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Preface

In 1973 F. Black and M. Scholes published their pathbreaking paper [BS73]
on option pricing. The key idea — attributed to R. Merton in a footnote of the
Black-Scholes paper — is the use of trading in continuous time and the notion
of arbitrage. The simple and economically very convincing “principle of no-
arbitrage” allows one to derive, in certain mathematical models of financial
markets (such as the Samuelson model, [S 65], nowadays also referred to as the
“Black-Scholes” model, based on geometric Brownian motion), unique prices
for options and other contingent claims.

This remarkable achievement by F. Black, M. Scholes and R. Merton had
a profound effect on financial markets and it shifted the paradigm of deal-
ing with financial risks towards the use of quite sophisticated mathematical
models.

It was in the late seventies that the central role of no-arbitrage argu-
ments was crystallised in three seminal papers by M. Harrison, D. Kreps
and S. Pliska ([HK 79], [HP81], [K 81]) They considered a general framework,
which allows a systematic study of different models of financial markets. The
Black-Scholes model is just one, obviously very important, example embed-
ded into the framework of a general theory. A basic insight of these papers
was the intimate relation between no-arbitrage arguments on one hand, and
martingale theory on the other hand. This relation is the theme of the “Fun-
damental Theorem of Asset Pricing” (this name was given by Ph. Dybvig
and S. Ross [DR 87]), which is not just a single theorem but rather a general
principle to relate no-arbitrage with martingale theory. Loosely speaking, it
states that a mathematical model of a financial market is free of arbitrage if
and only if it is a martingale under an equivalent probability measure; once
this basic relation is established, one can quickly deduce precise information
on the pricing and hedging of contingent claims such as options. In fact, the
relation to martingale theory and stochastic integration opens the gates to
the application of a powerful mathematical theory.
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The mathematical challenge is to turn this general principle into precise
theorems. This was first established by M. Harrison and S. Pliska in [HP81]
for the case of finite probability spaces. The typical example of a model based
on a finite probability space is the “binomial” model, also known as the “Cox-
Ross-Rubinstein” model in finance.

Clearly, the assumption of finite Ω is very restrictive and does not even
apply to the very first examples of the theory, such as the Black-Scholes model
or the much older model considered by L. Bachelier [B 00] in 1900, namely
just Brownian motion. Hence the question of establishing theorems applying
to more general situations than just finite probability spaces Ω remained open.

Starting with the work of D. Kreps [K 81], a long line of research of increas-
ingly general — and mathematically rigorous — versions of the “Fundamental
Theorem of Asset Pricing” was achieved in the past two decades. It turned
out that this task was mathematically quite challenging and to the benefit
of both theories which it links. As far as the financial aspect is concerned, it
helped to develop a deeper understanding of the notions of arbitrage, trading
strategies, etc., which turned out to be crucial for several applications, such
as for the development of a dynamic duality theory of portfolio optimisation
(compare, e.g., the survey paper [S 01a]). Furthermore, it also was fruitful for
the purely mathematical aspects of stochastic integration theory, leading in
the nineties to a renaissance of this theory, which had originally flourished in
the sixties and seventies.

It would go beyond the framework of this preface to give an account of the
many contributors to this development. We refer, e.g., to the papers [DS 94]
and [DS 98], which are reprinted in Chapters 9 and 14.

In these two papers the present authors obtained a version of the “Fun-
damental Theorem of Asset Pricing”, pertaining to general Rd-valued semi-
martingales. The arguments are quite technical. Many colleagues have asked
us to provide a more accessible approach to these results as well as to several
other of our related papers on Mathematical Finance, which are scattered
through various journals. The idea for such a book already started in 1993
and 1994 when we visited the Department of Mathematics of Tokyo University
and gave a series of lectures there.

Following the example of M. Yor [Y 01] and the advice of C. Byrne of
Springer-Verlag, we finally decided to reprint updated versions of seven of
our papers on Mathematical Finance, accompanied by a guided tour through
the theory. This guided tour provides the background and the motivation for
these research papers, hopefully making them more accessible to a broader
audience.

The present book therefore is organised as follows. Part I contains the
“guided tour” which is divided into eight chapters. In the introductory chap-
ter we present, as we did before in a note in the Notices of the American
Mathematical Society [DS 04], the theme of the Fundamental Theorem of As-
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set Pricing in a nutshell. This chapter is very informal and should serve mainly
to build up some economic intuition.

In Chapter 2 we then start to present things in a mathematically rigourous
way. In order to keep the technicalities as simple as possible we first re-
strict ourselves to the case of finite probability spaces Ω. This implies that
all the function spaces Lp(Ω,F ,P) are finite-dimensional, thus reducing the
functional analytic delicacies to simple linear algebra. In this chapter, which
presents the theory of pricing and hedging of contingent claims in the frame-
work of finite probability spaces, we follow closely the Saint Flour lectures
given by the second author [S 03].

In Chapter 3 we still consider only finite probability spaces and develop
the basic duality theory for the optimisation of dynamic portfolios. We deal
with the cases of complete as well as incomplete markets and illustrate these
results by applying them to the cases of the binomial as well as the trinomial
model.

In Chapter 4 we give an overview of the two basic continuous-time models,
the “Bachelier” and the “Black-Scholes” models. These topics are of course
standard and may be found in many textbooks on Mathematical Finance. Nev-
ertheless we hope that some of the material, e.g., the comparison of Bachelier
versus Black-Scholes, based on the data used by L. Bachelier in 1900, will be
of interest to the initiated reader as well.

Thus Chapters 1–4 give expositions of basic topics of Mathematical Fi-
nance and are kept at an elementary technical level. From Chapter 5 on, the
level of technical sophistication has to increase rather steeply in order to build
a bridge to the original research papers. We systematically study the setting
of general probability spaces (Ω,F ,P). We start by presenting, in Chapter 5,
D. Kreps’ version of the Fundamental Theorem of Asset Pricing involving the
notion of “No Free Lunch”. In Chapter 6 we apply this theory to prove the
Fundamental Theorem of Asset Pricing for the case of finite, discrete time
(but using a probability space that is not necessarily finite). This is the theme
of the Dalang-Morton-Willinger theorem [DMW 90]. For dimension d ≥ 2, its
proof is surprisingly tricky and is sometimes called the “100 meter sprint” of
Mathematical Finance, as many authors have elaborated on different proofs
of this result. We deal with this topic quite extensively, considering several
different proofs of this theorem. In particular, we present a proof based on the
notion of “measurably parameterised subsequences” of a sequence (fn)∞n=1 of
functions. This technique, due to Y. Kabanov and C. Stricker [KS 01], seems
at present to provide the easiest approach to a proof of the Dalang-Morton-
Willinger theorem.

In Chapter 7 we give a quick overview of stochastic integration. Because
of the general nature of the models we draw attention to general stochastic
integration theory and therefore include processes with jumps. However, a
systematic development of stochastic integration theory is beyond the scope
of the present “guided tour”. We suppose (at least from Chapter 7 onwards)
that the reader is sufficiently familiar with this theory as presented in sev-
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eral beautiful textbooks (e.g., [P 90], [RY91], [RW00]). Nevertheless, we do
highlight those aspects that are particularly important for the applications to
Finance.

Finally, in Chapter 8, we discuss the proof of the Fundamental Theorem
of Asset Pricing in its version obtained in [DS 94] and [DS 98]. These papers
are reprinted in Chapters 9 and 14.

The main goal of our “guided tour” is to build up some intuitive insight into
the Mathematics of Arbitrage. We have refrained from a logically well-ordered
deductive approach; rather we have tried to pass from examples and special
situations to the general theory. We did so at the cost of occasionally being
somewhat incoherent, for instance when applying the theory with a degree
of generality that has not yet been formally developed. A typical example is
the discussion of the Bachelier and Black-Scholes models in Chapter 4, which
is introduced before the formal development of the continuous time theory.
This approach corresponds to our experience that the human mind works
inductively rather than by logical deduction. We decided therefore on several
occasions, e.g., in the introductory chapter, to jump right into the subject
in order to build up the motivation for the subsequent theory, which will be
formally developed only in later chapters.

In Part II we reproduce updated versions of the following papers. We have
corrected a number of typographical errors and two mathematical inaccuracies
(indicated by footnotes) pointed out to us over the past years by several
colleagues. Here is the list of the papers.

Chapter 9: [DS 94] A General Version of the Fundamental Theorem of Asset
Pricing

Chapter 10: [DS 98a] A Simple Counter-Example to Several Problems in the
Theory of Asset Pricing

Chapter 11: [DS 95b] The No-Arbitrage Property under a Change of Numé-
raire

Chapter 12: [DS 95a] The Existence of Absolutely Continuous Local Martin-
gale Measures

Chapter 13: [DS 97] The Banach Space of Workable Contingent Claims in
Arbitrage Theory

Chapter 14: [DS 98] The Fundamental Theorem of Asset Pricing for Un-
bounded Stochastic Processes

Chapter 15: [DS 99] A Compactness Principle for Bounded Sequences of Mar-
tingales with Applications

Our sincere thanks go to Catriona Byrne from Springer-Verlag, who en-
couraged us to undertake the venture of this book and provided the logistic
background. We also thank Sandra Trenovatz from TU Vienna for her infinite
patience in typing and organising the text.
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This book owes much to many: in particular, we are deeply indebted to our
many friends in the functional analysis, the probability, as well as the mathe-
matical finance communities, from whom we have learned and benefitted over
the years.

Zurich, November 2005, Freddy Delbaen
Vienna, November 2005 Walter Schachermayer
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Part I

A Guided Tour to Arbitrage Theory



1

The Story in a Nutshell

1.1 Arbitrage

The notion of arbitrage is crucial to the modern theory of Finance. It is the
corner-stone of the option pricing theory due to F. Black, R. Merton and
M. Scholes [BS 73], [M 73] (published in 1973, honoured by the Nobel prize in
Economics 1997).

The idea of arbitrage is best explained by telling a little joke: a professor
working in Mathematical Finance and a normal person go on a walk and the
normal person sees a 100e bill lying on the street. When the normal person
wants to pick it up, the professor says: don’t try to do that. It is absolutely
impossible that there is a 100e bill lying on the street. Indeed, if it were lying
on the street, somebody else would have picked it up before you. (end of joke)

How about financial markets? There it is already much more reasonable to
assume that there are no arbitrage possibilities, i.e., that there are no 100e
bills lying around and waiting to be picked up. Let us illustrate this with an
easy example.

Consider the trading of $ versus e that takes place simultaneously at two
exchanges, say in New York and Frankfurt. Assume for simplicity that in
New York the $/e rate is 1 : 1. Then it is quite obvious that in Frankfurt
the exchange rate (at the same moment of time) also is 1 : 1. Let us have a
closer look why this is the case. Suppose to the contrary that you can buy in
Frankfurt a $ for 0.999e. Then, indeed, the so-called “arbitrageurs” (these
are people with two telephones in their hands and three screens in front of
them) would quickly act to buy $ in Frankfurt and simultaneously sell the same
amount of $ in New York, keeping the margin in their (or their bank’s) pocket.
Note that there is no normalising factor in front of the exchanged amount and
the arbitrageur would try to do this on a scale as large as possible.

It is rather obvious that in the situation described above the market can-
not be in equilibrium. A moment’s reflection reveals that the market forces
triggered by the arbitrageurs will make the $ rise in Frankfurt and fall in
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New York. The arbitrage possibility will disappear when the two prices be-
come equal. Of course, “equality” here is to be understood as an approximate
identity where — even for arbitrageurs with very low transaction costs — the
above scheme is not profitable any more.

This brings us to a first — informal and intuitive — definition of arbitrage:
an arbitrage opportunity is the possibility to make a profit in a financial
market without risk and without net investment of capital. The principle of
no-arbitrage states that a mathematical model of a financial market should
not allow for arbitrage possibilities.

1.2 An Easy Model of a Financial Market

To apply this principle to less trivial cases than the Euro/Dollar example
above, we consider a still extremely simple mathematical model of a financial
market: there are two assets, called the bond and the stock. The bond is
riskless, hence by definition we know what it is worth tomorrow. For (mainly
notational) simplicity we neglect interest rates and assume that the price of
a bond equals 1e today as well as tomorrow, i.e.,

B0 = B1 = 1

The more interesting feature of the model is the stock which is risky: we
know its value today, say (w.l.o.g.)

S0 = 1,

but we don’t know its value tomorrow. We model this uncertainty stochasti-
cally by defining S1 to be a random variable depending on the random element
ω ∈ Ω. To keep things as simple as possible, we let Ω consist of two elements
only, g for “good” and b for “bad”, with probability P[g] = P[b] = 1

2 . We
define S1(ω) by

S1(ω) =
{

2 for ω = g
1
2 for ω = b.

Now we introduce a third financial instrument in our model, an option on
the stock with strike price K: the buyer of the option has the right — but
not the obligation — to buy one stock at time t = 1 at a predefined price K.
To fix ideas let K = 1. A moment’s reflexion reveals that the price C1 of the
option at time t = 1 (where C stands for “call”) equals

C1 = (S1 −K)+,

i.e., in our simple example

C1(ω) =
{

1 for ω = g
0 for ω = b.
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Hence we know the value of the option at time t = 1, contingent on the
value of the stock. But what is the price of the option today?

The classical approach, used by actuaries for centuries, is to price con-
tingent claims by taking expectations. In our example this gives the value
C0 := E[C1] = 1

2 . Although this simple approach is very successful in many
actuarial applications, it is not at all satisfactory in the present context. In-
deed, the rationale behind taking the expected value is the following argument
based on the law of large numbers: in the long run the buyer of an option will
neither gain nor lose in the average. We rephrase this fact in a more finan-
cial lingo: the performance of an investment into the option would in average
equal the performance of the bond (for which we have assumed an interest rate
equal to zero). However, a basic feature of finance is that an investment into
a risky asset should in average yield a better performance than an investment
into the bond (for the sceptical reader: at least, these two values should not
necessarily coincide). In our “toy example” we have chosen the numbers such
that E[S1] = 1.25 > 1 = S0, so that in average the stock performs better than
the bond. This indicates that the option (which clearly is a risky investment)
should not necessarily have the same performance (in average) as the bond.
It also shows that the old method of calculating prices via expectation is not
directly applicable. It already fails for the stock and hence there is no reason
why the price of the option should be given by its expectation E[C1].

1.3 Pricing by No-Arbitrage

A different approach to the pricing of the option goes like this: we can buy at
time t = 0 a portfolio Π consisting of 2

3 of stock and − 1
3 of bond. The reader

might be puzzled about the negative sign: investing a negative amount into a
bond — “going short” in the financial lingo — means borrowing money.

Note that — although normal people like most of us may not be able to
do so — the “big players” can go “long” as well as “short”. In fact they can
do so not only with respect to the bond (i.e. to invest or borrow money at a
fixed rate of interest) but can also go “long” as well as “short” in other assets
like shares. In addition, they can do so at (relatively) low transaction costs,
which is reflected by completely neglecting transaction costs in our present
basic modelling.

Turning back to our portfolio Π one verifies that the value Π1 of the
portfolio at time t = 1 equals

Π1(ω) =
{

1 for ω = g
0 for ω = b.

The portfolio “replicates” the option, i.e.,

C1 ≡ Π1, (1.1)
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or, written more explicitly,

C1(g) = Π1(g), (1.2)
C1(b) = Π1(b). (1.3)

We are confident that the reader now sees why we have chosen the above
weights 2

3 and − 1
3 : the mathematical complexity of determining these weights

such that (1.2) and (1.3) hold true, amounts to solving two linear equations
in two variables.

The portfolio Π has a well-defined price at time t = 0, namely Π0 =
2
3S0− 1

3B0 = 1
3 . Now comes the “pricing by no-arbitrage” argument: equality

(1.1) implies that we also must have

C0 = Π0 (1.4)

whence C0 = 1
3 . Indeed, suppose that (1.4) does not hold true; to fix ideas,

suppose we have C0 = 1
2 as we had proposed above. This would allow an

arbitrage by buying (“going long in”) the portfolio Π and simultaneously
selling (“going short in”) the option C. The difference C0 −Π0 = 1

6 remains
as arbitrage profit at time t = 0, while at time t = 1 the two positions cancel
out independently of whether the random element ω equals g or b.

Of course, the above considered size of the arbitrage profit by applying
the above scheme to one option was only chosen for expository reasons: it is
important to note that you may multiply the size of the above portfolios with
your favourite power of ten, thus multiplying also your arbitrage profit.

At this stage we see that the story with the 100e bill at the beginning
of this chapter did not fully describe the idea of an arbitrage: The correct
analogue would be to find instead of a single 100e bill a “money pump”, i.e.,
something like a box from which you can take one 100e bill after another.
While it might have happened to some of us, to occasionally find a 100e bill
lying around, we are confident that nobody ever found such a “money pump”.

Another aspect where the little story at the beginning of this chapter did
not fully describe the idea of arbitrage is the question of information. We shall
assume throughout this book that all agents have the same information (there
are no “insiders”). The theory changes completely when different agents have
different information (which would correspond to the situation in the above
joke). We will not address these extensions.

These arguments should convince the reader that the “no-arbitrage princi-
ple” is economically very appealing: in a liquid financial market there should
be no arbitrage opportunities. Hence a mathematical model of a financial
market should be designed in such a way that it does not permit arbitrage.

It is remarkable that this rather obvious principle yielded a unique price
for the option considered in the above model.
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1.4 Variations of the Example

Although the preceding “toy example” is extremely simple and, of course, far
from reality, it contains the heart of the matter: the possibility of replicating
a contingent claim, e.g. an option, by trading on the existing assets and to
apply the no-arbitrage principle.

It is straightforward to generalise the example by passing from the time
index set {0, 1} to an arbitrary finite discrete time set {0, . . . , T}, and by
considering T independent Bernoulli random variables. This binomial model
is called the Cox-Ross-Rubinstein model in finance (see Chap. 3 below).

It is also relatively simple — at least with the technology of stochastic
calculus, which is available today — to pass to the (properly normalised)
limit as T tends to infinity, thus ending up with a stochastic process driven
by Brownian motion (see Chap. 4 below). The so-called geometric Brownian
motion, i.e., Brownian motion on an exponential scale, is the celebrated Black-
Scholes model which was proposed in 1965 by P. Samuelson, see [S 65]. In fact,
already in 1900 L. Bachelier [B 00] used Brownian motion to price options in
his remarkable thesis “Théorie de la spéculation” (a member of the jury and
rapporteur was H. Poincaré).

In order to apply the above no-arbitrage arguments to more complex mod-
els we still need one additional, crucial concept.

1.5 Martingale Measures

To explain this notion let us turn back to our “toy example”, where we have
seen that the unique arbitrage free price of our option equals C0 = 1

3 . We also
have seen that, by taking expectations, we obtained E[C1] = 1

2 as the price of
the option, which was a “wrong price” as it allowed for arbitrage opportunities.
The economic rationale for this discrepancy was that the expected return of
the stock was higher than that of the bond.

Now make the following mind experiment: suppose that the world were
governed by a different probability than P which assigns different weights to
g and b, such that under this new probability, let’s call it Q, the expected
return of the stock equals that of the bond. An elementary calculation reveals
that the probability measure defined by Q[g] = 1

3 and Q[b] = 2
3 is the unique

solution satisfying EQ[S1] = S0 = 1. Mathematically speaking, the process S
is a martingale under Q, and Q is a martingale measure for S.

Speaking again economically, it is not unreasonable to expect that in a
world governed by Q, the recipe of taking expected values should indeed give
a price for the option which is compatible with the no-arbitrage principle.
After all, our original objection, that the average performance of the stock
and the bond differ, now has disappeared. A direct calculation reveals that in
our “toy example” these two prices for the option indeed coincide as
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EQ[C1] = 1
3 .

Clearly we suspect that this numerical match is not just a coincidence.
At this stage it is, of course, the reflex of every mathematician to ask: what
is precisely going on behind this phenomenon? A preliminary answer is that
the expectation under the new measure Q defines a linear function of the
span of B1 and S1. The price of an element in this span should therefore
be the corresponding linear combination of the prices at time 0. Thus, using
simple linear algebra, we get C0 = 2

3S0 − 1
3B0 and moreover we identify this

as EQ[C1].

1.6 The Fundamental Theorem of Asset Pricing

To make a long story very short: for a general stochastic process (St)0≤t≤T ,
modelled on a filtered probability space (Ω, (Ft)0≤t≤T ,P), the following
statement essentially holds true. For any “contingent claim” CT , i.e. an
FT -measurable random variable, the formula

C0 := EQ[CT ] (1.5)

yields precisely the arbitrage-free prices for CT , when Q runs through the
probability measures on FT , which are equivalent to P and under which the
process S is a martingale (“equivalent martingale measures”). In particular,
when there is precisely one equivalent martingale measure (as it is the case in
the Cox-Ross-Rubinstein, the Black-Scholes and the Bachelier model), formula
(1.5) gives the unique arbitrage free price C0 for CT . In this case we may
“replicate” the contingent claim CT as

CT = C0 +
∫ T

0

HtdSt, (1.6)

where (Ht)0≤t≤T is a predictable process (a “trading strategy”) and where Ht

models the holding in the stock S during the infinitesimal interval [t, t + dt].
Of course, the stochastic integral appearing in (1.6) needs some care; fortu-

nately people like K. Itô and P.A. Meyer’s school of probability in Strasbourg
told us very precisely how to interpret such an integral.

The mathematical challenge of the above story consists of getting rid of
the word “essentially” and to turn this program into precise theorems.

The central piece of the theory relating the no-arbitrage arguments with
martingale theory is the so-called Fundamental Theorem of Asset Pricing. We
quote a general version of this theorem, which is proved in Chap. 14.

Theorem 1.6.1 (Fundamental Theorem of Asset Pricing). For an Rd-
valued semi-martingale S = (St)0≤t≤T t.f.a.e.:
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(i) There exists a probability measure Q equivalent to P under which S is a
sigma-martingale.

(ii) S does not permit a free lunch with vanishing risk.

This theorem was proved for the case of a probability space Ω consisting
of finitely many elements by Harrison and Pliska [HP 81]. In this case one
may equivalently write no-arbitrage instead of no free lunch with vanishing
risk and martingale instead of sigma-martingale.

In the general case it is unavoidable to speak about more technical con-
cepts, such as sigma-martingales (which is a generalisation of the notion of
a local martingale) and free lunches. A free lunch (a notion introduced by
D. Kreps [K 81]) is something like an arbitrage, where — roughly speaking —
agents are allowed to form integrals as in (1.6), to subsequently “throw away
money” (if they want do so), and finally to pass to the limit in an appropriate
topology. It was the — somewhat surprising — insight of [DS 94] (reprinted
in Chap. 9) that one may take the topology of uniform convergence (which
allows for an economic interpretation to which the term “with vanishing risk”
alludes) and still get a valid theorem.

The remainder of this book is devoted to the development of this theme,
as well as to its remarkable scope of applications in Finance.
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Models of Financial Markets
on Finite Probability Spaces

2.1 Description of the Model

In this section we shall develop the theory of pricing and hedging of derivative
securities in financial markets.

In order to reduce the technical difficulties of the theory of option pricing
to a minimum, we assume throughout this chapter that the probability space
Ω underlying our model will be finite, say, Ω = {ω1, ω2, . . . , ωN} equipped
with a probability measure P such that P[ωn] = pn > 0, for n = 1, . . . , N .
This assumption implies that all functional-analytic delicacies pertaining to
different topologies on L∞(Ω,F ,P), L1(Ω,F ,P), L0(Ω,F ,P) etc. evaporate,
as all these spaces are simply RN (we assume w.l.o.g. that the σ-algebra F
is the power set of Ω). Hence all the functional analysis, which we shall need
in later chapters for the case of more general processes, reduces in the setting
of the present chapter to simple linear algebra. For example, the use of the
Hahn-Banach theorem is replaced by the use of the separating hyperplane
theorem in finite dimensional spaces.

Nevertheless we shall write L∞(Ω,F ,P), L1(Ω,F ,P) etc. (knowing very
well that in the present setting these spaces are all isomorphic to RN ) to
indicate, which function spaces we shall encounter in the setting of the general
theory. It also helps to see if an element of RN is a contingent claim or an
element of the dual space, i.e. a price vector.

In addition to the probability space (Ω,F ,P) we fix a natural number
T ≥ 1 and a filtration (Ft)T

t=0 on Ω, i.e., an increasing sequence of σ-algebras.
To avoid trivialities, we shall always assume that FT = F ; on the other hand,
we shall not assume that F0 is trivial, i.e. F0 = {∅, Ω}, although this will
be the case in most applications. But for technical reasons it will be more
convenient to allow for general σ-algebras F0.

We now introduce a model of a financial market in not necessarily dis-
counted terms. The rest of Sect. 2.1 will be devoted to reducing this situation
to a model in discounted terms which, as we shall see, will make life much
easier.
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Readers who are not so enthusiastic about this mainly formal and elemen-
tary reduction might proceed directly to Definition 2.1.4. On the other hand,
we know from sad experience that often there is a lot of myth and confusion
arising in this operation of discounting; for this reason we decided to devote
this section to the clarification of this issue.

Definition 2.1.1. A model of a financial market is an Rd+1-valued stochastic
process Ŝ = (Ŝt)T

t=0 = (Ŝ0
t , Ŝ1

t , . . . , Ŝd
t )T

t=0, based on and adapted to the filtered
stochastic base (Ω,F , (Ft)T

t=0,P). We shall assume that the zero coordinate
Ŝ0 satisfies Ŝ0

t > 0 for all t = 0, . . . , T and Ŝ0
0 = 1.

The interpretation is the following. The prices of the assets 0, . . . , d are
measured in a fixed money unit, say Euros. For 1 ≤ j ≤ d they are not
necessarily non-negative (think, e.g., of forward contracts). The asset 0 plays
a special role. It is supposed to be strictly positive and will be used as a nu-
méraire. It allows us to compare money (e.g., Euros) at time 0 to money at
time t > 0. In many elementary models, Ŝ0 is simply a bank account which
in case of constant interest rate r is then defined as Ŝ0

t = ert. However, it
might also be more complicated, e.g. Ŝ0

t = exp(r0h+ r1h+ · · ·+ rt−1h) where
h > 0 is the length of the time interval between t− 1 and t (here kept fixed)
and where rt−1 is the stochastic interest rate valid between t− 1 and t. Other
models are also possible and to prepare the reader for more general situations,
we only require Ŝ0

t to be strictly positive. Notice that we only require that
Ŝ0

t to be Ft-measurable and that it is not necessarily Ft−1-measurable. In
other words, we assume that the process Ŝ0 = (Ŝ0

t )T
t=0 is adapted, but not

necessarily predictable.
An economic agent is able to buy and sell financial assets. The decision

taken at time t can only use information available at time t which is modelled
by the σ-algebra Ft.

Definition 2.1.2. A trading strategy (Ĥt)T
t=1 = (Ĥ0

t , Ĥ1
t , . . . , Ĥd

t )T
t=1 is an

Rd+1-valued process which is predictable, i.e. Ĥt is Ft−1-measurable.

The interpretation is that between time t− 1 and time t, the agent holds
a quantity equal to Ĥj

t of asset j. The decision is taken at time t − 1 and
therefore, Ĥt is required to be Ft−1-measurable.

Definition 2.1.3. A strategy (Ĥt)T
t=1 is called self financing if for every t =

1, . . . , T − 1, we have (
Ĥt, Ŝt

)
=
(
Ĥt+1, Ŝt

)
(2.1)

or, written more explicitly,

d∑
j=0

Ĥj
t Ŝj

t =
d∑

j=0

Ĥj
t+1Ŝ

j
t . (2.2)

The initial investment required for a strategy is V̂0 = (Ĥ1, Ŝ0) =
∑d

j=0 Ĥj
1 Ŝj

0.
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The interpretation goes as follows. By changing the portfolio from Ĥt−1

to Ĥt there is no input/outflow of money. We remark that we assume that
changing a portfolio does not trigger transaction costs. Also note that Ĥj

t may
assume negative values, which corresponds to short selling asset j during the
time interval ]tj−1, tj ].

The Ft-measurable random variable defined in (2.1) is interpreted as the
value V̂t of the portfolio at time t defined by the trading strategy Ĥ :

V̂t = (Ĥt, Ŝt) = (Ĥt+1, Ŝt).

The way in which the value (Ĥt, Ŝt) evolves can be described much easier
when we use discounted prices using the asset Ŝ0 as numéraire. Discounting
allows us to compare money at time t to money at time 0. For instance we
could say that Ŝ0

t units of money at time t are the “same” as 1 unit of money,
e.g., Euros, at time 0. So let us see what happens if we replace prices Ŝ by
discounted prices

(
Ŝ

Ŝ0

)
=
(

Ŝ0

Ŝ0 , Ŝ1

Ŝ0 , . . . , Ŝd

Ŝ0

)
. We will use the notation

Sj
t :=

Ŝj
t

Ŝ0
t

, for j = 1, . . . , d and t = 0, . . . , T. (2.3)

There is no need to include the coordinate 0, since obviously S0
t = 1. Let us

now consider (Ĥt)T
t=1 = (Ĥ0

t , Ĥ1
t , . . . , Ĥd

t )T
t=1 to be a self financing strategy

with initial investment V̂0; we then have

V̂0 =
d∑

j=0

Ĥj
1 Ŝj

0 = Ĥ0
1 +

d∑
j=1

Ĥj
1 Ŝj

0 = Ĥ0
1 +

d∑
j=1

Ĥj
1Sj

0,

since by definition Ŝ0
0 = 1.

We now write (Ht)T
t=1 = (H1

t , . . . , Hd
t )T

t=1 for the Rd-valued process ob-
tained by discarding the 0’th coordinate of the Rd+1-valued process (Ĥt)T

t=1 =
(Ĥ0

t , Ĥ1
t , . . . , Ĥd

t )T
t=1, i.e., Hj

t = Ĥj
t for j = 1, . . . , d. The reason for dropping

the 0’th coordinate is, as we shall discover in a moment, that the holdings
Ĥ0

t in the numéraire asset S0
t will be no longer of importance when we do the

book-keeping in terms of the numéraire asset, i.e., in discounted terms.

One can make the following easy, but crucial observation: for every Rd-
valued, predictable process (Ht)T

t=1 = (H1
t , . . . , Hd

t )T
t=1 there exists a unique

self financing Rd+1-valued predictable process (Ĥt)T
t=1 = (Ĥ0

t , Ĥ1
t , . . . , Ĥd

t )T
t=1

such that (Ĥj
t )T

t=1 = (Hj
t )T

t=1 for j = 1, . . . , d and Ĥ0
1 = 0. Indeed, one de-

termines the values of Ĥ0
t+1, for t = 1, . . . , T − 1, by inductively applying

(2.2). The strict positivity of (Ŝ0
t )T−1

t=0 implies that there is precisely one func-
tion Ĥ0

t+1 such that equality (2.2) holds true. Clearly such a function Ĥ0
t+1 is
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Ft-measurable. In economic terms the above argument is rather obvious: for
any given trading strategy (Ht)T

t=1 = (H1
t , . . . , Hd

t )T
t=1 in the “risky” assets

j = 1, . . . , d, we may always add a trading strategy (Ĥ0
t )T

t=1 in the numé-
raire asset 0 such that the total strategy becomes self financing. Moreover,
by normalising Ĥ0

1 = 0, this trading strategy becomes unique. This can be
particularly well visualised when interpreting the asset 0 as a cash account,
into which at all times t = 1, . . . , T − 1, the gains and losses occurring from
the investments in the d risky assets are absorbed and from which the in-
vestments in the risky assets are financed. If we normalise this procedure by
requiring Ĥ0

1 = 0, i.e., by starting with an empty cash account, then clearly
the subsequent evolution of the holdings in the cash account is uniquely de-
termined by the holdings in the “risky” assets 1, . . . , d. From now on we fix
two processes (Ĥt)T

t=1 = (Ĥ0
t , Ĥ1

t , . . . , Ĥd
t )T

t=1 and (Ht)T
t=1 = (H1

t , . . . , Hd
t )T

t=1

corresponding uniquely one to each other in the above described way.
Now one can make a second straightforward observation: the investment

(Ĥ0
t )T

t=1 in the numéraire asset does not change the discounted value (Vt)T
t=0

of the portfolio. Indeed, by definition — and rather trivially — the numéraire
asset remains constant in discounted terms (i.e., expressed in units of itself).

Hence the discounted value Vt of the portfolio

Vt =
V̂t

Ŝ0
t

, t = 0, . . . , T,

depends only on the Rd-dimensional process (Ht)T
t=1 = (H1

t , . . . , Hd
t )T

t=1.
More precisely, in view of the normalisation Ŝ0

0 = 1 and Ĥ0
1 = 0 we have

V̂0 = V0 =
d∑

j=1

Hj
1Sj

0.

For the increment ∆Vt+1 = Vt+1 − Vt we find, using (2.2),

∆Vt+1 = Vt+1 − Vt =
V̂t+1

Ŝ0
t+1

− V̂t

Ŝ0
t

=
d∑

j=0

Ĥj
t+1

Ŝj
t+1

Ŝ0
t+1

−
d∑

j=0

Ĥj
t+1

Ŝj
t

Ŝ0
t

= Ĥ0
t+1(1− 1) +

d∑
j=1

Ĥj
t+1

(
Sj

t+1 − Sj
t

)
=
(
Hj

t+1, ∆Sj
t+1

)
,

where ( . , . ) now denotes the inner product in Rd.
In particular, the final value VT of the portfolio becomes (in discounted

units)
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VT = V0 +
T∑

t=1

(Ht, ∆St) = V0 + (H · S)T ,

where (H · S)T =
∑T

t=1 (Ht, ∆St) is the notation for a stochastic integral
familiar from the theory of stochastic integration. In our discrete time frame-
work the “stochastic integral” is simply a finite Riemann sum.

In order to know the value VT of the portfolio in real money, we still
would have to multiply by Ŝ0

T , i.e., we have V̂T = VT Ŝ0
T . This, however, is

rarely needed.
We can therefore replace Definition 2.1.2 by the following definition in

discounted terms, which will turn out to be much easier to handle.

Definition 2.1.4. Let S = (S1, . . . , Sd) be a model of a financial market
in discounted terms. A trading strategy is an Rd-valued process (Ht)T

t=1 =
(H1

t , H2
t , . . . , Hd

t )T
t=1 which is predictable, i.e., each Ht is Ft−1-measurable.

We denote by H the set of all such trading strategies.
We then define the stochastic integral H · S as the R-valued process ((H ·

S)t)T
t=0 given by

(H · S)t =
t∑

u=1

(Hu, ∆Su), t = 0, . . . , T, (2.4)

where ( . , . ) denotes the inner product in Rd. The random variable

(H · S)t =
t∑

u=1

(Hu, ∆Su)

models — when following the trading strategy H — the gain or loss occurred
up to time t in discounted terms.

Summing up: by following the good old actuarial tradition of discounting,
i.e. by passing from the process Ŝ, denoted in units of money, to the process S,
denoted in terms of the numéraire asset (e.g., the cash account), things become
considerably simpler and more transparent. In particular the value process V
of an agent starting with initial wealth V0 = 0 and subsequently applying the
trading strategy H , is given by the stochastic integral Vt = (H · S)t defined
in (2.4).

We still emphasize that the choice of the numéraire is not unique; only
for notational convenience we have fixed it to be the asset indexed by 0. But
it may be chosen as any traded asset, provided only that it always remains
strictly positive. We shall deal with this topic in more detail in Sect. 2.5 below.

From now on we shall work in terms of the discounted Rd-valued process,
denoted by S.
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2.2 No-Arbitrage and the Fundamental Theorem
of Asset Pricing

Definition 2.2.1. We call the subspace K of L0(Ω,F ,P) defined by

K = {(H · S)T | H ∈ H} ,

the set of contingent claims attainable at price 0.

We leave it to the reader to check that K is indeed a vector space.
The economic interpretation is the following: the random variables f =

(H · S)T are precisely those contingent claims, i.e., the pay-off functions at
time T , depending on ω ∈ Ω, that an economic agent may replicate with zero
initial investment by pursuing some predictable trading strategy H .

For a ∈ R, we call the set of contingent claims attainable at price a the
affine space Ka = a + K, obtained by shifting K by the constant function a,
in other words, the space of all the random variables of the form a+(H ·S)T ,
for some trading strategy H . Again the economic interpretation is that these
are precisely the contingent claims that an economic agent may replicate with
an initial investment of a by pursuing some predictable trading strategy H .

Definition 2.2.2. We call the convex cone C in L∞(Ω,F ,P) defined by

C = {g ∈ L∞(Ω,F ,P) | there exists f ∈ K with f ≥ g} .

the set of contingent claims super-replicable at price 0.

Economically speaking, a contingent claim g ∈ L∞(Ω,F ,P) is super-
replicable at price 0, if we can achieve it with zero net investment by pursuing
some predictable trading strategy H . Thus we arrive at some contingent claim
f and if necessary we “throw away money” to arrive at g. This operation of
“throwing away money” or “free disposal” may seem awkward at this stage,
but we shall see later that the set C plays an important role in the develop-
ment of the theory. Observe that C is a convex cone containing the negative
orthant L∞− (Ω,F ,P). Again we may define Ca = a + C as the contingent
claims super-replicable at price a, if we shift C by the constant function a.

Definition 2.2.3. A financial market S satisfies the no-arbitrage condition
(NA) if

K ∩ L0
+(Ω,F ,P) = {0}

or, equivalently,
C ∩ L0

+(Ω,F ,P) = {0}
where 0 denotes the function identically equal to zero.
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Recall that L0(Ω,F ,P) denotes the space of all F -measurable real-valued
functions and L0

+(Ω,F ,P) its positive orthant.
We now have formalised the concept of an arbitrage possibility: it means

the existence of a trading strategy H such that — starting from an initial in-
vestment zero — the resulting contingent claim f = (H · S)T is non-negative
and not identically equal to zero. Such an opportunity is of course the dream
of every arbitrageur. If a financial market does not allow for arbitrage oppor-
tunities, we say it satisfies the no-arbitrage condition (NA).

Proposition 2.2.4. Assume S satisfies (NA) then

C ∩ (−C) = K.

Proof. Let g ∈ C ∩ (−C) then g = f1 − h1 with f1 ∈ K, h1 ∈ L∞
+ and

g = f2 + h2 with f2 ∈ K and h2 ∈ L∞
+ . Then f1 − f2 = h1 + h2 ∈ L∞

+ and
hence f1− f2 ∈ K ∩L∞

+ = {0}. It follows that f1 = f2 and h1 +h2 = 0, hence
h1 = h2 = 0. This means that g = f1 = f2 ∈ K. �

Definition 2.2.5. A probability measure Q on (Ω,F) is called an equivalent
martingale measure for S, if Q ∼ P and S is a martingale under Q, i.e.,
EQ[St+1|Ft] = St for t = 0, . . . , T − 1.

We denote by Me(S) the set of equivalent martingale measures and by
Ma(S) the set of all (not necessarily equivalent) martingale probability mea-
sures. The letter a stands for “absolutely continuous with respect to P” which
in the present setting (finite Ω and P having full support) automatically holds
true, but which will be of relevance for general probability spaces (Ω,F ,P)
later. Note that in the present setting of a finite probability space Ω with
P[ω] > 0 for each ω ∈ Ω, we have that Q ∼ P iff Q[ω] > 0, for each ω ∈ Ω. We
shall often identify a measure Q on (Ω,F) with its Radon-Nikodým derivative
dQ
dP ∈ L1(Ω,F ,P). In the present setting of finite Ω, this simply means

dQ
dP

(ω) =
Q[ω]
P[ω]

.

In statistics this quantity is also called the likelihood ratio.

Lemma 2.2.6. For a probability measure Q on (Ω,F) the following are equiv-
alent:

(i) Q ∈ Ma(S),
(ii) EQ[f ] = 0, for all f ∈ K,
(iii) EQ[g] ≤ 0, for all g ∈ C.

Proof. The equivalences are rather trivial. (ii) is tantamount to the very defi-
nition of S being a martingale under Q, i.e., to the validity of

EQ[St | Ft−1] = St−1, for t = 1, . . . , T. (2.5)
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Indeed, (2.5) holds true iff for eachFt−1-measurable set A we have EQ[χA(St−
St−1)] = 0 ∈ Rd, in other words EQ[(xχA, ∆St)] = 0, for each x. By linearity
this relation extends to K which shows (ii).

The equivalence of (ii) and (iii) is straightforward. �
After having fixed these formalities we may formulate and prove the central

result of the theory of pricing and hedging by no-arbitrage, sometimes called
the “Fundamental Theorem of Asset Pricing”, which in its present form (i.e.,
finite Ω) is due to M. Harrison and S.R. Pliska [HP 81].

Theorem 2.2.7 (Fundamental Theorem of Asset Pricing). For a fi-
nancial market S modelled on a finite stochastic base (Ω,F , (Ft)T

t=0,P), the
following are equivalent:

(i) S satisfies (NA),
(ii) Me(S) �= ∅.

Proof. (ii) ⇒ (i): This is the obvious implication. If there is some Q ∈Me(S)
then by Lemma 2.2.6 we have that

EQ[g] ≤ 0, for g ∈ C.

On the other hand, if there were g ∈ C∩L∞
+ , g �= 0, then, using the assumption

that Q is equivalent to P, we would have

EQ[g] > 0,

a contradiction.

(i)⇒ (ii) This implication is the important message of the theorem which
will allow us to link the no-arbitrage arguments with martingale theory. We
give a functional analytic existence proof, which will be extendable — in spirit
— to more general situations.

By assumption the space K intersects L∞
+ only at 0. We want to separate

the disjoint convex sets L∞
+ \ {0} and K by a hyperplane induced by a linear

functional Q ∈ L1(Ω,F ,P). In order to get a strict separation of K and
L∞

+ \{0} we have to be a little careful since the standard separation theorems
do not directly apply.

One way to overcome this difficulty (in finite dimension) is to consider the
convex hull of the unit vectors

(
1{ωn}

)N
n=1

in L∞(Ω,F ,P) i.e.

P :=

{
N∑

n=1

µn1{ωn}

∣∣∣∣∣ µn ≥ 0,

N∑
n=1

µn = 1

}
.

This is a convex, compact subset of L∞
+ (Ω,F ,P) and, by the (NA) assump-

tion, disjoint from K. Hence we may strictly separate the convex compact set
P from the convex closed set K by a linear functional Q ∈ L∞(Ω,F ,P)∗ =
L1(Ω,F ,P), i.e., find α < β such that
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(Q, f) ≤ α, for f ∈ K,

(Q, h) ≥ β, for h ∈ P.

Since K is a linear space, we have α ≥ 0 and may replace α by 0. Hence
β > 0. Defining by I the constant vector I = (1, . . . , 1), we have (Q, I ) > 0,
where I denotes the constant function equal to one, and we may normalise
Q such that (Q, I ) = 1. As Q is strictly positive on each 1{ωn}, we therefore
have found a probability measure Q on (Ω,F) equivalent to P such that con-
dition (ii) of Lemma 2.2.6 holds true. In other words, we found an equivalent
martingale measure Q for the process S. �

The name “Fundamental Theorem of Asset Pricing” was, as far as we are
aware, first used in [DR 87]. We shall see that it plays a truly fundamental role
in the theory of pricing and hedging of derivative securities (or, synonymously,
contingent claims, i.e., elements of L0(Ω,F ,P)) by no-arbitrage arguments.

It seems worthwhile to discuss the intuitive interpretation of this basic
result: a martingale S (say, under the original measure P) is a mathematical
model for a perfectly fair game. Applying any strategy H ∈ H we always have
E[(H · S)T ] = 0, i.e., an investor can neither win nor lose in expectation.

On the other hand, a process S allowing for arbitrage, is a model for an
utterly unfair game: choosing a good strategy H ∈ H, an investor can make
“something out of nothing”. Applying H , the investor is sure not to lose, but
has strictly positive probability to gain something.

In reality, there are many processes S which do not belong to either of
these two extreme classes. Nevertheless, the above theorem tells us that there
is a sharp dichotomy by allowing to change the odds. Either a process S is
utterly unfair, in the sense that it allows for arbitrage. In this case there is
no remedy to make the process fair by changing the odds: it never becomes
a martingale. In fact, the possibility of making an arbitrage is not affected
by changing the odds, i.e., by passing to an equivalent probability Q. On the
other hand, discarding this extreme case of processes allowing for arbitrage,
we can always pass from P to an equivalent measure Q under which S is a
martingale, i.e., a perfectly fair game. Note that the passage from P to Q
may change the probabilities (the “odds”) but not the impossible events (i.e.
the null sets).

We believe that this dichotomy is a remarkable fact, also from a purely
intuitive point of view.

Corollary 2.2.8. Let S satisfy (NA) and let f ∈ L∞(Ω,F ,P) be an attain-
able contingent claim. In other words f is of the form

f = a + (H · S)T , (2.6)

for some a ∈ R and some trading strategy H. Then the constant a and the
process (H · S)t are uniquely determined by (2.6) and satisfy, for every Q ∈
Me(S),
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a = EQ[f ], and a + (H · S)t = EQ[f | Ft], for 0 ≤ t ≤ T. (2.7)

Proof. As regards the uniqueness of the constant a ∈ R, suppose that there are
two representations f = a1 + (H1 · S)T and f = a2 + (H2 · S)T with a1 �= a2.
Assuming w.l.o.g. that a1 > a2 we find an obvious arbitrage possibility by
considering the trading strategy H2−H1. We have a1−a2 = ((H2−H1) ·S)T ,
i.e. the trading strategy H2 −H1 produces a strictly positive result at time
T , a contradiction to (NA).

As regards the uniqueness of the process H · S, we simply apply a condi-
tional version of the previous argument: assume that f = a + (H1 · S)T and
f = a + (H2 · S)T and suppose that the processes H1 · S and H2 · S are not
identical. Then there is 0 ≤ t ≤ T such that (H1 · S)t �= (H2 · S)t and with-
out loss of generality we may suppose that A := {(H1 · S)t > (H2 · S)t}
is a non-empty event, which clearly is in Ft. Hence, using the fact hat
(H1 · S)T = (H2 · S)T , the trading strategy H := (H2 − H1)1A · 1]t,T ] is
a predictable process producing an arbitrage, as (H ·S)T = 0 outside A, while
(H · S)T = (H1 · S)t − (H2 · S)t > 0 on A, which again contradicts (NA).

Finally, the equations in (2.7) result from the fact that, for every pre-
dictable process H and every Q ∈ Ma(S), the process H · S is a Q-
martingale. �

We denote by cone(Me(S)) and cone(Ma(S)) the cones generated by the
convex setsMe(S) andMa(S) respectively. The subsequent Proposition 2.2.9
clarifies the polar relation between these cones and the cone C.

Let 〈E, E′〉 be two vector spaces in separating duality. This means that
there is a bilinear form 〈 . , . 〉 : E×E′ → R, so that if 〈x, x′〉 = 0 for all x ∈ E,
we must have x′ = 0. Similarly if 〈x, x′〉 = 0 for all x′ ∈ E′, we must have
x = 0. Recall (see, e.g., [Sch 99]) that, for a pair (E, E′) of vector spaces in
separating duality via the scalar product 〈 . , . 〉, the polar C0 of a set C in E
is defined by

C0 = {g ∈ E′ | 〈f, g〉 ≤ 1 for all f ∈ C} .

In the case when C is closed under multiplication by positive scalars (e.g., if
C is a convex cone) the polar C0 may equivalently be defined as

C0 = {g ∈ E′ | 〈f, g〉 ≤ 0 for all f ∈ C} .

The bipolar theorem (see, e.g., [Sch 99]) states that the bipolar C00 := (C0)0

of a set C in E is the σ(E, E′)-closed convex hull of C.

In the present, finite dimensional case, E = L∞(Ω,FT ,P) = RN and
E′ = L1(Ω,FT ,P) = RN the bipolar theorem is easier. In this case there is
only one topology on RN compatible with its vector space structure, so that
we don’t have to speak about different topologies such as σ(E, E′). However,
the proof of the bipolar theorem is in the finite dimensional case and in the
infinite dimensional case almost the same and follows from the separating
hyperplane resp. the Hahn-Banach theorem.
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After these general observations we pass to the concrete setting of the
cone C ⊆ L∞(Ω,F ,P) of contingent claims super-replicable at price 0. Note
that in our finite dimensional setting this convex cone is closed as it is the
algebraic sum of the closed linear space K (a linear space in RN is always
closed) and the closed polyhedral cone L∞− (Ω,F ,P) (the verification, that the
algebraic sum of a space and a polyhedral cone in RN is closed, is an easy, but
not completely trivial exercise). We deduce from the bipolar theorem, that C
equals its bipolar C00.

Proposition 2.2.9. Suppose that S satisfies (NA). Then the polar of C is
equal to cone(Ma(S)), the cone generated by Ma(S), and Me(S) is dense
in Ma(S). Hence the following assertions are equivalent for an element g ∈
L∞(Ω,F ,P):

(i) g ∈ C,
(ii) EQ[g] ≤ 0, for all Q ∈ Ma(S),
(iii) EQ[g] ≤ 0, for all Q ∈ Me(S).

Proof. The fact that the polar C0 and the set cone(Ma(S)) coincide, follows
from Lemma 2.2.6 and the observation that C ⊇ L∞

− (Ω,F ,P) and C0 ⊆
L1

+(Ω,F ,P). Hence the equivalence of (i) and (ii) follows from the bipolar
theorem.

As regards the density ofMe(S) inMa(S) we first deduce from Theorem
2.2.7 that there is at least one Q∗ ∈ Me(S). For any Q ∈ Ma(S) and 0 < µ ≤
1 we have that µQ∗ + (1 − µ)Q ∈ Me(S), which clearly implies the density
of Me(S) in Ma(S). The equivalence of (ii) and (iii) is now obvious. �

Similarly we can show the following:

Proposition 2.2.10. Suppose S satisfies (NA). Then for f ∈ L∞, the fol-
lowing assertions are equivalent

(i) f ∈ K, i.e. f = (H · S)T for some strategy H ∈ H.
(ii) For all Q ∈ Me(S) we have EQ[f ] = 0.
(iii) For all Q ∈ Ma(S) we have EQ[f ] = 0.

Proof. By Proposition 2.2.4 we have that f ∈ K iff f ∈ C ∩ (−C). Hence the
result follows from the preceding Proposition 2.2.9. �

Corollary 2.2.11. Assume that S satisfies (NA) and that f ∈ L∞ satisfies
EQ[f ] = a for all Q ∈Me(S), then f = a + (H · S)T for some strategy H. �

Corollary 2.2.12 (complete financial markets). For a financial market
S satisfying the no-arbitrage condition (NA), the following are equivalent:

(i) Me(S) consists of a single element Q.
(ii) Each f ∈ L∞(Ω,F ,P) may be represented as

f = a + (H · S)T for some a ∈ R and H ∈ H.
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In this case a = EQ[f ], the stochastic integral H · S is unique and we have
that

EQ[f | Ft] = EQ[f ] + (H · S)t, t = 0, . . . , T. �

The Fundamental Theorem of Asset Pricing 2.2.7 allows us to prove the
following proposition, which we shall need soon.

Proposition 2.2.13. Assume that S satisfies (NA) and let H ·S be the process
obtained from S by means of a fixed strategy H ∈ H. Fix a ∈ R and define
the R-valued process Sd+1 = (Sd+1

t )T
t=0 by Sd+1 = a+H ·S. Then the process

S = (S1, S2, . . . , Sd, Sd+1) also satisfies the (NA) property and the setsMe(S)
and Me(S) (as well as Ma(S) and Ma(S)) coincide.

Proof. If Q ∈ Me(S) then H · S is a Q-martingale. Consequently S satisfies
(NA). �

2.3 Equivalence of Single-period
with Multiperiod Arbitrage

The aim of this section is to describe the relation between one-period no-
arbitrage and multiperiod no-arbitrage. At the same time we will be able to
give somewhat more detailed information on the set of risk neutral measures
(this term is often used in the finance literature in a synonymous way for
martingale measures). We start off with the following observation. Recall that
we did not assume that F0 is trivial.

Proposition 2.3.1. If S satisfies the no-arbitrage condition, Q ∈ Me(S) is
an equivalent martingale measure, and Zt = EP

[
dQ
dP

∣∣∣ Ft

]
denotes the density

process associated with Q, then the process Lt = Zt

Z0
defines the density process

of an equivalent measure Q′ such that dQ′

dP = LT , Q′ ∈ Me(S) and Q′|F0 =
P|F0 .

Proof. This is rather straightforward. Since Q ∈ Me(S) we have that SZ
is a P-martingale. Since Z0 > 0 and since it is F0-measurable the process
S Z

Z0
is still a P-martingale. Since SL is now a P-martingale and since the

density LT > 0, we necessarily have Q′ ∈ Me(S). As L0 = 1 we obtain
Q′|F0 = P|F0 . �

Theorem 2.3.2. Let S = (St)T
t=0 be a price process. Then the following are

equivalent:

(i) S satisfies the no-arbitrage property.
(ii) For each 0 ≤ t < T , we have that the one-period market (St, St+1) with

respect to the filtration (Ft,Ft+1) satisfies the no-arbitrage property.
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Proof. Obviously (i) implies (ii), since there are less strategies in each single
period market than in the multiperiod market. So let us show that (ii) implies
(i). By the fundamental theorem applied to (St, St+1), we have that for each t
there is a probability measure Qt on Ft+1 equivalent to P, so that under Qt

the process (St, St+1) is a Qt-martingale. This means that EQt [St+1 | Ft] =
St. By the previous proposition we may take Qt|Ft = P|Ft . Let ft+1 = dQt

dP
and define Lt = f1 . . . ft−1ft and L0 = 1. Clearly (Lt)T

t=0 is the density process
of an equivalent measure Q defined by dQ

dP = LT . One can easily check that,
for all t = 0, . . . , T − 1 we have EQ[St+1 | Ft] = St, i.e., Q ∈ Me(S). �

Remark 2.3.3. The equivalence between one-period no-arbitrage and multi-
period no-arbitrage can also be checked directly by the definition of no-
arbitrage. We invite the reader to give a direct proof of the following: if H
is a strategy so that (H · S)T ≥ 0 and P[(H · S)T > 0] > 0 then there is
a 1 ≤ t ≤ T as well as A ∈ Ft−1, P[A] > 0 so that 1A(Ht, ∆St) ≥ 0 and
P[1A(Ht, ∆St) > 0] > 0 (compare Lemma 5.1.5 below).

Remark 2.3.4. We give one more indication, why there is little difference be-
tween the one-period and the T period situation; this discussion also reveals a
nice economic interpretation. Given S = (St)T

t=0 as above, we may associate a
one-period process S̃ = (S̃t)1t=0, adapted to the filtration (F̃0, F̃1) := (F0,FT )
in the following way: choose any collection (f1, . . . , fm) in the finite dimen-
sional linear space K defined in 2.2.1, which linearly spans K. Define the
Rm-valued process S̃ by S̃0 = 0, S̃1 = (f1, . . . , fm).

Obviously the process S̃ yields the same space K of stochastic integrals as
S. Hence the set of equivalent martingale measures for the processes S and S̃
coincide and therefore all assertions, depending only on the set of equivalent
martingale measures coincide for S and S̃. In particular S and S̃ yield the
same arbitrage-free prices for derivatives, as we shall see in the next section.

The economic interpretation of the transition from S to S̃ reads as follows:
if we fix the trading strategies Hj yielding fj = (Hj ·S)T , we may think of fj

as a contingent claim at time t = T which may be bought at price 0 at time
t = 0, by then applying the trading rules given by Hj . By taking sufficiently
many of these Hj ’s, in the sense that the corresponding fj ’s linearly span K,
we may represent the result f = (H ·S)T of any trading strategy H as a linear
combination of the fj ’s.

The bottom line of this discussion is that in the present framework (i.e. Ω
is finite) — from a mathematical as well as from an economic point of view
— the T period situation can easily be reduced to the one-period situation.

2.4 Pricing by No-Arbitrage

The subsequent theorem will tell us what the principle of no-arbitrage implies
about the possible prices for a contingent claim f . It goes back to the work
of D. Kreps [K 81].
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For given f ∈ L∞(Ω,F ,P), we call a ∈ R an arbitrage-free price, if in
addition to the financial market S, the introduction of the contingent claim f
at price a does not create an arbitrage possibility. How can we mathematically
formalise this economically intuitive idea? We enlarge the financial market S
by introducing a new financial instrument which can be bought (or sold) at
price a at time t = 0 and yields the random cash flow f(ω) at time t = T .
We don’t postulate anything about the price of this financial instrument at
the intermediate times t = 1, . . . , T − 1. The reader might think of an “over
the counter” option where the two parties agree on certain payments at times
t = 0 and t = T . So if we look at the linear space generated by K and the
vector (f−a) we obtain an enlarged space Kf,a of attainable claims. The price
a should be such that arbitrage opportunities are inexistent. Mathematically
speaking this means that we still should have Kf,a ∩ L∞

+ = {0}. In this case
we say that a is an arbitrage free price for the contingent claim f .

Theorem 2.4.1 (Pricing by no-arbitrage). Assume that S satisfies (NA)
and let f ∈ L∞(Ω,F ,P). Define

π(f) = inf {EQ[f ] | Q ∈Me(S)} ,

π(f) = sup {EQ[f ] | Q ∈Me(S)} , (2.8)

Either π(f) = π(f), in which case f is attainable at price π(f) := π(f) =
π(f), i.e. f = π(f) + (H · S)T for some H ∈ H and therefore π(f) is the
unique arbitrage-free price for f .

Or π(f) < π(f), in which case

]π(f), π(f)[= {EQ[f ] | Q ∈Me(S)}

and a is an arbitrage-free price for f iff a lies in the open interval ]π(f), π(f)[.

Proof. The case π(f) = π(f) follows from corollary 2.2.11 and so we only have
to concentrate on the case π(f) < π(f). First observe that the set {EQ[f ] |
Q ∈Me(S)} forms a bounded non-empty interval in R, which we denote by I.

We claim that a number a is in I iff a is an arbitrage-free price for f .
Indeed, supposing that a ∈ I we may find Q ∈Me(S) s.t. EQ[f − a] = 0 and
therefore Kf,a ∩ L∞

+ (Ω,F ,P) = {0}.
Conversely suppose that Kf,a ∩ L∞

+ = {0}. Then exactly as in the proof
of the Fundamental Theorem 2.2.7, we find a probability measure Q so that
EQ[g] = 0 for all g ∈ Kf,a and so that Q is equivalent to P. This, of course,
implies that Q ∈Me(S) and that a = EQ[f ].

Now we deal with the boundary case: suppose that a equals the right
boundary of I, i.e., a = π(f) ∈ I, and consider the contingent claim f −π(f).
By definition we have EQ[f − π(f)] ≤ 0, for all Q ∈ Me(S), and therefore
by Proposition 2.2.9, that f − π(f) ∈ C. We may find g ∈ K such that
g ≥ f − π(f). If the sup in (2.8) is attained, i.e., if there is Q∗ ∈Me(S) such
that EQ∗ [f ] = π(f), then we have 0 = EQ∗ [g] ≥ EQ∗ [f − π(f)] = 0 which in
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view of Q∗ ∼ P implies that f − π(f) ≡ g; in other words f is attainable at
price π(f). This in turn implies that EQ[f ] = π(f) for all Q ∈ Me(S), and
therefore I is reduced to the singleton {π(f)}.

Hence, if π(f) < π(f), π(f) cannot belong to the interval I, which is
therefore open on the right hand side. Passing from f to −f , we obtain the
analogous result for the left hand side of I, which is therefore equal to I =
]π(f), π(f)[. �

The argument in the proof of the preceding theorem can be recast to yield
the following duality theorem. The reader familiar with the duality theory of
linear programming will recognise the primal-dual relation.

Theorem 2.4.2 (Superreplication). Assume that S satisfies (NA). Then,
for f ∈ L∞, we have

π(f) = sup{EQ[f ] | Q ∈Me(S)}
= max{EQ[f ] | Q ∈ Ma(S)}
= min{a | there exists k ∈ K, a + k ≥ f}.

Proof. As shown in the previous proof we have f − π(f) ∈ C and hence

f = π(f) + g, for some g ∈ C
= π(f) + k − h, for some k ∈ K and h ∈ L∞

+

≤ π(f) + k, for some k ∈ K.

This shows that π(f) ≥ inf{a | there exists k ∈ K, a + k ≥ f}.
Let now a < π(f). We will show that there is no element k ∈ K with

a + k ≥ f . This shows that π(f) = inf{a | there exists k ∈ K, a + k ≥ f} and
moreover establishes that the infimum is a minimum. Since a < π(f) there is
Q ∈Me(S) with EQ[f ] > a. But this implies that for all k ∈ K we have that
EQ[a + k] = a < EQ[f ], in contradiction to the relation a + k ≥ f . �

Remark 2.4.3. Theorem 2.4.2 may be rephrased in economic terms: in order
to superreplicate f , i.e., to find a ∈ R and H ∈ H s.t. a + (H · S)T ≥ f , we
need at least an initial investment a equal to π(f).

We now give a conditional version of the duality theorem that allows us
to use initial investments that are not constant and to possibly use the infor-
mation F0 available at time t = 0. This is relevant when the initial σ-algebra
F0 is not trivial.

Theorem 2.4.4. Let us assume that S satisfies (NA). Denote by Me(S,F0)
the set of equivalent martingale measures Q ∈ Me(S) so that Q|F0 = P.
Then, for f ∈ L∞, we have

sup {EQ[f | F0] | Q ∈Me(S,F0)}
= min {h | h is F0-measurable and there exists g ∈ K such that h + g ≥ f} .
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Remark 2.4.5. Before we prove the theorem let us remark that the “sup” and
the “min” are taken in the space L0(Ω,F0,P) of F0-measurable functions.
Both sets are lattice ordered. Indeed, if EQ1 [f | F0] and EQ2 [f | F0] are
given, where Q1,Q2 ∈ Me(S,F0), then there is an element Q3 ∈ Me(S,F0)
so that EQ3 [f | F0] = max{EQ1 [f | F0],EQ2 [f | F0]}. The construction is
rather straightforward. Let A = {EQ1 [f | F0] > EQ2 [f | F0]} ∈ F0 and let
Q3[B] = Q1[A ∩ B] + Q2[Ac ∩ B]. Because Q1|F0 = Q2|F0 = P we get that
Q3 is a probability and that Q3 ∈ Me(S,F0). Also EQ3 [f | F0] = EQ1 [f |
F0] ∨EQ2 [f | F0].

Similarly, the set on the right is stable for the “min” operation. Indeed,
let h1 + g1 ≥ f and h2 + g2 ≥ f . For A = {h1 < h2}, an F0-measurable
set, we define h = h11A + h21Ac and g11A + g21Ac = g. The function h is
F0-measurable and g ∈ K (because A ∈ F0). Clearly h + g ≥ f .

Proof of Theorem 2.4.4. If f ≤ h + g, where h is F0-measurable and g ∈ K,
then for Q ∈Me(S,F0) we have EQ[f | F0] ≤ h + 0 = h. This shows that

a1 := sup {EQ[f | F0] | Q ∈ Me(S,F0)}
≤ inf {h | h F0-measurable, h + g ≥ f, for some g ∈ K}
=: a2.

To prove the converse inequality, we show that there is g ∈ K with a1+g ≥
f . If this were not be true then (a1 + K) ∩ (f + L∞

+ ) = ∅ and we could find,
using the separating hyperplane theorem, a linear functional ϕ and ε > 0, so
that ∀g ∈ K, ∀ l ≥ 0 we have ε + ϕ(a1 + g) < ϕ(f + l). This implies that
ϕ ≥ 0 and ϕ(g) = 0 for all g ∈ K. Of course we can normalise ϕ so that
it comes from a probability measure Q. So we get EQ[a1] + ε′ < EQ[f ] and
Q ∈Ma(S), where ε′ > 0.

By the density ofMe(S) inMa(S) we may perturb Q a little bit to make
it an element of Me(S). We still get EQ[a1] + ε < EQ[f ], but this time for

a measure Q ∈ Me(S). Let now Zt = dQ
dP

∣∣∣ Ft and set Lt = Zt

Z0
. The process

(Lt)∞t=0 defines a measure Q0 ∈Me(S,F0) via dQ0

dP = LT . Furthermore

EQ0 [f | F0] = EP[fLT | F0]

=
EP[fZT | F0]

Z0
= EQ[f | F0]

Therefore EQ[f | F0] ≤ a1 and hence EQ[f ] ≤ EQ[a1], contradicting the
choice of Q. �

Corollary 2.4.6. Under the assumptions of Theorem 2.4.4 we have

{EQ[f | F0] | Q ∈Me(S)} = {EQ[f | F0] | Q ∈Me(S,F0)} .

Hence, for f ∈ L∞
+ (Ω,F ,P), we have supQ∈Me(S) EQ[f ] = ‖a1‖∞ where

a1 = sup {EQ[f | F0] | Q ∈ Me(S,F0)} .
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Proof. As observed in the proof of Theorem 2.3.2 and Proposition 2.3.1, every
Q ∈ Me(S) can be written as dQ

dP = f0
dQ0

dP where Q0|F0 = P|F0 , Q0 ∈
Me(S,F0) and where f0 is F0-measurable, strictly positive and EP[f0] = 1.
But otherwise f0 is arbitrary. Now for Q ∈ Me(S) we have dQ

dP = f0
dQ0

dP and
hence

EQ[f ] = EQ

[
EQ0 [f | F0]

]
≤ EQ[a1] = EP[a1f0].

Thus supQ∈Me(S) EQ[f ] ≤ ‖a1‖∞.
To prove the converse inequality we need some more approximations. First

for given ε > 0, we choose f0, F0-measurable, f0 > 0, EP[f0] = 1 and so
that EP[f0a1] ≥ ‖a1‖∞ − ε. Given f0 we may take Q1 ∈ Me(S,F0) so that
E[f0(a1−EQ1[f | F0])] ≤ ε. This is possible since the family {EQ[f | F0] | Q ∈
Me(S,F0)} is a lattice and since all these functions are in the L∞-ball with
radius ‖f‖∞. Now take Q0 defined by dQ0

dP = f0
dQ1

dP . Clearly Q0 ∈ Me(S)
and we have

EQ0 [f ] = EP

[
f0

dQ1

dP
f

]
= EP

[
f0EQ1 [f | F0]

]
since Q1|F0 = P

≥ EP [f0a1]− ε by the choice of Q1

≥ ‖a1‖∞ − 2ε by the choice of f0. �

2.5 Change of Numéraire

In the previous sections we have developed the basic tools for the pricing and
hedging of derivative securities. Recall that we did our analysis in a discounted
model where we did choose one of the traded assets as numéraire.

How do these things change, when we pass to a new numéraire, i.e., a new
unit in which we denote the values of the stocks? Of course, the arbitrage
free prices should remain unchanged (after denominating things in the new
numéraire), as the notion of arbitrage should not depend on whether we do
the book-keeping in e or in $. On the other hand, we shall see that the risk-
neutral measures Q do depend on the choice of numéraire. We will also show
how, conversely, a change of risk neutral measures corresponds to a change of
numéraire.

Let us analyse the situation in the appropriate degree of generality: the
model of a financial market Ŝ = (Ŝ0

t , Ŝ1
t , . . . , Ŝd

t )T
t=0 is defined as in 2.1 above.

Recall that we assumed that the traded asset Ŝ0 serves as numéraire, i.e., we
have passed from the value Ŝj

t of the j’th asset at time t to its value Sj
t = Ŝj

t

Ŝ0
t

,

expressed in units of Ŝ0
t . This led us in (2.3) to the introduction of the process
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S = (S1, S2, . . . , Sd) =

(
Ŝ1

Ŝ0
, . . . ,

Ŝd

Ŝ0

)
.

Before we prove the theorem, let us first see what assets can be used as nu-
méraire. The crucial requirement on a numéraire is that it is a traded asset. We
could of course use one of the assets 1, . . . , d but we want to be more general
and also want to accept, e.g., baskets as new numéraires. So we might use
the value (Vt)T

t=0 of a portfolio as a numéraire. Of course, we need to assume
Vt > 0 for all t. Indeed, if the numéraire becomes zero or even negative, then
we obviously have a problem in calculating the value of an asset in terms of
V . Further, for normalisation reasons, it is convenient to assume that V0 = 1,
exactly as we did for Ŝ0. So we start with a value process V = 1 + (H0 · S)
satisfying Vt > 0 a.s. for all t, where H0 is a fixed element of H. Observe that
the processes V and S are denoted in terms of our originally chosen numéraire
asset Ŝ0.

As we have seen above (Proposition 2.2.13), the extended market

Sext = (S1, S2, . . . , Sd, 1, V ) (2.9)

is still arbitrage free andMe(S) =Me(Sext). In real money terms this process
is described by the process

Ŝext =
(
S1Ŝ0, . . . , SdŜ0, Ŝ0, V Ŝ0

)
=
(
Ŝ1, . . . , Ŝd, Ŝ0, V Ŝ0

)
.

If we now use the last coordinate as numéraire, we obtain the process

X =
(

S1

V
, . . . ,

Sd

V
,

1
V

, 1
)

. (2.10)

In order to keep the notation more symmetric we will drop the dummy entry
1 and use (d+1)-dimensional predictable processes as strategies. Similarly we
shall also drop in (2.9) the dummy entry 1 for Sext. This allows us to pass
more easily from Sext to X .

The next lemma shows the economically rather obvious fact that when
passing from S to Sext, the space K of claims attainable at price 0 does not
change.

Lemma 2.5.1. Using the above notation we have

K(Sext) = {(H · Sext)T | H (d + 1)-dimensional predictable}
= K(S) = {(H ′ · S)T | H ′ d-dimensional predictable}.

Proof. The process V is given by the stochastic integral (H0 · S) with respect
to S, so we expect that nothing new can be created by using the additional
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V . It suffices to show that, for a one-dimensional predictable process L, the
quantities Lt∆Vt are in K(S). This is easy, since

Lt∆Vt = Lt

(
H0

t , ∆St

)
=
(
LtH

0
t , ∆St

)
∈ K(S)

by definition of K(S). This shows that K(Sext) = K(S). �

Lemma 2.5.2. Fix 0 ≤ t ≤ T , and let f ∈ K(S) = K(Sext) be Ft-measurable.
Then the random variable f

Vt
is of the form f ′

VT
where f ′ ∈ K(S).

Proof. Clearly

f

Vt
− f

VT
=

1
VT

(
f

VT − Vt

Vt

)
=

1
VT

T∑
s=t+1

f

Vt
(Vs − Vs−1) .

We see that f ′′ =
∑T

s=t+1
f
Vt

(Vs − Vs−1) belongs to K(Sext) because f
Vt

is
Ft-measurable and the summation is on s > t. Hence f ′ = f ′′ + f does the
job. �

Proposition 2.5.3. Assume that X is defined as in (2.10). Then

K(X) =
{

f

VT

∣∣∣∣ f ∈ K(S)
}

.

Proof. We have that g ∈ K(X) if and only if there is a (d+1)-dimensional pre-
dictable process H , with g =

∑T
t=1(Ht, ∆Xt) =

∑T
t=1

∑d+1
j=1 Hj

t ∆Xj
t . Clearly,

for j = 1, . . . , d and t = 1, . . . , T ,

∆Xj
t =

(
Sj

t

Vt
− Sj

t−1

Vt−1

)

=
∆Sj

t

Vt
+ Sj

t−1

(
1
Vt
− 1

Vt−1

)
=

∆Sj
t

Vt
− Sj

t−1

Vt−1

∆Vt

Vt

=
1
Vt

(
∆Sj

t −Xj
t−1∆Vt

)
.

So we get that Hj
t ∆Xj

t = 1
Vt

(
Hj

t ∆Sj
t −
(
Hj

t Xj
t−1

)
∆Vt

)
, which is of the

form f
Vt

for some f ∈ K(Sext) = K(S). For j = d + 1 and t = 1, . . . , T the
same argument applies by replacing Sj

t and Sj
t−1 by 1.

By the previous lemma we have f
Vt

= f ′

VT
for some f ′ ∈ K(S). This shows

that K(X) ⊂ 1
VT

K(S).
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The converse inclusion follows by symmetry. In the financial market mod-
elled by X we can choose Wt = 1

Vt
as numéraire. The passage from X to Sext

is then done by using W as a new numéraire and the inclusion we just proved
then yields

K(S) ⊂ 1
WT

K(X) = VT K(X).

This shows that K(S) = VT K(X) as required. �

Theorem 2.5.4 (change of numéraire). Let S satisfy the no-arbitrage
condition, let V = 1 + H0 · S be such that Vt > 0 for all t, and let
X =

(
S1

V , . . . , Sd

V , 1
V

)
. Then X satisfies the no-arbitrage condition too and

Q belongs to Me(S) if and only if the measure Q′ defined by dQ′ = VT dQ
belongs to Me(X).

Proof. Since K(X) = 1
VT

K(S) we have that X satisfies the no-arbitrage prop-
erty by directly verifying Definition 2.2.3. By Proposition 2.2.10 an equivalent
probability measure Q is in Me(S) if and only if, for all f ∈ K(S), we have
EQ[f ] = 0. But this is the same as

EQ

[
VT

f

VT

]
= 0, for all f ∈ K(S),

which is equivalent to EQ[VT g] = 0 for all g ∈ K(X). This happens if and
only if the probability measure Q′, defined as dQ′ = VT dQ, is in Me(X).
(Note that by the martingale property we have EQ[VT ] = V0 = 1.) �

Remark 2.5.5. The process (Vt)T
t=0 is a Q-martingale for every Q ∈ Me(S).

Now if dQ′ = VT dQ, then we have the following so-called Bayes’ rule for
f ∈ L∞(Ω,F ,P):

EQ′ [f | Ft] =
EQ [fVT | Ft]
EQ [VT | Ft]

=
EQ [fVT | Ft]

Vt

= EQ

[
f

VT

Vt

∣∣∣∣ Ft

]
.

The previous equality can also be written as

VtEQ′ [f | Ft] = EQ[fVT | Ft].

From this it follows that (Zt)T
t=0 is a Q′-martingale if and only if (ZtVt)T

t=0 is a
Q-martingale. This statement can also be seen as the martingale formulation
of Theorem 2.5.4 above.



2.6 Kramkov’s Optional Decomposition Theorem 31

2.6 Kramkov’s Optional Decomposition Theorem

We now present a dynamic version of Theorem 2.4.2 (superreplication), due to
D. Kramkov, who actually proved this theorem in a much more general version
(see [K 96a], [FK 98], and Chap. 15 below). An earlier version of this theorem
is due to N. El Karoui and M.-C. Quenez [EQ95]. We refer to Chap. 15 for
more detailed references.

Theorem 2.6.1 (Optional Decomposition). Assume that S satisfies (NA)
and let V = (Vt)T

t=0 be an adapted process.
The following assertions are equivalent:

(i) V is a super-martingale for each Q ∈Me(S).
(i’) V is a super-martingale for each Q ∈Ma(S)
(ii) V may be decomposed into V = V0 + H · S − C, where H ∈ H and

C = (Ct)T
t=0 is an increasing adapted process starting at C0 = 0.

Remark 2.6.2. To clarify the terminology “optional decomposition” let us com-
pare this theorem with Doob’s celebrated decomposition theorem for non-
negative super-martingales (Vt)T

t=0 (see, e.g., [P 90]): this theorem asserts that,
for a non-negative (adapted, càdlàg) process V defined on a general filtered
probability space we have the equivalence of the following two statements:

(i) V is a super-martingale (with respect to the fixed measure P),
(ii) V may be decomposed in a unique way into V = V0 +M −C, where M is

a local martingale (with respect to P) and C is an increasing predictable
process s.t. M0 = C0 = 0.

We immediately recognise the similarity in spirit. However, there are sig-
nificant differences. As to condition (i) the difference is that, in the setting of
the optional decomposition theorem, the super-martingale property pertains
to all martingale measures Q for the process S. As to condition (ii), the role of
the local martingale M in Doob’s theorem is taken by the stochastic integral
H · S.

A decisive difference between the two theorems is that in Theorem 2.6.1,
the decomposition is no longer unique and one cannot choose, in general, C
to be predictable. The process C can only be chosen to be optional, which in
the present setting is the same as adapted.

The economic interpretation of the optional decomposition theorem reads
as follows: a process of the form V = V0+H ·S−C describes the wealth process
of an economic agent. Starting at an initial wealth V0, subsequently investing
in the financial market according to the trading strategy H , and consuming
as described by the process C where the random variable Ct models the ac-
cumulated consumption during the time period {1, . . . , t}, the agent clearly
obtains the wealth Vt at time t. The message of the optional decomposition
theorem is that these wealth processes are characterised by condition (i) (or,
equivalently, (i’)).
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Proof of Theorem 2.6.1. First assume that T = 1, i.e., we have a one-period
model S = (S0, S1). In this case the present theorem is just a reformulation
of Theorem 2.4.2: if V is a super-martingale under each Q ∈Me(S), then

EQ[V1 − V0] ≤ 0, for all Q ∈Me(S).

Hence there is a predictable trading strategy H (i.e., an F0-measurable Rd-
valued function - in the present case T = 1) such that (H · S)1 ≥ V1 − V0.
Letting C0 = 0 and writing ∆C1 = C1 = −V1 + (V0 + (H · S)1) we get the
desired decomposition. This completes the construction for the case T = 1.

For general T > 1 we may apply, for each fixed t ∈ {1, . . . , T}, the same
argument as above to the one-period financial market (St−1, St) based on
(Ω,F ,P) and adapted to the filtration (Ft−1,Ft). We thus obtain an Ft−1-
measurable, Rd-valued function Ht and a non-negativeFt-measurable function
∆Ct such that

∆Vt = (Ht, ∆St)−∆Ct,

where again ( . , . ) denotes the inner product in Rd. This will finish the con-
struction of the optional decomposition: define the predictable process H as
(Ht)T

t=1 and the adapted increasing process C by Ct =
∑t

u=1 ∆Cu. This
proves the implication (i) ⇒ (ii).

The implications (ii) ⇒ (i’) ⇒ (i) are trivial. �



3

Utility Maximisation
on Finite Probability Spaces

In addition to the model S of a financial market, we now consider a function
U(x), modelling the utility of an agent’s wealth x at the terminal time T .

We make the classical assumptions that U : R→ R ∪ {−∞} is increasing
on R, continuous on {U > −∞}, differentiable and strictly concave on the
interior of {U > −∞}, and that the marginal utility tends to zero when wealth
tends to infinity, i.e.,

U ′(∞) := lim
x→∞U ′(x) = 0.

These assumptions make perfect sense economically. Regarding the be-
haviour of the (marginal) utility at the other end of the wealth scale we shall
distinguish two cases.

Case 1 (negative wealth not allowed): in this setting we assume that U
satisfies the conditions U(x) = −∞, for x < 0, while U(x) > −∞, for x > 0,
and the so-called Inada condition

U ′(0) := lim
x↘0

U ′(x) =∞.

Case 2 (negative wealth allowed): in this case we assume that U(x) >
−∞, for all x ∈ R, and that

U ′(−∞) := lim
x↘−∞

U ′(x) =∞.

Typical examples for case 1 are

U(x) = ln(x), x > 0,

or
U(x) =

xα

α
, α ∈ (−∞, 1) \ {0}, x > 0,

whereas a typical example for case 2 is

U(x) = −e−γx, γ > 0, x ∈ R.
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We note that it is natural from an economic point of view to require that
the marginal utility tends to zero, when wealth x tends to infinity, and to
infinity when the wealth x tends to the infimum of its allowed values. The
infimum of the allowed values, i.e., of the domain {U > −∞} of U , may
be finite or equal to −∞. In the former case we have assumed w.l.g. the
normalisation that this infimum equals zero.

We can now give a precise meaning to the problem of maximising expected
utility of terminal wealth. Define the value function

u(x) := sup
H∈H

EP [U(x + (H · S)T )] , x ∈ dom(U), (3.1)

where H runs through the family H of trading strategies.
The optimisation of expected utility of wealth at a fixed terminal date

T is a typical example of a larger family of portfolio optimisation problems,
where one can also include utility of intermediate consumption and many
other features. We only consider the prototypical optimisation problem (3.1)
above. The duality techniques developed for this case can easily be adapted
to variants of it.

The value function u(x) is called the indirect utility function. Economically
speaking it indicates the expected utility of an economic agent at time T for
given initial endowment x, provided she invests optimally in the financial
market S.

We shall analyze the problem of finding, for given initial wealth x, the
optimiser Ĥ(x) ∈ H in (3.1) at two levels of difficulty: first we consider the
case of an arbitrage-free complete financial market S. In a second step, we
generalise to arbitrage-free markets S, which are not necessarily complete.

3.1 The Complete Case

We assume that the setMe(S) of equivalent probability measures under which
S is a martingale, is reduced to a singleton {Q}. In this setting consider the
Arrow-Debreu assets 1{ωn}, which pay 1 unit of the numéraire at time T ,
when ωn turns out to be the true state of the world and pay out 0 otherwise.
In view of our normalisation of the numéraire S0

t ≡ 1, we get the following
relation for the price of the Arrow-Debreu assets at time t = 0:

EQ

[
1{ωn}

]
= Q[ωn] =: qn,

and by Corollary 2.2.12 each such asset 1{ωn} may be represented as 1{ωn} =
Q[ωn] + (Hn · S)T , for some predictable trading strategy Hn ∈ H.

Hence, for fixed initial endowment x ∈ dom(U), the utility maximisation
problem (3.1) above may simply be written as

EP [U(XT )] =
N∑

n=1

pnU(ξn)→ max! (3.2)
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under the constraint

EQ[XT ] =
N∑

n=1

qnξn ≤ x. (3.3)

To verify that (3.2) and (3.3) are indeed equivalent to the original problem
(3.1) above (in the present finite, complete case), note that by Theorem 2.4.2
a random variable (XT (ωn))N

n=1 = (ξn)N
n=1 can be dominated by a random

variable of the form x+(H ·S)T = x+
∑T

t=1 Ht∆St iff EQ[XT ] =
∑N

n=1 qnξn ≤
x. This basic relation has a particularly evident interpretation in the present
setting, as qn is simply the price of the asset 1{ωn}.

We have written ξn for XT (ωn) to stress that (3.2) is simply a concave
maximisation problem in RN with one linear constraint which is a rather
elementary problem. To solve it, we form the Lagrangian

L(ξ1, . . . , ξN , y) =
N∑

n=1

pnU(ξn)− y

(
N∑

n=1

qnξn − x

)
(3.4)

=
N∑

n=1

pn

(
U(ξn)− y qn

pn
ξn

)
+ yx. (3.5)

We have used the letter y ≥ 0 instead of the usual λ ≥ 0 for the Lagrange
multiplier; the reason is the dual relation between x and y which will become
apparent in a moment.

Write

Φ(ξ1, . . . , ξN ) = inf
y>0

L(ξ1, . . . , ξN , y), ξn ∈ dom(U), (3.6)

and
Ψ(y) = sup

ξ1,...,ξN

L(ξ1, . . . , ξN , y), y ≥ 0. (3.7)

Note that we have

sup
ξ1,...,ξN

Φ(ξ1, . . . , ξN ) = sup
ξ1,...,ξN∑N

n=1 qnξn≤x

N∑
n=1

pnU(ξn) = u(x). (3.8)

Indeed, if (ξ1, . . . , ξN ) is in the admissible region
{∑N

n=1 qnξn ≤ x
}

, then

Φ(ξ1, . . . , ξN ) = L(ξ1, . . . , ξN , 0) =
∑N

n=1 pnU(ξn). On the other hand, if
(ξ1, . . . , ξN ) satisfies

∑N
n=1 qnξn > x, then by letting y → ∞ in (3.6) we

note that Φ(ξ1, . . . , ξN ) = −∞.
Regarding the function Ψ(y) we make the following pleasant observation,

which is the basic reason for the efficiency of the duality approach: using the
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form (3.5) of the Lagrangian and fixing y > 0, the optimisation problem over
RN appearing in (3.7) splits into N independent optimisation problems over R

U(ξn)− y qn

pn
ξn → max!, ξn ∈ R.

In fact, these one-dimensional optimisation problems are of a very conve-
nient form: recall (see, e.g., [R 70], [ET76] or [KLSX91]) that, for a concave
function U : R→ R∪{−∞}, the conjugate function V of U (which is just the
Legendre-transform of x �→ −U(−x)) is defined by

V (η) = sup
ξ∈R

[U(ξ)− ηξ] , η > 0. (3.9)

Definition 3.1.1. We say that the function V : R → R, conjugate to the
function U , satisfies the usual regularity assumptions, if V is finitely valued,
differentiable, strictly convex on ]0,∞[, and satisfies

V ′(0) := lim
y↘0

V ′(y) = −∞. (3.10)

Regarding the behaviour of V at infinity, we have to distinguish between case 1
and case 2 above:

case 1: lim
y→∞V (y) = lim

x→0
U(x) and lim

y→∞V ′(y) = 0 (3.11)

case 2: lim
y→∞V (y) =∞ and lim

y→∞V ′(y) =∞ (3.12)

We have the following well-known fact (see [R 70] or [ET 76]):

Proposition 3.1.2. If U satisfies the assumptions made at the beginning of
this section, then its conjugate function V satisfies the inversion formula

U(ξ) = inf
η

[V (η) + ηξ] , ξ ∈ dom(U) (3.13)

and it satisfies the regularity assumptions in Definition 3.1.1. In addition,
−V ′(y) is the inverse function of U ′(x).

Conversely, if V satisfies the regularity assumptions of Definition 3.1.1,
then U defined by (3.13) satisfies the regularity assumptions made at the be-
ginning of this section.

Following [KLS87] we write −V ′ = I (for “inverse” function). We then
have I = (U ′)−1. Naturally, U ′ has a nice economic interpretation as the
marginal utility of an economic agent modelled by the utility function U .

Here are some concrete examples of pairs of conjugate functions:

U(x) = ln(x), x > 0, V (y) = − ln(y)− 1,

U(x) = − e−γx

γ , x ∈ R, V (y) = y
γ (ln(y)− 1), γ > 0

U(x) = xα

α , x > 0, V (y) = 1−α
α y

α
α−1 , α ∈ (−∞, 1) \ {0}.
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We now apply these general facts about the Legendre transform to calcu-
late Ψ(y). Using definition (3.9) of the conjugate function V and (3.5), formula
(3.7) becomes:

Ψ(y) =
N∑

n=1

pnV
(
y qn

pn

)
+ yx

= EP

[
V

(
y
dQ
dP

)]
+ yx.

Denoting by v(y) the dual value function

v(y) := EP

[
V

(
y
dQ
dP

)]
=

N∑
n=1

pnV
(
y qn

pn

)
, y > 0, (3.14)

the function v has the same qualitative properties as the function V listed in
Definition 3.1.1, since it is a convex combination of V calculated on linearly
scaled arguments.

Hence by (3.10), (3.11), and (3.12) we find, for fixed x ∈ dom(U), a unique
ŷ = ŷ(x) > 0 such that v′(ŷ(x)) = −x, which is therefore the unique minimiser
to the dual problem

Ψ(y) = EP

[
V

(
y
dQ
dP

)]
+ yx = min!

Fixing the critical value ŷ(x), the concave function

(ξ1, . . . , ξN ) �→ L(ξ1, . . . , ξN , ŷ(x))

defined in (3.5) assumes its unique maximum at the point (ξ̂1, . . . , ξ̂N ) satis-
fying

U ′(ξ̂n) = ŷ(x) qn

pn
or, equivalently, ξ̂n = I

(
ŷ(x) qn

pn

)
,

so that we have

inf
y>0

Ψ(y) = inf
y>0

(v(y) + xy) (3.15)

= v(ŷ(x)) + xŷ(x)

= L(ξ̂1, . . . , ξ̂N , ŷ(x)).

Note that the ξ̂n are in the interior of dom(U), for 1 ≤ n ≤ N , so
that L is continuously differentiable at (ξ̂1, . . . , ξ̂N , ŷ(x)), which implies that
the gradient of L vanishes at (ξ̂1, . . . , ξ̂N , ŷ(x)) and, in particular, that
∂
∂y L(ξ1, . . . , ξN , y)|(ξ̂1,...,ξ̂N ,ŷ(x)) = 0. Hence we infer from (3.4) and ŷ(x) > 0,
that the constraint (3.3) is binding, i.e.,
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N∑
n=1

qnξ̂n = x, (3.16)

and
N∑

n=1

pnU(ξ̂n) = L(ξ̂1, . . . , ξ̂N , ŷ(x)). (3.17)

In particular, we obtain that

u(x) =
N∑

n=1

pnU(ξ̂n). (3.18)

Indeed, the inequality u(x) ≥ ∑N
n=1 pnU(ξ̂n) follows from (3.16) and (3.8),

while the reverse inequality follows from (3.17) and the fact that, for all
ξ1, . . . , ξN verifying the constraint (3.3), we have:

N∑
n=1

pnU(ξn) ≤ L(ξ1, . . . , ξN , ŷ(x)) ≤ L(ξ̂1, . . . , ξ̂N , ŷ(x)).

We shall write X̂T (x) ∈ C(x) for the optimiser X̂T (x)(ωn) = ξ̂n, n = 1, . . . , N .
Combining (3.15), (3.17) and (3.18) we note that the value functions u

and v are conjugate:

inf
y>0

(v(y) + xy) = v(ŷ(x)) + xŷ(x) = u(x), x ∈ dom(U).

Thus the relation v′(ŷ(x)) = −x, which was used to define ŷ(x), translates
into

u′(x) = ŷ(x), for x ∈ dom(U).

From Proposition 3.1.2 and the remarks after equation (3.14), we deduce
that u inherits the properties of U listed at the beginning of this chapter.

Let us summarise what we have proved so far:

Theorem 3.1.3 (finite Ω, complete market). Let the financial market S =
(St)T

t=0 be defined over the finite filtered probability space (Ω,F , (F)T
t=0,P) and

suppose Me(S) = {Q}. Let the utility function U satisfy the above assump-
tions.

Denote by u(x) and v(y) the value functions

u(x) = supXT ∈C(x) E[U(XT )], x ∈ dom(U),

v(y) = E
[
V
(
y dQ

dP

)]
, y > 0.

(3.19)

We then have:

(i) The value functions u(x) and v(y) are conjugate and u inherits the qual-
itative properties of U listed in the beginning of this chapter.
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(ii) The optimiser X̂T (x) in (3.19) exists, is unique and satisfies

X̂T (x) = I

(
y
dQ
dP

)
, or, equivalently, y

dQ
dP

= U ′(X̂T (x)), (3.20)

where x ∈ dom(U) and y > 0 are related via u′(x) = y or, equivalently,
x = −v′(y).

(iii) The following formulae for u′ and v′ hold true:

u′(x)=EP[U ′(X̂T (x))], v′(y)=EQ

[
V ′
(

y
dQ
dP

)]
(3.21)

xu′(x)=EP

[
X̂T (x)U ′(X̂T (x))

]
, yv′(y)=EP

[
y
dQ
dP

V ′
(

y
dQ
dP

)]
. (3.22)

Proof. Items (i) and (ii) have been shown in the preceding discussion, hence
we only have to show (iii). The formula for v′(y) in (3.21) and immediately
follows by differentiating the relation

v(y) = EP

[
V

(
y
dQ
dP

)]
=

N∑
n=1

pnV
(
y qn

pn

)
.

Of course, the formula for v′ in (3.22) is an obvious reformulation of the
one in (3.21). But we present both of them to stress their symmetry with the
formulae for u′(x).

The formula for u′ in (3.21) translates via the relations exhibited in (ii)
into the identity

y = EP

[
y
dQ
dP

]
,

while the formula for u′(x) in (3.22) translates into

v′(y)y = EP

[
V ′
(

y
dQ
dP

)
y
dQ
dP

]
,

which we just have verified to hold true. �

Remark 3.1.4. Let us recall the economic interpretation of (3.20)

U ′
(
X̂T (x)(ωn)

)
= y

qn

pn
, n = 1, . . . , N.

This equality means that in every possible state of the world ωn, the marginal
utility U ′(X̂T (x)(ωn)) of the wealth of an optimally investing agent at time
T is proportional to the ratio of the price qn of the corresponding Arrow se-
curity 1{ωn} and the probability of its success pn = P[ωn]. This basic relation
was analyzed in the fundamental work of K. Arrow and allows for a convinc-
ing economic interpretation: consider for a moment the situation where this
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proportionality relation fails to hold. Then one immediately deduces from a
marginal variation argument that the investment of the agent cannot be opti-
mal. Indeed, by investing a little more in the more favourable Arrow asset and
a little less in the less favourable one, the economic agent can strictly increase
her expected utility under the same budget constraint. Hence for the optimal
investment the proportionality must hold true. The above result also identifies
the proportionality factor as y = u′(x), where x is the initial endowment of
the investor. This marginal utility of the indirect utility function u(x) also
allows for a straightforward economic interpretation.

Theorem 3.1.3 indicates an easy way to solve the utility maximisation
problem at hand: calculate v(y) using (3.19), which reduces to a simple one-
dimensional computation. Once we know v(y), the theorem provides easy
formulae to calculate all the other quantities of interest, e.g., X̂T (x), u(x),
u′(x) etc.

Another message of the previous theorem is that the value function x �→
u(x) may be viewed as a utility function as well, sharing all the qualitative
features of the original utility function U . This makes sense economically, as
the “indirect utility” function u(x) denotes the expected utility of an agent
with initial endowment x, when optimally investing in the financial market S.

Let us now give an economic interpretation of the formulae for u′(x) in item
(iii) along these lines: suppose the initial endowment x is varied to x + h, for
some small real number h. The economic agent may use the additional endow-
ment h to finance, in addition to the optimal pay-off function X̂T (x), h units
of the numéraire asset, thus ending up with the pay-off function X̂T (x)+h at
time T . Comparing this investment strategy to the optimal one corresponding
to the initial endowment x + h, which is X̂T (x + h), we obtain

lim
h→0

u(x + h)− u(x)
h

= lim
h→0

E[U(X̂T (x + h))− U(X̂T (x))]
h

(3.23)

≥ lim
h→0

E[U(X̂T (x) + h)− U(X̂T (x))]
h

(3.24)

= E[U ′(X̂T (x))].

Using the fact that u is differentiable and that h may be positive as well
as negative, we must have equality in (3.24) and have therefore found another
proof of formula (3.21) for u′(x); the economic interpretation of this proof
is that the economic agent, who is optimally investing, is indifferent of first
order towards a (small) additional investment into the numéraire asset.

Playing the same game as above, but using the additional endowment
h ∈ R to finance an additional investment into the optimal portfolio X̂T (x)
(assuming, for simplicity, x �= 0), we arrive at the pay-off function x+h

x X̂T (x).
Comparing this investment with X̂T (x + h), an analogous calculation as in
(3.23) leads to the formula for u′(x) displayed in (3.22). The interpretation
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now is, that the optimally investing economic agent is indifferent of first order
towards a marginal variation of the investment into the portfolio X̂T (x).

It now becomes clear that formulae (3.21) and (3.22) for u′(x) are just
special cases of a more general principle: for each f ∈ L∞(Ω,F ,P) we have

EQ[f ]u′(x) = lim
h→0

EP[U(X̂T (x) + hf)− U(X̂T (x))]
h

. (3.25)

The proof of this formula again is along the lines of (3.23) and the in-
terpretation is the following: by investing an additional endowment hEQ[f ]
to finance the contingent claim hf , the increase in expected utility is of first
order equal to hEQ[f ]u′(x); hence again the economic agent is of first order
indifferent towards an additional investment into the contingent claim f .

3.2 The Incomplete Case

We now drop the assumption that the set Me(S) of equivalent martingale
measures is reduced to a singleton (but we still remain in the framework of a
finite probability space Ω) and replace it by Me(S) �= ∅.

It follows from Theorem 2.4.2 that a random variable XT (ωn) = ξn may
be dominated by a random variable of the form x + (H · S)T iff EQ[XT ] =∑N

n=1 qnξn ≤ x, for each Q = (q1 . . . , qN ) ∈ Ma(S) (or equivalently, for each
Q ∈Me(S)).

In order to reduce these infinitely many constraints, where Q runs through
Ma(S), to a finite number, make the easy observation that Ma(S) is a
bounded, closed, convex polytope in RN . Indeed, Ma(S) is a subset of the
probability measures on Ω defined by imposing finitely many linear con-
straints. ThereforeMa(S) equals the convex hull of its finitely many extreme
points {Q1, . . . ,QM}. For 1 ≤ m ≤M , we identify Qm with the probabilities
(qm

1 , . . . , qm
N ).

Fixing the initial endowment x ∈ dom(U), we therefore may write the util-
ity maximisation problem (3.1) similarly as in (3.2) as a concave optimisation
problem over RN with finitely many linear constraints:

EP [U(XT )] =
N∑

n=1

pnU(ξn)→ max!

EQm [XT ] =
N∑

n=1

qm
n ξn ≤ x, for m = 1, . . . , M.

Writing again

C(x) =
{
XT ∈ L0(Ω,F ,P) | EQ[XT ] ≤ x, for all Q ∈Ma(S)

}
we define the value function, for x ∈ dom(U),
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u(x) = sup
H∈H

E [U (x + (H · S)T )] = sup
XT ∈C(x)

E[U(XT )].

The Lagrangian now is given by

L(ξ1, . . . , ξN , η1, . . . , ηM )

=
N∑

n=1

pnU(ξn)−
M∑

m=1

ηm

(
N∑

n=1

qm
n ξn − x

)

=
N∑

n=1

pn

(
U(ξn)−

M∑
m=1

ηmqm
n

pn
ξn

)
+

M∑
m=1

ηmx,

where (ξ1, . . . , ξN ) ∈ dom(U)N , (η1, . . . , ηM ) ∈ RM
+ .

Writing y = η1 + · · ·+ ηM , µm = ηm

y , µ = (µ1, . . . , µM ) and

Qµ =
M∑

m=1

µmQm,

note that, when (η1, . . . , ηM ) runs trough RM
+ , the pairs (y,Qµ) run through

R+ ×Ma(S). Hence we may write the Lagrangian as

L(ξ1, . . . , ξN , y,Q) = EP[U(XT )]− y (EQ[XT − x]) (3.26)

=
N∑

n=1

pn

(
U(ξn)− yqn

pn
ξn

)
+ yx,

where ξn ∈ dom(U), y > 0, Q = (q1, . . . , qN ) ∈ Ma(S).
This expression is entirely analogous to (3.5), the only difference now be-

ing that Q runs through the set Ma(S) instead of being a fixed probability
measure. Defining again

Φ(ξ1, . . . , ξn) = inf
y>0,Q∈Ma(S)

L(ξ1, . . . , ξN , y,Q),

and
Ψ(y,Q) = sup

ξ1,...,ξN

L(ξ1, . . . , ξN , y,Q),

we obtain, just as in the complete case,

sup
ξ1,...,ξN

Φ(ξ1, . . . , ξN ) = u(x), x ∈ dom(U),

and

Ψ(y,Q) =
N∑

n=1

pnV

(
yqn

pn

)
+ yx, y > 0, Q ∈Ma(S),
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where (q1, . . . , qN ) denotes the probability vector of Q ∈ Ma(S). The min-
imisation of Ψ will be done in two steps: first we fix y > 0 and minimise over
Ma(S), i.e.,

Ψ(y) := inf
Q∈Ma(S)

Ψ(y,Q), y > 0.

For fixed y > 0, the continuous function Q→ Ψ(y,Q) attains its minimum
on the compact set Ma(S) and the minimiser Q̂(y) is unique by the strict
convexity of V . Writing Q̂(y) = (q̂1(y), . . . , q̂N (y)) for the minimiser, it follows
from V ′(0) = −∞ that q̂n(y) > 0, for each n = 1, . . . , N . Indeed, suppose that
q̂n(y) = 0 for some 1 ≤ n ≤ N and fix any equivalent martingale measure
Q ∈Me(S). Letting Qε = εQ + (1− ε)Q̂ we have that Qε ∈ Me(S), for 0 <

ε < 1, and Ψ(y,Qε) < Ψ(y, Q̂) for ε > 0 sufficiently small - a contradiction.
In other words, Q̂(y) is an equivalent martingale measure for S.

Defining the dual value function v(y) by

v(y) = inf
Q∈Ma(S)

N∑
n=1

pnV

(
y

qn

pn

)

=
N∑

n=1

pnV

(
y
q̂n(y)
pn

)
we find ourselves in an analogous situation as in the complete case above:
defining again ŷ(x) by v′(ŷ(x)) = −x and

ξ̂n = I

(
ŷ(x)

q̂n(y)
pn

)
,

similar arguments as above apply to show that (ξ̂1, . . . , ξ̂N , ŷ(x), Q̂(y)) is the
unique saddle-point of the Lagrangian (3.26) and that the value functions u
and v are conjugate.

Let us summarise what we have found in the incomplete case:

Theorem 3.2.1 (finite Ω, incomplete market). Let the financial market
S = (St)T

t=0 be defined over the finite filtered probability space (Ω,F , (F)T
t=0,P)

and let Me(S) �= ∅. Let the utility function U satisfy the above assumptions.
Denote by u(x) and v(y) the value functions

u(x) = supXT ∈C(x) E[U(XT )], x ∈ dom(U), (3.27)

v(y) = infQ∈Ma(S) E
[
V
(
y dQ

dP

)]
, y > 0. (3.28)

We then have:

(i) The value functions u(x) and v(y) are conjugate and u shares the quali-
tative properties of U listed in the above assumptions.
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(ii) The optimisers X̂T (x) and Q̂(y) in (3.27) and (3.28) exist, are unique,
Q̂(y) ∈Me(S) and satisfy

X̂T (x) = I

(
y
dQ̂(y)

dP

)
, y

dQ̂(y)
dP

= U ′(X̂T (x)), (3.29)

where x ∈ dom(U) and y > 0 are related via u′(x) = y or, equivalently,
x = −v′(y).

(iii) The following formulae for u′ and v′ hold true:

u′(x) = EP[U ′(X̂T (x))], v′(y) = EQ̂

[
V ′
(
y dQ̂(y)

dP

)]
(3.30)

xu′(x)=EP[X̂T (x)U ′(X̂T (x))], yv′(y)=EP

[
y dQ̂(y)

dP V ′
(
y dQ̂(y)

dP

)]
.(3.31)

Remark 3.2.2. Let us again interpret the formulae (3.30), (3.31) for u′(x) sim-
ilarly as in Remark 3.1.4 above. In fact, the interpretations of these formulae
as well as their derivation remain exactly the same in the incomplete case .

But a new and interesting phenomenon arises when we pass to the variation
of the optimal pay-off function X̂T (x) by a small unit of an arbitrary pay-off
function f ∈ L∞(Ω,F ,P). Similarly as in (3.25) we have the formula

EQ̂(y)[f ]u′(x) = lim
h→0

EP[U(X̂T (x) + hf)− U(X̂T (x))]
h

, (3.32)

the only difference being that Q has been replaced by Q̂(y) (recall that x and
y are related via u′(x) = y).

The remarkable feature of this formula is that it does not only pertain to
variations of the form f = x + (H · S)T , i.e, contingent claims attainable at
price x, but to arbitrary contingent claims f , for which — in general — we
cannot derive the price from no-arbitrage considerations.

The economic interpretation of formula (3.32) is the following: the pricing
rule f �→ EQ̂(y)[f ] yields precisely those prices at which an economic agent
with initial endowment x, utility function U and investing optimally, is indif-
ferent of first order towards adding a (small) unit of the contingent claim f

to her portfolio X̂T (x).
In fact, one may turn this around: this was done by M. Davis [D 97] (com-

pare also the work of Sir J.R. Hicks [H 86] and L. Foldes [F 90]): one may define
Q̂(y) by (3.32), verify that this is indeed an equivalent martingale measure
for S and interpret this pricing rule as “pricing by marginal utility”, which is,
of course, a classical and basic paradigm in economics.

