chemical Structure of Amino Acids 

 We fi rst present the chemical structure of 20 amino acids. Each amino acid 
contains an amino group NH 2  and the carboxyl group COOH. The NH 2  group 
is a proton acceptor with the following equilibrium at pH 7:
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    RNH H O RNH OH2 2 3+ ↔ +− −     (5.5)   

 The COOH group is a proton donator with the following equilibrium at 
pH 7:

    RCO H H O RNH OH2 2 3+ ↔ +− −     (5.6)    

  Protein Shape Representation 

 A protein can be viewed as a set of its individual atoms. Each atom type can 
be modeled as a sphere of a given radius. The radii are restricted to a relatively 
small interval, and the minimal distances between the centers of these atomic 
spheres are also restricted. This volumetric representation is important in 
studying the protein - to - protein interaction. The computational geometry plays 
important roles in dealing with intersection and location queries (Halperin 
and Overmars,  1998 ). 

 A protein can also be viewed as a folded three - dimensional curve of amino 
acids (polypeptide chain) (Lesk,  2001 ). A molecule made up of amino acids is 
needed for the body to function properly. Proteins are an important class of 
biological macromolecules present in all biological organisms, made up of such 
elements as carbon, hydrogen, nitrogen, phosphorus, oxygen, and sulfur. All 
proteins are polymers of amino acids. Proteins are the basis of body structures 
such as skin and hair and of substances such as enzymes and antibodies. 
Proteins fold in three dimensions. Protein structure is organized hierarchically 
from primary structure to quaternary structure. Higher - level structures are 
 motifs  and  domains . Protein structures are commonly grouped into four levels 
of structure: 

  1.     Primary structure.     The amino acid sequence of the peptide chains 
(Figure  5.1 ). The primary structure is held together by covalent or 
peptide bonds, which are made during the process of protein biosynthe-
sis or translation. These peptide bonds provide rigidity to a protein. The 
two ends of the amino acid chain are referred to as the  C - terminal end  
or  carboxyl terminus  (C - terminus) and the  N - terminal end  or  amino 
terminus  (N - terminus) based on the nature of the free group on each 
extremity.  

  2.     Secondary structure.     Highly regular substructures ( α  -  helix  and  strands 
of   β   - sheet ; Figure  5.2 ), which are locally defi ned, meaning that there 
can be many different secondary motifs present in a single protein 
molecule.  

  3.     Tertiary structure.     Three - dimensional structure of a single protein 
molecule; a spatial arrangement of the secondary structures (Figure  5.3 ). 
It also describes the completely folded and compacted polypeptide 
chain.  
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  4.     Quaternary structure.     Complex of several protein molecules or polypep-
tide chains (Figure  5.4 ), usually called  protein subunits  in this context, 
which function as part of the larger assembly or protein complex.      

 In addition to these levels of structure, a protein may shift between several 
similar structures in performing its biological function. This process is also 
reversible. In the context of these functional rearrangements, tertiary or qua-
ternary structures are usually referred to as  chemical conformation , and transi-
tions between them are called  conformational changes .  

     FIGURE 5.1     Primary structure of a protein.  
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     FIGURE 5.2     Secondary structure of protein.  
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  Protein Motion (Folding and Unfolding) 

 Folding and unfolding is an exciting area of geometry. It is attractive in the 
way that problems and even results can easily be understood, with little knowl-
edge of mathematics or computer science, yet the solutions are diffi cult and 
involve many sophisticated techniques. The general sort of problem consid-
ered is how a particular object (e.g., linkage, piece of paper, polyhedron, 
protein) can be reconfi gured or  folded  according to a few constraints, which 
depend on the object being folded and the problem of interest. In particular, 

     FIGURE 5.3     Tertiary structure of protein.  
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     FIGURE 5.4     Quaternary structure of protein.  
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we are interested in effi cient algorithms for characterizing fold ability and 
fi nding effi cient folding processes, or in proving that such algorithms are 
impossible. Most folding and unfolding problems are attractive from a pure 
mathematical standpoint, from the beauty of the problems themselves. 
Nonetheless, most of the problems have close connections to important indus-
trial applications. Linkage folding has applications in robotics and hydraulic 
tube bending, and has connections to protein folding.  

  Secondary Structure Prediction 

 The purpose of secondary protein structure prediction is to locate all  α  - helices 
and  β  - strands within a protein. The secondary structures of a protein are 
formed by short -  and long - ranging interactions during the protein ’ s folding 
process. This can be viewed as the specifi c geometric shape caused by intra-
molecular and intermolecular hydrogen bonding of amide groups. The geom-
etry assumed by the protein chain is directly related to molecular geometry 
concepts of hybridization theory. Experimental evidence shows that the amide 
unit is a rigid planar structure. This is derived from the planar triangle geom-
etry of the carbonyl unit (C = O) (Figure  5.5 ).   

 The geometry around the nitrogen is derived from an unusual situation with 
planar triangle geometry. Apparently, the double bond on oxygen can alter-
nate to make a double bond between carbon and nitrogen. Rotation around 
bonds C – C and N – C does take place. The C = O and NH are always in a rigid 
plane. Notice that the carbonyl group and the hydrogen on nitrogen are almost 
always  trans  to each other. The result is that chains of amino acids as peptides 
with amide bonds refl ect this geometry. 

     FIGURE 5.5     Planar triangle geometry of the carbonyl unit (C = O).  
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 As a result of studying x - ray photographs and constructing molecular 
models, Linus Pauling and Robert Cory proposed in 1951 that the protein 
structures were either in the form of an  α  - helix or a  β  - pleated sheet. In an 
 α  -  helix , the polypeptide chain is coiled tightly in the fashion of a spring. The 
 “ backbone ”  of the peptide forms the inner part of the coil, while the side 
chains extend outward from the coil. The helix is stabilized by hydrogen bonds 
between the  > N – H of one amino acid and the  > C = O on the fourth amino acid 
away from it. 

 One turn of the coil requires 3.6 amino acid units. The helix can be either 
right -  or left - handed in the sense of threads on a screw. The naturally occurring 
 α  - helixes found in proteins are all right - handed. Not all proteins have a helical 
structure; some do not have it at all and are random. 

 The amino acids in an  α  - helix are arranged in a right - handed helical struc-
ture, 5.4    Å  ( =    0.54   nm) wide. Each amino acid corresponds to a 100 °  turn in 
the helix (i.e., the helix has 3.6 residues per turn) and a translation of 1.5    Å  
( =    0.15   nm) along the helical axis. Most important, the N – H group of an amino 
acid forms a hydrogen bond with the C = O group of the amino acid  four  resi-
dues earlier; this repeated hydrogen bonding defi nes an  α  - helix. Similar struc-
tures include the 3 10  helix (hydrogen bonding) and the  π  - helix (hydrogen 
bonding). These alternative helices are relatively rare, although the 3 10  helix is 
often found at the ends of  α  - helices,  “ closing ”  them off. Transient helices 
(sometimes called  δ  - helices) have also been reported as intermediates in 
molecular dynamics simulations of  α  - helical folding. 

 Residues in  α  - helices typically adopt backbone ( ϕ ,  ψ ) dihedral angles 
around ( − 60 ° ,  − 45 ° ). More generally, they adopt dihedral angles such that the 
 ψ  dihedral angle of one residue and the  ϕ  dihedral angle of the  next  residue 
sum to roughly  − 105 ° . Consequently,  α  - helical dihedral angles generally fall 
on a diagonal stripe on the Ramachandran plot (of slope  − 1), ranging from 
( − 90 ° ,  − 15 ° ) to ( − 35 ° ,  − 70 ° ). For comparison, the sum of the dihedral angles 
for a 3 10  helix is roughly  − 75 ° , whereas that for the  π  - helix is roughly  − 130 ° . 
The general formula for the rotation angle  Ω  per residue of any polypeptide 
helix with  trans  isomers is given by the equation

    3 1
2

2cos cosΩ = − +φ ψ     (5.7)   

 The  α  - helix is tightly packed; there is almost no free space within the helix. 
 The  β  -  sheet  (also  β  -  pleated sheet ) is the second form of regular secondary 

structure in proteins, consisting of  β  - strands connected laterally by three or 
more hydrogen bonds, forming a generally twisted, pleated sheet (the most 
common form of regular secondary structure in proteins is the  α  - helix). A  β  -
  strand  is a stretch of amino acids, typically 5 to 10 amino acids long, whose 
peptide backbones are almost fully extended. 

 The majority of  β  - strands are arranged adjacent to other strands and form 
an extensive hydrogen bond network with their neighbors in which the N – H 
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groups in the backbone of one strand establish hydrogen bonds with the C = O 
groups in the backbone of the adjacent strands. In the fully extended  β  - strand, 
successive side chains point straight up, then straight down, then straight up, 
and so on. Adjacent  β  - strands in a  β  - sheet are aligned so that their C  α   atoms 
are adjacent and their side chains point in the same direction. 

 However,  β  - strands are rarely perfectly extended; rather, they exhibit a 
slight twist due to the chirality of their component amino acids. The energeti-
cally preferred dihedral angles ( ϕ ,  ψ )    =    ( − 135 ° , 135 ° ) diverge somewhat from 
the fully extended conformation ( ϕ ,  ψ )    =    ( − 180 ° , 180 ° ) (Voet and Voet,  2004 ). 
The twist is often associated with alternating fl uctuations in the dihedral 
angles to prevent the individual  β  - strands in a larger sheet from splaying 
apart. A good example of such a twisted  β  - hairpin can be seen in the protein 
BPTI. The side chains point outward from the folds of the pleats, roughly 
perpendicularly to the plane of the sheet; successive residues point outward 
on alternating faces of the sheet.  

  Information - Theoretic Method of Protein Secondary Structure Prediction 

 The prediction of protein secondary structure from its amino acid sequence 
can be considered as the problem of fi nding the correlation between the two 
objects. It can be studied in the framework of information theory. The amino 
acid sequence can be regarded as an information source. The corresponding 
secondary structure can be considered as an information receiver. For an 
amino acid sequence of length  N , one can construct a secondary structure 
sequence of the same length written by three letters  α ,  β , and  c  following the 
one - to - one correspondence between residue and secondary structure. 

 Let  p ( a i  ) be the probability of structure  a i   in the secondary structure 
sequence ( a i      =     α ,  β ,  c ) and let  p ( s i  ) be the probability of amino acid  s i   in the 
protein ( j     =    1, 2,  …  , 20). Defi ne average mutual information

   I X Y H X H X Y p a p a p s p a s p a si i
i

i i i i i
j

; log log( ) = ( ) − ( ) = − ( ) ( ) + ( ) ( ) ( )∑ ∑∑∑
i

   
 (5.8)   

 Similarly, we can also defi ne

   I Y X H Y H Y X p s p s p a p s a p s aj i
j

i i i i i
j

; log log( ) = ( ) − ( ) = − ( ) ( ) + ( ) ( ) ( )∑ ∑∑∑
i

  

 It is easy to prove that

    I X Y I Y X; ;( ) = ( )   

 The maximum of  H ( X  | Y ) is  H ( X ), which corresponds to no correlation 
between  X  and  Y . So the correlation between secondary structure ( X ) and 
amino acid ( Y ) is defi ned by
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    r
I X Y
H X

a c s A C W Yi j1 = ( )
( )

= =( );
, , ; , , , ,α β …     (5.9)  

where  r  1  takes values between 0 and 1: 

   •       r  1     =    0 indicates no correlation.  
   •       r  1     =    1 the full determination of secondary structure by amino acid, which 

occurs in the case of  p ( a i  | s j  )    =    0 or 1 for all  a i   and  s j  .    

 The single peptide - structure correspondence can easily be extended to 
dipeptide (tripeptide) - structure correspondence through residue numeration 
by shifting a window of width 2 (3). The equations above can be generalized 
in these cases. For the case of dipeptide - structure correspondence,  a i   takes nine 
confi rmations:

    αα αβ α βα ββ β α β, , , , , , , ,c c c c cc   

  s j   takes 400 dipeptides in the equations above; that is,

    AA AC WY YY, , , ,…   

 The correlation between secondary structure and neighboring dipeptide can 
be defi ned by

    r
I X Y
H X

2 = ( )
( )
;

    (5.10)   

 The correlation between secondary structure and tripeptide can be defi ned 
by

    r
I X Y
H X

a ccc s AAA AAC WYY YYYYi j3 = ( )
( )

= … = …( );
, , , ; , , , ,ααα ααβ    

 (5.11)   

 It can be demonstrated that the correlation of protein secondary structure 
with dipeptide frequency is much stronger than that with a single peptide and 
the correlation with tripeptide frequency is much stronger than that with a 
dipeptide. Therefore, the prediction of protein secondary structure from dipep-
tide and tripeptide distribution is a better approach than single - peptide predic-
tion. Thus, the information - theoretic approach provides a method to estimate 
the effi ciency of a structural prediction. The averaged mutual information 
 I ( X ; Y ) is a useful quantity for the estimate.  
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  Tertiary Structure Prediction 

 According to a protein ’ s tertiary structure, proteins can be divided into globu-
lar and fi brous proteins.  Globular proteins  are nearly spherical. All enzymes 
are globular. Proteins are predominantly globular.  Fibrous proteins  contain a 
variety of structure proteins and normally exhibit regularities in their primary 
structures. These regularities are generally so strong that the native conforma-
tions of structural proteins are much easier to characterize than those of 
globular proteins. The conformational search of the global minimum energy 
conformation of a protein  ab initio  from the amino acid sequence is one of 
the greatest challenges in computational biology. 

 A challenge in the area of computational biology has been to develop a 
method to theoretically predict the correct three - dimensional structure of a 
protein  ab initio  from the primary structure. The two most common approaches 
to the problem of predicting protein structure from sequence would be either 
to search the native structure of the protein among the entire conformational 
space available to the polypeptide, or to simulate the folding process in detail. 

 The former appears to be beyond our reach. Even the structures of small 
organic molecules cannot be generated using algorithmic implementations of 
the laws of physics for atomic interactions. Full atom protein folding simula-
tions are completely beyond current computational resources. Short simula-
tions from the folded state, known as  molecular dynamics simulations , are 
possible but do not accurately recreate the behavior of folded proteins in 
solution. 

 Exhaustive conformational search is also out of reach; the number of pos-
sible conformations is immense and would take too long to explore either 
computationally or in vivo during folding (Levinthal,  1968 ). In an attempt to 
reduce the search space, a common approach is to use a simplifi ed polypeptide 
representation and restrain atom or residue positions to a lattice (Dill et al., 
 1995 ). Folding or conformational search experiments are rarely successful, 
even for small proteins.  

  Potential Energy Surface Defi ned by Force Fields 

 Let ’ s consider a molecule with  N  atoms. The position of the  i th atom is denoted 
by the vector  x i  . We describe the potential energy surface of a protein by 
molecular mechanics. Molecular mechanics states that the potential energy of 
a protein can be approximated by the potential energy of the nuclei. Therefore, 
the energy contribution of the electrons is neglected. This approximation 
allows one to write the potential energy of a protein as a function of the 
nuclear coordinates. A typical molecular modeling force fi eld contains fi ve 
types of potentials. These potentials correspond to deformation of covalent 
bond length and bond angles, torsional motion associated with rotation about 
bonds, electrostatic interaction, and van der Waals interaction.
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    V x V V V V V( ) = + + + +length angle torsion electrostatic weak     (5.12)   

 The potential energy  V     =     V ( x ) is a function of the atomic coordinate  x  of 
the molecule. The distance is measured in angstroms ( Å ), energy in kilocalo-
ries per mole (kcal/mol), and mass in the atomic mass unit, the dalton (Da). 
The bond length potential is given by

    V k r rij
i j

length
bonds

= −( )∑ 0 0
2

,

    (5.13)  

where  r ij      =     �  x i      −     x j   �  is the bond length,  r  0  the reference bond length, and  k  0  a 
force constant. Reference bond lengths and force constants depend on the 
bond type. The bond potential corresponds to covalent bond deformation. The 
bond length deformations are suffi ciently small at ordinary temperatures and 
in the absence of chemical reactions. The bond deformation energy between 
the  i th and  j th atoms is given by a harmonic potential,

    k r rij0 0
2−( )   

 The bond angle potential is given by

    V kangle
angle

= −( )∑ 0 0
2θ θ

θ
    (5.14)  

where  θ  0  is the reference bond angle and  k  0  is a force constant, both of which 
depend on the type of atom involved. The angle  θ  between the bonds  p     =     x j      −     x i   
and  r     =     x k      −     x j   is given by  

    cos , ,θ θ π= ⋅ ∈[ ]p r
p r

0     (5.15)   

 The bond angle potential corresponds to angle deformation. Bond angle 
deformations are suffi ciently small at ordinary temperatures and in the absence 
of chemical reactions. 

 The potentials for bond length and bond angle deformation are considered 
as the hard degrees of freedom in a molecular system in the sense that con-
siderable energy is necessary to cause signifi cant deformation from their refer-
ence values. The most variation in structure and relative energy comes from 
the remaining potential energy terms. 

 The torsion potential corresponds to the barriers of bond rotation, which 
involves the dihedral angles of the rotatable bonds. The barriers of torsion can 
be expressed as a series of cosine functions. The mathematical expression for 
the torsion potential is given by

    V k k ntorsion
dihedral

= − ( )∑ 0 0 0
2

θ
θ

::

cos     (5.16)  
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where  n  0  is the multiplicity of the angle and  k  0  is a force constant, both of 
which depend on the type of atoms involved. The dihedral angle  θ  can be 
obtained from  

    cos , ,θ θ π π= ×( )⋅ ×( )
× ×

∈ −[ ]p r r q
p r r q

    (5.17)  

where

    p r q= − = − = −x x x x x xj i k j l k, ,  

and the sign of the angle  θ  is given by the sign of the inner product ( p     ×     q )    ·     r  .  
The complementary angle  π     −     θ  is the torsion angle of the bond,  x j      −     x k  . 

 The electrostatic potential corresponds to the nonbounded interaction 
between the charged atoms in a molecule. The interaction is attractive when 
the charges have opposite sign and repulsive when the charges have the same 
sign. The electrostatic potential of a molecule is given by

    V
q q

r
i j

iji j
electrostatic

atoms

=
<
∑ 4 0πδ

    (5.18)  

where  q i   is the point charge of the  i th atom,  δ  0  is the dielectric constant of 
vacuum, and  r ij   is the distance between the  i th and  j th atoms. 

 The van der Waals potential corresponds to the interaction between non-
bounded atoms in a molecule. This interaction comes from attractive and 
repulsive forces. The van der Waals potential is given by

    V
A

r

B

r
ij

ij

ij

iji j
weak

atoms

= −
⎛
⎝⎜

⎞
⎠⎟<

∑ 12 6
    (5.19)  

where  A ij   and  B ij   are given by

    A B R Rij ij i j= +( )1
2

6  

    B
m

e

N N
ij

e

i j

i i j j

=
+

3
2

1

4

1

0πδ
α α

α α
�

 

where  e  is the electron charge,   �   the reduced Planck constant,  m e   the 
electron mass,  α   i   the polarizability of the  i th atom,  N i   the effective number of 
outer shell electrons in the  i th atom, and  R i   the van der Waals radius of the 
 i th atom.  
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  Conformational Search Methods 

 The conformational search of the global minimum energy surface of a protein 
from the amino acid sequence is one of the challenging problems in bioinfor-
matics. In recent years, several optimization approaches to solve this problem 
have appeared in the literature. The most common approach is to model the 
protein surface by using a force fi eld. Among the most commonly used force 
fi elds are CHARMM, developed by Brooks et al.  (1983) . Conformational 
search based on force fi elds can be approached by the global optimization 
techniques of Horst and Pardalos  (1994) . These methods are currently better 
suited for lower - dimensional problems. For higher - dimensional problems, one 
of the most successful optimization techniques for conformational search is 
conformational space annealing (CSA), introduced by Lee et al.  (1997) . CSA 
has been designed to search a large portion of the potential energy surface. It 
is an iterative algorithm maintaining local minimum energy conformations in 
each iteration of a population. It has been applied successfully to proteins with 
100 to 150 residues (Scheraga,  1996 ). It is currently one of the leading confor-
mational search algorithms. The protein conformation generation can be found 
at http://www.bbmb.iastate.edu/jerniganresearch.shtml. 

 The  smoothing method , also known as the  diffusion equation method , 
invented by Kostrowicki et al.  (1991)  [see also Kostrowicki and Scheraga 
 (1992) ] is another useful technique for conformational search. This method 
can be used to approximate the potential energy surface such that the number 
of local minima largely decreases while the deepest local minimum is retained. 
When a force fi eld is smoothed such that the potentials for bond lengths and 
bond angles are smoothed as well, the entire molecular structure will become 
a single point. Comprehensive coverage of smoothing various potentials is 
available in a book by Zimmermann  (2003) . The general scheme is to defi ne 
a smooth operator that is linear where each term of the potential can be 
smoothed separately. For example, the exponential operator is given by

    Ψt t
d
dx

= ⎛
⎝⎜

⎞
⎠⎟

exp
2

2     (5.20)   

 This smooth operator is linear and transforms polynomial functions into poly-
nomial functions of the same degree. For example,

    Ψt x x x t t4 4 2 212 12= + +     (5.21)   

 Here we describe the process of smoothing the torsion potential of a protein. 
Let ’ s recall that the torsion potential of a protein is expressed as a linear 
combination of cosine terms of dihedral angles (5.3). To smooth this potential, 
we express the dihedral angles by distances. We assume that bond lengths and 
bond angles are fi xed to their reference values. Then the cosine of a dihedral 
angle  θ  can be expressed by the distance  r     =     �  x l      −     x i   �  of the fi rst and last of the 
atoms involved:
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    cosθ α β= + r2  

where  α  and  β  are constants depending on the reference bond lengths and 
reference bond angles. In general, cos    n  θ  of a multiple dihedral angle can be 
represented as a Chebyshev polynomial in cos    θ , which is a polynomial in  r  2 . 

 Let  x     =    cos    θ ; then the Chebyshev polynomials can be written as

    T x n n xn( ) = = ( )cos cos arccosθ     (5.22)   

 Furthermore, we have

    T x n T rn n( ) = = +( )cos θ α β 2     (5.23)   

 Consequentially, the torsion potential can be expressed as a linear combina-
tion of Chebyshev polynomials:

    V k k T rntorsion
dihedral

= − +( )∑ 0 0
2

θ

α β
::

    (5.24)   

 Each term is a polynomial in  r  2 , so the torsion potential  V  torsion ( x ) can be 
smoothed by the linear operator  Ψ   t  ,

    �V x t V xttorsion torsion,( ) = ( )Ψ     (5.25)   

 The potential energy surface of a protein and the smoothed potential energy 
surface of a protein are illustrated in (Figures  5.6  and  5.7 ).     

     FIGURE 5.6     Potential energy surface of protein.  
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   5.4    STATISTICAL APPROACH AND DISCUSSION 

 The objective of conformational search is to fi nd all preferred conformations 
of a molecule. An alternative to conformational search is fold recognition. 
Proteins may have similar tertiary structures even if their primary structures 
are not suffi ciently similar or different. This observation has led to the hypoth-
esis that there are only a limited number of signifi cantly distinct tertiary 
structures. The main goal of fold recognition is to predict the tertiary structure 
of a protein from its amino acid sequence by fi nding the best match between 
the amino acid sequence and some tertiary structure in a protein database 
(Figure  5.8 ).   

 A basic approach to fold recognition is comparative modeling. Let  A  be 
the amino acid sequence of a protein with unknown tertiary structure, and 
align the sequence  A  to the primary structures of all proteins in the database 
of tertiary protein structures. Suppose that the sequence  A  best aligns to the 
primary structure of  B . This sequence alignment can be used to inter the 
structural alignment. For example, if the residue  a i   of  A  aligns with the residue 
 b j   of  B , the position of the residue  a i   in the unknown tertiary structure is 
defi ned as the position of the residue  b j   in the tertiary structure in the database. 
Subsequences of the sequence of  A  aligned with a series of blanks of the 
sequence of  B  are modeled as a coil region. 

 A more sophisticated approach to fold recognition makes use of the method 
of three - dimensional profi le - sequence alignment. For this, we make use of 
both a sequence and a protein database. Let  A  be a sequence of amino acids 
and  P  be the three - dimensional profi le of a protein. We align  A  to  P . Let 

     FIGURE 5.7     Smoothed potential energy surface of protein.  
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 σ ( P ,  A ) be the corresponding alignment score. To estimate the signifi cance of 
these alignment scores, we align the protein with three - dimensional profi le 
 P  against all amino acid sequences of a sequence database. The  Z  - score for 
aligning the amino acid sequence  A  to the protein with three - dimensional 
profi le  P  is given by

    Z P A
P A P

P
,

,( ) = ( ) − ( )
( )

σ µ
σ

    (5.26)  

where  µ ( P ) is the mean score of alignment scores given by

     FIGURE 5.8     Threading predicted one - dimensional structure profi les into known 
three - dimensional structures: (1) input a sequence; (2) generate sequence alignment; 
(3) predict the one - dimensional structure; (4) align the predicted and known structure(s).  
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    µ σP
M

P A
A

( ) = ( )∑1
,     (5.27)   

 with  M  as the number of sequences in the sequence database and  σ ( P ) as the 
standard deviation of the scores, given by

    σ σ µP
M

P a P
A

( ) = ( ) − ( )[ ]∑1 2,     (5.28)   

 A high  Z  - score  Z ( P ,  Z ) may indicate that amino acid sequence  A  has a tertiary 
structure similar to that of a protein with a three - dimensional profi le  P . 

 The most accurate approach to fold recognition is based on a knowledge -
 based potential. Knowledge - based potentials (Sipple,  1995 ) have been applied 
successfully to detecting errors in experimentally determined structures 
(Sipple,  1993 ). In addition, stochastic sampling methods can be used to explore 
the potential energy surface. There is a vast literature on statistical mechanics 
(Amit and Verbin,  1999 ; Gallavotti,  1999 ; Phillies,  1994 ). Comprehensive 
accounts of stochastic sampling methods for conformational search have been 
given by Allen and Tildesley  (1987)  and Leach  (1996) .  

   5.5    CHALLENGES AND PERSPECTIVES 

 Crucial problems in the fi eld of protein structure prediction include, for 
sequences of similar structures in PDB (especially those with a weakly or 
distant homologous relation to the target), how to identify the correct tem-
plates and how to refi ne the template structure closer to the native; and for 
sequences without appropriate templates, how to build models of correct 
topology from scratch. Since a detailed physicochemical description of protein 
folding principles does not yet exist, the protein structure prediction problem 
is defi ned largely by the evolutionary or structural distance between the target 
and the solved proteins in the PDB library. For proteins with close templates, 
full - length models can be constructed by copying the template framework. 

 In recent years, despite many debates, structure genomics has probably 
become one of the most noteworthy efforts in protein structure determination, 
which aims to obtain three - dimensional models of all proteins by an optimized 
combination of experimental structure solution and computer - based structure 
prediction (Burley et al.,  1999 ; Chandonia and Brenner,  2006 ). Two factors will 
dictate the success of structure genomics: experimental structure determina-
tion of optimally selected proteins and effi cient computer modeling algo-
rithms. Depending on whether similar structures are found in the PDB library, 
the protein - structure prediction can be categorized into template - based mod-
eling and free modeling. Although threading is an effi cient tool for detecting 
structural analogs, advancements in methodology development have arrived 
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at a steady state. Encouraging progress is observed in structure refi nement, 
which aims at drawing template structures closer to the native. This has been 
driven primarily by the use of multiple structure templates and the develop-
ment of hybrid knowledge -  and physics - based force fi elds. For free modeling, 
exciting examples have been witnessed in folding small proteins to atomic 
resolutions. However, predicting structures for proteins larger than 150 resi-
dues remains a challenge, with bottlenecks from both force fi eld and confor-
mational search. 

 Based on about 40,000 structures in the PDB library (many are redundant) 
(Berman et al.,  2000 ), 4 million models/fold assignments can be obtained by a 
simple combination of the PSI - BLAST search and the comparative modeling 
technique (Pieper et al.,  2006 ). Development of more sophisticated and auto-
mated computer modeling approaches will dramatically enlarge the scope of 
modelable proteins in structure genomics.  
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  6    Biological Networks and 
Graph Theory     

     Biological systems ranging from food webs in ecology to biochemical interac-
tions in molecular biology can be modeled and analyzed as networks. Biological 
networks are abstract representations of biological systems which capture 
many of their essential characteristics. A mathematical graph is an abstract 
representation of a set of objects where some pairs of the objects are con-
nected by links. With the availability of complete genome sequences and high -
 throughput technologies and postgenomics experimental data, we have seen 
a growing interest in the study of networks of biomolecular interactions in 
recent years. Graph theory plays an important role in a wide variety of disci-
plines, ranging from communications to molecular and population biology. 
Network approaches offer the tools to analyze and understand a host of bio-
logical systems. In particular, within the cell the variety of interactions among 
genes, proteins, and metabolites are captured by network representations. In 
this chapter we focus our discussions on biological applications of the theory 
of graphs and networks.  

   6.1    INTRODUCTION 

 Recent advances in molecular biology and high - throughput technologies 
for biological measurement have led to a high volume of data sets on 
systems at different levels, ranging from molecules to populations. Typically, 
these data sets consist of a list of biological objects and their interactions. 
Naturally, their interactions could be captured by network representations 
at various levels. Broadly speaking, biological networks may be grouped 
at the molecular, cellular, and population levels. At the population level, 
ecological networks, food - web networks, and epidemiological networks are 
the most common. At the cellular level, neuronal networks and immuno-
logical networks have attracted attention recently. At the molecular level, 
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gene regulatory networks, protein interaction networks, and metabolic 
networks have attracted the most attention to date. A large number of 
data sets on these networks are now available. It is possible to investigate 
the structural properties of networks and identify their key properties in 
living cells. 

 One of the ultimate goals of biological networks is to improve our under-
standing of the processes and events that lead to pathologies and diseases. The 
analysis of biological pathways can provide a more effi cient way of browsing 
through biologically relevant information and offer a quick overview of under-
lying biological processes. Protein interactions help put biological processes in 
context, allowing researchers to characterize specifi c pathway biology. Hence, 
the analysis of biological networks is crucial to an understanding of complex 
biological systems and diseases. 

 The mathematical theory that underpins the study of complex networks is 
graph theory (Diestel,  2000 ). In mathematics, graph theory is the study of 
graphs. A  graph  is an abstract representation of a set of objects where some 
pairs of the objects are connected by links. The interconnected objects are 
represented by mathematical abstractions called  vertices , and the links that 
connect some pairs of vertices are called  edges . Typically, a graph is depicted 
in diagrammatic form as a set of dots for the vertices, joined by lines or curves 
for the edges. Table  6.1  provides a partial list of graph models on various 
complex networks.   

 Motivated by the considerations outlined above, a substantial literature and 
databases on the analysis of biological networks have emerged in recent years. 
These include studies on identifying and interpreting the structures of biologi-
cal networks. Our primary goal in the present chapter is to describe, as broadly 
as possible, the major advances made in this fi eld in relation to graph theory. 
In this chapter we focus on the three biomolecular networks: 

  1.     Transcriptional regulatory networks (or genetic regulatory networks), 
which describe the regulatory interactions between different genes  

  2.     Protein interaction networks of the physical interactions between an 
organism ’ s proteins  

  3.     Metabolic networks of biochemical reactions between metabolic 
substrates     

   6.2    GRAPH THEORY PRELIMINARIES AND 
NETWORK TOPOLOGY 

 In this section we introduce the principal notations of graph theory and recall 
some basic defi nitions and facts from graph theory. While the material of this 
section is mathematical in nature, we shall see in the remainder of the chapter 
that all the concepts recalled here arise in real biological networks. 
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  Graph Theory Preliminaries 

 A graph is an ordered pair  G    : =    ( V ,  E ) comprising a set  V  of vertices or nodes 
together with a set  E  of edges or lines. The vertices belonging to an edge are 
called the  ends ,  endpoints , or  end vertices  of the edge. A vertex may exist in a 
graph and not belong to an edge.  V  and  E  are usually taken to be fi nite. The 
order of a graph is the number of vertices. A graph ’ s size is the number of 
edges. The  degree  of a vertex is the number of edges that connect to it, where 
an edge that connects to the vertex at both ends (a loop) is counted twice. 

 Graphs or networks can be divided into two broad classes: undirected and 
directed. A graph may be  undirected  if there is no distinction between the two 
vertices associated with each edge, or its edges may be directed from one 

  TABLE 6.1    Examples of Networks 

   Graph  
   Nodes 

(Vertices)     Links (Edges)     Networks     References  

  Undirected 
graphs  

  Routers    Wires    Internet    Faloutsos 
et al.,  1999   

  Directed 
graphs  

  Web pages    URL    World Wide 
Web networks  

  Barab á si et 
al.,  2002   

  Directed 
graphs/
undirected 
graphs  

  Genes    Expressions of 
genes A and 
B are 
correlated/
regulatory 
infl uences  

  Gene regulatory 
networks  

  Lee et al., 
 2001     

  Directed 
graphs  

  Genes and 
proteins  

  Transcription 
factor 
regulates a 
gene  

  Transcriptional 
regulatory 
networks  

  Guelzim 
et al.,  2002   

  Directed 
bipartite 
graphs  

  Metabolites/
reactions  

  Production/
consumption  

  Metabolic 
networks  

  Savageau, 
 1991   

  Directed 
graphs  

  Proteins    Interaction    Protein 
interaction 
networks  

  Uetz et al., 
 2000   

  Directed 
graphs  

  People    Friendship 
 Collaborations 

 Sexual 
contacts 

 Coauthorship 
of scientifi c 
papers  

  Societal 
networks  

  Milgram  ,  1967  
 Wasserman 

and Faust, 
 1994  

 Liljeros et al.,   
 2001  

 Barab á si 
et al.,  2002   
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vertex to another. Formally,  a directed graph  or  digraph  is an ordered pair 
 D    : =    ( V ,  A ) with 

   •       V  a set whose elements are called  vertices  or  nodes   
   •       A  a set of ordered pairs of vertices, called  arcs ,  directed edges , or  arrows     

 An arc  a     =    ( x ,  y ) is considered to be directed from  x  to  y ;  y  is called the 
 head  and  x  is called the  tail  of the arc;  y  is said to be a direct  successor  of  x , 
and  x  is said to be a direct  predecessor  of  y . If a path leads from  x  to  y , then 
 y  is said to be a successor of  x  and reachable from  x , and  x  is said to be a 
predecessor of  y . The arc ( y ,  x ) is called the arc ( x ,  y ) inverted. A directed 
graph  D  is called  symmetric  if for every arc in  D , the corresponding inverted 
arc also belongs to  D . A symmetric loopless directed graph  D     =    ( V ,  A ) is 
equivalent to a simple undirected graph  G     =    ( V ,  E ), where the pairs of inverse 
arcs in  A  correspond one - to - one with the edges in  E ; thus, the edges in  G  
number | E |    =    | A |/2, or half the number of arcs in  D . 

 A  mixed graph G  is a graph in which some edges may be directed and some 
may be undirected. It is written as an ordered triple  G    : =    ( V ,  E ,  A ) with  V ,  E , 
and  A  defi ned as above. Directed and undirected graphs are special cases. 

 A  loop  is an edge (directed or undirected) which starts and ends on the 
same vertex; these may be permitted or not permitted according to the appli-
cation. In this context, an edge with two different ends is called a  link . 

 A  simple graph  has three vertices and three edges. Each vertex has degree 
2, so this is also a regular graph. As opposed to a multigraph, a simple graph 
is an undirected graph that has no loops and no more than one edge between 
any two different vertices. In a simple graph the edges of the graph form a set 
(rather than a multiset), and each edge is a pair of distinct vertices. In a simple 
graph with  n  vertices, every vertex has a degree that is less than  n  (the inverse, 
however, is not true — there exist nonsimple graphs with  n  vertices in which 
every vertex has a degree smaller than  n ). 

 A graph is a  weighted graph  if a number (weight) is assigned to each edge. 
Such weights might represent, for example, costs, lengths, or capacities, depend-
ing on the problem. The  weight  of the graph is the sum of the weights given 
to all edges. 

 A  regular graph  is a graph where each vertex has the same number of 
neighbors (i.e., every vertex has the same degree). A regular graph with ver-
tices of degree  k  is called a  k - regular graph  or a  regular graph of degree k . 

 Complete graphs have the feature that each pair of vertices has an edge 
connecting them. In an undirected graph  G , two vertices  u  and   υ   are called 
 connected  if  G  contains a path from  u  to   υ  . Otherwise, they are called  discon-
nected . A graph is called connected if every pair of distinct vertices in the graph 
is connected, and is disconnected otherwise. 

 A graph is called  k - vertex - connected  or  k - edge - connected  if removal of  k  or 
more vertices (respectively, edges) makes the graph disconnected. A  k  - vertex -
 connected graph is often simply called k -  connected . 
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 A directed graph is called  weakly connected  if replacing all of its directed 
edges with undirected edges produces a connected (undirected) graph. It is 
 strongly connected  or  strong  if it contains a directed path from  u  to   υ   and a 
directed path from   υ   to  u  for every pair of vertices  u  and   υ  . 

 Two edges of a graph are called  adjacent  (sometimes  coincident ) if they 
share a common vertex. Two arrows of a directed graph are called  consecutive  
if the head of the fi rst arrow is at the nock (notch end) of the second. Similarly, 
two vertices are called adjacent if they share a common edge (consecutive if 
they are at the notch and at the head of an arrow), in which case the common 
edge is said to join the two vertices. An edge and a vertex on that edge are 
called  incident . 

 The graph with only one vertex and no edges is called a  trivial graph . A 
graph with only vertices and no edges is known as an  edgeless graph . The graph 
with no vertices and no edges is sometimes called a  null graph  or  empty graph , 
but not all mathematicians allow this object. 

 In a weighted graph or digraph, each edge is associated with some value, 
variously called its  cost ,  weight ,  length , or other term depending on the applica-
tion; such graphs arise in many contexts: for example, in optimal routing 
problems such as the traveling salesman problem. Normally, the vertices of a 
graph, by their nature as elements of a set, are distinguishable. This type of 
graph may be called  vertex - labeled . However, for many questions it is better 
to treat vertices as indistinguishable; then the graph may be called  unlabeled . 
(Of course, the vertices may still be distinguishable by the properties of the 
graph itself, e.g., by the numbers of incident edges.) The same remarks apply 
to edges, so that graphs that have labeled edges are called  edge - labeled graphs . 
Graphs with labels attached to edges or vertices are more generally designated 
as labeled. Consequently, graphs in which vertices are indistinguishable and 
edges are indistinguishable are called unlabeled. (Note that in the literature 
the term  labeled  may apply to other types of labeling besides that which serves 
only to distinguish different vertices or edges.) 

 A binary relation R on a set  X  is a directed graph. Two edges  x  and  y  of  X  
are connected by an arrow if  x    R    y . Basic examples are: 

   •      In a complete graph each pair of vertices is joined by an edge; that is, the 
graph contains all possible edges.  

   •      In a bipartite graph, the vertices can be divided into two sets,  W  and  X , 
so that every edge has one vertex in each of the two sets.  

   •      In a complete bipartite graph, the vertex set is the union of two disjoint 
subsets,  W  and  X , so that every vertex in  W  is adjacent to every vertex 
in  X  but there are no edges within  W  or  X .  

   •      In a path of length  n , the vertices can be listed in order,   υ   0 ,   υ   1 ,  …  ,   υ  n  , so 
that the edges are   υ  i    − 1   υ  i   for each  i     =    1, 2,  …  ,  n .  

   •      A cycle or circuit of length  n  is a closed path without self - intersections; 
equivalently, it is a connected graph with degree 2 at every vertex. Its 
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vertices can be named   υ   1 ,  …  ,   υ  n  , so that the edges are   υ  i    − 1   υ  i   for each 
 i     =    2,  …  ,  n  and   υ  n  υ   1 .  

   •      A planar graph can be drawn in a plane with no crossing edges (i.e., 
embedded in a plane).  

   •      A forest is a graph with no cycles.  
   •      A tree is a connected graph with no cycles.     

  Power Law and Power Law Distribution 

 Power laws are abundant in nature. The power - law distribution has become 
the signature of biological networks. A  power law  is any polynomial relation-
ship that exhibits the property of scale invariance. The most common power 
laws relate two variables and have the form

    P x ax o xk k( ) = + ( )     (6.1)  

where  a  and  k  are constants and  o ( x k  ) is an asymptotically small function of 
 x . Here,  k  is typically called the  scaling exponent , the word  scaling  denoting 
the fact that a power - law function satisfi es  P ( cx )    ∝     P ( x ), where  c  is a constant. 
That is, a rescaling of the function ’ s argument changes the constant of propor-
tionality but preserves the shape of the function itself. This point becomes 
clearer if we take the logarithm of both sides:

    log log logP x k x a( ) = +     (6.2)   

 Notice that this expression has the form of a linear relationship with slope 
 k . Rescaling the argument produces a linear shift of the function up or down 
but leaves both the basic form and the slope  k  unchanged. 

 Power - law relations characterize a staggering number of naturally occurring 
phenomena. For instance, inverse - square laws, such as gravitation and the 
Coulomb force are power laws, as are many common mathematical formulas, 
such as the quadratic law of area of the circle. However, it is mainly in the 
study of probability distributions that power laws have attracted recent inter-
est. A wide variety of observed probability distributions appear, at least 
approximately, to have tails asymptotically following power - law forms, an 
observation connected closely with the study of the theory of large deviations, 
which considers the frequency of extremely rare events such as stock market 
crashes and large natural disasters. It is primarily in the study of statistical 
distributions that the name  power law  is used; in other areas the power - law 
functional form is more often referred to simply as a polynomial form or 
polynomial function. A few notable examples of power laws are the Gutenberg –
 Richter law for earthquake sizes, Pareto ’ s law of income distribution, struc-
tural self - similarity of fractals, and scaling laws in biological systems. 

 A power - law distribution is any that in the most general sense has the form
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    P x L x x( ) ∝ ( ) −α     (6.3)  

where  α     >    1, and  L ( x ) is a slowly varying function, which is any function that 
satisfi es  L ( tx )/ L ( x )    →    1 as  x     →     ∞  with  t  constant. This property of  L ( x ) follows 
directly from the requirement that  p ( x ) be asymptotically scale invariant; thus, 
the form of  L ( x ) controls only the shape and fi nite extent of the lower tail.  

  Network Topology and Network Models 

 There are many tools and measures available now to study the structure and 
dynamics of complex networks. Statistical graph properties include the distri-
bution of vertex degrees, the distribution of the clustering coeffi cients and 
other notions of density, the distribution of vertex – vertex distances, and the 
distribution of network motif occurrences. In the following we discuss four of 
the most fundamental quantities: 

  1.     Degree distribution  
  2.     Clustering coeffi cient  
  3.     Subgraphs and motifs  
  4.     Centrality (degree, closeness, betweenness, and eigenvector) and 

essentiality    

  Degree Distribution     In the study of various networks, the  degree  (or con-
nectivity) of a node in a network is the number of connections (edges) it has 
to other nodes. If a network is directed, nodes have two different degrees: the 
 in - degree , which is the number of incoming edges, and the  out - degree , which 
is the number of outgoing edges. The degree distribution is the probability 
distribution of these degrees over the entire network. Formally, the degree 
distribution  P ( k ) of a network is then defi ned to be the fraction of nodes in 
the network with degree  k . Thus, if there are  n  nodes in total in a network and 
 n k   of them have degree  k , we have

    P k
n
n

k( ) =     (6.4)   

 The degree distribution is very important in studying biological networks 
and other complex networks. The simplest network model, for example, the 
(Bernoulli) random network, in which each of  n  nodes is connected (or not) 
with independent probability  p  (or 1    −     p ), has a binomial distribution of degrees

    P k
n

k
p pk n k( ) =

−⎛
⎝⎜

⎞
⎠⎟

−( ) − −1
1 1     (6.5)   

 or a Poisson distribution in the limit of large  n ,
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    P k
e

k

k

( ) =
−λ λ

!
    (6.6)  

where  λ    is a constant. 
 Most networks in the real world, however, have degree distributions very 

different from this. Most are highly right - skewed, meaning that a large major-
ity of nodes are of low degree, but a small number, known as  hubs , are of 
high degree. Some networks, notably the Internet, the World Wide Web, and 
some social networks are found to have degree distributions that approxi-
mately follow a power law:

    P k k( ) ≈ −λ     (6.7)  

where  λ    is a constant. Such networks, called  scale - free networks , have attracted 
particular attention for their structural and dynamical properties.  

  Clustering Coeffi cient     The  clustering coeffi cient  is a measure that gives 
insight into the local structure of a network. Mathematically, we defi ne the 
clustering coeffi cient as follows. Let  G     =    ( V ,  E ) be a graph with a set of vertices, 
 V , and a set of edges,  E . An edge  e ij   connects vertex  i  with vertex  j . The neigh-
borhood  N  of vertex   υ  i   is defi ned as its immediately connected neighbors, as 
follows:

    N e E e Ei i ij ji= ∈ ∨ ∈{ }u :     (6.8)   

 Let  k i   be the degree (number of vertices) in its neighborhood  N i  . The clustering 
coeffi cient  C i   for a vertex   υ  i   is defi ned as

    C
e

k k
N e Ei

jk

i i
j k i jk=

{ }
−( )

∈ ∈
1

: , ;u u     (6.9)   

 representing the proportion of links between the vertices within its neigh-
borhood divided by the number of links that could possibly exist between 
them. 

 For a directed graph,  e ij   is distinct from  e ji  , and therefore for each neighbor-
hood  N i   there are  k i  ( k i      −    1) links that could exist among the vertices within 
the neighborhood ( k i   is the total (in    +    out) degree of the vertex). An undi-
rected graph has the property that  e ij   and  e ji   are considered identical. Therefore, 
if a vertex   υ  i   has  k i   neighbours, edges could exist among the vertices within 
the neighborhood. Thus, the clustering coeffi cient for undirected graphs can 
be defi ned as

    C
e

k k
N e Ei

jk

i i
j k i jk=

{ }
−( )

∈ ∈
2

1
: , ;u u     (6.10)   
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 For a vertex that is a part of a fully interconnected graph,  C i      =    1; for a vertex 
where none of its neighbors are interconnected,  C i      =    0. The clustering coeffi -
cient for the entire system is given by Watts and Strogatz  (1998)  as the average 
of the clustering coeffi cient for each vertex:

    C
C

N
i= ∑     (6.11)   

 A graph is considered small - world if its average clustering coeffi cient is 
signifi cantly higher than a random graph constructed on the same vertex set. 
For all metabolic networks available, the average clustering coeffi cient assem-
bles a power - law form as

    C kk = −λ     (6.12)   

 This suggests the existence of a hierarchy of vertices with different degrees of 
modularity.  

  Subgraphs and Motifs     In graph theory, a  subgraph  of a graph  G  is a graph 
whose vertex set is a subset of that of  G , and whose adjacency relation is a 
subset of that of  G  restricted to this subset. A subgraph  H  is a  spanning sub-
graph , or  factor , of a graph  G  if it has the same vertex set as  G . We say that 
 H spans G . 

 In genetics, a  sequence motif  is a nucleotide or aminoacid sequence pattern 
that is widespread and has, or is conjectured to have, biological signifi cance. 
For proteins, a sequence motif is distinguished from a  structural motif , a motif 
formed by the three - dimensional arrangement of amino acids, which may not 
be adjacent. 

 A number of complex biological networks were recently found to contain 
 network motifs . In proteins, structure motifs usually consist of just a few ele-
ments; for example, a helix – turn – helix has just three. Note that while the 
spatial sequence of elements is the same in all instances of a motif, they may 
be encoded in any order within the underlying gene. Protein structural motifs 
often include loops of variable length and unspecifi ed structure, which in 
effect create the  “ slack ”  necessary to bring together in space two elements 
that are not encoded by immediately adjacent DNA sequences in a gene. 
Note also that even when two genes encode secondary structural elements 
of a motif in the same order, they may specify somewhat different sequences 
of amino acids.  

  Centrality and Essentiality     Within graph theory and network analysis, there 
are various measures of the centrality of a vertex within a graph that deter-
mine the relative importance of a vertex within the graph. There are four 
measures of centrality that are widely used in network analysis: degree central-
ity, closeness, betweenness, and eigenvector centrality. 
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  Degree centrality  is the most basic of the centrality measures. It is defi ned 
as the number of links incident upon a node (i.e., the number of ties that a 
node has). Degree is often interpreted in terms of the immediate risk of a node 
for catching whatever is fl owing through the network (such as a virus, or some 
information). If the network is directed, we usually defi ne two separate mea-
sures of degree centrality, in - degree and out - degree.  In - degree  is a count of the 
number of ties directed to the node, and  out - degree  is the number of ties that 
the node directs to others. For a graph  G    : =    ( V ,  E ) with  n  vertices, the degree 
centrality  C D  (  υ  ) for vertex   υ   is

    C
n

D u
u( ) = ( )

−
deg

1
    (6.13)   

  Closeness  is a centrality measure of a vertex within a graph. Vertices that 
are  “ shallow ”  to other vertices (i.e., those that tend to have short geodesic 
distances to other vertices within the graph) have higher closeness. Closeness 
is preferred in network analysis to mean shortest path length, as it gives higher 
values to more central vertices, and so is usually positively associated with 
other measures, such as degree. It is defi ned as the mean geodesic distance 
(i.e., the shortest path) between a vertex   υ   and all other vertices reachable 
from it:

    
d t

n

G
t V

u
u

,
\

( )

−
∈
∑

1
    (6.14)  

where  n     >    1 is the size of the network ’ s connectivity component  V  reachable 
from   υ  . Closeness can be regarded as a measure of how long it will take infor-
mation to spread from a given vertex to other reachable vertices in the network. 

