SECONDARY MATHEMATICS Curriculum

X3+X=

91

92

62

X =

at

(x-a)(x

+6

30

10

-6±

0

.4-OC

Scranton School District Scranton, PA

30

× =

)(a+b)

Acknowledgements

The Scranton School District Secondary Mathematics Committee was charged with updating the Scranton School District's secondary mathematics curriculum. The committee revised the Mathematics Curriculum Pathways, selected new mathematics textbooks for grades seven, eight, Algebra I, Geometry, and Algebra II/Trigonometry (including Algebra II), and developed the Scranton School District Curriculum Guides in Mathematics for the state tested content areas (both currently tested and proposed).

The following are members of this committee:

John Marichak, Supervisor of Secondary Education Susan Burns Ellen Cawley Judy Chickillo Karlene Cicco Stacy Crispino Shrive Mari Cummings Margaret Dougher Amanda Hopkins Melissa Kieselowsky Elizabeth May Adam McCormick Ann Nicastro **Donna Pastore** Lori Stetzar Laurie Santoli **Renee Stevens** Maria Tomcykoski Melissa Tucker Regina Wozniak

All remaining mathematics subject area curriculum guides (non-state tested) were developed during the second wave of the curriculum writing process. In addition to the original committee, the following teachers developed guides in their areas of expertise to complete the process.

Tony Battaglia Kathleen Connor Richard Dempsey David Failing PJ Hughes Nicholas Kramer Myriah Mancini Tammy McClure Acknowledgements

Overview

Scranton School District Secondary Mathematics Curriculum Pathways

Scranton School District Secondary Mathematics Curriculum Guides

Appendices

Common Core 8P Concepts of Algebra

Curriculum Guide

Scranton School District

Scranton, PA

Common Core 8P Concepts of Algebra

Prerequisites:

• Successful completion of Common Core Math 7P

In addition, the students must meet 2 out of 3 criteria:

- A grade of 80 or higher in a Common Core Math 7P
- Teacher recommendation from the 7th grade math teacher
- Students must perform proficient on the seventh grade PSSA

Course Description

Students will demonstrate an understanding of the connections between the various branches of mathematics by applying computational skills, mathematical reasoning, and introductory algebraic and geometric principles to model and solve real life problems. Students will demonstrate a proficient understanding of rational and irrational numbers, exponents and scientific notation, proportional relationships, linear equations, functions, systems of equations, geometry, angle relationships, volume, statistics and probability.

After successfully completing this course, students will be allowed to enroll in Honors Algebra I K/CC or Algebra I K/CC.

Year-at-a-glance

Subject: Common Core 8P Concepts of Algebra	Grade Level: 8 th	Date Completed: 10/22/14

1st Quarter

Торіс	Resources	CCSS
Linear Equations: One Variable	Big Ideas Math Blue, Ch. 1 Lesson 1-4	8.EE 7a,b
Geometry	Big Ideas Math Blue, Ch. 2, Lessons 1-7	8.G 1 a,b,c, 2,3,4
Angle Relationship	Big Ideas Math Blue, Ch.3, Lessons 1-4	8.G 5

2nd Quarter

Торіс	Resources	CCSS
Graphing linear Equations	Big Ideas Math Blue, Ch. 4 Lessons 1-2	8. EE 7a
Proportional Relationships	Big Ideas Math Blue, Ch. 4 Lessons 3	8.EE 5
Slope/ linear Equations	Big Ideas Math Blue, Ch. 4 Lessons 4-7	8.EE.6 8.EE.7b 8.F.3

3rd Quarter

Торіс	Resources	CCSS
Systems of Equations	Big Ideas Math Blue Ch. 5 lessons 1-4	8.EE 8a,b,c
Functions	Big Ideas Math Blue Ch. 6 lessons 1-2	8.F 1,2
Functions & Linear Relationships	Big Ideas Math Blue Ch. 6 lessons 3-5	8.F 4,5

4 th Quarter		
Торіс	Resources	CCSS
Rational & Irrational Numbers, Pythagorean Theorem	Big Ideas Math Blue Ch. 7 Lessons 1-5	8.NS 1,2 8.G 6,7,8
Volume	Big Ideas Math Blue Ch. 8 Lessons 1-4	8.G 9
Statistics & Probability	Big Ideas Math Blue Ch. 9 Lessons 1-4	8.SP 1,2,3,4
Exponents & Scientific Notation	Big Ideas Math Blue Ch. 10 Lessons 1-7	8.EE 1,2,3,4
Linear Equations/Slope (Review)	Big Ideas Math Blue Ch. 4 Lessons 4-7	8.EE.6,7b 8.F.3
Systems of Equations (Review)	Big Ideas Math Blue Ch. 5 Lessons 1-4	8.EE.8 a,b,c
Final Exam Review	Big Ideas Math Blue	All

* When Common Core becomes full	y implemented, the suggested timeline should be adjusted accordingly.

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time *
Solving Linear Equations	8.EE 7a,b	One-Step, Multi-Step, Variables on Both Sides Solutions • One Solution • Infinite Solutions • No Solutions	 Big Ideas Math Blue, 1.1-1.4 Bigideasmath.com Triumph Learning CC Coach 	Teacher prepared tests, quizzes, etc. Bigideasmath.com, Series available assessments online. (optional)	15 days
Geometry	8.G 1 a,b,c 2,3,4	Translations, , Reflections, Rotations, Dilations Properties Congruence Effects Similarity 	 Big Ideas Math Blue,2.1-2.7 Bigideasmath.com Triumphlearning CC Support Coach Lesson 10-14 Triumphlearning CC Coach Lesson 18-23 Promethean Board etc. 		15 days

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Angle Relationships	8.G 5	Parallel Lines Angles Angle Sums and Triangles Interior Angles Exterior Angles Similarity Parallel Lines cut by a Transversal Applications to Coordinate System	 Big Ideas Math Blue, 3.1-3.4 Triumphlearning CC Support Coach Lesson 15-16 Triumphlearning CC Coach Lesson 24-27 Promethean Board etc. 		10 days
Graphing & Proportional Relationships	8.EE 7a 8.EE 5.	 Graphing Linear Equations: One and Two Variables Proportional Relationships Graphing proportional relationships Comparing proportional relationships in different ways Unit Rate Interpreting unit rate as the slope of a graph 	 Big Ideas Math Blue, 4.1-4.3 Triumphlearning CC Support Coach Lesson 4,6 Crosswalk Coach Lesson 9-10,12-14, 23 Triumphlearning CC Coach Lesson 7,9 Promethean Board etc 		22 days

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Slope/Linear Equations	8.EE 6 8.EE 7b 8. F 3	 Determine slope: Visually Formula: given two points Use to derive y = mx + b 	 Big Ideas Math Blue, 4.4-4.7 Triumphlearning CC Support Coach Lesson 5-6 Triumphlearning CC Coach Lesson 8-9,15 Promethean Board etc. 		22 days
Systems of Equations	8.EE 8 a,b,c	Types of Solutions Solve by • Graphing, • Substitution • Elimination Real Life Applications	 Big Ideas Math Blue, 5.1-5.4 Triumphlearning CC Support Coach Lesson 7 Triumphlearning CC Coach Lesson 10-12 		20 days

General Topic Academic Est Standard(s) Sk	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Functions & Linear Relationships8.F 1,2 8.F 4,5De e e e e 	Definition and Graph Determine function rule from table of values from a graph Rate of Change and Initial /alue .inear and Non-Linear functions Increasing/decreasing Linear/nonlinear	 Big Ideas Math Blue, 6.1-6.5 Triumphlearning CC Support Coach Lesson8, 9 Triumphlearning CC Coach Lesson 13-17 Promethean Board etc. 		18 days

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Rational & Irrational Numbers	8.NS 1,2 8.G 6,7,8 8 EE 6	 Classify real numbers Irrational Numbers Estimate the value Comparing and ordering all real numbers Square roots & Cube roots Pythagorean Theorem Proof and Converse Applications in Two and Three Dimensions Explain slope using similar triangles 	 Big Ideas Math Blue, 7.1-7.4 Triumphlearning CC Support Coach Lesson 1 Crosswalk Coach Lesson 1-4 Triumphlearning CC Coach Lesson 1-2 Promethean Board etc 		5 days
Volume	8.G 9	Volumes of Cones, Cylinders, Spheres • Formulas • Applications	 Big Ideas Math Blue, 8.1-8.4 Triumphlearning CC Support Coach Lesson 17 Triumphlearning CC Coach Lesson 28 Promethean Board etc. 		4 days

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Statistics & Probability	8.SP 1,2,3,4	Scatter Plots Construct Interpret Lines of best fit (Slope and Intercept) Stem and Leaf Plots Two Way Tables Construct Interpret	 Big Ideas Math Blue, 9.1-9.3 Triumphlearning CC Support Coach Lesson 18-20 Triumphlearning CC Coach Lesson 29-32 Promethean Board etc. 		12 days
Exponents & Scientific Notation	8 EE 1,2,3,4	Operations involving exponents • Integer (positive/negative) • Radical Scientific Notation • Operations involving scientific notation • Applications	 Big Ideas Math Blue, 10.1-10.7 Triumphlearning CC Support Coach Lesson 2-3 Triumphlearning CC Coach Lesson 3-6 Promethean Board etc 		10 days
Review of Linear Equations/Slope	8.EE.6,7b 8.F.3	Review of these topics in preparation for Algebra 1	Big Ideas Math Blue, 4.4-4.7		12 days
Systems of Equations	8.EE.8a,b,c	Review of topic in preparation for Algebra 1	• Big Ideas Math Blue, 5.1-5.4		9 days
Final Exam Review	All	Review of all topics for final exam	Big Ideas Math Blue		6 days

Algebra I Part 10B

Curriculum Guide

Scranton School District

Scranton, PA

Algebra I 10B

Prerequisite :

• Successful completion of Algebra I Part 9A

Intended Audience: This course is designed for the student who has successfully completed Algebra I Part 9A by the end of the 9th grade.

Algebra I Part 9A 3010 and Algebra I Part 10B/K 3020

Algebra I Part 9A and Algebra I Part 10B/K together create an Algebra I course taken over two years. The students who select Algebra I Part 9A in ninth grade will complete their studies of Algebra I when they complete the Algebra I Part 10B/K course in tenth grade. These Algebra courses are designed for students who may experience difficulty with a one year Algebra I course Topics covered focus on the Pennsylvania Common Core Standards and are parallel to the Algebra I course, presenting all the same major topics but with a different depth, breadth, and pace, thus allowing time for discovering and understanding basic concepts.

At the culmination of the Algebra I Part 10B/K, the students will sit for the Keystone Algebra I Exam, a Pennsylvania graduation requirement. After successfully completing the course, students will be allowed to enroll in Geometry 11 or Applied Geometry 11.

Year-at-a-glance

Subject: Algebra I Part 10B	Grade Level: 10	Date Completed: 10-22-14

1st Quarter

Торіс	Resources	CCSS
Review: simplifying/evaluating expressions, solving equations,	Big Ideas Math Algebra I Supplemental Material	
solving inequalities in 1 variable, graphing linear equations in 2		
variables		
Graphing systems of linear equations	Big Ideas Math Algebra I Chapter 5	A1.1.2.2.1, A1.1.2.2.2
1		

2nd Quarter

Торіс	Resources	CCSS
Graph Systems of linear inequalities in 2 variables	Big Ideas Math Algebra I Chapter 5	A1.1.3.2.1, A1.1.3.2.2
Rules for exponents and square roots	Big Ideas Math Algebra I Chapter 6	A1.1.1.3.1
Add and subtract polynomial expressions	Big Ideas Math Algebra I Chapter 7	A1.1.1.5.1

3rd Quarter

Торіс	Resources	CCSS	
Multiplying polynomials	Big Ideas Math Algebra I Chapter 7	A1.1.1.5.1	
Factoring Polynomials	Big Ideas Math Algebra I Chapter 7	A1.1.1.2.1, A1.1.1.52	
Simplifying Square Roots	Big Ideas Math Algebra I Chapter 6 and 10	A1.1.1.3.1	
Data Analysis and Probability	Big Ideas Math Algebra I Chapter 7	A1.2.3.2.2, A1.2.3.2.1, A1.2.3.1.1, A1.2.3.3.1,	

4th Quarter

Торіс	Resources	CCSS
Solving Quadratic Equations using the quadratic formula	Big Ideas Math Algebra I Chapter 7.4	HSA-APR.B.3
		HSA-REI.4b
Graphing Quadratic Equations	Big Ideas Math Algebra I Chapter 8.1-8.3	HSF-IF.C.7a
Final Review		

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Review		Simplifying/evaluating expressions, solving equations, solving inequalities in 1 variable, graphing linear equations in 2 variables			25 days
Systems of Linear Equations	A1.1.2.2.1	Write and/or solve a system of linear equations, including problem, using graphing, substitution, and/or elimination.	Big Ideas Math Algebra I Chapter 5.1-5.4 Engage NY Module 4 Topic D Lesson 24-30 https://www.engageny.org/resource/grad e-8-mathematics		20 days
Interpret solutions to Linear Systems.	A1.1.2.2.2	Interpret solutions to problems in the context of the problem situation. Limit systems to two linear equations	Big Ideas Math Algebra I Chapter 5.1-5.4 Keystone Unit 3 Lesson 3		10 days
Systems of Linear Inequalities	A1.1.3.2.1	Write and/or solve a system of Linear Inequalities using graphing. Limit to two linear inequalities.	Big Ideas Math Algebra I Chapter 5.6-5.7		15 days

Interpret solutions to Linear Inequalities	A1.1.3.2.2	Interpret solutions to problems in the context of the problem situation. Limit systems to two linear inequalties	Big Ideas Math Algebra I Chapter 5.6-5.7 Keystone Unit 4 Lesson 3	5 days
Exponents, Roots and Absolute Value	A1.1.1.3.1	Simplify/evaluate expressions involving properties/laws of exponents, roots, and/or absolute values to solve problems.	Big Ideas Math Algebra I Chapter 6.1 Keystone WB Unit 1 Lesson 4 Engage NY Module 1 Topic A Lessons 1-6 https://www.engageny.org/resource/grad e-8-mathematics-module-1-topic-lesson-1	10 days
Exponents, Roots and Absolute Value	A1.1.1.3.1	Simplify/evaluate expressions involving properties/laws of exponents, roots, and/or absolute values to solve problems.	Keystone WB Unit 1 Lesson 2 *Supplement resources will be needed	5 days
Simplify expressions involving polynomials	A1.1.1.5.1	Add, subtract, and/or multiply polynomial expressions (express answer in simplest form) Nothing larger than a binomial multiplied by a trinomial.	Big Ideas Math Algebra I Chapter 7.1-7.3 Keystone Unit 2 Lesson 2	5 days

GCF and LCM for monomials	A1.1.1.2.1	Find the Greatest Common Factor and/or Least Common Multiple for sets of monomials	Keystone WB Unit 1 Lesson 3 *Supplement resources will be needed	5 days
Simplify expressions involving polynomials	A1.1.1.52	Factor Algebraic expressions, including difference of two squares and trinomials. Trinomials limited to the form $ax^2 + bx + c$, where <i>a</i> is equal to 1 after factoring out all monomials factors.	Big Ideas Math Algebra I Chap 7.4-7.7 *7.8 See Standard	15 days
Simplify expressions involving polynomials	A1.1.1.52	Factor Algebraic expressions, including difference of two squares and trinomials. *including factoring ax ² +bx+c and factoring by grouping	Big ideas Math Algebra I Chapter 7	5 days
Simplify expressions involving polynomials	A1.1.1.5.3	Simplify/reduce a rational algebraic expression.	Keystone WB Unit 2 Lesson 5 <u>**Login to site – Common Core 2014 –</u> <u>Purple infinity Big Ideas Math Algebra I BK</u> <u>Sect 11.3</u>	10 days
Simplify expressions involving polynomials	A1.1.1.1.2	Simplify Square Roots (e.g., $\sqrt{24} = 2\sqrt{6}$)	Keystone WB Unit 1 Lesson 2 *Supplement resources will be needed	5 days

Solving Quadratic Equations	HSA- APR.B.3 HSA-REI.4b	Identify the zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Solve quadratic equations by factoring as appropriate to the initial form of the equation.	Big Ideas Math Algebra I Chapter 7.4, 7.5, 7.6, 9.2, 9.3, 9.4, 9.5	10 days
Graphing Quadratic Functions	HSF-IF.C.7a	Graph quadratic functions and show intercepts, maxima, and minima	Big Ideas Math Algebra I Section 8.1-8.3	5 days
Apply Probability to practical situations	A1.2.3.3.1	Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent.	Big Ideas Math Algebra I Chapter 11	5 days
Use measures of dispersion to describe a set of data	A1.2.3.1.1	Calculate and/or interpret the range, quartiles, and interquartile range of data	Big Ideas Math Algebra I Chapter 11	5 days

Use data displays in the problem-solving settings and/or to make predictions	A1.2.3.2.1	Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation.	Big Ideas Math Algebra I Chapter 11	5 days
Use data displays in the problem-solving settings and/or to make predictions	A1.2.3.2.2	Analyze data, make predictions, and/or answer questions based on displayed data (box- and-whisker plots, stem- and-leaf plots, scatter plots, measure of central tendency, or other representations)	Big Ideas Math Algebra I Chapter 11	5 days
Final Exams/ Review				10 Days

Algebra I Part 11B

Curriculum Guide

Scranton School District

Scranton, PA

Algebra I 11B

Prerequisite :

• Successful completion of Algebra I Part 10A

Intended Audience: This course is designed for the student who has successfully completed Algebra I Part 10A by the end of the 10th grade.

Algebra I Part 9A 3010 and Algebra I Part 10B/K 3020

Algebra I Part 9A and Algebra I Part 10B/K together create an Algebra I course taken over two years. The students who select Algebra I Part 9A in ninth grade will complete their studies of Algebra I when they complete the Algebra I Part 10B/K course in tenth grade. These Algebra courses are designed for students who may experience difficulty with a one year Algebra I course Topics covered focus on the Pennsylvania Common Core Standards and are parallel to the Algebra I course, presenting all the same major topics but with a different depth, breadth, and pace, thus allowing time for discovering and understanding basic concepts.

At the culmination of the Algebra I Part 10B/K, the students will sit for the Keystone Algebra I Exam, a Pennsylvania graduation requirement. After successfully completing the course, students will be allowed to enroll in Geometry 11 or Applied Geometry 11.

Year-at-a-glance

Subject: Algebra I Part 10B	Grade Level: 10	Date Completed: 10-22-14

1st Quarter

Торіс	Resources	CCSS
Review: simplifying/evaluating expressions, solving equations,	Big Ideas Math Algebra I Supplemental Material	
solving inequalities in 1 variable, graphing linear equations in 2		
variables		
Graphing systems of linear equations	Big Ideas Math Algebra I Chapter 5	A1.1.2.2.1, A1.1.2.2.2

2nd Quarter

Торіс	Resources	CCSS
Graph Systems of linear inequalities in 2 variables	Big Ideas Math Algebra I Chapter 5	A1.1.3.2.1, A1.1.3.2.2
Rules for exponents and square roots	Big Ideas Math Algebra I Chapter 6	A1.1.1.3.1
Add and subtract polynomial expressions	Big Ideas Math Algebra I Chapter 7	A1.1.1.5.1

3rd Quarter

Торіс	Resources	CCSS
Multiplying polynomials	Big Ideas Math Algebra I Chapter 7	A1.1.1.5.1
Factoring Polynomials	Big Ideas Math Algebra I Chapter 7	A1.1.1.2.1, A1.1.1.52
Simplifying Square Roots	Big Ideas Math Algebra I Chapter 6 and 10	A1.1.1.3.1
Data Analysis and Probability	Big Ideas Math Algebra I Chapter 7	A1.2.3.2.2, A1.2.3.2.1, A1.2.3.1.1, A1.2.3.3.1,

4th Quarter

Торіс	Resources	CCSS
Solving Quadratic Equations using the quadratic formula	Big Ideas Math Algebra I Chapter 7.4	HSA-APR.B.3
		HSA-REI.4b
Graphing Quadratic Equations	Big Ideas Math Algebra I Chapter 8.1-8.3	HSF-IF.C.7a
Final Review		

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Review		Simplifying/evaluating expressions, solving equations, solving inequalities in 1 variable, graphing linear equations in 2 variables			25 days
Systems of Linear Equations	A1.1.2.2.1	Write and/or solve a system of linear equations, including problem, using graphing, substitution, and/or elimination.	Big Ideas Math Algebra I Chapter 5.1-5.4 Engage NY Module 4 Topic D Lesson 24-30 https://www.engageny.org/resource/grad e-8-mathematics		20 days
Interpret solutions to Linear Systems.	A1.1.2.2.2	Interpret solutions to problems in the context of the problem situation. Limit systems to two linear equations	Big Ideas Math Algebra I Chapter 5.1-5.4 Keystone Unit 3 Lesson 3		10 days
Systems of Linear Inequalities	A1.1.3.2.1	Write and/or solve a system of Linear Inequalities using graphing. Limit to two linear inequalities.	Big Ideas Math Algebra I Chapter 5.6-5.7		15 days

Interpret solutions to Linear Inequalities	A1.1.3.2.2	Interpret solutions to problems in the context of the problem situation. Limit systems to two linear inequalties	Big Ideas Math Algebra I Chapter 5.6-5.7 Keystone Unit 4 Lesson 3	5 days
Exponents, Roots and Absolute Value	A1.1.1.3.1	Simplify/evaluate expressions involving properties/laws of exponents, roots, and/or absolute values to solve problems.	Big Ideas Math Algebra I Chapter 6.1 Keystone WB Unit 1 Lesson 4 Engage NY Module 1 Topic A Lessons 1-6 https://www.engageny.org/resource/grad e-8-mathematics-module-1-topic-lesson-1	10 days
Exponents, Roots and Absolute Value	A1.1.1.3.1	Simplify/evaluate expressions involving properties/laws of exponents, roots, and/or absolute values to solve problems.	Keystone WB Unit 1 Lesson 2 *Supplement resources will be needed	5 days
Simplify expressions involving polynomials	A1.1.1.5.1	Add, subtract, and/or multiply polynomial expressions (express answer in simplest form) Nothing larger than a binomial multiplied by a trinomial.	Big Ideas Math Algebra I Chapter 7.1-7.3 Keystone Unit 2 Lesson 2	5 days

GCF and LCM for monomials	A1.1.1.2.1	Find the Greatest Common Factor and/or Least Common Multiple for sets of monomials	Keystone WB Unit 1 Lesson 3 *Supplement resources will be needed	5 days
Simplify expressions involving polynomials	A1.1.1.52	Factor Algebraic expressions, including difference of two squares and trinomials. Trinomials limited to the form ax ² + bx + c, where a is equal to 1 after factoring out all monomials factors.	Big Ideas Math Algebra I Chap 7.4-7.7 *7.8 See Standard	15 days
Simplify expressions involving polynomials	A1.1.1.52	Factor Algebraic expressions, including difference of two squares and trinomials. *including factoring ax ² +bx+c and factoring by grouping	Big ideas Math Algebra I Chapter 7	5 days
Simplify expressions involving polynomials	A1.1.1.5.3	Simplify/reduce a rational algebraic expression.	Keystone WB Unit 2 Lesson 5 <u>**Login to site – Common Core 2014 –</u> <u>Purple infinity Big Ideas Math Algebra I BK</u> <u>Sect 11.3</u>	10 days
Simplify expressions involving polynomials	A1.1.1.1.2	Simplify Square Roots (e.g., $\sqrt{24} = 2\sqrt{6}$)	Keystone WB Unit 1 Lesson 2 *Supplement resources will be needed	5 days

Solving Quadratic Equations	HSA- APR.B.3 HSA-REI.4b	Identify the zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Solve quadratic equations by factoring as appropriate to the initial form of the equation.	Big Ideas Math Algebra I Chapter 7.4, 7.5, 7.6, 9.2, 9.3, 9.4, 9.5	10 days
Graphing Quadratic Functions	HSF-IF.C.7a	Graph quadratic functions and show intercepts, maxima, and minima	Big Ideas Math Algebra I Section 8.1-8.3	5 days
Apply Probability to practical situations	A1.2.3.3.1	Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent.	Big Ideas Math Algebra I Chapter 11	5 days
Use measures of dispersion to describe a set of data	A1.2.3.1.1	Calculate and/or interpret the range, quartiles, and interquartile range of data	Big Ideas Math Algebra I Chapter 11	5 days
Use data displays in the problem-solving settings and/or to make predictions	A1.2.3.2.1	Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation.	Big Ideas Math Algebra I Chapter 11	5 days
---	------------	--	-------------------------------------	---------
Use data displays in the problem-solving settings and/or to make predictions	A1.2.3.2.2	Analyze data, make predictions, and/or answer questions based on displayed data (box- and-whisker plots, stem- and-leaf plots, scatter plots, measure of central tendency, or other representations)	Big Ideas Math Algebra I Chapter 11	5 days
Final Exam Review				10 Days

Algebra I Accelerated K/CC

Curriculum Guide

Scranton School District

Scranton, PA

Algebra I Accelerated K/CC

Prerequisites:

- A grade of 90 or higher in Common Core 7th Grade Accelerated
- Teacher recommendation from seventh grade Common Core 7th Grade Accelerated
- Students must perform in the top 1/3 of the proficient or advance scores on the PSSA.
- Students must maintain an average of 90 or above by the end of the 1st quarter to remain in the class
- Parent's consent

*Students entering from other schools or districts, who did not take a placement test in sixth grade, must pass the Algebra Placement Test for eighth grade with a score of 90 or better.

The 8th grade Algebra I Accelerated K/CC establishes strong algebraic thinking and problem solving skills necessary for further work in mathematics. This course involves working with abstract expressions, using mathematical models to represent real-world problems, and solving open sentences. Topics presented in this course include but are not necessarily limited to:

- structure and properties of the real number system
- algebraic notation including radicals, exponents, absolute value
- varied means for analyzing and expressing patterns, relations and functions including words, tables, graphs, sequences,
- linear equations
- quadratic equations
- systems of equations and inequalities
- polynomials and operations with polynomials including factoring
- data analysis
- probability
- problem solving strategies

At the culmination of this course, the students will sit for the Keystone Algebra I Exam, a Pennsylvania graduation requirement. Successfully completing Algebra I Accelerated K/CC in eighth grade affords the students the opportunity to study Calculus in their senior year of high school. After successfully completing this course, students who meet the proper prerequisites will be enrolled in Honors Geometry or Geometry 9 in ninth grade.

<u>Year-at-a-glance</u>

Subject: Algebra I Accelerated K/CC	Grade Level: 8 th	Date Completed: 10/28/14
		1

1st Quarter

Торіс	Resources	CCSS
Represent and/or use numbers in equivalent forms	Keystone Finish Line WB - Unit 1 Lesson 1	A1.1.1.1.1
Use Estimation strategies in problem-solving situations	Keystone Finish Line WB - Unit 2 Lesson 1	A1.1.1.4.1
Linear Equations	Big Ideas Algebra I - Chapter 1	A1.1.2.1.2
	Reystone Unit 3 Lesson 1	
Linear Inequalities	Big Ideas Algebra I - Chapter 2	A1.1.3.1.3, A1.1.3.1.2,
		A1.1.3.1.1
	Keystone Unit 4 Lesson 1	
Functions	Big Ideas Algebra I - Chapter 3.1- 3.5	A1.2.1.1.3,A1.2.1.1.2, A1.2.2.1.1
	Keystone WB - Unit 5 Lesson 2	
Rate of Change	Big Ideas Algebra I - Chapter 3.2-3.5	A1.2.2.1.1, A1.2.2.1.2

2nd Quarter

Торіс	Resources	CCSS
Linear Equations	Big Ideas Algebra I - Chapter 4.1-4.4	A1.2.2.1.3, A1.2.2.1.4,
with two variables		A1.1.2.1.3, A1.2.1.2.1, A1.2.1.2.2
		A1.2.2.2.1,
Systems of Linear Equations	Big Ideas Algebra I - Chapter 5.1-5.4	A1.1.2.2.1
Interpret solutions to Linear Systems.	Big Ideas Algebra I - Chapter 5.1-5.4	A1.1.2.2.2
	Keyntene Sinish Line M/D. Linit 2 Lessen 2	
	Reystone Finish Line WB - Unit 3 Lesson 3	
Systems of Linear Inequalities	Big Ideas Algebra I - Chapter 5.6-5.7	A1.1.3.2.1
Interpret solutions to Linear Inequalities	Big Ideas Algebra I - Chapter 5.6-5.7	A1.1.3.2.2
	Keystone Finish Line WB - Unit 4 Lesson 3	
Transformations	Big Ideas Blue (8 th grade) - Chapters 2 and 3	8.A.2
Angles and Triangles		
Volume and Similar Solids	Big Ideas Blue (8 th grade) — Chanter 8 1 — 8 3	8 ^ 1
	big ideas bide (o grade) - chapter o.1 - 0.5	0.7.1
Pythagorean Theorem	Big Ideas Blue (8" grade) - Chapter 7	8.A.3

3rd Quarter

Торіс	Resources	CCSS
Exponents, Roots and Absolute Value	Big Ideas Algebra I - Chapter 6.1 Keystone Finish Line WB - Unit 1 Lesson 4	A1.1.1.3.1, A1.1.1.1.2
Simplify expressions involving polynomials	Big Ideas Algebra I - Chapter 7.1-7.3 Keystone Finish Line WB - Unit 2 Lesson 2	A1.1.1.5.1
GCF and LCM for monomials	Keystone Finish Line WB - Unit 1 Lesson 3	A1.1.1.2.1
Simplify expressions involving polynomials	Big Ideas Algebra I - Chapter 7.4-7.8 Keystone Finish Line WB - Unit 2 Lesson 3 &4 Keystone Finish Line WB - Unit 2 Lesson 5 <u>**Login to site – bigideasmath.com -Common</u> <u>Core 2014 – Purple Infinity Algebra Book</u> <u>Chapter 11, Section 3</u>	A1.1.1.5.2, A1.1.1.5.3

4th Quarter

Торіс	Resources	CCSS
Use measures of dispersion to describe a set of data	Keystone Finish Line WB – Unit 7 Sections 1-4 *Big Ideas Algebra I - Chapter 11 See standards	A1.2.3.1.1
Use data displays in the problem-solving settings and/or to make predictions	Keystone Finish Line WB – Unit 7 Sections 1-4 *Big Ideas Algebra I - Chapter 11 See standards	A1.2.3.2.1, A1.2.3.2.2, A1.2.3.2.3
Apply Probability to practical situations	Keystone Finish Line WB – Unit 7 Lesson 5	A1.2.3.3.1
Final Review		

*The suggested timeline and curriculum content should be adjusted and revised as needed in correlation with the PA State Standards.

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Represent and/or use numbers in equivalent forms (e.g., integers, fractions, decimals, percents, square roots, and exponents).	A1.1.1.1.1	Compare and/or order any real numbers. Rational and irrational may be mixed.	Keystone Finish Line WB - Unit 1 Lesson1	Teacher prepared tests, quizzes, etc. Series available assessments online. (Optional)	1 day
Use Estimation strategies in problem-solving situations	A1.1.1.4.1	Use estimation to solve problems	Keystone Finish Line WB - Unit 2 Lesson 1 *Use throughout when appropriate		1 day

Linear equations	A1.1.2.1.2	Use and/or identify an algebraic property to justify any step in an equation-solving process. Note: Linear equations only Vocabulary: • Additive inverse • Multiplicative Inverse • Commutative property • Associative Property • Identity Property • Distributive Property • Multiplicative Property of Zero • Additive Property of Equality • Multiplicative Property of Equality	Big Ideas Algebra I – Chapter 1 Keystone Finish Line WB - Unit 3 Lesson 1 Engage NY Module 4 Topic A Lessons 1-9 https://www.engageny.org /resource/grade-8- mathematics	12 days
	A1.1.2.1.1	Write, solve, and/or apply a linear equation (including problem situations).	Occurs in every chapter *Used throughout	

Linear Inequalities	A1.1.3.1.2	Identify or graph the solution set to a linear inequality on a number	Big Ideas Algebra I – Chapter 2	10 days
		line.	Keystone Finish Line WB - Unit 4 Lesson 1	
	A1.1.3.1.3	Interpret solutions to the problems in the context of the problem situations.	Big Ideas Algebra I – Chapter 2	
		Note: Linear inequalities only.	Keystone Finish Line WB - Unit 4 Lesson 1	
	A1.1.3.1.1	Write or solve compound inequalities and/or graph their solution sets on a	Big Ideas Algebra I – Chapter 2	
		number line (may include absolute value Inequalities).	Keystone Finish Line WB - Unit 4 Lesson 2	
Functions	A1.2.1.1.3	Identify the domain or range of a relation (may be presented as ordered	Big Ideas Algebra I – Chapter 3.1	21 days
		pairs, a graph, or a table). Vocabulary:	Keystone Finish Line WB - Unit 5 Lesson 2	
		Range		
		Domain	Engage NY	
			Module 4 Topic A Lessons 1-	
			bttps://www.opgogopy.org/	
			resource/grade-8- mathematics	

	A1.2.1.1.2	Determine whether a relation is a function, given a set of points or a graph.	Big Ideas Algebra I – Chapter 3.1 Keystone Finish Line WB - Unit 5 Lesson 2 Engage NY Module 4 Topic A Lessons 1- 9 https://www.engageny.org/ resource/grade-8- mathematics	
	A1.2.1.1.1	Analyze a set of data for the existence of a pattern and represent the pattern Algebraically and/or graphically.	Big Ideas Algebra I – Chapter 3.2-3.5 Engage NY Module 4 Topic B 10-14 https://www.engageny.org/ resource/grade-8- mathematics	
Rate of Change	A1.2.2.1.1	Identify, describe, and/or use constant rates of change.	Big Ideas Algebra I – Chapter 3.2-3.5 Engage NY https://www.engageny.org /resource/grade-8- mathematics-module-4- topic-b-lesson-11	

	A1.2.2.1.2	Apply the concept of linear rate of change (slope) to solve problems.	Big Ideas Algebra I – Chapter 3.3-3.5 Engage NY Module 4 Topic C Lesson 15-17 https://www.engageny.org/ resource/grade-8- mathematics	
Linear Equations with two variables	A1.2.2.1.3	 Write or identify a linear equation when given The graph of the line, Two points on the line, or The slope and a point on the line. Parallel and Perpendicular Lines Note: Linear equation may be in point-slope, standard, and/or slope- intercept form. 	Big Ideas Algebra I – Chapter 4.1-4.3 Engage NY Module 4 Topic C Lesson 18-23 https://www.engageny.org/ resource/grade-8- mathematics	19 days
	A1.2.2.1.4	Determine the slope and/or y-intercept represented by a linear equation or graph.	Big Ideas Algebra I – Chapter 4.1	
	A1.1.2.1.3	Interpret solutions to problems in the context of the problem situation. Note: Linear equations only.	Big Ideas Algebra I – Chapter 4.1-4.3 *Used throughout	

A1.2.1.2.1	Create, interpret, and/or	Big Ideas Algebra I –	
	use the equation, graph, or	Chapter 4.1-4.3	
	table of al linear function.		
		*Used throughout	
A1.2.1.2.2	Translate from one	Big Ideas Algebra I –	
	representation of a linear	Chapter 4.1-4.3	
	function to another (i.e.,		
	graph, table, and	*Used throughout	
	equation).		
	. ,	Engage NY	
		Module 6 Topic A Lesson 1-	
		5	
		https://www.engageny.org/	
		resource/grade_8_	
		mathematics	
		mathematics	
A1.2.2.2.1	Draw. identify. find.	Big Ideas Algebra I –	
	and/or write and an	Chapter 4.4	
	equation for a line of best		
	fit for a scatter plot		
		Module 6 Tonic B & C	
		https://www.ongogonic.org/	
		nups://www.engageny.org/	
		resource/grade-8-	
		mathematics	

Systems of Linear Equations	A1.1.2.2.1	Write and/or solve a system of linear equations, including problem, using graphing, substitution, and/or elimination.	Big Ideas Algebra I – Chapter 5.1-5.4 Engage NY Module 4 Topic D Lesson 24-30 https://www.engageny.org/ resource/grade-8- mathematics	19 days
Interpret solutions to Linear Systems.	A1.1.2.2.2	Interpret solutions to problems in the context of the problem situation. Limit systems to two linear equations	Big Ideas Algebra I – Chapter 5.1-5.4 Keystone Finish Line WB - Unit 3 Lesson 3	
Systems of Linear Inequalities	A1.1.3.2.1	Write and/or solve a system of Linear Inequalities using graphing. Limit to two linear inequalities.	Big Ideas Algebra I – Chapter 5.6-5.7	
Interpret solutions to Linear Inequalities	A1.1.3.2.2	Interpret solutions to problems in the context of the problem situation. Limit systems to two linear inequalities	Big Ideas Algebra I – Chapter 5.6-5.7 Keystone Finish Line WB - Unit 4 Lesson 3	
Transformations Angles and Triangles	CC.2.3.8.A.2	Understand and apply congruence, similarity, and geometric transformations using various tools.	Big Ideas Blue (8 th grade) - Chapters 2 and 3	3 days

Volume and Similar Solids	CC.2.3.A.1	Apply the concepts of volume of cylinders, cones, and spheres to solve real- world and mathematical problems.	Big Ideas Blue (8 th grade) - Chapter 8.1 – 8.3	2 days
Pythagorean Theorem	CC.2.3.8.A.3	Understand and apply the Pythagorean Theorem to solve problems.	Big Ideas Blue (8 th grade) - Chapter 7 Engage NY Module 2 Topic D Lessons 15 &16 https://www.engageny.org /resource/grade-8- mathematics	2 days
Exponents, Roots and Absolute Value	A1.1.1.3.1	Simplify/evaluate expressions involving properties/laws of exponents, roots, and/or absolute values to solve problems.	Big Ideas Algebra I – Chapter 6.1 Keystone Finish Line WB - Unit 1 Lesson 4 Engage NY Module 1 Topic A Lessons 1-6 https://www.engageny.org /resource/grade-8- mathematics-module-1- topic-lesson-1	10 days
	A1.1.1.1.2	Simplify Square Roots (e.g., $\sqrt{24} = 2\sqrt{6}$)	Keystone Finish Line WB - Unit 1 Lesson 2 *Supplement resources will be needed	10 days

Simplify expressions involving polynomials	A1.1.1.5.1	Add, subtract, and/or multiply polynomial expressions (express answer in simplest form) Nothing larger than a binomial multiplied by a trinomial.	Big Ideas Algebra I – Chapter 7.1-7.3 Keystone Finish Line WB - Unit 2 Lesson 2	10 days
GCF and LCM for monomials	A1.1.1.2.1	Find the Greatest Common Factor and/or Least Common Multiple for sets of monomials	Keystone Finish Line WB - Unit 1 Lesson 3 *Supplement resources will be needed	5 days
Simplify expressions involving polynomials	A1.1.1.52	Factor Algebraic expressions, including difference of two squares and trinomials. Trinomials limited to the form ax ² + bx + c, where a is equal to 1 after factoring out all monomials factors.	Big Ideas Algebra I – Chapter 7.4-7.8 Keystone Finish Line WB - Unit 2 Lesson 3 &4	15 days
	A1.1.1.5.3	Simplify/reduce a rational algebraic expression.	Keystone Finish Line WB - Unit 2 Lesson 5 <u>**Login to site – Common</u> <u>Core 2014 – Purple infinity</u> <u>Algebra Book Chapter 11,</u> <u>Section 3</u>	

Use measures of dispersion to describe a set of data	A1.2.3.1.1	Calculate and/or interpret the range, quartiles, and interquartile range of data	Keystone Finish Line WB - Unit 7 Sections 1-4 *Big Ideas Algebra I - Chapter 11	10 days
Use data displays in the problem-solving settings and/or to make predictions	A1.2.3.2.1	Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation.	Keystone Finish Line WB - Unit 7 Sections 1-4 *Big Ideas Algebra I - Chapter 11 See standards	
	A1.2.3.2.2	Analyze data, make predictions, and/or answer questions based on displayed data (box- and-whisker plots, stem- and-leaf plots, scatter plots, measure of central tendency, or other representations)	Keystone Finish Line WB - Unit 7 Sections 1-4 *Big Ideas Algebra I - Chapter 11 See standards	
	A1.2.3.2.3	Make predictions using the equations or graphs of best-fit lines of scatter plots	Keystone Finish Line WB - Unit 7 Sections 1-4 *Big Ideas Algebra I - Chapter 11 See standards	
Apply Probability to practical situations	A1.2.3.3.1	Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent.	Keystone Finish Line WB - Unit 7 Lesson 5	

Keystone Review and Exam			10 days
Selected Topics	 Solving quadratic equations Completing the square Solving the quadratic formula Graphing quadratics with tables of values Solving radical equations 	Big Ideas Algebra I – Chapters 9 and 10	10 days
Final Review/Final Exam			10 days

Algebra I K/CC

Curriculum Guide

Scranton School District

Scranton, PA

Algebra I K/CC 3210

Prerequisite :

• Successful completion of Common Core 8P Concepts of Algebra

Algebra I establishes strong algebraic thinking and problem solving skills necessary for further work in mathematics. This course involves working with abstract expressions, using mathematical models to represent real-world problems, and solving open sentences. Topics presented in this course include but are not necessarily limited to structure and properties of the real number system, algebraic notation including radicals, exponents, absolute value, varied means for analyzing and expressing patterns, relations and functions including words, tables, graphs, sequences, solving and graphing linear equations, quadratic equations, systems of equations and inequalities, polynomials and operations with polynomials including factoring, data analysis, probability and problem solving strategies.

At the culmination of this course, the students will sit for the Keystone Algebra I Exam, a Pennsylvania graduation requirement. After successfully completing this course, students will be allowed to enroll in Geometry 10.

Year-at-a-glance

Subject: Algebra I K/CC 3210	Grade Level: 9 th	Date Completed: 10-14-14

1 st	Quarter	
-----------------	---------	--

Торіс	Resources	CCSS
Represent and/or use numbers in equivalent forms	Keystone Finish Line WB Unit 1 Lesson 1	A1.1.1.1
Use Estimation strategies in problem-solving situations	Keystone Finish Line WB Unit 2 Lesson 1	A1.1.1.4.1
Linear equations	Big Ideas Algebra I Chapter 1 Keystone Finish Line WB Unit 3 Lesson 1	A1.1.2.1.2
Linear Inequalities	Big Ideas Algebra I Chapter 2 Keystone Finish Line WB Unit 4 Lesson 1	A1.1.3.1.3, A1.1.3.1.2, A1.1.3.1.1

2nd Quarter

Торіс	Resources	CCSS
Functions	Big Ideas Algebra I	A1.2.1.1.3,A1.2.1.1.2, A1.2.2.1.1
	Chapter 3.1- 3.5	
	Keystone Finish Line WB	
	Unit 5 Lesson 2	
Rate of Change	Big Ideas Algebra I	A1.2.2.1.1, A1.2.2.1.2
	Chapter 3.2-3.5	
Linear Equations	Big Ideas Algebra I	A1.2.2.1.3, A1.2.2.1.4,
with two variables	Chapter 4.1-4.4	A1.1.2.1.3, A1.2.1.2.1, A1.2.1.2.2
		A1.2.2.2.1,

3rd Quarter

Торіс	Resources	CCSS
Systems of Linear Equations	Big Ideas Chapter 5.1-5.4	A1.1.2.2.1
Interpret solutions to Linear Systems.	Big Ideas Chapter 5.1-5.4 Keystone Finish Line WB Unit 3 Lesson 3	A1.1.2.2.2
Systems of Linear Inequalities	Big Ideas Chapter 5.6-5.7	A1.1.3.2.1
Interpret solutions to Linear Inequalities	Big Ideas Chapter 5.6-5.7 Keystone Finish Line WB Unit 4 Lesson 3	A1.1.3.2.2
Exponents, Roots and Absolute Value	Big Ideas Algebra I Chapter 6.1 Keystone Finish Line WB Unit 1 Lesson 4	A1.1.1.3.1, A1.1.1.1.2
Simplify expressions involving polynomials	Big Ideas Algebra I Chapter 7.1-7.3 Keystone Finish Line WB Unit 2 Lesson 2	A1.1.1.5.1

4th Quarter

Торіс	Resources	CCSS
GCF and LCM for monomials	Keystone Finish Line WB	A1.1.1.2.1
	Unit 1 Lesson 3	
Simplify expressions involving polynomials	Big Ideas Algebra I Chap 7.4, 7.5, 7.7, 7.8 Keystone Finish Line WB Unit 2 Lesson 3 &4, Unit 2 Lesson 5 <u>**Login to site –</u> bigideasmath.com - Common <u>Core 2014 – Purple Infinity</u> <u>Algebra Book Chapter 11, Section</u> <u>3</u>	A1.1.1.5.2, A1.1.1.5.3
Use measures of dispersion to describe a set of data	Keystone Finish Line WB Unit 7 Sections 1-4 *Big Ideas Algebra I - Chapter 11 See standards	A1.2.3.1.1
Use data displays in the problem-solving settings and/or to make predictions	Keystone Unit 7 Sections 1-4 *Big Ideas Algebra I - Chapter 11 See standards	A1.2.3.2.1, A1.2.3.2.2, A1.2.3.2.3
Apply Probability to practical situations	Keystone Finish Line WB Unit 7 Lesson 5	A1.2.3.3.1
Final Review		

*The suggested timeline and curriculum content should be adjusted and revised as needed in correlation with the PA State Standards.

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Represent and/or use numbers in equivalent forms (e.g., integers, fractions, decimals, percents, square roots, and exponents).	A1.1.1.1.1	Compare and/or order any real numbers. Rational and irrational may be mixed.	Keystone Finish Line WB Unit 1 Lesson1	Teacher prepared tests, quizzes, etc. Series available assessments	3 days
Use Estimation strategies in problem-solving situations	A1.1.1.4.1	Use estimation to solve problems	Keystone Finish Line WB Unit 2 Lesson 1 Use throughout when appropriate		2 days

Linear equations	A1.1.2.1.2	Use and/or identify an algebraic property to justify any step in an equation-solving process. Note: Linear equations only Vocabulary: • Additive inverse • Multiplicative Inverse • Commutative property • Associative Property • Identity Property • Distributive Property • Multiplicative Property of Zero • Additive Property of Equality • Multiplicative Property of Equality	Big Ideas Algebra I Chapter 1 Keystone Finish Line WB Unit 3 Lesson 1 Engage NY Module 4 Topic A Lessons 1- 9 https://www.engageny.org/ resource/grade-8- mathematics	20 days
	A1.1.2.1.1	Write, solve, and/or apply a linear equation (including problem situations).	Occurs in every chapter *Use throughout. Number of days not given	

Linear Inequalities	A1.1.3.1.2	Identify or graph the solution set to a linear inequality on a number line.	Big Ideas Algebra I Chapter 2 Keystone Finish Line WB Unit 4 Lesson 1	20 days
	A1.1.3.1.3	Interpret solutions to the problems in the context of the problem situations. Note: Linear inequalities only.	Big Ideas Algebra I Chapter 2 Keystone Finish Line WB Unit 4 Lesson 1	
	A1.1.3.1.1	Write or solve compound inequalities and/or graph their solution sets on a number line (may include absolute value Inequalities).	Big Ideas Algebra I Chapter 2 Keystone Finish Line WB Unit 4 Lesson 2	
Functions	A1.2.1.1.3	Identify the domain or range of a relation (may be presented as ordered pairs, a graph, or a table). Vocabulary: • Range • Domain	Big Ideas Algebra I Chapter 3.1 Keystone Finish Line WB Unit 5 Lesson 2 Engage NY Module 4 Topic A Lessons 1-9 https://www.engageny.org/r esource/grade-8- mathematics	20 days

	A1 2 1 1 2	Determine whether a		
	A1.2.1.1.2	Determine whether a		
		relation is a function, given	Big Ideas Algebra I	
		a set of points or a graph.	Chapter 3.1	
			Keystone Finish Line WB	
			Unit 5 Lesson 2	
			Engage NY	
			Module 4 Topic A Lessons 1-9	
			https://www.engageny.org/r	
			esource/grade-8-	
			mathematics	
			mathematics	
	A1.2.1.1.1	Analyze a set of data for	Big Ideas Algebra I	
		the existence of a pattern	Chapter 3.2-3.5	
		and represent the pattern		
		Algebraically and/or	Engage NY	
		graphically.	Module 4 Topic B 10-14	
			https://www.engageny.org/r	
			esource/grade-8-	
			mathematics	
Rate of Change	A1.2.2.1.1	Identify, describe, and/or	Big Ideas Algebra I	
		use constant rates of	Chapter 3.2-3.5	
		change.		
			Engage NY	
			https://www.engageny.org/r	
			acourco/grado 8	
			mathematics module (
			mathematics-module-4-	
			topic-b-lesson-11	

	A1.2.2.1.2	Apply the concept of linear rate of change (slope) to solve problems.	Big Ideas Algebra I Chapter 3.3-3.5 Engage NY Module 4 Topic C Lesson 15- 17 https://www.engageny.org/r esource/grade-8- mathematics	
Linear Equations with two variables	A1.2.2.1.3	 Write or identify a linear equation when given The graph of the line, Two points on the line, or The slope and a point on the line. Parallel and Perpendicular Lines Note: Linear equation may be in point-slope, standard, and/or slope- intercept form. 	Big Ideas Algebra I Chapter 4.1-4.3 Engage NY Module 4 Topic C Lesson 18- 23 https://www.engageny.org/r esource/grade-8- mathematics	25 days
	A1.2.2.1.4	Determine the slope and/or y-intercept represented by a linear equation or graph.	Big Ideas Algebra I Chapter 4.1	
	A1.1.2.1.3	Interpret solutions to problems in the context of the problem situation. Note: Linear equations only.	Big Ideas Chapter 4.1-4.3 Used throughout	

	A1.2.1.2.1	Create, interpret, and/or use the equation, graph, or table of al linear function.	Big Ideas Algebra I Chapter 4.1-4.3 Used throughout	
	A1.2.1.2.2	Translate from one representation of a linear function to another (i.e., graph, table, and equation).	Big Ideas Algebra I Chapter 4.1-4.3 Used throughout Engage NY Module 6 Topic A Lesson 1-5 https://www.engageny.org/r esource/grade-8- mathematics	
	A1.2.2.2.1	Draw, identify, find, and/or write and an equation for a line of best fit for a scatter plot	Big Ideas Algebra I Chapter 4.4 Engage NY Module 6 Topic B & C Lesson 6-9 https://www.engageny.org/r esource/grade-8- mathematics	
Systems of Linear Equations	A1.1.2.2.1	Write and/or solve a system of linear equations, including problem, using graphing, substitution, and/or elimination.	Big Ideas Chapter 5.1-5.4 Engage NY Module 4 Topic D Lesson 24- 30 https://www.engageny.org/r esource/grade-8- mathematics	25 days

Interpret solutions to Linear Systems.	A1.1.2.2.2	Interpret solutions to problems in the context of the problem situation. Limit systems to two linear equations	Big Ideas Chapter 5.1-5.4 Keystone Finish Line WB Unit 3 Lesson 3	
Systems of Linear Inequalities	A1.1.3.2.1	Write and/or solve a system of Linear Inequalities using graphing. Limit to two linear inequalities.	Big Ideas Chapter 5.6-5.7	
Interpret solutions to Linear Inequalities	A1.1.3.2.2	Interpret solutions to problems in the context of the problem situation. Limit systems to two linear inequalities	Big Ideas Chapter 5.6-5.7 Keystone Finish Line WB Unit 4 Lesson 3	
Exponents, Roots and Absolute Value	A1.1.1.3.1	Simplify/evaluate expressions involving properties/laws of exponents, roots, and/or absolute values to solve problems.	Big Ideas Chapter 6.1 Keystone Finish Line WB Unit 1 Lesson 4 Engage NY Module 1 Topic A Lessons 1-6 https://www.engageny.org/ resource/grade-8- mathematics-module-1- topic-lesson-1	10 days

	A1.1.1.1.2	Simplify Square Roots (e.g., $\sqrt{24} = 2\sqrt{6}$)	Keystone Finish Line WB Unit 1 Lesson 2 *Supplemental resources will be needed	
Simplify expressions involving polynomials	A1.1.1.5.1	Add, subtract, and/or multiply polynomial expressions (express answer in simplest form.) Nothing larger than a binomial multiplied by a trinomial.	Big Ideas Algebra I Chapter 7.1-7.3 Keystone Finish Line WB Unit 2 Lesson 2	10 days
GCF and LCM for monomials	A1.1.1.2.1	Find the Greatest Common Factor and/or Least Common Multiple for sets of monomials	Keystone Finish Line WB Unit 1 Lesson 3 *Supplemental resources will be needed	7 days
Simplify expressions involving polynomials	A1.1.1.52	Factor Algebraic expressions, including difference of two squares and trinomials. Trinomials limited to the form ax ² + bx + c, where a is equal to 1 after factoring out all monomials factors.	Big Ideas Algebra I Chap 7.4, 7.5, 7.7, 7.8 Keystone Finish Line WB Unit 2 Lesson 3 & 4	10 days

	A1.1.1.5.3	Simplify/reduce a rational algebraic expression.	Keystone Finish Line WB Unit 2 Lesson 5 <u>**Login to site –</u> <u>bigideasmath.com -</u> <u>Common Core 2014 – Purple</u> <u>Infinity Algebra Book</u> <u>Chapter 11, Section 3</u>	
Use measures of dispersion to describe a set of data	A1.2.3.1.1	Calculate and/or interpret the range, quartiles, and interquartile range of data	Keystone Finish Line WB Unit 7 Sections 1-4 *Big Ideas Algebra I Chap 11.1 – 11.2	8 days
Use data displays in the problem-solving settings and/or to make predictions	A1.2.3.2.1	Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation.	Keystone Finish Line WB Unit 7 Sections 1-4 *Big Ideas Algebra I Chap 11.1 – 11.3	
	A1.2.3.2.2	Analyze data, make predictions, and/or answer questions based on displayed data (box- and-whisker plots, stem- and-leaf plots, scatter plots, measure of central tendency, or other representations)	Keystone Finish Line WB Unit 7 Sections 1-4 *Big Ideas Algebra I Chap 11.1 – 11.3	

	A1.2.3.2.3	Make predictions using the equations or graphs of best-fit lines of scatter plots	Keystone Finish Line WB Unit 7 Sections 1-4	
Apply Probability to practical situations	A1.2.3.3.1	Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent.	Keystone Finish Line WB Unit 7 Lesson 5	
Keystone Review and Exam				5 days
Selected Topics		-Solving quadratic equations -Completing the square -Solving the quadratic formula -Graphing quadratics with a table of values -Solving radical equations	Big Ideas Algebra I Chapters 9 & 10	5 days
Final Review/Exam				10 days

Algebra I Part 10A

Curriculum Guide

Scranton School District

Scranton, PA

Algebra I Part 10A

Prerequisite :

• Successful completion of Pre Algebra in 9th grade.

Intended Audience: This course is designed for the student who has successfully completed Pre-Algebra by the end of the 9th grade.

Algebra I Part 9A and Algebra I Part 10B/K together create an Algebra I course taken over two years. The students who select Algebra I Part 9A in ninth grade will complete their studies of Algebra I when they complete the Algebra I Part 10B/K course in tenth grade. These Algebra courses are designed for students who may experience difficulty with a one year Algebra I course Topics covered focus on the Pennsylvania Common Core Standards and are parallel to the Algebra I course, presenting all the same major topics but with a different depth, breadth, and pace, thus allowing time for discovering and understanding basic concepts.

At the culmination of the Algebra I Part 10B/K, the students will sit for the Keystone Algebra I Exam, a Pennsylvania graduation requirement. After successfully completing the course, students will be allowed to enroll in Geometry 11 or Applied Geometry 11.
Year-at-a-glance

Subject: Algebra I 10A	Grade Level: 10	Date Completed: 10-22-14

1st Quarter

Торіс	Resources	CCSS
Review Pre-Algebra Skills: Evaluating and simplifying expressions, order of operations, integer operations, exponential and standard notation, simplifying basic square roots, review properties of real numbers	Big Ideas Math Algebra 1 online teacher resources	
Represent and use numbers in equivalent forms	Keystone Finish Line workbook	A1.1.1.1.1

2nd Quarter

Торіс	Resources	CCSS
Solving Linear Equations: 1-step, 2-step, combining like terms, with the distributive property, with variables on both sides.	Big Ideas Math Algebra 1 Chapter 1	A1.1.2.1.2, A1.1.2.1.1
Solving and graphing linear inequalities: including identifying the solution set of an inequality. Solving compound inequalities	Big Ideas Math Algebra 1 Chapter 2	A1.1.3.1.2, A1.1.3.1.3, A1.1.3.1.1

3rd Quarter

Торіс	Resources	CCSS
Concepts of functions: domain/range, determining whether a	Big Ideas Math Algebra 1 Chapter 3	A1.2.1.1.3, A1.2.1.1.2,
function is a relation, function notation, evaluating functions		A1.2.1.1.1
Rate of change problems	Big Ideas Math Algebra 1 hapter 3	A1.2.2.1.1, A1.2.2.1.2
Graph linear equations using t-table, intercepts, and slope and	Big Ideas Math Algebra 1 Chapter 3	A1.1.2.1.3, A1.2.1.2.1,
the y intercept		A1.2.1.2.1
Scatter plots: writing line of best fit and making predictions	Big Ideas Math Algebra 1 Chapter 4	A1.2.2.2.1,

4th Quarter

Торіс	Resources	CCSS
Writing linear equations	Big Ideas Math Algebra 1 Chapter 4	A1.2.2.1.3, A1.2.3.2.3
Identifying slope	Big Ideas Math Algebra 1 Chapter 4	A1.2.2.1.2
Probability and statistics	Big Ideas Math Algebra 1 Chapter 4	A1.2.3.3.1, A1.2.3.1.1, A1.2.3.2.1, A1.2.3.2.2
Final Review		

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Represent and/or use numbers in equivalent forms (e.g., integers, fractions, decimals, percents, square roots, and exponents).	A1.1.1.1.1	Compare and/or order any real numbers. Rational and irrational may be mixed.	Keystone Algebra I Workbook: Chapter 1 Section 1		20 days
Use Estimation strategies in problem-solving situations	A1.1.1.4.1	Use estimation to solve problems	Use throughout the year		5 days

Linear Equations	A1.1.2.1.2	Use and/or identify an algebraic property to justify any step in an equation-solving process. Note: Linear equations only Vocabulary: • Additive inverse • Multiplicative Inverse • Commutative property • Associative Property • Identity Property • Distributive Property • Multiplicative Property of Zero • Additive Property of Equality • Multiplicative Property of	Big Ideas Math Algebra 1 Chapter 1	25 days
Linear Equations		Equality Solve linear equations by clearing fractions and	Supplemental Materials	5 days
		decimals from the		
		a. Using the		
		power of 10.		
		b. Using the least		
		common multiple		
		denominator		

Linear Equations		Solve linear equations involving absolute value	Big Ideas Math Algebra 1 Chapter 1	5 days
Linear Equations		Write and/or solve proportions	Supplemental Materials	5 days
Linear Equations		Solve percent problems including percent change, percent increase, percent decrease, and percent error.	Supplemental Materials	5 days
Linear Equations	A1.1.2.1.1	Write, solve, and/or apply a linear equation (including problem situations).	Big Ideas Math Algebra 1 Chapter 1	10 days
Linear Inequalities	A1.1.3.1.2	Identify or graph the solution set to a linear inequality on a number line.	Big Ideas Math Algebra 1 Chapter 2	5 days
Linear Inequalities	A1.1.3.1.3	Interpret solutions to the problems in the context of the problem situations. Note: Linear in equalities only.	Big Ideas Math Algebra 1 Chapter 2	5 days
Linear Inequalities	A1.1.3.1.1	Write or solve compound in equalities and/or graph their solution sets on a number line (may include absolute value Inequalities).	Big Ideas Math Algebra 1 Chapter 2	5 days

Functions	A1.2.1.1.3	Identify the domain or range of a relation (may be presented as ordered pairs, a graph, or a table). Vocabulary: • Range • Domain	Big Ideas Math Algebra 1 Chapter 3.1	5 days
Functions	A1.2.1.1.2	Determine whether a relation is a function, given a set of points or a graph.	Big Ideas Math Algebra 1 Chapter 3.1	2 days
Functions	A1.2.1.1.1	Analyze a set of data for the existence of a pattern and represent the pattern algebraically and/or graphically.	Big Ideas Math Algebra 1 Chapter 3.1	5 days
Rate Of Change	A1.2.2.1.1	Identify, describe, and/or use constant rates of change.	Big Ideas Math Algebra 1 Chapter 3.2	3 days
Rate Of Change	A1.2.2.1.2	Apply the concept of linear rate of change (slope) to solve problems.	Big Ideas Math Algebra 1 Chapter 3.2-3.5	3 days

Linear Equations with two variables	A1.2.2.1.3	 Write or identify a linear equation when given The graph of the line, Two points on the line, or The slope and a point on the line. Note: Linear equation may be in point-slope, standard, and/or slope- intercept form. 	Big Ideas Math Algebra 1 Chapter 4.1-4.3	5 days
Linear Equations with two variables		Write or identify a linear equation parallel or perpendicular to a given line.	Big Ideas Math Algebra 1 Chapter 4.1-4.3	5 days
Linear Equations with two variables	A1.2.2.1.4	Determine the slope and/or y-intercept represented by a linear equation or graph.	Big Ideas Math Algebra 1 Chapter 3.2-3.5	4 days
Linear Equations with two variables	A1.1.2.1.3	Interpret solutions to problems in the context of the problem situation. Note: Linear equations only.	Use throughout the unit	5 days
Linear Equations with two variables	A1.2.2.2.1	Draw, identify, find, and/or write an equation for a line to best fit for a scatter plot.	Big Ideas Math Algebra 1 Chapter 4.4	5 days

Linear Equations with two variables	A1.2.3.2.3	Make predictions using the equations or graphs of best-fit lines of scatter plots	Big Ideas Math Algebra 1 Chapter 4.5	3 da	ays
Linear Equations with two variables	A1.2.1.2.1	Create, interpret, and/or use the equation, graph, or table of al linear function.	Big Ideas Math Algebra 1 Chapter 3.2-3.5	5 da	ays
Linear Equations with two variables	A1.2.1.2.2	Translate from one representation of a linear function to another (i.e., graph, table, and equation).	Big Ideas Math Algebra 1 Chapter 3.2-3.5	5 da	ays
Apply Probability to practical situations	A1.2.3.3.1	Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent.	Big Ideas Math Algebra 1 Chapter 11	5 da	ays
Use measures of dispersion to describe a set of data	A1.2.3.1.1	Calculate and/or interpret the range, quartiles, and interquartile range of data	Big Ideas Math Algebra 1 Chapter 11	5 da	ays
Use data displays in the problem-solving settings and/or to make predictions	A1.2.3.2.1	Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation.	Big Ideas Math Algebra 1 Chapter 11	5 da	ays

Use data displays in the problem-solving settings and/or to make predictions	A1.2.3.2.2	Analyze data, make predictions, and/or answer questions based on displayed data (box- and-whisker plots, stem- and-leaf plots, scatter plots, measure of central tendency, or other representations)	Big Ideas Math Algebra 1 Chapter 11	5 days
Final Exam Review				10 days

Algebra I Part 9A

Curriculum Guide

Scranton School District

Scranton, PA

Algebra I Part 9A

Prerequisite :

• Successful completion of Common Core Math 8 with a grade greater than 76.