Let us give a proof for (3.32) (under the hypotheses of Theorem 3.2.1).
One possible strategy for the proof, which also has the advantage of providing
a nice economic interpretation, is the idea of introducing “fictitious securities”
as developed in [KLSX91]: fix x ∈ dom(U) and y = u′(x) and let (f1, . . . , fk)
be finitely many elements of L∞(Ω,F ,P) such that the space K = {(H ·S)T |
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H ∈ H}, the constant function 1, and (f1, . . . , fk) linearly span L∞(Ω,F ,P).
Define the k processes

Sd+j
t = EQ̂(y)[f

j |Ft], j = 1, . . . , k, t = 0, . . . , T. (3.33)

Now extend the Rd+1-valued process S = (S0, S1, . . . , Sd) to the Rd+k+1-
valued process S = (S0, S1, . . . , Sd, Sd+1, . . . , Sd+k) by adding these new co-
ordinates. By (3.33) we still have that S is a martingale under Q̂(y), which, by
our choice of (f1, . . . , fk) and Corollary 2.2.8, is now the unique probability
under which S is a martingale, by our choice of (f1, . . . , fk) and Corollary
2.2.8.

Hence we find ourselves in the situation of Theorem 3.1.3. By comparing
(3.20) and (3.29) we observe that the optimal pay-off function X̂T (x) has not
changed. Economically speaking this means that in the “completed” market
S the optimal investment may still be achieved by trading only in the first
d + 1 assets and without touching the “fictitious” securities Sd+1, . . . , Sd+k.

In particular, we now may apply formula (3.25) to Q = Q̂(y) to obtain
(3.32).

Finally we remark that the pricing rule induced by Q̂(y) is precisely such
that the interpretation of the optimal investment X̂T (x) defined in (3.29)
(given in Remark 3.1.4 in terms of marginal utility and the ratio of Arrow
prices q̂n(y) and probabilities pn) carries over to the present incomplete set-
ting. The above completion of the market by introducing “fictitious securities”
allows for an economic interpretation of this fact.

3.3 The Binomial and the Trinomial Model

Example 3.3.1 (The binomial model (one-period)). To illustrate the
theory we apply the results to the (very) easy case of a one-period binomial
model, as encountered in Chap. 1. The probability measure P assigns P[g] =
P[b] = 1

2 to the two states g and b of Ω = {g, b}. In order to make the constants
obtained below more easily comparable to the usual notation in the literature
(e.g. [LL 96]), we refrain for a moment from our usual condition that we are
working with a model in discounted terms. Let

Ŝ0
0 = 1, Ŝ0

1 = 1 + r,

and Ŝ1
0 = 1, Ŝ1

1 =
{

1 + u, for ω = g,
1 + d, for ω = b,

where r > −1 denotes the riskless rate of interest and u > r stands for “up”
and −1 < d < r stands for “down”. In discounted terms (see Sect. 2.1 above)
the model then becomes

S0
0 = 1, S0

1 = 1

and S1
0 = 1, S1

1 =
{

1 + ũ, for ω = g,

1 + d̃, for ω = b,

where 1 + ũ = 1+u
1+r > 1 and 1 + d̃ = 1+d

1+r < 1.
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We assume w.l.o.g. that ũ ≥ −d̃; we do so — mainly for notational conve-
nience — in order to ensure that EP[S1

1 ] ≥ S1
0 , so that the optimal portfolios

calculated below always have a long position in the stock S1. If ũ < −d̃ we
obtain analogous results, but the position in the stock will be short.

Letting q = −d̃

ũ−d̃
= r−d

u−d and defining Q[g] = q and Q[b] = 1 − q = ũ

ũ−d̃
=

u−r
u−d we obtain the unique martingale measure Q for the process S.

Consider the utility function U(x) = xα

α for α ∈] − ∞, 1[\{0} with con-

jugate function V (y) = − yβ

β , where α − 1 = (β − 1)−1, i.e., β = α
α−1 . We

note that the case of logarithmic and exponential utility (which correspond
— after proper renormalisation — to α = 0 and to α = −∞) are similar (see
3.3.2 and 3.3.3 below).

Fixing the initial endowment x > 0 we want to solve the utility maximi-
sation problem (3.1) by applying the duality theory developed above. Well,
this is shooting with canons on pigeons, but we find it instructive to do some
explicit calculations exemplifying the abstract formulae.

The dual value function

v(y) = E
[
V

(
y
dQ
dP

)]
, y > 0,

equals

v(y) =
1
2

V (y2q) +
1
2

V (y2(1− q))

= cV V (y),

where
cV =

1
2

(
(2q)β + (2(1− q))β

)
.

For β < 0 (which corresponds to α ∈]0, 1[) we have, for q �= 1
2 , that cV > 1

by Jensen and the strict convexity of y �→ yβ . Similarly, for β ∈]0, 1[ (which
corresponds to α < 0) we have cV < 1 (or cV = 1 in the case q = 1

2 ). In any
case v(y) ≥ V (y), as this must hold.

To calculate the primal value function u(x) we use the well-known and
easily verified fact that, given a constant c > 0 and two conjugate functions
U(x) and V (y), the function c U

(
x
c

)
is conjugate to c V (y). Hence

u(x) = cV U

(
x

cV

)
= c1−α

V U(x) = cUU(x), (3.34)

where

cU = c1−α
V =

(
1
2
(
(2q)β + (2(1− q))β

))1−α

. (3.35)

For fixed x > 0, we obtain as critical Lagrange multiplier ŷ(x) = u′(x) =
cUU ′(x) so that
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X̂1(x) = −V ′
(

ŷ(x)
dQ
dP

)
= −V ′ (U ′(x)) c

1
α−1
U

(
dQ
dP

) 1
α−1

,

= xc−1
V

(
dQ
dP

) 1
α−1

,

where we have used −V ′ = (U ′)−1 and V ′(y) = −y
1

α−1 . Hence

X̂1(x) =

⎧⎪⎨⎪⎩xc−1
V

(
−2d̃

ũ−d̃

) 1
α−1

= xc−1
V (2q)

1
α−1 , for ω = g,

xc−1
V

(
2ũ

ũ−d̃

) 1
α−1

= xc−1
V (2(1− q))

1
α−1 , for ω = b.

Let us explicitly verify that X̂1(x) is indeed of the form

X̂1(x) = x + ĥ∆S1
1 , (3.36)

for some ĥ ∈ R, or, equivalently, that EQ[X1(x)] = x. Indeed:

EQ

[
X̂1(x)

]
= x

(
1
2
(
(2q)

α
α−1 + (2(1− q))

α
α−1
))−1

·
[
q(2q)

1
α−1 + (1 − q)(2(1− q))

1
α−1

]
= x

To calculate ĥ explicitly we may apply (3.36), e.g., for ω = g to obtain

x + ĥũ = xc−1
V (2q)

1
α−1

which yields
ĥ = x

[
c−1
V (2q)

1
α−1 − 1

]
ũ−1. (3.37)

In the special case of α = 1
2 (so that β = α

α−1 = −1 and β − 1 =
1

α−1 = −2) the constants become somewhat nicer: (2q)
1

α−1 = 1
4

(
ũ−d̃

d̃

)2

,

cV = 1
2

(
ũ−d̃

−2d̃
+ ũ−d̃

2ũ

)
= − (ũ−d̃)2

4ũd̃
so that

ĥ = x

[
−4ũd̃

(ũ− d̃)2
· 1
4

(ũ − d̃)2

d̃2
− 1

]
ũ−1

= x
ũ + d̃

|ũd̃|
.
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Coming back to the case of general α ∈ ] − ∞, 1[ \{0}, we obtain from
(3.37) that the optimal investment in the stock equals ĥ = k̂x where the
constant k̂ = k̂(u, d, α) given by (3.37) satisfies 0 < k̂ < ∞. It may be seen
as a very elementary version of Merton’s result (see [M 90] and example 3.3.5
below), that for the Black-Scholes model and power utility, it is optimal to
always invest a constant proportion of your wealth, where the constant may
be calculated explicitly as a function of the parameters of the model and the
utility function. Observe that this constant may very well be bigger than one,
in which case one goes short in the bond.

We now specialise to the case that ũ = σ∆t
1
2 +ν∆t and d̃ = −σ∆t

1
2 +ν∆t

for some ∆t > 0, which corresponds to the notation in the Black-Scholes model
below (Sect. 4.4). We determine the different quantities up to the relevant
terms of powers of ∆t:

q =
−d̃

ũ− d̃
=

σ∆t
1
2 − ν∆t

2σ∆t
1
2

=
1
2

(
1− ν

σ
∆t

1
2

)
, (3.38)

1− q =
ũ

ũ− d̃
=

σ∆t
1
2 + ν∆t

2σ∆t
1
2

=
1
2

(
1 +

ν

σ
∆t

1
2

)
,

cV =
1
2
(
(2q)β + (2(1− q))β

)
(3.39)

=
1
2

(
1− β

ν

σ
∆t

1
2 +

β(β − 1)
2

ν2

σ2
∆t

+1 + β
ν

σ
∆t

1
2 +

β(β − 1)
2

ν2

σ2
∆t

)
= 1 +

β(β − 1)ν2

2σ2
∆t + o(∆t),

cU = c1−α
V =

(
1 +

β(β − 1)ν2

2σ2
∆t + o(∆t)

) 1
1−β

= 1− βν2

2σ2
∆t + o(∆t). (3.40)

For the optimal investment ĥ we obtain

ĥ = x
[
c−1
V (2q)

1
α−1 − 1

]
ũ−1 (3.41)

= x

[(
1− β(β − 1)ν2

2σ2
∆t

)(
1− ν(β − 1)

σ
∆t

1
2

)
− 1
]

· σ−1(∆t)−
1
2 + O

(
∆t

1
2

)
=

xν(1 − β)
σ2

+ O
(
∆t

1
2

)
.
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In the special case α = 1
2 , β = −1, this yields

ĥ =
2xν

σ2
+ O

(
∆t

1
2

)
.

We observe from (3.41) that, for fixed ν > 0, σ > 0, the factor

k̂ =
(1 − β)ν

σ2
(3.42)

ranges between 0 and ∞ as β runs through ] −∞, 1[ \ {0} (the case β = 0
corresponding to the logarithmic utility U(x) = log(x)).

For the optimal portfolio X̂1(x) we thus find

X̂1(x) =

⎧⎨⎩x
(
1 + ν(β−1)

σ ∆t
1
2

)
+ O(∆t), for ω = g,

x
(
1− ν(β−1)

σ ∆t
1
2

)
+ O(∆t), for ω = b.

(3.43)

Regarding the logarithmic and exponential utility we only report the re-
sults and leave the derivation, which is entirely analogous to the above, as
exercises.

Example 3.3.2. Under the same assumptions on S as in 3.3.1, but with let-
ting U(x) = ln(x), we obtain V (y) = − ln(y)− 1,

v(y) = − ln(y)− 1 + c1,

where c1 = − ln 2− 1
2 ln(q(1 − q)), so that

u(x) = ln(x) + c1.

For the optimal investment, we obtain

X̂1(x) =

{
x
2q , for ω = g,

x
2(1−q) , for ω = b,

so that X̂1(x) = x + ĥ∆S1, where the optimal trading strategy ĥ is given by

ĥ = x
1 − 2q

2qũ
= x

ũ + d̃

−2d̃ũ
. (3.44)

Example 3.3.3. Using again the assumptions on S as in 3.3.1, but letting
now U(x) = − exp(−x), we obtain V (y) = y(ln(y)− 1) and

v(y) = V (y)− c2y, u(x) = − exp(−(x− c2))

where c2 = −[q ln q + (1− q) ln(1− q) + ln 2].
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For the optimal investment, we obtain

X̂1(x) =

{
x + ĥũ, for ω = g,

x + ĥd̃, for ω = b,

where the optimal trading strategy ĥ is given by

ĥ = −c2 + ln(2q)
ũ

=
1

ũ− d̃
ln
(

ũ

−d̃

)
. (3.45)

Note that in this case ĥ does not depend on the initial endowment x.

Example 3.3.4 (The trinomial model (one-period)). We now analyze
the simplest model of an incomplete market where we add to the possibilities
“good” and “bad” a third possibility “neutral”. The probability space Ω now
consists of three points, Ω = {g, n, b} where P[n] = m, P[g] = P[b] = 1−m

2
and m ∈]0, 1[ is a parameter still kept free. We define S (already in discounted
terms and dropping the notation for the bond) by S0 = 1 and

S1 =

⎧⎨⎩
1 + ũ, if ω = g,
1, if ω = n,

1 + d̃, if ω = b,

where 1 + ũ > 1 > 1 + d̃ > 0, similarly as above. Again we assume ũ ≥ −d̃.
This model may be viewed as an embryonic version of a stochastic volatil-

ity model: the determination of the value of the random variable S1 can be
interpreted as the result of two consecutive steps (taking place, however, at
the same time t = 1). First one performs an experiment describing an event
which happens or not with probability m and 1 −m respectively. According
to the outcome of this event the volatility is “low” or “high”. If it is “low”
— in the present embryonic example simply zero — the stock price does not
change; if it is “high”, a fair coin is tossed similarly as in the binomial model
to determine whether the stock price moves to 1 + ũ or 1 + d̃.

We now again consider power, logarithmic and exponential utility and
want to apply theorem 3.2.1 to the present situation. One way to solve the
portfolio optimisation problem is to proceed similarly as in the complete case
above: first solve the dual problem and then derive the primal problem by
using (3.29). This is possible but — in contrast to the complete situation
— we now would have to solve an optimisation problem to obtain the dual
solution.

In our specific example, it will be more convenient to solve the primal
problem directly and then to deduce the solution of the dual problem via
(3.29). The solution Q̂(y) of the dual problem then allows for an interpretation
as a pricing functional (see Remark 3.2.2).

Here is the crucial observation to reduce the present example to the case of
3.3.1 above: the optimal strategy ĥ obtained in (3.37) (resp. (3.44) and (3.45)
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in the case of logarithmic or exponential utility) for the binomial model is also
optimal in the present example. Indeed, distinguish the two cases of “low” and
“high” volatility: conditioning on the event that volatility is high, we are in the
situation of the binomial model, so that the trading strategy ĥ, as calculated
in 3.3.1, is the unique optimiser. On the other hand, if volatility is low, the
present example is designed such that the volatility vanishes, i.e., the stock
price does not move. Hence in this case the choice of the investment h does not
influence the result as h(S1 − S2) is zero anyhow. Summing up, we conclude
that the optimal strategy ĥ obtained for the binomial model is optimal in
the present trinomial model as well. Thus we conclude that ĥ given by (3.37)
defines the optimal investment also in the present situation

ĥ = x
[
c−1
V (2q)β−1 − 1

]
ũ−1,

which yields

ĥ = x
(1 − β)ν

σ2
+ O

(
∆t

1
2

)
if again, we let ũ = σ∆t

1
2 + ν∆t, d̃ = −σ∆t

1
2 + ν∆t, and if cV is defined as

in (3.39).
For the optimal portfolio X̂1(x) we find, similarly as in (3.43)

X̂1(x) =

⎧⎪⎪⎨⎪⎪⎩
xc−1

V (2q)β−1 = x
(
1 + ν(1−β)

σ ∆t
1
2

)
+ O(∆t), for ω = g,

x, for ω = n

xc−1
V (2(1 − q))β−1 = x

(
1− ν(1−β)

σ ∆t
1
2

)
+ O(∆t), for ω = b.

Denoting by utri(x) = suph∈R E[U(x + h(S1 − S2))] the value function for
the present trinomial model, we still have utri(x) = ctri

U U(x), for some constant
ctri
U > 0, by the scaling property of U(x) = xα

α . The explicit form is given by
ctri
U − 1 = (1 − m)

(
cbi
U − 1

)
, where cbi

U is given by the constant cU in the
binomial case above (3.34). Indeed, this relation between the constants of the
binomial and trinomial model simply follows from the fact that, conditionally
on the event {ω �= n}, which happens with probability (1−m), the trinomial
model coincides with the binomial one.

Expanding ctri
U in terms of ∆t yields

ctri
U = 1− (1−m)βν2

2σ2
∆t + o(∆t).

We now may calculate the dual measure Q̂(y) via formula (3.29). Fix the
initial endowment x. Then

utri(x) = ctri
U U(x)

so that

y :=
(
utri
)′

(x) =
(

1− (1 −m)βν2

2σ2
∆t + o(∆t)

)
xα−1
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Applying formula (3.29) from Theorem 3.2.1 we find, for ω = n, that

dQ̂(y)
dP

[n] = y−1U ′(X̂1(x)(n))

= y−1U ′(x)

=
(

1 +
(1−m)βν2

2σ2
∆t + o(∆t)

)
x−(α−1)xα−1

= 1 +
(1 −m)βν2

2σ2
∆t + o(∆t).

As expected, the initial endowment x cancels out so that Q̂(y)[n] does not
depend on y and we shall therefore denote it by Q̂[n]. We find

Q̂[n] =
dQ̂
dP

[n]P[n] = m +
m(1−m)βν2

2σ2
∆t + o(∆t)

which gives us a rather complete information how this value depends on the
parameters of the model. In fact, Q̂[n] determines already Q̂, also for ω = g

and ω = b. Indeed, the two relations Q̂[g] + Q̂[n] + Q̂[b] = 1 as well as
EQ̂[S1 − S0] = 0 yield

Q̂[g] = q

(
1−m− m(1−m)βν2

2σ2
∆t

)
+ o(∆t),

Q̂[b] = (1− q)
(

1−m− m(1−m)βν2

2σ2
∆t

)
+ o(∆t),

where q is given by (3.38), which gives

Q̂[g] =
1
2

(
(1 −m)

(
1− ν

σ
∆t

1
2

)
− m(1−m)βν

2σ2
∆t

)
+ o(∆t),

Q̂[b] =
1
2

(
(1 −m)

(
1 +

ν

σ
∆t

1
2

)
− m(1−m)βν

2σ2
∆t

)
+ o(∆t).

Summing up, we have seen that also in the case of the one step trinomial
model all relevant quantities may be calculated explicitly. The fact that we
have chosen the parameterisation of the example such that, for ω = n, the
stock price simply does not move, made the determination of the primal so-
lution particularly easy. However, one could also abandon this assumption, at
the cost of somewhat more cumbersome calculations.

Example 3.3.5 (The binomial model (N periods)). This model is called
the Cox-Ross-Rubinstein model [CRR 79] and it is extremely popular in fi-
nance, for numerical calculations as well as for pedagogical purposes. It is the
discrete version of the Black-Scholes model.

Using the notation of the one step model, example 3.3.1, above and fixing
N ≥ 1 we simply concatenate the one step model in a multiplicative way:
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the increments are assumed to be independent. To be formal, let (εt)N
t=1 be

i.i.d. Bernoulli random variables defined on some (Ω,F ,P) so that P[εt =
1] = P[εt = −1] = 1

2 , for t = 1, · · · , N . The reason why we now use the letter
N instead of the previously used T will become apparent after (3.46) below.
We denote by Ft the σ-algebra generated by (εn)t

n=1. Let S0 = 1 and, for
t = 1, · · · , N , define St inductively by

St =
{

St−1(1 + ũ) if εt = 1,

St−1(1 + d̃) if εt = −1.

Letting U(x) = xα

α , for some fixed α ∈] − ∞, 1[\{0}, we again want to
determine the optimal investment strategy and other related quantities.

Our aim is to maximise the expected utility of terminal wealth X̂N (x), i.e.

E

[
U

(
x +

N∑
n=1

hn∆Sn

)]
→ max !

where (hn)T
n=1 runs through all predictable processes.

To do so, we define, for t = 0, · · · , N , the conditional value functions

ut(x) = sup

{
E

[
U

(
x +

N∑
n=t+1

hn∆Sn

) ∣∣∣∣∣ Ft

]}

where the supremum is taken over all collections (hn)N
n=t+1 of (Fn−1)N

n=t+1-
measurable functions. In general ut(x) will depend on ω ∈ Ω in an Ft-
measurable way; but in the present easy example, the i.i.d. assumption on

the returns
(

St

St−1

)N

t=1
implies, that ut(x) does not depend on ω ∈ Ω.

In fact, it is straightforward to calculate ut(x) by backward induction on
t = N, · · · , 0: for t = N , we obviously have

uN(x) = U(x),

and for t = N − 1 we are just in the situation of the one step model 3.3.1, so
that we find

uN−1(x) = cUU(x)

where cU =
(

1
2

(
(2q)β + (2(1− q))β

))1−α

, as we have computed in (3.35).
Let us take a closer look why this is indeed the case: the reader might

object, that in the present example the value SN−1 of the stock at time N −1
as well as the possible gain ũSN−1 resp. loss d̃SN−1, depend on ω ∈ Ω in an
FN−1-measurable way, while in the one step example 3.3.1 we had S0 = 1,
and the possible gains ũ and losses d̃ were also deterministic. But, of course,
this difference is only superficial: if ĥ ∈ R denotes the optimal investment
in the stock S0 in the one step example, we now have to choose the optimal
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investment as the FN−1-measurable function ĥN defined by ĥN = ĥ
SN−1

. Eco-

nomically speaking, the value ĥNSN−1 of the proportion of the investment in
the stock is constant, while the number ĥN of stocks in the portfolio depends
on the current stock price SN−1: it is simply inversely proportional to SN−1.

To compute uN−2(x), note that this step again is reduced to the analysis of
the one step problem at times {N − 2, N − 1}, where we now have to replace
the original utility function U(x) by the conditional utility function uN−1(x).
This is just the principle of dynamic programming which reduces to an obvious
fact in the present context. Hence

uN−2(x) = sup {E [uN−1(x + h∆SN−1)] | h ∈ R}
= c2

UU(x).

By induction we conclude that

ut(x) = cN−t
U U(x), t = 0, · · · , N,

so that we obtain in particular for the value function u(x) = u0(x)

u(x) = cN
U U(x). (3.46)

In order to compute the parameters of the optimal investment strategy,
we now assume that there is a fixed horizon T > 0 such that N∆t = T and
we let N → ∞, so that ∆t = T

N → 0. As above we define ũ = σ∆t
1
2 + ν∆t,

d̃ = −σ∆t
1
2 + µ∆t. We have found in (3.40) that

cU = 1− βν2

2σ2
∆t + o(∆t)

so that

cN
U = c

T
∆t

U = exp
(
−βν2T

2σ2

)
+ o(1).

The optimal investment strategy
(
X̂t(x)

)T

t=0
for initial wealth x > 0 is

given by

X̂t(x) = x +
t∑

n=1

ĥt∆St

where

ĥt =
X̂t−1(x)

St−1
k̂

and as in (3.42)

k̂ =
ĥ

x
+ O(∆t

1
2 ) =

(1 − β)ν
σ2

(3.47)

is the ratio of the current wealth X̂t−1(x) invested into the stock. We thus
find the discrete version of the well-known “Merton-line” investment strategy
[M 90]; the latter applies to the continuous time limit, i.e., the Black-Scholes
model.
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Let us have a closer look at the constant k̂: the leading term (1−β)ν
σ2 is

proportional to ν and inversely proportional to σ2, which is economically
intuitive. As regards (1−β) = (1−α)−1 we observe that this quantity becomes
arbitrary large when α tends to 1. In particular, for α < 1 sufficiently close
to 1, the proportion k̂ of the wealth held in the stock is bigger than one, and
therefore the position in the bond is negative (“short”).

Regarding the constant cN
U ≈ exp

(
−βν2T

2σ2

)
we observe that the right hand

side is bigger than one for β ∈] −∞, 0[, which corresponds to α ∈]0, 1[. This
makes sense, as in this case U(x) = xα

α takes positive values, so that the
value function u(x) defined in (3.46) increases with N . If β ∈]0, 1[, which
corresponds to α ∈] −∞, 0[, then exp

(
−βν2T

2σ2

)
is less than 1. This too does

make sense economically: for α ∈]−∞, 0[ the utility function U(x) = xα

α takes
negative values so that again we find that the utility function u(x) in (3.46)
increases with N .

Looking at the constants appearing in exp
(
−βν2T

2σ2

)
, the roles of ν2, σ2

and T are quite intuitive. Somewhat more puzzling is the role of β, or rather
−β: while it is intuitive that for α → 1 the factor exp

(
−βν2T

2σ2

)
tends to

infinity
(
β = α

α−1

)
so that the problem degenerates for α→ 1, the behaviour

is less intuitive for α→ 0: in this case β → 0 too so that exp
(
−βν2T

2σ2

)
tends

to 1, i.e., in the limit there seems no difference between U(x) = xα

α and the
corresponding value function u(x). On the other hand limα→0

xα−1
α = ln(x)

so that — after proper normalisation — the utility maximisation problem
remains meaningful also as α tends to 0. The point is, that one has to be
careful about these renormalisations in the limit, which involves also a term
of order α−1.

A good way of dealing with these issues is to recall that the multiplicative
term cN

U in (3.46) pertains to the utility scale of the investor. We shall trans-
form it to the wealth scale of the investor. We follow B. de Finetti’s idea of
“certainty equivalent”: consider the following two possibilities for an investor.
Either she holds an initial endowment x > 0 and is allowed to invest in stock
and bond in the above model up to time T = N∆t; or she holds an initial en-
dowment wN

U x, where the letter w stands for “wealth”, and is only allowed to
invest into the bond (where its value simply remains constant) up to time T .
If her goal is to maximise expected utility at time T , what is the value of the
constant wN

U for which the agent is indifferent between these two possibilities.
Using (3.46) this leads to the equation

cN
U U(x) = U

(
wN

U x
)

so that x cancels out (as expected) and we obtain(
cN
U

) 1
α = wN

U
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so

wN
U = exp

(
−βν2T

2ασ2

)
+ o(1)

= exp
(

ν2T

(1− α)2σ2

)
+ o(1).

In this new scaling the factor 1
1−α makes perfect sense economically: when

α → 1, i.e., the investor is less and less risk averse, the factor wN
U becomes

large: the investor then appreciates highly the possibility to invest in the
financial market. If α → −∞, i.e., the investor is more and more risk averse
and the factor wN

U tends to one: in this case the investor has little appreciation
for the possibilities offered by investments into the risky stock.

Note that the function α→ exp
(

ν2T
2(1−α)σ2

)
is continuous for α ∈]−∞, 1[ so

that the limiting behaviour as α tends to zero, is not a puzzle any more; in the
case α = 0 one easily verifies that wN

U = exp
(

ν2T
2σ2

)
indeed yields the certainty

equivalent in the case of the logarithmic utility function U(x) = log(x).

Example 3.3.6 (The trinomial model (N periods)). We now extend the
one-period trinomial model, example 3.3.4, to the N period setting similarly
as we just have done for the binomial model.

Let 0 < m < 1 and (ηt)N
t=1 i.i.d. random variables, defined on some

(Ω,F ,P) such that P[ηt = −1] = 1−m
2 , P[ηt = 0] = m, P[ηt = 1] = 1−m

2 . Let
S0 = 1 and, for t = 1, · · · , N define inductively

St =

⎧⎨⎩
St−1(1 + ũ), if ηt = 1,
0, if ηt = 0,

St−1(1 + d̃), if ηt = −1.

The analysis of the maximisation of expected utility of terminal wealth
now is entirely analogous to the situation of the binomial model: using the
notation from the preceding examples, the optimal investment strategy again
consists in investing the constant proportion k̂ = (1−β)ν

σ2 + O(∆t
1
2 ) of current

wealth found in (3.47) into the stock. For the value function utri(x) we find

utri(x) = (ctri
u )NU(x)

= exp
(
− (1−m)βν2T

2σ2

)
U(x) + o(1)

and for the “certainty equivalent” (wtri
U )N , defined analogously as in the pre-

ceding example, we obtain

(wtri
U )N = exp

(
(1−m)ν2T

(1− α)2σ2

)
+ o(1).

The verifications are simply a combination of the arguments of Exam-
ples 3.3.4.
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Bachelier and Black-Scholes

4.1 Introduction to Continuous Time Models

In this chapter we illustrate the theory developed in the previous chapters
by analyzing the most basic examples in continuous time. They still play an
important role in practice.

The binomial model (Example 3.3.1 and 3.3.5) was already analyzed in the
previous Chap. 3. It fits perfectly into the framework developed in Chap. 2,
i.e., it is based on a finite probability space Ω. Therefore we could rigorously
analyze it in Chap. 3.

If we consider the binomial model on a grid in arithmetic progression and
pass to the continuous time limit we arrive, similarly as L. Bachelier in 1900
[B 00] at Brownian motion. If we consider the binomial model on a grid in
geometric progression (the “Cox-Ross-Rubinstein” model as in example 3.3.5)
we arrive at geometric Brownian motion, similarly as P. Samuelson in 1965.
The latter model now is often called the “Black-Scholes” model.

We now pass to the continuous time setting. Strictly speaking, we jump
already one step ahead, as we have not yet developed the theory for the case
of processes in continuous time. But we believe that it is more important to
see the theory in action using these important examples in order to build up
some motivation for the formal treatment of the general theory which will be
developed later. We shall therefore deliberately use some heuristic arguments
which will be rigorously justified by the general theory developed later in this
book.

4.2 Models in Continuous Time

To do so, we suppose from now on that the reader is familiar with the notion
of Brownian motion and related concepts. We recall the martingale represen-
tation theorem for Brownian motion, which is the continuous analogue to the
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elementary considerations on the binomial model above (compare Corollary
2.2.12).

Theorem 4.2.1. (see, e.g., [RY 91] or Sect. 7.3). Let (Wt)t∈[0,T ] be a stan-
dard Brownian motion modelled on (Ω, (Ft)t∈[0,T ],P), where (Ft)t∈[0,T ] is the
natural (right continuous saturated) filtration generated by W .

Then P is the unique measure on FT which is absolutely continuous with
respect to itself, and under which W is a martingale.

Correspondingly, for every function f ∈ L1(Ω,FT ,P) there is a unique
predictable process H = (Ht)t∈[0,T ] such that

f = E[f ] + (H ·W )T ,

and
E[f | Ft] = E[f ] + (H ·W )t, 0 ≤ t ≤ T, (4.1)

which implies in particular that (H ·W ) is a uniformly integrable martingale.

4.3 Bachelier’s Model

We formulate Bachelier’s model in the framework of the formalism developed
above. Let Bt ≡ 1 and St = S0 + σWt, 0 ≤ t ≤ T , where S0 is the current
stock price, σ > 0 is a fixed constant, and W is standard Brownian motion
on its natural base (Ω, (Ft)t∈[0,T ],P).

Fixing the strike price K, we want to price and hedge the contingent claim

f(ω) = (ST (ω)−K)+ ∈ L1(Ω,FT ,P). (4.2)

Using the martingale representation theorem we may find a trading strategy
H s.t.

f = E[f ] + (H ·W )T (4.3)
= E[f ] + (H · S)T ,

where H = H
σ .

Interpreting Theorem 2.4.1 in a liberal way, i.e., transferring its message
to the case where Ω is no longer finite and using Theorem 4.2.1 above, we
conclude that C(S0, T ) = E[f ] is the unique arbitrage free price for the call
option defined in (4.2).

Note that ST is normally distributed with mean S0 and variance σ2T .
Hence

C(S0, T ) =
∫ ∞

K−S0

(x− (K − S0))g(x)dx, (4.4)

where
g(x) =

1
σ
√

2πT
e−

x2

2σ2T . (4.5)
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It is straightforward to derive from (4.4) an “option pricing formula” by
calculating the integral in (4.4) (compare, e.g., [Sh 99]): denoting the standard
normal density function by ϕ(x), i.e., ϕ(x) equals (4.5) for σ2T = 1, denoting
the corresponding distribution function by Φ(x) and using the relation ϕ′(x) =
−xϕ(x), an elementary calculation reveals that

C(S0, T ) = E[f ] = (S0 −K)Φ

(
S0 −K

σ
√

T

)
+ σ
√

T ϕ

(
S0 −K

σ
√

T

)
. (4.6)

By the same token we obtain, for every 0 ≤ t ≤ T , and conditionally on
the stock price having the value St at time t,

C(St, T − t) (4.7)

= E[f | St] = (St −K)Φ

(
St −K

σ
√

T − t

)
+ σ
√

T − t ϕ

(
St −K

σ
√

T − t

)
.

This solves the pricing problem in Bachelier’s model, based on no-arbitrage
arguments, as we have the “replication formula” (4.3).

But what is the trading strategy H , in other words, the recipe to replicate
the option by trading dynamically? Economic intuition suggests that we have

H(S, t) =
∂

∂S
C(S, T − t).

Indeed, consider the following heuristic reasoning using infinitesimals: sup-
pose that at time t the stock price equals St, so that the value of the option
equals C(St, T − t). During the infinitesimal interval (t, t + dt) the Brownian
motion Wt will move by dWt = Wt+dt−Wt = εt

√
dt, where P[εt = 1] = P[εt =

−1] = 1
2 , so that St will move by dSt = St+dt−St = εtσ

√
dt. Hence the value of

the option C(St, T−t) will move by dCt = C(St+dt, T−(t+dt))−C(St, T−t) ≈
εt

∂C
∂S (St, T − t)σ

√
dt, where we neglect terms of smaller order than

√
dt. In

other words, the ratio between the up or down movement of the underlying
stock S and the option is

dCt

dSt
=

∂C

∂S
(St, T − t)

εtσ
√

dt

εtσ
√

dt
(4.8)

=
∂C

∂S
(St, T − t).

If we want to replicate the option by investing the proper quantity H of
the underlying stock, formula (4.8) suggests that this quantity should equal
∂C
∂S (St, T − t).

After these motivating remarks, let us deduce the equation

H(St, t) =
∂C

∂S
(St, T − t) (4.9)

more formally. Consider the stochastic process

C(St, T − t) = C(S0 + σWt, T − t), 0 ≤ t ≤ T,
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of the value of the option. By Itô’s formula (see, e.g., [RY91])

dC(St, T − t) =
∂C

∂S
dSt +

(
∂C

∂t
+

1
2

∂2C

∂S2
σ2

)
dt, (4.10)

where we have used dSt = σdWt. One readily deduces from formula (4.7) that
C verifies the heat equation with parameter σ2

2 displayed in (4.11) below (time
is running into the negative direction in the present setting). In particular,
for the process C defined in (4.7), the drift term in (4.10) vanishes as it must
be the case according to the general theory (the option price process is a
martingale by (4.1)). Hence (4.10) reduces to the formula

C(St, T − t) = C(S0, T ) + (H · S)t,

where H is given by (4.9). Rephrasing this result once more we have shown
that the trading strategy H , whose existence was guaranteed by the martin-
gale representation (Theorem 4.2.1), is of the form (4.9).

One more word on the fact that C(S, T − t) satisfies the heat equation
(4.11) below, which was known to L. Bachelier in 1900 and may be verified by
simply calculating the partial derivatives in (4.7). Admitting this calculation,
we concluded above that the drift term in (4.10) vanishes. One may also turn
the argument around to conclude from (4.1) that the drift term in (4.10) must
vanish, which then implies that C(S, T − t) must satisfy the heat equation
(time running inversely)

∂C

∂t
(S, T − t) = −σ2

2
∂2C

∂S2
(S, T − t). (4.11)

Imposing the boundary condition C(S, T −T ) = C(S, 0) = (S−K)+ one may
derive by standard methods the solution (4.7) of this p.d.e.. This is, in fact,
how F. Black and M. Scholes originally proceeded (in the framework of their
model) to derive their option pricing formula, which we shall now analyze.

4.4 The Black-Scholes Model

This model of a stock market was proposed by the famous economist P. Samuel-
son in 1965 ([S 65]), who was aware of Bachelier’s work. In fact, triggered by
a question of J. Savage, it was P. Samuelson who had rediscovered Bachelier’s
work for the economic literature some years before 1965.

The model is usually called the Black-Scholes model today and became
the standard reference model in the context of option pricing:

B̂t = ert,

Ŝt = S0e
σWt+

(
µ−σ2

2

)
t
, 0 ≤ t ≤ T. (4.12)

Again W is a standard Brownian motion with natural base (Ω, (Ft)t∈[0,T ],P).
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The parameter r models the “riskless rate of interest”, while the parameter
µ models the average increase of the stock price. Indeed using Itô’s formula
one may describe the model equivalently by the differential equations:

dB̂t

B̂t

= rdt,

dŜt

Ŝt

= µdt + σdWt.

The numéraire in this model is just the relevant currency (say e). In order
to remain consistent with the above theory, we shall rather follow our usual
procedure of taking a traded asset as numéraire, namely the bond, to use
discounted terms. We then have

Bt =
B̂t

B̂t

= 1 (4.13)

St =
Ŝt

B̂t

= S0e
σWt+

(
µ−r−σ2

2

)
t
.

We shall write ν for µ − r which is called the “excess return”. The only
thing we have to keep in mind when passing to the bond as numéraire is that
now quantities have to be expressed in terms of the bond: in particular, if K
denotes the strike price of an option at time T (expressed in e at time T ), we
have to express it as Ke−rT units of the bond.

Contrary to Bachelier’s setting, the process

St = S0e
σWt+

(
ν−σ2

2

)
t
, 0 ≤ t ≤ T,

is not a martingale under P (unless ν = 0, which typically is not the case).
The unique martingale measure Q for S (which is absolutely P-continuous)

is given by Girsanov’s theorem (see [RY91] or any introductory text to
stochastic calculus)

dQ
dP

= exp
(
− ν

σ
WT −

ν2

2σ2
T

)
. (4.14)

Let us price and hedge the contingent claim f(ω) =
(
ST (ω)−Ke−rT

)
+

,
which is the pay-off function of the European call option with exercise time
T and a strike price of K Euros (expressed in terms of the bond numéraire).

Noting that (Wt + νt)∞t=0 is a standard Brownian motion under Q and
applying Theorem 4.2.1 to the Q-martingale S, we may calculate, similarly
as in (4.6) above.

C(S0, T ) = EQ[f ] = EQ

[(
S0e

σ(WT +νT )−σ2
2 T −Ke−rT

)
+

]
(4.15)

= S0EQ

[
eσ

√
TZ−σ2T

2 χ{ST≥K}
]
−Ke−rTQ[ST ≥ K],

where Z = WT +νT√
T

is a N(0, 1)-distributed random variable under Q.
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After an elementary calculation (see, e.g., [LL 96]) this yields the famous
Black-Scholes formula

C(S0, T ) = S0Φ

⎛⎝ ln
(

S0
K

)
+
(
r + σ2

2

)
T

σ
√

T

⎞⎠ (4.16)

−Ke−rT Φ

⎛⎝ ln
(

S0
K

)
+
(
r − σ2

2

)
T

σ
√

T

⎞⎠
and, by the same token, for 0 ≤ t ≤ T and St > 0,

C(St, T − t) = S0Φ

⎛⎝ ln
(

St

K

)
+
(
r + σ2

2

)
(T − t)

σ
√

T − t

⎞⎠ (4.17)

−Ke−rT Φ

⎛⎝ ln
(

St

K

)
+
(
r − σ2

2

)
(T − t)

σ
√

T − t

⎞⎠ .

Let us take some time to contemplate on this truly remarkable formula
(for which R. Merton and M. Scholes received the Nobel prize in economics
in 1997; F. Black unfortunately had passed away in 1995).

1.) As a warm-up consider the limits as σ →∞ (which yields C(S0, T ) = S0)
and σ → 0 (which yields C(S0, T ) = (S0 − Ke−rT )+). The reader should
convince herself that this does make sense economically. For an extremely
risky underlying S, an option on one unit of S is almost as valuable as one
unit of S itself (think, for example, of a call option on a lottery ticket with
strike price K = 100 and exercise time T , such that T is later than the drawing
at which it is decided whether the ticket wins a million or nothing). Intuitively,
it is quite obvious that the option on the lottery ticket is almost as valuable
as the lottery ticket itself). On the other hand, if the underlying S is (almost)
riskless a similar consideration reveals that the value of an option is almost
equal to its “inner value” (S0 −Ke−rT )+.

This behaviour of the Black-Scholes formula should be contrasted to
Bachelier’s formula (specialising to the case S0 = K and r = 0)

CBachelier(S0, T ) =
σ√
2π

√
T (4.18)

obtained in (4.6) above, which tends to infinity as σ → ∞; this limiting
behaviour is economically absurd and contradicts an obvious no-arbitrage
argument which — using the fact that ST is non-negative — shows that the
value of a call option always must be less than the value of the underlying
stock.

The reason for this difference in the behaviour of the Black-Scholes formula
and Bachelier’s one, for large values of σ, is that geometric Brownian motion
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always remains positive, while Brownian motion may also attain negative
values. This fact has strong effects for very large σ or — what amounts roughly
to the same — for very large T . Nevertheless we shall presently see that —
for reasonable values of σ and T — the Black-Scholes formula and Bachelier’s
formula (4.18) are very close. This seems to be the essential fact, keeping in
mind Keynes’ famous dictum telling us, not to look at the limit T → ∞: in
the long run we are all dead.

2.) Let us compare the Black-Scholes formula (4.16) and Bachelier’s formula
(4.18) more systematically. To do so we specialise in the Black-Scholes formula
to r = 0 and S0 = K, and we have to let the volatility in the Black-Scholes
formula, which we now denote by σBS, correspond to the “parameter of ner-
vousness” σ (this wording was used by Bachelier) appearing in Bachelier’s for-
mula, which we denote by σB. As the former pertains to the relative standard
deviation of stock prices and the latter to the absolute standard deviation, we
roughly find the correspondence — at least for small values of T —

σB ≈ σBSS0

In the subsequent calculations we therefore suppose that σB ≈ σBSS0. In this
case, the Black-Scholes and Bachelier option prices to be compared are

CBS = S0

[
Φ

(
σBS
√

T

2

)
− Φ

(
−σBS

√
T

2

)]
,

while

CB =
σB

√
2π

√
T ≈ S0

σBS

√
2π

√
T .

The difference of the two quantities is best understood by looking at the
shaded area in the subsequent graph involving the density ϕ(x) = 1√

2π
e−

x2
2 of

the standard normal distribution, and noting that ϕ(0) = 1√
2π

. This shaded

area, let’s call it A, equals σBS√T√
2π
−
[
Φ
(

σBS√T
2

)
− Φ

(
−σBS√T

2

)]
which — up

to the factor S0 — is just the difference between CB and CBS

�
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Fig. 4.1. Comparison of the Bachelier with the Black-Scholes formula.
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Expanding ϕ(x) into a Taylor series around zero and using ϕ′′(0) = − 1√
2π

we get the asymptotic expression

CB − CBS = S0

[
1

24
√

2π

(
σBS
√

T
)3
]

+ o

((
σBS
√

T
)3
)

,

which indicates a very small difference between the option values CB and CBS

in the Bachelier and Black-Scholes model respectively, provided σBS
√

T is
small. Evaluating this expression for the empirical data reported by Bachelier
(see [B 00] or [S 03, Chap. 1]), i.e., σBS ≈ 2.4 % on a yearly basis, and T ≈
2months = 1

6 year (this is a generous upper bound for the periods considered
by Bachelier which were ranging between 10 and 45 days) we find

CB − CBS ≈ S0
1

24
√

2π

(
0.024

√
1
6

)3

≈ 1.56 ∗ 10−8S0.

Hence for this data the difference between the option value obtained using
Bachelier’s and the Black-Scholes model is of order 10−8 times the value S0

of the underlying; observing that for Bachelier’s data, the price of an option
was of the order of S0

100 , we find that the difference is of the order 10−6 of the
price of the option.

In view of all the uncertainties involved in option pricing, in particular
regarding the estimation of σ, one might be tempted to call this quantity
“completely negligible, a priori” (this expression was used by Bachelier when
discussing the drawbacks of the normal distribution giving positive probability
to negative stock prices).

For more information we refer to the introductory chapter of [S 03, Chap. 1]
as well as to [ST 05].

3.) Let us now comment on the role of the riskless rate of interest r, appearing
in the Black-Scholes formula and on the reason why this variable does not show
up in Bachelier’s formula: noting the obvious fact that

ln
(

S0

K

)
+ rT = ln

(
S0

Ke−rT

)
,

one readily observes that this quantity only appears in the Black-Scholes for-
mula (4.16) via the discounting of the strike price, i.e., transforming K units
of et=T into Ke−rT units of et=0. When comparing the setting of Black-
Scholes to that of Bachelier one should recall that the option premium in
Bachelier’s days pertained to a payment at time T rather than at time 0.
Under the assumption of a constant riskless interest rate — as is the case
in the Black-Scholes model — this amounts to considering the present day
quantities upcounted by erT . This was perfectly taken into account by Bache-
lier, who stressed that the quantities appearing in his formulae have to be
understood in terms of forward prices in modern terminology, which amounts
to upcounting by erT in the present setting.
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The bottom line of these considerations on the role of r is: when we as-
sumed that r = 0 in the above comparison of the Bachelier and Black-Scholes
option pricing methodology, this assumption did not restrict the generality
of the argument. It also applies to r �= 0 as Bachelier denoted the relevant
quantities in terms of “true prices”, i.e., forward prices.

4.) What is the partial differential equation satisfied by the solution (4.17)
of the Black-Scholes formula? Again we specialise to the case r = 0 in order
to focus on the heart of the matter, but we note that now we do restrict the
generality and refer to any introductory text to Mathematical Finance (e.g.,
[LL 96]) for the Black-Scholes partial differential equation in the case of a
riskless rate of interest r �= 0.

From the Martingale Representation Theorem 4.2.1 we know that the
Black-Scholes option price process

C(St, T − t)t∈[0,T ]

is a martingale under the measure Q defined in (4.14). Hence, denoting by
(W̃t)t∈[0,T ] a standard Brownian motion under Q, using dSt = σStdW̃t, and
working under the measure Q, we deduce from Itô’s formula

dCt = dC(St, T − t) =
∂C

∂S
σStdW̃t +

(
σ2

2
S2

t

∂2C

∂S2
+

∂C

∂t

)
dt.

We first observe, using again σStdW̃t = dSt, that — similarly as in
the context of Bachelier — the replicating trading strategy Ht is given by
∂C
∂S (St, T − t). In the lingo of finance this quantity is called the “Delta” of
the option (which depends on St and t) and the trading strategy H is called
“delta-hedging”.

Next we pass to the drift term: as C(St, T − t) is a Q-martingale we
infer that it must vanish, which yields the “Black-Scholes partial differential
equation”

∂C

∂t
(S, T − t) = −σ2

2
S2 ∂2C

∂S2
(S, T − t), for S ≥ 0, t ≥ 0. (4.19)

This is the multiplicative analogue of the heat equation (4.11) and may, in
fact, easily be reduced to a heat equation (with drift) by passing to logarithmic
coordinates x = ln(S).

Exactly as in Bachelier’s case we may proceed by solving the partial dif-
ferential equation (4.19) for the boundary condition C(S, T − T ) = C(S, 0) =
(S −K)+ and C(0, t) = 0 to obtain the Black-Scholes formula.

In the lingo of finance, the quantity −∂C
∂t is called the “Theta” and the

quantity ∂2C
∂S2 the “Gamma” of the option. Hence the p.d.e. (4.19) allows for

the following economic interpretation: when time to maturity T − t decreases
(and S remains fixed), the loss of value of the option is equal to the “convexity”
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or the “Gamma” of the option price (as a function of S) at time t, normalised
by σ2

2 S2 (in the case of the Bachelier model the normalisation was simply
σ2

2 ). This has a nice economic interpretation and today’s option traders think
in these terms. They speak about “selling or buying convexity” or rather
“going gamma-short or gamma-long” which amounts to the same thing. The
interpretation of (4.19) is that, for the buyer of an option, the convexity of the
function C(S, T − t) in the variable S corresponds to a kind of insurance with
respect to price movements of S. As there is no such thing as a free lunch,
this insurance costs (proportional to the second derivative) and a positive
σ2

2 S2 ∂2C
∂S2 is reflected by a negative partial derivative ∂C

∂t of C(S, T − t) with
respect to time t.

Let us illustrate this fact by reasoning once more heuristically with in-
finitesimal movements of Brownian motion: we want to explain the infinitesi-
mal change of the option price when “time increases by an infinitesimal while
the stock price S remains constant”. To do so we apply the heuristic ana-
logue of the Brownian bridge: consider the infinitesimal interval [t, t + 2dt]
and assume that the driving Q-Brownian motion W̃ moves in the first half
[t, t + dt] from W̃t to W̃t + εt

√
dt, where εt is a random variable with

Q[εt = 1] = Q[εt = −1] = 1
2 , while in the second half [t + dt, t + 2dt] it moves

back to W̃t. What should happen during this time interval to a “hedger”
who proceeds according to the Black-Scholes trading strategy H described
above, which replicates the option? At time t she holds ∂C

∂S (St, T − t) units
of the stock. Following first the scenario εt = +1, the stock has a price of
St + σSt

√
dt at time t + dt. Apart from being happy about this up move-

ment, the hedger now (i.e., at time t + dt) adjusts the portfolio to hold
∂C
∂S

(
St + σSt

√
dt, T − (t + dt)

)
units of stock, which results in a net buy of

∂2C
∂S2 (St, T − t)σSt

√
dt units of stock, where we neglect terms of smaller order

than
√

dt. In the next half [t+dt, t+2dt] of the interval the stock price S drops
again to the value St+2dt = St and the hedger readjusts at time t + 2dt the
portfolio by selling again the ∂2C

∂S2 (St, T − t)σSt

√
dt units of stock (neglecting

again terms of smaller order than
√

dt). It seems at first glance that the gains
made in the first half are precisely compensated by the losses in the second
half, but a closer inspection shows that the hedger did “buy high” and “sell
low”: the quantity ∂2C

∂S2 (St, T − t)σSt

√
dt was bought at price St + σSt

√
dt at

time t + dt, and sold at price St at time t + 2dt, resulting in a total loss of(
∂2C

∂S2
(St, T − t)σSt

√
dt

)(
σSt

√
dt
)

= σ2S2
t

∂2C

∂S2
(St, T − t)dt. (4.20)

Going through the scenario εt = −1, one finds that the hedger did first
“sell low” and then “buy high” resulting in the same loss (where again we
neglect infinitesimals resulting in effects (with respect to the final result) of
smaller order than dt).
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Keeping in mind that this was achieved during an interval of total length
2dt (which corresponds to the passage from σ2 in (4.20) to σ2

2 in (4.19))
we have found a heuristic explanation for the Black-Scholes equation (4.19).
We also note that the same argument applied to Bachelier’s model, yields a
heuristic explanation of the heat equation (4.11). The general phenomenon
behind this fact is that, in the case of convexity, the “wobbling” of Brownian
motion, which is of order

√
dt in an interval of length dt, causes the hedger

to have systematic losses, which are proportional to ∂2C
∂S2 as well as to the

increment d〈S〉t of the quadratic variation process 〈S〉t =
∫ t

0
σ2S2

udu of the
stock price process S.

5.) When deriving the Black-Scholes formula (4.16) we did not go through the
(elementary but tedious) trouble of explicitly calculating (4.15). We shall now
provide an explicit derivation of the formula which has the merit of yielding
an interpretation of the two probabilities appearing in (4.16). It also allows
for a better understanding of the formula (for example, for the remarkable
fact, that the parameter µ has disappeared) and dispenses us of cumbersome
calculation.

As observed in (4.15), the contingent claim f(ω) = (ST (ω) − Ke−rT )+
(expressed in terms of the numéraire Bt) splits into(

ST −Ke−rT
)
+

= ST χ{ST≥Ke−rT } −Ke−rT χ{ST ≥Ke−rT }
= f1 − f2.

We have to calculate EQ[f1] and EQ[f2] under the risk-neutral measure Q
defined in (4.14). This is easy for f2 and we do not have to use the explicit form
of the density (4.14) provided by Girsanov’s theorem. It suffices to observe
that ST = S0 exp(σW̃T − σ2

2 T ) where W̃ is a Brownian motion under Q. So

X :=
ln
(

ST

S0

)
+ σ2

2 T

σ
√

T
∼ N(0, 1) under Q,

whence

EQ[f2] = e−rT K Q
[
ST ≥ e−rT K

]
(4.21)

= e−rT K Q

⎧⎨⎩ ln
(

ST

S0

)
+ σ2

2 T

σ
√

T
≥

ln
(

e−rT K
S0

)
+ σ2

2 T

σ
√

T

⎫⎬⎭
= e−rT K Q

⎧⎨⎩X ≥
ln
(

e−rT K
S0

)
+ σ2

2 T

σ
√

T

⎫⎬⎭
= e−rT K Φ

⎛⎝ ln
(

S0
K

)
+
(
r − σ2

2

)
T

σ
√

T

⎞⎠ ,

which yields the second term of the Black-Scholes formula.
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Why was the calculation of EQ[f2] so easy? Simply because the factor
Ke−rT appearing in f2 is a constant (expressed in terms of the present numé-
raire, namely the bond); hence the calculation of the expectation was reduced
to the calculation of the probability of an event, namely the probability that
the option will be exercised, with respect to the probability measure Q.

To proceed similarly with the calculation of EQ[f1] we make a change of
numéraire, now choosing the risky asset Ŝ in the Black-Scholes model (4.12)
as numéraire. Under this numéraire the model reads

B̂t

Ŝt

=
1
St

= S−1
0 e

−σWt+
(

r−µ+σ2
2

)
t

Ŝt

Ŝt

≡ 1

where W is a standard Brownian motion under P. The reader has certainly
noticed the symmetry with (4.13). But what is the probability measure Q̌
under which the process B̂t

Ŝt
= 1

St
becomes a martingale? Using Girsanov we

can explicitly calculate the density dQ̌
dP ; but, in fact, we don’t really need this

information. All we need is to observe that we may write

1
St

= S−1
0 e−σW̌t−σ2

2 t,

where W̌ is a standard Brownian motion under Q̌ (the reader worried by the
minus sign in front of σW̌t may note that −W̌ is also a standard Brownian
motion under Q̌). We now apply the change of numéraire theorem (in the
form of Theorem 2.5.4) to calculate EQ[f1]. In fact, we have only proved this
theorem for the case of finite Ω, but we rely on the reader’s faith that it also
applies to the present case (for a thorough investigation for the validity of
this theorem for general locally bounded semi-martingale models we refer to
Chap. 11 below). Applying this theorem we obtain

EQ[f1] = EQ

[
ST χ{ST ≥e−rT K}

]
= S0 EQ̌

[
ST

ST
χ{ 1

ST
≤erT K−1

}]
= S0 EQ̌

[
χ{

S−1
0 e−σW̌T − σ2

2 T≤erT K−1

}
]

= S0 Q̌
[
S0e

σW̌T + σ2
2 T ≥ e−rT K

]
.

Noting that W̌T√
T

is N(0, 1)-distributed under Q̌, this expression is completely
analogous to the one appearing in (4.21), with the exception of the plus in
front of the term σ2

2 T . Hence we get
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EQ[f1] = S0Φ

⎛⎝ ln
(

S0
K

)
+
(
r + σ2

2

)
T

σ
√

T

⎞⎠ ,

which is the first term appearing in the Black-Scholes formula. We now may

interpret Φ

(
ln(S0

K )+
(

r+σ2
2

)
T

σ
√

T

)
as the probability, that the option will be ex-

ercised, with respect to the probability measure Q̌, under which 1
St

is a mar-
tingale.
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The Kreps-Yan Theorem

Let us turn back to the no-arbitrage theory developed in Chap. 2 to raise again
the question: what can we deduce from applying the no-arbitrage principle
with respect to pricing and hedging of derivative securities?

While we obtained satisfactory and mathematically rigorous answers to
these questions in the case of a finite underlying probability space Ω in
Chap. 2, we saw in Chap. 4, that the basic examples for this theory, the
Bachelier and the Black-Scholes model, do not fit into this easy setting, as
they involve Brownian motion.

In Chap. 4 we overcame this difficulty either by using well-known results
from stochastic analysis (e.g., the martingale representation Theorem 4.2.1
for the Brownian filtration), or by appealing to the faith of the reader, that
the results obtained in the finite case also carry over — mutatis mutandis —
to more general situations, as we did when applying the change of numéraire
theorem to the calculation of the Black-Scholes model.

5.1 A General Framework

We now want to develop a “théorie générale of no-arbitrage” applying to a
general framework of stochastic processes. Forced by the relatively poor fit
of the Black-Scholes model (as well as Bachelier’s model) to empirical data
(especially with respect to extreme behaviour, i.e., large changes in prices),
Mathematical Finance developed towards more general models. In some cases
these models still have continuous paths, but processes (in continuous time)
with jumps are increasingly gaining importance.

We adopt the following general framework (for more details on the tech-
nicalities of stochastic integration we refer to Chap. 7): let S = (St)t≥0 be an
Rd+1-valued stochastic process based on and adapted to the filtered proba-
bility space (Ω,F , (F)t≥0,P). Again we assume that the zero coordinate S0,
called the bond, is normalised to S0

t ≡ 1.
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We first will make a technical assumption, namely that the process S is
locally bounded, i.e., that there exists a sequence (τn)∞n=1 of stopping times,
increasing a.s. to +∞, such that the stopped processes Sτn

t = St∧τn are uni-
formly bounded, for each n ∈ N (We refer to Sect. 7.2 below for unexplained
notation). Note that continuous processes — or, more generally, càdlàg pro-
cesses with uniformly bounded jumps — are locally bounded. This assumption
will be very convenient for technical reasons. At the end of Chap. 8 we shall
indicate, how to extend this to the general case of processes, which are not
necessarily locally bounded.

We have chosen T = [0,∞[ for the time index set in order to assume full
generality; of course this also covers the case of a compact interval T = [0, T ],
which is relevant in most applications, when assuming that St is constant, for
t ≥ T . The use of T = [0,∞[ as time index set also covers the case of discrete
time (either in its finite version T = {0, 1, . . . , T}, or in its infinite version
T = N). Indeed, it suffices to restrict to processes S which are constant on
[n− 1, n[, for each natural number n and only jump at times n ∈ T.

We shall always assume that the filtration (Ft)∞t=0 satisfies the usual condi-
tions i.e. it is right continuous and F0 contains all null sets of F∞. Furthermore
the process S has a.s. càdlàg trajectories.

How to define the trading strategies H , which played a crucial role in the
preceding sections? A very elementary approach, corresponding to the role of
step functions in integration theory, is formalised by the subsequent concept.

The reader will notice that the definitions in this chapter are variants of
a more general situation to be handled in Chap. 7 and later.

Definition 5.1.1. (compare, e.g., [P 90]) For a locally bounded stochastic pro-
cess S we call an Rd-valued process H = (Ht)∞t=0 a simple trading strategy
(or, speaking more mathematically, a simple integrand), if H is of the form

H =
n∑

i=1

hiχ]]τi−1,τi]],

where 0 = τ0 ≤ τ1 ≤ . . . ≤ τn < ∞ are finite stopping times and hi are
Fτi−1-measurable, Rd-valued functions. We then may define, similarly as in
Definition 2.1.4, the stochastic integral H · S as the stochastic process

(H · S)t =
n∑

i=1

(
hi, Sτi∧t − Sτi−1∧t

)
=

n∑
i=1

d∑
j=1

hj
i

(
Sj

τi∧t − Sj
τi−1∧t

)
, 0 ≤ t <∞,

and its terminal value as the random variable

(H · S)∞ =
n∑

i=1

(
hi, Sτi − Sτi−1

)
.
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Throughout this chapter we call H admissible if, in addition, the stopped
process Sτn and the functions h1, . . . , hn are uniformly bounded.

This definition is a well-known building block for developing a stochastic
integration theory (see, e.g., [P 90]). It has a clear economic interpretation in
the present context: at time τi−1 an investor decides to adjust her portfolio in
the assets S1, . . . , Sj , . . . , Sd by fixing her investment in asset Sj to be hj

i (ω)
units; we allow hj

i to have arbitrary sign (holding a negative quantity means
borrowing or “going short”), and to depend on the random element ω in an
Fτi−1-measurable way, i.e., using the information available at time τi−1. The
funds for adjusting the portfolio in this way are simply financed by taking the
appropriate amount from (or putting into) the “cash box”, modelled by the
numéraire S0 ≡ 1 (compare Sect. 2.1). The investor holds this portfolio fixed
up to time τi. During this period the value of the risky stocks Sj , j = 1, . . . , d,
changed from Sj

τi−1
(ω) to Sj

τi
(ω) resulting in a total gain (or loss) given by the

random variable (hi, Sτi − Sτi−1). At time τi, for i < n, the investor readjusts
the portfolio and at time τn she liquidates the portfolio, i.e., converts all her
positions into the numéraire. Hence the random variable (H ·S)τn = (H ·S)∞
models the total gain (in units of the numéraire S0) which she finally, i.e., at
time τn, obtained by adhering to the strategy H ; the process (H · S)t models
the gains accumulated up to time t.

The concept of a simple trading strategy is designed in a purely algebraic
way, avoiding limiting procedures in order to be on safe grounds.

The next crucial ingredient in developing the theory is the proper gener-
alisation of the notion of an equivalent martingale measure.

Definition 5.1.2. A probability measure Q on F which is equivalent (resp.
absolutely continuous with respect) to P is called an equivalent (resp. abso-
lutely continuous) local martingale measure, if S is a local martingale under
Q.

We denote by Me(S) (resp. Ma(S)) the family of all such measures, and
say that S satisfies the condition of the existence of an equivalent local mar-
tingale measure (EMM) if Me(S) �= ∅.

Note that, by our assumption of local boundedness of S, we have that S
is a local Q-martingale iff Sτ is a Q-martingale for each stopping time τ such
that Sτ is uniformly bounded (compare Chap. 7).

Why did we use the notion of a local martingale instead of the more famil-
iar notion of a martingale? This is simply the natural degree of generality. The
subsequent straightforward lemma (whose proof is an obvious consequence of
the chosen concepts and left to the reader) shows that this notion does the
job just as well as the notion of a martingale for the present purpose of no-
arbitrage theory. Last but not least, the restriction to the notion of martingale
measures would lead to a different version of the general version of the funda-
mental theorem of asset pricing (Theorem 2.2.7 above), as may be seen from
easy examples (see [DS 94a], compare also [Y 05]).
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Lemma 5.1.3. Let Q be a probability measure on F which is absolutely con-
tinuous w.r. to P. A locally bounded stochastic process S is a local martingale
under a probability measure Q iff

EQ [(H · S)∞] = 0, (5.1)

for each admissible simple trading strategy H.

Proof. Let (τn)∞n=1 be a sequence of finitely valued stopping times increasing
P-a.s. to infinity such that each Sτn is bounded.

Supposing that (5.1) holds true for each simple admissible integrand we
have to show that each Sτn is a Q-martingale. In other words, for each n ≥ 1
and each pair of stopping times 0 ≤ σ1 ≤ σ2 ≤ τn we have to show that

EQ[Sσ2 | Fσ1 ] = Sσ1 .

This is tantamount to the requirement that for each Rd-valued Fσ1 -
measurable, bounded function h we have

EQ[(h, Sσ2 − Sσ1)] = 0,

which holds true by assumption (5.1). Hence S is a local Q-martingale.
The proof of the converse implication, i.e., that the local Q-martingale

property of S implies (5.1) for each admissible integrand is straightforward
(compare Lemma 2.2.6). �

For later use we note that the “=” in (5.1) may equivalently be replaced
by “≤” (or “≥”), as H is an admissible simple trading strategy iff −H is so.

We define the subspace Ksimple of L∞(Ω,F ,P) of contingent claims, avail-
able at price zero via an admissible simple trading strategy, by

Ksimple = {(H · S)∞ | H simple, admissible}

and by Csimple the convex cone in L∞(Ω,F ,P) of contingent claims dominated
by some f ∈ K

Csimple = Ksimple − L∞
+ =

{
f − k | f ∈ Ksimple, f ∈ L∞, k ≥ 0

}
.

Definition 5.1.4. S satisfies the no-arbitrage condition (NAsimple) with re-
spect to simple integrands, if Ksimple ∩ L∞

+ (Ω,F ,P) = {0} (or, equivalently,
Csimple ∩ L∞

+ (Ω,F ,P) = {0}).
As the following lemma shows there is no difference between an arbitrage

opportunity for simple admissible strategies and arbitrage opportunities for
admissible “buy and hold” strategies.

Lemma 5.1.5. Let the process H be a simple admissible strategy defined as
H =

∑n
i=1 hiχ]]τi−1,τi]] and yielding an arbitrage opportunity. In other words

we have (H · S)∞ ≥ 0 a.s. and P[(H · S)∞ > 0] > 0. Then there is a buy
and hold strategy K = h1]]σ1,σ2]] such that K is admissible and K yields an
arbitrage opportunity.
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Proof. The proof proceeds by induction on n and yields additionally that the
stopping times σ1 and σ2 can be chosen as σ1 = τi−1 and σ2 = τi, for some
i ≤ n. For n = 1 the statement is obvious since H = K will do the job.
So we only check the inductive step. If P

[
(H · S)τn−1 < 0

]
> 0 then we put

σ1 = τn−1, σ2 = τn and h = hn−1χ{(H·S)τn−1<0}. The strategy K = hχ]]σ1,σ2]]

is an arbitrage opportunity since (H ·S)τn ≥ 0 a.s. and hence (K ·S)τn > 0 on{
(H · S)τn−1 < 0

}
. If (H · S)τn−1 = 0 a.s. then K = hn−1χ]]τn−1,τn]] must give

an arbitrage opportunity. The only remaining case is (H ·S)τn−1 ≥ 0 a.s. and
P
[
(H · S)τn−1 > 0

]
> 0. It is here that we apply the inductive hypothesis. �

Remark 5.1.6. If there is an arbitrage strategy, can we reduce the strategy
even further, e.g. can we take k of the form αχAχ]]σ1,σ2]] where A ∈ Fσ1 and
α is a constant? The following example shows that, for d ≥ 2, this is not the
case.

Let ϑ and η be independent random variables which are uniformly dis-
tributed on [0, 1[ and [0, 1

2 [ respectively. Define the R2-valued process (S0, S1)
by S0 = 0 and S1 = e2πi(ϑ+η), where we identify R2 with C. The σ-algebra
F0 is generated by ϑ and F1 is generated by ϑ and η. This market allows
for arbitrage: indeed let h be the F0-measurable R2-valued random variable
h = e2πi(ϑ+ 1

4 ) (identifying R2 with C once more) so that

(h, S1 − S0)R2 > 0, a.s.,

where (·, ·)R2 now is the usual inner product on R2. On the other hand, it is
easy to verify that for each h of the form αχA, where α ∈ R2 is a constant
and A ∈ F0, P[A] > 0 we have

P[(h, S1 − S0)R2 < 0] > 0.

We want to prove a version of the fundamental theorem of asset pricing
analogous to Theorem 2.2.7 above. However, things are now more delicate and
the notion of (NAsimple) defined above is not sufficiently strong to imply the
existence of an equivalent local martingale measure:

Proposition 5.1.7. The condition (EMM) of existence of an equivalent lo-
cal martingale measure implies the condition (NAsimple) of no-arbitrage with
respect to simple integrands, but not vice versa.

Proof. (EMM) ⇒ (NAsimple): this is an immediate consequence of Lemma
5.1.3, noting that for Q ∼ P and a non-negative function f ≥ 0, which does
not vanish almost surely, we have EQ[f ] > 0.

(NAsimple) � (EMM): we give an easy counter-example which is just an
infinite random walk.

Let tn = 1 − 1
n+1 and define the R-valued process S to start at S0 = 1,

and to be constant except for jumps at the points tn which are defined as

∆Stn = 3−nεn, n ≥ 1,
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such that (εn)∞n=1 are independent random variables taking the values +1 or
−1 with probabilities

P[εn = 1] =
1 + αn

2
, P[εn = −1] =

1− αn

2
,

where (αn)∞n=1 is a sequence in ]− 1, +1[ to be specified below.
Clearly this defines a bounded process S, for which there is a unique mea-

sure Q on (Ω,F) =
(
{−1, 1}N,B

(
{−1, 1}N

))
, under which S is a martingale

in its own filtration (Ft)∞t=0; this measure is given by

Q[εn = 1] = Q[εn = −1] =
1
2
,

and (εn)∞n=1 are independent under Q.
By a result of Kakutani (see, e.g. [W91]) we know that Q is either

equivalent to P, or P and Q are mutually singular, depending on whether∑∞
n=1 α2

n <∞ or not.
Taking, for example, αn = 1

2 , for all n ∈ N, we have constructed a process
S on (Ω,F ,P), for which there is no equivalent (local) martingale measure
Q. On the other hand, it is an easy and instructive exercise to show that,
for simple trading strategies, there are no arbitrage opportunities for the pro-
cess S.

By Lemma 5.1.5 we only need to check for strategies of the form H =
h1]]σ1,σ2]]. Such a strategy gives the outcome h(Sσ2 − Sσ1) and h is Fσ1 -
measurable. Suppose that (H ·S)∞ ≥ 0. Of course we may replace h by sign(h).
The choice of 3−n also yields that on the set

{
σ1 = 1− 1

n

}
∩
{
σ2 ≥ 1− 1

n+1

}
the

sign of Sσ2−Sσ1 is the same as the sign of εn. We get that sign
(
h(Sσ2−Sσ1)

)
is on that same set equal to the sign of hεn. The independence of εn from
F1− 1

n
then gives that h = 0 on

{
σ1 = 1 − 1

n

}
∩
{
σ2 ≥ 1 − 1

n+1

}
. Combining

all these facts gives that h(Sσ2 − Sσ1) = 0 a.s.. �
The example in the above proof shows, why the no-arbitrage condition

(NAsimple) defined in 5.1.4 is too weak: it is intuitively rather obvious that by
a sequence of properly scaled bets on a (sufficiently, i.e.,

∑∞
n=1 α2

n =∞) biased
coin one can “produce something like an arbitrage”, while a finite number of
bets (as formalised by Definition 5.1.1) does not suffice to do so.

But here we are starting to move on thin ice, and it will be the crucial
issue to find a mathematically precise framework, in which the above intuitive
insight can be properly formalised.

5.2 No Free Lunch

A decisive step in this direction was done in the work of D. Kreps [K 81],
who realised that the purely algebraic notion of no-arbitrage with respect to
simple integrands has to be complemented with a topological notion:
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Definition 5.2.1. (compare [K 81]) S satisfies the condition of no free lunch
(NFL) if the closure C of Csimple, taken with respect to the weak-star topology
of L∞(Ω,F ,P), satisfies

C ∩ L∞
+ (Ω,F ,P) = {0}.

This strengthening of the condition of no-arbitrage is tailor-made so that
the subsequent version of the fundamental theorem of asset pricing holds.

Theorem 5.2.2 (Kreps-Yan). A locally bounded stochastic process S satis-
fies the condition of no free lunch (NFL), iff condition (EMM) of the existence
of an equivalent local martingale measure is satisfied:

(NFL) ⇐⇒ (EMM).

Proof. (EMM) ⇒ (NFL): This is still the easy part. By Lemma 5.1.3 we have
EQ[f ] ≤ 0, for each Q ∈ Me(S) and f ∈ Csimple, and this inequality also
extends to the weak-star-closure C as f �→ EQ[f ] is a weak-star continuous
functional. On the other hand, if (EMM) were true and (NFL) were violated,
there would exist a Q ∈Me(S) and f ∈ C, f ≥ 0 not vanishing almost surely,
whence EQ[f ] > 0, which yields a contradiction.

(NFL)⇒ (EMM): We follow the strategy of the proof for the case of finite
Ω, but have to refine the argument:

Step 1 (Hahn-Banach argument): We claim that, for fixed f ∈ L∞
+ , f �≡ 0,

there is g ∈ L1
+ which, viewed as a linear functional on L∞, is less than or

equal to zero on C, and such that (f, g) > 0. To see this, apply the separation
theorem (e.g., [Sch 99, Theorem II, 9.2]) to the σ∗-closed convex set C and the
compact set {f} to find g ∈ L1 and α < β such that g|C ≤ α and (f, g) > β.
Since 0 ∈ C we have α ≥ 0. As C is a cone, we have that g is zero or negative
on C and, in particular, non-negative on L∞

+ , i.e. g ∈ L1
+. Noting that β > 0

we have proved step 1.
Step 2 (Exhaustion argument): Denote by G the set of all g ∈ L1

+, g ≤ 0
on C. Since 0 ∈ G (or by step 1), G is non-empty.

Let S be the family of (equivalence classes of) subsets of Ω formed by the
supports {g > 0} of the elements g ∈ G. Note that S is closed under countable
unions, as for a sequence (gn)∞n=1 ∈ G, we may find strictly positive scalars
(αn)∞n=1, such that

∑∞
n=1 αngn ∈ G. Hence there is g0 ∈ G such that, for

{g0 > 0}, we have

P[{g0 > 0}] = sup{P[{g > 0}] | g ∈ G}.

We now claim that P[{g0 > 0}] = 1, which readily shows that g0 is strictly
positive almost surely. Indeed, if P[{g0 > 0}] < 1, then we could apply step 1
to f = χ{g0=0} to find g1 ∈ G with

E[fg1] = 〈f, g1〉 =
∫
{g0=0}

g1(ω)dP(ω) > 0
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Hence, g0+g1 would be an element of G whose support has P-measure strictly
bigger than P[{g0 > 0}], a contradiction.

Normalise g0 so that ‖g0‖1 = 1 and let Q be the measure on F with
Radon-Nikodým derivative dQ

dP = g0. We conclude from Lemma 5.1.3 that Q
is a local martingale measure for S, so that Me(S) �= ∅. �

Some comments on the Kreps-Yan theorem seem in order: this theorem was
obtained by D. Kreps [K 81] in a more abstract setting and under a — rather
mild — additional separability assumption; the reason for the need of this
assumption was that D. Kreps did not use the above exhaustion argument, but
rather some sequential procedure relying on the separability of L1(Ω,F ,P).
Independently and at about the same time, Ji-An Yan [Y 80] proved in a
different context, namely the characterisation of semi-martingales as good
integrators (which is the theme of the Bichteler-Dellacherie theorem), and
without a direct relation to finance, a general theorem which is similar in
spirit to Theorem 5.2.2. Ch. Stricker [Str 90] observed that Yan’s theorem
may be applied to quickly prove the theorem of Kreps without any separability
assumption. We therefore took the liberty to give Theorem 5.2.2 the name of
these two authors.

The message of the theorem is, that the assertion of the “fundamental
theorem of asset pricing” 2.2.7 is valid for general processes, if one is willing to
interpret the notion of “no-arbitrage” in a somewhat liberal way, crystallised
in the notion of “no free lunch” above.

What is the economic interpretation of a “free lunch”? By definition S
violates the assumption (NFL) if there is a function g0 ∈ L∞

+ (Ω,F ,P), g0 �= 0,
and nets (gα)α∈I , (fα)α∈I in L∞(Ω,F ,P), such that fα = (Hα ·S)∞ for some
admissible, simple integrand Hα, gα ≤ fα, and limα∈I gα = g0, the limit
converging with respect to the weak-star topology of L∞(Ω,F ,P). Speaking
economically: an arbitrage opportunity would be the existence of a trading
strategy H such that (H ·S)∞ ≥ 0, almost surely, and P[(H ·S)∞ > 0] > 0. Of
course, this is the dream of each arbitrageur, but we have seen, that — for the
purpose of the fundamental theorem to hold true — this is asking for too much
(at least, if we only allow for simple admissible trading strategies). Instead, a
free lunch is the existence of a contingent claim g0 ≥ 0, g0 �= 0, which may, in
general, not be written as (or dominated by) a stochastic integral (H · S)∞
with respect to a simple admissible integrand H ; but there are contingent
claims gα “close to g0”, which can be obtained via the trading strategy Hα,
and subsequently “throwing away” the amount of money fα − gα.

This triggers the question whether we can do somewhat better than the
above — admittedly complicated — procedure. Can we find a requirement
sharpening the notion of “no free lunch”, i.e., being closer to the original
notion of “no-arbitrage” and such that a — properly formulated — version of
the “fundamental theorem” still holds true?

Here are some questions related to our attempt to make the process of
taking the weak-star-closure more understandable:
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(i) Is it possible, in general, to replace the net (gα)α∈I above by a sequence
(gn)∞n=0?

(ii) Can we choose the net (gα)α∈I (or, hopefully, the sequence (gn)∞n=0)
such that (gα)α∈I remains bounded in L∞(P) (or at least such that the
negative parts ((gα)−)α∈I remain bounded)?
Note that this latter issue is crucial from an economic point of view, as
it pertains to the question whether the approximation of f by (gα)α∈I

can be done respecting a finite credit line.
(iii) Is it really necessary to allow for the “throwing away of money”, i.e., to

pass from Ksimple to Csimple?

It turns out that questions (i) and (ii) are intimately related and, in gen-
eral, the answer to these questions is no. In fact, the study of the pathologies
of the operation of taking the weak-star-closure is an old theme of functional
analysis. On the very last pages of S. Banach’s original book ([B 32]) the fol-
lowing example is given: there is a separable Banach space X such that, for
every given fixed number n ≥ 1 (say n = 147), there is a convex cone C in
the dual space X∗, such that C � C(1) � C(2) � . . . � C(n) = C(n+1) = C,
where C(k) denotes the sequential weak-star-closure of C(k−1), i.e., the limits
of weak-star convergent sequences (xi)∞i=0, with xi ∈ C(k−1), and C denotes
the weak-star-closure of C. In other words, by taking the limits of weak-star
convergent sequences in C we do not obtain the weak-star-closure of C imme-
diately, but we have to repeat this operation precisely n times, when finally
this process stabilises to arrive at the weak-star-closure C.

In Banach’s book this construction is done for X = c0 and X∗ = �1 while
our present context is X = L1(P) and X∗ = L∞(P). Adapting the ideas
from Banach’s book, it is possible to construct a semi-martingale S such that
the corresponding convex cone Csimple has the following property: taking the
weak-star sequential closure (Csimple)(1), the resulting set intersects L∞

+ (P)
only in {0}; but doing the operation twice, we obtain the weak-star-closure
C(2) = C and C intersects L∞

+ (P) in a non-trivial way (see Example 9.7.8
below). Hence we cannot — in general — reduce to sequences (gn)∞n=0 in the
definition of (NFL). The construction of this example uses a process with
jumps; for continuous processes the situation is, in fact, nicer, and in this
case it is possible to give positive answers to questions (i) and (ii) above (see
[Str 90], [D 92], and Chap. 9 below).

Regarding question (iii), the dividing line again is the continuity of the
process S (see [Str 90] and [D 92] for positive results for continuous processes,
and [S 94] and [S 04a] for counter-examples).

Summing up the above discussion: the theorem of Kreps and Yan is a
beautiful and mathematically precise extension of the fundamental theorem of
asset pricing 2.2.7 to a general framework of stochastic processes in continuous
time. However, in general, the concept of passing to the weak-star-closure does
not allow for a clear-cut economic interpretation. It is therefore desirable to
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prove versions of the theorem, where the closure with respect to the weak-
star topology is replaced by the closure with respect to some finer topology
(ideally the topology of uniform convergence, which allows for an obvious and
convincing economic interpretation).

To do so, let us contemplate once more, where the above encountered diffi-
culties related to the weak-star topology originated from: they are essentially
caused by our restriction to consider only simple, admissible trading strategies.
These nice and simple objects can be defined without any limiting procedure,
but we should not forget, that — except for the case of finite discrete time —
they are only auxiliary gimmicks, playing the same role as step functions in in-
tegration theory. The concrete examples of trading strategies (e.g., replicating
a European call option) encountered in Chap. 4 for the case of the Bachelier
and the Black-Scholes model led us already out of this class: of course, they
are not simple trading strategies. This is similar to the situation in classi-
cal integration theory, where the most basic examples, such as polynomials,
trigonometric functions etc, of course fail to be step functions.

Hence we have to pass to a suitable class of more general trading strategies
then just the simple, admissible ones. Among other pleasant and important
features, this will have the following effects on the corresponding sets C and
K: these sets will turn out to be “closer to their closures” (ideally they will
already be closed in the relevant topology, see Theorem 6.9.2 and 8.2.2 below),
than the above considered sets Csimple and Ksimple. The reason is that the
passage from simple to more general integrands involves already a limiting
procedure.

We shall take up the theme of developing a no-arbitrage theory based on
general (i.e., not necessarily simple) integrands in Chap. 8 below. But before
doing so we shall investigate in Chap. 6 in more detail, the situation of a
finite time index set T = {0, 1, . . . , T}, where — as opposed to Chap. 2 — we
drop the assumption that (Ω,F ,P) is finite. This is the theme of the Dalang-
Morton-Willinger theorem. In this setting the simple integrands are already
the general concept. It turns out that the assumption of (NA) (without any
strengthening of “no free lunch” type) implies already that the cone Csimple is
closed w.r.t. the relevant topologies which will allow us to directly apply the
Kreps-Yan theorem.

In order to prove the Dalang-Morton-Willinger theorem in full generality
it will be convenient to state a slightly more general version of the Kreps-Yan
theorem. While in Theorem 5.2.2 above we considered the duality between
L∞ and L1 only, we now state the theorem for the duality between Lp and
Lq, for arbitrary 1 ≤ p ≤ ∞ and 1

p + 1
q = 1. We observe that this is still a

more restricted degree of generality then the one considered by D. Kreps in
his original paper [K 81], who worked with an abstract dual pair 〈E, E′〉 of
vector lattices.

We use the occasion to give a slightly different proof than in Theorem
5.2.2 above, replacing the exhaustion argument by a somewhat more direct
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reasoning. However, both arguments amount to the same, and the difference
is only superficial.

Fix 1 ≤ p ≤ ∞, and 1 ≤ q ≤ ∞ such that 1
p + 1

q = 1, and let E =
Lp(Ω,F ,P), E′ = Lq(Ω,F ,P). We denote by E+ = {f ∈ Lp | f ≥ 0 a.s.}
(resp. E− = {f ∈ Lp | f ≤ 0 a.s.}) the cone of non-negative (resp. non-
positive) random variables in Lp.

Theorem 5.2.3. With the above notation let C ⊂ E be a σ(E, E′)-closed
convex cone containing E− and suppose that C ∩ E+ = {0}. Then there is
a probability measure Q on F , which is equivalent to P, satisfying dQ

dP ∈ E′,
and so that, for all f ∈ C, we have EQ[f ] ≤ 0.

Conversely, given a probability measure Q on F , equivalent to P and sat-
isfying dQ

dP ∈ E′, the cone C = {f ∈ E | EQ[f ] ≤ 0} is σ(E, E′)-closed and
satisfies C ∩E+ = {0}.

Proof. For 1 ≥ δ > 0, let Bδ be the convex set in E

Bδ = {f ∈ E | 0 ≤ f ≤ 1, E[f ] ≥ δ}.

Clearly Bδ is σ(E, E′)-compact and C ∩ Bδ = ∅. The Hahn-Banach The-
orem in its version as separating hyperplane (see, e.g., [Sch 99]) gives the
existence of an element gδ ∈ E′ so that

sup
f∈C

E[gδf ] < min
h∈Bδ

E[gδh]. (5.2)

Because C is a cone this means that for all f ∈ C we must have E[gδf ] ≤ 0.
This implies that the sup on the left hand side of (5.2) equals 0, so that the
min on the right hand side must be strictly positive. Since C contains E−
we must have gδ ≥ 0 almost surely. Now gδ cannot be identically zero since
I1 ∈ Bδ and hence E[gδ I1] > 0. We may normalise gδ to have E[gδ] = 1.

For each n ≥ 1 we consider δn = 2−n and let Qn be the probability
measure defined as dQn

dP = g2−n . For later use let us denote by αn the number
αn = ‖g2−n‖E′ ∈ [1,∞[. Also remark that for A ∈ F with P[A] > 2−n, we
must have Qn[A] = E[1Ag2−n ] > 0.

The element Q is now defined as

Q =
∞∑

n=1

βnQn,

where we choose the weights βn > 0 such that
∑∞

n=1 βn = 1 and
∑∞

n=1 βnαn <

∞. For instance we could take βn = 2−n

cαn
where c =

∑∞
n=1

2−n

αn
<∞.

The probability measure Q satisfies

(i) for all A, P[A] > 0 we have Q[A] =
∑∞

n=1 βnQn[A] > 0.

(ii) dQ
dP ∈ E′ since

∥∥∥dQ
dP

∥∥∥
E′
≤
∑∞

n=1 βnαn <∞.
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(iii) For all f ∈ C we have EQ[f ] =
∑∞

n=1 βnEQn [f ] ≤ 0.

The final assertion is obvious. �
We now turn to the question how to characterise the σ(Lp, Lq)-closedness

of a cone C ⊆ Lp(Ω,F ,P) as considered in the preceding Theorem 5.2.3 and
whether this is possible by only considering sequences rather than nets. In the
case 1 ≤ p <∞ this is quite obvious: by the Hahn-Banach theorem a convex
set C ⊆ Lp is σ(Lp, Lq)-closed, where 1

p + 1
q = 1, iff C is closed w.r. to the norm

‖ . ‖p of Lp. Hence in this case the closedness of C can be characterised by using
sequences. The price to pay for this comfortable situation is that — reading
Theorem 5.2.3 as an “if and only if” result — we only obtain a probability
measure Q with the additional requirement dQ

dP ∈ Lq(Ω,F ,P), i.e., Q must
have a finite q-th moment, for some 1 < q ≤ ∞. This additional requirement
on Q is not natural in most applications to finance: for example passing from
P to an equivalent probability measure P1 (an operation, which we very
often apply) the requirement dQ

dP ∈ Lq(P) does not imply dQ
dP1

∈ Lq(P1), if
1 < q ≤ ∞. Only for the case q = 1 this difficulty disappears, as for equivalent
probability measures Q and P we always have ‖ dQ

dP‖L1(P) = 1. This is why, in
general, the case p =∞, q = 1 is of prime importance and there is no “cheap”
way to make the subtleties of the weak-star topology on L∞ disappear.

There is, however, a notable exception to these considerations: we shall
see in the next chapter that, for finite discrete time T = {0, . . . , T}, we obtain
a version of the Fundamental Theorem of Asset Pricing, due to R. Dalang,
A. Morton, W. Willinger, where we get the additional requirement dQ

dP ∈
L∞(P) for the desired equivalent martingale measure Q “for free”. In this
case we therefore shall use Theorem 5.2.3 for the case p = 1 and q =∞.

The case p = ∞ in the above Theorem 5.2.3 is more subtle (and more
interesting). The subsequent result, which is essentially based on the Krein-
Smulian theorem, goes back to A. Grothendieck [G 54]. We only formulate it
for the case of convex cones, but it can be extended to general convex sets in
an obvious way.

Proposition 5.2.4. Let C be a convex cone in L∞(Ω,F ,P). Denote by
σ(L∞, L1) (resp. τ(L∞, L1)) the weak-star (resp. the Mackey) topology on
L∞ and, for 0 < p ≤ ∞, by ‖ . ‖p the norm topology induced by (Lp, ‖ . ‖p) on
L∞ (for 0 < p < 1 ‖ . ‖p is only a quasi-norm). We denote by ball∞ the unit
ball of L∞(Ω,F ,P).

The following assertions are equivalent

(i) C is σ(L∞, L1)-closed.
(i’) C is τ(L∞, L1)-closed.
(ii) C ∩ ball∞ is σ(L∞, L1)-closed.
(ii’) C ∩ ball∞ is τ(L∞, L1)-closed.
(iii) C ∩ ball∞ is ‖ . ‖p-closed, for every 0 < p <∞.
(iii’) C ∩ ball∞ is ‖ . ‖p-closed, for some 0 < p <∞.



5.2 No Free Lunch 83

(iv) C∩ball∞ is closed with respect to the topology of convergence in measure.

Proof. (ii) ⇒ (i): This is the crucial implication. It is a direct consequence of
Krein-Šmulian theorem ([S 94, Theorem IV6.4]).

(i) ⇒ (ii) trivial.
(i)⇔ (i’) and (ii)⇔ (ii’): this is the assertion of the Mackey-Arens theorem

([S 94, Theorem IV3.2]).
(ii) ⇒ (iv): Let (fn)∞n=1 be a Cauchy sequence in C ∩ ball∞ with respect

to convergence in measure. By passing to a subsequence we may assume that
(fn)∞n=1 converges a.s. to some f0 ∈ ball∞. We have to show that f0 ∈ C.

This follows from Lebesgue’s theorem on dominated convergence, which
implies that, for each g ∈ L1(Ω,F ,P), we have limn→∞ E[fng] = E[f0g].
Hence (fn)∞n=1 converges to f0 in the σ(L∞, L1)-topology so that by hypoth-
esis (ii) we have that f0 ∈ C.

(iv) ⇒ (iii’) ⇒ (iii) ⇒ (ii’): trivial, noting that the Mackey topology
τ(L∞, L1) is finer than the topology induced by ‖ . ‖p, for any 0 < p <∞. �
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The Dalang-Morton-Willinger Theorem

6.1 Statement of the Theorem

In Chap. 2 we only dealt with finite probability spaces. This was mainly done
because of technical difficulties. As soon as the probability space (Ω,FT ,P)
is no longer finite, the corresponding function spaces such as L1(Ω,FT ,P) or
L∞(Ω,FT ,P) are infinite dimensional and we have to fall back on functional
analysis. In this chapter we will present a proof of the Fundamental Theorem
of Asset Pricing, Theorem 2.2.7, in the case of general (Ω,FT ,P), but still in
finite discrete time. Since discounting does not present any difficulty, we will
suppose that the d-dimensional price process S has already been discounted as
in Sect. 2.1. Also the notion of the classH of trading strategies does not present
any difficulties and we may adopt Definition 2.1.4 verbatim also for general
(Ω,FT ,P) as long as we are working in finite discrete time. In this setting
we can state the following beautiful version of the Fundamental Theorem of
Asset Pricing, due to Dalang, Morton and Willinger [DMW90].

Theorem 6.1.1. Let (Ω,FT ,P) be a probability space and let (St)T
t=0 be an

Rd-valued stochastic process adapted to the discrete time filtration (Ft)T
t=0.

Suppose further that the no-arbitrage (NA) condition holds:

K ∩ L0
+(Ω,FT ,P) = {0}, (6.1)

where

K =

{
T∑

t=1

(Ht, ∆St)

∣∣∣∣∣ H ∈ H
}

Then there exists an equivalent probability measure Q, Q ∼ P so that

(i) St ∈ L1(Ω,FT ,P), t = 0, . . . , T ,
(ii) (St)T

t=0 is a Q-martingale, i.e., E[St|Ft−1] = St−1, for t = 1, . . . , T ,
(iii) dQ

dP is bounded, i.e. dQ
dP ∈ L∞(Ω,FT ,P).
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The proof of the theorem is not a trivial extension of the case of finite Ω
(we remark, however, that, in the case d = 1, the verification of the theorem
is indeed almost a triviality). Besides the original proof (see [DMW90]) based
on a measurable selection theorem, many authors have tried to give other and
perhaps easier proofs. Below we repeat some of these proofs.

We first prove the theorem for T = 1. This seemingly easy case contains
already the essential difficulties of the proof. We shall develop some abstract
notions, which will be convenient for the proof, but which shall also turn out
to be of independent interest: the concept of the predictable range of a process
and the concept of a random subsequence (fτk

)∞k=1 of a sequence (fn)∞n=1 of
random variables. We also give a different proof, due to C. Rogers [R 94],
based on the idea of utility maximisation.

To pass from the case T = 1 to the general case T ≥ 1 we shall again
offer two alternative proofs. The first will follow the original argument of
[DMW 90] by considering, for each t = 1, . . . , T , the one-step process (St−1, St)
to which the previous result applies. The equivalent martingale measure Q
for (S0, . . . , ST ) is then obtained by concatenating the densities of the corre-
sponding one step measures, i.e., by multiplicatively composing them (com-
pare Sect. 2.3 above). The second proof will proceed by directly generalising
the arguments for the case T = 1 to the general case.

We elaborate on these proofs because each of them gives different — and
important — insights into the problem: the argument relying on concatenation
in particular makes clear that the process (S0, . . . , ST ) is free of arbitrage iff
each of the one step processes (St−1, St) is so (see also Theorem 2.3.2 and
Lemma 5.1.5 above); the direct argument shows the closedness of the cone C
of super-replicable claims in L0(Ω,FT ,P), a result which will play a central
role in the further development of the theory.

The proofs we present below are a mixture of the proofs in [S 92], [D 92],
[R 94], [St 97] and [KS 01].

The proof of the Dalang-Morton-Willinger Theorem for the one-period
case S = (S0, S1) uses several ingredients that will be explained in the follow-
ing sections. The first problem we have to solve is the problem of redundancy.
The d given assets may have redundancy in the sense that some of them are lin-
ear combinations of others. This linear dependence, given the information F0,
may, however, depend on ω ∈ Ω. We have to find a way to describe this math-
ematically. We will do this in Sect. 6.2 where we will introduce the notion of
“the predictable range”. It is a coordinate-free approach to describe in an F0-
measurable way, the conditional linear (in-)dependence between S1

1 , . . . , Sd
1 .

The second ingredient we need is the selection principle.

6.2 The Predictable Range

Let us fix two σ-algebras F0 ⊂ F1 on Ω and a probability measure P on F1.
For an F1-measurable mapping X : Ω → Rd we will try to find the smallest
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F0-measurably parameterised subspace of Rd where X takes its values. This
idea was used in [S 92]. The problem is twofold. First we want to describe, in
an easy way, how subspaces depend on ω ∈ Ω in a measurable way. Second
we have to find in some sense the smallest subspace where X takes its values.

The first problem can be solved in the following way. With each subspace
of Rd we associate the orthogonal projection onto it and then we simply have
to ask that the matrices describing these projections (with respect to a fixed
orthonormal basis of Rd) depend on ω in an F0-measurable way. There is a
more elegant way of describing subspaces using Grassmannian manifolds but
this would bring us too far from our goal.

We start with a measure theoretic result.

Lemma 6.2.1. Let (Ω,F ,P) be a probability space and E ⊂ L0(Ω,F ,P; Rd)
a subspace closed with respect to convergence in probability. We suppose that
E satisfies the following stability property. If f, g ∈ E and A ∈ F , then
f1A + g1Ac ∈ E.

Under these assumptions there exists an F-measurable mapping P0 tak-
ing values in the orthogonal projections in Rd, so that f ∈ E if and only if
P0f = f .

Given any F-measurable projection-valued mapping P so that Pf = f for
all f ∈ E, we have that P0 = P0P = PP0, meaning that the range of P0 is a
subspace of the range of P .

The proof is rather a formality but requires a lot of technical verifications.
We start with a sublemma.

Sublemma 6.2.2. Under the assumptions of Lemma 6.2.1 we have, for f ∈ E
and a real-valued F-measurable function h, that hf ∈ E.

Proof. We first prove the statement for elementary functions h. So let h =∑n
k=1 ak1Ak

where a1, . . . , an are real numbers and A1, . . . , An form an F -
measurable partition of Ω. Since the stability assumption on E implies that
f1Ak

∈ E for each k, we obviously have that hf ∈ E as well.
The general case follows by approximation. If h is real-valued and F -

measurable we take a sequence (hn)∞n=1 of elementary F -measurable random
variables so that hn → h in probability. Clearly the closedness of E together
with hnf ∈ E for each n, implies hf ∈ E. �
Proof of Lemma 6.2.1. The construction of the projection-valued mapping
P0 will be done through the construction of appropriate orthogonal random
vectors having maximal support. The construction is done recursively and we
first take E1 = E. We then look at the family of F -measurable sets

{{f �= 0} | f ∈ E1} .

Since E1 is closed this system of sets is stable for countable unions and hence
there is an element A1 with maximal probability P[A1] and with correspond-
ing function f ∈ E1, meaning {f �= 0} = A1. By the sublemma the function
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ϕ1 = f
|f |1A1 is still in E1 and it has maximal support among all elements of

E1.
We now look at the subspace E2 of E1

E2 = {f ∈ E1 | (f, ϕ1) = 0 a.s.} .

Clearly E2 is closed and satisfies the same stability property as E1. We can
therefore find ϕ2 ∈ E2, such that |ϕ2| = 1 or 0 and such that ϕ2 has maxi-
mal support among all elements of E2. Continuing this way we find random
variables ϕ1, ϕ2, . . . , ϕd so that (ϕi, ϕj) = 0, i �= j, |ϕi| = 1 or 0 and ϕi

has maximal support among all elements of Ei. We claim that the procedure
necessarily stops after at most d steps. So we have to show that, for g ∈ E
and (g, ϕi) = 0 for all i = 1, . . . , d, we have g = 0. Obviously we have by
the maximality of ϕ1 that {g �= 0} ⊂ {ϕ1 �= 0}. Also one verifies inductively
g ∈ Ei and by the maximality of ϕi we have {g �= 0} ⊂ {ϕi �= 0}. This implies
that almost surely we have that g(ω) �= 0 implies that ϕ1(ω), . . . , ϕd(ω) are
all different from zero. But then ϕ1(ω), . . . , ϕd(ω) form an orthogonal basis of
Rd and g(ω) cannot be orthogonal to ϕ1(ω), . . . , ϕd(ω).

We now claim that

E =

{
d∑

k=1

akϕk

∣∣∣∣∣ a1, . . . , ad are F -measurable

}
. (6.2)

Indeed, denoting by F the right hand side of (6.2) we obviously have F ⊂ E

by the sublemma. Conversely if f ∈ E we compare f with
∑d

k=1(f, ϕk)ϕk.
Since g = f −∑d

k=1(f, ϕk)ϕk satisfies g ∈ E and (g, ϕi) = 0 for all i ≤ d, we
must have that g = 0. We now define P0x =

∑d
i=1(x, ϕi)ϕi. This is clearly

a projection map. Obviously f ∈ E implies P0f = f and conversely we have
that P0f = f implies f =

∑
(f, ϕi)ϕi which means that f ∈ E.

It remains to check the last statement. So let P be a projection-valued
mapping so that Pf = f for all f ∈ E. Then Pϕi = ϕi for all i and hence
PP0 = P0 = P0P . �

Remark 6.2.3. The reader might wonder why we gave so many details on these
rather obvious facts from linear algebra. The reason is that we had to check
the measurability. One way of doing this is to give explicit constructions.

Let us now return to the problem described in the beginning of this section.
If X : Ω→ Rd is F1-measurable let us look at the space

EX = {H | H : Ω→ Rd, F0-measurable and (H, X)Rd = 0 a.s.}. (6.3)

Clearly EX satisfies the assumption of lemma 6.2.1 and hence EX can be
described by a projection-valued mapping P ′. The projection-valued mapping
P = Id− P ′ defines the “orthogonal complement” of EX . Let us define:
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HX =
{

f : Ω→ Rd
∣∣ f is F0-measurable and Pf = f

}
(6.4)

By construction we have for g ∈ EX and f ∈ HX that (f, g)Rd = 0 almost
surely. Therefore we could say that f is “orthogonal” to EX a.s.. The space
P (Rd) is a subspace of Rd which is dependent on ω ∈ Ω in an F0-measurable
way. In some sense (see below for a precise statement) P (Rd) is the best
F0-measurable prediction of the space spanned by X .

More precisely:

Lemma 6.2.4. Let X ∈ L0(Ω,F1,P; Rd) and let HX be defined as above. If
h ∈ L0(Ω,F1,P; R) is F0-measurable and hX ∈ L1(Ω,F1,P; Rd) then E[hX |
F0] ∈ HX .

Proof. For α ∈ EX we have

(α, hX)
Rd = h(α, X)Rd = 0, a.s..

Therefore we have for bounded α ∈ EX that E[(α, hX)Rd | F0] = (α,E[hX |
F0])Rd = 0 almost surely. In other words E[hX | F0] ∈ HX . �

We shall apply the above results to the situation where X = ∆S1 = S1−S0

for a one-step financial market (St) adapted to the filtration (Ft)1t=0. For
H ∈ L0(Ω,F0,P; Rd) the random variable (H, X)Rd then equals the stochas-
tic integral (H · S)1. In general the integration map I : L0(Ω,F0,P; Rd) →
L0(Ω,F1,P) mapping H to (H · S)1 is not injective; this was precisely the
theme of the above considerations. We have to restrict the integration map I
to the space HX in order to make it injective. This is done in the subsequent
Definition 6.2.5 and in Lemma 6.2.6.

Definition 6.2.5. We say that H ∈ L0(Ω,F0,P; Rd) is in canonical form for
(S0, S1) if H ∈ HX where HX is defined in (6.3) and (6.4) with X = S1−S0.

Lemma 6.2.6. The kernel of the mapping I : L0(Ω,F0,P, Rd)→ L0(Ω,F1,P)
equals EX . The restriction of I to HX is injective, linear and has full range.

Proof. Let H and H ′ be in L0(Ω,F0,P; Rd) such that I(H) = I(H ′). Then
(H − H ′, X) = 0 a.s. and hence (H − H ′) ∈ EX . Since H − H ′ ∈ HX we
necessarily have H −H ′ ∈ HX ∩EX = {0}. �

6.3 The Selection Principle

In this section we consider a probability space (Ω,F ,P) and a compact met-
ric space (K, d). In the applications below (K, d) will typically be the one-
point compactification Rd ∪ {∞} of Rd. The Bolzano-Weierstrass Theorem
states that, for a sequence (xn)∞n=1 in K, we may find a convergent subse-
quence (xnk

)∞k=1. We want to generalise this theorem to a sequence (fn)∞n=1
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in L0(Ω,F ,P;K), i.e., a sequence of K-valued functions depending on ω ∈ Ω
in a measurable way. Here (K, d) is equipped with its Borel σ-algebra.

We would like to find a subsequence (nk)∞k=1 so that (fnk
(ω))∞k=1 converges

for each ω (or at least for almost each ω). If Ω is finite, this is clearly possible.
But considering a sequence (fn)∞n=1 of independent Bernoulli variables i.e.,
P[fn = 1] = P[fn = −1] = 1

2 , we see that in general this wish is asking
for too much. For each subsequence (nk)∞k=1 the sequence (fnk

)∞k=1 still forms
an independent sequence of Bernoulli variables and therefore diverges almost
surely. On the other hand, for each fixed ω ∈ Ω, we may of course extract a
subsequence (nk(ω))∞k=1 such that (fnk

(ω))∞k=1 converges. The crux is, that
the choice of the subsequence depends on ω, as we just have seen. The idea of
the subsequent notion of a measurably parameterised subsequence is that this
subsequence (nk(ω))∞k=1 may be chosen to depend measurably on ω ∈ Ω. This
nice and simple idea was observed by H.-J. Engelbert and H. v. Weizsäcker
and was successfully applied by Y.M. Kabanov and Ch. Stricker ([KS 01]) in
the present context.

Definition 6.3.1. An N-valued, F-measurable function is called a random
time. A strictly increasing sequence (τk)∞k=1 of random times is called a mea-
surably parameterised subsequence or simply a measurable subsequence.

Before stating the actual result we first mention the following lemma on
random times.

Lemma 6.3.2. Let (fn)∞n=1 be a sequence of F-measurable functions fn : Ω→
K. Let τ : Ω → {1, 2, 3, . . .} be an F-measurable random time, then g(ω) =
fτ(ω)(ω) is F-measurable.

Proof. Let B be a Borel set in K. Then

g−1(B) =
∞⋃

n=1

({τ = n} ∩ {fn ∈ B}) ∈ F . �

Proposition 6.3.3. For a sequence (fn)∞n=1 ∈ L0(Ω,F ,P;K) we may find a
measurably parameterised subsequence (τk)∞k=1 such that (fτk

)∞k=1 converges
for all ω ∈ Ω.

Proof. It suffices to check that the procedure of finding a convergent subse-
quence in the proof of the Bolzano-Weierstrass Theorem may be done in a
measurable way.

For n ≥ 1, let An
1 , . . . , An

Nn
be finite open coverings of K by sets of diam-

eter less than n−1. For each fixed ω ∈ Ω we define inductively a sequence
(Ik(ω))∞k=1 of infinite subsets of N. For k = 1 find the smallest number
1 ≤ j1 ≤ N1 such that (fn(ω))∞n=1 lies infinitely often in A1

j1
, and define

I1(ω) = {n ∈ N | fn(ω) ∈ A1
j1
}.
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If the set Ik−1(ω) is defined, find the smallest 1 ≤ jk ≤ Nk such that
(fn(ω))n∈Ik−1(ω) lies infinitely often in Ak

jk
, and define Ik(ω) = {n ∈ Ik−1(ω) |

fn(ω) ∈ Ak
jk
}. Defining τk(ω) to be the k’th element of Ik(ω) it is straightfor-

ward to check that τk is a well-defined N-valued measurable function. Clearly
(fτk(ω)(ω))∞k=1 converges for each ω ∈ Ω. �

Taking measurable subsequences of (fn)∞n=1 in L0(Ω,F ,P;K) works just
in the same way as taking subsequences of sequences (xn)∞n=1 in the compact
space K. For example, consider the usual procedure of taking a subsequence
of a subsequence: in the present framework this means that we are given two
measurably parameterised subsequences (τk)∞k=1 and (σj)∞j=1. Given (fn)∞n=1

we may extract the subsequence gk = fτk
and the subsequence hj = gσj =

fτσj
. Similarly, we may take diagonal subsequences etc., just as we are used

to do in analysis.
We often shall use the reasoning “by passing to a measurably parameterised

subsequence we may assume that (fn)∞n=1 satisfies ...” which has, as usual, the
interpretation: there exists a measurably parameterised subsequence (gk)∞k=1 =
(fτk

)∞k=1 which has the properties...