  Betweenness  is a centrality measure of a vertex within a graph. Vertices that 
occur on many shortest paths between other vertices have higher betweenness 
than those that do not. For a graph  G    : =    ( V ,  E ) with  n  vertices, the between-
ness  C B  (  υ  ) for vertex   υ   is

    CB
st

sts t

u
u

u

( ) = ( )
≠ ≠
∑ σ

σ
    (6.15)  

where  σ   st   is the number of shortest geodesic paths from  s  to  t , and  σ   st  (  υ  ) is the 
number of shortest geodesic paths from  s  to  t  that pass through a vertex   υ  . 
This may be normalized by dividing through the number of pairs of vertices 
not including   υ  , which is ( n     −    1)( n     −    2). Calculating the betweenness and close-
ness centralities of all the vertices in a graph involves calculating the shortest 
paths between all pairs of vertices on a graph. 

  Eigenvector centrality  is a measure of the importance of a node in a network. 
It assigns relative scores to all nodes in the network based on the principle 
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that connections to high - scoring nodes contribute more to the score of the 
node in question than do equal connections to low - scoring nodes. 

 Let  x i   denote the score of the  i th node. Let  A i   ,   j   be the adjacency matrix of 
the network. Hence,  A i   ,   j      =    1 if the  i th node is adjacent to the  j th node, and 
 A i   ,   j      =    0 otherwise. More generally, the entries in  A  can be real numbers repre-
senting connection strengths. For the  i th node, let the centrality score be 
proportional to the sum of the scores of all nodes that are connected to it. 
Hence,

    x x A xi j
j M i

i j j
j

N

= =
∈ ( ) =
∑ ∑1 1

1λ λ ,     (6.16)  

where  M ( i ) is the set of nodes that are connected to the  i th node,  N  is the total 
number of nodes, and  λ  is a constant. In vector notation this can be 
rewritten

    X AX AX X= =
1
λ

λ,     (6.17)   

 In general, there will be many different eigenvalues  λ  for which an eigen-
vector solution exists. However, the additional requirement that all the entries 
in the eigenvector be positive implies (by the Perron – Frobenius theorem) that 
only the greatest eigenvalue results in the desired centrality measure. The  i th 
component of the related eigenvector then gives the centrality score of the  i th 
node in the network. Power iteration is one of many eigenvalue algorithms 
that may be used to fi nd this dominant eigenvector. 

 The network model is a database model conceived as a fl exible way of 
representing objects and their relationships. Where the hierarchical model 
structures data as a tree of records, with each record having one parent record 
and many children, the network model allows each record to have multiple 
parent and child records, forming a lattice structure. Next, we describe three 
models that can be seen as network paradigms. 

  Random Network     Graph theory focused initially on regular graphs. Since the 
1950s, large networks with no apparent design principles were described by 
random graphs as the simplest model of a complex network (Bollobas,  1985 ). 
A  random network  is obtained by starting with a set of  n  vertices and adding 
edges between them at random. Different random graph models produce dif-
ferent probability distributions on graphs. Most commonly studied is the 
Erd ö s – R é nyi model (Erd ö s and R é nyi,  1960 ), denoted  G ( n ,  p ), in which every 
possible edge occurs independently with probability  p . This process generates 
a graph with approximately  pN ( N     −    1)/2 randomly distributed edges. A closely 
related model, denoted  G ( n ,  M ), assigns equal probability to all graphs with 
exactly  M  edges. The latter model can be viewed as a snapshot at a particular 
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time of the random graph process, which is a stochastic process that starts with 
 n  vertices and no edges and at each step adds one new edge chosen uniformly 
from the set of missing edges. The theory of random graphs studies typical 
properties of random graphs, those that hold with high probability for graphs 
drawn from a particular distribution. For example, we might ask, for a given 
value of  n  and  p , what the probability is that  G ( n ,  p ) is connected. In studying 
such questions, researchers often concentrate on the asymptotic behavior of 
random graphs — the values that various probabilities converge to as n grows 
very large.  

  Scale - Free Network     A  scale - free network  is a network whose degree distribu-
tion follows a power law, at least asymptotically. That is, the fraction  P ( k ) of 
nodes in the network having  k  connections to other nodes goes for large values 
of  k  as  P ( k )    ∼     k   −  γ  , where  γ  is a constant whose value is typically in the range 
2    <     γ     <    3, although occasionally it may lie outside these bounds. Scale - free 
networks are noteworthy because many empirically observed networks appear 
to be scale - free, including the World Wide Web, protein networks, citation 
networks, and some social networks. 

 The power - law distribution strongly infl uences the network topology. It 
turns out that the major hubs are closely followed by smaller ones. These, in 
turn, are followed by other nodes with an even smaller degree, and so on. 
This hierarchy allows for a fault - tolerant behavior. Since failures occur at 
random and the vast majority of nodes are those with small degree, the likeli-
hood that a hub would be affected is almost negligible. Even if such an event 
occurs, the network will not lose its connectedness, which is guaranteed by 
the remaining hubs. On the other hand, if we choose a few major hubs and 
take them out of the network, it simply falls apart and is turned into a set 
of rather isolated graphs. Thus, hubs are scale - free networks. Another impor-
tant characteristic of scale - free networks is the clustering coeffi cient distribu-
tion, which decreases as the node degree increases. This distribution also 
follows a power law. That means that the low - degree nodes belong to very 
dense subgraphs and those subgraphs are connected to each other through 
hubs.  

  Hierarchical Network     A  Hierarchical network  is a network topology in which 
a central  “ root ”  node (the top level of the hierarchy) is connected to one or 
more other nodes that are one level lower in the hierarchy (i.e., the second 
level) with a point - to - point link between each of the second - level nodes and 
the top - level central root node. At the same time, each of the second - level 
nodes that are connected to the top - level central root node will also have one 
or more other nodes that are one level lower in the hierarchy (i.e., the third 
level) connected to it, also with a point - to - point link, the top - level central root 
node being the only node that has no other node above it in the hierarchy. 
(The hierarchy of the tree is symmetrical.)     



148  BIOLOGICAL NETWORKS AND GRAPH THEORY

   6.3    MODELS OF BIOLOGICAL NETWORKS 

 A network model can be used to present a synthetic view of the current state 
of biological knowledge on a given network and can be used to simulate the 
process it represents. A biological network model allows a variety of analyses, 
ranging from statistical properties of its topology to predictions of features of 
its dynamic behavior, or even prediction of cellular phenotypes. If these pre-
dictions can be compared with experimental results, they should allow either 
confi rmation of the model ’ s accuracy or, better yet, correction of the model. 
Several mathematical framework structures, such as a system of differential 
equations and Boolean networks for biological networks are discussed in this 
section. 

  Gene Regulatory Networks 

 A  gene regulatory network  (GRN) or  genetic regulatory network  is a collection 
of  dna  segments in a cell which interact with each other and with other sub-
stances in the cell, thereby governing the rates at which genes in the network 
are transcribed into m rna . As we see here, a GRN involves interactions among 
DNA, RNA, proteins, and other molecules. In general, each mRNA molecule 
goes on to make a specifi c protein (or set of proteins). These mRNA molecules 
and proteins interact with each other with various degrees of specifi city. Some 
diffuse around the cell. Others are bound to cell membranes, interacting with 
molecules in the environment. These molecules and their interactions com-
prise a gene regulatory network. 

 A gene regulatory network can be viewed as a directed graph: a pair ( V , 
 E ), where  V  is a set of vertices (genes) and  E  a set of directed edges (regula-
tory infl uences), and a pair ( A ,  B ) of vertices, where  A  is the source vertex and 
 B  the target vertex. A gene  A  directly regulates a gene  B  if the protein that is 
encoded by  A  is a transcription factor for gene  B . This simple model can be 
improved by adding an additional attribute on vertices or edges: for example, 
 “  +  ”  or  “  −  ”  labels on edges may indicate positive or negative regulatory 
infl uence. 

 Genes can be viewed as nodes in the network, with input being proteins 
such as transcription factors, and outputs being the level of gene expression. 
The node itself can also be viewed as a function that can be obtained by com-
bining basic functions upon the inputs (in the Boolean network described 
below these are Boolean functions, typically AND, OR, and NOT). These 
functions have been interpreted as performing a type of information process-
ing within the cell, which determines cellular behavior. The basic drivers within 
cells are concentrations of some proteins, which determine both spatial (loca-
tion within the cell or tissue) and temporal (cell cycle or developmental stage) 
coordinates of the cell, as a kind of  “ cellular memory. ”  
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 Mathematical models of GRNs have been developed to capture the behav-
ior of the system being modeled, and in some cases generate predictions cor-
responding to experimental observations. In other cases, models have proven 
to make accurate novel predictions, which can be tested experimentally, thus 
suggesting new approaches to explore in an experiment that sometimes 
wouldn ’ t be considered in the design of the protocol of an experimental labo-
ratory. The most common modeling technique involves the use of coupled 
ordinary differential equations. Several other promising modeling techniques 
have been used, including Boolean networks, Petri nets, Bayesian networks, 
and graphical Gaussian models. 

 Typically, a gene regulatory network is modeled as a system of rate equa-
tions describing the reaction kinetics of the constituent parts and governing 
the evolution of mRNA and protein concentrations. Suppose that our regula-
tory network has  N  nodes, and let  S  1 ( t ),  S  2 ( t ),  …  ,  S N  ( t ) represent the concen-
trations of the  N  corresponding substances at time  t . Then the temporal 
evolution of the system can be described approximately by

    
dS

dt
f S t S S tj

j N= ( ) ( ) ( )( )1 2 2, , ,…     (6.18)  

where the functions  f j   express the dependence of  S j   on the concentrations of 
other substances present in the cell. The functions  f j   are ultimately derived 
from basic principles of chemical kinetics or simple expressions derived from 
these (e.g., Michaelis – Menten enzymatic kinetics). Hence, the functional forms 
of the  f j   are usually chosen as low - order polynomials that serve as an ansatz 
for the real molecular dynamics. Such models are then studied using the math-
ematics of nonlinear dynamics. 

 By solving for the fi xed point of the system,

    
dS
dt

j
= 0     (6.19)   

 for all  j , one obtains (possibly several) concentration profi les of proteins and 
mRNAs that are theoretically sustainable (although not necessarily stable). 
Steady states of kinetic equations thus correspond to potential cell types, and 
oscillatory solutions to equation  (6.19)  correspond to naturally cyclic cell 
types. Mathematical stability of these attractors can usually be characterized 
by the sign of higher derivatives at critical points and then correspond to the 
biochemical stability of the concentration profi le. Critical points and bifurca-
tions in the equations correspond to critical cell states in which small state or 
parameter perturbations could switch the system between one of several 
stable differentiation fates. Trajectories correspond to the unfolding of biologi-
cal pathways and transients of the equations to short - term biological events. 
For a more mathematical discussion, see the reference section for articles on 
nonlinearity, dynamical systems, bifurcation theory, and chaos theory. 
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 The following example illustrates how a Boolean network can model a 
GRN together with its gene products (the outputs) and the substances from 
the environment that affect it (the inputs). Stuart Kauffman was among the 
fi rst biologists to use the metaphor of Boolean networks to model genetic 
regulatory networks (Kauffman,  1993 ). 

   •      Each gene, each input, and each output is represented by a node in a 
directed graph in which there is an arrow from one node to another if 
and only if there is a causal link between the two nodes.  

   •      Each node in the graph can be in one of two states: on or off.  
   •      For a gene,  “ on ”  corresponds to the gene being expressed; for inputs and 

outputs,  “ on ”  corresponds to the substance being present.  
   •      Time is viewed as proceeding in discrete steps. At each step, the new state 

of a node is a Boolean function of the prior states of the nodes with 
arrows pointing toward it.    

 The validity of the model can be tested by comparing simulation results 
with time - series observations. Continuous network models of GRNs are an 
extension of the Boolean networks described above. Nodes still represent 
genes and connections between them, regulatory infl uences on gene expres-
sion. Genes in biological systems display a continuous range of activity levels, 
and it has been argued that using a continuous representation captures several 
properties of gene regulatory networks not present in the Boolean model 
(Vohradsky,  2001 ). 

 Recent experimental results (Blake et al.,  2003 ; Elowitz et al.,  2002 ) have 
demonstrated that gene expression is a stochastic process. Thus, many authors 
are now using stochastic formalism, after the work of Arkin and McAdams 
 (1998) . Works on single gene expression (Raser and O ’ Shea,  2005 ) and small 
synthetic genetic networks (Elowitz and Leibler  ,  2000 ; Gardner et al.,  2000 ), 
such as the genetic toggle switch of Tim Gardner and Jim Collins, provided 
additional experimental data on the phenotypic variability and the stochastic 
nature of gene expression. The fi rst versions of stochastic models of gene 
expression involved only instantaneous reactions and were driven by the 
Gillespie algorithm (Gillespie,  1976 ). 

 Since some processes, such as gene transcription, involve many reactions 
and could not be modeled correctly as an instantaneous reaction in a single 
step, it was proposed to model these reactions as single - step multiple delayed 
reactions, to account for the time it takes for the entire process to be com-
pleted (Roussel and Zhu,  2006 ). 

 From here a set of reactions was proposed (Ribeiro et al.,  2006 ) that allow 
generating GRNs. These are then simulated using a modifi ed version of the 
Gillespie algorithm. It can simulate multiple time - delayed reactions. 

 For example, basic transcription of a gene can be represented by the fol-
lowing single - step reaction (RNAP is the RNA polymerase, RBS is the RNA 
ribosome binding site, and Pro  i   is the promoter region of gene  i ):
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    RNAP Pro Pro RBS RNAP+ ⎯ →⎯⎯ ( ) + ( ) + ( )i
K base

i i i i i
i, τ τ τ1 1 2     (6.20)   

 A recent work proposed a simulator (SGNSim, Stochastic Gene Networks 
Simulator) (Ribeiro and Lloyd - Price,  2007 ) that can model GRNs where tran-
scription and translation are modeled as multiple time - delayed events, and its 
dynamics is driven by a stochastic simulation algorithm able to deal with mul-
tiple time - delayed events. The time delays can be drawn from several distribu-
tions and the reaction rates from complex functions or from physical 
parameters. SGNSim can generate ensembles of GRNs within a set of user -
 defi ned parameters, such as topology. It can also be used to model specifi c 
GRNs and systems of chemical reactions. Genetic perturbations such as gene 
deletions, gene overexpression, insertions, and frame shift mutations can be 
modeled as well. 

 The GRN is created from a graph with the desired topology, imposing in -
 degree and out - degree distributions. Gene promoter activities are affected by 
other gene expression products that act as inputs, in the form of monomers or 
combined into multimers and set as direct or indirect. Next, each direct input 
is assigned to an operator site and different transcription factors can be 
allowed, or not, to compete for the same operator site, while indirect inputs 
are given a target. Finally, a function is assigned to each gene, defi ning the 
gene ’ s response to a combination of transcription factors (promoter state). The 
transfer functions (i.e., how genes respond to a combination of inputs) can be 
assigned to each combination of promoter states as desired. 

 In other recent work, multiscale models of gene regulatory networks have 
been developed that focus on synthetic biology applications. Simulations have 
been used that model all biomolecular interactions in transcription, transla-
tion, regulation, and induction of gene regulatory networks, guiding the design 
of synthetic systems (Kaznessis,  2007 ).  

  Protein Interaction Networks 

 A key feature of the biological organization in all organisms is the tendency 
of proteins with a common function to associate physically via stable protein -
 to - protein interactions (PPIs) to form larger macromolecular assemblies. 
These protein complexes are often linked together by extended networks of 
weaker, transient PPIs, to form interaction networks that integrate pathways 
mediating the major cellular processes. Consequently, the cell is viewed 
increasingly as an assembly of interconnected functional modules that inte-
grate and coordinate the cell ’ s major biochemical activities and responses to 
external and intrinsic signals. Given their broad signifi cance, systematic analy-
ses of PPI networks have become a major experimental focus. 

 One of the ultimate goals of biological networks is to improve our under-
standing of the processes and events that lead to pathologies and diseases. The 
analysis of biological pathways can provide a more effi cient way of browsing 
through biologically relevant information and offer a quick overview of under-
lying biological processes. 
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 Protein interactions help put biological processes in context, allowing 
researchers to characterize specifi c pathway biology. Hence, an analysis of 
biological networks is crucial for an understanding of complex biological 
systems and diseases. The analysis of protein interaction networks is an impor-
tant and very active research area in bioinformatics and computational biology 
(Dyke,  1988 ).  

  Metabolic Networks 

 Metabolic networks comprise the chemical reactions of metabolism as well 
as the regulatory interactions that guide these reactions. With the sequencing 
of complete genomes, it is now possible to reconstruct the network of bio-
chemical reactions in many organisms, from bacteria to human beings. Several 
of these networks are available online: Kyoto Encyclopedia of Genes and 
Genomes, (a database resource for linking genome to life and the environment 
developed by the Kanehisa Laboratories in the Kyoto University Bioinformatics 
Center and the Human Genome Center of the University of Tokyo as part of 
their research activities); EcoCyc, a scientifi c database for the bacterium 
 Escherichia coli  K - 12 MG1655 comprising literature - based descriptions of the 
entire genome and of transcriptional regulation, transporters, and metabolic 
pathways; and BioCyc, a collection of 376 Pathway/Genome Databases, 
each of which describes the genome and metabolic pathways of a single 
organism. 

 In the fi nal analysis, the biological function of life is determined by the 
organizational form of atoms and molecules, determined especially by the 
confi rmation changes and movements of proteins and nucleic acid molecules. 
The self - organization phenomena are observed from the molecular to the cel-
lular to the ecological level. Biological networks are dynamic and dependent 
on the cell environment. Based on networks, we are able to understand how 
individual components are integrated together into a complete system to 
perform some biological functions. As a fundamental element of the network, 
the protein – protein interaction should be deduced by using the sequential, 
structural, and evolutionary information on individual proteins.   

   6.4    CHALLENGES AND PERSPECTIVES 

 In network models, the relevant components in a system are identifi ed as 
vertices or nodes. The interactions between vertices are represented as edges 
or links. A major challenge consists of identifying with reasonable accuracy 
the complex molecular interactions that take place at different levels, from 
genes to metabolites through proteins. Although an understanding of the 
interactions of proteins continues to be important, an understanding of a 
system ’ s structure and dynamics is the latest trend. The approach advocated 
in systems biology requires a shift in our notion of what to look for in 
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biology. Because a system is not just an assembly of genes and proteins, its 
properties cannot be fully understood merely by drawing diagrams of their 
interconnections. Although such a diagram represents an important fi rst step, 
it is analogous to a static road map, whereas what we really seek to know 
are the traffi c patterns, why such traffi c patterns emerge, and how we can 
control them. Identifying all the genes and proteins in an organism is like 
listing all the parts of an airplane. Although such a list provides a catalog of 
the individual components, by itself it is not suffi cient for an understanding 
of the complexity underlying the engineered object. We need to know how 
these parts are assembled to form the structure of the airplane. This is analo-
gous to drawing an exhaustive diagram of gene - regulatory networks and 
their biochemical interactions. Such diagrams provide limited knowledge of 
how changes to one part of a system may affect other parts, but to under-
stand how a particular system functions, we must fi rst examine how the 
individual components interact dynamically during operation. We must seek 
answers to such questions as: What is the voltage on each signal line? How 
are the signals encoded? How can we stabilize the voltage against noise and 
external fl uctuations? How do the circuits react when a malfunction occurs 
in the system? What are the design principles and possible circuit patterns, 
and how can we modify them to improve system performance and applica-
tions (Kitano,  2001 )? 

 A fundamental activity over the next two decades will involve analysis of 
the integrated structure and behavior of the complex genetic regulatory 
systems underlying development in higher organisms, a massive task since the 
human genome encodes perhaps 100,000 genes. Its accomplishment will 
require uniting work in molecular and developmental genetics with new math-
ematical and computational tools. 

 In more detail, recent progress in molecular genetics in eukaryotes is reveal-
ing the detailed composition of structural genes as well as  cis  - acting regulatory 
loci, such as promoters, homeoboxes, and tissue -  and stage - specifi c enhancer 
sequences, as well as  trans  - acting components. These genetic elements, together 
with their RNA and protein products, comprise a genomic regulatory network 
that coordinates patterns of gene expression in cell types, cell differentiation, 
and ontogeny from the zygote. Understanding the structure, logic, integrated 
dynamic behavior, and evolution of such networks is central to molecular, 
developmental, and evolutionary biology. 

 The Human Genome Initiative will provide massive sequence data from 
which we can eventually identify the diverse locations in the genome of each 
regulatory sequence, as well as the locations of many or most structural genes. 
These data are fundamental to understanding the  “ wiring diagram ”  of the 
genomic regulatory networks in eukaryotes. Analysis will require development 
of appropriate computer databases and development of new theory and algo-
rithms in the mathematical theory of directed graphs. Understanding the evo-
lution of such genomic networks under the infl uence of point and chromosomal 
mutations that literally scramble the genomic wiring diagram will require new 
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uses of random directed graph theory, stochastic processes, and population 
genetic models. 

 In addition to understanding the structure and evolution of genomic regula-
tory networks, we must understand the coordinated behavior of such systems 
that integrate the behavior of 100,000 molecular variables. It is here, in an 
effort to relate the information that we can achieve about small parts of the 
genomic system to the overall behavior of the integrated system, that a new 
marriage of mathematics and biology must be found. We have no hope of 
understanding the integrated behavior of such complex systems, linking the 
 “ microlevel ”  of structure and logic with the macrolevel of behavior, without 
mathematical theories. Although no approach is yet clearly adequate, new 
avenues are available. 

 A fi rst approach is via ensembles. Statistical mechanics is the paradigmatic 
example of a theory that links microscopic and macroscopic levels. There it is 
possible to explain macroscopic behaviors without knowing all the details of 
the microscopic dynamics. Similarly, it may be possible to build up statistical 
understanding of the integrated behavior of extremely complex genomic regu-
latory systems without knowing all the details of the microscopic structure. 

 Molecular genetic techniques reveal small - scale features of genomic systems, 
such as the sequences that regulate a gene and biases in the  “ rules ”  governing 
the activity of genes as a function of their molecular inputs. Using these local 
features, one can construct mathematically the ensemble of all genomic 
systems consistent with those local constraints. This ensemble constitutes the 
proper null hypothesis about the structure and logic of genomic systems that 
are random members of such an ensemble. Thus, the typical or generic behav-
ior of ensemble members involves predictions about the large - scale features 
of random members of the ensemble. This is a new kind of statistical mechan-
ics, averaging over ensembles of systems (Derrida,  1981 ; Kauffman,  1969, 
1974 ). If the distributions of properties parallel those seen in genomic regula-
tory systems, those properties may be explained as consequences of member-
ship in the ensemble. Indeed, past work based on this approach (Kauffman, 
 1969, 1974 ) has shown that many features of model genomic systems are paral-
lel and hence may explain a number of features of cell differentiation, such as 
the numbers of cell types in an organism, the similarity of gene expression 
patterns in different cell types in an organism, and other statistical features. 
Improved ensemble models, coupled with population genetic models, offer the 
hope of understanding how evolution can mold the structure, logic, and behav-
ior of integrated genomic systems. 

 A second approach may be the development of new mathematical and 
experimental tools to  “ parse ”  the genomic system into structurally or function-
ally isolated subcircuits. Thus, clusters of genes may be regulated in overlap-
ping hierarchical batteries, or some genes may fall to fi xed steady states of 
activities that are common to many or all cell types, while other subsets of 
genes oscillate or exhibit complex patterns of temporal activity unique to dif-
ferent subsets of cell types. Analysis of such temporal patterns by time - series 
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techniques, and based on a temporal series of two - dimensional protein gel 
data, where each gel shows the synthesis patterns of up to 2000 genes at a time, 
may help resolve the genome into behavioral  “ chunks. ”  If so, this will help 
block out the overall behavioral organization of the genomic system. Thereafter, 
analysis of detailed midsized subcircuits, with perhaps several to 100 or so 
genes, will require use of promoter constructs allowing activation or inhibition 
of arbitrary genes in arbitrary cell types at arbitrary moments, with analysis of 
the cascading consequences. Union with dynamic systems theory for modestly 
small systems, where the inverse problem of guessing plausible circuitry to 
yield observed synthesis patterns is practical, can then be carried out. 

 In summary, to understand biology at the system level, we must examine 
the structure and dynamics of cellular function, in addition to the character-
istics of isolated parts of a cell or organism. Properties of systems, such as 
robustness, emerge as central issues, and understanding these properties may 
have an impact on the future of medicine. However, many breakthroughs in 
experimental devices, advanced software, and analytical methods are required 
before the achievements of systems biology can live up to their much - touted 
potential.  
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  7    Biological Systems, Fractals, 
and Systems Biology     

     Modern science connects many basic secrets of living matter with the genetic 
codes. Biological organisms belong to a category of very complex natural 
systems, which correspond to a huge number of biological species with inher-
ited properties. But surprisingly, molecular genetics has discovered that all 
organisms are identical to each other by their basic molecular - genetic struc-
tures. Due to this revolutionary discovery, a great unifi cation of all biological 
organisms has resulted in science. The information - genetic line of investiga-
tions has become one of the most prospective lines not only in biology, but 
also in science as a whole. 

 To understand complex biological systems at the various levels of mole-
cules, cells, tissues, and organs, we must examine their structures, dynamics, 
and functions. It requires the integration of experimental, computational, and 
theoretical explorations. Many breakthroughs in experimental devices, high -
 throughput technologies, and mathematical framework are required before 
any achievements in understanding biological systems. While computational 
biology, through pragmatic modeling and theoretical exploration, provides a 
powerful foundation from which to address critical scientifi c questions head -
 on, in this chapter we focus on analytical methods of fractal geometry in 
biological systems. We explain how the presence of fractal geometry can be 
used in an analytical way to study genetic code systems and predict outcomes 
in systems, to generate hypotheses, and to help design experiments. At the end 
of the chapter we discuss the emerging fi eld of systems biology, as well as 
challenges and perspectives in biological systems.  

   7.1    INTRODUCTION 

 The discovery of DNA structure in 1953 was the turning point in the history 
of science, culture, and society. The underlying principle of this discovery is 
that it has a digital nature: It contains specifi c, clear information; it is a code. 
This information allows scientists to approach the study of all biological 
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systems (they all share the same code) within a defi ned, fully delineated frame-
work. The challenge is therefore to decode this information. Biological systems 
contain two main types of digital information: genes, which encode the pro-
teins through the intermediary of RNA, and biological networks, which specify 
interactions in time and space at different levels of molecules, cells, tissues, 
organs, and systems. 

 The study of biological systems cannot be limited simply to listing its parts 
(i.e., proteins, genes, cells, etc.). A deeper understanding of biological systems 
can demonstrate how these parts are assembled and how they interact with 
each other and with the surrounding environment. The systems approach 
brings with it a sense of wholeness. In the words of Ludwig von Bertalanffy, 
the author of general system theory, contemporary science should recognize 
the importance of  wholeness , defi ned as  “ problems of organization, phenom-
ena not resolvable into local events, dynamic interactions manifest in the dif-
ference of behavior of parts when isolated or in higher confi guration, etc.; in 
short,  ‘ systems ’  of various orders not understandable by investigation of their 
respective parts in isolation ”  (Ge et al.,  2003 ). 

 It was only recently that system - level analysis can be grounded in discover-
ies at the molecular level. With the progress of the genome sequence project 
and a range of other molecular biology projects that accumulate in - depth 
knowledge of the molecular nature of biological systems, we are now at the 
stage of looking into the possibility of a system - level understanding that is 
solidly grounded in molecular - level understanding. Although systems are com-
posed of matter, the essence of these systems lies in dynamics and it cannot 
be described merely by enumerating components of the system. Both the 
structure of the system and its components play an indispensable role in 
forming a symbiotic state of the system as a whole. This may include an under-
standing of the structure of the system, such as gene regulatory and biochemi-
cal networks, and an understanding of the dynamics of the system: both 
quantitative and qualitative analysis. There are numbers of exciting and pro-
found issues that are actively investigated, such as the robustness of biological 
systems, network structures and dynamics, and applications to drug discovery. 
Systems biology and network biology are in their infancy, but these are the 
areas that have to be explored and the areas that demonstrate the mainstream 
in biological sciences in this century (Kitano,  2002a,b   ). 

 Biologists have traditionally modeled nature using Euclidean representa-
tions of natural objects or series. They represented heartbeats as sine waves, 
conifer trees as cones, animal habitats as simple areas, and cell membranes as 
curves or simple surfaces. However, scientists have come to recognize that many 
natural constructs are better characterized using fractal geometry. Biological 
systems and processes are typically characterized by many levels of substruc-
ture, with the same general pattern repeated in an ever - decreasing cascade. 

 Scientists discovered that the basic architecture of a chromosome is tree-
like; every chromosome consists of many  “ minichromosomes ”  and therefore 
can be treated as fractal. For a human chromosome, for example, a fractal 
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dimension  D  equals 2.34 (between the plane and the space dimension). Self -
 similarity has also been found in DNA sequences. In the opinion of some 
biologists, fractal properties of DNA can be used to resolve evolutionary rela-
tionships in animals. Perhaps in the future, biologists will use the fractal geom-
etry to create comprehensive models of the patterns and processes observed 
in nature.  

   7.2    FRACTAL GEOMETRY PRELIMINARIES 

  Fractals as Mathematical and Biological Objects 

 Fractal geometry provides a new perspective from which to view the world. 
For centuries we ’ ve used the line as a basic building block to understand the 
objects around us. Fractal geometry is a new language used to describe, model, 
and analyze complex forms found in nature. A  fractal  is a geometric shape that 
has two most important properties: 

  1.     The object is self - similar.  
  2.     The object has fractional dimensions.    

 What is  self - similarity ? If you look carefully at a fern leaf, you will notice 
that every little leaf — part of the bigger one — has the same shape as that of 
the whole fern leaf. You can say that the fern leaf is self - similar. The same goes 
for fractals: You can magnify them many times, and after every step you will 
see the same shape, which is characteristic of that particular fractal. 

 The noninteger dimension is more diffi cult to explain. Classical geometry 
deals with objects of integer dimensions: zero - dimensional points, one -
 dimensional lines and curves, two - dimensional plane fi gures such as squares 
and circles, and three - dimensional solids such as cubes and spheres. However, 
many natural phenomena are better described using a dimension between two 
whole numbers. So while a straight line has a dimension of 1, a fractal curve 
will have a dimension between 1 and 2, depending on how much space it takes 
up as it twists and curves. The more the fl at fractal fi lls a plane, the closer it 
approaches two dimensions. Similarly, a  “ hilly fractal scene ”  will reach some-
where between two and three dimensions. So a fractal landscape made up of 
a large hill covered with tiny mounds would be close to the second dimension, 
while a rough surface composed of many medium - sized hills would be close 
to the third dimension. 

 There are a lot of different types of fractals. In this section we present two 
of the most popular types: complex number fractals and iterated function 
system (IFS) fractals. The two most famous complex number fractals are the 
Mandelbrot set and Julia fractals. A  Mandelbrot set  is a set of points on a 
complex plain. To build a Mandelbrot set, we have to use an algorithm based 
on the recursive formula
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    Z Z cn n= +−1     (7.1)   

 separating the points of the complex plane into two categories: (1) points 
inside the Mandelbrot set, and (2) points outside the Mandelbrot set. Figure 
 7.1  shows a portion of the complex plane. The points of the Mandelbrot set 
are shown in black.   

  Julia fractals  are strictly connected with Mandelbrot fractals. The iterative 
function that is used to produce them is the same as for the Mandelbrot set. 
The only difference is the way in which this formula is used. The value of  c  
determines the shape of the Julia set; in other words, each point of the complex 
plane is associated with a particular Julia set. 

  Iterated function system  (IFS)  fractals  are created on the basis of simple 
plane transformations: scaling, dislocation, and the plane axes rotation. 
Creating an IFS fractal consists of the following steps: 

  1.     Defi ning a set of plane transformations.  
  2.     Drawing an initial pattern on the plane (any pattern).  
  3.     Transforming the initial pattern using the transformations defi ned in 

step 1.  
  4.     Transforming the new picture (combination of initial and transformed 

patterns) using the same set of transformations.  
  5.     Repeating step 4 as many times as possible (in theory, this procedure can 

be repeated an infi nite number of times).    

 The most famous ISF fractals are the  Sierpinski triangles , the fractals we 
can get by taking the midpoints of each side of an equilateral triangle and 

     FIGURE 7.1     Mandelbrot set.  
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connecting them. The iterations should be repeated an infi nite number of 
times. Figure  7.2  presents the four initial steps of the construction of Sierpinski 
triangles. Using this fractal as an example, we can prove that the fractal dimen-
sion is not an integer.   

 First, we have to fi nd out how the  “ size ”  of an object behaves when its linear 
dimension increases. In one dimension we can consider a line segment. If the 
linear dimension of the line segment is doubled, the length (characteristic size) 
of the line has also doubled. In two dimensions, if the linear dimensions of a 
square are doubled, for example, the characteristic size, the area, increases by 
a factor of 4. In three dimensions, if the linear dimension of a box is doubled, 
the volume increases by a factor of 8. 

 So what is the dimension of a Sierpinski triangle? How do we fi nd the 
exponent in this case? For this, we need logarithms. Note that for the square, 
we have  N  2  self - similar pieces, each with magnifi cation factor  N . So we can 
write

    D
N
N

= ( )
( )

= =
log .
log .

log
log

no self-similar
magnif factor

2

2     (7.2)   

 Similarly, the dimension of a cube is

    D
N
N

= ( )
( )

= =
log .
log .

log
log

no self-similar
magnif factor

3

3   

 Thus, we take as the defi nition of the fractal dimension of a self - similar object,

     FIGURE 7.2     Sierpinski triangles.  
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    D = ( )
( )

log .
log .

no self-similar
magnif factor

  

 Now we can compute the dimension of  S . As the Sierpinski triangle consists 
of three self - similar pieces, each with magnifi cation factor 2, the fractal dimen-
sion is

    D = ( )
( )

= ≈
log .
log .

log
log

.
no self-similar
magnif factor

3
2

1 58   

 Fractal dimension is a measure of how complicated a self - similar fi gure is. In 
a rough sense, it measures how many points lie in a given set. A plane is 
 “ larger ”  than a line, while  S  sits somewhere in between these two sets. 

 The most commonly used methods for determining the fractal dimensions 
have been using the scaling relationship and the capacity dimension done by 
box counting. Examples where fractal dimension has been measured include 
the surfaces of proteins, cell membranes, cells of the cornea, and bacterial 
colonies.   

   7.3    FRACTAL GEOMETRY IN BIOLOGICAL SYSTEMS 

 Fractal geometry reveals the regularity behind matter with apparently irregu-
lar forms. A fractal implies a complex pattern with self - similarity and self -
 affi nity, that is, a fractal has a shape made of parts similar to the whole in some 
way. DNA sequences and the structures of protein have such a complex form. 
Scaling behavior can be seen in fundamental biological structures. DNA struc-
ture demonstrates fractal properties in the distribution of sequence informa-
tion. Fractal geometry can be used for approximate analyses of these biological 
objects. Fractal research into proteins and enzymes is currently an active fi eld 
of bioinformatics (Iannaccone et al.,  1996 ). In this section we fi rst summarize 
several examples of fractal applications in DNA sequences, cell, protein, and 
chromosome structures, and enzyme and ion channel kinetics. We discuss 
DNA walks, fractal and symmetrical properties in genetic code systems, and 
fractal properties of proteins and polymers. 

     Fractals in  DNA  Sequences     Self - similarity has recently been found in DNA 
sequences (Nonnenmacher et al.,  1994 ; Stanley,  1992 ). The multifractal spec-
trum approach has been used to reconstruct the evolutionary history of organ-
isms from mDNA sequences (Glazier et al.,  1995 ). The multifractal spectra for 
invertebrates and vertebrates were quite different, allowing for the recogni-
tion of broad groups of organisms. They concluded that DNA sequences 
display fractal properties and that these can be used to resolve evolutionary 
relationships in animals. Furthermore, Xiao et al.  (1995)  found that nucleotide 
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sequences in animals, plants, and humans display fractal properties. They also 
showed that exon and intron sequences differ in their fractal properties.  

  Fractals in Cell, Protein, and Chromosome Structures     Takahashi  (1989)  
hypothesized that the basic architecture of a chromosome is treelike, consist-
ing of a concatenation of  “ minichromosomes. ”  A fractal dimension of  D     =    2.34 
was determined from an analysis of fi rst -  and second - order branching patterns 
in a human metaphase chromosome. Xu et al.  (1994)  hypothesized that the 
twistings of DNA binding proteins have fractal properties. 

 Lewis and Rees  (1985)  determined the fractal dimension of protein surfaces 
(2    ⇐     D     ⇐    3) using microprobes. A mean surface dimension of  D     =    2.4 was 
determined using microprobe radii ranging from 1 to 3.5    Å . More highly irreg-
ular surfaces ( D     >    2.4) were found to be sites of interprotein interaction. 
Wagner et al.  (1985)  estimated the fractal dimension of heme and iron – sulfur 
proteins using crystallographic coordinates of the carbon backbone. They 
found that the structural fractal dimension correlated positively with the tem-
perature dependence of protein relaxation rates. Smith et al.  (1989)  used 
fractal dimension as a measure of contour complexity in two - dimensional 
images of neural cells. They recommend  D  as a quantitative morphological 
measure of cellular complexity.  

  Fractals in Enzyme and Ion Channel Kinetics     The kinetics of protein ion 
channels in the phospholipid bilayer were examined by Liebovitch et al. 
 (1987) . The timing of openings and closings of ion channels had fractal proper-
ties, implying that processes operating at different time scales are related, not 
independent (Liebovitch and Koniarek  1992 ). L ó pez - Quintela and Casado 
 (1989)  developed a fractal model of enzyme kinetics, based on the observation 
that kinetics is a function of substrate concentration. They found that some 
enzyme systems displayed classical Michaelis – Menten kinetics ( D     =    1), 
whereas others showed fractal kinetics ( D     <    1).  

  Fractals and  DNA  Walk     A DNA walk of a genome represents how the 
frequency of each nucleotide of a pairing nucleotide couple changes locally. 
This analysis implies measurement of the local distribution of G ’ s in the 
content of GC and of T ’ s in the content of TA. Lobry was the fi rst to propose 
this analysis ( 1996   ). 

 As you probably already know, DNA is a long sequence of nucleotides that 
code all the genetic information about us. The nucleotides can be either 
adenine, guanine, cytosine, or thymine (abbreviated A, G, C, and T). One of 
the fractal patterns that were studied was in the sequence of nucleotides in 
what is called the  DNA walk , a graphical representation of the DNA sequence 
in which you move up if you hit C or T and down if you hit A or G. For example, 
Figure  7.3  represents the sequence CATG. Fractal patterns were found in 
many DNA walks. These patterns are remarkably similar to  Brownian motion . 
Figure  7.4  is a model of a fractal DNA walk.   
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 As we have shown above, the DNA walk is a geometrical representation 
of the nucleotide sequence. This DNA walk scheme could be applied to 
demonstrate the symmetric and fractal structure of the genetic codon system. 
Next we present a simple approach to constructing the biperiodic table of 
the genetic code (Petoukhov,  2001 ) by using a triple of RNA tetrahedrons. We 
then use various methods to classify the codon table and demonstrate the 
symmetric and fractal structure of the genetic codon system.  

   RNA  Tetrahedron     A regular tetrahedron has four equal faces, four vertices, 
and six edges (the minimal number of faces required to form a three -
 dimensional polyhedron, similar to the fact that a triangle is the fi rst polygon 
in two - dimensional space). RNA bases consists of four bases: A, C, G, and U. 
We label each letter to each face of a regular tetrahedron. We color each tet-
rahedron red, green, and blue, respectively (Figure  7.5 ).   

 To construct a biperiodic table of the genetic code, we roll three tetrahe-
drons and record three letters covered at the bottom of each toss. Assume that 
each event is equally likely. It ’ s easy to see that there are a total of 
4    ×    4    ×    4    =    4 3     =    64 possible outcomes. We list all these 64 elements in the table 
 G ( i ,  j ),  i ,  j     =    1, 2, 3, 4, 5, 6, 7, 8. 

     FIGURE 7.3     DNA walk.  

DNA Walk (C·A·T·G)

     FIGURE 7.4     Fractal model of a DNA walk.  
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     FIGURE 7.5     RNA tetrahedron.  
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 Theoretically, for each cell of the table, there are 64 possible ways to arrange 
a codon. The total number of codons in the table is 64!. One way to list all 64 
codons is to use a full 4 - ary tree structure. One may label A, C, G, and U to 
each edge of the tree, respectively, from left to right. Allow the tree to grow 
up to three levels (the height of the tree is 3). The total number of the nodes 
of this full 4 - ary tree with level 3 is 4 3     =    64. A complete list of the codons is 
given in Figure  7.6 . This table may be visualized by the three levels of the 4    ×    4 
table shown in Figure  7.7 .   

 An important variation of Figure  7.6  is the  biperiodical table of genetic code  
(Petoukhov,  2001 ; Figure  7.8 ). This table demonstrates a great fractal structure 
and has led to many discoveries. The distribution of the RNA codons may 
provide some patterns and relations for the genetic code. Next we introduce 
three different methods to classify the codes in Figure  7.8 . The fi rst method is 
based on the equivalence properties of A, C, G, and U (attribute - based 
method). The second method connects the RAN codon with a six - digit binary 
table (binary code method). The third method uses the Fibonacci numbers and 
six - digit binary code to classify the genetic code (Fibonacci method). The 

     FIGURE 7.6     Genetic code from a full 4 - ary tree.  

AAA ACA AGA AUA CAA CCA CGA CUA 

AAC ACC AGC AUC CAC CCC CGC CUC 

AAG ACG AGG AUG CAG CCG CGG CUG 

AAU ACU AGU AUU CAU CCU CGU CUU 

GAA GCA GGA GUA UAA UCA UGA UUA 

GAC GCC GGC GUC UAC UCC UGC UUC 

GAG GCG GGG GUG UAG UCG UGG UUG 

GAU GCU GGU GUU UAU UCU UGU UUU 
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distributions of the genetic code based on these three methods demonstrate 
the great symmetries of the codons.    

  Attribute - Based Method     Recently, Petoukhov  (2001)  pointed out that 
regular matrices of the genetic code arise if one takes into consideration the 
existence of the three subalphabets of the genetic alphabet, in accordance with 
the three types of attributes of nitrogenous bases A, C, G, and U. Table  2.2  
shows that each letter of the code alphabet has three  “ faces ”  or meanings in 
three binary subalphabets in connection with the three types of attributes. 
We ’ ll use these attributes to assign A, C, G, and U values of 1, 2, and 3 to 
each equivalence pair. The following are all possible combinations of these 
assignments: 

     FIGURE 7.7     Genetic code from a full 4 - ary tree.  

 
A-

Branch 

 
C-

Branch
 

G-
Branch 

 
U-

Branch 

 
C-

Branch

 
G-Branch 

 

 
U-

Branch 

 
 
 

C-Branch  
 

 
 
 

G-Branch 
 

 
 
 

U-Branch 
 
 

     FIGURE 7.8     Biperiodical table of genetic code.  

CCC CC A CAC CAA ACC ACA AAC AAA 

CCU CCG CAU CAG ACU ACG AAU AAG 

CUC CUA CGC CGA AUC AUA AGC AGA 

UCC UCA UAC UAA GCC GCA GAC GAA 

CUU CUG CGU CGG AUU AUG AGU AGG 

UCU UCG UAU UAG GCU GCG GAU GAG 

UUC UUA UGC UGA GUC GUA GGC GGA 

UUU UUG UGU UGG GUU GUG GGU GGG 
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   •      C    =    G    =    3, A    =    U    =    2, hydrogen bond – based (2,3) - combination  
   •      C    =    U    =    1, A    =    G    =    2, pyrimidine/purine ring – based (1,2) - combination  
   •      G    =    U    =    1, A    =    C    =    3, amino group – based (1,3) - combination    

 For each case, we apply two basic operations, addition and multiplication, 
to generate numerical tables. These tables are used to construct corresponding 
frequency tables of the distributions of the genetic code. For example, with 
C    =    G    =    3, A    =    U    =    2, if we apply the multiplication to Figure  7.6 , we have 
the results shown in Figure  7.9 . We have the distribution of codons with 
equal numbers shown in Table  7.1 . A symmetrical histogram is illustrated in 
Figure  7.10 .      

  Binary Code Method     Next we consider a 3 - bit binary code: 111, 110, 101, 
100, 011, 010, 001, and 000. Using these codes, we construct the 8    ×    8 table 
B(i, j),  i ,  j     =    1, 2, 3, 4, 5, 6, 7, 8, shown in Figure  7.11 , where the asterisk implies 
the append operation between three - digit binary code. Various distributions 
of  G ( i ,  j ) may be constructed by using these correspondences. Let  X  be the 
number of 1 ’ s in table B(i, j). Then the possible values of  X  are 0, 1, 2, 3, 4, 5, 
and 6. Seven classes of the codons are divided. The frequency table of the 
genetic code is given in Table  7.2 . It is easy to see that the table demonstrates 
a normal distribution of the random variable  X  (Figure  7.12 ).      

  Fibonacci Method     This method was used initially in the article by A. Stakhov 
 (2008)  and in his book (Stakhov,  2009 ). The Fibonacci code could have an  X  -
 digit code.  X  is the fi rst few numbers in the Fibonacci sequence. If there is a 
six - digit code, the fi rst few numbers would be 1, 1, 2, 3, 5, and 8. Let ’ s consider 

     FIGURE 7.9     C    =    G    =    3, A    =    U    =    2. P 1 , product of hydrogen bonds.  
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     FIGURE 7.10     Attribute - based distribution of genetic code.  
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  TABLE 7.1    C    =    G    =    3, A    =    U    =    2 

   Product of 
Hydrogen Bonds     Codons  

   Frequency 
of Codons  

  8    AAA, AAU, AUA, UAA, AUU, UAU, UUA, UUU    8  
  12    CAA, ACA, AAC, CAU, ACU, AAG, CUA, AUC, 

AGA, UCA, UAC, GAA, CUU, AUG, AGU, 
UCU, UAG, GAU, UUC, UGA, GUA, UUG, 
UGU, GUU  

  24  

  18    CCA, CAC, ACC, CCU, CAG, ACG, CUC, CGA, 
AGC, UCC, GCA, GAC, CUG, CGU, AGG, 
UCG, GCU, GAG, UGC, GUC, GGA, UGG, 
GUG, GGU  

  24  

  27    CCC, CCG, CGC, GCC, CGG, GCG, GGC, GGG    8  

     FIGURE 7.11     Six - digit binary code B(i, j).  

* 111 110 101 100 011 010 001 000  

111 111111 111110 111101 111100  111011 111010 111001 111000  

110 110111 110110 110101 110110  110011 110010 110001 110000  

101 101111 101110 101101 101100  101011 101010 101001 101000  

100 100111 100110 100101 100100  100011 100010 100001 100000  

011 011111 011110 011101 011100  011011 011010 011001 011000  

010 010111 010110 010101 010100  010011 010010 010001 010000  

001 001111 001110 001101 001100  001011 001010 001001 001000  

000 000111 000110 000101 000100  000011 000010 000001 000000  
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     FIGURE 7.12     Binary code – based distribution of genetic code.  
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  TABLE 7.2    Frequency Table of the Genetic Code 

   X     Elements     No. of Elements  

  0    GGG    1  
  1    GGU, GGA, UGG. GAA, GUG, GAG    6  
  2    AAG, GGC, UUG, GUU, AGG, UAA, UGU, GCG, 

AGA, GUA, UGA, GAU, GCU, UAG, GAC, GCA  
  15  

  3    UUU, AAA, AAU, UUA, CGG, GCC, AUA, GUC, 
UAU, UCG, UGC, GCU, AGU, AUG, UAC, UCA, 
AGC, CGA, ACG, CAG  

  20  

  4    AAC, CCG, UUC, AUU, UCC, CAA, ACA, UCU, 
UCU, CGU, CUG, AUC, CUA, ACU, CAU  

  15  

  5    CCA, CCU, ACC, CUU, CUC, CAC    6  
  6    CCC    1  

the six - digit Fibonacci code using Fibonacci numbers 1, 1, 2, 3, 5, and 8 as digit 
weights. We fi rst label each cell of the 8    ×    8 table by C0 to C63, as shown in 
Figure  7.13 . Applying the formula  

    N a a a a a a= × + × + × + × + × + ×6 5 4 3 2 18 5 3 2 1 1   

 to both tables  B ( i ,  j ) and  C ( i ,  j ), we obtain another table  F ( i ,  j ) of the Fibonacci 
code (Figure  7.14 ). For example,  

    C63 1 8 1 5 1 3 1 2 1 1 1 1 20= × + × + × + × + × + × =  

    C0 0 8 0 5 0 3 0 2 0 1 0 1 0= × + × + × + × + × + × =  

    C1 1 8 0 5 0 3 0 2 0 1 0 1 8= × + × + × + × + × + × =   

 Since all four tables have the same 8    ×    8 dimensions, we assume the following 
one - to - one correspondence for each  i ,  j     =    1, 2, 3, 4, 5, 6, 7, 8:
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     FIGURE 7.14     Fibonacci code F( i ,  j ).  