Intended Audience: This course is designed for the student who has successfully completed Common Core Math 8 by the end of the 8th grade.

Algebra I Part 9A and Algebra I Part 10B/K together create an Algebra I course taken over two years. The students who select Algebra I Part 9A in ninth grade will complete their studies of Algebra I when they complete the Algebra I Part 10B/K course in tenth grade. These Algebra courses are designed for students who may experience difficulty with a one year Algebra I course Topics covered focus on the Pennsylvania Common Core Standards and are parallel to the Algebra I course, presenting all the same major topics but with a different depth, breadth, and pace, thus allowing time for discovering and understanding basic concepts.

At the culmination of the Algebra I Part 10B/K, the students will sit for the Keystone Algebra I Exam, a Pennsylvania graduation requirement. After successfully completing the course, students will be allowed to enroll in Geometry 11 or Applied Geometry 11.

Year-at-a-glance

Subject: Algebra I 9A	Grade Level: 9	Date Completed: 10-22-14

1st Quarter

Торіс	Resources	CCSS
Review Pre-Algebra Skills: Evaluating and simplifying expressions, order of operations, integer operations, exponential and standard notation, simplifying basic square roots, review properties of real numbers	Big Ideas Math Algebra 1 online teacher resources	
Represent and use numbers in equivalent forms	Keystone Finish Line workbook	A1.1.1.1.1

2nd Quarter

Торіс	Resources	CCSS
Solving Linear Equations: 1-step, 2-step, combining like terms, with the distributive property, with variables on both sides.	Big Ideas Math Algebra 1 Chapter 1	A1.1.2.1.2, A1.1.2.1.1
Solving and graphing linear inequalities: including identifying the solution set of an inequality. Solving compound inequalities	Big Ideas Math Algebra 1 Chapter 2	A1.1.3.1.2, A1.1.3.1.3, A1.1.3.1.1

3rd Quarter

Торіс	Resources	CCSS
Concepts of functions: domain/range, determining whether a	Big Ideas Math Algebra 1 Chapter 3	A1.2.1.1.3, A1.2.1.1.2,
function is a relation, function notation, evaluating functions		A1.2.1.1.1
Rate of change problems	Big Ideas Math Algebra 1 Chapter 3	A1.2.2.1.1, A1.2.2.1.2
Graph linear equations using t-table, intercepts, and slope and	Big Ideas Math Algebra 1 Chapter 3	A1.1.2.1.3, A1.2.1.2.1,
the y intercept		A1.2.1.2.1
Scatter plots: writing line of best fit and making predictions	Big Ideas Math Algebra 1 Chapter 4	A1.2.2.2.1,

4th Quarter

Торіс	Resources	CCSS
Writing linear equations	Big Ideas Math Algebra 1 Chapter 4	A1.2.2.1.3, A1.2.3.2.3
Identifying slope	Big Ideas Math Algebra 1 Chapter 4	A1.2.2.1.2
Probability and statistics	Big Ideas Math Algebra 1 Chapter 4	A1.2.3.3.1, A1.2.3.1.1, A1.2.3.2.1, A1.2.3.2.2
Final Review		

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Represent and/or use numbers in equivalent forms (e.g., integers, fractions, decimals, percents, square roots, and exponents).	A1.1.1.1.1	Compare and/or order any real numbers. Rational and irrational may be mixed.	Keystone Algebra I Workbook: Chapter 1 Section 1		20 days
Use Estimation strategies in problem-solving situations	A1.1.1.4.1	Use estimation to solve problems	Use throughout the year		5 days

Linear Equations	A1.1.2.1.2	Use and/or identify an algebraic property to justify any step in an equation-solving process. Note: Linear equations only Vocabulary: • Additive inverse • Multiplicative Inverse • Commutative property • Associative Property • Identity Property • Distributive Property • Multiplicative Property of Zero • Additive Property of Equality • Multiplicative Property of	Big Ideas Math Algebra 1 Chapter 1	25 days
Linear Equations		Equality Solve linear equations by clearing fractions and	Supplemental Materials	5 days
		decimals from the		
		equation by: a. Using the appropriate power of 10. b. Using the least common multiple of the denominator		

Linear Equations		Solve linear equations involving absolute value	Big Ideas Math Algebra 1 Chapter 1	5 days
Linear Equations		Write and/or solve proportions	Supplemental Materials	5 days
Linear Equations		Solve percent problems including percent change, percent increase, percent decrease, and percent error.	Supplemental Materials	5 days
Linear Equations	A1.1.2.1.1	Write, solve, and/or apply a linear equation (including problem situations).	Big Ideas Math Algebra 1 Chapter 1	5 days
Linear Inequalities	A1.1.3.1.2	Identify or graph the solution set to a linear inequality on a number line.	Big Ideas Math Algebra 1 Chapter 2	10 days
Linear Inequalities	A1.1.3.1.3	Interpret solutions to the problems in the context of the problem situations. Note: Linear in equalities only.	Big Ideas Math Algebra 1 Chapter 2	5 days
Linear Inequalities	A1.1.3.1.1	Write or solve compound in equalities and/or graph their solution sets on a number line (may include absolute value Inequalities).	Big Ideas Math Algebra 1 Chapter 2	5 days

Functions	A1.2.1.1.3	Identify the domain or range of a relation (may be presented as ordered pairs, a graph, or a table). Vocabulary: • Range • Domain	Big Ideas Math Algebra 1 Chapter 3.1	5 days
Functions	A1.2.1.1.2	Determine whether a relation is a function, given a set of points or a graph.	Big Ideas Math Algebra 1 Chapter 3.1	2 days
Functions	A1.2.1.1.1	Analyze a set of data for the existence of a pattern and represent the pattern algebraically and/or graphically.	Big Ideas Math Algebra 1 Chapter 3.1	5 days
Rate Of Change	A1.2.2.1.1	Identify, describe, and/or use constant rates of change.	Big Ideas Math Algebra 1 Chapter 3.2	3 days
Rate Of Change	A1.2.2.1.2	Apply the concept of linear rate of change (slope) to solve problems.	Big Ideas Math Algebra 1 Chapter 3.2-3.5	3 days

Linear Equations with two variables	A1.2.2.1.3	 Write or identify a linear equation when given The graph of the line, Two points on the line, or The slope and a point on the line. Note: Linear equation may be in point-slope, standard, and/or slope- intercept form. 	Big Ideas Math Algebra 1 Chapter 4.1-4.3	5 days
Linear Equations with two variables		Write or identify a linear equation parallel or perpendicular to a given line.	Big Ideas Math Algebra 1 Chapter 4.1-4.3	5 days
Linear Equations with two variables	A1.2.2.1.4	Determine the slope and/or y-intercept represented by a linear equation or graph.	Big Ideas Math Algebra 1 Chapter 3.2-3.5	4 days
Linear Equations with two variables	A1.1.2.1.3	Interpret solutions to problems in the context of the problem situation. Note: Linear equations only.	Use throughout the unit	5 days
Linear Equations with two variables	A1.2.2.2.1	Draw, identify, find, and/or write an equation for a line to best fit for a scatter plot.	Big Ideas Math Algebra 1 Chapter 4.4	5 days

Linear Equations with two variables	A1.2.3.2.3	Make predictions using the equations or graphs of best-fit lines of scatter plots	Big Ideas Math Algebra 1 Chapter 4.5	3 d	days
Linear Equations with two variables	A1.2.1.2.1	Create, interpret, and/or use the equation, graph, or table of al linear function.	Big Ideas Math Algebra 1 Chapter 3.2-3.5	5 d	days
Linear Equations with two variables	A1.2.1.2.2	Translate from one representation of a linear function to another (i.e., graph, table, and equation).	Big Ideas Math Algebra 1 Chapter 3.2-3.5	5 d	days
Apply Probability to practical situations	A1.2.3.3.1	Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent.	Big Ideas Math Algebra 1 Chapter 11	5 d	days
Use measures of dispersion to describe a set of data	A1.2.3.1.1	Calculate and/or interpret the range, quartiles, and interquartile range of data	Big Ideas Math Algebra 1 Chapter 11	5 d	days
Use data displays in the problem-solving settings and/or to make predictions	A1.2.3.2.1	Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation.	Big Ideas Math Algebra 1 Chapter 11	5 d	days

Use data displays in the problem-solving settings and/or to make predictions	A1.2.3.2.2	Analyze data, make predictions, and/or answer questions based on displayed data (box- and-whisker plots, stem- and-leaf plots, scatter plots, measure of central tendency, or other representations)	Big Ideas Math Algebra 1 Chapter 11	5 days
Final Exam Review				10 days

Algebra II

Curriculum Guide

Scranton School District

Scranton, PA

Algebra II

Prerequisite:

• Successful completion of Geometry 10 or Geometry 11

Building on their work with linear and quadratic functions, students will extend their repertoire of functions to include polynomial, rational, radical, exponential, and logarithmic functions. Students will work closely with the expressions that define the functions, and continue to expand and hone their abilities to model situations and to solve equations, including solving quadratic equations over the set of complex numbers and solving exponential equations using the properties of logarithms. Other topics that are included in this course are arithmetic and geometric sequences, probability, permutations, and combinations.

After successful completion of this course, the students may enroll in Trigonometry, thus essentially completing an Algebra II/Trigonometry class in two years, as well as other mathematics courses.

Year-at-a-glance

Subject: Algebra II	Grade Level 11 th and 12 th	Date Completed: 2/5/2015

1st Quarter

Торіс	Resources	CCSS
Linear Equations and Inequalities in one variable	Prentice Hall Algebra II/Trigonometry Text 1.5, 1.6, 2.1, 2.2, 2.4, 2.5, 2.6, 2.7	A1.1.2.1.1 A1.1.3.1.2 A1.1.3.1.1
Exponents	Prentice Hall Algebra II/Trigonometry Text 1.7, 1.8	A2.1.2.1.1 A2.1.2.1.3
Relations/Linear Equations in 2 Variables	Prentice Hall Algebra II/Trigonometry Text 3.1, 3.3, 3.4, 3.5, 3.6, 3.7	A1.2.1.1.3 A1.2.1.1.2 A1.2.2.1.3
Correlation	Prentice Hall Algebra II/Trigonometry Text 3.8 Also refer to Big Ideas Algebra 2 Text Sect. 1.3	A2.2.1.1.1 A2.2.3.1.1 A2.2.3.1.2

2nd Quarter

Торіс	Resources	CCSS
Systems of Linear Equations/Inequalities	Prentice Hall Algebra II/Trigonometry Text	A1.1.2.2.1
	4.1, 4.2, 4.3, 4.7	A1.1.3.2.1
Debusersiele		
Polynomials	Prentice Hall Algebra II/ Irigonometry Text	A1.1.1.5.1
	5.1, 5.2, 5.3, 5.4, 5.5, 5.6	A1.1.1.5.2
		A2.1.2.2.1
	Refer to 4.2 & 4.4 in Big Ideas	
Quadratic Functions	Big Ideas Algebra 2 Text Chapter 2 and	A2.2.2.1.1
	accompanying resources	A2.2.2.1.3
		A2.2.2.1.4
		A2.2.2.1
		A2.2.3.1.1

3 rd Quarter						
Торіс	Resources	CCSS				
Quadratic Equations	Pig Idoas Algobra 2 Toxt Chapter 2 and	AD 1 2 1 1				
	Big lueas Algebra 2 Text Chapter 5 and	A2.1.3.1.1				
AND Imaginary and Complex Numbers	accompanying resources excloding	A2.1.1.1.1				
inaginary and complex numbers	SECTION 3.5 AND 3.0	A2.1.1.2.1				
	Supplemental materials/worksneets for powers of	A2.1.1.1.2				
	i and dividing complex numbers.	A2.1.1.2.2				
Polynomial Functions	Big Ideas Algebra 2 Text Chapter 4 and	A2.2.2.1.1				
	accompanying resources	A2.2.2.1.3				
	EXCLUDING 4.9	A2.2.1.1.4				
		A2.2.2.1.4				
Rational Exponents and Radical Functions	Big Ideas Algebra 2 Text Chapter 5 and	A2.1.2.1.2				
	accompanying resources.	A2.1.3.1.2				
	EXCLUDING 5.5	A2.2.1.1.3				
Exponential and Logarithmic Functions	Big Ideas Algebra 2 Text Chapter 6 and	A2.2.2.1.3				
	accompanying resources.	A2.2.1.1.4				
		A2.2.2.1.2				
		A2.2.2.1.4				
		A2.1.2.1.4				

4th Quarter

Торіс	Resources	CCSS
Rational Functions/Expressions and Variation	Big Ideas Algebra 2 Text Chapter 7 and accompanying resources. EXCLUDING 7.2	A2.1.3.2.1 A2.1.2.2.2 A2.1.3.1.2
Solving Formulas	Supplemental Materials and worksheets.	A2.1.3.2.2
Probability	Big Ideas Algebra 2 Text Chapter 10 and accompanying resources. EXCLUDING 10.3 and 10.6	A2.2.3.2.1 A2.2.3.2.3 A2.2.3.2.2
Series and Sequence	Big Ideas Algebra 2 Text Chapter 8 and accompanying resources. EXCLUDING 8.5	A2.2.1.1.2
Final Exam Review	Teacher Prepared Final Exam Review Packet	

* Note: Italicized standards and topics are currently classified as Algebra I CC/Geometry CC. These will eventually be phased out as the Common Core is completely implemented.

General Topic	Academic Standard(s)	Essential Knowledge,	Resources & Activities	Assessments	Suggested Time
Linear Equations in one variable	A1.1.2.1.1	Write, solve, and/or apply linear equations (including problem situations) a. Evaluate expressions b. Collect like terms c. Solving multi-step equations d. Application to real life situations	Prentice Hall Text 1.5 1.6 2.1 2.2	Teacher prepared tests, quizzes, etc. Series available assessments online. (Optional)	7 days
Inequalities in one variable	A1.1.3.1.2 A1.1.3.1.1	Identify or graph the solution set to a linear inequality on a number line Write or solve compound inequalities and/or graph their solution sets on a number line (may include absolute value inequalities)	Prentice Hall Text 2.4 2.5 2.6 2.7		7 days

Exponents	A2.1.2.1.1 A2.1.2.1.3	Using exponential expressions to represent rational numbers Simplify/evaluate expressions involving multiplying with exponents, powers of powers, and powers of products. Note: limit to rational exponents Simplifying real number exponents.	Prentice Hall Text 1.7 1.8 Supplemental materials	6 days
Relations	A1.2.1.1.3 A1.2.1.1.2	Identify the domain or range of a relation (may be presented as ordered pairs, graph, or, a table.) Determine whether a relation is a function, given a set of points or a graph. Include function notation and finding function values.	Prentice Hall Text 3.1 3.3	5 days

Linear Equations in 2 Variables	A1.2.2.1.3	 Write, identify, and/or graph a linear equation given: a. The graph of a line b. Two points on the line c. The slope and a point on the line d. Parallel and Perpendicular lines Note: Linear equation may be in point-slope, standard, and/or slope intercept form 	Prentice Hall Text 3.4 3.5 3.6 3.7	9 days
Correlation	A2.2.1.1.1	Analyze a set of data for the existence of a pattern and represent the pattern with a rule algebraically and/or graphically	Prentice Hall Text 3.8 Big Ideas section 1.3	4 days
	A2.2.3.1.1	Draw, identify, find, interpret, and/or write an equation for a regression model (lines of best fit) for a scatter plot		
	A2.2.3.1.2	Make predictions using the equations or graphs of regression models (lines of best fit) of scatter plots		

Systems of Linear Equations	A1.1.2.2.1	Write and/or solve a system of linear equations (including problem situations) using graphing, substitution, and/or elimination. Note: Limit systems to two linear equations	Prentice Hall Text 4.1 4.2 4.3	8 days
Systems of Linear Inequalities	A1.1.3.2.1	Write and/or solve a system of linear inequalities using graphing. Note: Limit systems to two linear equalities	Prentice Hall Text 4.7	3 days

		1		,	
Polynomials	A1.1.1.5.1	Add, subtract, and/or multiply polynomial expressions (express answers in simplest form). Including Multiplying two trinomials. (Be sure to cover special products such as squares and cubes of binomials)	Prentice Hall Text 5.1 5.2 5.3		13 days
	A2.1.2.2.1	Factor algebraic expressions, including difference of squares and trinomials. Note: trinomials are limited to the form of ax ² +bx+c where a does not equal zero. Includes factoring by grouping, sum and difference of 2 cubes.	5.4 5.5 5.6		

QUADRATIC FUNCTIONS	A2.2.2.1.1	Create, interpret, and/or use the equation, graph, or table of a quadratic function	Big Ideas Algebra 2 Text Chapter 2	15 days
	A2.2.2.1.3	Determine, use, and/or interpret minimum and maximum values over a specified interval of a graph of a quadratic function		
	A2.2.1.1.4	Identify and/or determine the characteristics of a quadratic function (e.g. intervals of increase/decrease, intercepts, zeros)		
		Identify or describe the effect of changing parameters within a family of functions Draw, identify, find, interpret, and/or write an equation for a regression model (curve of best fit) for a scatter plot		
---------------------	------------	---	---	--------
Quadratic Equations	A2.1.3.1.1	Write and/or solve quadratic equations (including factoring and using the quadratic formula) a. By factoring b. Completing the square c. Quadratic formula d. Word problems by factoring and using quadratic formula	Big Ideas Algebra 2 Text 3.1 3.3 3.4 Supplemental materials/worksheets	8 days

Imaginary and Complex Numbers	A2.1.1.1.1	Simplify/write square roots in terms of 'i'	Big Ideas Algebra 2 Text 3.2	9 days
	A2.1.1.2.1	Add and subtract complex numbers	Supplemental material needed	
	A2.1.1.1.2	Simplify/evaluate expressions involving powers of 'i'		
	A2.1.1.2.2	Multiply and divide complex numbers		

POLYNOMIAL FUNCTIONS	A2.2.2.1.1	Create, interpret, and/or use the equation, graph, or table of a polynomial function A. Remainder and factor theorems B. Theorems about roots/rational root theorem	Big Ideas Algebra 2 Text Chapter 4 excluding 4.9	15 days
	A2.2.2.1.3	Determine, use, and/or interpret minimum and maximum values over a specified interval of a graph of a polynomial function		
	A2.2.1.1.4	Identify and/or determine the characteristics of a polynomial function (e.g. intervals of increase/decrease, intercepts, zeros)		

	A2.2.1.1.4	Translate a polynomial function from one representation of a function to another (graph, table, and equation)		
Rational Exponents	A2.1.2.1.2	Simplify/evaluate expressions involving positive and negative exponents and/or roots (may contain all types of real numbers – exponents should not exceed power of 10) a. Simplify radical expressions b. Multiply /Divide radicals expressions c. Add/Subtract radical expressions d. Rationalizing the denominator e. Rational exponents	Big Ideas Algebra 2 Text 5.1 5.2	10 days

Radical Functions	A2.1.3.1.2	Solve equations involving radical expressions	Big Ideas Algebra 2 Text 5.3 5.4	3 days
EXPONENTIAL AND LOGARITHMIC FUNCTIONS	A2.2.1.1.3	Determine the domain, range, or inverse of a relation	Big Ideas Algebra 2 Text Chapter 6	17 days
	A2.2.2.1.3	Determine, use, and/or interpret minimum and maximum values over a specified interval of a graph of an exponential and logarithmic function		
	A2.2.1.1.4	Identify and/or determine the characteristics of a exponential and logarithmic functions (e.g. intervals of increase/decrease, intercepts, zeros)		

A2.2.2.1.2	Create, interpret, and/or use the equation, graph, or table of an exponential or logarithmic function (including common and natural logarithms)		
A2.2.2.1.4	Translate an exponential or logarithmic function from one representation of a function to another (graph, table, and equation)		
A2.1.2.1.4	Simplify or evaluate expressions involving logarithms and exponents		
A2.1.3.1.3	Write and/or solve a simple exponential or logarithmic equation (including common and natural logarithms)		

	A2.1.3.1.4	Write, solve, and/or apply exponential growth or decay (including problem situations)		
Variation	A2.1.3.2.1	Determine how a change in one variable relates to a change in a second variable a. direct variation b. inverse variation	Big Ideas Algebra 2 Text 7.1	2 days
Rational Expressions	A2.1.2.2.2	Simplify rational algebraic expressions a. Reduce b. Multiply c. Divide d. Add e. Subtract f. Complex Fractions	Big Ideas Algebra 2 Text 7.3 7.4 Supplemental materials needed	11 days
Rational Equations	A2.1.3.1.2	Solve equations involving rational expressions.	Big Ideas Algebra 2 Text 7.5	3 days
Solving Formulas	A2.1.3.2.2	Use algebraic processes to solve a formula for a given variable	Supplemental materials needed	2 days

PROBABILITY	A2.2.3.2.1	Use combinations,	Big Ideas Algebra 2 Text	6 days
		permutations, and the	Chapter 10, excluding 10.3	
		fundamental counting	and 10.6	
		principle to solve		
		problems involving		
		probability		
	A2.2.3.2.3	Use probability for		
		independent, dependent,		
		or compound events to		
		predict outcomes.		
		•		
	A77377	Use odds to find		
	ALIL.J.L.L	probability and for use		
		probability and/or use		
		probability to find odds		
SERIES AND SEQUENCES	A2.2.1.1.2	Identify and/or extend	Big Ideas Algebra 2 Text	6 days
		the pattern as either an	Chapter 8, excluding 8.5	
		arithmetic or geometric		
		sequence		
Final Exam and Review				10 days

Algebra II/Trigonometry

Curriculum Guide

Scranton School District

Scranton, PA

Algebra II/Trigonometry

Prerequisite:

- Successful completion of Honors Geometry, Geometry 9 or Geometry 10
- Student must have earned an 80% or better final average in both the Algebra I and Geometry courses previously taken

Building on their work with linear and quadratic functions, students will extend their repertoire of functions to include polynomial, rational, radical, exponential, and logarithmic functions. Students will work closely with the expressions that define the functions, and continue to expand and hone their abilities to model situations and to solve equations, including solving quadratic equations over the set of complex numbers and solving exponential equations using the properties of logarithms. Other topics that are included in this course are arithmetic and geometric sequences, probability, permutations, and combinations.

Building on their previous work with functions, and on their work with trigonometric ratios and circles in Geometry, students now use the coordinate plane to study angles in standard position and understand radian measure. The trigonometric functions, their graphs, and identities will be explored.

The skills acquired in this course will prepare students to continue their mathematical study in the field of Elementary Analysis.

After successful completion of this course, the students may enroll in Elementary Analysis as well as other mathematics courses.

Year-at-a-glance

Subject: Algebra II/Trigonometry	Grade Level 10 th and 11 th	Date Completed: 2/5/2015

1st Quarter

Торіс	Resources	CCSS
Linear Equations and Inequalities in one variable	Prentice Hall Algebra II/Trigonometry Text	A1.1.2.1.1
	1.5, 1.6, 2.1, 2.2, 2.4, 2.5, 2.6, 2.7	A1.1.3.1.2
		A1.1.3.1.1
Exponents	Prentice Hall Algebra II/Trigonometry Text	A2.1.2.1.1
		A2.1.2.1.3
	1.7, 1.8	
Relations/Linear Equations in 2 Variables	Prentice Hall Algebra II/Trigonometry Text	A1.2.1.1.3
	3.1, 3.3, 3.4, 3.5, 3.6, 3.7	A1.2.1.1.2
		A1.2.2.1.3
Correlation	Prentice Hall Algebra II/Trigonometry Text	A2.2.1.1.1
	3.8	A2.2.3.1.1
	Also refer to Big Ideas Sect. 1.3	A2.2.3.1.2
Systems of Linear Equations/Inequalities	Prentice Hall Algebra II/Trigonometry Text	A1.1.2.2.1
	4.1, 4.2, 4.3, 4.7	A1.1.3.2.1

2nd Quarter

Торіс	Resources	CCSS
Polynomials	Prentice Hall Algebra II/Trigonometry Text	A1.1.1.5.1
	5.1, 5.2, 5.3, 5.4, 5.5, 5.6	A1.1.1.5.2
		A2.1.2.2.1
	Refer to 4.2 & 4.4 in Big Ideas	
		42.2.2.4.4
Quadratic Functions	Big Ideas Algebra 2 Text Chapter 2 and	A2.2.2.1.1
	accompanying resources	A2.2.2.1.3
		A2.2.2.1.4
		A2.2.2.1
		A2.2.3.1.1
Quadratic Equations	Big Ideas Algebra 2 Text Chapter 3 and	A2.1.3.1.1
AND	accompanying resources EXCLUDING	A2.1.1.1.1
Imaginary and Complex Numbers	SECTION 3.5 AND 3.6	A2.1.1.2.1
	Supplemental materials/worksheets for powers	A2.1.1.1.2
	of <i>i</i> and dividing complex numbers.	A2.1.1.2.2

3 rd O	uarter
-------------------	--------

Торіс	Resources	CCSS
Polynomial Functions	Big Ideas Algebra 2 Text Chapter 4 and	A2.2.2.1.1
	accompanying resources	A2.2.2.1.3
	EXCLUDING 4.9	A2.2.1.1.4
		A2.2.2.1.4
Rational Exponents and Radical Functions	Big Ideas Algebra 2 Text Chapter 5 and	A2.1.2.1.2
	accompanying resources.	A2.1.3.1.2
	EXCLUDING 5.5	A2.2.1.1.3
Exponential and Logarithmic Functions	Big Ideas Algebra 2 Text Chapter 6 and	A2.2.2.1.3
	accompanying resources.	A2.2.1.1.4
		A2.2.2.1.2
		A2.2.2.1.4
		A2.1.2.1.4
Rational Functions/Expressions and Variation	Big Ideas Algebra 2 Text Chapter 7 and	A2.1.3.2.1
	accompanying resources.	A2.1.2.2.2
	EXCLUDING 7.2	A2.1.3.1.2
Solving Formulas	Supplemental Materials and worksheats	A21222
		AZ.1.J.Z.Z

4 th	Quarter
-----------------	---------

Торіс	Resources	CCSS
Trigonometry	Big Ideas Algebra 2 Text Chapter 9 and	HSG.SRT.C.6
	accompanying resources. EXCLUDING 9.6 and	HSG.SRT.C.7
	9.8 and	HSG.SRT.C.8
	Supplemental materials	HSF.TF.A.2
		HSF.TF.A.2
		HSF.TF.A.3
		HSF.TF.A.4
		HSF.TF.A.5
		HSF.TF.A.4
		HSF.TF.A.5
		HSF.TF.C.8
		HSG.SRT.D.10
		HSG.SRT.D.11
Probability	Big Ideas Algebra 2 Text Chapter 10 and	A2.2.3.2.1
	accompanying resources. EXCLUDING 10.3 and	A2.2.3.2.3
	10.6	A2.2.3.2.2
Series and Sequence	Big Ideas Algebra 2 Text Chapter 8 and	A2.2.1.1.2
	accompanying resources.	
	EXCLUDING 8.5	
Final Exam Review	Teacher Prepared Final Exam Review packet	

* Note: Italicized standards and topics are currently classified as Algebra I CC/Geometry CC. These will eventually be phased out as the Common Core is completely implemented.

General Topic	Academic	Essential Knowledge,	Resources & Activities	Assessments	Suggested Time
	Standard(s)	Skills & Vocabulary			
Linear Equations in one	A1.1.2.1.1	Write, solve, and/or apply	Prentice Hall Text	Teacher	6 days
variable		linear equations	1.5	prepared tests,	
		(including problem	1.6	quizzes, etc.	
		situations)	2.1		
		a. Evaluate	2.2	Series available	
		expressions		assessments	
		b. Collect like terms		online.	
		c. Solving multi-step		(Optional)	
		equations			
		d. Application to			
		real life situations			
Inequalities in one variable	A1.1.3.1.2	Identify or graph the	Prentice Hall Text		6 days
		solution set to a linear	2.4		
		inequality on a number	2.5		
		line	2.6		
			2.7		
	A1.1.3.1.1	Write or solve compound			
		inequalities and/or graph			
		their solution sets on a			
		number line (may include			
		absolute value			
		inequalities)			

Exponents	A2.1.2.1.1 A2.1.2.1.3	Using exponential expressions to represent rational numbers Simplify/evaluate expressions involving multiplying with exponents, powers of powers, and powers of products. Note: limit to rational exponents Simplifying real number exponents.	Prentice Hall Text 1.7 1.8 Supplemental materials	5 days
Relations	A1.2.1.1.3 A1.2.1.1.2	Identify the domain or range of a relation (may be presented as ordered pairs, graph, or, a table.) Determine whether a relation is a function, given a set of points or a graph. Include function notation and finding function values.	Prentice Hall Text 3.1 3.3	4 days

Linear Fauations in 2	Δ1.2.2.1.3	Write_identify_and/or	Prentice Hall Text	7 days
Variables	AT12121210	aranh a linear equation	2 /	7 4435
Variables		aiven.	3.5	
		a The aranh of a	3.6	
		line	3.7	
		h Two points on the	3.7	
		b. Two points on the		
		The clone and a		
		c. The slope und u		
		d Darallal and		
		a. Parandiaular		
		Perpendicular		
		lines		
		Note: Linear equation		
		may be in point-siope,		
		standard, and/or		
		slope intercept form		
Correlation	A2.2.1.1.1	Analyze a set of data for	Prentice Hall Text	3 days
		the existence of a pattern	3.8	
		and represent the pattern		
		with a rule algebraically	Big Ideas Algebra 2 Text	
		and/or graphically	section 1.3	
	A2.2.3.1.1	Draw, identify, find,		
		interpret, and/or write an		
		equation for a regression		
		model (lines of best fit)		
		for a scatter plot		
	A2.2.3.1.2	Make predictions using		
		the equations or graphs		
		of regression models		
	1			
		(lines of best fit) of		
		(lines of best fit) of scatter plots		

Systems of Linear Equations	A1.1.2.2.1	Write and/or solve a system of linear equations (including problem situations) using graphing, substitution, and/or elimination. Note: Limit systems to two linear equations	Prentice Hall Text 4.1 4.2 4.3	7 days
Systems of Linear Inequalities	A1.1.3.2.1	Write and/or solve a system of linear inequalities using graphing. Note: Limit systems to two linear equalities	Prentice Hall Text 4.7	3 days

Polynomials	A1.1.1.5.1	Add. subtract. and/or	Prentice Hall Text	11 days
		multiply polynomial	5.1	,.
		evnressions levnress	5.2	
		answers in simplest	5.2	
		forme) Including	5.5	
		Jorm). Including		
		Nultiplying two		
		trinomials.		
		(Be sure to cover special		
		products such as squares		
		and cubes of binomials)		
	A2.1.2.2.1	Factor algebraic	5.4	
		expressions, including	5.5	
		difference of squares and	5.6	
		trinomials. Note:		
		trinomials are limited to		
		the form of ax ² +bx+c		
		where a does not equal		
		zero. Includes factoring		
		by grouping sum and		
		difference of 2 cubes		
		unreferice of 2 cubes.		

QUADRATIC FUNCTIONS	A2.2.2.1.1	Create, interpret, and/or use the equation, graph, or table of a quadratic function	Big Ideas Algebra 2 Text Chapter 2	13 days
	A2.2.2.1.3	Determine, use, and/or interpret minimum and maximum values over a specified interval of a graph of a quadratic function		
	A2.2.1.1.4	Identify and/or determine the characteristics of a quadratic function (e.g. intervals of increase/decrease, intercepts, zeros)		

		Identify or describe the effect of changing parameters within a family of functions Draw, identify, find, interpret, and/or write an equation for a regression model (curve of best fit) for a scatter plot		
Quadratic Equations	A2.1.3.1.1	Write and/or solve quadratic equations (including factoring and using the quadratic formula) a. By factoring b. Completing the square c. Quadratic formula d. Word problems by factoring and using quadratic formula	Big Ideas Algebra 2 Text 3.1 3.3 3.4 Supplemental materials/worksheets	6 days

Imaginary and Complex Numbers	A2.1.1.1.1	Simplify/write square roots in terms of 'i'	Big Ideas Algebra 2 Text 3.2	7 days
	A2.1.1.2.1	Add and subtract complex numbers	Supplemental material needed	
	A2.1.1.1.2	Simplify/evaluate expressions involving powers of 'i'		
	A2.1.1.2.2	Multiply and divide complex numbers		

POLYNOMIAL FUNCTIONS	A2.2.2.1.1	Create, interpret, and/or use the equation, graph, or table of a polynomial function A. Remainder and factor theorems B. Theorems about roots/rational root theorem	Big Ideas Algebra 2 Text Chapter 4 excluding 4.9	13 0	days
	A2.2.2.1.3	Determine, use, and/or interpret minimum and maximum values over a specified interval of a graph of a polynomial function			
	A2.2.1.1.4	Identify and/or determine the characteristics of a polynomial function (e.g. intervals of increase/decrease, intercepts, zeros)			

	A2.2.1.1.4	Translate a polynomial function from one representation of a function to another (graph, table, and equation)		
Rational Exponents	A2.1.2.1.2	Simplify/evaluate expressions involving positive and negative exponents and/or roots (may contain all types of real numbers – exponents should not exceed power of 10) a. Simplify radical expressions b. Multiply /Divide radicals expressions c. Add/Subtract radical expressions d. Rationalizing the denominator e. Rational exponents	Big Ideas Algebra 2 Text 5.1 5.2	8 days

Radical Functions	A2.1.3.1.2	Solve equations involving radical expressions	Big Ideas Algebra 2 Text 5.3 5.4	3 days
EXPONENTIAL AND LOGARITHMIC FUNCTIONS	A2.2.1.1.3	Determine the domain, range, or inverse of a relation	Big Ideas Algebra 2 Text Chapter 6	16 days
	A2.2.2.1.3	Determine, use, and/or interpret minimum and maximum values over a specified interval of a graph of an exponential and logarithmic function		
	A2.2.1.1.4	Identify and/or determine the characteristics of a exponential and logarithmic functions (e.g. intervals of increase/decrease, intercepts, zeros)		

A2.2.2.1.2	Create, interpret, and/or use the equation, graph, or table of an exponential or logarithmic function (including common and natural logarithms)		
A2.2.2.1.4	Translate an exponential or logarithmic function from one representation of a function to another (graph, table, and equation)		
A2.1.2.1.4	Simplify or evaluate expressions involving logarithms and exponents		
A2.1.3.1.3	Write and/or solve a simple exponential or logarithmic equation (including common and natural logarithms)		

	A2.1.3.1.4	Write, solve, and/or apply exponential growth or decay (including problem situations)		
Variation	A2.1.3.2.1	Determine how a change in one variable relates to a change in a second variable a. direct variation b. inverse variation	Big Ideas Algebra 2 Text 7.1	2 days
Rational Expressions	A2.1.2.2.2	Simplify rational algebraic expressions a. Reduce b. Multiply c. Divide d. Add e. Subtract f. Complex Fractions	Big Ideas Algebra 2 Text 7.3 7.4 Supplemental materials needed	10 days
Rational Equations	A2.1.3.1.2	Solve equations involving rational expressions.	Big Ideas Algebra 2 Text 7.5	2 days
Solving Formulas	A2.1.3.2.2	Use algebraic processes to solve a formula for a given variable	Supplemental materials needed	2 days

Trigonometry	HSG.SRT.C.6 HSG.SRT.C.7 HSG.SRT.C.8	Evaluate trigonometric functions of acute angles. Find unknown side lengths and angle measures of right triangles. Use trigonometric functions to solve real-life problems.	Big Ideas Algebra 2 Text 9.1	24 days
	HSF.TF.A.2	Draw angles in standard position and use radian measure.	9.2	
	HSF.TF.A.2 HSF.TF.A.3	Evaluate trigonometric functions of any angle. Find and use reference angles to evaluate trigonometric functions.	9.3	
	HSF.TF.A.4 HSF.TF.A.5	Graph sine and cosine functions including stretches and shrinks, translations, and reflections.	9.4	
	HSF.TF.A.4 HSF.TF.A.5	Graph tangent, cosecant, secant, and cotangent functions.	9.5	
	HSF.TF.C.8	Using trigonometric identities.	9.7	
	HSG.SRT.D.11	Law of Sines and Cosines	Supplemental materials	

Algebra II/Trigonometry

PROBABILITY	A2.2.3.2.1	Use combinations, permutations, and the fundamental counting principle to solve problems involving probability	Big Ideas Algebra 2 Text Chapter 10, excluding 10.3 and 10.6	6 days
	A2.2.3.2.3	Use probability for independent, dependent, or compound events to predict outcomes.		
	A2.2.3.2.2	Use odds to find probability and/or use probability to find odds		
SERIES AND SEQUENCES	A2.2.1.1.2	Identify and/or extend the pattern as either an arithmetic or geometric sequence	Big Ideas Algebra 2 Text Chapter 8, excluding 8.5	6 days
Final Exam and Review				10 days

Advanced Placement Calculus

Curriculum Guide

Scranton School District

Scranton, PA

Advanced Placement Calculus

Prerequisites:

- Successful completion of Honors Elementary Analysis
- Be in compliance with the <u>SSD Honors and AP Criteria Policy</u>

Advanced Placement Calculus is the highest level mathematics course offered by the Scranton School District. It is very rigorous and taught at the college level. Topics covered in this course include analytic geometry, limits of functions, differentiation and integration of functions, and applications of differentiation and integration.

The Advanced Placement Calculus course prepares students to take the Advanced Placement Calculus Examination in May of their senior year, thus affording these students with the opportunity to do college level work and earn college credit while still in high school. This course will challenge even the most capable of mathematical minds. The work covered in this course will help the student develop analytical reasoning skills and disciplined study habits necessary for success in college. Students pursuing college majors requiring advanced mathematics courses will benefit from this advanced mathematics training.

Since the content of the Advanced Placement Calculus AB course is beyond the scope of Common Core, the Collegeboard Curriculum Framework 2016-2017 document was used as a guide to write this curriculum.

<u>Year-at-a-glance</u>

Subject: AP Calculus AB	Grade Level: 12	Date Completed: 3/1/15

1 st Quarter		
Торіс	Resources	AP Calculus Standard
Elementary Analysis Review	Summer Packet	
	Chapter P	
Limits	Larson/Hostetler Calculus 8 th Ed.	LO 1.1A(a), LO 1.1A(b)
	Chapter One, Chapter Three	LO 1.1B, LO 1.1C, LO 1.1D
		EK 1.1A2, EK 1.1B1,
		EK 1.1C1, EK 1.1C2,
		EK 1.1C3, EK 1.1D1
Continuity	Larson/Hostetler Calculus 8 th Ed.	LO 1.2A, LO 1.2B
	Chapter One	
Differentiablilty	Larson/Hostetler Calculus 8 th Ed.	LO 2.2B, EK 2.2B1, EK 2.2B2
	Chapter Two	
Derivatives	Larson/Hostetler Calculus 8 th Ed.	LO 2.1A, EK 2.1A5
	Chapter Two, Chapter Five (natural logarithmic	EK 2.1B1
	and exponential functions)	

2nd Quarter

Торіс	Resources	AP Calculus Standard
Derivative Rules	Larson/Hostetler Calculus 8 th Ed.	LO 2.1C, EK 2.1C4
	Chapter Two	EK 2.1C2, EK 2.1A5
Geometric Applications of Derivatives	Larson/Hostetler Calculus 8 th Ed.	LO 2.1A
	Chapter Two	
Implicit Differentiation	Larson/Hostetler Calculus 8 th Ed.	LO 2.1C, EK 2.1C5
	Chapter Two	LO 2.3B, EK 2.3B1, EK 2.3B2
Higher Order Derivatives	Larson/Hostetler Calculus 8 th Ed.	LO 2.1D
	Chapter Two	
Related Rates	Larson/Hostetler Calculus 8 th Ed.	LO 2.3C, EK 2.3C2
	Chapter Two	
Motion	Throughout Larson/Hostetler Calculus 8 th Ed.	LO 2.3C, EK 2.3C1
	Exercises and Supplemental Materials	
Extreme Values	Larson/Hostetler Calculus 8 th Ed.	LO 2.3C, EK 2.3C3
	Chapter Three	
Implications of Derivatives	Larson/Hostetler Calculus 8 th Ed.	LO 2.4A, EK 2.4A1
	Chapter Three	

3rd Quarter

Торіс	Resources	AP Calculus Standard
Using Derivatives to Analyze Graphs	Larson/Hostetler Calculus 8 th Ed. Chapter Three	LO 2.2A, EK 2.2A1
Connecting f' and f'' with the Graph of f(x)	Larson/Hostetler Calculus 8 th Ed. Chapter Three, Supplemental Materials	LO 2.2A, EK 2.1D1, EK 2.2A1
Optimization Problems	Larson/Hostetler Calculus 8 th Ed. Chapter Three	LO 2.3C, EK 2.3C3
More Applications of Derivatives	Larson/Hostetler Calculus 8 th Ed. Chapter Three	LO 2.3B, EK 2.3B1, EK 2.3B2
Antiderivatives	Larson/Hostetler Calculus 8 th Ed. Chapters Four and Five	LO 3.1A, EK 3.1A1, EK 3.1A2, LO 3.3B(a), EK 3.3B3, EK 3.3B5
The Definite Integral Concept	Larson/Hostetler Calculus 8 th Ed. Chapter Four	LO 3.2A(a), EK 3.2A1, EK 3.2A3 LO 3.2B, EK 3.2B1, EK 3.2B2, LO 3.2C
Evaluate Definite Integrals	Larson/Hostetler Calculus 8 th Ed. Chapter Four	LO 3.3B(b), EK 3.3B2
The Definite Integral	Larson/Hostetler Calculus 8 th Ed. Chapter Four	LO 3.3A, EK 3.3A1, EK 3.3A2, EK 3.3A3

4th Quarter

Торіс	Resources	AP Calculus Standard
Applications of Integrals I	Larson/Hostetler Calculus 8 th Ed.	LO 2.3E, EK 2.3E2, LO 2.3F,
	Chapter Six	EK 2.3F1, LO 3.5A, EK 3.5A1
		EK 3.5A2, LO 3.5B, EK 3.5B1
Applications of Integrals II	Larson/Hostetler Calculus 8 th Ed.	LO 3.4A, EK 3.4A1, EK 3.4A2,
	Chapter Seven	LO 3.4B, EK 3.4B1, LO 3.4C,
		EK 3.4C1, LO 3.4D, EK 3.4D1,
		EK 3.4D2, LO 3.4E, EK 3.4E1
AP Review	Review Packet	
Post AP Topics	Teacher designed enrichment topics and	
	projects.	

General Topic	Academic	Essential Knowledge,	Resources & Activities	Assessments	Suggested Time
	Standard(s)	Skills & Vocabulary			
Review (Summer		Calculus Library of Functions	Summer Packet	Teacher	3
Assignment)		Linear functions		prepared tests,	
		Functions as models of change		quizzes, etc.	
		Transformation of functions			
		Solving equations(algebraically and on the calculator)			
Limits	LO 1.1A(a)	Express limits symbolically	Larson/Hostetler Calculus		15
	LO 1.1A(b)	using correct notation.	8 th Ed.		
		Interpret limits expressed	1.2		
		symbolically.			
		Intuitive definition of Limits			
	LO 1.1B	Estimate limits of functions.	Larson/Hostetler Calculus		
	EK 1.1B1	Numerical and graphical	8 th Ed.		
		information can be used	1.2		
		to estimate limits.			
		Visualizing limits			
Limits at a point	EK 1.1A2	The concept of a limit can	Larson/Hostetler Calculus		
		be extended to include	8 th Ed.		
		one-sided limits, limits at	1.2, 3.5		
		infinity, and infinite limits.			
The algebra of limits:	LO 1.1C	Determine limits of	Larson/Hostetler Calculus		
------------------------	-----------	--	---------------------------	--	
	EK 1.1C1	functions.	8 th Ed.		
	EK 1.1C2		1.3, 1.4		
	EK 1.1C 3	Limits of sums, differences.	Chapter 8		
		products, quotients, and	•		
		composite functions can be			
		found using the basic			
		theorems of limits and			
		algebraic rules.			
		_			
		The limit of a function may			
		be found by using algebraic			
		manipulation, alternate			
		forms of trigonometric			
		functions, or the squeeze			
		theorem (Sandwich			
		Theorem).			
		Limits of the indeterminate			
		forms, $\frac{0}{2}$ and $\frac{\infty}{2}$ may be			
		evaluated using L'Hospital's			
		Rule.			
		Substitution (continuous			
		functions)			
		Intuitive discussion of			
		removable versus non-			
		removable discontinuities			
		Eastoring (removable			
		discontinuities)			

Limits Involving Infinity	LO 1.1D EK 1.1D1	Deduce and interpret behavior of functions using limits Asymptotic and unbounded behavior of functions can be explained and described using limits Asymptotic behavior (horizontal and vertical asymptotes)	Larson/Hostetler Calculus 8 th Ed. 1.5 3.5	
Continuity	LO 1.2A	Analyze functions for intervals of continuity or points of discontinuity. <i>Continuity at a point</i> <i>Continuous Functions</i> <i>Discontinuous functions:</i> <i>Removable</i> <i>discontinuities</i> <i>Jump discontinuities</i>	Larson/Hostetler Calculus 8 th Ed. 1.4	
	LO 1.2B	Determine the applicability of important Calculus theorems using continuity. <i>Continuous functions</i> <i>Intermediate Value Theorem</i>	Larson/Hostetler Calculus 8 th Ed. 1.4	

Derivative Concents	10210	Identify the derivative of a	Larson/Hostetler Calculus	25
Derivative concepts		function on the limit of -	oth ru	
	EK 2.1A5	function as the limit of a	8 EQ.	
	EK 2.1B1	difference quotient.	2.1	
		The derivative can be		
		represented graphically		
		numerically, analytically, and		
		numerically, analytically, and		
		verbally.		
		The derivative at a point can be		
		estimated from		
		information given in tables or		
		graphs.		
		Definition of the derivative		
		(difference quotient)		
		Derivative at a point		
		-		
		Proof: Power Rule for		
		derivatives by using the		
		definition of derivative		

Derivative Rules	LO 2.1C	Calculate derivatives. Constant rule Constant multiple rule Sum and difference Power rule Product and quotient rules Proper form of derivatives (factored)	Larson/Hostetler Calculus 8 th Ed. 2.2, 2.3	
Chain rule	EK 2.1C4	The chain rule provides a way to differentiate composite functions Derivatives of composite functions Derivatives using repeated use of the chain rule	Larson/Hostetler Calculus 8 th Ed. 2.4	
Derivatives of Various Functions	EK 2.1C2	Specific rules can be used to calculate derivatives for classes of functions, including polynomial, rational, power, exponential, logarithmic, trigonometric, and inverse trigonometric.	Larson/Hostetler Calculus 8 th Ed. 2.2, 2.3, 2.4 5.1, 5.4, 5.6	

Derivatives Geometric Applications	LO 2.1A	Identify the derivative of a function as the limit of a difference quotient. Geometric applications of the derivative and rates of change Average rates of change versus instantaneous rates of change Using the derivative to find information necessary to write the equations of tangent lines and normal lines Using the derivative to calculate points of horizontal tangencies Approximating derivatives from tables and graphs	Throughout Larson/Hostetler Calculus 8 th Ed. Chapter 2 Exercises	
		Approximating derivatives from tables and graphs		
Higher Order Derivatives	LO 2.1D	Determine higher order derivatives. Second and higher order derivatives	Larson/Hostetler Calculus 8 th Ed. 2.3, 2.4	

Differentiability	LO 2.2B EK 2.2B1 EK 2.2B2	Recognize the connection between differentiability and continuity.	Larson/Hostetler Calculus 8 th Ed. 2.1	
		A continuous function may fail to be differentiable at a point in its domain. If a function is differentiable at a point, then it is		
		Why the derivative may fail to exist Local linearity		
Numerical Derivatives	EK 2.1A5	The derivative can be represented graphically, numerically, analytically, and verbally.	Supplemental Material	
		Finding derivatives on the graphing calculator		
Implicit Derivatives	LO 2.1C EK 2.1C5	Calculate derivatives. The chain rule is the basis for implicit differentiation.	Larson/Hostetler Calculus 8 th Ed. 2.5	
		Explicit versus implicit definitions of functions Implicit differentiation process		

Derivatives Geometric Applications	LO 2.3B EK 2.3B1 EK 2.3B2	Solve problems involving the slope of the tangent line. The <i>derivative</i> at a point is the slope of the line tangent to a graph at that point on the graph. The tangent line is the graph of a locally linear approximation of the function near the point of tangency. Using implicit differentiation write equations of tangent and normal lines to functions Using implicit differentiation calculate points of horizontal tangencies and equations of vertical asymptotes	Larson/Hostetler Calculus 8 th Ed. 2.5	
Numerical Derivatives	EK 2.1A5	The derivative can be represented graphically, numerically, analytically, and verbally. <i>Finding and evaluating implicit derivatives on the graphing calculator</i>	Supplemental Material	

Related Rates	LO 2.3C EK 2.3C2	Solve problems involving related rates, optimization, rectilinear motion, and planar motion. The derivative can be used to solve related rates problems, that is, finding a rate at which one quantity is changing by relating it to other quantities whose rates of change are known. <i>What are related rates of change</i> <i>Related rate equations</i> <i>Related rate problem</i> <i>strategies</i>	Larson/Hostetler Calculus 8 th Ed. 2.6		
---------------	---------------------	--	---	--	--

Motion	LO 2.3C EK 2.3C1	Solve problems involving related rates, optimization, rectilinear motion, and planar motion. The derivative can be used to solve rectilinear motion problems involving position, speed, velocity, and acceleration. <i>Position, velocity,</i> <i>acceleration, and particle</i> <i>motion</i> <i>Finding position, velocity, and</i> <i>acceleration from graphs and</i> <i>tables</i>	Throughout Larson/Hostetler Calculus 8 th Ed. Exercises Supplemental Materials	
Extreme Values	LO 2.3C EK 2.3C3	Solve problems involving related rates, optimization, rectilinear motion, and planar motion. The derivative can be used to solve optimization problems, that is, finding a maximum or minimum value of a function over a given interval. <i>Absolute (global) extrema</i> <i>Relative (local) extrema</i> <i>Definition of critical value</i>	Larson/Hostetler Calculus 8 th Ed. 3.1, 3.3	25

Implications of the	LO 2.4A	Apply the Mean Value	Larson/Hostetler Calculus	
Derivatives	EK 2.4A1	Theorem to describe the	8 th Ed.	
		behavior of a function	3.2	
		over an interval.	Supplemental Material	
		If a function <i>f</i> is continuous		
		over the interval [a, b] and		
		differentiable over the interval		
		(a,b), the Mean Value Theorem		
		guarantees a point within that		
		open interval where the		
		instantaneous rate of change		
		equals the average rate of		
		change over the interval.		
		Rolle's theorem		
		Mean Value theorem		

Using derivatives to analyze graphs	LO 2.2A EK 2.2A1	Use derivatives to analyze properties of a function. First and second derivatives of a function can provide information about the function and its graph including intervals of increase or decrease, local (relative) and global (absolute) extrema, intervals of upward or downward concavity, and points of	Larson/Hostetler Calculus 8 th Ed. 3.3, 3.4, 3.6	
		The first derivative test Increasing and decreasing (intervals) The second derivative test Concavity and inflection points Curve Sketching		

Connecting <i>f</i> and <i>f</i> with the graph of <i>f(x)</i>	LO 2.2A EK 2.1D1 EK 2.2A1	Use derivatives to analyze properties of a function. Differentiating f' produces the second derivative f", provided the derivative of f' exists; repeating this process produces higher order derivatives of f. First and second derivatives of a function can provide information about the function and its graph including intervals of increase or decrease, local (relative) and global (absolute) extrema, intervals of upward or downward concavity, and points of inflection. <i>Connecting the graphs of f'</i> <i>and f" with the graph of f(x)</i>	Larson/Hostetler Calculus 8 th Ed. Throughout Chapter 3 Exercises Supplemental Material		
--	---------------------------------	--	--	--	--

Optimization Problems	LO 2.3C EK 2.3C3	Solve problems involving related rates, optimization, rectilinear motion, and planar motion. The derivative can be used to solve optimization problems, that is, finding a maximum or minimum value of a function over a given interval. <i>Writing and optimizing functions</i>	Larson/Hostetler Calculus 8 th Ed. 3.7	
More Applications of Derivatives	LO 2.3B EK 2.3B1 EK 2.3B2	Solve problems involving the slope of the tangent line. The <i>derivative</i> at a point is the slope of the line tangent to a graph at that point on the graph. The tangent line is the graph of a locally linear approximation of the function near the point of tangency. <i>Local Linearization Differentials Tangent line approximations</i>	Larson/Hostetler Calculus 8 th Ed. 3.9	4

Antiderivatives	LO 3.1A EK 3.1A1 EK 3.1A2 LO 3.3B(a) EK 3.3B3 EK 3.3B5	Recognize antiderivatives of basic functions. An antiderivative of a function f is a function g whose derivative is f . Differentiation rules provide the foundation for finding antiderivatives. Calculate Antiderivatives The notation $\int f(x) dx =$ Fx+C means that $F'(x) = f(x)$ and $\int f(x)$ is called an indefinite integral of the function f . Techniques for finding antiderivatives include	Larson/Hostetler Calculus 8 th Ed. 4.1, 5.2, 5.3, 5.4, 5.5, 5.7	25
		finding antiderivatives.		
		Calculate Antiderivatives		
		The notation $\int f(x)dx = Fx+C$ means that $F'(x) = f(x)$ and $\int f(x)$ is called an indefinite integral of the function <i>f</i> .		
		Techniques for finding antiderivatives include algebraic manipulation such as long division and completing		
		the square, substitution of variables. Indefinite Integral rules		
		Fower rules Trigonometric rules Exponential and logarithmic rules		
		inverse trigonometric rules		

The Definite Integral	LO 3.2A(a)	Interpret the definite	Larson/Hostetler Calculus	7
Concept	EK 3.2A1	Rigger and a second sec	8 EQ.	
	EK 3.2A3	Riemann sum.	4.2, 4.3	
		A Diamann aum subiah		
		A Riemann sum, which		
		requires a partition of an		
		interval i, is the sum of		
		products, each of which is		
		the value of the function at		
		a point in a subinterval		
		multiplied by the length of		
		that subinterval of the		
		partition.		
		The information in a		
		definite integral can be		
		translated into the limit of a		
		rolated Biomann sum and		
		the		
		limit of a Diamann cum can		
		he written as a definite		
		be written as a definite		
		integrai.		

The Definite Integral	LO 3.2B	Approximate a definite		
Concept (continued)	EK 3.2B1	integral.		
	EK 3.2B2			
	LO 3.2C	Definite integrals can be		
		approximated for functions		
		that are represented		
		graphically, numerically,		
		algebraically, and verbally.		
		Definite integrals can be		
		approximated using a left		
		Riemann sum, a right Riemann		
		sum, a midpoint Riemann		
		sum, or a trapezoidal sum;		
		approximations can be		
		computed		
		using either uniform or non		
		using either uniform or non-		
		uniform partitions.		
		Calculate a definite integral		
		using areas and properties		
		of definite integrals.		
	1			

Evaluate Definite Integrals	LO 3.3B(b) EK 3.3B2	Evaluate definite integrals.		
		If <i>f</i> is continuous on the interval [a, b] and <i>F</i> is an antiderivative of <i>f</i> . then		
		$\int_{a}^{a} f(x)dx = F(b) - F(a).$ Evaluation by hand and on the calculator Properties of definite integrals		

The Definite Integral	LO 3.3A EK 3.3A1 EK 3.3A2 EK 3.3A3	Analyze functions defined by an integral. The definite integral can be used to define new functions. If f is a continuous function on the interval (a,b], then $\frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$ where x is between a and b . Graphical, numerical, analytical, and verbal representations of a function f provide information about the function g defined as $g(x) = \int_{a}^{x} f(t) dt$. Mean Value theorem for Integrals The Fundamental Theorem of Calculus FTC 1 FTC 2	Larson/Hostetler Calculus 8 th Ed. 4.3, 4.4	10
		FTC 2		

Applications of Integrals I	LO.2.3E	Verify solutions to differential	Larson/Hostetler Calculus	10
	EK 2.3E2	equations.	8 th Ed.	-
	LO 2.3F		6.1. 6.2.	
	FK 2.3F1	Derivatives can be used to	,,	
	10354	verify that a function is a		
	EC 3.5A	solution to a given		
		differential equation		
		Estimate solutions to		
		differential equations.		
		Slope fields provide visual		
		clues to the behavior		
		of solutions to first order		
		differential equations.		
		•		
		Analyze differential		
		equations to obtain general		
		and specific solutions.		
		Antidifferentiation can be		
		used to find specific		
		solutions to differential		
		equations with given initial		
		conditions, including		
		applications to motion along		
		a line, and exponential		
		growth and decay.		