For later use we give some more properties which one may impose on a
suitably chosen measurably parameterised subsequence. We place ourselves
into the setting of Proposition 6.3.3.

Proposition 6.3.4. Under the assumptions of Proposition 6.3.3 we have in
addition:

(i) Let x0 ∈ K and define

B = {ω | x0 is an accumulation point of (fn(ω))∞n=1} .

Then the sequence (τk)∞k=1 in Proposition 6.3.3 may be chosen such that

lim
k→∞

fτk(ω)(ω) = x0, for each ω ∈ B.

(ii) Let f0 ∈ L0(Ω,F ,P;K) and define

C = {ω | f0(ω) is not the limit of (fn(ω))∞n=1} ,

where the above means that either the limit does not exist or, if it exists,
it is different from f0(ω). Then the sequence (τk)∞k=1 in Proposition 6.3.3
may be chosen such that

lim
k→∞

fτk(ω)(ω) �= f0(ω), for each ω ∈ C.

Proof. For (i) it suffices to choose the coverings (An
j )Nn

j=1 in the proof of Propo-
sition 6.3.3 such that x0 ∈ An

1 , for each n ≥ 1.
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As regards (ii) define

∆(ω) = lim sup
n→∞

d (fn(ω), f0(ω))

so that C = {∆ > 0}. Modify the construction of the proof of Proposition
6.3.3 in a straightforward way by intersecting each of the subsets Ik(ω) of N

with
{
n
∣∣∣ d(fn(ω), f0(ω)) ≥ ∆(ω)

2

}
. �

6.4 The Closedness of the Cone C

The map I : H → (H, ∆S) introduced in Sect. 6.2 above is a linear map from
L0(Ω,F0,P; Rd) to L0(Ω,F1,P; Rd) which is continuous for the convergence in
measure. We know from Lemma 6.2.6 that I becomes injective when restricted
toHX where X = ∆S = S1−S0. The relevant feature shown in the subsequent
proposition is that its inverse, defined as a function from I(L0(Ω,F0,P; Rd))
to the subspace HX of L0(Ω,F0,P; Rd) defined in (6.4) above, is continuous
too. If, in addition, the process S satisfies (NA), we may even formulate a
stronger statement.

Proposition 6.4.1. Let S = (S0, S1) be adapted to (Ω, (Ft)1t=0,P) and let
(Hn)∞n=1 be a sequence in L0(Ω,F0,P; Rd) in canonical form, i.e., Hn ∈ H∆S.
Then we have that

(i) (Hn)∞n=1 is a.s. bounded iff ((Hn, ∆S))∞n=1 is.
(i’) (Hn)∞n=1 converges a.s. iff ((Hn, ∆S))∞n=1 does.

If we suppose in addition that S satisfies (NA) as defined in (6.1) we also
have

(ii) (Hn)∞n=1 is a.s. bounded iff ((Hn, ∆S)−)∞n=1 is.
(ii’) (Hn)∞n=1 converges a.s. to zero iff ((Hn, ∆S)−)∞n=1 does so.

Proof. The “only if” direction is trivial in all the above assertions and holds
true without the assumption (NA) and/or that Hn is in canonical form. Let
us now show the “if” direction.

(i) and (ii): Suppose that (Hn)∞n=1 fails to be a.s. bounded and let us show
that ((Hn, ∆S))∞n=1 (resp. ((Hn, ∆S)−)∞n=1) fails so too. We apply Proposition
6.3.4 (i) to K = Rd ∪ {∞} and x0 =∞: there is a measurably parameterised
subsequence (Lk)∞k=1 = (Hτk)∞k=1 such that (Lk(ω)) diverges to∞ on a set B
of positive measure. Note that each Lk is an integrand in canonical form.

Let L̂k = Lk1B∩{|Lk|≥1}/|Lk| in order to find a sequence of integrands
in canonical form such that |L̂k(ω)| = 1, for ω ∈ B and k sufficiently large.
By passing once more to a measurably parameterised subsequence we may
suppose that (L̂k)∞k=1 converges to an integrand L̂, which is in canonical form
and satisfies |L̂| = 1 on B.
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As regards (i) note that the assumption of the a.s. boundedness of
((Hn, ∆S))∞n=1 implies that (L̂k, ∆S) tends to zero a.s.; indeed, on the set
B the ratio L̂k

Lk tends to zero, while outside of B the integrand L̂k vanishes.
Hence (

L̂, ∆S
)

= lim
k→∞

(
L̂k, ∆S

)
= 0, a.s.,

which by Lemma 6.2.6 implies that L̂ = 0, the required contradiction.
As regards (ii) note that(

L̂, ∆S
)
−

= lim
k→∞

(
L̂k, ∆S

)
−

= 0, a.s..

From the no-arbitrage assumption (NA) we now may conclude that
(
L̂, ∆S

)
=

0 a.s., which again implies that L̂ = 0 and yields the desired contradiction.
(i’): Suppose now that (Hn)∞n=1 does not converge a.s., assume that

((Hn, ∆S))∞n=1 does so and let us work towards a contradiction. By (i) above
we may assume, that (Hn)∞n=1 is a.s. bounded. Applying Proposition 6.3.3
to K = Rd ∪ {∞}, we may find a measurably parameterised subsequence
(Hτk)∞k=1 converging a.s. to some H0. Applying Proposition 6.3.4 (ii) to f0 =
H0 we may find another measurably parameterised subsequence (Hσk)∞k=1

converging a.s. to some Ĥ0 ∈ H for which we have P
[
Ĥ0 �= H0

]
> 0. Note

that H0 as well as Ĥ0 are in canonical form.
As
(
H0 − Ĥ0, ∆S

)
= limn→∞(Hn, ∆S)− limn→∞(Hn, ∆S) = 0, we ob-

tain again a contradiction to Lemma 6.2.6.
(ii’): Suppose now that S satisfies (NA), that (Hn)∞n=1 does not converge to

zero a.s., while ((Hn, ∆S)−)∞n=1 does. Again we may use Proposition 6.3.4 (ii),
this time applied to f0 = 0, to find a measurably parameterised subsequence
of (Hn)∞n=1 converging a.s. to some H0 with P[H0 �= 0] > 0. We have

(H0, ∆S)− = lim
n→∞(Hn, ∆S)− = 0, a.s..

From (NA) we conclude that (H0, ∆S) = 0 a.s. so that we get again a con-
tradiction to Lemma 6.2.6. �

We can now formulate a theorem on the closedness of the space (resp.
cone) of the stochastic integrals (resp. of functions dominated by stochastic
integrals). Assertion (i) is due to Ch. Stricker [Str 90] and (ii) is due to the
second named author [S 92].

Theorem 6.4.2. Let the Rd-valued one-step process S = (S0, S1) be adapted
to (Ω, (Ft)1t=0,P)

(i) The vector space

K = {(H, ∆S) | H ∈ L0(Ω,F0,P; Rd)}

is closed in L0(Ω,F1,P).
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(ii) If S satisfies (NA) then the cone

C = K − L0
+(Ω,F1,P)

is closed in L0(Ω,F1,P) too.

Proof. (i): Let (fn) = (Hn, ∆S)∞n=1 be a sequence in K converging to f0 ∈
L0(Ω,F1,P) with respect to convergence in measure. We may suppose that
each Hn is in canonical form. Moreover, by passing to a subsequence we
may suppose that (fn)∞n=1 converges a.s. to f0. Proposition 6.4.1 implies that
(Hn)∞n=1 converges a.s. to some H0 ∈ L0(Ω,F1,P; Rd) so that f0 = (H0, ∆S),
whence f0 ∈ K.

(ii): Let fn = gn−hn be a sequence in C converging in probability to f0 ∈
L0(Ω,F1,P), where gn = (Hn, ∆S), where Hn is an integrand in canonical
form and hn ∈ L0

+(Ω,F1,P). We have to show that f0 belongs to C. Again
we may suppose that (fn)∞n=1 converges a.s. to f0. As gn ≥ fn we deduce
that ((Hn, ∆S)−)∞n=1 is a.s. bounded, so that we may conclude from (NA)
and Proposition 6.4.1 (ii) that (Hn)∞n=1 is a.s. bounded too. By passing to a
measurably parameterised subsequence (τk)∞k=1 we may suppose that gτk

=
(Hτk , ∆S) converges a.s. to (H0, ∆S), for some H0 ∈ E. Note that (fτk

)∞k=1

still converges a.s. to f0 so that hτk
= fτk

− gτk
converges a.s. to some h0 ≥ 0.

Hence f0 = (H0, ∆S)− h0 ∈ K − L0
+(Ω,F1,P) = C. �

In assertion (ii) of the preceding theorem, the no-arbitrage assumption
cannot be dropped. Indeed, consider the following simple example ([S 92]).
Let Ω = [0, 1], F0 trivial, F1 the Borel σ-algebra and P Lebesgue measure.
Let S0 ≡ 0 and S1(ω) = ω, for ω ∈ [0, 1], and

fn(ω) =
{

nω for 0 ≤ ω ≤ n−1

1 for n−1 ≤ ω ≤ 1.

As fn ≤ gn := n∆S, we have fn ∈ C, for each n. Clearly (fn)∞n=1 converges
a.s. to the constant function f0 = 1. But f0 is not in C, as for each f ∈ C we
may find a constant M > 0 s.t. almost surely f(ω) ≤ Mω so that f(ω) ≤ 1

2
a.s. for 0 ≤ ω ≤ 1

2M .
Summing up, we have an example of a process S = (St)1t=0 such that C

is not closed in L0(Ω,F1,P). The crux is, of course, that S does not satisfy
(NA).

6.5 Proof of the Dalang-Morton-Willinger Theorem
for T = 1

As we have proved in Theorem 6.4.2, the cone C ∈ L0(Ω,F1,P) is closed if
(S0, S1) satisfies the (NA) condition. The Kreps-Yan Theorem can now be
applied in such a way that it yields the existence of an equivalent martingale
measure.
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Theorem 6.5.1. Let S = (S0, S1) be an (F0,F1)-adapted Rd-valued process
satisfying the (NA) condition. Then we have the existence of an equivalent
probability measure Q so that

(i) S0, S1 ∈ L1(Q),
(ii) S0 = EQ[S1 | F0],
(iii) dQ

dP is bounded.

Proof. First we take an equivalent probability measure P1 so that dP1
dP is

bounded and S0, S1 ∈ L1(P1). To do so we could take, for example, dP1
dP =

c exp(−‖S0‖Rd − ‖S1‖Rd), where c is a suitable normalisation constant.
The next step consists of considering the set

C1 = C ∩ L1(Ω,F1,P1)

where C is defined as in Theorem 6.4.2. Because C is closed in L0(P), the set
C1 is closed in L1(P1). Obviously C1 is a convex cone (since C is a convex
cone). The (NA) condition implies that C1 ∩ L1

+(Ω,F1,P1) = {0}. Theorem
5.2.3 now gives the existence of an equivalent probability measure Q so that
dQ
dP1

is bounded and so that EQ[f ] ≤ 0 for all f ∈ C1. Obviously S0, S1 ∈
L1(Q) since dQ

dP1
is bounded. Since for each coordinate j = 1, . . . , d and each

A ∈ F0 we have 1A(Sj
1 − Sj

0) ∈ C1 and −1A(Sj
1 − Sj

0) ∈ C1, we must have
EQ[1ASj

1 ] = EQ[1ASj
0]. This shows S0 = EQ[S1 | F0]. Since dQ

dP = dQ
dP1

dP1
dP

we also have that dQ
dP is bounded. �

Remark 6.5.2. One may ask whether it is possible to replace in Theorem 6.5.1
assertion (iii) by the assertion that dP

dQ is bounded, i.e., by

(iii’) there is a constant c > 0 such that dQ
dP > c almost surely.

A moment’s reflexion reveals that, in general, this is not possible. Indeed,
if it happens that ‖St‖1 = E[|St|] = ∞, then for each probability measure
Q with dQ

dP ≥ c > 0 we also have EQ[|St|] = ∞, so that S cannot be a Q-
martingale. But even if S is uniformly bounded, we cannot replace (iii) by
(iii’) as the subsequent example shows.

Let Ω = N, the σ-algebra F0 be generated by the partition of Ω into the
sets ({2n− 1, 2n})∞n=1 and F1 be the power set of Ω. Define the probability
measure P on F1 by P[2n − 1] = P[2n] = 2−(n+1). Let S0 ≡ 0, S1 = 1
on {2n− 1} and S1 = −2−n on {2n} to obtain an R-valued adapted process
S = (St)1t=0 satisfying the (NA) condition. If Q is a probability measure on F1

with dQ
dP ≥ c > 0, we have Q[2n−1] ≥ c2−(n+1). If in addition EQ[S1 | F0] = 0,

we must have Q[2n] = 2nQ[2n − 1] ≥ c
2 , which is a contradiction to the

finiteness of Q. Hence, there cannot exist a measure Q satisfying (i) and (ii)
of Theorem 6.5.1 and (iii’) above. We refer to [R 04] and [RS 05] for a more
thorough analysis of condition (iii’).
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6.6 A Utility-based Proof of the DMW Theorem
for T = 1

We give another proof of the theorem of Dalang-Morton-Willinger (for the
case T = 1) which is based on the ideas of utility maximisation. This proof is
due to C. Rogers [R 94]. The basic idea is — transferring the results on utility
maximisation, obtained in Chap. 3 for the case of finite Ω, to the present
situation — that for the optimal investment X̂, the function U ′(X̂) should
define the density of an equivalent martingale measure, up to a normalising
constant. This was proved in Theorem 3.1.3 above for the case of finite Ω
and the hope is, of course, that this result should also hold in a more general
context. Rogers’ idea was to exploit this basic relation to find an equivalent
martingale measure in the context of the theorem of Dalang-Morton-Willinger.
Among other features such an approach has the advantage of being more
constructive than the mere existence result provided by the theorem of Kreps-
Yan. On the other hand we note that the present proof will not yield a bounded
density dQ

dP , i.e., we do not obtain assertion (iii) of Theorem 6.1.1.

Let us fix the Rd-valued process S = (S0, S1) based on (Ω, (Ft)1t=0,P) and
assume that it is free of arbitrage. As utility function we use U(x) = −e−x

and as initial endowment x0 = 0.
Our utility maximisation problem consists of finding the optimal element

ĥ ∈ L0(Ω,F0,P; Rd) solving the maximisation problem

E [U ((h, ∆S))]→ max!, h ∈ L0(Ω,F0,P, Rd). (6.5)

In order to assure a well-defined solution to this problem, we need
some preliminary work. As a first step we may suppose that, for each
h ∈ L∞(Ω,F0,P; Rd),

E [|U ((h, ∆S))|] <∞. (6.6)

To guarantee that this integrability condition holds, it suffices to pass from
P to the equivalent probability measure P′ defined by

dP′

dP
= c exp

(
−‖∆S‖2

Rd

)
,

where c > 0 is a normalising constant. Hence we may suppose that the original
P satisfies (6.6).

The idea of the proof is that, for any maximising sequence (hn)∞n=1 in
L∞(Ω,F0,P; Rn) for the optimisation problem (6.5), the stochastic integrals
fn := (hn, ∆S) automatically converge in measure to the optimal function f̂ ;
if, in addition, (hn)∞n=1 is in the predictable range of S1−S0, then (hn)∞n=1 will
also converge in measure to an optimal ĥ ∈ L0(Ω,F0,P; Rd). Having found ĥ

we may conclude that f̂ =
(
ĥ, ∆S

)
is a.s. finite, and that the formula

dQ
dP

= cU ′
(
f̂
)

(6.7)
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defines the desired equivalent martingale measure Q, where c > 0 is a suitable
normalising constant. This is roughly the strategy of proof and we now have
to work through the details.

We need an auxiliary result (compare [S 92] and Sect. 9.8 below).

Lemma 6.6.1. Let U(x) = −e−x and let (fn)∞n=1 be a sequence of real-valued
measurable functions defined on (Ω,F ,P) such that

a := lim
n→∞ sup

gn∈conv{fn,fn+1,...}
E[U(gn)] > −∞. (6.8)

Then there is a unique element g0 ∈ L0(Ω,F ,P; ]−∞,∞]) such that, for
each sequence gn ∈ conv{fn, fn+1, . . .} with limn→∞ E[U(gn)] = a, we have
that (gn)∞n=1 converges to g0 in probability.

Proof. Let gn ∈ conv{fn, fn+1, . . .} be such that limn→∞ E[U(gn)] = a. Fix
n, m and α > 0 and let

An,m,α =
{
|gn − gm| > α and min(gn, gm) < α−1

}
.

From the uniform concavity of U on ] −∞, α−1 + α] we conclude that there
exists a β = β(α) > 0 such that, for n, m ∈ N and ω ∈ An,m,α, we have

U

(
gn(ω) + gm(ω)

2

)
≥ U(gn(ω)) + U(gm(ω))

2
+ β.

For ω �∈ An,m,α we only apply the concavity of U to obtain

U

(
gn(ω) + gm(ω)

2

)
≥ U(gn(ω)) + U(gm(ω))

2
.

Hence, for g = gn+gm

2 we have

E[U(g)] >
E[U(gn)] + E[U(gm)]

2
+ βP[An,m,α].

If (gn)∞n=1 is a maximising sequence for (6.8) we get therefore for each α > 0

lim
n,m→∞P[An,m,α] = 0.

This is tantamount to saying that (gn)∞n=1 is a Cauchy sequence in
L0(Ω,F ,P; ]−∞,∞]), i.e., with respect to convergence in probability on the
half-closed line ]−∞,∞]. Letting g0 = limn→∞ gn we have found our desired
limiting function. We observe that we cannot exclude the possibility, that g0

assumes the value +∞ on a set of strictly positive probability.
As to the uniqueness of g0, let g′n be any other sequence in conv{fn, fn−1, . . .}

such that limn→∞ E[U(gn)] = a. Then by the same argument as above,
(g′n)∞n=1 is also Cauchy in L0(Ω,F ,P; ]−∞, +∞]). By considering g′′n := gn for
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odd n and g′′n := g′n for even n, we may also conclude that (g′n)∞n=1 converges
in probability to g0. �

To sketch the idea of Rogers’ proof let us first assume that F0 is trivial
so that L0(Ω,F0,P, Rd) may be identified with Rd. Then the problem (6.5)
reduces to find the optimal vector Ĥ ∈ Rd.

So, let (Hn)∞n=1 be a sequence in Rd such that

lim
n→∞E [U ((Hn, ∆S))] = sup

H∈Rd

E [U ((H, ∆S))] .

From the previous lemma we know that the sequence fn := (Hn, ∆S)
converges in measure to a function g0 ∈ L0(Ω,F1,P, ]−∞,∞]); we also know
that every sequence gn ∈ conv{fn, fn+1, . . .} converges to g0 in measure.

We want to conclude that (Hn)∞n=1 converges; for this we still need two
ingredients: first we have to suppose that each Hn is in the predictable range
of S (see 6.4.1 above); in the present case of a trivial σ-algebra F0 this just
means that Hn lies in the smallest subspace R of Rd such that ∆S takes a.s.
its values in R. We may always pass from an arbitrary Hn ∈ Rd to P (Hn)
where P denotes the orthogonal projection onto R, as (Hn, ∆S) = (PHn, ∆S)
almost surely.

The second ingredient is the assumption of no-arbitrage. Using this as-
sumption we claim that (Hn)∞n=1 is bounded in Rd and therefore g0 cannot
assume the value +∞.

First we have to isolate the trivial case when ∆S = 0 a.s. so that R = {0}
and P = 0. In this case we may define the martingale measure Q via dQ

dP = 1,
which — for trivial reasons — coincides with (6.7).

Hence we may suppose that R is a subspace of Rd of dimension dim(R) ≥ 1
and define

γ = inf {E [(H, ∆S)− ∧ 1] | H ∈ R, ‖H‖Rd = 1} . (6.9)

As H �→ E[(H, ∆S)−∧1] is continuous on the unit sphere of R (by Lebesgue’s
theorem) and strictly positive (by (NA) and the construction of R) we deduce
from the compactness of the unit sphere of Rd that γ is a strictly positive
number.

Next we show that (Hn)∞n=1 is bounded. Indeed, otherwise there is an
increasing sequence (nk)∞k=1 such that ‖Hnk

‖Rd ≥ k so that

E [U((Hnk
, ∆S))] ≤ −‖Hnk

‖RdE

[(
Hnk

‖Hnk
‖Rd

, ∆S

)
−

]
≤ −kγ,

in contradiction to the assumption that (Hn)∞n=1 is a maximising sequence.
Hence we obtain that g0 is a.s. finite.

Finally we show that (Hn)∞n=1 converges in Rd. Indeed, otherwise there is
α > 0 and sequences (nk)∞k=1, (mk)∞k=1 tending to infinity such that
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‖Hnk
−Hmk

‖Rd ≥ α,

so that

E

[(
Hnk

−Hmk

α
, ∆S

)
−
∧ 1

]
≥ αγ,

contradicting Lemma 6.6.1, which asserts that (Hn, ∆S) converges a.s. to g0.
Summing up, we deduce from the (NA) assumption and the fact that we

choose the maximising sequence (Hn)∞n=1 in the predictable range R that
(Hn)∞n=1 converges in Rd. Denoting by Ĥ the limit, we deduce from Fatou’s
lemma that Ĥ is the optimiser for (6.5).

Now define the measure Q on F1 by

dQ
dP

= cU ′
((

Ĥ, ∆S
))

,

where the normalising constant c > 0 is chosen such that E
[

dQ
dP

]
= 1 (note

that by (6.6) we have E
[∣∣∣U ′

((
Ĥ, ∆S

))∣∣∣] <∞).
To show that Q is indeed a martingale measure we have to show that

EQ [(H, ∆S)] = 0, for H ∈ Rd

or, equivalently,
EQ [(H, ∆S)] ≤ 0, for H ∈ Rd.

To do so, we use a variational argument:

EQ [(H, ∆S)]

= cEP

[
(H, ∆S)U ′

((
Ĥ, ∆S

))]
= c lim

α↘0

(
E
[
U
((

Ĥ + αH, ∆S
))]
−E
[
U
((

Ĥ, ∆S
))]

α

)
≤ 0

where we have used the fact hat U((Ĥ+αH,∆S))−U((Ĥ,∆S))
α is a pointwise in-

creasing function of α (by the concavity of U) so that the monotone conver-
gence theorem applies.

We thus have found the desired martingale measure Q under the simpli-
fying assumption that F0 is trivial.

We now extend this argument to the case of an arbitrary σ-algebra F0.

Proposition 6.6.2. Suppose that the Rd-valued process S = (S0, S1) based on
and adapted to (Ω, (Ft)1t=0,P) satisfies (NA). Let U(x) = −e−x and suppose
that

E [|U ((H, ∆S))|] <∞ (6.10)

for each H ∈ L∞(Ω,F0,P; Rd). Denote by P the F0-measurable predictable
projection associated to ∆S = S1 − S0. Then the following statements hold
true.
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(i) There is a unique optimiser Ĥ ∈ L0(Ω,F0,P; Rd) for the maximisation
problem

E [U ((H, ∆S))]→ max, H ∈ L0(Ω,F0,P; Rd), (6.11)

which is in canonical form (i.e., Ĥ = P (Ĥ)).
(ii) Every maximising sequence Hn ∈ L0(Ω,F0,P; Rd) for (6.11), verifying

Hn = P (Hn), converges to Ĥ in measure.
(iii) The equation

dQ̂
dP

:=
exp
(
−
(
Ĥ, ∆S

))
E
[
exp
(
−
(
Ĥ, ∆S

))]
defines a measure Q̂ on F1 such that S is a martingale under Q̂.

Before starting the proof of the proposition we remark that condition
(6.10) is a “without loss of generality” assumption: the argument (6.6) above
also applies to the present setting to yield a measure P′ ∼ P such that
EP′ [|U((H, ∆S))|] <∞ for each H ∈ L∞(Ω,F0,P; Rd).

Proof. We shall mimic the above argument in an “F0-parameterised” way.
The crucial step is the extension of (6.9) to the present setting. Let P denote
the F0-measurable predictable range projection associated to ∆S. Let B =
{E [‖∆S‖Rd ∧ 1 | F0] = 0} so that B is the biggest set (modulo null-sets) in
F0 on which ∆S = 0. Note that P vanishes on B.

The case B = Ω again is trivial as we then have ∆S = 0 a.s. so that Ĥ = 0
and dQ̂

dP = 1.

Excluding this case we define

H1 =
{

H ∈ H∆S1
∣∣ ‖H‖Rd ≥ 1Bc a.s.

}
.

Define the F0-measurable non-negative function

γ = ess inf {E [ (H, ∆S)− ∧ 1 | F0] | H ∈ H1} .

We claim that the function γ is a.s. strictly positive on Bc = Ω\B. Indeed
for H1, H2 ∈ H1 and A ∈ F0, the function H = H11A + H21Ω\A is in H1 too;
hence we may — similarly as in the proof of Lemma 6.2.1 — find a sequence
(Hn)∞n=1 ∈ H1 such that

γ = lim
n→∞E [ (Hn, ∆S)− ∧ 1 | F0] , a.s..

We may suppose that Hn = PHn and, by multiplying with ‖Hn‖−1
Rd , that

‖Hn‖Rd = 1 almost surely on Bc. We may apply Proposition 6.3.4 above to
find an F0-measurably parameterised subsequence (Hτk

)∞k=1 converging a.s. to
H ∈ L0(Ω,F ,P; Rd) such that (H̃, ∆S)−∧1 = lim infn→∞(Hn, ∆S)−∧1 a.s.,
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for which we then have H̃ = P (H̃), ‖H̃‖Rd = 1 a.s. on Bc and by Lebesgue’s
theorem,

γ = E [ (H, ∆S)− ∧ 1 | F0] .

Letting A = {γ = 0} we have (1AH̃, ∆S)− = 0 a.s., whence the (NA)
assumption implies that (1AH̃, ∆S) = 0 almost surely. As 1AH̃ satisfies
1AH̃ = P (1AH̃) we must have 1AH̃ = 0 a.s., so that A = B. Hence we
have shown that γ is a.s. strictly positive on Bc.

Now let (Hn)∞n=1 ∈ L0(Ω,F0,P; Rd) be a maximising sequence for (6.11).
By passing to (P (Hn))∞n=1 we may assume that Hn is in canonical form, i.e.,
Hn = P (Hn). We infer from Lemma 6.6.1 that fn = (Hn, ∆S) converges in
measure to some g0 ∈ L0(Ω,F1,P; ]−∞,∞]).

We now show that (Hn)∞n=1 remains bounded in L0(Ω,F0,P; Rd), i.e., for
ε > 0 there is M > 0 such that

P [‖Hn‖Rd ≥M ] < ε, for n ≥ 1. (6.12)

Indeed, otherwise there is α > 0 and an increasing sequence (nk)∞k=1 such
that

P
[
‖Hnk

‖
Rd ≥ k

]
≥ α. (6.13)

On the other hand, the boundedness from below of (E[U((Hn, ∆S))])∞n=1

implies in particular the boundedness of (E[(Hn, ∆S)−])∞n=1, say by a constant
M > 0. Hence

H̃nk
=

Hnk

k
1{‖Hnk

‖≥k}

is in canonical form, satisfies

E
[(

H̃nk
, ∆S

)
−

]
≤ M

k

and ‖H̃nk
‖Rd ≥ 1 on Ak = {‖Hnk

‖Rd ≥ k}. It follows that

E [γ1Ak
] ≤ E

[(
H̃nk

, ∆S
)
−
∧ 1
]
≤ M

k
,

which in view of (6.13) leads to a contradiction to the strict positivity of γ.
The L0-boundedness of (Hn)∞n=1 given by (6.12) implies in particular that

g0 is a.s. finite.
We now show that (Hn)∞n=1 is a Cauchy-sequence in L0(Ω,F ,P; Rd), i.e.,

with respect to convergence in measure. Indeed, suppose to the contrary that
there is α > 0 and sequences (nk)∞k=1, (mk)∞k=1 tending to infinity such that

P [‖Hnk
−Hmk

‖Rd > α] > α.
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Then on one hand side the strict positivity of γ implies that

E

[(
Hnk

−Hmk

α
, ∆S

)
−
∧ 1

]
, k ∈ N,

remains bounded away from zero, whence ((Hnk
− Hmk

, ∆S))∞k=1 does not
converge to zero in measure. Combining this fact with the L0-boundedness
(6.12) of ((Hn, ∆S))∞n=1 we deduce that ((Hnk

, ∆S))∞k=1 cannot converge in
L0(Ω,F1,P; ] − ∞, +∞]), a contradiction to Lemma 6.6.1. Hence (Hn)∞n=1

converges a.s. to some Ĥ ∈ L0(Ω,F0,P; Rd) for which we have Ĥ = P (Ĥ)
and (Ĥ, ∆S) = g0. Assertions (i) and (ii) now follow by the same arguments
as discussed before.

As regards (iii) let H ∈ L∞(Ω,F0,P; Rd) and estimate again

EQ̂ [(H, ∆S) | F0]

= cEP

[
(H, ∆S)U ′

(
(Ĥ, ∆S)

)
| F0

]
= cEP

[
lim
α→0

U((Ĥ + αH, ∆S))− U((Ĥ, ∆S))
α

∣∣∣∣∣ F0

]
≤ 0,

where again we have used in the last inequality the monotone convergence
theorem, the concavity of U and (6.10). �

6.7 Proof of the Dalang-Morton-Willinger Theorem
for T ≥ 1 by Induction on T

Proof of Theorem 6.1.1. We proceed by induction on T . For T = 1 Theorem
6.5.1 applies. So suppose Theorem 6.1.1 holds true for T − 1.

We now consider the process (St)T
t=1 adapted to the filtration (Ft)T

t=1.
Because of the inductive hypothesis we suppose that there is a probability
measure Q1, defined on FT , equivalent to P, and so that

(i) dQ1

dP is bounded,
(ii) S1, . . . , ST are in L1(Ω,FT ,Q1),
(iii) (St)T

t=1 is a Q1-martingale, i.e., for all t ≥ 1, A ∈ Ft we have∫
A

StdQ1 =
∫

A

St+1dQ1.

The one-step result in the DMW Theorem (Theorem 6.5.1 or Proposition
6.6.2) applied to the process (St)1t=0, the probability space (Ω,F1,Q1) and the
filtration (Ft)1t=0, gives us a bounded function f1 so that: f1 is F1-measurable,
f1 > 0, EQ1 [f1] = 1, EQ1 [ |S1| f1] <∞, EQ1 [ |S0| f1] <∞ and for all A ∈ F0

we have
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A

S0f1dQ1 =
∫

A

S1f1dQ1.

Let us finally define Q on FT by the rule

Q[A] =
∫

A

f1dQ1 for all A ∈ FT .

Of course this means that dQ
dP = f1

dQ1

dP and hence this is a bounded random
variable. Furthermore dQ

dP > 0 almost surely and hence Q and P are equiva-
lent. Now let us check the integrability properties as well as the martingale
properties. For t = 1, . . . , T we have∫

Ω

|St|dQ =
∫

Ω

|St|f1dQ1 <∞,

by construction of Q1 and the boundedness of f1.
The martingale property of (St)T

t=0 with respect to Q is also an easy
calculation. Indeed, for all A ∈ F0 we have∫

A

S0dQ =
∫

A

S0f1dQ1 =
∫

A

S1f1dQ1 =
∫

A

S1dQ

by construction of f1. For t ≥ 1 we remark that f1 was F1-measurable and
bounded, which means that the sequence of the following equalities is easily
justified. If A ∈ Ft, t ≥ 1 we have∫

A

StdQ =
∫

A

Stf1dQ1 =
∫

A

St+1f1dQ1 =
∫

A

St+1dQ.

This ends the proof of the induction step. �

6.8 Proof of the Closedness of K in the Case T ≥ 1

In this section we extend Stricker’s lemma (Theorem 6.4.2 (i)) to the case
T ≥ 1.

Proposition 6.8.1. Let the process S = (St)T
t=0 be Rd-valued and (Ft)T

t=0-
adapted. The space

K =

{
T∑

t=1

(Ht, ∆St)

∣∣∣∣∣ (Ht)T
t=1 Rd-valued and predictable

}

is a closed subspace of L0(Ω,FT ,P).
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Proof. The proof is by induction on T . For T = 1 the statement is Stricker’s
lemma, Theorem 6.4.2 (i). The inductive hypothesis reads:

K2 =

{
T∑

t=2

(Ht, ∆St)

∣∣∣∣∣ (Ht)T
t=2 predictable and Rd-valued

}
(6.14)

is closed in L0(Ω,FT ,P). The basic ingredient of the proof is the reduction of
the integrands H to a canonical form. However, in this multiperiod setting we
have to be more careful, since the elements f ∈ K can, a priori, be represented
in many different ways.

Let P : L0(Ω,F0,P; Rd)→ L0(Ω,F0,P; Rd) be the projection on the F0-
predictable range of ∆S1 as in Lemma 6.2.1 and let

H1 = {H | H is Rd-valued F0-measurable and PH = H}. (6.15)

In other words, the elements of H1 are in canonical form for ∆S1. Let I1

be the linear mapping I1 : H1 → L0(Ω,FT ,P), I1(H1) = (H1, ∆S1). As
in Sect. 6.4 above, I1 is continuous and injective. Let F1 ⊂ H1 be defined
by F1 = (I1)−1(K2 ∩ I1(H1)). Clearly F1 is a closed subspace of H1 since
K2 is closed by hypothesis. Also F1 is stable in the sense of Lemma 6.2.1.
This means that there is a projection-valued F0-measurable map, called P0 :
L0(Ω,F0,P; Rd) → L0(Ω,F0,P; Rd), so that f ∈ F1 if and only if P0f = f
a.s.. Now we take

E1 = {H1 ∈ H1 | P0H1 = 0}
=
{

H1 ∈ L0(Ω,F0,P; Rd)
∣∣ P (Id− P0)H1 = H1

}
.

The elements H1 in E1 are in canonical form and the integrals (H1, ∆S1)
cannot be obtained by stochastic integrals on (St)T

t=2 (see (6.14)). We have
that

K =

{
T∑

t=1

(Ht, ∆St)

∣∣∣∣∣ (Ht)T
t=1 is Rd-valued, predictable and H1 ∈ E1

}
.

Moreover the decomposition of elements f ∈ K into f = (H1, ∆S1)+f2 where
H1 ∈ E1 and f2 ∈ K2 is unique.

Let now fn = (Hn
1 , ∆S1)+fn

2 be a sequence in K with Hn
1 ∈ E1, fn

2 ∈ K2

so that fn → f almost surely. We have to show that f ∈ K. We will show
that (Hn

1 )∞n=1 is bounded a.s. and the selection principle will do the rest.
Let A = {lim sup |Hn

1 | =∞}. By Proposition 6.3.4 we have that there is a
F0-measurably parameterised subsequence (τn)∞n=1 so that: |Hτn

1 | → ∞ on A
and Hτn

1 → H1 on Ac for some H1 ∈ E1. We will show that P[A] = 0. If
this were not the case we could apply Proposition 6.3.3 and suppose that we
have Hτn

1
|Hτn

1 | → ψ1 a.s. on the set A, where ψ1 = ψ11A is some F0-measurable

function supported by A where it takes values in the unit sphere of Rd. Clearly
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the functions Hτn
1

|Hτn
1 |1A are still in E1 since E1 is closed and stable in the sense

of lemma 6.2.1. Therefore ψ1 ∈ E1. Indeed Hτn
1 =

∑∞
m=1 1{τn=m}Hm

1 where
Hm

1 ∈ E1 and the τn are F0-measurable. Since |Hτn
1 | → ∞ on A, we have

that a.s. ((
Hτn

1

|Hτn
1 |

, ∆S1

)
+

f τn
2

|Hτn
1 |

)
1A −→ 0.

It follows that fτn
2

|Hτn
1 |1A → −(ψ1, ∆S1)1A and hence by the closedness of K2

we have −(ψ1, ∆S1)1A ∈ K2. This implies that (ψ1, ∆S1) = 0 since ψ1 ∈ E1.
But since ψ1 is in canonical form we must have ψ1 = 0 a contradiction to
|ψ1| = 1 on A so that P[A] = 0.

So we get an F0-measurably parameterised sequence (Hτn
1 )∞n=1 converging

a.s. to H1 on Ω. This implies that f τn
2 → f − (H1, ∆S1) and hence f2 =

f − (H1, ∆S1) ∈ K2 by the closedness of K2. Finally f = (H1, ∆S1) + f2

where H1 ∈ E1 and f2 ∈ K2 i.e. f ∈ K. �

6.9 Proof of the Closedness of C in the Case T ≥ 1
under the (NA) Condition

We will use the same notation as in the previous section. This means that for
the (Ft)T

t=0-adapted Rd-valued process (St)T
t=0 we introduce H1, K2, and I1

as in (6.14) and (6.15).
We say that a predictable Rd-valued process (Ht)T

t=1 is in canonical form,
if for each t, Ht is in canonical form for ∆St = (St − St−1). The spaces Ht

are defined in the same way as H1 i.e.

Ht =
{
Ht | Ht is Rd-valued, Ft−1-measurable and PtHt = Ht

}
.

Here Pt is the projection in L0(Ω,Ft−1,P; Rd) associated with the predictable
range of ∆St = St − St−1.

Proposition 6.9.1. With the above notation and under the assumption that
S satisfies the (NA) condition we have

(i) I : H1 ×H2 × . . .×HT → L0(Ω,FT ,P), I((Ht)T
t=1) =

∑T
t=1(Ht, ∆St) =

(H · S)T is injective.
(ii) If (Hn)∞n=1 is a sequence in H1×H2×. . .×HT so that I(Hn)− = (Hn·S)−T

is bounded a.s., then (Hn)∞n=1 = (Hn
1 , . . . , Hn

T )∞n=1 is bounded a.s.
(iii) If (fn)∞n=1 is a sequence in K which is bounded a.s., then there is a

FT -measurably parameterised subsequence σn so that fσn → f a.s. and
f ∈ K.

Proof. (i): The first statement will follow by induction on T from the fact
that I1(H1) ∈ K2 gives H1 = 0 if H1 is in canonical form. This statement is
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proved as follows. Let (H1, ∆S1) + f2 = 0 where H1 is in canonical form and
f2 ∈ K2. On the set A = {(H1, ∆S1) < 0} we have that f2 > 0 and since
1Af2 ∈ K2 we have that P[A] > 0 gives an arbitrage opportunity. On the set
{(H1, ∆S1) > 0} we replace f2 by −f2 and get the same result. This means
that (H1, ∆S1) = 0 and since H1 is in canonical form we get H1 = 0 .

(iii): This assertion is immediate from the closedness of K (Proposition
6.8.1) and the measurable sub-sequence principle (Proposition 6.3.3). The
reason why we stated it explicitly is to avoid confusion: we only claim that
the random subsequence (σn)∞n=1 is measurably parameterised w.r. to FT ; we
do not claim that Hσn = (Hσn

1 , . . . , Hσn

T ) is predictable.
(ii): To prove (ii) we again use induction on T . For T = 1 we refer to

Proposition 6.4.1. So let us suppose that assertions (ii) and (iii) hold true
for T − 1 and fix the horizon T . We now show that the assumption of (ii)
implies that (Hn

1 )∞n=1 is a.s. bounded. We proceed in the same way as in the
proof of 6.8.1. Let A = {lim sup |Hn

1 | = +∞} and let τn be an F0-measurably
parameterised subsequence selected in such a way that |Hτn

1 | → ∞ on A

and Hτn
1

|Hτn
1 | → ψ1 on A. On the set A we must have |ψ1| = 1 and we may

put ψ1 = 0 on the complement of A. We remark that this is possible by
the selection principle and that ψ1 ∈ H1 i.e. ψ1 is in canonical form. Now
(Hτn · S)T = (Hτn

1 , ∆S1) + f τn
2 , where f τn

2 ∈ K2. On the set A we get(
Hτn

|Hτn
1 |
· S
)

T

=
(

Hτn
1

|Hτn
1 |

, ∆S1

)
+

1
|Hτn

1 |
f τn
2 .

Since the first term on the right hand side is bounded by |∆S1| we get

lim sup
n→∞

(
1

|Hτn
1 |

f τn
2

)−
≤ |∆S1|+ lim sup

n→∞
1

|Hτn
1 |

(Hτn · S)−T ≤ |∆S1|.

By the induction hypothesis this means that the sequence

H̃n :=
(

0,1A
Hτn

2

|Hτn
1 |

, . . . ,1A
Hτn

T

|Hτn
1 |

)
= H̃n

is a.s. bounded. It follows that the functions (H̃n ·S)T = f τn
2 1A

1
|Hτn

1 | are also
a.s. bounded. By (iii) there is a FT -measurably parameterised subsequence
σn of τn so that

(
H̃σn · S

)
T
→ f and f ∈ K2. Since (σn)n is a subsequence

of τn we still have Hσn
1

|Hσn
1 | → ψ1 and hence

(ψ1, ∆S1) + f = lim
n→∞

(
Hτn

1

|Hτn
1 |

, ∆S1

)
+ (H̃σn · S)T

= lim
n→∞1A ((Hσn

1 , ∆S1) + fσn
2 )

1
|Hτn

1 |

= lim
n→∞1A(Hσn · S)T

1
|Hτn

1 |
.
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Since (Hn · S)−T is a.s. bounded we have that ((ψ1, ∆S1) + f) ≥ 0 and by
the (NA) condition this implies (ψ1, ∆S1) + f = 0. This means ψ1 = 0 by
(i). Since |ψ1| = 1 on A we must have P[A] = 0 proving that (Hn

1 )∞n=1 is a
bounded sequence. The sums from 2 to T

T∑
t=2

Hn
t ∆St = (Hn · S)T − (Hn

1 , ∆S1)

satisfy (
T∑

t=2

Hn
t ∆St

)
−
≤ (Hn · S)−T + |(Hn

1 , ∆S1)|

and hence are a.s. bounded. The inductive hypothesis shows that ((Hn
t )T

t=2)
∞
n=1

is then a.s. bounded too. �
We are now ready to prove the main result of this section.

Theorem 6.9.2. If (St)T
t=0 is Rd-valued and adapted with respect to the fil-

tration (Ft)T
t=0, if S satisfies the (NA) condition, then the cone

C = K − L0
+(Ω,FT ,P) = { (H · S)T − h | H predictable, h ≥ 0}

is closed in L0(Ω,FT ,P).

Proof. Let fn = (Hn · S)T and hn ≥ 0 be such that gn = fn − hn → g.
Clearly (Hn · S)−T = f−

n ≤ g−n forms a bounded sequence. By Proposition
6.9.1 (ii) and (iii) we have that (Hn)∞n=1 itself is already bounded and we also
have the existence of a FT -measurably parameterised subsequence σn so that
fσn → f ∈ K. Then necessarily hσn = fσn − gσn tends a.s. to f − g = h
and we have therefore h ≥ 0. Moreover g = f − h ∈ C a.s. which proves the
theorem. �

6.10 Proof of the Dalang-Morton-Willinger Theorem
for T ≥ 1 using the Closedness of C

Proof of Theorem 6.1.1. The proof is the same as in Sect. 6.5 for Theorem
6.5.1, except for some obvious variations. Let us indicate the changes. First
we take an equivalent probability measure P1 so that dP1

dP is bounded and
St ∈ L1(P1) for all 0 ≤ t ≤ T . For example we may take dP1

dP = c exp(−|S0| −
. . .−|ST |), where c is the normalisation constant given by c−1 = E[exp(−|S0|−
. . .− |ST |)].

The next step consists in considering the set

C1 = C ∩ L1(Ω,FT ,P1).
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As C is closed in L0(Ω,FT ,P), the set C1 is closed in L1(Ω,FT ,P1). Obviously
C1 is a convex cone (since C is a convex cone). The (NA) condition implies
that C1 ∩L1

+(Ω,FT ,P1) = {0}. The Kreps-Yan Theorem 5.2.2 now gives the
existence of an equivalent probability measure Q so that dQ

dP1
is bounded and

so that EQ[f ] ≤ 0 for all f ∈ C1. Obviously all St ∈ L1(Q) since dQ
dP1

is
bounded. Since for each coordinate j = 1, . . . , d and each A ∈ Ft we have
1A(Sj

t+1 − Sj
t ) ∈ C1 and −1A(Sj

t+1 − Sj
t ) ∈ C1, we must have EQ[1ASj

t+1] =
EQ[1ASj

t ]. This shows that St = EQ[St+1 | Ft].
Let us finally verify assertion (iii) of Theorem 6.1.1. Since dQ

dP = dQ
dP1

dP1
dP

we have that dQ
dP is bounded. �

6.11 Interpretation of the L∞-Bound
in the DMW Theorem

This section is based on [De 00, Chap. VII]. We will suppose that the process
(St)T

t=0 adapted to (Ft)T
t=0 satisfies (NA) and that it is integrable with respect

to P. The set

Ma =
{

dQ
dP
∈ L∞

∣∣∣∣ Q a probability such that S is a Q-martingale
}

is non-empty by the DMW Theorem. The space

W1 =
{

(H · S)T | H predictable (H · S)T ∈ L1(Ω,FT ,P)
}

is closed in L1(Ω,FT ,P) since W1 = K ∩ L1(Ω,FT ,P) and K is L0-closed.
The set Ma is the intersection of W⊥

1 with the set of probability measures.
For each k ≥ 1 we define a utility function uk : L1 → R as follows. The set Pk

is defined by Pk =
{

dQ
dP

∣∣∣ Q a probability, dQ
dP ≤ k

}
. With this set we define

the coherent monetary utility function

uk(Y ) = inf {EQ[Y ] | Q ∈ Pk} = min {EQ[Y ] | Q ∈ Pk} .

The utility function uk is concave and L1-continuous since it is Lipschitz.
The set Ok = {Y |uk(Y ) > 0} is therefore open and convex in L1(Ω,FT ,P).
Furthermore it contains the cone of strictly positive integrable random vari-
ables. The set Pk can be described as Pk = {Q | Q a probability, EQ[Y ] ≥
0 for all Y ∈ Ok}. The interpretation of the L∞-bound in the DMW Theorem
is described in the subsequent result:

Theorem 6.11.1. Under the above assumptions we have, for each k ≥ 1,

Ma ∩ Pk �= ∅ ⇐⇒ W1 ∩Ok = ∅.
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Proof. If Q0 ∈ Ma ∩ Pk then for all Y ∈ W1 we have uk(Y ) = inf{EQ[Y ] |
Q ∈ Pk} ≤ EQ0 [Y ] = 0. Therefore W1 ∩Ok = ∅.

Conversely if W1 ∩ Ok = ∅ we may separate the vector space W1 from
the convex open set Ok. This yields an element f ∈ L∞ such that for all
Z ∈ Ok, all Y ∈ W1: E[fY ] < EQ[fZ]. These inequalities show that f is
non-negative and not identically zero. We may normalise f so that E[f ] = 1,
hereby defining a probability Q so that dQ

dP = f ∈ L∞. Since EQ[Z] ≥ 0 for
all Z ∈ Ok we must have Q ∈ Pk. Also EQ[Y ] = 0 for all Y ∈ W1 and hence
Q ∈Ma. �

Remark 6.11.2. In [HK 79] M. Harrison and D. Kreps related the concept of
no-arbitrage to the concept of viability which is based on utility considerations
somewhat similar to the above considerations.

Remark 6.11.3. The coherent monetary utility function uk is essentially the
same as the so called tail expectation with parameter α = 1

k .
To avoid trivialities let us suppose that (Ω,F ,P) is a non-atomic proba-

bility space. For Y ∈ L1(Ω,F ,P) define the quantile qα(Y ) as

qα = inf{x | P[Y ≤ x] ≥ α}.

If Y has a continuous distribution then we have

uk(Y ) = E[Y | Y ≤ qα],

where the right hand side is called, for obvious reasons, the α-tail expectation
of Y . Indeed, it suffices to consider dQ

dP = k1{Y ≤qα}.
In the general case we have to be slightly more careful as it might happen

that P[Y = qα(Y )] > 0. In this case let β = P[Y < qα] and verify that

uk(Y ) = E[Y | Y < qα] + (α− β)qα.

The above Theorem 6.11.1 tells us that the constant α verifying 1 ≥ 1
k =

α > 0 is sufficiently small such thatMa∩Pk �= ∅ iff it is not possible to find an
element (H ·S)T ∈W1 which yields a strictly higher utility uk((H ·S)T ) than
uk(0) = 0. As a trivial illustration consider α = k = 1: then this statement
boils down to the fact that S is a martingale under P iff for each (H ·S)T we
have that u1((H · S)T ) = E[(H · S)T ] = 0.

We refer to [De 00] for a more detailed situation in which an interpretation
in terms of superhedging and risk measures is given.
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A Primer in Stochastic Integration

7.1 The Set-up

In the previous chapters we mainly developed the arbitrage theory for mod-
els in finite discrete time. In the setting of the previous chapter, where the
probability space was not finite, several features of infinite dimensional func-
tional analysis played a role. When trading takes place in continuous time
the difficulties increase even more. It is here that we need the full power of
stochastic integration theory. Before giving precise definitions, let us give a
short overview of the different models and of their mutual relation. In financial
problems the following concepts play a dominant role:

(i) assets to be traded
(ii) trading dates
(iii) trade procedures
(iv) uncertainty

We assume for the moment that the set of trading dates T is a subset of R+.
The following cases are of particular importance

(i) T = {0, 1, . . . , n} finite discrete time
(ii) T = N = {0, 1, . . .} infinite discrete time
(iii) T = [0, 1] finite horizon continuous time
(iv) T = R+ = [0,∞[ infinite horizon continuous time

The uncertainty is modelled using a filtered probability space (Ω, (Ft)t∈T,P).
The filtration (Ft)t∈T is formed by an increasing family of sub-σ-algebras
of F∞ where (Ω,F∞,P) is a probability space. The role of the filtration is
very important since it describes the information available at each time t.
We suppose that there are finitely many assets, indexed by i = 1, . . . , d. An
asset to be traded is described by a stochastic process Si : T × Ω → R. The
collection of assets is therefore described by a finite dimensional stochastic
process S : T×Ω→ Rd. There is no need to suppose that prices are positive.
It is also understood that there is an asset number 0, that describes “cash”.
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Cash is convenient to transform money from one date to another. We assume
that there are no costs in carrying cash and that interest rate is zero. This
results in a constant price process whose value is 1. If interest rate is not
zero then we introduce a process that describes the cumulative value of an
account earning the instantaneous riskless interest rate and we renormalise
all the prices by dividing them by this process. This is exactly what we did
in Chap. 2. The choice of a convenient numéraire depends on the application,
and the change of numéraire is an important technique in finance. In Chap. 2
we introduced the reader to this technique. We will come back to this later
and we will show in Chap. 11 in what cases the change of numéraire can be
performed without distorting the model. For the moment we suppose that a
traded asset has been chosen as numéraire and that all prices are expressed
in units of this numéraire. We will therefore not need the process indexed by
the number 0 which is simply identically equal to one. The price Si

t at time
t ∈ T is part of the information available at time t. In mathematical terms
we translate this by the statement that the processes Si are adapted, i.e.,
Si

t is Ft-measurable, for each t ∈ T. The filtration (Ft)t∈T is not necessarily
generated by the process S. This means that other sources of information
than prices can be observed (e.g. balance sheets, weather conditions, ...). All
agents have access to the same filtration, i.e. information. Agents can buy and
sell assets, short selling is allowed. There are no transaction costs. In buying
and selling assets, only information available from the past is to be used. We
cannot buy 100.000 shares of some stock conditionally on the event that the
price next year will be doubled.

The space Rd will be endowed with the usual Euclidean structure. The
inner product of two vectors x and y in Rd, written as (x, y), is to be inter-
preted as (x, y) = x1y1+ · · ·+xdyd. In some cases we will simply write xy. We
do not put a dot since this is reserved for stochastic integration. The norm
of a vector x in Rd is written as |x|, reserving the notation ‖ . ‖ for norms in
Lp-spaces etc.

7.2 Introductory on Stochastic Processes

The following notation, coming from probability theory, will be used. We write
T = T ∪ +∞. A map T : Ω → T is called a stopping time if for all t ∈ T the
set {T ≤ t} ∈ Ft. For T1 ≤ T2, two stopping times, we denote by [[T1, T2]] the
set {(t, ω) | t ∈ T, ω ∈ Ω and T1(ω) ≤ t ≤ T2(ω)}. Other stochastic intervals
are denoted in an analogous way: ]]T1, T2]], [[T1, T2[[, ]]T1, T2[[. Remark that for
T = R+ the interval [[0,∞]] denotes R+ × Ω and not [0,∞]× Ω. The symbol
π denotes the projection π : R+ × Ω→ Ω.

To avoid technical complications we suppose that in continuous time, the
filtration (Ft)t satisfies the usual conditions :

(i) for all t we have: Ft =
⋂

s>tFs (right continuity),
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(ii) F0 contains all null sets of F∞. This means: A ⊂ B ∈ F∞ and P[B] = 0
imply A ∈ F0 (F0 is saturated).

The natural filtration generated by a process X is defined as follows: we
give the description for T = R+:

(i) for all t we define Ht = σ(Xu; u ≤ t) and H∞ =
∨∞

t=0Ht = σ(Xt, 0 ≤ t).
(ii) Gt =

⋂
s>tHs and G∞ = H∞.

(iii) N = {A | ∃B ∈ G∞, A ⊂ B and P[B] = 0}.
(iv) Ft = σ(Gt,N ).

The filtration (Ft)t≥0 is right continuous and satisfies the usual conditions.
The filtration (Ft)t≥0 is called the natural filtration of X. The filtration
(Ht)t≥0 is sometimes called the internal history of X .

In the case T = [0, 1] or R+ we suppose that the process S is càdlàg, i.e.,
for almost every ω ∈ Ω the map T → Rd, t �→ St(ω) is right continuous and
has left limits (where meaningful).

If X : T → Rd is càdlàg we define ∆Xt(ω) = Xt(ω) − lims↗t Xs(ω) =
Xt(ω)−Xt−(ω). The process X is called continuous if almost surely, T→ Rd,
t �→ Xt(ω) is continuous. Although the problems for T = {0, . . . , n}, N, [0, 1],
or R+ are different, there is a possibility to treat many aspects in the same
way. This is done through an embedding of T in R+. The finite discrete time
case T = {0, . . . , n} is treated in the following way. For m ∈ N, m ≥ n we
put Sm = Sn and Fm = Fn, thus embedding the case T = {1, . . . , n} into the
case T = N. The case [0, 1] is embedded in R+ in a similar way Su = S1 and
Fu = F1 for u ≥ 1. To embed N in R+ we put for n ≤ t < n+1, St = Sn and
Ft = Fn.

In view of this possibility to embed every time set into R+ we will only
work with T = R+.

On R+ × Ω we consider different σ-algebras. They are the basis to do
stochastic analysis. The σ-algebra consisting of Borel sets on R+ is denoted
by B(R+). The σ-algebra B(R+) ⊗ F∞ denotes the σ-algebra on R+ × Ω of
all measurable subsets. A process X : R+ × Ω → R, which is measurable
for B(R+)⊗F∞ is simply called measurable. The σ-algebra generated by all
stochastic intervals of the form [[0, T [[ where T is a stopping time, is called
the optional σ-algebra. It is denoted by O. Under the usual conditions, right
continuous adapted processes are measurable with respect to O. Conversely
O is generated by the set of all adapted right continuous real-valued processes
(see Dellacherie [D 72]).

The σ-algebra generated by all stochastic intervals of the form [[0, T ]] where
T is a stopping time, is called the predictable σ-algebra. To be precise, when
F0 is not trivial, we also have to include the sets of the form {0}×A, where A
runs through F0. The predictable σ-algebra is denoted by P . It is generated by
the set of all left continuous adapted real-valued processes. One can even show
that P is already generated by the set of all continuous adapted real-valued
processes. This implies in particular that P ⊂ O (see [D 72]).
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If T : Ω→ R+∪{∞} is a stopping time, FT is the σ-algebra of events prior
to T i.e. FT = {A | A ∈ F∞ and for all t ∈ R+ we have A ∩ {T ≤ t} ∈ Ft}.
We also need the σ-algebra of events “strictly” prior to T . This σ-algebra,
denoted by FT−, is not defined using a description of its elements. It is defined
as the σ-algebra generated by F0 and by elements of the form A ∩ {t < T }
where A ∈ Ft. Clearly FT− ⊂ FT . It is easy to see that a stopping time
T : Ω→ T is FT−-measurable.

Remark 7.2.1. The difference between FT− and FT will turn out to be crucial.
Typically the following happens. If T is a stopping time where an optional
càdlàg process jumps, then FT− does not provide any information on the
jump size, whereas FT does also contain this information. In insurance terms
we could say that if T is the stopping time given by the arrival of a letter
announcing a new claim, then FT− gives all the information prior to this
arrival, including the fact that a letter has arrived. The σ-algebra FT also
contains the information on the claim size.

Definition 7.2.2. A stopping time T is called predictable if there is an in-
creasing sequence of stopping times (Tn)∞n=1 such that Tn ↗ T almost surely
and Tn < T on {0 < T }.

Under the usual conditions T is predictable if and only if the set [[T ]] =
[[T, T ]] = {(T (ω), ω) | T (ω) < ∞} is in the predictable σ-algebra P . One
can show that P is generated by the stochastic intervals [[0, T [[ where T is a
predictable stopping time.

Definition 7.2.3. The stopping time T is called totally inaccessible if for each
predictable stopping time τ , we have P[τ = T <∞] = 0.

The following description is proved in the theory of stochastic processes
(see [D 72]). Recall that π : Ω× R+ → Ω denotes the canonical projection.

Proposition 7.2.4. Let T be a stopping time.

(i) FT = {π (A ∩ [[T ]]) | A ∈ O},
(ii) FT− = {π (A ∩ [[T ]]) | A ∈ P}.

As a consequence, a function f : Ω → R, that is F∞-measurable is
FT -measurable for a given stopping time T if and only if there is an optional
process X , i.e., a process X : Ω× R+ → R which is measurable with respect
to O, such that on {T <∞} we have XT = f . The map f is FT−-measurable
if and only if there is a predictable process Y such that on {T <∞} we have
YT = f .

For a stopping time T , we define the process XT as (XT )t = Xt∧T . We
call XT the process X stopped at time T .

Definition 7.2.5. If (P) is a property of stochastic processes, then a stochas-
tic process X satisfies (P) locally if there is an increasing sequence of stopping
times (Tn)∞n=1 such that Tn ↗ ∞ almost surely, and for each n the process
XTn satisfies (P).
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Sequences Tn ↗∞, such that each XTn satisfies (P), are called localising
sequences. In particular we have the following definition (see [D 72]).

Definition 7.2.6. (i) A process S : R+ × Ω→ Rd is locally bounded if there
is an increasing sequence of stopping times (Tn)∞n=1 tending to ∞ a.s. and
a sequence (Kn)∞n=1 in R+ such that |S1[[0,Tn]]| ≤ Kn.

(ii) A process X : R+ × Ω→ R is a local martingale if there is an increasing
sequence of stopping times (Tn)∞n=1 tending to ∞ a.s. so that, for each n,
the process XTn is a uniformly integrable martingale.

One can show that X is a local martingale if and only if there is an increas-
ing sequences of stopping times Tn ↗∞ such that each XTn is a martingale
or, equivalently, is a martingale bounded in H1(P) i.e. sup0≤t≤Tn

|Xt| ∈ L1(P)
(compare Proposition 14.2.6 below).

Recall that, for a martingale M , the Hp(Ω,F ,P)-norm is defined by

‖M‖Hp =
(
E
[(

sup
t
|Mt|

)p
]) 1

p

, for 1 ≤ p <∞. (7.1)

The following proposition is almost obvious, but it has important conse-
quences in mathematical finance.

Proposition 7.2.7. If L : R+ × Ω → R is a local martingale such that L ≥
−1, then L is a super-martingale.

Proof. Let Tn ↗ ∞ be a localising sequence for L and let U ≤ V be fi-
nite stopping times. For each n the process LTn is a uniformly integrable
martingale with respect to the filtration (Ft)t≥0. For each A ∈ FU and
each n ≤ m we therefore have

∫
A∩{U≤Tn} LU∧Tn =

∫
A∩{U≤Tn} LV ∧Tm . Hence∫

A∩{U≤Tn} LU =
∫

A∩{U≤Tn} LV ∧Tm . If we let m→∞, observe that LV ∩Tm ≥
−1 and use Fatou’s lemma to obtain that

∫
A∩{U≤Tn} LU ≥

∫
A∩{U≤Tn} LV =∫

A∩{U≤Tn} E[LV | FU ]. Hence on {U ≤ Tn} we have LU ≥ E[LV | FU ]. We
now let n tend to ∞ to conclude. �

Example 7.2.8. The archetype example of a local martingale which fails to be
a martingale is the inverse Bessel (3) process. If we take X : R+×Ω→ R3 to
be a three dimensional Brownian motion, starting at X0 = (1, 0, 0), then with
respect to the natural filtration of X , L = 1

|X| is a strictly positive local mar-
tingale that is not a martingale. The family (Lt)t≥0 is uniformly integrable,
but the family {LT | T finite stopping time } is not uniformly integrable!
One can show that the natural filtration of L is the filtration generated by
a one-dimensional Brownian motion. Bessel processes are thoroughly studied
by Pitman and Yor [PY82]. See also [DS 95c] for applications of this theory
to finance.
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Example 7.2.9. If L is a local martingale, it is tempting to use the following
sequence of stopping times as a “localising” sequence

τn = inf {t | |Lt| ≥ n}
It is rather obvious that τn indeed defines a localising sequence in the case
of continuous local martingales L. But if L fails to be continuous this is not
a good choice in general. In fact there is a martingale (Mn,Fn)∞n=1 (indexed
by the time set T = N for convenience) such that for T = inf{t | Mt �= 0},
the stopped process MT is not uniformly integrable. To construct such an
example we start with a sequence of Bernoulli variables, this is a sequence of
independent and identically distributed (i.i.d.) variables rn such that P[rn =
1] = P[rn = −1] = 1

2 . We also need a variable X defined on Ω, independent of
the sequence rn and such that also for X we have P[X = 1] = P[X = −1] = 1

2 .
We define the random time T as T = inf{n | rn = +1}. Hence we have
P[T = n] = 2−n.

We now define a process (Mn)∞n=0, indeed by N. For n < T , we put Mn = 0
and at time T we put MT = X2n. After time T the process does not move
anymore, meaning Mn = MT for n ≥ T . The filtration (Fn)∞n=0 is defined
as Fn = σ(M1 . . . Mn) so that T is a stopping time for (Fn)∞n=0. Clearly the
process M is a martingale, hence a local martingale. But T = inf{n |Mn �= 0}
and we have that MT is not integrable! Therefore the stopped process MT

cannot be a uniformly integrable martingale.

For positive local martingales one can do better as Remark 7.2.11 below
shows. We first need a preparatory result.

Proposition 7.2.10. If L = (Lt)t≥0 is a local martingale such that

sup {E[|LT |] | T finite stopping time } <∞ (7.2)

then
Tn = inf {t | |Lt| ≥ n} (7.3)

is a localising sequence. More precisely

(i) P[Tn =∞]↗ 1, i.e., Tn increases in a stationary way to ∞.
(ii) LTn ∈ H1, i.e. E

[
L∗

Tn

]
= E

[
sup0≤t≤Tn

|Lt|
]

<∞, for each n ∈ N.

Proof. (i): Denote by K the sup appearing in (7.2). By Fatou’s lemma we have
E[|LTn |1{Tn<∞}] ≤ K. Hence P[Tn <∞] ≤ K

n which gives (i).
(ii): Clearly |L∗

Tn
| ≤ max(n, |LTn |) ∈ L1 and hence LTn ∈ H1. �

Remark 7.2.11. (useful but often forgotten!) An R-valued local martingale
which is uniformly bounded from below certainly satisfies the hypothesis
of Proposition 7.2.10. Indeed, for a stopping time τ we have by the super-
martingale property of L (Proposition 7.2.7) that E[Lτ ] ≤ E[L0].

The seemingly unimportant fact that P[Tn = ∞] ↗ 1 for the sequence
of stopping times (Tn)∞n=1 defined by (7.3), will be used when we deal with
boundedness properties in the space L0(Ω,F ,P).
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7.3 Strategies, Semi-martingales and Stochastic
Integration

The simplest strategy an agent can follow, is to buy at a deterministic time
T1 ∈ R and sell at a later time T2 ≥ T1, T2 ∈ R. This situation was already
encountered in Chap. 2 and further developed in Chaps. 5 and 6. So let us
discuss this elementary strategy of buying and selling. To make decisions
possible the random times T1 and T2 can only depend on past information and
therefore need to be stopping times. Since we can give “limits” to our broker,
the decision to buy/sell at time T1 can depend on information available at time
T1. Therefore the number of assets we buy at time T1 should be measurable
with respect to FT1 . By acting in such a way the agent holds f : Ω→ Rd assets
from time T1 to time T2, where f is an FT1-measurable Rd-valued function.
This action results in a gain (or loss) equal to (f, ST2 − ST1).

Definition 7.3.1. A predictable process H : R+ × Ω → Rd with H0 = 0 is
said to be

(i) a simple strategy if there are stopping times 0 ≤ T0 ≤ T1 · · · ≤ Tn <∞, as
well as random variables f0, · · · , fn−1, where each fk is FTk

-measurable,
such that H =

∑n−1
k=0 fk1]]Tk,Tk+1]],

(ii) a bounded simple strategy if in addition, f0, · · · , fn−1 are in L∞,
(iii) of bounded support if there is a real number t ∈ R+ such that H = H1[[0,t]].

If H is a simple strategy then the ultimate gain equals

(H · S)∞ :=
n−1∑
k=0

(
fk, STk+1 − STk

)
(7.4)

and at time t the portfolio has a gain equal to

(H · S)t :=
n−1∑
k=0

(
fk, STk+1∧t − STk∧t

)
. (7.5)

The process H · S is called the stochastic integral of H with respect to S. It
has to be seen as a process. The ultimate gain is described by the random
variable (H ·S)∞ = limt→∞(H ·S)t (where the limit trivially exists). Another
notation is

H · S =
∫

HudSu (7.6)

Summing up, the definition of a stochastic integral for simple integrands
goes exactly along the lines of the setting of finite discrete time as encountered
in Chaps. 2, 5 and 6. There is no limiting procedure involved so far: the
integrals (7.4), (7.5) and (7.6) reduce to finite sums.

The crucial step now consists in extending this notion from simple inte-
grands to more general ones by an appropriate limiting procedure. This is
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quite a delicate task. The difficulties appear already in the case of Brownian
motion; we concentrate for the moment on the case St = Wt, where (Wt)t≥0

is a standard real-valued Brownian motion.
It was K. Itô’s fundamental insight [I 44] that the good idea is not to proceed

in a pathwise way, i.e., not to consider each ω ∈ Ω separately. Instead one
should take a functional-analytic point of view applying a basic isometry of
Hilbert spaces. Consider the simple strategies H =

∑n−1
k=0 fk1]]Tk,Tk+1]] which

are bounded and of bounded support as elements of L2(Ω × R+,P ,P ⊗ λ),
where P denotes the predictable σ-algebra on Ω×R+ and P⊗λ the product
measure of P with Lebesgue measure λ on R+. This gives rise to the norm

‖H‖L2(P⊗λ) =
(
E
[∫ ∞

0

H2
s ds

]) 1
2

. (7.7)

The crucial isometry is that this L2(P ⊗ λ)-norm of the integrand H equals
the L2(Ω,F∞,P)-norm of the stochastic integral (H · S)∞, i.e.,

‖H‖L2(Ω×R +,P,P⊗λ) = ‖(H ·W )∞‖L2(Ω,F ,P) =
(
E
[
(H ·W )2∞

]) 1
2 , (7.8)

where F∞ denotes the σ-algebra generated by the Brownian motion (Wt)t≥0.
In fact, this isometry is essentially a formality: for simple integrands H it

is a straightforward consequence of the definition of Brownian motion (see,
e.g., the beautiful introductory chapter of [RW00]).

Having established (7.8) for the set of bounded simple integrands it now is
one more formal step to extend this isometry to the closures in the respective
Hilbert spaces L2(P ⊗ λ) and L2(P) respectively. For the former it follows
from the definition of the predictable σ-algebra P in Sect. 7.2 above that this
closure equals the entire space L2(Ω × R+,P ,P ⊗ λ), i.e., the predictable
process H such that (7.7) remains finite. For the latter closure of the stochas-
tic integrals (H · S)∞ in L2(P), it turns out that this is the hyperplane in
L2(Ω,F∞,P) formed by the random variables f with E[f ] = 0. This amounts
to the martingale representation theorem 4.2.1 above.

We now define the process H ·W = ((H ·W )t)t≥0, where we have to be
careful as this involves uncountably many t ∈ R+. This is done in the following
way. For general H ∈ L2(Ω×R+,P ,P⊗ λ) we take a sequence Hn of simple
integrands, Hn ∈ L2(Ω× R+,P ,P⊗ λ) so that ‖H −Hn‖L2(Ω×R +,P,P⊗λ) ≤
4−n−1. By Doob’s maximal integrability [RW00, Chap. 5, Theorem 70.2] we
get, for each m, n ∈ N:∥∥∥∥sup

t≥0
((Hm −Hn) ·W )t

∥∥∥∥
L2(Ω,F ,P)

≤ 2 ‖((Hm −Hn) ·W )∞‖L2(Ω,F ,P)

= 2 ‖Hm −Hn‖L2(Ω×R +,P,P⊗λ) .

Therefore P
[
supt≥0((Hn −Hn+1) ·W )t > 2−n

]
≤ 2−n. The Borel-Cantelli

lemma then implies that almost surely the sequence (Hn ·W )t(ω) converges
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uniformly as a sequence of continuous functions on R+. Let us denote this
limit process by (H · W ). Of course

∥∥supt≥0((H −Hn) ·W )t

∥∥
2
→ 0. The

identity (7.8) then shows, by passing to the limit as n→∞:

‖H1]]0,t]]‖L2(P⊗λ) = ‖(H ·W )t‖L2(P).

At the same time (H ·W ), being the limit of the L2-martingales (Hn ·W )t≥0,
also is a martingale bounded in L2(P).

We have taken some space to sketch these basic facts on stochastic inte-
gration, which can be found in much more detail in many beautiful textbooks
(e.g., [P 90], [RY 91], [RW00]), as we believe that the isometric identity (7.8)
is the heart of the matter. Having clarified things for the case of Brownian
motion W it is essentially a matter of routine techniques to extend the degree
of generality.

To start we still restrict to the case of Brownian motion W but now con-
sider predictable processes H such that H is only locally in L2(P ⊗ λ). This
latter requirement is equivalent to the hypothesis

∫ t

0
H2

udu <∞ a.s., for each
t < ∞. In this case one can argue locally to define the stochastic integral
((H · S)t)t≥0 which then is a local martingale.

Passing to more general integrators than Brownian motion W consider a
real-valued martingale S = (St)t≥0 which we first assume to be L2-bounded,
i.e., supt ‖St‖L2(Ω,Ft,P) <∞.

We then may define the quadratic variation measure d[S] on the pre-
dictable σ-algebra P by

d[S] ( ]]τ, σ]]) := E
[
|Sτ − Sσ|2

]
(7.9)

for all pairs of finite stopping times τ ≤ σ and then extend this measure to P
by sigma-additivity. The measure d[S] is the analogue of the measure P ⊗ λ
in the case of Brownian motion S = W , and we again obtain the isometric
identity

‖H‖L2(d[S]) = ‖(H · S)∞‖L2(P), (7.10)

for each bounded simple integrand H such that the left hand side is finite.
In fact, the identity (7.10) now simply is a reformulation of the definition
(7.9). As in the case of Brownian motion, identity (7.10) allows to extend
the stochastic integral from simple bounded integrands to general predictable
processes H with finite L2(d[S])-norm. By localisation this notion can be
extended to the case of martingales S which are locally L2-bounded as well as
to integrands H , which are locally in L2(d[S]). For the case of continuous local
martingales S this is already the natural degree of generality as a continuous
local martingale is automatically locally L2-bounded. Finally we indicate that
the theory may also be extended to the case of Rd-valued local martingales by
equipping Rd with its Euclidean norm | . | and using the above Hilbert space
techniques.
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To develop the natural degree of generality also for processes with jumps
we have to extend the theory of stochastic integration with respect to a local
martingale S to the case, where S is not necessarily locally L2-bounded (but
only locally L1-bounded). One has to replace the (easy) L2-theory by some
more refined functional analysis replacing L2(P) by H1(P) defined in (7.1).
Similarly the (easy) maximal inequality for L2(P)-bounded martingales has to
be replaced by the more subtle Burkholder-Davis-Gundy maximal inequality
pertaining to the norm of H1(P). We don’t elaborate on these issues here and
refer, e.g., to [P 90], [RW00].

Rather we now extend the theory to the case of (càdlàg, adapted, Rd-
valued) processes S which are not necessarily local martingales. In the case
when S is locally of bounded variation, i.e.

|S|t = sup
0≤t0<...<tn≤t

n∑
i=1

∣∣Sti − Sti−1

∣∣ <∞ a.s., for each t <∞,

the integration theory is, in fact, rather simple as we now can indeed argue
pathwise by considering each ω ∈ Ω separately. For almost each ω ∈ Ω the
càdlàg function (St(ω))0≤t<∞, which is of bounded variation on compact sub-
sets of R+, defines a sigma-finite Rd-valued Borel-measure dS(ω) on R+; it
is defined on the intervals ]a, b], for 0 ≤ a < b <∞, by

dS(ω)(]a, b]) = Sb(ω)− Sa(ω).

Hence, for each bounded measurable Rd-valued process H , the stochastic
integral

(H · S)t(ω) :=
∫ t

0

(Hu(ω), dSu(ω)) (7.11)

is well-defined, for almost each ω ∈ Ω and each t ∈ R+, as a classical Lebesgue-
Stieltjes integral on the real positive line R+. One can still extend the stochas-
tic integral (7.11) to the case, where the process H is not necessarily bounded,
but only such that for almost every ω ∈ Ω and each t > 0, (Hu(ω))0≤u≤t is
dS(ω)-integrable. This is an L1-theory as opposed to the L2-theory encoun-
tered in the setting of Brownian motion above.

We have thus briefly recapitulated the achievements of stochastic integra-
tion theory which were developed starting from the pioneering work of K. Itô
[I 44] until the late seventies, notably by the Japanese school and the Stras-
bourg school of probability around Paul André Meyer. The notion of stochas-
tic integral was pushed to increasingly more general classes: if the (càdlàg,
adapted, Rd-valued) process S can be written as S = M + A, where M is a
local martingale and A is of locally bounded variation, then there is a good
integration theory for S. For every locally bounded, predictable Rd-valued
process H the stochastic integral
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(H · S)t := (H ·M)t + (H ·A)t, t ∈ R+, (7.12)

is well-defined. One can even pass to not necessarily locally bounded pre-
dictable processes, provided the two terms on the right hand side make sense.

At this stage, around 1980, the pushing for greater and greater generality
came to an end. Through the work of Bichteler [B 81] and Dellacherie [DM 80]
it became clear that the class of semi-martingales defined in Definition 7.3.2
below is the largest class of processes for which the integration theory can
be generalized from simple integrands to more general ones by continuous
extension. The Bichteler-Dellacherie theorem (see, e.g., [P 90]) tells us that the
semi-martingales S are precisely those processes which may be decomposed
as S = M + A, where M is a local martingale and A is of locally bounded
variation. We shall briefly recall this theorem.

The space S of bounded simple strategies is equipped with the topology
of uniform convergence, which is given by the norm

‖H‖∞ = sup
{
‖Ht‖L∞(Ω,Ft,P)

∣∣ t ∈ R+

}
.

Definition 7.3.2. (i) S is a strict semi-martingale if the operator

I : S → L0(Ω,F∞,P) and I(H) = (H · S)∞

is continuous for the topologies defined respectively by ‖ . ‖∞ and by the
convergence in probability,

(ii) S is a semi-martingale if it is locally a strict semi-martingale.

It is an easy exercise to show that S is a semi-martingale if ‖Hn‖∞ → 0
implies (Hn · S)t → 0 in L0 for all t ≥ 0. It is easy to check that, for a
process S of the form S = M + A where M is a local martingale and A is a
càdlàg process of finite variation i.e. for all t we have

∫ t

0 |dAu| <∞ a.s., this
continuity property is satisfied. (Here and in the sequel we follow the usual
terminology to call a process of bounded variation if it is locally of bounded
variation). The Bichteler-Dellacherie theorem asserts that also the converse is
true: a semi-martingale S in the sense of Definition 7.3.2 can be decomposed
as S = M + A in the above way.

We say that S is a special semi-martingale if S = M + A where M is
a local martingale, A is of finite variation and predictable. In this case the
decomposition of S as a sum of a local martingale and a predictable process
of finite variation is unique. We refer to it as the canonical decomposition
(see [DM 80] and [P 90]). One can show that a semi-martingale S is special if
and only if S is locally integrable, i.e. if there is a sequence of stopping times
Tn ↗∞ such that E

[
sup0≤t≤Tn

|St|
]

<∞.
We emphasize that being a semi-martingale does not depend on P but

only on the null sets. In other words, if S is a semi-martingale under P and
Q ∼ P, then S is also a semi-martingale under Q. However, if S is special for
P and Q ∼ P is another probability equivalent to P, then S does not need
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to be special for Q. For more details on how to define stochastic integrals
for bounded strategies and for general predictable strategies we refer to the
literature (e.g. [DM 80], [P 90], [J 79], [B 81]).

If S is a special Rd-valued semi-martingale and if K is a one-dimensional,
predictable and bounded process, then the Rd-valued stochastic integral K ·S
which is defined coordinatewise is still special. Indeed, suppose that S = M+A
where M is a local martingale and A is a predictable process of finite variation.
Therefore there is a sequence of stopping times Tn tending to ∞, such that,
for each n ∈ N, MTn is in H1(P) and ATn is of integrable variation and
predictable. The Burkholder-Davis-Gundy ([DM 80], [J 79]) inequalities show
that K ·MTn is still in H1 and ordinary integration theory shows that K ·ATn

is still of integrable variation. As a result we see that K · S is a special semi-
martingale. Moreover the canonical decomposition of K · S is K ·M + K ·A.

On the space of one-dimensional semi-martingales we put a vector space
topology, the so-called semi-martingale topology, induced by the quasi-norm
or distance function [E 79]

D[S] =
∞∑

n=1

2−n sup {E [|(K · S)n| ∧ 1] | |K| ≤ 1} , (7.13)

where the processes K are assumed to be real-valued and predictable.
In this topology we have, for a sequence (Sk)∞k=1 of semi-martingales, that

Sk → 0 if and only if, for each t, we have that (K · Sk)t
P→ 0 uniformly in K,

|K| ≤ 1, K real-valued, predictable. An equivalent metric also inducing the
semi-martingale topology is

D∗[S] =
∑

2−n sup {E[(K · S)∗n ∧ 1] | |K| ≤ 1} . (7.14)

As usual Y ∗ denotes the maximal function defined as Y ∗
t = sup0≤u≤t |Yu|. For

càdlàg processes Y , the process Y ∗ is again càdlàg.
We can also define a stronger distance function, D∞, inducing the semi-

martingale topology on T = [0,∞] as opposed to the time index set T = R+.
This distance is defined as

D∞[S] = sup {E [(K · S)∗∞ ∧ 1] | |K| ≤ 1} .

For integration theory this topology is typically too strong but in Chap. 9 this
notion will turn out to be useful.

We now extend the class of integrands for a given semi-martingale S from
locally bounded predictable Rd-valued processes H to processes H , which are
not necessarily locally bounded. We say that a predictable Rd-valued pro-
cess H is S-integrable if (H1{|H|≤n} · S)∞n=1 forms a Cauchy sequence in the
space of one-dimensional semi-martingales with respect to the semi-martingale
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topology induced by (7.13) (or, equivalently, by (7.14)). The limit process is
denoted by H · S.

The reader should note the subtle, but for our later applications crucial
difference to the sentence following (7.12) above: we shall see in Example 7.3.4
below that it may happen that, for a special semi-martingale S = M + A, a
predictable process H is S-integrable in the sense introduced above, while the
stochastic integral H ·M does not exist as an integral in the sense of a local
martingale. The next theorem clarifies the situation. It will play a crucial role
in later sections.

Theorem 7.3.3. If S is a special semi-martingale with canonical decomposi-
tion S = M + A and if H is S-integrable, then H · S is special if and only
if

(i) the process H ·M is defined as an integral of local martingales and
(ii) the process H ·A is defined as a Lebesgue-Stieltjes integral

∫
HudAu.

In this case the canonical decomposition of H ·S is given by H ·S = H ·M+H ·A.

Before giving the proof we present an enlightening example due to M.
Émery. It will be of central importance for Chap. 14 below.

Example 7.3.4 ([E 80], see also Example 14.2.2 below). Let (Ω,F ,P) be a
probability space on which the following objects are defined: an exponen-
tially distributed random variable T with parameter 2 (the 2 is only to keep
in line with the notation in Example 14.2.2), i.e., P[T > α] = e−2α, and a
Bernoulli variable B, i.e., P[B = 1] = P[B = −1] = 1

2 , which is independent
of T .

The process M = (Mt)t≥0 is defined as follows

Mt =
{

0, for t < T,
B, for t ≥ T.

Denoting by (Ft)t≥0 the natural filtration generated by the process M ,
it is straightforward to check (and intuitively rather obvious) that M is a
martingale with respect to (Ft)t≥0. The process jumps at time T where it has
a 50 : 50 chance to either jump up to 1 or down to −1.

Define the process H by Hu = 1
u , for u > 0. This (deterministic) process

is M -integrable: indeed, the processes
(
H 1{|H|≤n} · S

)∞
n=1

converge in the
semi-martingale topology to the process X = H ·M which is given by

Xt =
{

0, for t < T,
B
T , for t ≥ T.

(7.15)

Morally speaking, one is tempted to believe that X should still be a mar-
tingale: the process X has the same chance of 50 : 50 to jump upwards or
downwards by 1

T at time T . But, mathematically speaking, X fails to be a
martingale as we encounter integrability problems: for t > 0 we have



124 7 A Primer in Stochastic Integration

E[|Xt|] =
∫ t

0

∣∣∣∣Bu
∣∣∣∣ dP[T = u] =

∫ t

0

1
u

2e−2udu =∞.

Hence X is not a martingale as E[Xt] does not make sense. In fact, also
stopping does not help to remedy the integrability problem! It is not hard to
check that, for every stopping time τ w.r. to the filtration (Ft)t≥0 such that
P[τ > 0] > 0, we still have (see [E 80] for the details)

E[|Xτ |] =∞.

Hence X even fails to be a local martingale. In particular, H · M is not
defined as a stochastic integral in the sense of integration with respect to a
local martingale as developed above, as in this theory the integral of a local
martingale is necessarily a local martingale.

In Sect. 8.3 below we shall define the notion of a sigma-martingale which
will yield the proper framework enabling us to also interpret processes such
as X = H ·M above still as a “fair game”.

This example of Émery is very simple, but it shows that one has to be
careful when dealing with stochastic integrals. For a martingale M the integral
H ·M might exist as a semi-martingale but not as a local martingale! We
conclude that the local martingales do not form a closed subspace (w.r. to the
semi-martingale topology) of the space of semi-martingales and by the same
example we see that the space of special semi-martingales is not closed in the
space of semi-martingales. See Émery and Mémin for details [E 79], [M 80].

The proof of Theorem 7.3.3 will be based on two results, the first stating
that under the assumptions of Theorem 7.3.3 the stochastic integral H · A
necessarily exists as a Lebesgue-Stieltjes integral. The second is a necessary
and sufficient condition for a stochastic integral of a local martingale to be a
local martingale.

Lemma 7.3.5. If S is a special Rd-valued semi-martingale with canonical
decomposition S = M + A, if H is an Rd-valued predictable process, if the
stochastic integral H ·S is special, then the process H ·A exists as a Lebesgue-
Stieltjes integral.

Proof. We start by localising which allows us to assume that the special semi-
martingales S and H · S are of the form S = M + A and (H · S) = N + B
such that M and N are martingales bounded in H1(P) and A and B are
predictable processes of integrable variation. We also may represent the Rd-
valued process A as dA = βd|A|, where (|A|t)t≥0 is the total variation process
of (At)t≥0 and β is an Rd-valued predictable process taking values in the unit
sphere of Rd.

We now define the {−1, 0, 1}-valued predictable process

Kt = sign(Ht, βt).
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Clearly the Lebesgue-Stieltjes integrability of H with respect to A is tan-
tamount to that of KH . The latter is easier to check as KH ·A is an increasing
process. Note that KH ·S = K ·N+K ·B is still the sum of an H1(P)-bounded
martingale and a process of integrable variation so that, for each t <∞,

E
[

sup
0≤u≤t

(KH · S)u

]
<∞.

Fix t <∞. Let Hn = H1{|H|≤n}, for n ∈ N, and define the stopping times
τn by

τn = inf {u ≤ t | |(KH · S)u − (KHn · S)u| > 1} ∧ t.

As KH is S-integrable we have that (τn)∞n=1 increases stationary to t. We
may estimate

|(KHn · S)τn | ≤ |(KH · S)τn |+ 1 + |Hτn∆Sτn |
≤ 3 sup

0≤u≤t
|((KH) · S)u|+ 1.

As KHn is bounded and M is bounded in H1(P), the process (KHn) ·M
is an H1(P)-bounded martingale too (starting at ((KHn) ·M)0 = 0) so that

E [((KHn) ·A)τn ] = E [((KHn) · S)τn ]−E [((KHn) ·M)τn ]

≤ 3E
[

sup
0≤u≤t

((KH) · S)u

]
+ 1 <∞.

Letting n→∞ we obtain by the monotone convergence theorem that

E [((KH) ·A)t] <∞,

which proves the lemma. �

Example 7.3.6. Let S be a special semi-martingale with canonical decomposi-
tion S = M +A. For an S-integrable predictable process H , the integral H ·S
may exist, but H · A may not. Such an example can be made up as follows.
Take a random variable T which is exponentially distributed with parame-
ter 1 and let St = 1{t≥T} with its natural filtration. Clearly the canonical
decomposition of S is given by S = M + A where

Au =
∫ u∧T

0

ds = (u ∧ T )

is the compensator of the process S.
Let H be defined by Ht = 1

1−t , for 0 ≤ t < 1, and Ht = 0 for t ≥ 1. We
find that

(H · S)t =

⎧⎨⎩
0, for t < T,
1

1−T , for T ≤ t and T < 1,

0, otherwise.
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On the other hand we have on {T > 1} and for t ≥ 1

(H ·A)t =
∫ t∧T

0

du

1− u
= +∞.

The next theorem gives a necessary and sufficient condition for a stochastic
integral of a local martingale to be again a local martingale. The result in this
form is due to Ansel and Stricker [AS 94]. An earlier form was given by Émery
[E 79].

Theorem 7.3.7 (Ansel and Stricker). Let M be an Rd-valued local mar-
tingale, let H be Rd-valued and predictable. Let H be M -integrable in the sense
of semi-martingales. Then H ·M is a local martingale if and only if there is
an increasing sequence of stopping times Tn ↗ ∞ as well as a sequence of
integrable functions ϑn ≤ 0, such that (H, ∆M)Tn ≥ ϑn.

Some explanation on the notation seems in order: the process ∆M =
(∆Mt)t≥0 is the process formed by the jumps of M ; it is different from zero
only at the jumps of the càdlàg process M where the formula (∆M)t(ω) =
Mt(ω)−Mt−(ω) holds. Hence the process (H, ∆M) = (Ht, (∆M)t)t≥0 is the
process of jumps of H ·M . The condition (H, ∆M)Tn ≥ ϑn means that, for
a.e. ω ∈ Ω, the jumps of the process ((H ·M)t)t≥0 such that 0 ≤ t ≤ Tn(ω)
all are bounded from below by ϑn(ω) almost surely.
Proof of Theorem 7.3.7. We first prove necessity. If H ·M is a local martingale
then it is locally in H1. Hence there is an increasing sequence of stopping
times Tn ↗ ∞ such that supt≤Tn

|(H · M)t| ∈ L1. Hence |(H, ∆M)Tn | ≤
2 supt≤Tn

|(H ·M)t| ∈ L1.
The sufficiency of the hypothesis is less trivial. We will show that, for each

n ∈ N, the process (H ·M)Tn is a local martingale and we may therefore drop
the stopping times Tn and replace ϑn by ϑ. Let

Ut =
∑
s≤t

1{|∆Ms|≥1 or (Hs,∆Ms)≥1}∆Ms

Because M and H ·M are semi-martingales, their jumps of high magnitude
(here ≥ 1) form a discrete set, i.e., such that its intersection with each compact
subset of [0,∞[ is finite for a.e. ω ∈ Ω. The process U is therefore a càdlàg,
adapted process of finite variation and hence a semi-martingale. Also H is
U -integrable. Indeed, every (Rd-valued, predictable) process is U -integrable.
Let now Y = M −U . Since H is M - and U -integrable it is also Y -integrable.
The semi-martingale Y has jumps of magnitude ≤ 1 and hence is a special
semi-martingale. Its canonical decomposition is denoted as Y = N + B. Let
V = B + U = M −N , the process V is the difference of two local martingales
and is therefore a local martingale, moreover it has paths of locally bounded
variation as it is the sum of the process B and U . Because H ·Y = H ·M−H ·U
has bounded jumps it is also special and by Lemma 7.3.5 H · B exists as an
ordinary integral. Therefore H · V exists as an ordinary Lebesgue-Stieltjes
integral too. We have to show two things



7.3 Strategies, Semi-martingales and Stochastic Integration 127

(i) H · V is a local martingale and
(ii) H ·N is a local martingale.

The second one is standard. The jumps of Y and H · Y are bounded by 1
and hence for a predictable stopping time T we have ∆BT = E[∆YT | FT−]
is bounded by 1. Also |HT ∆YT | ≤ 1 and hence E[HT ∆YT | FT−] = HT ∆BT

is bounded by 1. For T totally inaccessible we have ∆BT = 0 a.s. as B
is predictable and hence HT ∆NT = HT ∆YT as well as ∆NT = ∆YT are
bounded by 1. It follows that |H∆N | and |∆N | are bounded by 2. The local
martingale N is locally L2 and the increasing process

∫ t

0 H ′
ud[N, N ]uHu is

also locally L2. The L2 theory of martingales shows that (H · N) is a local
martingale (even locally L2).

The first part is more tricky. For each p we define Rp = inf{t |
∫ t

0
|HudBu| ≥

p}. This makes sense since H ·B exists as an ordinary integral. The sequence
(Rp)∞p=1 increases to infinity. As H · B has jumps bounded by 1 we have∫ Rp

0 |HudBu| ≤ p + 1.
We also define Sp = inf{t |

∫ t

0 |HudUu| ≥ p}. Because H · U exists as an
ordinary integral this makes sense again and also (Sp)∞p=1 increases to infinity.

For each n we now put Hn = H1{|H|≤n}. Clearly
∫ Rp

0 |Hn
u dBu| ≤ p + 1 and

because of the hypothesis (H, ∆M) ≥ ϑ we have
(
(Hn · U)Sp

)− ≤ p+ |ϑ|. We
now take one more sequence (τp)∞p=1 of stopping times increasing to infinity
so that V τp ∈ H1(P). Because Hn is bounded, (Hn · V )τp is an H1(P)-
martingale and hence E

[
(Hn · V )τp∧Sp∧Rp

]
= 0 for all n and p. However,

for the negative part we find (Hn · V )−τp∧Sp∧Rp
≤ (Hn · B)−τp∧Sp∧Rp

+ (Hn ·
U)−τp∧Sp∧Rp

≤ p+1+p+ |ϑ| = 2p+1+ |ϑ|. Therefore E
[
(Hn · V )−τp∧Sp∧Rp

]
≤

2p+ 1 +E [|ϑ|] and the same holds for (Hn ·V )+τp∧Sp∧Rp
. This in turn implies

E
[∣∣(Hn · V )τp∧Sp∧Rp

∣∣] ≤ 4p+2+2E [|ϑ|]. If n→∞, we have ((Hn−H)·V )∗ =

supt |((Hn−H)·V )t|. This implies that (Hn·V )τp∧Sp∧Rp

P→0 and an application
of Fatou’s lemma yields that also E

[∣∣(H · V )τp∧Sp∧Rp

∣∣] ≤ 4p + 2 + 2E [|ϑ|].
Now the definition of Sp and Rp imply that |(H ·V )t| ≤ 2p for t < τp∧Sp∧Rp.

We finally deduce that E
[
sup0≤t≤τp∧Sp∧Rp

|(H · V )t|
]
≤ 2p + 2(2(p + 1) +

2E [|ϑ|]) <∞.
The proof is almost complete now. The process W = V τp∧Sp∧Rp is an

H1-martingale, the integral (H ·W ) has a maximal function f = (H ·W )∗

that is integrable. This is sufficient to prove that H ·W is a martingale and
hence an H1-martingale. Again we use approximations. For each n let νn be
defined as νn = inf{t | |(Hn ·W )t − (H ·W )t| > 1}. It is clear that νn →∞.
Each (Hn · W )νn is a martingale and its maximal function is bounded by
(Hn ·W )∗νn

≤ (H ·W )∗νn
+1+2f . The last term coming from a possible jump

at νn. It follows that for all n we have the inequality (Hn ·W )∗νn
≤ 3f + 1.

A simple application of Lebesgue’s dominated convergence theorem allows us
to conclude that H ·W is a martingale. The proof is now complete. �
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Corollary 7.3.8. If M is a local martingale, if H is M -integrable and if (H ·
M)− is locally integrable, i.e., there is a sequence (τn)∞n=1 of stopping times
increasing to infinity such that E[− inf0≤t≤Tn(H ·M)t] <∞; then H ·M is a
local martingale.

Proof. We only have to verify the hypothesis of theorem 7.3.7. For each n
let Rn be defined as Rn = inf{t | (H ·M)t ≥ n}. Let also τn be chosen in
such a way that H ·M τn ≥ ϑn, where each ϑn is integrable and τn ↗ ∞.
Let Tn = min(Rn, τn). Clearly Tn ↗ ∞ and the jumps H∆MTn ≥ −n + ϑn.
Theorem 7.3.7 gives the desired result. �
Proof of Theorem 7.3.3. Let H be S-integrable. If H · S is special then by
Lemma 7.3.5 the process H ·A exists as an ordinary Lebesgue-Stieltjes integral
which yields (ii). As H · S is special it is locally integrable, i.e., there is
a sequence of integrable functions ϑn ∈ L1 and an increasing sequence of
stopping times Tn ↗ ∞ such that (H · S)Tn ≥ ϑn. Take Rn ↗ ∞ such that
(H ·A)Rn has integrable variation. This is possible since the integral H ·A is an
ordinary integral and the result therefore is a predictable process. For each n

we find (H ·M)Rn∧Tn ≥ ϑn−
∫ Rn

0 |HudAu|. We now apply the Ansel-Stricker
theorem to show that (i) holds true.

Conversely, if (i) and (ii) hold true then H ·S is the sum of the local mar-
tingale H ·M and the predictable finite variation process H ·A and therefore
special. �
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Arbitrage Theory in Continuous Time:
an Overview

8.1 Notation and Preliminaries

After all this preliminary work we are finally in a position to tackle the theme
of no-arbitrage in full generality, i.e., for general models S of financial mar-
kets in continuous time, and for general (i.e., not necessarily simple) trading
strategies H . The choice of the proper class of trading strategies will turn
out to be rather subtle. In fact, for different applications (e.g., portfolio op-
timisation with respect to exponential utility to give a concrete example; see
[DGRSSS 02] and [S 03a]) it will sometimes be necessary to consider differ-
ent classes of appropriate trading strategies. But for the present purpose the
concept of admissible strategies developed below will serve very well.

When defining an appropriate class of trading strategies, then, first of
all, one has to restrict the choice of the integrands H to make sure that the
process H ·S exists. Besides the qualitative restrictions coming from the theory
of stochastic integration considered in the previous chapter, one has to avoid
problems coming from so-called doubling strategies. This was already noted
in the paper by Harrison and Pliska [HP81]. To explain this remark, let us
consider the classical doubling strategy. We take the framework of a fair coin
tossing game. We toss a coin, and when heads comes up, the player is paid 2
times his bet. If tails comes up, the player loses his bet.

The so-called “doubling strategy” is known for centuries and in French it
is still referred to as “la martingale” (compare, e.g., [B 14, p. 77]1). The player
1 We cannot resist citing from Bachelier’s book where he discusses the “suicide

strategy” (see after Theorem 8.2.1 below), which is a close relative to the doubling
strategy.
“La martingale est la cause unique des grosses fortunes, ... . Pour devenir très

riche, il faut être favorisé par des concours de circonstances extraordinaires et par
des hasards constamment heureux. Jamais un homme n’ est devenu très riche par
sa valeur.”
The martingale is the unique cause for big fortunes, ... . To become very rich,

you have to be favoured by extraordinary circumstances and by constantly lucky
bets. Never a man became very rich by his value.



130 8 Arbitrage Theory in Continuous Time: an Overview

doubles his bet until the first time he wins. If he starts with 1e, his final gain
(last payout minus the total sum of the preceding losses) is 1e almost surely.
He has an almost sure win. The probability that heads will eventually show
up is indeed one (even if the coin is not fair). However, his accumulated losses
are not bounded below. Everybody, especially a casino boss, knows that this
is a very risky way of winning 1e. This type of strategy has to be ruled out:
there should be a lower bound on the player’s loss.

Here is the definition of the class of integrands which turns out to be
appropriate for our purposes.

Definition 8.1.1. Fix an Rd-valued stochastic process S = (St)t≥0 as defined
in Chap. 5, which we now also assume to be a semi-martingale. An Rd-valued
predictable process H = (Ht)t≥0 is called an admissible integrand for the
semi-martingale S, if

(i) H is S-integrable, i.e., the stochastic integral H ·S = ((H ·S)t)t≥0 is well-
defined in the sense of stochastic integration theory for semi-martingales,

(ii) there is a constant M such that

(H · S)t ≥ −M , a.s., for all t ≥ 0.

Let us comment on this definition: we place ourselves into the “théorie
générale” of integration with respect to semi-martingales: here we are on safe
grounds as the theory, developed in particular by P.-A. Meyer and his school,
tells us precisely what it means that a predictable process H is S-integrable
(see Chap. 7 above). But in order to be able to apply this theory we have to
make sure that S is a semi-martingale: this is precisely the class of processes
allowing for a satisfactory integration theory, as we know from the theorem
of Bichteler and Dellacherie ([B 81], [DM 80]; see also [P 90]).

How natural is the assumption that S is a semi-martingale from an eco-
nomic point of view? In fact, it fits very nicely into the present no-arbitrage
framework: it is shown in Theorem 9.7.2 below that, for a locally bounded,
càdlàg process S, the assumption, that the closure of Csimple with respect to
the norm topology of L∞(P) intersects L∞(P)+ only in {0}, implies already
that S is a semi-martingale. The semi-martingale property therefore is im-
plied by a very mild strengthening of the no-arbitrage condition for simple,
admissible integrands. Loosely speaking, the message of this theorem is that
a no-arbitrage theory for a stochastic process S modelling a financial market,
only makes sense if we start with the assumption that S is a semi-martingale.
For example, this rules out fractional Brownian motion (except for Brownian
motion itself, of course). There is no reasonable no-arbitrage theory for these
processes in the present setting of frictionless trading in continuous time. How-
ever, if one introduces transaction costs, then for fractional Brownian motion
the picture changes completely and the arbitrage opportunities disappear (see
[G 05]).
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Regarding condition (ii) in the above definition: this is a strong and eco-
nomically convincing requirement to rule out the above discussed doubling
strategy, as well as similar schemes, which try to make a final gain at the
cost of possibly going very deep into the red. Condition (ii) goes back to the
work of Harrison and Pliska [HP81]: the interpretation is that there is a finite
credit line M obliging the investor to finance her trading in such a way that
this credit line is respected at all times t ≥ 0.

Definition 8.1.2. Let S be an Rd-valued semi-martingale and let

K =
{
(H · S)∞

∣∣∣H admissible and (H · S)∞ = lim
t→∞(H · S)t exists a.s.

}
,

(8.1)
which forms a convex cone of functions in L0(Ω,F ,P), and

C = {g ∈ L∞(P) | g ≤ f for some f ∈ K } . (8.2)

We say that S satisfies the condition of no free lunch with vanishing risk
(NFLVR), if

C ∩ L∞
+ (P) = {0},

where C now denotes the closure of C with respect to the norm topology of
L∞(P).

Comparing the present definition with the notion of “no free lunch”
(NFL), the weak-star topology has been replaced by the topology of uni-
form convergence. Taking up again the discussion following the Kreps-Yan
Theorem 5.2.2, we now find a better economic interpretation: S allows for
a free lunch with vanishing risk, if there is f ∈ L∞

+ (P) \ {0} and sequences
(fn)∞n=0 = ((Hn · S)∞)∞n=0 ∈ K, where (Hn)∞n=0 is a sequence of admissible
integrands and (gn)∞n=0 satisfying gn ≤ fn, such that

lim
n→∞ ‖f − gn‖∞ = 0.

In particular the negative parts ((fn)−)∞n=0 and ((gn)−)∞n=0 tend to zero
uniformly, which explains the term “vanishing risk”.

8.2 The Crucial Lemma

We now come back to the formulation of a general version of the fundamental
theorem of asset pricing. We first restrict to the case of locally bounded pro-
cesses S, as treated in Chap. 9. This technical assumption makes life much
easier.

Theorem 8.2.1. (Corollary 9.1.2) The following assertions are equivalent for
an Rd-valued locally bounded semi-martingale model S = (St)t≥0 of a financial
market:
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(i) (EMM), i.e., there is a probability measure Q, equivalent to P, such that
S is a local martingale under Q.

(ii) (NFLVR), i.e., S satisfies the condition of no free lunch with vanishing
risk.

The present theorem is a sharpening of the Kreps-Yan Theorem 5.2.2, as
it replaces the weak-star convergence in the definition of “no free lunch” by
the economically more convincing notion of uniform convergence. The price
to be paid for this improvement is, that now we have to place ourselves into
the context of general admissible, instead of simple admissible integrands.

The proof of Theorem 8.2.1 as given in Chap. 9 and its extension in
Chap. 14 is surprisingly long and technical; despite of several attempts, no
essential simplification of this proof has been achieved so far. We are not able
to go in detail through this proof in this “guided tour”, but we shall try to
motivate and help the interested reader to find her way through the arguments
in Chap. 9 below.

We start by observing that the implication (i) ⇒ (ii) is still the easy one:
supposing that S is a local martingale under Q and H is an admissible trading
strategy, we may deduce from the Ansel-Stricker Theorem 7.3.7 and the fact
that H · S is bounded from below, that H · S is a local martingale under Q,
too. Using again the boundedness from below of H · S, we also conclude that
H · S is a super-martingale under Q, so that

EQ[(H · S)∞] ≤ 0. (8.3)

Hence EQ[g] ≤ 0, for all g ∈ C, and this equality extends to the norm
closure C of C (in fact, it also extends to the weak-star-closure of C, but
we don’t need this stronger result here). Summing up, we have proved that
(EMM) implies (NFLVR).