C63 = 20 C61 = 15 C60 = 7

 

C59 = 17
 

C58 = 9 C57 = 12 C56 = 4C62 = 12
C55 = 18 C54 = 10 C53 = 13 C52 = 5 C51 = 15 C50 = 7 C49 = 10 C48 = 2
C47 = 19 C46 = 11 C45 = 14 C44 = 6 C43 = 16 C42 = 8 C41 = 11 C40 = 3
C39 = 17 C38 = 9 C37 = 12 C36 = 4 C35 = 14 C34 = 6 C33 = 9 C32 = 1
C31 = 19 C30 = 11 C29 = 14 C28 = 6 C27 = 16 C26 = 8 C25 = 11 C24 = 3
C23 = 17 C22 = 9 C21 = 12 C20 = 4 C19 = 14 C18 = 6 C17 = 9 C16 = 1
C15 = 18 C14 = 10 C13 = 13 C12 = 5 C11 = 15 C10 = 7 C9 = 10 C8 = 2

C7 = 16 C6 = 8 C5 = 11 C4 = 3 C3 = 13 C2 = 5 C1 = 8  C0 = 0

     FIGURE 7.13     Fibonacci code C( i ,  j ).  

C63 C62 C61 C60 C59 C 58 C57 C56 
C55 C54 C53 C52 C51 C 50 C49 C48 
C47 C46 C45 C44 C43 C 42 C41 C40 
C39 C38 C37 C36 C35 C 34 C33 C32 
C31 C30 C29 C28 C27 C 26 C25 C24 
C23 C22 C21 C20 C19 C 18 C17 C16 
C15 C14 C13 C12 C11 C10 C9 C8 
C7 C6 C5  C4 C3  C2  C1 C0 

    G B C Fi j i j i j i j, , , ,( ) ↔ ( ) ↔ ( ) ↔ ( )   

 Next we use tables F( i ,  j ) and G( i ,  j ) to construct a frequency table (Table 
 7.3 ). We have a total number of 21 groups according to this method. The fre-
quency distribution of Table  7.3  can be illustrated by a histogram, as shown in 
Figure  7.15 .       

  Scale - Invariant Features of Coding and Noncoding  DNA  Sequences 

 The role of genomic DNA sequences in coding for protein structure is well 
known. The coding region of a gene is the portion of DNA or RNA that is 
transcribed into another RNA, such as a messenger RNA or a noncoding RNA 
(e.g., a transfer RNA or a ribosomal RNA). A transcript can then be translated 
into proteins. A noncoding DNA describes DNA which does not contain 
instructions for making proteins (or other cell products, such as noncoding 
RNAs). In eukaryotes, a large percentage of many organisms ’  total genome 
size comprises noncoding DNA (a puzzle known as the  C - value enigma ). Some 
noncoding DNA is involved in regulating the activity of coding regions. 
However, much of this DNA has no known function and is sometimes referred 
to as  junk DNA . An open question in computational molecular biology is 
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     FIGURE 7.15     Fibonacci code – based distribution of genetic code.  
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  TABLE 7.3    Fibonacci Code – Based Frequency Table of Genetic Code 

   Fibonacci 
Code      Genetic Codons  

  0    GGG                  
  1    GAA    GAG              
  2    GGA    AAG              
  3    UGG    AGG    AGA          
  4    UAG    UAA    AAA          
  5    GUG    UGA    CAG          
  6    GCG    CGG    GCA    CGA      
  7    GUA    ACG    CAA          
  8    GGU    UUG    AUG    AUA      
  9    GAU    UCG    GAU    UCA    ACA  

  10    GGC    UUA    AAU    CCG      
  11    UGU    AGU    CUG    AGC    CUA  
  12    UAU    UAC    AAC    CCA      
  13    GUU    UGC    CAU          
  14    GCU    CGU    GCC    CGC      
  15    GUC    ACU    CAC          
  16    UUU    AUU    AUC          
  17    UCU    UCC    ACC          
  18    UUC    CCU              
  19    CUU    CUC              
  20    CCC                  

whether long - range correlation is present in both coding and noncoding DNA 
or only in the latter. 

 To answer this question, systematic analyses of biological databases have 
been performed by Buldyrev et al.  (1995) . The authors considered all thirty -
 three 301 coding and all twenty - nine 453 noncoding eukaryotic sequences, 
each of length greater than 512 base pairs (bp) in the present release of the 
GenBank, to determine whether there is any statistically signifi cant distinction 
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in their long - range correlation properties. Standard fast Fourier transform 
(FFT) analysis indicates that coding sequences have practically no correlations 
in the range 10 to 100   bp (spectral exponent  β     =    0.00    ±    0.04, where the uncer-
tainty is two standard deviations). In contrast, for noncoding sequences, the 
average value of the spectral exponent  β  is positive (0.16    ±    0.05), which unam-
biguously shows the presence of long - range correlations. Buldyrev et al. also 
separately analyzed the 874 coding and the 1157 noncoding sequences that 
have more than 4096   bp and found a larger region of power - law behavior. 
Buldyrev et al. calculated the probability that these two data sets (coding and 
noncoding) were drawn from the same distribution and found that it is less 
than 10  − 10 . They also obtained independent confi rmation of these fi ndings 
using the method of detrended fl uctuation analysis (DFA), which is designed 
to treat sequences with statistical heterogeneity, such as DNA ’ s known mosaic 
structure ( “ patchiness ” ) arising from the nonstationarity of nucleotide con-
centration. The nearly perfect agreement between the two independent analy-
sis methods, FFT and DFA, increases the confi dence in the reliability of the 
conclusion regarding long - range correlation properties of coding and noncod-
ing sequences. Recently, long - range correlation in DNA sequences was ana-
lyzed by Bacry et al.  (1995)  using wavelet analysis. The wavelet transform 
modulus maxima method was used to analyze the fractal scaling properties of 
DNA sequences. This method, based on the defi nition of partition functions, 
which use the values of the wavelet transform at its modulus maxima, allows 
one to determine accurately the singularity spectrum of a given singular signal. 
It was found that there exist long - range correlations in noncoding regions and 
no long - range correlations in coding regions, in excellent agreement with the 
results of Buldyrev et al.  (1995) .  

  Fractal Properties of Proteins and Polymers 

 A  polymer  is a molecule composed of a series of  “ building blocks ”  (called 
 monomers ) connected to one another in a chain. If you take a polymer, you 
will fi nd that its monomers are not connected in a straight line. Instead, the 
angles between the monomers can be different and the entire molecule can 
twist into pretty complicated shapes. The same is true for proteins, which are 
formed by amino acids bonding together in a chain. Twisting alone, as well as 
folding and breaking, often implies that the shape is fractal. Proteins and many 
other polymers are, indeed, fractal, and various methods exist for fi nding their 
fractal dimension. The results for some interesting proteins are shown in Table 
 7.4 . Note that the dimensions are much higher than 1, which you would expect 
from a linear chain. This is another proof that proteins are fractal.   

 The numerical value of the fractal dimension  D  gives us a quantitative 
measure of self - similarity. It tells us how many small pieces  N ( r ) are revealed 
when an object is viewed at fi ner resolution  r . The quantitative relationship 
between  N ( r ) and the fractal dimension is that  N ( r ) is proportional to  r   −    D  . The 
larger the fractal dimension, the larger the number of small pieces that are 
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revealed as the object is viewed at fi ner resolution. The fractal dimension 
measures the correlations between the small and large pieces and the correla-
tions between the small pieces themselves. In addition, the fractal dimension 
can be used to classify different objects. For example, the fractal dimension of 
the blood vessels in a normal retina is different from the fractal dimension in 
a retina changed by diseases. The fractal dimension may serve as a method to 
diagnose different diseases and as an index to quantify the severity of these 
diseases. Fractal dimension may also provide hints about biological mecha-
nisms. Different mechanisms produce fractals with different dimensions. 
Hence, measuring the fractal dimension of an object may give us clues as to 
how to determine the mechanism that produced it. For example, the process 
of diffusion - limited aggregation produces fractals with a fractal dimension of 
about 1.7. The blood vessels in the retina have a fractal dimension of about 
1.7. Thus, it is worthwhile to speculate if the growth of these blood vessels was 
produced by diffusion - limited aggregation. This would mean that the growth 
of the blood vessels was proportional to the gradient of a diffusible substance, 
such as oxygen or a growth factor. 

 Fractal surfaces can be used to characterize the roughness or irregularity 
of protein surfaces (Lewis and Rees,  1985 ). The degree of irregularity of a 
surface may be described by the fractal dimension  D . For protein surfaces 
defi ned by probes in the range 1.0 to 3.5    Å  in radius,  D  is approximately 2.4, 
or intermediate between the value for a completely smooth surface ( D     =    2) 
and that for a completely space - fi lling surface ( D     =    3). Individual regions of 
proteins show considerable variation in  D . These variations may be related to 
structural features such as active sites and subunit interfaces, suggesting that 
surface texture may be a factor infl uencing molecular interactions. 

 In summary, fractal theory is a unifying concept integrating scale depen-
dence and complexity, both of which are central to our understanding of 
biological patterns and processes (Lam and Quattrochi,  1992 ; West and 
Goldberger  1987 ; Wiens  1989 ). Given that fractal and chaos theory are 
comparatively new fi elds, it is perhaps not surprising that biologists are still 
grappling with these concepts. Recognition of the fractal geometry of nature 
has important implications in biology, as evidenced by the numerous examples 
presented here. Zeide and Gresham  (1991)  describe as self - evident the fractal 
nature of biological structures and systems. We feel that one of the great 

  TABLE 7.4    Fractal Dimensions of Some Proteins 

   Protein     Fractal Dimension  

  Lysozyme (egg white)    1.614  
  Hemoglobin (oxygen carrier in the 

blood)  
  1.583  

  Myoglobin (muscle protein)    1.728  

  Source:    Ideker et al.  (2001) . 
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challenges facing biologists lies in translating these self - evident concepts into 
comprehensive models of the patterns and processes observed in nature.   

   7.4    SYSTEMS BIOLOGY 

 The emerging fi eld of systems biology involves the application of experimen-
tal, theoretical, and modeling techniques to the study of biological organisms 
at all levels, from the molecular, through the cellular, to the behavioral. Its aim 
is to understand biological processes as entire systems instead of as isolated 
parts. Developments in the fi eld have been made possible by advances in 
molecular biology — in particular, new technologies for determining DNA 
sequence, gene expression profi les, protein – protein interactions, and so on. 

 The systems biology approach starts with the defi nition of the structure of 
the system under study. To determine its functional properties, the attention 
shifts to the system dynamics. The structure and dynamics provide a baseline 
that can be used to analyze an essential property of biological systems: 
robustness. 

 Robustness of biological systems manifests itself in various ways. First, 
biological systems constantly adapt to internal or external changes. Second, 
they show certain insensitivity, which enables them to deal with the noise 
generated by the stochastic signals to which they are exposed. Finally, they 
also exhibit what could be called a graceful degradation, which is a slow and 
gradual end as opposed to the catastrophic failure that occurs when functions 
are damaged (Hood and Galas,  2003 ). 

 The overall systems biology methodology includes the formulation of a 
model once the components of the system have been defi ned, followed by the 
systematical perturbation (either genetically or environmentally) and moni-
toring of the system. The experimentally observed responses are then recon-
ciled with those predicted by the model. Finally, new perturbation experiments 
are designed and performed to distinguish between multiple or competing 
model hypotheses (Ideker et al.,  2001 ). 

 In summary, to understand biology at the system level, we must examine 
the structure and dynamics of cellular function rather than the characteristics 
of isolated parts of a cell or organism. Properties of systems, such as robustness, 
emerge as central issues, and understanding these properties may have an 
effect on the future of medicine. However, many breakthroughs in experimen-
tal devices, advanced software, and analytical methods are required before the 
achievements of systems biology can live up to their much - touted potential 
(Kitano,  2002a,b   ).  

   7.5    CHALLENGES AND PERSPECTIVES 

 At every level of organization, biological systems are complex hierarchies in 
which ensembles of lower - level units become the units in higher - order ensem-
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bles. The analysis of complex hierarchical systems therefore represents one of 
the most important open areas in biology. At both the molecular and cellular 
levels, the components of biological systems are being revealed by modern 
experimental methodology. The organization and integration of these details 
into a functional biological system will require the techniques of the mathema-
tician as well as the data of the biologist. Problems of this sort are at the core 
of genetics, neurobiology, developmental biology, and immunology. Similar 
problems exist in understanding how individuals are organized into popula-
tions, and populations into communities. 

 The analysis of complex hierarchical systems is one of the most important 
open areas in modern biology. This holds true at all levels of organization. The 
essence of the matter is this: On several levels, the components of biological 
systems are being revealed by modern experimental biology. The techniques 
of molecular biology are most important here; other experimental advances 
are also of major utility. The central theoretical question is how the molecular 
details are integrated into a functional unity, a question central to at least three 
major fi elds: neurobiology, developmental biology, and immunology. 

 The immune system contains 10 12  cells, comprising at least 10 7  specifi cities. 
These cells move within the body and communicate both by cell – cell contact 
and via tens, maybe hundreds, of regulatory molecules. The system is capable 
of pattern recognition, learning and memory expression, and thus has many 
features in common with the nervous system. 

 Theoretical ideas have played a major role in the development of the fi eld. 
Controversies such as instructive vs. selective theories of antibody formation, 
germ - line vs. somatic mutation models for the generation of antibody diversity, 
and regulatory circuits vs. idiotypic networks have dominated the intellectual 
development of the fi eld and determined the direction of much experimental 
effort. Mathematical theories have not been nearly as important, but this 
appears to be changing as the fi eld addresses more quantitative issues, such as 
the role of somatic mutation in the generation of antibody diversity, the role 
of receptor clusters in cell stimulation and desensitization signals, the effects 
of different concentrations of cytokines, receptor affi nities, and receptor 
number on cell stimulation, cell proliferation, cell differentiation, and the 
engagement of effector functions. 

 Modeling the immune system requires the same type of hierarchical 
approach as does neurobiological modeling. At the lowest level, one must 
develop quantitative models of the action of single lymphocytes as they inter-
act with antigens and cytokines. A large amount of effort involving the study 
of infi nite systems of ordinary differential equations and branching processes 
has gone into the mathematical modeling of receptor cross - linking by multi-
valent ligands (cf. Perelson,  1984 ). Cell response in terms of proliferation or 
differentiation has been examined from an optimal control perspective 
(Perelson et al.,  1976   ). The effects of the T - cell growth factor IL - 2 have also 
been incorporated into cellular models (Kevrekidis et al.,  1988 ). At the next -
 higher levels, small idiotypic networks containing two complementary cell 
populations have been modeled, as well as networks containing hundreds to 
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thousands of B - cell clones (Perelson,  1989 ; Segel and Perelson,  1989 ; Weisbuch 
et al.  1990 ). In the immune system, not only is the number of components 
large, but in distinction to the nervous system, the components turn over 
rapidly. The average life span of a B cell is on the order of four days, that of 
serum antibody, one to two weeks. Thus, on a rather rapid time scale, many 
immune system components may be replaced, although the system as a whole 
remains intact. 

 New ideas and mathematical representations are required to handle systems 
with large numbers of constantly changing components. Some promising 
approaches involve the formulation of models in terms of a potentially infi nite -
 dimensional  shape space , where emphasis is placed on determining interactions 
among molecules based on their shapes. In computer models binary strings 
have been used to represent molecular shape, with the obvious advantage of 
fast algorithms to determine complementarities and the ability to represent 
4    ×    10 9  different molecular shapes with 32 bits (Farmer et al.,  1986 ). To handle 
the perpetual novelty that the elimination of old components and the genera-
tion of new components introduces into the immune system, models can be 
formulated using  “ metadynamical ”  rules, wherein an algorithm is used to 
update the dynamical equations of the model, depending on the components 
present in the system at the time of update (Bagley et al.,  1989 ). One needs 
to understand in a mathematical sense the dynamics of a system in which the 
variables of the model are in constant fl ux. What does it mean to have an 
attractor if the variables describing the attractor are eliminated from the 
system before a trajectory approaches the attractor? Formulation of models 
appropriate to unravel the observed complexity in the immune system is the 
fi rst major step. Next, a massive effort is required to unravel the behavioral 
modes of these complex models and compare them with experiment. Here, 
theoretical immunology merges into the mainstream of theoretical biology. 

 There are other areas in which we see the future growth of theoretical ideas 
in immunology. For example, vaccine design depends on the ability to predict 
T - cell epitopes. DeLisi and Berzofsky  (1985)  suggested that T - cell epitopes 
tend to be amphipathic structures. Alternative algorithms have been suggested 
(e.g., Rothbard and Taylor,  1988 ), and databases have been used to identify 
sequence patterns characteristic of T - cell epitopes (Claverie et al.,  1988 ). This 
area is clearly one in which we will see future growth and which will rely 
heavily on theoretical and computational analyses. 

 Understanding the dynamics of HIV infection (AIDS) and its effects on the 
immune system is another important area for future research. Quantitative 
questions include: How can the CD4  +   T - cell population be depleted if only one 
in 100 cells is infected? Why is there such a long incubation period from time 
of infection to the clinical symptoms of AIDS? Why is this incubation period 
different in children than in adults? In a seropositive patient, what does the 
level of serum antibody predict about the course of the disease? Can one defi ne 
quantitative measures of a person ’ s chance of infecting a sex partner based on 
antibody or antigen levels measured in the blood? Models will also help in 
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determining the pathogenesis of the disease and in isolating primary effects of 
HIV from the secondary effects of immune dysfunction. Mathematics can also 
play a role in the development of optimal treatment schedules and in the design 
of clinical trials of multiple drug therapies for AIDS. Development of epide-
miological models is currently an active area of mathematical endeavor and 
one that will continue at a high level as we attempt to track the course of this 
epidemic and develop vaccine strategies aimed at its eventual eradication. 

 The theory of dynamical systems has been stimulated by biological ques-
tions. For example, iterations of a single nonlinear function, described via a 
population model of a simple kind, capture the dynamics of an isolated popu-
lation with discrete generations, subject to infl uences that regulate the popula-
tion numbers exclusively through the population size. More explicitly, the 
population size at generation  n     +    1 is assumed to be a given nonlinear function 
of the population size at generation  n . Models of this type were introduced in 
population studies a long time ago. Isolated studies of the iteration of functions 
were conducted near the beginning of the twentieth century. Some of this 
work, notably that by Julia  (1918)  and Fatou  (1919)  and then by Myrberg 
 (1963)  and Sarkovskii  (1964) , pointed to a rich mathematical structure. 
However, it was only in the 1970 ’ s that a widespread appreciation of the depth 
and beauty of the mathematical phenomena involved in these mathematical 
problems emerged. Population biologists, especially May, played a role in 
stimulating this appreciation. One can only speculate as to whether the theory 
of these iterations would have taken off as it did without this infl uence from 
population biology, but clearly, the motivation from population biology was 
an important part of the chain of historical events that led to very signifi cant 
scientifi c and mathematical discoveries. 

 The study of simple population models provides a classic example of mutual 
stimulation of mathematics and biology, with resulting benefi ts to both. The 
interlocking efforts of mathematicians, biologists, and physicists formed a 
network of positive feedbacks that moved the subject to new levels of sophis-
tication. Their investigations showed clearly the existence of universal 
sequences of bifurcations in iterations of one - dimensional maps. Libchaber 
provided striking confi rmation of Feigenbaum ’ s discoveries about period -
 doubling bifurcations in fl uid convection experiments. 

 Computation has played an important role in dynamical systems theory, 
especially in its application to specifi c problems. Applications in biology 
require the development of effective computational methods for the analysis 
of dynamical systems and their bifurcations. New mathematics is emerging 
from work in this direction.  
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  8    Matrix Genetics, Hadamard 
Matrices, and Algebraic Biology     

     In this chapter we continue the discussion introduced in Chapter 2 about 
genetic matrices, their symmetries, and their algebraic properties. The alge-
braic theory of coding is one of the modern fi elds of applications of algebra. 
This theory uses matrix algebra intensively. This chapter is devoted to matrix 
forms of presentations of the genetic code for algebraic analysis of a basic 
scheme of degeneracy of the genetic code. Similar matrix forms are utilized in 
the theory of signal processing and encoding. The Kronecker family of genetic 
matrices is investigated, which is based on the genetic matrix [C   A;   U   G], 
where C, A, U, and G are the letters of the genetic alphabet. This matrix in the 
third Kronecker power is the 8    ×    8 matrix, which contains all 64 genetic triplets 
in a strict order, with a natural binary numeration of the triplets by the 
numbers 0 to 63. Peculiarities of the basic scheme of the genetic code degen-
eracy are refl ected in the symmetrical black - and - white mosaic of this genetic 
8    ×    8 matrix. Unexpectedly, this mosaic matrix is connected algorithmically 
with Hadamard matrices, which are well known in the theory of signal process-
ing and encoding, spectral analysis, quantum mechanics, and quantum comput-
ers. Furthermore, many types of cyclic permutations of genetic elements lead 
to reconstruction of initial Hadamard matrices into new Hadamard matrices 
unexpectedly. This demonstrates that matrix algebra is one of the promising 
instruments and an adequate language in bioinformatics and algebraic biology.  

   8.1    INTRODUCTION 

 Algebraic biology uses matrix algebra as a promising instrument for its inves-
tigation. Many biological structured phenomena have an inherited character 
and are connected with genetic code systems which provide their transmission 
along a chain of generations. One may suggest that algebraic features of the 
genetic code are refl ected in structural features of inherited physiological sys-
tems and defi ne many structural peculiarities of vital functions. Achievements 
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in molecular genetics, which have uncovered the fact that all biological organ-
isms are identical in their molecular - genetic bases, have led to a new viewpoint 
about the nature of life:  “ Life is a partnership between genes and mathemat-
ics ”  (Stewart,  1999 ). 

 Genetic information is transferred by means of discrete elements: four 
letters of the genetic alphabet, 64 triplets, 20 amino acids, and so on. The 
general theory of signal processing utilizes the encoding of discrete signals by 
means of special mathematical matrices and spectral representations of signals 
to increase reliability and effi ciency of information transfer (see, e.g., Ahmed 
and Rao,  1975 ; Sklar,  2001 ). The authors develop a special branch of mathe-
matical biology called  matrix genetics  which is based on using matrix algebra 
and matrix methods of the algebraic theory of coding to study the genetic code 
(He,  2001, 2003a,b ; He and Petoukhov,  2007 ; He et al.,  2004 ; Petoukhov,  2001a,b, 
2005a,b, 2008a  – d)  . One can mention here that an investigation of structural 
analogies between computer informatics and genetic informatics is one of the 
important tasks of modern science in connection with the creation of DNA 
computers and with the development of bioinformatics. We describe some new 
results in this fi eld which are related to the discovery of an unexpected con-
nection of Rademacher functions, Walsh functions (Ahmed and Rao,  1975 ), 
and Hadamard matrices with a structural phenomenology of the genetic code. 
Hadamard matrices are used in many scientifi c and technological fi elds, due 
to their advantageous properties: for example, in error - correcting codes such 
as the Reed – Muller code, in spectral analysis and multichannel spectrometers 
with Hadamard transformations, in quantum mechanics in their normalized 
forms as unitary operators, and in quantum computers with Hadamard gates.  

   8.2    GENETIC MATRICES AND THE DEGENERACY OF 
THE GENETIC CODE 

 The genetic code is named the  degeneracy code  because its 64 triplets encode 
20 amino acids, and different amino acids are encoded by different quantities 
of triplets. Hypotheses about a connection between this degeneracy and the 
noise immunity of genetic information have existed since the time of the dis-
covery of the genetic code. The specifi cs of the degeneracy of the genetic code 
provoke many questions. One of them is the following: Was the code degen-
eracy an accidental choice of nature, or not? Deep investigations of symme-
tries using a matrix map of the code degeneracy can give many useful results 
for such questions. 

 Modern science recognizes many variants (or dialects) of the genetic code, 
data about which are shown on NCBI ’ s Web site,  http://www.ncbi.nlm.nih.gov/
Taxonomy/Utils/wprintgc.cgi . Seventeen variants (or dialects) of the genetic 
code exist, which differ one from another by some details of correspondences 
between triplets and objects encoded by them. Most of these dialects (includ-
ing the Standard Code and the Vertebrate Mitochondrial Code) have the 
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following general scheme of their degeneracy, where 32  “ black ”  triplets with 
 “ strong roots ”  and 32  “ white ”  triplets with  “ weak roots ”  exist. 

 In this general or basic scheme, the set of 64 triplets contains 16 subfamilies 
of triplets, every of which contains four triplets with the same two letters in 
the fi rst positions of each triplet (an example of such subsets is the case of the 
four triplets CAC, CAA, CAU, and CAG with the same two letters on their 
fi rst positions). We shall name such subfamilies the subfamilies of  NN  - triplets. 
In the basic scheme of degeneracy described, the set of these 16 subfamilies 
of  NN  - triplets is divided into two equal subsets from the viewpoint of degen-
eration properties of the code (Figure  8.1 ). The fi rst subset contains eight 
subfamilies of two - position  NN  - triplets, a coding value of which is independent 
of a letter in their third position. An example of such a subfamily is that of 
the four triplets CGC, CGA, CGU, and CGC (Figure  8.1 ), all of which encode 
the same amino acid, Arg, although they have different letters in their third 
position. All members of such subfamilies of  NN  - triplets are shown in black 
in Figures  8.1  and  8.2 .   

     FIGURE 8.1     Two examples of the basic scheme of the genetic code degeneracy with 
32 black triplets and 32 white triplets. (Initial data from  http://www.ncbi.nlm.nih.gov/
Taxonomy/Utils/wprintgc.cgi .)  
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which are encoded by them
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THE VERTEBRATE MITOCHONDRIAL CODE
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 The second subset contains eight subfamilies of three - position  NN  - triplets, 
the coding value of which depends on a letter in their third position. An 
example of such a subfamily in Figure  8.1  is that of the four triplets CAC, 
CAA, CAU, and CAC, two of which (CAC, CAU) encode the amino acid His 
and the other two of which (CAA, CAG) encode the amino acid Gln. All 
members of such subfamilies of  NN  - triplets are indicated white in the geno-
matrix  P  (3)     =    [C   A;   U   G] (3)  in Figure  8.2 . So the genomatrix [C   A;   U   G] (3)  
has 32 black triplets and 32 white triplets. Each subfamily of four  NN  - triplets 
is disposed in an appropriate 2    ×    2 subquadrant of the genomatrix 
[C   A;   U   G] (3) , due to the Kronecker algorithm of construction of the geno-
matrix [C   A;   U   G] (3)  of triplets from the alphabet genomatrix  P  (Figure  2.2 ). 

 Here one should recall the work of Rumer  (1968) , in which a combination 
of letters in the fi rst two positions of each triplet was termed a  root  of this 
triplet. A set of 64 triplets contains 16 possible variants of such roots. Taking 
into account properties of triplets, Rumer has divided the set of 16 possible 
roots into two subsets with eight roots in each. The roots CC, CU, CG, AC, 
UC, GC, GU, and GG form the fi rst of such octets were termed  strong roots  
by Rumer. The other eight roots, CA, AA, AU, AG, UA, UU, UG, and GA, 
form the second octet and were termed  weak roots . When Rumer published 
his works, the Vertebrate Mitochondrial Code and some of the other code 
dialects were unknown. But one can easily check that the set of 32 black 
(white) triplets, which we show in Figure  8.1  for the Standard Code and the 
Vertebrate Mitochondrial Code, is identical to the set of 32 triplets with strong 

     FIGURE 8.2     Genomatrix   P P3
123

3( ) ( )= = [ ]CAUG C A U G;  (Figure  2.2 ) for the Verteb-
rate Mitochondrial Code. The matrix contains 64 triplets and 20 amino acids with their 
traditional abbreviations. Stop codons are marked  “ Stop. ”  Numeration of columns and 
rows in decimal notation is shown. Black cells of the genomatrix contain the black 
triplets and white cells contain the white triplets. Rademacher functions for rows are 
shown on the right side.  

CCC 
Pro 

CCA 
Pro 

CAC 
His 

CAA 
Gln 

ACC 
Thr 

ACA 
Thr 

AAC 
Asn 

AAA 
Lys 

 

CCU 
Pro 

CCG 
Pro 

CAU 
His 

CAG 
Gln 

ACU 
Thr 

ACG 
Thr 

AAU 
Asn 

AAG 
Lys 

 

CUC 
Leu 

CUA 
Leu 

CGC 
Arg 

CGA 
Arg 

AUC 
Ile 

AUA 
Met 

AGC 
Ser 

AGA 
Stop 

 

CUU 
Leu 

CUG 
Leu 

CGU 
Arg 

CGG 
Arg 

AUU 
Ile 

AUG 
Met 

AGU 
Ser 

AGG 
Stop 

 

UCC 
Ser 

UCA 
Ser 

UAC 
Tyr 

UAA 
Stop 

GCC 
Ala 

GCA 
Ala 

GAC 
Asp 

GAA 
Glu 

 

UCU 
Ser 

UCG 
Ser 

UAU 
Tyr 

UAG 
Stop 

GCU 
Ala 

GCG 
Ala 

GAU 
Asp 

GAG 
Glu 

 

UUC 
Phe 

UUA 
Leu 

UGC 
Cys 

UGA 
Trp 

GUC 
Val 

GUA 
Val 

GGC 
Gly 

GGA 
Gly 

 

UUU 
Phe 

UUG 
Leu 

UGU 
Cys 

UGG 
Trp 

GUU 
Val 

GUG 
Val 

GGU 
Gly 

GGG 
Gly 

 



184  MATRIX GENETICS, HADAMARD MATRICES, AND ALGEBRAIC BIOLOGY

(weak) roots described by Rumer. So, using notions proposed by Rumer, the 
black triplets can be called  triplets with strong roots  and the white triplets can 
be called  triplets with weak roots . Rumer believed that this symmetrical divi-
sion into two binary - oppositional categories of roots is very important for 
understanding the nature of genetic code systems. 

 One can check easily on the basis of data from NCBI ’ s Web site ( http://
www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi ) that the following 11 
dialects of the genetic code have the same basic scheme of degeneracy, with 
32 black triplets and with 32 white triplets: (1) the Standard Code; (2) the 
Vertebrate Mitochondrial Code; (3) the Yeast Mitochondrial Code; (4) the 
Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/
Spiroplasma Code; (5) the Ciliate, Dasycladacean and Hexamita Nuclear 
Code; (6) the Euplotid Nuclear Code; (7) the Bacterial and Plant Plastid Code; 
(8) the Ascidian Mitochondrial Code; (9) the Blepharisma Nuclear Code; 
(10) the Thraustochytrium Mitochondrial Code; and (11) the Chlorophycean 
Mitochondrial Code. In this chapter we consider this basic scheme of the 
degeneracy that is presented by means of a black - and - white mosaic of the 
genetic matrix  P  (3)     =    [C   A;   U   G] (3)  in Figure  8.2 . 

 It should be mentioned that the other six dialects of the genetic code — the 
Invertebrate Mitochondrial Code, the Echinoderm and Flatworm Mitochondrial 
Code, the Alternative Yeast Nuclear Code, the Alternative Flatworm 
Mitochondrial Code, the Trematode Mitochondrial Code, and the Scenedesmus 
Obliquus Mitochondrial Code — have only small differences from the basic 
scheme of degeneracy described. 

 According to general traditions, the theory of symmetry studies initially 
those natural objects that possess the most symmetrical character, and then it 
constructs a theory for cases of violations of this symmetry in other kindred 
objects. For this reason, we pay special attention here to the Vertebrate 
Mitochondrial Code, which is the most symmetrical code among dialects of 
the genetic code and which corresponds to the basic scheme of the degeneracy. 
Additionally, we should mention that some authors consider this dialect not 
only the most  “ perfect ”  but also the most ancient (Frank - Kamenetskiy,  1988 ); 
but this last statement is debatable. Figure  8.1  shows the correspondence 
between the set of 64 triplets and the set of 20 amino acids with stop signals 
of protein synthesis in the Standard Code and the Vertebrate Mitochondrial 
Code. 

 Figure  8.2  demonstrates the unexpected phenomenological fact of the sym-
metrical character of dispositions for the 32 white triplets and the 32 black 
triplets (from Figure  8.1 ) in the genomatrix [C   A;   U   G] (3)  described in 
Chapter 2. All triplets are shown together with amino acids and a stop codon, 
which are encoded by triplets in the Vertebrate Mitochondrial Code. Black 
cells of the genomatrix contain black triplets and white cells contain white 
triplets. 

 So the black - and - white mosaic of the genomatrix [C   A;   U   G] (3)  in Figure 
 8.2  refl ects the specifi city of the basic scheme of the degeneracy with 32 black 
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triplets and 32 white triplets, but the disposition of amino acids and of stop 
codons corresponds to the particular case of the Vertebrate Mitochondrial 
Code. Unexpectedly, it has a few interesting symmetrical peculiarities, as 
follows: 

   •      The left and right halves of the matrix mosaic are mirror - antisymmetric 
to each other in color; any pair of cells, disposed in mirror - symmetrical 
manner in these halves, possesses opposite colors.  

   •      Mosaics of all rows have a meander - line character, which is connected 
with Rademacher functions from the theory of discrete signal processing. 
Each row presents one of the Rademacher functions if each black (white) 
cell is interpreted such that it contains the number  + 1 ( − 1).  

   •      The black - and - white matrix mosaic has the symmetric fi gure of a diago-
nal cross; diagonal quadrants of the matrix are equivalent to each other 
from the viewpoint of their mosaic.  

   •      The genomatrix [C   A;   U   G] (3)  consists of the four pairs of neighbor rows 
with even and odd numeration numbers in each pair: 0 – 1, 2 – 3, 4 – 5, 6 – 7. 
For the case of the basic scheme of code degeneracy, the rows of each 
pair are equivalent to each other from the viewpoint of their mosaic (for 
the particular case of the Vertebrate Mitochondrial Code, the rows of 
each pair are equivalent to each other additionally from the viewpoint 
of the disposition of the same amino acids in their appropriate cells).  

   •      The turning of the genomatrix [C   A;   U   G] (3)  into a cylinder with an 
agglutination of its upper and lower borders reveals an ornamental 
pattern of a cyclic shift. This pattern has the character of cyclic shifts, 
which permits one to think about a possible genetic meaning of cyclic 
codes, which play a signifi cant role in the theory of digital signal process-
ing. This pattern is demonstrated more clearly by a tessellation of a plane 
with this mosaic genomatrix (Figure  8.3 , left). The plane with this tessel-
lation possesses the ornamental pattern with two pattern units that are 
identical in their forms but contrary in their colors (black and white) and 
orientations (left and right).      

 It should be noted that a huge quantity 64!    ≈    10 89  of variants exists for 
dispositions of 64 triplets in an 8    ×    8 matrix. Modern physics estimates the 
time of existence of the universe in 10 17    s. That means the following: If for 
consideration of each of these variants we spend only 1   s, then during all the 
time of existence of the universe we shall have time to consider only an insig-
nifi cant part of these 10 89  variants. It is obvious that in such a situation an 
accidental disposition of the 20 amino acids and the corresponding triplets in 
a 8    ×    8 matrix will almost never give any symmetry in their disposition in 
matrix halves, quadrants, and rows. 

 This symmetrical character of the degeneracy of the genetic code, which is 
presented by the matrix mosaic (Figure  8.2 ), is the key to many secrets of the 
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genetic code. It verifi es that the degeneracy is not an accidental thing but is a 
consequence of some hidden regular laws. In our opinion, one of the most 
important features of the mosaic genomatrix in Figure  8.2  is that each of its 
rows fi ts one of the famous Rademacher functions, which are known in the 
theory of digital communication and are described in Chapter 1. The fact that 
the left and right halves of the matrix mosaic are mirror - antisymmetric to each 
another can be interpreted as a consequence of this connection between the 
matrix rows and Rademacher functions. 

 It seems essential that this connection between the matrix rows (or columns 
in some cases) and Rademacher functions is a conserved stability in a great 
number of new genomatrices which are produced by means of positional and 
alphabetic permutations of genetic elements inside triplets in the initial geno-
matrix   P123

3CAUG C A U G= [ ]( );  (Petoukhov,  2006 ,  2008a – d )  . A positional per-
mutation inside triplets is a permutation of positions inside each triplet 
simultaneously, which replaces an initial order 1 – 2 – 3 of its letters into some 
new order: for example, into the order 2 – 3 – 1; in this case the triplet CAG is 
replaced by the triplet AGC in its matrix cell, and so on, and a new genomatrix 
  P231

CAUG appears as a result (Figure  8.4 ).   
 It is unexpected that this  “ cyclic - generated ”  genomatrix   P231

CAUG with new 
matrix dispositions of triplets and amino acids possesses similar symmetric 
characteristics (Petoukhov,  2006 ,  2008a,c )  : 

   •      All rows of the 8    ×    8 genomatrix and its 4    ×    4 quadrants have a meander -
 line character again, which is connected by Rademacher functions.  

   •      All its 4    ×    4 quadrants are identical to each other by the mosaics.  
   •      The upper and the lower halves of   P231

CAUG are identical to each other from 
the viewpoint of dispositions of all amino acids and stop signals.  

     FIGURE 8.3      Left:  tessellation of a plane with the mosaic of genomatrix [C   A;   U   G] (3)  
from Figure  8.2 .  Right:  tessellation of a plane with the mosaic of genomatrix   P231

CAUG 
from Figure  8.4 .  
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     FIGURE 8.4     Genomatrix   P231
CAUG, which is produced from the genomatrix   P123

CAUG 
(Figure  8.2 ) by the cyclic shift of positions in triplets (1 – 2 – 3    →    2 – 3 – 1). Rademacher 
functions for rows are shown on the right side.  
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   •      The genomatrix   P231
CAUG possesses four pairs of identical rows as well: 0 – 1, 

2 – 3, 4 – 5, 6 – 7 (but the rows with these numbers are disposed in new matrix 
positions in Figure  8.2  and they differ from the rows with the same 
numbers in Figure  8.2 ).    

 To work with a set of positional and alphabetic permutations, we use 
the following denotations. We change the symbol of the genomatrix 
 P  (3)     =    [C   A;   U   G] (3)  by the symbol   P123

CAUG, which is more comfortable for the 
comparative analysis of this 8    ×    8 genomatrix with other 8    ×    8 genomatrices 
given below. Here the bottom index  “ 123 ”  shows the appropriate queue of 
positions 1 – 2 – 3 in triplets; the upper index shows the type of kernel [C   A;   U   G] 
of the Kronecker family of genomatrices. The exponent (3) is not written 
because the bottom index is enough to indicate that this symbol means the 
8    ×    8 genomatrix of triplets. This change of symbol is useful because we shall 
consider the genomatrices not only with permutations of positions in triplets 
(2 – 3 – 1, 3 – 1 – 2, etc.) but with alphabetic permutations of the genetic letters that 
lead to other kernels of Kronecker families of genomatrices ([G   C;   A   U], 
[C   A;   G   U], etc.). In the last cases of alphabetic permutations, matrices 
  P123

GCAU,   P123
CAGU, and so on, arise. 

 Note that the mosaic of the initial 8    ×    8 genomatrix   P123
CAUG is reproduced in 

4    ×    4 quadrants of this   P231
CAUG in a fractal manner: the coeffi cient of fractal 

ranging of areas is equal to 4. The tessellations of a plane by the mosaics of 
  P123

CAUG and of   P231
CAUG demonstrate their fractal correspondence very clearly 

(Figure  8.3 ). Such a scale transformation of areas in the mosaics of the code 
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degeneracy can be called a  tetra - reproduction transformation . Due to this 
tetra - reproduction, the cyclic - generated genomatrix   P231

CAUG has a quantity of 
pattern units four times greater than that of the initial genomatrix   P123

CAUG 
(Figures  8.2  to  8.4 ). 

 This fact is interesting because an analogical tetra - reproduction (or a tetra -
 division) exists in living nature in the course of the division of gametal cells, 
which are transmitters of genetic information. In this mysterious act of meiosis, 
one gamete is divided into four new gametes. This fact was mentioned notably 
in a famous book by Schr ö dinger ( 1955 , Sec. 13). The tetra - reproduction of 
the mosaics of the genomatrices that was described can be utilized, in particu-
lar, in formal models of meiosis. 

 Permutations of elements play an important role in the theory of signals 
processing (Ahmed and Rao,  1975 ; Trahtman and Trahtman,  1975 ). Only six 
variants of permutations of positions in triplets are possible: 1 – 2 – 3, 2 – 3 – 1, 
3 – 1 – 2, 1 – 3 – 2, 2 – 1 – 3, and 3 – 2 – 1. The genomatrices   P123

CAUG and   P231
CAUG for the 

fi rst two of these permutations were considered above (see Figures  8.2  and 
 8.4 ). Let us consider the other four variants that lead to genomatrices: 
  P312

CAUG,   P132
CAUG,   P213

CAUG, and   P321
CAUG, presented in Figure  8.5 . It is an unexpected 

phenomenological fact that each row of all these genomatrices is connected 
with a relevant Rademacher function again, and that these new genomatrices 
have symmetrical peculiarities which are similar to the symmetrical peculiari-
ties of   P123

CAUG and   P231
CAUG. It means that the basic scheme considered for the 

degeneracy of the genetic code is in close agreement with these types of per-
mutations and with the Rademacher functions.   

 The revelation of the permutation group of the six symmetric genomatrices 
  P123

3CAUG( ),   P231
3CAUG( ),   P213

3CAUG( ),   P321
3CAUG( ),   P312

3CAUG( ),   P132
3CAUG( ) seems to be the essential 

fact because of heuristic associations with the mathematical theory of digital 
signal processing, where similar permutations have long been utilized as a 
useful tool. For example, the book (Ahmed and Rao,  1975 , Sec. 4.6) gives an 
example of the important role of the method of data permutations and of the 
binary inversion for one of variants of the algorithm of a fast Fourier trans-
formation. In this example the numeric sequence 0, 1, 2, 3, 4, 5, 6, 7 is re - formed 
into the sequence 0, 4, 2, 6, 1, 5, 3, 7. But the same change of numeration of 
the columns and the rows takes place in our case (Figure  8.5 ), where the 
genomatrix   P123

CAUG is re - formed into the genomatrix   P321
CAUG as a result of the 

inversion of binary numbering of the columns and the rows (or of the inver-
sion of the positions in the triplets). These and other facts permit one to think 
that the genetic system has a connection with a fast Fourier transformation 
(or with a fast Hadamard transformation) (Petoukhov,  2006 ,  2008a – c )  . 

 Until now we have considered the Kronecker family of genomatrices with 
the kernel [C   A;   U   G] and have revealed some interesting properties of the 
mosaic genomatrices [C   A;   U   G] (3) . But one can consider other variants of 
kernels for genetic matrices:   P123

3CAGU C A G U= [ ]( ); ,   P123
3GCAU G C A U= [ ]( ); , 

and so on. These new variants of kernels of the Kronecker families of 
genomatrices are produced by alphabetic permutations of the four letters C, 
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     FIGURE 8.5     Genomatrices   P213
CAUG,   P321

CAUG,   P312
CAUG, and   P132

CAUG. Each matrix cell has a 
triplet and an amino acid (or a stop signal) coded by this triplet. The black - and - white 
mosaic refl ects the specifi city of the basic scheme of the degeneracy of the genetic code.  

PCAUG
213: 

 0 
(000) 

1 
(001) 

4 
(100)

5 
(101)

2 
(010)

3 
(011) 

6 
(110) 

7 
(111) 

0 CCC 
Pro 

CCA 
Pro 

ACC
Thr 

ACA 
Thr 

CAC
His 

CAA 
Gln 

AAC 
Asn 

AAA 
Lys 

1 CCU 
Pro 

CCG 
Pro 

ACU
Thr 

ACG 
Thr 

CAU
His 

CAG
Gln 

AAU 
Asn 

AAG 
Lys 

4 UCC 
Ser 

UCA 
Ser 

GCC
Ala 

GCA 
Ala 

UAC
Tyr 

UAA 
Stop 

GAC 
Asp 

GAA 
Glu 

5 UCU 
Ser 

UCG 
Ser 

GCU
Ala 

GCG 
Ala 

UAU
Tyr 

UAG
Stop 

GAU 
Asp 

GAG 
Glu 

2 CUC 
Leu 

CUA 
Leu 

AUC
Ile 

AUA 
Met 

CGC
Arg 

CGA
Arg 

AGC 
Ser 

AGA 
Stop 

3 CUU 
Leu 

CUG 
Leu 

AUU
Ile 

AUG 
Met 

CGU
Arg 

CGG
Arg 

AGU 
Ser 

AGC 
Ser 

6 UU C 
Phe 

UUA 
Leu 

GUC
Val 

GUA 
Val 

UGC
Cys 

UGA
Trp 

GGC 
Gly 

GGA 
Gly 

7 UU U 
Phe 

UUG 
Leu 

GUU
Val 

GUG 
Val 

UGU
Cys 

UGG
Trp 

GGU 
Gly 

GGG 
Gly 

CAUG
321: 
 0 

(000) 
4 

(100) 
2 

(010) 
6 

(110)
1 

(001) 
5 

(101) 
3 

(011) 
7 

(111) 
0 CCC 

Pro 
ACC 
Thr 

CAC
His 

AAC
Asn 

CCA
Pro 

ACA
Thr 

CAA
Gln 

AAA 
Lys 

4 UCC 
Ser 

GCC 
Ala 

UAC
Tyr 

GAC
Asp 

UCA
Ser 

GCA
Ala 

UAA
Stop 

GAA 
Glu 

2 CUC 
Leu 

AUC 
Ile 

CGC
Arg 

AGC
Ser 

CUA
Leu 

AUA
Met 

CGA
Arg 

AGA 
Stop 

6 UUC  
Phe 

GUC 
Val 

UGC
Cys 

GGC
Gly 

UUA
Leu 

GUA
Val 

UGA
Trp 

GGA 
Gly 

1 CCU 
Pro 

ACU 
Thr 

CAU
His 

AAU
Asn 

CCG
Pro 

ACG
Thr 

CAG
Gln 

AAG 
Lys 

5 UCU 
Ser 

GCU 
Ala 

UAU
Tyr 

GAU
Asp 

UCG
Ser 

GCG
Ala 

UAG
Stop 

GAG 
Glu 

3 CUU 
Leu 

AUU 
Ile 

CGU
Arg 

AGU
Ser 

CUG
Leu 

AUG
Met 

CGG
Arg 

AGG 
Stop 

7 UUU  
Phe 

GUU 
Val 

UGU
Cys 

GGU
Gly 

UUG
Leu 

GUG
Val 

UGG
Trp 

GGG 
Gly 

PCAUG
312: 

 0 
(000) 

4 
(100) 

1 
(001)

5 
(101)

2 
(010)

6 
(110) 

3 
(011) 

7 
(111) 

0 CCC 
Pro 

ACC 
Thr 

CCA
Pro 

ACA
Thr 

CAC
His 

AAC
Asn 

CAA
Gln 

AAA 
Lys 

4 UCC 
Ser 

GCC 
Ala 

UCA
Ser 

GCA
Ala 

UAC
Tyr 

GAC
Asp 

UAA
Stop 

GAA 
Glu 

1 CCU 
Pro 

ACU 
Thr 

CCG
Pro 

ACG
Thr 

CAU
His 

AAU
Asn 

CAG
Gln 

AAG 
Lys 

5 UCU 
Ser 

GCU 
Ala 

UCG
Ser 

GCG
Ala 

UAU
Tyr 

GAU
Asp 

UAG
Stop 

GAG 
Glu 

2 CUC 
Leu 

AUC 
Ile 

CUA
Leu 

AUA
Met 

CGC
Arg 

AGC
Ser 

CGA
Arg 

AGA 
Stop 

6 UU C 
Phe 

GUC 
Val 

UUA
Leu 

GUA
Val 

UGC
Cys 

GGC
Gly 

UGA
Trp 

GGA 
Gly 

3 CUU 
Leu 

AUU 
Ile 

CUG
Leu 

AUG
Met 

CGU
Arg 

AGU
Ser 

CGG
Arg 

AGG 
Stop 

7 UU U 
Phe 

GUU 
Val 

UUG
Leu 

GUG
Val 

UGU
Cys 

GGU
Gly 

UGG
Trp 

GGG 
Gly 

PCAUG
132: 

 0 
(000) 

2 
(010) 

1 
(001)

3 
(011)

4 
(100)

6 
(110) 

5 
(101) 

7 
(111) 

0 CCC  
Pro  

CAC  
His 

CCA 
Pro  

CAA 
Gln 

ACC 
Thr 

AAC 
Asn 

ACA 
Thr 

AAA  
Lys 

2 CUC  
Leu 

CGC  
Arg 

CUA 
Leu 

CGA 
Arg 

AUC 
Ile 

AGC 
Ser 

AUA 
Met 

AGA  
Stop 

1 CCU  
Pro 

CAU  
His 

CCG 
Pro 

CAG 
Gln 

ACU 
Thr 

AAU 
Asn 

ACG 
Thr 

AAG  
Lys 

3 CUU  
Leu 

CGU  
Arg 

CUG 
Leu 

CGG 
Arg 

AUU 
Ile 

AGU 
Ser 

AUG 
Met 

AGG  
Stop 

4 UCC  
Ser 

UAC  
Tyr 

UCA 
Ser 

UAA
Stop 

GCC 
Ala 

GAC 
Asp 

GCA
Ala 

GAA 
Glu 

6 UU C  
Phe 

UGC  
Cys 

AUU 
Ile 

AGU 
Ser 

CUG 
Leu 

CGG 
Arg 

GUA 
Val 

GGA  
Gly 

5 UCU  
Ser 

UAU  
Tyr 

UCG 
Ser 

UAG 
Stop 

GCU 
Ala 

GAU 
Asp 

GCG 
Ala 

GAG  
Glu 

7 UU U  
Phe 

UGU  
Cys 

UUG 
Leu 

UGG 
Trp 

GUU 
Val 

GGU 
Gly 

GUG 
Val 

GGG  
Gly 
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A, U, and G on positions in the kernel 2    ×    2 matrix: for example, by mutual 
interchanges C    ↔    G and A    ↔    U (such permutations produce a change of 
letter compositions of triplets in the cells of a genetic 8    ×    8 matrix, in contract 
to the genomatrix   P123

CAUG described). It is essential that all these new mosaic 
genomatrices possess analogical phenomenological properties, in contrast 
to the case of the genomatrix [C   A;   U   G] (3)  described. First, all these new 
genomatrices are again connected in their rows (or in their columns) with 
Rademacher functions. One can add that all kinds of possible positional per-
mutations in triplets (from 1 – 2 – 3 to 2 – 3 – 1, 3 – 1 – 2, etc.), which generate new 
genomatrices (e.g., mosaic genomatrices   P231

GCAU,   P312
GCAU,   P321

GCAU,   P213
GCAU, and 

  P132
GCAU are produced from   P123

GCAU in such a way), conserve the same close 
connections of new genomatrices with Rademacher functions. Figures  8.6  to 
 8.17  show some examples of such genomatrices.   