Applications of Integrals I (continued)	EK 3.5A2 LO 3.5B EK 3.5B1	Some differential equations can be solved by separation of variables.		
		Interpret, create and solve differential equations from problems in context.		
		The model for exponential growth and decay that arises from the statement "The rate of change of a quantity is proportional to the size of the quantity" is $\frac{dy}{dx} = ky.$		
		General Differential equations Slopefields Exponential growth and decay Newton's Law of Cooling		

Applications of Integrals	10344	Interpret the meaning of a	Larson/Hostetler Calculus	15
		definite integral within a	8 th Ed	1.5
"		word problem	0 Lu. 71 70 70	
	ER 3.4AZ	word problem.	7.1, 7.2, 7.3	
	LU 3.4B			
	EK 3.4B1	A function defined as an		
		integral represents an		
		accumulation of a rate of		
		change.		
		The definite integral of the		
		rate of change of a		
		quantity over an interval		
		gives the net change of that		
		quantity over that interval.		
		. ,		
		Apply definite		
		integrals to problems		
		involving the average		
		value of a function		
		The average value of a		
		function f over an interval		
		$\begin{bmatrix} 1 \\ b \end{bmatrix} \begin{bmatrix} b \\ c \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \begin{bmatrix} b \\ c \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \end{bmatrix}$		
		$[a,b]$ is $\frac{1}{b-a}\int_a f(x)dx$.		

Applications of Integrals	LO 3.4C	Apply definite integrals to		
ll (continued)	EK 3.4C1	problems involving motion.		
	LO 3.4D			
	EK 3.4D1	For a particle in rectilinear		
	EK 3.4D2	motion over an interval of		
		time the definite integral of		
		velocity represents the		
		particle's displacement over		
		the interval of time and the		
		the interval of time, and the		
		definite integral of speed		
		represents the particle's		
		total distance traveled over		
		the interval of time.		
		Apply definite integrals to		
		problems involving area and		
		volume.		
		Areas of certain regions in		
		the plane can be calculated		
		with definite integrals		
		with definite integrais.		
		Volumes of solids with		
		known cross soctions		
		known cross sections,		
		including discs and wasners,		
		can be calculated with		
		definite integrals.		

Applications of Integrals II (continued)	LO 3.4E EK 3.4E1	Use the definite integral to solve problems in various contexts.		
		The definite integral can be used to express information about accumulation and net change in many applied contexts.		
		Area (with respect to either axis) Area Between a curve and an axis Area Between two curves Volumes of solids of revolution (with respect to either axis) Disc method Shell method Volumes of solids with known cross-sections (with respect to either axis)		
Review		Review Packet		6
Post AP Topics		Teacher designed enrichment topics and projects		25

Appendices

- Scranton School District Honors and AP Criteria
- Scranton School District Secondary Mathematics Curriculum Pathways
- Textbooks/Workbooks (referenced in the Mathematics Curriculum Guides)
- PA Core Mathematics, Grades PreK-12
- PA Crosswalks Mathematics Grades K-8
- PA Core Crosswalks Mathematics Grades 9-12

Applied Geometry 11

Curriculum Guide

Scranton School District

Scranton, PA

Applied Geometry 11

Prerequisite : Algebra I, Part A and Part B, or Algebra I

Intended Audience: This course is designed for the student who has successfully completed Algebra I by the end of the 10th grade.

Applied Geometry 11 is a course for students who may experience difficulty with a Geometry 10 course. It is designed to emphasize the study of the properties and applications of common two and three dimensional figures. This course formalizes what students have learned about geometry in the middle grades, with a concentration on real world applications. Topics covered focus on the Pennsylvania Common Core Standards and are parallel to the Geometry 10 and Geometry 11 courses, presenting all the same major topics but with a different depth, breadth, and pace, thus allowing time for discovering and understanding basic concepts. Applied Geometry 11 is designed for students who do not intend to pursue a course of study in any mathematics or science related field.

<u>Year-at-a-glance</u>

1st Quarter

Торіс	Resources	CCSS
Basic Terms and Coordinate Geometry	Big Ideas Geometry 1.1, 1.2, 1.3	G.2.1.2.1, G.2.1.2.2, G.2.1.2.3
Perimeter and Area in the Coordinate Plane	Big Ideas Geometry 1.4	G.2.2.2.1, G.2.2.2.2, G.2.2.2.4, G.2.2.2.5,
Angles	Big Ideas Geometry 1.5, 1.6, 5.1, 7.1	G.2.2.1.1, G.2.2.1.2, G.1.2.1.4
Parallel and Perpendicular Lines	Big Ideas Geometry 3.1, 3.2, 3.3, 3.4, 3.5	G.2.2.1.2, G.2.1.2.2

2nd Quarter

Торіс	Resources	CCSS
Reasoning and Proof	Big Ideas Geometry 2.4, 2.5, 2.6	G.1.3.2.1
Congruent Triangles	Big Ideas Geometry 5.2, 5.3, 5.4, 5.5, 5.6	G.1.2.1.1, G.1.2.1.3, G.1.3.1.1, G.1.3.2.1
Relationships Within Triangles	Big Ideas Geometry 6.1, 6.3, 6.4, 6.5	G.1.2.1.1

3rd Quarter

Торіс	Resources	CCSS
Similar Triangles	Big Ideas Geometry 8.1, 8.2, 8.4, 8.4	G.1.3.1.2, G.1.3.1.1
Right Triangles and Trigonometry	Big Ideas Geometry 9.1, 9.4, 9.5	G.2.1.1.1, G.2.1.1.2
Quadrilaterals and Their Area	Big Ideas Geometry 7.2, 7.3, 7.4, 7.5	G.2.1.2.3, G.1.2.1.2,
		G.2.2.2.2, G.2.2.2.3,

4th Quarter

Торіс	Resources	CCSS
Circles	Big Ideas Geometry 10.1, 10.2, 10.3, 10.4,	G.1.1.1.1, G.1.1.1.2, G.1.1.1.3
	10.5, 10.6	
Circumference, Area, and Volume	Big Ideas Geometry 11.1, 11.2, 11.4, 11.5,	G.1.1.1.2, G.2.2.2.5, G.1.1.1.4,
	11.6, 11.7, 11.8	G.1.2.1.5, G.2.3.1.1, G.2.3.1.2,
Final Review		

General Topic	Academic	Essential Knowledge,	Resources & Activities	Assessments	Suggested
	Standard(s)	Skills & Vocabulary			Time
Basic Terms		Name points, lines,	Big Ideas Geometry 1.1 – 1.2	Teacher prepared tests,	12 days
And		planes, segments, and		quizzes, etc.	
Coordinate		rays. Use the Ruler			
Geometry		and Segment Addition		Series available	
		Postulate.		assessments online.	
				(Optional)	
		Calculate the distance	Big Ideas Geometry 1.3		
	G.2.1.2.1	and/or midpoint		www.bigideasmath.com	
		between 2 points on	www.bigideasmath.com – Skills	(Optional)	
		a number line or on a	Review Handbook		
		coordinate plane.	Sec 7.1		
		Using the Midpoint			
		and Distance Formula.	http://departments.jordandistrict.		
			org/curriculum/mathematics/seco		
			ndary/impact/Algebra/Alg%208%2		
			0Geometry%20in%20Algebra/Alg8.		
			4Solving%20for%20the%20midpoin		
			<u>t.pdf</u>		

Perimeter and		Estimate area,	Big Ideas Geometry 1.4	8 days
Area in the Coordinate Plane	G.2.2.2.1	perimeter or circumference of an irregular figure. Using area, perimeter, and circumference formulas in the coordinate plane.	http://shodor.org/interactivate- java/activities/ShapeBuilder/	
	G.2.2.2.4	Develop and/or use strategies to estimate the area of a compound/composite figure.		
Angles		Name, measure and classify angles. Identify congruent angles.	Big Ideas Geometry 1.5	10 days
	G.2.2.1.1	Use properties of angles formed by intersecting lines to find the measures of missing angles. Complementary, Supplementary, and Vertical Angles.	Big Ideas Geometry 1.6 <u>http://www.palmbeachschools.org</u> <u>/students/Grade12/GeometryActiv</u> <u>ity2.pdf</u>	

	G.1.2.1.1	Identify and/or use properties of triangles. Triangle Sum and Exterior Angle Theorems.	Big Ideas Geometry 5.1	
	G.1.2.1.4	Identify and/or use properties of regular polygons. Interior and Exterior Angle Theorems.	Big Ideas Geometry 7.1 http://illuminations.nctm.org/Acti vity.aspx?id=3546	
Parallel and Perpendicular Lines	G.2.2.1.2	Review and Identify pairs of lines. Use properties of angles formed when two parallel lines are cut by a transversal to find the measures of missing angles.	Big Ideas Geometry 3.1 Big Ideas Geometry 3.2-3.3	15 days
	G.2.1.2.2	Relate slope to perpendicularity and/or parallelism (limit to linear algebraic equations). Identify parallel and perpendicular lines. Write equations of parallel and perpendicular lines.	Big Ideas Geometry 3.4-3.5	

Reasoning and Proofs		Use Algebraic Properties of Equality to justify the steps in solving an equation in a two-column proof.	Big Ideas Geometry 2.4	15 days
	G.1.3.2.1	Write, analyze, complete, or identify formal proofs (e.g., direct and/or indirect proofs/proofs by contradiction.) Use properties of equality involving segment lengths and angle measures to complete two-column proofs.	Big Ideas Geometry 2.5-2.6 *Students are expected to fill in missing steps of partially completed proofs.	
Congruent Triangles	G.1.3.1.1	Identify and/or use properties of congruent polygons or solids. Identify and use corresponding parts.	Big Ideas Geometry 5.2	20 days
	G.1.2.1.3	Identify and/or use properties of isosceles and equilateral triangles. Use the Base Angles Theorems.	Big Ideas Geometry 5.4	

	Write, analyze,	Big Ideas Geometry 5.3, 5.5, 5.6	
G.1.3.2.1	complete, or identify		
	formal proofs (e.g.,		
	direct and/or indirect	http://www.lcps.org/cms/lib4/VA0	
	proofs/proofs by	1000195/Centricity/Domain/1445/	
	contradiction).	Geo%20G.6%20Chapter%204%20C	
	Proving triangles	ongruent%20Triange%20Lab%20W	
	congruent using the	<u>S%20PDF.pdf</u>	
	SAS, SSS, HL, ASA and		
	AAS Congruence	*Students are expected to fill in	
	Theorems.	missing steps of partially	
		completed proofs.	

Relationships Within Triangles	G.1.2.1.1	Identify and/or use properties of triangles.		10 days
		Identify and/or use properties of medians, altitudes, and perpendicular bisectors.	Big Ideas Geometry 6.1, 6.3 Big Ideas Geometry 6.4	
		Use midsegments in the coordinate plane and the Triangle Midsegment Theorem to find distance. Use Triangle Inequality Theorem.	Big Ideas Geometry 6.5 http://www.glencoe.com/sites/co mmon assets/support pages/MC Course3/Triangle Inequality.pdf	
Similar Triangles	G.1.3.1.1 and G.1.3.1.2	Identify and/or use properties of similar polygons or solids.	Big Ideas Geometry 8.1	15 days
--	----------------------------	--	---	---------
		Use the Triangle Similarity Theorems to solve real-life problems. Identify and/or use proportional relationships in similar figures.	Big Ideas Geometry 8.2-8.3 Big Ideas Geometry 8.4	
Right Triangles and Trigonometry	G.2.1.1.1	Use the Pythagorean Theorem to write and/or solve problems involving right triangles. Find side lengths in special right triangles and solve real-life problems.	www.bigideasmath.com – Skills Review Handbook Sec 3.3-3.4 Big Ideas Geometry 9.1 <u>http://www.cimt.plymouth.ac.uk/</u> projects/mepres/book8/y8s3act.pd <u>f</u> Big Ideas Geometry 9.2	15 days

	G.2.1.1.2	Use trigonometric ratios to write and/or	Big Ideas Geometry 9.4-9.5	
		solve problems involving right triangles.	http://en.wikibooks.org/wiki/High _School_Trigonometry/Application s_of_Right_Triangle_Trigonometry	
		*Use as enrichment if time permits.	http://jwilson.coe.uga.edu/emt668 /emat6680.folders/brooks/6690stu ff/righttriangle/Applications.html	
Quadrilaterals And Their Areas	G.1.2.1.2	Identify and/or use properties of quadrilaterals.	Big Ideas Geometry 7.2, 7.4, 7.5 <u>http://illuminations.nctm.org/Less</u> <u>on.aspx?id=1992</u>	15 days
		Use properties of trapezoids and the Trapezoid Midsegment Theorem to find distances.	Big Ideas Geometry 7.5	
	G.2.1.2.3	Use slope, distance and/or midpoint between 2 points on a coordinate plane to establish properties of a 2-dimensional shape.	Big Ideas Geometry 7.3, 7.4	

G.2.2.2.2	Find the measurement of a missing length given the perimeter, circumference, or area. Use formulas for quadrilaterals.		
G.2.2.2.3	Find the side lengths of a polygon with a given perimeter to maximize the area of the polygon. Use formulas for quadrilaterals.	http://map.mathshell.org/material s/download.php?fileid=1226	
G.2.2.3.1	Describe how a change in the linear dimension of a figure affects its perimeter, circumference, and area. (e.g., How does changing the length of the radius of a circle affect the circumference of the circle?). Use formulas for quadrilaterals.	http://www.ssms.scps.k12.fl.us/Po rtals/104/assets/pdf/Math%207th %20garde/Change%20in%20geome tric%20dimensions.pdf http://www.shawnee.edu/acad/m s/ENABLdocs/Summer08pdfs/Geob oards%20Lesson%20Plan.pdf http://www.shawnee.edu/acad/m s/ENABLdocs/Summer08pdfs/Geob oards%20Lesson%20Plan.pdf	

Circles	G.1.1.1.1	Identify, determine and/or use the radius, diameter, segment and/or tangent of a circle.	Big Ideas Geometry 10.1 <u>http://illuminations.nctm.org/uplo</u> <u>adedFiles/Content/Lessons/Resour</u> <u>ces/9-12/PiLine-AS-Slope.pdf</u>	15 days
	G.1.1.1.2	Identify, determine and/or use the arcs, semicircles, sectors, and/or angles of a circle. Find arc measures.	Big Ideas Geometry 10.2	

		•	
	Use chords, tangents,	Big Ideas Geometry 10.3	
G.1.1.1.3	and secants to find		
	missing arc measures		
	or missing segment		
	measures.		
	Use Chord Theorems		
	to find lengths and arc		
	measures.		
		Big Ideas Geometry 10.4	
	Use inscribed angles		
	and inscribed		
	polygons to find angle		
	and arc measures.	Big Ideas Geometry 10.5	
	Use circumscribed		
	angles to find angle		
	and arc measures.	Big Ideas Geometry 10.6	
	Use chords, tangents,		
	and secants to find		
	missing segment	http://www.nsa.gov/academia/_fil	
	measures.	es/collected learning/high school/	
		geometry/tangents scants chords.	
		<u>pdf</u>	
		http://illuminations.nctm.org/Less	
		on.aspx?id=2417	

Circumference, Area, and Volume	G.1.1.1.2	Identify, determine and/or use the arcs, semicircles, sectors, and/or angles of a circle. Find circumference and use arc length to find measures and solve real-life problems.	Big Ideas Geometry 11.1	20 days
	G.2.2.2.5	Find the area of a sector of a circle. *Use as enrichment if time permits.	Big Ideas Geometry 11.2 <u>http://www.regentsprep.org/rege</u> <u>nts/math/geometry/GP14/CircleSe</u> <u>ctors.htm</u>	
	G.1.2.1.5	Identify and/or use properties of pyramids and prisms.	Big Ideas Geometry 11.4	
	G.1.1.1.4	Identify and/or use the properties of a sphere or cylinder.		

	Calculate the volume	Big Ideas Geometry 11 5-11 8	
G.2.3.1.2	of prisms, cylinders, cones, pyramids and/or spheres. Formulas are provided on the reference sheet.	http://intermath.coe.uga.edu/twe b/gwin1-01/luce/SAV/SAVRes.html	
G.2.3.1.1	Calculate the surface area of prisms, cylinders, cones, pyramids and/or spheres. Formulas are provided on the reference sheet.	Big Ideas Geometry 11.7-11.8 <u>http://www.mybookezzz.org/surfa</u> <u>ce-area-hands-on-activity/</u>	
G.2.3.1.3	Find the measurement of a missing length given the surface area or volume.	http://illuminations.nctm.org/Less on.aspx?id=2911	
G.2.3.2.1	Describe how a change in the linear dimension of a figure affects its surface area or volume. (e.g., How does changing the length of the edge of a cube affect the volume of the cube?).	http://www.shodor.org/interactiva te/lessons/SurfaceAreaAndVolume / http://www.k12.wa.us/mathemati cs/MathAve/Landscaping/Assessm ent.pdf	

	G.2.2.4.1	Use area models to find probabilities.		
		*Use as enrichment if time permits.		
Final Exam				10 days
Review				

Applied Geometry 12

Curriculum Guide

Scranton School District

Scranton, PA

Applied Geometry 12

Prerequisite : Algebra I, Part A and Part B, or Algebra I

Intended Audience: This course is designed for the student who has successfully completed Algebra I by the end of the 11th grade.

This course is of the same philosophy as Applied Geometry 11 and covers the same content as Applied Geometry 11. The goal of this course is to ensure the mastery of course content for the students who have selected this course. It is designed to emphasize the study of the properties and applications of common two and three dimensional figures. This course formalizes what students have learned about geometry in the middle grades, with a concentration on real world applications. Topics covered focus on the Pennsylvania Common Core Standards and are parallel to the Geometry 10 and Geometry 11 courses, presenting all the same major topics but with a different depth, breadth, and pace, thus allowing time for discovering and understanding basic concepts. Applied Geometry 12 is designed for students who do not intend to pursue a course of study in any mathematics or science related field. Applied Geometry 12 is the final course in Curriculum Pathway III. This course prepares the students to enter the workforce.

<u>Year-at-a-glance</u>

1st Quarter

Торіс	Resources	CCSS
Basic Terms and Coordinate Geometry	Big Ideas Geometry 1.1, 1.2, 1.3	G.2.1.2.1, G.2.1.2.2, G.2.1.2.3
Perimeter and Area in the Coordinate Plane	Big Ideas Geometry 1.4	G.2.2.2.1, G.2.2.2.2, G.2.2.2.4, G.2.2.2.5,
Angles	Big Ideas Geometry 1.5, 1.6, 5.1, 7.1	G.2.2.1.1, G.2.2.1.2, G.1.2.1.4
Parallel and Perpendicular Lines	Big Ideas Geometry 3.1, 3.2, 3.3, 3.4, 3.5	G.2.2.1.2, G.2.1.2.2

2nd Quarter

Торіс	Resources	CCSS
Reasoning and Proof	Big Ideas Geometry 2.4, 2.5, 2.6	G.1.3.2.1
Congruent Triangles	Big Ideas Geometry 5.2, 5.3, 5.4, 5.5, 5.6	G.1.2.1.1, G.1.2.1.3, G.1.3.1.1, G.1.3.2.1
Relationships Within Triangles	Big Ideas Geometry 6.1, 6.3, 6.4, 6.5	G.1.2.1.1

3rd Quarter

Торіс	Resources	CCSS
Similar Triangles	Big Ideas Geometry 8.1, 8.2, 8.4, 8.4	G.1.3.1.2, G.1.3.1.1
Right Triangles and Trigonometry	Big Ideas Geometry 9.1, 9.4, 9.5	G.2.1.1.1, G.2.1.1.2
Quadrilaterals and Their Area	Big Ideas Geometry 7.2, 7.3, 7.4, 7.5	G.2.1.2.3, G.1.2.1.2,
		G.2.2.2.2, G.2.2.2.3,

4th Quarter

Торіс	Resources	CCSS
Circles	Big Ideas Geometry 10.1, 10.2, 10.3, 10.4,	G.1.1.1.1, G.1.1.1.2, G.1.1.1.3
	10.5, 10.6	
Circumference, Area, and Volume	Big Ideas Geometry 11.1, 11.2, 11.4, 11.5,	G.1.1.1.2, G.2.2.2.5, G.1.1.1.4,
	11.6, 11.7, 11.8	G.1.2.1.5, G.2.3.1.1, G.2.3.1.2,
Final Review		

General Topic	Academic	Essential Knowledge,	Resources & Activities	Assessments	Suggested
	Standard(s)	Skills & Vocabulary			Time
Basic Terms		Name points, lines,	Big Ideas Geometry 1.1 – 1.2	Teacher prepared tests,	12 days
And		planes, segments, and		quizzes, etc.	
Coordinate		rays. Use the Ruler and			
Geometry		Segment Addition		Series available	
		Postulate.		assessments online.	
				(Optional)	
	G.2.1.2.1	Calculate the distance	Big Ideas Geometry 1.3		
		and/or midpoint		www.bigideasmath.com	
		between 2 points on a	www.bigideasmath.com – Skills	(Optional)	
		number line or on a	Review Handbook		
		coordinate plane.	Sec 7.1		
		Using the Midpoint and			
		Distance Formula.	http://departments.jordandistri		
			ct.org/curriculum/mathematics/		
			secondary/impact/Algebra/Alg%		
			208%20Geometry%20in%20Alge		
			bra/Alg8.4Solving%20for%20the		
			%20midpoint.pdf		

Perimeter and Area in the Coordinate Plane	G.2.2.2.1 G.2.2.2.4	Estimate area, perimeter or circumference of an irregular figure. Using area, perimeter, and circumference formula in the coordinate plane. Develop and/or use strategies to estimate the area of a compound/composite figure.	Big Ideas Geometry 1.4 <u>http://shodor.org/interactivate-java/activities/ShapeBuilder/</u>	8 days
Angles		Name, measure and classify angles. Identify congruent angles.	Big Ideas Geometry 1.5	10 days
	G.2.2.1.1	Use properties of angles formed by intersecting lines to find the measures of missing angles. Complementary, Supplementary, and Vertical Angles.	Big Ideas Geometry 1.6 <u>http://www.palmbeachschools.</u> <u>org/students/Grade12/Geometr</u> <u>yActivity2.pdf</u>	

	G.1.2.1.1	Identify and/or use properties of triangles. Triangle Sum and Exterior Angle Theorems.	Big Ideas Geometry 5.1	
	G.1.2.1.4	Identify and/or use properties of regular polygons. Interior and Exterior Angle Theorems.	Big Ideas Geometry 7.1 <u>http://illuminations.nctm.org/A</u> <u>ctivity.aspx?id=3546</u>	
Parallel and Perpendicular Lines	G.2.2.1.2	Review and Identify pairs of lines. Use properties of angles formed when	Big Ideas Geometry 3.1 Big Ideas Geometry 3.2-3.3	15 days
		two parallel lines are cut by a transversal to find the measures of missing angles.		
	G.2.1.2.2	Relate slope to perpendicularity and/or parallelism (limit to linear algebraic equations). Identify parallel and perpendicular lines. Write equations of parallel and perpendicular lines.	Big Ideas Geometry 3.4-3.5	

Reasoning and Proofs		Use Algebraic Properties of Equality to justify the steps in solving an equation in a two-column proof.	Big Ideas Geometry 2.4	15 days
	G.1.3.2.1	Write, analyze, complete, or identify formal proofs (e.g., direct and/or indirect proofs/proofs by contradiction.) Use properties of equality involving segment lengths and	Big Ideas Geometry 2.5-2.6 *Students are expected to fill in missing steps of partially	
		angle measures to complete two-column proofs.	completed proofs.	
Congruent Triangles	G.1.3.1.1	Identify and/or use properties of congruent polygons or solids. Identify and use corresponding parts.	Big Ideas Geometry 5.2	20 days
	G.1.2.1.3	Identify and/or use properties of isosceles and equilateral triangles. Use the Base Angles Theorems.	Big Ideas Geometry 5.4	

	G.1.3.2.1	Write, analyze, complete, or identify formal proofs (e.g., direct and/or indirect proofs/proofs by contradiction). Proving triangles congruent using the SAS, SSS, HL, ASA and AAS Congruence Theorems.	Big Ideas Geometry 5.3, 5.5, 5.6 http://www.lcps.org/cms/lib4/V A01000195/Centricity/Domain/1 445/Geo%20G.6%20Chapter%20 4%20Congruent%20Triange%20L ab%20WS%20PDF.pdf *Students are expected to fill in missing steps of partially completed proofs.	
Relationships Within Triangles	G.1.2.1.1	Identify and/or use properties of triangles. Identify and/or use properties of medians, altitudes, and perpendicular bisectors. Use midsegments in the coordinate plane and the Triangle Midsegment Theorem to find distance. Use Triangle Inequality Theorem.	Big Ideas Geometry 6.1, 6.3 Big Ideas Geometry 6.4 Big Ideas Geometry 6.5 <u>http://www.glencoe.com/sites/ common_assets/support_pages/</u> <u>MC_Course3/Triangle_Inequalit</u> <u>y.pdf</u>	10 days

Similar Triangles	G.1.3.1.1	Identify and/or use properties of similar polygons or solids.	Big Ideas Geometry 8.1	15 days
		Use the Triangle Similarity Theorems to solve real-life problems.	Big Ideas Geometry 8.2-8.3	
			Big Ideas Geometry 8.4	
		Identify and/or use		
	G.1.3.1.2	proportional		
		relationships in similar		
Pight Triangles and		ligures.	www.higidoasmath.com - Skills	1E days
Trigonometry	62111	Theorem to write	Review Handbook	15 days
ingeneticity	0.2.11.11	and/or solve problems	Sec 3.3-3.4	
		triangles.	Big Ideas Geometry 9.1	
		Find side lengths in special right triangles and solve real-life problems.	http://www.cimt.plymouth.ac.u k/projects/mepres/book8/y8s3a ct.pdf	

	G.2.1.1.2	Use trigonometric ratios to write and/or solve problems involving right triangles.	Big Ideas Geometry 9.4-9.5 <u>http://en.wikibooks.org/wiki/Hi</u> <u>gh_School_Trigonometry/Applic</u> <u>ations_of_Right_Triangle_Trigon</u> ometry	
		*Use as enrichment if	<u></u>	
		time permits.	http://jwilson.coe.uga.edu/emt 668/emat6680.folders/brooks/6	
Quadrilaterals And Their Areas	G.1.2.1.2	Identify and/or use properties of quadrilaterals.	Big Ideas Geometry 7.2, 7.4, 7.5 http://illuminations.nctm.org/Le sson.aspx?id=1992	15 days
		Use properties of trapezoids and the Trapezoid Midsegment Theorem to find distances.	Big Ideas Geometry 7.5	
	G.2.1.2.3	Use slope, distance and/or midpoint between 2 points on a coordinate plane to establish properties of a 2-dimensional shape.	Big Ideas Geometry 7.3, 7.4	

G.2.2.2.2	Find the measurement of a missing length given the perimeter, circumference, or area. Use formulas for		
G.2.2.3	Find the side lengths of a polygon with a given perimeter to maximize the area of the polygon. Use formulas for	http://map.mathshell.org/mater ials/download.php?fileid=1226	
G.2.2.3.1	Describe how a change in the linear dimension of a figure affects its perimeter.	http://www.ssms.scps.k12.fl.us/ Portals/104/assets/pdf/Math%2 07th%20garde/Change%20in%2	
	circumference, and area. (e.g., How does changing the length of the radius of a circle affect the	Ogeometric%20dimensions.pdf http://www.shawnee.edu/acad /ms/ENABLdocs/Summer08pdfs /Geoboards%20Lesson%20Plan.	
	circumference of the circle?). Use formulas for quadrilaterals.	par http://www.shawnee.edu/acad /ms/ENABLdocs/Summer08pdfs /Geoboards%20Lesson%20Plan. pdf	

Circles	61111	Identify, determine	Big Ideas Geometry 10.1	15 days
	0.1.1.1.1	diameter, segment and/or tangent of a circle.	http://illuminations.nctm.org/u ploadedFiles/Content/Lessons/R esources/9-12/PiLine-AS- Slope.pdf	
	G.1.1.1.2	Identify, determine and/or use the arcs, semicircles, sectors, and/or angles of a circle. Find arc measures.	Big Ideas Geometry 10.2	

	Use chords, tangents,	Big Ideas Geometry 10.3	
G.1.1.1.3	and secants to find		
	missing arc measures		
	or missing segment		
	measures.		
	Use Chord Theorems to		
	find lengths and arc		
	measures.		
		Big Ideas Geometry 10.4	
	Use inscribed angles		
	and inscribed polygons		
	to find angle and arc		
	measures.	Big Ideas Geometry 10.5	
	Lice circumscribed		
	ose circumscribed		
	angles to jind angle	Big Ideas Coomatry, 10.6	
	und urc medsures.	Big ideas Geometry 10.6	
	lles charde tangonte		
	and cocants to find		
	missing segment	http://www.pca.gov/acadomia/	
	maggurag	files (collected learning /high c	
	meusures.	chool/goomotry/tangonto_coont	
		chords pdf	

Circumference, Area, and Volume	G.1.1.1.2	Identify, determine and/or use the arcs, semicircles, sectors, and/or angles of a circle. Find circumference and use arc length to find measures and solve real-life problems.	Big Ideas Geometry 11.1	20 days
	G.2.2.2.5	Find the area of a sector of a circle. *Use as enrichment if time permits.	Big Ideas Geometry 11.2 <u>http://www.regentsprep.org/regents/math/geometry/GP14/CircleSectors.htm</u>	
	G.1.2.1.5 G.1.1.1.4	Identify and/or use properties of pyramids and prisms. Identify and/or use the properties of a sphere or cylinder.	Big Ideas Geometry 11.4	
	G.2.3.1.2	Calculate the volume of prisms, cylinders, cones, pyramids and/or spheres. Formulas are provided on the reference sheet.	Big Ideas Geometry 11.5-11.8 <u>http://intermath.coe.uga.edu/t</u> <u>web/gwin1-</u> <u>01/luce/SAV/SAVRes.html</u>	

	G.2.3.1.1	Calculate the surface area of prisms, cylinders, cones, pyramids and/or spheres. Formulas are provided on the reference sheet.	Big Ideas Geometry 11.7-11.8 http://www.mybookezzz.org/su rface-area-hands-on-activity/	
	G.2.3.1.3	Find the measurement of a missing length given the surface area or volume.	http://illuminations.nctm.org/Le sson.aspx?id=2911	
	G.2.3.2.1	Describe how a change in the linear dimension of a figure affects its surface area or volume. (e.g., How does changing the length of the edge of a cube affect the volume of the cube?).	http://www.shodor.org/interact ivate/lessons/SurfaceAreaAndV olume/ http://www.k12.wa.us/mathem atics/MathAve/Landscaping/Ass essment.pdf	
	G.2.2.4.1	Use area models to find probabilities. *Use as enrichment if time permits.		
Final Exam Review				10 days

Secondary Mathematics Curriculum

Scranton School District

Scranton, PA

Business Math

Curriculum Guide

Scranton School District

Scranton, PA

Business Math

Prerequisite : Geometry 11 or Applied Geometry 11

Course Description: This course is dedicated to real world applications of Algebra Concepts. As such, nearly every problem is a word problem. This course is designed to expose students to the facets of running their own business including but not limited to Banking, Payroll, Taxes, Insurance, Managing People, Managing Inventory, Managing Business Costs and Marketing.

Year-at-a-glance

Subject: Business Math	Grade Level 12	Date Completed: 2/2015

1st Quarter

Торіс	Resources	CCSS
Gross Pay	Business Math by Schulteis and Kaczmarski Or Business Math 6 th Edition by Cleaves and Hobbs	8.F.4, HS.A-SSE.3.c, HS. A-CED.1, HS.A-CED.2, HS.A-CED.3, HS.A-CED.4, HS.A-REI.1, HS.A-REI.2, HS.A-REI.3, HS.F-IF.4, HS.F-IF.5, HS.F-IF.6, HS.F-BF.1, HS.F-LE.5
Net Pay	Business Math by Schulteis and Kaczmarski Or Business Math 6 th Edition by Cleaves and Hobbs	HS.F-BF.1, HS.F-LE.2, HS.F-LE.5
Benefits	Business Math by Schulteis and Kaczmarski Or Business Math 6 th Edition by Cleaves and Hobbs	HS.A-REI.1, HS.A-REI.2, HS.A-REI.3,

2nd Quarter

Торіс	Resources	CCSS
Banking	Business Math by Schulteis and Kaczmarski Or Business Math 6 th Edition by Cleaves and Hobbs	HS.F-LE.2, HS.F-LE.5
Loans	Business Math by Schulteis and Kaczmarski Or Business Math 6 th Edition by Cleaves and Hobbs	HS.F-LE.2, HS.F-LE.5

3rd Quarter

Торіс	Resources	CCSS
Insurance	Business Math by Schulteis and Kaczmarski Or Business Math 6 th Edition by Cleaves and Hobbs	HS.F-BF.1, HS.F-LE.5
Manage People	Business Math by Schulteis and Kaczmarski Or Business Math 6 th Edition by Cleaves and Hobbs	HS.F-BF.1, HS.F-LE.5
Manage Inventory	Business Math by Schulteis and Kaczmarski Or Business Math 6 th Edition by Cleaves and Hobbs	HS.F-BF.1, HS.F-LE.5

4th Quarter

Торіс	Resources	CCSS
Business Costs	Business Math by Schulteis and Kaczmarski Or Business Math 6 th Edition by Cleaves and Hobbs	HS.S-ID.1, HS.S-ID.2, HS.S-ID.3, HS.S-ID.4, HS. S-ID.5, HS.S-ID.6, HS.S-ID.7, HS.S-ID.9, HS.S-IC.2, HS.S-IC.3
Sales and Marketing	Business Math by Schulteis and Kaczmarski Or Business Math 6 th Edition by Cleaves and Hobbs	HS.S-ID.1, HS.S-ID.2, HS.S-ID.3, HS.S-ID.4, HS. S-ID.5, HS.S-ID.6, HS.S-ID.7, HS.S-ID.9, HS.S-IC.2, HS.S-IC.3
Final Exam Review	Business Math by Schulteis and Kaczmarski Or Business Math 6 th Edition by Cleaves and Hobbs	

General Topic	Academic Standard(c)	Essential Knowledge,	Resources & Activities	Assessments	Suggested
 Gross Pay A. Hourly B. Salary C. Average Pay Find the average for one person Find the average for a group Use the group average to find individual pay D. Regular Pay E. Overtime and Holiday Pay F. Commission Straight Commission Straight Commission Graduated commission Graduated commission Find the rate of commission 	Standard(s) 8.F.4 HS.ASSE.3.c	Skills & VocabularyConstruct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it 	Business Math by Schultheis and Kaczmarski Or Business Math 6 th Edition by Cleaves and Hobbs Teacher made worksheets for averages and commissions Teacher made lab to compare piece work and per diem	Teacher prepared tests, quizzes, etc.	Time 25 days

HS. A-CED.1	Create equations and inequalities in		
HS.A-CED.2	one variable and use them to solve		
HS.A-CED.3	problems. Include equations arising		
HS.A-CED.4	from linear and quadratic functions,		
	and simple rational and exponential		
	functions.		
	Create equations in two or more		
	variables to represent relationships		
	between quantities; graph equations		
	on coordinate axes with labels and		
	scales.		
	Represent constraints by equations		
	or inequalities, and by systems of		
	equations and/or inequalities, and		
	interpret solutions as viable or		
	nonviable options in a modeling		
	context. For example, represent		
	inequalities describing nutritional		
	and cost constraints on combinations		
	of different foods.		
	Rearrange formulas to highlight a		
	quantity of interest, using the same		
	reasoning as in solving equations. For		
	example, rearrange Ohm's law V = IR		
	to highlight resistance R.		

HS.	.A-REI.1	Explain each step in solving a simple		
HS.	.A-REI.2	equation as following from the		
HS.	.A-REI.3	equality of numbers asserted at the		
		previous step, starting from the		
		assumption that the original		
		equation has a solution. Construct a		
		viable argument to justify a solution		
		method.		
		Solve simple rational and radical		
		equations in one variable, and give		
		examples showing how extraneous		
		solutions may arise.		
		·····		
		Solve linear equations and		
		inequalities in one variable, including		
		equations with coefficients		
		represented by letters.		
HS.F	F-IF.4	For a function that models a		
------	--------	---	--	--
HS.F	F-IF.5	relationship between two quantities,		
HS.F	F-IF.6	interpret key features of graphs and		
		tables in terms of the quantities, and		
		sketch graphs showing key features		
		given a verbal description of the		
		relationship. Key features include:		
		intercepts; intervals where the		
		function is increasing, decreasing,		
		positive, or negative; relative		
		maximums and minimums;		
		symmetries; end behavior; and		
		periodicity.		
		Relate the domain of a function to its		
		graph and, where applicable, to the		
		quantitative relationship it describes.		
		For example, if the function h(n)		
		gives the number of person-hours it		
		takes to assemble n engines in a		
		factory, then the positive integers		
		would be an appropriate domain for		
		the function.		
		Calculate and interpret the average		
		rate of change of a function		
		(presented symbolically or as a table)		
		over a specified interval. Estimate the		
		rate of change from a graph.*		

	Write a function that describes a		
ПЭ. Г- DГ.1	write a function that describes a		
HS.F-LE.5	relationship between two quantities.		
	Interpret the parameters in a linear		
	interpret the parameters in a inteal		
	or exponential function in terms of a		
	context.		

II. N	et Pav	HS.F-BE.1	Write a function that describes a	www.monevinstructor	7 days
	Eederal Withholding Tax	$HSE_{1}E2$	relationship between two quantities	com	
		US E I E E			
		ID.F-LE.D			
C	. Medicare Tax		Construct linear and exponential		
D	 Total Deductions 		functions, including arithmetic and		
			geometric sequences, given a graph,		
			a description of a relationship, or two		
			input-output pairs (include reading		
			these from a table).		
			Interpret the never stars in a linear		
			interpret the parameters in a intear		
			or exponential function in terms of a		
			context.		

III. Bei	nefits	HS.A-REI.1	Explain each step in solving a simple	Teacher made essay	7 days
Α.	Total job Benefits	HS.A-REI.2	equation as following from the	project decide which	
В.	Net job Benefits	HS.A-REI.3	equality of numbers asserted at the	job is best and explain	
в. С.	Comparing Job benefits	HS.A-KEI.3	equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	why.	

IV. Banking	HS.F-LE.2	Construct linear and exponential	Teacher made	30	days
A. Checking Accounts	HS.F-LE.5	functions, including arithmetic and	supplements and		
1. Comparing Checking accounts		geometric sequences, given a graph,	activities for hands		
2. Deposits		a description of a relationship, or two	on practice		
a) Endorsing Checks		input-output pairs (include reading			
b) Deposit Slips		these from a table).	www.everfi.com		
c) Recoding deposits in the					
register		Interpret the parameters in a linear			
3. Writing Checks		or exponential function in terms of a			
a) Recording checks in the register		context.			
4. (ATM) Electronic Banking					
a) Recording withdrawals					
in the register					
b) Recording purchases in					
the register					
5. Online banking					
a) Expected or pending					
Payments					
6. Reconciling a Register					
B. Savings Accounts					
1. Simple Interest					
2. Compound Interest					
3. Money Markets and CD					
Accounts					
4. Penalties					
5. Effective rate of interest					
6. Comparing Savings accounts					

V. Loans	HS.F-LE.2	Construct linear and exponential	Project from pg 153 of	18 days
A. Interest Bearing Promissory	HS.F-LE.5	functions, including arithmetic and	text	
notes		geometric sequences, given a graph,		
1. Exact Interest		a description of a relationship, or two		
2. Ordinary Interest		input-output pairs (include reading	Speakers when	
3. Finding the rate of Interest		these from a table).	available	
4. Discounted Promissory Notes				
5. Finding the True rate of		Interpret the parameters in a linear	Clarence Money and	
interest		or exponential function in terms of a	Matt from Aaron's at	
6. Calculate the interest due		context.	570-558-4949	
using tables				
7. Find the due date				
8. Find the number of days				
between dates				
B. Installment Loans				
1. Installment Price				
2. Finance Charges				
3. Wonthly Installment				
payments				
C. Early loan Repayments				
1. Earned and Unearned				
Finance Charges				
D. Calculate APR (Annual				
Percentage Rate)				

VI. Insurance	HS.F-BF.1	Write a function that describes a	Speakers when	Report is an	21 days
A. Property Insurance	HS.F-LE.5	relationship between two quantities.	available	assessment	
1. Homeowner Premiums					
2. Renter Premiums		Interpret the parameters in a linear	Find 5 facts about each		
3. Collecting on a claim		or exponential function in terms of a	type of insurance: Fire,		
4. Co-Insurance		context.	Flood, Auto,		
B. Auto Insurance			Homeowner, Renter,		
1. Collision /Comprehensive			Term Life, Whole Life,		
2. Premiums			Universal Life		
3. Deductibles					
C. Life Insurance			Use graphic organizers		
1. Types			to make comparisons		
2. Premiums			between the group's		
3. Net Cost of Insurance			findings about		
4. Life Insurance Cash Values			insurances		
D. Health Insurance					
1. Premiums					
2. Deductibles					
3. Co-insurance					
E. Disability Insurance					

				a	40.1
VII. Manage People	HS.F-BF.1	Write a function that describes a	Teacher made project:	Contract is	13 days
A. Recruitment Costs	HS.F-LE.5	relationship between two quantities.	Negotiate a Contract	an	
1. Advertising				assessment	
2. Hiring Costs		Interpret the parameters in a linear			
3. Using an Agency		or exponential function in terms of a			
B. Wage and Salary Increases		context.			
1. COLA					
2. Bonus					
3. Profit Sharing					
C. Cost of Labor					
1. Full-time					
2. Part time					

VIII. Manage Inventory	HS.F-BF.1	Write a function that describes a	Teacher made	15 days
A. Tracking Inventory	HS.F-LE.5	relationship between two quantities.	worksheets	
B. Reordering Inventory				
C. Inventory Valuation		Interpret the parameters in a linear	Possible Speakers:	
1. FIFO		or exponential function in terms of a	Clarence Money and	
2. LIFO		context.	Matt from Aaron's at:	
3. Weighted Average			570-558-4949	
D. Cost of Ordering Inventory				
E. Cost of Carrying Inventory				

			1
IX. Business Costs	HS.S-ID.1	Represent data with plots on the real	15 days
A. Manufacturing Costs	HS.S-ID.2	number line (dot plots, histograms,	
1. Prime Cost	HS.S-ID.3	and box plots).	
2. Distributing Factory overhead to	HS.S-ID.4		
each unit	HS. S-ID.5	Use statistics appropriate to the	
3. Total Manufacturing Cost		shape of the data distribution to	
B. Break Even point		compare center (median, mean) and	
C. Depreciation		spread (interquartile range, standard	
1. Declining Balance Method		deviation) of two or more different	
2. Sum-of-the-years Method		data sets.	
3. MACRS Method			
D. Shipping Costs		Interpret differences in shape,	
1. Shipping Charges		center, and spread in the context of	
2. Freight Charges		the data sets, accounting for possible	
E. Office Costs		effects of extreme data points	
F. Travel Expenses		(outliers).	
		Use the mean and standard deviation	
		of a data set to fit it to a normal	
		distribution and to estimate	
		population percentages. Recognize	
		that there are data sets for which	
		such a procedure is not appropriate.	
		Use calculators, spreadsheets, and	
		tables to estimate areas under the	
		normal curve.	
		Summarize categorical data for two	
		categories in two-way frequency	
		tables. Interpret relative frequencies	
		in the context of the data (including	
		joint, marginal, and conditional	
		relative frequencies). Recognize	
		possible associations and trends in	
		the data.	

•				
	HS.S-ID.6	Represent data on two quantitative		
	HS.S-ID.7,	variables on a scatter plot, and		
	HS.S-ID.9	describe how the variables are		
	HS.S-IC.2	related.		
	HS.S-IC.3			
		Interpret the slope (rate of change)		
		and the intercept (constant term) of a		
		linear model in the context of the		
		data.		
		Distinguish between correlation and		
		causation.		
		Decide if a specified model is		
		consistent with results from a given		
		data-generating process of a using		
		simulation For example a model		
		saus a spinning coin falls hoads up		
		suys a spinning com juns neads up		
		of 5 trils in a row saves you to		
		of 5 tails in a row cause you to		
		question the model?		
		Recognize the purposes of and		
		differences among sample surveys,		
		experiments, and observational		
		studies; explain how randomization		
		relates to each.		

X. Sales and Marketing	HS.S-ID.1	Represent data with plots on the real	Teacher made project:	17 davs
A. Discounts	HS.S-ID.2	number line (dot plots, histograms.	Conduct a Survey;	
1. Cash Discounts	HS.S-ID.3	and box plots).	present your results.	
2. Trade Discounts	HS.S-ID.4		Team two present	
3. Series Discounts	HS. S-ID.5	Use statistics appropriate to the	same results but draw	
B. Markup		shape of the data distribution to	a different conclusion	
1. Based on selling price		compare center (median, mean) and		
2. Based on Cost		spread (interquartile range, standard	Possible Speakers:	
C. Markdown		deviation) of two or more different	Clarence Money and	
D. Marketing Survey		data sets.	Matt from Aaron's at:	
1. Response Rate			570-558-4949	
2. Survey Results		Interpret differences in shape,		
3. Validity of Results		center, and spread in the context of		
E. Sales Forecasts		the data sets, accounting for possible		
F. Market Share		effects of extreme data points		
		(outliers).		
		Use the mean and standard deviation		
		of a data set to fit it to a normal		
		distribution and to estimate		
		population percentages. Recognize		
		that there are data sets for which		
		such a procedure is not appropriate.		
		Use calculators, spreadsheets, and		
		tables to estimate areas under the		
		normal curve.		
		Summarize categorical data for two		
		categories in two-way frequency		
		tables. Interpret relative frequencies		
		in the context of the data (including		
		joint, marginal, and conditional		
		relative frequencies). Recognize		
		possible associations and trends in		
		the data.		

	1			
	HS.S-ID.6	Represent data on two quantitative		
	HS.S-ID.7	variables on a scatter plot, and		
	HS.S-ID.9	describe how the variables are		
	HS.S-IC.2	related.		
	HS.S-IC.3			
		Interpret the slope (rate of change)		
		and the intercept (constant term) of a		
		linear model in the context of the		
		data.		
		Distinguish between correlation and		
		causation.		
		Decide if a specified model is		
		consistent with results from a given		
		data-generating process, e.g., using		
		simulation. For example, a model		
		says a spinning coin falls heads up		
		with probability 0.5. Would a result		
		of 5 tails in a row cause you to		
		auestion the model?		
		4		
		Recognize the purposes of and		
		differences among sample surveys.		
		experiments, and observational		
		studies: explain how randomization		
		relates to each.		
YL Poviow for Final Exam				15 days
				13 uays

Honors Calculus I

Curriculum Guide

Scranton School District

Scranton, PA

Honors Calculus I

Prerequisites:

- Successful completion of Elementary Analysis or Honors Elementary Analysis
- Be in compliance with the <u>SSD Honors and AP Criteria Policy</u>

Honors Calculus I is a high level mathematics course offered by the Scranton School District. It is very rigorous and taught at the college level. Topics covered in this course include analytic geometry, limits of functions, differentiation and integration of functions, and applications of differentiation and integration.

The work covered in this course will help the student develop analytical reasoning skills and disciplined study habits necessary for success in college. Students pursuing college majors requiring advanced mathematics courses will benefit from this advanced mathematics training.

Since the content of the Honors Calculus I is beyond the scope of Common Core, the Collegeboard Curriculum Framework for AP Calculus AB 2016-2017 document was used as a guide to write this curriculum.

Year-at-a-glance

Subject: Honors Calculus I Grade Level	: 12	Date Completed: 3/1/15

1st Quarter

Торіс	Resources	AP Calculus Standard
Elementary Analysis Review	Chapter P	
	At	
Limits	Larson/Hostetler Calculus 8 th Ed.	LO 1.1A(a), LO 1.1A(b)
	Chapter One, Chapter Three	LO 1.1B, LO 1.1C, LO 1.1D
		EK 1.1A2, EK 1.1B1,
		EK 1.1C1, EK 1.1C2,
		EK 1.1D1
Continuity	Larson/Hostetler Calculus 8 th Ed.	LO 1.2A, LO 1.2B
	Chapter One	
Differentiablilty	Larson/Hostetler Calculus 8 th Ed.	LO 2.2B, EK 2.2B1, EK 2.2B2
	Chapter Two	
Derivatives	Larson/Hostetler Calculus 8 th Ed.	LO 2.1A, EK 2.1A5
	Chapter Two, Chapter Five (natural logarithmic	EK 2.1B1
	and exponential functions)	
	1	

2nd Quarter

Торіс	Resources	AP Calculus Standard
Derivative Rules	Larson/Hostetler Calculus 8 th Ed.	LO 2.1C, EK 2.1C4
	Chapter Two	EK 2.1C2, EK 2.1A5
Geometric Applications of Derivatives	Larson/Hostetler Calculus 8 th Ed.	LO 2.1A
	Chapter Two	
Implicit Differentiation	Larson/Hostetler Calculus 8 th Ed.	LO 2.1C, EK 2.1C5
	Chapter Two	LO 2.3B, EK 2.3B1, EK 2.3B2
Higher Order Derivatives	Larson/Hostetler Calculus 8 th Ed.	LO 2.1D
	Chapter Two	
Related Rates	Larson/Hostetler Calculus 8 th Ed.	LO 2.3C, EK 2.3C2
	Chapter Two	
Motion	Throughout Larson/Hostetler Calculus 8 th Ed.	LO 2.3C, EK 2.3C1
	Exercises and Supplemental Materials	

3rd Quarter

Торіс	Resources	AP Calculus Standard
Extreme Values	Larson/Hostetler Calculus 8 th Ed.	LO 2.3C, EK 2.3C3
	Chapter Three	
Implications of Derivatives	Larson/Hostetler Calculus 8 th Ed.	LO 2.4A, EK 2.4A1
	Chapter Three	
Using Derivatives to Analyze Graphs	Larson/Hostetler Calculus 8 th Ed.	LO 2.2A, EK 2.2A1
	Chapter Three	
Connecting f' and f'' with the Graph of f(x)	Larson/Hostetler Calculus 8 th Ed.	LO 2.2A, EK 2.1D1, EK 2.2A1
	Chapter Three, Supplemental Materials	
Optimization Problems	Larson/Hostetler Calculus 8 th Ed.	LO 2.3C, EK 2.3C3
	Chapter Three	
Antiderivatives	Larson/Hostetler Calculus 8 th Ed.	LO 3.1A, EK 3.1A1, EK 3.1A2,
	Chapters Four and Five	LO 3.3B(a), EK 3.3B3, EK 3.3B5

4th Quarter

Торіс	Resources	AP Calculus Standard
Antiderivatives (continued)	Larson/Hostetler Calculus 8 th Ed.	LO 3.1A, EK 3.1A1, EK 3.1A2,
	Chapters Four and Five	LO 3.3B(a), EK 3.3B3, EK 3.3B5
The Definite Integral Concept	Larson/Hostetler Calculus 8 th Ed.	LO 3.2A(a), EK 3.2A1, EK 3.2A3
	Chapter Four	LO 3.2B, EK 3.2B1, EK 3.2B2,
		LO 3.2C
Evaluate Definite Integrals	Larson/Hostetler Calculus 8 th Ed.	LO 3.3B(b), EK 3.3B2
	Chapter Four	
The Definite Integral	Larson/Hostetler Calculus 8 th Ed.	LO 3.3A, EK 3.3A1, EK 3.3A3
	Chapter Four	
Applications of Integrals	Larson/Hostetler Calculus 8 th Ed.	LO 3.4D, EK 3.4D1, EK 3.4D2
	Chapter Seven	
Final Review	Review Packet	
Final Review	Review Packet	

General Topic	Academic	Essential Knowledge,	Resources & Activities	Assessments	Suggested Time
	Standard(s)	Skills & Vocabulary			
Review		Calculus Library of Functions	Larson/Hostetler Calculus	Teacher	15
		Linear functions	8 th Ed.	prepared tests,	
		Functions as models of change	Chapter P	quizzes, etc.	
		Transformation of functions			
		Solving equations(algebraically and on the calculator)			
Limits	LO 1.1A(a)	Express limits symbolically	Larson/Hostetler Calculus		18
	LO 1.1A(b)	using correct notation.	8 th Ed.		
		Interpret limits expressed	1.2		
		symbolically.			
		Intuitive definition of Limits			
	LO 1.1B	Estimate limits of functions.	Larson/Hostetler Calculus		
	EK 1.1B1	Numerical and graphical	8 th Ed.		
		information can be used	1.2		
		to estimate limits.			
		Visualizing limits			
Limits at a point	EK 1.1A2	The concept of a limit can	Larson/Hostetler Calculus		
		be extended to include	8 th Ed.		
		one-sided limits, limits at	1.2, 3.5		
		infinity, and infinite limits.			

	EK 1.1C1 EK 1.1C2	functions. Limits of sums, differences, products, quotients, and composite functions can be found using the basic theorems of limits and algebraic rules. The limit of a function may be found by using algebraic manipulation, alternate forms of trigonometric functions, or the squeeze theorem (Sandwich Theorem). Substitution (continuous functions) Intuitive discussion of removable versus non- removable discontinuities Factoring (removable discontinuities)	8 th Ed. 1.3, 1.4		
--	----------------------	--	---------------------------------	--	--

Limits Involving Infinity	LO 1.1D EK 1.1D1	Deduce and interpret behavior of functions using limits Asymptotic and unbounded behavior of functions can be explained and described using limits Asymptotic behavior (horizontal and vertical asymptotes)	Larson/Hostetler Calculus 8 th Ed. 1.5 3.5	
Continuity	LO 1.2A	Analyze functions for intervals of continuity or points of discontinuity. Continuity at a point Continuous Functions Discontinuous functions: Removable discontinuities Jump discontinuities	Larson/Hostetler Calculus 8 th Ed. 1.4	
	LO 1.2B	Determine the applicability of important Calculus theorems using continuity. <i>Continuous functions</i> <i>Intermediate Value Theorem</i>	Larson/Hostetler Calculus 8 th Ed. 1.4	

Derivative Concepts	LO 2.1A	Identify the derivative of a	Larson/Hostetler Calculus	40
	EK 2.1A5	function as the limit of a	8 th Ed.	
	EK 2 1 B1	difference quotient	2 1	
	LK 2.1D1	unterence quotient.	2.1	
		The derivative can be		
		represented graphically		
		numerically, analytically,		
		numerically, analytically, and		
		verbally.		
		The derivative at a point can be		
		The derivative at a point can be		
		estimated from		
		information given in tables or		
		graphs.		
		Definition of the device the		
		Definition of the derivative		
		(difference quotient)		
		Derivative at a point		

Derivative Rules	LO 2.1C	Calculate derivatives. Constant rule Constant multiple rule Sum and difference Power rule Product and quotient rules Proper form of derivatives (factored)	Larson/Hostetler Calculus 8 th Ed. 2.2, 2.3	
Chain rule	EK 2.1C4	The chain rule provides a way to differentiate composite functions Derivatives of composite functions Derivatives using repeated use of the chain rule	Larson/Hostetler Calculus 8 th Ed. 2.4	
Derivatives of Various Functions	EK 2.1C2	Specific rules can be used to calculate derivatives for classes of functions, including polynomial, rational, power, exponential, logarithmic and trigonometric functions.	Larson/Hostetler Calculus 8 th Ed. 2.2, 2.3, 2.4 5.1, 5.4, 5.6	

Derivatives Geometric Applications	LO 2.1A	Identify the derivative of a function as the limit of a difference quotient. Geometric applications of the derivative and rates of change Average rates of change versus instantaneous rates of change Using the derivative to find information necessary to write the equations of tangent lines and normal lines Using the derivative to calculate points of horizontal tangencies	Throughout Larson/Hostetler Calculus 8 th Ed. Chapter 2 Exercises	
Higher Order Derivatives	LO 2.1D	Determine higher order derivatives. Second and higher order derivatives	Larson/Hostetler Calculus 8 th Ed. 2.3, 2.4	

			-	
Differentiability	LO 2.2B	Recognize the connection	Larson/Hostetler Calculus	
	EK 2.2B1	between differentiability	8 th Ed.	
	EK 2.2B2	and continuity.	2.1	
		A continuous function may		
		fail to be differentiable		
		at a point in its domain.		
		If a function is differentiable		
		at a point, then it is		
		continuous at that point		
		continuous at that point.		
		Why the derivative may fail to		
		exist		
Numerical Devivatives	FK 2 1 A F	The device time can be		
Numerical Derivatives	EK 2.1A5		Supplemental Material	
		represented graphically,		
		numerically, analytically, and		
		verbally.		
		Finding derivatives on the		
		graphing calculator		
Implicit Derivatives	LO 2.1C	Calculate derivatives.	Larson/Hostetler Calculus	
·	EK 2.1C5		8 th Ed.	
		The chain rule is the basis for	2.5	
		implicit differentiation.		
		Explicit versus implicit		
		definitions of functions		
		Implicit differentiation process		

				I
Derivatives Geometric	LO 2.3B	Solve problems involving the	Larson/Hostetler Calculus	
Applications	EK 2.3B1	slope of the tangent line.	8''' Ed.	
	EK 2.3B2		2.5	
		The <i>derivative</i> at a point is		
		the slope of the line tangent		
		to a graph at that point on		
		the graph.		
		The tangent line is the graph of		
		a locally linear approximation		
		of the function near the point		
		of tangency.		
		Using implicit differentiation		
		write equations of tangent		
		and normal lines to functions		
		Using implicit differentiation		
		calculate points of horizontal		
		tangencies and equations of		
		vertical asymptotes		
Numerical Derivatives	EK 2.1A5	The derivative can be	Supplemental Material	
	_	represented graphically.		
		numerically, analytically, and		
		verbally.		
		Finding and evaluating		
		implicit derivatives on the		
		graphing calculator		
		5, 5		

Related Rates	LO 2.3C EK 2.3C2	Solve problems involving related rates and optimization.	Larson/Hostetler Calculus 8 th Ed. 2.6	
		The derivative can be used to solve related rates problems, that is, finding a rate at which one quantity is changing by relating it to other quantities whose rates of change are known.		
		What are related rates of change		
		Related rate equations		
		Related rate problem strategies		

Motion	LO 2.3C EK 2.3C1	Solve problems involving related rates and optimization and motion. The derivative can be used to solve rectilinear motion problems involving position, speed, velocity, and acceleration. <i>Position, velocity, and</i> <i>acceleration</i>	Throughout Larson/Hostetler Calculus 8 th Ed. Exercises Supplemental Materials		
--------	---------------------	--	--	--	--

Extreme Values	LO 2.3C EK 2.3C3	The derivative can be used to solve optimization problems, that is, finding a maximum or minimum value of a function over a given interval. <i>Absolute (global) extrema</i> <i>Relative (local) extrema</i> <i>Definition of critical value</i>	Larson/Hostetler Calculus 8 th Ed. 3.1, 3.3	30
Implications of the Derivatives	LO 2.4A EK 2.4A1	Apply the Mean Value Theorem to describe the behavior of a function over an interval. If a function <i>f</i> is continuous over the interval [a, b] and differentiable over the interval (a,b), the Mean Value Theorem guarantees a point within that open interval where the instantaneous rate of change equals the average rate of change over the interval. <i>Rolle's theorem</i> <i>Mean Value theorem</i>	Larson/Hostetler Calculus 8 th Ed. 3.2 Supplemental Material	

Using derivatives to	LO 2.2A	Use derivatives to analyze	Larson/Hostetler Calculus	
analyze graphs	EK 2.2A1	properties of a function.	8 th Ed.	
			3.3, 3.4, 3.6	
		First and second derivatives		
		of a function can provide		
		information about the		
		function and its graph		
		including intervals of		
		increase or decrease. local		
		(relative) and global		
		(absolute) extrema intervals		
		of upward or downward		
		conceptity and points of		
		infloction		
		innection.		
		The first derivative test		
		Increasing and decreasing		
		(intervals)		
		The second derivative test		
		Concavity and inflection points		
		concurry and injection points		
		Curve Sketchina		

Connecting <i>f</i> and <i>f</i> with the graph of <i>f(x)</i>	LO 2.2A EK 2.1D1 EK 2.2A1	Use derivatives to analyze properties of a function. Differentiating f' produces the second derivative f", provided the derivative of f' exists; repeating this process produces higher order derivatives of f. First and second derivatives of a function can provide information about the function and its graph including intervals of increase or decrease, local (relative) and global (absolute) extrema, intervals of upward or downward concavity, and points of inflection. <i>Connecting the graphs of f'</i> <i>and f'' with the graph of f(x)</i>	Larson/Hostetler Calculus 8 th Ed. Throughout Chapter 3 Exercises Supplemental Material		
--	---------------------------------	---	--	--	--

Optimization Problems	LO 2.3C EK 2.3C3	The derivative can be used to solve optimization problems, that is, finding a maximum or minimum value of a function over a given interval. <i>Writing and optimizing functions</i>	Larson/Hostetler Calculus 8 th Ed. 3.7		
-----------------------	---------------------	---	---	--	--

Antiderivatives	LO 3.1A EK 3.1A1 EK 3.1A2 LO 3.3B(a) EK 3.3B3 EK 3.3B5	Recognize antiderivatives of basic functions. An antiderivative of a function f is a function g whose derivative is f . Differentiation rules provide the foundation for finding antiderivatives. Calculate Antiderivatives The notation $\int f(x) dx =$ Fx+C means that $F'(x) = f(x)$ and $\int f(x)$ is called an indefinite integral of the function f . Techniques for finding antiderivatives include algebraic manipulation such as long division and completing the square, substitution of variables. Indefinite Integral rules Power rules Trigonometric rules Exponential and logarithmic rules	Larson/Hostetler Calculus 8 th Ed. 4.1, 5.2, 5.3, 5.4, 5.5, 5.7		35
-----------------	---	--	--	--	----

The Definite Integral	LO 3.2A(a)	Interpret the definite	Larson/Hostetler Calculus	10
Concept	EK 3.2A1	integral as a limit of a	8 Ed.	
	EK 3.2A3	Riemann sum.	4.2, 4.3	
		A Riemann sum, which		
		requires a partition of an		
		interval <i>I,</i> is the sum of		
		products, each of which is		
		the value of the function at		
		a point in a subinterval		
		multiplied by the length of		
		that subinterval of the		
		partition.		
		The information in a		
		definite integral can be		
		translated into the limit of a		
		related Riemann sum, and		
		the		
		limit of a Riemann sum can		
		be written as a definite		
		integral.		
		Ū.		