Before passing to the reverse implication let us still have a closer look at
the crucial inequality (8.3): its message is that the notion of equivalent local
martingale measures Q and admissible integrands H has been designed in
such a way, that the basic intuition behind the notion of a martingale holds
true: you cannot win in average by betting on a martingale. Note, however,
that the notion of admissible integrands does not rule out the possibility to
lose in average by betting on S. An example, already noted in [HP 81], is the
so-called “suicide strategy H” which is just the doubling strategy considered
at the beginning of this chapter with opposite signs. Consider, similarly as
above, a simplified roulette, where red and black both have probability 1

2 and,
as usual, when winning, your bet is doubled. The strategy consists in placing
one e on red and then walking to the bar of the casino and regarding the
roulette from a distance: if it happens that consecutively only red turns up
in the next couple of games, you may watch a huddle of chips piling up with
exponential growth (assuming, of course, that there is no limit to the size of
the bets). But inevitably, i.e., with probability one, black will eventually turn
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up, which will cause the huddle — including your original e — to disappear.
Translating this story into the language of stochastic integration, we have a
martingale S (in fact, a random walk) and an admissible trading strategy H
such that (H ·S)0 = 0 while (H ·S)∞ = −1 so that we have a strict inequality
in (8.3).

A continuous analogue of the suicide strategy is given by the process St =
exp
(
Wt − 1

2 t
)
, where W is a standard Brownian motion. This process starts at

1 and moves up and down in ]0,∞[ according to a fair game (it is a martingale).
But, as t tends to infinity, St tends to 0 almost surely. The reader can see that
the process S can assume quite high values but eventually the player loses the
initial bet S0 = 1.

We now discuss the difficult implication (NFLVR)⇒ (EMM) of Theorem
8.2.1. It is reduced to the subsequent theorem which may be viewed as the
“abstract” version of Theorem 8.2.1:

Theorem 8.2.2 (Theorem 9.4.2). In the setting of Theorem 8.2.1 assume
that (ii) holds true, i.e., that S satisfies (NFLVR).

Then the cone C ⊆ L∞(P) is weak-star-closed.

The fact that Theorem 8.2.2 implies Theorem 8.2.1 follows immediately
from the Kreps-Yan Theorem 5.2.2, i.e., we find a probability measure Q ∼ P
such that S is a local Q-martingale. Theorem 8.2.2 tells us that we don’t have
to bother about passing to the weak-star-closure of C any more, as assumption
(ii) of Theorem 8.2.1 implies that C already is weak-star-closed. In other words,
our program of choosing the “right” class of admissible integrands has been
successful: the passage to the limit which was necessary in the context of the
Kreps-Yan theorem, i.e., the passage from Csimple to its weak-star-closure, is
already taken care of by the passages to the limit in the stochastic integration
theory from simple to general admissible integrands.

In fact, Theorem 8.2.2 tells us that — under the assumption of (NFLVR)
— C equals precisely the weak-star-closure of Csimple. The fact that Csimple is
weak-star dense in C follows from Chap. 7 where the general theory of stochas-
tic integration is based on the idea of approximating a general integrand by
simple integrands.

By rephrasing Theorem 8.2.1 in the form of Theorem 8.2.2, we did not
come closer to a proof yet. But we see more clearly, what the heart of the
matter is: for a net (Hα)α∈I of admissible integrands, fα = (Hα · S)∞ and
gα ≤ fα such that (gα)α∈I weak-star converges in L∞(P) to some f , we have
to show that we can find an admissible integrand H such that f ≤ (H · S)∞.
This will prove Theorem 8.2.2 and therefore 8.2.1. Loosely speaking, we have
to be able to pass from a net (Hα)α∈I of admissible trading strategies to a
limiting admissible trading strategy H .

The first good news on our way to prove this result is that in the present
context we may reduce from the case of a general net (Hα)α∈I to the case of
a sequence (Hn)∞n=0 and therefore to a sequence fn = (Hn ·S)∞. This follows
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from a good old friend from functional analysis, the theorem of Krein-Smulian
as worked out in Proposition 5.2.4 above.

Once we have reduced the problem to the case of sequences (Hn)∞n=0

we may apply another good friend from functional analysis, the theorem
of Banach-Steinhaus (also called principle of uniform boundedness): if a se-
quence (gn)∞n=0 in a dual Banach space X∗ is weak-star convergent, the norms
(‖gn‖)∞n=0 remain bounded. This result implies (see Chap. 9 below) that we
may reduce to the case where the sequence (Hn)∞n=0 admits a uniform admis-
sibility bound M such that Hn · S ≥ −M , for all n ∈ N.

Putting together these results from general functional analysis, it will suf-
fice to prove the following result to complete the proof of Theorem 8.2.2.

Crucial Lemma 8.2.3. Under the hypotheses of Theorem 8.2.2, let (Hn)∞n=0

be a sequence of admissible integrands such that

(Hn · S)t ≥ −1, a.s., for t ≥ 0 and n ∈ N. (8.4)

Assume also that fn = (Hn ·S)∞ converges almost surely to f . Then there
is an admissible integrand H such that

(H · S)∞ ≥ f. (8.5)

The admissible strategy H can be chosen in such a way that (H ·S)∞ is a
maximal element in the set K.

To convince ourselves that Lemma 8.2.3 indeed implies Theorem 8.2.2, we
still have to justify one more reduction step which is contained in the state-
ment of Lemma 8.2.3: we may reduce to the case, when (fn)∞n=0 converges
almost surely. This is done by an elementary lemma in the spirit of Kom-
los’ theorem (Lemma 9.8.1, compare also Lemma 6.6.1 above). In its simplest
form it states the following: Let (fn)∞n=0 be an arbitrary sequence of random
variables uniformly bounded from below. Then we may find convex combina-
tions hn ∈ conv{fn, fn+1,...} converging almost surely to an R∪{+∞}-valued
random variable f . For more refined variations on this theme see Chap. 15.

Note that the passage to convex combinations does not cost anything in the
present context, where our aim is to find a limit to a given sequence in a locally
convex vector space; hence the above argument allows us to reduce to the case
where we may assume, in addition to (8.4), that (fn)∞n=0 = ((Hn · S)∞)∞n=0

converges almost surely to a function f : Ω→ R∪{+∞}. Using the assumption
(NFLVR) we can quickly show in the present context that f must be a.s.
finitely valued.

Summing up, Lemma 8.2.3 is a statement about the possibility of passing
to a limit H , for a given sequence (Hn)∞n=0 of admissible integrands. The
crucial hypothesis is the uniform one-sided boundedness (8.4); apart from this
strong assumption, we only have an information on the a.s. convergence of the
terminal values ((Hn · S)∞)∞n=0, but we do not have any a priori information
on the convergence of the processes ((Hn · S)t≥0)

∞
n=0.
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Let us compare Lemma 8.2.3 with the previous literature. An important
theorem of J. Mémin [M 80] states the following: if a sequence of stochastic in-
tegrals ((Hn · S)t≥0)

∞
n=0 on a given semi-martingale S is Cauchy with respect

to the semi-martingale topology, then the limit exists (as a semi-martingale)
and is of the form (H · S)t≥0 for some S-integrable predictable process H .

This theorem will finally play an important role in proving Lemma 8.2.3;
but we still have a long way to go before we can apply it, as the assumptions
of Lemma 8.2.3 a priori do not tell us anything about the convergence of the
sequence of processes ((Hn · S)t≥0)

∞
n=0.

Another line of results in the spirit of Lemma 8.2.3 assumes that the
process S is a (local) martingale. The arch-example is the theorem of Kunita-
Watanabe ([KW67]; see also [P 90] or [Y 78a] or Chap. 7 above): suppose
that S is a locally L2-bounded martingale, that each (Hn · S)t≥0 is an L2-
bounded martingale, and that the sequence ((Hn · S)t≥0)

∞
n=0 is Cauchy in the

Hilbert space of square-integrable martingales (equivalently: that the sequence
of terminal values ((Hn ·S)∞)∞n=0 is Cauchy in the Hilbert space L2(Ω,F ,P)).
Then the limit exists (as a square-integrable martingale) and it is of the form
(H · S)t≥0.

As the proof of this theorem is very simple and allows some insight into
the present theme, we sketch it (assuming, for notational simplicity, that S is
R-valued): denote by d[S] the quadratic variation measure of the locally L2-
bounded martingale S as in (7.9), which defines a sigma-finite measure on the
σ-algebra P of predictable subsets of R+×Ω. Denoting by L2(R+×Ω,P , d[S])
the corresponding Hilbert space, the stochastic integration theory is designed
in such a way that we have the isometric identity

‖H‖L2(R +×Ω,P,d[S]) = ‖(H · S)∞‖L2(Ω,F ,P), (8.6)

for each predictable process H , for which the left hand side of (8.6) is finite
(see Chap. 7 above).

Hence the assumption that ((Hn · S)t≥0)
∞
n=0 is Cauchy in the Hilbert

space of square-integrable martingales is tantamount to the assumption that
(Hn)∞n=0 is Cauchy in L2(R+ × Ω,P , d[S]). Now, once more, the stochas-
tic integration theory is designed in a way that L2(R+ × Ω,P , d[S]) con-
sists precisely of the S-integrable, predictable processes H such that H · S is
an L2-bounded martingale. Hence by the completeness of the Hilbert space
L2(R+ × Ω,P , d[S]) we can pass from the Cauchy-sequence (Hn)∞n=0 to its
limit H ∈ L2(R+ × Ω,P , d[S]). This finishes the sketch of the proof of the
Kunita-Watanabe theorem.

The above argument shows in a nice and transparent way how to deduce
from a completeness property of the space of predictable integrands H a com-
pleteness property of the corresponding space of terminal results (H · S)∞
of stochastic integrals. In the context of the theorem of Kunita-Watanabe,
the functional analytic background for this argument is reduced to the — al-
most trivial — isometric identification of the two corresponding Hilbert spaces
in (8.6).
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Using substantially more refined arguments, M. Yor [Y 78a] was able to
extend this result to the case of Cauchy sequences (Hn ·S)∞n=0 of martingales
bounded in Lp(P) or Hp(P), for arbitrary 1 ≤ p ≤ ∞, the most delicate and
interesting case being p = 1 (compare also Chap. 15 below).

After this review of some of the previous literature on the topic of com-
pleteness of the space of stochastic integrals, let us turn back to Lemma 8.2.3.

Unfortunately the theorems of Kunita-Watanabe and Yor do not apply to
its proof, as we don’t assume that S is a local martingale. It is precisely the
point, that we finally want to prove that S is a local martingale with respect
to some measure Q equivalent to P.

But in our attempt to build up some motivation for the proof of Lemma
8.2.3, let us cheat for a moment and suppose that we know already that S is
a local martingale under some equivalent measure Q and let (Hn)∞n=0 be a
sequence of S-integrable predictable processes satisfying (8.4). Using again the
theorem of Ansel-Stricker (Theorem 7.3.7 above) we conclude that (Hn ·S)∞n=0

is a sequence of local martingales; inequality (8.4) quickly implies that this
sequence is bounded in L1(Q)-norm:

‖Hn · S‖L1(Q) := sup {EQ [|(Hn · S)τ |] | τ stopping time} ≤ 2, for n ≥ 0.

Let us cheat once more and assume that each Hn ·S is in fact a uniformly
integrable Q-martingale (instead of only being a local Q-martingale) and
that ((Hn · S)∞)∞n=0 is Cauchy with respect to the L1(Q)-norm defined above
(instead of only being bounded with respect to this norm).

Admitting the above “cheating steps” we are in a position to apply Yor’s
theorem to find a limiting process H to the sequence (Hn)∞n=0 for which (8.5)
holds true, where we even may replace the inequality by an equality. But, of
course, this is only motivation, why Lemma 8.2.3 should hold true, and we
now have to find a mathematical proof, preferably without cheating.

We have taken some time for the above heuristic considerations to develop
an intuition for the statement of Lemma 8.2.3 and to motivate the general
philosophy underlying its proof: we want to prove results which are — at least
more or less — known for (local) martingales S, but replacing the martingale
assumption on S by the assumption that S satisfies (NFLVR).

As a starter we sketch the proof of a result which shows that, under the
assumption of (NFLVR), the technical condition imposed on the admissible
integrand H in (8.1) is, in fact, automatically satisfied. The lemma is taken
from Theorem 9.3.3 where it is stated for locally bounded semi-martingales,
but it remains valid for general semi-martingales S.

Lemma 8.2.4 (9.3.3). Let S be a semi-martingale satisfying (NFLVR) and
let H be an admissible integrand.

Then
(H · S)∞ := lim

t→∞(H · S)t

exists and is finite, almost surely.
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This result is a good illustration for our philosophy: suppose we know
already that the assumption of 8.2.4 implies that S is a local martingale
under some Q equivalent to P. Then the conclusion follows immediately from
known results: from Ansel-Stricker (Theorem 7.3.7) we know that H · S is a
super-martingale. As H · S is bounded from below, Doob’s super-martingale
convergence theorem (see, e.g., [W91]) implies the almost sure convergence of
(H · S)t as t→∞, to an a.s. finite random variable.

Our goal is to replace these martingale arguments by some arguments
relying only on (NFLVR). The nice feature is that these arguments also allow
for an economic interpretation.

Proof of Lemma 8.2.4. As in the usual proof of Doob’s super-martingale con-
vergence theorem we consider the number of up-crossings: to show almost sure
convergence of (H ·S)t, for t→∞, we consider, for any β < γ, the P-measure
of the set {ω | (H ·S)t(ω) upcrosses ]β, γ[ infinitely often}. We shall show that
it equals zero.

So suppose to the contrary that there is β < γ such that the set

A = {ω | (H · S)t upcrosses ]β, γ[ infinitely often}

satisfies P[A] > 0. The economic interpretation of this situation is the follow-
ing: an investor knows at time zero that, when applying the trading strategy
H , with probability P[A] > 0 her wealth will infinitely often be less than or
equal to β and infinitely often be more than or equal to γ. A smart investor
will realise that this offers a free lunch with vanishing risk, as she can modify
H to obtain a very rewarding trading strategy K.

Indeed, define inductively the sequence of stopping times (σn)∞n=0 and
(τn)∞n=0 by σ0 = τ0 = 0 and, for n ≥ 1,

σn = inf {t ≥ τn−1 | (H · S)t ≤ β} ,

τn = inf {t ≥ σn | (H · S)t ≥ γ} .

The set A then equals the set where, σn and τn are finite, for each n ∈ N

(as usual, the inf over the empty set is taken to be +∞).
What every investor wants to do is to “buy low and sell high”. The

above stopping times allow her to do that in a systematic way: define
K = H1{∪∞

n=1]]σn,τn]]}, which is clearly a predictable S-integrable process.
A more verbal description of K goes as follows: the investor starts by doing
nothing (i.e., making a zero-investment into the risky assets S1, . . . , Sd) until
the time σ1 when the process (H ·S)t has dropped below β (If β ≥ 0, we have
σ1 = 0)). At this time she starts to invest according to the rule prescribed by
the trading strategy H ; she continues to do so until time τ1 when (H ·S)t first
has passed beyond γ. Note that, if τ1(ω) is finite, our investor following the
strategy K has at least gained the amount γ − β. At time τ1 (if it happens
to be finite) the investor clears all her positions and does not invest into the
risky assets until time σ2, when she repeats the above scheme.



138 8 Arbitrage Theory in Continuous Time: an Overview

One easily verifies (arguing either “mathematically” or “economically”)
that the process K · S satisfies

(K · S)t ≥ −M a.s., for all t,

where M is the uniform lower bound for H · S, and

lim
t→∞(K · S)t =∞ a.s. on A.

Hence K describes a trading scheme, where the investor can lose at most
a fixed amount of money, while, with strictly positive probability, she ulti-
mately becomes infinitely rich. Intuitively speaking, this is “something like
an arbitrage”, and it is an easy task to formally deduce from these proper-
ties of K a “free lunch with vanishing risk”: for example, it suffices to de-
fine Kn = 1

nK1]]0,τn∧Tn]], for a sequence of (deterministic) times (Tn)∞n=0, to
let fn = (Kn · S)∞ = (Kn · S)τn∧Tn and to define gn = fn ∧ (γ − β)1B

where B =
⋂∞

n=0{τn ≤ Tn}. If (Tn)∞n=1 tends to infinity sufficiently fast, we
have P[B] > 0, and one readily verifies that (gn)∞n=1 converges uniformly to
(γ − β)1B .

Summing up, we have shown that (NFLVR) implies that, for β < γ, the
process H · S almost surely upcrosses the interval ]β, γ[ only finitely many
times. Whence (H ·S)t converges almost surely to a random variable (H ·S)∞
with values in R∪{∞}. The fact that (H ·S)∞ is a.s. finitely valued follows from
another application (similar to but simpler than the above) of the assumption
of (NFLVR), which we leave to the reader. �

We now start to sketch the main arguments underlying the proof of Lemma
8.2.3. The strategy is to obtain from assumption (8.4) and from suitable mod-
ifications of the original sequence (Hn)∞n=0 more information on the conver-
gence of the sequence of processes (Hn · S)∞n=0. Eventually we shall be able
to reduce the problem to the case where (Hn · S)∞n=0 converges in the semi-
martingale topology; at this stage Mémin’s theorem [M 80] will give us the
desired limiting trading strategy H .

So, what can we deduce from assumption (8.4) and the a.s. convergence
of (fn)∞n=0 = ((Hn · S)∞)∞n=0 for the convergence of the sequence of processes
(Hn · S)∞n=0? The unpleasant answer is: a priori, we cannot deduce anything.
To see this, recall the “suicide” strategy H which we have discussed in the
context of inequality (8.3) above: it designs an admissible way to lose one e.
Speaking mathematically, the corresponding stochastic integral H · S starts
at (H · S)0 = 0, satisfies (H · S)t ≥ −1 almost surely, for all t ≥ 0, as well as
(H · S)∞ = −1. But clearly this is not the only admissible way to lose one e
and there are many other trading strategies K on the process S having the
same properties. Taking up again the example discussed after (8.3), a trivial
example is, to first wait without playing for a fixed number of games of the
roulette, and to start the suicide strategy only after this waiting period; of
course, this is a different way of losing one e.
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Speaking mathematically, this means that — even when S is a martingale,
as is the case in the example of the suicide strategy — the condition (H ·S)t ≥
−1 a.s., for all t ≥ 0, and the final outcome (H · S)∞ do not determine the
process H ·S uniquely. In particular there is no hope to derive from (8.4) and
the a.s. convergence of the sequence of random variables ((Hn · S)∞)∞n=0, a
convergence property of the sequence of processes (Hn · S).

The idea to remedy the situation is to notice the following fact: the suicide
strategy is a silly investment and obviously there are better trading strategies,
e.g., not to gamble at all. By discarding such “silly investments”, we hopefully
will be able to improve the situation.

Here is the way to formalise the idea of discarding “silly investments”:
denote by D the set of all random variables h such that there is a random
variable f ≥ h and a sequence (Hn)∞n=0 of admissible trading strategies satis-
fying (8.4), and such that (Hn ·S)∞ converges a.s. to f . We call f0 a maximal
element of D if the conditions h ≥ f0 and h ∈ D imply that h = f0.

For example, in the context of the random walk S = (St)∞t=0 on which we
constructed the above “suicide strategy”, h ≡ −1 is an element of D, but not
a maximal element. A maximal element dominating h is, for example, f0 ≡ 0.

More generally, it is not hard to prove under the assumptions of Lemma
8.2.3 that, for a given f = (H ·S)∞ ≥ −1, where H is an admissible integrand,
there is a maximal element f0 ∈ D dominating f (see Lemma 9.4.4).

The point of the above concept is that, in the proof of Lemma 8.2.3, we may
assume without loss of generality that f is a maximal element of D. Under this
additional assumption it is indeed possible to derive from the a.s. convergence
of the sequence of random variables ((Hn · S)∞)∞n=0 some information on the
convergence of the sequence of processes (Hn · S)∞n=0.

As the proof of this result is another nice illustration of our general ap-
proach of replacing “martingale arguments” by “economically motivated argu-
ments” relying on the assumption (NFLVR), we sketch the argument. Again
we observe that the proof does not make use of the local boundedness of S.

Lemma 8.2.5 (9.4.6). Let S be an Rd-valued semi-martingale and let f be
a maximal element of D. Let (Hn)∞n=1 be a sequence of admissible integrands
as in Lemma 8.2.3.

Then the sequence of random variables

Fn,m = sup
0≤t<∞

|(Hn · S)t − (Hm · S)t| (8.7)

tends to zero in probability, as n, m→∞.

Proof. Suppose to the contrary that there is α > 0, and sequences (nk, mk)∞k=1

tending to infinity s.t. P[sup0≤t((Hnk · S)t − (Hmk · S)t) > α] ≥ α, for each
k ∈ N.
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Define the stopping times τk as

τk = inf {t | (Hnk · S)t − (Hmk · S)t ≥ α} ,

so that we have P[τk <∞] ≥ α.
Define Lk as Lk = Hnk1]]0,τk]] + Hmk1]]τk,∞[[. Clearly the process Lk is

predictable and Lk · S ≥ −1.
Translating the formal definition into prose: the trading strategy Lk con-

sists of following the trading strategy Hnk up to time τk, and then switching
to Hmk . The idea is that Lk produces a sensibly better final result (Lk · S)∞
than either (Hnk ·S)∞ or (Hmk ·S)∞, which will finally lead to a contradiction
to the maximality assumption on f .

Why is Lk “sensibly better” than Hnk or Hmk? For large k, the ran-
dom variables (Hnk · S)∞ as well as (Hmk · S)∞ will both be close to f
in probability; for the sake of the argument, assume that both are in fact
equal to f (keeping in mind that the difference is “small with respect to
convergence in probability”). A moment’s reflection reveals that this im-
plies that the random variable (Lk · S)∞ equals f plus the random vari-
able ((Hnk · S)τk

− (Hmk · S)τk
)1{τk<∞}. The latter random variable is non-

negative and with probability α greater than or equal to α; this means that
this difference between f and (Lk · S)∞ is not “small with respect to conver-
gence in probability”; this is, what we had in mind when saying that Lk is a
“sensible” improvement as compared to Hnk or Hmk .

Modulo some technicalities, which are worked out in Lemma 9.4.6 below,
this gives the desired contradiction to the maximality assumption on f , thus
finishing the (sketch of the) proof of Lemma 8.2.5. �

Lemma 8.2.5 is our first step towards a proof of Lemma 8.2.3: it gives
some information on the convergence of the sequence of processes (Hn ·S)∞n=0

in terms of the maximal functions defined in (8.7). But the assertion that
these maximal functions tend to zero in probability is still much weaker than
the convergence of (Hn ·S)∞n=0 with respect to the semi-martingale topology,
which we finally need in order to be able to apply Mémin’s theorem. There is
still a long way to go!

But it is time to finish this “guided tour” towards a proof of Theorem 8.2.2
and to advise the interested reader to find the remaining part of the proof in
Chap. 9 below. We hope that we have succeeded to give some motivation for
the proof and for the “economically motivated” arguments underlying it.

8.3 Sigma-martingales and the Non-locally Bounded
Case

To finish this chapter we return to the basic assumption in Sect. 8.2 that the
process S is locally bounded. What happens if we drop this — technically very
convenient — assumption?
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Before starting to answer this question, we remark that this question is
not only of “academic” interest. It is also important from the point of view of
applications: if one goes beyond the framework of continuous processes S —
and there are good empirical reasons to do so — it is quite natural to allow
for the jumps of the processes to be unbounded. As a concrete example we
mention Lévy processes or the family of ARCH (Auto-Regressive Conditional
Heteroskedastic) processes and their relatives (GARCH, EGARCH etc.). The
former find increasing applications in financial engineering. The latter are very
popular in the econometric literature: these are processes in discrete time
where the conditional distribution of the jumps is Gaussian. In particular,
these processes are not locally bounded (compare Example 8.3.3 below). There
are many other examples of processes which fail to be locally bounded, used
in the modelling of financial markets.

The answer to the question, whether Theorem 8.2.1 can be extended to this
setting, is as we expect it to be: mutatis mutandis the fundamental theorem
of asset pricing as well as the related theorems carry over to the case of not
necessarily locally bounded Rd-valued semi-martingales S. Not coming as a
surprise, the techniques of the proofs have to be refined: in particular, we
cannot entirely reduce to the study of the space L∞(Ω,F ,P), and the weak-
star and norm topology of this space: there is no possibility anymore to reduce
to the case of (one-sided) bounded stochastic integrals and we therefore have
to use larger spaces than L∞(Ω,F ,P). Yet it turns out — and this is slightly
surprising — that the duality between L∞(P) and L1(P) still remains the
central issue of the proof.

Here is the statement of the extension of the fundamental theorem of asset
pricing as obtained in Chap. 14.

Theorem 8.3.1 (Main Theorem 14.1.1). The following assertions are
equivalent for an Rd-valued semi-martingale model S = (St)t≥0 of a finan-
cial market:

(i) (ESMM), i.e., there is a probability measure Q equivalent to P such that
S is a sigma-martingale under Q.

(ii) (NFLVR), i.e., S satisfies the condition of no free lunch with vanishing
risk.

There is a slight change in the statement (i) as compared to the state-
ment of Theorem 8.2.1 above: the term “local martingale” in the definition
of (EMM) was replaced by the term “sigma-martingale” thus replacing the
acronym (EMM) by (ESMM). On the other hand, condition (ii) remained
completely unchanged.

The notion of a sigma-martingale is a generalisation of the notion of a
local martingale:

Definition 8.3.2 (Chap. 14). An Rd-valued semi-martingale S = (St)t≥0

is called a sigma-martingale if there is a predictable process ϕ = (ϕt)t≥0,
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taking its values in ]0,∞[, such that the Rd-valued stochastic integral ϕ · S is
a martingale.

To motivate this definition we recall Émery’s example 7.3.4: we have seen
there that the process X = H ·M defined in (7.15) fails to be a local martin-
gale. Nevertheless, the above definition gives us a tool to interpret the process
X as “something which has the essential features of a martingale”: defining
ϕt = t we find a (deterministic and therefore predictable) process ϕ such that
ϕ ·X = (ϕH) ·M = M is a martingale. Hence X is a sigma-martingale.

The notion of sigma-martingales was introduced (using slightly different
notation) by Chou [C 77] and further analyzed by Émery [E 80]. It is tailor-
made for our present purposes for the following two reasons:

Fact 1: In the setting of Theorem 8.3.1 (i) it is unavoidable to pass to a
concept going beyond the notion of a local martingale.

Fact 2: For the purposes of hedging contingent claims the notion of a sigma-
martingale is just as useful as the notion of a local martingale (or even
that of a martingale).

To justify these two facts we start with the second one: assume that
S = (St)t≥0 is a sigma-martingale so that there is a ]0,∞[-valued predictable
process ϕ such that S̃ = ϕ · S is a martingale. Let H be any Rd-valued pre-
dictable process. Then H is S-integrable, iff H̃ := H

ϕ is S̃-integrable and in

this case the processes H · S and H̃ · S̃ are identical. This follows from the
rather trivial formula

H̃ · S̃ =
(

H
ϕ

)
· (ϕ · S) = H · S.

As a consequence, the class of processes {H · S | H is S-integrable} and
{H̃ · S̃ | H̃ is S̃-integrable} coincide. Every statement pertaining only to this
class (such as Theorem 8.3.1 (ii)) remains unaffected by the passage from the
sigma-martingale S to the martingale S̃.

As regards Fact 1 above, we construct in Example 14.2.3 a slight variant of
Émery’s Example 7.3.4 with the following property: the process S is a sigma-
martingale (under P) but, for each Q� P, S fails to be a local Q-martingale.
Hence the process S satisfies (NFLVR), but there is no probability measure
Q� P such that S is a local Q-martingale.

We now try to give a sketch of the strategy for the proof of Theorem 8.3.1,
where S is a general (not necessarily locally bounded) semi-martingale. As
usual the implication (i) ⇒ (ii) is the easy one: it follows from the discussion
of Fact 2 above and the Ansel-Stricker Theorem 7.3.7 that, if S is a sigma-
martingale under Q, and H an admissible integrand for S, the process H · S
is a super-martingale under Q. Hence EQ[f ] ≤ 0, for all f ∈ C, which implies
Theorem 8.3.1 (ii) by the usual arguments.
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The subtle issue is the implication (ii) ⇒ (i) of Theorem 8.3.1. The
first good news is that for the validity of Theorem 8.2.2, which asserts that
(NFLVR) implies the weak-star-closureness of the cone C defined in (8.2), the
assumption of local boundedness is not needed: The proof of Theorem 8.2.2
does not use the local boundedness of S and works in full generality. Hence
we may apply the Kreps-Yan Theorem 5.2.2 also under the assumptions of
Theorem 8.3.1 (ii) to find a probability measure Q ∼ P such that EQ[f ] ≤ 0,
for each f ∈ C. The set of these probability measures, i.e., the probability
measures Q� P such that Q|C ≤ 0 is denoted by Me

s in Proposition 14.4.5.
Y.M. Kabanov [K97] proposed the name “separating measures” for this set.

In the case of S being (locally) bounded we have seen that, for a sepa-
rating measure Q, the semi-martingale S is a (local) Q-martingale. We have
used this rather obvious fact (Lemma 5.1.3) to deduce Theorem 8.2.1 from
Theorem 8.2.2 above. But in the present case of a general semi-martingale
S this implication breaks down. The subsequent easy example illustrates the
situation.

Example 8.3.3. Let X be a normally distributed real random variable with
mean µ ∈ R and variance σ2 > 0. Define the process S = (St)t≥0 by

St =
{

0, for 0 ≤ t < 1,
X, for t ≥ 1.

which we consider under its natural filtration (Ft)t≥0.
Observe that, for every admissible integrand H , we have H · S ≡ 0. Ex-

pressing this property in prose: the only admissible way, i.e., with uniformly
bounded risk, to bet on the random variable X , is the zero bet. This follows
from the fact that X is unbounded from below as well as from above.

Hence the cone K defined in (8.1) is reduced to zero, and the cone C
defined in (8.2) equals the negative orthant L∞− (Ω,F∞,P). It follows that
every probability measure Q� P is a separating measure. But S is a sigma-
martingale w.r. to Q, iff it is a martingale w.r. to Q, iff EQ[X ] = 0.

The example shows that, if we allow S to have unbounded jumps, the sep-
arating measures Q are not necessarily sigma-martingale measures any more.
The important observation which will eventually prove Theorem 8.3.1 is the
following: the set Me

σ of measures Q ∼ P such that S is a sigma-martingale
under Q is dense in the set of separating measuresMe

s (see Proposition 14.4.5)
which we restate here for convenience). Of course, this density assertion is a
more precise information than the assertion of Theorem 8.3.1 that Me

σ is not
empty.

Proposition 8.3.4. Denote by Me
s the set of probability measures

Me
s = {Q | Q ∼ P and for each f ∈ C : EQ [f ] ≤ 0} .

If S satisfies (NFLVR), then
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Me
σ = {Q | S is a Q sigma-martingale} ,

is dense in Me
s with respect to the norm of L1(Ω,F∞,P).

Let us illustrate this fact for the easy Example 8.3.3 above: fix µ ∈ R,
σ2 > 0, ε > 0 and a probability measure Q1 ∼ P. We want to find a measure
Q ∼ P, ‖Q1−Q‖ < ε such that EQ[X ] = 0. Suppose w.l.g. that EQ1 [X ] < 0.
(If EQ1 [X ] = 0 there is nothing to prove; if EQ1 [X ] > 0 it suffices to reverse
the inequalities in (8.8).)

Define, for ξ ∈ R, α > 1, 0 < β < 1, the measure Q(ξ, α, β) by

dQ(ξ, α, β)
dQ1

= α1{X>ξ} + β1{X≤ξ}. (8.8)

As X is unbounded under the measure Q1, one easily verifies that one may
find (ξ, α, β) such that Q := Q(ξ, α, β) is a probability measure and such that
‖Q−Q1‖ < ε as well as EQ[X ] = 0 (compare Lemma 14.3.4).

Summing up, we have shown the validity of Proposition 8.3.4 in the very
special case of Example 8.3.3. This strategy of proof also applies to the proof
of Proposition 8.3.4 in full generality, modulo some delicate technicalities as
we now shall try to explain.

To sketch the idea of the proof of Proposition 8.3.4 suppose that S =
(St)t≥0 is a semi-martingale satisfying (NFLVR), so that Me

s is non-empty.
Fix Q1 ∈Me

s.
The problem is that Q1 may fail to be a sigma-martingale measure; this

is due to the fact that the semi-martingale S may have “big jumps”. So
let us deal with the jumps in a systematic way. We know from the general
theory [D 72, DM 80] that the jumps of a càdlàg process S can be exhausted
by countably many stopping times; in addition, these stopping times can be
classified into the predictable ones and the totally inaccessible ones (Definition
7.2.2 and 7.2.3). More precisely, for a given càdlàg process S we may find
sequences (T p

n)∞n=1 and (T i
n)∞n=1 such that T p

n (resp. T i
n) are predictable (resp.

totally inaccessible) stopping times and such that

{(ω, t) ∈ Ω× R+ | ∆St(ω) �= 0} ⊆
∞⋃

n=1

[[T p
n ]] ∪

∞⋃
n=1

[[T i
n]]. (8.9)

In addition we may assume that the sets ([[T p
n ]])∞n=1 and

(
[[T i

n]]
)∞

n=1
are

mutually disjoint.
To sketch the idea of the proof of Proposition 8.3.4 we start by considering

the case where there is only one predictable jump in (8.9), i.e.

{(ω, t) ∈ Ω× R+ | ∆St(ω) �= 0} ⊆ [[T p]] , (8.10)

for some predictable stopping time T p. This is the case, e.g., in Example
8.3.3, where T p ≡ 1. In order to show Proposition 8.3.4 we proceed similarly



8.3 Sigma-martingales and the Non-locally Bounded Case 145

as in this example (supposing for the moment that S is real-valued and that
FT p

− is trivial to simplify even further). If the jump ∆ST p is unbounded from
above as well as from below we may proceed just as in (8.8) above to find
a probalility measure Q ∈ Me

s with ‖Q − Q1‖1 < ε such that EQ[∆ST p |
FT p

− ] = EQ[∆ST p ] = 0. Hence Q ∈Me
σ as we now have that the (conditional)

expectation at the jump time T p assumes the correct value, namely zero.
Now suppose that the jump ∆ST p is only one-sided bounded, say bounded

from below, but unbounded from above. This is a slight variation of the situa-
tion of Example 8.3.3. In this case it is important to note that, for Q1 ∈Me

s,
we must have that

EQ1 [∆ST p | FT p
−
] = EQ1 [∆ST p ] ≤ 0. (8.11)

Indeed, the predictable process H = 1[[T p]] then is admissible and we have
(H · S)∞ = ∆ST p which implies (8.11).

In the case when we have strict inequality in (8.11) (otherwise there is
nothing to prove) we can again change the measure Q1 to a probability mea-
sure Q similarly as in (8.8) above to increase the value EQ[∆ST p ] by putting
more mass of the probability on the upper tail of the distribution of ∆ST p

(recall that ∆ST p is assumed to be unbounded from above). Hence we may
increase this value until we have equality in (8.11).

Summing up, we have managed to pass from a given Q1 ∈ Me
s to Q ∈Me

σ

such that ‖Q−Q1‖1 < ε; but we have used some very restrictive assumptions.
Now let us get rid of them. The most obvious step is to drop the assumption
that FT p

−
is trivial: it suffices to apply the above arguments conditionally on

FT p
−
. More delicate is the passage from R-valued processes S to Rd-valued

ones. In the R-valued case there are only two possibilities of one-sided bound-
edness of ∆XT p , i.e., either from above or from below. For d ≥ 2 we have
to consider general cones of directions in Rd into which the jump ∆XT p is
bounded. The corresponding arguments are worked out in Chap. 14 below.
Finally, we can generalise the assumption (8.10) to the case when the jumps
of S are exhausted not by one stopping time T p but by a sequence (T p

n)∞n=1 of
predictable stopping times: repeat inductively the above argument and apply
an ε

2n -argument. This program takes care of the predictable stopping times
in (8.9).

We still have to deal with the totally inaccessible stopping times (T i
n)∞n=1

in (8.9). They form a different league as in this case we cannot argue con-
ditionally on F(T i

n)− as in the predictable case above. Instead we have to
consider the compensators of the jumps of S at the totally inaccessible stop-
ping times T i

n. This requires some machinery from semi-martingale theory as
developed, e.g., in [JS 87]. The technicalities are more complicated than in the
case of predictable stopping times; nevertheless it is possible to proceed in a
similar spirit and to argue inductively on (T i

n)∞n=1 to make sure that all the
relevant conditional expectations are well-defined and have the desired value,



146 8 Arbitrage Theory in Continuous Time: an Overview

namely zero. This program is worked out in Chap. 14 below in full detail and
eventually yields a proof of Proposition 8.3.4 and therefore of Theorem 8.3.1.

After proving the Fundamental Theorem of Asset Pricing in the version of
Theorem 8.3.1 in the first part of Chap. 14 we also extend its twin, the “su-
perreplication theorem” (see Theorem 2.4.2 for the most elementary version)
to its natural degree of generality in the setting of general semi-martingale
models (see Theorem 14.5.9).

We now arrived at the point where we finish this “guided tour” which
should help to develop the intuition by some informal arguments. Now we
have to refer the reader to the original papers for a rigorous mathematical
treatment.



Part II

The Original Papers
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A General Version of the Fundamental
Theorem of Asset Pricing (1994)

9.1 Introduction

A basic result in mathematical finance, sometimes called the fundamental the-
orem of asset pricing (see [DR 87]), is that for a stochastic process (St)t∈R + ,
the existence of an equivalent martingale measure is essentially equivalent
to the absence of arbitrage opportunities. In finance the process (St)t∈R +

describes the random evolution of the discounted price of one or several finan-
cial assets. The equivalence of no-arbitrage with the existence of an equivalent
probability martingale measure is at the basis of the entire theory of “pricing
by arbitrage”. Starting from the economically meaningful assumption that
S does not allow arbitrage profits (different variants of this concept will be
defined below), the theorem allows the probability P on the underlying proba-
bility space (Ω,F ,P) to be replaced by an equivalent measure Q such that the
process S becomes a martingale under the new measure. This makes it possi-
ble to use the rich machinery of martingale theory. In particular the problem
of fair pricing of contingent claims is reduced to taking expected values with
respect to the measure Q. This method of pricing contingent claims is known
to actuaries since the introduction of actuarial skills, centuries ago and known
by the name of “equivalence principle”.

The theory of martingale representation allows to characterise those assets
that can be reproduced by buying and selling the basic assets. One might get
the impression that martingale theory and the general theory of stochastic
processes were tailor-made for finance (see [HP81]).

The change of measure from P to Q can also be seen as a result of risk
aversion. By changing the physical probability measure from P to Q, one
can attribute more weight to unfavourable events and less weight to more
favourable ones.

[DS 94] A General Version of the Fundamental Theorem of Asset Pricing. Mathema-
tische Annalen, vol. 300, pp. 463–520, Springer, Berlin, Heidelberg, New York (1994).
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As an example that this technique has in fact a long history, we quote the
use of mortality tables in insurance. The actual mortality table is replaced
by a table reflecting more mortality if a life insurance premium is calculated
but is replaced by a table reflecting a lower mortality rate if e.g. a lump sum
buying a pension is calculated. Changing probabilities is common practice in
actuarial sciences. It is therefore amazing to notice that today’s actuaries are
introducing these modern financial methods at such a slow pace.

The present paper focuses on the question: “What is the precise meaning
of the word essentially in the first paragraph of the paper?” The question has
a twofold interest. From an economic point of view one wants to understand
the precise relation between concepts of no-arbitrage type and the existence
of an equivalent martingale measure in order to understand the exact lim-
itations up to which the above sketched approach may be extended. From
a purely mathematical point of view it is also of natural interest to get a bet-
ter understanding of the question which stochastic processes are martingales
after an appropriate change to an equivalent probability measure. We refer to
the well-known fact that a semi-martingale becomes a quasi-martingale under
a well-chosen equivalent law (see [P 90]); from here to the question whether
we can obtain a martingale, or more generally a local martingale, is natural.

We believe that the main theorem (Theorem 9.1.1 below) of this paper
contributes to both theories, mathematics as well as economics. In economic
terms the theorem contains essentially two messages. First that it is possible
to characterise the existence of an equivalent martingale measure for a general
class of processes in terms of the concept of no free lunch with vanishing risk,
a concept to be defined below. In this notion the aspect of vanishing risk
bears economic relevance. The second message is that — in a general setting
— there is no way to avoid general stochastic integration theory. If the model
builder accepts the possibility that the price process has jumps at all possible
times, he needs a sophisticated integration theory, going beyond the theory
for “simple integrands”. In particular the integral of unbounded predictable
processes of general nature has to be used. From a purely mathematical point
of view we remark that the proof of the Main Theorem 9.1.1 below, turns
out to be surprisingly hard and requires heavy machinery from the theory
of stochastic processes, from functional analysis and also requires some very
technical estimates.

The process S, sometimes denoted (St)t∈R + is supposed to be R-valued,
although all proofs work with a d-dimensional process as well. However, we
prefer to avoid vector notation in d dimensions. If the reader is willing to
accept the 1-dimensional notation for the d-dimensional case as well, nothing
has to be changed. The theory of d-dimensional stochastic integration is a little
more subtle than the one-dimensional theory but no difficulties arise.

The general idea underlying the concept of no-arbitrage and its weaken-
ings, stated in several variants of “no free lunch” conditions, is that there
should be no trading strategy H for the process S, such that the final pay-
off described by the stochastic integral (H · S)∞, is a non-negative function,
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strictly positive with positive probability. The economic interpretation is that
by betting on the process S and without bearing any risk, it should not be
possible to make something out of nothing. If one wants to make this intu-
itive idea precise, several problems arise. First of all one has to restrict the
choice of the integrands H to make sure that (H · S)∞ exists. Besides the
qualitative restrictions coming from the theory of stochastic integration, one
has to avoid problems coming from so-called doubling strategies. This was
already noted in the papers [HK 79] and [HP81]. To explain this remark let
us consider the classical doubling strategy. We draw a coin and when heads
comes out the player is paid 2 times his bet. If tails comes up, the player loses
his bet. The strategy is well-known: the player doubles his bet until the first
time he wins. If he starts with 1e, his final gain ( = last pay out − total sum
of the preceding bets) is almost surely 1e. He has an almost sure win. The
probability that heads will eventually show up is indeed one, even if the coin is
not fair. However, his accumulated losses are not bounded below. Everybody,
especially the casino boss, knows that this is a very risky way of winning 1e.
This type of strategy has to be ruled out: there should be a lower bound on
the player’s loss. The described doubling strategy is known for centuries and
in French it is still referred to as “la martingale”.

One possible way to avoid these difficulties is to restrict oneself to simple
predictable integrands. These are defined as linear combinations of buy and
hold strategies. Mathematically such a buy and hold strategy is described as
an integrand of the form H = f1]]T1,T2]], where T1 ≤ T2 are finite stopping
times and f is FT1 , measurable. The advantage of using such integrands is that
they have a clear interpretation: when time T1(ω) comes up, buy f(ω) units of
the financial asset, keep them until time T2(ω) and sell. A linear combination
of such integrands is called a simple integrand. An elementary integrand is
a linear combination of buy and hold strategies with stopping times that are
deterministic. This terminology agrees with standard terminology of stochas-
tic integration (see [P 90, DM 80, CMS 80]). Even if the process S is not a semi-
martingale the stochastic integral (H · S) for H = f1]]T1,T2]] can be defined as
the process (H ·S)t = f ·(Smin(t,T2)−Smin(t,T1)). Also the definition of the limit
(H ·S)∞ = limt→∞(H ·S)t = f ·(ST2−ST1) poses no problem. The net profit of
the strategy is precisely (H ·S)∞. The use of stopping times is interpreted as
the use of signals coming from available, observable information. This explains
why in financial theories the filtration and the derived concepts such as pre-
dictable processes, are important. It is clear that the use of simple integrands
rules out the introduction of doubling strategies. This led [HK 79, K81, HP81]
to define no-arbitrage and no free lunch in terms of simple integrands and
to obtain theorems relating these notions to the existence of an equiva-
lent martingale measure. In various directions these results were extended
in [DH86, Str 90, DMW90, AS 93, MB 91, L 92, D 92, S 94, K93].

To relate our work to earlier results, let us summarise the present state of
the art. The case when the time set is finite is completely settled in [DMW90]
and the use of simple or even elementary integrands is no restriction at all
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(see [S 92, KK94, R 94] for elementary proofs). For the case of discrete but
infinite time sets, the problem is solved in [S 94]. The case of continuous and
bounded processes in continuous time, is solved in [D 92]. In these two cases
the theorems are stated in terms of simple integrands and limits of sequences
and by using the concept of no free lunch with bounded risk. We shall review
these issues in Sect. 9.6.

In the general case, i.e. a time set of the form [0,∞[ or [0, 1] and with
a possibility of random jumps, the situation is much more delicate. The ex-
istence of an equivalent martingale measure can be characterised in terms of
“no free lunch” involving the convergence of nets or generalised sequences,
see e.g. [K 81, L 92]. S. Kusuoka [K 93] used convergence in Orlicz spaces and
Fuffie, Huang and Stricker [DH86, Str 90] used Lp convergence for 1 ≤ p <∞.
In the latter case the restrictions posed on S were such that the new mea-
sure has a density in Lq where q = p

p−1 . Contrary to the case of continuous
processes or to the case of discrete time sets, no general solution was known
in terms of “no free lunch” involving convergent sequences. Hence there re-
mained the natural question whether for a general adapted process S, the
existence of an equivalent martingale measure could be characterised in such
terms.

The answer turns out to be no if one only uses simple integrands. In
Sect. 9.7, we give an example of a process S = M +A where M is a uniformly
bounded martingale, A is a predictable process of finite variation, S admits
no equivalent martingale measure but there is “no free lunch with bounded
risk” if one only uses simple integrands. A closer look at the example shows
that if one allows strategies of the form: “sell before each rational number
and buy back after it”, then there is even a “free lunch with vanishing risk”.
Of course such a trading strategy is difficult to realise in practice but if we
allow discontinuities for the price process at arbitrary times, then we should
also allow strategies involving the same kind of pathology. The example shows
that we should go beyond the simple integration theory to cover these cases as
well. To back this assertion let us recall that the basis of the whole theory of
asset pricing by arbitrage is, of course, the celebrated Black-Scholes formula
(see [BS73, M 73]), widely used today by practitioners in option trading. Also
in this case the trading strategy H , which perfectly replicates the payoff of the
given option, is not a simple integrand. It is described as a smooth function
of time and the underlying stock price. Being a smooth function of the stock
price, its trajectories are in fact of unbounded variation. One can argue that
in practice already this strategy is difficult to realise. In this case, however,
one shows that the integrand can be approximated by simple integrands in
a reasonable way; for details we refer the reader to books an stochastic inte-
gration theory with special emphasis an Brownian motion, e.g. [KS 88]. In the
case of the example of Sect. 9.7, this reduction is not possible and as already
advocated, general integrands are really needed.

Summing up we are forced to leave the framework of simple integrands.
However, we immediately face new problems. First the process S should be re-
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stricted in order to allow the definition of integrals H ·S for more general trad-
ing strategies. S has to be a semi-martingale to realise this. This is precisely
the content of the Bichteler-Dellacherie theorem (see [P 90]). It turns out that
this is not really a restriction. From the work of [FS 91, AS 93], we know that
no free lunch conditions stated with simple integrands, imply that a càdlàg
adapted process is a special semi-martingale. (A process is called càdlàg, if
almost every trajectory admits left limits and is right continuous). We refer
to Sect. 9.7 of this paper for a general version of this result, adapted to our
framework. The second difficulty arises from the fact that doubling-like strate-
gies have to be excluded. This may be done by using the concept of admissible
integrands H , requiring that the process H ·S is uniformly bounded from be-
low, a concept going back to [HP 81] and developed in [D 92, MB91, S 94].
The concept of admissible integrand is a mathematical formulation of the
requirement that an economic agent’s position cannot become too negative,
a practice sometimes referred to as “your friendly broker calls for extra mar-
gin”. The third problem is to make sure that (H · S)∞ = limt→∞(H · S)t has
a meaning. We shall see that this problem has a very satisfactory solution if
one restricts to admissible integrands.

The condition of no free lunch with vanishing risk (NFLVR) can now be
described as follows. There should be no sequence of final payoffs of admissible
integrands, fn = (Hn·S)∞ such that the negative parts f−

n tend to 0 uniformly
und such that fn tends almost surely to a [0,∞]-valued function f0 satisfying
P[f0 > 0] > 0. We will give a detailed discussion of this property below
in Sect. 9.3. For the time being let us remark that the property (NFLVR) is
different from the previously considered concept of no free lunch with bounded
risk in the sense that we require that the risk taken, the lower bounds on the
processes (Hn ·S), tend to zero uniformly. In the property (NFLBR) one only
requires that this risk is uniformly bounded below und that the variables f−

n

tend to zero in probability. The main theorem of the paper can now be stated
as:

Theorem 9.1.1. Let S be a bounded real-valued semi-martingale. There is an
equivalent martingale measure for S if und only if S satisfies (NFLVR).

One implication in the above theorem is almost trivial: if there is an equiv-
alent martingale measure for S then it is easy to see that S satisfies (NFLVR),
see the first part of the proof in the beginning of Sect. 9.4. The interesting
aspect of Theorem 9.1.1 lies in the reverse implication: the (economically
meaningful) assumption (NFLVR) guarantees the existence of an equivalent
martingale measure for S und thus opens the way to the wide range of appli-
cations from martingale theory.

lf the process S is only a locally bounded semi-martingale we still obtain
the following partial result:

Corollary 9.1.2. Let S be a locally bounded real-valued semi-martingale.
There is an equivalent local martingale measure for S if and only if S sat-
isfies (NFLVR).
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In [DS 94a] counter-examples are given which show that in the above corol-
lary one can only assert the existence of a measure Q under which S is a local
martingale. Even if the variables St, are uniformly bounded in Lp for some
p > 1, this does not imply that S is a martingale. On the other hand we
do not know whether the hypothesis of local boundedness is essential for the
corollary to hold. There is some hope that the condition is superfluous but
at present this remains an open question.† In the discrete time case the local
boundedness assumption is not needed as shown in [S 94].

The proof of Theorem 9.1.1 is quite technical and will be the subject of
Sect. 9.4. The rest of the paper is organised as follows. Sect. 9.2 deals with
definitions, notation and results of general nature. In Sect. 9.3 we examine
the property (NFLVR) and we prove that under this condition, the limit
(H ·S)∞ = limt→∞(H ·S)t exists almost surely for admissible integrands. The
fifth section is devoted to the study of the set of local martingale measures.
Here we give a new characterisation of a complete market. It turns out that
if each local martingale measure that is absolutely continuous with respect to
the original measure, is already equivalent to the original measure, then the
market is complete and there is only one equivalent (absolutely continuous)
local martingale measure. These results are related to results in [AS 94, J 92].
We also show that the framework of admissible integrands allows to formulate
a general duality theorem (Theorem 9.5.8). In Sect. 9.6 we investigate the
relation between the no free lunch with vanishing risk (NFLVR) property
and the no free lunch with bounded risk (NFLBR) property. In the case of
an infinite horizon the latter property permits to restrict to strategies that
are of bounded support. They have a more intuitive interpretation since they
only require ’planning’ up to a bounded time. In Sect. 9.7 we introduce the
no free lunch properties (NFLVR), (NFLBR) and (NFL) stated in terms of
simple strategies. It is shown that in the case of continuous price processes
one can avoid the use of general integrands and restrict oneself to simple
integrands. The result generalises the main theorem of [D 92] in the case of
a finite dimensional price process. The relation between the no free lunch
with vanishing risk property for simple integrands and the semi-martingale
property is also investigated in Sect. 9.7. We also give examples that show
that the use of simple integrands is not enough to obtain a general theorem
and relate the present results to previous ones, in particular to [D 92, S 94].
Appendix 9.8 contains some technical lemmas already used in [S 94]. We state
versions which are more general and provide somewhat easier proofs.

† Note added in this reprint: The answer to this question is given in Chap. 14 below.
In fact the notion of a local martingale measure has to be replaced by the notion
of a sigma-martingale measure. This is precisely the theme of Chap. 14 below.
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9.2 Definitions and Preliminary Results

Throughout the paper we will work with random variables and stochastic
processes which are defined on a fixed probability space (Ω,F ,P). We will
without further notice identify variables that are equal almost everywhere.
The space L0(Ω,F ,P), sometimes written as L0, is the space of equivalence
classes of measurable functions, defined up to equality almost everywhere.
The space L0 is equipped with the topology of convergence in measure. It is
a complete metrisable topological vector space, a Fréchet space, but it is not
locally convex. The space L1(Ω,F ,P) is the Banach space of all integrable
F -measurable functions. The dual space is identified with L∞(Ω,F ,P) the
space of bounded measurable functions. The weak-star topology on L∞ is the
topology σ(L∞, L1).

The existence of an equivalent martingale measure is proved using Hahn-
Banach type theorems. Central in this approach is the construction of a convex
weak-star-closed subset of L∞. To prove that a set is weak-star-closed we will
use the following result. The proof essentially consists of a combination of the
classical Krein-Smulian theorem and the fact that the unit ball of L∞ under
the weak-star topology is an Eberlein compact. (see [D 75] or [G 54, Exercise
1, p. 321].

Theorem 9.2.1. If C is a convex cone of L∞ then C is weak-star-closed if
and only if for each sequence (fn)n≥1 in C that is uniformly bounded by 1 and
converges in probability to a function f0, we have that f0 ∈ C.

The properties of stochastic processes are always defined relative to a fixed
filtration (Ft)t∈R + . This filtration is supposed to satisfy the usual conditions
i.e. the filtration is right continuous and contains all negligible sets: if B ⊂
A ∈ F and P[A] = 0 then B ∈ F0. We also suppose that the σ-algebra F is
generated by

⋃
t≥0 Ft. Stochastic intervals are denoted as [[T, S]] where S ≤ T

are stopping times and [[T, S]] = {(t, ω) | t ∈ R+, ω ∈ Ω, T (ω) ≤ t ≤ S(ω)}.
Stochastic intervals of the form ]]T, S]] etc. are defined in the same way. The
interval [[T, T ]] is denoted by [[T ]] and it is the graph of the stopping time
T, {(T (ω), ω) | T (ω) < ∞}. We note that according to this definition the set
[[0,∞]] equals R+ ×Ω. Stochastic processes are indexed by a time set. In this
paper the time set will be R+. This will cover the case of infinite horizon
and indeed represents the general case since bounded time sets [0, t] can of
course be imbedded by requiring the processes to be constant after time t. It
also contains the case of discrete time sets, by requiring the processes and the
filtration to be constant between two consecutive natural numbers. A mapping
X : R+×Ω→ R is called an adapted stochastic process if for each t ∈ R+ the
mapping ω �→ X(t, ω) = Xt(ω) is Ft-measurable. X is called continuous (right
continuous, left continuous), if for almost all ω ∈ Ω, the mapping t �→ Xt(ω)
is continuous (right continuous, left continuous). Stochastic processes that
are indistinguishable are always identified. Other concepts such as optional
and predictable processes are also used in this paper and we refer the reader
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to [P 90] for the details. The predictable σ-algebra P on R+ × Ω is the σ-
algebra generated by the stochastic intervals [[0, T ]], where T runs through all
the stopping times. A predictable process H is a process that is measurable
for the σ-algebra P . For the theory of stochastic integration we refer to [P 90]
and to [CMS 80]. If X is a real-valued stochastic process the variable X∗ is
defined as X∗ = supt≥0 |Xt(ω)|. This variable is measurable if X is right or left
continuous. Sometimes we will use X∗

t which is defined as supt≥u≥0 |Xu(ω)|.
X∗ is called the maximum function and it plays a central role in martingale
theory. If X is a càdlàg process, i.e. a right continuous process possessing left
limits for each t > 0, then ∆X denotes the process that describes the jumps
of X . More precisely (∆X)t = Xt −Xt− and (∆X)0 = X0.

If X is a semi-martingale then X defines a continuous operator on the
space of bounded predictable processes of bounded support into the space L0.
The space of semi-martingales can therefore be considered as a space of linear
operators. The semi-martingale topology is precisely induced by the topology
of linear operators. It is therefore metrisable by a translation invariant metric
given by the distance of X to the zero semi-martingale:

D(X) = sup

⎧⎨⎩∑
n≥1

2−nE [min (|(H ·X)n|, 1)]

∣∣∣∣∣∣ H predictable, |H | ≤ 1

⎫⎬⎭ .

For this metric, the space of semi-martingales is complete, see [E 79].
A semi-martingale X is called special if it can be decomposed as X = M + A
where M is a local martingale and A is a predictable process of finite varia-
tion. In this case such a decomposition is unique and it is called the canonical
decomposition. It is well-known (see [CMS 80]) that a semi-martingale is spe-
cial if and only if X is locally integrable, i.e. there is an increasing sequence
of stopping times Tn, tending to ∞ such that X∗

Tn
is integrable. The follow-

ing theorem on special semi-martingales will be used on several occasions, for
a proof we refer to [CMS 80].

Theorem 9.2.2. If X is a special semi-martingale with canonical decompo-
sition X = M + A and if H is X-integrable then the semi-martingale H ·X
is special if and only if

(1) H is M -integrable in the sense of stochastic integrals of local martingales
and

(2) H is A-integrable in the usual sense of Stieltjes-Lebesgue integrals.

In this case the canonical decomposition of H ·X is given by H ·X = H ·M +
H · A.

The following theorem seems to be folklore. Essentially it may be deduced
from (the proof of) an inequality of Stein ([St 70]), see also [L 78, Y 78b].
For a survey of these results and related inequalities see [DS 95d]. For con-
venience of the reader we include the easy proof, suggested by Stricker, of
Theorem 9.2.3.
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The theorem and more precisely its Corollary 9.2.4, will be used in
Sect. 9.4. It allows to control the jumps of the martingale part in the canonical
decomposition of a special semi-martingale.

Theorem 9.2.3. If X is a semi-martingale satisfying ‖(∆X)∗‖p <∞, where
1 < p ≤ ∞, then

(a) X is special and has a canonical decomposition X = M + A
(b) A satisfies ‖(∆A)∗‖p ≤ p

p−1‖(∆X)∗‖p;
(c) M satisfies ‖(∆M)∗‖p ≤ 2p−1

p−1 ‖(∆X)∗‖p.

Proof. Since X is locally p-integrable it is certainly locally integrable and
hence is special. (a) is therefore proved. Let X = M + A be the canonical
decomposition where A is the predictable process of finite variation and M
is the local martingale part. Let Y be the càdlàg martingale defined as Yt =
E[(∆X)∗ | Ft].

Since A is predictable the set {∆A �= 0} is the union of a sequence of sets
of the form [[Tn]] where Tn are predictable stopping times. For each predictable
stopping time T we have that ∆AT = E[∆XT | FT−] and hence

|∆AT | ≤ E[|∆XT | | FT−] ≤ E[(∆X)∗ | FT−] = YT− ≤ Y ∗ .

This implies that (∆A)∗ ≤ Y ∗. From Doob’s maximal inequality, see
[DM 80], it now follows that

‖Y ∗‖p ≤
p

p− 1
‖(∆X)∗‖p and therefore

‖(∆A)∗‖p ≤
p

p− 1
‖(∆X)∗‖p and ‖(∆M)∗‖p ≤

2p− 1
p− 1

‖(∆X)∗‖p . �

Corollary 9.2.4. If T is a stopping time then:

‖(∆A)T ‖p ≤
p

p− 1
‖(∆X)∗‖p ;

‖(∆M)T ‖p ≤
2p− 1
p− 1

‖(∆X)∗‖p .

Corollary 9.2.5. If 1 < p ≤ ∞ and the semi-martingale X satisfies
sup{‖(∆X)T‖p | T stopping time } = N < ∞, then for p′ < p there is
constant k(p, p′) depending only an p and p′ such that

‖(∆A)∗‖p′ ≤ k(p, p′)N .

Proof. Let the stopping time T be defined as T = inf{t | |(∆X)t| ≥ c}.
From the hypothesis we deduce that

∫
|∆XT | ≤ Np and this implies, by the

Markov-Tchebycheff inequality, that cpP[(∆X)∗ > c] ≤ Np. The rest follows
easily. �
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Remark 9.2.6. In Corollary 9.2.4 we cannot replace (∆X)∗ by (∆X)T . The
following example illustrates this. We construct a bounded semi-martingale
X such that for each ε > 0 there is a stopping time T with |∆AT | = 1
and |∆XT | ≤ ε. This clearly shows that there is no constant K such that
‖(∆A)T ‖p ≤ K‖(∆X)T‖p. The construction is as follows: For 0 ≤ t < 1 put
Xt = 0. We now proceed by recursion. For n a natural number we suppose
the process X is already constructed for t < n. The filtration Fs is defined
as Fs = σ(Xu; u ≤ s) and Fs− = σ(Xu; u < s). At t = n we put a jump
(∆X)n such that |(∆X)n| is uniformly distributed over the interval [0, 2] and
is independent of the past Fn− of the process. This means that |(∆X)n| is
independent of the variables (∆X)1, . . . , (∆X)n−1. If (X)n− ≥ 0 then (∆X)n

is uniformly distributed over the interval [−2, 0], otherwise if (X)n− < 0 then
(∆X)n is uniformly distributed over [0, 2]. For n ≤ t < n+1 we put Xt = Xn.
The filtration Fs is clearly right continuous and if we augment it with the null
sets we obtain that the natural filtration of X satisfies the usual conditions.
For ε > 0 we now define T = inf{t | |(∆X)t| ≤ ε}. Clearly T < ∞ almost
surely and satisfies the desired properties.

If A is a predictable process of finite variation with A0 = 0, we can as-
sociate with it a (random) measure on R+. The variation of A, a process
denoted by V , is given by

Vt = sup

{
n∑

k=1

|Ask
−Ask−1 |

∣∣∣∣∣ 0 = s0 < s1 < . . . < sn = t

}
.

The process V is predictable and it also defines a (random) measure on
R+. The process V defines a σ-finite measure µV on the predictable σ-algebra
on R+ × Ω. The definition of µV is, for K a predictable subset of R+ × Ω:

µV (K) = E
[∫ ∞

0

(1K)udVu

]
.

The measure µA is defined in a similar way, but its definition is restricted to
a σ-ring to avoid expressions like∞−∞. It is well-known, see [M 76, Chap. I]),
that the measure µV is precisely the variation measure of µA. From the Hahn
decomposition theorem we deduce that there is a partition of R+×Ω, in two
sets, B+ and B−, both predictable, such that (1B+ · A) and (−1B− · A) are
increasing. Moreover V = ((1B+ −1B−) ·A). For almost all ω the measure dA
on R+ is absolutely continuous with respect to dV and the Radon-Nikodým
derivative is precisely 1F+ − 1F− where F± = {t | (t, ω) ∈ B±}. We will
refer to this decomposition as the Hahn decomposition of A. Note that
the difficulty in the definition of the pathwise decomposition of the measures
dA(ω) comes from the fact that the sets F+ and F− have to be glued together
in order to form the predictable sets B+ and B−. See [M 76, Chap. I] for the
details of this result which is due to Cathérine Doléans-Dade.
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Throughout the paper, with the exception of Sect. 9.7, S will be a fixed
semi-martingale. As mentioned in the introduction S represents the discounted
price of a financial asset.

Definition 9.2.7. Let a be a positive real number. An S-integrable predictable
process H is called a-admissible if H0 = 0 and (H · S) ≥ −a (i.e. for all
t ≥ 0 : (H · S)t ≥ −a almost everywhere). H is called admissible if it is
admissible for some a ∈ R+.

Given the semi-martingale S we denote, in a similar way as in [Str 90], by
K0 the convex cone in L0, formed by the functions

K0 =
{
(H · S)∞

∣∣∣H admissible and (H · S)∞ = lim
t→∞(H · S)t exists a.s.

}
.

By C0 we denote the cone of functions dominated by elements of K0 i.e.
C0 = K0−L0

+. With C and K we denote the corresponding intersections with
the space L∞ of bounded functions K = K0 ∩ L∞ and C = C0 ∩ L∞. By C
we denote the closure of C with respect to the norm topology of L∞ and by
C

∗
we denote the weak-star-closure of C.

Definition 9.2.8. We say that the semi-martingale S satisfies the condition

(i) no-arbitrage (NA) if C ∩ L∞
+ = {0}

(ii) no free lunch with vanishing risk (NFLVR) if C ∩ L∞
+ = {0}.

It is clear that (ii) implies (i). The no-arbitrage property (NA) is equiv-
alent to K0 ∩ L0

+ = {0} and has an obvious interpretation: there should be
no possibility of obtaining a positive profit by trading alone (according to an
admissible strategy): it is impossible to make something out of nothing with-
out risk. It is well-known that in general the notion (NA) is too restrictive to
imply the existence of an equivalent martingale measure for S, see Sect. 9.7.
Compare also to the results in [DMW 90] and [S 94, Remark 4.11].

The notion (NFLVR) is a slight generalisation of (NA). If (NFLVR) is
not satisfied then there is a f0 in L∞

+ not identically 0, as well as a sequence
(fn)n≥1 of elements in C, tending almost surely to f0 such that for all n we
have that fn ≥ f0 − 1

n . In particular we have fn ≥ − 1
n . In economic terms

this amounts to almost the same thing as (NA), as the risk of the trading
strategies becomes arbitrarily small. See also Proposition 9.3.7 below.

We emphasize that the set C and hence the properties (NA) and (NFLVR)
are defined using general admissible predictable processes H . This is a more
general definition than the one usually taken in the literature and used by
the authors in previous papers (see [S 94, D 92]). These classical concepts
were defined using simple integrands or/and integrands with bounded sup-
port. In these cases we will say that S satisfies (NA) for simple integrands,
(NFLVR) for integrands with bounded support, etc. These notions will reap-
pear in Sect. 9.7, where we will emphasize on the differences between these
notions.
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We close this section by quoting a result due to Émery and Ansel and
Stricker. The result states that under suitable conditions the stochastic inte-
gral of a local martingale is again a local martingale. A counter-example due
to [E 80] shows that in general a stochastic integral of a local martingale need
not be a local martingale. From Theorem 9.2.2 it follows that if M is a local
martingale with respect to a measure P, then H ·M is a local martingale if
and only if it is a special semi-martingale, i.e. if it is locally integrable. The
next theorem gives us a criterion that is related to admissibility of H .

Theorem 9.2.9. If M is a local martingale and if H is an admissible in-
tegrand for M , then H · M is a local martingale. Consequently H · M is
a super-martingale.

Proof. We refer to [E 80] and [AS 94, Corollaire 3.5]. It is an easy consequence
of Fatou’s lemma that if H ·M is a local martingale uniformly bounded from
below, then it is a super-martingale. �

9.3 No Free Lunch with Vanishing Risk

The main result of this section states that for a semi-martingale S, un-
der the condition of no free lunch with vanishing risk (NFLVR), the limit
(H · S)∞ = limt→∞(H · S)t exists and is finite whenever the integrand H is
admissible. To get a motivation for this result, consider the case where we
already know that there is an equivalent local martingale measure Q. In this
case, by Theorem 9.2.9, the stochastic integral H · S is a Q-local martingale
if H is admissible. This implies that it is a super-martingale and the classical
convergence theorem shows that the limit (H · S)∞ = limt→∞(H · S)t, exists
and is finite almost everywhere. But of course we do not know yet that there
is an equivalent martingale measure Q and the art of the game is to derive
the convergence result simply from the property (NFLVR). We start with two
preparatory results.

Proposition 9.3.1. If S is a semi-martingale with the property (NFLVR),
then the set

{(H · S)∞ | H is 1-admissible and of bounded support}

is bounded in L0.

Proof. H 1-admissible means that H is S-integrable and (H ·S)t ≥ −1. Being
of bounded support means that H is 0 outside [[0, T ]] where T is a positive real
number. The limit (H ·S)∞ = limt→∞(H ·S)t exists without difficulty because
(H · S)t becomes eventually constant. Suppose that the set {(H · S)∞ | H is
1-admissible and of bounded support} is not bounded in L0. This implies the
existence of a sequence Hn of 1-admissible integrands of bounded support and



9.3 No Free Lunch with Vanishing Risk 161

the existence of α > 0 such that P[(Hn ·S)∞ ≥ n] > α > 0. The sequence fn =
min

(
1
n (Hn · S)∞, 1

)
is in C,P[fn = 1] > α > 0 and ‖f−

n ‖∞ ≤ 1
n . By taking

convex combinations we may take gn ∈ conv{(fn, fn+1, . . .} that converge a.s.
to g : Ω → [0, 1]. (We can use Lemma 9.8.1, but a simpler argument in L∞

can do the job, compare [S 94, Remark 3.4]). Clearly E[g] ≥ α and therefore
P[g > 0] = β ≥ α > 0. By Egorov’s theorem gn → g uniformly on a set Ω′ of
measure at least 1− β

2 . The functions hn = min(gn,1Ω′) are still in the set C

and hn → g1Ω′ in the norm topology of L∞. Since P[g1Ω′ > 0] ≥ β
2 > 0 we

obtain a contradiction to (NFLVR). �

Proposition 9.3.2. If S is a semi-martingale satisfying (NFLVR), then for
each admissible H the function (H · S)∗ = sup0≤t |(H · S)t| is finite almost
everywhere and the set {(H · S)∗ | H 1-admissible} is bounded in L0.

Proof. If the set is not bounded, we can find a sequence of 1-admissible in-
tegrands Hn, stopping times Tn and α > 0 such that P[Tn < ∞] > α > 0
and (Hn · S)Tn > n on {Tn < ∞}. For each natural number n take tn large
enough so that α < P[Tn ≤ tn] and observe that for Kn = Hn1[[0,min(Tn,tn)]]

we have that Kn is of bounded support and P[(Kn · S)∞ > n] > α > 0,
a contradiction to Proposition 9.3.1. �

We now prove the main result of this section. It extends from [S 94, Propo-
sition 4.2] to the present case of a general semi-martingale S.

Theorem 9.3.3. If S is a semi-martingale satisfying (NFLVR), then for H
admissible the limit (H · S)∞ = limt→∞(H · S)t exists and is finite almost
everywhere.

Proof. We will mimic the proof of the martingale convergence theorem of
Doob. The classical idea of considering upcrossings through an interval [β, γ]
may in mathematical finance be interpreted as the well-known procedure:
“Buy low, sell high”. We may suppose that H is 1-admissible and hence
(H · S)∗ = sup0≤t |(H · S)t| < ∞ almost surely by Proposition 9.3.2. We
therefore only have to show that lim inft→∞(H · S)t = lim supt→∞(H · S)t

a.s.. Suppose this were not the case and that P[lim inft→∞(H · S)t <
lim supt→∞(H ·S)t] > 0. Take β < γ and α > 0 so that P[lim inft→∞(H ·S)t <
β < γ < lim supt→∞(H · S)t] > α. We will construct finite stopping times
(Un, Vn)n≥1, such that

(1) U1 ≤ V1 ≤ U2 ≤ V2 ≤ . . . ≤ Un ≤ Vn ≤ Un+1 ≤ . . .
(2) Ln =

∑n
k=1 H1]]Uk,Vk]] is (1 + β)-admissible

(3) P[(Ln · S)∞ > n(γ − β)] > α
2 .

The existence of such a sequence clearly violates the conclusion of Propo-
sition 9.3.2 and this will prove the Theorem.

The stopping times are constructed by induction. Take (εn)n≥1 strictly
positive and such that the sum

∑
n≥1 εn < α

100 . Let A be the set defined as
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A = {lim inft→∞(H · S)t < β < γ < lim supt→∞(H · S)t}. Since the Boolean
algebra

⋃
0≤tFt is dense in the σ-algebra F we have that there is t1 and

A1 ∈ Ft1 such that P[A A1] < ε1. For ω �= A1 we put U1 = V1 = t1 and we
concentrate on ω ∈ A1.

First define

U ′
1 = inf{t | t ≥ t1 and (H · S)t < β} for ω in A1

V ′
1 = inf{t | t ≥ U ′

1 and (H · S)t > γ} for ω in A1 .

The variables U ′
1 and V ′

1 are clearly stopping times and take values in
[0,∞]. By construction of A1 we have that

P[V ′
1 <∞] ≥ P[A ∩A1] > α− ε1 .

Take s1 > t1 so that P[V ′
1 ≤ s1] > α− ε1 and define

U1 = min(U ′
1, s1) ,

V1 = min(V ′
1 , s1) .

The set B1 = {(H · S)U1 ≤ β < γ ≤ (H · S)V1} is in Fs1 and P[B1 ∩A] >
α− ε1. Put K1 = H1]]U1,V1]]. We claim that K1 is (1 + β)-admissible. Indeed
on Ac

1 clearly (K1 · S)t = 0 for all t. For ω ∈ A1 and t ≤ U1 we also have
(K1 · S)t(ω) = 0. For ω ∈ A1 and U1 < t ≤ V1 we have

(K1 · S)t = (H · S)t − (H · S)U1 ≥ −1− β = −(1 + β) .

Let us put L1 = K1. We now apply the same reasoning on the set (B1∩A)
i.e. we take t2 ≥ s1, A2 ∈ Ft2 such that A2 ⊂ B1, P[A2 (B1∩A)] > α−ε1−ε2.
On the set A2 we define

U ′
2 = inf{t | t ≥ t2 and (H · S)t < β}

V ′
2 = inf{t | t ≥ U ′

2 and (H · S)t > γ} .

P[V ′
2 < ∞] > α − ε1 − ε2 and we select s2 > t2 so that P[V ′

2 ≤ s2] >
α− ε1 − ε2. Take

U2 = min(U ′
2, s2)

V2 = min(V ′
2 , s2)

K2 = H1]]U2,V2]] .

The integrand is (1 + β)-admissible, but outside the set B1 the process
(K2 ·S) is zero. On the set B1, however, (L1 ·S)t2 = (L1 ·S)s2 ≥ γ−β > 0. The
integrand L2 = L1 + K2 remains therefore (1 + β)-admissible. Furthermore
P[(L2 · S)t2 ≥ 2(γ − β)] > α − ε1 − ε2. This permits us to continue the
construction and to define Ln by induction. �

The rest of this section is devoted to some results giving a better under-
standing of the property (NFLVR) of no free lunch with vanishing risk and
relating this property to previous results of [D 92, S 94].
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Corollary 9.3.4. If the semi-martingale S satisfies (NFLVR) then the set

{(H · S)∞ | H is 1-admissible}

is bounded in L0.

Proof. This follows immediately from the existence of the limit (H · S)∞ and
from Proposition 9.3.1. �

Remark 9.3.5. The convergence theorem shows in particular that in the defi-
nition of K0 the requirement that the limit exists is superfluous. We also want
to point out that to derive the above results 9.3.1 to 9.3.4, we only used the
condition (NFLVR) for integrands with bounded support, i.e. for integrands
that are zero outside a stochastic interval [[0, k]] for some real number k.

The next result only uses the (very weak) assumption of no-arbitrage.
We emphasize that the property (NA), as we defined it, refers to general
integrands.

Proposition 9.3.6. (compare [S 94, Proposition 4.2]) If the semi-martin-
gale S satisfies (NA) then for every admissible integrand H, such that (H ·
S)∞ = limt→∞(H · S)t exists, we have for each t ∈ R+:

‖(H · S)−t ‖∞ ≤ ‖(H · S)−∞‖∞ .

Proof. If ‖(H · S)−t ‖∞ > ‖(H · S)−∞‖∞ then we define the set A ∈ Ft as

A = {(H · S)t < −‖(H · S)−∞‖∞} .

The integrand K = 1A1]]t,∞[[ is admissible, the random variable (K · S)∞
exists, is non-negative and P[(K · S)∞ > 0] > 0. This violates (NA). �

The next result may be seen as a sharpening of [S 94, Proposition 1.5]. It
combines the property (NA) with the conclusion of Proposition 9.3.1.

Proposition 9.3.7. If the semi-martingale S fails the property (NFLVR)
then either S fails (NA) or there exists f0 : Ω→ [0,∞] not identically 0, a se-
quence of variables (fn)n≥1 = ((Hn · S)∞)n≥1 in K0 with Hn a 1

n -admissible
integrand and such that limn→∞ fn = f0 in probability.

Proof. It is clear that the existence of such sequences violates (NFLVR). Indeed
the set {n(Hn · S)∞; n ≥ 1} is unbounded in L0, whereas the integrands
(nHn)n≥1 are 1-admissible. This contradicts Proposition 9.3.1.

The converse is less obvious. Suppose that S satisfies (NA) and suppose
that (gn)n≥1 is a sequence in C such that g0 = limn→∞ gn in L∞, g0 ≥ 0,
P[g0 > α] > α > 0. From the hypothesis on the sequence (gn)n≥1 we deduce
that ‖g−n ‖∞ tends to 0. By passing to a subsequence, if necessary, we may
suppose that ‖g−n ‖∞ ≤ 1

n . For each n we take a function hn in K0 such that
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hn ≥ gn. If hn = (Ln · S)∞ then ‖h−
n ‖∞ ≤ 1

n and hence Ln is 1
n -admissible

by Proposition 9.3.6 and the property (NA) of S. Lemma 9.8.1 allows us to
replace hn by fn ∈ conv{hn, hn+1, . . .} such that fn converges to f0 : Ω →
[0,∞] in probability. Let Hn be the corresponding convex combination of the
integrands (Lk)k≥n. Obviously Hn is still 1

n -admissible and f−
n tends to 0 in

L∞. For n large enough we have ‖gn − g0‖∞ ≤ α
2 and hence P[hn > 0] ≥

P[gn > α
2 ] > α

2 . Lemma 9.8.1 now shows that P[f0 > 0] > 0. �
The following corollary relates the condition (NFLVR) with the condition

(d) in [D 92] (which in turn is just reformulating the concept of (NFLBR) to
be defined in Sect. 9.6 below).

Corollary 9.3.8. The semi-martingale S satisfies the condition (NFLVR) if
and only if for a sequence (gn)n≥1 in K0, the condition ‖g−n ‖∞ → 0 implies
that gn tends to 0 in probability.

Proof. We first observe that the condition stated in the corollary implies (NA).
The corollary is now a direct consequence of the Proposition 9.3.7 and the
Lemma 9.8.1. �

Corollary 9.3.9. Under the assumption (NA), the semi-martingale S satis-
fies the condition (NFLVR) if and only if the set

{(H · S)∞ | H 1-admissible and of bounded support}

is bounded in L0.

Proof. From the proof of Proposition 9.3.2, it follows that the set {sup0≤t(H ·
S)t | H 1-admissible} is also bounded in L0. If the sequence (gn)n≥1 in K0,
satisfies ‖g−n ‖∞ → 0, then by the (NA) property and Proposition 9.3.6, gn =
(Hn · S)∞ where Hn is εn-admissible with εn = ‖g−n ‖∞. The sequence 1

εn
gn

has to be bounded which is only possible when gn tends to 0 in probability.
The conclusion now follows from the preceding corollary. �

9.4 Proof of the Main Theorem

In this section we prove the main theorem of the paper. The proof follows
the following plan: prove that the set C, introduced in Sect. 9.2, is weak-star-
closed in L∞ and apply the separation theorem of Kreps and Yan (see [S 94]),
which in turn is a consequence of the Hahn-Banach theorem. We use similar
arguments as in [D 92] and [S 94]. The technicalities are, however, different
and more complicated.

Definition 9.4.1 (compare [MB91] and [S 94], Definition 3.4). A sub-
set D of L0 is Fatou closed if for every sequence (fn)n≥1 uniformly bounded
from below and such that fn → f almost surely, we have f ∈ D.
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We remark that if D is a cone then D is Fatou closed if for every sequence
(fn)n≥1 in D with fn ≥ −1 and fn → f almost surely, we have f ∈ D.

The next result is the technical version of the main theorem.

Theorem 9.4.2. If S is a bounded semi-martingale satisfying (NFLVR), then

(1) C0 is Fatou closed and hence
(2) C = C0 ∩ L∞ is σ(L∞, L1)-closed.

Proof. We will not prove the first part of Theorem 9.4.2 immediately, its proof
is quite complicated and will fill the rest of this section.

The second assertion is proved using Theorem 9.2.1. If C0 is Fatou closed
then we have to prove that C = C0∩L∞ is closed for the topology σ(L∞, L1).
Take a sequence (fn)n≥1 in C, uniformly bounded in absolute value by 1 and
such that fn → f almost surely. Since C0 is Fatou closed the element f belongs
to C0 and hence also f ∈ C. �

We now show how Theorem 9.4.2 implies the main theorem of the paper.
For convenience of the reader we restate the main Theorem 9.1.1.

Theorem 9.1.1 (Main Theorem). Let S be a bounded real-valued semi-
martingale. There is an equivalent martingale measure Q for S if and only if
S satisfies (NFLVR).

Proof. We proceed on a well-known path ([D 92, MB 91, S 92, Str 90, L 92,
S 94]). Since S satisfies (NA) we have C ∩ L∞

+ = {0}. Because C is weak-
star-closed in L∞ we know that there is an equivalent probability measure
Q such that EQ[f ] ≤ 0 for each f in C. This is precisely the Kreps-Yan
separation theorem, for a proof of which we refer to [S 94, Theorem 3.1]. For
each s < t, B ∈ Fs, α ∈ R we have α(St − Ss)1B ∈ C (S is bounded!).
Therefore EQ[(St − Ss)1B] = 0 and Q is a martingale measure for S.

The condition (NFLVR) is not altered if we replace the original probability
measure by an equivalent one. In the proof that condition (NFLVR) is also
necessary, we may therefore suppose that P is already a martingale measure
for the bounded semi-martingale S. If H is an admissible integrand then
by Theorem 9.2.9 we know that the process (H · S) is a super-martingale.
Therefore E[(H · S)∞] ≤ E[(H · S)0] = 0. Every function f in C therefore
satisfies E[f ] ≤ 0. The same applies for elements in the norm closure C of C.
Therefore C ∩ L∞

+ = {0}. �
We now show how the main theorem implies Corollary 9.1.2 pertaining to

the locally bounded case. We refer to [DS 94a] for examples that show that
we can only obtain an equivalent local martingale measure for the process S.
The proof of Corollary 9.1.2 is similar to [S 94, Theorem 5.1].

Corollary 9.1.2. Let S be a locally bounded real-valued semi-martingale.
There is an equivalent local martingale measure Q for S if and only if S
satisfies (NFLVR).
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Proof. Since S is locally bounded, there is a sequence αn → +∞ and an
increasing sequence of stopping times Tn →∞ so that on [[0, Tn]] the process
S is bounded by αn. We replace S by

S̃ = S1[[0,T1]] +
∑
n≥1

2−n 1
αn + αn+1

(1]]Tn,Tn+1]] · S) ,

S̃ is bounded and satisfies (NFLVR) since the outcomes of admissible
integrands are the same for S and S̃. A martingale measure for S̃ is a local
martingale measure for S and therefore the corollary follows from the main
theorem. The proof of the necessity of the condition (NFLVR) is proved in
the same way as in the Theorem 9.1.1. �

Remark 9.4.3. The necessity of the condition (NFLVR) and Theorem 9.4.2
show that if S is a locally bounded local martingale then the set C0 is Fatou
closed.

We now proceed with the proof of Theorem 9.4.2. The bounded semi-
martingale S will be assumed to satisfy the property (NFLVR). We take
a sequence hn ∈ C0, hn ≥ −1 and hn → h a.s.; we have to show h ∈ C0.
This is the same as showing that there is a f0 ∈ K0 with f0 ≥ h. For each
n we take gn ∈ K0 such that gn ≥ hn. The sequence gn is not necessarily
convergent and even if it were, this does not give good information about the
sequence of integrands used to construct gn. To overcome this difficulty we
introduce a maximal element (compare Remark 9.4.5 below). Define D as the
set D = {f | there is a sequence Kn of 1-admissible integrands such that
(Kn · S)∞ → f a.s. and f ≥ h}.

Lemma 9.4.4. The set D is not empty and contains a maximal element f0.

Proof. D is not empty. Indeed D contains an element g that dominates h.
To see this we take gn as above and apply Lemma 9.8.1. Next observe that
the set D is bounded in L0 since it is contained in the closure of the set
{(H · S)∞ | H 1-admissible} which is bounded by Corollary 9.3.4. The set D
is clearly closed for the convergence in probability. We now apply the well-
known fact that a bounded closed set of L0 contains a maximal element. For
completeness we give a proof. We will use transfinite induction. For α = 1
take an arbitrary element f1 of D. If α is of the form α = β + 1 and if fβ

is not maximal then choose fα ≥ fβ ; P[fα > fβ] > 0 and fα ∈ D. If α is
a countable limit ordinal then α = limβn where βn is increasing to α. The
sequence fβn , is increasing and converges to a function fα finite a.s. (D is
bounded!). In this way we construct for each countable ordinal the variable
fα. Since E[exp(−fα)] is well-defined and form a decreasing “long sequence”,
this sequence has to become eventually stationary, say at a countable ordinal
α0. By construction f0 = fα0 is maximal. �
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Remark 9.4.5. Let us motivate why we introduced the maximal element f0

in the above lemma. As already observed the sequence gn introduced before
Lemma 9.4.4 is not of immediate use. Our goal is, of course, to find a 1-
admissible integrand H0 which is, in some sense, a limit of the sequence Hn

of the 1-admissible integrands used to construct the sequence gn. But the
convergence of (gn)n≥1 (which we may assume by Lemma 9.8.1) does not
imply the convergence of the sequence (Hn)n in any reasonable sense. We
illustrate this with the following example in discrete time. Let (rm)m≥1 be
a sequence of Rademacher functions i.e. a sequence of independent identically
distributed variables with P[rm = +1] = P[rm = −1] = 1

2 . Let Sm =
∑m

k=1 rk

and S0 = 0. For each n, an odd natural number, we take for the strategy Hn

the so called doubling strategy. This strategy is defined as

Hn
t =

{
2t−1 if r1 = . . . = rt−1 = 1

0 elsewhere.

Clearly (Hn · S)t = Hn
1 r1 + · · ·+ Hn

t−1rt hence we obtain

(Hn · S)t =
{

2t − 1 with probability 2−t

−1 with probability 1− 2−t

For odd n the final outcome gn satisfies gn = limt→∞(Hn ·S)t = −1 almost
surely.

For each n, an even natural number, we introduce a “doubling strategy”
Hn starting at time n. More precisely

Hn
t =

⎧⎨⎩
0 for t ≤ n

2m−1 if t = n + m and rn+1 = . . . = rn+m−1 = 1
0 elsewhere.

Clearly for t ≤ n: (Hn · S)t = 0 and for t > n: (Hn · S)t = Hn
n (rn+1) +

· · ·+ Hn
t−1(rt) hence for t > n:

(Hn · S)t =
{

2(t−n) − 1 with probability 2−(t−n)

−1 with probability 1− 2−(t−n).

Again, for each even number n, the final outcome gn satisfies gn =
limt→∞(Hn · S)t = −1 almost surely. Hence all the variables gn, for odd
as well as for even n, are equal to −1 almost surely and hence trivially
g = lim gn = −1 a.s.. On the other hand the sequence Hn, along the even
numbers, tends to zero on R+×Ω. Along the odd numbers the sequence Hn is
constant and equal to the same doubling strategy. The sequence Hn is there-
fore not converging. Note, however, that the limit function g is not maximal
in the sense of Lemma 9.4.4. If we take limits along the even numbers then
the pointwise limit H of Hn is zero and hence (H · S)∞ = 0. The example
suggests that the outcome 0, which is larger than g, can be obtained by look-
ing at limits of the strategies Hn. So the remedy is to replace the function g
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by the larger outcome 0. Replacing g by a maximal element is in this sense a
“best try”.

Of course, this is only a very simple example and the reader may construct
examples where even more pathological phenomena occur. But the present
example shows in a convincing way, that the convergence of the final outcome
gn does not imply any kind of convergence of the corresponding integrands Hn.

The difficulties arising from the above introduced “suicide strategies” Hn

were already addressed in [HP 81].
We finish this remark by giving an example of a process (St)t≥0 such

that K = K0 ∩ L∞ is not σ(L∞, L1)-closed. This underlines again the im-
portance of considering the cone C0 of elements dominated by elements of
K0, a phenomenon already encountered in the Kreps-Yan theorem (see [S 94,
Theorem 3.1]). The example is in discrete time. We consider a sequence Yn

of independent variables taking 3 possible values {a, b, c}. The probability is
defined as P[Yn = a] = 1

2 ; P[Yn = b] = 1
2 − 4−n; P[Yn = c] = 4−n. We

again use the sequence of Rademacher functions defined this time as rn = 1
if Yn = a, and rn = −1 if Yn = b or c. Let T be defined as the first n so that
Yn = c. It is clear that P[there is n such that Yn = c] ≤ 1

3 . We define the
process S as Sm =

∑min(m,T )
n=1 rn. More precisely we take the sum of the first

m Rademacher functions but we stop the process at T . The original measure
is clearly a martingale measure for S. Let us now define Bn as the set {T > n}
and let Hn be the doubling strategy starting at time n. From the definition
of T it follows that the final outcome gn = (Hn · S)∞ = −1Bn . The sequence
gn tends weak-star to g = −1{T=∞}. This random variable g, however, is
not in the set K. Suppose on the contrary that H is a predictable integrand
such that (H · S)∞ = −1{T=∞}. On the set {T ≤ n − 1} we can without
disturbing the final outcome, replace H1, . . . , Hn by 0. This new integrand is
still denoted by H . Let now n be the first integer such that Hn is not iden-
tically 0. On the set {T = n} the product Hnrn is also the final outcome.
Since this set is disjoint from the set {T =∞} we find that Hn = 0 on the set
{T = n}. The variable Hn is Fn−1-measurable and by independence of Fn−1

and Yn we therefore have Hn = 0 on the set {T > n − 1}. This contradicts
the assumption on n. �

For the rest of the proof of Theorem 9.4.2 we will denote by f0 a maximal
element of D, (fn)n≥1 is a sequence of elements, obtained as fn = (Hn ·S)∞,
where Hn are 1-admissible strategies Hn, and the sequence fn converges to
f0 almost surely. Remark that if we can prove that f0 ∈ K0, we finish the
proof of Theorem 9.4.2.

Lemma 9.4.6. With the notation introduced above we have that the random
variables

Fn,m =
(
(Hn −Hm) · S

)∗ = sup
t∈R +

|(Hn · S)t − (Hm · S)t|

tend to zero in probability as n, m→∞.
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Proof. Suppose to the contrary that there is α > 0, sequences (nk, mk)k≥1

tending to ∞ and for each k: P
[
supt≥0

(
(Hnk · S)t − (Hmk · S)t

)
> α
]
≥ α.

Define the stopping times Tk as

Tk = inf {t | (Hnk · S)t − (Hmk · S)t ≥ α}

so that we have P[Tk <∞] ≥ α.
Define Lk as Lk = Hnk1[[0,Tk]]+Hmk1]]Tk,∞[[. The process Lk is predictable

and it is 1-admissible. Indeed for t ≤ Tk we have (Lk · S)t = (Hnk · s)t ≥ −1
since Hnk is 1-admissible. For t ≥ Tk we have

(Lk · S)t = (Hnk · S)Tk
+ (Hmk · S)t − (Hmk · S)Tk

≥ (Hmk · S)t + α ≥ −1 + α .

Denote limt→∞(Lk ·S)t by ρk. From the preceding inequalities we deduce
that ρk can be written as ρk = ϕk + ψk where

ϕk = fnk
1{Tk=∞} + fmk

1{Tk<∞} and P[ψk ≥ α] ≥ α .

By assumption ϕk → f0 and by taking convex combination as in Lem-
ma 9.8.1 we may suppose that ψk → ψ0 where P[ψ0 > 0] > 0. Therefore
convex combinations of ρk converge almost surely to an element f0 + ψ0,
a contradiction to the maximality of f0. �

Remark 9.4.7. Let us give an economic interpretation of the argument of the
proof. At time Tk we know that the trading strategy Hnk has obtained the
result (Hnk · S)Tk

, which is at least α better than (Hmk · S)Tk
on a set of

measure bigger than α. On the other hand we know that, for k big enough,
both strategies yield at time ∞ a result close to f0. Having this information
the economic agent will switch from the strategy Hnk to Hmk since, starting
from a lower level, Hmk yields almost the same final result, i.e. the gain on
the interval ]]Tk,∞[[ is better for Hmk than for Hnk . The strategy Lk precisely
describes this attitude.

The proof used convergence in probability. In the rest of the proof we will
make use of decomposition theorems, estimation of maximal functions etc.
These methods are easier when applied in an “L2-environment”. We therefore
replace the original measure P by a new equivalent measure Q we will now
construct.

First we observe that (Hn · S)t converges uniformly in t. The variable
q = supn supt |(Hn · S)t| is therefore finite almost surely. For Q we now take
a probability measure equivalent with P and such that q ∈ L2(Q) e.g. we
can take Q with density dQ

dP = exp(−q)
EP[exp(−q)] . From the dominated convergence

theorem we then easily deduce that

lim
n,m→∞

∥∥ sup |(Hn · S)t − (Hm · S)t|
∥∥

L2(Q)
= 0 .
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From now on Q will be fixed. Since S is bounded it is a special semi-
martingale and its canonical decomposition (with respect to Q) will be de-
noted as S = M + A, where M is the local martingale part and A is of finite
variation and predictable. The symbols M and A are from now on reserved
for this decomposition.

The next lemma is crucial in the proof of the main theorem. It is used to
obtain bounds on Hn·M . Because we shall need such an estimate also for other
integrands we state it in a more abstract way. For λ > 0, let Hλ be the convex
set of 1-admissible integrands H with the extra property ‖(H ·S)∗‖L2(Q) ≤ λ.

Lemma 9.4.8. For λ > 0 the set of maximal functions {(H ·M)∗ | H ∈ Hλ}
is bounded in L0(Q).

Proof. Fix λ > 0 and abbreviate the set Hλ by H. The semi-martingales H ·S
where H is in H, are special (with respect to Q) because their maximal func-
tions are in L2(Q). Therefore, by Theorem 9.2.2, the canonical decomposition
of H · S comes from the decomposition S = M + A i.e., H ·M is the local
martingale part of H · S and H ·A is the predictable part of finite variation.

Because the proof of the lemma is rather lengthy let us roughly sketch the
idea, which is quite simple. If Kn is a sequence in H such that (Kn ·M)∗ is un-
bounded in probability, then Kn ·A is also unbounded and — keeping in mind
that Kn · A is predictable — using good strategies we might take advantage
of positive gains. This turns out to be possible as the calculations will show
that the gains coming from the predictable part A in the long run overwhelm
the possible losses coming from the martingale part M . This will contradict
the property (NFLVR). Very roughly speaking, the gains coming from the
predictable part A add up proportionally in time, whereas the expected losses
from the martingale part only add up proportionally to

√
time. These phe-

nomena are due to the orthogonality of martingale differences, whereas the
variation of the predictable part over the union of two intervals is the sum of
the variations over each interval.

Let us now turn to the technicalities. If {(H ·M)∗ | H ∈ H} in not bounded
in L0, there is a sequence (Kn)n≥1 in H, as well as α > 0, such that for all
n ≥ 1 we have Q[(Kn ·M)∗ > n3] > 8α. From the L2 bound on (H · S)∗ and
Tchebycheff’s inequality we deduce that Q[supt |(Kn · S)t| > n] ≤ λ2

n2 and for
n large enough (say n ≥ N) this expression is smaller than α

3 . For each n we
now define Tn as

Tn = inf
{
t
∣∣ |(Kn ·M)t| ≥ n3 or |(Kn · S)t| ≥ n

}
.

If we now define the integrand Ln = 1
n2 Kn1[[0,Tn]] we obtain that

(i) Ln ·M are local martingales
(ii) Q[(Ln ·M)∗ ≥ n] ≥ Q[(Kn ·M)∗ ≥ n3]−Q[(Kn ·S)∗ ≥ n] ≥ 8α− λ2

n2 ≥ 7α
for all n ≥ N .

(iii) Ln ·M is constant after Tn.
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(iv) The jumps of Ln · S are bounded from below by−n+1
n2 . Indeed the process

(Kn · S)Tn is bounded above by n on [[0, Tn[[. Its value is always bigger
than −1 and hence jumps of (Kn · S)Tn are bounded from below by
−(n + 1).

(v) ‖(Ln ·M)∗‖L2(Q) ≤ n+‖∆(Ln ·M)Tn‖L2(Q) ≤ n+ 3λ
n2 . The last inequality

follows from Corollary 9.2.4 and the inequality ‖(Ln · S)∗‖L2(Q) ≤ λ
n2 .

The local martingale Ln ·M is therefore an L2(Q)-martingale. For each n
we define a sequence of stopping times (Tn,i)i≥0. We start with Tn,0 = 0 and
put (eventually the value is +∞)

Tn,i = inf
{
t | t ≥ Tn,i−1 and |(Ln ·M)t − (Ln ·M)Tn,i−1 | ≥ 1

}
.

We then may estimate∥∥(Ln ·M)Tn,i − (Ln ·M)Tn,i−1

∥∥
L2(Q)

≤ 1 +
∥∥∆(Ln ·M)Tn,i

∥∥
L2(Q)

≤ 1 +
3λ

n2
≤ 1 + α ≤ 2 for all n ≥ N .

Let kn be the integer part of nα
4 . We claim that for i = 1, . . . , kn and all

n ≥ N , we have Q[Tn,i <∞] > 6α. An inequality of this type is suggested by
the fact that the variables fn,i = (Ln ·M)Tn,i − (Ln ·M)Tn,i−1 are bounded
by 2 in L2(Q) but their sum has to be large, so we need many of them. To
prove that for each i ≤ kn we have Q[Tn,i <∞] > 6α, it is of course sufficient
to prove that

Q[Tn,kn <∞] = Q[|(Ln ·M)Tn,kn
− (Ln ·M)Tn,kn−1 | ≥ 1] > 6α .

Put B = {Tn,kn < ∞} and estimate, for n ≥ N , the L2(Q)-norm of
(Ln ·M)∗1Bc :

‖(Ln ·M)∗1Bc‖L2(Q)

≤
∥∥∥∥∥

kn∑
i=1

(Ln1]]Tn,i−1,Tn,i]] ·M)∗1Bc

∥∥∥∥∥
L2(Q)

≤
kn∑
i=1

∥∥(Ln1]]Tn,i−1,Tn,i]] ·M)∗1Bc

∥∥
L2(Q)

≤
kn∑
i=1

∥∥(Ln1]]Tn,i−1,Tn,i]] ·M)∗
∥∥

L2(Q)

≤ 2
kn∑
i=1

∥∥(Ln1]]Tn,i−1,Tn,i]] ·M)∞
∥∥

L2(Q)
(by Doob’s inequality)

≤ 4kn

≤ nα .
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Tchebycheff’s inequality now yields Q[(Ln · M)∗1Bc ≥ n] ≤ α2 which
implies Q[Bc ∩ {(Ln ·M)∗ ≥ n}] ≤ α2 ≤ α and hence

Q[B] ≥ Q[(Ln ·M)∗ ≥ n]−Q[Bc ∩ {(Ln ·M)∗ ≥ n}] > 7α− α = 6α .

For n ≥ N and i = 1, . . . , kn, the random variables fn,i are bounded in
L2(Q)-norm by 2 but in L0(Q) they satisfy the lower bound Q[|fn,i| ≥ 1] >
6α. This will allow us to obtain a lower L0(Q) estimate for f−

n,i. Let β = α2

and Bn,i = {f−
n,i ≥ α}. We will show that Q[Bn,i] > β.

The martingale property implies that

EQ[f−
n,i] = EQ[f+

n,i] =
EQ[|fn,i|]

2
> 3α .

Therefore as f−
n,i is bounded by α outside Bn,i:

EQ[f−
n,i1Bn,i ] ≥ EQ[f−

n,i]− α > 2α .

On the other hand the Cauchy-Schwarz inequality gives

EQ[f−
n,i1Bn,i ] ≤ ‖fn,i‖L2(Q)Q[Bn,i]

1
2 ≤ 2Q[Bn,i]

1
2 .

Both inequalities show that Q[Bn,i] > α2 = β.
We now turn to Ln · A. Because Ln · S = Ln ·M + Ln · A and we know

that Ln · S is small and the negative parts of Ln ·M are big, we can deduce
that positive parts in Ln ·A are also big. Let us formalise this idea: from the
definition of λ we infer that for all i

‖(Ln · S)Tn,i − (Ln · S)Tn,i−1‖L2(Q) ≤
2λ

n2
.

Tchebycheff’s inequality implies

Q
[∣∣(Ln · S)Tn,i − (Ln · S)Tn,i−1

∣∣ ≥ 2λ

n

]
≤
(

2λ

n2

)2
n2

4λ2
= n−2 .

Because Q[((Ln ·M)Tn,i − (Ln · S)Tn,i−1)− ≥ α] > β we necessarily have
Q
[
(Ln ·A)Tn,i − (Ln ·A)Tn,i−1 ≥ α− 2λ

n

]
> β − n−2 and this holds for all

i ≤ kn and n ≥ N .
We will now construct a strategy that allows us to take profit of these kn

positive differences. The process Ln ·A is of bounded variation. The Hahn de-
composition of this measure, see the discussion preceding Definition 9.2.7, pro-
duces a partition of R+×Ω in two predictable sets Bn

+ and Bn
− on which this

measure is respectively positive and negative. The processes (Ln1Bn
+
·A) and

(−Ln1Bn
− ·A) are therefore increasing. Let Rn be the process Ln1Bn

+∩[[0,Tn,kn ]].
The process (Rn · A) = (Ln1Bn

+∩[[0,Tn,kn ]] ·A) satisfies

(Rn ·A)Tn,i − (Rn · A)Tn,i−1 ≥ (Ln ·A)Tn,i − (Ln ·A)Tn,i−1
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and we therefore obtain

Q
[
(Rn ·A)Tn,i − (Rn · A)Tn,i−1 ≥ α− 2λ

n

]
> β − n−2

for i = 1, . . . , kn and all n ≥ N .
Unfortunately we do not know that Rn is 1-admissible or even admissible.

A final stopping time argument and some estimates will allow us to control
the “admissibility” of Rn. The jumps of Rn ·S are part of the jumps of Ln ·S
and hence

∆(Rn · S) ≥ ∆(Ln · S) ≥ −n + 1
n2

≥ − 2
n

.

An upper bound for (Rn ·M) is obtained by∥∥(Rn ·M)Tn,kn

∥∥2
L2(Q)

≤
∥∥(Ln ·M)Tn,kn

∥∥2
L2(Q)

≤
kn∑
i=1

‖fn,i‖2L2(Q) .

For n ≥ N this is smaller than 4kn. Doob’s maximal inequality applied on
the L2(Q)-martingale (Rn ·M)Tn,kn yields∥∥∥∥sup

t≥0
|(Rn ·M)t|

∥∥∥∥
L2(Q)

≤ 4
√

kn .

This inequality will show that Rn · S will not become too negative on big
sets. First note that we may estimate (Rn ·S) from below by Rn ·M . Indeed,
Rn ·S = Rn ·M +Rn ·A ≥ Rn ·M since Rn ·A is increasing and hence positive.
The following estimates hold

Q
[
inf
t≥0

(Rn · S)t ≤ −knn− 1
4

]
≤ Q

[
sup
t≥0
|(Rn ·M)t| ≥ knn− 1

4

]
≤ 16

√
n

kn
by Tchebycheff’s inequality and the above estimate

≤ 64α
1√
n

.

Let now Un = inf{t | (Rn · S)t < −knn− 1
4 }. The preceding inequality

says that Q[Un < ∞] ≤ 64α 1√
n
. We define yet another integrand: let V n =

1
kn

Rn1[[0,Un]]. The jumps of V n · S are then bounded from below by −2
nkn

and
the process (V n ·S) is therefore bounded below by−n− 1

4− 2
nkn

. The integrands
V n are therefore admissible and their uniform lower bound tends to zero. We
now claim that (V n · S)∞ is positive with high probability.
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From Q
[
(Rn · A)Tn,i − (Rn · A)Tn,i−1 ≥ α− 2λ

n

]
> β − n−2 and from

Corollary 9.8.7 we deduce that

Q
[
(Rn · A)Tn,kn

≥ kn

2

(
α− 2λ

n

)(
β − n−2

)]
>

β − n−2

2
.