 Why has nature chosen this type of degeneracy for the genetic code? Matrix 
genetics proposes a possible new answer to this question: because this degen-
eracy connects systems of the genetic code with Rademacher functions (and 
with Walsh functions and Hadamard matrices, which are described below), 
which allow for the provision of some technologies of genetic information 
processing. 

 Rademacher functions are an incomplete set of orthogonal functions which 
are well known in discrete signal processing (see Chapter 1). The incomplete 
set of Rademacher functions was completed by Walsh to form the complete 
orthogonal set of rectangular functions, now known as Walsh functions. Taking 
into account the close connection of genomatrices with Rademacher functions 
described, a question arises: Do the 8    ×    8 genomatrices of 64 triplets described 
possess a hidden connection with Walsh functions by means of some natural 
genetic algorithm? This question has a positive answer. A special simple 

     FIGURE 8.6     Genomatrix   P123
3GCAU G C A U= [ ]( );  and the mosaic of the basic scheme 

of the degeneracy of the genetic code (dispositions of amino acids and stop codons 
correspond to the Vertebrate Mitochondrial Code).  

GGG 
Gly 

GGC 
Gly 

GCG 
Ala 

GCC 
Ala 

CGG 
Arg 

CGC 
Arg 

CCG 
Pro 

CCC 
Pro 

GGA 
Gly 

GGU 
Gly 

GCA 
Ala 

GCU 
Ala 

CGA 
Arg 

CGU 
Arg 

CCA 
Pro 

CCU 
Pro 

GAG 
Glu 

GAC 
Asp 

GUG 
Val 

GUC 
Val 

CAG 
Gln 

CAC 
His 

CUG 
Leu 

CUC 
Leu 

GAA 
Glu 

GAU 
Asp 

GUA 
Val 

GUU 
Val 

CAA 
Gln 

CAU 
His 

CUA 
Leu 

CUU 
Leu 

AGG 
Stop 

AGC 
Ser 

ACG 
Thr 

ACC 
Thr 

UGG 
Trp 

UGC 
Cys 

UCG 
Ser 

UCC 
Ser 

AGA 
Stop 

AGU 
Ser 

ACA 
Thr 

ACU 
Thr 

UGA 
Trp 

UGU 
Cys 

UCA 
Ser 

UCU 
Ser 

AAG 
Lys 

AAC 
Asn 

AUG 
Met 

AUC 
Ile 

UAG 
Stop 

UAC 
Tyr 

UUG 
Leu 

UUC 
Phe 

AAA 
Lys 

AAU 
Asn 

AUA 
Met 

AUU 
Ile 

UAA 
Stop 

UAU 
Tyr 

UUA 
Leu 

UUU 
Phe 
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     FIGURE 8.7     Genomatrix   P231
GCAU.  

GGG 
Gly 

GCG 
Ala 

CGG 
Arg 

CCG 
Pro 

GGC 
Gly 

GCC 
Ala 

CGC 
Arg 

CCC 
Pro 

GAG 
Glu 

GUG 
Val 

CAG 
Gln 

CUG 
Leu 

GAC 
Asp 

GUC 
Val 

CAC 
His 

CUC 
Leu 

AGG 
Stop 

ACG 
Thr 

UGG 
Trp 

UCG 
Ser 

AGC 
Ser 

ACC 
Thr 

UGC 
Cys 

UCC 
Ser 

AAG 
Lys 

AUG 
Met 

UAG 
Stop 

UUG 
Leu 

AUC 
Ile 

AUC 
Ile 

UAC 
Tyr 

UUC 
Phe 

GGA 
Gly 

GCA 
Ala 

CGA 
Arg 

GCA 
Ala 

GGU 
Gly 

GCU 
Ala 

CGU 
Arg 

CCU 
Pro 

GAA GUA CAA CUA GAU GUU CAU CUU 
Glu Val Gl n Leu Asp Val Hi s Leu 
AGA 
Stop 

ACA 
Thr 

UGA 
Trp 

UCA 
Ser 

AGU 
Ser 

ACU 
Thr 

UGU 
Cys 

UCU 
Ser 

AAA 
Lys 

AUA 
Met 

UAA 
Stop 

UUA 
Leu 

AAU 
Asn 

AUU 
Ile 

UAU 
Tyr 

UUU 
Phe 

     FIGURE 8.8     Genomatrix   P312
GCAU.  

GGG 
Gly 

CGG 
Arg 

GGC 
Gly 

CGC 
Arg 

GCG 
Ala 

CCG 
Pro 

GCC 
Ala 

CCC 
Pro 

AGG 
Stop 

UGG 
Trp 

AGC 
Ser 

UGC 
Cys 

ACG 
Thr 

UCG 
Ser 

ACC 
Thr 

UCC 
Ser 

GGA 
Gly 

CGA 
Arg 

GGU 
Gly 

CGU 
Arg 

GCA 
Ala 

CCA 
Pro 

GCU 
Ala 

CCU 
Pro 

AGA 
Stop 

UGA 
Trp 

AGU 
Ser 

UGU 
Cys 

ACA 
Thr 

UCA 
Ser 

ACU 
Thr 

UCU 
Ser 

GAG 
Glu 

CAG 
Gln 

GAC 
Asp 

CAC 
His 

GUG 
Val 

CUG 
Leu 

GUC 
Val 

CUC 
Leu 

AAG 
Lys 

UAG 
Stop  

AAC 
Asn 

UAC 
Tyr 

AUG 
Met 

UUG 
Leu 

AUC 
Ile 

UUC 
Phe 

GAA 
Glu 

CAA 
Gln 

GAU 
Asp 

CAU 
His 

GUA 
Val 

CUA 
Leu 

GUU 
Val 

CUU 
Leu 

AAA 
Lys 

UAA 
Stop 

AAU 
Asn 

UAU 
Tyr 

AUA 
Met 

UUA 
Leu 

AUU 
Ile 

UUU 
Phe 

     FIGURE 8.9     Genomatrix   P132
GCAU.  

GGG 
Gly 

GCG 
Ala 

GGC 
Gly 

GCC 
Ala 

CGG 
Arg 

CCG 
Pro 

CGC 
Arg 

CCC 
Pro 

GAG 
Glu 

GUG 
Val 

GAC 
Asp 

GUC 
Val 

CAG 
Gln 

CUG 
Leu 

CAC 
His 

CUC 
Leu 

GGA 
Gly 

GCA 
Ala 

GGU 
Gly 

GCU 
Ala 

CGA 
Arg 

CCA 
Pro  

CGU 
Arg 

CCU 
Pro 

GAA 
Glu 

GUA 
Val 

GAU 
Asp 

GUU 
Val 

CAA 
Gln 

CUA 
Leu 

CAU 
His 

CUU 
Leu 

AGG 
Stop 

ACG 
Thr 

AGC 
Ser 

ACC 
Thr 

UGG 
Trp 

UCG 
Ser 

UGC 
Cys 

UCC 
Ser 

AAG 
Lys 

AUG 
Met 

AAC 
Asn 

AUC 
Ile 

UAG 
Stop 

UUG 
Leu 

UAC 
Tyr 

UUC 
Phe 

AGA 
Stop 

ACA 
Thr 

AGU 
Ser 

ACU 
Thr 

UGA 
Trp 

UCA 
Ser 

UGU 
Cys 

UCU 
Ser 

AAA 
Lys 

AUA 
Met 

AAU 
Asn 

AUU 
Ile 

UAA 
Stop 

UUA 
Leu 

UAU 
Tyr 

UUU 
Phe 
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     FIGURE 8.10     Genomatrix   P213
GCAU.  

GGA 
Gly 

GGU 
Gly 

CGA 
Arg 

CGU 
Arg 

GCA 
Ala 

GCU 
Ala 

CCA 
Pro 

CCU 
Pro 

AGG 
Stop 

AGC 
Ser 

UGG 
Trp 

UGC 
Cys 

ACG 
Thr 

ACC 
Thr 

UCG 
Ser 

UCC 
Ser 

AGA 
Stop 

AGU 
Ser 

UGA 
Trp 

UGU 
Cys 

ACA 
Thr 

ACU 
Thr 

UCA 
Ser 

UCU 
Ser 

GAG 
Glu 

GAC 
Asp 

CAG 
Gln 

CAC 
His 

GUG 
Val 

GUC 
Val 

CUG 
Leu 

CUC 
Leu 

GAA 
Glu 

GAU 
Asp 

CAA 
Gln 

CAU 
His 

GUA 
Val 

GUU 
Val 

CUA 
Leu 

CUU 
Leu 

AAG 
Lys 

AAC 
Asn 

UAG 
Stop 

UAC 
Tyr 

AUG 
Met 

AUC 
Ile 

UUG 
Leu 

UUC 
Phe 

AAA 
Lys 

AAU 
Asn 

UAA 
Stop 

UAU 
Tyr 

AUA 
Met 

AUU 
Ile 

UUA 
Leu 

UUU 
Phe 

GGG 
Gly 

GGC 
Gly 

CGG 
Arg 

CGC 
Arg 

GCG 
Ala 

GCC 
Ala 

CCG 
Pro 

CCC 
Pro 

     FIGURE 8.11     Genomatrix   P321
GCAU.  

GGG 
Gly 

CGG 
Arg 

GCG 
Ala 

CCG 
Pro 

GGC 
Gly 

CGC 
Arg 

GCC 
Ala 

CCC 
Pro 

AGG 
Stop 

UGG 
Trp 

ACG 
Thr 

UCG 
Ser 

AGC 
Ser 

UGC 
Cys 

ACC 
Thr 

UCC 
Ser 

GAG 
Glu 

CAG 
Gln 

GUG 
Val 

CUG 
Leu 

GAC 
Asp 

CAC 
His 

GUC 
Val 

CUC 
Leu 

AAG 
Lys 

UAG 
Stop 

AUG 
Met 

UUG 
Leu 

AAC 
Asn 

UAC 
Tyr 

AUC 
Ile 

UUC 
Phe 

GGA 
Gly 

CGA 
Arg 

GCA 
Ala 

CCA 
Pro 

GGU 
Gly 

CGU 
Arg 

GCU 
Ala 

CCU 
Pro 

AGA 
Stop 

UGA 
Trp 

ACA 
Thr 

UCA 
Ser 

AGU 
Ser 

UGU 
Cys 

ACU 
Thr 

UCU 
Ser 

GAA 
Glu 

CAA 
Gln 

GUA 
Val 

CUA 
Leu  

GAU 
Asp 

CAU 
His 

GUU 
Val 

CUU 
Leu 

AAA 
Lys 

UAA 
Stop 

AUA 
Met 

UUA 
Leu 

AAU 
Asn 

UAU 
Tyr 

AUU 
Ile 

UUU 
Phe 

     FIGURE 8.12     Genomatrix   P123
3CAGU C A G U= [ ]( );  and the mosaic of the basic 

scheme of the degeneracy of the genetic code (dispositions of amino acids and stop 
codons correspond to the Vertebrate Mitochondrial Code).  

Gly Gly Val Val C ys Trp Phe Leu 
GGG 
Gly 

GGU 
Gly 

GUG 
Val 

GUU 
Val 

UGG 
Trp 

UGU 
Cys 

UUG 
Leu 

UUU 
Phe 

CCC 
Pro 

CCA 
Pro 

CAC 
His 

CAA 
Gln 

ACC 
Thr 

ACA 
Thr 

AAC 
Asn 

AAA 
Lys 

CCG 
Pro 

CCU 
Pro 

CAG 
Gln 

CAU 
His 

ACG 
Thr 

ACU 
Thr 

AAG 
Lys 

AAU 
Asn 

CGC 
Arg 

CGA 
Arg 

CUC 
Leu 

CUA 
Leu 

AGC 
Ser 

AGA 
Stop 

AUC 
Ile 

AUA 
Met 

CGG 
Arg 

CGU 
Arg 

CUG 
Leu 

CUU 
Leu 

AGG 
Stop 

AGU 
Ser 

AUG 
Met 

AUU 
Ile 

GCC 
Ala 

GCA 
Ala 

GAC 
Asp 

GAA 
Glu 

UCC 
Ser 

UCA 
Ser 

UAC 
Tyr 

UAA 
Stop 

GCG 
Ala 

GCU 
Ala 

GAG 
Glu 

GAU 
Asp 

UCG 
Ser 

UCU 
Ser 

UAG 
Stop 

UAU 
Tyr 

GGC GGA GUC GUA U GC UGA UUC UUA 
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     FIGURE 8.13     Genomatrix   P231
CAGU.  

CCC CA C ACC AAC CCA C AA ACA AAA 
CGC CUC AGC AUC CGA CUA A GA AUA 
GCC GAC  UCC UAC GCA GA A UCA UAA 
GGC GUC UGC UUC GGA GUA UG A U UA 
CCG CA G ACG AAG CCU C AU ACU AAU 
CGG CUG AGG AUG CGU CUU A GU AUU 
GCG GAG UCG UAG GCU GA U UCU UAU 
GGG GUG UGG UUG GGU GUU UG U U UU 

     FIGURE 8.14     Genomatrix   P312
CAGU.  

CCC ACC CCA ACA C AC AAC C AA AAA 
GCC UCC GCA UCA GAC UA C GAA  UAA 
CCG ACG CCU ACU C AG AA G CAU AAU 
GCG UCG GCU UCU GAG UA G GAU  UAU 
CGC AG C CGA AGA CUC A UC CUA AUA 
GGC UG C GGA UGA GUC UU C GUA UUA 
CGG AG G CGU AGU CUG A UG CUU AUU 
GGG U GG GGU UGU GUG UU G GUU UUU 

     FIGURE 8.15     Genomatrix   P132
CAGU.  

CCC CA C CCA CAA ACC A AC ACA AAA 
CGC CUC CGA CUA A GC AU C A GA AUA 
CCG CA G CCU CAU ACG A AG ACU AAU 
CGG CUG CGU CUU AGG AU G A GU AUU 
GCC GAC  GCA GA A UCC U AC UCA UAA 
GGC GUC GGA GUA UGC UU C U GA UUA 
GCG GAG GCU GA U UCG U AG UCU UAU 
GGG GUG GGU GUU UG G U UG UG U U UU 

     FIGURE 8.16     Genomatrix   P213
CAGU.  

CGC CGA AGC AGA CUC CUA A UC AUA 
CGG CGU AGG AGU CUG CUU A UG AUU 
GGC GGA UGC UGA GUC GUA U UC UUA 
GGG GGU UGG UGU GUG GUU U UG UUU 

CCC CCA ACC ACA C AC CAA A AC AAA 
CCG CCU ACG ACU C AG CA U A AG AAU 
GCC GCA UCC UCA GAC GA A UAC UAA 
GCG GCU UCG UCU GAG G AU U AG UAU 

     FIGURE 8.17     Genomatrix   P321
CAGU.  

CCC ACC CA C AAC CCA ACA C AA AAA 
GCC UCC GAC UAC GCA UCA GAA  UAA 
CGC AG C CUC AUC CGA AGA CUA AUA 
GGC U GC GUC UUC GGA UGA GUA UUA 
CCG ACG CA G AAG CCU ACU C AU AAU 
GCG UCG GAG UAG GCU UCU GAU  UAU 
CGG AG G CUG AUG CGU AGU CUU AUU 
GGG U GG GUG UUG GGU UGU GUU UUU 
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algorithm was discovered (Petoukhov,  2005b ) which inverts the color of some 
cells in these matrices and leads to the generation of a new set of mosaic 
genomatrices (Figures  8.20  and  8.21 ) related to the Walsh functions and to 
Hadamard matrices. If the black (white) color of each cell of these new matri-
ces is interpreted such that this cell contains the element  + 1 ( − 1), these numeri-
cal matrices demonstrate the following: 

   •      Each row (or each column in some cases) of these new genomatrices 
coincides with one of the Walsh functions.  

   •      A set of all rows (or columns in some cases) of each genomatrix is a 
complete set of eight different Walsh functions, and each genomatrix is 
one of the Hadamard 8    ×    8 matrices.      

 Later we describe this genetic algorithm, called the  U - algorithm  because it 
is constructed on the basis of the special molecular status of uracil U (or 
thymine T). But next we review Hadamard matrices.  

   8.3    THE GENETIC CODE AND HADAMARD MATRICES 

 By defi nition, a Hadamard matrix of dimension  n  is the  n     ×     n  matrix  H ( n ) with 
elements  + 1 and  − 1. It satisfi es the condition

    H n H n nIn( ) ( ) =T     (8.1)  

where  H ( n ) T  is the transposed matrix and  H ( n ) is the  n     ×     n  identity matrix. 
Some Hadamard matrices of dimension 2  k   are formed, for example, by the 
recursive formula  H (2  k  )    =     H (2) (   k   )     =     H (2)    �     H (2  k    − 1 ) for 2    ≤     k     ∈     N , where  �  
denotes the Kronecker (or tensor) product and ( k ) the Kronecker exponentia-
tion,  k  and  N  are integers, and  H (2) is as shown in Figure  8.18 . In this chapter 
we will indicate by black (white) all cells in the Hadamard matrices that 
contain the element  + 1 (the element  − 1, correspondingly).   

 Rows of a Hadamard matrix are mutually orthogonal; that is, every two 
different rows in a Hadamard matrix represent two perpendicular vectors, a 

     FIGURE 8.18     Family of Hadamard matrices  H (2 k ) based on the Kronecker product. 
Matrix cells with elements  + 1 are shown in black.  

 1 1  1 1
1 1  -1 1 - 1 1

H(2) = -1 1 ;   H(4) = -1 -1  1 1
 1 -1 -1 1

 H(2K-1) H(2K-1) 
 H(2K) = -H (2K-1) H(2K-1) 
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scalar product of which is equal to 0. The element  − 1 can be disposed in any 
of four positions in a Hadamard matrix  H (2). 

 A Kronecker product of two Hadamard matrices is a Hadamard matrix as 
well. A permutation of any columns or rows of a Hadamard matrix leads to a 
new Hadamard matrix. Hadamard matrices and their Kronecker powers are 
used widely in spectral methods of analysis and processing of discrete signals 
and in quantum computers. A transform of a vector   ā   by means of a Hadamard 
matrix  H  gives the vector   ū      =     H ā  , generally called the  Hadamard spectrum of 
the vector  ā  . A greater analogy exists between Hadamard transforms and 
Fourier transforms (Ahmed and Rao,  1975 ). In particular, the fast Hadamard 
transform exists in parallel with the fast Fourier transform. An entire class of 
multichannel  spectrometers with Hadamard transforms  is known (Tolmachev, 
 1976 ), where the principle of tape masks (or chain masks) is used, reminiscent 
of the principles of a chain construction of genetic texts in DNA. Hadamard 
matrices are used widely in the theory of coding. For example, they are con-
nected with Reed – Muller error - correcting codes and with Hadamard codes 
(Peterson and Weldon,  1972 ), with the theory of compression of signals and 
images, with a realization of Boolean functions by means of spectral methods, 
with the theory of planning of multiple - factor experiments, and in many other 
branches of mathematics. 

 Rows of Hadamard matrices called Walsh functions (see Chapter 1) are 
used for a spectral presentation and for a transfer of discrete signals (Ahmed 
and Rao,  1975 ; Geramita,  1979 ; Yarlagadda and Hershey,  1997 ). Walsh func-
tions can be represented in terms of products of Rademacher functions 
 r n  ( t )    =    sign(sin   2  n   π  t ),  n     =    1, 2, 3,  …  , which accept the two values  + 1 and  − 1 only 
(here  “ sign ”  is the function that gives the sign of the argument). When united 
in square matrices, sets of numerated Walsh functions form systems that 
depend on features of the union. Figure  8.19  shows two examples of systems 

     FIGURE 8.19     Examples of two systems of Walsh functions which are used frequently 
in the theory of digital signal processing.  Left:  the Walsh – Hadamard system.  Right:  the 
Walsh – Paley system. Each black (white) cell contains the number  + 1 ( − 1). Quantities 
of changes of the signs  +  and    −    are shown for each row and each column. (From 
Trahtman and Trahtman,  1975 .)  

        0         0 
        7         1 
        3         3 
        4         2 
        1         7 
        6         6 
        2         4 
        5         5 
0 7 3 4 1 6 2 5  0 1 3 2 7 6 4 5  
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of such functions, which are used widely in the theory of digital signal 
processing.   

 Hadamard matrices are connected with Walsh – Hadamard transforms, 
which are the most famous among nonsinusoidal orthogonal transforms and 
which can be calculated by means of mathematical operations of addition and 
subtraction only [for more details, see the literature (Ahmed and Rao,  1975 ; 
Trahtman and Trahtman,  1975 ; Yarlagadda and Hershey,  1997 )]. Hereafter we 
use the simplifi ed designations of matrix elements in illustrations of Hadamard 
matrices: the symbol  “  +  ”  or a black matrix cell represents the element  + 1; the 
symbol    −    or a white matrix cell represents the element  − 1. The theory of dis-
crete signals pays special attention to quantities of changes of the signs  +  
and    −    along each row and each column in Hadamard matrices. These quanti-
ties are connected through the important notion of  sequency  as a generaliza-
tion of the notion of  frequency  (Ahmed and Rao,  1975 , p. 85). 

 Biological organisms are sets of biochemical molecules. A wide use of 
Hadamard matrices in analytical chemistry can be found, for example, in the 
work of Pan  (2007) , which draws special attention to applications of Hadamard 
matrices to enhance signal - to - noise ratio. This is explained in a simple example 
of weighing. The basic idea is connected with weighing of objects in groups, 
but not separately, for a more accurate determination of their individual 
weights. In the example of four objects, we can weigh them in two different 
ways. First, we can weigh each of them individually by means of a single pan 
spring balance well calibrated to give us correct values  Ψ  1 ,  Ψ  2 ,  Ψ  3 , and  Ψ  4  for 
objects 1, 2, 3, and 4 with a small random error  e . Second, we can weigh all 
four objects in groups by means of a two - pan balance to arrive at their general 
weights  η  1 ,  η  2 ,  η  3 , and  η  4  in the next four weighings, with appropriate random 
errors  e  1 ,  e  2 ,  e  3 , and  e  4 :

    η1 1 2 3 4 1= + + + +Ψ Ψ Ψ Ψ e  

    η2 1 2 3 4 2= − + − +Ψ Ψ Ψ Ψ e  

    η3 1 2 3 4 3= + − − +Ψ Ψ Ψ Ψ e  

    η4 1 2 3 4 4= − − + +Ψ Ψ Ψ Ψ e   

 Here a measurement with a negative value means that the object is placed 
on the opposite pan of the balance. From these equations one can easily cal-
culate the values  Ψ  1 ,  Ψ  2 ,  Ψ  3 , and  Ψ  4 , and this fi nal result will be much more 
precise than in the previous case of weighing each object individually [for 
details, see the work by Pan  (2007) ]. The disposition of the signs  +  and    −    in 
this system of four equations is identical to their disposition in the relevant 
Hadamard 4    ×    4 matrix. In this way, applications of Hadamard transforms 
enhance the signal - to - noise ratio. 

 Some of the normalized Hadamard matrices are unitary operators (e.g., 
2  − 0.5 [1   1;   1    − 1]). They serve as one of the important instruments in creating 
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quantum computers, which utilize Hadamard gates (as the evolution of the 
closed quantum system is unitary) (Nielsen and Chuang,  2001 ). Next we dem-
onstrate connections of Hadamard matrices with the Kronecker families of 
genetic matrices described above. 

 Algebraic biology already includes examples of applications of Walsh func-
tions (alongside other systems of basic functions) to the spectral analysis of 
various aspects of genetic algorithms and sequences (Forrest and Mitchell, 
 1991 ; Geadah and Corinthios  1977 ; Goldberg,  1989 ; Lee and Kaveh,  1986 ; 
Shiozaki,  1980 ; Vose and Wright,  1998 ; Waterman,  1999 ). The book by 
Zalmanzon ( 1989 , p. 416) contains a review of investigations made by various 
authors about Walsh orthogonal functions in physiological systems of supra-
cellular levels as well. We investigate whether structures of the genetic code 
have such direct relations with Hadamard matrices, which can justify system-
atic applications of Walsh – Hadamard functions to spectral and other analyses 
of many inherited biological structures at various levels. In this section we put 
forth evidence regarding connections of Hadamard matrices with the genetic 
code in its Kronecker matrix forms of presentation. 

 The genetic alphabet with its four letters A (adenine), C (cytosine), G 
(guanine), and U/T (uracil in RNA and thymine in DNA) is characterized by 
a phenomenological disturbance of symmetry related with the special status 
of the letter U/T: 

   •      The three nitrogenous bases A, C, and G have one amide (amino group), 
NH 2 , but the fourth basis, U/T, does not have this amide (Figure  2.1 ).  

   •      The letter U is replaced by the letter T in genetic sequences only at transi-
tions from RNA to DNA, and vice versa, for unknown reasons (in con-
trast to the three letters A, C, and G, which are not replaced).  

   •      This special status of U/T leads to a special U - algorithm, which trans-
forms a wide set of genetic 8    ×    8 matrices of 64 triplets into appropriate 
Hadamard 8    ×    8 matrices.    

 Here we should mention the importance of amino group NH 2 . The amino 
group of amino acids bears a base function that provides recognition of an 
amino acid by an enzyme (Chapeville and Haenni,  1974 ). The importance of 
nitrogen compounds in molecular genetics is refl ected in such names as  “ amino 
acids ”  (organic acids containing amino groups),  “ nitrogenous bases ” ; the  “ N -
 end ”  of a nucleotide circuit, with which protein synthesis always begins; and 
so on. All proteins are polyamides. A lack of proteins in food leads to a number 
of heavy infringements in the nitrogenous exchange. Beginning with works by 
Gierer and Mundry  (1958)  and Schuster and Schramm  (1958) , it has been 
known that action of nitrous acid, NHO 2 , on RNA leads to the amino - mutation 
of RNA. More precisely, this action deletes the amino group NH 2  at the nitrog-
enous bases A and C and leads fi nally to a replacement of the nitrogenous 
bases A and C by the bases G and U, respectively: A    →    G and C    →    U. These 
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amino - mutations are utilized traditionally to demonstrate molecular mecha-
nisms as the origin of genetic mutations. Nitrogenous acid exists only in diluted 
water solutions, which are similar to solutions in biological organisms. 

 The phenomenological division of the four - letter genetic alphabet in the 
ratio 3   :   1 reminds one of the division of four components of the simplest 
Hadamard matrix  H (2)    =    [ + 1    + 1;    − 1    + 1] in the same ratio with three compo-
nents  + 1 and a single component  − 1 (Figure  8.18 ). Taking it into account that 
the genetic alphabet can be represented in the form of a 2    ×    2 matrix 
 P     =    [C   A;   U   G] by analogy with the Hadamard matrix  H (2) (Figure  8.18 ). 

 Let us return now to the U - algorithm, which transforms the genomatrices 
of 64 triplets (Figures  8.2 and 8.4 to 8.17 ) into relevant Hadamard 8    ×    8 matri-
ces. A defi nition of the  U - algorithm  is the following: 

   •      Each triplet in the black - and - white genomatrices (Figures  8.2 and 8.4 to 
8.17 ) should change its own color into the opposite color each time the 
letter U stands in an odd position (in the fi rst or third position) inside 
the triplet.  

   •      Each triplet, which is disposed in a black (white) cell of such a changed 
genomatrix is interpreted as the number  + 1 ( − 1).    

 For example, according to the U - algorithm, the cells with the triplets UCA 
and GAU change their sign once, while the cell with the triplet UAU changes 
its sign twice, which means that the sign of this cell is unchanged. As a result 
of such U - algorithmic sign changes, a new mosaic in each of the same genoma-
trices appears. Such a mosaic is identical to the corresponding mosaic of a 
Hadamard matrix. Actually, if each black triplet (white triplet) in these geno-
matrices is replaced by the number  + 1 ( − 1), numeric matrices are formed 
(Figures  8.20  and  8.21 ). One can easily check that these new numeric matrices 
satisfy defi nition (8.1) of Hadamard 8    ×    8 matrices:  H (8) H (8) T     =    8 I n  . One can 
suppose that this U - algorithm (of inverting the signs every time the letter U 
or T appears in an odd position of triplets) is connected with the biological 
mechanism of mutual replacement of the letters U and T at transition from 
RNA to DNA, and vice versa. 

 One should note a special feature of the genetic Hadamard matrices in 
Figure  8.20 : A quantity of changes of the signs  +  and    −    is equal to 14 for each 
of the halves of these matrices (we say upper, lower, left, and right halves). 
Such a  “ symmetrical ”  feature is typical of many other genetic Hadamard 
matrices (see some additional examples in Figure  8.21 ). One can call Hadamard 
matrices with such a feature  balanced Hadamard matrices . One can check that 
each of the 4    ×    4 quadrants of these Hadamard 8    ×    8 matrices is a balanced 
Hadamard matrix as well. This feature distinguishes the genetic Hadamard 
matrices described from the Hadamard matrices in Figure  8.19 , which are 
widely used in technical applications. For some reason nature has chosen the 
genetic code, which is connected with balanced Hadamard matrices. One can 
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fi nd additional details on this theme in the literature (He and Petoukhov,  2009 ; 
Kappraff and Petoukhov,  2009 ; Petoukhov,  2008a – d ; Petoukhov and He,  2009 ). 

 All such Hadamard matrices represent various basic systems of orthogonal 
functions, which are coordinated with the structural peculiarities of molecular 
systems of the genetic code. They can be utilized in genetic systems for spectral 
methods of genetic information processing with the use of noise - immunity 
coding, of compression of signals, and of other useful possibilities that 
Hadamard matrices and Walsh functions possess. 

     FIGURE 8.20     Some examples of balanced Hadamard matrices, which are produced 
from the six genomatrices indicated by means of the U - algorithm. The black cells cor-
respond to the elements  + 1 and the white cells correspond to the elements  − 1. Numbers 
of changes of the signs  +  and    −    (or changes of colors) are shown for each row and each 
column.  

PCAUG
123:                                     for PCAUG

231: 
        3          7 
        4          3 
        1          4 
        6          0 
        2          6 
        5          2 
        0          5 
        7          1 
5 2  6  1 5 2 6 1   5 2 5  2  4 3 4 3   

  PCAUG
312:                                         for PCAUG

132: 
        1         7 
        6         1 
        2         4 
        5         2 
        7         6 
        0         0 
        4         5 
        3         3 
3 3  4  4 4 4 3 3   3 4 4  3  3 4 4 3   

             for 

             for

           for PCAUG
213:                                        for PCAUG

321: 
        1          3 
        6          4 
        2          7 
        5          0 
        3          2 
        4          5 
        0          6 
        7          1 
5 2  5  2 6 1 6 1   5 5 2  2  4 4 3 3   
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 More can be added about cyclic relations inside the set of described geno-
matrices. For example, the set of genomatrices   P123

CAUG,   P231
CAUG,   P312

CAUG,   P321
CAUG, 

  P213
CAUG,   P132

CAUG (see Figures  8.2 ,  8.4 , and  8.5 ) was produced on the basis of two 
subsets of cyclic shifts of positions in triplets: 1 – 2 – 3    →    2 – 3 – 1    →    3 – 1 – 2    →    1 – 2 –
 3 and 3 – 2 – 1    →    2 – 1 – 3    →    1 – 3 – 2    →    3 – 2 – 1. These cyclic relations are presented 
graphically in Figure  8.22 .   

     FIGURE 8.21     Additional examples of the 12 balanced Hadamard matrices which are 
produced from the 12 genomatrices of triplets by means of the U - algorithm. Black cells 
correspond to elements  + 1, and white cells correspond to elements  − 1.  

            for PGCAU
123 :        for PGCAU

231 :        for PGCAU
312 : 

                          
                          
                          
                          
                          
                          
                          
                          

              for PGCAU
132 :          for PGCAU

213 :        for PGCAU
321 : 

                          
                          
                          
                          
                          
                          
                          
                          

             for PCAGU
123 :          for PCAGU

231 :        for PCAGU
312 : 

                          
                          
                          
                          
                          
                          
                          
                          

 
              for PCAGU

312 : 
  

         for PCAGU
213 : 

  
        for P CAGU

321 : 
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 It is obvious that an analogous scheme can be demonstrated for appropriate 
subsets of Hadamard genomatrices as well. Such cyclic relations among dif-
ferent genomatrices can be used in mathematical models of inherited cyclic 
processes in living organisms.  

   8.4    GENETIC MATRICES AND MATRIX ALGEBRAS OF 
HYPERCOMPLEX NUMBERS 

 Complex and hypercomplex numbers, which are utilized in physics and math-
ematics, possess matrix forms for their representation. The notion of number 
is the main notion of mathematics and mathematical natural sciences. In view 
of this, an investigation of a possible connection of the genetic code to multi-
dimensional numbers in their matrix presentations should be undertaken. 

 Algebras of complex numbers   z x x= +0 1* *1 i and hypercomplex numbers 
  x x xk k0 1 1* * *1 i i+ + +�  are well known. It is also known that complex and hyper-
complex numbers have presentation as well as matrix forms of linear and 

     FIGURE 8.22     Two cyclic sequences of the mosaic genomatrices 
  P P P P123 231 312 123

CAUG CAUG CAUG CAUG→ → →  and   P P P P321 213 132 321
CAUG CAUG CAUG CAUG→ → → , which 

arise as a result of relevant cyclic permutations of positions in triplets: 1 – 2 – 3    →     2 – 3 –
 1    →    3 – 1 – 2 and 3 – 2 – 1    →    2 – 1 – 3    →    1 – 3 – 2. The number over each matrix shows a rele-
vant type of permutation of positions in all triplets. (From Petoukhov,  2008e .)  

1-2-3

2-1-31-3-2

3-1-2 2-3-1

3-2-1
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vector forms. For example complex numbers  z     =     x  *  1     +     y  *  i  (where  1  is the real 
unit and  i  is the imaginary unit:  i  2     =     − 1) possess the matrix form of presenta-
tion shown in Figure  8.23 . By the way, complex numbers are utilized in com-
puters in this matrix form.   

 The quaternions by Hamilton   Q x x x x= + + +0 1 1 2 2 3 3* * * *1 i i i  (where 
  i i i1

2
2
2

3
2 1= = = − ,   i i i i i1 2 2 1 3* *= − = ,   i i i i i1 3 3 1 2* *= − = − ,   i i i i i2 3 3 2 1* *= − = ), which are uti-

lized widely in both physics and mathematics, have a matrix form of presenta-
tion as well. Figure  8.24  shows this form and its decomposition in the basic 
elements  1 ,  i  1 ,  i  2 , and  i  3  in their matrix forms of presentation. In addition, the 
multiplication table of the basic elements  1 ,  i  1 ,  i  2 , and  i  3  is demonstrated.   

     FIGURE 8.23      Top:  complex numbers in their matrix form of presentation and their 
decomposition on the basic elements  1  and  i , which are shown in their matrix forms of 
presentation as well. Matrix cells with positive coordinates are indicated in black and 
cells with negative coordinates in white.  Bottom:  multiplication table of the basic ele-
ments  1  and  i .  

 
z = x0*1 + x1*i = x0 x1 = x0* 1  0

0  1
+ x1* 0  1 

-1  0-x1 x0
 

 1 i 
1 1 i 
i i -1

     FIGURE 8.24      Top:  quaternions by Hamilton in the matrix form of presentation; cells 
with positive coordinates are shown in black and cells with negative coordinates are 
shown in white.  Middle:  the decomposition of quaternions in their matrix form in the 
basic elements  1 ,  i  1 ,  i  2 , and  i  3 , which are shown in the matrix form of presentation. 
 Bottom:  multiplication table of these basic elements.  

 
Q = x0*1 + x1*i1 + x2*i2 + x3*i3 = 

x0 x1 x2 x3  
= -x1 x0 -x3 x2 

-x2 x3 x0 -x1 
-x3 -x2 x1 x0 

 
 

=x0* 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

 
+ x1* 

0 1 0  0 
-1 0 0  0 
0 0 0 -1 
0 0 1  0 

 
+ x2* 

0  0 1 0 
0  0 0 1 
-1  0 0 0 
0 -1 0 0 

 
+x3* 

0 0 0 1 
0 0 -1 0 
0 1 0 0 
-1 0 0 0 

 1 i1 i2 i3 
1 1 i 1 i2 i3 
i1 i1 -1  i3 -i 2
i2 i2 -i 3 -1  i1 
i3 i3 i2 -i 1 -1 
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 Is the mosaic genomatrix  P  (3)     =    [C   A;   U   G] (3)  (Figure  8.2 ) connected with 
a matrix form of presentation of algebra of a multidimensional numeric 
system? In this section we answer this question positively. 

 Taking into account the molecular characteristics of the nitrogenous bases 
A, C, G, and U/T of the genetic alphabet, one can re - form this genomatrix 
[C   A;   U   G] (3)  into the new matrix  YY  8  algorithmically (Figure  8.25 ).   

 The cells of the matrix  YY  8 , which are occupied by components with the 
sign  + , are indicated in black. The cells of the matrix  YY  8 , which are occupied 
by components with the sign  − , are marked in white. Such a black - and - white 
mosaic of the matrix  YY  8  is identical to the black - and - white mosaic of the 
genomatrix [C   A;   U   G] (3)  (Figure  8.2 ). The matrix  YY  8  has the eight indepen-
dent parameters  x  0 ,  x  1 ,  x  2 ,  x  3 ,  x  4 ,  x  5 ,  x  6 , and  x  7 , which are interpreted here as real 
numbers. It has been discovered that the matrix  YY  8  is the matrix form of 
presentation of a special eight - dimensional algebra (or the eight - dimensional 
algebra over the fi eld of real numbers) and of the appropriate eight - dimensional 
numerical system. Below we list other structural analogies of the genomatrix 
[C   A;   U   G] (3)  with the matrix  YY  8 , the set of which allows one to consider 
that the matrix  YY  8  and its algebra play a meaningful role in the model of the 
genetic code. But, initially, we draw attention to the  “ alphabetical ”  algorithm 
of  bipolar digitization  of 64 triplets (or  yin  –  yang digitization  as it was called 
initially), which produces the matrix  YY  8  from the genomatrix [C   A;   U   G] (3) . 
This algorithm has received such an unusual name because of the special 
properties of the matrix  YY  8  and its algebra (Petoukhov,  2008a,d,e ; Petoukhov 
and He,  2009 ). 

  Alphabetic Algorithm of the Bipolar Digitization of 64 Triplets 

 This algorithm is based on utilizing the following two binary - oppositional 
attributes of the genetic letters A, C, G, and U/T:  “ purine or pyrimidine ”  and 

     FIGURE 8.25     Matrix  YY  8 , the black cells of which contain coordinates with the sign 
 +  and the white cells of which contain coordinates with the sign  − . The numeration of 
the columns and rows is identical to the numeration of the columns and rows of the 
matrix [C   A;   U   G] (3)  in Figure  2.2 .  

 0 00 
(0) 

001 
(1) 

010 
(2) 

011 
(3) 

100 
(4) 

101 
(5) 

110 
(6) 

111  
(7) 

000 (0) x0 x1 -x2 -x3 x4 x5 -x6 -x7 
001 (1) x0 x1 -x2 -x3 x4 x5 -x6 -x7 
010 (2) x2 x3 x0 x1 -x6 -x7 -x4 -x5 

YY8 = 011 (3) x2 x3 x0 x1 -x6 -x7 -x4 -x5 
100 (4) x4 x5 -x6 -x7 x0 x1 -x2 -x3 
101 (5) x4 x5 -x6 -x7 x0 x1 -x2 -x3 
110 (6) -x6 -x7 -x4 -x5 x2 x3 x0 x1 
111 (7) -x6 -x7 -x4 -x5 x2 x3 x0 x1 
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 “ two or three ”  hydrogen bonds. It also uses the famous thesis of molecular 
genetics that different positions inside triplets have different code meanings. 
For example, Konopelchenko and Rumer  (1975)  have reported that the fi rst 
two positions of each triplet form the root of the codon and that they differ 
drastically from the third position by their essence and by their special role. 
In view of this alphabetical algorithm, the transformation of the genomatrix 
[C   A;   U   G] (3)  into the matrix  YY  8  is not an abstract and arbitrary action at 
all, but such a transformation can be utilized by biocomputer systems of organ-
isms materially. 

 The alphabetical algorithm of bipolar digitization defi nes the special scheme 
of reading each triplet: the fi rst two positions of the triplet are read by genetic 
systems from the viewpoint of one attribute and the third position of the triplet 
is read from the viewpoint of another attribute. By this alphabetical algorithm, 
which allows one to recode the symbolic matrix [C   A;   U   G] (3)  into the numer-
ical bipolar matrix  YY  8  (Figure  8.25 ), each triplet is read in the following way: 

   •      Two fi rst positions of each triplet are fi lled out by the symbol  α  instead 
of the complementary letters C and G on these positions and by the 
symbol  β  instead of the complementary letters A and U, respectively.  

   •      The third position of each triplet is fi lled out by the symbol  γ  instead of 
the pyrimidine (C or U) in this position, and by the symbol  δ  instead of 
the purine (A or G).  

   •      The triplets, which have the letter C or G in their fi rst position, receive 
the sign    −    only when their second position is occupied by the letter 
A. The triplets, which have the letters A or U in their fi rst position, receive 
the sign  +  only when their second position is occupied by the letter C.    

 For example, the triplet CAG receives the symbol  −  α  β  δ , because its fi rst 
letter C is symbolized by  α , its second letter A is symbolized by  β , and its third 
letter G is symbolized by  δ . This triplet possesses the sign    −    because its fi rst 
position has the letter C and its second position has the letter A. One can see 
that this algorithm recodes all triplets from the traditional alphabet C, A, U, 
G into the new alphabet  α ,  β ,  γ ,  δ . As a result, each triplet receives one of the 
following eight expressions:  α  α  γ     =     x  0 ,  α  α  δ     =     x  1 ,  α  β  γ     =     x  2 ,  α  β  δ     =     x  3 ,  β  α  γ     =     x  4 , 
 β  α  δ     =     x  5 ,  β  β  γ     =     x  6 , and  β  β  δ     =     x  7 . We will suppose that the symbols  α ,  β ,  γ , and 
 δ  are real numbers. This algorithm transforms the initial symbolic matrix 
[C   A;   U   G] (3)  into the numeric matrix  YY  8  with the eight coordinates  x  0 ,  x  1 , 
 x  2 ,  x  3 ,  x  4 ,  x  5 ,  x  6 , and  x  7 . We shall name these matrix components  x  0 ,  x  1 ,  …  ,  x  7 , 
which are real numbers,  bipolar coordinates  or  YY - coordinates . 

 Let us now switch our attention to algebraic properties of the matrix  YY  8 . 
By analogy with decompositions of the matrices of complex numbers and of 
quaternions by Hamilton (Figures  8.23  and  8.24 ), one can represent the eight -
 parametric matrix  YY  8  (Figures  8.25  and  8.26 ) as the sum of the eight basic 
matrices, each of which is connected with one of the coordinates  x  0 ,  x  1 ,  x  2 ,  x  3 , 
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 x  4 ,  x  5 ,  x  6 , and  x  7  (Figure  8.27 ). Let us symbolize any basic matrix related to any 
of the  YY  coordinates with even indexes (i.e.,  x  0 ,  x  2 ,  x  4 , and  x  6 ) by the symbol 
 f   k   (where  “ f ”  is the fi rst letter of the word  “ female ”  and  k     =    0, 2, 4, 6). And let 
us symbolize any matrix that is related to any of  YY  coordinates with odd 
indexes (i.e.,  x  1 ,  x  3 ,  x  5 ,  x  7  by the symbol  m   s   (where  “ m ”  is the fi rst letter of the 
word  “ male ”  and  s     =    1, 3, 5, 7). In this case one can present the matrix  YY  8  by 
the expression

    YY x x x x x x x x8 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7= + + + + + + +* * * * * * * *f m f m f m f m     (8.2)     

 whose the matrix form is shown in Figure  8.27 . 
 The important and unexpected fact is that the set of these eight basic matri-

ces  f  0 ,  m  1 ,  f  2 ,  m  3 ,  f  4 ,  m  5 ,  f  6 , and  m  7  forms a closed set relative to multiplications: 
A multiplication between any two matrices from this set generates a matrix 
from this set again. Figure  8.28  presents the results of multiplications among 
these eight matrices. The result of multiplying any two basic elements, which 
are taken from the left column and the upper row, is shown in the cell on the 
intersection of its row and column (e.g., in accordance with this multiplication 
table,   f m m2 5 7* = − ).   

     FIGURE 8.26     Result of the algorithmic transformation of 64 triplets into the numeri-
cal coordinates  x  0 ,  x  1 ,  …  ,  x  7 , which are based on the four symbols  α ,  β ,  γ , and  δ .  
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     FIGURE 8.27     Matrix  YY  8  as the sum of the eight basic matrices. The left column 
shows the basic matrices that are related to the coordinates with even indexes:  x  0 ,  x  2 , 
 x  4 , and  x  6 . The right column shows the basic matrices that are related to the coordinates 
with odd indexes:  x  1 ,  x  3 ,  x  5 , and  x  7 .  