The Definite Internal	10 2 20	A numerius ato a definite		· · · · · · · · · · · · · · · · · · ·
The Definite Integral	LU 3.2D	Approximate a definite		
Concept (continued)	EK 3.2B1	integral.		
	EK 3.2B2			
	LO 3.2C	Definite integrals can be		
		approximated for functions		
		that are represented		
		graphically numerically		
		graphically, numerically,		
		algebraically, and verbally.		
		Definite integrals can be		
		approximated using a left		
		Bismann ann a richt Bismann		
		Riemann sum, a right Riemann		
		sum, a midpoint Riemann		
		sum, or a trapezoidal sum;		
		approximations can be		
		computed		
		using either uniform or non-		
		uniform partitions		
		Calculate a definite integral		
		using areas and properties		
		of definite integrals.		
Evaluate Definite Integrals	LO 3.3B(b) EK 3.3B2	Evaluate definite integrals.		
--------------------------------	------------------------	---	--	--
		If f is continuous on the interval [a, b] and F is an antiderivative of f. then $\int_{a}^{b} f(x)dx = F(b) - F(a)$. Evaluation by hand and on the calculator Properties of definite integrals		

The Definite Integral	LO 3.3A EK 3.3A1 EK 3.3A3	Graphical, numerical, analytical, and verbal representations of a function f provide information about the function g defined as $g(x) = \int_{a}^{x} f(t) dt$. The Fundamental Theorem of Calculus FTC 1 FTC 2	Larson/Hostetler Calculus 8 th Ed. 4.3, 4.4	12

			,	
Applications of Integrals	LO 3.4D	Apply definite integrals to		10
	EK 3.4D1	problems involving area and		
	EK 3.4D2	volume.		
		Areas of certain regions in		
		the plane can be calculated		
		with definite integrals.		
		Volumes of solids with		
		known cross sections,		
		including discs and washers,		
		can be calculated with		
		definite integrals.		
		Area (with respect to either		
		axis)		
		Area Between a curve and an		
		axis		
		Area Between two curves		
		Volumes of solids of		
		revolution (with respect to		
		either axis)		
		Disc method		
		Shell method		
		volumes of solias		
		with known cross-sections		
		(with respect to either axis)		
Final Review		Review Packet		10
			1 1	

Calculus I

Curriculum Guide

Scranton School District

Scranton, PA

Calculus I

Prerequisites:

• Successful completion of Elementary Analysis or Honors Elementary Analysis

Calculus I is a high level mathematics course offered by the Scranton School District. Topics covered in this course include analytic geometry, limits of functions, differentiation and integration of functions, and applications of differentiation and integration.

The work covered in this course will help the student develop analytical reasoning skills and disciplined study habits necessary for success in college. Students pursuing college majors requiring advanced mathematics courses will benefit from this advanced mathematics training.

Since the content of Calculus I is beyond the scope of Common Core, the Collegeboard Curriculum Framework for AP Calculus AB 2016-2017 document was used as a guide to write this curriculum.

Year-at-a-glance

Subject: Calculus I	Grade Level: 12	Date Completed: 3/1/15

1st Quarter

Торіс	Resources	AP Calculus Standard
Elementary Analysis Review	Chapter P	
Limits	Larson/Hostetler Calculus 8 th Ed.	LO 1.1A(a), LO 1.1A(b)
	Chapter One, Chapter Three	LO 1.1B, LO 1.1C, LO 1.1D
		EK 1.1A2, EK 1.1B1,
		EK 1.1C1, EK 1.1C2,
		EK 1.1D1

2nd Quarter

Торіс	Resources	AP Calculus Standard
Limits (continued)	Larson/Hostetler Calculus 8 th Ed.	LO 1.1A(a), LO 1.1A(b)
	Chapter One, Chapter Three	LO 1.1B, LO 1.1C, LO 1.1D
		EK 1.1A2. EK 1.1B1.
Continuity	Larson/Hostetler Calculus 8 th Ed.	LO 1.2A, LO 1.2B
	Chapter One	
Differentiablilty	Larson/Hostetler Calculus 8 th Ed.	LO 2.2B, EK 2.2B1, EK 2.2B2
	Chapter Two	
Derivatives	Larson/Hostetler Calculus 8 th Ed.	LO 2.1A, EK 2.1A5
	Chapter Two	EK 2.1B1
Derivative Rules	Larson/Hostetler Calculus 8 th Ed.	LO 2.1C, EK 2.1C4
	Chapter Two	EK 2.1C2, EK 2.1A5
Geometric Applications of Derivatives	Larson/Hostetler Calculus 8 th Ed.	LO 2.1A
	Chapter Two	

3rd Quarter

Торіс	Resources	AP Calculus Standard
Implicit Differentiation	Larson/Hostetler Calculus 8 th Ed.	LO 2.1C, EK 2.1C5
	Chapter Two	LO 2.3B, EK 2.3B1, EK 2.3B2
Higher Order Derivatives	Larson/Hostetler Calculus 8 th Ed.	LO 2.1D
	Chapter Two	
Related Rates	Larson/Hostetler Calculus 8 th Ed.	LO 2.3C, EK 2.3C2
	Chapter Two	
Motion	Throughout Larson/Hostetler Calculus 8 th Ed.	LO 2.3C, EK 2.3C1
	Exercises and Supplemental Materials	
Extreme Values	Larson/Hostetler Calculus 8 th Ed.	LO 2.3C, EK 2.3C3
	Chapter Three	
Using Derivatives to Analyze Graphs	Larson/Hostetler Calculus 8 th Ed.	LO 2.2A, EK 2.2A1
	Chapter Three	
Optimization Problems	Larson/Hostetler Calculus 8 th Ed.	LO 2.3C, EK 2.3C3
	Chapter Three	

4th Quarter

Торіс	Resources	AP Calculus Standard
Antiderivatives	Larson/Hostetler Calculus 8 th Ed.	LO 3.1A, EK 3.1A1, EK 3.1A2,
	Chapters Four and Five	LO 3.3B(a), EK 3.3B3, EK 3.3B5
The Definite Integral Concept	Larson/Hostetler Calculus 8 th Ed.	LO 3.2A(a), EK 3.2A1, EK 3.2A3
	Chapter Four	LO 3.2B, EK 3.2B1, EK 3.2B2,
		LO 3.2C
Evaluate Definite Integrals	Larson/Hostetler Calculus 8 th Ed.	LO 3.3B(b), EK 3.3B2
	Chapter Four	
The Definite Integral	Larson/Hostetler Calculus 8 th Ed.	LO 3.3A, EK 3.3A1, EK 3.3A3
	Chapter Four	
Applications of Integrals	Larson/Hostetler Calculus 8 th Ed.	LO 3.4D, EK 3.4D1
	Chapter Seven	
Final Review	Review Packet	

General Topic	Academic	Essential Knowledge,	Resources & Activities	Assessments	Suggested Time
	Standard(s)	Skills & Vocabulary			
Review		Calculus Library of Functions	Larson/Hostetler Calculus	Teacher	35
		Linear functions	8 th Ed.	prepared tests,	
		Functions as models of change	Chapter P	quizzes, etc.	
		Transformation of functions			
		Solving equations(algebraically and on the calculator)			
Limits	LO 1.1A(a)	Express limits symbolically	Larson/Hostetler Calculus		20
	LO 1.1A(b)	using correct notation.	8 th Ed.		
		Interpret limits expressed	1.2		
		symbolically.			
		Intuitive definition of Limits			
	LO 1.1B	Estimate limits of functions.	Larson/Hostetler Calculus		
	EK 1.1B1	Numerical and graphical	8 th Ed.		
		information can be used	1.2		
		to estimate limits.			
	FK 4 4 4 2				
Limits at a point	EK 1.1AZ	The concept of a limit can	ath ra		
		be extended to include			
		infinity and infinite limits	1.2, 3.3		
		infinity, and infinite limits.			

	EK 1.1C1 EK 1.1C2	functions. Limits of sums, differences, products, quotients, and composite functions can be found using the basic theorems of limits and algebraic rules. The limit of a function may be found by using algebraic manipulation, alternate forms of trigonometric functions, or the squeeze theorem (Sandwich Theorem). Substitution (continuous functions) Intuitive discussion of removable versus non- removable discontinuities Factoring (removable discontinuities)	8 th Ed. 1.3, 1.4		
--	----------------------	--	---------------------------------	--	--

Limits Involving Infinity	LO 1.1D EK 1.1D1	Deduce and interpret behavior of functions using limits Asymptotic and unbounded behavior of functions can be explained and described using limits Asymptotic behavior (horizontal and vertical asymptotes)	Larson/Hostetler Calculus 8 th Ed. 1.5 3.5	
Continuity	LO 1.2A	Analyze functions for intervals of continuity or points of discontinuity. Continuity at a point Continuous Functions Discontinuous functions: Removable discontinuities Jump discontinuities	Larson/Hostetler Calculus 8 th Ed. 1.4	
	LO 1.2B	Determine the applicability of important Calculus theorems using continuity. <i>Continuous functions</i> <i>Intermediate Value Theorem</i>	Larson/Hostetler Calculus 8 th Ed. 1.4	

Derivative Concepts	LO 2.1A	Identify the derivative of a	Larson/Hostetler Calculus	38
	EK 2.1A5	function as the limit of a	8 th Ed.	
	EK 2 1 B1	difference quotient	2 1	
	LK 2.1D1	unterence quotient.	2.1	
		The derivative can be		
		represented graphically		
		numerically, analytically,		
		numerically, analytically, and		
		verbally.		
		The derivative at a point can be		
		antimated from		
		estimated from		
		information given in tables or		
		graphs.		
		Definition of the devivative		
		(difference quotient)		
		Derivative at a point		

Derivative Rules	LO 2.1C	Calculate derivatives. Constant rule Constant multiple rule Sum and difference Power rule Product and quotient rules Proper form of derivatives (factored)	Larson/Hostetler Calculus 8 th Ed. 2.2, 2.3	
Chain rule	EK 2.1C4	The chain rule provides a way to differentiate composite functions Derivatives of composite functions Derivatives using repeated use of the chain rule	Larson/Hostetler Calculus 8 th Ed. 2.4	
Derivatives of Various Functions	EK 2.1C2	Specific rules can be used to calculate derivatives for classes of functions, including polynomial, rational, power, and trigonometric functions.	Larson/Hostetler Calculus 8 th Ed. 2.2, 2.3, 2.4	

Derivatives Geometric Applications	LO 2.1A	Identify the derivative of a function as the limit of a difference quotient. Geometric applications of the derivative and rates of change Average rates of change versus instantaneous rates of change Using the derivative to find information necessary to write the equations of tangent lines and normal lines Using the derivative to calculate points of horizontal tangencies	Throughout Larson/Hostetler Calculus 8 th Ed. Chapter 2 Exercises	
Higher Order Derivatives	LO 2.1D	Determine higher order derivatives. Second and higher order derivatives	Larson/Hostetler Calculus 8 th Ed. 2.3, 2.4	

Differentiability	LO 2.2B EK 2.2B1 EK 2.2B2	Recognize the connection between differentiability and continuity. A continuous function may fail to be differentiable at a point in its domain. If a function is differentiable at a point, then it is continuous at that point. Why the derivative may fail to exist	Larson/Hostetler Calculus 8 th Ed. 2.1	
Numerical Derivatives	EK 2.1A5	The derivative can be represented graphically, numerically, analytically, and verbally. <i>Finding derivatives on the</i> <i>graphing calculator</i>	Supplemental Material	
Implicit Derivatives	LO 2.1C EK 2.1C5	Calculate derivatives. The chain rule is the basis for implicit differentiation. Explicit versus implicit definitions of functions Implicit differentiation process	Larson/Hostetler Calculus 8 th Ed. 2.5	

Derivatives Geometric Applications	LO 2.3B EK 2.3B1 EK 2.3B2	Solve problems involving the slope of the tangent line. The <i>derivative</i> at a point is the slope of the line tangent to a graph at that point on the graph. The tangent line is the graph of a locally linear approximation of the function near the point of tangency. <i>Using implicit differentiation write equations of tangent and normal lines to functions</i> <i>Using implicit differentiation calculate points of horizontal tangencies and equations of vertical asymptotes</i>	Larson/Hostetler Calculus 8 th Ed. 2.5	
Numerical Derivatives	EK 2.1A5	The derivative can be represented graphically, numerically, analytically, and verbally. <i>Finding and evaluating</i> <i>implicit derivatives on the</i> <i>graphing calculator</i>	Supplemental Material	

Related Rates	LO 2.3C EK 2.3C2	Solve problems involving related rates and optimization.	Larson/Hostetler Calculus 8 th Ed. 2.6	
		The derivative can be used to solve related rates problems, that is, finding a rate at which one quantity is changing by relating it to other quantities whose rates of change are known.		
		What are related rates of change		
		Related rate equations		
		Related rate problem strategies		

Motion	LO 2.3C EK 2.3C1	Solve problems involving related rates and optimization and motion. The derivative can be used to solve rectilinear motion problems involving position, speed, velocity, and acceleration. <i>Position, velocity, and</i> <i>acceleration</i>	Throughout Larson/Hostetler Calculus 8 th Ed. Exercises Supplemental Materials		
--------	---------------------	--	--	--	--

Extreme Values	LO 2.3C EK 2.3C3	The derivative can be used to solve optimization problems, that is, finding a maximum or minimum value of a function over a given interval. <i>Absolute (global) extrema</i> <i>Relative (local) extrema</i> <i>Definition of critical value</i>	Larson/Hostetler Calculus 8 th Ed. 3.1, 3.3		25
----------------	---------------------	---	--	--	----

Using derivatives to analyze graphs	LO 2.2A EK 2.2A1	Use derivatives to analyze properties of a function.	Larson/Hostetler Calculus 8 th Ed.	
Using derivatives to analyze graphs	LO 2.2A EK 2.2A1	Use derivatives to analyze properties of a function. First and second derivatives of a function can provide information about the function and its graph including intervals of increase or decrease, local (relative) and global (absolute) extrema, intervals of upward or downward concavity, and points of inflection. The first derivative test Increasing and decreasing (intervals) The second derivative test Concavity and inflection points Curve Sketching	Larson/Hostetler Calculus 8 th Ed. 3.3, 3.4, 3.6	

Optimization Problems	LO 2.3C EK 2.3C3	The derivative can be used to solve optimization problems, that is, finding a maximum or minimum value of a function over a given interval. <i>Writing and optimizing functions</i>	Larson/Hostetler Calculus 8 th Ed. 3.7		
-----------------------	---------------------	---	---	--	--

	EK 3.1A1 EK 3.1A2 LO 3.3B(a) EK 3.3B3 EK 3.3B5	Recognize antiderivatives of basic functions. An antiderivative of a function f is a function g whose derivative is f . Differentiation rules provide the foundation for finding antiderivatives. Calculate Antiderivatives The notation $\int f(x) dx =$ Fx+C means that $F'(x) = f(x)$ and $\int f(x)$ is called an indefinite integral of the function f . Techniques for finding antiderivatives include algebraic manipulation such as long division and completing the square, substitution of variables. Indefinite Integral rules Power rules Trigonometric rules Exponential and logarithmic rules	Rasony Hosterier Calculus 8 th Ed. 4.1, 5.2, 5.3, 5.4, 5.5, 5.7		30
--	--	--	--	--	----

The Definite Integral	LO 3.2A(a)	Interpret the definite	Larson/Hostetler Calculus	5
Concept	EK 3.2A1	Riemann sum.	0 EU. 4.7.4.3	
		Nichiani Sun.	7.2, 7.3	
		A Riemann sum, which		
		requires a partition of an		
		interval <i>I,</i> is the sum of		
		products, each of which is		
		the value of the function at		
		a point in a subinterval		
		multiplied by the length of		
		that subinterval of the		
		The information in a		
		definite integral can be		
		translated into the limit of a		
		related Riemann sum, and		
		the		
		limit of a Riemann sum can		
		be written as a definite		
		integral.		

The Definite Internal	10 2 20	Annuavinanta a definita		· · · · · · · · · · · · · · · · · · ·
The Definite Integral	LU 3.2D	Approximate a definite		
Concept (continued)	EK 3.2B1	integral.		
	EK 3.2B2			
	LO 3.2C	Definite integrals can be		
		approximated for functions		
		that are represented		
		graphically, numerically,		
		algebraically, and verbally.		
		Definite integrals can be		
		annrovimated using a left		
		Biomann cum a right Biomann		
		Kielilailli Sulli, a fight Kielilailli		
		sum, a midpoint Riemann		
		sum, or a trapezoidal sum;		
		approximations can be		
		computed		
		using either uniform or non-		
		uniform partitions.		
		Calculato a dofinito intogral		
		Calculate a definite integral		
		using areas and properties		
		of definite integrals.		

Evaluate Definite Integrals	LO 3.3B(b) EK 3.3B2	Evaluate definite integrals.		
		If f is continuous on the interval [a, b] and F is an antiderivative of f. then $\int_{a}^{b} f(x)dx = F(b) - F(a)$. Evaluation by hand and on the calculator Properties of definite integrals		

The Definite Integral	LO 3.3A EK 3.3A1 EK 3.3A3	Graphical, numerical, analytical, and verbal representations of a function f provide information about the function g defined as $g(x) = \int_{a}^{x} f(t) dt$. The Fundamental Theorem of Calculus FTC 1 FTC 2	Larson/Hostetler Calculus 8 th Ed. 4.3, 4.4	12

Applications of Integrals	LO 3.4D EK 3.4D1	Apply definite integrals to problems involving area. Areas of certain regions in the plane can be calculated with definite integrals. Area (with respect to either axis) Area Between a curve and an axis Area Between two curves		5
Final Review		Review Packet		10

Common Core 7th Grade Accelerated

Curriculum Guide

Scranton School District

Scranton, PA

Common Core 7th Grade Accelerated

Prerequisite :

Students must pass the required placement exam with a grade of 85% or higher and must meet 4 out of the 5 following criteria:

- A grade of 90% or higher in Grade 6 Mathematics
- Teacher recommendation from the 6th grade mathematics teacher
- Students must maintain an average or 90% or above by the end of the 1st quarter to remain in the class
- Students must perform in the top 1/3 of the proficient or advanced scores on the sixth grade PSSA test
- Parent's consent

Intended Audience: This course is designed for the student who has successfully completed grade 6 with 4 out of the 5 criteria listed above, by the end of the 6th grade.

This course differs from the Common Core Math 7 course in that it contains some content from 8th grade. While coherence is retained, in that it logically builds from the 6th Grade, the additional content when compared to the non-accelerated course demands a faster pace for instruction and learning. The Mathematical Practice Standards apply throughout each course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations. The critical areas are as follows:

- Students develop a unified understanding of number, recognizing fractions, decimals, and percents as different representations of rational numbers.
- Students extend addition, subtraction, multiplication and division to all rational numbers, and view negative numbers in terms of everyday contexts. Students explain and interpret the rules of for adding, subtracting, multiplying and dividing with negative numbers. They extend their mastery of the properties of operations to develop an understanding of integer exponents, and to work with numbers written in scientific notation.

- Students use linear equations and systems of linear equations to represent, analyze, and solve a variety of problems. Students strategically choose and efficiently implement procedures to solve linear equations in one variable.
- Students build on their previous work differences between populations, solving problems involving area and circumference of a circle and surface area of three-dimensional objects. They solve real-world and mathematical problems involving area, surface area, and volumes of two- and three- dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. Students use ideas about distance and angles, how they behave under translations, rotations, reflections and dilations, and ideas about congruence and similarity to describe and analyze two-dimensional figures and to solve problems. Students show that the sum of the angles in a triangle is the angle formed by a straight line and complete their work on volume by solving problems involving cones, cylinders, and spheres.

After successfully completing the course, students will be allowed to enroll in Algebra I Accelerated K/CC or Common Core 8P Concepts of Algebra.

Subject: Common Core 7 th Grade Accelerated	Grade Level 7	Date Completed:10/24/14

1st Quarter

Торіс	Resources	CCSS
The rational number operations, absolute value, properties of zero, real-world application, the distributive property,	Big Ideas Red Accelerated Chapter 1 and 2	7.NS.1, 1a,1b,1c,1d,2,2a,2b,2c
Combining algebraic like terms, using distributive property, writing expressions	Big Ideas Red Accelerated Chapter 3	7. EE. 1, 2, 3, 4a, 4b
Using real-world multi-step problems involving rational numbers	Big Ideas Red Accelerated Chapter 2	7 EE.3
Converting between decimals, fractions, with rational numbers	Big Ideas Red Accelerated Chapter 2	7 NS.2
Writing expressions and equations to solve real-world problems	Big Ideas Red Accelerated Chapter 3	7 EE.2; 7EE.3, 7 EE.4

2nd Quarter

Торіс	Resources	CCSS
Compute unit rates with ratios of fractions	Big Ideas Red Accelerated Chapter 5	7 RP.1, 1a, 1b,1c, 1d
Decide whether two quantities are proportional	Big Ideas Red Accelerated Chapter 5	7 RP.2
Identify the constant of proportionality ; represent proportional relationships with equations; Explain what a point (x,y) on the graph of a proportional relationship	Big Ideas Red Accelerated Chapter 5	7RP.2
Constructions of triangles, angles. Identifying cross sections of three-dimensional figures. Scale drawings, reproducing a scale	Big Ideas Red Accelerated Chapter 7	7.G.1, 2, 3, 4, 5, 6
Using circumference and area in a circle.	Big Ideas Red Accelerated Chapter 8	7.G.4
Real-life problems involving volume and surface area	Big Ideas Red Accelerated Chapter 9	7.G.4, 6
Using equations to solve for angles in a polygon	Big Ideas Red Accelerated Chapter 7	7.G.5

3rd Quarter

Торіс	Resources	CCSS
Statistics and probability, making inferences, predictions from a	Big Ideas Red Accelerated Chapter 10	7.SP.1, 2, 3, 4, 5, 6, 7a, 7b,
sample, using measures of central tendency		8a,8b 8c
Tree diagrams, frequency tables, t-tables,	Big Ideas Red Accelerated Chapter 10	7.SP.8
Finding the probability of an event, compound events	Big Ideas Red Accelerated Chapter 10	7.SP.7, 8
Verify properties of translations; rotations; reflections; Angles, Lin e segments, Parallel lines	Big Ideas Red Accelerated Chapter 11	8.G.1, 1a,1b,1c
Understand that a 2-D is congruent/similar to another if the second can be obtained from the first	Big Ideas Red Accelerated Chapter 11	8. G.2,4,
Graphing proportional relationships	Big Ideas Red Accelerated Chapter 5	8.EE.5
Use similar triangles to explain slope: derive y = mx + b	Big Ideas Red Accelerated Chapter 13	8.EE.6

4th Quarter

Торіс	Resources	CCSS
Describe the effect of dilations, translations, rotations and	Big Ideas Red Accelerated Chapter 11	8.G.3
reflections on 2-D figures using coordinates		
Establish facts about the angle sum and exterior angle of triangles	Big Ideas Red Accelerated Chapter 12	8.G.5
Know the formulas for volumes of cones, cylinders and spheres	Big Ideas Red Accelerated Chapter 15	8.G.9
Irrational Numbers; Compare irrational numbers	Big Ideas Red Accelerated Chapter 14	8. NS. 1, 2
Integers Exponents; Scientific Notation	Big Ideas Red Accelerated Chapter 16	8. EE. 1,2,3,4
Solve Linear equations with one variable	Big Ideas Red Accelerated Topic 1 and Topic 2 (Additional Topics in Back of Book)	8.EE. 7

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time*
The Number System	7.NS			Teacher prepared tests, quizzes, etc. Series available assessments online. <u>www.bigideasmath.com</u> Red Accelerated (OPTIONAL)	
Rational Addition/ Subtraction	7.NS.1	 Add and subtract rational number horizontal and vertical number line 	Big Ideas Red Accelerated Chapter 1.1		4 days
Absolute Value	7.NS.1a	 Absolute Value Opposites Describe situations in which opposite quantities combine to make 0. 	Big Ideas Red Accelerated Chapter 1.1, 1.2, 2.2		3 days

* When Common Core becomes fully implemented, the suggested timeline should be adjusted accordingly.
| Absolute Value | 7.NS.1b | Additive Inverse Apply real world
context to
opposites and
absolute value. | Crosswalk Coach Lesson 7
Big Ideas Red Accelerated
Chapter 1.1, 1.2, 2.2 | 4 days |
|-----------------------|----------|--|--|--------|
| Real-life Application | 7.NS .1c | Apply absolute value real-world context | Crosswalk Coach Lesson 7
Big Ideas Red Accelerated
Chapter 1.1, 1.3, 2.3 | 4 days |
| Rational Operations | 7.NS.1d | Apply properties
of operations
strategies add and subtract
rational numbers | Crosswalk Coach Lesson 7
Big Ideas Red Accelerated
Chapter 1.1, 1.2, 1.3, 2.2, 2.3 | 3 days |
| Reciprocals | 7.NS.2 | Rational Number Reciprocal Apply and extend
previous
understanding of
x/y fractions and
rational numbers | Crosswalk Coach Lesson 5 | 3 days |
| Distributive property | 7.NS.2a | Applying (-1)(-1)=1 In the real world Distributive property | Crosswalk Coach Lesson 8
Big Ideas Red Accelerated
Chapter 1.4, 2.4 | 4 days |

Division of Rational Numbers	7.NS.2b 7.NS.2c	 Divisor Dividend properties of zero non-zero divisor 	Big Ideas Red Accelerated Chapter 1.4, 1.5, 2.1, 2.4	:	3 days
Types of decimals	7.NS.2d	 Terminating decimal repeating decimal 	Big Ideas Red Accelerated Chapter 2.1	· · · · · · · · · · · · · · · · · · ·	4 days
Real-life Application	7.NS.3	 Solve real world mathematical problems involving the four operations and rational numbers 	Crosswalk Coach Lesson 4 Triumph Learning CC Lesson 6,7,8 Big Ideas Red Accelerated Chapter 1.4, 1.5, 2.2, 2.3, 2.4		5 days
Expressions	7.EE.1	 Coefficient like/unlike terms Apply operations as strategies to add, subtract expressions 	Crosswalk Coach Lesson 14,15 Triumph Learning CC Lesson 13 Big Ideas Red Accelerated Chapter 3.1, 3.2, Ext 3.2		6 days
Writing Expressions	7.EE.2	 A + 0.05A = 1.05A means increase by 5% or multiply by 1.05 Rewrite an expression 	Crosswalk Coach Lesson 13, 16 Big Ideas Red Accelerated Chapter 3.1, 3.2	,	4 days
Real-life application	7.EE.3	 Terminating decimal repeating decimal 	Crosswalk Coach Lesson 17 Triumph Learning CC Lesson 15		3 days

Equations	7.EE.4	Use equations to solve problems	Crosswalk Coach Lesson 17 Triumph Learning CC Lesson 16	6 days
Coefficients	7.EE.4a	 Coefficient like/unlike terms Compare algebraic solutions to mathematical solutions 	Crosswalk Coach Lesson 17 Big Ideas Red Accelerated Chapter 3.3, 3.4, 3.5	6 days
Inequalities	7.EE.4b	Compare inequalities to mathematical solutions	Crosswalk Coach Lesson 18 Big Ideas Red Accelerated Chapter 4.1, 4.2, 4.3, 4.4	6 days
Unit rates	7.RP.1	• Compute unit rates associated with ratios of fractions	Big Ideas Red Accelerated Chapter 5.1	4 days
Proportions	7.RP.2a	• Describe whether two equal quantities are in a proportional relationship	Crosswalk Coach Lesson 17 Triumph Learning CC Lesson 16	2 days

Unit rate	7.RP.2b	 Unit rate Constant of proportionality 	Crosswalk Coach Lesson 17 Big Ideas Red Accelerated Chapter 3.3, 3.4, 3.5	2 d	lays
Cross Products	7.RP.2c	 Represent proportional relationships by equations Cross products 	Crosswalk Lesson 18 Big Ideas Red Accelerated Chapter 4.1, 4.2, 4.3, 4.4	2 d	lays
Graphing proportional relationships	7.RP.2d	 Explain what a point (x, y) on the graph of a proportional relationship means 	Crosswalk Coach- lesson 12 Common Core Coach –Lesson 3 Big Ideas Red Accelerated Chapter Ext 5.2, Ext 5.6	4 d	lays
Scale drawings	7.G.1	 Scale drawings reproducing a scale 	Crosswalk Coach Lesson 20 Triumph Learning CC Coach Lesson 18 Big Ideas Red Accelerated Chapter 7.5	3 d	lays
Constructions of triangles	7.G.2, 7.G.1.13	 Identify describe the properties of all types of triangles based on angle and side measures 	Crosswalk Coach Lesson 21 Triumph Learning CC Lesson 19 Big Ideas Red Accelerated Chapter 7	2 d	lays
Triangle Inequality	7.G.1.13	 Use and apply the triangle inequality theorem 	Big Ideas Red Accelerated Chapter 7.5	2 d	lays

Equations for angles Circles	7.G.5 7.G.4	 Supplementary Complementary Vertical Adjacent Area of a circle circumference 	Crosswalk Coach Lesson 24 Triumph Learning CC Lesson 22 Big Ideas Red Accelerated Chapter 7.1, 7.2, Ext 7.3 Crosswalk Coach Lesson 23 Triumph Learning CC Lesson 21 Big Ideas Red Accelerated Chapter 8.1, 8.2, 8.3, 9.3	6 days 4 days
Real-world problems	7.G.6	 Area of composite figures surface area of 3-d figures: rectangular prisms, triangular prisms, pyramids, and cylinders 	Crosswalk Coach Lesson 25,26,27 Triumph Learning CC Lesson 23,24 Big Ideas Red Accelerated Chapter 8.4, 9.1, 9.2, 9.4, 9.5	9 days
Cross Sections	7.G.3	 Describe the 2-d figures that result from slicing 3-d right rect. prisms and pyramids 	Crosswalk Coach Lesson 22 Triumph Learning CC Lesson 20 Big Ideas Red Accelerated Chapter Ext 9.5	3 days
Statistics/Probability	7.SP			
Sample Sizes	7.SP.1	 Population sample representative sample size, population biased vs. unbiased samples generating multiple samples 	Crosswalk Coach Lesson 30 Triumph Learning CC Lesson 25 Big Ideas Red Accelerated Chapter 10.6	2 days

Prediction based on a sample	7.SP.2, 7.SP.3.2	 Find the probability of a simple event probability of a simple event not occurring probability of not rolling a 1 on a number cube 	Crosswalk Coach Lesson 30, 35 Triumph Learning CC Lesson 27 Big Ideas Red Accelerated Chapter 10.6, Ext 10.6	1 day	
Measures of central tendency	7.SP.4	Variability of datadraw inferences	Crosswalk Coach Lesson 31,32,34,35 Triumph Learning CC Lesson 27	2 days	
Variability	7.SP.3	 Absolute deviation dot plot 	Crosswalk Coach Lesson 33,35 Triumph Learning CC Lesson 27 Big Ideas Red Accelerated Chapter 10.7	2 days	
Probability	7.SP.5	 Unlikely event Probability is a number between 0 and 1 	Crosswalk Coach Lesson 28, Triumph Learning CC Lesson 28 Big Ideas Red Accelerated Chapter 10.1, 10.2, 10.3	2 days	
Frequency of an event	7.SP.6	 Rolling a number cube Frequency of an event Collecting data 	Crosswalk Coach Lesson 28 Triumph Learning CC Lesson 9 Big Ideas Red Accelerated Chapter 10.3	2 days	

Develop a model	7.SP.7	 Develop a model thru events observed occurrences 		
Probability	7.SP.7a	 Develop a uniform probability assigning = probability to all outcomes 	Crosswalk Coach Lesson 28 Triumph Learning CC Lesson 30 Big Ideas Red Accelerated Chapter 10.2, 10.3	2 days
Probability model	7.SP.7b	 Develop a probability model by observing 	Crosswalk Coach Lesson 28 Big Ideas Red Accelerated Chapter 10.3	2 days
Probability of compound events	7.SP	 Tables tree diagram Find the Probability of compound events 		
Probability	7.SP.8a	 Find the probability of a compound event 	Crosswalk Coach Lesson 29 Triumph Learning CC Lesson 30 Big Ideas Red Accelerated Chapter 10.4, 10.5	2 days
Sample spaces	7.SP.8b	 Sample spaces compound events 	Crosswalk Coach Lesson 29 Big Ideas Red Accelerated Chapter 10.4, 10.5	3 days

Design a simulation	7.SP.8c	 Design a simulation generate frequencies for compound events 	Crosswalk Coach Lesson 29 Triumph Learning CC Lesson 30 Big Ideas Red Accelerated Chapter Ext 10.5	1 day
Experimental Rotations	8.G.1a	 Rotations Reflections Translations	Big Ideas Red Accelerated Chapter 11.2, 11.3, 11.4	3 days
Angles	8.G.1b	 Angles are taken to angles of the same measure 	Big Ideas Red Accelerated Chapter 11.2, 11.3, 11.4	2 days
Angles	8.G.1c, 7.G.1.13	 Identify and use properties of angles formed when two parallel lines are cut by a transversal alternate interior, alternate exterior, vertical, corresponding 	Big Ideas Red Accelerated Chapter 11.2, 11.3, 11.4	2 days
Congruence	8.G.2	 Congruence Describe a sequence that exhibits the congruence between them 	Big Ideas Red Accelerated Chapter 11.1, 11.2, 11.3, 11.4	2 days

Dilations, translations, rotations and reflections	8.G.3	•	Describe the effect of dilations, translations, rotations, and reflections on 2-D figures using the coordinate plane.	Big Ideas Red Accelerated Chapter 11.2, 11.3, 11.4, 11.7	2 days
Similarity	8.G.4	•	Understand that a 2-d figure is similar to another Describe a sequence that exhibits the similarity	Big Ideas Red Accelerated Chapter 11.5, 11.6, 11.7	4 days
Angles formed by Parallel Lines	8.G.5	•	Use informal arguments to establish facts about the angle sum and exterior angle of triangles And angles created when parallel lines are cut by a transversal.	Big Ideas Red Accelerated Chapter 12.1, 12.2, 12.3, 12.4	5 days

Graph proportional relationships	8.EE.5	 Unit rate Slope of a graph and proportional relationships compare proportional relationships in different ways 	Big Ideas Red Accelerated Chapter 13.1, 13.3	2 days
Slope of a linear equation	8.EE.6	 Y = mx + b Use similar triangles explain why slope m is the same between two points a non-vertical line 	Big Ideas Red Accelerated Chapter 13.2, Ext13.2, 13.3, 13.4, 13.5, 13.6, 13.7	4 days
Solve linear equations	8.EE.7	 Solve linear equations in one variable 	Extension Topic 1 and Topic 2	2 days
Square Root and Cube root equations	8.EE.2	 Square root cube root Use square root and cube roots symbols to represent solutions to equations x² = p 	Big Ideas Red Accelerated Chapter 14.1, 14.2, 14.3	3 days

Pythagorean Theorem	8.G.7, 8.G.8	 Apply the Pythagorean Theorem Determine unknown side lengths in a right triangles in the real-world Apply the Pythagorean Theorem to find the distance between two points in a coordinate system 	Big Ideas Red Accelerated Chapter 14.3, 14.5	2 days
Irrational Numbers	8NS.1	 Rational Irrational Repeating Terminating 	Big Ideas Red Accelerated Chapter 14.4, Ext 14.4	2 days
Square Roots	8NS.2	 Finding a decimal approximation for an irrational number Square roots 	Big Ideas Red Accelerated Chapter Ext 14.4	2 days
Volume of figures	8.G.9	 volume of cones cylinders spheres solve real-world and math 	Big Ideas Red Accelerated Chapter 15.1, 15.2, 15.3, 15.4	5 days
Rules of Exponents	8.EE.1	 Negative Exponents 	Big Ideas Red Accelerated Chapter 16.4	1 day

Scientific Notation	8.EE.3	 Scientific Notation numbers numbers expressed in the form of a single digit times an integer power of 10 estimate a very large or small quantities 	er 16.5, 16.6, 16.7	3 days
Scientific notation	8.EE.4	Perform Big Ide operations with Chapt scientific notation	er 16.5, 16.6, 16.7	2 days

Common Core Math 7 P

Curriculum Guide

Scranton School District

Scranton, PA

Common Core Math 7P

Prerequisite :

Students must meet 2 out of 3 criteria and pass Grade 6 Mathematics

- A grade of 80 or higher in a sixth grade mathematics course
- Teacher recommendation from the 6th grade math teacher
- Students must perform proficient on the sixth grade PSSA

Intended Audience: This course is designed for the student who has successfully completed Math 6 by the end of the sixth grade.

This course differs from the Common Core Math 7 course in that it contains some content from the 8th Grade Pennsylvania Core Standards for Mathematics. While coherence is retained, in that this course logically builds from the 6th Grade mathematics course, the depth, breadth, and pace of this course is accelerated when compared to the Common Core Math 7 course. The Mathematical Practice Standards apply throughout this course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations. The critical areas are as follows:

- Students develop an understanding of number, recognizing fractions, decimals and percents as different representations of rational numbers. Students extend addition, subtraction, multiplication, and division to all rational numbers. Students explain and interpret the rules for adding, subtracting, multiplying, and dividing with negative numbers. They extend their mastery of the properties of operations to develop an understanding of integer exponents, and to work with numbers written in scientific notation.
- Students use linear equations and efficiently implement procedures to solve linear equations in one variable.
- Students solve problems involving the area and circumference of a circle and surface area of three-dimensional objects and solve real-world and mathematical problems involving area. Students use ideas about distance and angles, how they behave under translations, rotations, reflections, and ideas about congruence and similarity to describe and analyze two-dimensional figures and to solve problems.
- Students show that the sum of the angles in a triangle is the angle formed by a straight line and complete their work on volume by solving problems involving cones, cylinders, and spheres.

After successfully completing the course, students will be allowed to enroll in Common Core 8P Concepts of Algebra.

Year-at-a-glance

Subject:Common Core Math 7P	Grade Level 7	Data Completed:10/28/14
Subject. Common Core Math 7P	Glade Level /	Date Completed.10/20/14

1st Quarter

Торіс	Resources	CCSS
The rational number operations, absolute value, properties of zero, real-world application, the distributive property,	Big Ideas Red Chapter 1 and 2	7.NS.1, 1a,1b,1c,1d,2,2a,2b,2c
Combining algebraic like terms, using distributive property, writing expressions	Big Ideas Red Chapter 3	7. EE. 1, 2, 3, 4a, 4b
Using real-world multi-step problems involving rational numbers	Big Ideas Red Chapter 2	7 EE.3
Converting between decimals, fractions, with rational numbers	Big Ideas Red Chapter 2	7. NS.2
Writing expressions and equations to solve real-world problems	Big Ideas Red Chapter 3 and 4	7 EE.2; 7EE.3, 7 EE.4

2nd Quarter

Торіс	Resources	CCSS
Compute unit rates with ratios of fractions	Big Ideas Red Chapter 5	7 RP.1, 1a, 1b,1c, 1d
Decide whether two quantities are proportional	Big Ideas Red Chapter 5	
Identify the constant of proportionality ; represent proportional relationships with equations; Explain what a point (x,y) on the graph of a proportional relationship	Big Ideas Red Chapter 5	7 RP.2
Constructions of triangles, angles. Identifying cross sections of three-dimensional figures. Scale drawings, reproducing a scale	Big Ideas Red Chapter 7	7.G.1, 2, 3, 4, 5, 6
Using circumference and area in a circle.	Big Ideas Red Chapter 8	7.G.4
Real-life problems involving volume and surface area	Big Ideas Red Chapter 9	7.G.4,6
Using equations to solve for angles in a polygon	Big Ideas Red Chapter 7	7.G.5

3rd Quarter

Торіс	Resources	CCSS
Statistics and probability, making inferences, predictions from a sample, using measures of central tendency	Big Ideas Red Chapter 10	7.SP.1, 2, 3, 4, 5, 6, 7a, 7b, 8a,8b 8c
Tree diagrams, frequency tables, t-tables, Finding the probability of an event	Big Ideas Red Chapter 10	7.SP.8
Solve Linear equations with one variable	Big Ideas Red Accelerated Topic 1 and Topic 2 (Additional Topics in Back of Book)	8.EE. 7
Graphing proportional relationships	Big Ideas Red Accelerated Chapter 13	8.EE.5

4th Quarter

Торіс	Resources	CCSS
Integers Exponents; Scientific Notation	Big Ideas Red Accelerated Chapter 16	8. EE. 1,2,3,4
Irrational numbers; Comparing irrational numbers	Big Ideas Red Accelerated Chapter 14	8.NS. 1,2
Verify properties of translations, rotations and reflections; Angles Line segments, parallel lines	Big Ideas Red Accelerated Chapter 11	8.G.1, 1a,1b,1c
Understand that a 2-D is congruent/similar to another if the second can be obtained from the first	Big Ideas Red Accelerated Chapter 11	8. G.2,4,
Establish facts about the angle sum and exterior angle of triangles	Big Ideas Red Accelerated Chapter 12	8.G.5
Know the formulas for volumes of cones, cylinders and spheres	Big Ideas Red Accelerated Chapter 15	8.G.9

General Topic	Academic Standard(s)	Essential Knowledge,	Resources & Activities	Assessments	Suggested
The number system	7.NS	Skills & Vocabulary		Teacher prepared tests, quizzes, etc. Series available assessments online. www.bigideasmath. com (RED) (OPTIONAL)	
Add and subtract rational numbers	7.NS.1	 Integer Number Line Add and subtract rational number on a horizontal and vertical number line 	Big Ideas Red Chapter 1: 1.2,1.3 Big Ideas Red Chapter 2: 2.1,2.2,2.3		4 days
Opposite quantities make 0.	7.NS.1a	 Absolute Value Opposites opposite quantities combine to make 0. 	Big Ideas Red Chapter 1: 1.2,1.3		2 days

* When Common Core becomes fully implemented, the suggested timeline should be adjusted accordingly.

Additive Inverse	7.NS.1b	 Additive Inverse Apply real world context to opposites and absolute value 	Big Ideas Red Chapter 1: 1.1,1.2 Big Ideas Red Chapter 2: 2.2 Crosswalk Coach Lesson 7	2 days	
Absolute value	7.NS .1c	Apply absolute value to real-world context	Big Ideas Red Chapter 1: 1.1,1.3, Big Ideas Red Chapter 2: 2.3 Crosswalk Coach Lesson 7	2 days	
Add and subtract rational numbers	7.NS.1d	• Apply properties of operations as strategies to add and subtract rational numbers	Crosswalk Coach Lesson 7 Big Ideas Red Chapter 1: 1.1,1.2,1.3 Big Ideas Red Chapter 2: 2.2, 2.3	3 days	
Rational Number Reciprocal	7.NS.2	 Rational Number Reciprocal Apply and extend previous understanding of x/y fractions and rationals 	Crosswalk Coach Lesson 5	2 days	
Distributive property	7.NS.2a	 Distributive property Applying (-1)(-1)=1 In the real world 	Crosswalk Coach Lesson 8 Big Ideas Red Chapter 1: 1.1,1.4 Big Ideas Red Chapter 2: 2.4	3 days	

Division of integers Rational Numbers	7.NS.2b 7.NS.2c	 Divisor, dividend, properties of zero Understand that integers can be divided (with non-zero divisor)and the result is a rational number 	Big Ideas Red Chapter 1: 1.1,1.4,1.5 Big Ideas Red Chapter 2: 2.1,2.4	2 days
Terminating decimal Repeating decimal	7.NS.2d	 Terminating decimal repeating decimal Convert a rational number to a decimal using long division 	Big Ideas Red Chapter 1: 1.1 Big Ideas Red Chapter 2: 2.1	2 day
Real world mathematical problems involving the four operations	7.NS.3	 Solve real world and mathematical problems involving the four operations and rational numbers 	Crosswalk Coach Lesson 4 Triumph Learning CC Lesson 6,7,8 Big Ideas Red Chapter 1: 1.1,1.2,1.3,1.4,1.5 Big Ideas Red Chapter 2: 2.2,2.3,2.4	4 days
Add, and subtract expressions	7.EE.1	 Coefficient, like/unlike terms Apply operations as strategies to add, subtract expressions 	Crosswalk Coach Lesson 14,15 Big Ideas Red Chapter 3: 3.1,3.2,Ext 3.2 Triumph Learning CC Lesson 13	7 days
Rewriting an expression	7.EE.2	 A + 0.05A = 1.05A means increase by 5% or multiply by 1.05 Rewriting an expression can help understand the quantity 	Crosswalk Coach 13, 16 Big Ideas Red Chapter 3: 3.1,3.2	3 days

Equations	7.EE.4	Use equations to solve problems	Crosswalk Coach Lesson 17 Triumph Learning CC Lesson 16	6 days
Algebraic solutions	7.EE.4a	 Use formulas Compare algebraic solutions to mathematical solutions 	Big Ideas Red Chapter 3: 3.3,3.4,3.5 Crosswalk Coach Lesson 17	5 days
Inequalities	7.EE.4b	 Use formulas involving inequalities Compare inequalities to mathematical solutions 	Crosswalk Coach Lesson 18 Big Ideas Red Chapter 4: 4.1,4.2,4.3,4.4	6 days
Linear Equations	8.EE.7	Solve linear equations in one variable	Big Ideas Red Accelerated: Topic 1 & 2 in back of book	8 days
Ratios and Proportions	7 RP			
Unit rates	7.RP.1	Compute unit rates associated with ratios of fractions	Big Ideas Red Chapter 5: 5.1	4 day
Two quantities are in a proportional relationship	7.RP.2a	 Decide whether two quantities are in a proportional relationship 	Big Ideas Red Chapter 5: 5.2,Ext 5.2, 5.6 Crosswalk Coach Lesson 12	3 days

The constant of proportionality (unit rate)	7.RP.2b	 Identify the constant of proportionality (unit rate) 	Big Ideas Red Chapter 5: 5.2,5.4,5.5,5.6 Crosswalk Coach- Lesson 12 Triumph Learning CC Lesson 3	3 da	ays
Proportional relationships with equations	7.RP.2c	Represent proportional relationships by equations	Big Ideas Red Chapter 5: 5.3,5.4,5.6 Crosswalk Coach- Lesson 12 Triumph Learning CC – Lesson 3	3 d:	ays
Point (x,y) on the graph of a proportional relationship	7.RP.2d	• Explain what a point (x,y) on the graph of a proportional relationship means	Crosswalk Coach- Lesson 12 Triumph Learning CC – Lesson 3 Big Ideas Red Chapter 5: Ext 5.2,5.6	4 da	ays
Multi-step real-life problem with rationals	7.EE.3	 Multi-step real-life problem solving with rational numbers 	Crosswalk Coach Lesson 17 Common Core Coach Lesson 15 Big Ideas Red Chapter 6: 6.1,6.2,6.4	7 da	ays
Graph and compare proportional relationships	8.EE.5	 Unit rate; slope Graph proportional relationships; compare proportional relationships 	Big Ideas Red Extension 5.2 Big Ideas Red Accelerated: Chapter 13: 13.1,13.3	3 di	ays

Geometry	7.G			
Scale drawings	7.G.1	Scale drawingsReproducing a scale	Big Ideas Red Chapter 7: 7.5 Crosswalk Coach Lesson 20 Triumph Learning CC Lesson 18	4 days
Constructions of triangles	7.G.2	Constructions of triangles	Big Ideas Red Chapter 7: 7.3,7.4 Crosswalk Coach Lesson 21 Triumph Learning CC Lesson 19	2 days
Triangle Inequality	7.G.1	 Use and apply the triangle inequality theorem 	Big Ideas Red Chapter 7: 7.3	2 days
2-d figures 3-d Figures	7.G.3	 Describe the 2-d figures that result from slicing 3-d right rectangular prisms and pyramids 	Crosswalk Coach Lesson 22 Triumph Learning CC Lesson 20 Big Ideas Red Chapter 9: Ext 9.5	4 days
Area and Circumference	7.G.4	• Formulas of area and circumference	Big Ideas Red Chapter 8: 8.1,8.2,8.3 Big Ideas Red Chapter 9: 9.3 Crosswalk Coach Lesson 23 Triumph Learning CC Lesson 21	4 days

Use equations to solve for angles	7.G.5	 Supplementary Complementary vertical adjacent 	Big Ideas Red Chapter 7: 7.1,7.2, Extension 7.3 Crosswalk Coach Lesson 24 Triumph Learning CC Lesson 22	6 days	
Area, Volume and Surface area	7.G.6	 Two and three dimensional figures Triangles, quadrilaterals, polygons, cubes, right prisms 	Big Ideas Red Chapter 8: 8.4 Big Ideas Red Chapter 9: 9.1,9.2,9.4,9.5 Crosswalk Coach Lesson 25,26,27 Triumph Learning CC Lesson 23,24	10 days	
Statistics/Probability	7 SP				
Sampling and valid inferences	7.SP.1	 Population, sample, representative Random sampling and valid inferences 	Crosswalk Coach Lesson 30 Big Ideas Red Chapter 10:10.6 Common Core Coach L.25	2 days	
Prediction based on a sample	7.SP.2	Making a prediction based on a sample	Crosswalk Coach Lesson 30,34 Triumph Learning CC Lesson 27 Chapter 10: 10.6, Ext 10.6	2 day	
Measures of central tendency	7.SP.4	 Variability of data Draw inferences Using measures of central tendency 	Crosswalk Coach Lesson 31,32,34,35 Triumph Learning CC Lesson 27 Big Ideas Red Chapter 10: 10.7	2 days	

Probability of an Event	7.SP.3.2	• Find the probability of simple events, including the probability of an event not occurring	Crosswalk Coach Lesson 30,34 Triumph Learning CC Lesson 27 Big Ideas Red Chapter 10: 10.1,	3 days
Multiple measures of variability	7.SP.3	 Absolute deviation, dot plot Multiple measures of variability in comparing two sets of data 	Crosswalk Coach Lesson 33,35 Triumph Learning CC Lesson 27 Big Ideas Red Chapter 10: 10.7	2 days
Probability	7.SP.5	 Unlikely event, Probability is a number between 0 and 1 	Big Ideas Red Chapter 10: 10.1,10.2,10.3 Crosswalk Coach Lesson 28, Triumph Learning CC Lesson Lesson 28	2 days
Frequency of an event	7.SP.6	 Rolling a number cube Frequency of an event through collecting data 	Big Ideas Red Chapter 10: 10.3 Crosswalk Coach Lesson 28 Triumph Learning CC Lesson 29	2 days
Develop a model thru events vs observed occurrences	7.SP.7			
Uniform probability	7.SP.7a	 Develop a uniform probability by assigning =probability to all outcomes 	Triumph Learning CC Lesson 30 Crosswalk Coach Lesson 28 Big Ideas Red Chapter 10: 10.2,10.3	2 days

Probability model by observing	7.SP.7b	Develop a probability model by observing	Crosswalk Coach Lesson 28 Big Ideas Red Chapter 10: 10.3	2 days
Probability of a compound event	7.SP.8a	 Find the probability of a compound event 	Crosswalk Coach Lesson 29 Triumph Learning CC Lesson Lesson 30 Big Ideas Red Chapter 10: 10.4,10.5	2 days
Sample spaces for compound events	7.SP.8b	Sample spaces for compound events	Crosswalk Coach Lesson 29 Big Ideas Red Chapter 10: 10.4,10.5	3 days
Simulation to generate frequencies	7.SP.8c	 Design a simulation to generate frequencies for compound events 	Big Ideas Red Chapter 10: 10.5 Crosswalk Coach Lesson 29 Triumph Learning CC Lesson 30	1 day
Irrational Numbers	8NS.1	 Rational; Irrational; Repeating; Terminating Know that numbers that are not rational are irrational. Every number has a decimal form. 	Big Ideas Red Chapter 2: 2.1 Big Ideas Red Accelerated: Chapter 14: 14.4	*-Extra standard for 7P 2 day
Rational approx. of irrational numbers	8NS.2	 Finding a decimal approx. for a irrational number; Square roots Rational approx. of irrational numbers to compare irrational numbers. 	Big Ideas Red Accelerated:: Chapter 14: 14.4	*-Extra standard for 7P 1 days

Rules of Exponents	8.EE.1	 Negative Exponents Rules of Exponents 	Big Ideas Red Accelerated: Chapter 16: 16.4	*-Extra standard for 7P 2 day
Use square root and cube roots	8.EE.2	 Square root; cube root Use square root and cube roots symbols to represent solutions to equations of the form x² = p 	Big Ideas Red Accelerated: Chapter 14: 14.1,14,2	*-Extra standard for 7P 2 days
Scientific Notation	8.EE.3	 Scientific Notation Use numbers expressed in the form of a single digit times an integer power of 10 to estimate a very large or small quantities 	Big Ideas Red Accelerated: Chapter 16: 16.5,16.6,16.7	*-Extra standard for 7P 1.5 days
Operations with scientific notation	8.EE.4	Perform operations with scientific notation	Big Ideas Red Accelerated: Chapter 16: 16.5,16.6,16.7	*-Extra standard for 7P 1.5 days

Rotations, reflections and translations	8.G.1a	 Rotations Reflections Translations Verify experimentally the properties of rotations, reflections and translations 	Big Ideas Red Accelerated: Chapter 11: 11.2, 11.3,11.4	*-Extra standard for 7P 2 days
Angles	8.G.1b	 Angles are taken to angles of the same measure 	Big Ideas Red Accelerated: Chapter 11: 11.2, 11.3,11.4	*-Extra standard for 7P 2 days
Parallel lines	8.G.1c	Parallel lines are taken to parallel lines	Big Ideas Red Accelerated: Chapter 11: 11.2, 11.3,11.4	*-Extra standard for 7P 2 days
Congruence	8.G.2	 Congruence Understand that a 2-d figures is congruent to another Describe a sequence that exhibits the congruence between them 	Big Ideas Red Accelerated: Chapter 11: 11.1 11.2, 11.3,11.4	*-Extra standard for 7P 2 days
Similarity	8.G.4	 Understand that a 2-d figures is similar to another Describe a sequence that exhibits the similarity between 	Big Ideas Red Accelerated: Chapter 11: 11.5,11.6,11.7	*-Extra standard for 7P 4 days

Angle sum and exterior angle of triangles ;Parallel lines are cut by a transversal.	8.G.5	 Use informal arg to establish facts the angle sum an exterior angle of triangles Angles created w parallel lines are a transversal. 	yuments Big Ideas Red Accelerated: Chapter 12: 12.1,12.2,12.3,12.4 when cut by	*-Extra standard for 7P 8 Days
Formulas for volume of cones, cylinders and spheres	8.G.9	 Know the formu volume of cones cylinders and sp and use them to real-world and n problems 	las for Big Ideas Red Accelerated: , Chapter 15: heres 15.1,15.2,15.3,15.4 solve nath	*-Extra standard for 7P 8 Days

Common Core Math 8

Curriculum Guide

Scranton School District

Scranton, PA

Common Core Math 8

Prerequisites:

• Successful Completion of Common Core Math 7

The concepts studied in Common Core Math 8 parallel those in the Common Core 8P Concepts of Algebra course but with a different depth, breadth, and pace, thus allowing time for discovering and understanding basic concepts. Students will demonstrate an understanding of the connections between the various branches of mathematics by applying computational skills, mathematical reasoning, and introductory algebraic and geometric principles to model and solve real-life problems. Students will demonstrate a basic understanding of rational and irrational numbers, exponents and scientific notation, proportional relationships, linear equations, functions, systems of equations, geometry, angle relationships, volume, statistics and probability.

After successfully completing this course, students will be allowed to enroll in Algebra I Part 9A or Pre-Algebra. In some rare cases, if they student meets the district's Algebra I requirements, the student may enroll in Algebra I K/CC.