It follows that

Q
[
(V n · A)Tn,kn

≥ 1
2

(
α− 2λ

n

)(
β − n−2

)]
>

β − n−2

2
−Q[Un <∞]

or

Q
[
(V n · A)∞ ≥

(
α

2
− λ

n

)(
β − n−2

)]
>

β − n−2

2
− 64α

1√
n

.

Since
(

α
2 − λ

n

)
(β−n−2) tends to γ = αβ

2 we obtain that for n large enough,
say n ≥ N ′

Q
[
(V n · A)∞ ≥

γ

2

]
>

β

4
.

Let us now look at (V n · S)∞ = (V n ·M)∞ + (V n · A)∞. The first term
(V n ·M)∞ tends to zero in L2(Q). Indeed

‖(V n ·M)∞‖L2(Q) ≤
1
kn

∥∥(Rn ·M)Tn,kn

∥∥
L2(Q)

≤ 2
1√
kn

→ 0 .

The second term satisfies Q
[
(V n ·A)∞ > γ

2

]
> β

4 .
Tchebycheff’s inequality therefore implies that for n large enough, say

n ≥ N ′′ we have

Q
[
(V n · S)∞ >

γ

4

]
≥ β

4
−Q

[
(Rn ·M)Tn,kn

>
γ

4

]
≥ β

8
.

The functions gn = (V n · S)∞ have their negative parts going to zero in
the norm of L∞. This is a contradiction to Corollary 9.3.8. �

The next step in the proof is to obtain convex combinations Ln ∈
conv{Hn; n ≥ 1} so that the local martingales Ln ·M converge in the semi-
martingale topology. lf we knew that the elements Hn ·M were bounded in
L2(Q) then we could proceed as follows: by taking convex combinations the
elements Hn can be replaced by elements Ln such that Ln ·M converge in the
L2(Q)-topology, whence in the semi-martingale topology. Afterwards we then
should concentrate on the processes Ln ·A. Unfortunately we do not dispose
of such an L2(Q)-bound but only a L0-bound and a slightly more precise
information given by the preceding lemma. It suggests that we should stop
the local martingales Hn ·M when they cross the level c > 0, apply Corol-
lary 9.2.4 to control the final jumps in L2(Q) and apply some L2-argument
on the so obtained L2-bounded martingales. Afterwards we should take care
of the remaining parts and let c tend to ∞. Again the idea is simpler than
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the technique. Let us introduce the following sequence of stopping times (c is
supposed to be > 0).

T n
c = inf{t | |(Hn ·M)t| ≥ c}. The local martingales (Hn ·M) will be

stopped at T n
c , causing an error Kn

c ·M where Kn
c = Hn1]]T n

c ,∞[[.

Lemma 9.4.9. For all ε > 0, there is c0 > 0 such that for arbitrary n, for all
convex weights (λ1, . . . , λn) and all c ≥ c0, we have

Q

[(
n∑

i=1

λiK
i
c ·M

)∗
> ε

]
< ε .

Proof. Suppose on the contrary that there is α > 0 such that for all c0 there
are convex weights (λ1, . . . , λn) and c ≥ c0, such that

Q

[(
n∑

i=1

λiK
i
c ·M

)∗
> α

]
> α .

From this we will deduce the existence of a sequence of 1-admissible inte-
grands Ln such that supn ‖(Ln ·S)∗‖L2(Q) is bounded and such that (Ln ·M)∗

is unbounded in L0(Q). This will contradict Lemma 9.4.8.
Let N be large enough so that Q[q > N ] < α

4 (remember q = supn

supt |(Hn ·S)t|). This is easy since q is finite a.s.. If we define τ as the stopping
time

τ = inf{t | for some n ≥ 1 : |(Hn · S)t| > N}
we trivially have Q[τ < ∞] < α

4 . From Lemma 9.4.8, applied with λ = sup
‖(Hn ·S)∗‖L2(Q), we deduce that limc→∞ supn Q[T n

c <∞] ≤ limc→∞ supn Q
[(Hn ·M)∗ ≥ c] = 0. For 0 < δ < α

4 , let c1 be chosen so that for all n and all
c ≥ c1 we have Q[T n

c <∞] < δ2. For each n we have

‖(Kn
c · S)∗‖L2(Q) ≤ ‖2(Hn · S)∗1{T n

c <∞}‖L2(Q)

≤ 2‖q‖L2(Q)Q[T n
c <∞]

1
2 .

If follows that there is c2 so that for all n and all c ≥ c2

‖(Kc
n · S)∗‖L2(Q) ≤ δ .

For c ≥ max(c1, c2) take λ1 . . . λn a convex combination that guarantees
Q
[(∑n

i=1 λiK
i
c ·M

)∗
> α
]

> α and let σ = inf
{
t |
∣∣(∑n

i=1 λiK
i
c ·M

)
t

∣∣ ≥ α
}
.

Put K =
(∑n

i=1 λiK
i
c

)
1[[0,min(τ,σ)]].

Clearly Q[(K · M)∗ ≥ α] > α − Q[τ < ∞] = 3α
4 and the inequality

(K ·S)∗ ≤
∑n

i=1 λi(Ki
c ·S)∗ implies ‖(K ·S)∗‖L2(Q) ≤ δ. Let us now investigate

whether K is admissible.
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(K · S)t =
n∑

i=1

λi1{t>T i
c}
(
(Hi · S)min(t,τ,σ) − (Hi · S)min(T i

c ,τ,σ)

)
≥

n∑
i=1

λi1{t>T i
c}(−1−N)

≥ −(N + 1)
n∑

i=1

λi1{t>T i
c}

≥ −(N + 1)Ft

where F is the process F =
∑n

i=1 λi1]]T i
c ,∞[[. F is an increasing adapted left

continuous process, it is therefore predictable. By construction EQ[F∞] ≤ δ2

and therefore Q[F∞ > δ] ≤ δ. This implies that the stopping time ν, defined
as ν = inf{t | Ft > δ}, satisfies Q[ν <∞] < δ < α

4 .
This implies that K ′ = K1[[0,ν]], satisfies

‖(K ′ · S)∗‖L2(Q) ≤ δ

and
Q[(K ′ ·M)∗ > α] > α−Q[τ <∞]−Q(ν <∞) ≥ α

2
as well as

(K ′ · S) ≥ −(N + 1)δ .

The integrand Lδ = K′
(N+1)δ therefore is 1-admissible and

‖(Lδ · S)∗‖L2(Q) ≤
(

1
N + 1

)
.

Furthermore Q
[
(Lδ ·M)∗ > α

(N+1)δ

]
> α

2 .
For δ tending to zero this produces a contradiction to Lemma 9.4.8. �
The following lemma relates, in the L0-topology, the maximal function of

a local martingale with the maximal function of a stochastic integral for an
integrand that is bounded by 1. The proof uses the fact that the sequence
(Hn ·M)n≥1 is a sequence of local L2-martingales with uniform L2-control of
the jumps.

Lemma 9.4.10. With the same notation as in Lemma 9.4.9, for all ε > 0
there is c0 > 0 such that for all h predictable |h| ≤ 1, all convex weights
(λ1 . . . λn) and all c ≥ c0

Q

{[(
h

n∑
i=1

λiK
i
c

)
·M
]∗

> ε

}
< ε .

In particular D
(∑

λiK
i
c ·M

)∗
< 2ε where D is the quasi-norm introduced

in Sect. 9.2 and inducing the semi-martingale topology.
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Proof. Let ε > 0 and take c0 as in Lemma 9.4.9 i.e.

Q
[(∑

λiK
i
c ·M

)∗
> ε
]

< ε

for all (λ1 . . . λn) convex combination and all c ≥ c0. By enlarging c0 we
also may suppose that supn ‖(Kn

c · S)∗‖L2(Q) ≤ ε
3 (see the proof of the

Lemma 9.4.9). Corollary 9.2.4 now implies that for all n and every stopping
time σ

‖∆(Kn
c ·M)σ‖L2(Q) ≤ ε .

Take now h predictable and bounded by 1, take c ≥ c0, λ1 . . . λn a convex
combination. Define σ as

σ = inf

{
t

∣∣∣∣
∣∣∣∣∣
(

n∑
i=1

λi(Ki
c ·M)t

)∣∣∣∣∣ > ε

}
.

The following estimate holds:

sup
t≤σ

∣∣∣∣∣
(

n∑
i=1

λiK
i
c

)
·M
∣∣∣∣∣
t

≤ ε +
∑

λi

∣∣∆(Ki
c ·M)σ

∣∣ .
The L2-norm of the left hand side is therefore smaller than 2ε and we have

an L2-martingale. This implies that the martingale
(
h
∑

λiK
i
c

)
1[[0,σ]] ·M is

in L2 and its norm is smaller than 2ε. Hence

Q
[((

h
∑

λiK
i
c

)
·M
)∗

>
√

ε
]

≤ Q
[((

h
∑

λiK
i
c

)
1[[0,σ]] ·M

)∗
>
√

ε
]

+ Q[σ <∞]

≤ 4ε2

ε
+ ε = 5ε . �

Lemma 9.4.11. There is a sequence of convex combinations Ln ∈ conv{Hk, k ≥
n} such that (Ln ·M) converges in the semi-martingale topology.

Proof. We use the notation introduced before Lemma 9.4.9. For ε = 1
n we

apply Lemma 9.4.10 to find cn such that

D

((
m∑

i=1

λiK
i
cn

)
·M
)
≤ 1

n
for all convex weights λ1 . . . λm .

For each n and each k we have (Hk1[[0,T k
cn

]] ·M)∗ ≤ cn+|∆(Hk ·M)T k
cn
| and

an application of Corollary 9.2.4 yields that each Hk1[[0,T k
cn

]] ·M is an L2(Q)-
martingale with bound cn + 3‖q‖L2(Q). A standard diagonalisation argument
shows the existence of convex weights λk

0 , λk
1 , . . . , λk

Nk
, such that
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Y k
n =

Nk∑
j=0

λk
j Hk+j1[[0,T k

cn
]] ·M .

is, for each n, converging in the space of L2(Q)-martingales. An easy way to
prove this assertion, is via the following reasoning in Hilbert spaces.

LetM2 be the Hilbert space of L2(Q)-martingales and let H =
(∑⊕M2

)
�2

be its �2-sum (see [D 75]). An element of this space is a sequence X = (Xn)n

where each Xn is inM2. This space is also a Hilbert space when equipped with
the norm ‖X‖2 =

∑
n≥1 ‖Xn‖22. The sequence Xk, defined by the co-ordinates

Xk
n =

1
2n
(
cn + 3‖q‖L2(Q)

) (Hk1[[0,T k
cn

]] ·M
)

is bounded in the Hilbert space H and hence there are convex combinations
Y k ∈ conv{Xk, Xk+1, . . .} that converge with respect to the norm of H. It
follows that each “co-ordinate” converges in M2. This implies the existence
of convex weights λk

0 , λk
1 , . . . , λk

Nk
such that

Y k
n =

Nk∑
j=0

λk
j Hk+j1[[0,T k

cn
]] ·M

is, for each n, converging in the space of L2(Q)-martingales.
The sequence Lk =

∑Nk

j=0 λk
j Hk+j ·M is now a Cauchy sequence in the

space of semi-martingales. Indeed for given ε > 0 take N such that 1
N < ε.

We find that for k, l:

D
(
(Lk − Ll) ·M

)
≤ D(Y k

N − Y l
N ) + D

⎛⎝ n∑
j=1

λk
j Kk+j

cN
·M

⎞⎠+ D

⎛⎝ n∑
j=1

λl
jK

l+j
cN
·M

⎞⎠
≤ D(Y k

N − Y l
N ) + 2ε .

For k and l large enough this is smaller than 3ε. �

Lemma 9.4.12. The sequence (Lk)k≥1 of Lemma 9.4.11 is such that (Lk ·A)
converges in the semi-martingale topology.

Proof. We know that Lk · S ≥ −1 and that (Lk · M) converges in the
semi-martingale topology. To show that (Lk · A) converges in the semi-
martingale topology we have to prove that for each t ≥ 0 the total variation∫ t

0

∣∣d((Lk − Lm) ·A
)∣∣ converges to 0 in probability as k and m tend to ∞.

We will show the stronger statement that
∫∞
0

∣∣d((Lk − Lm) ·A
)∣∣ tend to 0

in probability as k and m tend to ∞. If this were not the case then by the
Hahn decomposition, described in Sect. 9.2, we could find hk predictable with
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values in {+1,−1}, α > 0 and two increasing sequences (ik, jk)k≥1 such that
Q[ϕk > α] > α where

ϕk =
∫

[0,∞[

hk
ud
(
(Lik − Ljk) · A

)
u

=
∫

[0,∞[

hk
u(Lik

u − Ljk
u )dAu

=
∫

[0,∞[

|Lik
u − Ljk

u | |dAu| .

We now define the integrand Rk as

Rk =
(
Ljk + 1

2 (1 + hk)(Lik − Ljk)
)

= 1
2

(
Lik + Ljk + hk(Lik − Ljk)

)
.

The idea is simple if hk = 1 i.e. if (Lik − Ljk) · dA ≥ 0 we take Lik , if
hk = −1 i.e if (Lik −Ljk)dA ≤ 0 we take Ljk . In some sense Rk takes the best
of both. The processes (Rk−Lik) and (Rk−Ljk) ·A define positive measures
and are therefore increasing. Indeed

(Rk − Lik) ·A =
((

Ljk − Lik
)

+ 1
2

(
1 + hk

) (
Lik − Ljk

))
· A

= 1
2

( (
hk − 1

) (
Lik − Ljk

) )
· A and

(Rk − Ljk) ·A = 1
2

( (
hk − 1

) (
Lik − Ljk

) )
· A .

Both measures are positive by the construction of hk. Also

ϕk =
(
(Rk − Lik) · A

)
∞ +

(
(Rk − Ljk) ·A

)
∞ .

We may therefore suppose that Q
[(

(Rk − Lik) ·A
)
∞ > α

2

]
> α

2 (if neces-
sary we interchange ik and jk and take subsequences to keep them increas-
ing). Because (Rk − Lik) · M = 1

2 ((hk − 1)(Lik − Ljk) · M) and because
(Lik − Ljk) ·M tend to zero in the semi-martingale topology on [0,∞[ we
deduce that the maximal functions ((Rk − Lik) ·M)∗ tend to zero in proba-
bility. The same holds for ((Rk − Ljk) ·M)∗. Let now (δk)k≥1 be a sequence
of strictly positive numbers tending to 0. By taking subsequences and by
the above observation we may suppose that Q[((Rk − Lik) · M)∗ > δk or
((Rk − Ljk) ·M)∗ > δk] < δk holds for all k. This implies that the stopping
time τk defined as τk = inf{t | (Rk ·M)t ≤ max((Lik ·M)t, (Ljk ·M)t)− δk}
satisfies Q[τk < ∞] < δk. Define now R̃k = Rk1[[0,τk]]. We claim that the
integrands R̃k are (1 + δk)-admissible!

For t < τk we have
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(R̃k · S)t = (Rk · S)t

= (Rk · A)t + (Rk ·M)t

≥ max
(
(Lik ·A)t, (Ljk ·A)t

)
+ (Rk ·M)t

≥ max
(
(Lik ·A)t, (Ljk ·A)t

)
+ max

(
(Lik ·M)t, (Ljk ·M)t

)
− δk

≥ max
(
(Lik · S)t, (Ljk · S)t

)
− δk

≥ −1− δk .

At time τk the jump ∆(R̃k · S) is either ∆(Lik · S) or ∆(Ljk · S) and
hence (Rk · S)τk

≥ −1 − δk because the left limit of (R̃k · S) at τk is at least
max((Lik · S)τ

k− , (Ljk · S)τ
k− )− δk.

The integrands (1 + δk)−1R̃k are 1-admissible. We will use them to con-
struct a contradiction to the maximal property of f0 = limk→∞(Ljk · S)∞ =
limm→∞(Hm · S)∞.(

R̃k

1 + δk
· S − Lik · S

)
∞

=
1

1 + δk

(
(R̃k − Lik) · S

)
∞ −

δk

1 + δk
(Lik · S)∞

=
(

1
1 + δk

)(
(R̃k − Lik) ·A

)
∞

+
1

1 + δk

(
(R̃k − Lik) ·M

)
∞ −

δk

1 + δk
(Lik · S)∞ .

This first term is estimated from below

Q
[(

(R̃k − Lik) · A
)
∞ >

α

2

]
>

α

2
and

(
(R̃k − Lik) · A

)
∞ ≥ 0 .

The second term is estimated from above

Q
[(

(R̃k − Lik) ·M
)
∞ ≤ −δk

]
< δk and

(
(R̃k − Lik) ·M

)
∞ → 0 .

The third term tends to zero since δk → 0. From Lemma 9.8.1 we know
that there are convex combinations V k ∈ conv{R̃k, R̃k+1, . . .} such that (V k ·
S)∞ will converge to a function g. Because (Lik · S)∞ → f0 and because
Q
[
((R̃k − Lik) · S)∞ > α

2 − δk

]
> α

2 − δk we deduce from Lemma 9.8.6 that
Q[g > f0] > 0. Also g ≥ f0, a contradiction to the construction of f0. �

Final part of the proof of Theorem 9.4.2. From Lemmas 9.4.12 and 9.4.11
we deduce the existence of 1-admissible integrands Lk ∈ conv{Hk, Hk+1, . . .}
such that Lk ·M and Lk ·A both converge in the semi-martingale topology. The
sequence (Lk · S)k≥1 is therefore convergent in the semi-martingale topology.
Mémin’s theorem (see [M 80]) now implies the existence of a predictable pro-
cess L such that Lk ·S → L ·S in the semi-martingale topology. In particular
L is 1-admissible and the final value satisfies
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(L · S)∞ = lim
t→∞(L · S)t = lim

t→∞ lim
n→∞(Ln · S)t

= lim
n→∞ lim

t→∞(Ln · S)t = lim
n→∞(Ln · S)∞ = f0 .

The interchange of the limits is allowed because almost surely (Ln ·S)t →
(L · S)t uniformly in t, by Lemma 9.4.6. Indeed (Hn · S)t converge uni-
formly on R+ and the convex combinations Lk ∈ conv{Hk, Hk+1, . . .} pre-
serve this uniform convergence. This shows that f0 ∈ K0 and as remarked
before Lemma 9.4.6 this implies Theorem 9.4.2. �

Remark 9.4.13. The topology of semi-martingales was defined in Sect. 9.2. It
was defined using the open end interval [0,∞[. A similar but stronger topology
could have been defined using the time interval [0,∞]. This amounts to using
the distance function:

D(X) = sup{E[min(|(H ·X)∞|, 1)] | H predictable, |H | ≤ 1} .

The difference between the two topologies is comparable to the difference
between uniform convergence on compact sets of [0,∞[ and uniform conver-
gence on [0,∞]. A careful inspection of the proofs, mainly devoted to checking
the existence of the limits at∞, shows that the semi-martingales (Ln ·S) tend
to (L · S) in the semi-martingale topology on [0,∞] and not only on [0,∞[.
We preferred not to use this approach in order to keep the proofs easier.

9.5 The Set of Representing Measures

In this section we use the results obtained in Ansel and Stricker [AS 94] “Cou-
verture des actifs contingents” and we give a new criterion under which the
market is complete. Throughout this paragraph the process S is supposed to
be locally bounded and to be a local martingale under the measure P. This
will facilitate the notation. We will study the following sets of “represent-
ing measures” defined on the σ-algebra F (see e.g. [D 92] for an explanation
concerning the name “representing measures”):

M(P) = {Q | Q� P, Q is σ-additive andS is aQ-localmartingale}
Me(P) = {Q | Q ∼ P, Q isσ-additive andS is aQ-localmartingale} .

The space M(P) consists of all absolutely continuous local martingale
measures and it can happen that some of the elements will give a measure
zero to events that under the original measure are supposed to have a strictly
positive probability to occur. This phenomenon was studied in detail in [D 92].
We will show that Me(P) =M(P) implies M(P) = {P}.

We will need the following set of attainable assets:

W 0 = {f | there is an S-integrable H , H · S bounded and (H · S)∞ = f} .
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The set W 0 is a subspace of L∞. There is no problem in this notation
since if H · S is bounded, then H as well as (−H) is admissible and therefore
f = (H ·S)∞ exists and is a bounded random variable. From Proposition 9.3.6
it follows that W 0 = K∩(−K) . The same notation for a space related to W 0

is already used in [D 92]. The set W is simply {α + f | α ∈ R and f ∈ W 0}.
Because S is supposed to be locally bounded these vector spaces are quite
big. The following lemma seems to be obvious but, because unbounded S-
integrable processes are used, it is not so trivial as one might suspect. The
proof we give uses rather heavy material but it saves place.

Lemma 9.5.1. If H is S-integrable and H · S is bounded, then H · S is a Q-
martingale for all Q ∈M(P).

Proof. Take Q ∈ M(P). Clearly S is a special semi-martingale under the
measure Q. Since it is a local martingale it decomposes as S = S + 0. The
stochastic integral H · S is bounded and hence is a special martingale under
Q. Its decomposition is, according to Theorem 9.2.2, H ·S = H ·S +H ·0, i.e.
H · S is a Q-local martingale. Being bounded it is a martingale under Q. �

It follows from the martingale property that if H and G are two S-
integrable processes such that H · S and G · S are bounded and such that
(H ·S)∞ = (G ·S)∞ then necessarily (H ·S) = (G ·S). (This also follows from
arbitrage considerations.)

The following theorem is due to [AS 94] and [J 92] (see also Chap. 11).
Earlier versions can be found in [KLSX91]. The theorem is particularly im-
portant in the setting of incomplete markets (e.g. semi-martingales with more
than one equivalent martingale measure). It shows exactly what elements can
be constructed or hedged, using admissible strategies.

Theorem 9.5.2. If f ∈ L0(Ω,F ,P) with f− ∈ L∞(Ω,F ,P) then the follow-
ing are equivalent

(i) there is H predictable, S-integrable, Q ∈ Me(P) and α ∈ R such that
H · S is a Q-uniformly integrable martingale with f = α + (H · S)∞

(ii) there is Q ∈ Me(P) such that ER[f ] ≤ EQ[f ] for all R ∈Me(P).

For f bounded these two properties are also equivalent to

(iii) ER[f ] is constant as a function of R ∈M(P).

Proof. We refer to [AS 94, Theorem 3.2]. For (iii) we remark that Me(P) is
L1(P)-dense in M(P) and hence ER[f ] is constant on Me(P) if and only if
it is constant on M(P). �

Corollary 9.5.3. W is σ(L∞, L1)-closed in L∞ .

Proof. This follows immediately from (iii) of the theorem. W is the subspace
of these elements in L∞ that are constant on a subset of L1. �
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Remark 9.5.4. The corollary was known long before Theorem 9.5.2 was known.
The earliest versions of it are due to Yor [Y 78a]. Contrary to intuition, the
boundedness condition needed in (iii) of Theorem 9.5.2 cannot be relaxed to
f being a member of L1

+(R) for each R inMe(P). A counter-example can be
found in [S 93].

The next theorem is a new criterion for the completeness of the market.

Theorem 9.5.5. If S is locally bounded and P is a local martingale measure
for S, then

(i) M(P) is a closed convex bounded set of L1(Ω,F ,P)
(ii) M(P) =Me(P) implies that M(P) = {P}.

Proof. (i): We only have to show that M(P) is closed. Take Qn a sequence
in M(P) and suppose that Qn converges to Q. Take T a stopping time such
that ST is bounded. If t < s and A ∈ Ft then we can see that: EQ[ST

t 1A]
= limEQn [ST

t 1A] = limEQn [ST
s 1A] = EQn [ST

s 1A]. This proves Q ∈M(P).
(ii): If M(P) = Me(P) then Me(P) is a closed, bounded, convex set.

The Bishop-Phelps theorem, see [D 75], states that the set G of elements f of
L∞(Ω,F ,P) that attains their supremum on Me(P), is a norm dense set in
L∞(Ω,F ,P). The preceding theorem, part (ii), states that G is a subset of
W . Since W is weak-star-closed it is certainly norm closed. Since W is closed
and G is dense for the norm topology we obtain W = L∞(Ω,F ,P) . By the
Hahn-Banach theorem, two distinct elements of L1 can be separated by an
element of L∞ i.e. by an element of W . However, elements of W are constant
on M(P). This implies that M(P) = {P}. �

As we remarked in the introduction our results remain true for Rd-valued
processes. The same holds for Theorem 9.5.5. As the example of [AH95] shows,
Theorem 9.5.5 is no longer true for an infinite number of assets. The example
uses the set {0, 1} as time set, but as easily seen and stated in [AH95] it is
easy to transform the example into a setting with continuous time.

In [D 92] the following identity was proved for a continuous process S. For
every f ∈ L∞:

sup
Q∈M(P)

EQ[f ] = inf{x | there is h ∈ W 0 with x + h ≥ f} .

In the general case this equality becomes false as the following example in
discrete time shows. The left hand side of the equality is always dominated by
the right hand side. The example shows that a “gap” is possible. Some further
properties displayed by Example 9.5.6 are: W 0 is weak-star-closed but the set
W 0−L∞

+ is not even norm closed. We will also see that the norm closure and
the weak-star-closure of W 0 − L∞

+ are different.

Example 9.5.6. The set Ω is the set N = {1, 2, 3, . . .} of natural numbers. The
σ-algebra Fn is the σ-algebra generated by the atoms {k} for k ≤ 3n and the
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atom {3n + 1, 3n + 2, . . .}. S0 = 0 and Sn − Sn−1 is defined as the variable
gn(3(n − 1) + 1) = n; gn(3(n − 1) + 2) = 1; gn(3n) = −1. The process S is
not bounded but a normalisation of the functions gn allows us to replace S
by a bounded process. To keep the notation simple we prefer to continue with
the locally bounded process S given above. For the measure P we choose any
measure that gives a strictly positive mass to all natural numbers and such
that for all n we have EP[gn] = 0. The space W 0 is precisely the set:{∑

n≥1

angn | (nan)n≥1 is bounded

}
.

Take now for f the function defined as

for all n ≥ 1 : f(3(n− 1) + 1) = 0 ; f(3(n− 1) + 2) = 1 and f(3n) = 0 .

From the description of W 0 it follows that for h in W 0 and x ∈ R the
random variable x + h can only dominate f if x ≥ 1. The constant function 1
clearly dominates f . This shows that

inf{x | there is h ∈W 0 with x + h ≥ f} = 1 .

On the other hand if Q is a local martingale measure for S then nQ[3(n−
1)+1]+Q[3(n−1)+2] = Q[3n] implies that Q[3(n−1)+2]≤ 1

2Q[{3(n−1)+
1, 3(n− 1) + 2, 3n}], with strict inequality if Q is equivalent to P. Therefore
EQ[f ] ≤ 1

2 with strict inequality for Q in Me(P). If we take any measure Q
such that Q[3(n−1)+1] = 0 and Q[3(n−1)+2] = Q[3n] then Q is inM(P)
and EQ[f ] = 1

2 . It is now clear that maxQ∈M(P) EQ[f ] = 1
2 .

This example also shows that in Theorem 9.5.2 (ii), the condition Q ∈
Me(P) may not be replaced by the condition Q ∈ M(P). Referring to the
proof of [D 92, Lemma 5.7], we remark that in this example the function f
is not in 1

2 + W 0 − L∞
+ but it is in the weak-star-closure of it. To see this

let fn be the function defined as fn(3(k − 1) + 2) = 1 for all k ≤ n and 0
elsewhere. The functions fn are smaller than 1

2 +
∑n

k=1(
1
2gk) and therefore

are in 1
2 + W 0 − L∞

+ , they converge weak-star to f . The set W 0 − L∞
+ is not

even norm closed as the following reasoning shows. An element h in W 0−L∞
+

is of the form
∑

n≥1 angn − k where k is in L∞
+ and |n an| is bounded, say by

m. If an is positive then h(3(n−1)+2) ≤ angn ≤ m
n and if an is negative then

h(3(n− 1) + 2) ≤ 0. In any case h(3(n− 1) + 2) ≤ m
n . Take now the function

p defined as p(3(n − 1) + 1) = 0, p(3(n − 1) + 2) = 1√
n

and p(3n) = −1√
n
. It

is easy to see that p is in the norm closure of W 0 − L∞
+ but it cannot be in

W 0−L∞
+ since the converge of p(3(n−1)+2) to 0 is too slow. This reasoning

also shows that the element f , described above, cannot be in the norm closure
of the set x + W 0 − L∞

+ for any x < 1. �

To remedy this “gap” phenomenon, well-known in infinite dimensional
linear programming, we will use another set to calculate the infimum. The
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set we will use is precisely the set C introduced in Sections 9.2, 9.3 and 9.4.
In Sect. 9.4, Theorem 9.4.2, it is proved that C is weak-star-closed in L∞.
In the case of processes which are not necessarily continuous, C is the exact
substitute for the set W 0 − L∞

+ , so useful in the continuous case. The polar
C◦ of the cone C is by definition

C◦ = {g | g ∈ L1, E[gh] ≤ 0 for all h in C} .

Theorem 9.5.7.

M(P) = {Q | Q ∈ L1, Q[Ω] = 1 and Q ∈ C◦} .

Proof. If Q is in M(P) then for H admissible we know by Theorem 9.2.9
that H · S is a Q-super-martingale. Therefore EQ[h] ≤ 0 for every h in C.
Conversely let Q be in L1, of norm 1 and Q ∈ C◦. The set −L∞

+ is a subset
of C and hence every element of C◦ is in L1

+. Therefore Q is a probability
measure. If T is a stopping time and ST is bounded then the random variables
α(ST

u − ST
t )1A for u ≥ t, α real and A in Ft, are in C and hence Q is a local

martingale measure for S. �
The following theorem is the precise form of the duality equality stated

above. We will prove it for bounded functions, referring to [AS 94] for the case
of measurable functions with bounded negative parts.

Theorem 9.5.8. For every f in L∞ we have

sup
Q∈Me(P)

EQ[f ] = sup
Q∈M(P)

EQ[f ]

= inf{x | there is h ∈ C with x + h ≥ f}
= inf{x | there is h ∈ C with x + h = f} .

Proof. From the definition of C it follows that x+h ≥ f for h in C if and only
if there is h in C with f = x + h. The second equality is therefore obvious.
From the preceding theorem it follows that

sup
Q∈M(P)

EQ[f ] ≤ inf{x | there is h ∈ C with x + h ≥ f} .

If z < inf{x | there is h ∈ C with x + h ≥ f} then f − z is not an element of
the weak-star-closed cone C. By the Hahn-Banach theorem there is a signed
measure Q ∈ L1, EQ[h] ≤ 0 for all h in C and EQ[f − z] > 0. The preceding
theorem shows that Q can normalise as Q[Ω] = 1 and then it is in M(P). It
follows that z < EQ[f ] ≤ supR∈M(P) ER[f ]. This shows that

sup
Q∈M(P)

EQ[f ] ≥ inf{x | there is h ∈ C with x + h = f} . �

Remark 9.5.9. The infimum is a minimum since C is weak-star and hence
norm closed.
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Remark 9.5.10. Let us recall that the dual of L∞ is ba(Ω,F ,P), the space of
all bounded, finitely additive measures on the σ-algebra F , absolutely contin-
uous with respect to P. We can try to define the set of all finitely additive
measures that can be considered as local martingale measures for S. It is not
immediately clear how this can be done in a canonical way. But, if we define
Mba(P) = {Q | Q ∈ ba, Q[Ω] = 1, EQ[h] ≤ 0 for all h in C}, then it is easy
to see, via the equality in Theorem 9.5.8, that M(P) is σ(ba, L∞)-dense in
Mba(P). In other words Mba(P) is the σ(L∞, L1)-closure of M(P) in the
space ba(Ω,F ,P), the dual of L∞. This is of course the good definition of
Mba(P). We remark that the set C has to be used and not just the set W 0.
Indeed Example 9.5.6 shows that the set M(P) is not necessarily σ(ba, L∞)-
dense in the set {Q | Q finitely additive, positive, Q[Ω] = 1 and EQ[h] =
0 for all h in W 0}. To see this, we observe that the function f defined in Ex-
ample 9.5.6 is not in the norm closure of x + W 0 −L∞

+ for any x < 1. By the
Hahn-Banach theorem there is a finitely additive positive probability Q such
that EQ[f ] = 1 and EQ[h] = 0 for all h in W 0. Because supQ∈M(P) EQ[f ] = 1

2
this element Q cannot be in the σ(ba, L∞)-closure of the setM(P). This sug-
gests that the “good” definition of such finitely additive measures should use
the inequality EQ[h] ≤ 0 for all h in C and not only for all h in W 0 − L∞

+ .

9.6 No Free Lunch with Bounded Risk

In this section we will compare the property of no free lunch with vanishing risk
(NFLVR) with the previously used property of no free lunch with bounded risk
(NFLBR). This property was used in a series of papers: [MB 91, D 92, S 94].
The property (NFLBR) is a generalisation of the property (NFLVR). To define
this property we need some more notation. By C we denoted the closure of
C with respect to the norm topology of L∞, by C

∗
we will denote the weak-

star-closure of C. The set C̃ is the set of all limits of weak-star converging
sequences of elements of C. Although the fact that a convex set in L∞ is weak-
star-closed if and only if it is sequentially closed for the weak-star topology, the
closure of a convex set cannot necessarily be obtained by taking all limits of
sequences. (In [B 32, Annexe théorème 1] one can find for each k, examples of
convex sets such that after k iterations of taking weak-star limits of sequences,
the weak-star-closure is not obtained, but after k + 1 iterations the closure is
found.) Therefore in general, there is a difference between C

∗
and C̃ and the

use of nets is essential to find the weak-star-closure of C.

Definition 9.6.1. If S is a semi-martingale then we say that S satisfies the
property

(i) no free lunch with bounded risk (NFLBR) if C̃ ∩ L∞
+ = {0},

(ii) no free lunch (NFL) if C
∗ ∩ L∞

+ = {0}.



9.6 No Free Lunch with Bounded Risk 187

From the definitions and the results of Sect. 9.3 it follows that (NFL)
implies (NFLBR) implies (NFLVR) implies (NA). As regards the notion of
no free lunch (NFL), this was introduced by [K81] and is at the basis of
subsequent work on the topic. It requires that there should not exist f0 in
L∞

+ , not identically 0, as well as a net (fα)α of elements in C such that
fα, converges to f0 in the weak-star topology of L∞. Because nets are used,
there is no bound on the negative part f−

α of fα. It is not excluded that
e.g. ‖f−

α ‖∞ tends to ∞, reflecting the enormous amount of risk taken by the
agent. It is well-known that for bounded càdlàg adapted processes S, (NFL)
(even when defined by simple strategies) is equivalent to the existence of an
equivalent martingale measure. See [S 94] for a proof of this theorem which
is essentially due to [K 81, Y 80]. The drawback of this theorem is twofold.
First it is stated in terms of nets, a highly non-intuitive concept. Second it
involves the use of very risky positions. The main theorem of the present
paper remedies this drawback. We therefore focus attention on variants of
the properties (NFLVR). The following characterisation, the proof of which
is almost the same as the proof of Proposition 9.3.7 and Corollary 9.3.8,
was proved in [S 94]. The proof makes essential use of the Banach-Steinhaus
theorem on the boundedness of weak-star convergent sequences.

Proposition 9.6.2. The semi-martingale S satisfies the condition (NFLBR)
if and only if for a sequence of 1-admissible integrands (Hn)n≥1 with final
values gn = (Hn · S)∞ the condition g−n → 0 in probability implies that gn

tends to 0 in probability.

Proof. Suppose that S satisfies the property (NFLBR) and let (Hn)n≥1 be
a sequence of 1-admissible integrands (Hn)n≥1 with final values gn = (Hn ·
S)∞ such that g−n → 0 in probability. Suppose that this sequence does not
tend to 0 in probability. By selecting a subsequence, still denoted by (gn)n≥1

we may suppose that there is α > 0 such that P[gn > α] > α for all n. By
Lemma 9.8.1 we may take convex combinations fn ∈ conv{gk; k ≥ n} that
converge in probability to a function f . The negative parts f−

n still tend to
0 in probability and hence f : Ω → [0,∞]. The function f satisfies P[f >
0] > 0. The functions hn = min(fn, 1) are in the convex set C and converge
in probability to h = min(f, 1). The functions hn are uniformly bounded
by 1 and therefore the convergence in probability implies the convergence
in the weak-star topology of L∞. The function h is therefore in C̃ and the
property (NFLBR) now implies that h = 0 almost everywhere. This, however,
is a contradiction to P[f > 0] > 0.

Suppose conversely that S satisfies the announced property. It is clear that
S satisfies the no-arbitrage property (NA). Suppose now that hn is a sequence
in C that converges weak-star to h. We have to prove that h = 0 almost
everywhere. By the Banach-Steinhaus property on weak-star bounded sets, the
sequence hn is uniformly bounded. Without loss of generality we may suppose
that it is uniformly bounded by 1 and hence hn ≥ −1 almost surely. Since the
sequence hn tends to h weak-star in L∞ it certainly converges weakly to h in
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L2. Therefore there is a sequence of convex combinations gn ∈ conv{hk; k ≥ n}
that converges to h in L2 and therefore in probability. The sequence gn is
bigger than −1 and by the no-arbitrage property gn is the final value of 1-
admissible integrands Hn (see Proposition 9.3.6). The property of S now says
that h = 0. �

The difference between (NFLVR) and (NFLBR) is now clear. In the no
free lunch with vanishing risk property we deal with sequences such that the
negative parts tend to 0 uniformly. In the no free lunch with bounded risk
property we only require these negative parts to tend to 0 in probability and
remain uniformly bounded!

If the case of an infinite time horizon the set K0 was defined using general
admissible integrands. The infinite time horizon and especially strategies that
require action until the very end, are not easy to interpret. It would be more
acceptable if we could limit the properties (NFLBR) and (NFLVR) to be
defined with integrands having bounded support. The following proposition
remedies this. (We recall as already stated in the remark following Corol-
lary 9.3.4 that an integrand H is of bounded support if H is zero outside
a stochastic interval [[0, k]] for some real number k.)

Proposition 9.6.3.

(1) If the semi-martingale S satisfies (NFLBR) for integrands with bounded
support, then it satisfies (NA) for general admissible integrands.

(2) If the semi-martingale S satisfies (NFLVR) for integrands with bounded
support and (NA) for general integrands, then it satisfies (NFLVR) for
general integrands.

Proof. We start with the remark that if S satisfies (NFLVR) for integrands
with bounded support then from Theorem 9.3.3 it follows that for each ad-
missible H , the limit (H · S)∞ = limt→∞(H · S)t exists and is finite almost
everywhere. We now show (1) of the proposition. Let g = (H · S)∞ for H
1-admissible and suppose that g ≥ 0 almost everywhere. Let gn = (H · S)n.
Clearly g−n tends to 0 in probability and each gn is the result of a 1-admissible
integrand with bounded support. The property (NFLBR) for integrands with
bounded support shows that g ≥ 0 implies that g = 0. The semi-martingale
therefore satisfies (NA) for admissible integrands.

We now turn to (2) of the proposition. Let gn = (Hn · S)∞ with Hn

admissible, be a sequence such that the sequence g−n tends to 0 in L∞-norm.
Because the process S satisfies (NA) it follows from Proposition 9.3.6 that
each Hn is ‖q−n ‖∞-admissible. For each n we take tn big enough so that hn =
(Hn ·S)tn is close to gn in probability, e.g. such that E[min(|hn−gn|, 1)] ≤ 1

n .
Since each hn is the result of a ‖g−n ‖∞-admissible integrand with bounded
support, the property (NFLVR) for integrands with bounded support implies
that hn tends to 0 in probability. As a result we obtain that also gn tends to
0 in probability. �
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The Proposition 9.6.3 allows us to obtain a sharpening of the main theorem
of [S 94, Theorem 1.6]. We leave the economic interpretation to the reader.

Proposition 9.6.4. Let (Sn)n be a locally bounded adapted stochastic process
for the discrete time filtration (Fn)n. If there does not exist an equivalent local
martingale measure for S then at least one of the following two conditions must
hold:

(1) S fails (NA) for general admissible integrands, i.e. there is an admissible
integrand H such that (H · S)∞ ≥ 0 a.s. and P[(H · S)∞ > 0] > 0.

(2) S fails (NFLVR) for elementary integrals, i.e. there is a sequence (Hn)n

of elementary integrals such that (Hn · S) ≥ −n−1 and (Hn · S)∞ tends
almost surely to a function f : W → [0,∞] with P[f > 0] > 0.

Proof. For discrete time processes, elementary integrands and general inte-
grands with bounded support are the same. Therefore if S satisfies both con-
ditions (1) and (2), then by Proposition 9.6.3, S also satisfies (NFLVR) for
general integrands. The main Theorem 9.1.1 now asserts that S admits an
equivalent local martingale measure. The proposition is the contraposition of
this statement. �

The following example shows that in general the no free lunch with van-
ishing risk property for admissible integrands with bounded support does not
imply the no free lunch with vanishing risk property for general admissible in-
tegrands! As Proposition 9.6.3 indicates there should be arbitrage for general
integrands.

Example 9.6.5. We give the example in discrete time. The extension to contin-
uous time processes is obvious. The set Ω is the compact space of all sequences
of −1 or +1 : {−1, +1}N. The σ-algebras Gn of the filtration are defined as
the smallest σ-algebras making the first n co-ordinates measurable. On Ω we
put two measures P and Q. The measure P is defined as the Haar mea-
sure, this is the only measure such that the co-ordinates rn are a sequence
of independent, identically distributed variables with P[rn = ±1] = 1

2 . The
measure Q is defined as 1

2 (P + δa), where δa is the Dirac measure giving all
its mass to the element a, the sequence identically 1. Define f as the vari-
able f = −1{a} + 1Ω\{a}. Clearly EQ[f ] = 0. Define now the process Sn by
Sn = EQ[f | Gn]. The σ-algebras Fn of the filtration are defined as the small-
est σ-algebras making the S1, . . . , Sn measurable, i.e. the natural filtration of
S. The σ-algebra F is generated by the sequence (Sn)n. It is easy to see that
on F , S admits only one equivalent martingale measure, namely Q. We will
now consider the process S under the measure P. On each σ-algebra Fn the
two measures, P and Q, are equivalent. Suppose now that Hn is a sequence of
boundedly supported predictable integrands such that gn = (Hn · S)∞ ≥ −1

n
almost everywhere for the measure P. For each n there is kn big enough such
that gn is measurable for Fn. Therefore also Q

[
gn ≥ −1

n

]
= 1 for each n.

Since Q is a martingale measure for S it follows that EQ[gn] = 0 and that
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the sequence (gn)n≥1 tends to 0 in L1(Q). Therefore the sequence (gn)n≥1

tends to 0 in probability for the measure Q. Because P is absolutely contin-
uous with respect to Q we deduce that gn tends to 0 in probability for the
probability P. This implies that S satisfies the (NFLVR) property for inte-
grands with bounded support. Because Q is the only martingale measure for
S and because Q is not absolutely continuous with respect to P, the process
S cannot satisfy the no free lunch with vanishing risk property for general in-
tegrands (Theorem 9.1.1). In fact, precisely as predicted in Proposition 9.6.4,
there is already arbitrage if general integrands are allowed! Take e.g. H the
predictable process identically one. Because S0 = 0, we have H · S = S and
H is therefore admissible. Now Sn tends to f for the probability Q and hence
Sn tends to 1Ω\{a} for the measure P, i.e. tends to the constant function 1 for
the probability P. The process S does not satisfy (NA) for general integrands.

9.7 Simple Integrands

In this section we investigate the consequences of the no-free-lunch like prop-
erties when defined with simple integrands. It turns out that there is a relation
between the semi-martingale property and the no free lunch with vanishing
risk (NFLVR) property for simple integrands. For continuous processes we are
able to strengthen Theorem 9.1.1 and the main theorem of [D 92].

Definition 9.7.1. A simple predictable integrand is a linear combina-
tion of processes of the form H = f1]]T1,T2]] where f is FT1-measurable and
T1 ≤ T2 are finite stopping times with respect to the filtration (Ft)t∈R + (see
also [P 90]). The expression “elementary predictable integrand” is reserved for
processes of the same kind but with the restriction that the stopping times are
deterministic times.

Simple predictable integrands seem to be the easiest strategies an investor
can use. The integrand H = f1]]T1,T2]] corresponds to buying f units at time
T1 and selling them at time T2. The requirement that only stopping times and
predictable integrands are used reflects the fact that only information available
from the past can be used. The interpretation of simple integrands is therefore
straightforward. The use of general integrands, however, seems more difficult
to interpret and their use can be questioned in economic models. It is therefore
reasonable to investigate how far one can go in requiring the integrands to be
simple.

As pointed out in Sect. 9.2, we can define the concepts such as no-arbitrage,
. . . with the extra restriction that the integrands are simple. In the case of
simple integrands, stochastic integrals are defined for adapted processes. In
this section we therefore suppose that S is a càdlàg adapted process. The
following theorem shows that the condition of no free lunch with vanishing
risk for simple integrands, already implies that S is a semi-martingale. In
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particular this theorem shows that in the Main Theorem 9.1.1, the hypothesis
that the price process is a semi-martingale is not a big restriction. The theorem
is a version of [AS 93, Theorem 8]. The proof follows the same lines but control
in L2-norm is replaced by other means. The theorem only uses conditions that
are invariant under the equivalent changes of measure. The context of the
following theorem is therefore more natural than the same theorem stated in
an L2-environment. We, however, pay a price by requiring the process S to
be locally bounded. A counter-example will show that the local boundedness
cannot be dropped.

Theorem 9.7.2. Let S : R+ × Ω :→ R be an adapted càdlàg process. If S is
locally bounded and satisfies the no free lunch with vanishing risk property for
simple integrands, then S is a semi-martingale.

The proof requires some intermediate results that have their own merit.
Since S is locally bounded there is an increasing sequence of stopping times
(τn)n≥1 such that each stopped process Sτn is bounded and τn → ∞ a.s..
To prove that S is a semi-martingale it is sufficient to prove that each Sτn

is a semi-martingale. We therefore may and do suppose that S is bounded.
To simplify notation we suppose that |S| ≤ 1. In the following lemmas it is
always assumed that S satisfies (NFLVR) for simple integrands.

Lemma 9.7.3. Under the assumptions of Theorem 9.7.2, let H be a family
of simple predictable integrands each bounded by 1, i.e. |Ht(ω)| ≤ 1 for all t
and ω ∈ Ω. If{

sup0≤t(H · S)−t
∣∣ H ∈ H

}
is bounded in L0, then{

sup0≤t(H · S)+t
∣∣ H ∈ H

}
is also bounded in L0.

Proof. Suppose that the set {sup0≤t(H · S)+t | H ∈ H} is not bounded in L0.
This implies the existence of a sequence cn →∞, Hn ∈ H and ε > 0 such that
P[ sup0≤t(H ·S)+t > cn] > ε. Take K such that P[ sup0≤t(H ·S)−t < −K] < ε

2
for all n and all H ∈ H and define the stopping times

T
′
n = inf{t | (Hn · S)t ≥ cn} ,

Un = inf{t | (Hn · S)t < −K} .

Clearly (Hn ·S)t ≥ −K − 2 on [[0, Un]] since each Hn is bounded by 1 and
| S |≤ 1. Take Tn = min(T

′
n, Un) and observe that

P[(Hn · S)Tn ≥ cn, sup
0≤t≤Tn

(Hn · S)t ≤ K + 2] ≥ ε
2 .

Take now δn → 0 so that δncn →∞ and remark that

(a) (δnHn1[[0,Tn]] · S)−∞ ≤ δn(K + 2)
(b) fn = (δnHn1[[0,Tn]] · S)∞ satisfies P[fn ≥ δncn] ≥ ε

2 .
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By Lemma 9.8.1 there are gn ∈ conv{fn, fn+1 . . .} such that gn → g a.e.
where g : Ω → [0,∞]. Also P[g > 0] > 0. If gn = λn

0 fn + · · · + λn
kfn+k is the

convex combination, let us put Kn = λn
0 Hn + · · ·+ λn

kHn+k. Clearly

(a) ‖(Kn · S)−∞‖ → 0 and
(b) (Kn · S)∞ → g : Ω→ [0,∞].

Since P[g > 0] > 0, this is a contradiction to (NFLVR) with simple inte-
grands. �

Lemma 9.7.4. The set

G =

{
n∑

k=0

(STk+1 − STk
)2
∣∣∣∣∣ 0 ≤ T0 ≤ T1 ≤ . . . ≤ Tn+1 <∞ stopping times

}

is bounded in L0.

Proof. For 0 ≤ T0 ≤ T1 ≤ . . . ≤ Tn+1 <∞ stopping times put:

H = −2
n∑

k=0

STk
1]]Tk,Tk+1]] .

Because | S |≤ 1 we have that H is bounded by 2. Also

(H · S)∞ =
n∑

k=0

(STk+1 − STk
)2 − S2

Tn+1
+ S2

T0

and hence (H · S)∞ ≥ −1. The same calculation applied to the sequence of
stopping times min(T1, t), . . . ,min(Tn, t) yields (H · S)t ≥ −1 and therefore
sup0≤t(H · S)−t ≤ 1. The preceding lemma now implies that G is bounded in
L0. �
Proof of Theorem 9.7.2. We have to show that if Hn is a sequence of simple
predictable processes such that Hn → 0 uniformly over R+ × Ω, then (Hn ·
S)∞ → 0 in probability. By the Bichteler-Dellacherie theorem this implies the
classical definition of a semi-martingale. (In [P 90] this property is used as the
definition of a semi-martingale). It is of course, sufficient to show that the
sequence (Hn · S)∞ is bounded in L0. If this were not true then there would
exist a subsequence of simple integrands, still denoted by (Hn)n≥1, such that

(a) Hn → 0 uniformly over R+ × Ω;
(b) P[(Hn · S)∞ ≥ n] ≥ ε > 0.
(c) Each Hn can be written as

Hn =
Nn∑
k=0

fn
k 1]]T n

k ,T n
k+1]]
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where 0 ≤ T0 ≤ . . . ≤ TNn+1 < ∞ are stopping times and the functions
fn

k are FT n
k
-measurable functions, bounded by 1.

For each n we put ζn
t the process defined as

ζn
t =

∑
(ST n

k+1
− ST n

k
)2 ,

where the summation is done over the set of indices k = 0, . . . , Nn such
that T n

k+1 ≤ t.

Since by the preceding lemma G is bounded in L0, there is c > 0 such
that P[ζn

∞ ≥ c] ≤ ε
2 . Let for each n the stopping time T

′
n be defined as

T
′
n = inf{t | ζn

t ≥ c}. This definition implies that T
′
n takes values in the

set {T0, . . . , Tn+1,∞} and is a stopping time with respect to the discrete
time filtration (FT n

k
)k=0,...,Nn+1. The bound ζn

T ′
n
≤ c + 4 (since |S| ≤ 1) and

P[T
′
n < ∞] ≤ ε

2 are straightforward. Take now Kn = Hn1[[0,T ′
n]] and observe

that P[(Kn · S)∞ ≥ n] ≥ ε
2 .

Each discrete time, stopped, process
(
Smin(T n

k ,T ′
n)

)
k=0,...,Nn+1

is now de-
composed according to the discrete time Doob decomposition:

An
T n

k+1
−An

T n
k

= E
[
Smin(T n

k+1,T ′
n) − Smin(T n

k ,T ′
n)

∣∣∣FT n
k

]
Mn

T n
k+1
−Mn

T n
k

=
(
Smin(T n

k+1,T ′
n) − Smin(T n

k ,T ′
n)

)
−E
[
Smin(T n

k+1,T ′
n) − Smin(T n

k ,T ′
n)

∣∣∣FT n
k

]
.(

Mn
T n

k

)
k=0,...,Nn+1

is now a martingale bounded in L2. Indeed

E
[(

Mn
T n

Nn+1

)2] =
Nn∑
k=0

E
[(

Mn
T n

k+1
−Mn

T n
k

)2]+ E
[(

Mn
T n
0

)2]
≤

Nn∑
k=0

E
[(

Smin(T n
k+1,T ′

n) − Smin(T n
k ,T ′

n)

)2]+ E
[(

Smin(T n
0 ,T ′

n)

)2]
≤
[
(ζn

T ′
n
)2
]

+ 1 ≤ c + 5 .

For each t we put Mn
t = E

[
Mn

T n
Nn+1

∣∣∣Ft

]
and we take a càdlàg version

of this martingale. Because of the optional sampling theorem this definition
coincides with the previously given construction of Mn

t for times t = T n
Nk

. In

the definition of Hn we now replace each fn
k by f̃n

k = fn
k sign

(
An

T n
k+1
−An

T n
k

)
.

The functions f̃n
k are still measurable with respect to the σ-algebra FT n

k
. The

resulting process is denoted by K̃n i.e.

K̃n =
Nn∑
k=0

f̃n
k 1]]T n

k ,T n
k+1]] .
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Since | K̃n |≤ 1 we still have

E
[(

(K̃n ·Mn)T n
Nn+1

)2
]
≤ c + 5 .

On the other hand

(K̃n · S)∞ = (K̃n · S)T n
Nn+1

= (K̃n ·M)T n
Nn+1

+
Nn∑
k=0

|fn
k | |An

T n
k+1
−An

T n
k
|

≥ (K̃n ·M)T n
Nn+1

+
Nn∑
k=0

(fn
k )
(
An

T n
k+1
−An

T n
k

)
≥ (K̃n ·M)T n

Nn+1
+ (Kn · S)∞ − (Kn ·M)T n

Nn+1
.

Because the sequences (K̃n ·M)T n
Nn+1

and (Kn ·M)T n
Nn+1

are bounded in

L2 and the sequence (Kn ·S)+∞ is unbounded in L0, the sequence (K̃n ·S)∞ is
necessarily unbounded in L0. On the other hand sup0≤t(K̃

n ·S)−t is a bounded
sequence in L0. Indeed for t = T n

k we have

(K̃n · S)−T n
k
≤ (K̃n ·M)T n

k
≤ sup

0≤t
| (K̃n ·M)t | .

And for T n
k ≤ t ≤ T n

k+1 we find:

(K̃n · S)−t ≤ (K̃n · S)−T n
k

+ |fn
k | |St − ST n

k
| ≤ 2 + sup

0≤t
|(K̃n ·M)t|

and hence3333sup
0≤t

(K̃n · S)−t

3333
2

≤ 2 +
3333sup

0≤t
(K̃n ·M)t

3333
2

≤ 2 + 2‖(K̃n ·M)t‖2
≤ 2 + 2

√
c + 5 (by Doob’s maximum inequality).

This proves the boundedness in L0. From Lemma 9.7.3 it now follows that
(K̃n ·S)+t is bounded in L0. This contradicts the choice of the sequence K̃n. �

The following example shows that the requirement that S is locally
bounded cannot be dropped. The same notation will also be used in a later
example.

Example 9.7.5. We suppose that on a probability space (Ω,F ,P) following
sequences of variables are defined: a sequence (γn)n≥1 of Gaussian normalised
N (0, 1) variables, a sequence (ϕn)n≥1 of random variables with distribution
P[ϕn = 1] = 2−n and P[ϕn = 0] = 1− 2−n. All these variables are supposed
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to be independent. The countable set of rationals in the interval ]0, 1[ is enu-
merated as (qn)n≥1. Because

∑
P[ϕn = 1] < ∞ the Borel-Cantelli lemma

tells us that for almost all ω ∈ Ω there are only a finite number of natural
numbers n such that ϕn = 1.

The stochastic process X defined as

Xt =
∑

n; qn≤t

ϕnγn

is therefore right continuous, even piecewise constant (by the above Borel-
Cantelli argument). The natural filtration generated by this process is there-
fore right continuous (see [P 90, Theorem 25] for a proof that can be adapted
to this case) and so is the filtration augmented with the negligible sets. The
filtration so constructed therefore satisfies the usual conditions.

Take now F : [0, 1] → R a continuous function of unbounded varia-
tion, e.g. F (t) = t sin

(
1
t

)
. Let now St = Xt + F (t). It is easy to verify

that X is an L2-martingale and hence it is a semi-martingale. If S were
a semi-martingale then F would also be a semi-martingale. This, however,
implies that F is of bounded variation. We conclude that S is not a semi-
martingale. We will now show that S satisfies the (NFL) property for sim-
ple integrands. This certainly implies that S satisfies the (NFLVR) property
for simple integrands and it shows that the local boundedness condition in
Theorem 9.7.2 is not superfluous. To verify the (NFL) property with simple
integrands, let us start with an integrand H = f1]]T, T ′]] where T ≤ T ′ are
two stopping times and f is FT -measurable. We will show that H · S is not
uniformly bounded from below unless H = 0. Suppose on the contrary that
P[{T < T ′} ∩ {f > 0}] > 0 (the case {f > 0} is similar). Take t real and
qn rational such that t < qn and P[{f > 0} ∩ {T ≤ t} ∩ {qn ≤ T ′}] > 0.
Because f is FT -measurable, t < qn and T ′ is a stopping time we obtain
that A = {f > 0} ∩ {T ≤ t} ∩ {qn ≤ T ′} ∈ Fq

n− and hence is indepen-
dent of ϕnγn. Because ϕnγn is unbounded from below (and from above for
the other similar case) we obtain that P[A ∩ {ϕnγn < −K}] > 0 for all
K > 0. It is now easy to see that this implies that H · S is unbounded
from below. It also follows that the only simple integrand H for which H · S
is bounded from below is the zero integrand. Since there are no admissi-
ble simple integrands, the (NFL) property with simple integrands is trivially
satisfied! �

Theorem 9.7.2 and the Main Theorem 9.1.1 allow us to strengthen the
main theorem in [D 92]. The theorem shows that in the case of continuous
price processes and finite horizon, the condition (d) in [D 92], an equivalent
form of the no free lunch with bounded risk for simple integrands, can be
relaxed. The case of infinite horizon is already treated in Example 9.6.5. By
using the techniques developed in [S 93] one can translate this example into
an example where S is a continuous process.
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Theorem 9.7.6.

(a) If S : [0, 1] × Ω → R is a continuous semi-martingale having the no-
arbitrage property (NA), if S satisfies (NFLVR) for simple integrands,
then S has an equivalent local martingale measure.†

(b) If S : R+×Ω→ R is a continuous semi-martingale having the no-arbitrage
property (NA), if S satisfies the no free lunch with bounded risk property
(NFLBR) for simple integrands, then S has an equivalent local martingale
measure.†

Proof. Let Hn be a sequence of general admissible integrands. Suppose that
gn = (Hn·S)1 ≥ −εn where εn tends to zero. By (NA) the integrand Hn is now
εn-admissible. We have to prove that gn tends to 0 in probability, which will
prove part (a) in view of the Main Theorem 9.1.1. From the theory of stochas-
tic integration (see [CMS 80]) we deduce that there are simple integrands Ln

such that P[ sup0≤t≤1 |(Ln·S)t−(Hn·S)t| ≥ εn] ≤ εn. For each n we define the
stopping time Tn as inf{t | (Ln · S)t < −2εn}. Clearly P[Tn < 1] ≤ εn. Since
the process S is continuous, the random variables hn = (Ln ·S)Tn are bounded
below by −2εn and are therefore results of 2εn-admissible simple integrands.
Because P[Tn < 1] ≤ εn and P[ sup0≤t≤1 |(Ln ·S)t− (Hn ·S)t| ≥ εn] ≤ εn the
sequence hn − gn tends to 0 in probability. From the property no free lunch
with vanishing risk (NFLVR) for simple integrands we deduce that hn and
hence gn tend to 0 in probability. Therefore the property no free lunch with
vanishing risk property (NFLVR) is satisfied and by the Main Theorem 9.1.1
there is an equivalent martingale measure.

For the second part we refer to [S 94, Sect. 5, Proposition 5.1]. �
The above theorem seems to indicate that for continuous processes simple

integrands are sufficient to describe no-arbitrage conditions. This is not true in
general. The Bes3(1)-process, (Rt)0≤t≤1 gives a counter-example. This process
can be seen as the Euclidean norm of a three dimensional Brownian motion
starting at the point (1, 0, 0) of R3. It plays a major role in the theory of con-
tinuous martingales and Brownian motion, see [RY91] for details. The process
R satisfies the no-arbitrage (NA) property for simple integrands but fails the
no-arbitrage (NA) property for general integrands. We refer to [DS 95c] for
the details. The inverse of this process, L = R−1, a local martingale, has been
used in [DS 94a].

As a general question one might ask whether for continuous processes the
no-arbitrage (NA) property for general integrands is sufficient for the existence
of an equivalent local martingale measure. The following example shows that
this is not true.

† Note added in this reprint: In the original paper [DS 94] the hypothesis that S
satisfies (NA) for general admissible integrands was forgotten but used in the
proof! Several people (including ourselves) have noted this. A counter-example
for a process satisfying (NFLVR) for simple integrands but not satisfying (NA) for
general admissible integrands is the Bessel process in dimension 3 (see [DS 95c]).
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Example 9.7.7. We take a standard Wiener process W with its natural filtra-
tion (Gt)0≤t≤1. Before we define the price process S, we first define a local
martingale of exponential type by:

Lt =

{
exp
(
−(f ·W )t − 1

2

(∫ t

0
f2(u)du

))
, if t < 1

0, if t = 1.

where f is the deterministic function defined as f(t) = 1√
1−t

.
We define the stopping time T as T = inf{t | Lt ≥ 2}. The stopped process

LT is a bounded martingale starting at zero. Clearly LT = 2 if T < 1 and
equals 0 if T = 0. Therefore P[T < 2] = 1

2 . We now define the price process
by its differential

dSt =
{

dWt + 1√
1−t

dt, if t ≤ T

0, if t ≥ T .

The filtration is now defined as (Ft)0≤t≤1 = (Gmin(t,T ))0≤t≤1. Except for sets
of measure zero, this is also the natural filtration of the process S and of the
stopped Wiener process WT . All local martingales with respect to this filtra-
tion are stochastic integrals with respect to the Wiener process (stopped at
T ) (see [RY 91, Theorem 4.2] and stop all the local martingales at the stop-
ping time T ). Girsanov’s formula therefore implies that the only probability
measure Q, absolutely continuous with respect to P and for which S is a local
martingale, is precisely the measure Q defined through its density on F1 as
dQ = LT dP. As we shall see, S satisfies the property of no-arbitrage (NA).
Important in the proof of this, is the fact that for t < 1, the measures Q and P
are equivalent on Ft, (the density LT

t is strictly positive). Because the process
S is continuous the proof that S satisfies (NA) reduces to verifying the state-
ment that for H admissible, (H · S)1 cannot be almost everywhere positive
without being zero a.s.. Take H admissible and suppose that (H ·S)1 ≥ 0, P-
a.s.. This certainly implies that (H ·S)1 ≥ 0, Q-a.s.. Because S is a continuous
Q-local martingale, we know that H ·S is a continuous Q-local martingale and
because H is admissible for Q, Q being absolutely continuous with respect to
P, H · S is a Q-super-martingale. From this it follows that EQ[(H · S)1] ≤ 0
and by positivity of (H · S)1, this in turn implies that (H · S)1 = 0, Q-a.s..
Under the probability Q, the process S is a local martingale and hence sat-
isfies (NA) with respect to Q! For each ε > 0, let now V be the stopping
time defined as inf{t | (H · S)t ≥ ε}. The integrand K = (1[[0, V ]]H) is clearly
admissible and (K · S)1 = 0 on {V = 1}, whereas on {V < 1} the outcome
is ε, i.e. strictly positive. The (NA) property for S (under Q!) implies that
Q[V < 1] = 0. In other words the process H · S never exceeds ε Q-a.s.. This
implies (H · S)t ≤ 0, Q-a.s. for all t < 1. Because Q and P are equivalent
on Ft, for t < 1, this is the same as (H · S)t ≤ 0, P-a.s. for all t < 1. From
this and the continuity of the process (H · S) we deduce that (H · S)1 ≤ 0,
P-a.s.. This in turn implies that (H ·S)1 = 0, P-a.s.. The process S therefore
satisfies (NA) under the probability P. �
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We now give some more examples motivating the introduction of gen-
eral integrands. As seen in the above theorems and examples, the case of
continuous processes can essentially be reduced to simple integrands. The
following examples show that for general semi-martingales the no free lunch
with bounded risk (NFLBR) property for simple integrands is not sufficient
to imply the existence of an equivalent local martingale measure.

The examples are very similar in nature; the problems arise from the fact
that the jumps do not occur at an increasing sequence (Tn)n≥1 of predictable
stopping times (a case already solved in [S 94]). In our examples the jumps
occur at an increasing sequence of accessible stopping times, similarly as in
Example 9.7.5. The first example of this kind is an unbounded process but it
contains all the ingredients and the general idea. The second example of this
kind gives a bounded process. Of course the price to pay is the use of more
technique.

Example 9.7.8. The first example uses the process X introduced in Exam-
ple 9.7.5. The semi-martingale S we will need, is defined as St = Xt + t. The
process S is now a special semi-martingale and again if H is simple predictable
with H · S bounded from below then H = 0. Therefore S trivially satisfies
the no free lunch (NFL) property with simple integrands. If, however, we put
H = 1([0,1]\Q)×Ω (sell before each rational and buy back immediately after
it) we have (H · S)t = t (for 0 ≤ t ≤ 1) and this violates (NA) for general
integrands. If Q were an equivalent local martingale measure for the process
S, then because H = 1([0,1]\Q)×Ω is bounded, H · S is also a local martingale
(see [P 90, Theorem 2.9]). This is absurd. �

The previous example has at least one disadvantage: the process S is un-
bounded. The next example overcomes this problem. This time we will work
with a doubly indexed sequence of Rademacher variables (rn,m)n≥1,m≥1, i.e.
variables with distribution P[rn,m = 1] = P[rn,m = −1] = 1

2 , and with
a doubly indexed sequence of variables (ϕn,m)n≥1,m≥1 with the property
P[ϕn,m = 1] = 2−(n+m) and P[ϕn,m = 0] = 1 − 2−(n+m). We also need
a sequence of Brownian motions Wn starting at 0. All these variables and
processes are supposed to be independent. The rationals in ]0, 1[ are again
enumerated as (qn)n≥1. We first define the L2-martingales Y m as:

Y m
t =

∑
n; qn≤t

ϕn,mrn,m .

The Borel-Cantelli implies, as in Example 9.7.5, that each Y m is piecewise
constant. We define the stopping time Tm as:

Tm = min
(
inf{t | |Wm

t | = m or Y m
t �= 0}, 1

)
.

We make the crucial observation that
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P[Tm < 1] ≤ P
[

sup
0≤t≤1

|Wm
t | > m

]
+
∑
m≥1

2−(n+m)

≤
√

2
π

1
m

e−
m2
2 + 2−m

and hence
∑

P[Tm < 1] < ∞. This implies, via the Borel-Cantelli lemma,
that for almost all ω ∈ Ω, Tm(ω) becomes eventually 1.

The process Zm is now defined as

Zm
t :=

{
Y m

t + αm(Wm
t + m2t) for t ≤ Tm,

Y m
Tm

+ αm(Wm
Tm

+ m2Tm) for Tm ≤ t ≤ 1.

The sequence αm will be chosen later, but will satisfy 0 < αm ≤ 1.
The process Zm is clearly bounded by 1 + (m + m2)αm ≤ 1 + m + m2.

Finally we define

St :=
{ 1

2Z1
t for 0 ≤ t ≤ 1,

Sm−1 + 2−mZm
t−(m−1) for m− 1 ≤ t ≤ m.

The process S is càdlàg and |S| ≤∑m≥1 2−m(1 + m + m2)αm ≤ 24. It is
a semi-martingale with decomposition S = M + A, where A is given by the
recurrence relations

Am−1+t −Am−1 =
{

2−mαmm2t for t ≤ Tm,
2−mαmm2Tm for Tm ≤ t ≤ 1.

The martingale M is uniformly bounded on each interval [[0, m]].
With respect to its natural filtration, augmented with the zero sets, S is

a special semi-martingale and the filtration satisfies the usual conditions. The
last statement is not trivial to verify but it follows from the same property of
the filtration of the Brownian motion.

Lemma 9.7.9. For each sequence (αm)m≥1 in ]0, 1], the process S fails the
equivalent (local) martingale property.

Proof. Consider the sequence (Hm)m≥1 defined as

Hm = α−1
m m−22m1(]m−1,m]\Q)×Ω .

Each Hm is a deterministic process, hence predictable. The process (Hm ·S) is
uniformly bounded from below by −1 and ((Hm ·S)∞)m≥1 equals 1

m2 Wm
Tm

+
Tm ≥ Tm − 1

m .
Because Tm = 1 for m big enough we see that (Hm · S)∞ tends to 1

for m tending to ∞. This clearly violates (NFLVR). Because of the Main
Theorem 9.1.1 we see that S cannot have an equivalent martingale measure. �
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Lemma 9.7.10. If (αm)m≥1 is a sequence in ]0, 1] such that αm → 0 fast
enough, then S satisfies (NFLBR) for simple integrands.

(By fast enough we mean that for all m0 we have:∑
m>m0

2m+1m2αm <
βm0

2m0
where βm0 = exp(−3m5

0)) .

Proof. For each m natural number, we know that the process Sm, i.e. S
stopped at m, admits an equivalent martingale measure Qm. Indeed we can
use a Girsanow transformation to find an equivalent martingale measure such
that for k fixed, the process (W k

t + k2t)0≤t≤1 stopped at Tk is a martingale.
The density of this measure is given by exp(δW k

Tk
− 1

2δ2Tk) where δ = −k2.
This density is bounded above by exp(k3) and below by exp(−k3 − 1

2k4).
The density of Qm on Fm is therefore bounded below by exp(−∑m

k=1(k
3 +

1
2k4)) ≥ exp(−2m5) and bounded above by exp(

∑m
k=1 k3) ≤ exp(m4). Under

the measure Qm the process Sm is a martingale and hence for each H that is
1-admissible, H ·Sm is a Qm-super-martingale (by Theorem 9.2.9) and hence
for each 1-admissible integrand we find

EQm [(H · S)+m] ≤ EQm [(H · S)−m]

and hence

exp(−2m5)EP[(H · S)+m] ≤ exp(m4)EP[(H · S)−m]

and
EP[(H · S)−m] ≥ βmEP[(H · S)+m] for βm = exp(−3m5) .

We will show that if αm → 0 as announced, the process S satisfies (NFLBR)
with simple integrands.

Suppose on the contrary that S does not satisfy the (NFLBR) property
for simple integrands. We then choose Hj simple, predictable, 1-admissible
such that (Hj · S)∞ tends to f0 ≥ 0 where P[f0 > 0] > 0. Find m0 so
that EP[min(f0, 1)] > 2

m0
. For each j we define the stopping time Uj as

inf{t | (Hj ·S)t ≥ 1} and let Lj = Hj1[[0, Uj ]]. For each j the simple predictable
process Lj is still 1-admissible and (Lj · S)∞ ≥ min((Hj · S)∞, 1), therefore
lim infj→∞(Lj · S)∞ ≥ min(f0, 1). Each Lj is of the form

∑n
k=1 fk1]]Vk−1,Vk]]

where fk is FTk
-measurable and V0 ≤ V1 ≤ . . . ≤ Vn <∞ are stopping times.

If ]]Vk−1, Vk]]∩]]m − 1, m − 1 + Tm]] is not equivalent to the zero process,
then the probability of a jump between Vk−1 and Vk is strictly positive by
the same arguments as in Example 9.7.5. Because the jumps of S are positive
or negative with the same probability we conclude that the downward jump
of (Lj · S) cannot be smaller than −2. (Indeed the process is always bigger
than −1 and is stopped when it hits the level 1). We conclude that also the
positive jump is bounded by 2. Therefore |Lj

Tm
∆STm | ≤ 2. We conclude that

|Lj | ≤ 2m+1 on ]]m− 1, m− 1 + Tm]]. Because we stopped the process (Lj ·S)
when it exceeds the level 1, we see that:
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min((Lj · S)m, 1)−min((Lj · S)m−1, 1) ≤ (Lj · S)m − (Lj · S)m−1 .

The process Lj is bounded in intervals [0, m] and because S is also uniformly
bounded with only one jump in each interval [k, k + 1], the semi-martingale
Lj · S is locally bounded, therefore special and decomposed as Lj · S = Lj ·
M + Lj · A. The local martingale part is a square integrable martingale and
hence:

EP[(Lj ·M)m − (Lj ·M)m−1] = 0 .

This yields the following estimates:

EP[min((Lj · S)m, 1)−min((Lj · S)m−1, 1)]
≤ EP[(Lj · S)m − (Lj · S)m−1]
≤ EP[(Lj ·A)m − (Lj · A)m−1]

≤ EP

[∫
]m−1,m]

Lj
uαmm2du

]
≤ 2m+1m2αm .

This implies that

EP[min((Lj · S)m0 , 1)]

≥ EP[min((Lj · S)∞, 1)]−
∑

m>m0

2m+1m2αm

≥ EP[min((Lj · S)∞, 1)]− βm0

2m0
(by the choice of αm) .

Because

lim inf
j→∞

EP[min((Lj · S)∞, 1)] >
2

m0
we can deduce that

lim inf
j→∞

EP[min((Lj · S)m0 , 1)] >
2

m0
− βm0

2m0
>

1
m0

.

We may now suppose that EP[min((Lj · S)m0 , 1)] > 1
m0

for all j. Because of
the choice of βm we also see that

EP[min((Lj · S)−m0
, 1)]

≥ βmEP[min((Lj · S)+m0
, 1)] ≥ βmEP[min((Lj · S)m0 , 1)] >

βm

m0
.

Let the set Aj be defined as Aj = {(Lj · S)m0 < 0}.
Because lim infj→∞ min((Lj · S)∞, 1) ≥ min(f0, 1) we also have that

lim infj→∞(1Aj min((Lj · S)∞, 1)) ≥ lim infj→∞(1Aj min(f0, 1)).
An application of Fatou’s lemma yields that
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EP

[
lim inf
j→∞

(1Aj min(f0, 1))
]

≤ EP

[
lim inf
j→∞

1Aj min((Lj · S)∞, 1)
]

≤ lim inf
j→∞

EP

[
1Aj min((Lj · S)∞, 1)

]
≤ lim inf

j→∞
EP

[
1Aj min((Lj · S)m0 , 1)

]
+
∑

m>m0

EP

[
min((Lj · S)m, 1)−min((Lj · S)m−1, 1)

]
≤ −βm0

m0
+
∑

m>m0

2m+1m2αm

≤ − βm0

2m0
.

This is clearly a contradiction to f0 ≥ 0. �

9.8 Appendix: Some Measure Theoretical Lemmas

In this appendix we prove two lemmas we used at several places. We assume
that, especially regarding the second lemma, the results are known, but we
could not find a reference. We therefore give full proofs and we also add some
remarks that are of independent interest but are not used elsewhere in this
paper. The first lemma was already proved in [S 92, Lemma 3.5]. We give
a similar but simpler proof.

Lemma 9.8.1. Let (fn)n≥1 be a sequence of [0,∞[-valued measurable func-
tions on a probability space (Ω,F ,P). There is gn ∈ conv{fn, fn+1, . . .}, such
that (gn)n≥1 converges almost surely to a [0,∞]-valued function g.

If conv{fn; n ≥ 1} is bounded in L0, then g is finite almost surely. If there
are α > 0 and δ > 0 such that for all n: P[fn > α] > δ, then P[g > 0] > 0.

Proof. Let u : R+ ∪ {+∞}→ [0, 1] be defined as u(x) = 1− e−x. Economists
may see u as a utility function but there is no need to. Define sn as

sn = sup{E[u(g)] | g ∈ conv{fn, fn+1, . . .}}

and choose gn ∈ conv{fn, fn+1, . . .} so that

E[u(g)] ≥ sn −
1
n

.

Clearly sn decreases to s0 ≥ 0 and limn→∞ E[u(gn)] = s0. We shall show that
the sequence (gn)n≥1 converges in probability to a function g. We will work
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with the compact (metrisable) space [0,∞]. A sequence (xn)n≥1 of elements
of [0,∞] is a Cauchy sequence in [0,∞] if and only if for each α > 0 there is
n0 so that for all n, m ≥ n0 we have |xn − xm| ≤ α or min(xn, xm) ≥ α−1.
From the properties of u it also follows that for α > 0 there is β > 0, so that
|x− y| > α and min(x, y) ≤ α−1, implies u

(
x+y

2

)
> 1

2 (u(x) + u(y)) + β.
We can now easily proceed with the proof of the lemma. By the observation

on the topology of [0,∞] we have to show that limn,m→∞ P[|gn − gm| > α
and min(gn, gm) ≤ α−1] = 0.

For given α > 0 we take β as above and we obtain

E
[
u

(
gn + gm

2

)]
≥ 1

2
E[u(gn)] +

1
2
E[u(gm)]

+βP[|gn + gm| > α and min(gn, gm) < α−1] .

By construction E
[
u
(

gn+gm

2

)]
≤ sn, but by concavity of u we have

E
[
u

(
gn + gm

2

)]
≥ 1

2
(
E[u(gn)] + E[u(gm)]

)
.

From this it follows

βP
[
|gn − gm| > α and min(gn, gm) < α−1

]
≤ E

[
u

(
gn + gm

2

)]
− 1

2
(
E[u(gn)] + E[u(gm)]

)
.

The choice of the sequence (gn)n≥1 implies that the right hand side tends
to 0. We therefore proved that (gn)n≥1 is a Cauchy sequence in probability
and hence there is a function g : Ω → [0,∞] so that gn converges to g in
probability. If one wants a sequence converging almost surely one can pass to
a subsequence.

If conv{fn; n ≤ 1} is bounded in L0 then for each ε > 0 there is N so
that P[h > N ] < ε for all h ∈ conv{fn; n ≥ 1}. In particular this implies
that P[gn > N ] < ε and hence P[g > N ] ≤ ε. The function g so obtained is
therefore finite almost surely.

If P[fn > α] > δ > 0 for each n and fixed α > 0, we obtain that
E[u(gn)] ≥ δu(α) > 0. Since gn tends to g we find u(gn) → u(g) and by
the bounded convergence theorem we obtain E[u(g)] ≥ δu(α) > 0 and there-
fore P[g > 0] > 0. �

Remark 9.8.2. If (fn)n≥1 is a sequence of [0,∞]-valued measurable functions
then the same conclusion can be obtained. The proof is the same up to minor
changes in the notation. The reader can convince himself that there is almost
no gain in generality.

Remark 9.8.3. If (fn)n≥1 is a sequence of R-valued measurable functions such
that conv{f−

n ; n ≥ 1} is bounded in L0, then there are gn ∈ conv{fn; n ≥ 1} so
that gn converges almost surely to a ]−∞, +∞]-valued measurable function g.
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Proof. We first take convex combinations of {f−
n ; n ≥ 1} that converge almost

surely. Since conv{f−
n ; n ≥ 1} is bounded in L0, the limit is finite almost

surely. We now apply the lemma to the same convex combination of f+
n .

This procedure yields convex combinations of the original sequence (fn)n≥1,
converging almost surely to a ]−∞, +∞]-valued function. �

Remark 9.8.4. If in Remark 9.8.3 we only require that {f−
n ; n ≥ 1} is bounded

in L0 then the conclusion breaks down. Indeed take (fn)n≥1 a sequence of 1-
stable (see [Lo 78] for a definition) independent random variables. If there were
convex combinations converging a.s. we could make the convex combinations
so that gk ∈ conv{fnk+1, . . . , fnk+1} where n1 < n2 . . .. This implies that
(gk)k≥1 is an independent sequence. Since convex combinations of independent
1-stable variables are 1-stable this would produce an i.i.d. sequence converging
almost surely, a contradiction.

Remark 9.8.5. If in the setting of Lemma 9.8.1 the sequence {fn; n ≥ 1}
is bounded in L0, but conv{fn; n ≥ 1} not bounded in L0, then the
procedure used in the proof does not necessarily yield a function g that
is finite almost surely. The next example shows that there is a sequence
{fn; n ≥ 1} bounded in L0 and such that every g that is a limit of func-
tions gn ∈ conv{fn, fn+1, . . .}, is identically +∞. Before we give the con-
struction let us recall some results from the theory of Brownian motion (see
[RY91] for details). If (Bt)0≤t is a standard 1-dimensional Brownian motion,
let us denote by Tβ the stopping time defined as Tβ = inf{t|Bt = β}. It is
known (see [RY91, p. 67]) that for β > 0, Tβ < ∞ a.s. and for each u ≥ 0:
E[exp(−uTβ)] = exp(−β

√
2u). It follows that if f has the same distribution as

Tβ, then for λ > 0, λf has the same distribution as T
(λ)

1
2 β

. If f1, . . . , fN are in-
dependent and have the same distribution as Tβ1 , . . . , TβN then f1 + · · ·+ fN

has the same distribution as Tβ1+···+βN , (this follows easily from the inter-
pretation of fn as the hitting time of βn). Take now (fn)n≥1 a sequence of
independent identically distributed variables, each having the same distribu-
tion as T1. Suppose that gn ∈ conv{fn, fn+1, . . .} and gn → g a.e. We will
show g = +∞ a.e. We can assume that the functions gn are independent,
eventually we take subsequences. Each gn has a distribution of the form

λn
1 f1 + · · ·+ λn

Nn
fNn

where (λn
1 , . . . , λn

Nn
) is a convex combination. From preceding considerations

it follows that the distribution of gn is Tαn where αn =
∑Nn

i=1

√
λn

i ≥ 1. The
0-1-law gives us that either g = +∞ or that P[g < ∞] = 1. In this case we
conclude that there is a real number α such that αn → α ≥ 1 and g has the
same distribution as Tα. From the 0-1-law it follows again that the distribution
of g is degenerate, impossible if α ≥ 1. Therefore g = +∞ identically. �

The following lemma is quite simple, it was used above in the proof of
Lemma 9.4.8 above.
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Lemma 9.8.6. Let (gk)1≤k≤n be non-negative functions defined on the prob-
ability space (Ω,F ,P). Suppose that there are positive numbers (ak)1≤k≤n as
well as δ > 0 so that for every k: P[gk ≥ ak] ≥ δ > 0. If g =

∑n
j=1 gj then

for all 0 < η < 1 we have P[g ≥ η(
∑n

j=1 aj)δ] ≥ δ(1−η)
1−ηδ .

Proof. Let A = {g ≥ (
∑n

j=1 aj)δη}. Clearly

E[g1Ac ] ≤
(

n∑
j=1

aj

)
δηP[Ac] =

(
n∑

j=1

aj

)
δη(1 −P[A]) .

On the other hand

E[g1Ac ] =

(
n∑

j=1

E[gj1Ac ]

)

≥
(

n∑
j=1

ajP
[
Ac ∩ {gj ≥ aj}

])

≥
(

n∑
j=1

aj

(
P[gj ≥ aj ]−P[A]

))

≥
(

n∑
j=1

aj

)
δ −
(

n∑
j=1

aj

)
P[A] .

Both inequalities imply(
n∑

j=1

aj

)
P[A](1 − δη) ≥

(
n∑

j=1

aj

)
δ(1 − η) .

We may of course suppose that
∑n

j=1 aj > 0 and this yields the desired

result P[A] ≥ δ(1−η)
1−δη . �

Corollary 9.8.7. If (gj)1≤j≤n are non-negative functions defined on the prob-
ability space (Ω,F ,P) and if for j = 1, . . . , n we have P[gj ≥ a] ≥ b where
a, b > 0, then for g =

∑n
j=1 gj we have P

[
g ≥ nab

2

]
≥ b

2 .
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A Simple Counter-Example to Several
Problems in the Theory of Asset Pricing (1998)

Abstract. We give an easy example of two strictly positive local martingales which
fail to be uniformly integrable, but such that their product is a uniformly integrable
martingale. The example simplifies an earlier example given by the second author.
We give applications in Mathematical Finance and we show that the phenomenon
is present in many incomplete markets.

10.1 Introduction and Known Results

Let S = M + A be a continuous semi-martingale, which we interpret as the
discounted price process of some traded asset; the process M is a continuous
local martingale and the continuous process A is of finite variation. It is ob-
viously necessary that dA � d〈M, M〉, for otherwise we would invest in the
asset when A moves but M doesn’t and make money risklessly. Thus we have
for some predictable process α:

dSt = dMt + αt d〈M, M〉t . (10.1)

It has long been recognised (see [HK 79]) that the absence of arbitrage
(suitably defined) in this market is equivalent to the existence of some prob-
ability Q, equivalent to the reference probability P, under which S becomes
a local martingale (see Chap. 9 for the definition of arbitrage and a precise
statement and proof of this fundamental result). Such a measure Q is then
called an equivalent local martingale measure or (ELMM). The set of all such
(ELMM) is then denoted byMe(S), orMe for short. The result of that paper

[DS 98a] A Simple Counter-Example to Several Problems in the Theory of Asset
Pricing. Mathematical Finance, vol. 8, pp. 1–12, (1998).
∗ Part of this research was supported by the European Community Stimulation

Plan for Economic Science contract Number SPES-CT91-0089. We thank an
anonymous referee for substantial advice and even rewriting the main part of
the introduction. We also thank Ch. Stricker for helpful discussions.
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applies to the more general situation of a locally bounded semi-martingale S,
but in the situation of continuous S, perhaps the result can be proved more
simply (see e.g. Chap. 12 for the case of continuous processes and its relation
to no arbitrage). In particular, it is tempting to define Q by looking at the
decomposition (10.1) of S and by setting

dQ
dP

∣∣∣∣
Ft

= E(−α ·M)t

provided the exponential local martingale E(−α ·M) is a true martingale. Is
it possible that there exist an equivalent local martingale measure for S, and
yet the exponential local martingale E(−α ·M) fails the martingale property?
The answer is yes; our example shows it. In the terminology of [FS 91], this
means that the minimal local martingale measure for the process S does not
exist, although Me(S) is non-empty.

A second question where our example finds interesting application is in
hedging of contingent claims in incomplete markets. The positive contingent
claim g, or more generally a function that is bounded below by a constant,
can be hedged if g can be written as

g = c + (H · S)∞ , (10.2)

where c is a positive constant and where H is some admissible integrand (i.e.
for some constant a ∈ R, (H · S) ≥ −a). In order to avoid suicide strategies
we also have to impose that (H · S)∞ is maximal in the set of outcomes
of admissible integrands (see Chaps. 11 and 13) for information on maximal
elements and [HP 81] for the notion of suicide strategies). We recall that an
outcome (H · S)∞ of an admissible strategy H , is called maximal if for an
admissible strategy K the relation (K · S)∞ ≥ (H · S)∞ implies that (K ·
S)∞ = (H · S)∞. S. Jacka [J 92], J.P. Ansel, Ch. Stricker [AS 94] and the
authors showed that g can be hedged if and only if there is an equivalent local
martingale measure Q ∈Me such that

EQ[g] = sup{ER[g] | R ∈Me} .

Looking at (10.2) we then can show that H · S is a Q-uniformly integrable
martingale and hence that c = EQ[g]. Also the outcome (H · S)∞ is then
maximal. It is natural to conjecture that in fact for all R ∈ Me, we might
have ER[g] = c, and the sup becomes unnecessary, which is the case for
bounded functions g. However, our example shows that this too is false in
general.

To describe our example, suppose that B and W are two independent
Brownian motions and let Lt = exp(Bt − 1

2 t). Then L is a strict local mar-
tingale. For information on continuous martingales and especially martingales
related to Brownian motion we refer to Revuz and Yor [RY91]. Let us recall
that a local martingale that is not a uniformly integrable martingale is called
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a strict local martingale. The terminology was introduced by Elworthy, Li, and
Yor [ELY99]. The stopped process Lτ where τ = inf{t | Lt = 1

2} is still a strict
local martingale and τ <∞. If we stop Lτ at some independent random time
σ, then Lτ∧σ will be uniformly integrable if σ <∞ a.s. and otherwise it will
not be. If we thus define Mt = exp(Wt − 1

2 t) and σ = inf{t | Mt = 2} then
Lτ∧σ is not uniformly integrable since P[σ =∞] = 1

2 . However, if we change
the measure using the uniformly integrable martingale M τ∧σ, then under the
new measure we have that W becomes a Brownian motion with drift +1
and so σ < ∞ a.s.. The product Lτ∧σM τ∧σ becomes a uniformly integrable
martingale!

The problem whether the product of two strictly positive strict local mar-
tingales could be a uniformly integrable martingale goes back to Karatzas,
Lehoczky, and Shreve [KLSX 91]. Lépingle [L 91] gave an example in discrete
time. Independently, Karatzas, Lehoczky and Shreve also gave such an exam-
ple but the problem remained open whether such a situation could occur for
continuous local martingales. The first example on the continuous case was
given in [S 93], but it is quite technical (although the underlying idea is rather
simple).

In this note we simplify the example considerably. A previous version of
this paper, only containing the example of Sect. 10.2, was informally dis-
tributed with the title A Simple Example of Two Non Uniformly Integrable
Continuous Martingales Whose Product is a Uniformly Integrable Martingale.
Our sincere thanks go to L.C.G. Rogers, who independently constructed an
almost identical example and kindly supplied us with his manuscript, see
[R 93].

We summarise the results of [S 93] translated into the present context. The
basic properties of the counter-example are described by the following

Theorem 10.1.1. There is a continuous process X that is strictly positive,
X0 = 1, X∞ > 0 a.s. as well as a strictly positive process Y , Y0 = 1, Y∞ > 0
a.s. such that

(1) The process X is a strict local martingale under P, i.e. EP[X∞] < 1.
(2) The process Y is a uniformly integrable martingale.
(3) The process XY is a uniformly integrable martingale.

Depending on the interpretation of the process X we obtain the following
results.

Theorem 10.1.2. There is a continuous semi-martingale S such that

(1) The semi-martingale admits a Doob-Meyer decomposition of the form
dS = dM + d〈M, M〉h.

(2) The local martingale E(−h ·M) is strict.
(3) There is an equivalent local martingale measure for S.
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Proof. Take X as in the preceding theorem and define, through the stochas-
tic logarithm, the process S as dS = dM + d〈M, M〉 where X = E(−M).
The measure Q defined as dQ = X∞Y∞ dP is an (ELMM) for S. Obviously
the natural candidate for an (ELMM) suggested by the Girsanov-Maruyama-
Meyer formula, i.e. the density X∞, does not define a probability measure. �

Remark 10.1.3. If in the previous theorem we replace S by E(S), then we can
even obtain a positive price system.

Theorem 10.1.4. There is a process S that admits an (ELMM) as well as
a hedgeable element g such that ER[g] is not constant on the set Me.

Proof. For the process S we take X from Theorem 10.1.1. The original measure
P is an (ELMM) and since there is an (ELMM) Q for X such that X becomes
a uniformly integrable martingale, we necessarily have that EQ[X∞−X0] = 0
and that X∞ −X0 is maximal. However, EP[X∞ −X0] < 0. �

As for the economic interpretation, let us consider a contingent claim f
that is maximal and such that ER[f ] < 0 = sup{EQ[f ] | Q ∈ Me} for some
R ∈ Me. Suppose now that a new instrument T is added to the market and
suppose that the instrument T has a price at time t equal to ER[f | Ft]. The
measure R is still a local martingale measure for the couple (S, T ), hence the
financial market described by (S, T ) still is arbitrage free — more precisely
it does not admit a free lunch with vanishing risk; but as easily seen the
element f is no longer maximal in this expanded market. Indeed the element
T∞ − T0 = f − ER[f ] dominates f by the quantity −ER[f ] > 0! In other
words, before the introduction of the instrument T the hedge of f as (H ·S)∞
may make sense economically, after the introduction of T it becomes a suicide
strategy which only an idiot will apply.

Note that an economic agent cannot make arbitrage by going short on
a strategy H that leads to (H ·S)∞ = f and by buying the financial instrument
T . Indeed the process −(H · S) + T − T0 in not bounded below by a constant
and therefore the integrand (−H, 1) is not admissible!

On the other hand the maximal elements f such that ER[f ] = 0 for all
measures R ∈Me have a stability property. Whatever new instrument T will
be added to the market, as long as the couple (S, T ) satisfies the (NFLVR)
property, the element f will remain maximal for the new market described
by the price process (S, T ). The set of all such elements as well as the space
generated by the maximal elements is the subject of Chap. 13.

Sect. 10.2 of this paper gives an easy example that satisfies the properties
of Theorem 10.1.1. Sect. 10.3 shows that the construction of this example can
be mimicked in most incomplete markets with continuous prices.

10.2 Construction of the Example

We will make use of two independent Brownian motions, B and W , defined
on a filtered probability space (Ω, (Ft)0≤t,P), where the filtration F is the
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natural filtration of the couple (B, W ) and is supposed to satisfy the usual
conditions. This means that F0 contains all null sets of F∞ and that the
filtration is right continuous. The process L defined as

Lt = exp
(
Bt − 1

2 t
)

is known to be a strict local martingale with respect to the filtration F .
Indeed, the process L tends almost surely to 0 at infinity, hence it cannot be
a uniformly integrable martingale. Let us define the stopping time τ as

τ = inf
{
t
∣∣Lt = 1

2

}
.

Clearly τ <∞ a.s.. Using the Brownian motion W we similarly construct

Mt = exp
(
Wt − 1

2 t
)

.

The stopping time σ is defined as

σ = inf{t |Mt = 2} .

In the case the process M does not hit the level 2 the stopping time σ equals
∞ and we therefore have that Mσ either equals 2 or equals 0, each with
probability 1

2 . The stopped process Mσ defined by Mσ
t = Mt∧σ is a uniformly

integrable martingale. It follows that also the process Y = M τ∧σ is uniformly
integrable and because τ < ∞ a.s. we have that Y is almost surely strictly
positive on the interval [0,∞].

The process X is now defined as the process L stopped at the stopping time
τ ∧σ. Note that the processes L and M are independent since they were con-
structed using independent Brownian motions. Stopping the processes using
stopping times coming from the other Brownian motion destroys the inde-
pendence and it is precisely this phenomenon that will allow us to make the
counter-example.

Theorem 10.2.1. The processes X and Y , as defined above, satisfy the prop-
erties listed in Theorem 10.1.1

(1) The process X is a strict local martingale under P, i.e. EP[X∞] < 1 and
X∞ > 0 a.s..

(2) The process Y is a uniformly bounded integrable martingale.
(3) The process XY is a uniformly integrable martingale.

Proof. Let us first show that X is not uniformly integrable. For this it is
sufficient to show that E[X∞] = E[Lτ∧σ] < 1. This is quite easy. Indeed

E[Lτ∧σ] =
∫
{σ=∞}

Lτ +
∫
{σ<∞}

Lσ∧τ .

In the first term the variable Lτ equals 1
2 and hence this term equals 1

2P[σ =
∞] = 1

4 . The second term is calculated using the martingale property of L
and the optional stopping time theorem.
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{σ<∞}

Lσ∧τ =
∫ ∞

0

P[σ ∈ dt]E[Lτ∧t]

= P[σ <∞] .

The first line follows from the independence of σ and the process L. Putting
together both terms yields E[Lτ∧σ] = 1

2P[σ =∞] + P[σ <∞] = 3
4 < 1.

On the other hand the product XY is a uniformly integrable martingale.
To see this, it is sufficient to show that E[X∞Y∞] = 1. The calculation is
similar to the preceding calculation and uses the same arguments.

E[X∞Y∞] = E[Lτ∧σ Mτ∧σ]
= E[Lτ∧σ Mσ] because Mσ is a uniformly integrable martingale
= 2E[Lτ∧σ 1{σ<∞}]
= 2P[σ <∞] = 1 . �

10.3 Incomplete Markets

All processes will be defined on a filtered probability space (Ω, (Ft)t≥0,P).
For the sake of generality the time set is supposed to be the set R+ of all
non-negative real numbers. The filtration is supposed to satisfy the usual
hypothesis, i.e. it is right continuous and the σ-algebra F0 is saturated with
all the negligible sets of F∞ =

∨
t≥0 Ft. The symbol S denotes a d-dimensional

semi-martingale S: Ω × R+ → Rd. For vector stochastic integration we refer
to [J 79]. If needed, we denote by x′ the transpose of a vector x.

We assume that S has the (NFLVR) property and the set of (ELMM)
is denoted by Me. The market is supposed to be incomplete in the following
sense. We assume that there is a real-valued non-zero continuous local martin-
gale W such that the bracket 〈W, S〉 = 0 but such that the measure d〈W, W 〉
(defined on the predictable σ-algebra of Ω×R+) is not singular with respect
to the measure dλ where λ = trace〈S, S〉.

Let us first try to give some economic interpretation to this hypothesis.
The existence of a local martingale W such that 〈S, W 〉 = 0 implies that
the process S is not sufficient to hedge all the contingent claims. The extra
assumption that the measure d〈W, W 〉 is not singular to d trace〈S, S〉 then
means that at least part of the local martingale W moves at the same time as
the process S. The incompleteness of the market, therefore, is not only due to
the fact that S and W are varying in disjoint time sets but the incompleteness
is also due to the fact that locally the process S does not span all of the random
movements that are possible.

Theorem 10.3.1. If S is a continuous d-dimensional semi-martingale with
the (NFLVR) property, if there is a continuous local martingale W such that
〈W, S〉 = 0 but d〈W, W 〉 is not singular to d trace〈S, S〉, then for each R in
Me, there is a maximal element f such that ER[f ] < 0.
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Proof. The proof is broken up in different lemmata. Let W ′ be the martin-
gale component in the Doob-Meyer decomposition of W with respect to the
measure R. Clearly 〈W ′, W ′〉 = 〈W, W 〉. �

Lemma 10.3.2. Under the hypothesis of the theorem, there is a real-valued
R-local martingale U �= 0 such that

(1) 〈S, U〉 = 0
(2) there is a bounded Rd-valued predictable process H that is S-integrable and

such that d〈U, U〉 = H ′ d〈S, S〉H so that the process N = H · S satisfies
〈N, N〉 = 〈U, U〉.

Proof of Lemma 10.3.2. Let λ = trace〈S, S〉. Since d〈W, W 〉 is not singular
with respect to dλ there is a predictable set A such that 1A d〈W, W 〉 is not
identically zero and absolutely continuous with respect to dλ. From the pre-
dictable Radon-Nikodým theorem, see Chap. 12, it follows that there is a pre-
dictable process h such that 1A d〈W, W 〉 = h dλ. For n big enough the process
h1{‖h‖≤n}1[[0,n]] is λ-integrable and is such that 1A 1{‖h‖≤n}1[[0,n]]d〈W, W 〉 is
not zero a.s.. We take U =

(
1A 1{‖h‖≤n}1[[0,n]]

)
·W ′. To find H we first con-

struct a strategy K such that d〈K·S,K·S〉
dλ �= 0 a.e.. This is easy. For each

coordinate i, we take an investment Pi = (0, 0, . . . , 0, 1, 0, . . .) in asset number
i. On the predictable set d〈P1·S,P1·S〉

dλ �= 0 we take K = P1, on the predictable
set where d〈P1·S,P1·S〉

dλ = 0 and d〈P2·S,P2·S〉
dλ �= 0 we take K = P2, etc.. We now

take H = K1A 1{‖h‖≤n}1[[0,n]]h
1
2
(

dλ
d〈K·S,K·S〉

)
. �

Remark 10.3.3. We define the stopping time νu as νu = inf{t | 〈N, N〉t > u},
where N is defined as in Lemma 10.3.2 above. If we replace the process
(N, U), the filtration Ft and the probability R by, respectively, the process
(Nν0+t, Uν0+t)t≥0, (Fν0+t)t≥0, and the conditional probability R[ . | ν0 <∞],
we may without loss of generality suppose that R[ν0 = 0] = R[〈N, N〉∞ >
0] = 1. In this case we have that limu→0 R[νu < ∞] = 1 and limu→0 νu = 0.
We will do so without further notice.

Remark 10.3.4. The idea of the subsequent construction is to see the strongly
orthogonal local martingales U and N as time-transformed independent Brow-
nian motions and to use the construction of Sect. 10.2. The first step is to
prove that there is a strict local martingale that is an exponential. The idea
is to use the exponential E(B) where B is a time transform of a Brownian
motion. However, the exponential only tends to zero on the set {〈B, B〉 =∞}.

Lemma 10.3.5. There is a predictable process K such that the local R-
martingale E(K ·N) is not uniformly R-integrable.

Proof of Lemma 10.3.5. Take a strictly decreasing sequence of strictly positive
real numbers (εn)n≥1 such that

∑
n≥1 εn2n < 1

8 .
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We take u1 small enough so that R[νu1 <∞] > 1−ε1. From the definition
of νu1 it follows that 〈N, N〉∞ > u1 on the set {νu1 <∞}. For each k we look
at the exponential E(k ·N) and we let fk = (E(k ·N))νu1

. Since 〈N, N〉νu1
> 0

we have that fk tends to zero a.s. as k tends to ∞.
Take k1 big enough to have R[fk1 < 1

2 ] > 1− ε1. We now define

τ1 = inf
{
t
∣∣ (E(k1 ·N))t > 2 or < 1

2

}
∧ νu1 .

Clearly R[τ1 < νu1 ] > 1− ε1 and hence

R
[
(E(k1 ·N))τ1 ∈

{
1
2 , 2
}]

> 1− ε1 .

For later use we define X1 = (E(k1 · N))τ1 and we observe that R[X1 =
2] > 1

3 − ε1 and R[X1 = 1
2 ] > 2

3 − ε1.
We now repeat the construction at time νu1 . Of course this can only be

done on the set {νu1 < ∞} = {〈N, N〉∞ > u1}. Take u2 > u1 small enough
so that

R[νu2 <∞] > R[νu1 <∞](1− ε2) .

We define fk = (E(k ·(N−Nνu1 )))νu2
and observe that fk tends to zero on the

set {νu1 < ∞} as k tends to infinity. Indeed this follows from the statement
that 〈N −Nνu1 , N −Nνu1 〉∞ > 0 on the set {νu1 <∞}.

So we take k2 big enough to guarantee that R[fk2 < 1
2 ] > R[νu1 <∞](1−

ε2). We define τ2 = inf
{
t > νu1

∣∣ (E(k · (N − Nνu1 )))t > 2 or < 1
2

}
∧ νu2 .

Clearly R[τ2 < νu2 ] > R[νu1 < ∞](1 − ε2). We define X2 = (E(k · (N −
Nνu1 )))τ2 and we observe that 1

2 ≤ X2 ≤ 2, R
[
X2 ∈ { 1

2 , 2} | νu1 < ∞
]

>
1− ε2.

Since ER[X2 | νu1 < ∞] = 1 we therefore have that R[X2 = 2 | νu1 <
∞] > 1

3 − ε2 and R[X2 = 1
2 | νu1 <∞] > 2

3 − ε2.
Continuing this way we construct sequences of

(1) stopping times νun with R[νun <∞] > R[νun−1 <∞](1− εn), ν0 = 0
(2) real numbers kn

(3) stopping times τn with νun−1 ≤ τn ≤ νun

(4) Xn = (E(kn · (N −Nνun−1 )))τn ,

so that

(1) 1
2 ≤ Xn ≤ 2

(2) Xn = 1 on the set {νun−1 =∞}
(3) R[Xn = 2 | νun−1 <∞] > 1

3 − εn

(4) R[Xn = 1
2 | νun−1 <∞] > 2

3 − εn .

Let now K =
∑

n≥1 kn1[[νun−1 ,τn]]. Clearly E(K ·N) is defined and (E(K ·
N))τn =

∏n
k=1 Xk. We claim that ER[(E(K ·N))∞] < 1, showing that E(K ·N)

is not uniformly integrable.
Obviously (E(K ·N))∞ =

∏
k≥1 Xk. From the strong law of large numbers

for martingale differences we deduce that a.s.
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1
n

n∑
k=1

(
log Xk −ER

[
log Xk

∣∣∣Fνuk−1

])
→ 0 .

On the set {νuk−1 < ∞} we have that ER

[
log Xk

∣∣Fνuk−1

]
≤ (2

3 −
εk) log 1

2 + (1
3 + εk) log 2 ≤ − 1

3 log 2 + 2εk log 2 ≤ − 1
6 log 2, at least for k

large enough. It follows that on the set
⋂

n≥1{νun < ∞}, we have that∑n
k=1 log Xk → −∞, and hence (E(K · N))∞ = 0 on this set. On the

complement, i.e. on
⋃

n≥1{νun = ∞}, we find that the maximal function
(E(K · N))∗∞ is bounded by 2n where n is the first natural number such
that νun = ∞. The probability of this event is bounded by εn and hence
ER[(E(K ·N))∞] ≤ η =

∑
n εn2n ≤ 1

8 . �

Remark 10.3.6. By adjusting the εn we can actually obtain a predictable pro-
cess K such that (E(K · N))∞ = 0 on a set with measure arbitrarily close
to 1.