YY8  = x0* 

1  0  0  0  0  0  0  0 
1  0  0  0  0  0  0  0 
0  0  1  0  0  0  0  0 
0  0  1  0  0  0  0  0 
0  0  0  0  1  0  0  0 
0  0  0  0  1  0  0  0 
0  0  0  0  0  0  1  0 
0  0  0  0  0  0  1  0 

 
 
 
 
+  x1* 

 0  1  0  0  0  0  0  0 
 0  1  0  0  0  0  0  0 
 0  0  0  1  0  0  0  0 
 0  0  0  1  0  0  0  0 
 0  0  0  0  0  1  0  0 
 0  0  0  0  0  1  0  0 
 0  0  0  0  0  0  0  1 
 0  0  0  0  0  0  0  1 

+ 

  

x2* 

0  0  -1  0   0  0  0  0 
0  0  -1  0   0  0  0  0 
1  0 0   0  0  0  0  0 
1  0 0   0   0  0  0  0 
0  0 0   0  0  0 -1  0 
0  0 0   0  0  0 -1  0 
0  0 0   0  1  0  0  0 
0  0   0   0  1  0  0   0 

 
 
 
 
+  x3* 

 0  0  0  -1  0  0  0   0 
 0  0  0  -1  0  0  0   0 
 0  1  0   0  0  0  0   0 
 0  1  0   0  0  0  0   0 
 0  0  0   0  0  0  0  -1 
 0  0  0   0  0  0  0  -1 
 0  0  0   0  0  1  0   0 
 0  0  0   0  0  1  0   0 

+ 

  

x4* 

0  0   0  0  1  0   0  0 
0  0   0  0  1  0   0  0 
0  0   0  0  0  0  -1  0 
0  0   0  0  0  0  -1  0 
1  0   0  0  0  0   0  0 
1  0   0  0  0  0   0  0 
0  0 -1  0  0  0    0  0 
0  0 -1  0  0  0    0  0 

 
 
 
 
+  x5* 

 0  0  0   0  0  1  0   0 
 0  0  0   0  0  1  0   0 
 0  0  0   0  0  0  0  -1 
 0  0  0   0  0  0  0  -1 
 0  1  0   0  0  0  0   0 
 0  1  0   0  0  0  0   0 
 0  0  0  -1 0  0   0   0 
 0  0  0  -1 0  0   0   0 

+ 

  

x6* 

0  0  0  0   0  0  -1  0 
0  0  0  0   0  0  -1  0 
0  0  0  0  -1  0   0  0 
0  0  0  0  -1  0   0  0 
0  0 -1  0  0   0   0  0 
0  0 -1  0  0   0   0  0 
-1 0  0  0  0   0   0  0 
-1 0  0  0  0   0   0  0 

 
 
 
 
 + x7* 

 0  0  0  0  0   0  0  -1 
 0  0  0  0  0   0  0  -1 
 0  0  0  0  0  -1  0  0 
 0  0  0  0  0  -1  0  0 
 0  0  0 -1  0   0  0  0 
 0  0  0 -1  0   0  0  0 
 0 -1  0  0  0   0  0  0 
 0 -1  0  0  0   0  0  0 

     FIGURE 8.28     Multiplication table of the basic matrices  f  0 ,  m  1 ,  f  2 ,  m  3 ,  f  4 ,  m  5 ,  f  6 , and  m  7  
of the matrix  YY  8  from Figures  8.25  and  8.27 .  

 f0 m1 f2 m3 f4 m5 f6 m7 
f0 f0 m1 f2 m3 f4 m5 f6 m7

m1 f0 m1 f2 m3 f4 m5 f6 m7

f2 f2 m3 - f0 -m1 - f6 - m7 f4 m5

m3 f2 m3 - f0 -m1 - f6 - m7 f4 m5

f4 f4 m5 f6 m7 f0 m1 f2 m3

m5 f4 m5 f6 m7 f0 m1 f2 m3

f6 f6 m7 - f4 - m5 - f2 - m3 f0 m1
m7 f6 m7 - f4 - m5 - f2 - m3 f0 m1
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 We noted above that such multiplication tables defi ne appropriate 
algebras over a fi eld. Correspondingly, the multiplication table in Figure  8.28  
defi nes the genetic eight - dimensional algebra  YY  8 . Multiplication of any two 
members of the octet algebra  YY  8  generates a new member of the same 
algebra. Multiplication of such numbers in their matrix forms of presentation 
implies that both factors have the identical matrix disposition of their eight 
parameters  x  0 ,  x  1 ,  …  ,  x  7  (in the fi rst factor) and  y  0 ,  y  1 ,  …  ,  y  7  (in the second 
factor), and the fi nal matrix has the same matrix disposition of its eight 
relevant parameters  z  0 ,  z  1 ,  …  ,  z  7 . This situation is similar to the situation of 
real numbers (or of complex numbers, or of hypercomplex numbers) when 
multiplication of any two members of the numerical system generates a new 
member of the same numerical system. In other words, the expression 
  YY x x x x x x x x8 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7= + + + + + + +* * * * * * * *f m f m f m f m  is some kind of 
eight - dimensional number ( octet genonumber ) (Petoukhov,  2008a,d,e ). We 
assign the symbol  YY  8  conditionally to both this algebra and these octet 
genonumbers. 

 Let us give a numerical example of multiplication of two octet genonum-
bers:  V     =    3 *  f  0     +    2 *  m  1     −    4 *  f  2     +    1 *  m  3     −    5 *  f  4     +    6 *  m  5     +    8 *  f  6     −    7 *  m  7  and  W     =    2 *  f  0     
−    4 *  m  1     +    5 *  f  2     +    3 *  m  3     −    6 *  f  4     −    8 *  m  5     −    1 *  f  6     +    5 *  m  7 . The result of multiplication 
depends on the order of factors because of the nonsymmetrical character of 
the multiplication table relative to its main diagonal, which means that the 
algebra  YY  8  is noncommutative:

    V W* * * * * * * * *= − + + − − − +18 14 24 40 30 62 16 00 1 2 3 4 5 6 7f m f m f m f m  

    W V* * * * * * * * *= − − + + − + +128 124 60 88 48 100 92 400 1 2 3 4 5 6 7f m f m f m f m   

 These results can be arrived at by multiplication of appropriate matrix 
forms of presentation of the octet genonumbers  V  and  W  or by multiplication 
of linear forms of their presentation using the multiplication table in Figure 
 8.28 . One should pay special attention to the cells on the main diagonal of the 
multiplication table. These cells contain squares of the basic elements. In cases 
of hypercomplex numbers, these diagonal cells contain elements  ± 1 typically 
(e.g., see the multiplication tables of complex numbers and of quaternions by 
Hamilton in Figures  8.23  and  8.24 ). In our case these diagonal cells contain no 
real units at all, but all diagonal cells are occupied by the elements  ±  f  0  and 
 ±  m  1 . Thereby the set of the eight basic matrices  f  0 ,  m  1 ,  f  2 ,  m  3 ,  f  4 ,  m  5 ,  f  6 , and  m  7  
is divided into two equal subsets by the criterion of their squares. The fi rst 
subset consists of elements with the even indexes:  f  0 ,  f  2 ,  f  4 , and  f  6 . The squares 
of members of this  f  0  subset are always equal to  ±  f  0 . The second subset consists 
of elements with the odd indexes:  m  1 ,  m  3 ,  m  5 , and  m  7 . The squares of members 
of this  m  1  - subset are always equal to  ±  m  1 . 

 The basic element  f  0  possesses all the properties of the real unit in relation 
to the members of the  f  0  subset:   f f0

2
0= ,   f f f f f0 2 2 0 2* *= = ,   f f f f f0 4 4 0 4* *= = , and 

  f f f f f0 6 6 0 6* *= = . But the element  f  0  does not possess the commutative property 
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of the real unit in relation to the members of the  m  1  subset:   f m m f0 0* *p p≠ , where 
 p     =    1, 3, 5, 7. For this reason,  f  0  is called the  quasi - real unit from the   f  0   subset . 

 The basic element  m  1  possesses all the properties of the real unit in relation 
to the members of the  m  1  subset:   m m1

2
1= ,   m m m m m1 3 3 1 3* *= = , 

  m m m m m1 5 5 1 5* *= = , and   m m m m m1 7 7 1 7* *= = . But the element  m  1  does not 
possess the commutative property of the real unit in relation to the members 
of the  f  0  subset:   m f f m1 1* *k k≠ , where  k     =    0, 2, 4, 6. For this reason,  m  1  is called 
the  quasi - real unit from the   m  1   subset . 

 The even – odd principle exists in this  YY  8  algebra. Really all members of 
the  f  0  subset and their coordinates  x  0 ,  x  2 ,  x  4 , and  x  6  have even indexes, and they 
are disposed in columns with the even numbers 0, 2, 4, and 6 in the matrix  YY  8  
(Figure  8.25 ) and in its multiplication table (Figure  8.28 ). These coordinates 
 x  0 ,  x  2 ,  x  4 , and  x  6  correspond to triplets with the pyrimidine suffi xes C and U 
(Figure  8.26 ). For this reason the  f  0  subset can be called the  pyrimidine subset . 

 All members of the  m  1  subset and their coordinates  x  1 ,  x  3 ,  x  5 , and  x  7  have 
odd indexes and they are disposed in columns with the odd numbers 1, 3, 5, 
and 7 in the matrix  YY  8  (Figures  8.25  and  8.26 ) and in its multiplication table 
(Figure  8.28 ). These coordinates  x  1 ,  x  3 ,  x  5 , and  x  7  correspond to triplets with 
the purine suffi xes A and G (Figure  8.26 ). For this reason the  m  1  subset can 
be called the  purine subset . 

 In accordance with Pythagorean and ancient Chinese traditions, all even 
numbers are called  female  or  yin numbers , and all odd numbers are called  male  
or  yang numbers . From the viewpoint of this tradition, the elements  f  0 ,  f  2 ,  f  4 ,  f  6 , 
 x  0 ,  x  2 ,  x  4 ,  x  6  with the even indexes play the role of female or yin elements, and 
the elements  m  1 ,  m  3 ,  m  5 ,  m  7 ,  x  1 , x 3 ,  x  5 ,  x  7  with the odd indexes play the role of 
male or yang elements. Correspondingly the eight - dimensional algebra  YY  8  
can be termed  octet bipolar algebra  (or even – odd algebra, or yin - yang algebra, 
or bisexual algebra, or pyrimidine – purine algebra for triplets with pyrimidine 
and purine suffi xes). Such an algebra, which possesses two quasi - real units and 
no real unit, gives new effective possibilities for modeling binary opposites in 
biological objects at different levels, including sets of triplets, amino acids, male 
and female gametal cells, male and female chromosomes, and so on. It should 
be pointed out that this genetic bipolar algebra is constructed in close connec-
tion with the special ordered set of Rademacher functions. 

 The octet bipolar numbers  YY  8  (octet genonumbers) differ essentially from 
classical hypercomplex numbers, which have the real unit in the set of their 
basic elements. By traditional defi nition, hypercomplex numbers are the ele-
ments of algebras with real units. Complex and hypercomplex numbers were 
constructed historically as generalizations of real numbers with the obligatory 
inclusion of the real unit in the set of their basic elements. The octet bipolar 
numbers  YY  8  do not have the real unit in the set of their basic elements at all, 
but they have two quasi - real units,  f  0  and  m  1 . In comparison with hypercomplex 
numbers, bipolar numbers are, in principle, a new category of numbers in the 
mathematical natural sciences. In our opinion, knowledge of this category of 
numbers is necessary for a deep understanding of biological phenomena and 
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will perhaps be useful for the mathematical natural sciences as a whole. The 
mathematical theory of  YY  numbers represents a new formal and conceptual 
apparatus for modeling phenomena of reproduction and self - organization in 
living nature. 

 It can easily be demonstrated that bipolar algebras are a special generaliza-
tion of the algebras of hypercomplex numbers in the form of  double -
 hypercomplex numbers . Bipolar numbers ( YY  numbers) become the 
appropriate hypercomplex numbers in those cases when all their female (or 
male) coordinates are equal to zero. Traditional hypercomplex numbers can 
be represented as the  “  monopolar  ”   half  (a yin half or a yang half) of appropri-
ate  YY  numbers. We denote yin - yang numbers by double letters (e.g.,  YY ) to 
distinguish them from traditional (complex and hypercomplex) numbers. 
More details on this theme are available in the literature (Petoukhov,  2008a – e ; 
Petoukhov and He,  2009 ). 

 If all male coordinates are equal to 0 ( x  1     =     x  3     =     x  5     =     x  7     =    0), the numbers 
 YY  8  become the yin genoquaternions   G x x x xf * * * *= + + +0 0 2 2 4 4 6 6f f f f , the multi-
plication table for which is shown in Figure  8.29 . These  yin quaternions  can 
also be called  pyrimidine quaternions  conditionally because their coordinates 
 x  0 ,  x  2 ,  x  4 ,  x  6  correspond to triplets with the pyrimidine suffi xes C or U (Figure 
 8.26 ).   

 If all female coordinates are equal to 0 ( x  0     =     x  2     =     x  4     =     x  6     =    0), the numbers 
 YY  8  become the yang genoquaternions   G x x x xm * * * *= + + +1 1 3 3 5 5 7 7m m m m , the 
multiplication table for which is shown in Figure  8.29 . These  Yang quaternions  
can be called also  purine quaternions  conditionally because their coordinates 
 x  1 ,  x  3 ,  x  5 ,  x  7  correspond to triplets with the purine suffi xes A or G (Figure  8.26 ). 

 These genetic quaternions  G  f  and  G  m  have identical multiplication tables, 
which differ from the multiplication table of Hamilton quaternions (see Figure 
 8.24 ). Taking these facts into account, the octet genonumbers  YY  8  can be 
termed  double genetic quaternions . This leads to heuristic associations with a 
double helix of DNA, which is the bearer of genetic information. Just as the 
structure of three - dimensional physical space corresponds to the algebra of 
quaternions by Hamilton, so the structure of the genetic code corresponds to 
the algebra of the double genoquaternions. 

 The set of basic elements of the  YY  8  algebra forms a semigroup. 
Two squares are marked out by bold lines in the left upper corner of the 

     FIGURE 8.29     Multiplication tables of the yin genoquaternion  G  f  ( left ) and yang 
genoquaternions  G  m  ( right ).  

 f0 f2 f4 f6    m1 m3 m5 m7 
f0 f0 f2 f4 f6   m1 m1 m3 m5 m7
f2 f2 -f 0 -f 6 f4   m3 m3 -m 0 -m 6 m4
f4 f4 f6 f0 f2   m5 m5 m6 m0 m2
f6 f6 -f 4 -f 2 f0   m7 m7 -m 4 -m 2 m0
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multiplication table in Figure  8.28 . The fi rst two basic elements,  f  0  and  m  1 , are 
disposed in the smaller 2    ×    2 square of this table only. The greater 4    ×    4 square 
contains the four fi rst basic elements  f  0 ,  m  1 ,  f  2 , and  m  3 . These aspects say that 
subalgebras  YY  2  and  YY  4  exist inside the algebra  YY  8 . 

 Each genetic triplet, which is disposed in the genomatrix [C   A;   G   U] (3)  in 
Figure  8.26  together with one of the female  YY  - coordinates  x  0 ,  x  2 ,  x  4 , and  x  6  
in a mutual matrix cell, is called a  female triplet  or  yin triplet . The third position 
of all female triplets is occupied by the letter  γ , which corresponds to the 
pyrimidine C or U/T. The female triplets can therefore be named  pyrimidine 
triplets  as well. Each triplet which is disposed in the genomatrix [C   A;   G   U] (3)  
in Figure  7.4  together with one of the male  YY  coordinates  x  1 ,  x  3 ,  x  5 ,  x  7  in a 
mutual matrix cell is called a male triplet or yang triplet. The third position of 
all male triplets is occupied by the letter  δ , which corresponds to the purine 
A or G. The male triplets can therefore be named  purine triplets . In such an 
algebraic way the entire set of 64 triplets is divided into two subsets of pyrimi-
dine triplets (or female triplets) and purine triplets (or male triplets). This 
algebraic division of the set of triplets defi nes a relevant internal structure in 
the set of 20 amino acids coded by them, which reveals some new approach 
to investigating structures of amino acid sequences in proteins (Petoukhov, 
 2008a – c ; Petoukhov and He,  2009 ). 

 Now let us consider the close connection of structures of the genetic code 
with the octet bipolar matrices in many aspects.  

  Structural Analogies Between the Genomatrix [ C     A ;    G     U ] (3)  and 
the Bipolar Matrix  YY  8  

 The main interest of bioinformatics in octet bipolar algebra is connected with 
the possibility of its use as an adequate model of the structure of the genetic 
code. This possibility depends on structural coincidences between the bipolar 
matrix  YY  8  and the genetic matrix [C   A;   G   U] (3) . A list of such nontrivial 
coincidences includes the following: 

  1.     First coincidence.     The black - and - white mosaics of the bipolar matrix 
 YY  8  and the genetic matrix [C   A;   G   U] (3)  are identical. (For an unknown 
reason, nature has divided the set of the 64 genetic triplets into two subsets of 
32 black triplets and 32 white triplets, which are disposed in the cells of 32 
positive coordinates and 32 negative coordinates of the bipolar matrix  YY  8 .)  

  2.     Second coincidence.     In the bipolar matrix  YY  8 , the pairs of adjacent rows 
0 – 1, 2 – 3, 4 – 5, and 6 – 7 are identical to each other by the assortment and the 
disposition of numerical coordinates  x  0 ,  x  1 ,  x  2 ,  x  3 ,  x  4 ,  x  5 ,  x  6 , and  x  7 . 

 In the genetic matrix [C   A;   G   U] (3) , the same pairs of adjacent rows 0 – 1, 
2 – 3, 4 – 5, and 6 – 7 are identical to each other by the assortment and disposition 
of amino acids and stop codons.  

  3.     Third coincidence.     In the bipolar matrix  YY  8 , the female coordinates  x  0 , 
 x  2 ,  x  4 , and  x  6  occupy the columns with even numbers 0, 2, 4, and 6, and the male 
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coordinates  x  1 ,  x  3 ,  x  5 , and  x  7  occupy the columns with odd numbers 1, 3, 5, 
and 7. 

 In the genetic matrix [C   A;   G   U] (3) , triplets with pyrimidine C or U in their 
third positions occupy the columns with even numbers 0, 2, 4, and 6; and trip-
lets with purine A or G in their third positions occupy the columns with the 
odd numbers 1, 3, 5, and 7.  

  4.     Fourth coincidence.     In the bipolar matrix  YY  8 , one half of the numerical 
coordinates ( x  0 ,  x  1 ,  x  2 ,  x  3 ) exist in the two quadrants along the main diagonal 
only; the second half of the numerical coordinates ( x  4 ,  x  5 ,  x  6 ,  x  7 ) exist in the 
two quadrants along the second diagonal only. 

 In the genetic matrix [C   A;   G   U] (3) , one half of the amino acids exist in 
the two quadrants along the main diagonal only (Ala, Arg, Asp, Gln, Glu, 
Gly, His, Leu, Pro, Val); the second half of the amino acids exist in the two 
quadrants along the second diagonal only (Asn, Cys, Ile, Lys, Met, Phe, Ser,Thr, 
Trp, Tyr).  

  5.     Fifth coincidence.     In the bipolar matrix  YY  8 , the six different types of 
numerical matrices are generated by means of some kind of permutation of 
columns and rows of the matrix, each of which possesses its own type of the 
eight - dimensional bipolar algebra. 

 In the genetic matrix [C   A;   G   U] (3) , the same six types of permutations of 
columns and rows fi t the six possible types of permutations of positions inside 
the 64 triplets (1 – 2 – 3, 2 – 3 – 1, 3 – 1 – 2, 3 – 2 – 1, 2 – 1 – 3, 1 – 3 – 2), which lead to the 
new genomatrices with symmetric and interrelated mosaics (see Figures  8.2 , 
 8.4 , and  8.5 ).    

 The fi fth coincidence will be explained further. One should note that the 
black cells of the genomatrix   C A U G;[ ]( )

123
3  contain the black  NN  - triplets, 

which encode the eight high - degeneracy amino acids, the coding meaning of 
which does not depend on the letter in the third position. Each of the amino 
acids in the set of eight high - degeneracy amino acids is encoded by four triplets 
or more: Ala, Arg, Gly, Leu, Pro, Ser, Thr, Val. The white cells of the genomatrix 
  C A U G;[ ]( )

123
3  contain the white  NN  - triplets, the coding meaning of which 

depends on the letter in their third position; these triplets encode the 12 low -
 degeneracy amino acids together with stop signals: Asn, Asp, Cys, Gln, Glu, 
His, Ile, Lys, Met, Phe, Trp, Tyr. 

 The structural coincidences described for the two matrices  YY  8  and 
  C A U G;[ ]( )

123
3  allow us to consider the octet algebra  YY  8  as a meaningful 

model of the structure of the genetic code. One can postulate such an algebraic 
model and then deduce some peculiarities of the genetic code from this model. 
These results of the comparison analysis give the following answer to the ques-
tion of mysterious principles in the degeneracy of the Vertebrate Mitochondrial 
Code from the viewpoint of the algebraic model proposed. The matrix disposi-
tion of the 20 amino acids and the stop signals is determined by algebraic 
principles of the matrix disposition of the  YY  coordinates. Moreover, the dis-
position of the 32 black triplets and the high - degeneracy amino acids in this 
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basic dialect of the genetic code is determined by the disposition of the  YY  
coordinates with the sign  + ; and the disposition of the 32 white triplets, low -
 degeneracy amino acids, and stop signals is determined by the disposition of 
the  YY  coordinates with the sign  − . One recalls here that the division of the 
set of 20 amino acids into the two subsets of eight high - degeneracy amino acids 
and the 12 low - degeneracy amino acids is practically the invariant rule of all 
the dialects of the genetic code (see below). The structural coincidences 
between both matrices do not exhaust the interconnections between the 
genetic code systems and the bipolar matrices. One can fi nd additional infor-
mation about applications of these genetic bipolar algebras for investigations 
in bioinformatics in the literature [Petoukhov,  2008a – e ; Petoukhov and He, 
 2009 ].  

  The Six Kinds of Genetic Octet Bipolar Algebras Connected with 
Permutations of Positions in Triplets 

 Now we continue to study beautiful and unexpected mathematical properties 
of octet bipolar algebras. 

 In this chapter we have described the six mosaic genetic matrices 
  C A U G;[ ]( )

123
3 ,   C A U G;[ ]( )

231
3 ,   C A U G;[ ]( )

312
3 ,   C A U G;[ ]( )

321
3 ,   C A U G;[ ]( )

213
3 , 

and   C A U G;[ ]( )
132
3 , which have corresponded to the six possible types of per-

mutation of positions in triplets. Each of these genetic matrices can be obtained 
from the initial matrix   C A U G;[ ]( )

123
3  by an appropriate permutation of its 

columns and rows. One can make the same permutations of columns and rows 
in the bipolar matrix  YY  8 , which is denoted ( YY  8 ) 123  in this section. In this way 
the appropriate matrices ( YY  8 ) 123 , ( YY  8 ) 231 , ( YY  8 ) 312 , ( YY  8 ) 321 , ( YY  8 ) 213 , and 
( YY  8 ) 132  arise. It is quite unexpected that not only the initial matrix ( YY  8 ) 123  
(Figure  8.25 ) but each of the other fi ve matrices ( YY  8 ) 231 , ( YY  8 ) 312 , ( YY  8 ) 321 , 
( YY  8 ) 213 , and ( YY  8 ) 132  is the matrix form of presentation of its own eight -
 dimensional bipolar algebra. For example, Figure  8.30  shows the bipolar matrix 
( YY  8 ) 231 , which corresponds to the genomatrix   C A U G;[ ]( )

231
3 , together with 

its multiplication table of the basic elements. Figure  8.31  demonstrates the 
multiplication tables for the other four bipolar matrices: ( YY  8 ) 312 , ( YY  8 ) 132 , 
( YY  8 ) 213 , and ( YY  8 ) 321 . The degeneracy of the genetic code is thereby connected 
with the bunch of six genetic bipolar algebras (Petoukhov,  2008a,d ; Petoukhov 
and He,  2009 ).   

 All these bipolar matrices have secret connections with Hadamard matri-
ces: When all their coordinates are equal to the real unit 1 ( x  0     =     x  1     =      ·  ·  ·      =     x  7     =    1) 
and when the signs of the components of the matrices are changed by means 
of the U - algorithm described above, all these octet bipolar matrices become 
Hadamard matrices. In necessary cases the biological computers of organisms 
can transform these bipolar matrices into Hadamard matrices to operate with 
systems of orthogonal vectors. 

 Two facts can be mentioned here as well. The complementary triplets 
(codon and anticodon) play an essential role in the genetic code systems. One 
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can replace each codon by its anticodon in the genomatrices   C A U G;[ ]( )
123
3 , 

  C A U G;[ ]( )
231
3 ,   C A U G;[ ]( )

312
3 ,   C A U G;[ ]( )

132
3 ,   C A U G;[ ]( )

213
3 ,   C A U G;[ ]( )

321
3 . 

Six new genomatrices appear in this case. Have they any connection with 
bipolar algebras? This question has a positive answer. The multiplication tables 
for the basic elements of bipolar matrices, connected with these new genoma-
trices, are identical to the multiplication tables for the initial genomatrices. 
In other words, the complementary transformations of the genomatrices 
  C A U G;[ ]( )

123
3 ,   C A U G;[ ]( )

231
3 ,   C A U G;[ ]( )

312
3 ,   C A U G;[ ]( )

132
3 ,   C A U G;[ ]( )

213
3 , 

and   C A U G;[ ]( )
321
3  change the matrix forms of presentation of the initial  YY  8  

numbers only and do not change the bipolar algebras of the genomatrices. But 
if we consider the transposed matrices which are generated from the matrices 
  YY8 123( )CAUG,   YY8 231( )CAUG, and so on, they correspond to new octet bipolar 
algebras. 

 Matrix genetics has already proved its usefulness in bioinformatics, but 
in our opinion, we are in the very beginning stages of exporing its rich 

     FIGURE 8.30      Top:  the bipolar matrix ( YY  8 ) 231 , which corresponds to the genomatrix 
  C A U G;[ ]( )

231
3 .  Bottom:  its multiplication table of the eight basic elements.  

 f0 f1 f2 f3 m4 m5 m6 m7 
f0 f0 f1 f2 f3 m4 m5 m6 m7 
f1 f1 -f 0 -f 3 f2 m5 -m 4 -m 7 m6 
f2 f2 f3 f0 f1 m6 m7 m4 m5 
f3 f3 -f 2 -f 1 f0 m7 -m 6 -m 5 m4 
m4 f0 f1 f2 f3 m4 m5 m6 m7 
m5 f1 -f 0 -f 3 f2 m5 -m 4 -m 7 m6 
m6 f2 f3 f0 f1 m6 m7 m4 m5 
m7 f3 -f 2 -f 1 f0 m7 -m 6 -m 5 m4 

CCC 
x0 

CAC 
-x2 

ACC 
x4 

AAC 
-x6 

CCA 
x1 

CAA 
-x3 

ACA 
x5 

AAA 
-x7 

CUC 
x2 

CGC 
x0 

AUC 
-x6 

AGC 
-x4 

CUA  
x3 

CGA 
x1 

AUA 
-x7 

AGA 
-x5 

UCC 
x4 

UAC 
-x6 

GCC 
x0 

GAC 
-x2 

UCA 
x5 

UAA 
-x7 

GCA 
x1 

GAA 
-x3 

UUC 
-x6 

UGC 
-x4 

GUC 
x2 

GGC 
x0 

UUA 
-x7 

UGA 
-x5 

GUA 
x3 

GGA 
x1 

CCU 
x0 

CAU 
-x2 

ACU 
x4 

AAU 
-x6 

CCG 
x1 

CAG 
-x3 

ACG 
x5 

AAG 
-x7 

CUU 
x2 

CGU 
x0 

AUU 
-x6 

AGU 
-x4 

CUG 
x3 

CGG 
x1 

AUG 
-x7 

AGG 
-x5 

UCU 
x4 

UAU 
-x6 

GCU 
x0 

GAU 
-x2 

UCG 
x5 

UAG 
-x7 

GCG 
x1 

GAG 
-x3 

UUU 
-x6 

UGU 
-x4 

GUU 
x2 

GGU 
x0 

UUG 
-x7 

UGG 
-x5 

GUG 
x3 

GGG 
x1 
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        FIGURE 8.31     Multiplication tables of the basic elements of the octet bipolar alge-
bras ( YY  8 ) 312 , ( YY  8 ) 132 . 

f0 f0 f1 m2 m3 f4 f5 m6 m7 

f1 f1 f0 m3 m2 f5 f4 m7 m6 

m2 f0 f1 m2 m3 f4 f5 m6 m7 

m3 f1 f0 m3 m2 f5 f4 m7 m6 

f4 f4 - f5 m6 - m7 -f 0 f1 -m 2 m3 

f5 f5 - f4 m7 - m6 - f1 f0 - m3 m2 

m6 f4 - f5 m6 - m7 -f 0 f1 -m 2 m3 

m7 f5 - f4 m7 - m6 - f1 f0 - m3 m2 

 f0 f1 m2 m3 f4 f5 m6 m7 

f0 f0 f1 m2 m3 f4 f5 m6 m7 

f1 f1 -f0 m3 -m2 -f5 f4 -m7 m6 

m2 f0 f1 m2 m3 f4 f5 m6 m7 

m3 f1 -f0 m3 -m2 -f5 f4 -m7 m6 

f4 f4 f5 m6 m7 f0 f1 m2 m3 

f5 f5 -f4 m7 -m6 -f1 f0 -m3 m2 

m6 f4 f5 m6 m7 f0 f1 m2 m3 

m7 f5 -f4 m7 -m6 -f1 f0 -m3 m2 

 f0 f1 m2 m3 f4 f5 m6 m7 

opportunities. Below we give an example of one of the results that has already 
been arrived at in the fi eld of matrix genetics.   

   8.5    SOME RULES OF EVOLUTION OF VARIANTS OF THE 
GENETIC CODE 

 Modern science knows many variants (or dialects) of the genetic code, data 
about which are shown on NCBI ’ s Web site,  http://www.ncbi.nlm.nih.gov/
Taxonomy/Utils/wprintgc.cgi . Seventeen variants (or dialects) of the genetic 
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 f0 m1 f2 m3 f4 m5 f6 m7 

f0 f0 m1 f2 m3 f4 m5 f6 m7 

m1 f0 m1 f2 m3 f4 m5 f6 m7 

f2 f2 m3 f0 m1 f6 m7 f4 m5 

m3 f2 m3 f0 m1 f6 m7 f4 m5 

m5 f4 m5 -f6 -m7 -f0 -m1 f2 m3 

m5 f4 m5 -f6 -m7 -f0 -m1 f2 m3 

f6 f6 m7 -f4 -m5 -f2 -m3 f0 m1 

m7 f6 m7 -f4 -m5 -f2 -m3 f0 m1 

 f0 f1 f2 f3 m4 m5 m6 m7 

f0 f0 f1 f2 f3 m4 m5 m6 m7 

f1 f1 f0 f3 f2 m5 m4 m7 m6 

f2 f2 -f3 -f0 f1 m6 -m7 -m4 m5 

f3 f3 -f2 -f1 f0 m7 - m6 -m5 m4 

m4 f0 f1 f2 f3 m4 m5 m6 m7 

m5 f1 f0 f3 f2 m5 m4 m7 m6 

m6 f2 -f3 -f0 f1 m6 -m7 -m4 m5 

m7 f3 -f2 -f1 f0 m7 -m6 -m5 m4 

FIGURE 8.31 Continued.

code exist, which differ one from another by their  numbers of degeneracy  
(NDs; see Figure  8.32 ). By defi nition, the numbers of degeneracy of an amino 
acid are equal to the number of triplets that encode this amino acid in the 
dialect considered. Numbers of degeneracy, which are observed in the dialects, 
are equal to numbers from 1 to 8. For example, the fi rst dialect of the genetic 
code (the Vertebrate Mitochondrial Code) in Figure  8.32  possesses 12 amino 
acids, for which the number of degeneracy is 2 (Asn, Asp, Cys, Gln, Glu, His, 
Ile, Lys, Met, Phe, Trp, Tyr); six amino acids, for which the number of degen-
eracy is 4 (Ala, Arg, Gly, Pro, Thr, Val), and two amino acids, for which the 
number of degeneracy is 6 (Leu, Ser).   

 One can see from the genomatrix in Figure  8.2  that in the Vertebrate 
Mitochondrial Code, the set of 20 amino acids is divided into two subsets: the 

( YY  8 ) 213 , and ( YY  8 ) 321 .  
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subset of the eight high - degeneracy amino acids, which are coded by four or 
more triplets (Ala, Arg, Gly, Leu, Pro, Ser, Thr, Val), and the subset of 12 low -
 degeneracy amino acids, which are coded by three or fewer triplets (Asn, Asp, 
Cys, Gln, Glu, His, Ile, Lys, Met, Phe, Trp, Tyr). This division corresponds to the 
division of the set of cells of the bipolar matrix  YY  8  into two subsets: the subset 
of cells with the sign  +  and the subset of cells with the sign    −    (Figures  8.25  and 
 8.26 ). 

 We consider this dialect, which is shown in Figure  8.32  as number 1 in the 
fi rst column, as the basic dialect with which to compare other dialects. Let us 
analyze the 17 dialects of the genetic code to reveal the possible phenomeno-
logical rules and numerical invariants of evolution of the genetic code. 

 At fi rst it seems that in Figure  8.32  the distribution of numbers of degen-
eracy in a set of the 17 dialects of the genetic codes is chaotic on the whole. 
But this impression disappears if one divides the set of 20 amino acids into 
the two subsets that were mentioned above in accordance with the genomatrix 
in Figure  8.2 : the subset of low - degeneracy amino acids, each of which is 
encoded by three or fewer triplets in the Vertebrate Mitochondrial Code, and 

     FIGURE 8.32     The 17 dialects of the genetic code and distributions of their numbers 
of degeneracy (ND) among 20 amino acids (AA). The two columns on the right show 
quantities of low and high - degenerate acids ( Σ AA). Bold frames mark two categories 
of numbers of the degeneracy: from 1 to 3 and from 4 to 8 (Petoukhov,  2001a,b )  .  (Data 
from  http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi .)   

to 3 ND from 
4 to 8 

1 2 3 4  5 6 7 8   
1  12  6  2   12 8 
2 2 9 1 5  3   12 8 
3 1 10 1 5  3   12 8 
4  12  6  1  1 12 8 
5 2 8 2 6  1  1 12 8 
6 2 8 2 5  3   12 8 
7 2 9 1 5  3   12 8 
8  12  5  3   12 8 
9 2 7 3 6  1  1 12 8 
10 2 8 2 5  3   12 8 
11 2 9 1 5  2 1  12 8 
12 1 10 1 6  1  1 12 8 
13 2 9 1 5  1 1 1  12 8 
14 2 9 1 5  1 2   12 8 
15 2 9 1 5  1 1 1  12 8 
16  13  5   1  1 13 7 
17 2 8 1 6  3   11 9 

 
 Dialects 

Distribution of numbers of 
degeneracy from 1 to 8 

among 20 AA 

ΣAA with 
ND from 1 

ΣAA 
with 
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the subset of high - degeneracy amino acids, each of which is encoded by four 
or more triplets in the same basic dialect. Such a division reveals hidden regu-
larities. Other types of division of the set of 20 amino acids into two subsets 
does not reveal hidden regularities. 

 The numbers of the dialects of the genetic code in Figure  8.32  correspond 
to the following dialects: (1) the Vertebrate Mitochondrial Code; (2) the 
Standard Code; (3) the Mold, Protozoan, and Coelenterate Mitochondrial 
Code and the Mycoplasma/Spiroplasma Code; (4) the Invertebrate 
Mitochondrial Code; (5) the Echinoderm and Flatworm Mitochondrial Code; 
(6) the Euplotid Nuclear Code; (7) the Bacterial and Plant Plastid Code; (8) 
the Ascidian Mitochondrial Code; (9) the Alternative Flatworm Mitochondrial 
Code; (10) the Blepharisma Nuclear Code; (11) the Chlorophycean 
Mitochondrial Code; (12) the Trematode Mitochondrial Code; (13) the 
Scenedesmus Obliquus Mitochondrial Code; (14) the Thraustochytrium 
Mitochondrial Code; (15) the Alternative Yeast Nuclear Code; (16) the Yeast 
Mitochondrial Code; and (17) the Ciliate, Dasycladacean and Hexamita 
Nuclear Code. 

 The data in Figure  8.32  permit us to formulate the following phenomeno-
logical rules (Petoukhov,  2001a,b )  . 

   Phenomenological Rule 1     In the dialects of the genetic code, the set of 20 
amino acids contains two opposite subsets: the fi rst consisting of 12 low -
 degeneracy amino acids (with their numbers of degeneracy from 1 to 3), and 
the second consisting of eight high - degeneracy amino acids (with their numbers 
of degeneracy from 4 to 8).   

 As the authors conclude, this rule about the canonical ratio 12   :   8 for two 
categories of amino acids holds true in nature without exception for dialects 
of the genetic code of autotrophic organisms. These types of organisms play 
the main role in biogeochemical cycles. But this rule has small exceptions in 
two cases of heterotrophic organisms in a form of minimal numeric shifting 
from the regular ratio 12   :   8 to the nearest integer ratios: The Yeast Mitochondrial 
Code possesses the ratio 13   :   7 for these two categories of amino acids, and the 
Ciliate, Dasycladacean and Hexamita Nuclear Code possesses the ratio 11   :   9. 
These nonstandard ratios encircle the canonical ratio 12   :   8 from opposing sides 
of the numerical axis. These nonstandard ratios demonstrate additionally the 
main role of the canonical ratio 12   :   8 as that center, around which minimal 
numeric fl uctuations exist. 

 The data about evolution of the genetic code also demonstrate the existence 
of the following rule about canonical subsets of low -  and high - degeneracy 
amino acids. 

   Phenomenological Rule 2     If a triplet encodes different amino acids in dif-
ferent genetic codes, these amino acids belong to the same canonical subset 
of amino acids. In other words, it is practically forbidden for those triplets that 
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encode amino acids from one canonical subset of degeneracy to pass into the 
group of triplets during biological evolution, which encode amino acids from 
another canonical subset.   

 A single exception to this rule exists: The triplet UAG can encode amino 
acids Leu or Gln in the different canonical subsets. The rule says nothing about 
stop codons, so it does not consider those evolutionary cases when triplets that 
encode stop codons (or amino acids) in one genetic code begin to encode 
amino acids (or stop codons, respectively) in another code. 

 The phenomenological rules described above testify that two independent 
branches of evolution of the genetic code exist in billions of biological species: 
one branch for canonical subsets of high - degeneracy amino acids, and another 
branch for canonical subsets of low - degeneracy amino acids. These evolution-
ary branches within the consolidated code system can be compared with a 
parallel evolution of male and female organisms within a frame of one biologi-
cal species. It reveals simultaneously that nature realizes an association of two 
very different subsets of 8 and 12 amino acids in the set of 20 amino acids. The 
matrix genetics thereby reveals the existence of such an internal structure in 
the set of 20 amino acids, which possesses the invariant properties in the evolu-
tion of the genetic code. One can fi nd additional details about such phenom-
enological rules of the dialects in the literature (Petoukhov,  2001a,b ,  2008a ; 
Petoukhov and He,  2009 )  . 

 During evolution of the genetic code, only some triplets change their code —
 meaning in the different dialects in comparison with the basic case of the 
Vertebrate Mitochondria Code in the sense that they begin to encode other 
amino acids or stop signals. What are the limitations utilized by nature in its 
choice of such changeable (or evolutional) triplets? Has the matrix disposition 
of these variable triplets any relation to the  YY  - coordinates  x  0 ,  x  1 ,  …  ,  x  7  of 
the matrix  YY  8  (Figures  8.25  and  8.26 ) and to their disposition in the genoma-
trix? Or do the bipolar coordinates have no relation to evolution of the genetic 
code and to systemic disposition of the variable triplets in the genomatrix 
[C   A;   U   G] (3) ? 

 If such a relation is discovered, it gives additional evidence that the genetic 
octet bipolar algebra can be utilized as the adequate model of the genetic code 
or as the algebraic basis of the genetic code (the algebraic precode). It can be 
useful in tasks of sorting, putting in order, and in a deeper understanding of 
the genetic language. It can help to create new effective methods of informa-
tion processing for many applied tasks as well. The appropriate algebraic 
model of the genetic code should give opportunities to deduce some evolu-
tional peculiarities of the genetic code from such a fundamental mathematical 
system. 

 The results of a corresponding comparison analysis have shown the 
expressed connection between the disposition of the variable triplets in the 
genomatrix [C   A;   U   G] (3)  and disposition of the  YY  - coordinates  x  0 ,  x  1 ,  …  ,  x  7  
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together with their signs,  +  and  − , in the matrix  YY  8 . The results obtained lead 
to a few phenomenological rules of evolution of the dialects of the genetic 
code on the basis of the genetic octet bipolar algebra. In other words, the 
scheme, which is defi ned by this matrix algebra, holds true in the evolution of 
the genetic code in some signifi cant aspects. These results give additional evi-
dence of the appropriateness of such in each iteration of a population of an 
algebraic approach in bioinformatics. 

 The matrix form of presentation of members of the genetic octet bipolar 
algebra (Figures  8.25  and  8.26 ) contains 32 components with the sign  +  and 
32 components with the sign  − . The matrix disposition of the components with 
the sign  +  fi ts the disposition of the 32 black triplets. These black triplets 
encode eight kinds of high - degeneracy amino acids (Ala, Arg, Gly, Leu, Pro, 
Ser, Thr, Val); the other 12 amino acids are encoded by the white triplets and 
they are low - degeneracy acids. In the case of the Vertebrate Mitochondrial 
Code, the matrix disposition of these two canonical subsets fi ts the matrix 
disposition of the  YY  - coordinates with the signs  +  and    −    correspondingly. 

 Now we present additional phenomenological rules, which were discovered 
from the viewpoint of the octet bipolar algebra  YY  8  and which are additional 
evidence of the adequacy of this algebra for the genetic code and its evolution-
ary peculiarities. What are the formal attributes that are utilized by nature in 
its choice of evolutional changeable triplets from the set of 64 triplets? How 
are these triplets and their appropriate amino acids disposed in the genomatrix 
[C   A;   U   G] (3)  (Figures  8.25  and  8.26 )? Has the matrix disposition of these 
variable triplets any relation to the  YY  - coordinates  x  0 ,  x  1 ,  …  ,  x  7  and to their 
disposition in the genomatrix? Can these variable triplets be associated natu-
rally with the groups of the purine triplets, pyrimidine triplets, and  YY  -
 coordinates? Or do the  YY  - coordinates have no relation to evolution of the 
genetic code and to a systemic disposition of the variable triplets in the geno-
matrix [C   A;   U   G] (3) ? In this section we continue the comparison analysis to 
answer such questions. 

 Table  8.1  includes data for analyzing these questions. The Vertebrate 
Mitochondrial Code (code 1) is utilized as the standard for comparison of code 
meanings of triplets in different dialects. The second tabular column shows 
those changeable triplets, which possess another code meaning (relative to 
their meaning in dialect 1) in the dialect named in the fi rst column. The name 
of the encoded amino acid or stop codon is given near each triplet in the 
second column in connection with the appropriate dialect named in the fi rst 
column. Brackets in the second column contain the amino acid or stop codon 
that is encoded by this triplet in dialect 1. Each row of the second column is 
fi nished by the  YY  - coordinate, which is disposed together with this triplet in 
the same cell of the genomatrix in Figure  8.26 . The third column displays data 
about start codons, which defi ne the beginning of protein synthesis in the 
dialect considered. An appropriate  YY  - coordinate is shown for each start 
codon as well.   
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  TABLE 8.1    Changeable Triplets and Start Codons in the Dialects of the 
Genetic Code 

   Dialect of the Genetic Code     Changeable Triplets     Start Codons  

  1.   The Vertebrate 
Mitochondrial Code  

      AUU,  −  x  6  
 AUC,  −  x  6  
 AUA,  −  x  7  
 AUG,  −  x  7  
 GUG,  x  3   

  2.   The Standard Code    UGA, Stop (Trp),  −  x  5  
 AGG, Arg (Stop),  −  x  5  
 AGA, Arg (Stop),  −  x  5  
 AUA, Ile (Met),  −  x  7   

  UUG,  −  x  7  
 CUG,  x  3  
 AUG,  −  x  7   

  3.   The Mold, Protozoan, and 
Coelenterate 
Mitochondrial Code and 
the Mycoplasma/
Spiroplasma Code  

  AGG, Arg (Stop),  −  x  5  
 AGA, Arg (Stop),  −  x  5  
 AUA, Ile (Met),  −  x  7   

  UUG,  −  x  7  
 UUA,  −  x  7  
 CUG,  x  3  
 AUC,  −  x  6  
 AUU,  −  x  6  
 AUG,  −  x  7  
 AUA,  −  x  7  
 GUG,  x  3   

  4.   The Invertebrate 
Mitochondrial Code  

  AGG, Ser (Stop),  −  x  5  
 AGA, Ser (Stop),  −  x  5   

  UUG,  −  x  7  
 AUU,  −  x  6  
 AUC,  −  x  6  
 AUA,  −  x  7  
 AUG,  −  x  7  
 GUG,  x  3   

  5.   The Echinoderm and 
Flatworm Mitochondrial 
Code  

  AGG, Ser (Stop),  −  x  5  
 AGA, Ser (Stop),  −  x  5  
 AUA, Ile (Met),  −  x  7  
 AAA, Asn (Lys),  −  x  7   

  AUG,  −  x  7  
 GUG,  x  3   

  6.   The Euplotid Nuclear 
Code  

  UGA, Cys (Trp),  −  x  5  
 AGG, Arg (Stop),  −  x  5  
 AGA, Arg (Stop),  −  x  5  
 AUA, Ile (Met),  −  x  7   

  AUG,  −  x  7   

  7.   The Bacterial and Plant 
Plastid Code  

  UGA, Stop (Trp),  −  x  5  
 AGG, Arg (Stop),  −  x  5  
 AGA, Arg (Stop),  −  x  5  
 AUA, Ile (Met),  −  x  7   

  UUG,  −  x  7  
 CUG,  x  3  
 AUC,  −  x  6  
 AUU,  −  x  6  
 AUA,  −  x  7  
 AUG,  −  x  7   

  8.   The Ascidian 
Mitochondrial Code  

  AGG, Gly (Stop),  −  x  5  
 AGA, Gly (Stop),  −  x  5   

  UUG,  −  x  7  
 AUA,  −  x  7  
 AUG,  −  x  7  
 GUG,  x  3   

  9.   The Alternative Flatworm 
Mitochondrial Code  

  UAA, Tyr (Stop),  −  x  7  
 AGG, Ser (Stop),  −  x  5  
 AGA, Ser (Stop),  −  x  5  
 AUA, Ile (Met),  −  x  7  
 AAA, Asn (Lys),  −  x  7   

  AUG,  −  x  7   
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   Dialect of the Genetic Code     Changeable Triplets     Start Codons  

  10.   The Blepharisma Nuclear 
Code  

  UGA, Stop (Trp),  −  x  5  
 UAG, Gln (Stop),  −  x  7  
 AGG, Arg (Stop),  −  x  5  
 AGA, Arg (Stop),  −  x  5  
 AUA, Ile (Met),  −  x  7   

  AUG,  −  x  7   

  11.   The Chlorophycean 
Mitochondrial Code  

  UGA, Stop (Trp),  −  x  5  
 UAG, Leu (Stop),  −  x  7  
 AGG, Arg (Stop),  −  x  5  
 AGA, Arg (Stop),  −  x  5  
 AUA, Ile (Met),  −  x  7   

  AUG,  −  x  7   

  12.   The Trematode 
Mitochondrial Code  

  AGG, Ser (Stop),  −  x  5  
 AGA, Ser (Stop),  −  x  5  
 AAA, Asn (Lys),  −  x  7   

  AUG,  −  x  7  
 GUG,  x  3   

  13.   The Scenedesmus 
obliquus Mitochondrial 
Code  

  UGA, Stop (Trp),  −  x  5  
 UAG, Leu (Stop),  −  x  7  
 UCA, Stop (Ser),  x  5  
 AGG, Arg (Stop),  −  x  5  
 AGA, Arg (Stop),  −  x  5  
 AUA, Ile (Met),  −  x  7   

  AUG,  −  x  7   

  14.   The Thraustochytrium 
Mitochondrial Code  

  UGA, Stop (Trp),  −  x  5  
 UUA, Stop (Leu),  −  x  7  
 AGG, Arg (Stop),  −  x  5  
 AGA, Arg (Stop),  −  x  5  
 AUA, Ile (Met),  −  x  7   

  AUU,  −  x  6  
 AUG,  −  x  7  
 GUG,  x  3   

  15.   The Alternative Yeast 
Nuclear Code  

  UGA, Stop (Trp),  −  x  5  
 AGG, Arg (Stop),  −  x  5  
 AGA, Arg (Stop),  −  x  5  
 AUA, Ile (Met),  −  x  7  
 CUG, Ser (Leu),  x  3   

  CUG,  x  3  
 AUG,  −  x  7   

  16.   The Yeast Mitochondrial 
Code  

  AGG, Arg (Stop),  −  x  5  
 AGA, Arg (Stop),  −  x  5  
 CUG, Thr (Leu),  x  3  
 CUU, Thr (Leu),  x  2  
 CUA, Thr (Leu),  x  3  
 CUC, Thr (Leu),  x  2   

  AUA,  −  x  7  
 AUG,  −  x  7   

  17.   The Ciliate, 
Dasycladacean and 
Hexamita Nuclear Code  

  UGA, Stop (Trp),  −  x  5  
 UAG, Gln (Stop),  −  x  7  
 UAA, Gln (Stop),  −  x  7  
 AGG, Arg (Stop),  −  x  5  
 AGA, Arg (Stop),  −  x  5  
 AUA, Ile (Met),  −  x  7   

  AUG,  −  x  7   

  Source:    Initial data from  http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi . 