Year-at-a-glance

Subject: Common Core Math 8	Grade Level: 8 th	Date Completed: 10/22/14
	Grade Leven o	

1st Quarter

Торіс	Resources	CCSS
Linear Equations: One Variable	Big Ideas Math Blue, Ch. 1 Lesson 1-4	8.EE 7a,b
Geometry	Big Ideas Math Blue, Ch. 2, Lessons 1-7	8.G1 a,b,c, 2,3,4
Angle Relationship	Big Ideas Math Blue, Ch.3, Lessons 1-4	8.G 5

2nd Quarter

Торіс	Resources	CCSS
Graphing linear Equations	Big Ideas Math Blue, Ch. 4 Lessons 1-2	8. EE 7a
Proportional Relationships	Big Ideas Math Blue, Ch. 4 Lessons 3	8.EE 5
Slope/ linear Equations	Big Ideas Math Blue, Ch. 4 Lessons 4-7	8.EE.6 8.EE.7b 8.F.3

3rd Quarter

Торіс	Resources	CCSS
Systems of Equations	Big Ideas Math Blue Ch. 5 lessons 1-4	8.EE 8a,b,c
Functions	Big Ideas Math Blue Ch. 6 lessons 1-2	8.F 1,2
Functions & Linear Relationships	Big Ideas Math Blue Ch. 6 lessons 3-5	8.F 4,5

4^{th}	Quarter
-----------------	---------

	-	-
Торіс	Resources	CCSS
Rational & Irrational Numbers, Pythagorean Theorem	Big Ideas Math Blue Ch. 7 Lessons 1-5	8.NS 1,2 8.G 6,7,8
Volume	Big Ideas Math Blue Ch. 8 Lessons 1-4	8.G 9
Statistics & Probability	Big Ideas Math Blue Ch. 9 Lessons 1-4	8.SP 1,2,3,4
Exponents & Scientific Notation	Big Ideas Math Blue Ch. 10 Lessons 1-7	8.EE 1,2,3,4
Linear Equations/Slope (Review)	Big Ideas Math Blue Ch. 4 Lessons 4-7	8.EE.6,7b 8.F.3
Systems of Equations (Review)	Big Ideas Math Blue Ch. 5 Lessons 1-4	8.EE.8 a,b,c
Final Exam Review	Big Ideas Math Blue	All
* When Common Core becomes full	<i>implemented</i> , the suggested timeline should be ad	iusted accordingly.
---------------------------------	--	---------------------

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time*
Solving Linear Equations	8.EE 7a,b	One-Step, Multi-Step, Variables on Both Sides Solutions • One Solution • Infinite Solutions • No Solutions	 Big Ideas Math Blue, 1.1-1.4, Bigideasmath.com Triumph Learning CC Coach 	Teacher prepared tests, quizzes, etc. Bigideasmath.com, Series available assessments online. (optional)	15 days
Geometry	8.G 1 a,b,c 2,3,4	Translations, , Reflections, Rotations, Dilations Properties Congruence Effects Similarity 	 Big Ideas Math Blue,2.1-2.7 Bigideasmath.com Triumphlearning CC Support Coach Lesson 10-14 Triumphlearning CC Coach Lesson 18-23 Promethean Board etc. 		15 days

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Angle Relationships	8.G 5	Parallel Lines Angles Angle Sums and Triangles Interior Angles Exterior Angles Similarity Parallel Lines cut by a Transversal Applications to Coordinate System	 Big Ideas Math Blue, 3.1-3.4 Triumphlearning CC Support Coach Lesson 15-16 Triumphlearning CC Coach Lesson 24-27 Promethean Board etc. 		10 days
Graphing & Proportional Relationships	8.EE 7a 8.EE 5.	 Graphing Linear Equations: One and Two Variables Proportional Relationships Graphing proportional relationships Comparing proportional relationships in different ways Unit Rate Interpreting unit rate as the slope of a graph 	 Big Ideas Math Blue, 4.1-4.3 Triumphlearning CC Support Coach Lesson 4,6 Crosswalk Coach Lesson 9-10,12-14, 23 Triumphlearning CC Coach Lesson 7,9 Promethean Board etc 		22 days

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Slope/Linear Equations	8.EE 6 8.EE 7b 8. F 3	 Determine slope: Visually Formula: given two points Use to derive y = mx + b 	 Big Ideas Math Blue, 4.4-4.7 Triumphlearning CC Support Coach Lesson 5-6 Triumphlearning CC Coach Lesson 8-9,15 Promethean Board etc. 		22 days
Systems of Equations	8.EE 8 a,b,c	Types of Solutions Solve by • Graphing, • Substitution • Elimination Real Life Applications	 Big Ideas Math Blue, 5.1-5.4 Triumphlearning CC Support Coach Lesson 7 Triumphlearning CC Coach Lesson 10-12 		20 days

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Functions & Linear Relationships	8.F 1,2 8.F 4,5	Definition and Graph Determine function rule from table of values from a graph Rate of Change and Initial Value Linear and Non-Linear Functions Increasing/decreasing Linear/nonlinear	 Big Ideas Math Blue, 6.1-6.5 Triumphlearning CC Support Coach Lesson8, 9 Triumphlearning CC Coach Lesson 13-17 Promethean Board etc. 		18 days

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Rational & Irrational Numbers	8.NS 1,2 8.G 6,7,8 8 EE 6	 Classify real numbers Irrational Numbers Estimate the value Comparing and ordering all real numbers Square roots & Cube roots Pythagorean Theorem Proof and Converse Applications in Two and Three Dimensions Explain slope using similar triangles 	 Big Ideas Math Blue, 7.1-7.4 Triumphlearning CC Support Coach Lesson 1 Crosswalk Coach Lesson 1-4 Triumphlearning CC Coach Lesson 1-2 Promethean Board etc 		5 days
Volume	8.G 9	Volumes of Cones, Cylinders, Spheres • Formulas • Applications	 Big Ideas Math Blue, 8.1-8.4 Triumphlearning CC Support Coach Lesson 17 Triumphlearning CC Coach Lesson 28 Promethean Board etc. 		4 days

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Statistics & Probability	8.SP 1,2,3,4	Scatter Plots Construct Interpret Lines of best fit (Slope and Intercept) Stem and Leaf Plots Two Way Tables Construct Interpret	 Big Ideas Math Blue, 9.1-9.3 Triumphlearning CC Support Coach Lesson 18-20 Triumphlearning CC Coach Lesson 29-32 Promethean Board etc. 		12 days
Exponents & Scientific Notation	8 EE 1,2,3,4	Operations involving exponents • Integer (positive/negative) • Radical Scientific Notation • Operations involving scientific notation • Applications	 Big Ideas Math Blue, 10.1-10.7 Triumphlearning CC Support Coach Lesson 2-3 Triumphlearning CC Coach Lesson 3-6 Promethean Board etc 		10 days
Review of Linear Equations/Slope	8.EE.6,7b 8.F.3	Review of these topics in preparation for Algebra 1	• Big Ideas Math Blue, 4.4-4.7		12 days
Systems of Equations	8.EE.8a,b,c	Review of topic in preparation for Algebra 1	• Big Ideas Math Blue, 5.1-5.4		9 days
Final Exam Review	All	Review of all topics for final exam	Big Ideas Math Blue		6 days

Common Core Math 7

Curriculum Guide

Scranton School District

Scranton, PA

Course Title Common Core Math 7

Prerequisite : Math 6

Intended Audience: This course is designed for the student who has successfully completed Math 6 by the end of the 6th grade.

Year-at-a-glance

This course is comprised of all the Pennsylvania Core Standards for grade 7 mathematics. While coherence is retained, in that it logically builds from the 6th Grade mathematics course, this course demands a normal pace for instruction and learning. The Mathematical Practice Standards apply throughout each course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations. The critical areas are as follows:

- Students develop an understanding of number, recognizing fractions, decimals and percents as different representations of rational numbers. Students extend addition, subtraction, multiplication, and division to all rational numbers. Students explain and interpret the rules for adding, subtracting, multiplying, and dividing with negative numbers and properties of operations to develop an understanding of integer exponents, and to work with numbers written in scientific notation.
- Students will use some linear equations and implement procedures to solve linear equations in one variable.
- Students solve problems involving the area and circumference of a circle and surface area of three-dimensional objects and solve real-world and mathematical problems involving area.
- Students use ideas about distance and angles, how they behave under translations, rotations, reflections, and ideas about congruence and similarity to describe and analyze two-dimensional figures and to solve problems. Students show that the sum of the angles in a triangle is the angle formed by a straight line and complete their work on volume by solving problems involving cones, cylinders, and spheres.

After successfully completing the course, students will be allowed to enroll in Common Core Math 8.

Subject: Common Core Math 7	Grade Level 7	Date Completed: 10/22/14

1st Quarter

Торіс	Resources	CCSS
The rational number operations, absolute value, properties of	Big Ideas Red Chapter 1,2	7.NS.1, 1a,1b,1c,1d,2,2a,2b,2c
zero, real-world application, the distributive property,		

2nd Quarter

Торіс	Resources	CCSS
Combining algebraic like terms, using distributive property,	Big Ideas Red Chapter 3, 4	7. EE. 1, 2, 3, 4a, 4b
whiting expressions		
Using real-world multi-step problems involving rational numbers	Big Ideas Red Chapter 2	7.EE.3
Converting between decimals, fractions, with rational numbers	Big Ideas Red Chapter 2	7.EE.2
Writing expressions and equations to solve real-world problems	Big Ideas Red Chapter 3,4	7 EE.2; 7EE.3, 7 EE.4

3rd Quarter

Торіс	Resources	CCSS
Compute unit rates with ratios of fractions	Big Ideas Red Chapter 5,6	7 RP.1, 1a, 1b,1c, 1d
Decide whether two quantities are proportional	Big Ideas Red Chapter 5,6	7 RP.2
Identify the constant of proportionality ; represent proportional relationships with equations; Explain what a point (x,y) on the graph of a proportional relationship	Big Ideas Red Chapter 5,6	7.RP.2
Constructions of triangles, angles. Identifying cross sections of three-dimensional figures. Scale drawings, reproducing a scale	Big Ideas Red Chapter 7	7.G.1, 2, 3, 4, 5, 6
Using circumference and area in a circle.	Big Ideas Red Chapter 8	7.G.4
Real-life problems involving volume and surface area	Big Ideas Red Chapter 9	7.G.4,6
Using equations to solve for angles in a polygon	Big Ideas Red Chapter 7	7.G.5

4th Quarter

Торіс	Resources	CCSS
Statistics and probability, making inferences, predictions from a	Big Ideas Red Chapter 10	7.SP.1, 2, 3, 4, 5, 6, 7a, 7b, 8a,8b
sample, using measures of central tendency		8c
Tree diagrams, frequency tables, t-tables,	Big Ideas Red Chapter 10	7.SP.8
Finding the probability of an event, compound events	Big Ideas Red Chapter 10	7.SP.7,8

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	*Suggested Time
The Number System	7.NS			Teacher prepared tests, quizzes, etc. Series available assessments online. <u>www.bigideasmath.com</u> Red (optional)	
Add and subtract rational number	7.NS.1	 Integer Number Line Add and subtract rational number on a horizontal and vertical number line 	Big Ideas Red Chapter 1:1.2,1.3 Big Ideas Red Chapter 2: 2.1,2.2,2.3		4 days
Absolute Value	7.NS.1a	 Absolute Value Opposites Describe situations in which opposite quantities combine to make 0. 	Big Ideas Red Chapter 1: 1.1,1.2, Big Ideas Red Chapter2: 2.2		2 days
Additive Inverse	7.NS.1b	 Apply real world context to opposites and absolute value Additive Inverses 	Big Ideas Red Chapter 1: 1.1,1.2 Big Ideas Red Chapter2: 2.2		2 days

* When Common Core becomes fully implemented, the suggested timeline should be adjusted accordingly.

Absolute Value	7.NS .1c	 Apply absolute value real-world context 	Big Ideas Red Chapter 1: 1.1,1.3, Big Ideas Red Chapter2: 2.3 Crosswalk Coach Lesson 7	2 days	
Addition/Subtraction of Rational Numbers	7.NS.1d	 Apply properties of operations strategies to add and subtract rational numbers 	Big Ideas Red Chapter 1: 1.1,1.2,1.3 Big Ideas Red Chapter 2: 2.2,2.3 Crosswalk Coach Lesson 7	3 days	
Fractions as Rational Numbers	7.NS.2	 Apply and extend previous understanding of x/y fractions and rational numbers 	Crosswalk Coach Lesson 5	2 days	
Distributive Property	7.NS.2a	 Distributive property Applying (-1)(-1)=1 In real world application 	Crosswalk Coach Lesson 8 Big Ideas Red Chapter 1: 1.1,1.4 Big Ideas Red Chapter 2: 2.4	3 days	
Property Of Zero	7.NS.2b 7.NS.2c	 Divisor Dividend properties of zero Understand that integers can be divided (with non- zero divisor)and the result is a rational number 	Big Ideas Red Chapter 1:1.1, 1.4, 1.5 Big Ideas Red Chapter 2- 2.1,2.4	3 days	

Types of Decimals	7.NS.2d	 Terminating decimal repeating decimal Convert a rational number to a decimal using long division 	Big Ideas Red Chapter 1:1.1 Big Ideas Red Chapter 2: 2.1	2 days
Real-world application of rational numbers	7.NS.3	 Solve real world and mathematical problems involving the four operations and rational numbers 	Crosswalk Coach Lesson 4 Triumph Learning CC Lesson 6,7,8 Big Ideas Red Chapter1: 1.1,1.2,1.3,1.4,1.5 Chapter 2: 2.2,2.3,2.4	5 days
Algebraic Expressions	7.EE.1	 Coefficient like/unlike terms Apply operations as strategies to add, subtract expressions 	Crosswalk Coach lesson 14,15 Triumph Learning CC L 13 Big Idea Red Chapter 3: 3.1,3.2, Ext:3.2	5 days
Writing algebraic expressions	7.EE.2	 A + 0.05A = 1.05A means increase by 5% or multiply by 1.05 Rewriting an expression can help understand the quantity 	Triumph learning CC Lessons 13, 16 Big Idea Red Chapter 3: 3.1,3.2	2 days
Equations	7.EE.4	 equations to solve problems real-life application 	Triumph Learning CC L17 Common Core Coach L16	3 days

Equations	7.EE.4a	 Compare alg solutions to mathematic solutions 	gebraic Big Ideas Red Chapter 3: 3.3,3.4,3.5 al Crosswalk Coach Lesson 17	10 days
Inequalities	7.EE.4b	Compare inequalities mathematic solutions	to Big Ideas Red Chapter 4: al 4.1,4.2,4.3,4.4	10 days
Ratios and Proportions	7RP			
Unit rates	7.RP.1	Compute unratios of frac	it rates Big Idea Red Chapter 5: 5.1 ctions Crosswalk Coach	2 days
Proportions	7.RP.2a	• Decide whet two quantiti in a proporti relationship	ther Crosswalk Lesson 12 ies are Triumph Learning CC ional Lesson 3 <u>www.ixl.com/math/grade7</u> Big Ideas Red Chapter5:5.2,Ext 5.2,5.6	4 days
Unit Rate	7.RP.2b	 Identify the constant of proportiona unit rate 	Crosswalk Coach Lesson 12 Triumph Learning CC lity lesson 3 Big Ideas Red Chapter5: Ext 5.2,5.4,5.5,5.6	4 days
Proportional Relationships	7.RP.2c	 Represent proportiona relationships equations Use cross proto solve 	Crosswalk Coach lesson 12 I Triumph Learning CC s by Lesson 3 Big Ideas Red Chapter5: oducts 5.3,5.4,5.6	4 days

Coordinate Plane	7.RP.2d	 Explain what a point (x, y) on the graph of a proportional relationship means 	Crosswalk Coach lesson 12 Triumph Learning CC –L3 Big Ideas Red Chapter5: 5.3,5.4,5.6		8 days
Problem Solving	7.EE.3	 Multi-step real-life problem solving with rational numbers 	Crosswalk Coach L.17 Triumph Learning CC L15 Big Ideas Red Chapter 6: 6.1,6.2,6.3,6.4,6.5,6.6,6.7	:	18 days
Geometry	7.B		Big Ideas Red Chapter 7: 7.5 Crosswalk Coach L.20 Triumph Learning CC L18		1 day
Scale Drawings	7.G.1	 Scale drawings reproducing a scale 	Big Ideas Red Chapter 7: 7.5 Crosswalk Coach L20 Triumph Learning CC 18	:	1 day
Constructions of triangles	7.G.2	 Describe the properties of all types of triangles based on angle and side measures 	Common Core Coach L.19 Big Ideas Red Chapter 7: 7.3,7.4		4 days
Triangle Inequality	7.G.1.1.3	 Use triangle inequality theorem apply the triangle inequality theorem 	Big Ideas Red Chapter7: 7.3		3 days

Cross Sections	7.G.3	 Describe the 2-d figures that result from slicing 3-d figures right rectangular prisms pyramids 	Crosswalk Coach L.22 Triumph Learning CC L.20 Big Ideas Red Chapter 9: Extension 9.5	3 days
Circles	7.G.4	 area of a circle circumference of a circle 	Big Ideas Red Chapter 8: 8.1,8.2,8.3 Big Ideas Red Chapter9: 9.3 Crosswalk Coach L.23 Triumph Learning CC L.21	8 days
Use equations to solve for angles	7.G.5	 Identify types of angles: supplementary, complementary vertical, adjacent Identify and use properties of angles formed by parallel lines cut by a transversal include alternate interior, alternate exterior, vertical, corresponding 	Big Ideas Red Chapter 7: 7.1,7.2, Ext 7.3 Crosswalk Coach L.24 Triumph Learning CC L 22	8 days
Real-world problems involving area, volume, and surface area	7.G.6	 Two and three dimensional figures Triangles, quadrilaterals, polygons, cubes, right prisms 	Big Ideas Red Chapter 8: 8.4, Big Ideas Red Chapter 9: 9.1,9.2,9.4,9.5 Crosswalk Coach L.25,26,27 Triumph Learning CC L23,24	12 days

Statistics/Probability	7.SP			
Random sampling and valid inferences	7.SP.1	 Population sample representative Random sampling and valid inferences 	Crosswalk Coach L.30 Big Ideas Red Chapter 10: 10.6 Triumph Learning CC L.25	3 days
Predictions	7.SP.2	 Making a prediction based on a sample 	Crosswalk Coach L.30,34 Triumph Learning L 27 Big Ideas Red Chapter 10:	3 days
Measures of Central Tendency	7.SP.4	 Variability of data draw inferences Using measures of central tendency 	Crosswalk Coach L.31,32,34,35 Triumph Learning CC L.27 Big Ideas Red Chapter 10: 10.7	2 days
Probability of an Event	7.SP.3.2	 Find the probability of simple events, including the probability of an event not occurring 	Big Ideas Red Chapter 10: 10.1	2 days
Absolute Deviation	7.SP.3	 Absolute deviation dot plot multiple measures of variability two sets of data 	Big Ideas Red Chapter 10:10.7 Crosswalk Coach L.33,35 Triumph Learning CC L.27	2 days
Probability	7.SP.5	 Unlikely events Between 0 and 1 	Big Ideas Red Chapter 10:10.1,10.2,10.3 Crosswalk Coach L.28, Triumph Learning CC L.28	6 days

Rolling numbered cube	7.SP.6 7.SP.7	 Rolling a number cube Frequency of an event Collecting data Develop models Observe occurrences 	Big Ideas Red Chapter 10: 10.3 Crosswalk Coach L.28 Triumph Learning CC L.29	2 days
Probable Outcomes	7.SP.7a	Develop a uniform probability assigning probability to outcomes	Triumph Learning CC L.30 Crosswalk Coach L.28 Big Ideas Red Chapter 10: 10.2,10.3	4 days
Probability Models	7.SP.7b	 Develop a probability model by observing 	Big Ideas Red Chapter 10: 10.3 Crosswalk Coach L.28	2 days
Compound events	7.SP.7b	Tablestree diagram	Crosswalk Coach L 29	2 days
Compound Events	7.SP.8a	 Probability compound event	Triumph Learning CC L.30 Big Ideas Red Chapter 10: 10.4,10.5	6 days
Sample Spaces	7.SP.8b	 Sample spaces compound events 	Crosswalk Coach L.29, Triumph Learning CC Big Ideas Red Chapter 10: 10.4,10.5	5 days
Simulations	7.SP.8c	 Design a simulation generate frequencies for compound events 	Big Ideas Red Chapter 10: 10.5 Crosswalk Coach L.29 Triumph Learning CC L.30	3 days

Computer Science

Curriculum Guide

Scranton School District

Scranton, PA

Computer Science

Prerequisite: Algebra II/Trig, Honors Geometry

Intended Audience: This course is designed for the student who has a strong math background and an interest in computer science.

A computer program is a set of instructions that tell a computer how to accomplish a given task. Computer programming is the art and science of planning and writing computer programs. This course is designed to introduce students to the process of computer programming. Students will learn fundamental concepts of computer programming using the programming language JAVA. During the year, students will learn to write JAVA programs to solve a variety of interesting and useful problems, some of which may include the use of graphics and game playing. By the end of the course, students will have acquired enough knowledge and skill to plan and develop programs for their own use. This course also provides the foundation for further study in computer programming. Students who do well in mathematics and have a possible interest in pursuing careers in any math or science related area should consider taking this course.

Year-at-a-glance

Subject: Computer Science	Grade Level: 10 th – 12 th	Date Completed: 3-17-15

1st Quarter

Торіс	Resources	AP Standard
Introduction	Text Book: Big Java, Chapter 1, Computer	CR1
		CR2a
		CR7
Using Objects	Text Book: Big Java, Chapter 2, Computer	CR1
		CR2a
		CR3
		CR4
Implementing Classes	Text Book: Big Java, Chapter 3, Computer	CR1
		CR2a
		CR3
		CR4

2nd Quarter

Торіс	Resources	AP Standard
Fundamental Data Types	Text Book: Big Java, Chapter 4, Computer	CR1 CR2a CR2b CR3 CR4 CR5 CR6
Decisions	Text Book: Big Java, Chapter 5, Computer	CR1 CR2a CR3 CR4 CR6
Loops	Text Book: Big Java, Chapter 6, Computer	CR1 CR2a CR2b CR3 CR4 CR6

3rd Quarter

Торіс	Resources	AP Standard
Arrays and Array Lists	Text Book: Big Java, Chapter 7, Computer	CR1
		CR2a
		CR3
		CR4
		CR6
	-	
Designing Classes	Text Book: Big Java, Chapter 8, Computer	CR1
		CR2a
		CR2b
		CR3
		CR4
		CR6
Inheritance	To I Double Diveloper Character O. Computer	CD1
Inneritance	Text Book: Big Java, Chapter 9, Computer	
		CR2a
		CR2b
		CR4
		CR6

4 th Quarter		
Торіс	Resources	AP Standard
Interfaces	Text Book: Big Java, Chapter 10, Computer	CR1 CR2a CR2b CR3 CR4 CR6
Robocode (optional)	IBM developerWorks Robocode, Computer	

Curricular Standards

CR1	The course teaches students to design and implement computer-based solutions to problems.
CR2a	The course teaches students to use and implement commonly used algorithms.
CR2b	The course teaches students to use commonly used data structures.
CR3	The course teaches students to select appropriate algorithms and data structures to solve problems.
CR4	The course teaches students to code fluently in an object-oriented paradigm using the programming language Java.
CR5	The course teaches students to use elements of the standard Java library from the AP Java subset in Appendix A of the AP Computer Science A Course Description.
CR6	The course includes a structured lab component comprised of a minimum of 20 hours of hands-on lab experiences.
CR7	The course teaches students to recognize the ethical and social implications of computer use.

Since the content of Computer Science course is beyond the scope of Common Core, the Collegeboard Computer Science Curriculum Standards was used for this course.

General Topic	Academic	Essential Knowledge,	Resources &	Assessments	Suggested
	Standard(s)	Skills & Vocabulary	Activities		lime
Computer Programs	CR1	 Describe the relationship between 	Text Book: BIG	Teacher	8
	CR2a	hardware and software.	JAVA	prepared tests,	
The Anatomy of a Computer	CR7	• Define various types of software and	Computer	quizzes, etc.	
		how they are used.	(Bullets below		
The Java Programming		 Identify basic computer hardware 	match previous	Daily Class Work	
Language		 Explain how the hardware 	column)	Quizzes	
		components execute programs and	• 1.1		
Becoming Familiar with Your		manage data.	• 1.1		
Programming Environment		Describe how computers are	• 1.2		
		connected together into networks to	• 1.2		
Analyzing Your First Program		share information	• 1.3		
Errors		 Introduce the Java Programming 	• 1.4		
			• 15		
Problem Solving: Algorithm		Language.	• 16		
Design		Describe the steps involved in	• 1.0		
		program compliation and execution.	• 1.7		
		 Identify the different types of 	• 1./		
		compiler errors			
		Introduce Algorithms: sequence of			
		steps that is unambiguous,			
		executable, and terminating.			
		Law and Ethics			
		Acceptable User's Policy			
Test – Introduction				Multiple Choice	1
				Test	

Objects and Classes Variables Calling Methods Constructing Objects Accessor and Mutator Methods The API Documentation Implementing a Test Program Object References Graphical Applications	CR1 CR2a CR3 CR4	 Define the difference between primitive data and objects. Declare and use variables. Perform mathematical computations. Create objects and use them. Create graphical programs that draw shapes. Understand the concepts of classes and objects. Be able to call methods. Learn about arguments and return values. Write programs that display simple shapes. Understand how to search and use the API documentation. 	Text Book: <i>BIG</i> <i>JAVA</i> Computer • 2.1 • 2.2 • 2.4 • 2.9 • 2.5 • 2.5 • 2.5 • 2.3 • 2.4 • 2.9, 2.10 • 2.6	Daily Class Work Quizzes	14
Test - Using Objects				Multiple Choice Test & Hands on Programming Project	2

Instance Variables and Encapsulation Specifying the Public Interface of a Class Providing the Class Implementation Problem Solving: Tracing Objects Local Variables The this reference Shape Classes	CR1 CR2a CR3 CR4	•	Become familiar with the process of implementing classes Be able to implement and test simple methods Understand the purpose and use of constructors Understand how to access instance variables and local variables Be able to write javadoc comments Implement classes for drawing graphical shapes	Text Book: <i>BIG</i> <i>JAVA</i> Computer • 3.1, 3.2, 3.3 • 3.3 • 3.4 • 3.6 • 3.7 • 3.8	Daily Class Work Quizzes	15	5
Test – Implementing Classes					Multiple Choice Test & Hands on Programming Project	2	

Numbers Arithmetic Input and Output Problem Solving: First Do it by Hand Strings	CR1 CR2a CR2b CR3 CR4 CR5 CR6	 Understand integer and foating-point numbers Recognize the limitations of the numeric t types Become aware of causes for overflow and roundoff errors Understand the proper use of constants Write arithmetic expressions in Java Use the String type to manipulate character strings Write programs that read input and produce formatted output 	Text Book: <i>BIG</i> JAVA Computer • 4.1 • 4.2 • 4.2 • 4.1, 4.2 • 4.2 • 4.2 • 4.4, 4.5 • 4.3	Daily Class Work Quizzes	14
Test - Fundamental Data Types				Multiple Choice Test & Hands on Programming Project	2

The if Statement Comparing Values Multiple Alternatives Nested Branches Problem Solving: Flowcharts Problem Solving: Selecting Test Cases Boolean Variables and	CR1 CR2a CR3 CR4 CR6	•	Implement decisions using if statements Compare integers, foating-point numbers, and strings Write statements using the Boolean data type Develop strategies for testing your programs Validate user input	Text Book: <i>BIG</i> <i>JAVA</i> Computer • 5.1 • 5.2, 5.3 • 5.7 • 5.5, 5.6 • 5.8	Daily Class Work Quizzes	14
Operators Application: Input						
Validation						
Test - Decisions					Multiple Choice Test & Hands on Programming Project	2

The while Loop Problem Solving: Hand- Tracing The for Loop The do Loop Application: Processing Sentinel Values Problem Solving: Storyboards Common Loop Algorithms Nested Loops Application: Random Numbers and Simulations	CR1 CR2a CR2b CR3 CR4 CR6	•	Implement while, for, and do loops Hand-trace the execution of a program Learn to use common loop algorithms Understand nested loops Implement programs that read and process data sets Use a computer for simulations Learn about the debugger	Text Book: <i>BIG</i> <i>JAVA</i> Computer • 6.1 • 6.2 • 6.3, 6.4, 6.5 • 6.6, 6.7 • 6.8 • 6.9 • 6.10	Daily Class Work Quizzes	22
Test - Loops					Multiple Choice Test & Hands on Programming Project	2

Arrays The Enhanced for Loop Common Array Algorithms Adapting Algorithms Discovering Algorithms by Manipulating Physical Objects Two-Dimensional Arrays	CR1 CR2a CR3 CR4 CR6	 Collect elements using arrays and array lists Use the enhanced for loop for traversing arrays and array lists Learn common algorithms for processing arrays and array lists Work with two-dimensional arrays Understand the concept of regression testing 	Text Book: <i>BIG</i> <i>JAVA</i> Computer • 7.1 • 7.2 • 7.3 • 7.6 • 7.7 • 7.8	Daily Class Work Quizzes	17
Test - Arrays				Multiple Choice Test & Hands on Programming Project	2

Discovering Classes Designing Good Methods Patterns for Object Data Static Variables and Methods Packages	CR1 CR2a CR2b CR3 CR4 CR6	 Learn how to choose appropriate classes for a given problem Understand the concept of cohesion Minimize dependencies and side effects Learn how to find a data representation for a class Understand static methods and variables Learn about packages Learn about unit testing frameworks 	Text Book: <i>BIG</i> <i>JAVA</i> Computer • 8.1 • 8.2 • 8.3 • 8.4 • 8.5 • 8.6	Daily Class Work Quizzes	14
Test - Classes				Multiple Choice Test & Hands on Programming Project	2

Inheritance Hierarchies Implementing Subclasses Overriding Methods Polymorphism Object: The Cosmic Superclass	CR1 CR2a CR2b CR4 CR6	•	Learn about inheritance Implement subclasses that inherit and override superclass methods Understand the concept of polymorphism Be familiar with the common superclass Object and its methods	Text Book: <i>BIG</i> <i>JAVA</i> Computer • 9.1 • 9.2, 9.3 • 9.4 • 9.5	Daily Class Work Quizzes	14
Test – Inheritance					Multiple Choice Test & Hands on Programming Project	2
Licing Interfaces for	CD1	c	De able te dealare curdure interferre	Tayt Back are		1 4
--------------------------------	------	---	--	----------------	-----------------	-----
Using interfaces for		•	Be able to declare and use interface	Text BOOK: BIG		14
Algorithm Reuse	CR2a		types	JAVA	Quizzes	
	CR2b	•	Appreciate how interfaces can be	Computer		
Working with Interface	CR3		used to decouple classes	• 10.1, 10.2		
Variables	CR4	•	Learn how to implement helper	• 10.3, 10.4		
	CR6		classes as inner classes	• 10.5, 10.6,		
The Comparable Interface		•	Implement event listeners in graphical	10.7		
			applications	• 10.8, 10.9,		
Using Interfaces for Callbacks				10.10		
Inner Classes						
Mack Objects						
MOCK ODJECTS						
Event Handling						
Building Applications with						
Building Applications with						
Buttons						
Dracassing Timor Events						
Processing filler events						
Mouso Evonts						
Wouse Events						
Test - Interfaces					Multiple Choice	2
					Test & Hands on	
					Programming	
					Project	
		1			1	1

Robocode (optional)	Robocode is a programming game where the goal is to code a robot battle tank to compete against other robots in a battle arena. So the name Robocode is a short for "Robot code". The player is the programmer of the robot, who will have no direct influence on the game. Instead, the player must write the AI of the robot telling it how to behave and react on events occurring in the battle arena. Battles are running in real- time and on-screen.	IBM Robocode, Computer	Daily Class Work Quizzes	15

Computer Science

Curriculum Guide

Scranton School District

Scranton, PA

Computer Science

Prerequisite: Algebra II/Trig, Honors Geometry

Intended Audience: This course is designed for the student who has a strong math background and an interest in computer science.

A computer program is a set of instructions that tell a computer how to accomplish a given task. Computer programming is the art and science of planning and writing computer programs. This course is designed to introduce students to the process of computer programming. Students will learn fundamental concepts of computer programming using the programming language JAVA. During the year, students will learn to write JAVA programs to solve a variety of interesting and useful problems, some of which may include the use of graphics and game playing. By the end of the course, students will have acquired enough knowledge and skill to plan and develop programs for their own use. This course also provides the foundation for further study in computer programming. Students who do well in mathematics and have a possible interest in pursuing careers in any math or science related area should consider taking this course.

Year-at-a-glance

	Subject: Computer Science	Grade Level: 10 th – 12 th	Date Completed: 3-17-15
--	---------------------------	--	-------------------------

1st Quarter

Торіс	Resources	AP Standard
Introduction	Text Book: Big Java, Chapter 1, Computer	
Using Objects	Text Book: Big Java, Chapter 2, Computer	
Implementing Classes	Text Book: Big Java, Chapter 3, Computer	

2nd Quarter

Торіс	Resources	AP Standard
Fundamental Data Types	Text Book: Big Java, Chapter 4, Computer	
Decisions	Text Book: Big Java, Chapter 5, Computer	
Loops	Text Book: Big Java, Chapter 6, Computer	

3rd Quarter

Торіс	Resources	AP Standard
Arrays and Array Lists	Text Book: Big Java, Chapter 7, Computer	
Designing Classes	Text Book: Big Java, Chapter 8, Computer	
Inheritance	Text Book: Big Java, Chapter 9, Computer	

4th Quarter

Торіс	Resources	AP Standard
Interfaces	Text Book: Big Java, Chapter 10, Computer	
Robocode (optional)	IBM developerWorks Robocode, Computer	

Curricular Standards

CR1	The course teaches students to design and implement computer-based solutions to problems.
CR2a	The course teaches students to use and implement commonly used algorithms.
CR2b	The course teaches students to use commonly used data structures.
CR3	The course teaches students to select appropriate algorithms and data structures to solve problems.
CR4	The course teaches students to code fluently in an object-oriented paradigm using the programming language Java.
CR5	The course teaches students to use elements of the standard Java library from the AP Java subset in Appendix A of the AP Computer Science A Course Description.
CR6	The course includes a structured lab component comprised of a minimum of 20 hours of hands-on lab experiences.
CR7	The course teaches students to recognize the ethical and social implications of computer use.

Since the content of Computer Science course is beyond the scope of Common Core, the Collegeboard Computer Science Curriculum Standards was used for this course.

General Topic	Academic	Essential Knowledge,	Resources &	Assessments	Suggested
	Standard(s)	Skills & Vocabulary	Activities		lime
Computer Programs	CR1	 Describe the relationship between 	Text Book: <i>BIG</i>	Teacher	8
	CR2a	hardware and software.	JAVA	prepared tests,	
The Anatomy of a Computer	CR7	• Define various types of software and	Computer	quizzes, etc.	
		how they are used.	(Bullets below		
The Java Programming		Identify basic computer hardware	match previous	Daily Class Work	
Language		• Explain how the hardware	column)	Quizzes	
		components execute programs and	• 1.1		
Becoming Familiar with Your		manage data.	• 1.1		
Programming Environment		Describe how computers are	• 1.2		
		connected together into networks to	• 1.2		
Analyzing Your First Program		share information	• 1.3		
Errors		Introduce the Java Programming	• 1.4		
			• 1.5		
Problem Solving: Algorithm		 Describe the store involved in 	• 16		
Design		Describe the steps involved in	• 17		
		program compliation and execution.	• 1.7		
		Identify the different types of	• 1.7		
		compiler errors			
		Introduce Algorithms: sequence of			
		steps that is unambiguous,			
		executable, and terminating.			
		Law and Ethics			
		Acceptable User's Policy			
Test – Introduction				Multiple Choice	1
				Test	

Objects and Classes Variables Calling Methods Constructing Objects Accessor and Mutator Methods The API Documentation Implementing a Test Program Object References Graphical Applications	CR1 CR2a CR3 CR4	 Define the difference between primitive data and objects. Declare and use variables. Perform mathematical computations. Create objects and use them. Create graphical programs that draw shapes. Understand the concepts of classes and objects. Be able to call methods. Learn about arguments and return values. Write programs that display simple shapes. Understand how to search and use the API documentation. 	Text Book: <i>BIG</i> <i>JAVA</i> Computer • 2.1 • 2.2 • 2.4 • 2.9 • 2.5 • 2.5 • 2.5 • 2.3 • 2.4 • 2.9, 2.10 • 2.6	Daily Class Work Quizzes	14
Test - Using Objects				Multiple Choice Test & Hands on Programming Project	2

		r		1	1	1	
Instance Variables and Encapsulation Specifying the Public Interface of a Class Providing the Class Implementation Problem Solving: Tracing Objects Local Variables The this reference Shape Classes	CR1 CR2a CR3 CR4	•	Become familiar with the process of implementing classes Be able to implement and test simple methods Understand the purpose and use of constructors Understand how to access instance variables and local variables Be able to write javadoc comments Implement classes for drawing graphical shapes	Text Book: <i>BIG</i> <i>JAVA</i> Computer • 3.1, 3.2, 3.3 • 3.3 • 3.4 • 3.6 • 3.7 • 3.8	Daily Class Work Quizzes	15	
Test – Implementing Classes					Multiple Choice Test & Hands on Programming Project	2	

Numbers Arithmetic Input and Output Problem Solving: First Do it by Hand Strings	CR1 CR2a CR2b CR3 CR4 CR5 CR6	 Understand integer and foating-point numbers Recognize the limitations of the numeric t types Become aware of causes for overflow and roundoff errors Understand the proper use of constants Write arithmetic expressions in Java Use the String type to manipulate character strings Write programs that read input and produce formatted output 	Text Book: <i>BIG</i> JAVA Computer • 4.1 • 4.2 • 4.2 • 4.1, 4.2 • 4.2 • 4.2 • 4.4, 4.5 • 4.3	Daily Class Work Quizzes	14
Test - Fundamental Data Types				Multiple Choice Test & Hands on Programming Project	2

The if Statement Comparing Values Multiple Alternatives Nested Branches Problem Solving: Flowcharts Problem Solving: Selecting Test Cases Boolean Variables and	CR1 CR2a CR3 CR4 CR6	•	Implement decisions using if statements Compare integers, foating-point numbers, and strings Write statements using the Boolean data type Develop strategies for testing your programs Validate user input	Text Book: <i>BIG</i> <i>JAVA</i> Computer • 5.1 • 5.2, 5.3 • 5.7 • 5.5, 5.6 • 5.8	Daily Class Work Quizzes	14
Operators Application: Input Validation						
Test - Decisions					Multiple Choice Test & Hands on Programming Project	2

CR2a CR3 CR4 CR6	 Hand-trace the execution of a program Learn to use common loop algorithms Understand nested loops Implement programs that read and process data sets Use a computer for simulations Learn about the debugger 	JAVA Computer • 6.1 • 6.2 • 6.3, 6.4, 6.5 • 6.6, 6.7 • 6.8 • 6.9 • 6.10	Quizzes	
			Multiple Choice Test & Hands on Programming Project	2
	CR2a CR2b CR3 CR4 CR6	CR2a CR2b CR3 CR4 CR6 CR6 CR6 CR6 CR6 CR6 CR6 CR6	CR2a • Hand-trace the execution of a program JAVA CR3 • Learn to use common loop algorithms • 6.1 CR4 • Understand nested loops • 6.3, 6.4, 6.5 CR6 • Implement programs that read and process data sets • 0.8 a computer for simulations • 6.8 • Learn about the debugger • 6.10 • 6.8 • 6.9 • Learn about the debugger • 6.10 • 6.10	CR2a (R2b • Hand-trace the execution of a program AWA Computer Quizzes CR3 (R4 (CR6) • Learn to use common loop algorithms • 6.1 • 6.2 Implement programs that read and process data sets • 0.5, 6.4, 6.5 • 6.6, 6.7 • Use a computer for simulations • 1.2 • 6.10 • Learn about the debugger • 6.10

Arrays The Enhanced for Loop Common Array Algorithms Adapting Algorithms Discovering Algorithms by Manipulating Physical Objects Two-Dimensional Arrays	CR1 CR2a CR3 CR4 CR6	 Collect elements using arrays and array lists Use the enhanced for loop for traversing arrays and array lists Learn common algorithms for processing arrays and array lists Work with two-dimensional arrays Understand the concept of regression testing 	Text Book: <i>BIG</i> <i>JAVA</i> Computer • 7.1 • 7.2 • 7.3 • 7.6 • 7.7 • 7.8	Daily Class Work Quizzes	17
Test - Arrays				Multiple Choice Test & Hands on Programming Project	2

Discovering Classes Designing Good Methods Patterns for Object Data Static Variables and Methods Packages	CR1 CR2a CR2b CR3 CR4 CR6	 Learn how to choose appropriate classes for a given problem Understand the concept of cohesion Minimize dependencies and side effects Learn how to find a data representation for a class Understand static methods and variables Learn about packages Learn about unit testing frameworks 	Text Book: <i>BIG</i> <i>JAVA</i> Computer • 8.1 • 8.2 • 8.3 • 8.4 • 8.5 • 8.6	Daily Class Work Quizzes	14
Test - Classes				Multiple Choice Test & Hands on Programming Project	2

Inheritance Hierarchies Implementing Subclasses Overriding Methods Polymorphism Object: The Cosmic Superclass	CR1 CR2a CR2b CR4 CR6	•	Learn about inheritance Implement subclasses that inherit and override superclass methods Understand the concept of polymorphism Be familiar with the common superclass Object and its methods	Text Book: <i>BIG</i> <i>JAVA</i> Computer • 9.1 • 9.2, 9.3 • 9.4 • 9.5	Daily Class Work Quizzes	14
Test – Inheritance					Multiple Choice Test & Hands on Programming Project	2

Licing Interfaces for	CD1	c	De able te dealare curdure interferre	Tayt Back are		1 4
Using interfaces for		•	Be able to declare and use interface	Text BOOK: BIG		14
Algorithm Reuse	CR2a		types	JAVA	Quizzes	
	CR2b	•	Appreciate how interfaces can be	Computer		
Working with Interface	CR3		used to decouple classes	• 10.1, 10.2		
Variables	CR4	•	Learn how to implement helper	• 10.3, 10.4		
	CR6		classes as inner classes	• 10.5, 10.6,		
The Comparable Interface		•	Implement event listeners in graphical	10.7		
			applications	• 10.8, 10.9,		
Using Interfaces for Callbacks				10.10		
Inner Classes						
Mack Objects						
MOCK ODJECTS						
Event Handling						
Building Applications with						
Building Applications with						
Buttons						
Dracassing Timor Events						
Processing filler events						
Mouso Evonts						
Wouse Events						
Test - Interfaces					Multiple Choice	2
					Test & Hands on	
					Programming	
					Project	
		1			1	1

Robocode (optional)	Robocode is a programming game where the goal is to code a robot battle tank to compete against other robots in a battle arena. So the name Robocode is a short for "Robot code". The player is the programmer of the robot, who will have no direct influence on the game. Instead, the player must write the AI of the robot telling it how to behave and react on events occurring in the battle arena. Battles are running in real- time and on-screen.	IBM Robocode, Computer	Daily Class Work Quizzes	15

Computer Science AP

Curriculum Guide

Scranton School District

Scranton, PA

Computer Science AP

Prerequisite :

- Computer Science
- Be in compliance with the SSD Honors and AP Criteria Policy

Intended Audience: This course is designed for the student who has successfully completed Computer Science by the end of the 11th grade.

The Computer Science AP course is an introductory course in computer science. Because the design and implementation of computer programs to solve problems involve skills that are fundamental to the study of computer science, a large part of the course is built around the development of computer programs that correctly solve a given problem. These programs should be understandable, adaptable, and, when appropriate, reusable. At the same time, the design and implementation of computer programs is used as a context for introducing other important aspects of computer science, including the development and analysis of algorithms, the development and use of fundamental data structures, the study of standard algorithms and typical applications, and the use of logic and formal methods. In addition, the responsible use of these systems is an integral part of the course.

The necessary prerequisites for entering the Computer Science AP course include knowledge of basic algebra and experience in problem solving. A student in the Computer Science AP course should be comfortable with functions and the concepts found in the uses of functional notation, such as f(x) = x + 2 and f(x) = g(h(x)). It is important that students and their advisers understand that any significant computer science course builds upon a foundation of mathematical reasoning that should be acquired before attempting such a course.

<u>Year-at-a-glance</u>

Subject: Computer Science AP	Grade Level: 11 th – 12 th	Date Completed: 2-19-15

1st Quarter

Торіс	Resources	AP Standard
Computer Systems	Text Book: Java Software Solutions, Chapter 1, Computer	
Objects and Primitive Data	Text Book: Java Software Solutions, Chapter 2, Computer	
Program Statements	Text Book: Java Software Solutions, Chapter 3, Computer	

2nd Quarter

Торіс	Resources	AP Standard
Writing Classes	Text Book: Java Software Solutions, Chapter 4, Computer	
Enhancing Classes	Text Book: Java Software Solutions, Chapter 5, Computer	

3rd Quarter

Торіс	Resources	AP Standard
Inheritance	Text Book: Java Software Solutions, Chapter 7, Computer	
Recursion	Text Book: Java Software Solutions, Chapter 8, Computer	

4th Quarter

Торіс	Resources	AP Standard
Linear Data Structures	Text Book: Java Software Solutions, Chapter 9, Computer	
AP Test Preparation	Text Book: Java Software Solutions, Online Resources, Computer	
Robocode (optional)	IBM developerWorks Robocode, Computer	

Curricular Standards

CR1	The course teaches students to design and implement computer-based solutions to problems.
CR2a	The course teaches students to use and implement commonly used algorithms.
CR2b	The course teaches students to use commonly used data structures.
CR3	The course teaches students to select appropriate algorithms and data structures to solve problems.
CR4	The course teaches students to code fluently in an object-oriented paradigm using the programming language Java.
CR5	The course teaches students to use elements of the standard Java library from the AP Java subset in Appendix A of the AP Computer Science A Course Description.
CR6	The course includes a structured lab component comprised of a minimum of 20 hours of hands-on lab experiences.
CR7	The course teaches students to recognize the ethical and social implications of computer use.

Since the content of the Advanced Placement Computer Science AP course is beyond the scope of Common Core, the Collegeboard Computer Science Curriculum Standards was used for this course.

General Topic	Academic		Essential Knowledge,	Resources	&	Assessments	Suggested
	Standard(s)		Skills & Vocabulary	Activities	s		Time
Computer Systems	CR1, CR7	•	Describe the relationship between	Text Book: Ja	ava	Teacher	9
			hardware and software.	Software Soluti	ons	prepared tests,	
Introduction/Binary Numbers		•	Define various types of software and	Computer		quizzes, etc.	
			how they are used.	(Bullets belo	W		
Hardware Components and		٠	Identify basic computer hardware	match previo	ous	Daily Class Work	
Networks		•	Explain how the hardware	column)		Quizzes	
			components execute programs and	• 1.0			
Programming and			manage data.	• 1.0			
Programming Languages		٠	Describe how computers are	• 1.1			
			connected together into networks to	• 1.3			
Graphics			share information.	• 1.2			
		•	Explain the importance of the Internet	• 1.2			
Acceptable User's Policy			and the World Wide Web.	• 1.4			
		•	Introduce the Java Programming	• 1.4			
			Language.	• 1.5			
		•	Describe the steps involved in	• 1.4			
			program compilation and execution.				
		•	Introduce graphics and their				
			representations.				
		•	Law and Ethics				
			Acceptable User's Policy				
Test – Computer Systems						AP Style Multiple	1
						Choice Test	
Networks Programming and Programming Languages Graphics Acceptable User's Policy Test – Computer Systems		• • • • •	Explain how the hardware components execute programs and manage data. Describe how computers are connected together into networks to share information. Explain the importance of the Internet and the World Wide Web. Introduce the Java Programming Language. Describe the steps involved in program compilation and execution. Introduce graphics and their representations. Law and Ethics Acceptable User's Policy	column) 1.0 1.0 1.1 1.3 1.2 1.2 1.4 1.4 1.5 1.4		Quizzes AP Style Multiple Choice Test	1

Intro to objects and using them Variables/Data Types and Arithmetic Using Object Variables	CR1 CR2a CR3 CR4	•	Define the difference between primitive data and objects. Declare and use variables. Perform mathematical computations. Create objects and use them. Explore the difference between a Java application and a Java applet. Create graphical programs that draw shapes.	Text Book: Java Software Solutions Computer • 2.0, 2.1 • 2.2, 2.3 • 2.4, 2.5 • 2.6, 2.7 • 2.10, 2.11 • 2.12	Daily Class Work Quizzes	15
Test - Objects and Primitive Data					AP Style Multiple Choice Test & Hands on Programming Project	2

Boolean Expressions/if Statements Looping Structures Drawing with Loops and Conditionals	CR1 CR2a CR3 CR4	 Discuss basic program development steps. Define the flow of control through a program. Learn to use if statements. Define expressions that let us make complex decisions. Learn to use while and for statements. Use conditionals and loops to draw graphics. 	Text Book: Java Software Solutions Computer • 3.0 • 3.1 • 3.2 • 3.3, 3.4 • 3.5, 3.6 • 3.9	Daily Class Work Quizzes	18
Test - Program Statements				AP Style Multiple Choice Test & Hands on Programming Project	2

	•					
Anatomy of Classes and	CR1	•	Define classes that act like blue-prints	Text Book: Java	Daily Class Work	18
Methods	CR2a		for new objects, made of variables and	Software Solutions	Quizzes	
	CR2b		methods.	Computer		
Method Overloading	CR3	•	Explain encapsulation and Java	• 4.0		
	CR4		modifiers.	• 4.1		
Method Decomposition	CR5	•	Explore the details of method	• 4.2		
	CR6		declarations.	• 4.2		
Object Relationships		•	Review method invocation and	• 4.3		
			parameter passing.	• 4.4		
Applets and Graphics			Explain and use method overloading	• 4.5		
			Learn to divide complicated methods	• 46.4.7		
		-	into simpler supporting methods			
			Describe relationships between			
			objects			
			Croate graphics based objects			
		•	create graphics based objects.			
Test - Writing Classes		-			AP Style Multinle	2
					Choice Test &	2
					Hands on	
					Programming	
					Project	
					Project	

References/Passing Parameters Interfaces Dialog Boxes Graphical User Interfaces	CR1 CR2a CR3 CR4 CR5 CR6	•	Define reference aliases. Explore passing object references as parameters. Learn to use the static modifier. Define formal interfaces and their class implementations. Define nested classes and inner classes Learn about basic graphical user interfaces.	Text Book: Java Software Solutions Computer • 5.0 • 5.1, 5.2 • 5.3 • 5.4, 5.5 • 5.6, 5.7	Daily Class Work Quizzes	15
Test - Enhancing Classes					AP Style Multiple Choice Test & Hands on Programming Project	2

One and Two Dimensional Primitive Arrays Arrays of Objects ArrayLists Arrays and Graphics Buttons	CR1 CR2a CR2b CR3 CR4 CR5 CR6	•	Define and Use Arrays Describe how arrays and array elements are passed as parameters. Explore how arrays and other objects can be combined to manage complex information. Explore searching and sorting with arrays. Learn to use multidimensional arrays. Examine the ArrayList class.	ext Book: <i>Java</i> oftware Solutions omputer 6.0 6.1 6.2 6.3, 6.4 6.6 6.7	Daily Class Work Quizzes	22
Test - Arrays					AP Style Multiple Choice Test & Hands on Programming Project	2

Inheritance Designing for Inheritance Interfaces Mouse Events	CR1 CR2a CR2b CR3 CR4 CR5 CR6	 Derive new classes from existing ones. Explain how inheritance supports software reuse. Add and modify methods in child classes. Discuss how to design class hierarchies. Define polymorphism and how it can be done. Discuss the use of inheritance in Java GUI framework. Examine and use the GUI component class hierarchy. 	Text Book: Java Software Solutions Computer • 7.0 • 7.1 • 7.3 • 7.2, 7.4 • 7.5 • 7.8 • 7.9	Daily Class Work Quizzes	18
Test - Inheritance				AP Style Multiple Choice Test & Hands on Programming Project	2

Basic Recursion Classic Problems Recursive Sorting Fractals	CR1 CR2a CR2b CR3 CR4 CR5 CR6	 Explain the underlying ideas of recursion. Examine recursive methods and processing steps. Define infinite recursion and discuss ways to avoid it. Explain when recursion should and should not be used. Demonstrate the use of recursion to solve problems. Examine the use of recursion in sorting. 	Text Book: Java Software Solutions Computer • 8.0 • 8.1 • 8.0, 8.1 • 8.2 • 8.3 • 8.3	Daily Class Work Quizzes	14
Test - Recursion				AP Style Multiple Choice Test & Hands on Programming Project	2

Linked Lists Queues Stacks	CR1 CR2a CR2b CR3 CR4 CR5 CR6	•	Explore the idea of a collection. Introduce the predefined collection classes in the Java standard class library. Examine the difference between fixed and dynamic implementations. Define and use dynamically linked lists.	Text Book: Java Software Solutions Computer 9.0 9.1 9.2	Daily Class Work Quizzes	14
Test - Linear Data Structures					AP Style Multiple Choice Test & Hands on Programming Project	2
Robocode (optional)	CR1 CR2a CR2b CR3 CR4 CR5 CR6	Robocode is a programming game where the goal is to code a robot battle tank to compete against other robots in a battle arena. So the name Robocode is a short for "Robot code". The player is the programmer of the robot, who will have no direct influence on the game. Instead, the player must write the AI of the robot telling it how to behave and react on events occurring in the battle arena. Battles are running in real- time and on-screen.	IBM Robocode, Computer	Daily Class Work Quizzes	20	
---------------------	---	--	---------------------------	-----------------------------	----	
---------------------	---	--	---------------------------	-----------------------------	----	

Computer Science AP

Curriculum Guide

Scranton School District

Scranton, PA

Computer Science AP

Prerequisite :

- Computer Science
- Be in compliance with the <u>SSD Honors and AP Criteria Policy</u>

Intended Audience: This course is designed for the student who has successfully completed Computer Science by the end of the 11th grade.

The Computer Science AP course is an introductory course in computer science. Because the design and implementation of computer programs to solve problems involve skills that are fundamental to the study of computer science, a large part of the course is built around the development of computer programs that correctly solve a given problem. These programs should be understandable, adaptable, and, when appropriate, reusable. At the same time, the design and implementation of computer programs is used as a context for introducing other important aspects of computer science, including the development and analysis of algorithms, the development and use of fundamental data structures, the study of standard algorithms and typical applications, and the use of logic and formal methods. In addition, the responsible use of these systems is an integral part of the course.

The necessary prerequisites for entering the Computer Science AP course include knowledge of basic algebra and experience in problem solving. A student in the Computer Science AP course should be comfortable with functions and the concepts found in the uses of functional notation, such as f(x) = x + 2 and f(x) = g(h(x)). It is important that students and their advisers understand that any significant computer science course builds upon a foundation of mathematical reasoning that should be acquired before attempting such a course.

<u>Year-at-a-glance</u>

Subject: Computer Science AP	Grade Level: 11 th – 12 th	Date Completed: 2-19-15

1st Quarter

Торіс	Resources	AP Standard
Computer Systems	Text Book: Java Software Solutions, Chapter 1, Computer	CR1 CR7
Objects and Primitive Data	Text Book: Java Software Solutions, Chapter 2, Computer	CR1 CR2a CR3 CR4
Program Statements	Text Book: Java Software Solutions, Chapter 3, Computer	CR1 CR2a CR3 CR4

2nd Quarter

Торіс	Resources	AP Standard
Writing Classes	Text Book: Java Software Solutions, Chapter 4, Computer	CR1 CR2a CR2b CR3 CR4 CR5 CR6
Enhancing Classes	Text Book: Java Software Solutions, Chapter 5, Computer	CR1 CR2a CR3 CR4 CR5 CR6

3rd Quarter

Торіс	Resources	AP Standard
Arrays	Text Book: Java Software Solutions, Chapter 6, Computer	CR1
		CR2a
		CR2b
		CR3
		CR4
		CR5
		CR6
Inheritance	Text Book: Java Software Solutions, Chapter 7, Computer	CR1
		CR2a
		CR2b
		CR3
		CR4
		CR5
		CR6
Recursion	Text Book: Java Software Solutions, Chapter 8, Computer	CR1
		CR2a
		CR2b
		CR3
		CR4
		CR5
		CR6

4th Quarter

Торіс	Resources	AP Standard
Linear Data Structures	Text Book: Java Software Solutions, Chapter 9, Computer	CR1
		CR2a
		CR2b
		CR3
		CR4
		CR5
		CR6
AP Test Preparation	Text Book: Java Software Solutions, Online Resources, Computer	
Robocode (optional)	IBM developerWorks Robocode, Computer	CR1
		CR2a
		CR2b
		CR3
		CR4
		CR5
		CR6

Curricular Standards

CR1	The course teaches students to design and implement computer-based solutions to problems.
CR2a	The course teaches students to use and implement commonly used algorithms.
CR2b	The course teaches students to use commonly used data structures.
CR3	The course teaches students to select appropriate algorithms and data structures to solve problems.
CR4	The course teaches students to code fluently in an object-oriented paradigm using the programming language Java.
CR5	The course teaches students to use elements of the standard Java library from the AP Java subset in Appendix A of the AP Computer Science A Course Description.
CR6	The course includes a structured lab component comprised of a minimum of 20 hours of hands-on lab experiences.
CR7	The course teaches students to recognize the ethical and social implications of computer use.

Since the content of the Advanced Placement Computer Science AP course is beyond the scope of Common Core, the Collegeboard Computer Science Curriculum Standards was used for this course.

General Topic	Academic		Essential Knowledge,	Resources &	Assessments	Suggested
	Standard(s)		Skills & Vocabulary	Activities		Time
Computer Systems	CR1, CR7	•	Describe the relationship between	Text Book: Java	Teacher	9
			hardware and software.	Software Solutions	prepared tests,	
Introduction/Binary Numbers		•	Define various types of software and	Computer	quizzes, etc.	
			how they are used.	(Bullets below		
Hardware Components and		٠	Identify basic computer hardware	match previous	Daily Class Work	
Networks		٠	Explain how the hardware	column)	Quizzes	
			components execute programs and	• 1.0		
Programming and			manage data.	• 1.0		
Programming Languages		٠	Describe how computers are	• 1.1		
			connected together into networks to	• 1.3		
Graphics			share information.	• 1.2		
		٠	Explain the importance of the Internet	• 1.2		
Acceptable User's Policy			and the World Wide Web.	• 1.4		
		٠	Introduce the Java Programming	• 1.4		
			Language.	• 1.5		
		٠	Describe the steps involved in	• 1.4		
			program compilation and execution.			
		٠	Introduce graphics and their			
			representations.			
		٠	Law and Ethics			
			Acceptable User's Policy			
Test – Computer Systems					AP Style Multiple	1
					Choice Test	

Intro to objects and using them Variables/Data Types and Arithmetic Using Object Variables	CR1 CR2a CR3 CR4	 Define the difference between primitive data and objects. Declare and use variables. Perform mathematical computations. Create objects and use them. Explore the difference between a Java application and a Java applet. Create graphical programs that draw shapes. 	Text Book: Java Software Solutions Computer • 2.0, 2.1 • 2.2, 2.3 • 2.4, 2.5 • 2.6, 2.7 • 2.10, 2.11 • 2.12	Daily Class Work Quizzes	15
Test - Objects and Primitive Data				AP Style Multiple Choice Test & Hands on Programming Project	2

Boolean Expressions/if Statements Looping Structures Drawing with Loops and Conditionals	CR1 CR2a CR3 CR4	 Discuss basic program development steps. Define the flow of control through a program. Learn to use if statements. Define expressions that let us make complex decisions. Learn to use while and for statements. Use conditionals and loops to draw graphics. 	Text Book: Java Software Solutions Computer • 3.0 • 3.1 • 3.2 • 3.3, 3.4 • 3.5, 3.6 • 3.9	Daily Class Work Quizzes	18
Test - Program Statements				AP Style Multiple Choice Test & Hands on Programming Project	2

	•					
Anatomy of Classes and	CR1	•	Define classes that act like blue-prints	Text Book: Java	Daily Class Work	18
Methods	CR2a		for new objects, made of variables and	Software Solutions	Quizzes	
	CR2b		methods.	Computer		
Method Overloading	CR3	•	Explain encapsulation and Java	• 4.0		
	CR4		modifiers.	• 4.1		
Method Decomposition	CR5	•	Explore the details of method	• 4.2		
	CR6		declarations.	• 4.2		
Object Relationships		•	Review method invocation and	• 4.3		
			parameter passing.	• 4.4		
Applets and Graphics			Explain and use method overloading	• 4.5		
			Learn to divide complicated methods	• 46.4.7		
		-	into simpler supporting methods			
			Describe relationships between			
		•	objects			
			Croate graphics based objects			
		•	Create graphics based objects.			
Test - Writing Classes		+			AP Style Multiple	2
					Choice Test &	2
					Handson	
					Drogramming	
					Project	
					Project	

References/Passing Parameters Interfaces Dialog Boxes Graphical User Interfaces	CR1 CR2a CR3 CR4 CR5 CR6	•	Define reference aliases. Explore passing object references as parameters. Learn to use the static modifier. Define formal interfaces and their class implementations. Define nested classes and inner classes Learn about basic graphical user interfaces.	Text Book: Java Software Solutions Computer • 5.0 • 5.1, 5.2 • 5.3 • 5.4, 5.5 • 5.6, 5.7	Daily Class Work Quizzes	15
Test - Enhancing Classes					AP Style Multiple Choice Test & Hands on Programming Project	2

One and Two Dimensional Primitive Arrays Arrays of Objects ArrayLists Arrays and Graphics Buttons	CR1 CR2a CR2b CR3 CR4 CR5 CR6	•	Define and Use Arrays Describe how arrays and array elements are passed as parameters. Explore how arrays and other objects can be combined to manage complex information. Explore searching and sorting with arrays. Learn to use multidimensional arrays. Examine the ArrayList class.	Te So Cu •	ext Book: Java oftware Solutions omputer 6.0 6.1 6.2 6.3, 6.4 6.6 6.7	Daily Class Work Quizzes	22
Test - Arrays						AP Style Multiple Choice Test & Hands on Programming Project	2

Inheritance Designing for Inheritance Interfaces Mouse Events	CR1 CR2a CR2b CR3 CR4 CR5 CR6	 Derive new classes from existing ones. Explain how inheritance supports software reuse. Add and modify methods in child classes. Discuss how to design class hierarchies. Define polymorphism and how it can be done. Discuss the use of inheritance in Java GUI framework. Examine and use the GUI component class hierarchy. 	Text Book: Java Software Solutions Computer • 7.0 • 7.1 • 7.3 • 7.2, 7.4 • 7.5 • 7.8 • 7.9	Daily Class Work Quizzes	18
Test - Inheritance				AP Style Multiple Choice Test & Hands on Programming Project	2

Basic Recursion Classic Problems Recursive Sorting Fractals	CR1 CR2a CR2b CR3 CR4 CR5 CR6	 Explain the underlying ideas of recursion. Examine recursive methods and processing steps. Define infinite recursion and discuss ways to avoid it. Explain when recursion should and should not be used. Demonstrate the use of recursion to solve problems. Examine the use of recursion in sorting. 	Text Book: Java Software Solutions Computer • 8.0 • 8.1 • 8.0, 8.1 • 8.2 • 8.3 • 8.3	Daily Class Work Quizzes	14
Test - Recursion				AP Style Multiple Choice Test & Hands on Programming Project	2

Linked Lists Queues Stacks	CR1 CR2a CR2b CR3 CR4 CR5 CR6	•	Explore the idea of a collection. Introduce the predefined collection classes in the Java standard class library. Examine the difference between fixed and dynamic implementations. Define and use dynamically linked lists.	Text Book: Java Software Solutions Computer 9.0 9.1 9.2	Daily Class Work Quizzes	14
Test - Linear Data Structures					AP Style Multiple Choice Test & Hands on Programming Project	2

Robocode (optional)	CR1 CR2a CR2b CR3 CR4 CR5 CR6	Robocode is a programming game where the goal is to code a robot battle tank to compete against other robots in a battle arena. So the name Robocode is a short for "Robot code". The player is the programmer of the robot, who will have no direct influence on the game. Instead, the player must write the AI of the robot telling it how to behave and react on events occurring in the battle arena. Battles are running in real- time and on-screen.	IBM Robocode, Computer	Daily Class Work Quizzes	20
---------------------	---	--	---------------------------	-----------------------------	----

Consumer Math

Curriculum Guide

Scranton School District

Scranton, PA

Consumer Math

Prerequisite : Geometry 11 or Applied Geometry 11

Intended Audience: This course is designed for the student who has successfully completed (Geometry 11 or Applied Geometry 11) by the end of the (eleventh) grade.