Lemma 10.3.7. If L is a continuous positive strict local martingale, starting
at 1, then for α > 0 small enough the process L stopped when it hits the level
α is still a strict local martingale.

Proof of Lemma 10.3.7. Simply let τ = inf{t | Lt < α}. Clearly ER[Lτ ] <
α + ER[L∞] < 1 for α < 1−ER[L∞].
If we apply the previous lemma on the exponential martingale L = E(K ·N)
and to α = η, we obtain a stopping time τ and a strict local martingale
E(K ·N)τ that is bounded away from zero.

We now use the same integrand K to construct Z = E(K · U) and we
define σ = inf{t | Zt = 2}.

We will show that ER[Lτ∧σ] < 1 and that ER[Zτ∧σLτ∧σ] = 1. This will
complete the proof of the theorem since the measure Q defined by dQ =
Zτ∧σdR is an equivalent martingale measure and the element f = Lτ∧σ − 1
is therefore maximal. On the other hand ER[f ] < 0.

Both statements will be shown using a time transform argument. The fact
that the processes K ·N and K ·U both have the same bracket will now turn
out to be useful. The time transform can be used to transform both these
processes into Brownian motions at the same time.

Following [RY91, Chap. V, Sect. 1], we define

Tt = inf
{

u

∣∣∣∣ 〈K ·N, K ·N〉u =
∫ u

0

K2
s d〈N, N〉s > t

}
.

As well-known [RY91], there are

(1) a probability space (Ω̃, F̃ , R̃),
(2) a map π: Ω̃→ Ω,
(3) a filtration (F̃t)t≥0 on Ω̃,
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(4) two processes β1 and β2 that are Brownian motions with respect to
(F̃t)t≥0 and such that 〈β1, β2〉 = 0,

(5) the variable γ =
∫∞
0

K2
s d〈N, N〉s ◦ π is a stopping time with respect to

(F̃t)t≥0,
(6) β1

t∧γ = (K ·N)Tt ◦ π,
(7) β2

t∧γ = (K · U)Tt ◦ π,
(8) L̃ = E(β1) satisfies LTt ◦ π = L̃t∧γ,
(9) Z̃ = E(β2) satisfies ZTt ◦ π = Z̃t∧γ ,
(10) τ̃ = inf{t | (E(β1))t < 1

2} satisfies τ ◦ π = Tτ̃ ,
(11) σ̃ = inf{t | (E(β2))t > 2} satisfies σ ◦ π = Tσ̃.

In this setting we have to show that ER[Lτ∧σ] = ẼR̃[L̃τ̃∧σ̃∧γ ] < 1. But on
the set

{∫∞
0 K2

s d〈N, N〉s <∞
}

we have, as shown above,

ER

[
1{∫ ∞

0 K2
s d〈N,N〉s<∞}Lτ∧σ

]
≤ ER

[
1{∫∞

0 K2
s d〈N,N〉s<∞}L

∗
]

≤ η .

In other words, ẼR̃[1{γ<∞}L̃∗
γ ] ≤ η. So it remains to be shown that

ẼR̃

[
1{γ=∞}L̃τ̃∧σ̃

]
< 1− η .

Actually, we will show that

ẼR̃

[
L̃τ̃∧σ̃

]
< 1− η .

This is easy and follows from the independence of β1 and β2, a consequence
of 〈β1, β2〉 = 0! As in Sect. 10.2 we have

ẼR̃

[
L̃τ̃∧σ̃

]
= ηR̃[σ̃ =∞] + R̃[σ <∞] =

1
2
η +

1
2

< 1− η

since η ≤ 1
8 . To show that

ER [Lτ∧σZτ∧σ] = 1

we again use the extension and time transform. But (L̃Z̃)τ̃∧σ̃ is a uniformly
integrable martingale, as follows from the easy calculation in Sect. 10.2, and
hence we obtain

ER[Lτ∧σZτ∧σ] = ẼR̃[L̃τ̃∧σ̃∧γZτ̃∧σ̃∧γ ] = 1 .

The proof of the theorem is complete now. �
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The No-Arbitrage Property
under a Change of Numéraire (1995)

Abstract. For a price process that has an equivalent risk neutral measure, we
investigate if the same property holds when the numéraire is changed. We give
necessary and sufficient conditions under which the price process of a particular
asset — which should be thought of as a different currency — can be chosen as
new numéraire. The result is related to the characterisation of attainable claims
that can be hedged. Roughly speaking: the asset representing the new currency is
a reasonable investment (in terms of the old currency) if and only if the market does
not permit arbitrage opportunities in terms of the new currency as numéraire. This
rough but economically meaningful idea is given a precise content in this paper. The
main ingredients are a duality relation as well as a result on maximal elements. The
paper also generalises results previously obtained by Jacka, Ansel-Stricker and the
authors.

11.1 Introduction

In this paper we deal with the change of numéraire problem. Let us assume
that a d-dimensional process S describes the price of d assets in a fixed chosen
currency unit. If e.g. the currency unit is changed, the price process S will
be multiplied by the exchange ratio describing the old currency in function of
the new one. We shall give examples showing that the no-arbitrage property
of the process S may depend on the choice of numéraire. Such an example
was already given in [DS 94a]. The question now arises when the value of
an asset or more generally of a portfolio, can be used as a new numéraire
without destroying the no-arbitrage property. Of course this will depend on
the kind of no-arbitrage we use. We will give precise definitions further in
the paper but for the moment let us assume (oversimplifying things) that no-

[DS 95b] The No-Arbitrage Property under a Change of Numéraire. Stochastics and
Stochastic Reports, vol. 53, pp. 213–226, (1995).
∗ Part of this research was supported by the European Community Stimulation

Plan for Economic Science contract Number SPES-CT91-0089.
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arbitrage stands for the existence of an equivalent risk neutral (i.e. for a local
martingale) measure.

It turns out that the problem is related to the characterisation of those
contingent claims that can be hedged. This topic was studied by Jacka [J 92]
and Ansel-Stricker [AS 94]. These authors use the H1-BMO duality. We will
give a measure independent characterisation in terms of maximal elements of
attainable claims. These elements were already used, as a technical device,
in Chap. 9. The proofs of the theorems below use these results as well as an
extension of a duality relation from Delbaen [D 92].

The technique of a change of numéraire together with the change of the
risk neutral measure was used by El Karoui, Geman and Rochet [EGR 95] and
Jamshidian [J 87] to facilitate calculations of prices of contingent claims*.

The results of this paper can also be used to build consistent models of
exchange rates of currencies. In this case the discounting procedure depends
on the currency since the interest rate in different currencies will be different.
We refer to Delbaen-Shirakawa [DSh 96] for details.

The rest of this section is devoted to the introduction of the basic nota-
tion. Sect. 11.2 recalls known facts from arbitrage theory. In Sect. 11.3 we
extend the duality equality and relate it to properties of maximal elements.
Sect. 11.4 finally contains the main theorem on the change of numéraire and
the application to the theory of hedgeable elements.

The setup in this paper is the usual setup in mathematical finance. A prob-
ability space (Ω,F ,P) with a filtration (Ft)0≤t is given. In order to cover the
most general case, the time set is supposed to be R+. The filtration is assumed
to satisfy the “usual conditions”, i.e. it is right continuous and F0 contains all
null sets of F . A price process S, describing the evolution of the discounted
price of d assets, is defined on R+ × Ω and takes values in Rd. In order to
use the results of Chap. 9, we suppose that the process S is locally bounded.
This assumption is fairly general, in particular it covers the case of continuous
price processes. As shown under a wide range of hypotheses, the assumption
that S is a semi-martingale follows from arbitrage considerations. We can
therefore assume that the process S is a semi-martingale. Since it is also lo-
cally bounded it is a special semi-martingale. Stochastic integration is used to
describe outcomes of investment strategies. When dealing with processes in
dimension higher than 1 it is understood that vector stochastic integration is
used. We refer to Protter [P 90] and Jacod [J 79] for details on these matters.

The authors want to thank Ch. Stricker and H. Shirakawa for helpful
discussions on the topic. Part of the research was done while the first author
was on visit in the University of Tokyo. Discussions with the colleagues and
especially with S. Kusuoka, S. Kotani and N. Kunitomo contributed to the
development of this paper.

∗ Note added in this reprint: The idea of changing the numéraire can be traced
back to the work of Margrabe [M78a], [M78b]
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11.2 Basic Theorems

Before proving the main results of the paper we need to recall some definitions
and notations introduced in Chap. 9.

Definition 11.2.1. An Rd-valued predictable process H is called a-admissible
if it is S-integrable, if H0 = 0, if the stochastic integral satisfies H · S ≥ −a
and if (H · S)∞ = limt→∞(H · S)t exists a.s.. We say that H is admissible if
it is a-admissible for some number a.

The following notations will be used:

K = {(H · S)∞ | H is admissible}
Ka = {(H · S)∞ | H is a-admissible}
C0 = K − L0

+

C = C0 ∩ L∞ .

The basic Theorem 9.1.1 uses the concept of no free lunch with vanish-
ing risk. This is a rather weak form of no-arbitrage-type and it is stated in
terms of L∞ convergence. The (NFLVR) property is therefore independent of
the choice of equivalent probability measure. Only the class of negligible sets
comes into play.

Definition 11.2.2. We say that the locally bounded semi-martingale S satis-
fies the no free lunch with vanishing risk or property (NFLVR), with respect
to general admissible integrands, if

C ∩ L∞
+ = {0} ,

where the bar denotes the closure in the sup-norm topology of L∞.
The locally bounded semi-martingale S satisfies the no-arbitrage or (NA)

property with respect to general admissible integrands, if

C ∩ L∞
+ = {0} .

The fundamental theorem of asset pricing can now be formulated as fol-
lows:

Theorem 11.2.3. The locally bounded semi-martingale S satisfies the prop-
erty (NFLVR), with respect to general admissible integrands, if and only if
there is an equivalent probability measure Q such that S is a Q-local mar-
tingale. In this case the set C is already weak-star (i.e. σ(L∞, L1)) closed in
L∞.

Remark 11.2.4. If Q is an equivalent local martingale measure for S and if
H satisfies H · S ≥ −a then the result of Ansel-Stricker [AS 94] shows that
H · S is still a local martingale and hence, being bounded from below, is
a super-martingale. It follows that the limit (H · S)∞ exists a.s. and that
EQ[(H · S)∞] ≤ 0.
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The proof of the fundamental theorem is quite complicated and we cannot
repeat it here. The basic idea in Chap. 9, see Lemma 9.4.4 and the remark
following it, is the use of maximal elements in K1. For convenience we give
a definition of what we mean by this.

Definition 11.2.5. We say that an element f ∈ Ka is maximal in Ka if the
properties g ≥ f a.s. and g ∈ Ka imply that g = f a.s..

It is easy to see that if S satisfies the no-arbitrage condition then the
fact that f is maximal in Ka already implies that f is maximal in Kb for all
b ≥ a and therefore with the obvious definition also in K. Indeed suppose that
f ∈ Ka, g = (H · S)∞ ∈ K and g ≥ f a.s., then g ≥ −a. From Proposition
9.3.6 it then follows that g is a-admissible and hence the maximality of f in Ka

implies that g = f a.s.. An example of an element in K1 that is not maximal
will be given below. The (NA) property with respect to general admissible
integrands is now equivalent to the fact that the zero function is maximal in
the set K.

In the proof of the fundamental theorem the following intermediate results
are shown, again for the (complicated) proof we refer to Lemma 9.8.1, Lemma
9.4.4 and the proof of Theorem 9.4.2.

Theorem 11.2.6. If the locally bounded semi-martingale S satisfies the prop-
erty (NFLVR) with respect to general admissible integrands, if (fn)n≥1 is a se-
quence in K1, then

(1) there is a sequence of convex combinations gn ∈ conv{fn, fn+1, . . .} such
that gn tends in probability to a function g, taking finite values a.s.,

(2) there is a maximal element h in K1 such that h ≥ g a.s..

Corollary 11.2.7. If the locally bounded semi-martingale S satisfies the prop-
erty (NFLVR) with respect to general admissible integrands, then the maximal
elements of the closure of K1 in L0, are in K1.

Remark 11.2.8. The set K1 is not necessarily closed in the space L0. However,
under the (NFLVR) property with respect to general admissible integrands,
the set K1 and hence its closure are convex and bounded in L0. When we
define maximal elements of this closure in the obvious way, these maximal
elements are already in K1.

The following theorem, in the spirit of Chap. 9, gives another description
of the (NFLVR) property.

Theorem 11.2.9. The locally bounded semi-martingale S satisfies the (NFLVR)
property with respect to general admissible integrands if and only if it satisfies
the (NA) property with respect to general admissible integrands and if there
exists a strictly positive local martingale L such that L∞ > 0 a.s. with L S
a local martingale.



11.2 Basic Theorems 221

Proof. The necessity is clear. If Q is an equivalent local martingale mea-
sure, then the Radon-Nikodým derivative dQ

dP defines a strictly positive P-
martingale L such that LS is a P-local martingale. Also the process S neces-
sary satisfies the (NA) property with respect to general admissible integrands.

The converse is less obvious. We recall from Corollary 9.3.9, that it is
sufficient to prove that S satisfies (NA) with respect to general admissible
integrands and that the set K1 is bounded in L0. If L is a strictly positive
local martingale, then the sequence of stopping times defined as

Tn = inf{t | Lt ≥ n}

satisfies P[Tn =∞]→ 1 and LTn is a uniformly integrable martingale. These
properties follow from the fact that L is a super-martingale and the fact that
the jumps of L are necessarily integrable. Also we may and do suppose that
L0 = 1. For each n the measure Qn defined by dQn

dP = LTn is a local martingale
measure for the stopped process STn . It follows that the set K1 is bounded
when restricted to the event {Tn =∞}. Because P[Tn =∞]→ 1, this implies
that K1 is bounded in L0. �

The theorem yields the following result, see [DS 94a] and Chap. 10 for a dif-
ferent approach and for related results. For details on continuous martingales
and Bessel processes we refer to Revuz-Yor [RY91].

Corollary 11.2.10. If R is the Bessel(3) process, stopped at time 1 and with
its natural filtration then R allows arbitrage with respect to general admissible
integrands.

Proof. The process L = 1
R is a local martingale and from stochastic calculus

it follows that it is the only local martingale X such that X0 = 1 and such
that X R is a local martingale. If now Q were a local martingale measure
for R, then the martingale X defined as EP[dQ

dP | Ft] satisfies that X R is
a local martingale and hence X = L. Since L is only a local martingale and
not a true martingale we arrive at a contradiction. It follows that R does not
have an equivalent local martingale measure. Since it satisfies the second part
of the preceding theorem, it cannot satisfy the (NA) property with respect to
general admissible integrands. �

Remark 11.2.11. The element L1−1 is not maximal in the set K1 constructed
with the process L. To see this recall that E[L1] < 1 and that L1 − E[L1]
is by the predictable representation property of L, the result of a uniformly
integrable martingale of the form K ·L. It is clear that (K ·L)1 = (L1−E[L1]) >
L1 − 1.

If a locally bounded semi-martingale S satisfies the (NFLVR) property
with respect to general admissible integrands, then the following two non-
empty sets will play a role in the theory:
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Me(P) =
{
Q
∣∣∣∣ Q is equivalent to P
and the process S is a Q-local martingale

}
M(P) =

{
Q
∣∣∣∣ Q is absolutely continuous with respect to P
and the process S is a Q-local martingale

}
.

We identify absolutely continuous measures with their Radon-Nikodým deriva-
tives. It is clear that the set Me(P) is L1-dense in M(P).

11.3 Duality Relation

In this section we extend the duality formula of Delbaen [D 92] and Chap. 9
to the case of unbounded functions. We denote by C◦ the polar of the cone C,
i.e.

C◦ =
{
f | f ∈ L1(P) and for each h ∈ C we have EP[f h] ≤ 0

}
.

Theorem 11.3.1. If S is a locally bounded semi-martingale that satisfies
(NFLVR) with respect to general admissible integrands then

M(P) = C◦ ∩ {Q | Q probability measure,Q� P} .

Proof. If Q ∈ M(P) then for each admissible integrand H we have, by the
Ansel-Stricker theorem, [AS 94], that H · S is a Q-local martingale and hence
it is a super-martingale. Therefore EQ[f ] ≤ 0 for each f ∈ K. The same
inequality pertains for elements of C.

Conversely if Q is a probability measure in C◦ then S will be a Q-local
martingale. Indeed take Tn an increasing sequence of stopping times, Tn ↗∞,
such that each STn is bounded. For each s < t and each A ∈ Fs we have that
1A (STn

t −STn
s ) is in C and hence we have EQ[1A (STn

t −STn
s )] ≤ 0. Replacing

1A by −1A gives that EQ[1A (STn
t − STn

s )] = 0. These equalities show that S
is a Q-local martingale. �

Corollary 11.3.2. Suppose that the locally bounded semi-martingale S satis-
fies the (NFLVR) property with respect to general admissible integrands. The
set M(P) is then closed in L1(P).

We remark that this is essentially a consequence of the local boundedness
of S. It is easy to give counter-examples in the general case.

Theorem 11.3.3. If the locally bounded semi-martingale S satisfies the
(NFLVR) property with respect to general admissible integrands, then for
bounded elements f in L∞ we have that
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sup
Q∈Me(P)

EQ[f ] = sup
Q∈M(P)

EQ[f ]

= inf{x | ∃h ∈ C x + h ≥ f}
= inf{x | ∃h ∈ C x + h = f}
= inf{x | (f − x) ∈ C}
= inf{x | ∃h ∈ K x + h ≥ f} .

Furthermore all infima are minima.

Proof. The proof of this theorem is an application of the previous theorem
and duality theory.

The first equality is almost trivial since Me(P) is dense in M(P) for the
norm topology of L1(P). Suppose that f ≤ x + h where h ∈ C. It follows
from the preceding theorem that for all Q ∈ M(P) we have that EQ[f ] ≤
x + EQ[h] ≤ x. It is therefore obvious that

sup
Q∈M(P)

EQ[f ] ≤ inf{x | ∃h ∈ C x + h ≥ f} .

The converse inequality is proved using the Hahn-Banach theorem and the
fact that the set C is weak-star-closed, see Theorem 11.2.3 above. Let z be
a real number such that

z < inf{x | ∃h ∈ C x + h ≥ f} .

We have that f − z /∈ C. By the Hahn-Banach theorem there is a weak-star
continuous functional on L∞, denoted by the corresponding measure Q, such
that for all h ∈ C we have ∫

(f − z) dQ >

∫
h dQ .

Since C is a cone containing −L∞
+ , this necessarily implies that for all h ∈ C

we have
0 ≥

∫
h dQ and that

∫
(f − z) dQ > 0 .

We deduce that Q is necessarily positive and we may therefore suppose that
Q is normalised in such a way that Q(Ω) = 1. In that case Q is a probability
measure, is an element of C◦ and hence an element of M(P). But then the
second inequality shows that EQ[f ] > z. We obtain that

sup
Q∈M(P)

EQ[f ] ≥ inf{x | ∃h ∈ C x + h ≥ f}

and this ends the proof of the equalities. The fact that all infima are minima
is an easy consequence of the closedness of C for the norm topology of L∞.
Indeed, the set {x | (f − x) ∈ C} is closed. �

We will now generalise the preceding equalities to arbitrary positive func-
tions. The proof relies on the special properties of the sets C and K.
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Theorem 11.3.4. Suppose that the locally bounded martingale S satisfies the
(NFLVR) property with respect to general admissible integrands. If f ≥ 0, or
more generally if f is bounded below by a constant, then

sup
Q∈Me(P)

EQ[f ] = sup
Q∈M(P)

EQ[f ]

= inf{x | ∃h ∈ K x + h ≥ f}
and when the expression is finite

= min{x | ∃h ∈ K x + h ≥ f} .

Proof. We suppose that f ≥ 0. The first equality follows again from the
density of Me(P) in the set M(P) and Fatou’s lemma. The left hand side
is smaller than the right hand side exactly as in the proof of the previ-
ous theorem. We remark that this already implies that we have equality as
soon as supQ∈Me(P) EQ[f ] = ∞. Let now z be a real number such that
z > supQ∈Me(P) EQ[f ]. For all natural numbers we therefore have that
z > supQ∈Me(P) EQ[f ∧ n]. The theorem for bounded functions now implies
the existence of hn ∈ K and 0 ≤ xn < z such that f ∧ n ≤ xn + hn. We may
extract subsequences and suppose that the bounded sequence xn converges
to a real number x ≤ z. The functions hn are bigger than −xn and therefore
the result of an xn and hence a z-admissible strategy Hn. The sequence of
functions hn is in Kz, a bounded convex set of L0(P). Using Lemma 9.8.1
we may take convex combinations of hn that converge almost everywhere to
a function h. We still have that h + x ≥ f . The properties of Kz listed above
(see Theorem 11.2.6 (2)), imply that there is an element g ∈ Kz such that
g ≥ h. This element clearly satisfies x + g ≥ f and hence we obtain

z ≥ inf{x | ∃h ∈ K x + h ≥ f} .

We therefore see that

sup
Q∈Me(P)

EQ[f ] = sup
Q∈M(P)

EQ[f ] = inf{x | ∃h ∈ K x + h ≥ f} .

To see that the infimum is a minimum we take a sequence xn tending to the
infimum and a corresponding sequence of outcomes hn. We can apply the
same reasoning to see that the infimum is attained. �

Corollary 11.3.5. Suppose that the locally bounded semi-martingale S sat-
isfies the (NFLVR) property with respect to general admissible integrands. If
f ≥ 0 and if x = supQ∈Me(P) EQ[f ] < ∞, then there is a maximal element
g ∈ K such that f ≤ x + g.

Proof. This follows from the proof of the theorem. �
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11.4 Hedging and Change of Numéraire

Before we give a martingale characterisation of maximal elements of K, we
first study the (NA) property under the change of numéraire. Since we want
to apply it in a fairly general setting, we will work with an abstract Rd-valued
semi-martingale W . In this section we do not even require the semi-martingale
to be locally bounded. When we change the numéraire from the constant 1
into the process V we will have to rescale the process W . The best way to do
this is to introduce the (d + 2)-dimensional process (W, 1, V ). The constant
1, which corresponds to the original numéraire was added, because under the
new numéraire V , this will not be constant anymore but will be replaced by
1
V . On the other hand, the process V will be replaced by 1. By adding this
constant process, we obtain more symmetry. Under the new numéraire the
system is described by the process (W

V , 1
V , 1). Before proving the change of

numéraire theorem, a theorem that relates the (NA) property of both systems,
let us give an example of what happens in a discrete time setting and when
d = 0, the simplest possible case.

Example 11.4.1. The semi-martingale V which describes the price of the new
numéraire (in terms of the old one) is supposed to satisfy V0 = 1, a pure
normalisation assumption, Vt > 0, a.s. and limt→∞ Vt = V∞ exists a.s. and is
strictly positive a.s.. Note that the symmetry in these assumptions if we pass
from V to 1

V , i.e. they are invariant whether we consider the new numéraire
in terms of the old one or vice versa. The process is driven by a sequence
of independent identically distributed Bernoulli variables (εn)n≥1. They are
such that P[εn = 1] = P[εn = −1] = 1

2 . To facilitate the writing, we call the
two currencies e and $. The process V describes the value of the $ in terms of
the e. Let us now fix α such that 0 < α < 1. At time n = 0, we require that
V0 = 1. Let us suppose that Vn−1 is already defined. If the Bernoulli variable
εn = 1 then we put Vn = α. If εn = −1, then we put Vn = 2Vn−1 − α. In
such a way the process V remains strictly positive, in fact greater than α, it
becomes eventually equal to α and the limit V∞ = α therefore exists. The
process V is also a non-uniformly integrable martingale with respect to the
measure P. Remark that once the process hits the level α it remains at that
level forever. In economic terms we may say that an investment in $ seems to
be a fair game, since V is a martingale, but that at the end it was not a good
choice. Indeed, since α < 1, the investment is, in the long run, a losing one.
An economic agent might try to get a profit out of it by selling short the $.
But here is an obstruction. Indeed by going short on $, the e investor will
realise that he is using a non-admissible strategy. Therefore she will not be
able to take advantage of this special situation. A $ investor on the contrary is
able to buy e at an initial price of 1 $ and then in the long run sell this e for
1
α , making arbitrage profits! As a last point let us observe that the 0-variable
dominates the outcome V∞ − 1 = α − 1 and hence the variable V∞ − 1 is
not maximal. The example is simple but it has all the features that appear in
greater generality in the theorem.
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Theorem 11.4.2. Let W be a semi-martingale, taking values in Rd. Let V
be a strictly positive semi-martingale such that V∞ = limt→∞ Vt exists and
is strictly positive a.s.. The semi-martingale X is the (d + 2)-dimensional
process X = (W, 1, V ). The process Z defined as Z = (W

V , 1
V , 1) is a (d + 2)-

dimensional semi-martingale. It satisfies the (NA) property with respect to
general admissible integrands if and only if V∞ − 1 is maximal in the set of
outcomes of 1-admissible integrands for X.

Proof. Using the symmetry between the processes X and Z we first reformulate
the statement of the theorem. We can regard the process X as obtained from
Z by dividing it by the process 1

V . The process 1
V is also strictly positive and

at infinity its limit exists a.s. and is still strictly positive. If we change the role
of X and Z, resp. V and 1

V , we see that the proof of the theorem is equivalent
to the proof of the following two statements

(1) If X satisfies the (NA) property with respect to general admissible in-
tegrands then 1

V∞
− 1 is maximal in the set of outcomes of 1-admissible

integrands for Z.
(2) If Z permits arbitrage with respect to general admissible integrands then

V∞ − 1 is not maximal in the set of outcomes of 1-admissible integrands
for X .

The proof depends on the following calculation from vector stochastic calculus.
From X = V Z we deduce that

dXt = dVt Zt− + Vt− dZt + d[V, Z]t .

If K is a (d + 2)-dimensional predictable process that is a 1-admissible inte-
grand for the system Z = (W

V , 1
V , 1) then we let Y = (1 + K · Z)V . Remark

that Y is a process that describes a portfolio obtained by using an investment
described by the system Z that afterwards is converted, through the change
of numéraire V , into values that fit in the system X . We have that

dYt = dVt (1 + (K · Z)t−) + Vt− Kt dZt + Kt d[V, Z]t .

Using the expression for dX we may convert this into

dYt = dVt (1 + (K · Z)t−) + Kt dXt − dVt KtZt−

which is of the form
dYt = Lt dXt

for some (d + 2)-dimensional predictable and X-integrable process L. Since
K was 1-admissible for Z, we have that Y is positive and therefore L is 1-
admissible for X . We now apply the above equality in two different cases. To
prove (1) we suppose that 1

V∞
− 1 is not maximal. Take K a 1-admissible

integrand for Z such that the limit at infinity exists and such that 1 + (K ·
Z)∞ ≥ 1

V∞
, with strict inequality on a non-negligible set. In that case we have
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that Y∞−1 = (L·X)∞ is non-negative and strictly positive on a non-negligible
set. This should produce arbitrage for X .

The second part is proved in a similar way. Suppose that Z allows arbitrage
and that K is the 1-admissible integrand responsible for it. The outcome
Y∞ − 1 is now greater than V∞ − 1, with strict inequality on a non-negligible
set. A contradiction to its maximality. �

Corollary 11.4.3. Using the same notation as in the theorem we see that X
satisfies the (NA) property with respect to general admissible integrands and
V∞ − 1 is maximal “for X” if and only if Z satisfies the (NA) property with
respect to general admissible integrands and 1

V∞
− 1 is maximal “for Z”.

Proof. This is a straightforward application of the previous theorem. The only
difference lies in the statement that V∞−1 is maximal in the set of all outcomes
of admissible integrand and not just in the set of outcomes of 1-admissible
integrands. If X satisfies (NA) and V∞−1 is maximal then we can apply both
parts of the theorem. In this case we know, from Sect. 11.2, that f = 1

V∞
− 1

is maximal in the set of outcomes of all admissible integrands. This proves the
if statement. The only if part is the same statement as the if part because
X is obtained from Z by multiplying with V −1. �

We can now apply the above reasoning to the original setting of this pa-
per. Given a locally bounded semi-martingale S that satisfies the (NFLVR)
property with respect to general admissible integrands, we use a process of the
form V = 1+H ·S for the new numéraire. If H is admissible and V∞ > 0 a.s.,
then we can apply the previous theorem. In this case we certainly have that
the system (S, 1, V ) has the (NA) property with respect to general admissible
integrands. With the assumption that P was a local martingale measure for
S, the system (S, 1, V ) becomes in fact a local martingale for P. The previous
theorem then yields

Theorem 11.4.4. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property with respect to general admissible integrands.
Suppose that H is admissible and that the process V = 1 + (H · S) satisfies
f = V∞ = 1 + (H · S)∞ > 0 a.s.. Then the following are equivalent:

(1) (H · S)∞ is maximal in the set K.
(2) The process S̃ = ( S

V , 1
V ) satisfies (NA) with respect to general admissible

integrands.
(3) There is Q ∈Me(P) such that H · S is a Q-uniformly integrable martin-

gale.

If V −1 is locally bounded then these statements are equivalent to:

(4) The process S̃ has an equivalent local martingale measure.
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Remark 11.4.5. We conjecture that the assumption that V −1 is locally bounded
can be removed.†

Proof. (1) and (2) are equivalent : Since S satisfies the (NFLVR) property
with respect to general admissible integrands, there is an equivalent local
martingale measure, Q for S. Because the stochastic integral H ·S is bounded
below, the theorem of Ansel-Stricker, see [AS 94], implies that it, and hence
also V , is a local martingale. Since the final value V∞ of V is strictly positive,
the result in Dellacherie-Meyer [DM 80, Theorem 17, p. 85] implies that the
process V is bounded away from zero a.s.. We can now apply Theorem 11.4.2
to see that (1) and (2) are already equivalent.

(1) implies (4): In case V −1 is locally bounded we have that S̃ is also locally
bounded. It has the (NA) property and the product V S̃ is a local martingale.
Therefore the process has the (NFLVR) property and by Theorem 11.2.3 and
Theorem 11.2.9 it has an equivalent local martingale measure.

(1) and/or (2) imply (3): Now we apply the statement that (1) implies (4)
on the process V ′ = 1

2 (1+V ). This process is defined using H
2 instead of H . It

has the advantage that 1
V ′ is bounded. Let Q̃ be an equivalent local martingale

measure for ( S
V ′ ,

1
V ′ ). Since the last coordinate X = 1

V ′ is bounded and is a
Q̃-local martingale it is a strictly positive bounded martingale, starting at
1. When we define the probability measure Q by dQ = X∞ dQ̃, we obtain
that S = S

V ′ V ′ is a Q-local martingale and V ′ is a Q-uniformly integrable
martingale. This implies that H · S is a Q-uniformly integrable martingale.
The proof that (1) and/or (2) implies (3) is complete.

(3) implies (1): If H · S is a Q-uniformly integrable martingale for some
Q ∈ Me(P) then (H · S)∞ is necessarily maximal. Indeed if say (K · S)∞ ≥
(H · S)∞ for some admissible K, then by taking expectations with respect
to Q, applying the super-martingale property of K · S and the martingale
property of (H · S) we see

0 = EQ[(H · S)∞] ≤ EQ[(K · S)∞] ≤ 0 .

It follows that EQ[(K · S)∞] = 0 and (H · S)∞ = (K · S)∞. This completes
the proof that (3) implies (1).

(4) implies (2): Since the existence of an equivalent local martingale mea-
sure implies the (NA) property with respect to general admissible integrands,
this is trivial. �

Corollary 11.4.6. If the locally bounded semi-martingale S satisfies (NFLVR)
with respect to general admissible integrands then for an admissible integrand
H the following are equivalent:
† Note added in this reprint: The hypothesis of local boundedness is not needed

since the process V can be used as a martingale measure density. If (4) is satisfied
then even the existence of an equivalent sigma-martingale measure implies the
(NA) propertry for (S̃).
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(1) (H · S)∞ is maximal in K
(2) there is Q ∈Me(P) such that EQ[(H · S)∞] = 0
(3) there is Q ∈Me(P) such that H ·S is a Q-uniformly integrable martingale.

The theorem also allows us to give a characterisation of strict local martin-
gales as studied by Elworthy, Li and Yor, [ELY99]. They define a strict local
martingale as a local martingale that is not a uniformly integrable martingale.

Corollary 11.4.7. Let S = L be a strictly positive locally bounded local mar-
tingale such that L∞ > 0 a.s.. Let

Me(P) =
{
Q
∣∣∣∣ Q is equivalent to P

and the process L is a Q-local martingale

}
.

The process 1
L satisfies the (NA) property with respect to general admissible

integrands if and only if L is a uniformly integrable martingale for some Q in
Me(P).

Remark 11.4.8. From Schachermayer [S 93] (see Chap. 10 for an easier exam-
ple) it follows that under the assumptions of the corollary, the process L need
not be a uniformly integrable martingale under all elements of Me(P).

Remark 11.4.9. In the case that R = 1
L1 equals the Bessel(3) process with its

natural filtration, stopped at time 1, we have that L1 is a local martingale
for P. This is the only candidate for a martingale measure and hence we
deduce that R has arbitrage with respect to general admissible integrands.
The preceding corollary is a generalisation of this phenomenon to the case
that Me(P) is not a singleton, see also Sect. 11.2.

Definition 11.4.10. If S is a locally bounded semi-martingale that satisfies
the (NFLVR) property with respect to general admissible integrands, then we
say that a positive random variable (or contingent claim) f can be hedged if
there is x ∈ R and a maximal element h ∈ K such that f = x + h.

There is a good reason to require the use of maximal elements. If h is not
maximal then there is a maximal element g ∈ K, g �= h such that g ≥ h. An
investor who would try to hedge f by using an admissible strategy, would be
better off to use a strategy that gives her the outcome g instead of h. Starting
with the same initial investment x, she will obtain something better than f
and since g > h on a set of positive measure, she will be strictly better off in
some cases. In such a case the contingent claim f is not the result of a good
optimal hedging policy.

The following theorem is due to Ansel-Stricker [AS 94] and, independently,
to Jacka [J 92]. They proved it using H1-BMO duality. We shall see that it
is also a consequence of the characterisation of maximal elements.

Theorem 11.4.11. If S is a locally bounded semi-martingale that satisfies
the (NFLVR) property with respect to general admissible integrands then for
a random variable f ≥ 0, the following are equivalent:
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(1) f can be hedged,
(2) there is Q in Me(P) such that

EQ[f ] = sup{ER[f ] | R ∈Me(P)} <∞ .

Proof. (1) implies (2): If f can be hedged, then there is an admissible strategy
H and a real number x, such that f = x + (H · S)∞ and H · S is a uniformly
integrable martingale for some Q ∈Me(P). For all R ∈Me(P) we have that
H · S is a super-martingale and hence ER[f ] ≤ x = EQ[f ].

(2) implies (1): If we have EQ[f ] = sup{ER[f ] | R ∈ Me(P)} <∞, then
clearly we have that

x = EQ[f ] = min{z | ∃h ∈ K such that z + h ≥ f} <∞ .

The duality relation of Sect. 3 now implies that there is an admissible inte-
grand H such that f ≤ x + (H · S)∞. Since H ·S is a super-martingale for Q
we have that

x = EQ[f ] ≤ x + EQ[(H · S)∞] ≤ x

and hence EQ[(H · S)∞] = 0. This implies that f = x + (H · S)∞ and that
H · S is uniformly integrable for Q. Therefore (H · S)∞ is maximal in K. �
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The Existence of Absolutely Continuous Local
Martingale Measures (1995)

Abstract. We investigate the existence of an absolutely continuous martingale
measure. For continuous processes we show that the absence of arbitrage for gen-
eral admissible integrands implies the existence of an absolutely continuous (not
necessarily equivalent) local martingale measure. We also rephrase Radon-Nikodým
theorems for predictable processes.

12.1 Introduction

In Chap. 9 we showed that for locally bounded finite dimensional stochastic
price processes S, the existence of an equivalent (local) martingale measure,
sometimes called risk neutral measure, is equivalent to a property called no
free lunch with vanishing risk (NFLVR). We also proved that if the set of
(local) martingale measures contains more than one element, then necessarily,
there are non-equivalent absolutely continuous local martingale measures for
the process S. We also gave an example, see Example 9.7.7, of a process that
does not admit an equivalent (local) martingale measure but for which there
is a martingale measure that is absolutely continuous. The example moreover
satisfies the weaker property of no-arbitrage with respect to general admissible
integrands. We were therefore led to investigate the relationship between the
two properties, the existence of an absolutely continuous martingale measure
(ACMM) and the absence of arbitrage for general admissible integrands (NA).

From an economic viewpoint a local martingale measure Q, that gives zero
measure to a non-negligible event, say F , poses some problems. The price of
the contingent claim that pays one unit of currency subject to the occurrence
of the event F , is given by the probability Q[F ]. Since F is negligible for
this probability, the price of the commodity becomes zero. In most economic

[DS 95a] The Existence of Absolutely Continuous Local Martingale Measures. An-
nals of Applied Probability, vol. 5, no. 4, pp. 926–945, (1995).
∗ Part of this research was supported by the European Community Stimulation
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models preference relations are supposed to be strictly monotone and hence
there would be an infinite demand for this commodity. At first sight the prop-
erty (ACMM) therefore seems meaningless in the study of general equilibrium
models. However, as the present paper shows, for continuous processes it is
a consequence of the absence of arbitrage (NA). We therefore think that the
(ACMM) property has some interest also from the economic viewpoint.

Throughout this paper all variables and processes are defined on a prob-
ability space (Ω,F ,P). The space of all measurable functions, equipped with
the topology of convergence in probability is denoted by L0(Ω,F ,P) or simply
L0(Ω) or L0. If F ∈ F has non-zero measure, then the closed subspace of
functions, vanishing on the complement F c of F is denoted by L0(F ). The
conditional probability with respect to a non-negligible event F is denoted by
PF and is defined as PF [B] = P[F∩B]

P[F ] . To simplify terminology we say that
a probability Q that is absolutely continuous with respect to P is supported
by the set F if Q is equivalent to PF , in particular we then have Q[F ] = 1.
Indicator functions of sets F and so forth are denoted by 1F and so on. The
probability space Ω is equipped with a filtration (Ft) 0≤t<∞. We use the time
set [0,∞[ as this is the most general case. Discrete time sets and bounded
time sets can easily be imbedded in this framework. We will mainly study
continuous processes and in this case the discrete time set makes no sense at
all. However, Sect. 12.2 contains some results that remain valid for processes
with jumps.

We assume that the filtration (Ft) 0≤t<∞ satisfies the usual conditions, i.e.
it is right continuous and saturated for P-null sets. Stopping times are with
respect to this filtration. We draw the attention of the reader to the problem
that when P is replaced by an absolutely continuous measure Q, these usual
hypotheses will no longer hold. In particular we will have to saturate the
filtration with the Q-null sets.

The process S, sometimes denoted as (St) 0≤t<∞, is a fixed càdlàg, locally
bounded process that is a semi-martingale with respect to (Ω,(Ft) 0≤t<∞,P).
The process S is supposed to take values in the d-dimensional space Rd and
may be interpreted as the (discounted) price process of d stocks. If T1 and
T2 are two stopping times such that T1 ≤ T2 then ]]T1,T2]] is the stochastic
interval {(t,ω) | t < ∞, T1(ω) < t ≤ T2(ω)} ⊂ [0,∞[×Ω. Other intervals are
denoted in a similar way.

If H is a predictable process we say that H is simple if it is a linear
combination of elements of the form f 1]]T1,T2]] where T1 ≤ T2 are stopping
times and f is FT1 -measurable. For the theory of stochastic integration we
refer to [P 90] and for vector stochastic integration we refer to [J 79]. The
reader who is not familiar with vector stochastic integration can think of S as
being one-dimensional, i.e. d = 1. If H is a d-dimensional predictable process
that is S-integrable, then the process obtained by stochastic integration is
denoted H · S, its value at time t is (H · S)t.
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A strategy is a predictable process that is integrable with respect to the
semi-martingale S and that satisfies H0 = 0. As in Chap. 9, we will need the
concept of admissible strategy.

Definition 12.1.1. An S-integrable predictable strategy H is k-admissible,
for k ∈ R+, if the process H · S is always bigger than −k and if the limit
limt→∞(H · S)t exists almost surely. In particular, if H is 1-admissible then
H · S ≥ −1.

For a discussion of this topic and its origin in mathematical finance we
refer to [HP 81].

We also refer to [HP 81] for a discussion of the fact that, by considering
the discounted values of the stock price S, there is no loss of generality in
assuming that the “riskless interest rate r” is assumed to be zero, as we shall
assume throughout the paper to alleviate notation. The outcome (H · S)∞
can be seen as the net profit (or loss) by following the strategy H . If the time
set is bounded, then of course the condition on the existence of the limit at
infinity becomes vacuous. As shown in Theorem 9.3.3, the existence of the
limit at infinity follows from arbitrage properties.

Fundamental in the proof of the existence of an equivalent local martingale
measure are the sets

K1 = { (H · S)∞ | H is a 1-admissible strategy } and
K = { (H · S)∞ | H is admissible } .

From Corollary 9.3.8 we recall the following definition.

Definition 12.1.2. We say that the semi-martingale S satisfies the condition
no-arbitrage (NA) with respect to general admissible integrands if

K ∩ L0
+(Ω) = {0} .

We say that the semi-martingale S satisfies the no free lunch with vanish-
ing risk property (NFLVR) with respect to general admissible integrands if,
for a sequence of S-integrable strategies (Hn)n≥1 such that each Hn is a δn-
admissible strategy and where δn tends to zero, we have that (H · S)∞ tends
to zero in probability P.

The following theorem describes the relation between the (NFLVR) prop-
erty and the existence of a local martingale measure. The equivalence of these
two properties ((a) resp. (d) below) is the subject of Corollary 9.3.9 and The-
orem 9.1.1. The equivalence with properties (b) and (c) below was proved in
Theorem 11.2.9, see also [DS 95c].

Theorem 12.1.3. For a locally bounded semi-martingale S the following
properties are equivalent:

(a) S satisfies (NFLVR).
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(b) (i) S satisfies the property (NA) and (ii) K1 is bounded in L0.
(c) (i) S satisfies the property (NA) and (ii) there is a strictly positive local

martingale L such that at infinity L∞ > 0, P-a.s. and such that LS is
a local martingale.

(d) S admits an equivalent local martingale measure Q.

In the present paper we will enlarge the scope of the preceding theorem by
giving conditions for the existence of an absolutely continuous local martingale
measure. In particular we shall prove in Sect. 12.4 the following central result
of the paper.

Main Theorem 12.1.4. If the continuous semi-martingale S satisfies the
no-arbitrage property with respect to general admissible integrands, then there
is an absolutely continuous local martingale measure for the process S.

The paper is organised as follows. Sect. 12.2 contains some well-known
material on the existence of predictable Radon-Nikodým derivatives. The re-
sults are mainly due to C. Doléans and are scattered in the “Séminaires”.
We need a more detailed version for finite dimensional processes. More pre-
cisely we treat the case of a predictable measure taking values in the set of
positive operators on the space Rd, and we investigate under what condi-
tions a vector measure has a Radon-Nikodým derivative with respect to this
operator-valued measure. In this context we say that an operator is positive
when it is positive definite. (If we were aiming for a coordinate-free approach,
we would rather interpret such an operator-valued measure as taking values
in the set of semi-positive bilinear forms on Rd). This Radon-Nikodým prob-
lem, even for deterministic processes, is not treated in the literature (to the
best of our knowledge). The proofs are straightforward generalisations of the
one-dimensional case. For completeness we give full details.

We need these techniques to prove in Sect. 12.3 the fact that if the con-
tinuous semi-martingale S = M + A does not allow arbitrage (with respect
to general admissible integrands) then dA may be written as dA = d〈M, M〉h
for some predictable Rd-valued process h. This result seems well-known to
people working in Mathematical Finance, but to the best of our knowledge at
least the d-dimensional version of this theorem has not been presented in the
literature. In Sect. 12.3 we then investigate the no-arbitrage properties and
we introduce the concept of immediate arbitrage. We also give an example
that illustrates this phenomenon.

In Sect. 12.4 we prove the main theorem stated above.
After finishing this paper we were informed of the paper of Levental and

Skorohod [LS 94], which has a very significant overlap with our results here.
In particular, although our framework is more general, the content and the
probabilistic approach we give here to proving Theorem 12.3.7 are essentially
identical to that of [LS 94, Lemma 2]. Their proof appears to have been con-
structed earlier than ours, although this theorem based on a rather more
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complicated analytic proof had already been presented by the present au-
thors during the SPA conference in Amsterdam in June 1993 [DS 93] and in
the seminar of Tokyo University in September 93. Also [LS 94, Theorem 1]
corresponds to our Main Theorem 12.1.4 under the additional assumption
that the local martingale part M of the continuous semi-martingale S is of
the form M = Σ ·W , where W is a d-dimensional Brownian motion defined
on its (saturated) natural filtration and Σ = (Σt)0≤t≤1 an adapted matrix
valued process such that each Σt is invertible.

12.2 The Predictable Radon-Nikodým Derivative

In this section we will prove Radon-Nikodým theorems for stochastic mea-
sures. We first deal with the case of one-dimensional processes. A stochastic
measure on R+ is described by a stochastic process of finite variation. In
our setting it is convenient to require that the measure has no mass at zero,
i.e. the initial value of the process is 0. If we have two predictable stochastic
measures defined by the finite variation processes A and B, respectively, we
can for almost every ω in Ω decompose the A-measure in a part absolutely
continuous with respect to the B-measure and a component that is singular
to it. We are interested in the problem whether such a decomposition can be
done in a measurable or even predictable way. Similar problems can be stated
for the optional and for the measurable case. For applications in Sect. 12.3,
we only need the case of continuous processes. However, the more general case
is almost the same and therefore we treat, at little extra cost, processes with
jumps.

Theorem 12.2.1. (i) If A: R+ × Ω → R is a predictable, càdlàg process of
finite variation on finite intervals, then the process V , defined by setting Vt

equal to the variation of A on the interval [0, t], is càdlàg and predictable.
(ii) If A: R+ × Ω → R is a predictable, càdlàg process of finite variation on

finite intervals, if V is defined as in (i), there is a decomposition of R+×Ω
into two disjoint, predictable subsets, D+ and D−, such that

At =
∫ t

0

(1D+ − 1D−) dV .

(iii) If A: R+ × Ω → R is a predictable, càdlàg process of finite variation on
finite intervals, if V is càdlàg, predictable and increasing, then there are
predictable ϕ: R+ × Ω → R and a predictable subset N of R+ × Ω such
that

At =
∫

[0,t]

ϕu dVu +
∫

[0,t]

1N(u) dAu and
∫

R +

1N dVu = 0 .

Proof. (i) We give the proofs only in the case A0 = V0 = 0. For the proof
we need some results from the general theory of stochastic processes (see
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[DM 80]). One of these results says that there is a sequence of predictable
stopping times (Tn)n≥1 that exhausts all the jumps of A. Fix n and let
(τk)0≤k≤Nn be the finite ordered sequence of stopping times obtained from
the set {0, 1

2n , . . . , n
2n , T1, . . . , Tn}.

Put V n =
∑Nn−1

k=0 |Aτk+1 −Aτk
| 1[[τk+1,∞[[.

Because A is predictable, the variables Aτk
are Fτk−-measurable and hence

the processes V n are predictable. Because V n tends pointwise to V , this pro-
cess is also predictable.

(ii) The second part is proved using a constructive proof of the Hahn-
Jordan decomposition theorem. It could be left as an exercise but we promised
to give details. Let V = var(A) as obtained in the first part. Being predictable
and càdlàg, the process is locally bounded ([DM 80]) and hence there is an
increasing sequence (Tn)n≥1 of stopping times such that Tn ↗∞ and VTn ≤ n.
Define now

H =

{
ϕ

∣∣∣∣∣ϕ predictable and E

[∫
R +

ϕ2 dVu

]
<∞

}
.

With the obvious inner product 〈ϕ, ψ〉 = E[
∫

ϕuψu dVu], the space H
divided by the obvious subspace {ϕ | E[

∫
ϕ2 dVu] = 0}, is a Hilbert space. For

each n we define the linear functional Ln on H as

Ln(ϕ) = E

[∫
[0,Tn]

ϕu dAu

]
.

Since ∣∣∣∣∣
∫

[0,Tn]

ϕu dAu

∣∣∣∣∣ ≤
∫

[0,Tn]

|ϕu| dVu ≤
√

n

(∫
[0,Tn]

ϕ2
u dVu

) 1
2

,

the functional Ln is well-defined. Therefore there is ψn such that

Ln(ϕ) = E

[∫
[0,Tn]

ϕuψn
u dVu

]
.

Clearly the elements ψn and ψn+1 agree for functions ϕ supported on [[0, Tn]].
Hence (with the convention that T0 = 0) we have that ψ =

∑
n≥1 ψn1]]Tn−1,Tn]]

is predictable and satisfies for all n:

Ln(ϕ) = E

[∫
[[0,Tn]]

ϕψ dV

]
.

Let now Ct = At−
∫ t

0
ψu dVu. We will show that C = 0. First we show that C is

continuous. Let τ be a predictable stopping time. Define ϕ = ∆Cτ1[[τ ]]. By def-
inition of C and by the property of ψ we have for all n that E[(∆C)2τ∧Tn

] = 0.
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This shows that C is continuous. Next we put ϕ = C1[[0,Tn∧t]] and we find
that E[C2

Tn∧t] = 0. From this it follows that for all t we have that Ct = 0.
Because C is càdlàg, this implies that the process C vanishes identically.

So far we proved that in a predictable way dA = ψ dV . Let now D+ =
{ψ = 1} and let D− = R+ × Ω \ D+. Both sets are predictable and from
ordinary measure theory we deduce that At =

∫ t

0 (1D+ − 1D−) dV . This gives
us the desired Hahn-Jordan decomposition.

(iii) The third part is again standard, a constructive proof of Lebesgue’s
decomposition theorem. Let A and V be given. As in ordinary measure theory
we decompose A into its positive and its negative part. Part (ii) shows that
this can be done in a predictable way. It is therefore sufficient to prove the
claim for A increasing. We define B = A + V . We now repeat the proof of
the second part and we find a predictable ψ, 0 ≤ ψ ≤ 1 and dA = ψdB.
Let N = {ψ = 1}, a predictable set. We find dA = ψ dA + ψ dV . As in the
classical proof we deduce from this equality that dA = 1N dA + ϕdV where∫

1N dV = 0 and where ϕ is predictable. �

Corollary 12.2.2. If A and V are as in part (iii) of Theorem 12.2.1, if dA�
dV with respect to the predictable σ-algebra, i.e. for each predictable set N the
property

∫
1N dV = 0 implies that also

∫
1N dA = 0, then for almost all ω

the measure dA(ω) is absolutely continuous with respect to dV (ω) on R+.

For applications in finance we need a vector measure generalisation of the
preceding results. The theory was developed by [J 79]. We need two kinds of
vector measures. The first kind is an ordinary vector measure taking values
in Rd. The second kind is an operator-valued measure that takes values in
the set of all operators on Rd; in daily language, in the space of all d ×
d matrices. Positive measures on R+ are generalised as measures that take
values in the cone Pos(Rd) of all positive semi-definite operators on Rd. In
this setting the variation process V becomes a predictable, càdlàg, increasing
process V : R+×Ω→ Pos(Rd). On the set of all operators we put the nuclear
norm; for positive operators this simply means the trace of the operator. Let
now λt = trace(Vt). The process λ is predictable, càdlàg and increasing. Again
we assume V0 = 0, which results in λ0 = 0. We have that dV � dλ in the sense
that all elements of the matrix function define measures that are absolutely
continuous with respect to λ. If we calculate the Radon-Nikodým derivative
using dyadic approximations we see that dV = σ dλ, where σ is a predictable
process taking values in Pos(Rd).

For a positive operator a we have that the range R(a) is invariant under a
and that on R(a) the operator a is invertible. If we define Pa as the orthogonal
projection on R(a) we see that a−1 = a−1 ◦ Pa is a generalised inverse of a.
More precisely we have a ◦ a−1 := a−1 ◦ a = Pa. The correspondence between
a, a−1 and Pa can be described in a Borel-measurable way. This is an easy
exercise but we promised to give details.
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First note that, for each strictly positive operator b0, the map b→ b−1 is
continuous at b0.

To calculate Pa we simply take the limit

lim
ε↘0

a ◦ (a + ε id)−1 .

This constructive definition shows that the mapping a → Pa is a Borel-
measurable mapping. The same trick is used to obtain the generalised inverse

a−1 = lim
ε↘0

a ◦ (a + ε id)−2 .

The processes σ−1 and Pσ are therefore still predictable since they are the
composition of a predictable and a Borel-measurable mapping.

We will now describe a kind of absolute continuity of a vector measure
with respect to an operator-valued measure. Let ν be a measure defined on
the σ-ring of relatively compact Borel sets of R+ and taking values in Rd.
Let µ be a measure defined on the same σ-ring and taking values in Pos(Rd).
We say that ν � µ, if whenever f : R+ → Rd is a Borel function such that
either f(t) = 0 or ‖f(t)‖ = 1, the expression dµ f = 0 (as a vector measure)
implies f ′dν = 0 (as a scalar measure). (Here f ′ is the transpose of f). One
can show that in this case the measure ν has a Radon-Nikodým derivative
with respect to µ. Again we will need a predictable version of this theorem,
so we give details.

Suppose that A: R+×Ω→ Rd is predictable, càdlàg and of finite variation
on finite intervals. Suppose that A0 = 0. Let V be as above, predictable, càdlàg
taking values in Pos(Rd) and increasing. Suppose that for every predictable
process f : R+ × Ω → Rd, such that ‖f(t, ω)‖ is either 0 or 1, the relation
dV f = 0 implies that f ′dA = 0. This means that dA � dV in a predictable
way. Let λ = trace(V ) and let N be a predictable null set for λ, i.e. 1N dλ = 0.
For such a predictable set N and for each predictable k we have 1N dV k = 0.
The hypothesis on A then implies that 1N k′dA = 0. This shows that dA� dλ
and the predictable Radon-Nikodým theorem (applied for each coordinate)
shows the existence of a predictable Rd-valued process g such that dA = g dλ.
Now (id − σ ◦ σ−1) dV = dV (id − σ ◦ σ−1) = (id − σ ◦ σ−1)σ dλ = 0 and
by the assumption on A we have (id − σ ◦ σ−1) dA = 0. This implies that
(id− σ ◦ σ−1) g dλ = 0 and that up to null sets for λ, we have g ∈ R(σ). Now
let h = σ−1(g). Then obviously σ(h) = g (because g ∈ R(σ)), h ∈ R(σ) and
dA = σ h dλ = dV h. The range R(σ) could have been called the infinitesimal
range R(dV ) of the measure V . It is easy to show that it does not depend on
the control measure. We completed the proof of the following theorem.

Theorem 12.2.3. If V is an increasing predictable càdlàg process, taking val-
ues in the cone of the positive semi-definite operators on Rd, then the vector
measure defined by the predictable Rd-valued càdlàg process A of finite vari-
ation is of the form dA = dV h, for some predictable Rd-valued process h, if
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and only if for each predictable Rd-process f , such that ‖f(t, ω)‖ is either 0
or 1, the relation dV f = 0 implies f ′dA = 0.

Remark 12.2.4. If S is a semi-martingale with values in Rd, then the bracket
[S, S] and (if it exists) also the bracket 〈S, S〉 define increasing processes with
values in Pos(Rd). The fact that values are taken in Pos(Rd) is a reformulation
of the Kunita-Watanabe inequalities:

|d[Si, Sj]| ≤
√

d[Si, Si] d[Sj , Sj] ,

|d〈Si, Sj〉| ≤
√

d〈Si, Si〉 d〈Sj , Sj〉 .

12.3 The No-Arbitrage Property
and Immediate Arbitrage

We now turn to the main theme of the paper, a detailed analysis of the notion
of no-arbitrage. We start with an easy lemma, which turns out to be very
useful. It shows that the general case of an arbitrage may be reduced to two
special kinds of arbitrage.

Lemma 12.3.1. If the càdlàg semi-martingale S does not satisfy the no-
arbitrage property with respect to general admissible integrands then at least
one of the two following statements holds

(i) There is an S-integrable strategy H and a stopping time T , P[T <∞] > 0
such that H is supported by [[T, T + 1[[, H · S ≥ 0 and (H · S)t > 0, for
t > T .

(ii) There is an S-integrable 1-admissible strategy K, ε > 0 and two stopping
times T1 ≤ T2 such that T2 < ∞ on {T1 < ∞}, P[T2 < ∞] > 0, K =
K1]]T1,T2]] and (K · S)T2 ≥ ε on the set {T2 <∞}.

Proof. Let S allow arbitrage and let H be a 1-admissible strategy that produces
arbitrage, i.e., (H · S)∞ ≥ 0 with strict inequality on a set of strictly positive
probability. We now distinguish two cases. Either the process H · S is never
negative or the process H · S becomes negative with positive probability. In
the first case let T = inf{t | (H · S)t > 0}.

Let (ϑn)∞n=1 be a dense in ]0, 1[ and let H̃ =
∑∞

n=1 2−nH1[[T,T+ϑn[[. Then
H̃ satisfies (i). We thank an anonymous referee for correcting a slip in a pre-
vious version of this paper at this point.

In the second case we first look for ε > 0 such that P[inft(H ·S)t < −2ε] >
0. We then define T1 as the first time the process H · S goes under −2ε, i.e.

T1 = inf{t | (H · S)t < −2ε} .

On the set {T1 <∞} we certainly have that the process H · S has to gain at
least 2ε. Indeed at the end the process H ·S is positive and therefore the time
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T2 = inf{t | t > T1, (H · S)t ≥ −ε}

is finite on the set {T1 < ∞}. We now put K = H1]]T1,T2]]. The process K is
1-admissible since (K ·S)t ≥ −1+2ε on the set {T1 <∞}. Also (K ·S)T2 ≥ ε
on the set {T1 <∞}. �

Definition 12.3.2. We say that the semi-martingale S admits immediate ar-
bitrage at the stopping time T , where we suppose that P[T <∞] > 0, if there
is an S-integrable strategy H such that H = H1]]T,∞]], and (H · S)t > 0 for
t > T .

Remark 12.3.3. (a): Let us explain why we use the term immediate arbitrage.
Suppose S admits immediate arbitrage at T and that H is the strategy that
realises this arbitrage opportunity. Clearly H · S ≥ 0 and (H · S)T+t > 0 for
all t > 0 almost surely on {T <∞}. Hence we can make an arbitrage almost
surely immediately after the stopping time T has occurred.

(b): Lemma 12.3.1 shows that either we have an immediate arbitrage op-
portunity or we have a more conventional form of arbitrage. In the second
alternative the strategy to follow is also quite easy. We wait until time T1 and
then we start our strategy K. If the strategy starts at all (i.e., if T1 <∞) then
we are sure to collect at least the amount ε in a finite time. It is clear that
such a form of arbitrage is precisely what one wants to avoid in economic mod-
els. The immediate arbitrage seems, at first sight, to be some mathematical
pathology that can never occur. However, the concept of immediate arbitrage
can occur as the following example shows. In model building one therefore
cannot neglect the phenomenon.

Example 12.3.4. Take the one-dimensional Brownian motion W = (Wt)t∈[0,1]

with its usual filtration. For the price process S we take St = Mt + At =
Wt +

√
t which satisfies the differential equation dSt = dWt + dt

2
√

t
. We will

show that such a situation leads to “immediate” arbitrage at time T = 0. Take
Ht = 1√

t(ln t)2
. With this choice the integral on the drift-term

∫ t

0 Hu
du

2
√

u
=

1
2 (ln(t−1))−1 is convergent.

As for the martingale part, the random variable
∫ t

0 Hu dWu has variance∫ t

0
1

u(ln u)4 du which is of the order ln(t−1)−3. The iterated logarithm law
implies that, for t = t(ω) small enough,

|(H ·W )t(ω)| ≤ C
√

(ln(t−1))−3 ln ln((ln(t−1))3) ≤ C′(ln(t−1))−
5
4 .

It follows that, for t small enough, we necessarily have that (H · S)t(ω) > 0.
We now define the stopping time T as T = inf{t > 0 | (H · S)t = 0} and, for
n > 0, Tn = T ∧ n−1. Clearly (H · S)T ≥ 0 and P[(H · S)Tn > 0] tends to 1
as n tends to infinity. By considering the integrand L =

∑∞
n=1 αnH1[[0,Tn]] for

a sequence αn > 0 tending to zero sufficiently fast, we can even obtain that
(L · S)t is almost surely strictly positive for each t > 0.
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We now give some more motivation why such a form of arbitrage is called
immediate arbitrage. In the preceding example, for each stopping time T > 0
the process S − ST admits an equivalent martingale measure Q(T ) given by
the density fT = exp(− 1

2

∫ 1

T
1√
u

dWu − 1
8

∫ 1

T
1
u du). We can check this by means

of the Girsanow-Maruyama formula or we can check it even more directly via
Itô’s rule. This statement shows that if one wants to make an arbitrage profit,
one has to be very quick since a profit has to be the result of an action taken
before time T .

Let us also note that the process S also satisfies the (NA) property for
simple integrands. As is well-known it suffices to consider integrands of the
form f1]]T0,T1]] where f is FT0-measurable (see Chap. 9). Let us show that such
an integrand does not allow an arbitrage. Take two stopping times T0 ≤ T1.
We distinguish between P[T0 > 0] = 1 and T0 = 0. (The 0-1-law for F0

(Blumenthal’s theorem) shows that one of the two holds).
If T0 > 0, P-a.s., then the result follows immediately from the existence

of the martingale measure Q(T0) for the process S − ST0 .
If T0 = 0, we have to prove that ST1 ≥ 0 (or ST1 ≤ 0) implies that

ST1 = 0 a.s..
We concentrate on the first case and assume to the contrary that ST1 ≥

0 and P{ST1 > 0} > 0. Note that it follows from the law of the iterated
logarithm that inf{t|St < 0} = 0 almost surely, hence the stopping times

Tε = inf{t > ε | St < −ε}

tend to zero a.s. as ε tends to zero. Let ε > 0 be small enough such that
{Tε < T1} has positive measure to arrive at a contradiction:

0 > EQ(Tε)[STε1{Tε<T1}] = EQ(Tε)[ST11{Tε<T1}] ≥ 0 .

The following theorem, which is based on the material developed in
Sect. 12.2, is well-known and has been around for some time. At least in
dimension d = 1 the result should be known for a long time. For dimension
d > 1, the presentation below is, we guess, new.

Theorem 12.3.5. If the d-dimensional, locally bounded semi-martingale S
satisfies the (NA) property for general admissible integrands, then the Doob-
Meyer decomposition S = M + A satisfies dA = d〈M,M〉h, where h is a
d-dimensional predictable process and where d〈M,M〉 denotes the operator-
valued measure defined by the (d×d)-matrix process (〈M,M〉)i,j≤d. The process
h may be chosen to take its values in the infinitesimal range R(d〈M, M〉).

Proof. We apply the criterion of Sect. 12.2. Take f a d-dimensional predictable
process such that the measure d〈M,M〉 f is zero and such that either f has
norm 1 or norm 0. It is obvious that the stochastic integral f ′ ·M exists and
results in the zero process. If the process f ′ ·A is not zero then we replace f by
the sign function coming from the Jordan-Hahn decomposition of f ′ ·A. This
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sign function φ is a predictable process equal to +1 or −1. The predictable
integrand g = φ f still satisfies g · M = 0 but the component g′ · A now
results in an arbitrage profit. This contradiction shows that the criterion of
Sect. 12.2 is fulfilled and hence the existence of the process h is proved. If we
write d〈M,M〉 as σ dλ for some control measure λ and an operator-valued
predictable process σ, then we may, by the results of Sect. 12.2, suppose that
ht is in the range of the operator σt. �

The following theorem is the basic theorem in dealing with the (NA) prop-
erty in the case of continuous price processes.

Theorem 12.3.6. If the continuous semi-martingale S with Doob-Meyer de-
composition S = M + A satisfies the (NA) property for general admissible
integrands, then we have dS = dM +d〈M,M〉 h, where the predictable process
h satisfies:

(i) T = inf
{

t
∣∣∣ ∫ t

0
h′

u d〈M,M〉u hu =∞
}

> 0 a.s..

(ii) The [0,∞]-valued increasing process
∫ t

0 h′
u d〈M,M〉u hu is continuous; in

particular it does not jump to ∞.

Proof. The existence of the process h follows from the preceding theorem. The
stopping time T is well-defined. The first claim on the stopping time T follows
from the second, so we limit the proof to the second statement. We will prove
that the set

F = {T <∞} ∩
{∫ T+ε

T

h′
t d〈M, M〉t ht =∞, ∀ε > 0

}
has zero measure. Clearly F is, by right continuity of the filtration, an element
of the σ-algebra FT . As the process 〈M, M〉t is continuous, assertion (ii) will
follow from the fact that P[F ] = 0. Suppose now to the contrary that F has
strictly positive measure. We then look at the process 1F (S − ST ), adapted
to the filtration (FT+t)t≥0 and we replace the probability P by PF . With this
notation the theorem is reduced to the case T = 0. This case is treated in the
following theorem. It is clear that this will complete the proof. �

Immediate Arbitrage Theorem 12.3.7. Suppose the d-dimensional con-
tinuous semi-martingale S has a Doob-Meyer decomposition given by

dSt = dMt + d〈M, M〉t ht

where h is a d-dimensional predictable process. Suppose that a.s.∫ ε

0

h′
t d〈M, M〉t ht =∞, ∀ ε > 0 . (12.1)

Then for all ε > 0, there is an S-integrable strategy H such that H = H1[[0,ε]],
H · S ≥ 0 and P[(H · S)t > 0] = 1, for each t > 0. In other words, S admits
immediate arbitrage at time T = 0.
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The proof of the theorem is based on the following lemma:

Lemma 12.3.8. If (12.1) holds almost surely, then for any a, ε, η > 0 we can
find 0 < δ < ε

2 and an a-admissible integrand H with

H = H 1]]δ,ε]] ,∫ ε

δ

|H ′
s dA|s +

∫ ε

δ

H ′
s d〈M, M〉s Hs < 2 + a ,

P[(H · S)ε ≥ 1] ≥ 1− η .

Proof of the lemma. Fix a, ε, η > 0 and let R ≥ max{ 8
η

(
1+a

a

)2
, (1 + a)2}.

Since (i) is satisfied almost surely, we have that

lim
K↗∞
δ↘0

P
[∫ ε

δ

1{|h|≤K} h′
t d〈M, M〉t ht ≥ R

]
= 1 .

Hence we can find a K > 0 and a 0 < δ < ε
2 such that

∞ >

∫ ε

δ

1{|h|≤K} h′
t d〈M, M〉t ht ≥ R

on a Fε-measurable set Λ with P[Λ] ≥ 1− η
2 . Let

T = inf
{

t > 0
∣∣∣∣ ∫ t

δ

1{|h|≤K} h′
t d〈M, M〉t ht ≥ R

}
∧ ε

and let H = 1+a
R h1]]δ,T ]] 1{|h|≤K}. Then∫ ε

0

H ′
s d〈M, M〉s Hs ≤

(1 + a)2

R

and ∫ ε

0

|Hs dA|s ≤ (1 + a) a.s..

Therefore H is S-integrable. Moreover, (H ·A)ε = 1 + a on Λ.
Since ‖H ·M‖22 = E[

∫ ε

0
H ′

sd〈M, M〉s Hs] ≤ (1+a)2

R we obtain from Doob’s
inequality together with Tchebycheff’s inequality (both in their L2-version)

P [(H ·M)∗ ≥ a] ≤ 4
(

1+a
a

)2 1
R ≤

η
2 . (12.2)

We now localise H to be a-admissible. Let

T2 = inf{t > 0 | (H ·M)t < −a} ∧ T .

Then T2 = T on {(H ·M)∗ ≤ a} and from (12.2) we obtain
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P
[
(H 1[[0,T2]] · S)ε ≥ 1

]
≥ P [{(H ·A)ε ≥ 1 + a} ∩ {(H ·M)∗ < a}]
≥ P [Λ]−P [(H ·M)∗ ≥ a] ≥ 1− η

which proves the lemma. �
Proof of the Immediate Arbitrage Theorem 12.3.7. Assume that (12.1) is
valid for almost every ω ∈ Ω. We will now construct an integrand which
realises immediate arbitrage. Let ε0 > 0 be such that ε0 ≤ min (ε, 1

2 ). By
Lemma 12.3.8 we can find a strictly decreasing sequence of positive numbers
(εn)n≥0 with limn→∞ εn → 0 and integrands Hn = Hn1]]εn+1,εn]] such that Hn

is 4−n-admissible,
∫ εn

εn+1
|(Hn)′s dAs| +

∫ εn

εn+1
(Hn)′s d〈M, M〉s (Hn)s < 3

2n and

P [(Hn · S)εn ≥ 2−n] ≥ 1− 2−n. Let Ĥ =
∑∞

n=1 Hn. Then Ĥ is S-integrable.
Define

T = inf
{
t > 0 | (Ĥ · S)t = 0

}
.

We claim that T (ω) > 0 for almost every ω ∈ Ω. Since P [(Hn · S)εn < 2−n] ≤
2−n, we obtain from the Borel-Cantelli lemma that for almost every ω ∈ Ω
there is a N(ω) ∈ N with (Hn · S)εn(ω) > 2−n for all n > N(ω). If n > N(ω)
and εn+1 < t ≤ εn then

(Ĥ · S)t(ω) =
∞∑

k>n

(Hk · S)εk
(ω)︸ ︷︷ ︸

≥2−n

+ (Hn · S)t(ω)︸ ︷︷ ︸
≥−2−(n+1)

≥ 1
2n+1

and we have verified the claim. Hence

lim
t→0

P
[(

Ĥ 1[[0,T ]] · S
)

t
> 0
]

= 1 .

Finally let

H =
∞∑

n=1

2−nĤ1]]0,T∧εn[[

to find an S-integrable predictable process supported by [0, ε] such that (H ·
S)t > 0 for each t > 0. �

12.4 The Existence of an Absolutely Continuous Local
Martingale Measure

We start this section with the investigation of the support of an absolutely con-
tinuous risk neutral measure. The theory is based on the analysis of the density
given by a Girsanow-Maruyama transformation. If dSt = dMt + d〈M, M〉t ht

defines the Doob-Meyer decomposition of a continuous semi-martingale, where
h is a d-dimensional predictable process and where M is a d-dimensional
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continuous local martingale, then the Girsanov-Maruyama transformation is,
at least formally, given by the local martingale Lt = exp(

∫ t

0 −h′
u dMu −

1
2

∫ t

0 h′
u d〈M, M〉u hu), L0 = 1. Formally one can verify that LS is a local

martingale. However, things are not so easy. First of all, there is no guarantee
that the process h is M -integrable, so L need not be defined. Second, even if
L is defined, it may only be a local martingale and not a uniformly integrable
martingale. The examples in [S 93] and in Chap. 10 show that even when an
equivalent risk neutral measure exists, the local martingale L need not to be
uniformly integrable. In other words a risk neutral measure need not be given
by L. Third, in case the two previous points are fulfilled, the density L∞ need
not be different from zero a.s..

What can we save in our setting? In any case, Theorem 12.3.6 shows that
in the case when S satisfies the no-arbitrage property for general admissible
integrands, the process h satisfies the properties:

(1) T = inf{t |
∫ t

0
h′d〈M,M〉h =∞} > 0 a.s..

(2) The [0,∞]-valued process
∫ t

0
h′

u d〈M,M〉u hu is continuous; in particular,
it does not jump to ∞.

In this case the stochastic integrals h ·M and h · S can be defined on the
interval [[0, T [[ and at time T we have that LT can be defined as the left limit.
The theory of continuous martingales ([RY91]) shows that

{LT = 0} =

{∫ T

0

h′
t d〈M, M〉t ht =∞

}
.

If after time T , i.e. for t > T , we put Lt = 0, the process L is well-defined, it is
a continuous local martingale, it satisfies dLt = −Lt h′

t dMt and LS is a local
martingale. The process X = 1

L − 1 is also defined on the interval [[0, T [[ and
on the set {LT = 0} its left limit equals infinity. The crucial observation is
now that on the interval [[0, T [[, we have that dXt = 1

Lt
h′

t dSt.
This follows simply by plugging in Itô’s formula (compare Chap. 11).
For each ε > 0 let τε be the stopping time defined by τε = inf{t | Lt ≤ ε}.

Because the process X is always larger than −1, the stopped processes Xτε

are
outcomes of admissible integrands. If Q is an absolutely continuous probability
measure such that S becomes a local martingale thae, by Theorem 12.1.3 we
have that the set H =

{
Xτε

∞ | ε > 0
}

is bounded in L0({ dQ
dP > 0}). But it is

clear that on the set {LT = 0}, the set H is unbounded.
As a consequence we obtain the following lemma.

Lemma 12.4.1. If the continuous semi-martingale S satisfies the no-arbitrage
condition with respect to general admissible integrands and if Q is an abso-
lutely continuous local martingale measure for S, then { dQ

dP > 0} ⊂ {LT > 0}.

In order to prove the existence of an absolutely continuous local martingale
measure Q we therefore should restrict ourselves to measures supported by
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F = {LT > 0} .

Note that the no-arbitrage condition implies that P[F ] > 0. Indeed, sup-
pose that P[F ] = 0 and let

U = inf
{
t
∣∣Lt ≤ 1

2

}
.

We than have that P[U < ∞] = 1, LU ≡ 1
2 and therefore XU ≡ 1. Hence

H = 1
Lh′1[[0,U ]] is a 1-admissible integrand such that (H · S)∞ ≡ XU ≡ 1,

a contradiction to (NA).
So we will look at the process S under the conditional probability mea-

sure PF .
Our strategy will be to verify that S satisfies the property (NFLVR) with

respect to PF which will imply the existence of a local martingale measure
Q for S which is equivalent to PF and therefore absolutely continuous with
respect to P. However, there are difficulties: under the measure PF the Doob-
Meyer decomposition will change, there will be more admissible integrands
and the verification of the no free lunch with vanishing risk property for
general admissible integrands (under PF ) is by no means trivial.

We are now ready to reformulate the main theorem stated in the Intro-
duction 12.1 in a more precise way and to commence the proof:

Main Theorem 12.4.2. If the continuous semi-martingale S satisfies the
no-arbitrage property with respect to general admissible integrands, then with
the notation introduced above, it satisfies the no free lunch with vanishing risk
property with respect to PF .

As a consequence there is an absolutely continuous local martingale mea-
sure that is equivalent to PF , i.e. it is precisely supported by the set F .

The proof of the theorem still needs some auxiliary steps which will be
stated below.

We first deal with the problem of the usual hypotheses under the measure
PF . The σ-algebras F̃t of the PF -augmented filtration are obtained from Ft

by adding all PF null sets. It is easily seen that the new filtration is still right
continuous and satisfies the usual hypotheses for the new measure PF . The
following technical results are proved in [DS 95c].

Proposition 12.4.3. If τ̃ is a stopping time with respect to the filtration
(F̃t)t≥0 then there is a stopping time τ with respect to the filtration (Ft)t≥0

such that PF -a.s. we have τ̃ = τ . If τ̃ is finite or bounded, then τ may be
chosen to be finite or bounded.

Proposition 12.4.4. If H̃ is a predictable process with respect to the filtration
(F̃t)t≥0 then there is a predictable process H with respect to the filtration
(Ft)t≥0, such that PF -a.s. we have H̃ = H.
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This settles the problem of the usual hypotheses. Each time we need an F̃ -
predictable process, we can without danger replace it by a predictable process
for F . Without further notice we will do this.

The process S is a semi-martingale with respect to the system (F̃ ,PF ).
This is well-known, see [P 90].

Note also that for PF we have that
∫∞
0

h′
u d〈M, M〉u hu <∞ a.s.. We will

need this later on.
As a first step we will decompose S into a sum of a PF -local martingale

and a predictable process of finite variation. Because PF is only absolutely
continuous with respect to P we need an extension of the Girsanov-Maruyama
formula for this case. The generalisation was given by [L 77]. We need the
càdlàg martingale U defined as

Ut = E
[

1F

P[F ]

∣∣∣∣ Ft

]
.

Note that U is not necessarily continuous, as we only assumed that S is
continuous and not that each Ft-martingale is continuous.

Together with the process U we need the stopping time

ν = inf{t | Ut = 0} = inf{t > 0 | Ut− = 0}

(see [DM 80] for this equality).

Lemma 12.4.5. We have ν = T P-almost surely.

Proof of Lemma. We first show that for an arbitrary stopping time σ we
have that Lσ > 0 on the set {Uσ > 0}. Let A be a set in Fσ such that
P[A∩{Uσ > 0}] > 0. This already implies that P[A∩F ] > 0. Indeed we have
that

E[1A1F | Fσ] = P[F ]1A Uσ

and hence we necessarily have that P[A ∩ F ] > 0. The following chain of
equalities is almost trivial∫

A∩{Uσ>0}
Lσ =

∫
A

Lσ 1{Uσ>0} ≥ P[F ]
∫

A

Lσ Uσ =
∫

A

Lσ1F =
∫

A∩F

Lσ .

The last term is strictly positive since Lσ > 0 on F . This proves that for each
set A such that P[A ∩ {Uσ > 0}] > 0 we must have

∫
A∩{Uσ>0} Lσ > 0. This

implies that Lσ > 0 on the set {Uσ > 0}, hence ν ≤ T .
The converse inequality is less trivial and requires the use of the (NA)

property of S. We proceed in the same way. Take G ∈ Fσ such that G ⊂
{Lσ > 0} and P[G] > 0. Suppose that Uσ = 0 on G. We will show that this
leads to a contradiction. If Uσ = 0 on G then clearly G∩ F = ∅. However, on
F c we have that Lt tends to zero and hence 1

Lt
tends to ∞. We know that

1
Lt
−1 can be obtained as a stochastic integral with respect to S. We take the
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stopping time µ =∞ on Gc and equal to inf{t | Lt ≤ 1
2Lσ} on the set G. The

outcome

1G =
(

1
Lµ
− 1

Lσ

)
Lσ 1G

is the result of a 1-admissible strategy and clearly produces arbitrage. We may
therefore suppose that P[G∩F ] > 0 and hence we also have

∫
G

Uσ > 0. Again
this suffices to show that Uσ > 0 on the set {Lσ > 0} and again implies that
T ≤ ν. The proof of the lemma is complete now. �
Proof of the Main Theorem 12.4.2.We now calculate the decomposition of
the continuous semi-martingale S under PF . If S = M + A is the Doob-
Meyer decomposition of S under P then, under PF we write S = M̃ + Ã

where Ãt = At +
∫ d〈M,U〉s

Us
, see [L 77]. This integral exists for the measure PF

since on F the process U is bounded away from 0. A more explicit formula
for Ã can be found if we use the structure of 〈M, U〉. We thereto use the
Kunita-Watanabe decomposition of the L2-martingale U with respect to the
martingale M . This is done in the following way (see [J 79]). The space of
all L2-martingales of the form α ·M is a stable space and in fact we have
‖(α ·M)∞‖2 = E[

∫
α′ d〈M, M〉α]. The orthogonal projection of U∞ on this

space is given by (β ·M)∞ for some predictable process β, where of course

E
[∫

β′ d〈M, M〉β
]

<∞ .

In this notation we may write:

d〈M, U〉 = d〈M, M〉β .

It follows that also
∫

β′ d〈M, M〉β < ∞ a.s. for the measure PF and the
measure dÃ can be written as

dÃ = d〈M, M〉
(

ht +
βt

Ut

)
= d〈M, M〉 kt .

Here we have put k = h + β
U to simplify notation.

To prove the (NFLVR) property for S under PF we use the criterion of
Theorem 12.1.3 above.

Step 1: the set of 1-admissible integrands for PF is bounded in L0(F ).
From the properties of β and h we deduce that, for the measure, PF , the
integral ∫ ∞

0

k′
td〈M, M〉kt <∞ PF -a.s..

The PF -local martingale L̃ is now defined as

L̃t = exp
(
−
∫ t

0

k′
u dM̃u −

1
2

∫ t

0

k′
u d〈M, M〉u ku

)
.
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It follows that
L̃∞ > 0 PF -a.s..

It is chosen in such a way that L̃S is a PF -local martingale and therefore the
set K̃1 constructed with the 1-admissible, with respect to PF , integrands, is
bounded in L0(PF ).

In particular this also excludes the possibility of immediate arbitrage for
S with respect to PF .

Step 2: S satisfies (NA) with respect to PF (and with respect to general
admissible integrands).

Since by step 1 immediate arbitrage is excluded, the violation of the (NA)
property would, by Lemma 12.3.1, give us a predictable integrand H such that
for PF the integrand is of finite support, is S-integrable and 1-admissible.
When the support of H is contained in ]]σ1, σ2]] it gives an outcome at least ε
on the set {σ1 <∞}. All this, of course, with respect to PF .

The rest of the proof is devoted to the transformation of this phenomenon
to a situation valid for P.

Without loss of generality we may suppose that for the measure P we
have σ1 ≤ σ2 ≤ T , we replace, e.g., the stopping time σ2 by max(σ1, σ2) and
then we replace σ1 and σ2 by, respectively, min(T, σ1) and min(T, σ2). All
these substitutions have no effect when seen under the measure PF . Since
PF [{σ1 < σ2 <∞}] > 0, we certainly have that P[{σ1 < σ2 < T }] > 0.

Roughly speaking we will now use the strategy H to construct arbitrage
on the set F and we use the process 1

L to construct a sure win on the set
F c, as on the interval [[0, T [[, the process 1

L − 1 equals K · S for a well-chosen
integrand K. When we add the two integrands, H and K, we should obtain
an integrand that gives arbitrage on Ω with respect to P and this will provide
the desired contradiction.

Let the sequence of stopping times τn be defined as

τn = inf
{

t

∣∣∣∣Lt ≤
1
n

}
.

We have that τn ↗ T for P and τn ↗ ∞ for the measure PF . Since we
have that Lτn > 0 a.s., we also have that Uτn > 0 a.s.. It follows that on
the σ-algebra Fτn the two measures, P and PF are equivalent. We can there-
fore conclude that for each n the integrand H1[[0,τn]] as well as the integrand
K1[[0,τn]] is S-integrable and 1-admissible for P. The last integrand still has
to be renormalised.

In fact on the set F itself, the lower bound −1 for the process K ·S is too
low since it will be compensated at most by ε. We therefore transform K in
such a way that it will stay above ε

2 but will nevertheless give outcomes that
are very big on the set F c. Let us define

K̃ = K1{σ1<T}
ε

2
Lσ1 ,

K̃n = K̃ 1[[0,τn]] ,
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H̃ = H1{σ1<T} ,

H̃n = H̃ 1[[0,τn]] .

From the preceding considerations it follows that the integrands H̃n are
all 1-admissible for P and that the integrands K̃n are ε

2 -admissible for P. The
outcomes (K̃n ·S)τn tend to∞ on F c∩{σ1 < T }, and the outcomes (H̃n ·S)τn

become larger than ε on the set F ∩ {σ1 < T }. When we add them we see
that on the set {σ1 < T } we have

lim inf
n→∞ ((H̃ + K̃) · S)τn = lim inf

n→∞ ((H̃n + K̃n) · S)τn ≥
ε

2
.

Define now the stopping time µ as

µ = τn if n is the first number such that ((H̃n + K̃n) · S)τn ≥
ε

4
.

The stopping time µ is finite on the set {σ1 < τ}. The integrand J = (H̃ +
K̃)1]]0,µ]] is now S-integrable and is certainly 1+ ε

2 admissible. By the definition
of the stopping time µ we have that (J ·S)µ ≥ ε

41{σ1<T}, producing arbitrage.
Since the process S satisfied the (NA) property, we arrived at a contradiction.

Step 2 is therefore completed and this ends the proof of the theorem. �
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The Banach Space of Workable Contingent
Claims in Arbitrage Theory (1997)

Abstract. For a locally bounded local martingale S, we investigate the vector space
generated by the convex cone of maximal admissible contingent claims. By a max-
imal contingent claim we mean a random variable (H · S)∞, obtained as a final
result of applying the admissible trading strategy H to a price process S and which
is optimal in the sense that it cannot be dominated by another admissible trading
strategy. We show that there is a natural, measure-independent, norm on this space
and we give applications in Mathematical Finance.

Résumé. Si S est une martingale locale, localement bornée, on étudie l’espace vec-
toriel engendré par le cône des actifs contingents maximaux. Une variable aléatoire
est un actif contingent maximal si elle peut s’écrire sous la forme (H · S)∞, où
la stratégie H est admissible et optimale dans le sense qu’elle n’est pas dominée
par une autre stratégie admissible. Sur cet espace, on introduit une norme na-
turelle, invariante par changement de mesure, et on donne des applications en finance
mathématique.

13.1 Introduction

A basic problem in Mathematical Finance is to see under what conditions
the price of an asset, e.g. an option, is given by the expectation with respect
to a so-called risk neutral measure. The existence of such a measure follows
from no-arbitrage properties on the price process S of given assets, see [HK79],
[HP 81], [K 81] for the first papers on the topic and see [DS 94] (Chap. 9 above)
for a general form of this theory and for references to earlier papers.

Investment strategies H are described by S-integrable predictable pro-
cesses and the outcome of the strategy is described by the value at infinity
(H · S)∞. In order to avoid doubling strategies one has to introduce lower
bounds on the losses incurred by the economic agent. Mathematically this is

[DS 97] The Banach Space of Workable Contingent Claims in Arbitrage Theory.
Annales de l’IHP, vol. 33, no. 1, pp. 114–144, (1997).
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translated by the property that H · S is bounded below by some constant. In
this case we say that H is admissible, see [HP81]. It turns out that for some
admissible strategies H the contingent claim (H · S)∞ is not optimal in the
sense that it is dominated by the outcome of another admissible strategy K.
In this case there is no reason for the economic agent to follow the strategy
H since at the end she can do better by following K. Let us say that H is
maximal if the contingent claim (H · S)∞ cannot be dominated by another
outcome of an admissible strategy K in the sense that (H · S)∞ ≤ (K · S)∞
a.s. but P[(H · S)∞ < (K · S)∞] > 0.

In Chaps. 9 and 11 we have used such maximal contingent claims in order
to show that under the condition of no free lunch with vanishing risk, a locally
bounded semi-martingale S admits an equivalent local martingale measure. In
Chap. 11 we encountered a close relation between the existence of a martingale
measure (not just a local martingale measure) for the process H · S and the
maximality of the contingent claim (H ·S)∞. These results generalised results
previously obtained by Ansel-Stricker [AS 94] and Jacka [J 92]. We related
this connection to a characterisation of good numéraires and to the hedging
problem.

In this paper we show that the set of maximal contingent claims forms
a convex cone in the space L0(Ω,F ,P) of measurable functions and that
the vector space generated by this cone can be characterised as the set of
contingent claims of what we might call workable strategies. The vector space
of these contingent claims, will be denoted by G. It carries a natural norm
for which it becomes a Banach space. These properties solve some arbitrage
problems when constructing multi-currency models. We refer to a paper of
the first named author with Shirakawa on this subject, [DSh 96].

The paper is organised as follows. The rest of this introduction is devoted
to the basic notations and assumptions. Sect. 13.2 deals with the concept of
acceptable contingent claims and it is shown that the set of maximal admis-
sible contingent claims forms a convex cone. In Sect. 13.3 we introduce the
vector space spanned by the maximal admissible contingent claims and we
show that there is a natural norm on it. The norm can also be interpreted
as the maximal price that one is willing to pay for the absolute value of the
contingent claim. Sect. 13.4 gives some results that are related to the geome-
try of the Banach space G. In the complete market case it is an L1-space, but
we also give an example showing that it can be isomorphic to an L∞-space.
The precise interpretation of these properties in mathematical finance remains
a challenging task. In Sect. 13.5 we show that for a given maximal admissible
contingent claim f , the set of equivalent local martingale measures Q such
that EQ[f ] = 0 forms a dense subset in the set of all absolutely continuous
local martingale measures. That not all equivalent local martingale measures
Q satisfy the equality EQ[f ] = 0, is illustrated by a counter-example. The
main theorem in Sect. 13.6 states that in a certain way the space of work-
able contingent claims is invariant for numéraire changes. In Sect. 13.7 we
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use finitely additive measures in order to describe the closure of the space of
bounded workable contingent claims.

Part of the results were obtained when the first named author was visiting
the University of Tsukuba in January 1994 and when the second author was
visiting the University of Tokyo in January 1995. Discussions with Professor
Kusuoka and Professor Shirakawa are gratefully acknowledged.

The setup in this paper is the usual setup in mathematical finance. A prob-
ability space (Ω,F ,P) with a filtration (Ft)0≤t is given. The time set is sup-
posed to be R+, the other cases, e.g. finite time interval or discrete time
set, can easily be imbedded in our more general approach. The filtration is
assumed to satisfy the “usual conditions”, i.e. it is right continuous and F0

contains all null sets of F .
A price process S, describing the evolution of the discounted price of d

assets, is defined on R+ × Ω and takes values in Rd. We assume that the
process S is locally bounded, e.g. continuous. As shown under a wide range
of hypothesis, the assumption that S is a semi-martingale follows from arbi-
trage considerations, see Chap. 9 and references given there. We will therefore
assume that the process S is a locally bounded semi-martingale. In order to
avoid cumbersome notation and definitions, we will always suppose that mea-
sures are absolutely continuous with respect to P. Stochastic integration is
used to describe outcomes of investment strategies. When dealing with more
dimensional processes it is understood that vector stochastic integration is
used. We refer to Protter [P 90] and Jacod [J 79] for details on these matters.

Definition 13.1.1. An Rd-valued predictable process H is called a-admissible
if it is S-integrable, if H0 = 0, if the stochastic integral satisfies H · S ≥ −a
and if (H ·S)∞ = limt→∞(H ·S)t exists a.s.. A predictable process H is called
admissible if it is a-admissible for some a.

Remark 13.1.2. We explicitly required that H0 = 0 in order to avoid the
contribution of the integral at zero.

The following notations will be used:

K = {(H · S)∞ | H is admissible}
Ka = {(H · S)∞ | H is a-admissible}
C0 = K − L0

+

C = C0 ∩ L∞ .

The basic Theorem 9.1.1 above uses the concept of no free lunch with vanishing
risk, (NFLVR) for short. This is a rather weak hypothesis of no-arbitrage
type and it is stated in terms of L∞-convergence. The (NFLVR) property is
therefore independent of the choice of the underlying probability measure, i.e.
it does not change if we replace P by an equivalent probability measure Q.
Only the class of negligible sets comes into play. We also recall the definition
of the property of no-arbitrage, (NA) for short.
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Definition 13.1.3. The locally bounded semi-martingale S satisfies the no-
arbitrage or (NA) property if

C ∩ L∞
+ = {0} .

Definition 13.1.4. We say that the locally bounded semi-martingale S satis-
fies the no free lunch with vanishing risk or (NFLVR) property if

C ∩ L∞
+ = {0} ,

where the bar denotes the closure in the sup-norm topology of L∞.

The fundamental theorem of asset pricing, as in Chap. 9, can now be
formulated as follows:

Theorem 13.1.5. The locally bounded semi-martingale S satisfies the prop-
erty (NFLVR) if and only if there is an equivalent probability measure Q such
that S is a Q-local martingale. In this case the set C is already weak-star (i.e.
σ(L∞, L1)) closed in L∞.

Remark 13.1.6. If Q is an equivalent local martingale measure for S and if the
integrand or strategy H satisfies H · S ≥ −a, i.e. H is a-admissible, then by
a result of Émery [E 80] and Ansel-Stricker [AS 94], the process H · S is still
a local martingale and hence, being bounded below, is a super-martingale. It
follows that the limit (H · S)∞ exists a.s. and that EQ[(H · S)∞] ≤ 0.

We also need the following equivalent reformulations of the property of no
free lunch with vanishing risk, see Chap. 9 for more details.

Theorem 13.1.7. The locally bounded semi-martingale S satisfies the no free
lunch with vanishing risk property or (NFLVR) if for any sequence of S-
integrable strategies (Hn,δn)n≥1 such that each Hn is a δn-admissible strategy
and where δn tends to zero, we have that (H ·S)∞ tends to zero in probability P.

Theorem 13.1.8. The locally bounded semi-martingale S satisfies the prop-
erty (NFLVR) if and only if

(1) it satisfies the property (NA)
(2) K1 is bounded in L0, for the topology of convergence in measure.

Theorem 13.1.9. The locally bounded semi-martingale S satisfies the prop-
erty (NFLVR) if and only if

(1) it satisfies the property (NA)
(2) There is a strictly positive local martingale L, L0 = 1, such that at infinity

L∞ > 0, P-a.s. and such that LS is a local martingale.
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We suppose from now on that the process S is a fixed d-dimensional locally
bounded semi-martingale and that it satisfies the property (NFLVR). The set
of local martingale measures is therefore, according to the previous theorems
not empty. In Sect. 13.7, we will also make use of finitely additive measures.
So we let ba (Ω,F ,P) be the Banach space of all finitely additive measures
that are absolutely continuous with respect to P, i.e. ba (Ω,F ,P) is the dual of
L∞ (Ω,F ,P). We will use Roman letters P,Q,Q0, . . . for σ-additive measures
and Greek letters for elements of ba which are not necessarily σ-additive. We
say that a finitely additive measure µ is absolutely continuous with respect to
the probability measure P if P[A] = 0 implies µ[A] = 0 for any set A ∈ F .

Let us put:

Me =
{
Q
∣∣∣∣ Q is equivalent to P
and the process S is a Q-local martingale

}
M =

{
Q
∣∣∣∣ Q is absolutely continuous with respect to P
and the process S is a Q-local martingale

}
Mba =

{
µ

∣∣∣∣ µ is in ba (Ω,F∞,P)
and for every element h ∈ C : Eµ[h] ≤ 0

}
We identify, as usual, absolutely continuous measures with their Radon-
Nikodým derivatives. It is clear that, under the hypothesis (NFLVR), the set
Me(P) is dense in M(P) for the norm of L1(Ω,F ,P). This density together
with Fatou’s lemma imply that for random variables g that are bounded below
we have the equality

sup{EQ[g] | Q ∈Me} = sup{EQ[g] | Q ∈M} .

We will use this equality freely.
As shown in Remark 9.5.10 the set Me is weak-star-dense, i.e. for the

topology σ (ba, L∞), in the set Mba.
The first two sets are sets of σ-additive measures, the third set is a set of

finitely additive measures. Clearly Me ⊂ M ⊂ Mba and since S is locally
bounded the setM is closed in L1 (Ω,F ,P). If needed we will add the process
S in parenthesis, e.g. Me(S), to make clear that we are dealing with a set of
local martingale measures for the process S.

13.2 Maximal Admissible Contingent Claims

We now give the definition of a maximal admissible contingent claim and its
relation to the existence of an equivalent martingale measure. As mentioned
above we always suppose that S is a d-dimensional locally bounded semi-
martingale that satisfies the (NFLVR) property.

Definition 13.2.1. If U is a non-empty subset of L0, then we say that a con-
tingent claim f ∈ U is maximal in U , if the properties g ≥ f a.s. and g ∈ U
imply that g = f a.s..
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The (NA) property can be rephrased as the property that 0 is maximal
in K. It is clear that if S satisfies the no-arbitrage property, then the fact
that f is maximal in Ka already implies that f is maximal in K. Indeed if
g = (H ·S)∞ ∈ K and g ≥ f a.s., then g ≥ −a. From Proposition 9.3.6 it then
follows that g is a-admissible and hence the maximality of f in Ka implies
that g = f a.s..

Definition 13.2.2. A maximal admissible contingent claim is a maximal
element of K. The set of maximal admissible contingent claims is denoted
by Kmax. The set of maximal a-admissible contingent claims is denoted by
Kmax

a .

The proof of the Theorem 13.1.5 uses the following intermediate results,
see Sect. 9.4:

Theorem 13.2.3. If S is a locally bounded semi-martingale and if (fn)n≥1 is
a sequence in K1, then

(1) there is a sequence of convex combinations gn ∈ conv{fn, fn+1, . . .} such
that gn tends in probability to a function g, taking finite values a.s.,

(2) there is a maximal contingent claim h in K1 such that h ≥ g a.s..

Corollary 13.2.4. Under the hypothesis of Theorem 13.2.3, maximal contin-
gent claims of the closure L0-closure K1 of K1, are already in K1. By L0-
closure we mean the closure with respect to convergence in measure.

Using a change of numéraire technique, the following result was proved in
Chap. 11. We refer also to Ansel-Stricker [AS 94] for an earlier proof of the
equivalence of (2) and (3) below.

Theorem 13.2.5. If S is a locally bounded semi-martingale that satisfies the
(NFLVR) property then for a contingent claim f ∈ K the following are equiva-
lent

(1) f is maximal admissible,
(2) there is an equivalent local martingale measure Q ∈ Me such that

EQ[f ] = 0,
(3) if f = (H ·S)∞ for some admissible strategy H, then H ·S is a uniformly

integrable martingale for some Q ∈Me.

Corollary 13.2.6. Suppose that the hypothesis of theorem 13.2.5 is valid. If
f is maximal admissible and f = (H · S)∞ for some admissible strategy H,
then for every stopping time T , the contingent claim (H ·S)T is also maximal.

Proof. If f is maximal and f = (H · S)∞ where H is a-admissible, then
there is Q ∈ Me such that EQ[f ] = 0, i.e. EQ [(H · S)∞] = 0. Because H is
admissible, the process H · S is, see [AS 94], a Q-local martingale and hence
a Q-super-martingale. Because EQ [(H · S)∞] = 0, we necessarily have that
H ·S is a Q-uniformly integrable martingale. It follows that EQ [(H · S)T ] = 0
and consequently (H · S)T is maximal. �
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Remark 13.2.7. The corollary also shows that if f = (H · S)∞ is maximal
admissible, then the strategy that produces f is uniquely determined in the
sense that any other admissible strategy K that produces f necessarily satis-
fies H · S = K · S. The following definitions therefore make sense.

Definition 13.2.8. If H is an admissible strategy such that f = (H · S)∞
is a maximal admissible contingent claim, then we say that H is a maximal
admissible strategy.

Definition 13.2.9. We say that a strategy K is acceptable if there is a posi-
tive number a and a maximal admissible strategy L such that (K · S) ≥
− (a + (L · S)).

Remark 13.2.10. If we take a big enough, the process V = a + L · S stays
bounded away from zero and can be used as a new numéraire. Under this new
currency unit, the process K · S, where K is acceptable, has to be replaced
by the process K·S

V . The latter process is a stochastic integral with respect
to the process

(
S
V , 1

V

)
, more precisely, see Chap. 11 for the details of this

calculation, K·S
V = (K, (K · S)− −KS−)·

(
S
V , 1

V

)
= K ′·

(
S
V , 1

V

)
remains bigger

than a constant, i.e. the strategy K ′ = (K, (K · S)− −KS−) is admissible.
Another way of saying that K is acceptable, is to say that K ′ is admissible
in a new numéraire. In Chap. 11 we proved that the only numéraires that do
not destroy the no-arbitrage properties are the numéraires given by maximal
strategies. The definition of acceptable strategies is therefore very natural.
The outcomes of acceptable strategies are the numéraire invariant version of
the outcomes of admissible strategies.

Lemma 13.2.11. If S is a locally bounded semi-martingale that satisfies the
(NFLVR) property and if K is acceptable then limt→∞(K · S)t exists a.s..

Proof. Suppose that K · S ≥ − (a + L · S) where L is admissible and maxi-
mal. Clearly we have that K + L is a-admissible and hence by the results of
Chap. 9 limt→∞((K + L) · S)t exists a.s.. Because limt→∞(L · S)t exists a.s.,
we necessarily have that limt→∞(K · S)t also exists a.s.. �

The set of outcomes of acceptable strategies, which is a convex cone in L0,
is denoted by

J = {(K · S)∞ | K acceptable} .

We now prove some elementary properties of acceptable contingent claims.
Most of these properties are generalisations of no-arbitrage concepts for ad-
missible contingent claims.

Proposition 13.2.12. Suppose that S is a locally bounded semi-martingale
that satisfies the (NFLVR) property. If K is acceptable and if (K · S)∞ ≥ 0,
then (K · S)∞ = 0.
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Proof. Suppose that K ·S ≥ − (a + L · S) where L is admissible and maximal.
Clearly we have that K + L is a-admissible. But at infinity we have that
((K + L) · S)∞ ≥ (L · S)∞ and by maximality of L we obtain the equality
((K + L) · S)∞ = (L · S)∞, which is equivalent to (K · S)∞ = 0 a.s.. �

In the same way we prove the subsequent result.

Proposition 13.2.13. Suppose that S is a locally bounded semi-martingale
that satisfies the (NFLVR) property. If K is acceptable and (K · S)∞ ≥ −c
for some positive real constant c, then the strategy K is already c-admissible.

Proof. Take ε > 0 and let

T1 = inf{t | (K · S)t < −c− ε} .

We then define
T2 = inf{t > T1 | (K · S)t ≥ −c} .

By assumption we have that on {T1 <∞} the strategy K1]]T1,T2]] produces an
outcome (K ·S)T2−(K ·S)T2 ≥ ε. This strategy is easily seen to be acceptable.
Indeed

(K1]]T1,T2]]) · S ≥ c + ε + (−a−H · S)

for some real number a and some maximal strategy H . By the previous lemma
we necessarily have that the contingent claim is zero a.s. and hence T1 = ∞
a.s.. �

We now turn again to the analysis of maximal admissible contingent
claims.

Theorem 13.2.14. If S is a locally bounded semi-martingale that satisfies
the (NFLVR) property, if f and g are maximal admissible contingent claims,
then f + g is also a maximal contingent claim. It follows that the set Kmax of
maximal contingent claims is a convex cone.

Proof. Let f = (H1 · S)∞ and g = (H2 · S)∞, where H1 and H2 are maximal
strategies and are respectively a1- and a2-admissible. Suppose that K is a
k-admissible strategy such that (K · S)∞ ≥ f + g. From the inequalities
(K − H2) · S = K · S − H2 · S ≥ −k − H2 · S, it follows that K − H2 is
acceptable. Since also

(
(K −H2) · S

)
∞ ≥ f ≥ −a1, the Proposition 13.2.13

shows that K − H2 is a1-admissible. Because f was maximal we have that(
(K −H2) · S

)
∞ = f and hence we have that (K · S)∞ = f + g. This shows

that f +g is maximal. Since the set Kmax is clearly closed under multiplication
with positive scalars, it follows that it is a convex cone. �

Corollary 13.2.15. If S is a locally bounded semi-martingale that satisfies
the (NFLVR) property and if (fn)1≤n≤N is a finite sequence of contingent
claims in K such that for each n there is an equivalent risk neutral measure
Qn ∈Me with EQn [fn] = 0, then there is an equivalent risk neutral measure
Q ∈Me such that EQ [fn] = 0 for each n ≤ N .
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Proof. This is a rephrasing of the Theorem 13.2.14 since by Theorem 13.2.5,
the condition on the existence of an equivalent risk neutral measure is equiv-
alent with the maximality property. �

The previous Corollary 13.2.15 will be generalised to sequences (see Corol-
lary 13.2.18 below). We first prove the following Proposition.

Proposition 13.2.16. Suppose that S is a locally bounded semi-martingale
that satisfies the (NFLVR) property. If (fn)n≥1 is a sequence in Kmax

1 , such
that

(1) The sequence fn → f in probability
(2) for all n we have f − fn ≥ −δn where δn is a sequence of strictly positive

numbers tending to zero,

then f is in Kmax too, i.e. it is maximal admissible.