TABLE 8.1 Continued
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     Triplets that Change Their Code Meaning     Let us analyze the data from the 
second column of Table  8.1 . This column shows 14 types of changeable triplets 
that possess different code meanings in different dialects: AAA, AGA, AGG, 
AUA, CUA, CUC, CUG, CUG, CUU, UAA, UAG, UCA, UGA, and UUA. 
Some of these triplets have several meanings. For example, the triplet AGA 
encodes the stop signal in dialect 1, the amino acid Arg in dialect 4, and the 
amino acid Gly in dialect 8. Or the triplet UAA encodes the stop signal in 
dialect 1, the amino acid Tyr in dialect 9, and the amino acid Gln in dialect 17. 

 All kinds of changeable triplets are encountered 69 times in the second 
column. But only two types of male (or purine)  YY  - coordinates,  −  x  5  and  −  x  7  
with the sign  − , correspond to these triplets in all dialects in practice. Specifi cally, 
the male coordinate  −  x  5  is encountered 41 times (59.4% of all cases), and the 
male coordinate  −  x  7  is encountered 22 times (31.9% of all cases), a total of 
more than 90% of all cases. The male coordinate  +  x  5  is encountered once in 
dialect 13 but with the sign  + . One can name the male  YY  - coordinates  −  x  5 ,  −  x  7 , 
and  +  x  5  as canonical bipolar coordinates for the changeable triplets (Table 
 8.1 ). The statistics described allow one to formulate the following rule. 

   Phenomenological Rule 3, Connected with Octet Bipolar Algebra     Those 
triplets possess different code meanings in the various dialects of the genetic 
code, which correspond to the canonical male coordinates  −  x  5 ,  −  x  7 , and  +  x  5  of 
the matrix  YY  8 .   

 This rule holds true precisely for all the dialects except for the case of yeast, 
with its two dialects: dialect 15, where the noncanonical male coordinate  +  x  3  
appears (for the triplet CUG), and dialect 16, which has a unique feature. In 
dialect 16 the four triplets CUA, CUG, CUC, and CUU, which begin with the 
same pair of letters (CU), change their code meanings in an identical way; all 
of them encode the acid Thr instead of the acid Leu. (It is an unusual case 
because, if any other four triplets are begun with the same pair of any letters, 
they do not change their code meanings jointly in other dialects.) These four 
triplets correspond to the noncanonical  YY  - coordinates  +  x  2  and  +  x  3 . 

 Yeasts are unicellular mushrooms, chemoorganoheterotrophs, which repro-
duce by vegetative cloning (asexual reproduction). Probably the genetic - code 
deviation of yeast from rule 3 is connected with their asexual reproduction 
and heterotrophy. The additional evidence of molecular - genetic singularity 
of yeast is the fact that no histone H 1  is discovered in their genetic system 
( http://drosophila.narod.ru/Review/histone.html ). 

 One can make one more remark about the male coordinates  −  x  5  and  −  x  7 , 
which are connected to more than 90% of all changeable triplets, as mentioned 
above. All triplets that correspond to these coordinates, change their code 
meanings except for the four invariable triplets: UGG with the coordinate  −  x  5 , 
and AAG, AUG, and UUG with the coordinate  −  x  7 . Perhaps new dialects of 
the genetic code will be discovered in the future in which these triplets change 
their code meanings as well. 
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   Phenomenological Rule 4, Connected with Genetic Octet Bipolar Numbers    
 All 16 triplets which correspond to the  YY  - coordinate  x  0  and  x  1  never change 
their code meanings in the dialects of the genetic code (including the case of 
yeast).   

 One can see that coordinates  x  0  and  x  1  are absent in Figure  8.1  together 
with their 16 triplets: CCC, CCA, CCU, CCG, CGC, CGA, CGU, CGG, GCC, 
GCA, GCU, GCG, GGC, GGA, GGU, and GGG. One can interpret coordi-
nates  x  0  and  x  1  as scalar parts of the yin and yang genoquaternions correspond-
ingly (see above) and other yin and yang coordinates ( x  2 ,  x  4 ,  x  6  and  x  3 ,  x  5 ,  x  7  
correspondingly) as vector parts of the yin and yang genoquaternions by 
analogy with Hamilton quaternions; this approach leads to an idea about the 
anosotropic character of  YY  8  - space (Petoukhov,  2008a,d,e ; Petoukhov and He, 
 2009 ). From a mathematical point of view, rule 3 concerns the anisotropic 
vector parts of yang genoquaternions, and rule 4 concerns the scalar parts of 
the yin and yang genoquaternions.  

  Stop Codons     Encoding of stop signals of protein synthesis turns on a special 
interest. Stop signals are encoded by different triplets (stop codons) in differ-
ent dialects of the genetic code. The seven types of triplets play the role of 
stop codons in these dialects. Three of them (UUU, UAG, UUA) fi t the  YY  -
 coordinate  −  x  7 . The other three triplets (AGA, AGG, UGA) fi t the coordinate 
 −  x  5 . The seventh triplet (UCA) fi ts the coordinate  +  x  5 . All these coordinates 
are the anisotropic yang coordinates. Consequently, the function of stop codons 
is closely connected with the anisotropy of  YY  8  - space. The results of the inves-
tigation of stop codons in the genetic dialects from the viewpoint of  YY  8  -
 algebra allow one to formulate the following rule. 

   Phenomenological Rule 5, Connected with Octet Bipolar Algebra and the 
Anisotropy of  YY  8  - Space     Those triplets serve as stop codons in the dialects 
of the genetic code, which correspond to the anisotropic yang coordinates  −  x  5 , 
 −  x  7 , and  +  x  5 .   

 This rule holds true, without exception, for all 17 dialects. It draws attention 
to the fact that the function of stop codons is always the yang function (or 
male function) from the viewpoint of  YY  8  algebra because stop codons are 
connected with the yang coordinates. A few triplets exist (e.g., UUA and 
UGG), which correspond to the same coordinates,  −  x  5 ,  −  x  7 , and  +  x  5 , but which 
are not stop codons in known dialects of the genetic code. Will such a dialect 
of the genetic code be discovered in the future, where these triplets play the 
role of stop codons? Time will tell.  

  Start Codons     Until now we have not analyzed start codons (the function of 
start codons is the additional function of some triplets which they execute 
besides their basic function of coding of amino acids). The third column of 
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Table  8.1  shows the start codons of the 17 dialects of the genetic code, which 
are presented in basic sets of code meanings of 64 triplets of the considered 
17 dialects at  http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi . Eight 
triplets play the role of start codons in these 17 cases. Four of them (AUA, 
AUG, UUA, UUG) correspond to the  YY  - coordinate  −  x  7 . The two triplets 
AUC and AUU correspond to the coordinate  − x 6 . The other two triplets, CUG 
and GUG, correspond to the coordinate  +  x  3 . The set of start codons of dialect 
1 corresponds to all these coordinates  −  x  7 ,  −  x  6 , and  +  x  3 . These data allow one 
to formulate an additional rule about start codons. 

   Phenomenological Rule 6, Connected with Octet Bipolar Algebra     All start 
codons in the dialects of the genetic code correspond to  YY  - coordinates  −  x  7 , 
 −  x  6 , and  +  x  3 .   

 This rule holds true, without exception, for all 17 dialects of the genetic 
code. One can add that the start codon AUG, which corresponds to the  YY  -
 coordinate  −  x  7 , is included in all 17 dialects. All start codons in Table  8.1  have 
the letter U in the second position and should remind one of the U - algorithm 
connection between genomatrices and Hadamard matrices.    

   8.6    CHALLENGES AND PERSPECTIVES 

 Matrix genetics can be interpreted as a part of an algebraic biology on genetic 
systems by means of their matrix forms of presentation. Matrix genetics has 
been developed intensively by the authors during the past decade (He,  2001, 
2003a,b ; He and Petoukhov,  2007 ; Kappraff and Petoukhov,  2009 ; Petoukhov, 
 2001a,b, 2005a,b, 2008a  – e; Petoukhov and He,  2009 )  . Let us list some of the 
main results that were obtained in these works: 

   •      New phenomenological rules of evolution of the genetic code  
   •      Connections of matrix structures of the genetic code with Rademacher 

functions, Walsh functions, and Hadamard matrices  
   •      Multidimensional algebras for modeling and for analyzing the genetic 

code systems  
   •      Hidden interrelations between the golden section and parameters of 

genetic multiplets  
   •      Relations between the Pythagorean musical scale and an important class 

of quint genetic matrices which show a molecular genetic basis with a 
sense of musical harmony and of aesthetics of proportions  

   •      Cyclic algebraic principles in the structure of matrices of the genetic code  
   •      Materials for a chronocyclic conception, which connects structures of the 

genetic system with chrono - medicine and a problem of an internal clock 
of organisms  
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   •      Connections of the genetic code with the famous Gray code  
   •      A conception of matrix operators and vector presentations of genetic 

sequences to use in bioinformatics effective methods of digital 
communication    

 Spectral methods of decomposition of signals on orthogonal systems of 
functions have long shown themselves as especially important in the theory 
of signals and informatics in general. Researchers on genetic informatics 
attempt to address them already [see, e.g., the work of Kargupta,  (2001)  and 
of Lobzin and Chechetkin  (2000) , which draw attention to the importance of 
spectral methods in this fi eld]. But an infi nite quantity of orthogonal systems 
of functions exists. It is diffi cult for researchers of molecular - genetic systems 
to make a choice in one of an infi nite number of possible orthogonal 
systems as adequate for spectral methods in the fi eld of genetic informatics. 
Here they should make rather a volitional choice, risking the waste of many 
years of work in the case of the failure of such a choice. They usually make 
this choice proceeding from secondary reasons that do not have a direct con-
nection to genetic systems. For example, they choose the system of orthogonal 
harmonious functions, which is applied in classical frequency Fourier analysis, 
because reason that system has extensive applications in technical fi elds. 

 The results described in this chapter show the relation of the genetic code 
to the orthogonal systems of Rademacher functions and Walsh functions, 
which are connected with Hadamard matrices and Gray code. These systems 
possess a special meaning for genetic informatics and its spectral methods. The 
orthogonal systems of functions connected with Hadamard matrices are 
picked out by nature from the infi nite set of basic systems for their deep con-
nection with an essence of molecular - genetic coding. A consistent investigation 
of bioinformatics systems should be done from the viewpoint of the theory of 
Hadamard matrices and their applications. In particular, the comparative 
analysis of various genetic sequences on their Hadamard spectrums is interest-
ing. The results described give important help in the choice of a research tool 
from an infi nite set of orthogonal systems of functions and from a set of vari-
ants of noise - immunity codes. 

 In the spectral analysis of genetic sequences (e.g., their correlation func-
tions), it is meaningful to spend their decomposition on orthogonal vector 
rows of Hadamard genomatrices, instead of on trigonometric functions of the 
frequency Fourier analysis. Investigations of Hadamard spectrums in mathe-
matical genetics are prospective and well founded, especially since some works 
are already known as applications of Walsh functions (alongside with other 
systems of basic functions) to the spectral analysis of various aspects of genetic 
algorithms and sequences (Forrest and Mitchell,  1991 ; Geadah and Corinthios 
 1977 ; Goldberg,  1989 ; Lee and Kaveh,  1986 ; Shiozaki,  1980 ; Vose and Wright, 
 1998 ; Waterman,  1999 ). The book by Zalmanzon ( 1989 , p. 416) contains a 
review of works about applications of Walsh orthogonal functions in some 
other fi elds of physiology. 
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 The discovery of connections of the genetic matrices with Hadamard matri-
ces leads to many new possible investigations using the methods of symmetry, 
spectral analysis, and so on. One can expect that those Walsh functions, which 
are related to the genetic Hadamard matrices described, will be used effec-
tively in the spectral analysis of genetic sequences. It seems that investigations 
of structural and functional principles of bioinformation systems from the 
viewpoint of quantum computers and of unitary Hadamard operators are very 
promising. A comparison of orthogonal systems of Walsh functions in 
molecular - genetic structures and in genetically inherited macrophysiological 
systems can give new understanding to the interrelation of various levels in 
biological organisms. Data about the genetic Hadamard matrices, together 
with data about algebras of the genetic code, can lead to new understanding 
of genetic code systems, to new effective algorithms of information processing, 
and perhaps, to new directions in the fi eld of quantum computers. Matrix 
genetics has also given some impetus for developing new mathematical 
researches (see, e.g., Adamson,  2009 ; Kappraff and Adamson,  2009 ).  
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  9    Bioinformatics, Denotational 
Mathematics, and 
Cognitive Informatics     

     Bioinformatics is the comprehensive application of mathematics, science, and 
a core set of problem - solving methods to an understanding of living systems. 
It will have profound effects on all fi elds of biological and medical sciences. 
Cognition is viewed as a process of living systems. Cognition is an abstract 
property of advanced living organisms. It is studied as a direct property of 
a brain or of an abstract mind on subsymbolic and symbolic levels. Cognitive 
informatics studies cognition and information sciences that investigates the 
processes of the natural intelligence. As both fi elds continue their rapid devel-
opment and progress, it is a central challenge to understand the biological basis 
of cognition, perception, learning, memory, thought, and mind. 

 The time seems ripe to bring these varied topics together to focus on our 
understanding of the emerging patterns, dissipative structures, and evolving 
cognition of living systems through a process of experimental application, 
scientifi c computation, and theoretical abstraction. 

 In this chapter we review briefl y the intersections and connections between 
these two emerging fi elds of bioinformatics and cognitive informatics through 
a systems view of emerging pattern, dissipative structure, and evolving cogni-
tion of living systems. A new kind of math - denotational mathematics (Wang, 
 2008   ) for cognitive informatics is introduced. It is hoped that this brief review 
will encourage further exploration of our understanding of the biological basis 
of cognition, perception, learning, memory, thought, and mind.  

   9.1    INTRODUCTION 

 Patterns, structures, and rules arise and play an important role in living systems 
and nearly all branches of science. This is particularly true in mathematics, 
physics, theoretical biology, and neurosciences. It is remarkable that aspects of 
pattern discovery have only recently been explored in the fi eld of genetics and 
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bioinformatics. Bioinformatics is a new scientifi c discipline that merges biology, 
computer science, mathematics, and other subjects into a broad - based fi eld 
that will have a profound impact on all fi elds of biology. Bioinformatics is the 
comprehensive applications of mathematics, science, and a core set of problem -
 solving methods to an understanding of living systems. Living systems are open 
self - organizing systems that have the special characteristics of life and interact 
with their environment. This takes place by means of information and material -
 energy exchanges. We summarize living systems broadly in Table  9.1 .   

 These systems are based on nucleic acids that self - replicate, mutate, and 
compete. There is now a growing collection of investigations in bioinformatics 

  TABLE 9.1    Overview of Living Systems 

   Living System     Description     Distinctive Properties  

  Viroids    Plant pathogens that consist 
of a short stretch (a few 
hundred nucleobases) of 
highly complementary, 
circular, single - stranded 
RNA without the protein 
coat that is typical of 
viruses.  

  Self - replication by use of host 
enzymes, mutation 

 Specifi city to host 
 Harmful but not destructive to 

host 
 Individuality given by self -

 replication only, without 
compartmentalization  

  Plasmids    Extrachromosomal DNA 
molecules separate from 
chromosomal DNA; 
capable of replicating 
independent of 
chromosomal DNA. In 
many cases, it is circular 
and double - stranded.  

  Self - replication by use of 
bacterial enzymes, mutation 

 Autonomous control of 
self - replication and 
distribution of copies 

 Nonspecifi c propagation within 
hosts 

 Harmless or advantageous 
symbiont for host 

 Individuality given by 
autonomy, functions without 
compartmentalization  

  Viruses    Microscopic infectious agent 
that can reproduce only 
inside a host cell. Viruses 
infect all types of 
organisms: from animals 
and plants, to bacteria and 
archaea.  

  Self - reproduction by use of 
whole host translation and 
replication machinery, 
mutation 

 Individuality given also by 
compartmentalization 

 Variety of shapes 
 Specifi c recognition and 

ultimately destructive attack 
of host 

 Latency by invasion of host 
genetic material  
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   Living System     Description     Distinctive Properties  

  Bacteria    Large group of unicellular 
microorganisms.  

  Self - reproduction by individual 
translation and replication 
machinery, mutation 

 Compartmentalization in cells 
 Motility and response to 

external stimuli 
 Sexual mating  

  Protozoa    Unicellular heterotrophic 
protist, such as an amoeba 
or a ciliate.  

  Self - reproduction by individual 
machinery mutation 

 Compartments inside cell with 
different functions 

 Motility and response to 
environmental stimuli 

 Aggregation in colonies  
  Higher 

organisms  
  Any living system (such as 

animal, plant, fungus, or 
microorganism). In at least 
some form, all organisms 
are capable of response to 
stimuli, reproduction, 
growth and development, 
and maintenance of 
homeostasis as a stable 
whole. An organism may 
be either unicellular 
(single - celled) or 
composed of, as in humans, 
many billions of cells 
grouped into specialized 
tissues and organs.  

  Reproduction, sexual, 
germination, partenogenetic 

 Multicellular organization with 
cell differentiation for 
multiplicity of functions 

 Growth and morphogenesis 
 Motility in response to 

environmental stimuli 
 Storage and elaboration of 

information about 
environment 

 Behavior 
 Social behavior 
 Self - consciousness 
 Cultural evolution  

TABLE 9.1 Continued

attempting to investigate patterns, structures, and processes at every level of 
form, pattern, structure, function, interaction, and evolution through biological 
data objects. The potential data objects in bioinformatics are illustrated in 
Figure  9.1 .   

 The general biology - driven problems in bioinformatics include: 

   •      Finding functionally signifi cant motifs in a family of protein sequences.  
   •      Developing techniques to detect alternative genetic codes.  
   •      Developing techniques to identify the extent of horizontal gene and 

intron transfer.  
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   •      Developing techniques to help understand the role of DNA repeats in 
genome evolution.    

 Over the past few decades, major advances in the fi eld of molecular biology, 
coupled with advances in genomic technologies, have led to an explosive 
growth in the biological data generated by the scientifi c community. This 
deluge of genomic information has, in turn, led to an absolute requirement for 
computerized databases to store, organize, and index the data and for special-
ized tools to view, analyze, and interpret the data. Bioinformatics is an emerg-
ing fi eld of science in which biology, computer science, and information 
technology merge to form an emerging discipline. The ultimate goal of the 
fi eld is to enable the discovery of new biological insights and hidden patterns 
of living systems at every level. At the beginning of the genomic revolution, a 
bioinformatics concern was the creation and maintenance of a database to 
store biological information, such as nucleotide, amino acid, and protein 
sequences. Development of this type of database involved not only design 
issues but the development of complex interfaces whereby researchers could 
both access existing data as well as submit new or revised data. Ultimately, all 
of this information must be combined to form a comprehensive picture of 
normal cellular activities. Therefore, the fi eld of bioinformatics has evolved 
such that the most pressing task now involves the analysis and interpretation 
of various types of data, including nucleotide, amino acid sequences, protein 

     FIGURE 9.1     Potential data objects in bioinformatics.  
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domains, and protein structures and interactions. Important research branches 
within bioinformatics include the development and implementation of tools 
(e.g., biolanguages; see Table  1.2 ) that enable effi cient access to, and use and 
management of, various types of information and new algorithms and statistics 
with which to assess relationships among members of large data sets, such as 
methods to locate a gene within a sequence, predict protein structure and/or 
function, and cluster protein sequences into families of related sequences. 

 Given a sequence of data such as a DNA or amino acid sequence, a motif 
or a pattern is a repeating subsequence. Such repeated subsequences often 
have important biological signifi cance, and hence discovering such motifs in 
various biological databases turns out to be a very important problem in com-
putational biology. Of course, in biological applications the various occur-
rences of a pattern in the given sequence may not be exact, and hence it is 
important to be able to discover motifs even in the presence of small errors. 
Various tools are now available for carrying out automatic pattern discovery. 
This is usually the fi rst step toward a more sophisticated task such as gene 
fi nding in DNA or secondary structure prediction in protein sequences at the 
system level. 

 Systems biology is an emergent fi eld that aims at system - level understand-
ing of biological systems. It focuses on systems that are composed of molecu-
lar components. Since the days of cybernetics, system - level understanding has 
been a long - standing goal of biological sciences. It was only recently that 
system - level analysis can be grounded on discoveries at the molecular level. 
With the progress of the genome sequence project and range of other molecu-
lar biology projects that accumulate in - depth knowledge of the molecular 
nature of biological system, we are now at the stage to look into the possibility 
of a system - level understanding solidly grounded in molecular - level under-
standing. Although systems are composed of matter, the essence of a system 
lies in dynamics and it cannot be described merely by enumerating the com-
ponents of the system. Both the structure of the system and components plays 
an indispensable role in forming the symbiotic state of the system as a whole. 
This may include the understanding of the structure of the system, such as 
gene regulatory and biochemical networks, and an understanding of the 
system dynamics, both quantitative and qualitative analysis. There are numbers 
of exciting and profound issues that are actively investigated, such as the 
robustness of biological systems, network structures and dynamics, and appli-
cations to drug discovery. Systems biology and network biology are in their 
infancy, but these are the areas that have to be explored and the areas that 
demonstrate the mainstream of the biological sciences in this century (Kitano, 
 2002a,b ). 

 In summary, to understand biology at the system level, we must examine 
the structure and dynamics of cellular function rather than the characteristics 
of isolated parts of a cell or organism. Properties of systems, such as robust-
ness, emerge as central issues, and understanding these properties may have 
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an effect on the future of medicine. However, many breakthroughs in experi-
mental devices, advanced software, and analytical methods are required 
before the achievements of systems biology can live up to their much - touted 
potential. 

 A key feature of the biological organization in all organisms is the tendency 
of proteins with a common function to associate physically via stable protein -
 to - protein interactions (PPIs) to form larger macromolecular assemblies. 
These protein complexes are often linked together by extended networks of 
weaker, transient PPIs, to form interaction networks that integrate pathways 
mediating the major cellular processes. Consequently, the cell is viewed 
increasingly as an assembly of interconnected functional modules that inte-
grate and coordinate a cell ’ s major biochemical activities and responses to 
external and intrinsic signals. Given their broad signifi cance, systematic analy-
ses of PPI networks have become a major experimental focus. One of the 
ultimate goals of biological networks is to improve our understanding of the 
processes and events that lead to pathologies and diseases. The analysis of 
biological pathways can provide a more effi cient way of browsing through 
biologically relevant information and offer a quick overview of underlying 
biological processes. Protein interactions help put biological processes in 
context, allowing researchers to characterize specifi c pathway biology. Hence, 
an analysis of biological networks is crucial for an understanding of complex 
biological systems and diseases. The analysis of protein interaction networks 
is an important and very active research area in bioinformatics and computa-
tional biology (Dyke,  1988 ).  

   9.2    EMERGING PATTERN, DISSIPATIVE STRUCTURE, AND 
EVOLVING COGNITION 

 The understanding of patterns, system biology, and network biology is of 
crucial importance to a scientifi c understanding of living systems. However, 
a full understanding of a living system requires further understanding of 
the system ’ s pattern, structure, and process. A new synthesis of living systems 
was introduced by Capra  (1997) . The key idea of his synthesis is to express 
the key criteria of a living system in terms of three conceptual dimensions: 
pattern (autopoiesis), structure (dissipative structure), and process (cognition) 
(He,  2008 ). 

  Autopoiesis: The Pattern of Life 

  Autopoiesis  literally means  “ auto (self) - creation ”  and expresses a fundamental 
interaction between structure and function. The term was introduced by 
Humberto Maturana and Francisco Varela in 1973 (Maturana and Varela, 
 1973, 1980 ). According to Maturana and Varela, a living system produces itself 
continuously. Autopoiesis is a network pattern in which the function of each 
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component involves the production or transformation of other components in 
the network. The simplest living system we know is the biological cell. The 
eukaryotic cell, for example, is made of various biochemical components, such 
as nucleic acids and proteins, and is organized into bounded structures such 
as the cell nucleus, various organelles, a cell membrane, and a cytoskeleton. 
These structures, based on an external fl ow of molecules and energy, produce 
the components which, in turn, continue to maintain the organized bounded 
structure that gives rise to these components. An autopoietic system is to be 
contrasted with an allopoietic system, such as a car factory, which uses raw 
materials (components) to generate a car (an organized structure), which is 
something other than itself (a factory). More generally, the term  autopoiesis  
resembles the dynamics of a nonequilibrium system; that is, organized states 
that remain stable for long periods of time despite matter and energy continu-
ally fl owing through them. From a very general point of view, the notion of 
autopoiesis is often associated with that of self - organization. However, an 
autopoietic system is autonomous and operationally closed, in the sense that 
every process within it helps directly in maintaining the whole. Autopoietic 
systems are structurally coupled with their medium in a dialect dynamics of 
changes that can be called  sensory - motor coupling . This continuous dynamics 
is considered as knowledge and can be observed throughout life - forms (Luisi, 
 1993 ; Mingers,  1994 ; Varela et al.,  1974 ). Mathematical models of self - organizing 
networks were known as  cellular automata , a powerful tool for simulating 
autopoiesis networks. A cellular automaton is a collection of  “ colored ”  cells 
on a grid of specifi ed shape that evolves through a number of discrete time 
steps according to a set of rules based on the states of neighboring cells. The 
rules are then applied iteratively for as many time steps as desired. Von 
Neumann was one of the fi rst people to consider such a model and incorpo-
rated a cellular model into his  “ universal constructor. ”  Cellular automata were 
studied in the early 1950s as a possible model for biological systems (Wolfram, 
 2002 ). The simplest type of cellular automaton is a binary, nearest - neighbor, 
one - dimensional automaton. Such automata were called  elementary cellular 
automata  by S. Wolfram, who has studied their amazing properties extensively 
(Wolfram,  2002 ). The theory of cellular automata is immensely rich, with 
simple rules and structures capable of producing a great variety of unexpected 
behaviors.  

  Dissipative Structure: The Structure of Living Systems 

 The term  dissipative structure  of a living system was coined by Ilya Prigogine, 
who pioneered research in the fi eld of thermodynamics (Mingers,  1994 ). A 
dissipative structure is a system thermodynamically open to the fl ow of energy 
and matter. A dissipative structure operates far from thermodynamic equilib-
rium in an environment with which it exchanges energy and matter. Prigogine 
describes a living system as a dissipative structure that is both structurally 
open and organizationally closed. Matter fl ows through it continually, but the 
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system maintains a stable form, and it does so autonomously through self -
 organization. Simple examples of dissipative structure include convection, 
cyclones and hurricanes. More complex examples include lasers, B é nard cells, 
the Belousov – Zhabotinsky reaction, and at the most sophisticated level, life 
itself. The vast network of metabolic processes keeps the system in a state far 
from equilibrium and gives rise to bifurcations through its inherent feedback 
loops. 

 According to Prigogine, dissipative structures are islands of order in a sea 
of disorder, maintaining and even increasing their order at the expense of 
greater order in their environment. The dissipative structure is sensitive to 
small fl uctuations in its environment at the bifurcation point. A bifurcation 
point represents a dramatic change in the system ’ s trajectory in phase space. 
A new attractor may suddenly appear, so that the system ’ s behavior as a whole 
branches off in a new direction and thus leads to development and evolution. 
Exactly what happens at the bifurcation point depends on the system ’ s previ-
ous history. A living system is a record of previous development. A tiny fl uc-
tuation in the environment will lead to the choice of the branch and lead to 
the emergence of new forms of order. Prigogine has coined the phrase  order 
through fl uctuations  to describe the situation. One way of modeling a dissipa-
tive structure mathematically involves the action of a group on a measurable 
set (Prigogine,  1967 ). Dissipative structures are dynamical systems described 
by a state  x ( t ), inputs  u ( t ), and outputs  y ( t ) at time  t  such that there exist 
a function of  x  and  t ,  V ( x ,  t ) (storage functions), and a function of  u  and  y , 
 w ( u ,  y ) (supply rates), such that

    V x t
dV x t t

dt
u t y t t,

,( ) ≥ ( )( ) < ( )⋅ ( )0 and for any time     (9.1)  

where  ·  is the scalar product. 
 The physical interpretation is that  V ( x ,  t ) is the energy in the system, 

whereas  u ( t )    ·     y ( t ) is the energy that is supplied to the system. Dissipative 
systems are still an active fi eld of research in systems and control, due to their 
important applications. Prigogine ’ s mathematical techniques (Prigogine,  1967 ) 
were applied by Brian Goodwin to model the stages of development of a 
single - celled alga. By setting up differential equations that interrelate patterns 
of calcium concentration in the alga ’ s cell fl uid with the mechanical properties 
of the cell walls, the feedback loops in self - organizing processes were identi-
fi ed, and structures of increasing order emerge as successive bifurcation points. 
As described earlier, a bifurcation point is a threshold of stability. The dissipa-
tive structure may branch to new states of order or may break down. Prigogine 
has observed that even in chemical oscillations, the history of a dissipative 
structure at bifurcation points seems to be the physical origin of the intersec-
tion between structure and history that is characteristic of all living systems. 
Living structure is always a record of previous development.  
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  Cognition: The Process of Life 

 The concept of cognition is closely related to such abstract concepts as mind, 
reasoning, perception, intelligence, learning, and many others that describe 
numerous capabilities of the human mind and expected properties of artifi cial 
or synthetic intelligence. Cognition or cognitive processes can be natural and 
artifi cial, conscious and not conscious; therefore, they are analyzed from dif-
ferent perspectives and in different contexts, in neurology, psychology, philoso-
phy, and computer science. Cognition, according to Maturana and Varela, is 
the activity involved in the self - generation and self - perpetuation of living 
systems. In other words, cognition is the very process of life. In this new view, 
cognition involves the entire process of life — including perception, emotion, 
and behavior — and does not necessarily require a brain and a nervous system. 
At the human level, however, cognition includes language, conceptual thought, 
and all the other attributes of human consciousness. Mind is not a thing but a 
process — the process of cognition, which is identifi ed with the process of life. 
The brain is a specifi c structure through which this process operates. The rela-
tionship between mind and brain is therefore one between process and struc-
ture. The brain is, moreover, by no means the only structure involved in the 
process of cognition. In the human organism, as in the organisms of all verte-
brates, the immune system is increasingly being recognized as a network that 
is as complex and interconnected as the nervous system and serves equally 
important coordinating functions (Capra,  1997 ).  

  Neuroscience 

 Neuroscience studies the structure, function, evolutionary history, develop-
ment, genetics, biochemistry, physiology, pharmacology, informatics, computa-
tional neuroscience, and pathology of the nervous system. The nervous system 
is composed of a network of neurons and other supportive cells (functional 
circuits). Each neuron is responsible for specifi c tasks of behavior at the organ-
ism level. Therefore, neuroscience can be studied at many different levels, 
ranging from the molecular level to the cellular level to the systems level to 
the cognitive level. 

 At the molecular level, the basic questions addressed in molecular neurosci-
ence include the mechanisms by which neurons express and respond to molec-
ular signals and how axons form complex connectivity patterns. At this level, 
tools from molecular biology and genetics are used to understand how neurons 
develop and die, and how genetic changes affect biological functions. 

 At the cellular level, the fundamental questions addressed in cellular neu-
roscience are the mechanisms of how neurons process signals physiologically 
and electrochemically. They address how signals are processed by the den-
drites, somas, and axons, and how neurotransmitters and electrical signals are 
used to process signals in a neuron. 
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 At the systems level, the questions addressed in systems neuroscience 
include how the circuits are formed and used anatomically and physiologically 
to produce the physiological functions, such as refl exes, sensory integration, 
motor coordination, circadian rhythms, emotional responses, learning, and 
memory. In other words, they address how these neural circuits function and 
the mechanisms through which behaviors are generated. 

 At the cognitive level, cognitive neuroscience addresses the questions of 
how psychological/cognitive functions are produced by the neural circuitry. 
The emergence of powerful new measurement techniques such as neuro-
imaging, electrophysiology, and human genetic analysis, combined with 
sophisticated experimental techniques from cognitive psychology, allow neu-
roscientists and psychologists to address abstract questions such as how human 
cognition and emotion are mapped to specifi c neural circuitries.   

   9.3    DENOTATIONAL MATHEMATICS AND 
COGNITIVE COMPUTING 

 Denotational mathematics is a category of expressive mathematical structures 
that deals with high - level mathematical entities beyond numbers and sets, such 
as abstract objects, complex relations, behavioral information, concepts, knowl-
edge, processes, and systems. Denotational mathematics is usually in the form 
of abstract algebra, a branch of mathematics in which a system of abstract 
notations is adopted to denote relations of abstract mathematical entities and 
their algebraic operations based on given axioms and laws. 

 Typical paradigms of denotational mathematics are concept algebra, system 
algebra, real - time process algebra (RTPA), visual semantic algebra (VSA), 
fuzzy logic, and rough sets. A wide range of applications of denotational math-
ematics has been identifi ed in many modern science and engineering disci-
plines that deal with complex and intricate mathematical entities and structures 
beyond numbers, Boolean variables, and traditional sets (Wang,  2008 ). Wang 
defi ned the basic expressive power and mathematical means in system model-
ing as outlined in Table  9.2 .   

 Within the new forms of descriptive mathematics,  concept algebra  is designed 
to deal with the new abstract mathematical structure of concepts and their 
representation and manipulation. Concept algebra provides a denotational 
mathematical means for algebraic manipulations of abstract concepts. Concept 
algebra can be used to model, specify, and manipulate generic  to be  – type 
problems, particularly system architectures, knowledge bases, and detail - level 
system designs, in cognitive informatics, computational intelligence, computing 
science, software engineering, and knowledge engineering. 

  System algebra  is created for the rigorous treatment of abstract systems and 
their algebraic operations. System algebra provides a denotational mathemati-
cal means for algebraic manipulations of all forms of abstract systems. System 
algebra can be used to model, specify, and manipulate generic  to be  and  to 
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have  problems, particularly system architectures and high - level system designs, 
in cognitive informatics, computational intelligence, computing science, soft-
ware engineering, and system engineering. 

 RTPA is developed to deal with a series of behavioral processes and archi-
tectures of software and intelligent systems. RTPA provides a coherent nota-
tion system and a formal engineering methodology for modeling both software 
and intelligent systems. RTPA can be used to describe both  logical  and  physi-
cal  models of systems, where logic views of the architecture of a software 
system and its operational platform can be described using the same set of 
notations. 

 A wide range of applications of denotational mathematics have been identi-
fi ed, which encompass concept algebra for knowledge manipulations, system 
algebra for system architectural manipulations, and RTPA for system behav-
ioral manipulations (Wang,  2008 ). 

 Cognitive informatics studies intelligent behavior and cognition. Cognition 
includes mental states and processes, such as thinking, reasoning, learning, 
perception, emotion, consciousness, remembering, language understanding, 
and generation. In the emerging theory of living systems, mind is not a thing 
but a process. It is cognition, the process of knowing, and it is identifi ed with 
the process of life itself. Cybernetics provided cognitive science with the fi rst 
model of cognition: that is, as the manipulation of symbols based on a set of 
rules. The main themes of cognitive informatics encompass three categories of 
topics: cognitive computing, computational intelligence, and neural informat-
ics, outlined as the theoretical framework of cognitive informatics by Wang 
et al.  (2009)  (Table  9.3 ). Across the three themes of cognitive informatics, 
their denotational and expressive needs lead to new forms of mathematics 
collectively known as  denotational mathematics .   

     Neural Networks     The concept of a neural network appears to have fi rst 
been proposed by Alan Turing in his 1948 paper  “ Intelligent Machinery. ”  
Historically, computers evolved from the von Neumann architecture, which is 

  TABLE 9.2    Denotational Mathematics 

   Basic Power 
Expressive in 
System Modeling  

   Classic 
Mathematics  

   Denotational 
Mathematics     Use  

  To  be     Logic    Concept algebra    To identify objects 
and attributes  

  To  have     Set theory    System algebra    To describe relations 
and procession  

  To  do     Functions    Real - time process 
algebra  

  To describe status 
and behavior  
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based on sequential processing and execution of explicit instructions. On the 
other hand, the origins of neural networks are based on efforts to model 
information processing in biological systems, which may rely largely on paral-
lel processing as well as implicit instructions based on the recognition of 
patterns of sensory input from external sources. In other words, at its very 

  TABLE 9.3    Cognitive Informatics 

   Cognitive Computing  
   Computational 

Intelligence     Neural Informatics  

  Informatics models of 
the brain  

  Imperative vs. 
autonomous computing  

  Neuroscience 
foundations of 
information processing  

  Cognitive processes of 
the brain  

  Reasoning and inferences    Cognitive models of the 
brain  

  Internal information 
processing mechanisms  

  Cognitive informatics 
foundations  

  Functional modes of the 
brain  

  Theories of natural 
intelligence  

  Robotics    Neural models of 
memory  

  Intelligent foundations 
of computing  

  Informatics foundations 
of software engineering  

  Neural networks  

  Denotational 
mathematics  

  Fuzzy/rough sets/logic    Neural computation  

  Abstraction and means    Knowledge engineering    Cognitive linguistics  
  Ergonomics    Pattern and signal 

recognitions  
  Neuropsychology  

  Informatics laws of 
software  

  Autonomic agent 
technologies  

  Bioinformatics  

  Knowledge 
representation  

  Memory models    Biosignal processing  

  Models of knowledge 
and skills  

  Software agent systems    Cognitive signal 
processing  

  Formal linguistics    Decision theories    Gene analysis and 
expression  

  Cognitive complexity 
and metrics  

  Problem - solving theories    Cognitive metrics  

  Distributed intelligence    Machine learning systems    Neural signal 
interpretation  

  Semantic computing    Distributed objects/
granules  

  Visual information 
representation  

  Emotions/motivations/
attitudes  

  Web - contents cognition    Visual semantics  

  Perception and 
consciousness  

  Nature of software    Sensational cognitive 
processes  

  Hybrid (AI/NI) 
intelligence  

  Granular computing    Human factors in 
systems  
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heart a neural network is a complex statistical processor. Artifi cial neural 
networks are made up of interconnecting artifi cial neurons. Artifi cial neural 
networks may either be used to gain an understanding of biological neural 
networks, or for solving artifi cial intelligence problems without necessarily 
creating a model of a real biological system. Biological neural networks are 
made up of real biological neurons that are connected or functionally related 
in the peripheral nervous system or the central nervous system. A biological 
neuron may have as many as 10,000 different inputs and may send its output 
to many other neurons. A single neuron may be connected to many other 
neurons and the total number of neurons and connections in a network may 
be extensive. In the fi eld of neuroscience, they are often identifi ed as groups 
of neurons that perform a specifi c physiological function in laboratory analy-
sis. The cognitive modeling fi eld involves the physical or mathematical model-
ing of the behavior of neural systems, ranging from the individual neural level, 
such as modeling the spike response curves of neurons to a stimulus, through 
the neural cluster level, such as modeling the release and effects of dopamine 
in the basal ganglia, to the complete organism on behavioral modeling of the 
organism ’ s response to stimuli. In more practical terms, neural networks are 
nonlinear statistical data modeling or decision - making tools. They can be used 
to model complex relationships between inputs and outputs or to fi nd patterns 
in data. Although a detailed description of neural systems is nebulous, prog-
ress is being charted toward a better understanding of basic biological 
mechanisms.  

  Evolving Cognition     Recently, biologists and philosophers have been 
attracted by an evolutionary epistemology. It was argued that our cognitive 
abilities are the outcome of organic evolution and that, conversely, evolution 
itself may be described as a cognition process. Furthermore, it is argued that 
the key to an adequate evolutionary epistemology lies in a system - theoretical 
approach to evolution which grows from, but goes beyond, Darwin ’ s theory 
of natural selection. Although random mutation and natural selection are all 
still acknowledged as important aspects of biological evolution, the central 
focus is shifting from evolution to co - evolution. This is an ongoing dance 
that proceeds through a subtle interplay of competition and cooperation, 
creation and mutual adaptation. In other words, proper understanding 
of human evolution is impossible without understanding the evolution of 
language, art, and culture. We must turn our attention to the mind process 
of life.  

  Biological Peptides and Psychosomatic Network     Research in the 1980s 
described by Capra  (1997)  uncovered ubiquitous neuron - peptide - receptor 
distribution in brain structures associated with emotional processing and 
throughout many organ systems. This fi nding supported neuron peptides as 
biochemical substrates of emotion, and the neuron - peptide - receptor network 
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as a parasynaptic system crossing traditional brain – body boundaries. The 
medical relevance of these fi ndings was affi rmed by psychoneuroimmunology 
research. Neuropeptides help to regulate immunocyte traffi cking. There is 
bidirectional communication between nervous and immune system compo-
nents, immunocytes produce neuron - peptides, and nerve cells produce 
immune - associated cytokines. In the past decade, the concept of a unifi ed 
psychosomatic network has been strengthened by animal and human research 
demonstrating relationships between behavior and neuron - peptide - mediated 
regulation of immune functions. 

 The discovery of this psychosomatic network implies that the nervous 
system is not hierarchically structured, and ultimately this implies that cogni-
tion is a phenomenon that expands throughout an organism, operating through 
an intricate chemical network of peptides that integrates our mental, emo-
tional, and biological activities.    

   9.4    CHALLENGES AND PERSPECTIVES 

 From a scientifi c perspective, discovering how the brain thinks is a major 
undertaking in the history of humankind. Bioinformatics provides com-
putational and experimental tools to study biological patterns, structures, 
and functions. Cognitive informatics investigates the internal information -
 processing mechanisms and process of life cognition. According to Kandel 
 (2006) ,  “ understanding the human mind in biological terms has emerged as 
the central challenge for science in the twenty - fi rst century. We want to 
understand the biological nature of perception, learning, memory, thought, 
consciousness, and the limits of free will. Thus, we gain from the new science 
of mind not only insights into ourselves — how we perceive, learn, remem-
ber, feel, and act — but also a new perspective of ourselves in the context of 
biological evolution. The task of neural science is to explain behavior in 
terms of the activities of the brain. How does the brain marshal its millions 
of individual nerve cells to produce behavior, and how are these cells 
infl uenced by the environment  … ? The last frontier of the biological 
sciences — their ultimate challenge — is to understand the biological basis of 
consciousness and the mental processes by which we perceive, act, learn, 
and remember. ”  

 Mathematical modeling has had an enormous impact on cognition and 
neuroscience. The Hodgkin – Huxley format for describing membrane ionic 
currents has been extended and applied to a variety of neuronal excitable 
membranes. The signifi cance of dendrites for the input – output properties of 
neurons was not understood before the development of Rall ’ s cable theory 
(Rall,  1962, 1964 ). Hartline and Ratliff  (1972)  were pioneers in developing 
quantitative and predictive network models. In addition, Fitzhugh ’ s work 
( 1960 ,  1969 ) demonstrated the value of simplifi ed nonlinear models and of 
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qualitative mathematical analysis. The success of these theoretical contribu-
tions, and the high degree of quantifi cation in neurobiology, ensures continued 
opportunities for mathematical work. 

 Recent advances in experimentation, such as patch clamp recording, 
voltage -  and ion - specifi c dyes, and confocal microscopy, are providing data to 
facilitate further theoretical development for addressing fundamental issues 
ranging from the subcellular to cell - ensemble to whole - system levels. We must 
synthesize information and mechanisms across these different levels for a 
thorough understanding from molecule to ecosystem. This is perhaps the fun-
damental challenge facing mathematical and theoretical biology. How do we 
relate phenomena at different levels of organization? How are small - scale 
processes to be integrated and related to higher - level phenomena? For 
example, in modeling neuronal networks, what are the crucial properties of 
individual cells that must be retained in order to address a particular set of 
questions? Most network formulations use highly idealized  neural units , which 
ignore much of what is known about cellular biophysics. We need to develop 
systematic procedures to derive, in a biophysically meaningful way, descrip-
tions of ensemble behavior. 

 Correspondingly, we seek to identify low - level mechanisms from data at 
higher levels. The Hodgkin – Huxley theory hypothesized that macroscopic 
currents might be generated by molecular  “ pores ” ; only much later were these 
individual channels discovered. Another set of common modeling needs are 
methods for dealing reasonably with the wide range of time and space scales 
involved with different intracellular domains and processes, with short -  and 
long - distance interactions between cells, and among different cell assemblies. 
At the lowest level, we need improved biophysical understanding of the mech-
anisms for ion transport through membrane channels. How does the voltage 
dependence of opening and closing rates arise? What accounts for ion selectiv-
ity by which, for example, channels discriminate among ions of the same 
charge and similar properties? Theories at this level are beginning to involve 
stochastic descriptions for fl uxes and simulation methods for molecular 
structure and dynamics. Kinetic modeling of single channel data is being 
debated hotly with regard to whether a fi nite or infi nite number of open/
closed/inactivated states are appropriate. 

 One of the most active pursuits in neuroscience research is to discover the 
mechanisms for plasticity and learning at the cellular – molecular level. The 
foregoing techniques, together with state - of - the - art biochemical methodolo-
gies, are beginning to yield information for feasible detailed biophysical mod-
eling. Dendritic spines, NMDA receptor channels, spatiotemporal dynamics of 
calcium, and other intracellular second messengers are focal points for these 
explorations. Such studies are bringing together theoreticians, neuroscientists, 
and biochemists. Although theorizing about mechanisms for synaptic plasticity 
is proceeding, disagreement remains about the basic mechanism of chemical 
synaptic transmission. Two competing hypotheses (one involving calcium 
alone, and the other including voltage effects as well) are being explored 
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with fervor, and mathematical modeling is a key ingredient in arguments for 
each case.   

 Models of neural interactions lead to many interesting mathematical 
questions for which appropriate tools must be developed. Typically, 
networks are modeled by (possibly stochastic) systems of differential 
equations. In some simplifi ed limits, these become nonlinear integro-
differential equations. The question now becomes one of proving or oth-
erwise demonstrating that the simplifi ed models have the desired behavior. 
Furthermore, one must characterize this behavior as parameters in the 
model vary (i.e., understand the bifurcations in the dynamics). Another 
important point that mathematicians must address is the extraction of the 
underlying geometric and analytic ideas from detailed biophysical models 
and simulations. 

 The next level of neuronal complexity beyond the single cell is the small 
network with on the order of tens to hundreds of neurons. Such networks 
have been studied most extensively in invertebrates and the sensory or 
motor systems of vertebrates, in which the function of small groups of 
neurons can be related to specifi c behaviors of the animal (Kandel,  1984 ; 
Lockery et al.,  1989 ; Selverston and Moulins,  1985 ). These  “ simple systems ”  
are also attractive because one can expect to characterize their cellular and 
intercellular properties more completely than in vertebrates. Much research 
on their structural features has been based on the explicit assumption that 
once network structure was understood, functional understanding would 
follow. Recently, however, many workers have come to realize that even with 
a great deal of structural information, the understanding of functional mech-
anisms will require the development of sound, structurally based theoretical 
models. 

 A principal challenge for modeling at this level is the development of more 
biologically realistic computational models and mathematical analyses that 
can provide insight into how these networks function. Although these net-
works involve relatively small numbers of neurons, their complexity will 
require increasingly powerful mathematical tools. At the same time, modeling 
at this level is likely to be especially valuable for neurobiology. In few other 
neural systems is the link between neural structure and behavior more direct. 
Thus, it is already possible to see in the structure of the nervous system its 
functional correlates. Also, few other systems currently provide the anatomical 
and physiological parameters essential for realistic modeling. As models for 
understanding the general dynamical properties of such neural networks or 
for understanding the way in which feedback modifi es neuronal behavior, 
small neural systems represent a gold mine for computational and mathemati-
cal neurobiology. 

 Coherent brain areas dedicated to particular functions, such as primary 
sensory cortical areas, provide complex challenges for computational and 
mathematical models (Sereno et al.,  1988 ). Such areas typically contain mul-
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tiple types of cells, receive inputs from multiple distinct sources, and often are 
heavily interconnected with their links to interarea recurrent or reentrant 
loops. Large bodies of anatomical and physiological data are available, but the 
integrative capabilities are poorly understood, and modeling techniques will 
almost surely be needed to unravel them. 

 Developmental neurobiology is a source of biologically important and 
mathematically interesting questions. Modeling at the large network level has 
played an important role in this fi eld, with much collaboration between math-
ematicians and experimental biologists. Among the important questions 
arising in this fi eld are the topography of connections from one part of the 
brain to another and how these maps might form spontaneously. Many exam-
ples exist of such maps in the central nervous system; the best characterized 
are in the vertebrate visual system. The earliest theoretical models and exper-
iments concerned the wiring from the retina to the optic tectum. Many 
models have been proposed and analyzed (von der Malsburg,  1973   ; Whitelaw 
and Cowan,  1981 ; see Linsker,  1990 , for a review), but as new experimental 
results have become available, many of the models must be altered or 
eliminated. 