Course Description: This course is dedicated to real world applications of basic math concepts. This course is designed to expose students to facets of running their own household and prepare them for College Accuplacer and ASVAB tests.

Year-at-a-glance

Subject: Consumer Math	Grade Level: 12	Date Completed: 2/2015

1st Quarter

Торіс	Resources	CCSS
Time	Consumer Math by Kathleen M. Harmeyer	HSN.Q.A.1
	Judy clocks	HSN.Q.A.2
Money	Consumer Math by Kathleen M. Harmeyer	HSN.Q.A.1
	Trays of play money	HSN.Q.A.2
Percents and Decimals	Consumer Math by Kathleen M. Harmeyer	HSN.Q.A.1
	Tiles	HSN.Q.A.2

2nd Quarter

Торіс	Resources	CCSS
Gross pay	Consumer Math by Kathleen M. Harmeyer	8.F.4, HS.A-SSE.3.c, HS. A-CED.1, HS.A-CED.2, HS.A-
		CED.3,HS.A-CED.4, HS.A-REI.1HS.A-REI.2,HS.A-REI.3
Net Pay	Consumer Math by Kathleen M. Harmeyer	HS.F-BF.1,HS.F-LE.2,HS.F-LE.5
Benefits	Consumer Math by Kathleen M. Harmeyer	HS.A-REI.1,HS.A-REI.2, HS.A-REI.3,
Paying taxes	Consumer Math by Kathleen M. Harmeyer	HSN.Q.A.1
		HSN.Q.A.2
Banking	Consumer Math by Kathleen M. Harmeyer	HSN.Q.A.1
	Everfi.com	HSN.Q.A.2

3rd Quarter

Торіс	Resources	CCSS
Owning A home	Consumer Math by Kathleen M. Harmeyer	HSN.Q.A.1
		HSN.Q.A.2
Area and Perimeter	Consumer Math by Kathleen M. Harmeyer	HSN.Q.A.1
	Geo Boards	HSN.Q.A.2
Improving Your Home	Consumer Math by Kathleen M. Harmeyer	HSG.MG.A.3
		HSN.Q.A.1
		HSN.Q.A.2

4th Quarter

Торіс	Resources	CCSS
Travel	Consumer Math by Kathleen M. Harmeyer	HSN.Q.A.1
		HSN.Q.A.2
Proportions And Unit Analysis	Consumer Math by Kathleen M. Harmeyer	HSN.Q.A.1
		HSN.Q.A.2
Working with Food	Consumer Math by Kathleen M. Harmeyer	HSN.Q.A.1
		HSN.Q.A.2
Review for Final	Consumer Math by Kathleen M. Harmeyer	

General Topic		Academic	Essential Knowledge,	Resources &	Assessments	Suggested	
			Standard(s)	Skills & Vocabulary	Activities		Time
١.	Tir	ne	HSN.Q.A.1	Use units as a way to	Consumer	Teacher	15 Days
	Α.	Read an analog clock		understand problems and to	Mathematics by	prepared	
	В.	Elapsed time		guide the solution of multi-step	Kathleen	tests,	
		1. Counting		problems; choose and interpret	Harmeyer	quizzes, etc.	
		2. Subtracting		units consistently in formulas;			
		3. Borrowing Minutes		choose and interpret the scale			
		4. Parking Expenses (pg 216)		and the origin in graphs and	Judy clocks		
	С.	Elapsed time a.m. to p.m.		data displays.			
		1. Counting					
		2. Subtracting					
		3. Hours worked (pg 4)		Define appropriate quantities			
	D.	Military Time		for the purpose of descriptive			
	Ε.	Food Preparation (pg 149)		modeling.			
	F.	Introduction to Time Zones (pg 219)	HSN.Q.A.2				

11.	Money A. Value of denominations B. Rounding money C. Operations with money D. Buying Food (all 12 lessons of Chapter 2) E. Counting back change (pg 306 and 307)	HSN.Q.A.1 HSN.Q.A.2	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. Define appropriate quantities for the purpose of descriptive modeling.	Consumer Math by Kathleen M. Harmeyer Trays of play money	18 Days

III. P	ercents and Decimals	HSN.Q.A.1	Use units as a way to	Consumer Math	12 Davs
Α.	Introduction to percents	HSN.Q.A.2	understand problems and to	by Kathleen M.	
В.	Given a percent multiply		guide the solution of multi-step	Harmeyer	
	1. Sales tax (pg 304 and 305)		problems; choose and interpret		
	2. Down Payments (pg 77)		units consistently in formulas;	Tiles	
C.	To find a percent divide		choose and interpret the scale		
	1. Test Scores		and the origin in graphs and		
	a) given number right		data displays.		
	b) given number wrong				
	2. Budget				
	a) Using budget guidelines to		Define appropriate quantities		
	prepare a budget (pg 232)		for the purpose of descriptive		
	b) Balancing a budget (group effort)		modeling.		
	(pg239)				
	c) What % of your net income was				
	spent? (pg 235)				
	d) two ways to make a budget				
	3. RDA pg 136				
	4. Property tax (pg 295 - 297)				
D.	Percent of whole is part				
1					

IV. Gr	oss Pay (all 13 lessons of Chapter 1)	8.F.4,	Construct a function to model a	Consumer Math	18 Days
Α.	Hourly	HS.A-SSE.3.c,	linear relationship between	by Kathleen M.	(Includes
В.	Salary		two quantities. Determine the	Harmeyer	a test for
с.	Regular Pay		rate of change and initial value	-	IV, V, and
D.	Overtime pay		of the function from a		VI)
	1.Time worked		description of a relationship or		
	2.Overtime		from two (<i>x, y</i>) values,		
	3.Wages plus overtime		including reading these from a		
Ε.	Holiday Pay		table or from a graph. Interpret		
F.	Tips		the rate of change and initial		
G.	Piecework		value of a linear function in		
Н.	Commission		terms of the situation it		
	1. Straight Commission		models, and in terms of its		
	2. Graduated Commission		graph or a table of values.		
	3. Commission plus salary				
			Use the properties of		
			exponents to transform		
			expressions for exponential		
			functions. For example the		
			expression 1.15 ^t can be		
			rewritten as (1.15 ^{1/12}) ^{12t} ≈		
			1.012 ^{12t} to reveal the		
			approximate equivalent		
			monthly interest rate if the		
			annual rate is 15%.		

HS. A-CED.1, HS.A-CED.2, HS.A-CED.3, HS.A-CED.4,	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints		
	relationships between		
	quantities; graph equations on		
	coordinate axes with labels and		
	scales.		
	Represent constraints by		
	equations or inequalities, and		
	by systems of equations and/or		
	inequalities, and interpret		
	solutions as viable or nonviable		
	ontions in a modeling context.		
	For example, represent		
	inequalities describing		
	nutritional and cost constraints		
	on combinations of different		
	foods.		
	,		
	Rearrange formulas to highlight		
	a quantity of interest, using the		
	same reasoning as in solving		
	equations. For example.		
	rearrange Ohm's law $V = IR$ to		
	highlight resistance R.		

HS.A-REI.1,	Explain each step in solving a		
HS.A-REI.2,	simple equation as following		
HS.A-REI.3,	from the equality of numbers		
	asserted at the previous step,		
	starting from the assumption		
	that the original equation has a		
	solution. Construct a viable		
	argument to justify a solution		
	method.		
	Solve simple rational and		
	radical equations in one		
	variable, and give examples		
	showing how extraneous		
	solutions may arise.		
	·····, ····		
	Solve linear equations and		
	inequalities in one variable.		
	including equations with		
	coefficients represented by		
	letters		
	ietters.		

V. Net Pa A. Feo B. Soo C. Me D. Tot	y deral Withholding Tax cial Security Tax edicare Tax tal Deductions	HS.F-BF.1, HS.F-LE.2, HS.F-LE.5	Write a function that describes a relationship between two quantities. [*] Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input- output pairs (include reading these from a table). Interpret the parameters in a linear or exponential function in terms of a context.	Consumer Math by Kathleen M. Harmeyer		1 days
--	--	---------------------------------------	---	---	--	--------

	1			1	1
VI. Benefits	HS.A-REI.1,	Explain each step in solving a	Consumer Math		3 Days
A. Total job Benefits	HS.A-REI.2,	simple equation as following	by Kathleen M.		
B. Net job Benefits	HS.A-REI.3,	from the equality of numbers	Harmeyer		
C. Comparing Jobs		asserted at the previous step,			
		starting from the assumption			
		that the original equation has a			
		solution. Construct a viable			
		argument to justify a solution			
		method.			
		Solve simple rational and			
		radical equations in one			
		variable, and give examples			
		showing how extraneous			
		solutions may arise.			
		Solve linear equations and			
		inequalities in one variable.			
		including equations with			
		coefficients represented by			
		lettors			

VII. Paying Taxes (parts of Chapter 11)	HSN.Q.A.1	Use units as a way to	Consumer Math	8 Days
A. Flat Income Taxes	HSN.Q.A.2	understand problems and to	by Kathleen M.	
1. Scranton City Tax		guide the solution of multi-step	Harmeyer	
2. PA State Income Tax		problems: choose and interpret	-,-	
B. Graduated Income Taxes		units consistently in formulas:		
1. Federal Tax		choose and interpret the scale		
a) Exemptions and deductions		and the origin in graphs and		
(ng 287)		data displays		
$\begin{array}{c} (pg 207) \\ \text{b)} \text{Read the table (ng 289)} \end{array}$				
c) Using a Tay Schedule (ng 201)				
C Pofund or Tax Due (ng 202)		Define appropriate quantities		
C. Refutit of Tax Due (pg 255)		for the purpose of descriptive		
		modeling		
		modeling.		

				1 1	
VIII. Banking (lessons 1 – 6 of Chapter 10)	HSN.Q.A.1	Use units as a way to understand	Everfi.com		15 days
A. Checking Accounts	HSN.Q.A.2	problems and to guide the			
1.Comparing Checking accounts		solution of multi-step problems;	Consumer Math		
2. Deposits		choose and interpret units	by Kathleen M.		
a) Endorsing Checks		consistently in formulas; choose	Harmeyer		
b) Deposit Slips		and interpret the scale and the			
c) Recoding deposits in the register		origin in graphs and data displays.			
3. Writing Checks					
a) Recording checks in the register					
4. (ATM) Electronic Banking		Define appropriate quantities for			
a) Recording withdrawals in the		the purpose of descriptive			
register		modeling.			
b) Recording purchases in the					
register					
5. Online banking					
a) Expected or pending Payments					
6. Reconciling a Register					
B. Savings Accounts					
1. Simple Interest					
2. Compound Interest					
3. Doubling your money					
1	1		1		

IX. Owning a Home (lessons 1 – 5 of Chapter 4)	HSN.Q.A.1	Use units as a way to understand	Consumer Math	1	L5 Days
	HSN.Q.A.2	problems and to guide the	by Kathleen M.		
A. Borrowing to buy a home		solution of multi-step problems;	Harmeyer		
1. Bankers Rule (pg 74)		choose and interpret units			
2. Down Payments (pg 77)		consistently in formulas; choose			
3. Closing Costs		and interpret the scale and the			
4. Mortgage Loan Interest Costs		origin in graphs and data			
a) Finding monthly Payments		displays.			
b) Finding the total to be repaid					
c) Finding the Finance Charge					
5. Refinancing a mortgage		Define appropriate quantities			
B. Renting to Buy a home		for the purpose of descriptive			
1. Renters rule (pg 72)		modeling.			
2. Costs of Property Rental					
C. Comparing Renting and Owning a home					

Х.	Area and Perimeter – (Square/Rectangle/Triangle/Circle)	HSN.Q.A.1 HSN.Q.A.2	Use units as a way to understand problems and to guide the	Consumer Math by Kathleen M.	1	15 Days
	A. Perimeter		solution of multi-step problems;	Harmeyer		
	B. Area		choose and interpret units			
	C. Irregular Area		consistently in formulas; choose	Geo boards		
	D. Shaded Area		and interpret the scale and the			
	E. Surface Area		origin in graphs and data			
			displays.			
			Define appropriate quantities			
			for the purpose of descriptive			
			modeling.			
XI. Impro	ving your home (Chapter 7)	HSG.MG.A.3	Apply geometric methods to	Consumer Math	15 Days	
-----------	-----------------------------	------------	------------------------------------	----------------	---------	--
A.	Insulation	HSN.Q.A.1	solve design problems (e.g.,	by Kathleen M.		
B.	Covering the floor	HSN.Q.A.2	designing an object or structure	Harmeyer		
	1. Tile		to satisfy physical constraints or			
C.	Covering the walls		minimize cost; working with			
	1. Paint		typographic grid systems based			
D.	Molding		on ratios).			
E.	Additions					
F.	Furniture		Use units as a way to understand			
	1. Cash		problems and to guide the			
	2. 90 day same as cash		solution of multi-step problems;			
	a) Using calendars to count		choose and interpret units			
	days		consistently in formulas; choose			
	3. Lay-A-Way		and interpret the scale and the			
	4. Credit card		origin in graphs and data			
	5. Rent to own		displays.			
G	Seeding and Feeding a lawn					
H.	Fencing the yard					
			Define appropriate quantities			
			for the purpose of descriptive			
			modeling.			

XII.	Travel (Chapter 8)	HSN.Q.A.1	Use units as a way to understand	Consumer Math	20 Days
	A. By Car	HSN.Q.A.2	problems and to guide the	by Kathleen M.	•
	1. Reading a map		solution of multi-step problems;	Harmeyer	
	2. Estimating distances		choose and interpret units	-	
	3. Map quest		consistently in formulas; choose		
	2. Google Earth		and interpret the scale and the		
	3. Renting a car		origin in graphs and data		
	4. Parking Expenses		displays.		
	B. Taxi and Limousine Services				
	C. By Bus				
	1. Reading a Bus schedule		Define appropriate quantities		
	2. Computing Bus fare		for the purpose of descriptive		
	D. By Subway		modeling.		
	1. Reading a subway schedule				
	E. By Airplane				
	F. On a Cruise				
	G. Staying in a hotel				
	1. Cost for season				
	a) calendars to tell elapsed				
	time				
	2. Concierge and Staff you				
	might meet				
	3. Room Service and Wakeup				
	calls				
	H. Package Deals				

XIII. Proportio	ons and Unit analysis	HSN.Q.A.1	Use units as a way to understand	Consumer Math	5 days
Α.	Discovering Ratios	HSN.Q.A.2	problems and to guide the	by Kathleen M.	
В.	Discovering Proportions		solution of multi-step problems;	Harmeyer	
С.	Using Unit Analysis		choose and interpret units		
			consistently in formulas; choose		
			and interpret the scale and the		
			origin in graphs and data		
			displays.		
			Define appropriate quantities		
			for the purpose of descriptive		
			modeling.		

XIV.	Working with Food (parts of Chapter 6)	HSN.Q.A.1	Use units as a way to understand	Consumer Math	12 Days
Α.	The Key to Ratio	HSN.Q.A.2	problems and to guide the	by Kathleen M.	
В.	The key to Proportions		solution of multi-step problems;	Harmeyer	
С.	Finding Calories with Proportions		choose and interpret units		
D.	Fat grams and Calories		consistently in formulas; choose		
Ε.	Nutritional Information		and interpret the scale and the		
	a) reading labels		origin in graphs and data		
	b) pg 135		displays.		
F.	Using Calories				
G.	Losing Pounds				
н.	Changing Recipe Yields		Define appropriate quantities		
Ι.	Timing Food Preparation		for the purpose of descriptive		
			modeling.		
					l
					l
XV.	Review for Final Exam	-			6 days
					l
					1

Elementary Analysis

Curriculum Guide

Scranton School District

Scranton, PA

Elementary Analysis

Prerequisite : Algebra II/Trigonometry

Elementary Analysis is an advanced course in mathematics. The major topics in this course are quadratic equations, coordinate geometry, polynomial algebra, theory of equations, inequalities, functions, exponents, advanced graphing techniques, conics, trigonometry and its applications, polar coordinates, vector operations, series, matrices, and probability. After successful completion of this course the students will be allowed to enroll in Calculus or Calculus Honors if the Scranton School District Criteria for enrollment in Honors classes is met.

Year-at-a-glance

Subject: Elementary Analysis	Grade Level: 11,12	Date Completed: 2/1/15

1st Quarter

Торіс	Resources	CCSS
FUNDAMENTALS/REVIEW	Advanced Mathematics Text	A1.2.2.1.3
	Chapter 1-1, 1-2, 1-3, 1-4, 1-8	HSA.REI.C.5
Linear Functions		HSA.REI.C.6
	Graphing Calculators	HSF.BF.A.1
		HSF.BF.A.1.a
THE COMPLEX NUMBER SYSTEM	Advanced Mathematics Text	HSN.CN.A.1
	Chapter 1-5	HSN.CN.A.2
Perform arithmetic operations with complex numbers.		HSN.CN.A.3
	Graphing Calculators	
INTERPRETING FUNCTIONS	Advanced Mathematics Text	HSF.IF.C.7
	1-1, 1-4, 1-6, 1-7	HSF.IF.C.7.a
Analyze functions using different representations.	Chapter 2 (excluding 2-7)	HSF.IF.C.7.c
	Chapter 3 (excluding 3-4)	
	Graphing Calculators	

2nd Quarter

Торіс	Resources	CCSS
INTERPRETING FUNCTIONS	Advanced Mathematics Text	HSF.IF.C.7.d
	4-1, 4-7	HSF.IF.C.7.b
Analyze functions using different representations.	Chapter 5	A2.1.2.1.3
	Glossary (p.882)	HSF.IF.C.7.e
		HSF.IF.C.8
	Graphing Calculators	HSF.BF.A.1
		HSF.BF.A.1.a
		HSF.BF.A.1.b
		HSF.BF.A.1.c
		HSF.IF.C.8.a
		HSF.IF.C.8.b
		HSF.IF.C.9
BUILDING FUNCTIONS	Advanced Mathematics Text	HSF.BF.B.3
	4-2, 4-3, 4-4, 4-5	HSF.BF.B.4
Build new functions from existing functions	5-3, 5-4, 5-5, 5-6	HSF.BF.B.4.a
		HSF.BF.B.4.b
	Graphing Calculators	HSF.BF.B.4.c
		HSF.BF.B.4.d
		HSF.BF.B.5

3rd Quarter

Торіс	Resources	CCSS
TRIGONOMETRIC FUNCTIONS	Advanced Mathematics Text	HSF.TF.A.1
	Chapter 7	HSF.TF.A.2
Extend the domain of trigonometric functions using the unit		HSF.TF.A.3
circle	Graphing Calculators	HSF.TF.A.4
Model periodic phenomena with trigonometric functions	Advanced Mathematics Text	HSF.TF.B.5
	8-2, 8-3	HSF.TF.B.6
		HSF.TF.B.7
	Graphing Calculators	
Prove and apply trigonometric identities	Advanced Mathematics Text	HSF.TF.C.8
	8-1, 8-4, 8-5	
	Chapter 9	
	10-3	
	Graphing Calculators	
EXPRESSING GEOMETRIC PROPERTIES WITH EQUATIONS	Advanced Mathematics Text	HSG.GPE.A.1
	6-1 to 6-5	HSG.GPE.A.2
Translate between the geometric description and the equation		HSG.GPE.A.3
for a conic section	Graphing Calculators	HSA.REI.C.7

4th Quarter

Торіс	Resources	CCSS
SEQUENCES AND SERIES	Advanced Mathematics Text	HSF.BF.A.2
	13-1, 13-2, 13-3	
Build a function that models a relationship between two		
quantities	Graphing Calculators	
USING PROBABILITY TO MAKE DECISIONS	Advanced Mathematics Text	A2.2.3.2.1
	16-1, 16-2, 16-4, 16-6	A2.2.3.2.3
Calculate expected values and use them to solve problems		HSS.MD.A.2
	Graphing Calculators	HSS.MD.B.5.a
VECTOR QUANTITIES AND MATRICES	Advanced Mathematics Text	HSN.VM.B.4
	12-1, 12-2	HSN.VM.B.4.a
Perform operations on vectors		HSN.VM.B.4.b
	Graphing Calculators	HSN.VM.B.4.c
		HSN.VM.B.5
		HSN.VM.B.5.a
Perform operations on matrices and use matrices in applications	Advanced Mathematics Text	HSN.VM.C.6
	14-1, 14-2, 14-3, 14-4	HSN.VM.C.7
		HSN.VM.C.8
	Graphing Calculators	HSN.VM.C.9
		HSN.VM.C.10
		HSA.REI.C.8
		HSA.REI.C.9
REPRESENT COMPLEX NUMBERS AND THEIR OPERATIONS ON	Advanced Mathematics Text	HSN.CN.B.4
THE COMPLEX PLANE	11-1, 11-2	
	Graphing Calculators	
Final Example and Poviour		

***Note: Italicized blue text designates SSD Elementary Analysis topics that are currently covered (and should continue to be) but are NOT listed in the Common Core State Mathematics Standards.

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggest ed Time
	.,	,			
FUNDAMENTALS/	A1.2.2.1.3	Write or identify a linear equations when given: the	Advanced	Teacher	15 days
REVIEW		graph of a line, two points on a line, the slope and	Mathematics	prepared tests,	
		point on the line, and parallel and perpendicular lines	Text	quizzes, etc.	
Linear Functions			Chapter 1-1,		
	HSA.REI.C.5	Prove that, given a system of two equations in two	1-2, 1-3, 1-4,		
		variables, replacing one equation by the sum of that	1-8		
		equation and a multiple of the other produces a			
		system with the same solutions.	Graphing		
			Calculators		
	HSA.REI.C.6	Solve systems of linear equations exactly and			
		approximately (e.g., with graphs), focusing on pairs of			
		linear equations in two variables.			
	HSF.BF.A.1				
		Write a function that describes a relationship between			
		two quantities.			
	HSF.BF.A.1.a	Determine an explicit expression, a recursive process			
		or steps for calculation from a context			
	HSN.CN.A.1	Know there is a complex number i such that $i^2 = -1$,	Advanced		3 days
NUMBER SYSTEM		and every complex number has the form $a + bi$ with a	Mathematics		
		and <i>b</i> real.	Text		
Perform arithmetic			1-5		
operations with	HSN.CN.A.2	Use the relation $i^2 = -1$ and the commutative,			
complex numbers.		associative, and distributive properties to add,	Graphing		
		subtract, and multiply complex numbers.	Calculators		
	HSN.CN.A.3	(+) Find the conjugate of a complex number.			

INTERPRETING	HSF.IF.C.7	Graph functions expressed symbolically and show key	Advanced	45 days
FUNCTIONS		features of the graph, by hand in simple cases and	Mathematics	
		using technology for more complicated cases.	Text	
Analyze functions			1-1, 1-4, 1-6, 1-	
using different	HSF.IF.C.7.a	Graph linear and quadratic functions and show	7	
representations.		intercepts, maxima, and minima.		
			Chapter 2	
		Solve and graph polynomial functions/inequalities,	(excluding 2-7)	
		identifying zeros when suitable factorizations are		
		available, and showing end behavior.	Chantor 2	
			(analysis 2.4)	
	HSF.IF.C.7.0	(+) Graph rational functions, identifying zeros and	(excluding 3-4)	
		asymptotes when suitable factorizations are available,		
		and showing end behavior.	4-1, 4-7	
	HSF.IF.C.7.b	Graph square root, cube root, and piecewise-defined	Chapter 5	
		functions, including step functions and absolute value		
		functions.	Glossary	
			(p.882)	
	A2.1.2.1.3	Simplify/evaluate expressions involving real		
		exponents including multiplying with exponents,	Graphing	
		powers of powers, and powers of products	Calculators	
	HSF.IF.C.7.e			
		Graph exponential and logarithmic functions, showing		
		intercepts and end behavior, and trigonometric		
		functions, showing period, midline, and amplitude.		
	1135.15.0.0	write a function defined by an expression in different		
		but equivalent forms to reveal and explain different		
		properties of the function.		

Analyze functions using different	HSF.BF.A.1	Write a function that describes a relationship between two quantities.		
representations.	HSF.BF.A.1.a	Determine an explicit expression, a recursive process, or steps for calculation from a context.		
	HSF.BF.A.1.b	Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.		
	HSF.BF.A.1.c	(+) Compose functions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is the height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather balloon as a function of time.		
	HSF.IF.C.8.a	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.		
	HSF.IF.C.8.b	Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y =$ $(1.02)^t$, $y = (0.97)^t$, $y = (1.01)12^t$, $y = (1.2)^t/10$, and classify them as representing exponential growth or decay.		
	HSF.IF.C.9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.		

BUILDING FUNCTIONS	HSF.BF.B.3	Identify the effect on the graph of replacing f(x) by f(x)	Advanced	30 days
		+ k, k f(x), f(kx), and f(x + k) for specific values of k	Mathematics	
Build new functions		(both positive and negative); find the value of k given	Text	
from existing functions		the graphs. Experiment with cases and illustrate an	4-2, 4-3, 4-4,	
		explanation of the effects on the graph using	4-5	
		technology. Include recognizing even and odd		
		functions from their graphs and algebraic expressions	5-3, 5-4, 5-5,	
		for them.	5-6	
	HSF.BF.B.4	Find inverse functions.	Graphing	
			Calculators	
	HSE BE B 4 a	Solve an equation of the form f(x) = c for a simple	culculators	
	1151.01.0.4.0	function f that has an inverse and write an expression		
		for the inverse. For example, $f(x) = 2x^3$ or $f(x) =$		
		$(x+1)/(x-1)$ for $x \neq 1$.		
	ПЭГ.DГ.D.4.D	(+) Verify by composition that one function is the		
		inverse of another.		
		(1) Dead values of an inverse function from a graph or		
	HSF.BF.B.4.C	(+) Read values of an inverse function from a graph or		
		a table, given that the function has an inverse.		
		(+) Produce an invertible function from a non-		
	HSF.BF.B.4.d	invertible function by restricting the domain		
		intertible randion by restricting the domain.		
		(+) Understand the inverse relationship between		
	HSF.BF.B.5	exponents and logarithms and use this relationship to		
		solve problems involving logarithms and exponents.		

TRIGONOMETRIC FUNCTIONS Extend the domain of trigonometric functions using the unit circle	HSF.TF.A.1 HSF.TF.A.2	Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle. Graph all 6 trigonometric functions including transformations of sine, cosine, and tangent functions.	Advanced Mathematics Text Chapter 7 Graphing Calculators	34 days
	HSF.TF.A.3 HSF.TF.A.4	(+) Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi/3$, $\pi/4$ and $\pi/6$, and use the unit circle to express the values of sine, cosine, and tangent for x , $\pi + x$, and $2\pi - x$ in terms of their values for x , where x is any real number. (+) Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.		
Model periodic phenomena with trigonometric functions	HSF.TF.B.5 HSF.TF.B.6	Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. (+) Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.	Advanced Mathematics Text 8-2, 8-3 Graphing Calculators	
	HSF.TF.B.7	(+) Use inverse functions to solve trigonometric equations; evaluate the solutions using technology.		

		-		
Prove and apply trigonometric	HSF.TF.C.8	Prove the Pythagorean identity $\sin^2(\theta) + \cos^2(\theta) = 1$ and use it to find $\sin(\theta)$, $\cos(\theta)$, or $\tan(\theta)$ given $\sin(\theta)$,	Advanced Mathematics	
identities		$\cos(\theta)$, or $\tan(\theta)$ and the quadrant of the angle.	Text	
			8-1, 8-4, 8-5	
		Simplify trigonometric expressions/prove and solve		
		trigonometric equations	Chapter 9	
		Use the Law of Sines and Law of Cosines to find unknown parts of a triangle	10-3	
		Prove the double angle formulas for sine and cosine and use them to solve problems.	Graphing Calculators	
EXPRESSING GEOMETRIC PROPERTIES WITH FOUATIONS	HSG.GPE.A.1	Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.	Advanced Mathematics Text 6-1 to 6-5	10 days
Translate between the geometric description	HSG.GPE.A.2	Derive the equation of a parabola given a focus and directrix.	Graphing Calculators	
and the equation for a conic section	HSG.GPE.A.3	(+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.		
	HSA.REI.C.7	Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 = 3$.		

SEQUENCES AND SERIES Build a function that models a relationship between two quantities	HSF.BF.A.2	Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	Advanced Mathematics Text 13-1, 13-2, 13-3 Graphing Calculators	5 days
USING PROBABILITY TO MAKE DECISIONS Calculate expected values and use them	A2.2.3.2.1 A2.2.3.2.3	Use Combinations, permutations, and The Fundamental Counting Principle to solve problems. Use probability for independent, dependent, or compound events to predict outcomes.	Advanced Mathematics Text 16-1, 16-2, 16-4, 16-6	10 days
to solve problems	HSS.MD.A.2 HSS.MD.B.5.a	 (+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution. Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fast-food restaurant. 	Graphing Calculators	

VECTOR QUANTITIES AND MATRICES	HSN.VM.B.4	(+) Add and subtract vectors.	Advanced Mathematics	13 days
Perform operations on vectors	HSN.VIVI.B.4.a	parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the	12-1, 12-2	
		magnitudes.	Graphing	
	HSN.VM.B.4.b	Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.	Calculators	
	HSN.VM.B.4.c	Understand vector subtraction $v - w$ as $v + (-w)$, where -w is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.		
	HSN.VM.B.5	(+) Multiply a vector by a scalar.		
	HSN.VM.B.5.a	Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as $c(v_x, v_y) = (cv_x, cv_y)$.		

Perform operations on	HSN.VM.C.6	(+) Use matrices to represent and manipulate data.	Advanced	
matrices and use		e g to represent payoffs or incidence relationships in	Mathematics	
matrices in		a notwork	Toyt	
			14.1.14.2	
applications		(+) Multiply matrices by scalars to produce new	14-1, 14-2,	
	HSN.VM.C.7	(+) Multiply matrices by scalars to produce new	14-3, 14-4	
		matrices, e.g., as when all of the payoffs in a game are		
		doubled.	Graphing	
			Calculators	
	HSN.VM.C.8	(+) Add, subtract, and multiply matrices of appropriate		
		dimensions.		
	HSN.VM.C.9	(1) Understand that unlike multiplication of numbers		
		(+) Onderstand that, unlike multiplication of numbers,		
		matrix multiplication for square matrices is not a		
		commutative operation, but still satisfies the		
		associative and distributive properties.		
		(1) Understand that the zero and identity matrices		
	H2IN.VIVI.C.10	(+) Onderstand that the zero and identity matrices		
		play a role in matrix addition and multiplication		
		similar to the role of 0 and 1 in the real numbers. The		
		determinant of a square matrix is nonzero if and only		
		if the matrix has a multiplicative inverse.		
		(1) Poprocent a system of linear equations as a single		
	HSA.REI.C.8	(+) Represent a system of linear equations as a single		
		matrix equation in a vector variable.		
		(+) Find the inverse of a matrix if it exists and use it to		
	HSA.REI.C.9	solve systems of linear equations (using technology		
		for matrices of dimension 3 x 3 or greater).		
REPRESENT COMPLEX		(+) Represent complex numbers on the complex plane	Advanced	5 days
	11511.611.0.4	in restangular and polar form (including real and	Mathematics	Judys
		in rectangular and polar form (including real and	Tout	
OPERATIONS ON THE		imaginary numbers), and explain why the rectangular	iext	
COMPLEX PLANE		and polar forms of a given complex number represent	11-1, 11-2	
		the same number.		
			Graphing	
			Calculators	

Final Exams and			10 days
Reviews			

Please note: (+) Indicates content used in additional courses beyond Algebra II.

Geometry 10 and Geometry 11

Curriculum Guide

Scranton School District

Scranton, PA

Geometry 10 and Geometry 11

Prerequisite : Successful completion of Algebra I

Intended Audience: This course is designed for the student who has successfully completed Algebra I by the end of the 9th or 10th grade.

Geometry 10 is the course 10th grade students take after Algebra I, while Geometry 11 is designed for those eleventh grade students who have completed Algebra I at the end of their sophomore year. These courses are designed to emphasize the study of the properties and applications of common two and three dimensional geometric figures. These courses formalize what students have learned about geometry in the middle grades, with a concentration on mathematical reasoning, including exposure to formal proofs. Topics covered focus on the Pennsylvania Common Core Standards and include, but are not limited to: coordinate geometry, perimeter, area, surface area and volume, congruent and similar triangles, right triangles, quadrilaterals, and circles. After successfully completing Geometry 10 or Geometry 11, students will be allowed to enroll in Algebra 2 or Algebra 2/Trigonometry.

<u>Year-at-a-glance</u>

Subject: Geometry 10 and Geometry 11	Grade Level: 10 th and 11 th	Date Completed: Oct 2014
--------------------------------------	--	--------------------------

1st Quarter

Торіс	Resources	CCSS
Basic Terms and Coordinate Geometry	Big Ideas Geometry 1.1 - 1.3	G.2.1.2.1, G.2.1.2.2,
		G.2.1.2.3
Perimeter and Area in the Coordinate Plane	Big Ideas Geometry 1.4	G.2.2.2.1, G.2.2.2.2,
		G.2.2.2.4, G.2.2.2.5,
		G.2.2.3.1, G.2.2.4.1
Angles	Big Ideas Geometry 1.5 - 1.6, 5.1, 7.1	G.2.2.1.1, G.2.2.1.2,
		G.1.2.1.4
Parallel and Perpendicular Lines	Big Ideas Geometry 3.1- 3.5	G.2.2.1.2, G.2.1.2.2

2nd Quarter

Торіс	Resources	CCSS
Reasoning and Proof	Big Ideas Geometry 2.4 – 2.6	G.1.3.2.1
Congruent Triangles	Big Ideas Geometry 5.2 – 5.7	G.1.2.1.1, G.1.2.1.3, G.1.3.1.1,
		G.1.3.2.1
Relationships Within Triangles	Big Ideas Geometry 6.1, 6.2 – 6.5	G.1.2.1.1

3rd Quarter

Торіс	Resources	CCSS
Similar Triangles	Big Ideas Geometry 8.1 – 8.4	G.1.3.1.2, G.1.3.1.1
Right Triangles and Trigonometry	Big Ideas Geometry 9.1 – 9.5	G.2.1.1.1, G.2.1.1.2
Quadrilaterals and Their Area	Big Ideas Geometry 7.2 – 7.5	G.2.1.2.3, G.1.2.1.2,
		G.2.2.2.2, G.2.2.2.3,

4th Quarter

Торіс	Resources	CCSS
Circles	Big Ideas Geometry 10.1 – 10.6	G.1.1.1.1, G.1.1.1.2, G.1.1.1.3
Circumference, Area, and Volume	Big Ideas Geometry 11.1 – 11.2, 11.4 – 11.8	G.1.1.1.2, G.2.2.2.5, G.1.1.1.4,
		G.1.2.1.5, G.2.3.1.1, G.2.3.1.2,
		G.2.3.1.3, G.2.3.2.1, G.2.2.4.1
Final Review		

General Topic	Academic	Essential Knowledge,	Resources & Activities	Assessments	Suggested
	Standard(s)	Skills & Vocabulary			Time
Basic Terms		Name points, lines,	Big Ideas Geometry 1.1 – 1.2	Teacher prepared	
And		planes, segments, and		tests, quizzes, etc.	
Coordinate		rays. Use the Ruler and			
Geometry		Segment Addition		Series available	12 days
		Postulate.		assessments online.	
				(Optional)	
		Calculate the distance	Big Ideas Geometry 1.3		
	G.2.1.2.1	and/or midpoint		bigideasmath.com	
		between 2 points on a	http://departments.jordandistrict.or	(Optional)	
		number line or on a	g/curriculum/mathematics/secondar		
		coordinate plane.	y/impact/Algebra/Alg%208%20Geo		
		Using the Midpoint and	metry%20in%20Algebra/Alg8.4Solvin		
		Distance Formula.	g%20for%20the%20midpoint.pdf		

Perimeter and Area in the Coordinate Plane	G.2.2.2.1	Estimate area, perimeter or circumference of an irregular figure. Using area, perimeter, and circumference formulas in the coordinate plane.	Big Ideas Geometry 1.4	8 days
	G.2.2.2.4	Develop and/or use strategies to estimate the area of a compound/composite figure.	http://shodor.org/interactivate- java/activities/ShapeBuilder/	
Angles		Name, measure and classify angles. Identify congruent angles.	Big Ideas Geometry 1.5	10 days
	G.2.2.1.1	Use properties of angles formed by intersecting lines to find the measures of missing angles. Complementary, Supplementary, and Vertical Angles.	Big Ideas Geometry 1.6 <u>http://www.palmbeachschools.org/s</u> <u>tudents/Grade12/GeometryActivity2</u> <u>.pdf</u>	
	G.1.2.1.1	Identify and/or use properties of triangles. Triangle Sum and Exterior Angle Theorems.	Big Ideas Geometry 5.1	

	G.1.2.1.4	Identify and/or use properties of regular polygons. Interior and Exterior Angle Theorems.	Big Ideas Geometry 7.1 http://illuminations.nctm.org/Activit y.aspx?id=3546	
Parallel and Perpendicular Lines		<i>Review and identify pairs of lines.</i>	Big Ideas Geometry 3.1	15 days
	G.2.2.1.2	Use properties of angles formed when two parallel lines are cut by a transversal to find the measures of missing angles.	Big Ideas Geometry 3.2-3.3, 5.1	
	G.2.1.2.2	Relate slope to perpendicularity and/or parallelism (limit to linear algebraic equations). Identify parallel and perpendicular lines. Write equations of parallel and perpendicular lines.	Big Ideas Geometry 3.4-3.5	

Reasoning and Proofs		Use Algebraic Properties of Equality to justify the steps in solving an equation in a two- column proof.	Big Ideas Geometry 2.4	15 days
	G.1.3.2.1	Write, analyze, complete, or identify formal proofs (e.g., direct and/or indirect proofs/proofs by contradiction.) Use properties of equality involving segment lengths and angle measures to complete two-column proofs.	Big Ideas Geometry 2.5-2.6	
Congruent		Identify and/or use	Big Ideas Geometry 5.2	
Triangles	G.1.3.1.1	properties of congruent		20 days
		polygons or solids.		
		corresponding parts		
		Identify and/or use	Big Ideas Geometry 5.4	
	G.1.2.1.3	properties of isosceles		
		and equilateral		
		triangles.		
		Use the Base Angles		
		Theorems.		

	G.1.3.2.1	Write, analyze, complete, or identify formal proofs (e.g., direct and/or indirect proofs/proofs by contradiction). Proving triangles congruent using the SAS, SSS, HL, ASA and AAS Congruence Theorems.	Big Ideas Geometry 5.3, 5.5, 5.6 http://www.lcps.org/cms/lib4/VA01 000195/Centricity/Domain/1445/Ge 0%20G.6%20Chapter%204%20Congr uent%20Triange%20Lab%20WS%20P DF.pdf	
Relationships Within Triangles	G.1.2.1.1	Identify and/or use properties of triangles. Identify and/or use	Big Ideas Geometry 6.1, 6.3	10 days
		altitudes, and perpendicular bisectors.	Big Ideas Geometry 6.4	
		coordinate plane and the Triangle Midsegment Theorem to find distance.	Big Ideas Geometry 6.5	
		Use Triangle Inequality Theorem.	http://www.glencoe.com/sites/com mon_assets/support_pages/MC_Cou rse3/Triangle_Inequality.pdf	

Similar Triangles	G.1.3.1.1	Identify and/or use properties of similar polygons or solids.	Big Ideas Geometry 8.1	15 days
		Use the Triangle Similarity Theorems to solve real-life problems.	Big Ideas Geometry 8.2-8.3	
	G.1.3.1.2	Identify and/or use proportional relationships in similar figures.	Big Ideas Geometry 8.4	
Right Triangles	62111	Use the Pythagorean	Big Ideas Geometry 9.1	
Trigonometry	0.2.11.11	and/or solve problems involving right triangles.	http://www.cimt.plymouth.ac.uk/pr ojects/mepres/book8/y8s3act.pdf	15 days
		Find side lengths in special right triangles and solve real-life problems.	Big Ideas Geometry 9.2	
		Use the geometric mean to solve problems involving similar right triangles.	Big Ideas Geometry 9.3	

	G.2.1.1.2	Use trigonometric ratios to write and/or solve problems involving right triangles.	Big Ideas Geometry 9.4-9.5 http://en.wikibooks.org/wiki/High_S chool_Trigonometry/Applications_of _Right_Triangle_Trigonometry http://jwilson.coe.uga.edu/emt668/ emat6680.folders/brooks/6690stuff/ righttriangle/Applications.html	
Quadrilaterals And Their Areas	G.1.2.1.2	Identify and/or use properties of quadrilaterals. Use properties of trapezoids and the Trapezoid Midsegment Theorem to find distances.	Big Ideas Geometry 7.2, 7.4, 7.5 <u>http://illuminations.nctm.org/Lesson</u> <u>.aspx?id=1992</u> Big Ideas Geometry 7.5	15 days
	G.2.1.2.3	Use slope, distance and/or midpoint between 2 points on a coordinate plane to establish properties of a 2-dimensional shape.	Big Ideas Geometry 7.3, 7.4	

G.2.2.2.2	Find the measurement of a missing length given the perimeter, circumference, or area. Use formulas for quadrilaterals.		
G.2.2.2.3	Find the side lengths of a polygon with a given perimeter to maximize the area of the polygon. Use formulas for quadrilaterals.	http://map.mathshell.org/materials/ download.php?fileid=1226	
G.2.2.3.1	Describe how a change in the linear dimension of a figure affects its perimeter, circumference, and area. (e.g., How does changing the length of the radius of a circle affect the circumference of the circle?). Use formulas for quadrilaterals.	http://www.ssms.scps.k12.fl.us/Port als/104/assets/pdf/Math%207th%20 garde/Change%20in%20geometric%2 Odimensions.pdf http://www.shawnee.edu/acad/ms/ ENABLdocs/Summer08pdfs/Geoboar ds%20Lesson%20Plan.pdf http://www.shawnee.edu/acad/ms/ ENABLdocs/Summer08pdfs/Geoboar ds%20Lesson%20Plan.pdf	

Circles	G.1.1.1.1	Identify, determine and/or use the radius, diameter, segment and/or tangent of a circle.	Big Ideas Geometry 10.1 <u>http://illuminations.nctm.org/uploa</u> <u>dedFiles/Content/Lessons/Resources</u> /9-12/PiLine-AS-Slope.pdf	15 days
	G.1.1.1.2	Identify, determine and/or use the arcs, semicircles, sectors, and/or angles of a circle. Find arc measures.	Big Ideas Geometry 10.2	

G.1.1.1.3	Use chords, tangents, and secants to find missing arc measures or	Big Ideas Geometry 10.3		
	missing segment measures. Use Chord Theorems to	Big Ideas Geometry 10.4		
	find lengths and arc measures.			
	Use inscribed angles and inscribed polygons to find angle and arc	Big Ideas Geometry 10.5		
	measures.			
	Use sincumscribed angles	Big Ideas Geometry 10.6		
	to find anale and arc			
	measures.			
		http://www.nsa.gov/academia/ file		
	Use chords, tangents,	s/collected learning/high school/ge		
	and secants to find	ometry/tangents scants chords.pdf		
	measures	http://illuminations.nctm.org/Lesson		
	measures.	.aspx?id=2417		
Circumference, Area, and Volume	G.1.1.1.2	Identify, determine and/or use the arcs, semicircles, sectors, and/or angles of a circle. Find circumference and use arc length to find measures and solve real- life problems.	Big Ideas Geometry 11.1	20 days
---------------------------------------	-----------	--	---	---------
	G.2.2.2.5	Find the area of a sector of a circle.	Big Ideas Geometry 11.2 <u>http://www.regentsprep.org/regent</u> <u>s/math/geometry/GP14/CircleSector</u> <u>s.htm</u>	
	G.1.2.1.5	Identify and/or use properties of pyramids and prisms.	Big Ideas Geometry 11.4	
	G.1.1.1.4	Identify and/or use the properties of a sphere or cylinder. Include Pythagorean Theorem and Special Right Triangles when finding missing measures.		

		-	
G.2.3.1.	Calculate the volume of prisms, cylinders, cones, pyramids and/or spheres. Formulas are provided on the reference sheet.	Big Ideas Geometry 11.5-11.8 http://intermath.coe.uga.edu/tweb/ gwin1-01/luce/SAV/SAVRes.html	
G.2.3.1	Calculate the surface area of prisms, cylinders, cones, pyramids and/or spheres. Formulas are provided on the reference sheet.	Big Ideas Geometry 11.7-11.8 http://www.mybookezzz.org/surface -area-hands-on-activity/	
G.2.3.1.	.3 Find the measurement of a missing length given the surface area or volume.	http://illuminations.nctm.org/Lesson .aspx?id=2911	
G.2.3.2	Describe how a change in the linear dimension of a figure affects its surface area or volume. (e.g., How does changing the length of the edge of a cube affect the volume of the cube?).	http://www.shodor.org/interactivat e/lessons/SurfaceAreaAndVolume/ http://www.k12.wa.us/mathematics /MathAve/Landscaping/Assessment. pdf	
G.2.2.4.	.1 Use area models to find probabilities.		

Final Exam			10 days
Review			

Geometry 9

Curriculum Guide

Scranton School District

Scranton, PA

Geometry 9

Prerequisite:

• Successful completion of Algebra I

Intended Audience: This course is designed for the 9th grade student who has successfully completed Algebra I by the end of 8th grade and does not meet the requirements to enroll in the Honors Geometry course.

Geometry 9 is the course 9th grade students take after Algebra I, if they do not meet the requirements to enroll in the Honors Geometry course. Depth, breadth, and pace of this course is accelerated. This course is designed to emphasize the study of the properties and applications of common two and three dimensional geometric figures. This course formalizes what students have learned about geometry in the middle grades, with a concentration on mathematical reasoning, including exposure to formal proofs. Topics covered focus on the Pennsylvania Core Standards and include, but are not limited to: coordinate geometry, perimeter, area, surface area and volume, congruent and similar triangles, right triangles, quadrilaterals, and circles. After successfully completing the course, students will be allowed to enroll in Algebra II/Trigonometry.

<u>Year-at-a-glance</u>

Subject: Geometry 9	Grade Level: 9 th	Date Completed: Oct 2014

1st Quarter

Торіс	Resources	CCSS
Basic Terms and Coordinate Geometry	Big Ideas Geometry 1.1-1.3	G.2.1.2.1, G.2.1.2.2,
		G.2.1.2.3
Perimeter and Area in the Coordinate Plane	Big Ideas Geometry 1.4	G.2.2.2.1, G.2.2.2.2,
		G.2.2.2.4, G.2.2.2.5,
Angles	Big Ideas Geometry 1.5-1.6, 5.1, 7.1	G.2.2.1.1, G.2.2.1.2,
		G.1.2.1.4
Parallel and Perpendicular Lines	Big Ideas Geometry 3.1-3.5	G.2.2.1.2, G.2.1.2.2

2nd Quarter

Торіс	Resources	CCSS
Reasoning and Proof	Big Ideas Geometry 2.4-2.6, 3.3, 3.4	G.1.3.2.1
Congruent Triangles	Big Ideas Geometry 5.2-5.7,	G.1.2.1.1, G.1.2.1.3, G.1.3.1.1, G.1.3.2.1
Relationships Within Triangles	Big Ideas Geometry 6.1, 6.3-6.5, 5.8	G.1.2.1.1

3rd Quarter

Торіс	Resources	CCSS
Similar Triangles	Big Ideas Geometry 8.1-8.4	G.1.3.1.2, G.1.3.1.1
Right Triangles and Trigonometry	Big Ideas Geometry 9.1-9.5	G.2.1.1.1, G.2.1.1.2
Quadrilaterals and Their Area	Big Ideas Geometry 7.2-7.5	G.2.1.2.3, G.1.2.1.2, G.2.2.2.2, G.2.2.2.3, G.2.2.3.1

4th Quarter

Торіс	Resources	CCSS
Circles	Big Ideas Geometry 10.1-10.6	G.1.1.1.1, G.1.1.1.2, G.1.1.1.3
Circumference, Area, and Volume	Big Ideas Geometry 11.1, 11.2, 11.4-11.8	G.1.1.1.2, G.2.2.2.5, G.1.1.1.4,
		G.1.2.1.5, G.2.3.1.1, G.2.3.1.2,
		G.2.3.1.3, G.2.3.2.1, G.2.2.4.1
Final Review		

General Topic	Academic	Essential Knowledge,	Resources & Activities	Assessments	Suggested
	Standard(s)	Skills & Vocabulary			Time
Basic Terms And Coordinate Geometry	G.2.1.2.1	Name points, lines, planes, segments, and rays. Use the Ruler and Segment Addition Postulate. Calculate the distance and/or midpoint between 2 points on a number line or on a coordinate plane. Relate distance formula to Pythagorean Theorem.	Big Ideas Geometry 1.1 – 1.2 Big Ideas Geometry 1.3 <u>http://departments.jordandistrict.or</u> g/curriculum/mathematics/secondar y/impact/Algebra/Alg%208%20Geo metry%20in%20Algebra/Alg8.4Solvin g%20for%20the%20midpoint.pdf	Teacher prepared tests, quizzes, etc. Series available assessments online. (Optional) bigideasmath.com (Optional)	12 days
Perimeter and Area in the Coordinate Plane	G.2.2.2.1 G.2.2.2.4	Estimate area, perimeter or circumference of an irregular figure. Using area, perimeter, and circumference formulas. Develop and/or use strategies to estimate the area of a compound/composite figure.	Big Ideas Geometry 1.4 <u>http://shodor.org/interactivate-</u> java/activities/ShapeBuilder/		8 days

Angles		Name, measure and classify angles. Identify congruent angles.	Big Ideas Geometry 1.5	10 days
	G.2.2.1.1	Use properties of angles formed by intersecting lines to find the measures of missing angles. Complementary, Supplementary, and Vertical Angles.	Big Ideas Geometry 1.6 <u>http://www.palmbeachschools.org/s</u> <u>tudents/Grade12/GeometryActivity2</u> <u>.pdf</u>	
	G.1.2.1.1	Identify and/or use properties of triangles. Triangle Sum and Exterior Angle Theorems.	Big Ideas Geometry 5.1	
	G.1.2.1.4	Identify and/or use properties of regular polygons. Interior and Exterior Angle Theorems.	Big Ideas Geometry 7.1 <u>http://illuminations.nctm.org/Activit</u> <u>y.aspx?id=3546</u>	

Parallel and Perpendicular Lines	G.2.2.1.2	Review and identify pairs of lines. Use properties of angles formed when two parallel lines are cut by a transversal to find the measures of missing angles.	Big Ideas Geometry 3.1 Big Ideas Geometry 3.2-3.3	15 days
	G.2.1.2.2	Relate slope to perpendicularity and/or parallelism (limit to linear algebraic equations). Identify parallel and perpendicular lines. Write equations of parallel and perpendicular lines.	Big Ideas Geometry 3.4-3.5	

Reasoning and Proofs		Use Algebraic Properties of Equality to justify the steps in solving an equation in a two- column proof.	Big Ideas Geometry 2.4 Big Ideas Geometry 2.5-2.6	15 days
	G.1.3.2.1	Write, analyze, complete, or identify formal proofs (e.g., direct and/or indirect proofs/proofs by contradiction.) Use properties of equality involving segment lengths and angle measures to complete two-column proofs.	Rig Ideas Geometry 3 3-3 4	
		Complete two-column proofs using parallel and perpendicular lines.		
Congruent Triangles	G.1.3.1.1	Identify and/or use properties of congruent polygons or solids. Identify and use corresponding parts.	Big Ideas Geometry 5.2	20 days

G.1.2.1.3	Identify and/or use properties of isosceles and equilateral triangles. Use the Base Angles Theorems.	Big Ideas Geometry 5.4	
G.1.3.2.1	Write, analyze, complete, or identify formal proofs (e.g., direct and/or indirect proofs/proofs by contradiction). Proving triangles congruent using the SAS, SSS, HL, ASA and AAS Congruence Theorems.	Big Ideas Geometry 5.3, 5.5, 5.6 http://www.lcps.org/cms/lib4/VA01 000195/Centricity/Domain/1445/Ge 0%20G.6%20Chapter%204%20Congr uent%20Triange%20Lab%20WS%20P DF.pdf	
	Using Congruent Triangles. **Increased emphasis on proofs including overlapping triangles, two pairs of congruent triangles, and isosceles/equilateral triangles.	Big Ideas Geometry 5.7	

Relationships Within Triangles	61211	Identify and/or use		10 days
within mangles	0.1.2.1.1	Identify and/or use properties of medians, altitudes, and perpendicular bisectors. Use midsegments in the coordinate plane and the Triangle Midsegment Theorem to find distance. Use Triangle Inequality Theorem.	Big Ideas Geometry 6.1, 6.3 Big Ideas Geometry 6.4 Big Ideas Geometry 6.5 <u>http://www.glencoe.com/sites/com</u> <u>mon_assets/support_pages/MC_Cou</u> <u>rse3/Triangle_Inequality.pdf</u>	
	G.2.1.2.1	Calculate the distance and/or midpoint between 2 points on a number line or on a coordinate plane. Use properties of triangles in coordinate proofs.	Big Ideas Geometry 5.8	

Similar Triangles	G.1.3.1.1	Identify and/or use properties of similar polygons or solids.	Big Ideas Geometry 8.1	15 days
		<i>Use the Triangle Similarity Theorems to solve real-life problems.</i>	Big Ideas Geometry 8.2-8.3	
	G.1.3.1.2	Identify and/or use proportional relationships in similar figures.	Big Ideas Geometry 8.4	
Right Triangles and Trigonometry	G.2.1.1.1	Use the Pythagorean Theorem to write and/or solve problems involving right triangles.	Big Ideas Geometry 9.1 <u>http://www.cimt.plymouth.ac.uk/projects/mepres/book8/y8s3act.pdf</u>	15 days
		Find side lengths in special right triangles and solve real-life	Big Ideas Geometry 9.2	
		problems. Use the geometric mean to solve problems	Big Ideas Geometry 9.3	
		triangles.		

	G.2.1.1.2	Use trigonometric ratios to write and/or solve problems involving right triangles.	Big Ideas Geometry 9.4-9.5 http://en.wikibooks.org/wiki/High_S chool_Trigonometry/Applications_of _Right_Triangle_Trigonometry http://jwilson.coe.uga.edu/emt668/ emat6680.folders/brooks/6690stuff/ righttriangle/Applications.html	
Quadrilaterals And Their Areas	G.1.2.1.2	Identify and/or use properties of quadrilaterals. **Include proofs using properties of quads and proofs determining type of special quadrilateral. Use properties of trapezoids and the Trapezoid Midsegment Theorem to find distances.	Big Ideas Geometry 7.2, 7.4, 7.5 <u>http://illuminations.nctm.org/Lesson</u> .aspx?id=1992 Big Ideas Geometry 7.5	15 days
	G.2.1.2.3	Use slope, distance and/or midpoint between 2 points on a coordinate plane to establish properties of a 2-dimensional shape.	Big Ideas Geometry 7.3, 7.4	

G.2.2.2.2	Find the measurement of a missing length given the perimeter, circumference, or area. Use formulas for quadrilaterals.		
G.2.2.2.3	Find the side lengths of a polygon with a given perimeter to maximize the area of the polygon. Use formulas for quadrilaterals.	http://map.mathshell.org/materials/ download.php?fileid=1226	
G.2.2.3.1	Describe how a change in the linear dimension of a figure affects its perimeter, circumference, and area. (e.g., How does changing the length of the radius of a circle affect the circumference of the circle?). Use formulas for quadrilaterals.	http://www.ssms.scps.k12.fl.us/Port als/104/assets/pdf/Math%207th%20 garde/Change%20in%20geometric%2 Odimensions.pdf http://www.shawnee.edu/acad/ms/ ENABLdocs/Summer08pdfs/Geoboar ds%20Lesson%20Plan.pdf http://www.shawnee.edu/acad/ms/ ENABLdocs/Summer08pdfs/Geoboar ds%20Lesson%20Plan.pdf	

Circles	G.1.1.1.1	Identify, determine and/or use the radius, diameter, segment and/or tangent of a circle. **Include proofs using properties of circles.	Big Ideas Geometry 10.1 <u>http://illuminations.nctm.org/uploa</u> <u>dedFiles/Content/Lessons/Resources</u> /9-12/PiLine-AS-Slope.pdf	15 days
	G.1.1.1.2	Identify, determine and/or use the arcs, semicircles, sectors, and/or angles of a circle.	Big Ideas Geometry 10.2	

	Use chords, tangents,	Big Ideas Geometry 10.3	
G.1.1.1.3	and secants to find		
	missing arc measures or		
	missing segment		
	measures.		
	Use Chord Theorems to		
	find lengths and arc		
	measures.		
		Big Ideas Geometry 10.4	
	Use inscribed angles		
	and inscribed polygons		
	to find angle and arc		
	measures.	Big Ideas Geometry 10.5	
	Use circumscribed		
	angles to find angle and		
	arc measures.	Big Ideas Geometry 10.6	
	lise chards tangents		
	and cocants to find		
	missing segment	http://www.pca.gov/acadomia/_file	
	magauras	(collected learning/high acheal/co	
	meusures.	s/conected learning/nign school/ge	
		ometry/tangents scants cnords.pdf	

Circumference,		Identify, determine	Big Ideas Geometry 11.1	20 days
Area, and	G.1.1.1.2	and/or use the arcs,		
Volume		semicircles, sectors,		
		and/or angles of a		
		circle		
		Find aircumfarance and		
		use arc length to find		
		measures and solve		
		real-life problems.		
		Find the area of a	Big Ideas Geometry 11.2	
	G.2.2.2.5	sector of a circle.		
			http://www.regentsprep.org/regent	
			s/math/geometry/GP14/CircleSector	
			s.htm	
		Find the area of a		
		segment of a circle		
		segment of a circle.		
		Identify and/or use	Big Ideas Geometry 11.4	
	G.1.2.1.5	properties of pyramids	, , , , , , , , , , , , , , , , , , ,	
	0	and prisms		
		Identify and for you the		
		identify and/or use the		
	G.1.1.1.4	properties of a sphere		
		or cylinder.		
		Include Pythagorean		
		Theorem and Special		
		Right Triangles when		
		finding missing		
		measures		

		Dialdada Casaratara 44 5 44 0	
	calculate the volume of	Big ideas Geometry 11.5-11.8	
G.2.3.1.2	prisms, cylinders,		
	cones, pyramids and/or	http://intermath.coe.uga.edu/tweb/	
	spheres. Formulas are	gwin1-01/luce/SAV/SAVRes.html	
	provided on the		
	reference sheet.		
	Calculate the surface	Big Ideas Geometry 11.7-11.8	
G.2.3.1.1	area of prisms,		
	cylinders, cones,	http://www.mybookezzz.org/surface	
	pyramids and/or	-area-hands-on-activity/	
	spheres. Formulas are		
	provided on the		
	reference sheet.		
	Find the measurement	http://illuminations.nctm.org/Lesson	
G.2.3.1.3	of a missing length	<u>.aspx?id=2911</u>	
	given the surface area		
	or volume.		
	Describe how a change		
G.2.3.2.1	in the linear dimension	http://www.shodor.org/interactivat	
	of a figure affects its	e/lessons/SurfaceAreaAndVolume/	
	surface area or volume.		
	(e.g., How does	http://www.k12.wa.us/mathematics	
	changing the length of	/MathAve/Landscaping/Assessment.	
	the edge of a cube	pdf	
	affect the volume of		
	the cube?).		
G.2.2.4.1	Use area models to find		
	probabilities.		