Proof. If g is a maximal contingent claim such that g ≥ f , then we have
g− fn ≥ −δn. Since each fn is maximal we find that g− fn is acceptable and
hence δn-admissible by Proposition 13.2.13. Since δn tends to zero, we find
that the (NFLVR) property implies that g − fn tends to zero in probability.
This means that g = f and hence f is maximal. �

Corollary 13.2.17. If S is a locally bounded semi-martingale that satisfies
the (NFLVR) property, if (an)n≥1 is a sequence of strictly positive real num-
bers such that ∞∑

n=1

an <∞ ,

if for each n, Hn is an an-admissible maximal strategy, then we have that the
series

f =
∞∑

n=1

(Hn · S)∞

converges in probability to a maximal contingent claim.

Proof. Let hn = (Hn · S)∞, the partial sums fN =
∑N

n=1 hn are outcomes
of
∑∞

n=1 an-admissible strategies. For an arbitrary element Q ∈ Me we have
that

EQ [(hn + an)] ≤ an .

It follows that the series of positive functions
∑∞

n=1(hn + an) converges in
L1(Q) and hence the series

∑∞
n=1 hn also converges in L1(Q). The series

f =
∑∞

n=1 hn = lim fn therefore also converges to a contingent claim f in P.
From the Proposition 13.2.16, we now deduce that f is maximal. �
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Corollary 13.2.18. If S is a locally bounded semi-martingale that satisfies
the (NFLVR) property, if (fn)n≥1 is a sequence of contingent claims in K
such that for each n there is an equivalent risk neutral measure Qn ∈ Me

with EQn [fn] = 0, then there is an equivalent risk neutral measure Q ∈ Me

such that EQ [fn] = 0 for each n ≥ 1.

Proof. We may without loss of generality suppose that fn is the result of an
an-admissible and maximal strategy where the series

∑∞
n=1 an converges. If

not we replace fn by a suitable multiple λnfn, with λn strictly positive and
small enough. The Corollary 13.2.17 then shows that the sum f =

∑∞
n=1 fn

is still maximal and hence there is an element Q ∈ Me such that EQ[f ] = 0.
As observed in the proof of the theorem, we have that the series

∑∞
n=1 fn

converges to f in L1(Q). For each n we already have that EQ[fn] ≤ 0. From
this it follows that for each n we need to have EQ[fn] = 0. �

Corollary 13.2.19. If S is a locally bounded semi-martingale that satisfies
the (NFLVR) property, if (fn)n≥1 is a sequence of 1-admissible maximal con-
tingent claims, if f is a random variable such that for each element Q ∈Me

we have fn → f in L1(Q), then f is a 1-admissible maximal contingent claim.

Proof. From Theorem 13.2.3 we deduce the existence of a maximal contingent
claim g such that g ≥ f . From the previous corollary we deduce the existence
of an element Q ∈Me such that for all n we have EQ [fn] = 0. It is straight-
forward to see that EQ [f ] = 0 and that EQ [g] ≤ 0. This can only be true if
f = g, i.e. if f is 1-admissible and maximal. �

We now extend the no free lunch with vanishing risk -property which was
phrased in terms of admissible strategies, to the framework of acceptable
strategies. As always it is assumed that S is locally bounded and satisfies
(NFLVR).

Theorem 13.2.20. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. Let fn = (Ln ·S)∞ be a sequence of outcomes
of acceptable strategies such that Ln · S ≥ −an − Hn · S, with Hn maximal
and an-admissible. If limn→∞ an = 0, then limn→∞ fn = 0 in probability P.

Proof. The strategies Hn+Ln are an-admissible and by the (NFLVR) property
of S we therefore have that ((Hn + Ln) · S)∞ tends to zero in probability P.
Because each Hn-admissible and limn→∞ an = 0 the (NFLVR) property of
S implies that (Hn · S)∞ tends to zero in probability P. It follows that also
(Ln · S)∞ tends to zero in probability P. �
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13.3 The Banach Space Generated
by Maximal Contingent Claims

In this section we show that the subspace G of L0, generated by the convex
cone Kmax of maximal admissible contingent claims can be endowed with
a natural norm. We start with a definition.

Definition 13.3.1. A predictable process H is called workable if both H and
−H are acceptable.

Proposition 13.3.2. Suppose that S is a locally bounded semi-martingale
that satisfies the (NFLVR) property. The vector space G or, if there is danger
of confusion and the price process S is important, G(S), generated by the cone
of maximal admissible contingent claims, satisfies

G = Kmax −Kmax

= {(H · S)∞ | H is workable}
= J ∩ (−J ) .

Proof. The first statement is a trivial exercise in linear algebra. If H is workable
then there are a real number a and maximal strategies L1 and L2 such that
−a − L1 · S ≤ H · S ≤ a + L2 · S. Take now Q ∈ Me such that both L1 · S
and L2 · S are Q-uniformly integrable martingales. The strategy H + L1 is
a-admissible and satisfies (H + L1) · S ≤ a + (L1 + L2) · S. It follows that
(H +L1) ·S is a Q-uniformly integrable martingale, i.e. (H +L1) is a maximal
strategy. Since H = (H +L1)−L1 we obtain that (H ·S)∞ ∈ (Kmax −Kmax).
If conversely H = H1 −H2, where both terms are maximal, then we have to
show that H is workable. This is quite obvious, indeed if H1 is a-admissible
we have that H · S ≥ −a−H2 · S. A similar reasoning applies to −H . �

Proposition 13.3.3. Suppose that S is a locally bounded semi-martingale
that satisfies the (NFLVR) property. If H is workable then there is an element
Q ∈ Me such that the process H · S is a Q-uniformly integrable martingale.
Hence for every stopping time T , the random variable (H · S)T is in G. The
process H · S is uniquely determined by (H · S)∞.

Proof. If H is workable then there are maximal admissible strategies K and
K ′ such that H = K − K ′. From Theorem 13.2.5 and Corollary 13.2.15 it
follows that there is an equivalent local martingale measure Q ∈ Me such
that both K · S and K ′ · S are Q-uniformly integrable martingales. The rest
is obvious. �

Proposition 13.3.4. Suppose that S is a locally bounded semi-martingale
that satisfies the (NFLVR) property. If g ∈ G satisfies ‖g−‖∞ < ∞, then
g ∈ Kmax.
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Proof. Put L = (H1 − H2), where H1 and H2 are both maximal, and so
that g = (L · S)∞. Since L is acceptable and (L · S)∞ ≥ −‖g−‖∞ we find
by proposition 13.2.13 that L is admissible. For a well-chosen element Q ∈
Me, the process L · S is a uniformly integrable martingale and hence L is
maximal. �

Corollary 13.3.5. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. If V and W are maximal admissible strate-
gies, if ((V − W ) · S)∞ is uniformly bounded from below, then V − W is
admissible and maximal.

Corollary 13.3.6. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. Bounded contingent claims in G are charac-
terised as

G∞ = G ∩ L∞ = Kmax ∩ L∞

= {(H · S)∞ | H · S is bounded} .

Remark 13.3.7. The vector space G∞ should not be mixed up with the cone
K ∩ L∞. As shown in Chap. 9 and [DS 94a], the contingent claim −1 can be
in K but by the no-arbitrage property, the contingent claim +1 cannot be in
K. The vector space G∞ was used in the study of the convex set M(S), see
Chap. 9, [AS 94] and [J 92].

Definition 13.3.8 (Notation). We define the following norm on the space G:

‖g‖ = inf{ a | g = (H1 · S)∞ − (H2 · S)∞ ,

H1, H2 a-admissible and maximal
}

.

The norm on the space G is quite natural and is suggested by its definition.
It is easy to verify that ‖ . ‖ is indeed a norm. We will investigate the relation
of this norm to other norms, e.g. L∞ and L1-norms.

Proposition 13.3.9. Suppose that S is a locally bounded semi-martingale
that satisfies the (NFLVR) property. If g = (H · S)∞ where H is workable
then for every stopping time T , gT = (H · S)T ∈ G and ‖gT ‖ ≤ ‖g‖.

Proof. Follows immediately from the definition and the proof of Corol-
lary 13.2.6 above. �

Proposition 13.3.10. Suppose that S is a locally bounded semi-martingale
that satisfies the (NFLVR) property. If g ∈ G∞ then, as shown above, g ∈
K‖g−‖∞ and −g ∈ K‖g+‖∞ . Hence

‖g‖ ≤ min
(
‖g+‖∞, ‖g−‖∞

)
≤ max

(
‖g+‖∞, ‖g−‖∞

)
= ‖g‖∞ .
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The following lemma is an easy exercise in integration theory and imme-
diately gives the relation with the L1-norm.

Proposition 13.3.11. If f ∈ L1(Ω,F ,Q) for some probability measure Q, if
EQ[f ] = 0, if f = g − h, where both EQ[g] ≤ 0 and EQ[h] ≤ 0, then

‖f‖L1(Q) = 2EQ[f+] = 2 max(EQ[f+],EQ[f−])

≤ 2 max
(
‖g−‖∞, ‖h−‖∞

)
.

Proof. The first line is obvious and shows that the obvious decomposition
f = (f+ − E[f+]) − (f− − E[f−]) is best possible. So let us concentrate on
the last line. If f = g − h then we have the following inequalities:

f + ‖g−‖∞ − ‖h−‖∞ = g + ‖g−‖∞ − (h + ‖h−‖∞)(
f + ‖g−‖∞ − ‖h−‖∞

)+ ≤ g + ‖g−‖∞(
f + ‖g−‖∞ − ‖h−‖∞

)− ≤ h + ‖h−‖∞ .

These inequalities together with EQ[g] ≤ 0 and EQ[h] ≤ 0, imply that

‖f + ‖g−‖∞ − ‖h−‖∞‖L1(Q) ≤ ‖g−‖∞ + ‖h−‖∞ .

It is now easy to see that

‖f‖L1(Q) ≤ ‖g−‖∞ + ‖h−‖∞ +
∣∣‖g−‖∞ − ‖h−‖∞

∣∣
≤ 2 max

(
‖g−‖∞, ‖h−‖∞

)
. �

Corollary 13.3.12. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. If g ∈ G then

2‖g‖ ≥ sup
{
‖g‖L1(Q) | Q ∈M

}
Proof. Take g = (H1 · S)∞ − (H2 · S)∞ ∈ G where H1 and H2 are both
maximal and a-admissible. For every Q ∈ M we have that EQ[(H1 ·S)∞] ≤ 0
and EQ[(H2 · S)∞] ≤ 0. The lemma shows that

‖g‖L1(Q) ≤ 2 max
(
‖(H1 · S)∞‖L1(Q), ‖(H2 · S)∞‖L1(Q)

)
≤ 2a .

By taking the infimum over all decompositions and by taking the supremum
over all elements in M we find the desired inequality. �

The next theorem shows that in some sense there is an optimal decompo-
sition. The proof relies on Theorem 13.2.3 above and on the technical Lemma
9.8.1.

Theorem 13.3.13. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. If g ∈ G then there exist two ‖g‖-admissible
maximal strategies R and U such that g = (R · S)∞ − (U · S)∞.
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Proof. Take a sequence of real numbers such that an ↘ ‖g‖. For each n we
take Hn and Kn maximal and an-admissible such that g = (Hn ·S)∞− (Kn ·
S)∞. From the Theorem 13.2.3 cited above we deduce that there are convex
combinations Vn ∈ conv{Hn, Hn+1, . . .} and Wn ∈ conv{Kn, Kn+1, . . .} such
that (V n · S)∞ → h and (Wn · S)∞ → k. Clearly g = h − k, h ≥ −‖g‖
and k ≥ −‖g‖. However, at this stage we cannot assert that h and/or k are
maximal. Theorem 13.2.3 above, however, allows us to find a maximal strategy
R such that (R · S)∞ ≥ h ≥ −‖g‖. The strategy R −H1 + K1 is acceptable
and satisfies

((R−H1 + K1) · S)∞ = (R · S)∞ − g ≥ h− g = k ≥ −‖g‖ .

From the Proposition 13.2.13 above it follows that U = R − H1 + K1 is
‖g‖-admissible and maximal. By definition of U and R we have that g =
(R · S)∞ − (U · S)∞. �

Corollary 13.3.14. With the notation of the above Theorem 13.3.13: (R ·
S)∞ + ‖g‖ ≥ g+ and (U · S)∞ + ‖g‖ ≥ g−. Hence we find

sup
{
EQ

[
g+
]
| Q ∈ M

}
≤ ‖g‖

sup
{
EQ

[
g−
]
| Q ∈ M

}
≤ ‖g‖ .

Theorem 13.3.15. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. If g ∈ G then

‖g‖ = sup
{
EQ

[
g+
]
| Q ∈M

}
= sup

{
EQ

[
g+
]
| Q ∈ Me

}
= sup

{
EQ

[
g−
]
| Q ∈M

}
= sup

{
EQ

[
g−
]
| Q ∈ Me

}
.

Proof. Put β = sup{EQ [g+] | Q ∈M}, where the random variable g is de-
composed as g = (H1 · S)∞ − (H2 · S)∞ with H1 and H2 maximal. From
Corollary 11.3.5 to Theorem 11.3.4, we recall that there is a maximal strategy
K1 such that g+ ≤ β + (K1 · S)∞, implying that K1 is β-admissible. The
strategy K2 = K1−H1 + H2 is also β-admissible and by Proposition 13.2.13
therefore maximal. Since K1−K2 = H1 −H2 we obtain that ‖g‖ ≤ β. Since
the opposite inequality is already shown in Corollary 13.3.14, we therefore
proved the theorem. �

Remark 13.3.16. If Q is a martingale measure for the process (H1 −H2) · S,
then of course EQ[g+] = EQ[g−]. But not all elements in the set M are
martingale measures for this process and hence the equality of the suprema
does not immediately follow from martingale considerations.

Theorem 13.3.17. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. The norm of the space G is also given by the
formula

2 ‖g‖ = sup{EQ [|g|] | Q ∈ M} = sup{EQ [|g|] | Q ∈Me} .



13.3 The Banach Space Generated by Maximal Contingent Claims 265

Proof. As in the previous result, for a contingent claim g = (H1 ·S)∞− (H2 ·
S)∞ where H1 and H2 are maximal admissible, let us put:

β = sup{EQ [|g|] | Q ∈M}
≤ sup

{
EQ

[
g+
]
| Q ∈M

}
+ sup

{
EQ

[
g−
]
| Q ∈ M

}
= 2 ‖g‖ .

From Chap. 11 it follows that there is a maximal strategy K, such that |g| ≤
β + (K · S)∞. This inequality shows that

β + ((K · S)∞) ≥ (H1 · S)∞ − (H2 · S)∞
β + ((K · S)∞) ≥ (H2 · S)∞ − (H1 · S)∞ .

As in previous result we obtain that K −H1 + H2 and K −H2 + H1 are β-
admissible and maximal. Since 2(H1−H2) = (K−H2+H1)−(K−H1+H2),
we obtain the inequality ‖2 g‖ ≤ β. �

Corollary 13.3.18. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. If g ∈ G, then there is a sequence of elements
Qn ∈Me such that

(1) EQn [g+]→ sup{EQ [g+] | Q ∈ M},
(2) EQn [g−]→ sup{EQ [g−] | Q ∈M},
(3) EQn [|g|]→ sup{EQ [|g|] | Q ∈ M} .

Proof. It suffices to take a sequence that satisfies the third line. �

Remark and Example 13.3.19. For a contingent claim f ∈ Kmax we do
not necessarily have that

‖f‖ = inf {a | f ∈ Ka} .

Indeed take a process S such that there is only one risk neutral measure Q. In
this case the norm on the space G is (half) the L1(Q)-norm. As is well-known
the market is complete (see e.g. Chap. 9) and G =

{
f | f ∈ L1(Q), EQ[f ] = 0

}
.

It follows that Kmax
a =

{
f | f ∈ L1(Q), EQ[f ] = 0, f ≥ −a

}
. This cone may

contain contingent claims with ‖f−‖∞ = a and with arbitrary small L1(Q)-
norm.

This example also shows that the space G, which in this example is a hy-
perplane in L1, can be isomorphic to an L1-space. It also shows that the
cone Kmax is not necessarily closed. Indeed the cone Kmax contains all con-
tingent claims f ∈ L∞ with the property EQ[f ] = 0. This set is dense in
G =

{
f | f ∈ L1(Q), EQ[f ] = 0

}
. However, we have the following result.

Proposition 13.3.20. Suppose that S is a locally bounded semi-martingale
that satisfies the (NFLVR) property. The cones Kmax

a are closed in the space G.
Proof. Take a sequence fn in Kmax

a and tending to f for the norm of G. Since
clearly f ≥ −a, the contingent claim f is the outcome of an admissible and
by Corollary 13.2.19, also of a maximal strategy. �
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13.4 Some Results on the Topology of G
We now show that the space G is complete. This is of course very impor-
tant if one wants to apply the powerful tools of functional analysis. The proof
uses Theorem 13.3.13 and Corollary 13.2.17 above and in fact especially Corol-
lary 13.2.17 suggests that the space is complete. After the proof of the theorem
we will give some examples in order to show what kind of space G can be.

Theorem 13.4.1. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. The space G, ‖ . ‖ is complete, i.e. it is a Ba-
nach space.

Proof. We have to show that each Cauchy sequence converges. This is equiv-
alent to the statement that every series of contingent claims whose norms
form a convergent series, actually converges. So we start with a sequence
(gn)n≥1 in G such that

∑
n≥1 ‖gn‖ < ∞. For each n we take according to

Theorem 13.3.13 above, two ‖gn‖-admissible maximal strategies Hn and Ln

such that gn = (Hn · S)∞ − (Ln · S)∞. Since
∑

n≥1 ‖gn‖ converges, Proposi-
tion 13.2.16 above shows that h =

∑
n≥1(H

n · S)∞ and l =
∑

n≥1(L
n · S)∞

converge and define the maximal contingent claims h and l. Put now g = h−l,
clearly an element of the space G. We still have to show that the series actually
converge to g for the norm defined on G. But this is obvious since

g −
n=N∑
n=1

gn =

(∑
n>N

(Hn · S)∞ −
∑
n>N

(Ln · S)∞

)
and each term on the right hand side defines, according to Corollary 13.2.17,
a maximal contingent claim that is generated by a

∑
n>N ‖gn‖-admissible

strategy. This remainder series tends to zero which completes the proof of the
theorem. �

Theorem 13.4.2. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. If (fn)n≥1 is a sequence that converges in G
to a contingent claim f and if for each n, fn = (Hn · S)∞ with Hn workable,
then there is an element Q ∈Me such that all Hn ·S are uniformly integrable
Q-martingales as well as a workable strategy H such that the martingales
Hn · S converge in L1(Q) to the martingale H · S.

Proof. Take Q ∈ Me such that all (Hn · S)n≥1 are Q-uniformly integrable
martingales. Such a probability exists by Corollary 13.2.18. The rest is obvious
and follows from the inequality ‖g‖ ≥ ‖g‖L1(Q). �

Theorem 13.4.3. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. If (fn)n≥1 is a sequence tending to f in the
space G, then there are maximal admissible contingent claims (gn, hn)n≥1 in
Kmax such that fn = gn − hn and such that gn → g ∈ Kmax, hn → h ∈ Kmax,
both convergences hold for the norm of G.
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Proof. We first show that the statement of the theorem holds for a well-chosen
subsequence (nk)k≥1. Afterwards we will fill in the remaining gaps.

The subsequence nk is chosen so that for all N ≥ nk we have ‖f − fN‖ ≤
2−k−1. It follows that ‖fnk+1 − fnk

‖ ≤ 2−k, for all k. We take, according
to Theorem 13.3.13, contingent claims in Kmax, denoted by (ψk, ϕk)k≥1 such
that

fn1 = ψ1 − ϕ1

fnk+1 − fnk
= ψk − ϕk ,

and such that ψk and ϕk are 2−k-admissible for k ≥ 2. Let gnk
=
∑k

l=1 ψl

and hnk
=
∑k

l=1 ϕl. By Corollary 13.2.17 and the reasoning in the proof of
Theorem 13.4.1, these sequences converge in the norm of G to respectively g
and h. Furthermore fnk

= gnk
− hnk

and hence f = g − h.
We now fill in the gaps ]nk, nk+1[. For nk < n < nk+1 we choose maximal

2−k-admissible contingent claims ρn and σn such that fn− fnk
= ρn−σn. To

complete the proof we just have to check the obvious fact that gn = gnk
+ ρn

and hn = hnk
+ σn satisfy the requirements of the theorem. �

We will now discuss an example that serves as an illustration of what can
go wrong in an incomplete market.

Example 13.4.4. The example is a slight modification of the example presented
in Chap. 10, see also [S 93]. We start with a two-dimensional standard Brown-
ian motion (B, W ), with its natural filtration (Ft)t≥0. For the price process S
we take a stochastic volatility process defined as dSt = (2 + arctan (Wt))dBt.
It is clear that the natural filtration of S is precisely (Ft)t≥0. Furthermore
it is easy to see that the set of stochastic integrals with respect to S is the
same as the set of stochastic integrals with respect to B. We will use this
fact without further notice. We define L = E(B) and Z = E(W ), where E
denotes the stochastic exponential. The stopping times τ and σ are defined
as τ = inf{t | Lt ≤ 1

2} and σ = inf{t | Zt ≥ 2}. The process X is defined as
X = Lτ∧σ. The measure Q is nothing else but dQ = Zτ∧σdP. For the process
X and the measure Q, the following hold:

(1) The process X is continuous, strictly positive, also X∞ > 0 a.s. and X0 =
1, it is a local martingale for P, i.e. P ∈ Me,

(2) under P, the process X is a strict local martingale, i.e. EP[X∞] < 1,
(3) for each t < ∞ the stopped process Xt is a P-uniformly integrable mar-

tingale,
(4) there is an equivalent probability measure Q ∈Me for which X becomes

a Q-uniformly integrable martingale.

Let us now verify some additional features.

Proposition 13.4.5. In the setting of the above example, the space G∞ is not
dense in G. In fact even the closure of L∞ for the norm ‖g‖ = 1

2 sup{‖g‖L1(Q) |
Q ∈Me}, does not contain G as a subset.
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Proof. For each t ≤ ∞ we clearly have that ft = Xt − 1 ∈ G. Suppose now
that the contingent claim f∞ is in the closure of the space L∞ for the norm
‖g‖ = 1

2 sup{‖g‖L1(Q) | Q ∈Me}. For ε = −E[f∞]
4 > 0 we can find g bounded

such that for all Q ∈ Me we have ‖g − f∞‖ ≤ ε. For the measure P we find
EP [|f∞ − g|] ≤ ε and hence for each t ≤ ∞ we have, by taking conditional
expectations,

EP

[∣∣ft −EP [g | Ft]
∣∣] ≤ ε .

In particular, since E[ft] = 0 for each t < ∞, we have EP[g] = E
[
EP[g |

Ft]
]
≥ −ε. This in turn implies that EP[f∞] ≥ −2ε a contradiction to the

choice of ε. �

Theorem 13.4.6. In the setting of the above example, the Banach space G
contains a subspace isometric to �∞. In other words there is an isometry
u: �∞ → G. Moreover u can be chosen such that u(�∞) ⊂ G∞.

Proof. We start with a partition of Ω into a sequence of pairwise disjoint sets,
defined by the process W . More precisely we put A1 = {W1 ∈] −∞, 1]} and
for n ≥ 2 we put An = {W1 ∈]n− 1, n]}. Let M be the stochastic exponential
M = E(B −B1) and let the stopping time T be defined as

T = inf{t |Mt ≥ 2} .

The sequence that we will use to construct the subspace isometric to �∞ is
defined as

fn = 2 (MT − 1)1An .

For each n and each ε > 0 there is a real number α(n, ε) depending only
on ε and n such that the random variable φ(n, ε) = α(n, ε)1Ak

+ ε1⋃
m �=k Am

is strictly positive and defines a density for a measure dQn,ε = φ(n, ε)dP
which is necessarily in Me, since the random variable φ(n, ε) can be written
as a stochastic integral with respect to W . It is clear that Qn,ε[An] ≥ 1 − ε.
This shows that for each n, sup{Q[An] | Q ∈ Me} = 1.

Clearly each fn is a 2-admissible maximal contingent claim. Since for each
measure Q ∈ Me we have Q[fn = 2 | F1] = Q[fn = −2 | F1] = 1

21An we
obtain that ‖fn‖L1(Q) = 2Q(An), hence for the G-norm we find ‖fn‖ = 1.

We now show that for each x ∈ �∞ we can define a contingent claim

u(x) =
∑
k≥1

xkfk ∈ G .

If x = (xk)k≥1 is an element of �∞ and if m is a natural number, we denote
by xm the element defined as xm

k = xk if k ≤ m and xm
k = 0 otherwise. Let us

already put u(xm) =
∑m

k=1 xm
k fk. Now if x is a positive element in �∞ then

the sequence (u(xm))m≥1 is a sequence converging in L1(Q) to a contingent
claim u(x) =

∑∞
k=1 xkfk and this for each Q ∈Me. By Corollary 13.2.19 and
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Theorem 13.2.5, the random variable u(x) is in G. For arbitrary x we split
into the positive and the negative part. This defines a linear mapping from
�∞ into G. For each Q ∈Me we have that u(x) =

∑∞
k=1 xkfk, where the sum

actually converges in L1(Q). Let us now calculate the norm of u(x). For an
arbitrary measure Q ∈Me we find

‖u(x)‖L1(Q) ≤
∫ ∞∑

k=1

|xk| ‖fk‖L1(Q)

and hence we have
‖u(x)‖ ≤ sup

k
|xk| .

Take now for ε > 0 given, an index k such that supk |xk| > ‖x‖∞ − ε. Take
the measure Qk,ε as above.

We find that

‖u(x)‖L1(Qk,ε) ≥
∫

Ak

|u(x)|φ(k, ε) dP

≥ α(k, ε)|xk|2P[Ak] .

Since clearly α(k, ε)P[Ak] ≥ 1− ε we find that

‖u(x)‖L1(Qk,ε) ≥ (‖x‖∞ − ε) 2(1− ε) .

Because ε > 0 was arbitrary we find that

‖u(x)‖ = ‖x‖∞ .

The linear mapping is therefore an isometry. Furthermore it is easily seen that
for each x ∈ �∞ we have u(x) ∈ G∞. �

Theorem 13.4.7. In the setting of the above example, there is a contingent
claim f in G such that for each Q ∈Me we have EQ[f ] = 0, but such that f
is not in the closure of G∞.

Proof. We will make use of the notation and proof of the preceding theorem.
So we take the same sequence (An)n≥1 as above. This time we introduce
stopping times

Tn = inf{t |Mt ≥ n + 1}
and functions

fn = (MTn − 1)1An .

Exactly as in the previous proof one shows that the contingent claim f =∑∞
n=1 fn is in G and has norm 1. Suppose now that h is a bounded variable in

G. We will show that ‖f − h‖ ≥ 1. For each n we take an element Qn ∈ Me

such that Q[An] ≥ 1− 1
n ; such an element surely exists. Because Q[fn = n |

Fn] = 1
n1An we find for n > ‖h‖∞, that
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EQn [(f − h)+] ≥
(

1− 1
n

)
1
n

(n− ‖h‖∞)

≥
(

1− 1
n

)(
1− ‖h‖∞

n

)
.

From Theorem 13.3.17 we can now deduce that the distance of f to G∞ is
precisely equal to 1. �

This completes the discussion of the Example 13.4.4.

Example 13.4.8. This is an example showing that the space G can be one-
dimensional, whereas the set Me remains very big. For this we take a finite
time set [0, 1], and we take Ω = [0, 1] with the Lebesgue measure. For t < 1,
we put Ft equal to the σ-algebra generated by the zero sets with respect to
Lebesgue-measure. For t = 1 we put Ft equal to the σ-algebra of all Lebesgue-
measurable sets. The price process is defined as St = 0 for t < 1 and S1(ω) =
ω − 1

2 . Of course G = span(S1). The set Me is the set {f | f > 0 ,
∫ 1

0
(t −

1
2 )f(t) dt = 0}. This set is big in the sense that it is not relatively weakly
compact in L1[0, 1].

Example 13.4.9. This example shows that the space G can actually be iso-
morphic to an L∞-space. The example is constructed is the same spirit as the
previous one. We take [0, 2] as the time set and Ω = [−1, 1]× [−1, 1] with the
two-dimensional Lebesgue measure. Let g1, respectively g2, be the first and
second coordinate projection defined on Ω. For t < 1 the σ-algebra Ft is the
σ-algebra generated by the zero sets, for 1 ≤ t < 2 we have Ft = σ(F0, g1) and
F2 = σ(F1, g2), which is also the σ-algebra of Lebesgue-measurable subsets
of Ω. The process S is defined as St = 0 for t < 1, St = g1 for 1 ≤ t < 2 and
S2 = g1 + g2. We remark that the filtration is generated by the process S.

Clearly (H · S)2 ∈ G if and only if it is of the form (H · S)2 = αg1 + h g2,
where h is F1-measurable and bounded. This implies that G can be identified
with R × L∞(Ω,F1,P). We will not calculate the norm of the space G, but
instead we will use the closed graph theorem to see that this norm is equivalent
to the norm defined as ‖(α, h)‖ = |α|+ ‖h‖∞. It follows that G is isomorphic
to an L∞-space.

Example 13.4.10. The following example is in the same style as the process S
has exactly one jump. But this time the behaviour of the process S before the
jump is such that the space G is not of L∞-type.

We start with the one-dimensional Brownian motion W , starting at zero
and with its natural filtration (Ht)0≤t≤1. At time t = 1 we add a jump g uni-
formly distributed over the interval [−1, 1] and independent of the Brownian
motion W . So the price process becomes St = Wt for t < 1 and S1 = W1 + g.
The filtration becomes, up to null sets, Ft = Ht for t < 1 and F1 = σ(H1, g).
For simplicity we assume that this process is defined on the probability space
Ω × [−1, +1] where Ω is the trajectory space of Brownian motion, equipped
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with the usual Wiener measure P and where we take the uniform distribution
m on [−1, +1] as the second factor. The measure is therefore P×m.

The set of equivalent local martingales measures can also be characterised.
Since Brownian motion has only one local martingale measure we see that for
each Q ∈ Me and for each t < 1 we have that Q = P on the σ-algebra Ft =
Ht. Therefore also Q = P on H1. From the existence theorem of conditional
distributions, or the desintegration theorem of measures, we then learn that Q
is necessarily of the form Q[dω× dx] = P[dω]µω [dx], where µ is a probability
kernel µ: Ω×B[−1, +1]→ [0, 1], measurable forH1. In order for Q to be a local
martingale measure µ should satisfy

∫
[−1,+1] xµω(dx) = 0 for almost all ω. In

order to be equivalent to P×m, a.s. the measure µω should be equivalent to
m. This can easily be seen by using the density of Q with respect to P×m.

If H is a predictable strategy then it is clear that it is predictable with
respect to the filtration of the Brownian motion. A strategy H is therefore
S-integrable if and only if

∫ 1

0
H2

t dt < ∞ a.s.. It follows that a necessary
condition for a predictable process H to be 1-admissible is H ·W ≥ −1. We
can change the value of H at time 1 without perturbing the integral H ·W .
In order to obtain a characterisation of 1-admissible integrands for S, we only
need a condition on H1 in order to have, in addition, that (H ·S)1 ≥ −1. The
outcome at time 1 is (H ·S)1 = (H ·W )1+H1 g and this is almost surely bigger
than −1 if and only if |H1| ≤ 1+ (H ·W )1 almost surely. If we are looking for
1-admissible maximal contingent claims the condition on H becomes

(1) H ·W is a uniformly integrable martingale for P and f = (H ·W )1 ≥ −1
(2) |H1| ≤ 1 + f .

From this it follows that a random variable k is in G if and only if it is of the
form

k = f1 − f2 + g (h1 − h2)

where

(1) f1, f2, h1, h2 are H1-measurable;
(2) f1, f2 ≥ −a for some positive real number a;
(3) EP[f1] = EP[f2] = 0;
(4) |h1| ≤ a + f1 and |h2| ≤ a + f2.

If we want to find a better description we observe that if f is H1-measurable,
integrable and positive then we can take f1 = f2 = f −EP[f ] and hence the
condition on h1 and h2 becomes |h1| , |h2| ≤ f . It follows that the space G is
the space of all functions k of the form

f + g h

where

EP[f ] = 0 and where h, f are both H1-measurable and integrable.
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The norm on the space G can be calculated using Theorem 13.3.17 above and
using the characterisation of the measures in Me. We find

2‖f + g h‖ = sup
µ

EP

[∫
[−1,+1]

|f + xh|µω(dx)

]
.

For given ω the measure µω(dx) on [−1, +1] that maximises
∫
[−1,+1] |f + xh|

×µω(dx) and that satisfies
∫
[−1,+1] xµω(dx) = 0 is according to balayage ar-

guments (repeated application of Jensen’s inequality) the measure that gives
mass 1

2 to both −1 and +1. This measure does not satisfy the requirements
since it is not equivalent to the measure m on [−1, 1]. But an easy approxi-
mation argument shows nevertheless that

2‖f + g h‖ = EP

[ |f + h|+ |f − h|
2

]
.

This can be rewritten as

2‖f + g h‖ = EP [max(|f | , |h|)] .

This equality shows that G is isomorphic to an L1-space.

13.5 The Value of Maximal Admissible
Contingent Claims on the Set Me

As shown in Example 13.4.4, maximal contingent claims f may have different
expected values for different measures in Me. In Chap. 10 we showed that
under rather general conditions such a phenomenon is generic for incomplete
markets. More precisely we have:

Theorem 13.5.1. (Theorem 10.3.1) Suppose that S is a continuous d-
dimensional semi-martingale with the (NFLVR) property. If there is a contin-
uous local martingale W such that 〈W, S〉 = 0 but d〈W, W 〉 is not singular to
d〈S, S〉, then for each R in Me, there is a maximal contingent claim f ∈ K1

such that ER[f ] < 0.

The preceding theorem brings up the question whether for given f ∈ Kmax,
the set of measures Q ∈ Me such that EQ[f ] = 0 is big.

Theorem 13.5.2. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. If f is a maximal contingent claim i.e. f ∈
Kmax, then the mapping

φ : M(S) −→ R

Q �−→ EQ[f ]
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is lower semi-continuous for the weak topology σ
(
L1(P), L∞(P)

)
. In particu-

lar the set {Q | Q ∈M;EQ[f ] = 0} is a Gδ-set (with respect to the weak and
therefore also for the strong topology) in M. Furthermore this set is convex
and {Q | Q ∈Me;EQ[f ] = 0} is strongly dense in M. In particular as M is
a complete metric space with respect to the strong topology of L1(P), the set
{Q | Q ∈ M;EQ[f ] = 0} is of second category.

Proof. The lower semi-continuity is a consequence of Fatou’s lemma and the
fact that for convex sets weak and strong closedness are equivalent.

The convexity follows from EQ[f ] ≤ 0 for every Q ∈M.
By the convexity of the set {Q | Q ∈ Me;EQ[f ] = 0}, it only remains to

be shown that the set {Q | Q ∈ Me;EQ[f ] = 0} is norm dense in Me, the
latter being norm dense in M.

Take Q0 ∈ Me such that EQ0 [f ] = 0. Since f is maximal such a measure
exists. Since f is maximal there is a strategy H such that H · S is a Q0-
uniformly integrable martingale and such that f = (H ·S)∞. We may suppose
that the process V = 1 + H · S remains bounded away from zero.

Take now Q ∈Me and let Z be the càdlàg martingale defined by

Zt = E
[

dQ
dQ0

∣∣∣∣ Ft

]
.

For each n, a natural number, we define the stopping time

Tn = inf{t | Zt > n} .

Clearly the process V Z is a Q0-local martingale and being positive it is
a super-martingale. Therefore we have that VTnZTn is in L1(Q0). It follows
that (V Z)Tn ≤ nV +VTnZTn and hence the process (V Z)Tn is a uniformly in-
tegrable martingale. Therefore EQ0 [VTnZTn ] = 1 and the measure Qn defined
as dQn = ZTndQ0 satisfies EQn [VTn ] = 1. Since EQn [V∞] = EQn [VTn ] = 1
we clearly have Qn ∈ {R | R ∈ Me;ER[f ] = 0}. Since Qn tends to Q in the
L1-norm, the proof of the theorem is completed. �

Corollary 13.5.3. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. If V is a separable subspace of G, then the
convex set

{Q | Q ∈Me;EQ[f ] = 0 for all f ∈ V}
is dense in M with respect to the norm topology of L1(Ω,F ,P).

Proof. We may and do suppose that there is sequence of maximal contingent
claims in V , (fn)n≥1 such that the sequence {fn−fm | n ≥ 1; m ≥ 1} is dense
in V , occasionally we enlarge the space V . Obviously

{Q | Q ∈M;EQ[f ] = 0 for all f ∈ V}
= {Q | Q ∈ M;EQ[fn] = 0 for all n ≥ 1} .
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For each n the set {Q | Q ∈ M;EQ[fn] = 0} is a norm dense and (for the
norm topology) a Gδ-set inM. SinceM is a complete space for the L1-norm,
we may apply Baire’s category theorem. Therefore the intersection over all n,
{Q | Q ∈ M; for all n: EQ[fn] = 0} is still a dense Gδ-set of M. Because,
by corollary 13.2.18, the set {Q | Q ∈ Me; for all n: EQ[fn] = 0} is non-
empty, an easy argument using convex combinations yields that {Q | Q ∈
Me;EQ[f ] = 0 for all f ∈ V} is dense in M. �

Corollary 13.5.4. If S is a continuous d-dimensional semi-martingale with
the (NFLVR) property, if there is a continuous local martingale W such that
〈W, S〉 = 0 but d〈W, W 〉 is not singular to d〈S, S〉, then G is not a separable
space.

Proof. This follows from the previous corollary and from Theorem 13.5.1
above. �

13.6 The Space G under a Numéraire Change

If we change the numéraire, e.g. we change from one reference currency to
another, what will happen with the space G? Referring to Chap. 11 and espe-
cially the proofs of Theorem 11.4.2 and 11.4.4 therein, we expect that there
is an obvious transformation which should be the mathematical translation
of the change of currency. More precisely we want the contingent claims of
G to be multiplied with the exchange ratio between the two currencies. This
section will give some precise information on this problem.

We start with the investigation of how the set of equivalent martingale
measures is changed.

Suppose that V is a strictly positive process of the form V = H ·S+1 where
1 + (H · S)∞ is strictly positive and where (H · S)∞ is maximal admissible.
Suppose also that the process 1

V is locally bounded. This hypothesis allows
us to use, without restriction, the theory developed so far. With each element
R of M(S) we asssociate the measure R̃ defined by dR̃ = V∞dR. Of course
this measure is not a probability measure since we do not necessarily have
that ER[V∞] = 1. But from Theorem 13.5.2 above it follows, however, that
the set G = {Q ∈M(S) | EQ[V∞] = 1} is a dense Gδ-set of M(S). Likewise

the set G̃ =
{
Q̃ ∈M

(
S
V , 1

V

) ∣∣∣EQ̃

[
1

V∞

]
= 1
}

is a dense Gδ-set of M
(

S
V , 1

V

)
.

The following theorem is obvious.

Theorem 13.6.1. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. With the above notations, the relation dR̃ =
V∞dR, defines a bijection between the sets G and G̃.

In the following theorem we make use of the notation introduced in The-
orem 13.3.2. The space G(S) is the space of workable contingent claims that
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is constructed with the d-dimensional process S, the space G
(

S
V , 1

V

)
is the

space of workable contingent claims constructed with the (d + 1)-dimensional
process

(
S
V , 1

V

)
.

Theorem 13.6.2. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. Suppose that V is a strictly positive process
of the form V = H · S + 1 where 1 + (H · S)∞ is strictly positive and where
(H ·S)∞ is maximal admissible. Suppose that the process 1

V is locally bounded.
The mapping

ϕ : G(S) −→ G( S
V , 1

V )
g �−→ g

V∞

defines an isometry between G(S) = G(S, 1) and G( S
V , 1

V ).

Proof. Suppose V = H · S + 1 where 1 + (H · S)∞ is strictly positive and
where (H · S)∞ is maximal admissible. Take an admissible, with respect to
the process S, strategy K. The process K·S

V is the outcome of the strategy
K ′ = (K, (K · S)− −KS−), see also the Remark 13.2.10 above and Chap. 11.
From Theorem 13.2.5 above it follows that there is an element Q ∈Me such
that EQ[(K · S)∞] = 0 and such that EQ[V∞] = 1. The measure Q̃ defined
as dQ̃ = V∞ dQ is therefore an element of M

(
S
V , 1

V

)
such that EQ̃[K·S

V∞
] = 0.

It follows that the contingent claim 1
V∞
− 1 is maximal and admissible for the

process
(

S
V , 1

V

)
and hence the contingent claim K·S

V∞ is workable. It follows
that the mapping ϕ maps Kmax, and hence also G(S), into G

(
S
V , 1

V

)
.

If we apply the numéraire 1
V to the system

(
S
V , 1

V

)
we find the (d + 1)-

dimensional process (S, V ). However, because V is given by a stochastic in-
tegral with respect to S, we have that G(S, V ) = G(S). It follows that the
mapping that associates with each element k ∈ G

(
S
V , 1

V

)
, the element kV∞

maps G
(

S
V , 1

V

)
into G(S). The mapping ϕ is clearly bijective.

Let G ={Q ∈M(S) |EQ[V∞]=1} and G̃ ={Q̃ ∈M( S
V , 1

V ) |EQ̃[ 1
V∞

]=1}.
Since both sets are dense in, respectively, M(S) and M

(
S
V , 1

V

)
, it is clear

that for every element g ∈ G(S),

2‖g‖ = sup{EQ[|g|] | Q ∈ M(S)}
= sup{EQ[|g|] | Q ∈ G}

= sup
{
EQ̃

[ |g|
V∞

] ∣∣∣∣ Q̃ ∈ G̃

}
= sup

{
EQ̃

[ |g|
V∞

] ∣∣∣∣ Q̃ ∈ M(
S

V
,

1
V

)}
= 2
∥∥∥∥ g

V∞

∥∥∥∥ .

This shows that ϕ is also an isometry. �
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Remark 13.6.3. The previous theorem shows that G is a numéraire invariant
space provided we only accept numéraire changes induced by maximal admis-
sible contingent claims.

13.7 The Closure of G∞ and Related Problems

In this section we will study the contingent claims of Kmax that are in the
closure of G∞. The characterisation is done using either uniform convergence
over the set Me or using the set Mba. Before we start the program, we first
recall some notions from integration theory with respect to finitely additive
measures; we refer to Dunford-Schwartz [DS 58] for details.

Let µ be a finitely additive measure that is in ba(Ω,F ,P). A measurable
function f (we continue to identify functions that are equal P-a.s.), defined
on Ω is called µ-measurable if for each ε > 0 there is a bounded measurable
function g such that µ{ω | |f(ω) − g(ω)| > ε} < ε. The reader can check
that since F is a σ-algebra, this definition coincides with [DS 58, Definition
10]. We say that a µ-measurable function f is µ-integrable if and only if there
is sequence (gn)n≥1 of bounded measurable functions such that gn converges
in µ-measure to f and such that Eµ[|gn − gm|] tends to zero if n, m tend to
∞. In this case one defines Eµ[f ] = limn→∞ Eµ[gn] as the µ-integral Eµ[f ]
of f . In case f is bounded from below the µ-integrability of f implies via the
dominated convergence theorem, valid also for finitely additive measures, that
E[f − f ∧ n] tends to zero as n tends to ∞. Contingent claims g of G∞ are
µ-integrable for all µ ∈ Mba and moreover we trivially have Eµ[g] = 0 since
EQ[g] = 0 for all Q ∈Me.

Proposition 13.7.1. Suppose that S is a locally bounded semi-martingale
that satisfies the (NFLVR) property. If f ∈ Kmax and µ ∈ Mba, then f is
µ-integrable and Eµ[f ] ≤ 0. Also µ[f ≥ n] ≤ 4‖f‖

n , a uniform bound over
µ ∈ Mba. In particular for each µ ∈ Mba and each f ∈ Kmax we find that
f ∧ n tends to f in µ-measure and Eµ[f ∧ n] tends to Eµ[f ] as n tends to
infinity.

Proof. We only have to prove the statement for contingent claims f that
are 1-admissible and maximal. So suppose that f is such a contingent claim.
By the optional stopping theorem, or by the maximal inequality for super-
martingales, we find that for all Q ∈ Me, we have that Q[f ≥ n] ≤ 1

n .
The set Me is σ(ba, L∞)-dense in Mba (see Remark 9.5.10), hence we obtain
that µ[f ≥ n] ≤ 1

n for all n. Since µ[f − f ∧ n > 0] ≤ µ[f ≥ n] ≤ 1
n ,

the measurability follows for functions f that are 1-admissible and maximal.
The general case follows by splitting f as f = g − h where each g and h are
‖f‖-admissible and by the fact that {|f | > n} ⊂ {|g| > n

2 } ∪ {|h| > n
2 }.

To see that for µ ∈ Mba, the integral Eµ[f ] exists and is negative, let us
first observe that for all n and all Q ∈Me we have that EQ[f ∧ n] ≤ 0. This
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implies that for all n, necessarily, Eµ[f ∧ n] ≤ 0. The sequence Eµ[f ∧ n] is
increasing and bounded above, so it converges and since f ∧ n tends to f in
µ-measure the limn→∞ Eµ[f ∧ n] is necessarily the integral of f with respect
to µ. It follows that also Eµ[f ] ≤ 0. �

In the same style we can prove that f ∈ Kmax is the limit of a sequence
obtained by stopping. If f is of the form f = (H · S)∞ for some S-integrable
admissible process H , let for n ≥ 1:

Tn = inf{t | (H · S)t > n} .

Proposition 13.7.2. Suppose that S is a locally bounded semi-martingale
that satisfies the (NFLVR) property. If f is 1-admissible and maximal and
if µ ∈Mba, then fTn tends to f in µ-measure.

Proof. Simply remark that for each Q ∈Me, we have Q[Tn <∞] ≤ 1
n . �

Theorem 13.7.3. Suppose that S is a locally bounded semi-martingale that
satisfies the (NFLVR) property. If f is in the closure G∞ of G, then Eµ[f ] = 0
for each µ ∈ Mba.

Proof. Take (fn)n≥1 a sequence of bounded contingent claims in G that tends
to f for the topology of G. This means that sup{‖f − fn‖L1(Q) | Q ∈ Me}
tends to zero. In particular the sequence (fn)n≥1 is a Cauchy sequence in G
and hence for all µ ∈ Mba we have that Eµ[|fn − fm|] tends to zero as n, m
tend to infinity. Since, as easily seen, the sequence (fn)n≥1 tends to f in µ-
measure, we obtain that f is µ-integrable and Eµ[f ] = limn→∞ Eµ[fn] = 0. �

Proposition 13.7.4. Suppose that S is a locally bounded semi-martingale
that satisfies the (NFLVR) property. Suppose f ∈ Kmax and f = (H ·S)∞ for
a maximal strategy H. If for each µ ∈ Mba the function f satisfies Eµ[f ] = 0,
then for each stopping time T and each µ ∈ Mba, the function fT is µ-
integrable and satisfies Eµ[fT ] = 0.

Proof. We already showed that fT is in G and hence is µ-integrable for all
µ ∈ Mba and that Eµ[fT ] ≤ 0 for all µ in Mba.

Let us prove the opposite inequality. The sequence Eµ[f ∧n] of continuous
functions on Mba tends increasingly to 0. As follows from Dini’s theorem, we
have that for each δ > 0 there is a number n such that EQ[f ∧ n] > −δ for
all Q ∈ Me. But for each Q ∈ Me we have that EQ[f | FT ] = fT and hence
that EQ[f ∧ n | FT ] ≤ fT ∧ n. This implies that for all Q ∈ Me and for all n
large enough, we have EQ[fT ∧n] > −δ. We therefore obtain that Eµ[fT ] ≥ 0.
Since the converse inequality was already shown we obtain Eµ[fT ] = 0. �

The converse of Theorem 13.7.3 is less trivial and we need the extra as-
sumption that S is continuous.
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Theorem 13.7.5. Suppose that S is continuous and satisfies the (NFLVR)
property. Suppose that f ∈ Kmax and suppose also that for each µ ∈ Mba we
have Eµ[f ] = 0, then f ∈ G∞.

Proof. Let H be a maximal acceptable strategy such that (H · S)∞ = f . For
each n ≥ 1 put Tn = inf{t | |(H · S)t| > n} which is the first time the process
H · S exits the interval [−n, +n]. Clearly fn = (H · S)Tn defines a sequence
in G∞ and we will show that fn tends to f in the topology of G. Because
−Eµ[f ∧ n] tends decreasingly to 0 for n tending to infinity we infer from
Dini’s theorem and Theorem 13.5.2 that inf{Eµ[f ∧ n] | µ ∈ Mba} tends
to zero. It follows that sup{EQ[f − f ∧ n] | Q ∈ Me} tends to zero as n
tends to infinity. Because (f − fn)+ = (f − n)+ = (f − f ∧ n) we see that
also sup{EQ[(f − fn)+] | Q ∈ Me} tends to zero as n tends to infinity. By
Theorem 13.3.15 this means that fn tends to f for the norm on G. �

Remark 13.7.6. The continuity assumption was only needed to obtain bounded
contingent claims and could be replaced by the assumption that the jumps of
H · S were bounded.

Example 13.7.7 (Addendum). In the following corollary we use the same no-
tation as in Sect. 13.4, Example 13.4.4 and Theorem 13.4.7. Recall that the
contingent claim f =

∑∞
n=1 fn satisfies EQ[f ] = 0 for all Q ∈M.

Corollary 13.7.8. The function f =
∑∞

n=1 fn is in Kmax but its integral with
respect to µ ∈ Mba is not always zero.

Proof. Indeed if it were, then f would be in G∞. �
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The Fundamental Theorem of Asset Pricing
for Unbounded Stochastic Processes (1998)

14.1 Introduction

The topic of the present paper is the statement and proof of the subsequent
Fundamental Theorem of Asset Pricing in a general version for not necessarily
locally bounded semi-martingales :

Main Theorem 14.1.1. Let S = (St)t∈R + be an Rd-valued semi-martingale
defined on the stochastic base (Ω,F , (Ft)t∈R + ,P).

Then S satisfies the condition of no free lunch with vanishing risk if and
only if there exists a probability measure Q ∼ P such that S is a sigma-
martingale with respect to Q.

This theorem has been proved under the additional assumption that the
process S is locally bounded in Chap. 9. Under this additional assumption
one may replace the term “sigma-martingale” above by the term “local mar-
tingale”.

We refer to Chap. 9 for the history of this theorem, which goes back to
the seminal work of Harrison, Kreps and Pliska ([HK 79], [HP81], [K 81])
and which is of central importance in the applications of stochastic calculus
to Mathematical Finance. We also refer to Chap. 9 for the definition of the
concept of no free lunch with vanishing risk which is a mild strengthening of
the concept of no-arbitrage.

On the other hand, to the best of our knowledge, the second central concept
in the above theorem, the notion of a sigma-martingale (see Definition 14.2.1
below) has not been considered previously in the context of Mathematical
Finance. In a way, this is surprising, as we shall see in Remark 14.2.4 that
this concept is very well-suited for the applications in Mathematical Finance,
where one is interested not so much in the process S itself but rather in
the family (H · S) of stochastic integrals on the process S, where H runs

[DS 98] The Fundamental Theorem of Asset Pricing for Unbounded Stochastic
Processes. Mathematische Annalen, vol 312, pp. 215–250, (1998).



280 14 The FTAP for Unbounded Stochastic Processes

through the S-integrable predictable processes satisfying a suitable admissi-
bility condition (see [HP 81], Chap. 9 and Sections 14.4 and 14.5 below). The
concept of sigma-martingales, which relates to martingales similarly as sigma-
finite measures relate to finite measures, has been introduced by C.S. Chou
and M. Émery ([C 77], [E 80]) under the name “semi-martingales de la classe
(Σm)”. We shall show in Sect. 14.2 below (in particular in Example 14.2.3)
that this concept is indeed natural and unavoidable in our context if we con-
sider processes S with unbounded jumps.

The paper is organised as follows: In Sect. 14.2 we recall the definition
and basic properties of sigma-martingales. In Sect. 14.3 we present the idea
of the proof of the main theorem by considering the (very) special case of
a two-step process S = (S0, S1) = (St)1t=0. This presentation is mainly for
expository reasons in order to present the basic idea without burying it under
the technicalities needed for the proof in the general case. But, of course,
the consideration of the two-step case only yields the (n + 1)’th proof of the
Dalang-Morton-Willinger theorem [DMW 90], i.e., the fundamental theorem
of asset pricing in finite discrete time (for alternative proofs see [S 92], [KK94],
[R 94]). We end Sect. 14.3 by isolating in Lemma 14.3.5 the basic idea of our
approach in an abstract setting.

Sect. 14.4 is devoted to the proof of the main theorem in full generality.
We shall use the notion of the jump measure associated to a stochastic process
and its compensator as presented, e.g., in [JS 87].

Sect. 14.5 is devoted to a generalisation of the duality results obtained
in Chap. 11. These results are then used to identify the hedgeable elements
as maximal elements in the cone of w-admissible outcomes. The concept of
w-admissible integrand is a natural generalisation to the non- locally bounded
case of the previously used concept of admissible integrand.

In [K 97] Y.M. Kabanov also presents a proof of our main theorem. This
proof is based on Chap. 9 and the ideas of the present paper, but the technical
aspects are worked out in a different way.

For unexplained notation and for further background on the main theorem
we refer to Chap. 9.

14.2 Sigma-martingales

In this section we recall a concept which has been introduced by C.S. Chou
[C 77] and M. Émery [E 80] under the name “semi-martingales de la classe
(Σm)”. This notion will play a central role in the present context. We take
the liberty to baptize this notion as “sigma-martingales”. We choose this name
as the relation between martingales and sigma-martingales is somewhat anal-
ogous to the relation between finite and sigma-finite measures (compare [E 80,
Proposition 2]). Other researchers prefer the name martingale transform.
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Definition 14.2.1. An Rd-valued semi-martingale X = (Xt)t≥0 is called
a sigma-martingale if there exists an Rd-valued martingale M and an M -
integrable predictable R+-valued process ϕ such that X = ϕ ·M .

We refer to [E 80, Proposition 2] for several equivalent reformulations of
this definition and we now essentially reproduce the basic example given by
M. Émery [E 80, p. 152] which highlights the difference between the notion of
a martingale (or, more generally, a local martingale) and a sigma-martingale.

Example 14.2.2 ([E 80]). A sigma-martingale which is not a local martingale.
Let the stochastic base (Ω,F ,P) be such that there are two independent

stopping times T and U defined on it, both having an exponential distribution
with parameter 1.

Define M by

Mt =

⎧⎨⎩0 for t < T ∧ U
1 for t ≥ T ∧ U and T = T ∧ U
−1 for t ≥ T ∧ U and U = T ∧ U.

It is easy to verify that M is almost surely well-defined and is indeed
a martingale with respect to the filtration (Ft)t∈R + generated by M . The
deterministic (and therefore predictable) process ϕt = 1

t is M -integrable (in
the sense of Stieltjes) and X = ϕ ·M is well-defined:

Xt =

⎧⎨⎩0 for t < T ∧ U
1

T∧U for t ≥ T ∧ U and T = T ∧ U
− 1

T∧U for t ≥ T ∧ U and U = T ∧ U.

But X fails to be a martingale as E [|Xt|] = ∞, for all t > 0, and it
is not hard to see that X also fails to be a local martingale (see [E 80]), as
E [|XT |] = ∞ for each stopping time T that is not identically zero. But, of
course, X is a sigma-martingale. �

We shall be interested in the class of semi-martingales S which admit an
equivalent measure under which they are a sigma-martingale. We shall present
an example of an R2-valued process S which admits an equivalent sigma-
martingale measure (which in fact is unique) but which does not admit an
equivalent local martingale measure. This example will be a slight extension
of Émery’s example.

The reader should note that in Émery’s Example 14.2.2 above one may
replace the measure P by an equivalent measure Q such that X is a true
martingale under Q. For example, choose Q such that under this new measure
T and U are independent and distributed according to a law µ on R+ such that
µ is equivalent to the exponential law (i.e., equivalent to Lebesgue-measure
on R+) and such that Eµ

[
1
t

]
<∞.
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Example 14.2.3. A sigma-martingale S which does not admit an equivalent
local martingale measure.

With the notation of the above example define the R2-valued process S =
(S1, S2) by letting S1 = X and S2 the compensated jump at time T ∧ U i.e.,

S2
t =

{
−2t for t < T ∧ U
1− 2(T ∧ U) for t ≥ T ∧ U.

(Observe that T ∧ U is exponentially distributed with parameter 2).
Clearly S2 is a martingale with respect to the filtration (Ft)t∈R + generated

by S.
Denoting by (Gt)t∈R + the filtration generated by S2, it is a well-known

property of the Poisson-process (see, [J 79, p. 347]) that on G the restriction of
P to G =

∨
t∈R +

Gt is the unique probability measure equivalent to P under
which S2 is a martingale. It follows that P is the only probability measure
on F =

∨
t∈R +

Ft equivalent to P under which S = (S1, S2) is a sigma-
martingale.

As S fails to be a local martingale under P (its first coordinate fails to be
so) we have exhibited a sigma-martingale for which there does not exist an
equivalent martingale measure. �

Remark 14.2.4. In the applications to Mathematical Finance and in particu-
lar in the context of pricing and hedging derivative securities by no-arbitrage
arguments the object of central interest is the set of stochastic integrals H ·S
on a given stock price process S, where H runs through the S-integrable pre-
dictable processes such that the process H · S satisfies appropriate regularity
condition. In the present context this regularity condition is the admissibility
condition H ·S ≥ −M for some M ∈ R+ (see [HP 81], Chap. 9 and Sect. 14.4
below). In different contexts one might impose an Lp(P)-boundedness con-
dition on the stochastic integral H · S (see, e.g., [K 81], [DH 86], [Str 90],
[DMSSS 97]). In Sect. 14.5, we shall deal with a different notion of admis-
sibility, which is adjusted to the case of big jumps.

Now make the trivial (but nevertheless crucial) observation: passing from
S to ϕ ·S, where ϕ is a strictly positive S-integrable predictable process, does
not change the set of stochastic integrals. Indeed, we may write

H · S = (Hϕ−1) · (ϕ · S)

and, of course, the predictable Rd-valued process H is S-integrable iff Hϕ−1

is ϕ · S-integrable.
The moral of this observation: when we are interested only in the set of

stochastic integrals H ·S the requirement that S is a sigma-martingale is just
as good as the requirement that S is a true martingale.

We end this section with two observations which are similar to the results
in [E 80]. The first one stresses the distinction between the notions of a local
martingale and a sigma-martingale.
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Proposition 14.2.5. For a semi-martingale X the following assertions are
equivalent.

(i) X is a local martingale.
(ii) X = ϕ ·M where the M -integrable, predictable R+-valued process ϕ is

increasing and M is a local martingale.
(ii’) X = ϕ ·M where the M -integrable, predictable R+-valued process ϕ is

locally bounded and M is a local martingale.
(iii) X = ϕ ·M where the M -integrable, predictable R+-valued process ϕ is

increasing and M is a martingale.
(iii’) X = ϕ ·M where the M -integrable, predictable R+-valued process ϕ is

locally bounded and M is a martingale.
(iv) X = ϕ ·M where the M -integrable, predictable R+-valued process ϕ is

increasing and M is a martingale in H1.
(iv’) X = ϕ ·M where the M -integrable, predictable R+-valued process ϕ is

locally bounded and M is a martingale in H1.

We will not prove this proposition as its proof is similar to the proof of
the next proposition.

Proposition 14.2.6. For a semi-martingale X the following are equivalent

(i) X is a sigma-martingale.
(ii) X = ϕ ·M where the M -integrable, predictable R+-valued process ϕ is

strictly positive and M is a local martingale.
(iii) X = ϕ ·M where the M -integrable, predictable R+-valued process ϕ is

strictly positive and M is a martingale.
(iv) X = ϕ ·M where the M -integrable, predictable R+-valued process ϕ is

strictly positive and M is a martingale in H1.

Proof. Since (iv) implies (iii) implies (ii), and since obviously (i) is equivalent to
(iii), we only have to prove that (ii) implies (iv). So suppose that there is a local
martingale M as well as a non-negative M -integrable predictable process ϕ
such that X = ϕ ·M . Let (Tn)n≥1 be a sequence that localises M in the sense
that Tn is increasing, tends to ∞ and for each n, MTn is in H1. Put T0 = 0
and for n ≥ 1, define Nn as the H1-martingale Nn = (ϕ1]]Tn−1,Tn]]) ·MTn .
Let now N =

∑
n≥1 an Nn, where the strictly positive sequence an is chosen

such that
∑

an ‖Nn‖H1 < ∞. The process N is an H1-martingale. We now
put ψ = 1{ϕ=0} +ϕ

∑
n a−1

n 1]]Tn−1,Tn]]. It is easy to check that X = ψ ·N and
that ψ is strictly positive. �

Corollary 14.2.7. A local sigma-martingale is a sigma-martingale. More pre-
cisely, if X is a semi-martingale and if (Tk)k≥1 is an increasing sequence of
stopping times, tending to ∞ such that each stopped process XTk is a sigma-
martingale, then X itself is a sigma-martingale.
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Proof. For each k take ϕk, XTk integrable such that ϕk > 0 on [[0, Tk]], ϕk ·XTk

is a uniformly integrable martingale and ‖ϕk ·XTk‖H1 < 2−k. Put T0 = 0 and
ϕ0 = ϕ11[[0]]. It is now obvious that ϕ = ϕ0 +

∑
k≥1 ϕk1]]Tk−1,Tk]] is strictly

positive, is X-integrable and is such that ϕ ·X is an H1-martingale. �

14.3 One-period Processes

In this section we shall present the basic idea of the proof of the main theorem
in the easy context of a process consisting only of one jump. Let S0 ≡ 0 and
S1 ∈ L0(Ω,F ,P; Rd) be given and consider the stochastic process S = (St)1t=0;
as filtration we choose (Ft)1t=0 where F1 = F and F0 is some sub-σ-algebra
of F . At a first stage we shall in addition make the simplifying assumption
that F0 is trivial, i.e., consists only of null-sets and their complements. In this
setting the definition of the no-arbitrage condition (NA) (see [DMW 90] or
Chap. 9) for the process S boils down to the requirement that, for x ∈ Rd,
the condition (x, S) ≥ 0 a.s. implies that (x, S) = 0 a.s., where ( . , . ) denotes
the inner product in Rd.

From the theorem of Dalang-Morton-Willinger [DMW 90] we deduce that
the no-arbitrage condition (NA) implies the existence of an equivalent martin-
gale measure for S, i.e., a measure Q on (Ω,F),Q ∼ P, such that EQ [S1] = 0.

By now there are several alternative proofs of the Dalang-Morton-Wil-
linger theorem known in the literature ([S 92], [KK94], [R 94]) and we shall
present yet another proof of this theorem in the subsequent lines. While some
of the known proofs are very elegant (e.g., [R 94]) our subsequent proof is
rather clumsy and heavy. But it is this method which will be extensible to
the general setting of an Rd-valued (not necessarily locally bounded) semi-
martingale and will allow us to prove the main theorem in full generality.

Let us fix some notation: by Adm we denote the convex cone of admissible
elements of Rd which consists of those x ∈ Rd such that the random variable
(x, S1) is (almost surely) uniformly bounded from below.

By K we denote the convex cone in L0(Ω,F ,P) formed by the admissible
stochastic integrals on the process S, i.e.,

K = {(x, S1) | x ∈ Adm}

and we denote by C the convex cone in L∞(Ω,F ,P) formed by the uniformly
bounded random variables dominated by some element of K, i.e.,

C = (K − L0
+(Ω,F ,P)) ∩ L∞(Ω,F ,P)

= {f ∈ L∞(Ω,F ,P) | there is g ∈ K, f ≤ g} .

Under the assumption that S satisfies (NA), i.e. K ∩ L0
+ = {0}, we want to

find an equivalent martingale measure Q for the process S. The first argu-
ment is well-known in the present context (compare [S 92] and Theorem 14.4.1
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below for a general version of this result; we refer to [S 94] for an account on
the history of this result, in particular on the work of J.A. Yan [Y 80] and
D. Kreps [K 81]):

Lemma 14.3.1. If S satisfies (NA) the convex cone C is weak-star-closed
in L∞(Ω,F ,P), and C ∩ L∞

+ (Ω,F ,P) = {0}. Therefore the Hahn-Banach
theorem implies that there is a probability measure Q1 on F ,Q1 ∼ P such
that

EQ1 [f ] ≤ 0 , for f ∈ C.

In the case, when S1 is uniformly bounded, the measure Q1 is already the
desired equivalent martingale measure. Indeed, in this case the cone Adm of
admissible elements is the entire space Rd and therefore

EQ1 [(x, S1)] ≤ 0 , for x ∈ Rd ,

which implies that

EQ1 [(x, S1)] = 0 , for x ∈ Rd ,

whence EQ1 [S] = 0.
But if Adm is only a sub-cone of Rd (possibly reduced to {0}), we can only

say much less: first of all, S1 need not be Q1-integrable. But even assuming
that EQ1 [S1] exists we cannot assert that this value equals zero; we can only
assert that

(x,EQ1 [S1]) = EQ1 [(x, S1)] ≤ 0 , for x ∈ Adm ,

which means that EQ1 [S1] lies in the cone Adm◦ polar to Adm, i.e.,

EQ1 [S1] ∈ Adm◦ = {y ∈ Rd | (x, y) ≤ 1 , for x ∈ Adm}
= {y ∈ Rd | (x, y) ≤ 0 , for x ∈ Adm} .

The next lemma will imply that, by passing from Q1 to an equivalent prob-
ability measure Q with distance ‖Q−Q1‖ in total variation norm less than
ε > 0, we may remedy both possible defects of Q1: under Q the expectation
of S1 is well-defined and it equals zero.

The idea for the proof of this lemma goes back in the special case d = 1
and Adm = {0} to the work of D. McBeth [MB 91].

Lemma 14.3.2. Let Q1 be a probability measure as in Lemma 14.3.1 and
ε > 0. Denote by B the set of barycenters

B = {EQ [S1] | Q probability on F ,Q ∼ P, ‖Q−Q1‖ < ε ,

and S1 is Q-integrable} .

Then B is a convex subset of Rd containing 0 in its relative interior. In
particular, there is Q ∼ Q1, ‖Q−Q1‖ < ε, such that EQ [S1] = 0.
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Proof. Clearly B is convex. Let us also remark that it is non-empty. To see
this let us take δ > 0 and let us define dQ

dQ1
= exp(−δ‖S1‖)

EQ1 [exp(−δ‖S1‖)] . Clearly S1 is
Q-integrable and from Lebesgue’s dominated convergence theorem we deduce
that for δ small enough ‖Q−Q1‖ < ε.

If 0 were not in the relative interior of B we could find by the Minkowski
separation theorem, an element x ∈ Rd, such that B is contained in the
halfspace Hx = {y ∈ Rd | (x, y) ≥ 0} and such that (x, y) > 0 for some y ∈ B.
In order to obtain a contradiction we distinguish two cases:
Case 1: x fails to be admissible, i.e., (x, S1) fails to be (essentially) uniformly
bounded from below.

First find, as above, a probability measure Q2 ∼ P, ‖Q1 −Q2‖ < ε
2 and

such that EQ2 [S1] is well-defined.
By assumption the random variable (x, S1) is not (essentially) uniformly

bounded from below, i.e., for M ∈ R+, the set

ΩM = {ω | (x, S1(ω)) < −M}

has strictly positive Q2-measure. For M ∈ R+ define the measure QM by

dQM

dQ2
=
{

1− ε
4 on Ω \ ΩM

1− ε
4 + ε

4Q2(ΩM ) on ΩM .

It is straightforward to verify that QM is a probability measure, QM ∼ P,

‖QM −Q2‖ < ε
2 , dQM

dQ2
∈ L∞ and that

(x,EQM [S1]) = EQM

[
(x, S1)

]
≤
(
1− ε

4

)
EQ2 [(x, S1)]−

εM

4
.

For M > 0 big enough the right hand side becomes negative which gives the
desired contradiction.
Case 2: x is admissible, i.e., (x, S1) is (essentially) uniformly bounded from
below.

In this case we know from the Beppo-Levi theorem that the random vari-
able (x, S1) is Q1-integrable and that EQ1 [(x, S1)] ≤ 0; (note that, for each
M ∈ R+, we have that (x, S1)∧M is in C and therefore EQ1 [(x, S1) ∧M ] ≤
0).

Also note that (x, S1) cannot be equal to 0 a.s., because as we saw above
there is a y ∈ B such that (x, y) > 0 and hence (x, S1) cannot equal zero a.s.
either. The no-arbitrage property then tells us that Q1[(x, S1) > 0] as well as
Q1[(x, S) < 0] are both strictly positive.

We next observe that for all η > 0 the variable exp (η(x, S1)−) is bounded.

The measure Q2, given by dQ2
dQ1

=
exp(η(x,S1)

−)
EQ1 [exp(η(x,S1)−)] is therefore well-defined.

For η small enough we also have that ‖Q2 −Q1‖ < ε. But Q2 also satisfies:

EQ2 [(x, S1)] < 0 .
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Indeed:

EQ1

[
exp
(
η(x, S1)−

)
(x, S1)

]
= −EQ1

[
exp
(
η(x, S1)−

)
(x, S1)−

]
+ EQ1

[
(x, S1)+

]
< −EQ1

[
(x, S1)−

]
+ EQ1

[
(x, S1)+

]
≤ 0 .

The measure Q2 does not necessarily satisfy the requirement that EQ2 [‖S1‖] <
∞. We therefore make a last transformation and we define

dQ =
exp(−δ‖S1‖)

EQ2 [exp(−δ‖S1‖)]
dQ2 .

For δ > 0 tending to zero we obtain that ‖Q−Q2‖ tends to 0 and EQ [(x, S1)]
tends to EQ2 [(x, S1)] which is strictly negative. So for δ small enough we find
a probability measure Q such that Q ∼ P, ‖Q − Q1‖ < ε, EQ [‖S1‖] < ∞
and EQ [(x, S1)] < 0, a contradiction to the choice of x. �

Lemma 14.3.2 in conjunction with Lemma 14.3.1 implies in particular that,
given the stochastic process S = (St)1t=0 with S0 ≡ 0 and F0 trivial, we may
find a probability measure Q ∼ P such that S is a Q-martingale. We obtained
the measure Q in two steps: first (Lemma 14.3.1) we found Q1 ∼ P which
took care of the admissible integrands, which means that

EQ1 [(x, S1)] ≤ 0 , for x ∈ Adm .

In a second step (Lemma 14.3.2) we found Q ∼ P such that Q took care
of all integrands, i.e.,

(x,EQ [S1]) = EQ [(x, S1)] ≤ 0 , for x ∈ Rd

and therefore
EQ [S1] = 0 ,

which means that S is a Q-martingale.
In addition, we could assert in Lemma 14.3.2 that ‖Q1−Q‖ < ε, a property

which will be crucial in the sequel.
The strategy for proving the main theorem will be similar to the above ap-

proach. Given a semi-martingale S = (St)t∈R + defined on (Ω,F , (Ft)t∈R + ,P)
we first replace P by Q1 ∼ P such that Q1 “takes care of the admissible
integrands”, i.e.,

EQ1 [(H · S)∞] ≤ 0 , for H-admissible.

For this first step, the necessary technology has been developed in Chap. 9
and may be carried over almost verbatim.

The new ingredient developed in the present paper is the second step which
takes care of the “big jumps” of S. By repeated application of an argument as
in Lemma 14.3.2 above we would like to change Q1 into a measure Q,Q ∼ P,
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such that S becomes a Q-martingale. A glance at Example 14.2.3 above reveals
that this hope is, in the general setting, too optimistic and we can only try
to turn S into a Q-sigma-martingale. This will indeed be possible, i.e., we
shall be able to find Q and a strictly positive predictable process ϕ, such
that, for every — not necessarily admissible — predictable Rd-valued process
H satisfying ‖H‖Rd ≤ ϕ, we have that H · S is a Q-martingale. In particular
ϕ · S will be a Q-martingale.

In order to complete this program we shall isolate in Lemma 14.3.5 below,
the argument proving Lemma 14.3.2 in the appropriate abstract setting. In
particular we show that the construction in the proof of Lemma 14.3.2 may
be parameterised to depend in a measurable way on a parameter η varying in
a measure space (E, E , π). The proof of this lemma is standard but long. One
has to check a lot of measurability properties in order to apply the measurable
selection theorem. Since the proofs are not really used in the sequel and are
standard, the reader can, at a first reading, look at the Definition 14.3.3,
convince herself that the two parameterisations given in Lemma 14.3.4 are
equivalent and look at Lemma 14.3.5.

Definition 14.3.3. We say that a probability measure µ on Rd satisfies the
(NA) property if for every x ∈ Rd we have µ({a | (x, a) < 0}) > 0 as soon as
µ({a | (x, a) > 0}) > 0.

We start with some notation that we will keep fixed for the rest of this
section. We first assume that (E, E , π) is a probability space that is saturated
for the null sets, i.e. if A ⊂ B ∈ E and if π(B) = 0 then A ∈ E . The probability
π can easily be repaced into a σ-finite positive measure, but in order not
to overload the statements we skip this straightforward generalisation. We
recall that a Polish space X is a topological space that is homeomorphic to
a complete separable metrisable space. The Borel σ-algebra of X is denoted by
B(X). We will mainly be working in a space E×X where X is a Polish space.
The canonical projection of E ×X onto E is denoted by pr. If A ∈ E ⊗B(X)
then pr(A) ∈ E , see [A 65] and [D 72]. Furthermore there is a countable family
(fn)n≥1 of measurable functions fn: pr(A)→ X such that

(1) for each n ≥ 1 the graph of fn is a selection of A, i.e. {(η, fn(η)) | η ∈
pr(A)} ⊂ A,

(2) for each η ∈ pr(A) the set {fn(η) | n ≥ 1} is dense in Aη = {x | (η, x) ∈
A}.

We call such a sequence a countable dense selection of A.
The set P(Rd) of probability measures on Rd is equipped with the topology

of convergence in law, also called weak-star convergence. It is well-known that
P(Rd) is Polish. If F : E → P(Rd) is a mapping, then the measurability of F
can be reformulated as follows: for each bounded Borel function g, we have
that the mapping η �→

∫
Rd g(y) dFη(y) is E-measurable. This is easily seen

using monotone class arguments. Using such a given measurable function F
as a transition kernel, we can define a probability measure λF on E × Rd as
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follows. For an element D ∈ E ⊗ B(Rd) of the form D = A × B, we define
λF (D) =

∫
A Fη(B)π(dη).

For each η ∈ E we define the set Supp(Fη) as the support of the measure
Fη, i.e. the smallest closed set of full Fη-measure. The set S is defined as
{(η, x) | x ∈ Supp(Fη)}. The set S is an element of E ⊗ B(Rd). Indeed, take
a countable base (Un)n≥1 of the topology of Rd and write the complement as:

Sc =
⋃
n≥1

({η | Fη(Un) = 0} × Un) .

If x: E → Rd is a measurable function then ϕ: E → R+ ∪ {+∞} defined
as ϕ(η) = ‖(xη, . )−‖L∞(Fη) is E-measurable. Indeed take a countable dense
selection (fn)n≥1 of S and observe that ϕ(η) = inf{(xη, fn(η))− | n ≥ 1}.

For each η ∈ E we denote by Adm(η) the cone in Rd consisting of
elements x ∈ Rd so that (x, . )− ∈ L∞(Fη). The set Adm is then de-
fined as {(η, x) | x ∈ Adm(η)}. This set is certainly in E ⊗ B(Rd). Indeed
Adm = {(η, x) | infn≥1(x, fn) > −∞} where the sequence (fn)n≥1 is a count-
able dense selection of S.

Lemma 14.3.4. If F is a measurable mapping from (E, E , π) into the proba-
bility measures on Rd, then the following are equivalent:

(1) For almost every η ∈ E, the probability measure Fη satisfies the no-
arbitrage property.

(2) For every measurable selection xη of Adm, we have λF [(η, a) | xη(a) < 0] >
0 as soon as λF [(η, a) | xη(a) > 0] > 0.

Proof. The implication 1⇒ 2 is almost obvious since for each η ∈ E we have
that Fη [{a | (xη, a) < 0}] > 0 as soon as Fη [{a | (xη, a) > 0}] > 0. Therefore
if λF [(η, a) | xη(a) > 0] > 0, we have that π(B) > 0 where B is the set

B = {η ∈ E | Fη [{a | (xη , a) > 0}] > 0} .

For the elements η ∈ B we then also have that Fη [{a | (xη, a) < 0}] > 0 and
integration with respect to π then gives the result:

λF [(η, a) | (xη , a) < 0] =
∫

E

π(dη)Fη [{a | (xη, a) < 0}] > 0 .

Let us now prove the reverse implication 2⇒ 1.
We consider the set

A = {(η, x) | Fη [a | (x, a) ≥ 0] = 1 and Fη [a | (x, a) > 0] > 0} .

The reader can check that this set is in E ⊗ B(Rd) and therefore the set
B = pr(A) ∈ E . Suppose that π(B) > 0 and take a measurable selection
xη of A. Outside B we define xη = 0. Clearly λF ({(η, a) | (xη, a) > 0}) > 0
and hence we have that λF ({(η, a) | (xη, a) < 0}) > 0, a contradiction since
(xη, a) ≥ 0, λF a.s.. So we see that B = ∅ a.s. or what is the same for almost
every η ∈ E the measure Fη satisfies the no-arbitrage property. �
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The Crucial Lemma 14.3.5. Let (E, E , π) be a probability measure space
and let (Fη)η∈E be a family of probability measures on Rd such that the map
η �→ Fη is E-measurable.

Let us assume that F satisfies the property that for each measurable map
x: E → Rd, η �→ xη with the property that for every η ∈ E we have (xη, y) ≥
−1, for Fη almost every y, we also have that

∫
Rd Fη(dy)(xη , y) ≤ 0.

Let ε: E → R+ \ {0} be E-measurable and strictly positive.
Then, we may find an E-measurable map η �→ Gη from E to the probability

measures on B(Rd) such that, for π-almost every η ∈ E,

(i) Fη ∼ Gη and ‖Fη −Gη‖ < εη,
(ii) EGη [‖y‖] <∞ and EGη [y] = 0.

Proof. As observed above the set P(Rd) of probability measures on Rd, en-
dowed with the weak-star topology is a Polish space. We will show that the set{

(η, µ)
∣∣∣∣ ∫

Rd

‖x‖ dµ <∞;
∫

Rd

xdµ = 0; Fη ∼ µ; ‖µ− Fη‖ < ε(η)
}

is in E ⊗ B(P(Rd)). Since, by Lemma 14.3.4, for almost all η, the measure Fη

satisfies the no-arbitrage assumption of Definition 14.3.3, we obtain that, for
almost all η, the vertical section is non-empty. We can therefore find a mea-
surable selection Gη and this will then end the proof.

The proof of the measurability property is easy but requires some argu-
ments.

First we observe that the set M = {µ |
∫

Rd ‖x‖ dµ < ∞} is in B(P(Rd)).
This follows from the fact that µ �→

∫
‖x‖ dµ is Borel-measurable as it is an

increasing limit of the weak-star continuous functionals µ �→
∫

min(‖x‖, n) dµ.
Next we observe that M → Rd; µ �→

∫
Rd xdµ is Borel-measurable.

The third observation is that {(η, µ) | ‖µ−Fη‖ < ε(η)} is in E⊗B(P(Rd)).
Finally we show that {(η, µ) | µ ∼ Fη} is also in E ⊗ B(P(Rd)). This will

then end the proof of the measurability property.
We take an increasing sequence of finite σ-algebras Dn such that B(Rd)

is generated by
⋃

nDn. For each n we see that the mapping (η, µ, x) �→
dµ
dFη

∣∣∣
Dn

(x) = qn(η, µ, x) is E ⊗ B(P(Rd))⊗ B(Rd)-measurable. The mapping

q(η, µ, x) = lim inf qn(η, µ, x)

is clearly E ⊗ B(P(Rd)) ⊗ B(Rd)-measurable. By the martingale convergence
theorem we have that for each µ, the mapping q defines the Radon-Nikodým
density of the part of µ that is absolutely continuous with respect to Fη. Now
we have that

{(η, µ) | µ ∼ Fη}

=
{

(η, µ)
∣∣∣∣ ∫

Rd

q(η, µ, x) dFη(x) = 1; lim
n

∫
Rd

(nq) ∧ 1 dFη(x) = 1
}

and this shows that {(η, µ) | µ ∼ Fη} is in E ⊗ B(P(Rd)).
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In the above arguments we did suppose that (E, E , π) is complete. Now
we drop this assumption. In that case we first complete the space (E, E , π) by
replacing the σ-algebra E by Ẽ generated by E and all the null sets. We then
obtain an Ẽ-measurable mapping F̃η which can, by modifying it on a set of
measure zero, be replaced by an E-measurable mapping Fη such that π almost
surely Fη = F̃η. �

Remark 14.3.6. We have not striven for maximal generality in the formulation
of Lemma 14.3.5: for example, we could replace the probability measures Fη

by finite non-negative measures on Rd. In this case we may obtain the Gη in
such a way that the total mass Gη(Rd) equals Fη(Rd), π-almost surely.

To illustrate the meaning of the Crucial Lemma we note in the spirit of
[MB 91] which shows in particular the limitations of the no-arbitrage-theory
when applied e.g. to Gaussian models for the stock returns in finite discrete
time.

Proposition 14.3.7. Let (St)T
t=0 be an adapted Rd-valued process based on

(Ω,F , (Ft)T
t=0,P) such that for every predictable process (ht)T

t=1 we have that
(h · S)T =

∑T
t=1 ht∆St is unbounded from above and from below as soon as

(h ·S)T �≡ 0. For example, this assumption is satisfied if the Ft−1-conditional
distributions of the jumps ∆St are non-degenerate and normally distributed
on Rd.

Then, for ε > 0, there is a measure Q ∼ P, ‖Q−P‖ < ε, such that S is
a Q-martingale.

As a consequence, the set of equivalent martingale measures is dense with
respect to the variation norm in the set of P-absolutely continuous measures.

Proof. Suppose first that T = 1. Contrary to the setting of the motivating
example at the beginning of this section we do not assume that F0 is trivial.

Let (E, E , π) be (Ω,F0,P) and denote by (Fω)ω∈Ω the F0-conditional dis-
tribution of ∆S1 = S1 − S0. The assumption of Lemma 14.3.5 is (trivially)
satisfied as by hypothesis the F0-measurable functions x(ω) such that P-a.s.
we have (xω, y) ≥ −1, Fω-a.s., satisfy (xω , y) = 0, Fω-a.s., for P-a.e. ω ∈ Ω.

Choose ε(ω) ≡ ε > 0 and find Gη as in the lemma. To translate the change
of the conditional distributions of ∆S1 into a change of the measure P, find
Y : Ω× Rd → R+,

Y (ω, x) =
dGω

dFω
(x) , x ∈ Rd, ω ∈ Ω

such that, for P-a.e. ω ∈ Ω, Y (ω, . ) is a version of the Radon-Nikodým deriva-
tive of Gω with respect to Fω, and such that Y ( . , . ) is F0⊗B(Rd)-measurable.

Letting
dQ̂
dP

(ω) = Y (ω, ∆S1(ω))
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we obtain an F1-measurable density of a probability measure. Assertion (i)
of Lemma 14.3.5 implies that Q̂ ∼ P and ‖Q̂−P‖ < ε. Assertion (ii) implies
that

EQ̂ [‖∆S1‖Rd | F0] <∞ , a.s.

and
EQ̂ [∆S1 | F0] = 0 , a.s..

We are not quite finished yet as this only shows that (St)1t=0 is a Q̂-
sigma-martingale but not necessarily a Q̂-martingale as it may happen that
EQ̂ [‖∆S1‖Rd ] = ∞. But it is easy to overcome this difficulty: find a strictly
positive F0-measurable function w(ω), normalised so that EQ̂ [w] = 1 and
such that EQ̂ [w(ω)E [‖∆S1‖Rd | F0]] <∞. We can construct w is such a way
that the probability measure Q defined by

dQ(ω)

dQ̂(ω)
= w(ω) ,

still satisfies ‖Q−P‖ < ε. Then

EQ [‖∆S1‖Rd ] <∞

and
EQ [∆S1 | F0] = 0 , a.s.,

i.e., S is a Q-martingale.
To extend the above argument from T = 1 to arbitrary T ∈ N we need yet

another small refinement: an inspection of the proof of Lemma 14.3.5 above
reveals that in addition to assertions (i) and (ii) of Lemma 14.3.5, and given
M > 1, we may choose Gη such that

(iii)
∥∥∥∥dGη

dFη

∥∥∥∥
L∞(Rd,Fη)

≤M , π-a.s..

We have not mentioned this additional assertion in order not to overload
Lemma 14.3.5 and as we shall only need (iii) in the present proof.

Using (iii), with M = 2 say, and, choosing w above also uniformly bounded
by 2, the argument in the first part of the proof yields a probability Q ∼ P,
‖Q−P‖ < ε, such that ‖ dQ

dP‖L∞(P) ≤ 4.
Now let T ∈ N and (St)T

t=0, based on (Ω, (Ft)T
t=0,F ,P), be given. By

backward induction on t = T, . . . , 1 apply the first part of the proof to find
Ft-measurable densities Zt such that, defining the probability measure Q(t) by

dQ(t)

dP
= Zt ,

we have that the two-step process (Su

∏T
v=t+1 Zv)t

u=t−1 is a Q(t)-martingale
with respect to the filtration (Fu)t

u=t−1,Q
(t) ∼ P, ‖Q(t) − P‖1 < ε4−T T−1,

and such that ‖Zt‖L∞(P) ≤ 4.
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Defining
dQ
dP

=
T∏

t=1

Zt ,

we obtain a probability measure Q,Q ∼ P such that (St)T
t=0 is a martingale

under Q. Indeed,

EQ [∆St | Ft−1] = EP

[
∆St

T∏
u=1

Zu

∣∣∣∣∣ Ft−1

]

=

(
t−1∏
u=1

Zu

)
EP

[
Zt∆St

T∏
u=t+1

Zu

∣∣∣∣∣ Ft−1

]

=

(
t−1∏
u=1

Zu

)
EQ(t)

[
∆St

T∏
u=t+1

Zu

∣∣∣∣∣ Ft−1

]
= 0

and

EQ

[
‖∆St‖Rd

]
≤
∥∥∥∥∥

t−1∏
u=1

Zu

∥∥∥∥∥
∞
· EQ(t)

[∥∥∥∥∥∆St

T∏
u=t+1

Zu

∥∥∥∥∥
Rd

]
<∞ .

Finally we may estimate ‖Q−P‖1 by

‖Q−P‖1 = EP

[∣∣∣∣∣
T∏

t=1

Zt − 1

∣∣∣∣∣
]

≤ EP

[
T∑

t=1

∣∣∣∣∣
t∏

u=1

Zu −
t−1∏
u=1

Zu

∣∣∣∣∣
]

≤
T∑

t=1

∥∥∥∥∥
t−1∏
u=1

Zu

∥∥∥∥∥
L∞(P)

EP [|Zt − 1|]

≤ T · 4T ε4−T T−1 = ε .

The proof of the first part of Proposition 14.3.7 is thus finished and we have
shown in the course of the proof that we may find Q such that, in addition
to the assertions of the proposition, dQ

dP is uniformly bounded.
As regards the final assertion, let P′ be any P-absolutely continuous mea-

sure. For given ε > 0, first take P′′ ∼ P such that ‖P′′ − P′‖ < ε. Now
apply the first assertion with P′′ replacing P. As a result we get an equivalent
martingale measure Q such that ‖Q−P′′‖ < ε, hence also ‖Q−P′‖ < 2ε.

This finishes the proof of Proposition 14.3.7. �
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14.4 The General Rd-valued Case

In this section S = (St)t∈R + denotes a general Rd-valued càdlàg semi-
martingale based on (Ω,F , (Ft)t∈R + ,P) where we assume that the filtration
(Ft)t∈R + satisfies the usual conditions of completeness and right continuity.

Similarly as in Chap. 9 we define an S-integrable Rd-valued predictable
process H = (Ht)t∈R + to be an admissible integrand if the stochastic process

(H · S)t =
∫ t

0

(Hu, dSu) , t ∈ R+

is (almost surely) uniformly bounded from below.
It is important to note that, similarly as in Proposition 14.3.7 above, it

may happen that the cone of admissible integrands is rather small and possibly
even reduced to zero: consider, for example, the case when S is a compound
Poisson process with (two-sided) unbounded jumps, i.e., St =

∑Nt

i=1 Xi, where
(Nt)t∈R + is a Poisson process and (Xi)∞i=1 an i.i.d. sequence of real random
variables such that ‖X+

i ‖∞ = ‖X−
i ‖∞ =∞. Clearly, a predictable process H ,

such that H · S remains uniformly bounded from below, must vanish almost
surely.

Continuing with the general setup we denote by K the convex cone in
L0(Ω,F ,P) given by

K = {f = (H · S)∞ | H admissible}

where this definition requires in particular that the random variable (H ·
S)∞ := limt→∞(H · S)t is (almost surely) well-defined (compare Definition
9.2.7).

Again we denote by C the convex cone in L∞(Ω,F ,P) formed by the
uniformly bounded random variables dominated by some element of K, i.e.,

C = (K − L0
+(Ω,F ,P)) ∩ L∞(Ω,F ,P)

= {f ∈ L∞(Ω,F ,P) | there is g ∈ K, f ≤ g} . (14.1)

We say (see Definition 8.1.2) that the semi-martingale S satisfies the con-
dition of no free lunch with vanishing risk (NFLVR) if the closure C of C,
taken with respect to the norm-topology ‖ . ‖∞ of L∞(Ω,F ,P) intersects
L∞

+ (Ω,F ,P) only in 0, i.e.,

S satisfies (NFLVR)⇐⇒ C ∩ L∞
+ = {0} .

For the economic interpretation of this concept, which is a very mild
strengthening of the “no-arbitrage” concept, we refer to Chap. 8.

The subsequent crucial Theorem 14.4.1 was proved in (9.4.2) under the
additional assumption that S is bounded. An inspection of the proof given in
Chap. 9 reveals that — for the validity of the subsequent Theorem 14.4.1 —
the boundedness assumption on S may be dropped.
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Theorem 14.4.1. Under the assumption (NFLVR) the cone C is weak-star-
closed in L∞(Ω,F ,P). Hence there is a probability measure Q1 ∼ P such
that

EQ1 [f ] ≤ 0, for f ∈ C.

Remark 14.4.2. In the case, when S is bounded, Q1 is already a martingale
measure for S, and when S is locally bounded, Q1 is a local martingale mea-
sure for S (compare Theorem 9.1.1 and Corollary 9.1.2).

To take care of the non-locally bounded case we have to take care of the
“big jumps” of S. We shall distinguish between the jumps of S occurring at
accessible stopping times and those occurring at totally inaccessible stopping
times.

We start with an easy lemma which will allow us to change the measure
Q1 countably many times without loosing the equivalence to P.

Lemma 14.4.3. Let (Qn)∞n=1 be a sequence of probability measures on the
probability space (Ω,F ,P) such that each Qn is equivalent to P. Suppose
further that the sequence of strictly positive numbers (εn)n≥1 is such that

(1) ‖Qn −Qn+1‖ < εn+1,
(2) if Qn [A] ≤ εn+12n then P [A] ≤ 2−n.

Then the sequence (Qn)n≥1 converges with respect to the total variation
norm to a probability measure Q, which is equivalent to P.

Proof of Lemma 14.4.3. Clearly the second assumption implies that εn+1 ≤
2−n and hence the sequence (Qn)n≥1 converges in variation norm to a prob-
ability measure Q. We have to show that Q ∼ P. For each n we let qn+1 be
defined as the Radon-Nikodým derivative of Qn+1 with respect to Qn. Clearly
for each n ≥ 1 we then have

∫
|1 − qn+1| dQn ≤ εn+1 and hence the Markov

inequality implies that Qn [|1− qn+1| ≥ 2−n] ≤ 2nεn+1. The hypothesis on
the sequence (εn)n≥2 then implies that P [|1− qn+1| ≥ 2−n] ≤ 2−n. From the
Borel-Cantelli lemma it also follows that a.s. the series

∑
n≥2 |1−qn| converges

and hence the product
∏

n≥2 qn converges to a function q a.s. different from
0. Clearly q = dQ

dQ1
which shows that Q ∼ Q1 ∼ P. �

We are now ready to take the crucial step in the proof of the main theorem. To
make life easier we make the simplifying assumption that S does not jump at
predictable times. In the Proof of the Main Theorem 14.1.1 below we finally
shall also deal with the case of the predictable jumps.

Proposition 14.4.4. Let S = (St)t∈R + be an Rd-valued semi-martingale
which is quasi-left-continuous, i.e., such that, for every predictable stopping
time T we have ST = ST− almost surely.

Suppose, as in Theorem 14.4.1 above, that Q1 ∼ P is a probability measure
verifying

EQ1 [f ] ≤ 0 , for f ∈ C .
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Then there is, for ε > 0, a probability measure Q ∼ P, ‖Q − Q1‖ < ε,
such that S is a sigma-martingale with respect to Q.

In addition, for every predictable stopping time T , the probabilities Q and
Q1 on FT , coincide, conditionally on FT−, i.e.,

dQ|FT

dQ1|FT

=
dQ|FT−

dQ1|FT−
a.s..

Proof. Step 1: Define the stopping time T by

T = inf{t | ‖∆St‖Rd ≥ 1}

and first suppose that S remains constant after time T , hence S has at most
one jump bigger than 1.

Similarly as in [JS 87, II.2.4] we decompose S into

S = X + X̌

where X equals “S stopped at time T−”, i.e.,

Xt =
{

St for t < T
ST− for t ≥ T

and X̌ the jump of S at time T , i.e.,

X̌t = ∆ST · 1[[T,∞]] .

As X is bounded, it is a special semi-martingale, and we can find its Doob-
Meyer decomposition with respect to Q1

X = M + B

where M is a local Q1-martingale and B a predictable process of locally finite
variation.

We shall now find a probability measure Q2 on F ,Q2 ∼ P, s.t.

(i) ‖Q2 −Q1‖ < ε
2 ,

(ii) Q2|FT− = Q1|FT− and dQ2
dQ1

is FT -measurable,
(iii) S is a sigma-martingale under Q2.

We introduce the jump measure µ associated to X̌ ,

µ(ω, dt, dx) = δ(T (ω),∆ST (ω)) ,

where δt,x denotes Dirac-measure at (t, x) ∈ R+ × Rd and we denote by
ν the Q1-compensator of µ (see [JS 87, Proposition II.1.6]). Similarly as in
[JS 87, Proposition II.2.9] we may find a locally Q1-integrable, predictable
and increasing process A such that
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B = b ·A
ν(ω, dt, dx) = Fω,t(dx)dAt(ω)

where b = (bi)d
i=1 is a predictable process and Fω,t(dx) a transition kernel from

(Ω×R+,P) into (Rd,B(Rd)), i.e., a P-measurable map (ω, t) �→ Fω,t(dx) from
Ω × R+ into the non-negative Borel measures on Rd. Since the processes X
and X̌ are quasi left continuous, the processes A and B can be chosen to be
continuous, but this is not really needed.

The processes ν and µ are such that for each non-negative P ⊗ B(Rd)-
measurable function g we have that∫

Ω×R +×Rd

g(ω, t, y)µ(ω, dt, dy)P(dω) =
∫

Ω×R +×Rd

g(ω, t, y)ν(ω, dt, dy)P(dω) .

To stay in line with the notation used in [JS 87], Hω,t ∗ Fω,t, where H is
a predictable Rd-valued process and F is the kernel described above, denotes
the predictable R-valued process EFω,t [(Hω,t , . )] =

∫
Rd(Hω,t, y)Fω,t[dy].

We may assume that A is constant after T , Q1-integrable and its integral
is bounded by one, i.e.,

EQ1 [A∞] = dA(Ω× R+) ≤ 1,

where dA denotes the measure on P defined by dA(]]T1, T2]]) = EQ1 [AT2 −AT1 ],
for stopping times T1 ≤ T2.

We now shall find a P-measurable map (ω, t) �→ Gω,t such that for dA-
almost each (ω, t),

(a) Fω,t(dx) ∼ Gω,t(dx), Fω,t(Rd) = Gω,t(Rd) and ‖Fω,t −Gω,t‖ < ε
2 ,

(b) EGω,t [‖y‖Rd ] <∞ and EGω,t [y] = −b(ω, t).

This is a task of the type of “martingale problem” or rather “semi-
martingale problem” as dealt with, e.g., in [JS 87, Definition III.2.4].

We apply Lemma 14.3.5 and the remark following it: as measure space
(E, E , ω) we take (Ω× R+,P , dA) and we shall consider the map

η = (ω, t) �→ F̃ω,t := Fω,t � δb(ω,t)

where δb(ω,t) denotes the Dirac measure at b(ω, t) ∈ Rd, � denotes convolution
and therefore F̃ω,t is the measure Fω,t on Rd translated by the vector b(ω, t).

We claim that the family (F̃ω,t)(ω,t)∈Ω×R + satisfies the assumptions of
Lemma 14.3.5 above. Indeed, let Hω,t be any P-measurable function such
that dA-almost surely Hω,t ∈ Adm(F̃ω,t) = Adm(Fω,t).

By multiplying H with a predictable strictly positive process v, we may
eventually assume that ‖Hω,t‖Rd ≤ 1 and that, at least dA a.e., also the
predictable process ‖〈Hω,t, . 〉−‖L∞(Fω,t) is bounded by 1. That the latter
process is predictable follows from the discussion preceding the Crucial Lemma
and essentially follows from the measurable selection theorem.
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The boundedness property translates to the fact that H = (Ht(ω))t∈R + is
an admissible integrand for the process X̌ . This follows from the definition of
the compensator ν in the following way. For each natural number n we have,
according to the definition of the compensator that

E
[(
〈Hω,t, ∆ST (ω)〉−

)n
1T<∞

]
= E

[∫
R +×Rd

(
〈Hω,t, y〉−

)n
µ(ω, dt, dy)

]

= E

[∫
R +×Rd

(
〈Hω,t, y〉−

)n
ν(ω, dt, dy)

]

= E

[∫
R +

∫
Rd

(
〈Hω,t, y〉−

)n
Fω,t(dy) dAt(ω)

]

≤ E

[∫
R +

∫
Rd

1 Fω,t(dy) dAt(ω)

]

≤ E

[∫
R +×Rd

1 ν(ω, dt, dy)

]

≤ E

[∫
R +×Rd

1 µ(ω, dt, dy)

]
≤ Q1[T <∞] .

Since the inequality holds for each n we necessarily have that

(H · X̌)t ≥ −1 a.s., for all t ∈ R+ .

Noting that M is a (locally bounded) local martingale and B is of lo-
cally bounded variation, we may find a sequence of stopping times (Uj)∞j=1

increasing to infinity, such that, for each j ∈ N,

(1) MUj is a martingale, bounded in the Hardy space H1(Q1), and
(2) BUj is of bounded variation.

Hence, for each predictable set P contained in [[0, Uj]], for some j ∈ N, we
have that H1P is an admissible integrand for S and H1P ·M is a martingale
bounded in H1(Q1) and therefore

EQ1 [(H1P ·M)∞] = 0 .

As by hypothesis
EQ1 [(H1P · S)∞] ≤ 0

we obtain
EQ1

[
(H1P · (X̌ + B))∞

]
≤ 0 .
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Using the identities

EQ1

[
(H1P · (X̌ + B))∞

]
=
∫

Ω×R +

(Hω,t ∗ Fω,t + (Hω,t, bω,t))1P dA(ω, t)

=
∫

Ω×R +

(Hω,t ∗ F̃ω,t)1P dA(ω, t) ≤ 0

which hold true for each P ∈ P contained in [[0, Uj ]], for some j ∈ N, we
conclude that for dA-almost each (ω, t) we have

Hω,t ∗ F̃ω,t = EF̃ω,t
[(Hω,t , . )] ≤ 0 .

This inequality implies that assumption (2) in Lemma 14.3.4 is satisfied
and hence Fω,t satisfies the no-arbitrage property, i.e. the hypothesis of
Lemma 14.3.5 is satisfied.

Hence we may find a transition kernel G̃ω,t as described by Lemma 14.3.5
— with ε replaced by ε

2 — and letting Gω,t = G̃ω,t � δ−b(ω,t) we obtain
a transition kernel satisfying (a) and (b) above.

We now have to translate the change of transition kernels from Fω,t to
Gω,t into a change of measures from Q1 to Q2 on the σ-algebra FT which will
be done by defining the Radon-Nikodým derivative dQ2

dQ1
. We refer to [JS 87,

III.3] for a treatment of the relevant version of Girsanov’s theorem for random
measures.

For (ω, t) fixed, denote by Y (ω, t , . ) the Radon-Nikodým derivative of
Gω,t with respect to Fω,t, i.e.

Y (ω, t, x) =
dGω,t

dFω,t
(x) , x ∈ Rd ,

which is Fω,t-almost surely well-defined and strictly positive. We may and do
choose for dA-almost each (ω, t), a version Y (ω, t, x) such that Y ( . , . , . ) is
P ⊗ B(Rd)-measurable.

We now define

dQ2

dQ1
(ω) = Z∞(ω) = Y (ω, T (ω), ∆ST (ω)(ω))1{T<∞} + 1{T=∞}

and Zt(ω) = Y (ω, T (ω), ∆ST (ω)(ω))1{T≤t} + 1{T>t} .

The intuitive interpretation of these formulas goes as follows: for fixed ω ∈
Ω we look at time T (ω) which is the unique “big” jump of (St(ω))t∈R + . The
density Y (ω, T (ω), x) gives the density of the distribution of the compensated
jump measure Gω,t with respect to Fω,t, if the jump equals x and therefore we
evaluate Y (ω, T (ω), x) at the point x = ∆ST (ω)(ω) to determine the density
of Q2 with respect to Q1. If T (ω) =∞ the density dQ2

dQ1
(ω) is simply equal to

1. The variable Y (ω, T (ω), ∆ST (ω)) is certainly integrable. Indeed
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E [Y (ω, T (ω), ∆ST (ω))1T<∞]

= E

[∫
R +×Rd

Y (ω, t, y)µ(ω, dt, dy)

]

= E

[∫
R +×Rd

Y (ω, t, y)ν(ω, dt, dy)

]

= E

[∫
R +

∫
Rd

Y (ω, t, y)Fω,t(dy)dAt(ω)

]

= E

[∫
R +

∫
Rd

Fω,t(Rd)dAt(ω)

]

= E

[∫
R +×Rd

ν(ω, dt, dy)

]

= E

[∫
R +×Rd

µ(ω, dt, dy)

]
= Q1[T <∞] .

The process Z can also be written as

Z = Y (ω, T, ∆ST )1[[T,∞[[ + 1[[0,T [[ ,

from which it follows that Z is a process of integrable variation. The maximal
function Z∗ of Z is therefore integrable.

In order to show that Q2 is indeed a probability measure and that Zt =
dQ2|Ft

dQ1|Ft
we shall show that (Zt)t∈R + is a uniformly integrable martingale closed

by Z∞.
We may write Z = (Zt)t∈R + as

Z = 1 + (Y (ω, t, x)− 1) ∗ µ .

From the definition of the compensator ν ([JS 87, II.1.8]) we deduce that
we may write the compensator Zp of Z

Zp = 1 + (Y (ω, t, x)− 1) ∗ ν

= 1 + ((Y (ω, t, x)− 1) ∗ Fω,t) ·A .

Noting that, for dA-almost each (ω, t) we have that (Y (ω, t, x)−1)∗Fω,t =
EFω,t [Y (ω, t, x)− 1] = 0 we deduce that the compensator Zp is constant.
Since Z−Zp is a martingale, by definition of the compensator of processes of
integrable variation, it follows that Z is a martingale as well.