 Several new technologies, such as voltage - sensitive dyes and deoxyglucose 
injection, have led to the discovery of beautiful regular maps in the visual 
cortex of mammals. The patterns include stripes of ocularity and twists and 
singularities of orientation preference. Models proposed for these patterns 
(Durbin and Mitchison,  1990 ; Miller et al.,  1989 ) involve mechanisms ranging 
from bandpass - fi ltered noise, to competitive interactions, to Hebbian rules 
with lateral inhibition. What must be done is to decide what the common idea 
is that underlies these models and how these mechanisms might possibly be 
realized in the nervous system. 

 As we begin to understand the mechanisms of synaptic plasticity, it is 
natural to ask about the consequences of this for the behavior of large net-
works involving plastic elements. Only in this way will we understand the 
relation between synaptic plasticity and learning at the organismic level. This 
has been a major focus in the study of computational properties of large - scale 
neural networks across a number of disciplines, including physics, biology, 
psychology, and mathematics (Hopfi eld,  1984 ; Rumelhart et al.,  1986 ). 
Mathematical analysis promises to provide an important bridge between com-
putational and behavioral studies and the empirical results of neurobiology 
(Poggio and Girosi,  1990 ). An excellent survey is given by Koch and Segev 
 (1989) . 

 Models at the level of the complete organism provide an opportunity to 
make real progress on the long - sought unifi cation of the behavioral sciences 
with neurobiology. Models intended to explain behavioral observations (e.g., 
from psychology and ethology) can be cast in terms of underlying neural 
mechanisms rather than at the phenomenological or control theory level, as 
before. Such models can bring about a new understanding of such phenomena 



246  BIOINFORMATICS, DENOTATIONAL MATHEMATICS

as visual illusions (e.g., Treisman et al.,  1990 ), the relation between long -  and 
short - term memory, and category formation. They will provide signifi cant 
constraints on psychological explanations that have not in the past been easy 
to correlate with the nervous system. To carry out this analysis, one must 
eventually couple models of the nervous system with those of the environment 
in which the whole system exists (Kersten,  1990 ).  
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  10    Evolutionary Trends and 
Central Dogma of Informatics     

     Life consists of matter and energy, but it is not just matter and energy. Life is 
also information. Life has three fundamental dimensions. The life of an indi-
vidual comes from the DNA of its parents. DNA is insignifi cant in terms of its 
elemental composition. It is composed of nitrogen, oxygen, sulfur, and so on. 
DNA as a source of energy is composed of the similar level of chemical energy 
that can be produced by experiments. The characteristic of DNA is an infor-
mational molecule, a molecule containing a large amount of information. 

 Informatics is evolving and being transformed. Many boundaries among 
science, engineering, and social systems are cross - linked in the face of combi-
nations of knowledge and tools. It is the time when the physical, biological, 
and social sciences are joining forces with information sciences and technol-
ogy. It is the time when we will make extraordinary advances in the history of 
humankind through information sciences. However, throughout the history of 
information science, many defi nitions of information, knowledge, and data 
have been suggested, and other defi nitions of them may continue to merge. 

 In this chapter we return to the big picture of informatics introduced in 
Chapter  1 . We propose a general concept of data, information, and knowledge 
and then place the main focus on the process and transition from data to 
information and then to knowledge. We present the concept of the central 
dogma of informatics, in analogy to the central dogma of molecular biology.  

   10.1    INTRODUCTION 

 Informatics studies the foundation, representation, processing, and communi-
cation of information in natural and artifi cial systems. The central notion is the 
transformation of data to information and information to knowledge — whether 
by computation or communication, whether by organisms or artifacts. It deals 
with the structure, function, behavior, and interactions of natural and artifi cial 
computational systems. It has computational, experimental, theoretical, cogni-
tive, and social aspects. 

Mathematics of Bioinformatics: Theory, Practice, and Applications, By Matthew He and 
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 Understanding informational phenomena such as computation, cognition, 
and communication enables scientifi c, engineering, and technological advances 
and promotes scientifi c enquiry. The science of information and the engineer-
ing of information systems are interdependent and develop hand - in - hand. 
Informatics is the emerging discipline that combines the two. In natural and 
artifi cial systems, information is carried at many levels, ranging, for example, 
from biological molecules and electronic devices through nervous systems and 
computers and on to societies and large - scale distributed systems. It is char-
acteristic that information carried at higher levels is represented by informa-
tional processes at lower levels. Each of these levels is the proper object of 
study for some discipline of science or engineering. Informatics aims to develop 
and apply fi rm theoretical and mathematical foundations for the features that 
are common to all complex systems. In its attempts to account for phenomena, 
science progresses by defi ning, developing, criticizing, and refi ning new con-
cepts. Informatics is developing its own fundamental concepts of data, infor-
mation, knowledge, communication, and interaction, and relating them to such 
phenomena as computation, thought, and language (Belkin and Robertson, 
 1976 ; Wersig and Neveling,  1975 ). 

 Informatics has many aspects, and encompasses a number of existing aca-
demic disciplines: artifi cial intelligence, cognitive science, and computer 
science. Each takes part of informatics as its natural domain: In broad terms, 
cognitive science concerns the study of natural systems; computer science 
concerns the analysis of computation and the design of computing systems; 
and artifi cial intelligence plays a connecting role, designing systems that 
emulate those found in nature. Informatics also informs and is informed by 
other disciplines, such as mathematics, electronics, biology, linguistics, and 
psychology. Thus, informatics provides a link between disciplines with their 
own methodologies and perspectives, bringing together a common scientifi c 
paradigm, common engineering methods, and a pervasive stimulus from tech-
nological development and practical application. 

 Three of the truly fundamental questions of science are: What is matter?, 
What is life?, and What is mind? The physical and biological sciences concern 
the fi rst two. The emerging science of informatics contributes to our under-
standing of the latter two by providing a basis for the study of organization 
and process in biological and cognitive systems. Progress can best be made by 
means of strong links with the existing disciplines devoted to particular aspects 
of these questions. 

 Informatics provides an enormous range of problems and opportunities. 
One challenge is to determine how far, and in what circumstances, theories of 
information processing in artifi cial devices can be applied to natural systems. 
A second challenge is to determine how far principles derived from natural 
systems are applicable to the development of new types of artifi cial systems. 
A third challenge is to explore the many ways in which artifi cial information 
systems can help to solve problems facing humankind and help to improve the 
quality of life for all living things. One can also consider systems of mixed 



EVOLUTIONARY TRENDS OF INFORMATION SCIENCES  251

character; a question of longer - term interest may be to what extent it is helpful 
to maintain the distinction between natural and artifi cial systems. Throughout 
the history of information science, many defi nitions of data, information, and 
knowledge have been suggested, and other defi nitions of them may continue 
to merge. We propose a general concept of data, information, and knowledge 
and then place the focus on the process and transition from data to informa-
tion and from information to knowledge. We introduce the concept of central 
dogma of informatics in analogy to the central dogma of molecular biology.  

   10.2    EVOLUTIONARY TRENDS OF INFORMATION SCIENCES 

 Recently, a systems view of technologies has been emerging. General systems 
theory was originally proposed by Hungarian biologist Ludwig von Bertalanffy 
in 1928 (von Bertalanffy,  1976 ). It studies the nature of complex systems 
in nature, society, and science. The emergence of systems thinking was a pro-
found revolution in the history of Western scientifi c thought in terms of con-
nectedness, relationships, and context. Various technological systems, such 
as manufacturing systems, construction systems, transportation systems, and 
communication systems, are emerging. Subsystems of the communication 
system, such as people - to - people communication, people - to - machine com-
munication, machine - to - people communication, and machine - to - machine 
communication, are evolving. These technological systems refl ect interactions 
between human and physical devices. These interactions, together with recent 
advances in biological and social systems, lead us to the systems view of tech-
nology and information sciences. We classify technology and information sci-
ences into three principal phases of evolution, as illustrated in Figure  10.1 : 

  1.     Physical information science and technology (nonorganic/nonliving 
material - based)  

  2.     Biological information science and technology (organic/living 
material - based)  

  3.     Societal information science and technology (language/mind - based)      

 Physical information science and technology constitute an original system 
science that exists in the physical world. They consist of physical materials with 

     FIGURE 10.1     Three phases of technology and information science (the PBS model).  

Biological technology and information science  

Societal technology and information science

 
Physical technology and information science 
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informational instructions. A voluminous literature on physical science and 
technology is documented throughout history (Meyers,  2001 ). 

 Biological technology involves biological means embedded in living systems. 
It is made of biological matter and naturally evolved  “ machines ”  that perform 
molecular calculations and complex functions. The biological or natural tech-
nology is a major and most effective technology for ensuring life on our planet, 
and acquirement of this technology, occurring in modern time, is a major 
movement in the evolution of humankind. 

 Societal technology, the technological or engineering counterpart to the 
social sciences, emphasizes genuine solutions to social problems and social life, 
treating their underlying causes. It is a science that answers questions about 
 “ what ”  and  “ why ” ; as technology is a collection of the study, invention, and 
refi nement of tools and techniques, it also answers  “ how ”  questions. Law, 
government, business, fi nance, research, development, education, and other 
activities within human society constitute a collection of tools/rules and tech-
niques applied for societal purposes, and thus societal technology. These three 
phases of technologies are well connected with the process of universal evolu-
tion. Evolution is the primary cosmic force that creates order and makes it 
visible in different categories of nature. Evolution arises from the interaction 
of mutation and selection: mutation occurring by chance and selection by 
necessity for survival. In the categorization of nature, Salk divided universal 
evolution into three main eras in which different types of matter have emerged. 
The universal growth of complexity as part of this evolution is demonstrated 
in Table  10.1  (He,  2009 ; Salk,  1983 ).   

 Technology evolves. Physical, biological, and societal technologies interact 
and grow into a complex network system. We illustrate their interactions by 
the physical – biological – societal (PBS) technology triangle model (He,  2009 ) 
shown in Figure  10.2 . The interactions among these physical, biological, and 

  TABLE 10.1    Salk ’ s Model: Universal Evolution 

   Physical Sphere     Biosphere     Metabiosphere  

  Physical matter 
 Elementary particles 

   

 

        Atoms 

          Molecules   

  Living matter 
 Replicating molecules 

   

 
 
         Cells 
 
          Organisms 
 
 
 
 

  

  Human matter 
 Human mind 

   

 
 
     Human culture 
 
        Human morality   

  Prebiological evolution    Biological evolution    Metabiological evolution  
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     FIGURE 10.2     PBS technology triangle model.  
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societal technologies are connected and interdependent, and the technologies 
are the driving force of life. They are connected through a central unit:  infor-
mation . Information is everything; and everything is connected to everything 
else. Information exits, mutates, and evolves. Rules, patterns, and blueprints 
are embedded in information. Technology is a natural refl ection, confi guration, 
and innovation of physical matter, biological materials, and the human mind. 
The simple PBS triangle rotates around a central information point. The evolu-
tion of technology and information sciences causes social, biological, and 
environmental changes.   

 There is a direct correlation between the development of technology and 
changes in history. Physical technology allows human beings to change their 
world, including societal and biological technologies. At the same time, tech-
nological advances allow people to thrive and become more successful within 
their own society.  

   10.3    CENTRAL DOGMA OF INFORMATICS 

 The central dogma of molecular biology was fi rst enunciated by Francis Crick 
in 1958 and restated in an article in  Nature  in 1970 (Crick,  1970 ). It states the 
conversion of the genetic message in DNA to a functional mRNA (transcrip-
tion) and subsequent conversion of the genotype that was copied, to a pheno-
type in the form of proteins. The process of conversion of a mRNA to a 
functional protein, known as  translation , is illustrated in Figure  10.3  by three 
major stages. This central dogma forms the backbone of molecular biology.   
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     Stage 1 (Replication)     The DNA replicates its information in a process that 
involves many enzymes. It is a fundamental process occurring in all living 
organisms to copy their DNA. Each strand of the original double - stranded 
DNA molecule serves as a template for reproduction of the complementary 
strand. Hence, following DNA replication, two identical DNA molecules have 
been produced from a single double - stranded DNA molecule. Cellular proof-
reading and error - checking mechanisms ensure nearly perfect fi delity for 
DNA replication (Berg et al.,  2002   ).  

  Stage 2 (Transcription)     The DNA codes for the production of messenger 
RNA (mRNA) during transcription. In eucaryotic cells, the mRNA migrates 
from the nucleus to the cytoplasm. Transcription is the synthesis of RNA under 
the direction of DNA. RNA synthesis, or transcription, is the process of tran-
scribing DNA nucleotide sequence information into RNA sequence informa-
tion. The nucleic acid sequences use complementary language, and the 
information is simply transcribed, or copied, from one molecule to the other. 
DNA sequence is copied enzymatically by RNA polymerase to produce a 
complementary nucleotide RNA strand, called messenger RNA (mRNA) 
because it carries a genetic message from the DNA to the protein - synthesizing 

     FIGURE 10.3     Central dogma of molecular biology.  
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machinery of the cell. One signifi cant difference between the RNA and DNA 
sequences is the presence of U, or uracil, in RNA instead of the T, or thymine, 
of DNA. In the case of protein - encoding DNA, transcription is the fi rst step 
and usually leads to the expression of the genes by the production of the 
mRNA intermediate, which is a faithful transcript of a gene ’ s protein - building 
instruction. The stretch of DNA that is transcribed into an RNA molecule is 
called a  transcription unit . A DNA transcription unit that is translated into 
protein contains sequences that direct and regulate protein synthesis in addi-
tion to coding the sequence that is translated into protein. The regulatory 
sequence that is before [upstream ( − ), toward the 5 ′  DNA end] the coding 
sequence is called the 5 ′   untranslated region  (5 ′ UTR), and the sequence found 
following [downstream ( + ), toward the 3 ′  DNA end] the coding sequence is 
called the 3 ′   untranslated region  (3 ′ UTR). Transcription has some proofread-
ing mechanisms, but they are fewer and less effective than the controls for 
copying DNA; therefore, transcription has a lower copying fi delity than DNA 
replication (Berg et al.,  2006 ).  

  Stage 3 (Translation)     Messenger RNA carries coded information to ribo-
somes. The ribosomes  “ read ”  this information and use it for protein synthesis. 
Translation is the fi rst stage of protein biosynthesis (part of the overall process 
of gene expression). Translation is the production of proteins by decoding 
mRNA produced in transcription. Translation occurs in the cytoplasm, where 
the ribosomes are located. Ribosomes are made of a small and a large subunit, 
which surround the mRNA. In translation, messenger RNA (mRNA) is 
decoded to produce a specifi c polypeptide according to the rules specifi ed by 
the genetic code. This uses an mRNA sequence as a template to guide the 
synthesis of a chain of amino acids that form a protein. Many types of tran-
scribed RNA, such as transfer RNA, ribosomal RNA, and small nuclear RNA, 
are not necessarily translated into an amino acid sequence. Translation pro-
ceeds in four phases: activation, initiation, elongation, and termination (all 
describing the growth of the amino acid chain, or polypeptide, which is the 
product of translation). Amino acids are brought to ribosomes and assembled 
into proteins. Proteins do not code for the production of protein, RNA or 
DNA. They are involved in almost all biological activities, structural or 
enzymatic. 

 The central dogma of molecular biology has paved a revolutionary road for 
further investigations in great details of the process of replication, transcrip-
tion, and translation. Furthermore, this central dogma has provided a great 
impact on the study of informatics. The process of conversion from data to 
information and to knowledge has a much broader and fundamental impact 
on many domains, as information is an intrinsic property of the universe: the 
intricate organization of matter and energy. 

 As the philosopher Paul Churchland  (1989)  notes, humans have been trying 
to understand the world throughout most of recorded history; in just the past 
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200 years, our curiosity has revealed much of what nature had kept hidden 
from us: the fabric of space – time, the constitution of matter, the many forms 
of energy, the origins of the universe, the nature of life itself with the discovery 
of DNA, and the completion of the mapping of the human genome in 2001. 
But one mystery has not been solved: the mystery of the human brain and 
how it gives rise to thoughts and feeling, hopes and desires, love, and the 
experience of beauty, not to mention dance, visual art, literature, and informa-
tion (Freeman,  2000a,b   ). 

 Interaction among matter, energy, and information is the root of evolution. 
Information is distributed throughout the brain (Allman,  2000 ). Animals 
evolve certain physical forms as a response to their environment, and the 
characteristics that conferred an advantage for mating were passed down to 
the next generation through the genes. A subtle point in Darwinian theory is 
that living organisms — whether plants, viruses, insects, or animals — coevolved 
with the physical world. In other words, the world is also changing in response 
to them. If one species develops a mechanism to keep away a particular 
predator, that predator ’ s species is then under evolutionary pressure either to 
develop a means to overcome that defense or to fi nd another food source. 
Natural selection is an arms race of physical morphologies changing to 
catch up with one another. Our minds are the product of millions of years of 
evolution. Our thought patterns, our predispositions to solve problems in 
certain ways, and our sensory systems are all products of evolution. Our minds 
coevolved with the physical world, changing in response to ever - changing 
conditions (La Cerra and Bingham,  2002 ; Madden,  2004 ). A combinatorial 
mind has opened up a world of words and sentences, of theories and equations, 
of poem and melodies, of jokes and sorties (Bates,  2005 ; Cooper,  2001 ; Durham, 
 1991 ; Goonatilake,  1991 ). 

 Darwin ’ s theory of natural selection was revolutionized by the discovery of 
the gene, specifi cally Watson and Crick ’ s discovery of the structure of DNA. 
Perhaps we are witnessing another revolution in the aspect of evolution that 
depends on social behavior, on culture (Madden,  2004 ). 

 The term  information  includes data on the one hand, and knowledge on the 
other. In the following, we briefl y review the key defi nitions of data, informa-
tion, and knowledge from various aspects and then introduce a general defi ni-
tion of data, information, and knowledge. In analogy with the central dogma 
of molecular biology, we establish the central dogma of informatics. Each 
concept of data, information, and knowledge carries its own entity with arrays 
of spectrum that can be investigated. Most important, the process of trans-
forming data to information and converting information to knowledge con-
tinue to be the central theme of informatics. 

 A datum is a small chunk of information. Data are commonly seen as 
something raw. Data are symbols without relationships and may be seen as a 
portion of the entire information without being processed. Data may be 
referred to information selected or generated by human beings for social 
purposes (Bates,  2005 ). 
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 Here we defi ne  data  as a collection of   symbols,   images, or other outputs from 
devices on source to represent the qualitative or quantitative attributes of a 
variable or set of variables that are unprocessed and for which no relationships 
have been established.  Data  is a multidimensional abstract concept on a path 
to being fully distilled (Hammarberg,  1981 ), that is, in a sequence that goes 
from data to information to knowledge. 

 The term  information  is thought of as organized data, or  “ facts, ”  organized 
into a coherent pattern. According to Peirce (Short,  2007 ), information was 
embedded in his wider theory of symbolic communication, which he called the 
 semeiotic , now a major part of semiotics. For Peirce, information integrates the 
aspects of signs and expressions covered separately by the concepts of denota-
tion and extension, on the one hand, and by connotation and comprehension, 
on the other. 

 Information is also viewed as a form of mass – energy system (Stonier,  1990, 
1997 ). Information is an implicit component (the hidden dimension) of virtu-
ally every single equation governing the laws of nature. Information is the core 
ingredient of all communication and control processes in living and nonliving 
systems (Young,  1987   ). 

 Claude E. Shannon, for his part, was very cautious:  “ The word  information  
has been given different meanings by various writers in the general fi eld of 
information theory ”  (Shannon and Weaver,  1975   , Wiener,  1961 ). Gregory 
Bateson defi ned  information  as  “ a difference that makes a difference ”  (Bateson, 
 1979 ). 

 According to Floridi, four types of mutually compatible phenomena are 
commonly referred to as information (Floridi,  2002 ): 

  1.     Information about something (e.g., a train timetable)  
  2.     Information as something (e.g., DNA or fi ngerprints)  
  3.     Information for something (e.g., algorithms or instructions)  
  4.     Information in something (e.g., a pattern or a constraint)    

 Here we defi ne  information  as a multidimensional organized entity derived 
from data source through a process of transformation. The information entity 
has many attributes or patterns with relationships. It has its own structure and 
can be converted to knowledge through a process of transformation. 

 The term  knowledge  is thought of as organized and internalized information 
and the ability to utilize the information. Knowledge was viewed as informa-
tion given meaning and integrated with other contents of understanding 
(Bates,  2005   ; Davenport and Prusak,  1998 ). It simply defi nes knowledge as 
information given meaning. Knowledge represents the intellectual constructs 
of human beings organizing human information. Knowledge may be defi ned 
as organized information in people ’ s heads. 

 Here we defi ne  knowledge  as a multidimensional functional entity derived 
from information through a process of transformation. Knowledge has its own 
structure and function. Knowledge about primitive organisms provides much 
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information about shared metabolic features and hints at diseases that affect 
humans in an economical and ethically acceptable manner. Knowledge from 
many scientifi c disciplines and their subfi elds has to be integrated to achieve 
the goals of informatics. Applying knowledge can lead to new scientifi c 
methods, to new diagnostics, and to new discoveries. 

 We now propose the  central dogma of informatics , as illustrated in Figure 
 10.4  and described in Table  10.2 .     

 Data and knowledge are connected through a central unit:  information . All 
living systems are dependent on an environment with which they can exchange 
matter, energy, and information. The evolution of information causes social, 
biological, and environmental changes.    

   10.4    CHALLENGES AND PERSPECTIVES 

 Historically, tools and weapons made of stone were the technologies in the 
Stone Age. Tools and weapons made of bronze were the technologies in the 

     FIGURE 10.4     Central dogma of informatics.  
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  TABLE 10.2    Central Dogma of Informatics 

   Data (Replication)     Information (Transcription)     Knowledge (Translation)  

  A datum is a small 
chunk of 
information. 

 Associated areas: 
    Data structure 
    Data mining 
    Data analysis 
    Data integration 
    Data replication 
    Databases  

  Information is thought of as 
organized data, or  “ facts ”  
organized into coherent 
patterns 

 Information    =    data    +    meaning 

 Associated areas: 
    Pattern discovery 
    Information processing 
    Information storage 
    Information retrieval 
    Information fl ow 
    Information control  

  Knowledge is thought of 
as organized and 
internalized information 
and ability to utilize the 
information 

 Knowledge    =    internalized 
information    +    ability to 
utilize the information 

 Associated areas: 
    Knowledge discovery 
    Knowledge management 
    Knowledge transfer  
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Bronze Age. The Iron Age marks the period of development of technology, 
when the working of iron came into general use, replacing bronze as the basic 
material for implements and applications. 

 During certain periods in history, innovations in technology have grown 
at such a rapid pace that they have produced what has become known as 
an industrial revolution. Nineteenth -  and twentieth - century inventions such 
as the telephone, phonograph, wireless radio, motion picture, automobile, 
airplane, computer, Internet, and wireless devices have added nearly univer-
sal technological complexity to modern daily life. Biotechnology, nanotech-
nology, and emerging technologies are rapidly becoming embedded in every 
sector of our lives. While technology, tools, and applications are being devel-
oped and evolved, the newly developed information sciences study the col-
lection, classifi cation, manipulation, storage, retrieval, and dissemination of 
information. By the nineteenth century the fi rst signs of information science 
emerged as separate and distinct from other sciences and social sciences 
but in conjunction with communication and computation. In 1854, George 
Boole published  An Investigation into Laws of Thought   …  , which lays the 
foundations for Boolean algebra, used later for information retrieval. 

 Today, a device for data and information is booming in society in general. 
With the development of assembly - line mass production of automobiles, 
household appliances, and the building of ever - taller skyscrapers, technology 
became not only a fact of everyday life, but also a way of life in itself. Society 
is being transformed rapidly by increased mobility, rapid communication, and 
a deluge of information available from mass media and the World Wide Web. 
What is information? What are the structures of data? What are the topologi-
cal and geometrical properties of information? What are the functional fea-
tures of knowledge? How are data transcribed into information? How are 
information sets translated into knowledge? These are fundamental questions 
that require further investigation. Data mining is an active fi eld that examines 
the process of extracting hidden patterns from data. Knowledge discovery is 
a growing fi eld that examines the process of converting the information into 
knowledge. Knowledge tends to travel from descriptive to qualitative to quan-
titative. During the process of this transition, numerical, graphical, and math-
ematical aspects emerge to explore the issues of data, knowledge, intelligence, 
noise, and meaning. This new kind of mathematics may be called the mathe-
matics of knowledge and intelligence.  
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 APPENDIX A 
 Bioinformatics Notation 
and Databases     

     In this appendix we list the universal or standard genetic code, general math-
ematical notation, physical units, chemical notation, molecular biological data-
bases, and the abbreviations and linear, chemical, and three - dimensional 
structures of the 20 naturally occurring amino acids. These notations and units 
have appeared in the bioinformatics literature and are used throughout the 
book. We collect them here for use as a general reference.  

   A.1    STANDARD GENETIC CODE       

Mathematics of Bioinformatics: Theory, Practice, and Applications, By Matthew He and 
Sergey Petoukhov
Copyright © 2011 John Wiley & Sons, Inc.
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  Second Position of Codon   

  U C A G   

F 
i 
r 
s 
t 
 

P 
o 
s 
i 
t 
i 
o 
n 

U 

UUU Phe [F] 
UUC Phe [F ] 
UUA Leu [L] 
UUG Leu [L] 

 

UCU Ser [S]
UCC Ser [S]
UCA Ser [S]
UCG Ser [S]

UAU Tyr [Y]
UAC Tyr [Y]
UAA Ter [end]
UAG Ter [end]

UGU Cys [ C] 
UGC Cys [C ] 
UGA Ter [end] 
UGG Trp [W ] 

U 
C 
A 
G 

 

T 
h 
i 
r 
d 
 

P 
o 
s 
i 
t 
i 
o 
n 

C 

CUU Leu [L] 
CUC Leu [L] 
CUA Leu [L] 
CUG Leu [L] 

 

CCU Pro [P]
CCC Pro [P]
CCA Pro [P]
CCG Pro [P]

 

CAU His [H]
CAC His [H]
CAA Gln [Q]
CAG Gln [Q]

CGU Arg [R] 
CGC Arg [R] 
CGA Arg [R] 
CGG Arg [R] 

U 
C 
A 
G 

 

A 

AUU Ile [I] 
AUC Ile [I] 
AUA Ile [I] 
AUG Met [M] 

 

ACU Thr [T]
ACC Thr [T]
ACA Thr [T]
ACG Thr [T]

 

AAU Asn [N]
AAC Asn [N]
AAA Lys [K]
AAG Lys [K]

AGU Ser [S ] 
AGC Ser [S ] 
AGA Arg [R] 
AGG Arg [R] 

U 
C 
A 
G 

 

G 

GUU Val [V] 
GUC Val [V] 
GUA Val [V] 
GUG Val [V] 

 

GCU Ala [A]
GCC Ala [A]
GCA Ala [A]
GCG Ala [A]

 

GAU Asp [D]
GAC Asp [D]
GAA Glu [E]
GAG Glu [E]

GGU Gly [G] 
GGC Gly [G] 
GGA Gly [G] 
GGG Gly [G] 

U 
C 
A 
G 
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   A.2    MATHEMATICAL NOTATION 

   N     =    {1, 2, 3,  … }    set of natural numbers  
   N  0     =    {0, 1, 2, 3,  … }    set of nonnegative integers  
   Z     =    { …  ,  − 3,  − 2,  − 1, 0,1, 2, 3,  … }    set of integers  
   Q     =    { p / q    |    p ,  q     ≠    0 are integers}    set of rational numbers  
   R     =    { x    |    x  repeating and nonrepeating 

decimals}  
  set of real numbers  

   R n      =    {( x  1 ,  x  2 ,  …  ,  x n  )   |    x i   is a real number}     n  - dimensional vector space  

     u u u un= + +1
2

2
2 2�      norm of a vector  u   

   u     ·      υ      =     u  1   υ   1     +     u  2   υ   2     +     …     +     u n  υ  n      standard inner product of  u  
and   υ    

     u × =
−
−
−

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

u
u u

u u

u u

2 3 3 2

3 1 1 3

1 2 2 1

υ υ
υ υ
υ υ

     cross product of  u  and   υ    

   A n    ×    n      square matrix of dimension  n   
   I n      unit matrix of dimension  n   
  Tr( A )    trace of a matrix A  
   A  T     transpose of matrix A  

   A.3    PHYSICAL UNITS 

  Angstrom    1    Å     =    10  − 10    m  
  Atomic mass    1   Da    =    1.661    ×    10  − 27    kg  
  Avogadro ’ s number     N  A     =    6.022    ×    10 23    L/mol  
  Boltzmann constant     k  B     =    1.38    ×    10  − 23    J/K  
  Electron charge     e     =    1.602    ×    10  − 19    C  
  Electron mass     m e      =    9.109    ×    10  − 31    kg  
  Energy (joule, J)    kg   m 2    s  − 2     =    N   m  
  Force (newton, N)    kg   m   s  − 2     =    J   m  − 1   
  Planck constant     h     =    6.626    ×    10  − 34    J   s  
  Reduced Planck constant      �      =     h /(2 π ) J   s  

   A.4    CHEMICAL NOTATION 

  H    hydrogen atom  
  O    oxygen atom  
  C    carbon atom  
  N    nitrogen atom  
  R    side chain of amino acid  
  S    sulfur atom  
  CA    alpha - carbon amino acid  
  CB    beta - carbon amino acid  
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   Φ     dihedral backbone angle  
   Ψ     dihedral backbone angle  
   Ω     dihedral backbone angle  
   χ     dihedral side - chain angle  
  A    ademine  
  C    cytosine  
  G    guanine  
  T    thymine  
  U    uracil  
  5 ′  -  …  - 3 ′     single DNA strand  
  3 ′  -  …  - 5 ′     single DNA strand  

   A.5    PUBLIC MOLECULAR BIOLOGICAL DATABASES 

 The following table lists all major public bioinformatics databases. Detailed 
information is given in a book by M. Kanehisa,  Post - Genome Bioinformatics , 
Oxford University Press, New York, 2000. 

   Database  
   Primary 
Function     URL     Organization  

  GenBank    Nucleotide 
sequences  

   http://www.ncbi.nlm.
nih.gov   

  National Center for 
Biotechnology 
Information (NCBI)  

  EMBL    Nucleotide 
sequences  

   http://www.ebi.ac.uk     European Bioinformatics 
Institute (EBI)  

  DDBJ    Nucleotide 
sequences  

   http://www.ddbj.nig.ac.jp     National Institute of 
Genetics, Japan (NIG)  

  SWISS - PROT    Amino acid 
sequences  

   http://www.expasy.ch     Swiss Institute of 
Bioinformatics (SIB)  

  PIR    Amino acid 
sequences  

   http://www.nbrf.
georgetown.edu   

  National Biomedical 
Research Foundation 
(NBRF)  

  PRF    Amino acid 
sequences  

   http://www.prf.or.jp     Protein Research 
Foundation, Japan 
(PRF)  

  PDB    Protein 
structures  

   http://www.rcsb.org     Research Collaboratory 
for Structural 
Bioinformatics 
(RCSB)  

  CSD    Protein 
structures  

   http://www.ccdc.cam.
ac.uk   

  Cambridge 
Crystallographic Data 
Center (CCDC)  

  MEDLINE    Bibliographic     http://www.nlm.nih.gov     National Library of 
Medicine (NLM)  
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   A.6    20 AMINO ACIDS: ABBREVIATIONS, LINEAR, CHEMICAL, 
AND THREE - DIMENSIONAL STRUCTURES 

  Amino Acid Abbreviations and Linear Structure 

   Name     Abbreviation     Linear Structure Formula  

  Alanine    ala, a    CH 3  – CH(NH 2 ) – COOH  
  Arginine    arg, r    HN = C(NH 2 ) – NH – (CH 2 ) 3  – CH(NH 2 ) – COOH  
  Asparagine    asn, n    H 2 N – CO – CH 2  – CH(NH 2 ) – COOH  
  Aspartic acid    asp, d    HOOC – CH 2  – CH(NH 2 ) – COOH  
  Cysteine    cys, c    HS – CH 2  – CH(NH 2 ) – COOH  
  Glutamine    gln, q    H 2 N – CO – (CH 2 ) 2  – CH(NH 2 ) – COOH  
  Glutamic acid    glu, e    HOOC – (CH 2 ) 2  – CH(NH 2 ) – COOH  
  Glycine    gly, g    NH 2  – CH 2  – COOH  
  Histidine    his, h    NH – CH = N – CH = C – CH 2  – CH(NH 2 ) – COOH  
  Isoleucine    ile, i    CH 3  – CH 2  – CH(CH 3 ) – CH(NH 2 ) – COOH  
  Leucine    leu, l    (CH 3 ) 2  – CH – CH 2  – CH(NH 2 ) – COOH  
  Lysine    lys, k    H 2 N – (CH 2 ) 4  – CH(NH 2 ) – COOH  
  Methionine    met, m    CH 3  – S – (CH 2 ) 2  – CH(NH 2 ) – COOH  
  Phenylalanine    phe, f    Ph – CH 2  – CH(NH 2 ) – COOH  
  Proline    pro, p    NH – (CH 2 ) 3  – CH – COOH  
  Serine    ser, s    HO – CH 2  – CH(NH 2 ) – COOH  
  Threonine    thr, t    CH 3  – CH(OH) – CH(NH 2 ) – COOH  
  Tryptophan    trp, w    Ph – NH – CH = C – CH 2  – CH(NH 2 ) – COOH  
  Tyrosine    tyr, y    HO –  p  – Ph – CH 2  – CH(NH 2 ) – COOH  
  Valine    val, v    (CH 3 ) 2  – CH – CH(NH 2 ) – COOH  

  Source:    National Center for Biotechnology Information (NCBI),  http://www.ncbi.nlm.nih.gov/
Class/Structure/aa/aa_explore.cgi .     
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  Chemical Structure of the 20 Natural Amino Acids 
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  Three - Dimensional Shapes of the 20 Amino Acids (Molmasse and 
pH Value) 

   

 
ala (a)

Molmasse: 89.09
pH: 6

 
arg (r)

Molmasse: 174.20
pH: 11.15

 
asn (n)

Molmasse: 132.12
pH: 5.41

asp (d)
Molmasse: 133.10

pH: 2.77

 
cys (c)

Molmasse: 121.15
pH: 5.02

 
gln (q)

Molmasse: 146.15
pH: 5.65

 
glu (e)

Molmasse: 147.13
pH: 3.22

 
gly (g)

Molmasse: 75.07
pH: 5.97

 
his (h)

Molmasse: 155.16
pH: 7.47

 
ile (i)

Molmasse: 131.17
pH: 5.94

 
leu (l)

Molmasse: 131.17
pH: 5.98

lys (k)
Molmasse: 146.19

pH: 9.59

 
met (m)

Molmasse: 149.21
pH: 5.74

 
pHe (f)

Molmasse: 165.19
pH: 5.48

 
pro (p)

Molmasse: 115.13
pH: 6.30

 
ser (s)

Molmasse: 105.09
pH: 5.68

 
thr (t)

Molmasse: 119.12
pH: 5.64

 
trp (w)

Molmasse: 204.23
pH: 5.89

 
tyr (y)

Molmasse: 181.19
pH: 5.66

 
val (v)

Molmasse: 117.15
pH: 5.96
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 Bioinformatics and Genetics 
Time Line     
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1869 - The chemical
material DNA is

discovered in cells.

1909 - The term “gene” is
first used and the chemical
composition of DNA is
found.

1969 - The first single
gene is isolated.

1970 - The first
artificial gene is made.

1984 - Realization
that some,
nonfunctioning
DNA is different in
each individual—
genetic fingerprinting
is born.

1988 - The Human
Genome
Organization
aims to map the
complete sequence
of DNA.

1990 - The first
human gene
experiment
takes place to
try to treat a
4-year-old
girl.

1993 - Mice
are cured of
cystic fibrosis
as a result of
gene therapy.

1996 - After six
years of work,
the brewer’s
yeast genome
is decoded, the
most complex
organism so far.

1998 - The first
multicelled
animal has its
genome
decoded—
the worm
C. elegans

2000 - The
first draft of
the human
genome is
announced.

2001 - The
first draft of
the human
genome is
published.

1976 - An artificial
gene is inserted into
a bacterium and, for
the first time, works
normally.

1978 - Bacteria are
engineered to produce
insulin.

1983 - The first
artificial chromosome.

1973 - Genetic
engineering begins with
the ability to insert
genetic material.

1977 - DNA from a
virus is fully decoded
for the first time.

1981 - A gene is
transferred from one
animal species to
another.

1944 - DNA is first
connected to the inheritance
of traits.

1953 - Crick and Watson
describe the structure of
DNA

1966 - DNA is found to be
present not only in
chromosomes but also in
the mitochondria.

1920 - Chromosomes are
proposed as the mechanism
by which inherited
characteristics are passed on.

1951 - The first sharp x-ray
diiffraction photographs of
DNA are obtained.

1956 - DNA is made
artificially.
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 APPENDIX C 
 Bioinformatics Glossary     

     In this appendix we provide a list of commonly used bioinformatics terminol-
ogy for quick reference. Most of these terms have appeared in the book. 

    Accession number  (in GenBank)  1,2   :       a unique identifi er assigned to the entire 
sequence record when the record is submitted to GenBank. The GenBank 
accession number is a combination of letters and numbers that are usually 
in the format of one letter followed by fi ve digits (e.g., M12345) or two 
letters followed by six digits (e.g., AC123456). The accession number for a 
particular record will not change even if the author submits a request to 
change some of the information in the record. Take note that an accession 
number is a unique identifi er for a complete sequence record, while a 
sequence identifi er, such as a Version, GI, or ProteinID, is an identifi cation 
number assigned only to the sequence data. The NCBI Entrez System is 
searchable by accession number using the Accession [ACCN] search fi eld.  

  Accession number   1,2   :       a unique identifi cation number for a complete RefSeq 
sequence record. RefSeq accession numbers are written in the following 
format: two letters followed by an underscore and six digits (e.g., NT_123456). 
The fi rst two letters of the RefSeq accession number indicate the type of 
sequence included in the record:

    •      NT_123456: constructed genomic contigs  
   •      NM_123456: mRNAs (actually, the cDNA sequences constructed from 

mRNA) NP_123456: proteins  
   •      NC_123456: chromosomes     

  Active site:       a region made of certain amino acid residues found within the 
three - dimensional surface of a protein where catalysis occurs. These resi-
dues provide the binding and activation energy needed to place the sub-
strate into its transition state and bridge the energy barrier of the reaction 
undergoing catalysis.  

Mathematics of Bioinformatics: Theory, Practice, and Applications, By Matthew He and 
Sergey Petoukhov
Copyright © 2011 John Wiley & Sons, Inc.
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  Adenine:       one of the nitrogenous bases that has a double - ring structure, clas-
sifi ed as a purine, found in DNA and RNA.  

  A DNA:       a more dehydrated form of DNA than the typical, B form. It is more 
compact, with 11 nitrogen bases per turn of the helix. RNA – DNA and 
RNA – RNA helices typically exist in this form.  

  Agents:       software modules that can search the Internet for data. These modules 
are independent and autonomous.  

  Algorithm   1,2   :       a series of steps defi ning a procedure or formula for solving a 
problem that can be coded into a programming language and executed. 
Bioinformatics algorithms typically are used to process, store, analyze, visu-
alize, and make predictions from biological data.  

  Alignment:       the result of a comparison of two or more gene or protein 
sequences in order to determine their degree of nitrogen base or amino 
acid similarity or dissimilarity. Sequence alignments are used to determine 
the similarity, homology, function, or other degree of relatedness between 
two or more genes or gene products.  

  Allele:       a given form of a gene that occupies a specifi c position or locus on a 
chromosome.  

  Alpha carbon:       the central carbon atom in an amino acid to which side chains 
(R groups) are bound.  

  Alpha helix   1,2   :       one of two types of protein secondary structure. An  α  - helix is 
a tight helix that results from the hydrogen bonding of the carboxyl (CO) 
group of one amino acid to the amino (NH) group of another amino acid, 
four residues away (toward the carboxyl terminus).  

  Alternative splicing:       the production of two or more mRNA molecules from 
a single hnRNA by using different splice junctions.  

  Amino acid:       one of the 20 chemical building blocks that are joined by amide 
(peptide) linkages to form a polypeptide chain of a protein.  

  Amphipathic:       a molecule that has hydrophilic and hydrophobic characteris-
tics simultaneously. This term is often used to describe large proteins with 
several domains of composed of different types of amino acid residues.  

  Annotation:       a collection of comments, notations, references, and citations, 
either in free format or utilizing a controlled vocabulary, that together 
describe all the experimental and inferred information about a gene or 
protein. Annotations can also be applied to the description of other biologi-
cal systems. Batch, automated annotation of bulk biological sequence is one 
of the key uses of bioinformatics tools.  

  Anticodon:       the triplet of contiguous bases on tRNA that binds to the codon 
sequence of nucleotides on mRNA (e.g., the codon for glycine is GGG, on 
mRNA; the anticodon for glycine is CCC, on tRNA).  

  Antigen:       any foreign molecule that stimulates an immune response in a ver-
tebrate organism. Many antigens are proteins, such as the surface proteins 
of foreign organisms. Antigens bind to antibodies.  
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  Antisense:       DNA or RNA composed of the sequence complementary to the 
target DNA or RNA.  

  Array:       a group of variables that can store multiple values. Each value is 
retrieved using an integer index.  

  Assembly:       a compilation of overlapping sequences from one or more related 
genes that have been clustered together based on their degree of sequence 
identity or similarity. Sequence assembly may be used to piece together 
 “ shotgun ”  sequencing fragments based upon overlapping restriction enzyme 
digests, or may be used to identify and index novel genes from single - pass 
cDNA sequencing efforts.  

  Backbone (of an amino acid):       consists of an amide, an alpha carbon, and a 
carboxylic acid or carboxylate group.  

  Base pair:       a pair of nitrogenous bases (a purine and a pyrimidine), held 
together by hydrogen bonds, that form the core of DNA and RNA (i.e., the 
A – T, G – C, and A – U interactions).  

  B DNA:       the typical form of DNA, which has 10 nitrogen bases per turn of 
the helix. Stacked bases are regularly spaced 0.34   nm apart and the helix 
makes a complete turn every 3.4   nm.  

  Beta sheet:       a three - dimensional arrangement taken up by polypeptide chains 
that consists of alternating strands linked by hydrogen bonds between a 
carboxyl group ’ s oxygen on one strand and the amide group ’ s hydrogen 
from another strand. The alternating strands together form a sheet that is 
frequently twisted. Beta sheets may be parallel (both strands oriented the 
same direction, amino to carboxyl terimus) or antiparallel (both strands 
running in opposite directions; for example, if one is oriented amino to 
carboxyl, the other would be running carboxyl to amino).  

  Bifurcation:       a point in a phylogenetic tree in which an ancestral taxon splits 
into two independent lineages.  

  BLAST   1,2   (Basic Local Alignment Search Tool):      a fast technique for detecting 
ungapped subsequences that match a given query sequence.  

  Bootstrap test:       a test that allows for a rough quantifi cation of confi dence 
levels.  

  Carboxyl group:       the  – COOH functional group, acidic in nature, found in all 
amino acids.  

  cDNA (complementary DNA):       a DNA strand copied from mRNA using 
reverse transcriptase.  

  cDNA library:       a set of DNA fragments prepared from the total mRNA 
obtained from a selected cell, tissue, or organism. It represents all the DNA 
expressed in a cell.  

  CDS   1,2   :       the coding sequence or the portion of a nucleotide sequence that 
makes up the triplet codons that actually code for amino acids.  

  Chromosome:       the structure in the cell nucleus that contains all of the cellular 
DNA together with a number of proteins that compact and package the 
DNA.  
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  Clone:       a population of genetically identical cells or DNA molecules.  
  Cloning:       the formation of clones or exact genetic replicas.  
  Cluster:       the grouping of similar objects in a multidimensional space. Clustering 

is used for constructing new features which are abstractions of the existing 
features of those objects. The quality of the clustering depends crucially on 
the distance metric in the space. In bioinformatics, clustering is performed 
on sequences, high - throughput expression (microarray data), and other 
experimental data.  

  Coding regions (CDS):       the portion of a genomic sequence bounded by start 
and stop codons that identifi es the sequence of the protein being coded for 
by a particular gene.  

  Codon:       a sequence of three adjacent nucleotides (on mRNA) that designates 
a specifi c amino acid or start/stop site for transcription.  

  Compiler:       a computer program that translates a symbolic programming lan-
guage into machine language so that the instructions can be executed by a 
computer.  

  Conformation:       the precise three - dimensional arrangement (structure) of 
atoms and bonds in a molecule describing its geometry and hence its molec-
ular function.  

  Consensus sequence:       a sequence that represents the most common nucleotide 
or amino acid at each position in two or more homologous sequences.  

  Conservation   1,2   :       substitution of one amino for another to preserve the physi-
cochemical properties of the original residue: for example, when a hydro-
phobic amino acid residue is replaced by another hydrophobic residue.  

  Convergence:       the endpoint of any algorithm that uses iteration or recursion 
to guide a series of data - processing steps. An algorithm is usually said to 
have reached convergence when the difference between the steps com-
puted and those observed falls below a predefi ned threshold.  

  Crossing over:       the situation that usually occurs during prophase I of meiosis, 
where homologous chromosomes may exchange pieces of genetic informa-
tion, leading to increased genetic variation among the possible resulting 
gametes.  

  Crystal structure:       a high - resolution molecular structure derived by x - ray crys-
tallographic analysis of protein or other biomolecular crystals.  

  C   - value:       the measure of a cell ’ s total DNA content.  
  Cytoplasm ( also referred to as  cytoskeleton):       the medium, including struc-

tural proteins such as actin and tubukin) making up the cellular space 
between the nucleus and the cell membrane.  

  Cytosine:       one of the nitrogenous bases that has a single - ring structure, classi-
fi ed as a pyrimidine, found in DNA and RNA.  

  Data mining:       the ability to query very large databases in order to satisfy a 
hypothesis ( “ top - down ”  data mining); or to interrogate a database in order 
to generate new hypotheses based on rigorous statistical correlations 
( “ bottom - up ”  data mining).  
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  Data processing:       the systematic performance on data of such operations as 
handling, merging, sorting, and computing. The semantic content of the 
original data should not be changed, but the semantic content of the pro-
cessed data may be changed.  

  Data warehouses:       vast arrays of heterogeneous (biological) data, stored 
within a single logical data repository, that are accessible to different query-
ing and manipulation methods.  

  Database:       any fi le system by which data get stored following a logical process. 
( See also  Relational database.)  

  Deconvolution:       a mathematical procedure to separate out the overlapping 
effects of molecules, such as mixtures of compounds in a high - throughput 
screen or mixtures of cDNAs in a high - density array.  

  Degeneracy:       the ability of some amino acids to be coded for by more than 
one triplet codon (a type of system redundancy).  

  Deletion:       a chromosomal alteration in which a portion of the chromosome or 
the underlying DNA segment is lost; can be a chromosomal or point 
deletion.  

  DNA (deoxyribonucleic acid):       the chemical that forms the basis of the genetic 
material in virtually all organisms. DNA is composed of the four nitroge-
nous bases adenine, cytosine, guanine, and thymine, which are covalently 
bonded to a backbone of deoxyribose - phosphate to form a DNA strand. 
Two complementary strands (where all G ’ s pair with C ’ s and A ’ s with T ’ s) 
form a double - helical structure which is held together by hydrogen bonding 
between the cognate bases.  

  DNA fi ngerprinting:       a technique for identifying human individuals (may also 
be applied to domesticated pets) based on a restriction enzyme digest of 
tandemly repeated DNA sequences that are scattered throughout the 
human genome but are unique to each individual.  

  DNA microarrays:       the deposition of oligonucleotides or cDNAs onto an inert 
substrate such as glass or silicon. Thousands of molecules may be organized 
spatially into a high - density matrix. These DNA chips may be probed to 
allow expression monitoring of many thousands of genes simultaneously. 
Uses include study of polymorphisms in genes, de novo sequencing, or 
molecular diagnosis of disease.  

  DNA polymerase:       an enzyme that catalyzes the synthesis of DNA from a 
DNA template given the deoxyribonucleotide precursors.  

  DNA probes:       short single - stranded DNA molecules of specifi c base sequence, 
labeled either radioactively or immunologically, that are used to detect and 
identify the complementary base sequence in a gene or genome by hybrid-
izing specifi cally to that gene or sequence.  

  DNA sequencing:       the technique by which the specifi c sequence of bases 
forming a particular DNA region is determined, usually as the result of an 
automated process.  
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  Domain   1,2   :       a discrete portion of a protein assumed to fold independent of the 
rest of the protein and possessing its own function.  

  Domain (protein):       a region of special biological interest within a single protein 
sequence. However, a domain may also be defi ned as a region within the 
three - dimensional structure of a protein (tertiary structure) that may 
encompass regions of several distinct protein sequences that accomplishes 
a specifi c function. A domain class is a group of domains that share a 
common set of well - defi ned properties or characteristics.  

  Dot plot:       a graphical method of comparing two sequences corresponding to 
regions of sequence similarity.  