Final Exam			10 days
Review			

Honors Algebra I K/CC

Curriculum Guide

Scranton School District

Scranton, PA

Honors Algebra I K/CC 3213

Prerequisites:

- Successful completion of 8th grade Common Core 8P Concepts of Algebra course
- Be in compliance with the <u>SSD Honors and AP Criteria Policy</u>

Honors Algebra I is intended to challenge the higher performing student. This course parallels the topics covered in Algebra I, but differs from in Algebra I in depth, breadth and pace, in addition to more focus on application problems. Enrichment topics may also be included in this course.

At the culmination of this course, the students will sit for the Keystone Algebra I Exam, a Pennsylvania graduation requirement. After successfully completing this course, students who meet the proper prerequisites will be enrolled in Honors Geometry or Geometry 10 in tenth grade.

Year-at-a-glance

Subject: Honors Algebra LK/CC 3213	Grade Level: 9 th	Date Completed: 10-14-14
Subject. Honors Algebra 1 17 CC 5215		Date completed: 10-14-14

1st Quarter

Торіс	Resources	CCSS
Represent and/or use numbers in equivalent forms	Keystone Finish Line WB - Unit 1 Lesson 1	A1.1.1.1
Use Estimation strategies in problem-solving situations	Keystone Finish Line WB - Unit 2 Lesson 1	A1.1.1.4.1
Linear equations	Big Ideas Algebra I - Chapter 1	A1.1.2.1.2
	Keystone Finish Line WB - Unit 3 Lesson 1	
Linear Inequalities	Big Ideas Algebra I - Chapter 2	A1.1.3.1.3, A1.1.3.1.2, A1.1.3.1.1
	Keystone Finish Line WB - Unit 4 Lesson 1	
Functions	Big Ideas Algebra I - Chapter 3.1- 3.5	A1.2.1.1.3,A1.2.1.1.2, A1.2.2.1.1
	Keystone Finish Line WB - Unit 5 Lesson 2	
Rate of Change	Big Ideas Algebra I - Chapter 3.2-3.5	A1.2.2.1.1, A1.2.2.1.2

2nd Quarter

Торіс	Resources	CCSS	
Linear Equations	Big Ideas Algebra I - Chapter 4.1-4.4	A1.2.2.1.3, A1.2.2.1.4,	
with two variables		A1.1.2.1.3, A1.2.1.2.1, A1.2.1.2.2	
		A1.2.2.2.1,	
Systems of Linear Equations	Big Ideas Algebra I - Chapter 5.1-5.4	A1.1.2.2.1	
Interpret solutions to Linear Systems.	Big Ideas Algebra I - Chapter 5.1-5.4	A1.1.2.2.2	
	Keystone Finish Line WB - Unit 3 Lesson 3		
Systems of Linear Inequalities	Big Ideas Algebra I - Chapter 5.6-5.7	A1.1.3.2.1	
Interpret solutions to Linear Inequalities	Big Ideas Algebra I - Chapter 5.6-5.7	A1.1.3.2.2	
	Keystone Finish Line WB - Unit 4 Lesson 3		

3rd Quarter

Торіс	Resources	CCSS
Exponents, Roots and Absolute Value	Big Ideas Algebra I - Chapter 6.1	A1.1.1.3.1, A1.1.1.1.2
	Keystone Finish Line WB - Unit 1 Lesson 4	
Simplify expressions involving polynomials	Big Ideas Algebra I - Chapter 7.1-7.3	A1.1.1.5.1
	Keystone Finish Line WB - Unit 2 Lesson 2	
GCF and LCM for monomials	Keystone Finish Line WB - Unit 1 Lesson 3	A1.1.1.2.1
Simplify expressions involving polynomials	Big Ideas Algebra I - Chapter 7.4-7.8	A1.1.1.5.2, A1.1.1.5.3
	Keystone Finish Line WB - Unit 2 Lesson 3 - 5	
	**Login to site – bigideasmath.com - Common	
	Chapter 11, Section 3	

4th Quarter

Торіс	Resources	CCSS
Use measures of dispersion to describe a set of data	Keystone Finish Line WB – Unit 7 Sections 1-4 *Big Ideas Algebra I - Chapter 11 See standards	A1.2.3.1.1
Use data displays in the problem-solving settings and/or to make predictions	Keystone Finish Line WB Unit 7 Sections 1-4 *Big Ideas Algebra I - Chapter 11 See standards	A1.2.3.2.1, A1.2.3.2.2, A1.2.3.2.3
Apply Probability to practical situations	Keystone Finish Line WB – Unit 7 Lesson 5	A1.2.3.3.1
Final Review		

*The suggested timeline and curriculum content should be adjusted and revised as needed in correlation with the PA State Standards.

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Represent and/or use numbers in equivalent forms (e.g., integers, fractions, decimals, percents, square roots, and exponents).	A1.1.1.1	Compare and/or order any real numbers. Rational and irrational may be mixed.	Keystone Finish Line WB - Unit 1 Lesson 1	Teacher prepared tests, quizzes, etc. Series available assessments online. (Optional)	1 day
Use Estimation strategies in problem-solving situations	A1.1.1.4.1	Use estimation to solve problems	Keystone Finish Line WB - Unit 2 Lesson 1 Use throughout when appropriate		1 day

Linear equations	A1.1.2.1.2	Use and/or identify an algebraic property to justify any step in an equation-solving process. Note: Linear equations only Vocabulary: • Additive inverse • Multiplicative Inverse • Commutative property • Associative Property • Identity Property • Distributive Property • Multiplicative Property of Zero • Additive Property of Equality • Multiplicative Property of Equality	Big Ideas Algebra I – Chapter 1 Keystone Finish Line WB - Unit 3 Lesson 1 Engage NY Module 4 Topic A Lessons 1-9 https://www.engageny.org /resource/grade-8- mathematics	12 days
	A1.1.2.1.1	Write, solve, and/or apply a linear equation (including problem situations).	Occurs in every chapter	Use throughout

Linear Inequalities	A1.1.3.1.2	Identify or graph the solution set to a linear inequality on a number line.	Big Ideas Algebra I – Chapter 2 Keystone Finish Line WB - Unit 4 Lesson 1	10 days
	A1.1.3.1.3	Interpret solutions to the problems in the context of the problem situations. Note: Linear inequalities only.	Big Ideas Algebra I – Chapter 2 Keystone Finish Line WB - Unit 4 Lesson 1	
	A1.1.3.1.1	Write or solve compound inequalities and/or graph their solution sets on a number line (may include absolute value Inequalities).	Big Ideas Algebra I – Chapter 2 Keystone Finish Line WB - Unit 4 Lesson 2	
Functions	A1.2.1.1.3	Identify the domain or range of a relation (may be presented as ordered pairs, a graph, or a table). Vocabulary: • Range • Domain	Big Ideas Algebra I - Chapter 3.1 Keystone Finish Line WB - Unit 5 Lesson 2 Engage NY Module 4 Topic A Lessons 1- 9 https://www.engageny.org/ resource/grade-8- mathematics	21 days

	A1.2.1.1.2	Determine whether a relation is a function, given a set of points or a graph.	Big Ideas Algebra I - Chapter 3.1 Keystone Finish Line WB Unit 5 Lesson 2 Engage NY Module 4 Topic A Lessons 1- 9 https://www.engageny.org/ resource/grade-8- mathematics	
	A1.2.1.1.1	Analyze a set of data for the existence of a pattern and represent the pattern Algebraically and/or graphically.	Big Ideas Algebra I - Chapter 3.2-3.5 Engage NY Module 4 Topic B 10-14 https://www.engageny.org/ resource/grade-8- mathematics	
Rate of Change	A1.2.2.1.1	Identify, describe, and/or use constant rates of change.	Big Ideas Algebra I - Chapter 3.2-3.5 Engage NY https://www.engageny.org /resource/grade-8- mathematics-module-4- topic-b-lesson-11	

	A1.2.2.1.2	Apply the concept of linear rate of change (slope) to solve problems.	Big Ideas Algebra I - Chapter 3.3-3.5 Engage NY Module 4 Topic C Lesson 15-17 https://www.engageny.org/ resource/grade-8- mathematics	
Linear Equations with two variables	A1.2.2.1.3	 Write or identify a linear equation when given The graph of the line, Two points on the line, or The slope and a point on the line. Parallel and Perpendicular Lines Note: Linear equation may be in point-slope, standard, and/or slope- intercept form. 	Big Ideas Algebra I - Chapter 4.1-4.3 Engage NY Module 4 Topic C Lesson 18-23 https://www.engageny.org/ resource/grade-8- mathematics	20 days
	A1.2.2.1.4	Determine the slope and/or y-intercept represented by a linear equation or graph.	Big Ideas Algebra I - Chapter 4.1	
	A1.1.2.1.3	Interpret solutions to problems in the context of the problem situation. Note: Linear equations only.	Big Ideas Algebra I - Chapter 4.1-4.3 Used throughout	

	A1.2.1.2.1	Create, interpret, and/or use the equation, graph, or table of al linear function.	Big Ideas Algebra I - Chapter 4.1-4.3 Used throughout	
	A1.2.1.2.2	Translate from one representation of a linear function to another (i.e., graph, table, and equation).	Big Ideas Algebra I - Chapter 4.1-4.3 Used throughout Engage NY Module 6 Topic A Lesson 1- 5 https://www.engageny.org/ resource/grade-8- mathematics	
	A1.2.2.2.1	Draw, identify, find, and/or write and an equation for a line of best fit for a scatter plot	Big Ideas Algebra I - Chapter 4.4 Engage NY Module 6 Topic B & C Lesson 6-9 https://www.engageny.org/ resource/grade-8- mathematics	
Systems of Linear Equations	A1.1.2.2.1	Write and/or solve a system of linear equations, including problem, using graphing, substitution, and/or elimination.	Big Ideas Algebra I - Chapter 5.1-5.4 Engage NY Module 4 Topic D Lesson 24-30 https://www.engageny.org/ resource/grade-8- mathematics	25 days

Interpret solutions to Linear Systems.	A1.1.2.2.2	Interpret solutions to problems in the context of the problem situation. Limit systems to two linear equations	Big Ideas Algebra I - Chapter 5.1-5.4 Keystone Finish Line WB - Unit 3 Lesson 3	
Systems of Linear Inequalities	A1.1.3.2.1	Write and/or solve a system of Linear Inequalities using graphing. Limit to two linear inequalities.	Big Ideas Algebra I - Chapter 5.6-5.7	
Interpret solutions to Linear Inequalities	A1.1.3.2.2	Interpret solutions to problems in the context of the problem situation. Limit systems to two linear inequalities	Big Ideas Algebra I - Chapter 5.6-5.7 Keystone Finish Line WB - Unit 4 Lesson 3	
Exponents, Roots and Absolute Value	A1.1.1.3.1	Simplify/evaluate expressions involving properties/laws of exponents, roots, and/or absolute values to solve problems.	Big Ideas Algebra I - Chapter 6.1 Keystone Finish Line WB - Unit 1 Lesson 4 Engage NY Module 1 Topic A Lessons 1-6 https://www.engageny.org /resource/grade-8- mathematics-module-1- topic-lesson-1	10 days
	A1.1.1.1.2	Simplify Square Roots (e.g., $\sqrt{24} = 2\sqrt{6}$)	Keystone Finish Line WB Unit 1 Lesson 2 *Supplemental resources will be needed	10 days
--	------------	--	---	---------
Simplify expressions involving polynomials	A1.1.1.5.1	Add, subtract, and/or multiply polynomial expressions (express answer in simplest form.) Nothing larger than a binomial multiplied by a trinomial.	Big Ideas Algebra I - Chapter 7.1-7.3 Keystone Finish Line WB - Unit 2 Lesson 2	10 days
GCF and LCM for monomials	A1.1.1.2.1	Find the Greatest Common Factor and/or Least Common Multiple for sets of monomials	Keystone Finish Line WB - Unit 1 Lesson 3 *Supplemental resources will be needed	5 days

Simplify expressions involving polynomials	A1.1.1.52	Factor Algebraic expressions, including difference of two squares and trinomials. Trinomials limited to the form ax ² + bx + c, where a is equal to 1 after factoring out all monomials factors.	Big Ideas Algebra I - Chapter 7.4-7.8 Keystone Finish Line WB - Unit 2 Lesson 3 & 4	15 days
	A1.1.1.5.3	Simplify/reduce a rational algebraic expression.	Keystone Finish Line WB - Unit 2 Lesson 5 <u>**Login to site –</u> <u>bigideasmath.com -</u> <u>Common Core 2014 –</u> <u>Purple Infinity Algebra</u> <u>Book Chapter 11, Section 3</u>	
Use measures of dispersion to describe a set of data	A1.2.3.1.1	Calculate and/or interpret the range, quartiles, and interquartile range of data	Keystone Finish Line WB - Unit 7 Sections 1-4 *Big Ideas Algebra I - Chapter 11.1- 11.2	10 days
Use data displays in the problem-solving settings and/or to make predictions	A1.2.3.2.1	Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation.	Keystone Finish Line WB Unit 7 Sections 1-4 *Big Ideas Algebra I - Chapter 11.1-11.3	

	A1.2.3.2.2	Analyze data, make predictions, and/or answer questions based on displayed data (box- and-whisker plots, stem- and-leaf plots, scatter plots, measure of central tendency, or other representations)	Keystone Finish Line WB - Unit 7 Sections 1-4 *Big Ideas Algebra I - Chapter 11.1-11.3	
	A1.2.3.2.3	Make predictions using the equations or graphs of best-fit lines of scatter plots	Keystone Finish Line WB - Unit 7 Sections 1-4	
Apply Probability to practical situations	A1.2.3.3.1	Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent.	Keystone Finish Line WB - Unit 7 Lesson 5	
Keystone Review and Exam				10 days

Selected Topics	-Solving quadra equations -Completing the - Solving the qu formula - Graphing quad table of values. -Solving radical	itic Big Ideas Algebra I - Chapters 9 & 10 e square ladratic dratics with equations	10 days
Final Review/ Exam			10 days

Honors/AP Prerequisites – Grades $10 \rightarrow 11 \rightarrow 12$

Board Approved Policy – 5-5-14

	Criteria for Admission to Honors and AP Courses		
Regular to Honors (5 out 6 criteria must be met for placement)	Honors to Honors (5 out 6 criteria must be met for placement)	Honors to AP (5 out 7 criteria must be met for placement)	
 Proper Prerequisites – all preceding courses in the curriculum pathway have been successfully met Scores of Advanced or top one-third of the Proficient on the <i>subject related</i> Keystone Exams Course grade of 95 or better Teacher Recommendation (In the case of Honors Chemistry or Physics, the recommendation of both the science and mathematics teacher is necessary.) Counselor Recommendation Parent Signature 	 Proper Prerequisites – all preceding courses in the curriculum pathway have been successfully met - Scores of Advanced or top one-third of the Proficient on the <i>subject related</i> Keystone Exams Course grade of 92 or better Teacher Recommendation (In the case of Honors Chemistry or Physics, the recommendation of both the science and mathematics teacher is necessary.) Counselor Recommendation Parent Signature 	 Proper Prerequisites – all preceding courses in the curriculum pathway have been successfully met AP Potential in subject area Scores of Advanced or top one-third of the Proficient on the <i>subject related</i> Keystone Exams Course grade of 93 or better Teacher Recommendation (In the case of Honors Chemistry or Physics, the recommendation of both the science and mathematics teacher is necessary.) Counselor Recommendation Parent Signature 	

Honors Elementary Analysis

Curriculum Guide

Scranton School District

Scranton, PA

Honors Elementary Analysis

Prerequisite :

- Honors Algebra II/Trigonometry
- Be in compliance with the SSD Honors and AP Criteria Policy

Honors Elementary Analysis is an advanced course in mathematics. The major topics in this course are quadratic equations, coordinate geometry, polynomial algebra, theory of equations, inequalities, functions, exponents, advanced graphing techniques, conics, trigonometry and its applications, polar coordinates, vector operations, series, matrices, and probability. After successful completion of this course the students will be allowed to enroll in Honors Calculus I or AP Calculus if the Scranton School District Criteria for enrollment in Advanced Placement classes is met.

Year-at-a-glance

Subject: Honors Elementary Analysis	Grade Level: 11,12	Date Completed: 2/5/15
	· · · · · · · · · · · · · · · · · · ·	

1st Quarter

Торіс	Resources	CCSS
FUNDAMENTALS/REVIEW	Advanced Mathematics Text	A1.2.2.1.3
	Chapter 1-1, 1-2, 1-3, 1-4, 1-8	HSA.REI.C.5
Linear Functions		HSA.REI.C.6
	Graphing Calculators	HSF.BF.A.1
		HSF.BF.A.1.a
THE COMPLEX NUMBER SYSTEM	Advanced Mathematics Text	HSN.CN.A.1
	Chapter 1-5	HSN.CN.A.2
Perform arithmetic operations with complex numbers.		HSN.CN.A.3
	Graphing Calculators	
INTERPRETING FUNCTIONS	Advanced Mathematics Text	HSF.IF.C.7
	1-1, 1-4, 1-6, 1-7	HSF.IF.C.7.a
Analyze functions using different representations.	Chapter 2 (excluding 2-7)	HSF.IF.C.7.c
	Chapter 3 (excluding 3-4)	
	Graphing Calculators	

2nd Quarter

Торіс	Resources	CCSS
INTERPRETING FUNCTIONS	Advanced Mathematics Text	HSF.IF.C.7.d
	4-1, 4-7	HSF.IF.C.7.b
Analyze functions using different representations.	Chapter 5	A2.1.2.1.3
	Glossary (p.882)	HSF.IF.C.7.e
		HSF.IF.C.8
	Graphing Calculators	HSF.BF.A.1
		HSF.BF.A.1.a
		HSF.BF.A.1.b
		HSF.BF.A.1.c
		HSF.IF.C.8.a
		HSF.IF.C.8.b
		HSF.IF.C.9
BUILDING FUNCTIONS	Advanced Mathematics Text	HSF.BF.B.3
	4-2, 4-3, 4-4, 4-5	HSF.BF.B.4
Build new functions from existing functions	5-3, 5-4, 5-5, 5-6	HSF.BF.B.4.a
		HSF.BF.B.4.b
	Graphing Calculators	HSF.BF.B.4.c
		HSF.BF.B.4.d
		HSF.BF.B.5

3rd Quarter

Торіс	Resources	CCSS
TRIGONOMETRIC FUNCTIONS	Advanced Mathematics Text	HSF.TF.A.1
	Chapter 7	HSF.TF.A.2
Extend the domain of trigonometric functions using the unit		HSF.TF.A.3
circle	Graphing Calculators	HSF.TF.A.4
Model periodic phenomena with trigonometric functions	Advanced Mathematics Text	HSF.TF.B.5
	8-2, 8-3	HSF.TF.B.6
		HSF.TF.B.7
	Graphing Calculators	
Prove and apply trigonometric identities	Advanced Mathematics Text	HSF.TF.C.8
	8-1, 8-4, 8-5	
	Chapter 9	
	10-3	
	Graphing Calculators	
EXPRESSING GEOMETRIC PROPERTIES WITH EQUATIONS	Advanced Mathematics Text	HSG.GPE.A.1
	6-1 to 6-5	HSG.GPE.A.2
Translate between the geometric description and the equation		HSG.GPE.A.3
for a conic section	Graphing Calculators	HSA.REI.C.7

4th Quarter

Торіс	Resources	CCSS
SEQUENCES AND SERIES	Advanced Mathematics Text	HSF.BF.A.2
	13-1, 13-2, 13-3	
Build a function that models a relationship between two		
quantities	Graphing Calculators	
USING PROBABILITY TO MAKE DECISIONS	Advanced Mathematics Text	A2.2.3.2.1
	16-1, 16-2, 16-4, 16-6	A2.2.3.2.3
Calculate expected values and use them to solve problems		HSS.MD.A.2
	Graphing Calculators	HSS.MD.B.5.a
VECTOR QUANTITIES AND MATRICES	Advanced Mathematics Text	HSN.VM.B.4
	12-1, 12-2	HSN.VM.B.4.a
Perform operations on vectors		HSN.VM.B.4.b
	Graphing Calculators	HSN.VM.B.4.c
		HSN.VM.B.5
		HSN.VM.B.5.a
Perform operations on matrices and use matrices in applications	Advanced Mathematics Text	HSN.VM.C.6
	14-1, 14-2, 14-3, 14-4	HSN.VM.C.7
		HSN.VM.C.8
	Graphing Calculators	HSN.VM.C.9
		HSN.VM.C.10
		HSA.REI.C.8
		HSA.REI.C.9
REPRESENT COMPLEX NUMBERS AND THEIR OPERATIONS ON	Advanced Mathematics Text	HSN.CN.B.4
THE COMPLEX PLANE	11-1, 11-2	
	Graphing Calculators	
Final Example and Poviour		

***Note: Italicized blue text designates SSD Elementary Analysis topics that are currently covered (and should continue to be) but are NOT listed in the Common Core State Mathematics Standards.

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggest ed Time
FUNDAMENTALS/ REVIEW	A1.2.2.1.3	Write or identify a linear equations when given: the graph of a line, two points on a line, the slope and point on the line, and parallel and perpendicular lines	Advanced Mathematics Text	Teacher prepared tests, quizzes, etc.	15 days
Linear Functions		Write equations of altitudes, medians, perpendicular bisectors, and find their point of concurrency.	Chapter 1-1, 1-2, 1-3, 1-4, 1-8, 6-1		
		<i>Prove theorems from Geometry by using coordinates (coordinate proofs).</i>	Graphing Calculators		
		Prove and use formula for distance form a point to a line.			
	HSA.REI.C.5	Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.			
	HSA.REI.C.6	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.			
	HSF.BF.A.1	Write a function that describes a relationship between two quantities.			
	HSF.BF.A.1.a	Determine an explicit expression, a recursive process, or steps for calculation from a context.			

THE COMPLEX NUMBER SYSTEM Perform arithmetic operations with complex numbers.	HSN.CN.A.1 HSN.CN.A.2	Know there is a complex number <i>i</i> such that $i^2 = -1$, and every complex number has the form $a + bi$ with a and b real. Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	Advanced Mathematics Text 1-5 Graphing Calculators	3 days
	HSN.CN.A.3	(+) Find the conjugate of a complex number.		

INTERPRETING FUNCTIONS Analyze functions	HSF.IF.C.7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	Advanced Mathematics Text 1-1, 1-4, 1-6, 1-	45 da	ays
using different representations.	HSF.IF.C.7.a	Graph linear and quadratic functions and show intercepts, maxima, and minima.	7		
	HSF.IF.C.7.c	Solve and graph polynomial functions/inequalities,	Chapter 2		
		available, and showing end behavior.	Chapter 3 (excluding 3-4)		
		Use synthetic division.	4-1, 4-7		
		Apply the following theorems: remainder, factor, rational root, fundamental theorem of algebra, and complex conjugates.	Chapter 5		
	HSF.IF.C.7.d	(+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available,	Glossary (p.882)		
		and showing end behavior.	Graphing		
	HSF.IF.C.7.b	Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.	Calculators		
	A2.1.2.1.3	Simplify/evaluate expressions involving real exponents including multiplying with exponents, powers of powers, and powers of products			
	HSF.IF.C.7.e	Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.			
	HSF.IF.C.8	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.			

Analyze functions using different	HSF.BF.A.1	Write a function that describes a relationship between two quantities.		
representations.	HSF.BF.A.1.a	Determine an explicit expression, a recursive process, or steps for calculation from a context.		
	HSF.BF.A.1.b	Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model		
	HSF.BF.A.1.c	(+) Compose functions to the mouth (+) Compose functions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is the height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather balloon as a function of time.		
	HSF.IF.C.8.a	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.		
	HSF.IF.C.8.b	Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y =$ $(1.02)^t$, $y = (0.97)^t$, $y = (1.01)12^t$, $y = (1.2)^t/10$, and classify them as representing exponential growth or decay.		
	HSF.IF.C.9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.		

BUILDING FUNCTIONS	HSF.BF.B.3	Identify the effect on the graph of replacing $f(x)$ by $f(x)$	Advanced	30 days
		+ k, k f(x), f(kx), and f(x + k) for specific values of k	Mathematics	
Build new functions		(both positive and negative); find the value of k given	Text	
from existing functions		the graphs. Experiment with cases and illustrate an	4-2, 4-3, 4-4,	
		explanation of the effects on the graph using	4-5	
		technology. Include recognizing even and odd		
		functions from their graphs and algebraic expressions	5-3, 5-4, 5-5,	
		for them.	5-6	
	HSF.BF.B.4	Find inverse functions.	Graphing	
			Calculators	
		Solve an equation of the form f(x) = c for a simple	calculators	
	1151 .DI .D.4.a	function f that has an inverse and write an expression		
		for the inverse. For example, $f(x) = 2x^3$ or $f(x) =$		
		$(x+1)/(x-1)$ for $x \neq 1$.		
	HSF.BF.B.4.b	(+) Verify by composition that one function is the		
		inverse of another.		
	HSF.BF.B.4.c	(+) Read values of an inverse function from a graph or		
		a table, given that the function has an inverse.		
	HSF.BF.B.4.d	(+) Produce an invertible function from a non-		
		invertible function by restricting the domain.		
		(+) Understand the inverse relationship between		
	HSF.BF.B.5	(T) onderstand the inverse relationship between		
		exponents and logarithms and use this relationship to		
		solve problems involving logarithms and exponents.		

TRIGONOMETRIC FUNCTIONS Extend the domain of trigonometric functions using the unit circle	HSF.TF.A.1 HSF.TF.A.2	Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.	Advanced Mathematics Text Chapter 7 Graphing Calculators	34 d	lays
	HSF.TF.A.3 HSF.TF.A.4	Graph all 6 trigonometric functions including transformations of sine, cosine, and tangent functions. (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi/3$, $\pi/4$ and $\pi/6$, and use the unit circle to express the values of sine, cosine, and tangent for x , $\pi + x$, and $2\pi - x$ in terms of their values for x , where x is any real number. (+) Use the unit circle to explain symmetry (odd and even) and particulation of this parametric functions			
Model periodic phenomena with trigonometric functions	HSF.TF.B.5 HSF.TF.B.6	Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. (+) Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.	Advanced Mathematics Text 8-2, 8-3 Graphing Calculators		
	HSF.TF.B.7	(+) Use inverse functions to solve trigonometric equations; evaluate the solutions using technology.			

Prove and apply trigonometric identities	HSF.TF.C.8	Prove the Pythagorean identity $\sin^2(\theta) + \cos^2(\theta) = 1$ and use it to find $\sin(\theta)$, $\cos(\theta)$, or $\tan(\theta)$ given $\sin(\theta)$, $\cos(\theta)$, or $\tan(\theta)$ and the quadrant of the angle. Simplify trigonometric expressions/prove and solve trigonometric equations Use the Law of Sines and Law of Cosines to find unknown parts of a triangle Prove the following formulas for sine and cosine and use them to solve problems: sum and difference, double angle, and half angle.	Advanced Mathematics Text 8-1, 8-4, 8-5 Chapter 9 10-1, 10-3 Graphing Calculators	
EXPRESSING GEOMETRIC PROPERTIES WITH EQUATIONS Translate between the geometric description and the equation for a conic section	HSG.GPE.A.1 HSG.GPE.A.2 HSG.GPE.A.3 HSA.REI.C.7	Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. Derive the equation of a parabola given a focus and directrix. (+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 = 3$. Solve systems of second degree equations.	Advanced Mathematics Text 6-1 to 6-7 Graphing Calculators	10 days

SEQUENCES AND SERIES Build a function that models a relationship between two quantities	HSF.BF.A.2	Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	Advanced Mathematics Text 13-1, 13-2, 13-3 Graphing Calculators	5 days
USING PROBABILITY TO MAKE DECISIONS Calculate expected values and use them	A2.2.3.2.1 A2.2.3.2.3	Use Combinations, permutations, and The Fundamental Counting Principle to solve problems. Use probability for independent, dependent, or compound events to predict outcomes.	Advanced Mathematics Text 16-1, 16-2, 16-4, 16-6	10 days
to solve problems	HSS.MD.A.2 HSS.MD.B.5.a	 (+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution. Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fast-food restaurant. 	Graphing Calculators	

VECTOR QUANTITIES AND MATRICES	HSN.VM.B.4	(+) Add and subtract vectors.	Advanced Mathematics	13 days
Perform operations on	HSN.VM.B.4.a	Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the	Text 12-1, 12-2	
		magnitudes.	Graphing	
	HSN.VM.B.4.b	Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.	Calculators	
	HSN.VM.B.4.c	Understand vector subtraction $v - w$ as $v + (-w)$, where -w is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.		
	HSN.VM.B.5	(+) Multiply a vector by a scalar.		
	HSN.VM.B.5.a	Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as $c(v_x, v_y) = (cv_x, cv_y)$.		

Perform operations on	HSN.VM.C.6	(+) Use matrices to represent and manipulate data.	Advanced	
matrices and use		a g to represent payoffs or incidence relationships in	Mathematics	
matrices in		a network	Tovt	
applications			14 1 14 2	
applications		(+) Multiply matrices by scalars to produce new	14-1, 14-2,	
	HSN.VIM.C.7	matrices a g as when all of the payoffs in a game are	14-3, 14-4	
		doubled		
		doubled.	Graphing	
		(+) Add subtract and multiply matrices of appropriate	Calculators	
	HSN.VM.C.8	dimensions		
		dimensions.		
	HSN.VM.C.9	(+) Understand that, unlike multiplication of numbers.		
		matrix multiplication for square matrices is not a		
		commutative operation, but still satisfies the		
		associative and distributive properties		
		associative and distributive properties.		
	HSN.VM.C.10	(+) Understand that the zero and identity matrices		
		nlav a role in matrix addition and multiplication		
		similar to the role of 0 and 1 in the roal numbers. The		
		determinant of a cause matrix is nonzero if and only		
		if the metric has a multiplicative inverse		
		n the matrix has a multiplicative inverse.		
		(+) Represent a system of linear equations as a single		
	HSA.REI.C.8	matrix equation in a vector variable		
		(+) Find the inverse of a matrix if it exists and use it to		
	HSA.REI.C.9	solve systems of linear equations (using technology		
		for matrices of dimension 3 x 3 or greater).		
REPRESENT COMPLEX	HSN CN B 4	(+) Represent complex numbers on the complex plane	Advanced	5 days
	11514.614.0.4	in rectangular and polar form (including real and	Mathematics	Judys
		imaginary numbers) and evaluin why the restangular	Toyt	
		and polar forms of a given complex number restangular	10XL	
CONFLEX PLANE		and polar forms of a given complex number represent	11-1, 11-2	
		the same number.		
			Graphing	
			Calculators	

Final Exams and			10 days
Reviews			

Please note: (+) Indicates content used in additional courses beyond Algebra II.

Honors Geometry

Curriculum Guide

Scranton School District

Scranton, PA

Honors Geometry

Prerequisite :

- Successful completion of Algebra I, Honors Algebra I, or Algebra I Accelerated
- Be in compliance with the <u>SSD Honors and AP Criteria Policy</u>

Intended Audience: This course is designed for the student who has successfully completed Algebra I by the end of the 8th or 9th grade.

Honors Geometry follows Honors Algebra I, and is designed to emphasize the study of the properties and applications of common two and three dimensional geometric figures. The honors class is taught at a faster pace, thus allowing time for more difficult problems and concepts. This course formalizes what students have learned about geometry in the middle grades, with a concentration on mathematical reasoning and formal proofs. Topics covered focus on the Pennsylvania Core Standards and are parallel to the Geometry 9 and 10 courses, presenting all the same major topics except with more rigor.

After successfully completing the course, students will be allowed to enroll in Honors Algebra II/ Trigonometry or Algebra II/Trigonometry.

<u>Year-at-a-glance</u>

1st Quarter

Торіс	Resources	CCSS
Basic Terms and Coordinate Geometry	Big Ideas Geometry 1.1-1.3	G.2.1.2.1, G.2.1.2.2,
		G.2.1.2.3
Perimeter and Area in the Coordinate Plane	Big Ideas Geometry 1.4	G.2.2.2.1, G.2.2.2.2,
		G.2.2.2.4, G.2.2.2.5,
Angles	Big Ideas Geometry 1.5-1.6, 5.1, 7.1	G.2.2.1.1, G.2.2.1.2,
		G.1.2.1.4
Parallel and Perpendicular Lines	Big Ideas Geometry 3.1-3.5	G.2.2.1.2, G.2.1.2.2

2nd Quarter

Торіс	Resources	CCSS
Reasoning and Proof	Big Ideas Geometry 2.4-2.6, 3.3, 3.4	G.1.3.2.1
Congruent Triangles	Big Ideas Geometry 5.2-5.7, AMSCO Geometry 3.2-3.8	G.1.2.1.1, G.1.2.1.3, G.1.3.1.1, G.1.3.2.1
Relationships Within Triangles	Big Ideas Geometry 6.1, 6.3-6.5, 5.8	G.1.2.1.1

3rd Quarter

Торіс	Resources	CCSS
Similar Triangles	Big Ideas Geometry 8.1-8.4	G.1.3.1.2, G.1.3.1.1
Right Triangles and Trigonometry	Big Ideas Geometry 9.1-9.5	G.2.1.1.1, G.2.1.1.2
Quadrilaterals and Their Area	Big Ideas Geometry 7.2-7.5	G.2.1.2.3, G.1.2.1.2,
	AMSCO Geometry 4.9-4.13	G.2.2.2.2, G.2.2.2.3,
		G.2.2.3.1

4th Quarter

Торіс	Resources	CCSS
Circles	Big Ideas Geometry 10.1-10.6	G.1.1.1.1, G.1.1.1.2, G.1.1.1.3
	AMSCO Geometry 5.1, 5.4	
Circumference, Area, and Volume	Big Ideas Geometry 11.1, 11.2, 11.4-11.8	G.1.1.1.2, G.2.2.2.5, G.1.1.1.4,
	AMSCO Geometry 8.6	G.1.2.1.5, G.2.3.1.1, G.2.3.1.2,
		G.2.3.1.3, G.2.3.2.1, G.2.2.4.1
Final Review		

General Topic	Academic	Essential Knowledge,	Resources & Activities	Assessments	Suggested
	Standard(s)	Skills & Vocabulary			Time
Basic Terms And Coordinate Geometry	G.2.1.2.1	Name points, lines, planes, segments, and rays. Use the Ruler and Segment Addition Postulate. Calculate the distance and/or midpoint between 2 points on a number line or on a coordinate plane.	Big Ideas Geometry 1.1 – 1.2 Big Ideas Geometry 1.3 <u>http://departments.jordandistrict.or</u> g/curriculum/mathematics/secondar y/impact/Algebra/Alg%208%20Geo	Teacher prepared tests, quizzes, etc. Series available assessments online. (Optional) bigideasmath.com (Optional)	12 days
		Relate distance formula to Pythagorean Theorem.	metry%20in%20Algebra/Alg8.4Solvin g%20for%20the%20midpoint.pdf		
Perimeter and Area in the Coordinate Plane	G.2.2.2.1	Estimate area, perimeter or circumference of an irregular figure. Using area, perimeter, and circumference formulas.	Big Ideas Geometry 1.4 <u>http://shodor.org/interactivate-</u> <u>java/activities/ShapeBuilder/</u>		8 days
	G.2.2.2.4	Develop and/or use strategies to estimate the area of a compound/composite figure.			

Angles		Name, measure and classify angles. Identify congruent angles.	Big Ideas Geometry 1.5	10 days
	G.2.2.1.1	Use properties of angles formed by intersecting lines to find the measures of missing angles. Complementary, Supplementary, and Vertical Angles.	Big Ideas Geometry 1.6 <u>http://www.palmbeachschools.org/s</u> <u>tudents/Grade12/GeometryActivity2</u> <u>.pdf</u>	
	G.1.2.1.1	Identify and/or use properties of triangles. Triangle Sum and Exterior Angle Theorems.	Big Ideas Geometry 5.1	
	G.1.2.1.4	Identify and/or use properties of regular polygons. Interior and Exterior Angle Theorems.	Big Ideas Geometry 7.1 <u>http://illuminations.nctm.org/Activit</u> <u>y.aspx?id=3546</u>	

Parallel and Perpendicular Lines	G.2.2.1.2	Review and identify pairs of lines. Use properties of angles formed when two parallel lines are cut by a transversal to find the measures of missing angles.	Big Ideas Geometry 3.1 Big Ideas Geometry 3.2-3.3	15 days
	G.2.1.2.2	Relate slope to perpendicularity and/or parallelism (limit to linear algebraic equations). Identify parallel and perpendicular lines. Write equations of parallel and perpendicular lines.	Big Ideas Geometry 3.4-3.5	

Reasoning and Proofs		Use Algebraic Properties of Equality to justify the steps in solving an equation in a two- column proof.	Big Ideas Geometry 2.4	15 days
	G.1.3.2.1	Write, analyze, complete, or identify formal proofs (e.g., direct and/or indirect proofs/proofs by contradiction.) Use properties of equality involving segment lengths and angle measures to complete two-column proofs.	Big Ideas Geometry 2.5-2.6 Big Ideas Geometry 3.3-3.4	
		Complete two-column proofs using parallel and perpendicular lines.		
Congruent Triangles	G.1.3.1.1	Identify and/or use properties of congruent polygons or solids. Identify and use corresponding parts.	Big Ideas Geometry 5.2	20 days

G.1.2.1.3	Identify and/or use properties of isosceles and equilateral triangles. Use the Base Angles Theorems.	Big Ideas Geometry 5.4	
G.1.3.2.1	Write, analyze, complete, or identify formal proofs (e.g., direct and/or indirect proofs/proofs by contradiction). Proving triangles congruent using the SAS, SSS, HL, ASA and AAS Congruence Theorems.	Big Ideas Geometry 5.3, 5.5, 5.6 http://www.lcps.org/cms/lib4/VA01 000195/Centricity/Domain/1445/Ge 0%20G.6%20Chapter%204%20Congr uent%20Triange%20Lab%20WS%20P DF.pdf	
	Using Congruent Triangles. **Increased emphasis on proofs including overlapping triangles, two pairs of congruent triangles, and isosceles/equilateral triangles.	Big Ideas Geometry 5.7 AMSCO Geometry 3.2-3.8	

Relationships Within Triangles	6.1.2.1.1	Identify and/or use		10 days
within mangles	0.1.2.1.1	Identify and/or use properties of medians, altitudes, and perpendicular bisectors. Use midsegments in the coordinate plane and the Triangle Midsegment Theorem to find distance. Use Triangle Inequality Theorem.	Big Ideas Geometry 6.1, 6.3 Big Ideas Geometry 6.4 Big Ideas Geometry 6.5 <u>http://www.glencoe.com/sites/com</u> <u>mon_assets/support_pages/MC_Cou</u> <u>rse3/Triangle_Inequality.pdf</u>	
	G.2.1.2.1	Calculate the distance and/or midpoint between 2 points on a number line or on a coordinate plane. Use properties of triangles in coordinate proofs.	Big Ideas Geometry 5.8	

Similar Triangles	G.1.3.1.1	Identify and/or use properties of similar polygons or solids.	Big Ideas Geometry 8.1	15 days
		<i>Use the Triangle Similarity Theorems to solve real-life problems.</i>	Big Ideas Geometry 8.2-8.3	
	G.1.3.1.2	Identify and/or use proportional relationships in similar figures.	Big Ideas Geometry 8.4	
Right Triangles and Trigonometry	G.2.1.1.1	Use the Pythagorean Theorem to write and/or solve problems involving right triangles.	Big Ideas Geometry 9.1 <u>http://www.cimt.plymouth.ac.uk/projects/mepres/book8/y8s3act.pdf</u>	15 days
		Find side lengths in special right triangles and solve real-life	Big Ideas Geometry 9.2	
		problems. Use the geometric mean to solve problems	Big Ideas Geometry 9.3	
		triangles.		

	G.2.1.1.2	Use trigonometric ratios to write and/or solve problems involving right triangles.	Big Ideas Geometry 9.4-9.5 http://en.wikibooks.org/wiki/High_S chool_Trigonometry/Applications_of _Right_Triangle_Trigonometry http://jwilson.coe.uga.edu/emt668/ emat6680.folders/brooks/6690stuff/ righttriangle/Applications.html	
Quadrilaterals And Their Areas	G.1.2.1.2	Identify and/or use properties of quadrilaterals. **Include proofs using properties of quads and proofs determining type of special quadrilateral. Use properties of trapezoids and the Trapezoid Midsegment Theorem to find distances.	Big Ideas Geometry 7.2, 7.4, 7.5 <u>http://illuminations.nctm.org/Lesson</u> <u>.aspx?id=1992</u> AMSCO Geometry 4.9-4.13 Big Ideas Geometry 7.5	15 days
	G.2.1.2.3	Use slope, distance and/or midpoint between 2 points on a coordinate plane to establish properties of a 2-dimensional shape.	Big Ideas Geometry 7.3, 7.4	
G.2.2.2.2	of a missing length given the perimeter, circumference, or area. Use formulas for quadrilaterals.			
-----------	--	---	--	
G.2.2.2.3	Find the side lengths of a polygon with a given perimeter to maximize the area of the polygon. Use formulas for quadrilaterals.	http://map.mathshell.org/materials/ download.php?fileid=1226		
G.2.2.3.1	Describe how a change in the linear dimension of a figure affects its perimeter, circumference, and area. (e.g., How does changing the length of the radius of a circle affect the circumference of the circle?). Use formulas for quadrilaterals.	http://www.ssms.scps.k12.fl.us/Port als/104/assets/pdf/Math%207th%20 garde/Change%20in%20geometric%2 Odimensions.pdf http://www.shawnee.edu/acad/ms/ ENABLdocs/Summer08pdfs/Geoboar ds%20Lesson%20Plan.pdf http://www.shawnee.edu/acad/ms/ ENABLdocs/Summer08pdfs/Geoboar ds%20Lesson%20Plan.pdf		

Circles	G.1.1.1.1	Identify, determine and/or use the radius, diameter, segment and/or tangent of a circle. **Include proofs using properties of circles.	Big Ideas Geometry 10.1 <u>http://illuminations.nctm.org/uploa</u> <u>dedFiles/Content/Lessons/Resources</u> <u>/9-12/PiLine-AS-Slope.pdf</u> AMSCO Geometry 5.1, 5.4	15 days
	G.1.1.1.2	Identify, determine and/or use the arcs, semicircles, sectors, and/or angles of a circle.	Big Ideas Geometry 10.2	

G.1.1.1.3	Use chords, tangents, and secants to find missing arc measures or missing segment	Big Ideas Geometry 10.3	
	measures. Use Chord Theorems to		
	find lengths and arc measures.		
	Use inscribed angles	Big Ideas Geometry 10.4	
	to find angle and arc measures.	Big Ideas Geometry 10.5	
	Use circumscribed angles to find angle and arc measures.	Big Ideas Geometry 10.6	
	Use chords, tangents, and secants to find missing segment measures.	http://www.nsa.gov/academia/_file s/collected_learning/high_school/ge ometry/tangents_scants_chords.pdf	

C :		Internet for all otherworks of	Dia Idaaa Caamatuu 11.1	20 days
Circumference,		identify, determine	Big ideas Geometry 11.1	20 days
Area, and	G.1.1.1.2	and/or use the arcs,		
Volume		semicircles, sectors,		
		and/or angles of a		
		circle		
		Find circumforance and		
		Find circumjerence and		
		use arc length to find		
		measures and solve		
		real-life problems.		
		Find the area of a	Big Ideas Geometry 11.2	
	G.2.2.2.5	sector of a circle.		
			http://www.regentsprep.org/regent	
			s/math/geometry/GP14/CircleSector	
			<u>s.htm</u>	
		Find the area of a		
		segment of a circle	AMSCO Geometry 8.6	
		segment of a circle.	Ambeo decineri y olo	
		Identify and/or use	Big Ideas Geometry 11.4	
	G.1.2.1.5	properties of pyramids		
		and prisms.		
		·		
		Identify and/or use the		
	G1114	properties of a sphere		
	0.1.1.1.4	properties of a sphere		
		Include Pythagorean		
		Theorem and Special		
		Right Triangles when		
		finding missing		
		measures.		

	Calculate the volume of	Big Ideas Geometry 11.5-11.8	
G.2.3.1.2	prisms, cylinders,		
	cones, pyramids and/or	http://intermath.coe.uga.edu/tweb/	
	spheres. Formulas are	gwin1-01/luce/SAV/SAVRes.html	
	provided on the		
	reference sheet.		
	Calculate the surface	Big Ideas Geometry 11.7-11.8	
G.2.3.1.1	area of prisms,		
	cylinders, cones,	http://www.mybookezzz.org/surface	
	pyramids and/or	-area-hands-on-activity/	
	spheres. Formulas are		
	provided on the		
	reference sheet.		
	Find the measurement	http://illuminations.nctm.org/Lesson	
G.2.3.1.3	of a missing length	<u>.aspx?id=2911</u>	
	given the surface area		
	or volume.		
	Describe how a change		
G.2.3.2.1	in the linear dimension	http://www.shodor.org/interactivat	
	of a figure affects its	e/lessons/SurfaceAreaAndVolume/	
	surface area or volume.		
	(e.g., How does	http://www.k12.wa.us/mathematics	
	changing the length of	/MathAve/Landscaping/Assessment.	
	the edge of a cube	pdf	
	affect the volume of	—	
	the cube?).		
G.2.2.4.1	Use area models to find		
	probabilities.		

Final Exam			10 days
Review			

Honors Algebra II/Trigonometry

Curriculum Guide

Scranton School District

Scranton, PA

Honors Algebra II/Trigonometry

Prerequisite:

- Successful completion of Geometry or Honors Geometry
- Be in compliance with the SSD Honors and AP Criteria Policy

Building on their work with linear and quadratic functions, students will extend their repertoire of functions to include polynomial, rational, radical, exponential, and logarithmic functions. Students will work closely with the expressions that define the functions, and continue to expand and hone their abilities to model situations and to solve equations, including solving quadratic equations over the set of complex numbers and solving exponential equations using the properties of logarithms. Other topics that are included in this course are arithmetic and geometric sequences, probability, permutations, and combinations. A study of the conic sections and their graphs will also be included.

Building on their previous work with functions, and on their work with trigonometric ratios and circles in Geometry, students now use the coordinate plane to study angles in standard position and understand radian measure. The trigonometric functions, their graphs, and identities will be explored.

This course is part of an accelerated curriculum in mathematics beginning with Algebra I in eighth grade so that the students, after successful completion of this course, will have the opportunity to progress to Honors Elementary Analysis and Advanced Placement Calculus.

Year-at-a-glance

Subject: Honors Algebra II/Trigonometry	Grade Level: 10 th and 11 th	Date Completed: 2/5/2015

1st Quarter

Торіс	Resources	CCSS
Linear Equations and Inequalities in one variable	Textbook: McDougall-Littell Algebra and	A1.1.2.1.1
	Trigonometry Structure and Method – Book 2	A1.1.3.1.2
	Sections: 1.2, 1.7, 2.1, 2.2, 2.4	A1.1.3.1.1
Evenents	Taythaak, McDaugall Littall Algabra and	
exponents	Textbook: McDougail-Littell Algebra and	A2.1.2.1.1
	Trigonometry Structure and Method – Book 2	A2.1.2.1.3
	Sections: 4.2, 5.1, 5.2, 10.1, 10.2	
Relations/Linear Equations in 2 Variables	Textbook: McDougall-Littell Algebra and	A1.2.1.1.3
	Trigonometry Structure and Method – Book 2	A1.2.1.1.2
	Sections: 3.2, 3.3, 3.4, 3.7, 3.8, 3.10	A1.2.2.1.3
Correlation	Textbook: McDougall-Littell Algebra and	A2.2.1.1.1
	Trigonometry Structure and Method – Book 2	A2.2.3.1.1
	Sections: 3.9	A2.2.3.1.2
Systems of Linear Equations/Inequalities	Textbook: McDougall-Littell Algebra and	A1.1.2.2.1
	Trigonometry Structure and Method – Book 2	A1.1.3.2.1
	Sections: 3.5, 3.6, 3.7, 9.9	

2 nd	Quarter
-----------------	---------

Торіс	Resources	CCSS
Polynomials	Textbook: McDougall-Littell Algebra and	A1.1.1.5.1
	Trigonometry Structure and Method – Book 2	A1.1.1.5.2
	Sections: 4.1, 4.3, 4.4, 4.5, 4.6, Honors Algebra	A2.1.2.2.1
	II/Trig Factoring Packet	
Quadratic Functions	Big Ideas Algebra 2 Chapter 2 and	A2.2.2.1.1
	accompanying resources	A2.2.2.1.3
		A2.2.2.1.4
	Honors Algebra II/Trigonometry Conic Sections	A2.2.2.1
	Packet	A2.2.3.1.1
Quadratic Equations	Big Ideas Algebra 2 Chapter 3 and	A2.1.3.1.1
AND	accompanying resources EXCLUDING	A2.1.1.1.1
Imaginary and Complex Numbers	SECTION 3.5 AND 3.6	A2.1.1.2.1
	Supplemental materials/worksheets for powers	A2.1.1.1.2
	of <i>i</i> and dividing complex numbers.	A2.1.1.2.2

3 rd Qu	arter
--------------------	-------

Торіс	Resources	CCSS
Polynomial Functions	Big Ideas Algebra 2 Chapter 4 and	A2.2.2.1.1
	accompanying resources	A2.2.2.1.3
	EXCLUDING 4.9	A2.2.1.1.4
		A2.2.2.1.4
Rational Exponents and Radical Functions	Big Ideas Algebra 2 Chapter 5 and accompanying	A2.1.2.1.2
	resources.	A2.1.3.1.2
	EXCLUDING 5.5	A2.2.1.1.3
Exponential and Logarithmic Functions	Big Ideas Algebra 2 Chapter 6 and accompanying	A2.2.2.1.3
	resources.	A2.2.1.1.4
		A2.2.2.1.2
		A2.2.2.1.4
		A2.1.2.1.4
Rational Functions/Expressions and Variation	Big Ideas Algebra 2 Chapter 7 and accompanying	A2.1.3.2.1
	resources.	A2.1.2.2.2
	EXCLUDING 7.2	A2.1.3.1.2
Solving Formulas	Supplemental Materials and worksheets.	A2.1.3.2.2

4 th	Quarter
-----------------	---------

Торіс	Resources	CCSS
Trigonometry	Big Ideas Algebra 2 Chapter 9 and	HSG.SRT.C.6
	accompanying resources. EXCLUDING 9.6 and	HSG.SRT.C.7
	9.8 and	HSG.SRT.C.8
	Supplemental materials	HSF.TF.A.2
		HSF.TF.A.2
		HSF.TF.A.3
		HSF.TF.A.4
		HSF.TF.A.5
		HSF.TF.A.4
		HSF.TF.A.5
		HSF.TF.C.8
		HSG.SRT.D.10
		HSG.SRT.D.11
Probability	Big Ideas Algebra 2 Chapter 10 and	A2.2.3.2.1
	accompanying resources. EXCLUDING 10.3 and	A2.2.3.2.3
	10.6	A2.2.3.2.2
Series and Sequence	Big Ideas Algebra 2 Chapter 8 and	A2.2.1.1.2
	accompanying resources.	
	EXCLUDING 8.5	
Final Exam Review	Teacher Prepared Final Exam Review Packet	

* Note: Italicized standards and topics are currently classified as Algebra I CC/Geometry CC. These will eventually be phased out as the Common Core is completely implemented.

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Linear Equations in one variable	A1.1.2.1.1	Write, solve, and/or apply linear equations (including problem situations) a. Evaluate expressions b. Collect like terms c. Solving multi-step equations d. Application to real life situations	MacDougal-Littell Text 1.2 1.7	Teacher prepared tests, quizzes, etc. Series available assessments online. (Optional)	5 days
Inequalities in one variable	A1.1.3.1.2 A1.1.3.1.1	Identify or graph the solution set to a linear inequality on a number line Write or solve compound inequalities and/or graph their solution sets on a number line (may include absolute value inequalities)	MacDougal-Littell Text 2.1 2.2 2.4		5 days

Exponents	A2.1.2.1.1 A2.1.2.1.3	Using exponential expressions to represent rational numbers Simplify/evaluate expressions involving multiplying with exponents, powers of powers, and powers of products. Note: limit to rational exponents Simplifying real number exponents.	MacDougal-Littell Text 5.2 4.2 5.1 5.2 10.1	5 days
Relations	A1.2.1.1.3 A1.2.1.1.2	Identify the domain or range of a relation (may be presented as ordered pairs, graph, or, a table.) Determine whether a relation is a function, given a set of points or a graph. Include function notation, finding function values, and composition of functions.	MacDougal-Littell Text 3.10 3.10 3.8	3 days

Linear Equations in 2 Variables	A1.2.2.1.3	Write, identify, and/or graph a linear equation given: a. The graph of a line b. Two points on the line c. The slope and a	MacDougal-Littell Text 3.2 3.3 3.4	5 days
		point on the line d. Parallel and Perpendicular lines Note: Linear equation may be in point-slope, standard, and/or slope intercept form		
Correlation	A2.2.1.1.1	Analyze a set of data for the existence of a pattern and represent the pattern with a rule algebraically and/or graphically	MacDougal-Littell Text 3.9	3 days
	A2.2.3.1.1	Draw, identify, find, interpret, and/or write an equation for a regression model (lines of best fit) for a scatter plot	3.9	
	A2.2.3.1.2	Make predictions using the equations or graphs of regression models (lines of best fit) of scatter plots	3.9	

Systems of Linear Equations	A1.1.2.2.1	Write and/or solve a system of linear equations (including problem situations) using graphing, substitution, and/or elimination. Note: Limit systems to two linear equations	MacDougal-Littell Text 3.5 3.6	7 days
		Systems of three equations/three variables	9.9 Big Ideas Algebra 2 Section 1.4 as supplemental material)	
Systems of Linear Inequalities	A1.1.3.2.1	Write and/or solve a system of linear inequalities using graphing. Note: Limit systems to two linear equalities Systems of three or more inequalities	MacDougal-Littell Text 3.7 3.7	3 days

Polynomials	A1.1.1.5.1	Add, subtract, and/or multiply polynomial expressions (express answers in simplest form). Including Multiplying two trinomials. (Be sure to cover special	MacDougal-Littell Text 4.1 4.3	9 days
	A2.1.2.2.1	products such as squares and cubes of binomials) Factor algebraic expressions, including difference of squares and trinomials. Note: trinomials are limited to the form of ax ² +bx+c where a does not equal zero. Includes factoring by grouping, sum and difference of 2 cubes, and	4.4 4.5 4.6 Algebra II/Trig Honors Factoring Packet	
		equations in quadratic form.		

QUADRATIC FUNCTIONS	A2.2.2.1.1	Create, interpret, and/or use the equation, graph, or table of a quadratic function	Big Ideas Algebra 2 Text Chapter 2	10 days
	A2.2.2.1.3	Determine, use, and/or interpret minimum and maximum values over a specified interval of a graph of a quadratic function		
	A2.2.1.1.4	Identify and/or determine the characteristics of a quadratic function (e.g. intervals of increase/decrease, intercepts, zeros)		

		Identify or describe the effect of changing parameters within a family of functions Draw, identify, find, interpret, and/or write an equation for a regression model (curve of best fit) for a scatter plot		
Quadratic Equations	A2.1.3.1.1	Write and/or solve quadratic equations (including factoring and using the quadratic formula) a. By factoring b. Completing the square c. Quadratic formula d. Equations in Quadratic form e. Word problems by factoring and using quadratic formula	Big Ideas Algebra 2 Text 3.1 3.3 3.4 Supplemental materials/worksheets	18 days

		Graph circles (non- functions) in detail (5 steps). Write equations. Graph parabolas (functions and non- functions) in detail (11 steps). Write equations. Graph ellipses (non- functions) in detail (10 steps). Graph hyperbolas (functions and non- functions) in detail (9 steps).	Algebra II/Trig Honors Conic Section Packet	
Imaginary and Complex Numbers	A2.1.1.1.1	Simplify/write square roots in terms of 'i'	Big Ideas Algebra 2 Text 3.2	6 days
	A2.1.1.2.1	Add and subtract complex numbers	Supplemental material needed	
	A2.1.1.1.2	Simplify/evaluate expressions involving powers of 'i'		
	A2.1.1.2.2	Multiply and divide complex numbers		

POLYNOMIAL FUNCTIONS	A2.2.2.1.1	Create, interpret, and/or use the equation, graph, or table of a polynomial function A. Remainder and factor theorems B. Theorems about roots/rational root theorem	Big Ideas Algebra 2 Text Chapter 4 excluding 4.9	1	13 days
	A2.2.2.1.3	Determine, use, and/or interpret minimum and maximum values over a specified interval of a graph of a polynomial function			
	A2.2.1.1.4	Identify and/or determine the characteristics of a polynomial function (e.g. intervals of increase/decrease, intercepts, zeros)			

	A2.2.1.1.4	Translate a polynomial function from one representation of a function to another (graph, table, and equation)		
Rational Exponents				
	A2.1.2.1.2	Simplify/evaluate expressions involving positive and negative exponents and/or roots (may contain all types of real numbers – exponents should not exceed power of 10) a. Simplify radical expressions b. Multiply /Divide radicals expressions c. Add/Subtract radical expressions d. Rationalizing the denominator e. Rational exponents	Big Ideas Algebra 2 Text 5.1 5.2	6 days

Radical Functions	A2.1.3.1.2	Solve equations involving radical expressions	Big Ideas Algebra 2 Text 5.3 5.4	3 days
EXPONENTIAL AND LOGARITHMIC FUNCTIONS	A2.2.1.1.3	Determine the domain, range, or inverse of a relation	Big Ideas Algebra 2 Text Chapter 6	13 days
	A2.2.2.1.3	Determine, use, and/or interpret minimum and maximum values over a specified interval of a graph of an exponential and logarithmic function		
	A2.2.1.1.4	Identify and/or determine the characteristics of a exponential and logarithmic functions (e.g. intervals of increase/decrease, intercepts, zeros)		

A2.2.2.1.2	Create, interpret, and/or use the equation, graph, or table of an exponential or logarithmic function (including common and natural logarithms)		
A2.2.2.1.4	Translate an exponential or logarithmic function from one representation of a function to another (graph, table, and equation)		
A2.1.2.1.4	Simplify or evaluate expressions involving logarithms and exponents		
A2.1.3.1.3	Write and/or solve a simple exponential or logarithmic equation (including common and natural logarithms)		

	A2.1.3.1.4	Write, solve, and/or apply exponential growth or decay (including problem situations)		
Variation	A2.1.3.2.1	Determine how a change in one variable relates to a change in a second variable a. direct variation b. inverse variation c. joint variation	Big Ideas Algebra 2 Text 7.1 Supplemental materials needed	3 days
Rational Expressions	A2.1.2.2.2	Simplify rational algebraic expressions a. Reduce b. Multiply c. Divide d. Add e. Subtract f. Complex Fractions	Big Ideas Algebra 2 Text 7.3 7.4 Supplemental materials needed	7 days
Rational Equations	A2.1.3.1.2	Solve equations involving rational expressions.	Big Ideas Algebra 2 Text 7.5	2 days
Solving Formulas	A2.1.3.2.2	Use algebraic processes to solve a formula for a given variable	Supplemental materials needed	2 days

Trigonometry	HSG.SRT.C.6 HSG.SRT.C.7 HSG.SRT.C.8	Evaluate trigonometric functions of acute angles. Find unknown side lengths and angle measures of right triangles. Use trigonometric functions to solve real-life problems.	Big Ideas Algebra 2 Text 9.1	24 days
	HSF.TF.A.2	Draw angles in standard in standard position and use radian measure.	9.2	
	HSF.TF.A.2 HSF.TF.A.3	Evaluate trigonometric functions of any angle. Find and use reference angles to evaluate trigonometric functions.	9.3	
	HSF.TF.A.4 HSF.TF.A.5	Graph sine and cosine functions including stretches and shrinks, translations, and reflections.	9.4	
	HSF.TF.A.4 HSF.TF.A.5	Graph tangent, cosecant, secant, and cotangent functions.	9.5	
	HSF.TF.C.8 HSG.SRT.D.10	Using trigonometric identities.	9.7	
	HSG.SRT.D.11	Law of Sines and Cosines	Supplemental materials	

Honors Algebra II/Trigonometry

PROBABILITY	A2.2.3.2.1	Use combinations, permutations, and the fundamental counting principle to solve problems involving probability	Big Ideas Algebra 2 Text Chapter 10, excluding 10.3 and 10.6	9 days
	A2.2.3.2.3	Use probability for independent, dependent, or compound events to predict outcomes.		
	A2.2.3.2.2	Use odds to find probability and/or use probability to find odds		
SERIES AND SEQUENCES	A2.2.1.1.2	Identify and/or extend the pattern as either an arithmetic or geometric sequence	Big Ideas Algebra 2 Text Chapter 8, excluding 8.5	9 days
Final Exam and Review				10 days

Math Survey

Curriculum Guide

Scranton School District

Scranton, PA

Math Survey

Prerequisite : Successful completion of Geometry or Applied Geometry

Survey of Mathematics provides a review of the students' previous years of mathematics along with real-world applications of mathematics for both personal and vocational use. Topics include, but are not limited to, the following: sets, logic, systems of numeration, number theory and the real number system, algebra, graphs, functions, systems of linear equations and inequalities, the metric system, geometry, mathematical systems, consumer mathematics, probability, statistics, graph theory, and voting and apportionment. As with all mathematics courses, varied problem solving strategies will be emphasized.

Year-at-a-glance

Subject: Math Survey	Grade Level: 12	Date Completed: 2/5/15

1st Quarter

Торіс	Resources	CCSS
Unit 1 – Critical Thinking Skills	Textbook	HSS.IC.A.1
A – Inductive Reasoning	Title - A Survey of Mathematics with Applications,	HSN.QA.3
B – Estimation	7th Edition	
C – Problem Solving	Authors - Angel, Abbott, and Runde	
Unit 2 – Sets	Textbook	HSS.CP.A.1
A – Set Concepts	Title - A Survey of Mathematics with Applications,	
B – Subsets	7th Edition	
C – Venn Diagrams and Set Operations	Authors - Angel, Abbott, and Runde	
D – Applications of Sets		

2nd Quarter

Торіс	Resources	CCSS
Unit 3 – Logic	Textbook	HSS.IC.B.6
A – Statements and Logical Connectives	Title - A Survey of Mathematics	HSS.CP.A.1
B – Truth Tables	with Applications, 7th Edition	
C – Symbolic Arguments	Authors - Angel, Abbott, and	
D – Syllogistic Arguments	Runde	
Unit 4 – Systems of Numeration A – Additive, Multiplicative, and Ciphered Systems of Numeration B – Place-Value Numeration C – Other Bases and Computations in Other Bases	Textbook Title - <i>A Survey of Mathematics with Applications</i> , 7th Edition Authors - Angel, Abbott, and Runde	HSN.Q.A.2

3rd Quarter

Торіс	Resources	CCSS
Unit 5 – Number Theory	Textbook	HSA.SSE.A.1
A – Integers	Title - A Survey of Mathematics with	HSA.SSE.A.1.A
B – Rational Numbers	Applications, 7th Edition	HSA.SSE.A.1.B
C – Irrational Numbers	Authors - Angel, Abbott, and Runde	HSA.SSE.B.3
D – Exponents and Scientific Notation		HSF.BF.A.2
E – Sequences (Arithmetic, Geometric, Fibonacci)		HSN.RN.B.3
Unit 6 – Systems of Linear Equations	Textbook	HSA.REI.C.5
A – Systems of Linear Equations	Title - A Survey of Mathematics with	HSA.REI.C.6
B – Matrices and Operations	Applications, 7th Edition	HSN.VM.C.8
C – Solving Systems using Matrices	Authors - Angel, Abbott, and Runde	HSN.VM.C.9
		HSN.VM.C.10

4th Quarter

Торіс	Resources	CCSS
Unit 7 – Consumer Mathematics	Textbook	HSN.Q.A.2
A – Percent	Title - A Survey of Mathematics with	
B – Personal Loans and Simple Interest	Applications, 7th Edition	
C – Compound Interest	Authors - Angel, Abbott, and Runde	
D – Installment Buying		
	Online Website EVERFI.com*	
Unit 8 – Probability	Textbook	HSS.MD.B.6
A – Empirical Probability	Title - A Survey of Mathematics with	HSS.CP.A.2
B – Theoretical Probability	Applications, 7th Edition	HSS.CP.A.3
C – Odds	Authors - Angel, Abbott, and Runde	HSS.CP.B.9
D – Compound Probability		
E – Conditional Probability		
F – Permutations		
G – Combinations		
Review and administration of Final Exam		

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Use Inductive Reasoning to reach a general conclusion through observations of specific cases.	HSS.IC.A.1	Understand statistics as process for making inferences about population parameters. This is based on a random sample from the population.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 1 Section 1	Teacher prepared tests, quizzes, etc.	4 days
Use Deductive Reasoning to reach a specific conclusion from a general statement.	HSS.IC.A.1	Understand statistics as process for making inferences about population parameters. This is based on a random sample from the population.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 1 Section 3		4 days
Use Estimation strategies in problem-solving situations.	HSN.QA.3	Choose a level of accuracy appropriate to limitations on measurement when reporting results.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 1 Section 2		5 days

Define and list sets as a list of elements. Represent and/or use the properties of sets.	HSS.CP.A.1	Describe events as a set of outcomes using characteristics of the outcomes as unions, intersections, or complements of other events.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 2 Section 1	5 days
Define and determine subsets of a set. Identify the type of subset.	HSS.CP.A.1	Describe and identify events as subsets of a sample space.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 2 Section 2	5 days
Create and use a Venn Diagram to picture set relationships and evaluate set operations.	HSS.CP.A.1	Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 2 Section 3	5 days

Apply and analyze data using set theory and properties.	HSS.CP.A.1	Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 2 Sections 4 and 5	10 da	lays
Represent and/or use the properties of infinite sets.	HSS.CP.A.1	Describe events as an infinite set of outcomes using characteristics of the outcomes as unions, intersections, or complements of other events.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 2 Section 6	10 da	lays
Translate simple and compound sentences into logic statements using connectives.	HSS.IC.B.6 HSS.CP.A.1	Evaluate reports based on data. Translate data into statements using quantifiers, conjunctions, disjunctions, not statements, and if-then statements.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 3 Section 1	3 day	iys
Create and analyze truth tables for negation, conjunction, and disjunction.	HSS.IC. B.6 HSS.CP.A.1	Evaluate reports based on data. Transfer data onto truth tables to convey conjunctions, disjunctions.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 3 Section 2	3 days	
---	---------------------------	--	--	--------	
Create and analyze truth tables for conditional and biconditional statements.	HSS.IC.B.6 HSS.CP.A.1	Evaluate reports based on data. Transfer data onto truth tables to convey if-then statements and if-and- only-if statements.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 3 Section 3	3 days	
Create equivalence statements. Use a truth table to verify equivalence.	HSS.IC.B.6 HSS.CP.A.1	Evaluate reports based on data. Transfer data onto truth tables to convey equivalence of statements. Use DeMorgan's laws to justify equivalence statements.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 3 Section 4	3 days	

Test the validity of an argument as valid or fallacy.	HSS.IC.B.6 HSS.CP.A.1	Evaluate reports based on data. Transfer data onto a truth table to prove validity of a statement.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 3 Section 5	3 days
Examine Symbolic Arguments versus Syllogistic Arguments using the Euler Diagram.	HSS.IC.B.6 HSS.CP.A.1	Evaluate reports based on data. Create Euler Diagrams to prove validity of arguments.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 3 Section 6	3 days
Represent a symbolic statement as a switching circuit.	HSS.IC.B.6 HSS.CP.A.1	Evaluate reports based on data. Use various circuits to convey conjunctions, disjunctions.	Powerpoint Presentation from Next Edition of Textbook Title - A Survey of Mathematics with Applications, 8th Edition Authors - Angel, Abbott, and Runde Chapter 3 Section 7	3 days

Define and describe the various systems of numeration.	HSN.Q.A.2	Define appropriate quantities to understand the relationship between numbers and quantities.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 4 Section 1	3 days
Use the place- value system to write numbers in expanded form.	HSN.Q.A.2	Define appropriate quantities to read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 4 Section 2	4 days
Convert base 10 numerations to another base.	HSN.Q.A.2	Define appropriate quantities to read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 4 Section 3	5 days

Solve mathematical operations in bases other than 10.	HSN.Q.A.2	Define appropriate quantities to fluently add, subtract, multiply, and divide numbers in bases other than 10 using the standard algorithm.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 4 Section 4	6 days
Relate methods used by early civilizations to multiply and divide.	HSN.Q.A.2	Define appropriate quantities to fluently add, subtract, multiply, and divide numbers using duplation and mediation.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 4 Section 5	6 days
Identify types of numbers. Incorporate divisibility rules to find GCF and LCM.	HSA.SSE.A.1.A	Interpret parts of an expression, such as terms, factors, and coefficients to find the Greatest Common Factor and the Least Common Multiple of two numbers.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 5 Section 1	2 days

Define Integers as part of the Real Number System. Use mathematical operations to evaluate integer expressions.	HSA.SSE.A.1	Interpret expressions that represent a quantity in terms of its context. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 5 Section 2	3 days
Define Rational Numbers as part of the Real Number System. Simplify Rational expressions. Use mathematical operations to evaluate rational expressions.	HSN.RN.B.3	Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 5 Section 3	4 days

Define Irrational Numbers as part of the Real Number System. Simplify Irrational expressions. Use mathematical operations to evaluate irrational expressions.	HSN.RN.B.3	Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 5 Section 4	3 days
Define all of the properties of Real Numbers. Apply these properties to solve expressions.	HSA.SSE.A.1 HSA.SSE.A.1.A HSA.SSE.A.1.B	Interpret expressions that represent a quantity in terms of its context. Interpret parts of an expression, such as terms, factors, and coefficients. Interpret complicated expressions by viewing one or more of their parts as a single entity.	Textbook Title - <i>A Survey of</i> <i>Mathematics with</i> <i>Applications</i> , 7th Edition Authors - Angel, Abbott, and Runde Chapter 5 Section 5	2 days

Use the Exponent Laws to evaluation expressions and convert decimal forms to scientific notation.	HSA.SSE.B.3	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 5 Section 6	3 days
Define and write algebraic and geometric sequences. Use these sequences to understand the Fibonacci Sequence.	HSF.BF.A.2	Write arithmetic and geometric sequences both recursively and with an explicit formula. Identify apparent features of the pattern that were not explicit in the rule itself.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 5 Section 7 Chapter 5 Section 8	3 days

Solve a System of Linear Equations by the graphing method. Identify the solutions as consistent, inconsistent, or dependent.	HSA.REI.C.6	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 7 Section 1	2 days
Solve a System of Linear Equations by the addition and substitution method. Identify the solutions as consistent, inconsistent, or dependent.	HSA.REI.C.5	Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 7 Section 2	4 days

Define and evaluate Matrices through Addition, Subtraction, and Multiplication.	HSN.VM.C.8 HSN.VM.C.9	Add, subtract, and multiply matrices of appropriate dimensions. Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 7 Section 3	9 days
Solve systems of linear equations using matrices.	HSN.VM.C.10	Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 7 Section 4	10 days

Convert decimals and fractions to percents. Apply the percent change of real world examples.	HSN.Q.A.2	Define appropriate quantities for the purpose of descriptive modeling. Use proportional relationships to solve multistep ratio and percent problems. Examples: percent increase and decrease, percent error.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 11 Section 1 Online Resource: EVERFI.com*	5 days
Compute simple interest and relate it to personal loans.	HSN.Q.A.2	Define appropriate quantities for the purpose of descriptive modeling. Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, fees.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 11 Section 2 Online Resource: EVERFI.com*	5 days
Compute compound interest and relate it to installment buying.	HSN.Q.A.2	Define appropriate quantities for the purpose of descriptive modeling. Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, fees, and compound interest.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 11 Sections and 4 Online Resource: EVERFI.com*	5 days

Define and calculate Empirical Probability using real world examples.	HSS.MD.B.6	Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 12 Section 1	2 days
Define and calculate Theoretical Probability using real world examples.	HSS.MD.B.6	Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 12 Section 2	3 days
Define and calculate Theoretical Probability using real world examples.	HSS.MD.B.6	Use odds to make fair decisions (e.g., drawing by lots, using a random number generator).	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 12 Section 3	3 days

Define and calculate Compound Probability using real world examples.	HSS.CP.A.2	Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 12 Section 6	3 days
Define and calculate Conditional Probability using real world examples.	HSS.CP.A.3	Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 12 Section 7	3 days

Define and evaluate the Permutations and Combinations of sets of elements.	HSS.CP.B.9	Use permutations and combinations to compute probabilities of compound events and solve problems.	Textbook Title - A Survey of Mathematics with Applications, 7th Edition Authors - Angel, Abbott, and Runde Chapter 12 Sections 8 and 9	3 days
Review and administration of Final Exam				10 days

*Online program that teaches students how to handle topics such as banking, taxes, everyday expenses, and college loans.

Overview

With the onset of the adoption of the Common Core State Standards and the development of the Pennsylvania Core Standards, including the Keystone Anchors, the Scranton School District commissioned a process to update, align and reorganize the content within the various mathematics subject areas to be in compliance with the current goals and trends in mathematics education and the previously mentioned standards. The results are curriculum guides that will meet the educational needs of all our students in an ever changing society.

These guides contain the course content recommended by state and national committees. However, by design, these guides allow the teachers maximum opportunity to exercise their judgment and planning in the interest of their students.

A student studying mathematics must have a base knowledge of concepts and generalizations that allows the student to move forward to more advanced concepts. In other words, mathematics is cumulative, and new learning depends entirely on the understanding of concepts previously learned.

A "Suggested Time" column (listing suggested times spent on each concept) is included in these curriculum guides. This column represents a suggestion of times. The teachers developing these curriculum guides used their professional judgment to complete this column. The Mathematics Committee strongly believes that as the district's students move through common core, these timelines must be revisited and adjusted wherever necessary because of the shift in subject area content. Also note, that the days for all types of assessments (including both teacher prepared as well as standardized assessments) are included in the suggested times. These timelines may be modified to take into account unforeseen schedule changes.

Although only listed once under the "Assessments" column, teacher prepared tests, quizzes, etc. are to be used for evaluation throughout the entire curriculum guide. Online assessments (ancillary materials accompanying new textbooks) may also be used as optional resources.

These curriculum guides must be continually revised to meet any new situations and/or conditions. We believe these guides will benefit both the experienced and inexperienced teacher.

Pre-Algebra Grade 9

Curriculum Guide

Scranton School District

Scranton, PA

Pre-Algebra

Pre-Requisites

- Grade of 75 or below in Common Core Math 8
- Teacher recommendation

Intended Audience: This course is designed for the student who has successfully completed 8th grade math by the end of the 8th grade.

The 9th grade Pre-Algebra course will develop an understanding of real numbers, recognizing fractions, decimals, percents, and different representations of rational numbers. Students develop an extended knowledge of relationships between positive and negative numbers and the operations of integers and order of operations. They extend their mastery of the properties of operations to develop and understanding of integer exponents, and to work with numbers written in scientific notation. Students will use linear equations to represent, analyze and solve a variety of problems. Students will strategically chose and efficiently implement procedures to solve linear equations in one variable.

After successfully completing this course, students will be allowed to enroll in Algebra I Part 10A.

Year-at-a-glance

Subject: Pre-Algebra	Grade Level: 9 th	Date Completed: 10-22-14
Subject. Fre-Algebra	Grade Level. 5	Date Completed. 10-22-14

1st Quarter

Торіс	Resources	CCSS
Simplifying and evaluating expressions	Glencoe Math Accelerated Chapter 1	7.EE.1, 8.EE.1, 8.EE.7
	Larson Pre Algebra Chapter 1	
	Glencoe Math Accelerated Chapter 1	7.EE.1, 8.EE.2, 8.EE.7
Properties of real numbers and the real number system	Larson Pre Algebra Chapter 1	
Operations with integers	Glencoe Math Accelerated Chapter 1	7.NS.1b, 7.NS.1c, 7.NS.1d,
	Larson Pre Algebra Chapter 2.1	7.NS.2, 7.NS.3, 7.EE.3

2nd Quarter

Торіс	Resources	CCSS
Operations with rational numbers	Glencoe Math Accelerated Chapter 3	7.NS.1b, 7.NS.1c, 7.NS.1d,
	Larson Pre Algebra Chapter 5	7.NS.2, 7.NS.2d, 7.NS.3, 8.NS.1,
		7.EE.3
Finding unit rates and simplifying complex fractions	Glencoe Math Accelerated Chapter 5	7.RP.1, 7.RP.2a
	Larson Pre Algebra Chapter 6	
Writing and simplifying ratios	Glencoe Math Accelerated Chapter 5	7.RP.1, 7.RP.2a
	Larson Pre Algebra Chapter 6	
Writing and solving proportions	Glencoe Math Accelerated Chapter 5	7.RP.1, 7.RP.2a
	Larson Pre Algebra Chapter 6	

3rd Quarter

Торіс	Resources	CCSS
Solving percent problems	Glencoe Math Accelerated Chapter 3	7.RP.2c
	Larson Pre Algebra Chapter 5	
Properties of exponents and scientific notation	Glencoe Math Accelerated Chapter 4	8.EE.1, 8.EE.2, 8.EE.3, 8.EE.4
	Larson Pre Algebra Chapter 4	
Solving equations-1 step, two step, with like terms, and the	Glencoe Math Accelerated Chapter 7 and	7.EE.3, 7.EE.2, 7.EE.4, 7.EE.4a,
distributive property	Glencoe Math Accelerated 8	8.EE.7, 8.EE.7b, 8.EE.7
	Larson Pre Algebra Chapter 2.2-2.6 and Larson	
	Pre Algebra Chapter 3	
Solving linear inequalities	Glencoe Math Accelerated Chapter 8	7.EE.4b
	Larson Pre Algebra Chapter 9	

4th Quarter

Торіс	Resources	CCSS
Concepts of functions-domain, range, evaluating for a given value	Glencoe Math Accelerated Chapter 1.6 and	8.F.1
	Glencoe Math Accelerated Chapter 9	
	Larson Pre Algebra Chapter 8	
Graphing linear equations/functions	Glencoe Math Accelerated Chapter 1.6 and	8.EE.5, 8.F.3
	Glencoe Math Accelerated Chapter 9	
	Larson Pre Algebra Chapter 8	
Finding the slope of a line from two points	Glencoe Math Accelerated Chapter 1.6 and	8.EE.6
	Glencoe Math Accelerated Chapter 9	
	Larson Pre Algebra Chapter 8	
Data analysis and probability data distributions, find simple	Clances Math Assoluted Charter 10	
Data analysis and probability-data distributions, find simple	Giencoe Math Accelerated Chapter 10	7.5P.1, 7.5P.2, 7.5P.3, 7.5P.4,
	Larson Pre Algebra Chapter 11	7.52.8, 8.52.1, 8.52.4
Final Review		

General Topic	Academic	Essential Knowledge,	Resources & Activities	Assessments	Suggested Time
	Standard(s)	Skills & Vocabulary			
Expressions	7.EE.1	Apply properties of			20 days
		operations as strategies to	Glencoe Math Accelerated		
		add, subtract, factor, and	Chapter 1		
		expand linear expressions	Larson Pre Algebra Chapter 1		
		with rational coefficients			
		 a. Write numeric expressions b. Write algebraic expressions c. Evaluate expressions d. Simplify expressions using order of expressions 			
		Use properties of numbers			
		to rewrite expressions			
		 a. Commutative properties of addition and multiplication b. Associative properties addition and multiplication c. Additive identity d. Multiplicative identity e. Multiplication property of zero 			

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Integers and Rational Numbers	7.NS.1b	Understand p + q as the number located a distance q from p in the positive direction depending on whether p is positive or negative. Interpret sums in real world contexts. a. Absolute value b. Adding integers c. Adding rationals	Glencoe Math Accelerated Chapter 1 Larson Pre Algebra Chapter 2.1		5 days
	7 NG 4 -				E dava
Integers and Rational Numbers	7.NS.1C	Understand subtraction of rational numbers as adding the additive inverse $p - q = p + (-q)$ Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this to real world contexts.	Giencoe Math Accelerated Chapter 2 Larson Pre Algebra Chapter 2		5 days
		a. Subtracting integers b. Subtracting Rationals			

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Integers and Rational Numbers	7.NS.1d	Apply properties of operations as strategies to add and subtract rational numbers.	Glencoe Math Accelerated Chapter 2 Larson Pre Algebra Chapter 2		5 days
Integers and Rational Numbers	7.NS.2	Apply and extend previous understandings of multiplication and division of fractions to multiply and divide rational numbers a. Multiplying integers b. Dividing integers c. Multiplying Rationals d. Reciprocals e. Dividing Rationals	Glencoe Math Accelerated Chapter 2 Larson Pre Algebra Chapter 2		5 days
Integers and Rational Numbers	7.NS.2D	Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0's or repeats.	Glencoe Math Accelerated Chapter 3 Larson Pre Algebra Chapter 5		5 days

Integers and Rational Numbers	7.NS.3	Solve real world and mathematical problems involving the four operations with rational numbers	Glencoe Math Accelerated Chapter 3 Larson Pre Algebra Chapter 5	5 days
Integers and Rational Numbers	8.NS.1	Know that the numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion, which repeats eventually into a rational number.	Glencoe Math Accelerated Chapter 3 Larson Pre Algebra Chapter 5	5 days
Integers and Rational Numbers	7.EE.3	Solve real-life mathematical problems using numerical and algebraic expressions and equations a. multiplying rationals b. dividing rationals c. adding and subtracting rationals	Glencoe Math Accelerated Chapter 3 Larson Pre Algebra Chapter 5	5 days

Exponents	8.EE.1	Know and apply the properties of integer exponents to generate equivalent numerical expressions.	Glencoe Math Accelerated Chapter 4 Larson Pre Algebra Chapter 4	5 days
Exponents	8.EE.2	Use square root and cube roots to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$ where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes	Glencoe Math Accelerated Chapter 4 Larson Pre Algebra Chapter 4	5 days
Exponents	8.EE.3	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other.	Glencoe Math Accelerated Chapter 4 Larson Pre Algebra Chapter 4	2 days
Exponents	8.EE.4	Perform operations with numbers expressed in scientific notation, including where both decimal and scientific notation are used.	Glencoe Math Accelerated Chapter 4 Larson Pre Algebra Chapter 4	3 days

Ratio and Proportion	7.RP.1	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units	Glencoe Math Accelerated Chapter 5 Larson Pre Algebra Chapter 6	3 days
Ratio and Proportion	7.RP.2a	Decide whether two quantities are in a proportional relationship.	Glencoe Math Accelerated Chapter 5 Larson Pre Algebra Chapter 6	2 days
Ratio and Proportion	7.RP.2c	Represent proportional relationships by equations. a. percent of a number b. percent change c. discount and mark-up	Glencoe Math Accelerated Chapter 5 Larson Pre Algebra Chapter 6	5 days
Linear Expressions	7.EE.3	Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.	Glencoe Math Accelerated Chapter 7 and Glencoe Math Accelerated 8 Larson Pre Algebra Chapter 2.2-2.6 and Larson Pre Algebra Chapter 3	8 days

Linear Expressions	8.EE.7	Use properties of operations to generate equivalent expressions a. distributive property b. simplifying linear expressions c. combining like terms d. adding and subtracting expressions	Glencoe Math Accelerated Chapter 7 and Glencoe Math Accelerated 8 Larson Pre Algebra Chapter 2.2-2.6 and Larson Pre Algebra Chapter 3	7 days
Linear Equations in One Variable	7.EE.2	Understand that rewriting an expression in different forms in a problem can shed light on the problem and how the quantities in it are related.	Glencoe Math Accelerated Chapter 7 and Glencoe Math Accelerated 8 Larson Pre Algebra Chapter 2.2-2.6 and Larson Pre Algebra Chapter 3	
Linear Equations in One Variable	8.EE.7	To solve linear equations in one variable a. solve one step equations b. solve two step equations c. solve equations with variables on each side	Glencoe Math Accelerated Chapter 7 and Glencoe Math Accelerated 8 Larson Pre Algebra Chapter 2.2-2.6 and Larson Pre Algebra Chapter 3	8 days

Linear Equations in One Variable	7.EE.4	Use variables to represent quantities in real-world or mathematical problem and construct simple equations and inequalities to solve by reasoning about the quantities.	Glencoe Math Accelerated Chapter 7 and Glencoe Math Accelerated Larson Pre Algebra Chapter 2.2-2.6 and Larson Pre Algebra Chapter 3	5 days
Linear Equations in One Variable	7.EE.4a	Solve word problems leading to equations of the form px+q = r and p(x+q)=r where p,q, and r are specific rational numbers. Solve equations of this form fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.	Glencoe Math Accelerated Chapter 7 and Glencoe Math Accelerated 8 Larson Pre Algebra Chapter 2.2-2.6 and Larson Pre Algebra Chapter 3	5 days
Linear Equations in One Variable	8.EE.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.	Glencoe Math Accelerated Chapter 7 and Glencoe Math Accelerated 8 Larson Pre Algebra Chapter 2.2-2.6 and Larson Pre Algebra Chapter 3	5 days

Linear Equations in One Variable	8.EE.7	Use properties of operations to generate equivalent expressions a. distributive property b. simplifying linear expressions c. combining like terms d. adding and subtracting expressions	Glencoe Math Accelerated Chapter 8 Larson Pre Algebra Chapter 9	5 days
Linear Inequalities in One Variable	7.EE.4b	Solve word problems leading to inequalities of the form px + q > r or px+ q < r where p, q and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.	Glencoe Math Accelerated Chapter 8 Larson Pre Algebra Chapter 9	5 days
Linear Functions	8.F.1	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output	Glencoe Chapter Math Accelerated 1.6 and Glencoe Math Accelerated Chapter 9 Larson Pre Algebra Chapter 8	5 days

Linear Functions	8.EE.5	Graph proportional relationships interpreting the unit rate as the slope of the graph. Compare two different proportional relationships in different ways.	Glencoe Math Accelerated Chapter 1.6 and Glencoe Math Accelerated Chapter 9 Larson Pre Algebra Chapter 8	5 days
Linear Functions	8.EE.6	Use similar triangles to explain why the slope m is the same between any two distinct points on a non vertical line in the coordinate plane; derive the equation y=mx+b for a line through the origin and the equation y=mx+b for a line intercepting the vertical axis at b.	Glencoe Math Accelerated Chapter 1.6 and Glencoe Math Accelerated Chapter 9 Larson Pre Algebra Chapter 8	2 days
Linear Functions	8.F.3	Interpret the equation y=mx+b as defining a linear function whose graph is a straight line; give examples of functions that are not linear.	Glencoe Math Accelerated Chapter 1.6 and Glencoe Math Accelerated Chapter 9 Larson Pre Algebra Chapter 8	5 days

Data Analysis and Probability	7.Sp.1	Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid	Glencoe Math Accelerated Chapter 10 Larson Pre Algebra Chapter 11	5 days
Data Analysis Probability	7.SP.2	Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.	Glencoe Math Accelerated Chapter 10 Larson Pre Algebra Chapter 11	5 days

Data Analysis and Probability	7.SP.3	Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.	Glencoe Math Accelerated Chapter 10 Larson Pre Algebra Chapter 11	2 days	
Data Analysis and Probability	7.SP.4	Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations.	Glencoe Math Accelerated Chapter 10 Larson Pre Algebra Chapter 11	3 days	
Data Analysis and Probability	7.SP.8	Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation	Glencoe Math Accelerated Chapter 10 Larson Pre Algebra Chapter 11	5 days	

Data Analysis and Probability	8.SP.1	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for	Glencoe Math Accelerated Chapter 10 Larson Pre Algebra Chapter 11	5 days
Data Analysis and Probability	8.SP.1	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	Glencoe Math Accelerated Chapter 10 Larson Pre Algebra Chapter 11	5 days
Final Exam Review				10 Days

Scranton School District Secondary Mathematics Curriculum Guides

Intermediate School Courses*

- 1. Common Core 7th Grade Accelerated (Grade 7)
- 2. Common Core Math 7P (Grade 7)
- 3. Common Core Math 7 (Grade 7)
- 4. Algebra I Accelerated K/CC (Grade 8)
- 5. Common Core 8P Concepts of Algebra (Grade 8)
- 6. Common Core Math 8 (Grade 8)

High School Courses *

- 1. Algebra I K/CC (Grade 9)
- 2. Algebra I Part 9A (Grade 9)
- 3. Algebra I Part 10A (Grade 10)
- 4. Algebra I Part 10B/K (Grade 10)
- 5. Algebra I Part 11B/K (Grade 11)
- 6. Honors Algebra I K/CC (Grade 9)
- 7. AP Computer Science (Grade 12)
- 8. Computer Science (Grades 11 or 12)
- 9. Algebra II (Grades 11 or 12)
- 10. Algebra II/Trigonometry (Grades 10 or 11)
- 11. Honors Algebra II/Trigonometry (Grades 10 or 11)
- 12. Business Math (Grade 12)
- 13. AP Calculus (Grade 12)
- 14. Honors Calculus I (Grade 12)
- 15. Calculus I (Grade 12)
- 16. Consumer Related Math (Grade 12)
- 17. Elementary Analysis (Grades 11 or 12)
- 18. Honors Elementary Analysis (Grades 11 or 12)
- 19. Applied Geometry 11 (Grade 11)
- 20. Applied Geometry 12 (Grade 12)
- 21. Geometry 9 (Grade 9)
- 22. Geometry 10 (Grade 10)
- 23. Geometry 11 (Grade 11)
- 24. Honors Geometry (Grades 9 and 10)
- 25. Pre Algebra (Grade 9)
- 26. Math Survey (Grade 12)
- 27. Statistics (Grade 12)
- 28. Trigonometry (Grade 12)

*There may be a rare grade level exception for a very few students as indicated on the Scranton School District Secondary Mathematics Curriculum Pathways document.

Course Title Here

Curriculum Guide

Scranton School District

Scranton, PA

Course Title Here

Prerequisite :

Course Description Here
Year-at-a-glance

Subject:	Grade Level	Date Completed:

1st Quarter

Торіс	Resources	CCSS

2nd Quarter

Торіс	Resources	CCSS

3rd Quarter

Торіс	Resources	CCSS

4th Quarter

Торіс	Resources	CCSS

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
				Teacher prepared tests, quizzes, etc. Series available assessments online. (Optional)	

Honors/AP Prerequisites – Grades $10 \rightarrow 11 \rightarrow 12$

Board Approved Policy – 5-5-14

Criteria for Admission to Honors and AP Courses			
Regular to Honors (5 out 6 criteria must be met for placement)	Honors to Honors (5 out 6 criteria must be met for placement)	Honors to AP (5 out 7 criteria must be met for placement)	
 Proper Prerequisites – all preceding courses in the curriculum pathway have been successfully met Scores of Advanced or top one-third of the Proficient on the <i>subject related</i> Keystone Exams Course grade of 95 or better Teacher Recommendation (In the case of Honors Chemistry or Physics, the recommendation of both the science and mathematics teacher is necessary.) Counselor Recommendation Parent Signature 	 Proper Prerequisites – all preceding courses in the curriculum pathway have been successfully met - Scores of Advanced or top one-third of the Proficient on the <i>subject related</i> Keystone Exams Course grade of 92 or better Teacher Recommendation (In the case of Honors Chemistry or Physics, the recommendation of both the science and mathematics teacher is necessary.) Counselor Recommendation Parent Signature 	 Proper Prerequisites – all preceding courses in the curriculum pathway have been successfully met AP Potential in subject area Scores of Advanced or top one-third of the Proficient on the <i>subject related</i> Keystone Exams Course grade of 93 or better Teacher Recommendation (In the case of Honors Chemistry or Physics, the recommendation of both the science and mathematics teacher is necessary.) Counselor Recommendation Parent Signature 	

Statistics

Curriculum Guide

Scranton School District

Scranton, PA

Statistics

Prerequisite : Algebra II

Intended Audience: This course is designed for the student who has successfully completed Algebra I, Geometry and Algebra II by the end of the 11th grade.

Statistics is a course designed to provide students with the fundamental principles of probability and statistics with applications. Topics covered include probability models, combinations, discrete and continuous probability, estimating and testing, and confidence intervals. Students who plan to pursue a non-technical or liberal arts course of study will find this course useful.

Subject: StatisticsGrade Level: 12Date Completed: Feb. 5, 2015			
	Subject: Statistics	Grade Level: 12	Date Completed: Feb. 5, 2015

1st Quarter

Торіс	Resources	CCSS
Data Classifications and Experimental Design	Pearson/Prentice Hall, <u>Elementary Statistics</u> , by	HSS.IC.A.1
	Larson & Farber: Chapter 1	HSS.IC.A.2
		HSS.IC.A.3
Frequency Distributions and Displays	Pearson/Prentice Hall, <u>Elementary Statistics</u> , by	HSS.IC.B.5
	Larson & Farber: Chapter 2	HSS.IC.B.6
		HSS.ID.A.1
		HSS.ID.B.5
		HSS.ID.B.6
Management of Marintian and Desition (Control Tandonsias)	Decrear (Drantics Hall, Elementary Statistics, by	
Measures of Variation and Position (Central Tendencies)	Pearson/Prentice Hall, <u>Elementary Statistics</u> , by	HSS.ID.A.1
	Larson & Farber: Chapter 2	HSS.ID.A.2
		HSS.ID.A.3
		HSS.ID.A.4

2nd Quarter

Торіс	Resources	CCSS
Probability	Pearson/Prentice Hall, <u>Elementary Statistics</u> , by	HSS.MD.A.1
	Larson & Farber: Chapter 3	HSS.MD.B.5
		HSS.MD.B.6
		HSS.MD.B.7
		HSS.CP.A.1
		HSS.CP.A.2
		HSS.CP.A.3
		HSS.CP.A.4
		HSS.CP.A.5
		HSS.CP.B.6
		HSS.CP.B.7
		HSS.CP.B.8
		HSS.CP.B.9
Discrete Probability Distributions	Pearson/Prentice Hall, <u>Elementary Statistics</u> , by	HSS.MD.A.2
	Larson & Farber: Chapter 4	HSS.MD.A.3
		HSS.MD.A.4
Normal Probability Distributions	Pearson/Prentice Hall, <u>Elementary Statistics</u> , by	HSS.MD.A.1
	Larson & Farber: Chapter 5	HSS.ID.A.4

3rd Quarter

Торіс	Resources	CCSS
Confidence Intervals	Pearson/Prentice Hall, <u>Elementary Statistics</u> , by	HSS.MD.B.7
	Larson & Farber: Chapter 6	HSS.IC.B.4
Hypothesis Testing: (One Sample)	Pearson/Prentice Hall, <u>Elementary Statistics</u> , by	HSS.IC.A.1
	Larson & Farber: Chapter 7	HSS.IC.A.2
		HSS.IC.B.3
		HSS.IC.B.4

4th Quarter

Торіс	Resources	CCSS
Hypothesis Testing (Two Samples)	Pearson/Prentice Hall, <u>Elementary Statistics</u> , by	HSS.IC.B.4
	Larson & Farber: Chapter 8	HSS.IC.B.5
Correlation and Regression	Pearson/Prentice Hall, <u>Elementary Statistics</u> , by	HSS.ID.B.6
	Larson & Farber: Chapter 9	HSS.ID.C.7
		HSS.ID.C.8
		HSS.ID.C.9
Final Exam Review		

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Data Classification and Experimental Design	HSS.IC.A.1 HSS.IC.A.2 HSS.IC.B.3	-Sample and Population -Descriptive and Inferential Statistics -Qualitative and Quantitative -Levels of Measurement -Sampling Techniques	Elementary Statistics Chapter 1 Sections: 1, 2, 3	Teacher prepared tests, quizzes, etc.	10 days
Frequency Distributions	HSS.IC.B.5 HSS.IC.B.6 HSS.ID.A.1 HSS.ID.B.5 HSS.ID.B.6	* Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies) Recognize possible associations and trends in the data. * Represent data on two quantitative variables on a scatter plot, and describe how the variables are related Designing distributions -Histograms, Polygons, Ogive -Scatter Plot	Elementary Statistics Chapter 2 Sections: 1, 2		15 days

Central Tendencies and	HSS.ID.A.1	* Represent data with	Elementary Statistics	
Variation		plots on the real number	Chapter 2	10 days
	HSS.ID.A.2	line (dot plots,	Sections: 3, 4,5	
		histograms, and box		
	HSS.ID.A.3	plots)		
		* Use statistics		
	HSS.ID.A.4	appropriate to the shape		
		of the data distribution to		
		compare center		
		(median, mean) and		
		spread (interguartile		
		range, standard		
		deviation) of two or more		
		different data sets.		
		* Interpret differences in		
		shape, center, and spread		
		in the context of the data		
		sets,		
		accounting for possible		
		effects of extreme data		
		points (outliers)Mean,		
		median and mode		
		-Variance and Standard		
		Deviation (sample and		
		population)		
		- Empirical Rule		
		- Box-and-Whisker		
		- 7- score		

Probability		* Find the conditional	Elementary Statistics	
i i obdollity	HSS.MD.B.5	probability of A given B as	Chapter 3	18 days
	HSS.MD.B.6	the fraction of B's	Sections: 1, 2, 3, 4	20 44 70
	HSS MD B 7	outcomes that also		
	1155.1110.0.7	belong to A and interpret		
		the answer in terms of		
		the model		
		* Apply the Addition		
		P(A or B) = P(A) +		
		P(B) = P(A and B) and		
	1155.CF .A.5	interpret the answer		
		in terms of the model		
		Independent/Dependent		
		-independent/Dependent		
		Counting Principles		
	п33.CP.D.3	-Counting Frinciples		
		-Multiplication/Addition		
		Kule		
Discrete Probability	HSS.WID.A.Z	Use the concepts of	Elementary Statistics	
Distributions		independence and	Chapter 4	18 days
	HSS.MD.A.3	conditional probability to	Sections: 1, 2, 3	
		interpret data.		
	HSS.MD.A.4	-Discrete/ Continuous		
		-Binomial, Geometric,		
		Poisson Distributions		

Normal Probability Distributions	HSS.MD.A.1 HSS.ID.A.4	Use the concepts of independence and conditional probability to interpret data. -Normal distributions and Probability -Specific data values for probability -Binomial distributions -Central Limit Theorem	Elementary Statistics Chapter 5 Sections: 1, 2, 3, 4, 5	23 days
Confidence Intervals	HSS.MD.B.7 HSS.IC.B.4	Recognize and evaluate random processes underlying statistical experiments. -Confidence intervals (Small & large samples, Variance, Standard Deviation) -Margin of Error -Chi-Square Distribution - Minimum Sample Size	Elementary Statistics Chapter 6 Sections: 1, 2, 3, 4	21 days

Hypothesis Testing (One Sample)	HSS.IC.A.1 HSS.IC.A.2 HSS.IC.B.3 HSS.IC.B.4	Make inferences and justify conclusions based on sample surveys, experiments, and observational studies -Hypothesis testing: Mean, Proportions, Variance and Standard Deviation -Finding P-values -Making and interpreting decisions on testing	Elementary Statistics Chapter 7 Sections: 1, 2, 3, 4, 5	22 days
Hypothesis Testing (Two Samples)	HSS.IC.B.4 HSS.IC.B.5	Make inferences and justify conclusions based on sample surveys, experiments and observational studies. -Two sample tests: z -test and t- test -Independent and Dependent samples -Difference between Population Proportions	Elementary Statistics Chapter 8 Sections: 1, 2, 3, 4	21 days

Correlations and Regression	HSS.ID.B.6 HSS.ID.C.7 HSS.ID.C.8 HSS.ID.C.9	 * Compute (using technology) and interpret the correlation coefficient of a linear fit. * Distinguish between correlation and causation. -Correlation - Regression 	Elementary Statistics Chapter 9 Sections: 1, 2, 3	12 days
Final Review and Exams				10 days

Textbooks and Workbooks

This is a listing of the textbooks and workbooks referenced in the SSD Secondary Mathematics Curriculum Guides.

Textbooks: Textbooks are listed in order (7-12) based on the Scranton School District Secondary Mathematics Curriculum Pathways.

Intermediate Schools:

Larson, Ron and Laurie Boswell. *Big Ideas Math Red A Common Core Curriculum*. Erie: Big Ideas Learning, LLC, 2014. Print.

Larson, Ron and Laurie Boswell. *Big Ideas Math Red Accelerated A Common Core Curriculum*. Erie: Big Ideas Learning, LLC, 2014. Print.

Larson, Ron and Laurie Boswell. *Big Ideas Math Blue A Common Core Curriculum*. Erie: Big Ideas Learning, LLC, 2014. Print.

Larson, Ron and Laurie Boswell. *Big Ideas Math Algebra I A Common Core Curriculum*. Erie: Big Ideas Learning, LLC, 2015. Print.

High Schools:

Larson, Ron, Laurie Boswell, Timothy D. Kanold, and Lee Stiff. *Larson Pre-Algebra*. Orlando: Holt McDougal, 2012. Print.

Carter, Cuevas, Day, Malloy, Molix-Bailey, Price, and Willard. *Math Accelerated*. Bothell: McGraw Hill, 2014. Print.

Larson, Ron and Laurie Boswell. *Big Ideas Math Algebra I A Common Core Curriculum*. Erie: Big Ideas Learning, LLC, 2015. Print.

Larson, Ron and Laurie Boswell. *Big Ideas Math Geometry A Common Core Curriculum*. Erie: Big Ideas Learning, LLC, 2015. Print.

Larson, Ron and Laurie Boswell. *Big Ideas Math Algebra II A Common Core Curriculum*. Erie: Big Ideas Learning, LLC, 2015. Print.

Smith, Stanley A., Randall I. Charles, John A. Dossey, and Marvin L. Bittenger. *Algebra 2 with Trigonometry*. Upper Saddle River: Prentice-Hall, Inc., 2001. Print.

Brown, Richard G. Advanced Mathematics Precalculus. Evanston: McDougal Littell Inc., 2003. Print.

Larson, Ron, Robert P. Hostettler, and Bruce H. Edwards. *Calculus of a Single Variable – 8th Edition*. Boston: Houghton Mifflin Company, 2006. Print.

Lewis, John, William Loftus and Cara Cocking. *Java software solutions 2nd Edition*. Boston: Pearson Addison Wesley, 2007. Print.

Horstmann, Cay. Big JAVA Early Objects Fifth Edition. Danvers: John Wiley & Sons, Inc., 2014. Print.

Larson, Ron and Betsy Farber. *Elementary Statistics Third Edition*. Upper Saddle River: Pearson Prentice Hall, 2006. Print.

Sullivan, Michael and Michael Sullivan, III. *Trigonometry Enhanced with Graphing Utilities A Right Triangle Approach*. Fourth Edition, Upper Saddle River: Pearson Prentice Hall, 2006. Print.

Angel, Angel R., Christine D. Abbott, Dennis C. Runde. *A Survey of Mathematics with Applications*. Boston: Pearson Prentice Hall, 2005. Print.

Cleaves, Cheryl, and Margie Hobbs, *Business Math 6th Edition*, Upper Saddle River: Prentice Hall, 2002. Print.

Schultheis, Robert and Raymond Kaczmarski. *Business M<u>ath</u>16th Edition*. Mason: Thomson Southwestern, 2006. Print.

Harmeyer, Kathleen. Consumer Math. Circle Pines: American Guidance Services, Inc., 2001. Print.

Workbooks

Grade 7:

Kaplan, Dr. Jerry. Common Core Coach Mathematics 7. NY: Triumph Learning LLC, 2013. Print.

Petroni-McMullen, Ann. *Crosswalk Coach for the Common Core State Standards. Mathematics, Grade* 7, NY: Triumph Learning LLC, 2011. Print.

Grade 8:

Kaplan, Dr. Jerr. *Common Core Support Coach Foundational Mathematics*. NY: Triumph Learning LLC, 2014. Print.

Kaplan, Dr. Jerry. Common Core Coach Mathematics 8. NY: Triumph Learning LLC, 2013. Print.

Oppenzato, Colleen O'Donnell. *Crosswalk Coach for the Common Core State Standards*, Mathematics, Grade 8. NY: Triumph Learning LLC, 2011. Print.

Grade 9:

Keystone Finish Line, Algebra I. Elizabethtown: The Continental Press, Inc., 2013. Print.

	A	В	C	D
1	Timesheet	Judy Chickillo		
2				1
3	Date:	Description:	Hours:	
4	8/13/2014	Math Curr Meeting at SHS	4.00	
		Meeting with John Marichak, Susan Burns,		I
5	9/16/2014	and Lori Stetzar. Conference room SHS	1.50	
6	9/19/2014	Formatting and revising original template	1.00	
7	10/1/2214	Math Curr Meeting at SHS	5.00	
8	10/27/2014	Curriculum Council Meeting Ad Bldg	1.00	
9	10/27/2014	Reviewing/Formatting	2.00	
10	10/28/2014	Math Curr Meeting at SHS	5.00	
11	11/30/2014	Formatting	2.50	
12	1/30/2015	Acknowledgement/Overview/Textbooks	1.00	
13	2/4/2014	Formatting	2.00	
14	2/5/2015	Math Curr Meeting at SHS	4.00	
15	2/18/2015	Math Curr Meeting at SHS	5.00	
16	3/7/2017	Formatting	1.00	
17	3/16/2015	Preparing Binder/ Format Checking	3.00	
18	3/17/2015	Math Curr Meeting at SHS	5.00	
19	3/20/2015	Formatting	2.00	
20				
21				
22	Total:		45.00	
23				
24				

Trigonometry

Curriculum Guide

Scranton School District

Scranton, PA

Trigonometry

Prerequisite: Algebra II, Geometry, Algebra I

Intended Audience: This course is designed for the student who has successfully completed Algebra II by the end of 11th grade.

This course enables students to understand trigonometric principles and to be able to apply then in various fields of mathematics. The topics include a study of functions of angles of any size, radian measure, trigonometric equations, identities, graphing of trigonometric functions, solution of triangles, and the use of various trigonometric formulas.

Year-at-a-glance

Subject: Trigonometry	Grade Level: 12	Date Completed: 2/9/15
		•

1st Quarter

Торіс	Resources	CCSS
 Algebra Review Evaluate Algebraic Expressions Determine the Domain Graph Inequalities Laws of Exponents Evaluate Square Roots 	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook 	A1.1.2.1.1 A1.1.3.1.2 A1.1.3.1.1 A2.1.2.1.1 A2.1.2.1.3
2. Geometry Review Pythagorean Theorem Geometric Formulas	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook 	G2.1.1.1 G2.1.2.1 G2.2.2.1 G1.2.1.2 G2.2.2.2 G2.2.2.2 G2.2.3.1
3. Solving Equations With Algebra Solve Linear Equations Factoring Quadratics	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook 	A1.1.2.1.1 A2.2.2.1.1 A2.2.21.3
4. Complex Numbers +,-, x,/ Complex Numbers Powers of i	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook 	A2.1.3.1.1 A2.1.1.1.1 A2.1.1.2.1 A2.1.1.2.2

5. Roots, Rational Exponents, Radical Equations Work with Roots Simplify Radicals Rationalize Denominators Solve Radical Equations Simplify Expressions with Rational Exponents	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook 	A2.1.3.1.2 A2.2.1.1.3
 6. Lines Using Slope, Point Slope, Slope Intercept Graph Lines Write Equations of Lines Parallel and Perpendicular 	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook 	A1.2.2.1.3

2 nd	Quarter
-----------------	---------

Торіс	Resources	CCSS
 Functions and Graphs Use Distance and Midpoint Formulas Graphing Points and Lines by Hand and Graphing Utility 	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook Graphing Calculators 	G2.2.1.2.1 A1.1.2.1.1 A1.1.3.2.2
2. Circles Standard Form Graphing Circles by Hand and Graphing Utility	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook 	G.1.3.1.1 G.1.3.1.2
3. Functions Relations – Vertical Line Test Values of Functions Domain of Functions +,-, x,/ of 2 functions	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook 	A1.1.3.2.2 A2.1.3.1.1 A2.1.3.1.2 A2.1.3.1.3 A2.1.3.1.3 A2.1.3.1.4
4. Graphing Techniques Using Vertical and Horizontal Shifts Using Compressions and Stretching	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook 	A1.2.1.2.1 A1.2.1.2.2 A2.1.3.1.3 A2.1.3.1.4 A2.1.3.2.1
5. Use of Functions Composite Functions 1 to 1 Functions Inverse Functions	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook 	A2.2.1.1.2 A2.2.1.1.3 A2.2.1.1.4 A2.2.2.1.1

3rd Quarter

Торіс	Resources	CCSS
 Angles and their Measure Converting DMS to Decimal, vice versa Arc Length Degrees to Radians, vice versa Area of a sector of a circle Linear Speed 	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook Graphing Calculators 	G.2.2.2.2 G.2.2.2.3 G.2.2.2.5 G.2.2.3.1 HSF.TF.A.1
2. Right Triangle Trigonometry Values of Acute Angles Complementary Angle Theorem	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook Graphing Calculators 	HSG.SRT.C.8 HSF.TF.C.8
3. Computing Values of Trig Functions Exacts Values of 45,30, 60, Use a Calculator to Approximate	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook Graphing Calculators 	HSG.SRT.C.8 HSF.TF.C.8
4. Trig Functions Of General Angles Quadrant Values Terminal Sides Reference Angle Unit Circle	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook Graphing Calculators 	HSF.TF.C.8 HSF.TF.A.1 HSF.TF.A.3
5. Graphs of Trig Functions Sine, Cos, Tan, Csc, Sec, Cot Phase Shifts Curve Fitting	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook Graphing Calculators 	HSF.TF.B.5 HSF.TF.C.8

4 th	Quarter	
-----------------	---------	--

Торіс	Resources	CCSS
1. Inverses Sine, Cos, Tan	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook Graphing Calculators 	HSG.SRT.C.8 HSF.TF.B.5
2. Trigonometric Identities Quotient Identity Reciprocal Identity Pythagorean Identity Sum and Difference Double Angle Half Angle	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook Graphing Calculators 	HSF.TF.A.1 HSF.TF.C.8 HSF.TF.C.9
3. Applications of Right Triangles Law of Sine and Cosines Area of Triangle	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook Graphing Calculators 	HSF.TF.B.5
 Polar Coordinates Polar to Rectangular, vice versa Graphing Vectors 	 Worksheets Kuta Software* Trigonometry: Enhanced with Graphing Utilities Textbook Graphing Calculators 	HSN.CN.B.4

General Topic	Academic Standard(s)	Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time
Algebra Review	A1.1.2.1.1 A1.1.3.1.2 A1.1.3.1.1 A2.1.2.1.1 A2.1.2.1.3	 Write, solve and/or apply a linear equation (including problem situations). Identify or graph the solution set to a linear inequality on a number line. Write or solve compound inequalities and/or graph their solution sets on a number line (may include absolute value inequalities). Use exponential expressions to represent rational numbers. Simplify/evaluate expressions involving multiplying with exponents, powers of powers and powers of products (limit to rational exponents). 	Trigonometry: Enhanced with Graphing Utilities Textbook: A-1 Worksheets Kuta Software*	Teacher prepared tests, quizzes, etc.	5 Days

One Variable, A2.2. Inequalities A2.2.	 and/or apply a linear equation. Create, interpret, and/or use the equation, graph, or table of a polynomial function (including quadratics). Determine, use, and/or interpret minimum and maximum values over a specified interval of a graph of a polynomial, exponential, or logarithmic 	Enhanced with Graphing Utilities Textbook: A-3, A-5 Worksheets Kuta Software*	
---	--	---	--

Complex Numbers	A2.1.3.1.1 A2.1.1.1 A2.1.1.2.1 A2.1.1.2.2	 Write and/or solve quadratic equations (including factoring and using the Quadratic Formula). Simplify/write square roots in terms of <i>i</i> (e.g., √-24 = 2<i>i</i>√6). Add and subtract complex numbers (e.g., (7 - 3<i>i</i>) - (2 + <i>i</i>) = 5 - 4<i>i</i>). Multiply and divide complex numbers (e.g., (7 - 3<i>i</i>)(2 + <i>i</i>) = 17 + <i>i</i>). 	Trigonometry: Enhanced with Graphing Utilities Textbook: A-3, A-5 Worksheets Kuta Software*	10 Days
Nth Roots, Radicals	A2.1.3.1.2 A2.2.1.1.3	 Solve equations involving rational and/or radical expressions (e.g., 10/(x + 3) + 12/(x - 2) = 1 or x² + 21x = 14). Determine the domain, range, or inverse of a relation. 	Trigonometry: Enhanced with Graphing Utilities Textbook: A-6 Worksheets Practice	10 Days

Lines	A1.2.2.1.3	 Write or identify a linear equation when given the graph of the line two points on the line the slope and a point on the line. Note: Linear equation may be in point-slope, standard, and/or slope-intercept form. 	Frigonometry: Enhanced with Graphing Utilities Textbook: A-7 Practice Worksheets Graphing Calculators Graph Paper	7 Days
-------	------------	---	---	--------
Functions/Graphs	G2.2.1.2.1 A1.1.2.1.1 A1.1.3.2.2	 Use properties of angles formed by intersecting lines to find the measures of missing angles. Write, solve, and/or apply a linear equation (including problem situations). Interpret solutions to problems in the context of the problem situation. Note: Limit systems to two linear inequalities. 	Trigonometry: Enhanced with Graphing Utilities Textbook: 1.1,1.2 Graph Paper Graphing Calculators	5 Days
------------------	--	---	---	--------
Circles	G.1.3.1.1 G.1.3.1.2	 Identify and/or use properties of congruent and similar polygons or solids. Identify and/or use proportional relationships in similar figures. 	Trigonometry: Enhanced with Graphing Utilities Textbook: 1.3 Graphing Calculators Graph Paper	7 Days

Functions	A1.1.3.2.2	•	Interpret solutions	Trigonometry:	7 Days
	A2.1.3.1.1		to problems in the	Enhanced with	
	A2.1.3.1.2		context of the	Graphing Utilities	
	A2.1.3.1.3		problem situation.	Textbook: 1.4	
	A2.1.3.1.4		Note: Limit		
			systems to two	Graphing	
			linear inequalities.	Calculators	
		•	Write and/or solve		
			quadratic		
			equations		
			(including		
			factoring and using		
			the Quadratic		
			Formula).		
		•	Solve equations		
			involving rational		
			and/or radical		
			expressions (e.g.,		
			10/(x + 3) + 12/(x - 1)		
			2) = 1 or		
			$x^2 + 21x = 14$).		
		•	Write and/or solve		
			a simple		
			exponential or		
			logarithmic		
			equation		
			(including common		
			and		
			natural		
			logarithms).		
		•	Write, solve,		
			and/or apply linear		
			or exponential		
			growth or decay.		
			-		

Graphing Techniques	A1.2.1.2.1	•	Create, interpret,	Trigonometry:	5 Days
	A1.2.1.2.2		and/or use the	Enhanced with	
	A2.1.3.1.3		equation, graph, or	Graphing Utilities	
	A2.1.3.1.4		table of a linear	Textbook: 1.5, 1.6,	
	A2.1.3.2.1		function.	1.7	
		•	Translate from one		
			representation of a	Graphing	
			linear function to	Calculators	
			another (i.e.,		
			graph, table, and	Graph Paper	
			equation).		
		•	Write and/or solve		
			a simple		
			exponential or		
			logarithmic		
			equation		
			(including common		
			and		
			natural		
			logarithms).		
		•	Write. solve.		
			and/or apply linear		
			or exponential		
			growth or decay		
			(including problem		
			situations).		
		•	Determine how a		
			change in one		
			variable relates to		
			a change in a		
			second variable		
			(e.g., $y = 4/x$: if x		
			doubles, what		
			happens to <i>v</i> ?).		
	1		· · · · · · · · · · · · · · · · · · ·		1

Use of Functions	A2.2.1.1.2	•	Identify and/or	Trigonometry:		5 Days
	Δ22113	-	extend a nattern	Enhanced with		5 5475
	Δ22114		as either an	Granhing Utilities		
	Δ22211		as either an	Textbook: 1.8		
			goomotric			
			sequence (e.g.,			
			given a geometric			
			Sequence, find the			
		_	Zoth term).			
		•	Determine the			
			domain, range, or			
			inverse of a			
			relation.			
		•	Identify and/or			
			determine the			
			characteristics of			
			an exponential,			
			quadratic, or			
			polynomial			
			function (e.g.,			
			intervals of			
			increase/decrease,			
			intercepts, zeros,			
			and asymptotes).			
		•	Create, interpret,			
			and/or use the			
			equation, graph, or			
			table of a			
			polynomial			
			function			
			(including			
			quadratics).			
	1	1			1	

Angles and Their Measure	G.2.2.2.2 G.2.2.2.3 G.2.2.2.5 G.2.2.3.1 HSF.TF.A.1	•	Find the measurement of a missing length, given the perimeter, circumference, or area. Find the side lengths of a polygon with a given perimeter to maximize the area of the polygon. Find the area of a sector of a circle. Describe how a change in the linear dimension of a figure affects its perimeter, circumference, and area. Understand radian measure of an angle as the length	Trigonometry: Enhanced with Graphing Utilities Textbook: 2.1 Graphing Calculators	10 Days
		•	circumference, and area. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.		

Trigonometry	HSG.SRT.C.8 HSF.TF.C.8	•	to determine geometrically the values of sine, cosine, tangent for 30,45, and 60 and use the unit circle to express the values of sine, cosine, and tangent for x, $x + \Pi$ and $2\Pi - x$ in terms of their values for x, where x is any real number Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems Prove the Pythagorean identity sin ² (θ) + cos ² (θ) = 1 and use it to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant of the angle.	Enhanced with Graphing Utilities Textbook: 2.2, 2.3 Graphing Calculators		
--------------	---------------------------	---	--	--	--	--

		-		
Trigonometric Functions	HSG.SRT.C.8 HSF.TF.B.5 HSF.TF.C.8 HSF.TF.A.1	 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. Prove the Pythagorean identity sin²(θ) + cos²(θ) = 1 and use it to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant of the angle. Understand radian measure of an angle as the length of the arc on the unit circle subtonded by the 	Trigonometry: Enhanced with Graphing Utilities Textbook: 2.4-2.7 Graphing Calculators Unit Circle Computer Graphing Programs	20 Days
		angle as the length of the arc on the unit circle subtended by the angle.		

Inverses	HSG.SRT.C.8 HSF.TF.B.5	 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. 	Trigonometry: Enhanced with Graphing Utilities Textbook: 3.1, 3.2 Graphing Calculators	10 Days
----------	---------------------------	---	---	---------

Applications of Trigonometric Functions with Triangles	HSF.TF.B.5	Choose trigonometric functions to model periodic phenomena with specified	Trigonometry: Enhanced with Graphing Utilities Textbook: 4.1-4.4 Calculators	10 Days
		frequency and	Formulas Of Laws of	
		midline.	Sines. Cosines	
			Areas Formulas (Heron's)	
Polar Coordinates	HSN.CN.B.4	 Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number. 	Trigonometry: Enhanced with Graphing Utilities Textbook: 5.1-5.2 Graphing Calculators Graph Paper	10 Days
Final Exam Preparation				14 Days

* Kutasoftware.com - Test and Worksheet Generators for Math Teachers