  Dynamic programming:       a program that allows a computer to explore effi -
ciently all possible solutions to certain types of complex problems; it divides 
a problem into reasonably sized subproblems and uses parts to compute 
the fi nal answer.  

  Electrophoresis:       the use of an external electric fi eld to separate large biomol-
ecules on the basis of their charge by running them through acrylamide or 
agarose gels.  

  Enhancers:       DNA sequences that can greatly increase the transcription rates 
of genes even though they may be far upstream or downstream from the 
promoter they stimulate.  

  Entrez   1,2   :       an online resource provided by the National Center for Biotechnology 
Information (NCBI). It organizes GenBank sequences and links them to 
the literature sources in which they originally appeared.  

  Enzyme:       a class of proteins that is capable of catalyzing chemical reactions 
(the making or breaking of chemical bonds). They do so by orienting their 
substrates into a suitable geometry in a particular location (the active site) 
where electrophilic or nucleophilic amino acid residues can participate in 
the reaction. Enzymes are protein catalysts that speed up chemical reac-
tions that would otherwise be prohibitively slow under physiological 
conditions.  

  Equilibrium constant:       a value that describes the equilibrium state of the 
reversible reaction between two molecular species.  

  Eukaryote:       a cell or organism with a distinct membrane - bound nucleus as well 
as specialized membrane - based organelles. ( See also  Prokaryote.)  

  Exon:       the region of DNA within a gene that codes for a polypeptide chain or 
domain. Typically, a mature protein is composed of several domains coded 
by different exons within a single gene.  

  Expression (gene  or  protein):       a measure of the presence, amount, and time 
course of one or more gene products in a particular cell or tissue. Gene 
chips and proteomics now allow the study of expression profi les of sets of 
genes or even entire genomes.  

  Expression profi le:       the level and duration of expression of one or more genes, 
selected from a particular cell or tissue type, generally obtained by a variety 
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of high - throughput methods, such as sample sequencing, serial analysis, or 
microarray - based detection.  

  Expression vector:       a cloning vector that is engineered to allow the expression 
of protein from a cDNA. The expression vector provides appropriate pro-
moter and restriction sites that allow insertion of cDNA.  

  FASTA format   1,2   :       a sequence in FASTA format begins with a single - line 
description, followed by lines of sequence data. The description line is dis-
tinguished from the sequence data by a greater - than symbol ( > ) in the fi rst 
column. It is recommended that all lines of text be shorter than 80 charac-
ters in length. An example sequence in FASTA format is

  > gi|532319|pir|TVFV2E|TVFV2E      envelope protein 
 ELRLRYCAPAGFALLKCNDADYDGFKTNCSNVSVVHCTNLMNTTVTTGLLLNGS
YSENRT 
 QIWQKHRTSNDSALILLNKHYNLTVTCKRPGNKTVLPVTIMAGLVFHSQKYNLR
LRQAWC 
 HFPSNWKGAWKEVKEEIVNLPKERYRGTNDPKRIFFQRQWGDPETANLWFNCHG
EFFYCK 
 MDWFLNYLNNLTVDADHNECKNTSGTKSGNKRAPGPCVQRTYVACHIRSVIIWL
ETISKK 
 TYAPPREGHLECTSTVTGMTVELNYIPKNRTNVTLSPQIESIWAAELDRYKLVE
ITPIGF 
 APTEVRRYTGGHERQKRVPFVXXXXXXXXXXXXXXXXXXXXXXVQSQHLLAGIL
QQQKNL 
 LAAVEAQQQMLKLTIWGVK  

 A FASTA fi le can also contain multiple sequences:

  > VECTOR32      synthetic vector sequence 32 
 ATGAGCGGCGGCCCCATGGGCGGCAGGCCCGGCGGCAGGGGCGCCCCCGCCGTG
CAGCAG 
 AACATCCCCAGCACCCTGCTGCAGGACCACGAGAACCAGAGGCTGTTCGAGATG
CTGGGC 
  > VECTOR33      synthetic vector sequence 33 

 ACGAGCGGCGGTCCCATGGGCGCCAGGCCCGGCGGCAGGGGCGCTGCCGCCGTG
CAGCAC 
 ATCATCCCCAGCACCCTGCAGCAGGACCACGAGTACCAGAGGCTGTTCGAGATG
CTGGGC 
  > VECTOR34      synthetic vector sequence 34 

 GTGAGCGGCGGCTACTTGGGCGGCAGGCCCGGCGGCAGGGGCGCCCACGCCGTG
CAGCAG  
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 Sequences are expected to be represented in the standard IUB/IUPAC 
amino acid and nucleic acid codes, with these exceptions: lowercase letters 
are accepted and are mapped into uppercase letters; a single hyphen or dash 
can be used to represent a gap of indeterminate length; and in amino acid 
sequences, U and  *  are acceptable letters. Invalid characters (digits, blanks) 
are removed automatically.  

  Frame shift:       a deletion, substitution, or duplication of one or more bases that 
causes the reading frame of a structural gene to shift from the normal series 
of triplets.  

  Function:       a subroutine that returns a value.  
  Functional genomics:       the use of genomic information to delineate protein 

structure, function, pathways, and networks.  
  Gap (affi ne gap):       any maximal, consecutive run of spaces in a single string of 

a given alignment.  
  Gap penalty:       the penalty applied to a similarity score for the introduction of 

an insertion or deletion gap, the extension of a gap, or both. Gap penalties 
are usually subtracted from a cumulative score being determined for a 
comparison of two or more sequences via an optimization algorithm that 
attempts to maximize that score.  

  GC content:       the measure of the abundance of G and C nucleotides relative 
to A and T nucleotides within DNA sequences.  

  GenBank:       a data bank of genetic sequences operated by a division of the 
National Institutes of Health.  

  Gene:       classically, a unit of inheritance. In practice, a gene is a segment of DNA 
on a chromosome that encodes a protein and all the regulatory sequences 
(promoter) required to control expression of that protein.  

  Gene chips ( also known as  gene arrays):       oligonucleotides or cDNA covalently 
attached directly onto a small glass or silicon chip in organized arrays. Over 
50,000 different DNA fragments can be presented on a single chip, provid-
ing a high - throughput parallel method of probing gene expression, geno-
type, or gene function.  

  Gene expression:       the conversion of information from gene to protein via 
transcription and translation.  

  Gene families:       subsets of genes containing homologous sequences which 
usually correlate with a common function.  

  Gene index:       a listing of the number, type, label, and sequence of all the genes 
identifi ed within the genome of a given organism. Gene indices are usually 
created by assembling overlapping EST (expressed sequence tag) sequences 
into clusters and determining if each cluster corresponds to a unique gene. 
Methods by which a cluster can be identifi ed as representing a unique gene 
include identifi cation of long open reading frames, comparison to genomic 
sequence, and detection of single nucleotide polymorphisms or other fea-
tures in the cluster that are known to exist in the gene.  
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  Gene library:       a collection of cloned DNA fragments created by restriction 
endonuclease digestion that represent part or all of an organism ’ s genome.  

  Gene locus  (pl.  loci )  1,2   :       a gene ’ s position on a chromosome or other chromo-
some marker; also, the DNA at that position. The use of  locus  is sometimes 
restricted to mean expressed DNA regions.  

  Gene name   1,2   :       the offi cial name assigned to a gene. According to the Guide-
lines for Human Gene Nomenclature developed by the HUGO Gene 
Nomenclature Committee, it should be brief and describe the function of 
the gene.  

  Gene ontology   1,2   :       a controlled vocabulary of terms relating to molecular func-
tion, biological process, or cellular components developed by the Gene 
Ontology Consortium. A controlled vocabulary allows scientists to use 
consistent terminology when describing the roles of genes and proteins in 
cells.  

  Gene product:       the product, either RNA or protein, that results from expres-
sion of a gene. The amount of gene product refl ects the activity of the gene.  

  Gene symbol   1,2   :       symbols for human genes, usually designated by scientists 
who discover the genes. The symbols are created using the Guidelines for 
Human Gene Nomenclature developed by the HUGO Gene Nomenclature 
Committee. Gene symbols usually consist of no more than six uppercase 
letters or a combination of uppercase letters and Arabic numbers. Gene 
symbols should start with the fi rst letters of the gene name. For example, 
the gene symbol for insulin is  “ INS. ”  A gene symbol must be submitted to 
HUGO for approval before it can be considered an offi cial gene symbol.  

  Genetic code:       the mapping of all possible codons into the 20 amino acids, 
including the start and stop codons.  

  Genetic engineering  (in recombinant DNA technology):      the procedures used 
to isolate, splice, and manipulate DNA outside the cell. Genetic engineering 
allows a recombinantly engineered DNA segment to be introduced into 
a foreign cell or organism and to be able to replicate and function 
normally.  

  Genetic marker:       any gene that can be recognized readily by its phenotypic 
effect and which can be used as a marker for a cell, chromosome, or indi-
vidual carrying that gene. Also, any detectable polymorphism used to iden-
tify a specifi c gene or DNA sequence (used in genealogical studies).  

  Genome:       the complete genetic content of an organism.  
  Genomic DNA (sequence):       a DNA sequence typically obtained from mam-

malian or other higher - order species, which includes both an intron and an 
exon sequence (a coding sequence), as well as noncoding regulatory 
sequences such as promoter and enhancer sequences.  

  Genomics:       the analysis of the entire genome of a chosen organism.  
  Genotype:       strictly, all of the genes possessed by an individual; in practice, the 

particular alleles present in a specifi c genetic locus.  
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  GI  (in GenBank)  1,2   :       a GI (GenInfo identifi er) is a sequence identifi er that can 
be assigned to a nucleotide sequence or protein translation. Each GI is a 
numerical value of one or more digits. The protein translation and the 
nucleotide sequence contained in the same record will be assigned different 
GI numbers. Every time the sequence data for a particular record is changed, 
its version number increases and it receives a new GI. However, although 
each new version number is based on the previous version number, a new 
GI for an altered sequence may be completely different from the previous 
GI. For example, in the GenBank record M12345, the original GI might be 
7654321, but after a change in the sequence is submitted, the new GI for 
the changed sequence could be 10529376. Individuals can search for nucleo-
tide sequences and protein translations by GI using the UID search fi eld 
in the NCBI sequence databases. NCBI ’ s Sequence Revision History page 
can be used to view the various GI numbers, version numbers, or update 
dates associated with a particular GenBank record.  

  Global alignment   1,2   :       two nucleic acid or amino acid sequences lined up along 
their entire length. ( See also  Local alignment.)  

  Guanine (G):       one of the nitrogenous bases that has a double - ring structure, 
classifi ed as a purine, found in DNA and RNA.  

  Hairpin:       a double - helical region in a single DNA or RNA strand formed by 
hydrogen bonding between adjacent inverse complementary sequences to 
form a hairpin - shaped structure.  

  Heteroduplex:       a hybrid structure formed by the annealing of two DNA 
strands (or an RNA strand and a DNA strand) that have suffi cient comple-
mentarity in their sequence to allow hydrogen bonding between their sepa-
rate strands.  

  Heuristic methods:       trial - and - error, self - educating techniques for parsing a 
tree.  

  Hidden Markov model (HMM):       a joint statistical model for an ordered 
sequence of variables. The result of stochastically perturbing the variables 
in a Markov chain (the original variables are thus  “ hidden ” ), where the 
Markov chain has discrete variables that select the  “ state ”  of the HMM at 
each step. The perturbed values can be continuous and are the  “ outputs ”  
of the HMM. A hidden Markov model is equivalently a coupled mixture 
model where the joint distribution over states is a Markov chain. Hidden 
Markov models are valuable in bioinformatics because they allow a search 
or alignment algorithm to be trained using unaligned or unweighted input 
sequences, and because they allow position - dependent scoring parameters 
such as gap penalties, thus more accurately modeling the consequences of 
evolutionary events on sequence families.  

  High - throughput screening:       the method by which very large numbers of com-
pounds are screened against a putative drug target in either cell - free or 
whole - cell assays. Typically, these screenings are carried out in 96 - well plates 
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using automated, robotic station - based technologies or in higher - density 
array (chip) formats.  

  hnRNA (heterogeneous RNA):       primary RNA polymerase II transcripts 
in eukaryotes, converted to mRNAs after capping, splicing, and 
polyadenylation.  

  Homology:       ( strict ) two or more biological species, systems, or molecules that 
share a common evolutionary ancestor; ( general ) two or more gene or 
protein sequences that share a signifi cant degree of similarity, typically 
measured by the amount of identity (in the case of DNA), or conservative 
replacements (in the case of protein) that they register along their lengths. 
Sequence homology searches are typically performed with a query DNA 
or protein sequence to identify known genes or gene products that share 
signifi cant similarity and hence might inform on the ancestry, heritage, and 
possible function of the query gene.  

  Homologous chromosomes:       chromosomes of the same size and shape that 
contain alternate forms of the same genes (alleles). For example, a human 
being should have two copies of chromosome 1. These copies are the homol-
ogous chromosomes. ( See also  Nonhomologous chromosomes.)  

  Housekeeping genes:       genes that are always expressed (i.e., they are said to be 
 constitutively expressed ), due to their constant requirement by the cell.  

  Human antimurine antibody response (HAMA):       an immune response gener-
ated in humans to antibodies raised in murine (e.g., mouse or rat) cells.  

  Hybridization:       the interaction of complementary nucleic acid strands. This can 
occur between two DNA strands or between DNA and RNA strands, and 
is the basis of many techniques, such as Southern and Northern blots and 
microarray.  

  Hydrogen bond:       a weak chemical interaction between an electronegative 
atom (e.g., nitrogen or oxygen) and a hydrogen atom that is covalently 
attached to another atom. This bond keeps the two helices of DNA together, 
maintains the secondary structure ( α  - helices and  β  - sheets) of proteins, and 
is also the primary interaction between water molecules.  

  Hydrophilicity  (literally, water - loving):      the degree to which a molecule is 
soluble in water. Hydrophilicity depends to a large degree on the charge 
and polarizability of the molecule and its ability to form transient hydrogen 
bonds with (polar) water molecules.  

  Hydrophobicity  (literally, water - hating):      the degree to which a molecule is 
insoluble in water and hence is soluble in lipids. If a molecule lacking polar 
groups is placed in water, it will be driven to fi nd a hyrdophobic environ-
ment (such as the interior of a protein or a membrane).  

  Identity   1,2   :       the extent to which two sequences are invariant.  
  Immunoglobulin:       a member of the globulin protein family, consisting of two 

light and two heavy chains linked by disulfi de bonds. All antibodies are 
immunoglobulins.  
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  In silico  (in biology) :       the use of computers to simulate, process, or analyze a 
biological experiment.  

  In situ hybridization:       A variation of the DNA/RNA hybridization procedure 
in which the denatured DNA is in place in the cell and is then challenged 
with RNA or DNA extracted from another source.  

  Integration:       the physical insertion of DNA into the host cell genome. The 
process is used by retroviruses where a specifi c enzyme catalyzes the process 
or can occur at random sites with other DNA (e.g., transposons).  

  Intracellular signaling:       the communication of a molecular message from the 
surface of a cell to the nucleus via the participation of a series of molecules, 
including receptors, enzymes, proteins, and small molecules. The end result 
of the signaling process is the up -  or down - regulation of a particular series 
of genes that may be involved in cell growth, division, or differentiation.  

  Introns:       nucleotide sequences found in the structural genes of eukaryotes 
that are noncoding and interrupt the sequences containing information 
that codes for polypeptide chains. Intron sequences are spliced out of their 
RNA transcripts before maturation and protein synthesis. ( See also  
Exons.)  

  Iteration:       a series of steps in an algorithm whereby the processing of data is 
performed repetitively until the result exceeds a particular threshold. 
Iteration is often used in multiple sequence alignments whereby each set 
of pairwise alignments is compared with every other set, starting with the 
most similar pairs and progressing to the least similar, until there are no 
longer any sequence pairs remaining to be aligned.  

  Junk DNA:       the excess DNA that is present in the genome beyond that 
required to encode proteins. Disposable DNA sequences in which no func-
tion is currently known.  

  Karyotype:       the constitution (typically, number and size) of chromosomes in a 
cell or individual organism.  

  Knockout mice:       mice that have been engineered to lack a chosen gene. The 
gene is inactivated in embryonic stem cells using the technique of homolo-
gous recombination. These cells are then introduced into an early - stage 
embryo (blastocyst), which is then transplanted into a recipient mouse. The 
subsequent progeny lack the targeted gene in some cells. This technique is 
used to determine the function of the chosen gene.  

  Lab on a chip:       a microdevice that allows rapid microanalytical analysis of 
DNA or protein in a single fully integrated system. Typically, these devices 
are miniature surfaces, made of silicon, glass, or plastic, which carry the 
necessary microdevices (pumps, valves, microfl uidic controllers, and detec-
tors) that allow sample separation and analysis. These devices are used in 
drug discovery, genetic testing, and separation science.  

  Lead compound:       a candidate compound identifi ed as the best  “ hit ”  (tight 
binder) after screening of a combinatorial (or other) compound library, 
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which is then taken into further rounds of screening to determine its suit-
ability as a drug.  

  Lead optimization:       the process of converting a putative lead compound 
( “ hit ” ) into a therapeutic drug with maximal activity and minimal side 
effects, typically using a combination of computer - based drug design, 
medicinal chemistry, and pharmacology.  

  Library:       a large collection of compounds, peptides, cDNAs, or genes which 
may be screened to isolate cognate molecules.  

  Ligand:       any small molecule that binds to a protein or receptor; the cognate 
partner of many cellular proteins, enzymes, and receptors.  

  Linkage:       the association of genes (or genetic loci) on the same chromosome. 
Genes that are linked together tend to be transmitted together.  

  Linkage map:       a genetic map of a chromosome or genome delineated by 
mapping the positions of genes to their chromosomes by their linkage to 
readily identifi able genetic loci.  

  Local alignment   1,2   :       the alignment of portions (rather than the entire sequence 
length) of two nucleic acid or amino acid sequences.  

  Locus:       the specifi c position occupied by a gene on a chromosome. At a given 
locus, any one of the variant forms of a gene may be present. The variants 
are said to be  alleles  of that gene.  

  Markov chain:       any multivariate probability density whose independence 
diagram is a chain. The variables are ordered, and each variable  “ depends ”  
on its neighbors only in the sense of being conditionally independent of the 
others. Markov chains are an integral component of hidden Markov models.  

  Masking   1,2   :       the removal of repeated or low - complexity regions from a 
sequence so that sequences are compared.  

  Match score:       the amount of credit given by an algorithm to an alignment for 
each aligned pair of identical residues.  

  Matrix genetics:       a branch of bioinformatics and mathematical biology that 
studies the matrix forms of presentations of the genetic code.  

  Maximum likelihood approach:       a phylogenetic approach in which probabili-
ties are considered for individual nucleotide substitution in a set of 
sequence alignments; a purely statistically based method of phylogenetic 
reconstruction.  

  Meiosis:       a process within a cell nucleus that results in the reduction of the 
chromosome number from diploid (two copies of each chromosome) to 
haploid (a single copy) through two reductive divisions in germ cells.  

  Messenger RNA (mRNA):       the complementary RNA copy of DNA formed 
from a single - stranded DNA template during transcription that migrates 
from the nucleus to the cytoplasm, where it is processed into a sequence 
carrying the information to code for a polypeptide domain.  
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  Microarray:       a two - dimensional array, typically on a glass, fi lter, or silicon 
wafer, upon which genes or gene fragments are deposited or synthesized in 
a predetermined spatial order, allowing them to be made available as 
probes in a high - throughput, parallel manner.  

  MIM number  (also known as  MIM# ,  OMIM number , or  McKusick code )  1,2   :       a 
unique six - digit number assigned to each entry listed in the catalog of 
human genes and genetic disorders,  “ Online Mendelian Inheritance in 
Man ”  (OMIM). The fi rst digit of a MIM number describes a gene ’ s mode 
of inheritance as outlined below. 

   First Digit     Format   a        Mode of Inheritance  

  1    1XXXXX    Autosomal dominant (for entries 
created before May 15, 1994)  

  2    2XXXXX    Autosomal recessive (for entries 
created before May 15, 1994)  

  3    3XXXXX    X - linked loci or phenotypes  
  4    4XXXXX    Y - linked loci or phenotypes  
  5    5XXXXX    Mitochondrial loci or phenotypes  
  6    6XXXXX    Autosomal loci or phenotypes (for 

entries created after May 15, 1994)  

     a  X is any digit.       

  Mismatch score:       the penalty assigned by an algorithm when nonidentical 
restudies are aligned in an alignment.  

  Missense mutation:       a point mutation in which one codon (triplet of bases) is 
changed into another, designating a different amino acid.  

  Mitochondiral signal sequence:       a string of amino acids that causes a eukary-
otic protein to be delivered to a cell ’ s mitochondria.  

  Modeling:       ( in bioinformatics ) refers to molecular modeling, a process whereby 
the three - dimensional architecture of biological molecules is interpreted 
(or predicted), visually represented, and manipulated in order to determine 
their molecular properties. ( general ) a series of mathematical equations or 
procedures that simulate a real - life process given a set of assumptions, 
boundary parameters, and initial conditions.  

  Monomer:       a single unit of any biological molecule or macromolecule, such as 
an amino acid, nucleic acid, polypeptide domain, or protein.  

  Motif:       a conserved element of a protein sequence alignment that usually cor-
relates with a particular function. Motifs are generated from a local multiple 
protein sequence alignment corresponding to a region whose function or 
structure is known. It is suffi cient that it is conserved, and is hence likely to 
be predictive of any subsequent occurrence of such a structural or func-
tional region in any other novel protein sequence. A motif is built from 
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particular combinations of secondary structures (typically,  α  - helices and 
 β  - sheets).  

  Multiple (sequence) alignment:       a multiple alignment of  k  sequences is a rect-
angular array, consisting of characters taken from the alphabet  A  that satis-
fi es the following conditions: There are exactly  k  rows; ignoring the gap 
character, row  i  is exactly the sequence  sI ; and each column contains at least 
one character different from  – . In practice, multiple sequence alignments 
include a cost/weight function, which defi nes the penalty for the insertion 
of gaps (the  –  character) and weights identities and conservative substitu-
tions accordingly. Multiple alignment algorithms attempt to create the 
optimal alignment, defi ned as the one with the lowest cost/weight score.  

  Multiplex sequencing:       an approach to high - throughput sequencing that uses 
several pooled DNA samples run through gels simultaneously and then 
separated and analyzed.  

  Mutation:       an inheritable alteration to the genome that includes genetic (point 
or single base) changes, or larger - scale alterations such as chromosomal 
deletions or rearrangements.  

  Naked DNA:       pure, isolated DNA devoid of any proteins that may bind to it.  
  Native structure (conformation):       unique structure into which a particular 

protein is usually folded within a living cell.  
  Nested PCR:       the second round amplifi cation of an already PCR - amplifi ed 

sequence using a new pair of primers which are internal to the original 
primers, typically done when a single PCR reaction generates insuffi cient 
amounts of product.  

  Neural net:       an interconnected assembly of simple processing elements, units, 
or nodes whose functionality is based loosely on the animal brain. The 
processing ability of the network is stored in the interunit connection 
strengths, or weights, obtained by a process of adaptation to, or learning 
from, a set of training patterns. Neural nets are used in bioinformatics to 
map data and make predictions, such as taking a multiple alignment of a 
protein family as a training set in order to identify novel members of the 
family from their sequence data alone.  

  Neutral mutation:       a mutation that has no effect on the fi tness of an 
organism.  

  NMR (nuclear magnetic resonance):       a technique for resolving protein 
structures.  

  Nonhomologous chromosomes:       chromosomes that are not of the same size 
and shape and contain different genes. For example, a typical human being 
has 23 different types of nonhomologous chromosomes.  

  Nonsense mutation:       a point mutation in which a codon specifi c for an amino 
acid is converted into a stop codon.  

  Nuclease:       any enzyme that can cleave the phosphodiester bonds of nucleic 
acid backbones.  
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  Nucleoside:       a fi ve - carbon sugar covalently attached to a nitrogen base (a 
nucleotide without the phosphate group added).  

  Nucleotide:       a nucleic acid unit composed of a fi ve - carbon sugar joined to a 
phosphate group and a nitrogen base.  

  Object - relational database:       databases that combine the elements of object 
orientation and object - oriented programming languages with database 
capabilities. They provide more than persistent storage of programming 
language objects. Object databases extend the functionality of object pro-
gramming languages (e.g., C +  + , Smalltalk, Java) to provide full - featured 
database programming capability. The result is a high level of congruence 
between the data model for the application and the data model of the 
database. Object - relational databases are used in bioinformatics to map 
molecular biological objects (such as sequences, structures, maps, and path-
ways) to their underlying representations (typically, within the rows and 
columns of relational database tables). This enables users to deal with the 
biological objects in a more intuitive manner, as they would in the labora-
tory, without having to worry about the underlying data model of their 
representation.  

  Oligonucleotide:       a short molecule consisting of several linked nucleotides 
(typically, between 10 and 60) attached covalently by phosphodiester bonds.  

  Open reading frame (ORF):       any stretch of DNA that potentially encodes a 
protein. Open reading frames start with an initiation (or start) codon and 
end with a termination (or stop) codon. No termination codons may be 
present internally. The identifi cation of an ORF is the fi rst indication that 
a segment of DNA may be part of a functional gene.  

  Operator:       a segment of DNA that interacts with the products of regulatory 
genes and facilitates the transcription of one or more structural genes.  

  Operon:       in prokaryotes, a unit of transcription consisting of one or more 
structural genes, an operator, and a promoter.  

  Orthologs:       genes in different species that evolved from a common ancestral 
gene by speciation. Normally, orthologs retain the same function in the 
course of evolution. Identifi cation of orthologs is critical for reliable predic-
tion of gene function in newly sequenced genomes.  

  Orthologous genes   1,2   :       homologous sequences in different species that result 
from a common ancestral gene during speciation. Orthologous genes may 
or may not have similar functions.  

  Overlapping clones:       a collection of cloned sequences made by generating 
randomly overlapping DNA fragments with infrequently cutting restriction 
enzymes.  

  Palindrome:       a region of DNA with a symmetrical arrangement of bases occur-
ring about a single point such that the base sequences on either side of that 
point are identical (if the strands are both read in the same direction; e.g., 
5 ′  - GAATTC - 3 ′ , whose complementary sequence is 3 ′  - CTTAAG - 5 ′ ).  
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  Paralogous genes   1,2   :       homologous sequences within a single species that are 
the result of gene duplication.  

  Parameters:       user - selectable values, typically determined experimentally, that 
govern the boundaries of an algorithm or program. For example, selection 
of the appropriate input parameters governs the success of a search algo-
rithm. Some of the most common search parameters in bioinformatics tools 
include the stringency of an alignment search tool and the weights (penal-
ties) provided for mismatches and gaps.  

  Pathways:       bioinformatics strives to defi ne representations of key biological 
datatypes, algorithms, and inference procedures, including sequences, struc-
tures, biological pathways, and reactions. Representing and computing with 
biological pathways requires ontologies for representing pathway knowl-
edge, user interfaces to these databases, physicochemical properties of 
enzymes and their substrates in pathways, and pathway analysis of whole 
genomes, including identifying common patterns across species and species 
differences.  

  Pattern:       a molecular biological pattern usually occurs at the level of the char-
acters making up a gene or protein sequence. A pattern language must be 
defi ned in order to apply different criteria to different positions of a 
sequence. In enable a computer to carry out position - specifi c comparisons, 
a pattern - matching algorithm must allow alternative residues at a given 
position, repetitions of a residue, exclusion of alternative residues, weight-
ing, and ideally, combinatorial representation.  

  Peptide:       a short stretch of amino acids each covalently coupled by a peptide 
(amide) bond.  

  Peptide bond (amide bond):       a covalent bond formed between two amino 
acids when the amino group of one is linked to the carboxy group of 
another (resulting in the elimination of one water molecule).  

  pH:       a unit of measure used to indicate the concentration of hydrogen ions in 
a solution; specifi cally, the negative log of the molar concentration of H  +  . 
The greater the concentration of H  +  , the lower the pH.  

  Phenotype:       any observable feature of an organism that is the result of one or 
more genes.  

  Physical map:       a linearly ordered set of DNA fragments encompassing the 
genome or region of interest. Physical maps are of two types. A  macror-
estriction map  consists of an ordered set of large DNA fragments generated 
using restriction enzymes whose recognition sequences are represented 
infrequently in the genome. An  ordered clone map  consists of an overlap-
ping collection of cloned DNA fragments.  

  Plasmid:       any replicating DNA element that can exist in the cell independent 
of the chromosomes. Synthetic plasmids are used for DNA cloning. Most 
commonly found naturally in bacterial cells as a ring of DNA.  
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  Point mutation:       a mutation in which a single nucleotide in a DNA sequence 
is substituted for another nucleotide.  

  Poly(A) tail:       the stretch of adenine (A) residues at the 3 ′  end of eukaryotic 
mRNA that is added to the pre - mRNA as it is processed, before its trans-
port from the nucleus to the cytoplasm and subsequent translation at the 
ribosome.  

  Polyadenylation site:       a site on the 3 ′  end of messenger RNA (mRNA) that 
signals the addition of a series of adenines during the RNA processing step 
and before the mRNA migrates to the cytoplasm. These poly(A)  “ tails ”  
increase mRNA stability and allow one to isolate mRNA from cells by 
reverse transcriptase PCR amplifi cation using poly(T) primers.  

  Polygenic inheritance:       inheritance involving alleles at many genetic loci.  

  Polymerase chain reaction (PCR):       a technique used to amplify or generate 
large amounts of replicated DNA of a segment of any DNA whose  “ fl ank-
ing ”  sequences are known.  

  Polymorphism:       the existence of a gene in a population in at least two different 
forms at a frequency far higher than that attributable to recurrent mutation 
alone. Variations in a population may be measured by determining the rate 
of mutation in polymorphic genes.  

  Polypeptide (chain)   1,2   :       a single chain of covalently attached amino acids joined 
by peptide bonds. A polypeptide chain usually consists of 100 or fewer 
amino acids. Polypeptide chains usually fold into a compact, stable form (a 
domain) that is part (or all) of the fi nal protein. A protein is made up of 
one or several polypeptide chains.  

  Primary structure   1,2   :       the amino acid sequence of a polypeptide chain. Of the 
four levels of protein structure, this is the most basic protein structure.  

  Primer:       a short oligonucleotide that provides a free 3 ′  hydroxyl for DNA or 
RNA synthesis by the appropriate polymerase (DNA polymerase or RNA 
polymerase).  

  Probe:       any biochemical that is labeled or tagged in some way so that it can 
be used to identify or isolate a gene, RNA, or protein.  

  Profi le:       a sequence profi le is usually derived from multiple alignments of 
sequences with a known relationship, and consists of a table of position -
 specifi c scores and gap penalties. Each position in a profi le contains scores 
for all possible amino acids, as well as one penalty score for opening and 
one for continuing a gap at the position specifi ed. Attempts have been made 
to further improve the sensitivity of a profi le by refi ning the procedures to 
construct the profi le, starting from a given multiple alignment. Other rep-
resentations for sequence domains or motifs do not necessarily require the 
presence of a correct and complete multiple alignment, such as hidden 
Markov models.  
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  Prokaryote:       an organism or cell that lacks a membrane - bound nucleus. 
Bacteria and blue - green algae are the only surviving prokaryotes. ( See also  
Eukaryote.)  

  Promoter site:       defi ned by its recognition of eukaryotic RNA polymerase II; 
its activity in a higher eukaryote; by experimental evidence, or homology 
and suffi cient similarity to an experimentally defi ned promoter; and by 
observed biological function.  

  Protein families:       sets of proteins that share a common evolutionary origin 
refl ected by their relatedness in function, which is usually refl ected by simi-
larities in sequence or in primary, secondary, or tertiary structure. Families 
are subsets of proteins with related structure and function.  

  Protein ID  (in GenBank)  1,2   :       an identifi cation number assigned to the amino 
acid sequence data included within a sequence record. This sequence identi-
fi er uses the accession.version format. Each protein ID is made up of three 
letters, followed by fi ve digits, a period, and a version number. For example, 
in sequence record M12345, the Protein ID for the sequence translation 
could be AAA35650.1. If the protein sequence data change in any way 
(even by only one amino acid), the version number in the Protein ID will 
be increased by an increment of one while the accession number base 
remains constant; for example, AAA12345.1 would become AAA12345.2. 
Each amino acid sequence change also results in the assignment of a new 
GI number to the altered protein translation.  

  Proteome:       the entire protein complement of a given organism.  
  Proteomics:       the study of a proteome. Typically, the cataloging of all the express-

 ed proteins in a particular cell or tissue type, obtained by identifying the 
proteins from cell extracts using a combination of two - dimensional gel elec-
trophoresis and mass spectrometry. Proteomics includes the large - scale anal-
ysis of the amassed protein composition and function. ( See also  Genomics.)  

  Purine:       a nitrogen - containing compound with a double - ring structure. The 
parent compound of adenine and guanine.  

  Pyrimidine:       a nitrogen - containing compound with a single six - membered 
ring structure. The parent compound of thymidine (uracil in RNA) and 
cytosine.  

  Quaternary structure   1,2   :       the interconnection and arrangement of polypeptide 
chains within a protein. Only proteins with more than one polypeptide 
chain can have quaternary structure.  

  Query (sequence):       a DNA, RNA of protein sequence used to search a 
sequence database in order to identify close or remote family members 
(homologs) of known function, or sequences with similar active sites or 
regions (analogs), from whom the function of the query may be deduced.  

  Reading frame:       a sequence of codons beginning with an intiation (or start) 
codon and ending with a termination (or stop) codon, typically of at least 
150 bases (50 amino acids), coding for a polypeptide or protein chain.  
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  Recombinant DNA (rDNA):       DNA molecules resulting from the fusion of 
DNA from different sources. The technology employed for splicing DNA 
from different sources and for amplifying the resulting heterogeneous 
DNA.  

  Recombination:       a new combination of alleles resulting from the rearrange-
ment occuring by crossing over or by independent assortment. ( See also  
Crossing over.)  

  Recursion:       an algorithmic procedure whereby an algorithm calls on itself to 
perform a calculation until the result exceeds a threshold, in which case the 
algorithm exits. Recursion is a powerful procedure with which to process 
data and is computationally quite effi cient.  

  Regulatory gene:       a DNA sequence that functions to control the expression 
of other genes by producing a protein that modulates the synthesis of their 
products (typically by binding to the gene promoter). ( See also  Structural 
gene.)  

  Relational database:       a database that follows E. F. Codd ’ s 11 rules, a series of 
mathematical and logical steps for the organization and systemization of 
data into a software system that allows easy retrieval, updating, and 
expansion.  

  Relational database management systems (RDBMS):       a software system that 
includes a database architecture, query language, and data loading and 
updating tools and other ancillary software that together allow the creation 
of a relational database application. An RDBMS stores data in a database 
consisting of one or more tables of rows and columns. The rows correspond 
to a record (tuple); the columns correspond to attributes (fi elds) in the 
record. In an RDBMS, a view, defi ned as a subset of the database that is 
the result of the evaluation of a query, is a table. RDBMSs use Structured 
Query Language (SQL) for data defi nition, data management, and data 
access and retrieval. Relational and object - relational databases are used 
extensively in bioinformatics to store sequences and other biological data.  

  Repeats (repeat sequences):       repeat sequences and approximate repeats occur 
throughout the DNA of higher organisms (mammals). For example, Alu 
sequences of about 300 characters in length appear hundreds of thousands 
of times in human DNA, with about 87% homology to a consensus Alu 
string. Some short substrings, such as TATA - boxes, poly - A, and (TG) * , also 
appear more often than would be expected by chance. Repeat sequences 
may also occur within genes, as mutations or alterations to those genes. 
Repetitive sequences, especially mobile elements, have many applications 
in genetic research. DNA transposons and retroposons are used routinely 
for insertional mutagenesis, gene mapping, gene tagging, and gene transfer 
in several model systems.  

  Repetitive elements:       elements that provide important clues about chromo-
some dynamics, evolutionary forces, and mechanisms for exchange of 
genetic information between organisms. The most ubiquitous class of 
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repetitive elements in the DNA sequence in primate genomes is the Alu 
family of interspersed repeats, which have arisen in the last 65 million years 
of evolution. Alu repeats belong to a class of sequences defi ned as short 
interspersed elements (SINEs). Approximately 500,000 Alu SINEs exist 
within the human genome, representing about 5% of the genome by mass. 
The pattern of these repeats in the human population can be used to 
address questions of large - scale genealogy.  

  Replication:       the synthesis of an informationally identical macromolecule (e.g., 
DNA) from a template molecule.  

  Repressor:       the protein product of a regulatory gene that combines with a 
specifi c operator (regulatory DNA sequence) and hence blocks the tran-
scription of genes in an operon.  

  Residue:       the portion of an amino acid that remains a part of a polypeptide 
chain. In the context of a peptide or protein, amino acids are generally 
referred to as residues.  

  Restriction enzyme (restriction endonuclease):       a type of enzyme that recog-
nizes specifi c DNA sequences (usually, palindromic sequences 4, 6, 8, or 16 
base pairs in length) and produces cuts on both strands of DNA containing 
those sequences only.  

  Restriction map:       a physical map or depiction of a gene (or genome) derived 
by ordering overlapping restriction fragments produced by digestion of the 
DNA with a number of restriction enzymes.  

  Retroposons:       mobile DNA segments that insert into chromosomes after they 
have been reverse - transcribed from an RNA molecule.  

  Reverse genetics:       the use of protein information to elucidate the genetic 
sequence encoding that protein.  

  Reverse transcriptase:       a DNA polymerase that can synthesize a complemen-
tary DNA (cDNA) strand using RNA as a template; called RNA - dependent 
DNA polymerase.  

  Ribosomal RNA (rRNA):       a type of rRNA that plays a large structural role 
in determining the structure and function of the ribosome (cellular struc-
ture on which proteins are assembled).  

  RNA (ribonucleic acid):       a category of nucleic acids in which the component 
sugar is ribose and consisting of the four nucleotides: thymidine, uracil, 
guanine, and adenine. The three types of RNA are messenger RNA (mRNA), 
transfer RNA (tRNA), and ribosomal RNA (rRNA).  

  Secondary structure   1,2   :       the folded, coiled, or twisted shape of a polypeptide 
that results from hydrogen bonding between parts of a molecule. There are 
two main types of secondary structure: an  α  - helix and a  β  - pleated sheet.  

  Selectivity:       the selectivity of bioinformatics similarity search algorithms is 
defi ned as the signifi cance threshold for reporting database sequence 
matches. For example, in BLAST searches, the parameter E is interpreted 
as the upper bound on the expected frequency of chance occurrence of a 
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match within the context of the entire database search. E may be thought 
of as the number of matches that one expects to observe by chance alone 
during a database search.  

  Sensitivity:       the sensitivity of bioinformatics similarity search algorithms 
centers around two areas: how well the method can detect biologically 
meaningful relationships between two related sequences in the presence of 
mutations and sequencing errors; and how the heuristic nature of the algo-
rithm affects the probability that a matching sequence will not be detected. 
At the user ’ s discretion, the speed of most similarity search programs can 
be sacrifi ced in exchange for greater sensitivity — with an emphasis on 
detecting lower - scoring matches.  

  Sequence tagged site (STS)   1,2   :       a short (200 to 500 base pairs) DNA sequence 
that has a single occurrence in the human genome and whose location and 
base sequence are known. Detectable by polymerase chain reaction, STSs 
are useful for localizing and orienting the mapping and sequence data 
reported from many different laboratories and serve as landmarks for 
developing physical maps of the human genome. Expressed sequence tags 
(ESTs) are STSs derived from cDNAs.  

  Shotgun cloning:       the cloning of an entire gene segment or genome by generat-
ing a random set of fragments using restriction endonucleases to create a 
gene library that can subsequently be mapped and sequenced to reconstruct 
the entire genome.  

  Signal sequence (leader sequence):       a short sequence added to the amino -
 terminal end of a polypeptide chain that forms an amphipathic helix allow-
ing the nascent polypeptide to migrate through membranes such as the 
endoplasmic reticulum or the cell membrane. It is cleaved from the poly-
peptide after the protein has crossed the membrane.  

  Similarity (homology) search:       given a newly sequenced gene, there are two 
main approaches to the prediction of structure and function from the amino 
acid sequence. Homology methods are the most powerful and are based on 
the detection of signifi cant extended sequence similarity to a protein of 
known structure, or of a sequence pattern characteristic of a protein family. 
Statistical methods are less successful but more general and are based on 
the derivation of structural preference values for single residues, pairs 
of residues, short oligopeptides, or short sequence patterns. The transfer of 
structure and function information to a potentially homologous protein 
is straightforward when the sequence similarity is high and extended in 
length, but the assessment of the structural signifi cance of sequence similar-
ity can be diffi cult when sequence similarity is weak or restricted to a short 
region.  

  Single nucleotide polymorphisms (SNPs):       variations of single base pairs scat-
tered throughout the human genome that serve as measures of genetic 
diversity in humans. About 1 million SNPs are estimated to be present in 
the human genome, and SNPs are useful markers for gene mapping studies.  
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  Single - pass sequencing:       rapid sequencing of large segments of the genome of 
an organism by isolating as many expressed (cDNA) sequences as possible 
and performing single sequencer runs on their 5 ′  or 3 ′  ends. Single - pass 
sequencing typically results in individual, error - prone sequencing reads of 
400 to 700 bases, depending on the type of sequencer used. However, if 
many of these are generated from numerous clones from different tissues, 
they may be overlapped and assembled to remove the errors and generate 
a contiguous sequence for the entire expressed gene.  

  Site(s):       sites in sequences can be located either in DNA (e.g., binding sites, 
cleavage sites) or in proteins. To identify a site in DNA, ambiguity symbols 
are used to allow several different symbols at one position. Proteins need 
a different mechanism, however ( see  Pattern). Restriction enzyme cleavage 
sites, for example, have the following properties: limited length (typically, 
fewer than 20 base pairs); defi nition of the cleavage site and its appearance 
(3 ′ , 5 ′  overhang or blunt); defi nition of the binding site.  

  Splicing:       the joining together of separate DNA or RNA component parts. For 
example, RNA splicing in eukaryotes involves the removal of introns and 
the stitching together of the exons from the pre - mRNA transcript before 
maturation.  

  Start codon:       a triplet codon (i.e., AUG) at which both prokaryotic and eukary-
otic ribosomes begin to translate the mRNA.  

  Stop codon:       one of three triplet codons (UGA, UAG, and UAA) that does 
not instruct the ribosome to insert a specifi c amino acid and thereby causes 
translation of an mRNA to stop. Instead, a termination factor is typically 
inserted, causing the ribosome to be disassembled and the completed 
protein to be released.  

  Structural gene:       a gene that encodes a structural protein.  

  Structure prediction:       algorithms that predict the secondary, tertiary, and 
sometimes even quarternary structure of proteins from their sequences. 
Determining protein structure from a sequence has been dubbed  “ the 
second half of the genetic code ”  since it is the higher - level folded structure 
of a protein that governs how it functions as a gene product. As yet, most 
structure prediction methods have been only partially successful and typi-
cally work best for certain well - defi ned classes of proteins.  

  Substitution matrix:       a model of protein evolution at the sequence level, result-
ing in the development of a set of widely used substitution matrices. These 
are frequently called Dayhoff, MDM (mutation data matrix), BLOSUM, or 
PAM (percent accepted mutation) matrices. They are derived from global 
alignments of closely related sequences. Matrices for greater evolutionary 
distances are extrapolated from those for lesser distances.  

  Substrate:       a specialized type of ligand that binds specifi cally to an enzyme.  

  Tertiary structure:       folding of a protein chain via interactions of its side - 
chain molecules, including formation of disulfi de bonds between cysteine 
residues.  



APPENDIX C: BIOINFORMATICS GLOSSARY  293

  Thymine:       one of the nitrogenous bases that has a single - ring structure, classi-
fi ed as a pyrimidine, found in DNA but not in RNA.  

  Tissue:       a section of an organ that consists of a largely homogeneous popula-
tion of cell types. Since many organs are multifunctional, they have devel-
oped highly specialized cell types to perform different functions. Identifying 
the section of an organ that is homogeneous for a particular cell type 
ensures that the gene expression profi les extracted from those cells will 
accurately resemble the class of cells that make up the tissue.  

  Toxicology:       the science of the harmful effects of chemicals (including drugs) 
on living biological systems. It seeks to determine the mechanisms by which 
chemicals produce adverse effects in cells and organisms.  

  Transcript:       the single - stranded mRNA chain that is assembled from a gene 
template.  

  Transcription:       the assembly of complementary single - stranded RNA on a 
DNA template.  

  Transcription factors:       a group of regulatory proteins that are required for 
transcription in eukaryotes. Transcription factors bind to the promoter 
region of a gene and facilitate transcription by RNA polymerase.  

  Transfer RNA (tRNA):       a small RNA molecule that recognizes a specifi c 
amino acid, transports it to a specifi c codon in the mRNA, and positions it 
properly in the nascent polypeptide chain.  

  Transformation:       a genetic alteration to a cell as a result of the incorporation 
of DNA from a genetically diferent cell or virus; can also refer to the intro-
duction of DNA into bacterial cells for genetic manipulation.  

  Translation:       the process of converting RNA to protein by the assembly of a 
polypeptide chain from an mRNA molecule at the ribosome.  

  Transposons:       mobile DNA elements that insert into other chromosomal ele-
ments (also referred to as  “ jumping genes. ” )  

  Triple helical DNA:       a mostly synthetic form of DNA; it may exist during 
recombination and DNA repair.  

  Unidentifi ed reading frame (URF):       an open reading frame encoding a protein 
of undefi ned function.  

  UniGene database   1,2   :       a public database, maintained by NCBI, which brings 
together sets of GenBank sequences that represent the transcription prod-
ucts of distinct genes.  

  Unique clone   1,2   :       an Incyte sequence that has no match in GenBank or other 
public database.  

  Uracil:       one of the nitrogenous bases that has a single - ring structure, classifi ed 
as a pyrimidine, found in RNA but not in DNA.  

  Variable numbers of tandem repeats (VNTRs):       DNA sequence blocks of 
2 to 60 base pairs which are repeated from two to more than 20 times 
in different individuals. This polymorphism makes VNTRs very useful 
DNA markers used in genomic mapping, linkage analysis, and DNA 
fi ngerprinting.  
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  Variations (genetic):       variations in genetic sequences and the detection of 
DNA sequence variants genome - wide allow studies relating the distribu-
tion of sequence variation to a population history. This, in turn, makes pos-
sible a determination of the density of SNPs or other markers needed for 
gene mapping studies. Quantitation of these variations, together with ana-
lytical tools for studying sequence variation, also relates genetic variations 
to phenotype.  

  Vector:       any agent that transfers material (typically, DNA) from one host to 
another. Typically, DNA vectors are autonomous DNA elements (such as 
plasmids) that can be manipulated and integrated into a host ’ s DNA or 
recombinant viruses.  

  Version  (in GenBank)  1,2   :       similar to the Protein ID for protein sequences, the 
version is a nucleotide sequence identifi cation number assigned to each 
GenBank sequence. The format for this sequence identifi er is accession.
version (e.g., M12345.1). Whenever the author of a particular sequence 
record changes the sequence data in any way (even if just a single nucleo-
tide is altered), the version number will be increased by an increment of 
one while the accession number base remains constant. For example, 
M12345.1 would become M12345.2. Each sequence change also results in 
the assignment of a new GI number (link to GI entry). Whenever an NCBI 
sequence database is searched, only the most recent version of a record is 
retrieved. NCBI ’ s Sequence Revision History page is used to view the 
various GI numbers, version numbers, or update dates associated with a 
particular GenBank record.  

  Virtual libraries:       the creation and storage of vast collections of molecular 
structures in an electronic database. These databases may be queried for 
subsets that exhibit specifi c physicochemical features, or may be  “ virtually 
screened ”  for their ability to bind a drug target. This process may be per-
formed prior to the synthesis and testing of the molecules themselves.  

  Visualization:       a process of representing abstract scientifi c data as images that 
can aid in understanding the meaning of the data.  

  Weight matrix:       the density of binding sites in a gene or sequence can be used 
to derive a ratio of density for each element in a pattern of interest. The 
combined individual density ratios of all elements are then used collectively 
to build a scoring profi le known as a weight matrix. This profi le can be used 
to test the prediction of the identifi cation of the pattern selected and the 
ability of the algorithm to discriminate it from a nonpattern sequences.  

  X chromosome:       in mammals, the sex chromosome that is found in two copies 
in the homogametic sex (female in humans) and one copy in the heteroga-
metic sex (male in humans).  

  Y chromosome:       in mammals, the sex chromosome that is found in one copy 
in males and not at all in females.  

  Yeast two - hybrid system:       a yeast - based method used to simultaneously iden-
tify, and clone the gene for, proteins interacting with a known protein.  
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  Z DNA:       a conformation of DNA existing as a left - handed double helix (the 
phosphate - sugar backbone forms a left - handed zigzag course), which may 
play a role in gene regulation.     
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