To estimate the distance ‖Q2 −Q1‖, note that

‖Q2 −Q1‖ = EQ1

[∣∣∣∣1− dQ2

dQ1

∣∣∣∣]
≤ EQ1 [(|Y (ω, t, x)− 1| ∗ ν)∞]

≤ EQ1(‖Fω,t −Gω,t‖ ·A)∞ ≤
ε

2
EQ1 [A∞] ≤ ε

2
.
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Next observe that Q2|FT− = Q1|FT− : indeed, we have to show that Q1

and Q2 coincide on the sets of the form A ∩ {T > t}, where A ∈ Ft, as these
sets generate FT−. Noting that Zt is equal to 1 on {T > t}, this becomes
obvious.

Finally we show that S is a sigma-martingale under Q2. First note that
M remains a local martingale under Q2 as M is continuous at time T , i.e.,
MT− = MT , and Q1 and Q2 coincide on FT−.

As regards the remaining part X̌ +B of the semi-martingale S we have by
(b) above that, for dA-almost each (ω, t), EGω,t [‖y‖Rd] <∞ and EGω,t [y] =
−b(ω, t). This does not necessarily imply that X̌ + B is already a martingale
(or a local martingale) under Q2 as a glance at Example 14.2.2 reveals. We
may only conclude that X̌ + B is a Q2-sigma-martingale, as we presently
shall see.

Define
ϕt(ω) = (EGω,t [‖y‖Rd ])−1∧1 ,

which is a predictable dA-almost surely strictly positive process. The process
ϕ · (X̌ + B) is a process of Q2-integrable variation as

EQ2

[
var‖ . ‖

Rd
(ϕ · (X̌ + B))

]
= EQ2 [ϕ · (‖y‖Rd ∗Gω,t · A + ‖bω,t‖Rd · A)]

≤ 2EQ2 [A∞] = 2EQ1 [A∞] ≤ 2 ,

where the last equality follows from the fact that Q1 and Q2 coincide on FT−
and that, A being predictable, A∞ is FT−-measurable.

Hence ϕ ·(X̌ +B) is a process of integrable variation whose compensator is
constant and therefore ϕ · (X̌ + B) is a Q2-martingale of integrable variation,
whence in particular a Q2-martingale. Therefore X̌ + B as well as S are Q2-
sigma-martingales.

Summing up: We have proved Proposition 14.4.4 under the additional
hypothesis that S remains constant after the first time T when S jumps by
at least 1 with respect to ‖ . ‖Rd .

Step 2: Now we drop this assumption and assume w.l.g. that S0 = 0. Let
T0 = 0, T1 = T and define inductively the stopping times

Tk = inf{t > Tk−1 | ‖∆St‖Rd ≥ 1} , k = 2, 3, . . .

so that (Tk)∞k=1 increases to infinity. Let

S(k) = 1]]Tk−1,Tk]] · S , k = 1, 2, . . . .

Note that S(1) satisfies the assumptions of the first part of the proof,
where we have shown that there is a measure Q2 ∼ P, satisfying (i), (ii), (iii)
above for T = T1. Now repeat the above argument to choose inductively, for
k = 2, 3, . . ., measures Qk+1 ∼ P such that

(i) ‖Qk+1 −Qk‖ < ε
2k−1 ∧ inf

{
2−kQk[A]

P[A]

∣∣∣ A ∈ F ,P [A] ≥ 2−k
}

.



302 14 The FTAP for Unbounded Stochastic Processes

(ii) Qk+1|FTk− = Qk|FTk− and dQk+1
dQk

is FTk
-measurable.

(iii) S(k) is a sigma-martingale under Qk+1.

The condition in (i) above is chosen such that we may apply Lemma 14.4.3
to conclude that

Q = lim
k→∞

Qk

exists and is equivalent to P. From (ii) and (iii) it follows that each S(k)

is a sigma-martingale under Ql, for each l ≥ k. It follows that each S(k) is
a Q-sigma-martingale and hence S, being a local sigma-martingale is then
a sigma-martingale (see Corollary 14.2.7 above). This proves the first part of
Proposition 14.4.4.

As regards the final assertion of Proposition 14.4.4 note that, for any
predictable stopping time U , the random times

Uk =
{

U if Tk−1 < U ≤ Tk

∞ otherwise

are predictable stopping times, for k = 1, 2, . . . . Indeed, as easily seen, the set
{Tk < U ≤ Tk+1} is in FU−, showing that Uk is predictable.

By our construction and property (ii) above we infer that, for k = 1, 2, . . .,

dQ|FUk

dQ1|FUk

=
dQ|F(Uk)−

dQ1|F(Uk)−

a.s.

which implies that
dQ|FU

dQ1|FU

=
dQ|FU−

dQ1|FU−
a.s..

The proof of Proposition 14.4.4 is complete now. �
Proposition 14.4.4 contains the major part of the proof of the main the-

orem. The missing ingredient is still the argument for the predictable jumps
of S. The argument for the predictable jumps given below will be similar to
(but technically easier than) the proof of Proposition 14.4.4.

Proof of the Main Theorem 14.1.1. Let S be an Rd-valued semi-martingale
satisfying the assumption (NFLVR). By Theorem 14.4.1 we may find a prob-
ability measure Q1 ∼ P such that,

EQ1 [f ] ≤ 0 , for f ∈ C .

We also may find a sequence (Tk)∞k=1 of predictable stopping times exhaust-
ing the accessible jumps of S, i.e., such that for each predictable stopping time
T with P [T = Tk <∞] = 0, for each k ∈ N, we have that ST− = ST almost
surely. We may and do assume that the stopping times (Tk)∞k=1 are disjoint,
i.e., that P [Tk = Tj <∞] = 0 for k �= j.
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Denote by D the predictable set

D =
⋃
k≥1

[[Tk]] ⊆ Ω× R+

and split S into S = Sa + Si, where

Sa = 1D · S and Si = 1(Ω×R +)\D · S

where the letters “a” and “i” refer to “accessible” and “inaccessible”. Sa and
Si are well-defined semi-martingales and in view of the above construction Si

is quasi-left-continuous.
Denote by Ca and Ci the cones in L∞(Ω,F ,P) associated by (14.1) to Sa

and Si, and observe that Ca and Ci are subsets of C (obtained by considering
only integrands supported by D or (Ω× R+) \D respectively) hence

EQ1 [f ] ≤ 0 , for f ∈ Ca and for f ∈ Ci .

Hence Si satisfies the assumptions of Proposition 14.4.4 with respect to
the probability measure Q1 and we therefore may find a probability measure,
now denoted by Q̂, Q̂ ∼ P, which turns Si into a sigma-martingale and such
that, for each predictable stopping time T , we have

dQ̂|FT

dQ1|FT

=
dQ̂|FT−

dQ1|FT−
. (14.2)

By assumption we have, for each k = 1, 2, . . ., and for each admissible
integrand H supported by [[Tk]], that

EQ1 [(H · S)∞] = EQ1

[
HTk

(STk
− S(Tk)−)

]
≤ 0 .

Noting that the inequality remains true if we replace H by H1A, for any
F(Tk)−-measurable set A, and using (14.2) we obtain

EQ̂ [(H · S)∞] = EQ̂

[
HTk

(STk
− S(Tk)−)

]
≤ 0 (14.3)

for each admissible integrand supported by [[Tk]].
We now shall proceed inductively on k: suppose we have chosen, for k ≥ 0,

probability measures Q̃0 = Q̂, Q̃1, . . . , Q̃k such that

EQ̃k

[
STj | F(Tj)−

]
= S(Tj)− , j = 1, . . . , k

and such that, for

εj =
ε

2j+1
∧ inf

{
2−jQ̃j [A]

P [A]

∣∣∣∣∣ A ∈ F ,P [A] ≥ 2−j

}
,

we have
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‖Q̃j − Q̃j+1‖ < εj , j = 0, . . . , k − 1 .

In addition we assume that Q̃j and Q̃j−1 agree “before (Tj)− and after
Tj”; this means that Q̃j and Q̃j−1 coincide on the σ-algebra F(Tj)− and that

the Radon-Nikodým derivative dQ̃j

dQ̃j−1
is FTj -measurable.

Now consider the stopping time Tk+1: denote on the set {Tk+1 < ∞} by
Fω the jump measure of the jump Sa

Tk+1
− Sa

(Tk+1)− conditional on F(Tk+1)−.
By (14.3) this (Ω,F(Tk+1)−,P)-measurable family of probability measures on
Rd satisfies the assumptions of Lemma 14.3.5 and we therefore may find
an F(Tk+1)−-measurable family of probability measures Gω, a.s. defined on
{Tk+1 <∞}, such that

(i) Fω ∼ Gω and ‖Fω −Gω‖ < εk

(ii) EGω [‖y‖Rd ] <∞ and bary(Gω) = EGω [y] = 0.

Letting, similarly as in the proof of Proposition 14.4.4 above,

Y (ω, x) =
dFω

dGω
(x)

be a F(Tk+1)−⊗B(Rd)-measurable version of the Radon-Nikodým derivatives
dFω

dGω
and defining

dQ̃k+1

dQ̃k

(ω) = 1{Tk+1<∞}Y (ω, ∆STk+1(ω)) + 1{Tk+1=∞}

we obtain a measure Q̃k+1 ∼ P, so that ‖Q̃k+1− Q̃k‖ < εk, Q̃k+1|F(Tk+1)− =

Q̃k|F(Tk+1)− and dQ̃k+1

dQ̃k
being FTk+1-measurable. For each M ∈ R+

1[[Tk+1]]∩{Tk+1<∞ and EGω [‖y‖]≤M} · S = 1[[Tk+1]]∩{Tk+1<∞ and EGω [‖y‖]≤M} · Sa

is a martingale under Q̃k+1 and therefore

S(k+1) := 1[[Tk+1]]∩{Tk+1<∞} · S

is a sigma-martingale under Q̃k+1.
Letting Q = limk→∞ Q̃k, each of the semi-martingales S(k) = 1[[Tk]] · S is

a Q-sigma-martingale. It follows that

Sa =
∞∑

k=1

S(k)

is a Q-sigma-martingale and therefore

S = Sa + Si

is a Q-sigma-martingale too.
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The proof of the main theorem is complete now. �
For later use, let us resume in the subsequent proposition what we have

shown in the above proof.

Proposition 14.4.5. Denote by Me
s the set of probability measures Q equiv-

alent to P such that, for admissible integrands, the process H · S becomes
a super-martingale. More precisely

Me
s = {Q | Q ∼ P and for each f ∈ C: EQ [f ] ≤ 0} .

If S satisfies (NFLVR), then

Me
σ = {Q | S is a Q sigma-martingale} ,

is dense in Me
s.

Theorem 14.4.6. The set Me
σ is a convex set.

Proof. Let Q1,Q2 ∈ Me
σ and let ϕ1, ϕ2 be strictly positive real-valued S-

integrable predictable processes, such that for i = 1, 2, ϕi · S is an H1(Qi)-
martingale. Take now ϕ = min(ϕ1, ϕ2). Since 0 < ϕ ≤ ϕ1, ϕ · S is still an
H1(Q1)-martingale. Similarly ϕ · S is still an H1(Q2)-martingale. From this
it follows that ϕ · S is an H1

(
Q1+Q2

2

)
-martingale. �

14.5 Duality Results and Maximal Elements

In this section we suppose without further notice that S is an Rd-valued semi-
martingale that satisfies the (NFLVR) property, so that the set

Me
σ = {Q | Q ∼ P and S is a Q sigma-martingale}

is non-empty. We remark that when the price process S is locally bounded
then the set Me

σ coincides with the set Me(S) as introduced in Chap. 9, i.e.
the set of all equivalent local martingale measures for the process S.

In the case of locally bounded processes we showed the following duality
equality, (see [D 92, Theorem 6.1] for the case of continuous bounded processes,
El Karoui-Quenez [EQ95] for the L2 case, Theorem 9.5.8 for the case of
bounded functions and Theorem 11.3.4 for the case of positive functions). The
duality argument was used by El Karoui-Quenez [EQ95]. For a non-negative
random variable g we have:

sup
Q∈Me

σ

EQ [g] = inf {α | there is H admissible and g ≤ α + (H · S)∞} .

Using this equality we were able to derive a characterisation of maximal ele-
ments, see Corollary 11.4.6.
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In the general case, i.e. when the process S is not necessarily locally
bounded, the set of admissible integrands might be restricted to the zero inte-
grand, compare Proposition 14.3.7 above. Below we will show that also in this
case the above equality remains valid, at least for positive random variables g.
This result does not immediately follow from the results in Chap. 11.

Another approach to the problem is to enlarge the concept of admissible
integrands in a similar way as was done in [S 94] and Chap. 15. Here the idea is
to allow for integrands H that are such that the process H ·S is controlled from
below by an appropriate function w, the so-called w-admissible integrands.
We will generalise the above duality equality to the setting of such integrands
and we will see that even in the locally bounded case this generalisation yields
some new results.

If we want to control a process H · S from below by a function w then, of
course, the problem is that w cannot be too big, as this would allow doubling
strategies and therefore arbitrage. Also w cannot be too small because this
could imply that the only such integrand H is the zero integrand. This idea
is made precise in the following definitions of w-admissible integrands and of
feasible weight functions.

Definition 14.5.1. If w ≥ 1 is a random variable, if there is Q0 ∈ Me
σ

such that EQ0 [w] < ∞, if a is a non-negative number, then we say that the
integrand H is (a, w)-admissible if for each element Q ∈Me

σ and each t ≥ 0,
we have (H · S)t ≥ −aEQ [w | Ft]. We simply say that H is w-admissible if
H is (a, w)-admissible for some non-negative a.

Remark 14.5.2. If we put w = 1 we again find the usual concept of admissi-
ble integrands. Of course, we could have defined the concept of w-admissible
integrands for general non-negative functions w. We, however, required that
w ≥ 1, so that the admissible integrands become automatically w-admissible.
The idea in fact is to allow unbounded functions w and therefore there seems
to be no gain in introducing functions w that are too small. Requiring that
w ≥ 1 is by no means a restriction compared to the seemingly more general
requirement ess inf(w) > 0.

Remark 14.5.3. The present notion of admissible integrand is more suitable
for our purposes than the one introduced in Chap. 15.

The next lemma, based on a stability property of the set Me
σ, shows that

in the inequality (H · S)t ≥ −EQ [w | Ft], it does not harm to restrict to
elements Q ∈ Me

σ such that EQ [w] <∞.

Lemma 14.5.4. Let w ≥ 0 be such that EQ0 [w] < ∞ for some Q0 ∈ Me
σ.

Suppose that ,for some Q ∈ Me
σ, t ≥ 0 and some real constant k, the set

A = {EQ [w | Ft] ≤ k} has positive probability, then there is Q1 ∈ Me
σ such

that we have EQ1 [w | Ft] = EQ [w | Ft] a.s. on the set A and EQ1 [w] <∞.
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Proof. Let Zs be a càdlàg version of the density process Zs = EQ0

[
dQ
dQ0

| Fs

]
.

Now we put

Z1
s = 1 for s < t

Z1
s = 1 for s ≥ t and ω /∈ A

Z1
s =

Zs

Zt
for s ≥ t and ω ∈ A .

Clearly the probability measure Q1 defined by dQ1 = Z1∞ dQ0 is in the
set Me

σ and satisfies the required properties. Indeed on the set A we have
EQ1 [w | Ft] = EQ [w | Ft] and EQ1 [w] ≤ EQ0 [w] + k <∞. �

In Chap. 7 we recalled Émery’s example showing that a stochastic integral
with respect to a martingale is not always a local martingale. In [AS 94] Ansel
and Stricker gave necessary and sufficient conditions under which a stochastic
integral with respect to a local martingale remains a local martingale (see
Theorem 7.3.7). We rephrase part of their result in our context of sigma-
martingales.

Theorem 14.5.5. Let H be S-integrable and w-admissible (where w ≥ 1 is
any random variable), then H ·S is a local martingale (and hence also a super-
martingale) for each Q ∈Me

σ satisfying EQ[w] <∞.

Proof. Simply write H · S as (Hϕ−1) · (ϕ · S), where the strictly positive
predictable real-valued process ϕ is such that ϕ · S is a H1(Q)-martingale.
Then apply the Ansel-Stricker result. �

Remark 14.5.6. The statement of the preceding theorem becomes false if we
replace the condition Q ∈ Me

σ by Q ∈ Me
s, introduced as in Proposition

14.4.5 above, as the set of equivalent measures, under which H · S is a super-
martingale for each admissible H . To see this, take the process S defined as
St = 0 for t ≤ 1 and St = S1, a non-degenerate one-dimensional normal
variable, for t ≥ 1. The filtration is simply the filtration generated by S. As
there are no admissible integrands, every equivalent probability measure Q
is in Me

s. But it is clearly false that S becomes a Q-super-martingale (i.e.
EQ[S1] ≤ 0) as soon as EQ[|S1|] <∞.

Definition 14.5.7. A random variable w: Ω→ R+ such that w ≥ 1 is called
a feasible weight function for the process S, if

(1) there is a strictly positive bounded predictable process ϕ such that the maxi-
mal function of the Rd-valued stochastic integral ϕ·S satisfies (ϕ · S)∗ ≤ w.

(2) there is an element Q ∈ Me
σ such that EQ [w] <∞.

Remark 14.5.8. For feasible weight functions w, it might happen that for some
elements Q ∈ Me

σ we have that EQ [w] =∞, see the Example 14.5.23 below.
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If no confusion can arise to which process the feasibility condition refers,
then we will simply say that the weight function is feasible. The first item
in the definition requires that w is big enough in order to allow sufficiently
many integrands H such that both H and −H are w-admissible. The second
item requires w to be not too big, and as we will see, this will avoid arbitrage
opportunities. It follows from Proposition 14.2.6 and the assumption that
Me

σ �= 0, that the existence of feasible weight functions is guaranteed. We
also not that for locally bounded processes S, a function w ≥ 1 is feasible as
soon as there is Q ∈Me

σ with EQ[w] <∞.
We can now state the generalisations of the duality theorem mentioned

above.

Theorem 14.5.9. If w is a feasible weight function and g is a random variable
such that g ≥ −w then:

sup
Q∈Me

σ
EQ[w]<∞

EQ [g]

= inf {α | there is H w-admissible and g ≤ α + (H · S)∞} .

If the quantities are finite then the infimum is a minimum.

Remark 14.5.10. The reader can see that even in the case of locally bounded
processes S the result yields more precise information. Indeed we restrict the
supremum to those measures Q ∈ Me

σ such that EQ [w] <∞.

For a feasible weight function w, we denote by Kw the set

Kw = {(H · S)∞ | H is w-admissible} .

Definition 14.5.11. An element g ∈ Kw is called maximal if h ∈ Kw and
h ≥ g imply that h = g.

The maximal elements in this set are then characterised as follows:

Theorem 14.5.12. If w ≥ 1 is a feasible weight function, if H is w-admissible
and if h = (H · S)∞, then the following are equivalent:

(1) h is maximal
(2) there is Q ∈Me

σ such that EQ [w] <∞ and EQ [h] = 0
(3) there is Q ∈ Me

σ such that EQ [w] < ∞ and H · S is a Q-uniformly
integrable martingale.

In the proof of these results we will make frequent use of Theorem 15.D and
Corollary 15.4.11. These two results were proved for a slightly more restrictive
notion of admissibility, but the reader can go through the proofs and check
that the results remain valid for the present notion of w-admissible integrands.
Indeed the lower bound H ·S ≥ −w is only used to control the negative parts
of the possible jumps in the stochastic integral. This can also be achieved
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by the inequality H · S ≥ −EQ [w | Ft] where EQ [w] < ∞. Compare the
formulation of Theorems 15.B and 15.C. For the convenience of the reader let
us rephrase the results of Chap. 15 in the present setting.

Theorem 14.5.13 (Theorem 15.D). Let Q be a probability measure, equiv-
alent to P. Let M be an Rd-valued Q-local martingale and w ≥ 1 a Q-
integrable function.

Given a sequence (Hn)n≥1 of M -integrable Rd-valued predictable processes
such that

(Hn ·M)t ≥ −EQ [w | Ft] , for all n, t ,

then there are convex combinations

Kn ∈ conv{Hn, Hn+1, . . .} ,

and there is a super-martingale (Vt)t∈R + , V0 ≤ 0, such that

lim
s↘t

s∈Q+

lim
n→∞(Kn ·M)s = Vt, for t ∈ R+, a.s.,

and an M -integrable predictable process H0 such that

((H0 ·M)t − Vt)t∈R + is increasing.

In addition, H0 ·M is a local martingale and a super-martingale.

Corollary 14.5.14 (Corollary 15.4.11). Let S be a semi-martingale taking
values in Rd such thatMe

σ(S) �= ∅ and w ≥ 1 a weight function such that there
is some Q ∈ Me

σ(S) with EQ [w] <∞.
Then the convex cone

{g | there is a (1, w)-admissible integrand H such that g ≤ (H · S)∞}

is closed in L0(Ω) with respect to the topology of convergence in measure.

Let w ≥ 1 be such that there is Q ∈Me
σ, with EQ [w] <∞. The set

Kw = {(H · S)∞ | H is w-admissible}

is a cone in the space of measurable functions L0. As in Chap. 9 we need
the cone of all elements that are dominated by outcomes of w-admissible
integrands:

C0
w = {g | g ≤ (H · S)∞, where H is w-admissible} .

If H is w-admissible and EQ [w] < ∞ for some Q ∈ Me
σ, then it follows

from the results in [AS 94] that the process H · S is a Q-super-martingale.
Therefore the limit (H · S)∞ exists and EQ [(H · S)∞] ≤ 0. It also follows
that for elements g ∈ C0

w, we have that −∞ ≤ EQ [g] ≤ 0. We will use
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this result frequently. We also remark that if H is w-admissible and if (H ·
S)∞ ≥ −w then H is already (1, w)-admissible. Indeed because of the super-
martingale property of H · S we have that (at least for those Q ∈ Me

σ such
that EQ [w] <∞):

(H · S)t ≥ EQ [(H · S)∞ | Ft] ≥ EQ [−w | Ft] .

By Lemma 14.5.4 this means that H is (1, w)-admissible.

Theorem 14.5.15. If w ≥ 1 and if there is some Q ∈Me
σ such that EQ [w] <

∞, then
C∞w =

{
h | h ∈ L∞ and hw ∈ C0

w

}
is weak-star-closed in L∞(Q).

Proof. This is just a reformulation of Corollary 14.5.14 cited above. �
We now prove the duality result stated in Theorem 14.5.9. The proof is

broken up into several lemmata. As we will work with functions w ≥ 1 that
are not necessarily feasible weight functions we will make use of a larger class
of equivalent measures namely:

Me
s,w = {Q ∼ P | EQ [w] <∞ and for each h ∈ Cw : EQ [h] ≤ 0} .

The reader can check that Me
s,w is the set of equivalent probability measures

so that w is integrable and with the property that for a w-admissible integrand
H , the process H · S is a super-martingale. When we work with admissible
integrands, i.e. with w identically equal to 1, then we simply drop, as in
Proposition 14.4.5, the subscript w.

Lemma 14.5.16. If w ≥ 1 has a finite expectation for at least one element
Q ∈Me

σ, if g is a random variable such that g ≥ −w then:

sup
Q∈Me

s,w
EQ[w]<∞

EQ [g] ≤ inf {α | there is H w-admissible and g ≤ α + (H · S)∞} .

Proof. The proof follows the same lines as the proof of Theorem 11.3.4. If
w ≥ 1 and Q ∈ Me

s,w then as observed above, the process H · S is a Q-
super-martingale for each H that is w-admissible. Therefore the inequality
g ≤ α + (H · S)∞ implies that EQ [g] ≤ α. �

Remark 14.5.17. If, under the same hypothesis of the Theorem 14.5.9 above,
supQ∈Me

σ ;EQ[w]<∞ EQ [g] = ∞, then also inf{α | there is H w-admissible
and g ≤ α + (H · S)∞} = ∞. This simply means that no matter how big
the constant a is taken, there is no w-admissible integrand H such that g ≤
a + (H · S)∞.



14.5 Duality Results and Maximal Elements 311

Lemma 14.5.18. If w ≥ 1, if for some Q0 ∈ Me
σ we have EQ0 [w] < ∞, if

g
w is bounded and if

β < inf {α | there is H w-admissible and g ≤ α + (H · S)∞} ,

then there is a probability measure Q ∈Me
s,w such that EQ [g] > β.

Proof. The hypothesis on β means that:(
g − β

w
+ L∞

+

)
∩ C∞w = {0} .

Because the set C∞w is weak-star-closed, we can apply Yan’s separation theorem
[Y 80] (see also Theorem 5.2.2 above) and we obtain a strictly positive measure
µ, equivalent to P such that

(1) Eµ

[
g−β

w

]
> 0

(2) for all h ∈ C∞w we have Eµ [h] ≤ 0.

If we normalise µ so that the measure Q defined as dQ = 1
wdµ becomes

a probability measure, then we find that

(1) Q ∼ P and EQ [w] <∞,
(2) EQ [g] > β,
(3) for all h ∈ C∞w we have that EQ [hw] ≤ 0.

The latter inequality together with the Beppo-Levi theorem then implies that
for each w-admissible integrand H we have that EQ [(H · S)∞] ≤ 0. �

Lemma 14.5.19. If w ≥ 1, if some Q0 ∈ Me
σ we have EQ0 [w] < ∞, if

g ≥ −w then

sup
Q∈Me

s,w

EQ [g] ≥ inf {α | there is H w-admissible and g ≤ α + (H · S)∞} .

Moreover if the quantity on the right hand side is finite, then the infimum is
a minimum.

Proof. For each n ≥ 1, we have that g∧n
w is bounded and hence we can apply

the previous lemma. This tells us that, for each n ∈ N,

αn = sup
{
EQ [g ∧ n] | Q ∈ Me

s,w

}
≥ inf {α | there is H w-admissible and g ∧ n ≤ α + (H · S)∞} .

Because there is nothing to prove when limn αn = ∞ we may suppose that
supn αn = limn αn = α <∞. So, for each n, we take a w-admissible integrand
Hn such that g∧n ≤ αn + 1

n +(Hn ·S)∞. Let us now fix Q0 ∈ Me
σ such that

EQ0 [w] <∞. From Theorem 14.5.13, cited above, we deduce the existence of
Kn ∈ conv{Hn, Hn+1, . . .} as well as H0, such that
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(1) Vt = lims↘t; s∈Q+ limn→∞(Kn · S)s exists a.s., for all t ≥ 0,
(2) (H0 · S)t − Vt is increasing,
(3) V0 ≤ 0.

From this it follows that (H0 ·S)t ≥ −V0 + Vt ≥ Vt. Since Hn is w-admissible
(and hence (1, w)-admissible) we have that Kn is (1, w)-admissible and hence
we find that Vt ≥ −EQ [w | Ft] for all Q ∈ Me

σ such that EQ [w] < ∞. It is
now clear that H0 is w-admissible. Since the sequence αn is increasing, we
also obtain that for all t and all Q ∈ Me

σ with EQ [w] <∞:

(Kn · S)t + αn +
1
n
≥ EQ [(Kn · S)∞ | Ft] + αn +

1
n
≥ EQ [g ∧ n | Ft] .

This yields that, for all t and all n,

(H0 · S)t + αn +
1
n
≥ Vt + αn +

1
n
≥ EQ [g ∧ n | Ft] .

If t tends to infinity this gives (H0 ·S)∞ +αn + 1
n ≥ g∧n for all n. By taking

the limit over n we finally find that

(H0 · S)∞ + α ≥ g .

This shows the desired inequality and at the same time also shows that the
infimum is a minimum. �

We are now ready to prove the duality results. We start with the case
of admissible integrands thus extending Theorem 11.3.4 to the case of non-
locally bounded processes S. Recall that we assume throughout this section
that S is an Rd-valued semi-martingale satisfying (NFLVR).

Theorem 14.5.20. For a non-negative random variable g we have:

sup
Q∈Me

σ

EQ [g] = inf {α | there is H admissible and g ≤ α + (H · S)∞} .

Proof. From the previous lemmata it follows that we only have to show that

sup
Q∈Me

σ

EQ [g] = sup
Q∈Me

s

EQ [g] .

This follows from Proposition 14.4.5 and the fact that g is bounded from
below. �

We now complete the proof for the case of feasible weight functions w and
w-admissible integrands:

Proof of Theorem 14.5.9. In this case we show that Me
σ =Me

s,w. We already
observed that Me

σ ⊂Me
s,w. Take now Q ∈Me

s,w.
Since w is now supposed to be a feasible weight function, we have

the existence of a strictly positive predictable function ϕ such that (ϕ ·
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S)∗ ≤ w. It follows that random variables of the form 1A

(
ϕ · Si

t − ϕ · Si
s

)
or

−1A

(
ϕ · Si

t − ϕ · Si
s

)
, where s < t, A ∈ Fs and (Si)i=1...d are the coordinates

of S, are results of w-admissible integrands. Therefore ϕ ·S is a Q-martingale
and Q ∈ Me

σ. �

Corollary 14.5.21. If w ≥ 1 is a feasible weight function then the set

{Q | Q ∈Me
σ, EQ[w] <∞}

is dense in Me
σ for the variation norm.

Proof. If the set would not be dense then by the Hahn-Banach theorem, there
exists Q0 ∈ Me

σ and a bounded function g such that

EQ0 [g] > sup {EQ[g] | Q ∈ Me
σ, EQ[w] <∞} = α .

This, together with Theorem 14.5.9, would then imply

α0 = inf {α | there is H admissible and g ≤ α + (H · S)∞}
= sup

Q∈Me
σ

EQ [g]

> sup
Q∈Me

σ
EQ[w]<∞

EQ [g]

= inf {α | there is H w-admissible and g ≤ α + (H · S)∞} .

But a w-admissible integrand H such that (H ·S)∞ +α ≥ g is already admis-
sible, proving that the strict inequality cannot hold. Indeed the process H · S
is a Q-super-martingale for each element Q ∈ Me

σ such that EQ[w] < ∞.
Therefore the process H · S is bounded below by −α− ‖g‖∞ and this means
that H is admissible.

Remark 14.5.22. An interesting question is, whether by taking the supremum
in Theorem 14.5.9, we have, for general unbounded functions g, to restrict to
those elements Q ∈ Me

σ such that for the feasible weight function w we have
EQ [w] <∞. More precisely is there a contingent claim g ≥ −w such that

sup
Q∈Me

σ

EQ [g] > sup
Q∈Me

σ
EQ[w]<∞

EQ [g] .

An inspection of the proof of the above theorem shows that we used the Q-
integrability of the feasible weight function w in order to conclude that the
w-admissible integrand H defined a Q-super-martingale H · S.

The next example, however, shows that it might happen that, for some
sigma-martingale measure, H ·S is a super-martingale, while for other sigma-
martingale measures, it fails to be so.
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Example 14.5.23. † There is a continuous process S, S0 = 0 satisfying
(NFLVR) and so that

(i) P ∈Me
σ,

(ii) S is not uniformly integrable under P and EP[S∞] > 0,
(iii) the maximum function S∗ = sup0≤t<∞ |St| is not P-integrable,
(iv) there is Q0 ∈ Me

σ such that S is uniformly Q0-integrable and, more
precisely, EQ0 [(S∗)γ ] <∞ for some γ > 1,

(v) the weight function w = 1 + S∗ is feasible and

sup
Q∈Me

σ

EQ [S∞] > sup
Q∈Me

σ
EQ[w]<∞

EQ[S∞] = 0 .

The example is the same as in Chap. 10 but we need additional properties.
The space Ω supports two independent Brownian motions: B and W . We
first introduce the two stochastic exponentials Lt = exp(Bt − 1

2 t) and Zt =
exp(Wt − 1

2 t). As in Chap. 10 we define τ = inf{t | Lt ≤ 1
2} and σ = inf{t |

Zt ≥ 2}. The process Zσ is bounded by 2 and Lτ is a strict local martingale.
The process S is defined as S = 1 − Lτ∧σ and Q0 is defined by dQ0

dP = Zτ∧σ.
Since τ < ∞ a.s. Q0 and P are equivalent. In Chap. 10 it is shown that
(i) and (ii) and hence (iii) hold true. Also it is shown that S is a uniformly
Q0-integrable martingale. We will now show that EQ0 [(S∗)γ ] < ∞ for some
γ > 1. This implies that w = 1 + S∗ is a feasible weight function and since
EP[S∞] > 0 and P ∈Me

σ we get (v) as a consequence.
Hence we still have to show (iv). The estimate on EQ0 [(S∗)γ ] follows from

the statement EQ0 [L
γ
τ∧σ] <∞ for some γ > 1. This in turn follows from the

following claim (see also [RY91, Chap. II, Exercise (3.14)]).
Claim 1: Let W be a Brownian motion. Let ν = inf{t |Wt + 1

2 t ≥ ln 2}, then
for β ≥ 0 we have

E[exp(−βν)] = 2
1−√

1+8β
2 .

This is seen as follows. For α ≥ 0 take the martingale Xt = exp(αWt −
1
2α2t) stopped at time ν. Since Xν is bounded we get E[Xν] = 1 and this
implies 1 = E[exp(α ln 2− α

2 ν − 1
2α2ν)] = 2αE[exp(−α(α+1)

2 ν)]. The equation
α(α+1)

2 = β has one positive root for α, namely α = −1+
√

1+8β
2 . This gives

E[exp(−βν)] = 2
1−√

1+8β
2 .

Claim 2: Let f ≥ 0 be a random variable and for β ∈ C, Re(β) ≥ 0 let ϕ(β) =
E[exp(−βf)]. Suppose that ϕ has an analytic continuation, still denoted by
ϕ, to the domain {β ∈ C | |β| < β0}. Then for β ∈ C, |β| < β0 we have
E[exp(βσ)] = ϕ(−β).

This is a standard exercise in probability theory.

† The original paper [DS 98, Example 5.14] contained an error in Example 14.5.23.
This was pointed out by S. Biagini and M. Frittelli which is gratefully acknowl-
edged, see [BF 04]. In their paper they adapted our example in a different way.
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Claim 1 can now be improved as follows: for −∞ < β ≤ 1
8 we have

E[exp(βν)] = 2
1−√

1−8β
2 .

As above let us now look at σ = inf{t | Wt − 1
2 t ≥ ln 2} and consider

the measure defined by dQ
dP = Zσ = 2 1{σ<∞}. The extension of Girsanov’s

theorem for non-equivalent measures, due E. Lenglart [L 77], allows to write
the Brownian motion W as Wt = W ′

t + t, where W ′ is a Q-Brownian motion
and the equations hold Q-a.s.. It follows that for 0 ≤ β ≤ 1

8

EQ[exp(βσ)] = 2E[exp(βσ)1{σ<∞}] = E[exp(βν)] = 2
1−√

1−8β
2 .

In other words E[exp(βσ)1{σ<∞}] = 2
−1−√

1−8β
2 .

We are now ready to show:

Claim 3: EQ0 [L
γ
τ∧σ] <∞ for 1 ≤ γ ≤ 1+

√
2

2 .
The calculations are straightforward but we prefer to give the details

E [Lγ
τ∧σZτ∧σ]

= E
[
exp
(
γBτ∧σ −

γ

2
τ ∧ σ

)
exp
(

Wτ∧σ −
1
2
τ ∧ σ

)]
= E

[
exp
(

γBτ∧σ −
γ2

2
τ ∧ σ

)
exp
(

γ(γ − 1)
2

τ ∧ σ

)
exp
(

Wτ∧σ −
1
2
τ ∧ σ

)]
≤ E

[
exp
(

γBτ∧σ −
γ2

2
τ ∧ σ

)
exp
(

γ(γ − 1)
2

σ

)
exp
(

Wσ −
1
2
σ

)]
≤ lim

n→∞E
[
exp
(

γBτ∧σ∧n −
γ2

2
τ ∧ σ ∧ n

)
exp
(

γ(γ − 1)
2

σ

)
exp
(

Wσ −
1
2
σ

)]
≤ lim

n→∞E
[
exp
(

γBτ∧n −
γ2

2
τ ∧ n

)
exp
(

γ(γ − 1)
2

σ

)
exp
(

Wσ −
1
2
σ

)]
,

this is seen as follows: we split into the two sets {τ ∧ n ≤ σ} and {τ ∧ n

> σ} ∈ Fσ and use the martingale property of exp(Bt − 1
2 t) for t ≤ n.

≤ E
[
exp
(

γ(γ − 1)
2

σ

)
exp
(

Wσ −
1
2
σ

)]
by independence of B and W !

For 1 ≤ γ ≤ 1+
√

2
2 we have γ(γ−1)

2 ≤ 1
8 and hence

EQ0 [Lγ
τ∧σ] ≤ E

[
exp
(

γ(γ − 1)
2

σ

)
2 1{σ<∞}

]
<∞.

This ends the proof of (iv) and completes the discussion of the example. �

We now turn to the characterisation of maximal and of attainable elements.
The approach is different from the one used in Chap. 11, which was based on
a change of numéraire technique. In order not to overload the statements we
henceforth suppose that w is a feasible weight function.
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Lemma 14.5.24. If g ∈ Kw, then there is a maximal element h ∈ Kw such
that h ≥ g.

Proof. It is sufficient to show that every increasing sequence in Kw has an
upper bound in Kw. So let hn, h1 = g, be an increasing sequence in Kw. For
each n take Hn, w-admissible so that hn = (Hn · S)∞. As in the previous
proof we then find, as an application of Theorem 14.5.13, that there is H0,
w-admissible such that (H0 · S)∞ ≥ limn hn. This concludes the proof of the
lemma. �
Proof of Theorem 14.5.12. If EQ [w] <∞ then H · S is a Q-super-martingale
and hence (2) and (3) are equivalent. Also it is clear that (2) implies (1).
Indeed if g is the result of a w-admissible integrand then EQ [g] ≤ 0 for each
Q ∈Me

σ such that also EQ [w] <∞. It follows that h is necessarily maximal.
The only remaining part is that (1) implies (2). Since always EQ [h] ≤ 0

for Q ∈Me
σ such that also EQ [w] <∞, we obtain already that for measures

Q satisfying these assumptions, h+ is Q-integrable. So fix such a measure
Q. Now let w1 = h+ + w. Clearly w1 is a feasible weight function. We will
work with the set Kw1 . The problem is, however, that we do not (yet) know
that h is still maximal in the bigger cone Kw1 . From the construction of w1

it follows that, for elements Q ∈ Me
σ, we have EQ [w1] < ∞ if and only if

EQ [w] <∞. Now let g ≥ h be the result of a w1-admissible integrand. Hence
g = (K · S)∞ where K is w1-admissible. Since (K · S)∞ ≥ g ≥ h ≥ −w and
since K is w1-admissible we have that K is already w-admissible. (Remember
that EQ [w1] < ∞ if and only if EQ [w] < ∞) From the maximality of h in
Kw it then follows that g = h, i.e. h is maximal in Kw1 . This can then be
translated into (

h

w1
+ L∞

+

)
∩ C∞w1

= {0} .

Using Yan’s separation theorem (Theorem 5.2.2 above) in the same way
as in the proof of Theorem 14.5.9 above, we find a measure Q1 such that
EQ1 [w1] <∞, Q1 ∈Me

σ and EQ1 [h] ≥ 0. �
The following theorem generalises a result due to Ansel-Stricker and Jacka,

[AS 94] and [J 92].

Theorem 14.5.25. Let w be a feasible weight function and let f ≥ −w. The
following assertions are equivalent

(1) there is a measure Q ∈Me
σ such that EQ [w] <∞ and such that

EQ [f ] = sup
R∈Me

σ
ER[w]<∞

ER [f ] <∞

(2) f can be hedged, i.e. there is α ∈ R, Q ∈ Me
σ such that EQ [w] < ∞,

a w-admissible integrand H such that H · S is a Q-uniformly integrable
martingale, and such that f = α + (H · S)∞.
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Proof. Clearly (2) implies (1) by Theorem 14.5.12.
For the reverse implication take now Q as in (1), then the duality result

(Theorem 14.5.9) gives α ∈ R as well as a w-admissible integrand H such that
f ≤ α + (H · S)∞, where α = supR∈Me;ER[w]<∞ [f ]. Here we use explicitly
that the infimum in the duality theorem is a minimum. But then it follows
from EQ [w] < ∞ and from the equality EQ [f ] = α that f = α + (H · S)∞
and that H · S is a Q-uniformly integrable martingale. �
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A Compactness Principle
for Bounded Sequences of Martingales

with Applications (1999)

Abstract. For H1-bounded sequences of martingales, we introduce a technique,
related to the Kadeč-Pe�lczyński decomposition for L1 sequences, that allows us to
prove compactness theorems. Roughly speaking, a bounded sequence in H1 can
be split into two sequences, one of which is weakly compact, the other forms the
singular part. If the martingales are continuous then the singular part tends to zero
in the semi-martingale topology. In the general case the singular parts give rise to
a process of bounded variation. The technique allows to give a new proof of the
optional decomposition theorem in Mathematical Finance.

15.1 Introduction

Without any doubt, one of the most fundamental results in analysis is the
theorem of Heine-Borel:

Theorem 15.1.1. From a bounded sequence (xn)n≥1 ∈ Rd we can extract
a convergent subsequence (xnk

)k≥1.

If we pass from Rd to infinite dimensional Banach spaces X this result does
not hold true any longer. But there are some substitutes which often are useful.
The following theorem can be easily derived from the Hahn-Banach theorem
and was well-known to S. Banach and his contemporaries (see [DRS 93] for
related theorems).

Theorem 15.1.2. Given a bounded sequence (xn)n≥1 in a reflexive Banach
space X (or, more generally, a relatively weakly compact sequence in a Banach
space X) we may find a sequence (yn)n≥1 of convex combinations of (xn)n≥1,

yn ∈ conv{xn, xn+1, . . .} ,

which converges with respect to the norm of X.

[DS 99] A Compactness Principle for Bounded Sequences of Martingales with Ap-
plications. Proceedings of the Seminar on Stochastic Analysis, Random Fields and
Applications, Progress in Probability, vol. 45, pp. 137–173, Birkhäuser, Basel (1999).
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Note — and this is a Leitmotiv of the present paper — that, for sequences
(xn)n≥1 in a vector space, passing to convex combinations usually does not
cost more than passing to a subsequence. In most applications the main prob-
lem is to find a limit x0 ∈ X and typically it does not matter whether
x0 = limk xnk

for a subsequence (xnk
)k≥1 or x0 = limn yn for a sequence

of convex combinations yn ∈ conv{xn, xn+1, . . .}.
If one passes to the case of non-reflexive Banach spaces there is — in gen-

eral — no analogue to Theorem 15.1.2 pertaining to any bounded sequence
(xn)n≥1, the main obstacle being that the unit ball fails to be weakly com-
pact. But sometimes there are Hausdorff topologies on the unit ball of a
(non-reflexive) Banach space which have some kind of compactness proper-
ties. A noteworthy example is the Banach space L1(Ω,F ,P) and the topology
of convergence in measure.

Theorem 15.1.3. Given a bounded sequence (fn)n≥1 ∈ L1(Ω,F ,P) then
there are convex combinations

gn ∈ conv{fn, fn+1, . . .)}

such that (gn)n≥1 converges in measure to some g0 ∈ L1(Ω,F ,P).

The preceding theorem is a somewhat vulgar version of Komlos’ theo-
rem [K67]. Note that Komlos’ result is more subtle as it replaces the convex
combinations (gn)n≥1 by the Cesaro-means of a properly chosen subsequence
(fnk

)k≥1 of (fn)n≥1.
But the above vulgar version of Komlos’ theorem has the advantage that

it extends to the case of L1(Ω,F ,P; E) for reflexive Banach spaces E as we
shall presently see (Theorem 15.1.4 below), while Komlos’ theorem does not.
(J. Bourgain [B 79] proved that the precise necessary and sufficient condition
for the Komlos theorem to hold for E-valued functions is that L2(Ω,F ,P; E)
has the Banach-Saks property; compare [G 79] and [S 81].)

Here is the vector-valued version of Theorem 15.1.3:

Theorem 15.1.4. If E is a reflexive Banach space and (fn)n≥1 a bounded
sequence in L1(Ω,F ,P; E), we may find convex combinations

gn ∈ conv{fn, fn+1, . . .}

and g0 ∈ L1(Ω,F ,P; E) such that (gn)n≥1 converges to f0 almost surely, i.e.,

lim
n→∞ ‖gn(ω)− g0(ω)‖E = 0 for a.e. ω ∈ Ω .

The preceding theorem seems to be of folklore type and to be known to
specialists for a long time (compare also [DRS 93]). We shall give a proof in
Sect. 15.2 below.

Let us have a closer look at what is really happening in Theorems 15.1.3
and 15.1.4 above by following the lines of Kadeč and Pe�lczyński [KP65].
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These authors have proved a remarkable decomposition theorem which es-
sentially shows the following (see Theorem 15.2.1 below for a more precise
statement): Given a bounded sequence (fn)n≥1 in L1(Ω,F ,P) we may find
a subsequence (fnk

)k≥1 which may be split into a regular and a singular
part, fnk

= f r
nk

+ fs
nk

, such that (f r
nk

)k≥1 is uniformly integrable and (fs
nk

)k≥1

tends to zero almost surely.
Admitting this result, Theorem 15.1.3 becomes rather obvious: As regards

the regular part (f r
nk

)k≥1 we can apply Theorem 15.1.2 to find convex combi-
nations converging with respect to the norm of L1 and therefore in measure.
As regards the singular part (fs

nk
)k≥1 we do not have any problems as any

sequence of convex combinations will also tend to zero almost surely.
A similar reasoning allows to deduce the vector-valued case (Theorem15.1.4

above) from the Kadeč-Pe�lczyński decomposition result (see Sect. 15.2 below).
After this general prelude we turn to the central theme of this paper. Let

(Mt)t∈R + be an Rd-valued càdlàg local martingale w.r. to (Ω,F , (Ft)t∈R + ,P)
and (Hn)n≥1 a sequence of M -integrable processes, i.e., predictable Rd-valued
stochastic processes such that the integral

(Hn ·M)t =
∫ t

0

Hn
u dMu

makes sense for every t ∈ R+, and suppose that the resulting processes
((Hn ·M)t)t∈R + are martingales. The theme of the present paper is: under
what conditions can we pass to a limit H0? More precisely: by passing to
convex combinations of (Hn)n≥1 (still denoted by Hn) we would like to en-
sure that the sequence of martingales Hn ·M converges to some martingale
N which is of the form N = H0 ·M .

Our motivation for this question comes from applications of stochastic cal-
culus to Mathematical Finance where this question turned out to be of crucial
relevance. For example, in chapter 9 as well as in the work of D. Kramkov
([K 96a]) the passage to the limit of a sequence of integrands is the heart of
the matter. We shall come back to the applications of the results obtained in
this paper to Mathematical Finance in Sect. 15.5 below.

Let us review some known results in the context of the above question.
The subsequent Theorem 15.1.5, going back to the foundations of stochas-
tic integration given by Kunita and Watanabe [KW67], is a straightforward
consequence of the Hilbert space isometry of stochastic integrands and in-
tegrals (see, e.g., [P 90, p. 153] for the real-valued and Jacod [J 79] for the
vector-valued case).

Theorem 15.1.5 (Kunita-Watanabe). Let M be an Rd-valued càdlàg local
martingale, (Hn)n≥1 be a sequence of M -integrable predictable stochastic pro-
cesses such that each (Hn ·M) is an L2-bounded martingale and such that the
sequence of random variables ((Hn ·M)∞)n≥1 converges to a random variable
f0 ∈ L2(Ω,F ,P) with respect to the norm of L2.
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Then there is an M -integrable predictable stochastic process H0 such that
H0 ·M is an L2-bounded martingale and such that (H0 ·M)∞ = f0.

It is not hard to extend the above theorem to the case of Lp, for 1 < p ≤ ∞.
But the extension to p = 1 is a much more delicate issue which has been settled
by M. Yor [Y 78a], who proved the analogue of Theorem 15.1.5 for the case of
H1 and L1.

Theorem 15.1.6 (Yor). Let (Hn)n≥1 be a sequence of M -integrable pre-
dictable stochastic processes such that each (Hn ·M) is an H1-bounded (resp.
a uniformly integrable) martingale and such that the sequence of random vari-
ables ((Hn ·M)∞)n≥1 converges to a random variable f0 ∈ H1(Ω,F ,P) (resp.
f0 ∈ L1(Ω,F ,P)) with respect to the H1-norm (resp. L1-norm); (or even only
with respect to the σ(H1,BMO) (resp. σ(L1, L∞)) topology).

Then there is an M -integrable predictable stochastic process H0 such that
H0 ·M is an H1-bounded (resp. uniformly integrable) martingale and such
that (H0 ·M)∞ = f0.

We refer to Jacod [J 79, Theorème 4.63, p.143] for the H1-case. It es-
sentially follows from Davis’ inequality for H1-martingales. The L1-case (see
[Y 78a]) is more subtle. Using delicate stopping time arguments M. Yor suc-
ceeded in reducing the L1 case to the H1 case. In Sect. 15.4 we take the
opportunity to translate Yor’s proof into the setting of the present paper.

Let us also mention in this context a remarkable result of Mémin ([M 80,
Theorem V.4]) where the process M is only assumed to be a semi-martingale
and not necessarily a local martingale and which also allows to pass to a limit
H0·M of a Cauchy sequence Hn·M of M -integrals (w.r. to the semi-martingale
topology).

All these theorems are closedness results in the sense that, if (Hn ·M) is
a Cauchy-sequence with respect to some topology, then we may find H0 such
that (H0 ·M) equals the limit of (Hn ·M).

The aim of our paper is to prove compactness results in the sense that,
if (Hn ·M) is a bounded sequence in the martingale space H1, then we may
find a subsequence (nk)k≥1 as well as decompositions Hnk = rKk + sKk so
that the sequence rKk ·M is relatively weakly compact in H1 and such that
the singular parts sKk ·M hopefully tend to zero in some sense to be made
precise. The regular parts rKk ·M then allow to take convex combinations
that converge in the norm of H1.

It turns out that for continuous local martingales M the situation is nicer
(and easier) than for the general case of local martingales with jumps. We
now state the main result of this paper, in its continuous and in its general
version (Theorem 15.A and 15.B below).

Theorem 15.A. Let (Mn)n≥1 be an H1-bounded sequence of real-valued con-
tinuous local martingales.

Then we can select a subsequence, which we still denote by (Mn)n≥1, as
well as an increasing sequence of stopping times (Tn)n≥1, such that P[Tn <∞]
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tends to zero and such that the sequence of stopped processes
(
(Mn)Tn

)
n≥1

is
relatively weakly compact in H1.

If all the martingales are of the form Mn = Hn ·M for a fixed continuous
local martingale taking values in Rd, then the elements in the H1-closed convex
hull of the sequence

(
(Mn)Tn

)
n≥1

are also of the form H ·M .

As a consequence we obtain the existence of convex combinations

Kn ∈ conv{Hn, Hn+1, . . .}
such that Kn1[[0,Tn]] ·M tends to a limit H0 ·M in H1. Also remark that the
remaining singular parts Kn1]]Tn,∞]] ·M tend to zero in a stationary way, i.e.
for almost each ω ∈ Ω the set {t | ∃n ≥ n0, K

n
t �= 0} becomes empty for large

enough n0. As a result we immediately derive that the sequence Kn ·M tends
to H0 ·M in the semi-martingale topology.

If the local martingale M is not continuous the situation is more delicate.
In this case we cannot obtain a limit of the form H0 ·M and also the decom-
position is not just done by stopping the processes at well-selected stopping
times.

Theorem 15.B. Let M be an Rd-valued local martingale and (Hn)n≥1 be
a sequence of M -integrable predictable processes such that (Hn ·M)n≥1 is an
H1 bounded sequence of martingales.

Then there is a subsequence, for simplicity still denoted by (Hn)n≥1, an
increasing sequence of stopping times (Tn)n≥1, a sequence of convex combi-
nations Ln =

∑
k≥n αn

kHk as well as a sequence of predictable sets (En)n≥1

such that

(1) En ⊂ [[0, Tn]] and Tn increases to ∞,
(2) the sequence

(
Hn1[[0,Tn]]∩(En)c ·M

)
n≥1

is weakly relatively compact in H1,
(3)
∑

n≥1 1En ≤ d,
(4) the convex combinations

∑
k≥n αk

nHk1[[0,Tn]]∩(En)c ·M converge in H1 to
a stochastic integral of the form H0 ·M , for some predictable process H0,

(5) the convex combinations Vn =
∑

k≥n αk
nHk1]]Tn,∞[[∪En · M converge to

a càdlàg optional process Z of finite variation in the following sense: a.s.
we have that Zt = lims↘t; s∈Q limn→∞(Vn)s for each t ∈ R+,

(6) the brackets [(H0 − Ln) ·M, (H0 − Ln) ·M ]∞ tend to zero in probability.

If, in addition, the set

{∆(Hn ·M)−T | n ∈ N; T stopping time}
resp.

{|∆(Hn ·M)T | | n ∈ N; T stopping time}
is uniformly integrable, e.g. there is an integrable function w ≥ 0 such that

∆(Hn ·M) ≥ −w resp. |∆(Hn ·M)| ≤ w, a.s.

then the process (Zt)t∈R + is decreasing (resp. vanishes identically).



324 15 A Compactness Principle

For general martingales, not necessarily of the form Hn ·M for a fixed
local martingale M , we can prove the following theorem:

Theorem 15.C. Let (Mn)n≥1 be an H1-bounded sequence of Rd-valued mar-
tingales. Then there is a subsequence, for simplicity still denoted by (Mn)n≥1

and an increasing sequence of stopping times (Tn)n≥1 with the following prop-
erties:

(1) Tn increases to ∞,
(2) the martingales Nn = (Mn)Tn − ∆MTn1[[Tn,∞[[ + Cn form a relatively

weakly compact sequence in H1. Here Cn denotes the compensator (dual
predictable projection) of the process ∆MTn1[[Tn,∞[[,

(3) there are convex combinations
∑

k≥n αk
nNk that converge to an H1, mar-

tingale N0 in the norm of H1,
(4) there is a càdlàg optional process of finite variation Z such that almost

everywhere for each t ∈ R: Zt = lims↘t; s∈Q limn→∞
∑

k≥n αk
nCk

s .

If, in addition, the set{
∆(Mn)−T

∣∣ n ∈ N; T stopping time
}

resp.
{ |∆(Mn)T | | n ∈ N; T stopping time}

is uniformly integrable, e.g. there is an integrable function w ≥ 0 such that

∆(Mn) ≥ −w resp. |∆(Mn)| ≤ w, a.s.

then the process (Zt)t∈R + is increasing (resp. vanishes identically).

Let us comment on these theorems. Theorem 15.A shows that in the con-
tinuous case we may cut off some small singular parts in order to obtain
a relatively weakly compact sequence ((Mn)Tn)n≥1 in H1. By taking convex
combinations we then obtain a sequence that converges in the norm ofH1. The
singular parts are small enough so that they do not influence the almost sure
passage to the limit. Note that — in general — there is no hope to get rid of the
singular parts. Indeed, a Banach space E such that for each bounded sequence
(xn)n≥1 ∈ E there is a norm-convergent sequence yn ∈ conv{xn, xn+1, . . .} is
reflexive; and, of course, H1 is only reflexive if it is finite dimensional.

The general situation of local martingales M (possibly with jumps) de-
scribed in Theorem 15.B is more awkward. As regards the convex combina-
tions of the form (

∑
k≥n αk

nHk1[[0,Tn]]∩(En)c ·M)n≥1 we have convergence in
H1 but for the singular parts (V n)n≥1 we cannot assert that they tend to
zero. Nevertheless there is some control on these processes. We may assert
that the processes (V n)n≥1 tend, in a certain pointwise sense, to a process
(Zt)t∈R + of integrable variation. We shall give an example (Sect. 15.3 below)
which illustrates that in general one cannot do better than that. But under
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special assumptions, e.g., one-sided or two-sided bounds on the jumps of the
processes (Hn ·M), one may deduce certain features of the process Z (e.g.,
Z being monotone or vanishing identically). It is precisely this latter conclu-
sion which has applications in Mathematical Finance and allows to give an
alternative proof of Kramkov’s optional decomposition theorem [K 96a] (see
Theorem 15.5.1 below).

To finish the introduction we shall state the main application of Theorem
15.B. Note that the subsequent statement of Theorem 15.D does not use
the concept of H1(P)-martingales (although the proof heavily relies on this
concept) which makes it more applicable in general situations.

Theorem 15.D. Let M be an Rd-valued local martingale and w ≥ 1 an inte-
grable function.

Given a sequence (Hn)n≥1 of M -integrable Rd-valued predictable processes
such that

(Hn ·M)t ≥ −w, for all n, t ,

then there are convex combinations

Kn ∈ conv{Hn, Hn+1, . . .} ,

and there is a super-martingale (Vt)t∈R + , V0 ≤ 0, such that

lim
s↘t

s∈Q+

lim
n→∞(Kn ·M)s = Vt for t ∈ R+, a.s.,

and an M -integrable predictable process H0 such that

((H0 ·M)t − Vt)t∈R + is increasing.

In addition, H0 ·M is a local martingale and a super-martingale.

Loosely speaking, Theorem 15.D says that for a sequence (Hn ·M)n≥1, obey-
ing the crucial assumption of uniform lower boundedness with respect to an
integrable weight function w, we may pass — by forming convex combina-
tions — to a limiting super-martingale V in a pointwise sense and — more
importantly — to a local martingale of the form (H0 ·M) which dominates V .

The paper is organised as follows: Sect. 15.2 introduces notation and fixes
general hypotheses. We also give a proof of the Kadeč-Pe�lczyński decom-
position and we recall basic facts about weak compactness in H1. We give
additional (and probably new) information concerning the convergence of the
maximal function and the convergence of the square function. Sect. 15.3 con-
tains an example. In Sect. 15.4, we give the proofs of Theorems 15.A, 15.B,
15.C and 15.D. We also reprove M. Yor’s Theorem 15.1.6. In Sect. 15.5 we
reprove Kramkov’s Optional Decomposition Theorem 15.5.1.
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15.2 Notations and Preliminaries

We fix a filtered probability space (Ω,F , (Ft)t∈R + ,P), where the filtration
(Ft)t∈R + satisfies the usual conditions of completeness and right continuity.
We also assume that F equals F∞. In principle, the letter M will be reserved
for a càdlàg Rd-valued local martingale. We assume that M0 = 0 to avoid
irrelevant difficulties at t = 0.

We denote by O (resp. P) the σ-algebra of optional (resp. predictable)
subsets of R+ × Ω. For the notion of an M -integrable Rd-valued predictable
process H = (Ht)t∈R + and the notion of the stochastic integral

(H ·M)t =
∫ t

0

Hu dMu

we refer to [P 90] and to [J 79]. Most of the time we shall assume that the
process H ·M is a local martingale (for the delicacy of this issue compare
[E 80] and [AS 94]) and, in fact, a uniformly integrable martingale.

For the definition of the bracket process [M, M ] of the real-valued local
martingale M as well as for the σ-finite, non-negative measure d[M, M ] on
the σ-algebra O of optional subsets of Ω×R+, we also refer to [P 90]. In the
case d > 1 the bracket process [M, M ] is defined as a matrix with components
[M i, M j ] where M = (M1, . . . , Md). The process [M, M ] takes values in the
cone of non-negative definite (d × d)-matrices. This is precisely the Kunita-
Watanabe inequality for the bracket process. One can select representations so
that for almost each ω ∈ Ω the measure d[M, M ] induces a σ-finite measure,
denoted by d[M, M ]ω, on the Borel sets of R+ (and with values in the cone
of non-negative definite (d× d)-matrices).

For an Rd-valued local martingale X , X0 = 0, we define the H1-norm by

‖X‖H1 = ‖ (trace([X, X ]∞))
1
2 ‖L1(Ω,F ,P)

= E

[(∫ ∞

0

d (trace([X, X ]t))
) 1

2
]
≤ ∞

where trace denotes the trace of a (d× d)-matrix and the L1-norm by

‖X‖L1 = sup
T

E [|XT |] ≤ ∞ ,

where | . | denotes a fixed norm on Rd, where the sup is taken over all finite
stopping times T and which, in the case of a uniformly integrable martingale
X , equals

‖X‖L1 = E [|X∞|] <∞ .
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The Davis’ inequality for H1-martingales ([RY 91, Theorem IV.4.1], see
also [M 76]) states that there are universal constants, c1 and c2 (only depend-
ing on the dimension d), such that for each H1-martingale X we have:

c1‖X∗
∞‖L1 ≤ ‖X‖H1 ≤ c2‖X∗

∞‖L1 ,

where X∗
u = supt≤u |Xt| denotes the maximal function.

We denote byH1 = H1(Ω,F , (Ft)t∈R + ,P) and L1 = L1(Ω,F , (Ft)t∈R + ,P)
the Banach spaces of real-valued uniformly integrable martingales with fi-
nite H1- or L1-norm respectively. Note that the space L1(Ω,F , (Ft)t∈R + ,P)
may be isometrically identified with the space of integrable random variables
L1(Ω,F ,P) by associating to a uniformly integrable martingale X the random
variable X∞.

Also note that for a local martingale of the form H ·M we have the formula

‖H ·M‖H1 =
∥∥∥[H ·M, H ·M ]

1
2∞
∥∥∥

L1(Ω,F ,P)

= E

[(∫ ∞

0

H ′
td[M, M ]tHt

) 1
2
]

,

where H ′ denotes the transpose of H .
We now state and prove the result of Kadeč-Pe�lczyński [KP65] in a form

that will be useful in the rest of our paper.

Theorem 15.2.1. (Kadeč-Pe�lczyński). If (fn)n≥1 is an L1-bounded sequence
in the positive cone L1

+(Ω,F ,P), and g is a non-negative integrable function,
then there is a subsequence (nk)k≥1 as well as an increasing sequence of strictly
positive numbers (βk)k≥1 such that βk tends to ∞ and (fnk

∧ (βk(g + 1)))k≥1

is uniformly integrable.
The sequence (fnk

∧ (βk(g + 1)))k≥1 is then relatively weakly compact by
the Dunford-Pettis theorem.

Proof. We adapt the proof of [KP65]. Without loss of generality we may sup-
pose that the sequence (fn)n≥1 is bounded by 1 in L1-norm but not uniformly
integrable, i.e.,

E[fn] ≤ 1; δ(β) = sup
n

E[fn − fn ∧ β(g + 1)] <∞; 0 < δ(∞) = inf
β>0

δ(β)

(it is an easy exercise to show that δ(∞) = 0 implies uniform integrability).
For k = 1 and β1 = 1 we select n1 so that E[fn1 − fn1 ∧ β1(g + 1)] > δ(∞)

2 .
Having chosen n1, n2, . . . , nk−1 as well as β1, β2, . . . , βk−1 we put βk = 2βk−1

and we select nk > nk−1 so that E[fnk
− fnk

∧ βk(g + 1)] > (1 − 2−k)δ(∞).
The sequence (fnk

∧ βk(g + 1))k≥1 is now uniformly integrable. To see this,
let us fix K and let k(K) be defined as the smallest number k such that
βk > K. Clearly k(K) → ∞ as K tends to ∞. For l < k(K) we then have
that fnl

∧βl(g +1) = fnl
∧βl(g +1)∧K(g+1), whereas for l ≥ k(K) we have
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E[fnl
∧ βl(g + 1)− fnl

∧ βl(g + 1) ∧K(g + 1)]
= E[fnl

− fnl
∧K(g + 1)]−E[fnl

− fnl
∧ βl(g + 1)]

≤ δ(K)−
(

δ(∞)− δ(∞)
2k(K)

)
≤ δ(∞)− δ(K) +

δ(∞)
2k(K)

.

The latter expression clearly tends to 0 as K →∞. �

Corollary 15.2.2. If the sequence βk is such that fnk
∧βk(g+1) is uniformly

integrable, then there also exists a sequence γk such that γk

βk
tends to infinity

and such that the sequence fnk
∧ γk(g + 1) remains uniformly integrable.

Proof. In order to show the existence of γk we proceed as follows. The sequence

hk = βk(g + 1)1{fnk
≥βk(g+1)}

tends to zero in L1(P), since the sequence fnk
∧βk(g+1) is uniformly integrable

and P[fnk
≥ βk(g + 1)] ≤ 1

βk
→ 0. Let now αk be a sequence that tends to

infinity but so that αkhk still tends to 0 in L1(P). If we define γk = αkβk we
have that

fnk
∧ γk(g + 1) ≤ fnk

∧ βk(g + 1) + αkhk

and hence we obtain the uniform integrability of fnk
∧ γk(g + 1). �

Remark 15.2.3. In most applications of the Kadeč-Pe�lczyński decomposition
theorem, we can take g = 0. However, in Sect. 15.4, we will need the easy
generalisation to the case where g is a non-zero integrable non-negative func-
tion. The general case can in fact be reduced to the case g = 0 by replacing
the functions fn by fn

(g+1) and by replacing the measure P by the probability

measure Q defined as dQ = (g+1)
E[g+1]dP.

Remark 15.2.4. We will in many cases drop indices like nk and simply suppose
that the original sequence (fn)n≥1 already satisfies the conclusions of the
theorem. In most cases such passing to a subsequence is allowed and we will
abuse this simplification as many times as possible.

Remark 15.2.5. The sequence of sets {fn > βn(g + 1)} is, of course, not
necessarily a disjoint sequence. In case we need two by two disjoint sets
we proceed as follows. By selecting a subsequence we may suppose that∑

n>k P[fn > βn(g + 1)] ≤ εk, where the sequence of strictly positive
numbers (εk)k≥1 is chosen in such a way that

∫
B fk dP < 2−k whenever

P[B] < εk. It is now easily seen that the sequence of sets (An)n≥1 defined by
An = {fn > βn(g + 1)} \⋃k>n{fk > βk(g + 1)} will do the job.
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As a first application of the Kadeč-Pe�lczyński decomposition we prove the
vector-valued Komlos-type theorem stated in the introduction:

Theorem 15.2.6. If E is a reflexive Banach space and (fn)n≥1 a bounded
sequence in L1(Ω,F ,P; E) we may find convex combinations

gn ∈ conv{fn, fn+1, . . .}

and g0 ∈ L1(Ω,F ,P; E) such that (gn)n≥1 converges to g0 almost surely, i.e.,

lim
n→∞ ‖gn(ω)− g0(ω)‖E = 0 , for a.e. ω ∈ Ω .

Proof. By the remark made above there is a subsequence, still denoted by
(fn)n≥1 as well as a sequence (An)n≥1 of mutually disjoint sets such that
the sequence ‖fn‖1Ac

n
is uniformly integrable. By a well-known theorem on

L1(Ω,F ,P; E) of a reflexive space E, [DU77], see also [DRS 93], the se-
quence (fn1Ac

n
)n≥1 is therefore relatively weakly compact in L1(Ω,F ,P; E).

Therefore (see Theorem 15.1.2 above) there is a sequence of convex combi-
nations hn ∈ conv{fn1Ac

n
, fn+11Ac

n+1
, . . .}, hn =

∑
k≥n αk

nfk1Ac
k

such that
hn converges to a function g0 with respect to the norm of L1(Ω,F ,P; E).
Since the sequence fn1An converges to zero a.s. we have that the sequence
gn =

∑
k≥n αk

nfk converges to g0 in probability. If needed one can take a fur-
ther subsequence that converges a.s., i.e., ‖gn(ω)− g0(ω)‖E tends to zero for
almost each ω. �

The preceding theorem allows us to give an alternative proof of [K 96a,
Lemma 4.2].

Lemma 15.2.7. Let (Nn)n≥1 be a sequence of adapted càdlàg stochastic pro-
cesses, Nn

0 = 0, such that

E[varNn] ≤ 1 , n ∈ N ,

where varNn denotes the total variation of the process Nn.
Then there is a sequence Rn ∈ conv{Nn, Nn+1 . . .} and an adapted càdlàg

stochastic process Z = (Zt)t∈R + such that

E[varZ] ≤ 1

and such that almost surely the measure dZt, defined on the Borel sets of R+,
is the weak-star limit of the sequence dRn

t . In particular we have that

Zt = lim
s↘t

lim sup
n→∞

Rn
s = lim

s↘t
lim inf
n→∞ Rn

s .

Proof. We start the proof with some generalities of functional analysis that
will allow us to reduce the statement to the setting of Theorem 15.1.4.

The space of finite measures M on the Borel sets of R+ is the dual of
the space C0 of continuous functions on R+ = [0,∞[, tending to zero at
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infinity. If (fk)k=1 is a dense sequence in the unit ball of C0, then for bounded
sequences (µn)n≥1 in M, the weak-star convergence of the sequence µn is
equivalent to the convergence, for each k, of

∫
fk dµn. The mapping Φ(µ) =

(2−k
∫

fk dµ)k≥1 maps the space of measures into the space �2. The image of
a bounded weak-star-closed convex set is closed in �2. Moreover on bounded
subsets of M, the weak-star topology coincides with the norm topology of its
image in �2.

For each n the càdlàg process Nn of finite variation can now be seen as
a function of Ω intoM, mapping the point ω onto the measure dNn

t (ω). Using
Theorem 15.1.3, we may find convex combinations Pn ∈ conv{Nn, Nn+1, . . .},
Pn =

∑
k≥n αk

nNk such that the sequence
∑

k≥n αk
nvar(Nk) converges a.s..

This implies that a.s. the sequence Pn(ω) takes its values in a bounded set
of M. Using Theorem 15.1.4 on the sequence (Φ(Pn))n≥1 we find convex
combinations Rn =

∑
k≥n βk

nP k of
(
P k
)
k≥n

such that the sequence Φ(dRn) =
Φ(
∑

k≥n βk
ndP k

t ) converges a.s.. Since a.s. the sequence of measures dRn(ω)
takes its values in a bounded set of M, the sequence dRn

t (ω) converges a.s.
weak-star to a measure dZt(ω). The last statement is an obvious consequence
of the weak-star convergence. It is also clear that Z is optional and that
E[var(Z)] ≤ 1. �

Remark 15.2.8. If we want to obtain the process Z as a limit of a sequence
of processes then we can proceed as follows. Using once more convex com-
binations together with a diagonalisation argument, we may suppose that
Rn

s converges a.s. for each rational s. In this case we can write that a.s.
Zt = lims↘t; s∈Q limn→∞ Rn

s . We will use such descriptions in Sections 15.4
and 15.5.

Remark 15.2.9. Even if the sequence Nn consists of predictable processes, the
process Z need not be predictable. Take e.g. T a totally inaccessible stopping
time and let Nn describe the point mass at T + 1

n . Clearly this sequence
tends, in the sense described above, to the process 1[[T,∞[[, i.e. the point mass
concentrated at time T , a process which fails to be predictable. Also in general,
there is no reason that the process Z should start at 0.

Remark 15.2.10. It might be useful to observe that if T is a stopping time
such that Z is continuous at T , i.e. ∆ZT = 0, then a.s. ZT = lim Rn

T .

We next recall well-known properties on weak compactness in H1. The
results are due to Dellacherie, Meyer and Yor (see [DMY 78]).

Theorem 15.2.11. For a family (M i)i∈I of elements of H1 the following
assertions are equivalent:

(1) the family is relatively weakly compact in H1,

(2) the family of square functions ([M i, M i]
1
2∞)i∈I is uniformly integrable,

(3) the family of maximal functions ((M i)∗∞)i∈I is uniformly integrable.



15.2 Notations and Preliminaries 331

This theorem immediately implies the following:

Theorem 15.2.12. If (Nn)n≥1 is a relatively weakly compact sequence in
H1, if (Hn)n≥1 is a uniformly bounded sequence of predictable processes with
Hn → 0 pointwise on R+ × Ω, then Hn ·Nn tends weakly to zero in H1.

Proof. We may and do suppose that |Hn| ≤ 1 and ‖Nn‖H1 ≤ 1 for each n. For
each n and each ε > 0, we define En as the predictable set En = {|Hn| > ε}.
We split the stochastic integrals Hn ·Nn as (1EnHn) ·Nn +

(
1(En)cHn

)
·Nn.

We will show that the first terms form a sequence that converges to 0 weakly.
Because obviously ‖

(
1(En)cHn

)
·Nn‖H1 ≤ ε, the theorem follows.

From the previous theorem it follows that the sequence (Hn1En ·Nn)n≥1

is already weakly relatively compact in H1. Clearly 1En → 0 pointwise. It
follows that Fn =

⋃
k≥n En decreases to zero as n tends to ∞. Let N be

a weak limit point of the sequence
((

Hk1Ek

)
·Nk

)
k≥1

. We have to show that
N = 0. For each k ≥ n we have that 1F n ·

((
Hk1Ek

)
·Nk

)
=
(
Hk1Ek

)
·Nk.

From there it follows that 1F n ·N = N and hence by taking limits as n→∞,
we also have N = 1∅ ·N = 0. �

Related to the Davis’ inequality, is the following lemma, due to Garsia and
Chou, (see [G 73, pp. 34–41] and [N 75, p. 198] for the discrete time case); the
continuous time case follows easily from the discrete case by an application of
Fatou’s lemma. The reader can also consult [M 76, p 351, (31.6)] for a proof in
the continuous time case.

Lemma 15.2.13. There is a constant c such that, for each H1-martingale X,
we have

E
[
[X, X ]∞

X∗∞

]
≤ c ‖X‖H1 .

This inequality together with an interpolation technique yields:

Theorem 15.2.14. There is a constant C such that for each H1-martingale
X and for each 0 < p < 1 we have:∥∥∥[X, X ]

1
2∞
∥∥∥

p
≤ C ‖X‖

1
2
H1 ‖X∗

∞‖
1
2

p
2−p

.

Proof. The following series of inequalities is an obvious application of the
preceding lemma and Hölder’s inequality for the exponents 2

p and 2
2−p . The

constant c is the same as in the preceding lemma.

E
[
[X, X ]

p
2∞
]

= E

[
(X∗

∞)
p
2

(
[X, X ]∞

X∗∞

) p
2
]

≤
(
E
[
[X, X ]∞

X∗∞

]) p
2 (

E
[
(X∗

∞)
p

2−p

]) 2−p
2

≤ c
p
2 ‖X‖

p
2
H1 ‖X∗

∞‖
p
2

p
2−p

.
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Hence ∥∥∥[X, X ]
1
2∞
∥∥∥

p
≤ c

1
2 ‖X‖

1
2
H1 ‖X∗

∞‖
1
2

p
2−p

. �

Corollary 15.2.15. If Xn is a sequence of H1-martingales such that ‖Xn‖H1

is bounded and such that (Xn)∗∞ tends to zero in probability, then [Xn, Xn]∞
tends to zero in probability.

In fact, for each p < 1, (Xn)∗∞ as well as [Xn, Xn]
1
2∞ tend to zero in the

quasi-norm of Lp(Ω,F ,P).

Proof. Fix 0 < p < 1. Obviously we have by the uniform integrability of the
sequence

(
(Xn)∗∞

) p
2−p , that ‖ (Xn)∗∞ ‖ p

2−p
converges to zero. It then follows

from the theorem that also [Xn, Xn]∞ → 0 in probability. �

Remark 15.2.16. It is well-known that, for 0 ≤ p < 1, there is no connection
between the convergence of the maximal function and the convergence of the
bracket, [MZ 38], [BG 70], [M 94]. But as the theorem shows, for bounded sets
in H1 the situation is different. The convergence of the maximal function
implies the convergence of the bracket. The result also follows from the result
on convergence in law as stated in [JS 87, Corollary 6.7]. This was kindly
pointed out to us by A. Shiryaev. The converse of our Corollary 15.2.15 is
not true as the example in the next section shows. In particular the relation
between the maximal function and the bracket is not entirely symmetric in
the present context.

Remark 15.2.17. In the case of continuous martingales there is also an inverse
inequality of the type

E

[
(X∗

∞)2

[X, X ]
1
2∞

]
≤ c‖X‖H1 .

The reader can consult [RY 91, Example 4.17 and 4.18].

15.3 An Example

Example 15.3.1. There is a uniformly bounded martingale M = (Mt)t∈[0,1]

and a sequence (Hn)n≥1 of M-integrands satisfying

‖Hn ·M‖H1 ≤ 1 , for n ∈ N ,

and such that

(1) for each t ∈ [0, 1] we have

lim
n→∞(Hn ·M)t = − t

2
a.s.

(2) [Hn ·M, Hn ·M ]∞ → 0 in probability.
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Proof. Fix a collection ((εn,k)2
n−1

k=1 )n≥1 of independent random variables,

εn,k =
{
−2−n with probability (1− 4−n)
2n(1− 4−n) with probability 4−n

so that E[εn,k] = 0. We construct a martingale M such that at times

tn,k =
2k − 1

2n
, n ∈ N, k = 1, . . . , 2n−1 ,

M jumps by a suitable multiple of εn,k, e.g.

Mt =
∑

(n,k): tn,k≤t

8−nεn,k , t ∈ [0, 1] ,

so that M is a well-defined uniformly bounded martingale (with respect to its
natural filtration).

Defining the integrands Hn by

Hn =
2n−1∑
k=1

8nχ{tn,k} , n ∈ N ,

we obtain, for fixed n ∈ N,

(Hn ·M)t =
∑

k: tn,k≤t

εn,k ,

so that Hn ·M is constant on the intervals
[

2k−1
2n , 2k+1

2n

[
and, on a set of prob-

ability bigger that 1− 2−n, H ·M equals − k
2n on the intervals

[
2k−1
2n , 2k+1

2n

[
.

Also on a set of probability bigger than 1 − 2−n we have that [Hn · M ,
Hn ·M ]1 =

∑2n−1

k=1 2−2n = 2−n−1.
From the Borel-Cantelli lemma we infer that, for each t ∈ [0, 1], the random

variables (Hn ·M)t converge almost surely to the constant function − t
2 and

that [Hn ·M, Hn ·M ]1 tend to 0 a.s., which proves the final assertions of the
above claim.

We still have to estimate the H1-norm of Hn ·M :

‖Hn ·M‖H1 ≤
2n−1∑
k≥1

‖εn,k‖L1

= 2n−1[2−n(1− 4−n) + 2n(1− 4−n) · 4−n] ≤ 1 . �

Remark 15.3.2. What is the message of the above example? First note that
passing to convex combinations (Kn)n≥1 of (Hn)n≥1 does not change the
picture: we always end up with a sequence of martingales (Kn·M)n≥1 bounded
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inH1 and such that the pointwise limit equals Zt = − t
2 . Of course, the process

Z is far from being a martingale.
Hence, in the setting of Theorem 15.B, we cannot expect (contrary to

the setting of Theorem 15.A) that the sequence of martingales (Kn ·M)n≥1

converges in some pointwise sense to a martingale. We have to allow that the
singular parts sKn ·M converge (pointwise a.s.) to some process Z; the crucial
information about Z is that Z is of integrable variation and, in the case of
jumps uniformly bounded from below as in the preceding example, decreasing.

15.4 A Substitute of Compactness
for Bounded Subsets of H1

This section is devoted to the proof of Theorems 15.A, 15.B, 15.C, 15.D as
well as Yor’s Theorem 15.1.6.

Because of the technical character of this section, let us give an overview
of its contents. We start with some generalities that allow the sequence of
martingales to be replaced by a more suitable subsequence. This (obvious)
preparation is done in the next paragraph. In Subsect. 15.4.1, we then give
the proof of Theorem 15.A, i.e. the case of continuous martingales. Because
of the continuity, stopping arguments can easily be used. We stop the mar-
tingales as soon as the maximal functions reach a level that is given by the
Kadeč-Pe�lczyński decomposition theorem. Immediately after the proof of The-
orem 15.A, we give some corollaries as well as a negative result that shows that
boundedness in H1 is needed instead of the weaker boundedness in L1. We
end Subsect. 15.4.1 with a remark that shows that the proof of the continuous
case can be adapted to the case where the set of jumps of all the martingales
form a uniformly integrable family. Roughly speaking this case can be handled
in the same way as the continuous case. Subsect. 15.4.2 then gives the proof
of Theorem 15.C. We proceed in the same way as in the continuous case, i.e.
we stop when the maximal function of the martingales reaches a certain level.
Because this time we did not assume that the jumps are uniformly integrable
we have to proceed with more care and eliminate their big parts (the singular
parts in the Kadeč-Pe�lczyński decomposition). Subsect. 15.4.3 then treats the
case where all the martingales are stochastic integrals, Hn ·M , with respect
to a given d-dimensional local martingale M . This part is the most technical
one as we want the possible decompositions to be done on the level of the
integrands Hn. We cannot proceed in the same way as in Theorem 15.C, al-
though the idea is more or less the same. Yor’s theorem is then (re)proved in
Subsect. 15.4.4. Subsect. 15.4.5 is devoted to the proof of Theorem 15.D. The
reader who does not want to go through all the technicalities can limit her
first reading to Subsects. 15.4.1, 15.4.2, 15.4.4 and only read the statements
of the theorems and lemmata in the other Subsects. 15.4.3 and 15.4.5.

By (Mn)n≥1 we denote a bounded sequence of martingales inH1. Without
loss of generality we may suppose that ‖Mn‖H1 ≤ 1 for all n. By the Davis’
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inequality this implies the existence of a constant c < ∞ such that for all n:
E[(Mn)∗] ≤ c. From the Kadeč-Pe�lczyński decomposition theorem we deduce
the existence of a sequence (βn)n≥1, tending to ∞ and such that (Mn)∗ ∧ βn

is uniformly integrable. The reader should note that we replaced the original
sequence by a subsequence. Passing to a subsequence once more also allows
to suppose that

∑∞
n=1

1
βn

<∞. For each n we now define

τn = inf{t | |Mn
t | > βn} .

Clearly P[τn < ∞] ≤ c
βn

for some constant c. If we let Tn = infk≥n τk we
obtain an increasing sequence of stopping times (Tn)n≥1 such that P[Tn <
∞] ≤ ∑k≥n

c
βk

and hence tends to zero. Let us now start with the case of
continuous martingales.

15.4.1 Proof of Theorem 15.A. The case when the martingales Mn are
continuous.

Because of the definition of the stopping times Tn, we obtain that ((Mn)Tn)∗ ≤
(Mn)∗ ∧ βn and hence the sequence ((Mn)Tn)n≥1 forms a relatively weakly
compact sequence in H1. Also the maximal functions of the remaining parts
Mn − (Mn)Tn tend to zero a.s.. As a consequence we obtain the existence
of convex combinations Nn =

∑
k≥n αk

n(Mk)Tk that converge in H1-norm to
a continuous martingale M0. We also have that Rn =

∑
k≥n αk

nMk converge
to M0 in the semi-martingale topology and that (M0 − Rn)∗∞ tends to zero
in probability. From Corollary 15.2.15 in Sect. 15.2 we now easily derive that
[M0 − Rn, M0 − Rn]∞ as well as (M0 − Rn)∗∞ tend to zero in Lp, for each
p < 1.

If all the martingales Mn are of the form Hn ·M for a fixed continuous Rd-
valued local martingale M , then of course the element M0 is of the same form.
This follows from Yor’s Theorem 15.1.6, stating that the space of stochastic
integrals with respect to M , is a closed subspace of H1. This concludes the
proof of Theorem 15.A. �

Corollary 15.4.1. If (Mn)n≥1 is a sequence of continuous H1-martingales
such that

sup
n
‖Mn‖H1 <∞ and Mn

∞ → 0 in probability,

then Mn tends to zero in the semi-martingale topology. As a consequence we
have that (Mn)∗ → 0 in probability.

Proof. Of course we may take subsequences in order to prove the statement.
So let us take a subsequence as well as stopping times as described in Theo-
rem 15.A. The sequence (Mn)Tn is weakly relatively compact in H1 and since
Mn

Tn
tends to zero in probability (because P[Tn <∞] tends to zero and Mn

∞
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tends to zero in probability), we easily see that Mn
Tn

tends to zero in L1.

Doob’s maximum inequality then implies that
(
(Mn)Tn

)∗
tends to zero in

probability. It is then obvious that also (Mn)∗ tends to zero in probability.

Because
(
(Mn)Tn

)∗
tends to zero in probability and because this sequence

is uniformly integrable, we deduce that the sequence (Mn)Tn tends to zero in
H1. The sequence Mn therefore tends to zero in the semi-martingale topol-
ogy. �

Remark 15.4.2. The above corollary, together with Theorem 15.2.14, show
that Mn tends to zero in Hp (i.e., (Mn)∗ tends to zero in Lp) and in hp

(i.e., [Mn, Mn]
1
2∞ tends to zero in Lp) for each p < 1. For continuous local

martingales, however, Hp and hp are the same.

Remark 15.4.3. That we actually need that the sequence Mn is bounded in
H1, and not just in L1, is illustrated in the following negative result.

Lemma 15.4.4. Suppose that (Mn)n≥1 is a sequence of continuous, non-
negative, uniformly integrable martingales such that Mn

0 = 1 and such that
Mn∞ → 0 in probability. Then ‖Mn‖H1 →∞.

Proof. For β > 1 we define σn = inf{t |Mn
t > β}. Since

1 = E
[
Mn

σn

]
= βP[σ <∞] +

∫
{(Mn)∗≤β}

Mn
∞ ,

we easily see that limn→∞ P[σn <∞] = 1
β . It follows from the Davis’ inequal-

ity that limn→∞ ‖Mn‖H1 ≥ c limn→∞
∫∞
0 P[σn > β] dβ =∞. �

Remark 15.4.5. There are two cases where Theorem 15.A can easily be gener-
alised to the setting of H1-martingales with jumps. Let us describe these two
cases separately. The first case is when the set

{∆Mn
σ | n ≥ 1, σ a stopping time}

is uniformly integrable. Indeed, using the same definition of the stopping times
Tn we arrive at the estimate

(Mn)∗Tn
≤ (Mn)∗ ∧ βn +

∣∣∆Mn
Tn

∣∣ .

Because of the hypothesis on the uniform integrability of the jumps and by the
selection of the sequence βn we may conclude that the sequence

(
(Mn)Tn

)
n≥1

is relatively weakly compact in H1. The corollary generalises in the same way.
The other generalisation is when the set

{Mn
∞ | n ≥ 1}
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is uniformly integrable. In this case the set

{Mn
σ | n ≥ 1, σ a stopping time}

is, as easily seen, also uniformly integrable. The maximal function of the
stopped martingale (Mn)Tn is bounded by(

(Mn)Tn

)∗
≤ max

(
(Mn)∗ ∧ βn,

∣∣Mn
Tn

∣∣) .

It is then clear that they form a uniformly integrable sequence. It is this
situation that arises in the proof of M. Yor’s theorem.

15.4.2 Proof of Theorem 15.C. The case of an H1-bounded sequence Mn

of càdlàg martingales.

We again turn to the general situation. In this case we cannot conclude that
the stopped martingales (Mn)Tn form a relatively weakly compact set in H1.
Indeed the size of the jumps at times Tn might be too big. In order to remedy
this situation we will compensate these jumps in order to obtain martingales
that have smaller jumps at these stopping times Tn. For each n we denote
by Cn the dual predictable projection of the process (∆Mn)Tn1[[Tn,∞[[. The
process Cn is predictable and has integrable variation

E[varCn] ≤ E[|(∆Mn)Tn |] ≤ 2c .

The Kadeč-Pe�lczyński decomposition 2.1 above yields the existence of a se-
quence ηn tending to ∞,

∑
n≥1

1
ηn

< ∞ and such that (varCn) ∧ ηn forms
a uniformly integrable sequence (again we replaced the original sequence by
a subsequence). For each n we now define the predictable stopping time σn as

σn = inf{t | varCn
t ≥ ηn} .

Because the process Cn stops at time Tn we necessarily have that σn ≤ Tn

on the set {σn <∞}.
We remark that when X is a martingale and when ν is a predictable

stopping time, then the process stopped at ν− and defined by Xν−
t = Xt for

t < ν and Xν−
t = Xν− for t ≥ ν, is still a martingale.

Let us now turn our attention to the sequence of martingales

Nn =
(
(Mn)Tn −

(
(∆Mn)Tn1[[Tn,∞[[ − Cn

))σn−
.

The processes Nn can be rewritten as

Nn =
(
(Mn)Tn

)σn

− (∆ (Mn))σn
1[[σn,∞[[

− (∆Mn)Tn
1{σn=∞}1[[Tn,∞[[ + (Cn)σn−

,



338 15 A Compactness Principle

or which is the same:

Nn = (Mn)Tn∧σn − (∆ (Mn))Tn∧σn
1[[Tn∧σn,∞[[ + (Cn)σn− .

The maximal functions satisfy

(Nn)∗ ≤ (Mn)∗ ∧ βn + (varCn) ∧ ηn

and hence form a uniformly integrable sequence. It follows that the sequence
Nn is a relatively weakly compact sequence in H1. Using the appropriate
convex combinations will then yield a limit M0 in H1.

The problem is that the difference between Mn and Nn does not tend
to zero in any reasonable sense as shown by Example 15.3.1 above. Let us
therefore analyse this difference:

Mn −Nn

= Mn − (Mn)Tn∧σn + (∆Mn)Tn∧σn1[[Tn∧σn,∞[[ − (Cn)σn− .

The maximal function of the first part(
Mn −

(
(Mn)Tn∧σn

))∗
,

tends to zero a.s. because of P[Tn <∞] and P[σn <∞] both tending to zero.
The same argument yields that the maximal function of the second part(

(∆Mn)Tn∧σn1[[Tn∧σn,∞[[

)∗
also tends to zero. The remaining part is (−Cn)σn−. Applying Theorem 15.1.4
then yields convex combinations that converge in the sense of Theorem 15.1.4
to a càdlàg process of finite variation Z.

Summing up, we can find convex coefficients
(
αk

n

)
k≥n

such that the mar-
tingales

∑
k≥n αk

nNn will converge in H1-norm to a martingale M0 and such
that, at the same time,

∑
k≥n αk

nCn converge to a process of finite variation
Z, in the sense described in Lemma 15.2.7.

In the case where the jumps ∆Mn are bounded below by an integrable
function w, or more generally when the set{

∆(Mn)−ζ
∣∣∣ n ≥ 1; ζ stopping time

}
is uniformly integrable, we do not have to compensate the negative part of
these jumps. So we replace (∆Mn)T n by the more appropriate ((∆Mn)T n)+.
In this case their compensators Cn are increasing and therefore the process
Z is decreasing.

The case where the jumps form a uniformly integrable family is treated in
the remark after the proof of Theorem 15.A. The proof of Theorem 15.C is
therefore completed. �
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15.4.3 Proof of Theorem 15.B. The case where all martingales are of the
form Mn = Hn ·M .

This situation requires, as we will see, some extra work. We start the construc-
tion as in the previous case but this time we work with the square functions,
i.e., the brackets instead of the maximal functions.

Without loss of generality we may suppose that M is an H1-martingale.
Indeed let (µn)n≥1 be a sequence of stopping times that localises the lo-
cal martingale M in such a way that the stopped martingales Mµn are
all in H1. Take now a sequence of strictly positive numbers an such that∑

n an‖Mµn‖H1 <∞, put µ0 = 0 and replace M by the H1-martingale:∑
n≥1

an (Mµn −Mµn−1) .

The integrands have then to be replaced by the integrands∑
k≥1

1
ak

Hn1]]µk−1,µk]] .

In conclusion, we may assume w.l.g., that M is in H1.
Also without loss of generality we may suppose that the predictable inte-

grands are bounded. Indeed for each n we can take κn big enough so that

‖
(
Hn1{|Hn|≥κn}

)
·M‖H1 < 2−n .

It is now clear that it is sufficient to prove the theorem for the sequence of
integrands H1{‖Hn‖≤κn}. So we suppose that for each n we have |Hn| ≤ κn.

We apply the Kadeč-Pe�lczyński construction of Theorem 15.2.1 with the
function g = (trace([M, M ]∞))

1
2 . Without changing the notation we pass to

a subsequence and we obtain a sequence of numbers βn, tending to ∞, such
that the sequence

[Hn ·M, Hn ·M ]
1
2∞ ∧ βn

(
(trace([M, M ]∞))

1
2 + 1

)
is uniformly integrable.

The sequence of stopping times Tn is now defined as:

Tn = inf
{
t
∣∣∣ [Hn ·M, Hn ·M ]

1
2
t ≥ βn

(
(trace([M, M ])t)

1
2 + 1

)}
.

In the general case the sequence of jumps ∆ (Hn ·Mn)Tn
is not uniformly

integrable and so we have to eliminate the big parts of these jumps. But this
time we want to stay in the framework of stochastic integrals with respect to
M . The idea is, roughly speaking, to cut out of the stochastic interval [[0, Tn]],
the predictable support of the stopping time Tn. Of course we then have to
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show that these supports form a sequence of sets that tends to the empty set.
This requires some extra arguments.

Since |∆(Hn ·M)Tn | ≤ [Hn ·M, Hn ·M ]
1
2∞ we obtain that the sequence

|∆(Hn ·M)Tn | ∧ βn

(
(trace([M, M ]∞))

1
2 + 1

)
is uniformly integrable. As in the proof of the Kadeč-Pe�lczyński theorem we
then find a sequence γn ≥ βn such that γn

βn
→∞ and such that the sequence

|∆(Hn ·M)Tn | ∧ γn

(
trace([M, M ]∞)

1
2 + 1

)
is still uniformly integrable. As a consequence also the sequences

|∆(Hn ·M)Tn | ∧ βn

(
trace([M, M ]Tn)

1
2 + 1

)
and

|∆(Hn ·M)Tn | ∧ γn

(
trace([M, M ]Tn)

1
2 + 1

)
are uniformly integrable.

By passing to a subsequence we may suppose that

(1) the sequences βn, γn are increasing,
(2)

∑
n≥1

1
βn

<∞ and hence
∑

P[Tn <∞] <∞,
(3) γn

βn
→∞,

(4) for each n we have

κnβn+1(d + 1)2

γn+1
≤ 1

(d + 1)2
,

which can be achieved by choosing inductively a subsequence, since γn

βn

becomes arbitrarily large.

We now turn the sequence of stopping times Tn into a sequence of stop-
ping times having mutually disjoint graphs. This is done exactly as in Sub-
sect. 15.4.1 above. Since P[Tn < ∞] tends to zero, we may, taking a subse-
quence if necessary, suppose that

lim
n→∞E

[
sup
j≤n

[Hj ·M, Hj ·M ]
1
2∞1⋃

k>n{Tk<∞}

]
= 0 .

We now replace each stopping time Tn by the stopping time τn defined by

τn =
{

Tn if Tn < Tk for all k > n ,
∞ otherwise.
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For each n let T̃n be defined as

T̃n =

{
τn if |∆(Hn ·M)τn | > γn

(
(trace([M, M ]))

1
2
τn

+ 1
)

,

∞ otherwise.

For each n let F̃n be the compensator of the process 1[[T̃n,∞[[.

We now analyse the supports of the measures dF̃n. The measure dλ =∑
n≥1

1
2n dF̃n will serve as a control measure. The measure λ satisfies E[λ∞] <

∞ by the conditions above. Let ϕn be a predictable Radon-Nikodým derivative
ϕn = dF̃ n

dλ . It is clear that for each n we have En = {ϕn �= 0} ⊂ [[0, Tn]]. The
idea is to show the following assertion:

Claim 15.4.6.
∑

n≥1 1En ≤ d, dλ-a.s.. Hence there are predictable sets, still
denoted by En, such that

∑
n≥1 1En ≤ d everywhere and such that En =

{ϕn �= 0}, dλ-a.s..

We will give the proof at the end of this section.
For each n we decompose the integrands Hn = Kn + V n + Wn where:

Kn = 1[[0,T̃n]]1(En)cHn

V n = 1EnHn

Wn = 1]]T̃n,∞[[H
n .

Since P[T̃n < ∞] tends to zero, we have that the maximal functions
(Wn ·M)∗∞ tend to zero in probability.

We now show that the sequence Kn ·M is relatively weakly compact in
H1. The brackets satisfy

[Kn ·M, Kn ·M ]
1
2∞ ≤ [Hn ·M, Hn ·M ]

1
2∞ ∧ γn

(
[M, M ]

1
2∞ + 1

)
+ [Hn ·M, Hn ·M ]

1
2∞ 1{T̃n �=Tn} .

The first term defines a uniformly integrable sequence, the second term
defines a sequence tending to zero in L1. It follows that the sequence [Kn ·M ,

Kn ·M ]
1
2∞ is uniformly integrable and hence the sequence Kn ·M is relatively

weakly compact in H1.
There are convex combinations (αk

n)k≥n such that
(∑

k αk
nKk

)
·M con-

verges in H1 to a martingale which is necessarily of the form H0 ·M . We may
of course suppose that these convex combinations are disjointly supported, i.e.
there are indices 0 = n0 < n1 < n2 < . . . such that αk

j is 0 for k ≤ nj−1 and
k > nj . We remark that if we take convex combinations of

(∑
k αk

nKk
)
·M ,

then these combinations still tend to H0 ·M in H1. We will use this remark
in order to improve the convergence of the remaining parts of Hn.
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Let us define Ln =
∑

k αk
nHk. Clearly ‖Ln ·M‖H1 ≤ 1 for each n. From

Theorem 15.1.3, it follows that there are convex combinations (ηk
n)k≥n, dis-

jointly supported, such that
∑

k ηk
n[Lk ·M, Lk · M ]

1
2∞ converges a.s.. Hence

we have that supn

∑
k ηk

n[Lk ·M, Lk ·M ]
1
2∞ < ∞ a.s.. We also may suppose

that maxk ηk
n → 0 as n→∞. From Minkowski’s inequality for the bracket it

follows that also supn

[(∑
k ηk

nLk
)
·M,

(∑
k ηk

nLk
)
·M
] 1

2 < ∞ a.s.. Because
the convex combinations were disjointly supported we also obtain a.s. and for
Rn =

∑
k ηk

n

∑
j αj

kV j :

sup
n

[Rn ·M, Rn ·M ]
1
2∞ ≤ sup

n

[(∑
k

ηk
nLk

)
·M,

(∑
k

ηk
nLk

)
·M
] 1

2

∞
<∞ .

From the fact that the convex combinations were disjointly supported and
from

∑
n 1En ≤ d, we conclude that for each point (t, ω) ∈ R+ × Ω, only d

vectors Rn(t, ω) can be nonzero. Let us put Pn =
∑s=2n+1

s=2n+1 2−nRs. It follows
that a.s. ∫

Pn d[M, M ]Pn ≤ d

∫ ⎛⎝s=2n+1∑
s=2n+1

2−2nRs d[M, M ]Rs

⎞⎠
≤ d 2−n

s=2n+1∑
s=2n+1

2−n[Rs ·M, Rs ·M ]∞

≤ d 2−n sup
s

[Rs ·M, Rs ·M ]∞

→ 0 .

If we now put Un =
∑k=2n+1

k=2n+1 2−n
∑

k ηk
l

∑
l αl

kH l, we arrive at convex
combinations Un =

∑
λl

nH l such that

(1) the convex combinations λk
n are disjointly supported,

(2)
(∑

k λk
nKk

)
·M → H0 ·M in H1,

(3)
[(∑

k λk
nV k

)
·M,

(∑
k λk

nV k
)
·M
]
∞ → 0 in probability,

(4)
[(∑

k λk
nW k

)
·M,

(∑
k λk

nW k
)
·M
]
∞ → 0 in probability, and even

(5)
((∑

k λk
nW k

)
·M
)∗ → 0 in probability.

As a consequence we obtain that
[(

Un −H0
)
·M,

(
Un −H0

)
·M
]
∞ → 0 in

probability, and hence in Lp(Ω,F ,P) for each p < 1.
We remark that these properties will remain valid if we take once more

convex combinations of the predictable processes Un. The stochastic integrals(∑
k λk

nV k
)
· M need not converge in the semi-martingale topology as the

example in Sect. 15.3 shows. But exactly as in the Subsect. 15.4.2 we will show
that after taking once more convex combinations, they converge in a pointwise
sense, to a process of finite variation.
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We consider the martingales
(∑

k λk
nV k

)
·M . For each n let Dn be the

compensator of (
∑

k λk
n∆(Hk · M)Tk

1[[T̃k,∞[[. This is a predictable process
of integrable variation. Moreover E[varDn] ≤ ∑

k λk
nE[|∆(Hk · M)Tk

|] ≤
2
∑

k λk
n‖Hk · M‖H1 ≤ 2. We now apply the Kadeč-Pe�lczyński decompo-

sition technique to the sequence varDn and we obtain, if necessary by
passing to a subsequence, a sequence of numbers

∑
n

1
ξn < ∞ such that

varDn∧ξn is uniformly integrable. Again we define predictable stopping times
Sn = inf{t | var(Dn)t ≥ ξn}. We stop the processes at time (Sn−) since
this will not destroy the martingale properties. More precisely we decompose∑

k λk
nV k ·M as follows:∑

k

λk
nV k ·M

=

(∑
k

λk
nV k ·M −

(∑
k

λk
n∆(Hk ·M)Tk

1[[T̃k,∞[[ − D̃n

))Sn−
first term

+

(∑
k

λk
n∆(Hk ·M)Tk

1[[T̃k,∞[[ − D̃n

)Sn−
second term

+

⎛⎝(∑
k

λk
nV k ·M

)
−
(∑

k

λk
nV k ·M

)Sn−⎞⎠ third term.

Since
(
[Dn, Dn]Sn−) 1

2 ≤ 2 (varDn)Sn− ≤ (varDn)∧ ξn, we obtain that the
first term defines a relatively weakly compact sequence in H1. Indeed, for each
n we have [[T̃n]] ⊂ En ⊂ [[0, Tn]] and hence:

[first term, first term]
1
2∞

≤
∑

λk
n[V k ·M, V k ·M ]

1
2

T̃n− + [Dn, Dn]
1
2
Sn−

≤ [Hn ·M, Hn ·M ]
1
2 ∧ βn([M, M ]∞ + 1)

+[Hn ·M, Hn ·M ]
1
2 1{Tn �=T̃n} + [Dn, Dn]∞ ∧ ξn .

It follows that the first term defines a relatively weakly compact sequence
in H1. But the first term is supported by the set

⋃
k≥n Ek, which tends to

the empty set if n → ∞. From Theorem 15.2.12, it then follows that the
sequence defined by the first term tends to zero weakly. The appropriate
convex combinations will therefore tend to 0 in the norm of H1.

The second term splits in∑
k

λk
n∆(Hk ·M)Tk

1[[T̃k,∞[[ ,

whose maximal functions tend to zero a.s. and the processes (Dn)Sn−. On the
latter we can apply Theorem 15.1.4, which results in convex combinations that
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tend to a process of finite variation. The third term has a maximal function
that tends to zero since

∑
n

P

⎡⎣⋃
k≥n

({Tk <∞} ∪ {Sn <∞})

⎤⎦ <∞ .

Modulo the proof of the claim above, the proof of Theorem 15.B is com-
plete. So let us now prove the claim.

It is sufficient to show that for an arbitrary selection of d + 1 indices
n1 < · · · < nd+1 we necessarily have that E =

⋂
k...d+1 Enk = ∅, dλ-a.s.. For

each k we look at the compensator of the processes(
∆(Hnk ·M)Tnk

)+

1[[T̃nk
,∞[[ resp.

(
∆(Hnk ·M)Tnk

)−
1[[T̃nk

,∞[[ .

Let +Enk (resp. −Enk) be the supports of the compensators of these pro-
cesses. For each of the 2d+1 sign combinations εk = +/− we look at the set⋂d+1

k=1
εkEnk . If the set E is non-empty, then at least one of these 2d+1 sets

would be non-empty and without loss of generality we may and do suppose
that this is the case for εk = + for each k.

For each k we now introduce the compensator C̃k of the process((
trace([M, M ]Tnk

)
) 1

2 + 1
)
1{∆(Hnk ·M)Tnk

>0}1[[T̃nk
,∞[[ .

The processes Hnk are d-dimensional processes and hence for each (t, ω) we
find that the vectors Hnk

t (ω) are linearly dependent. Using the theory of linear
systems and more precisely the construction of solutions with determinants
we obtain (d + 1)-predictable processes (αk)d+1

k=1 such that

(1) for each (t, ω) at least one of the numbers αk(t, ω) is nonzero
(2)

∑
k αkHnk = 0

(3) the processes αk are all bounded by 1.

We emphasize that these coefficients are obtained in a constructible way and
that we do not need a measurable selection theorem!

We now look at the compensator of the processes

∆ (Hnk ·M)Tnl
1{∆(Hnk ·M)Tnk

>0}1[[T̃nk
,∞[[ .

This compensator is of the form gl,kdC̃l for a predictable process gl,k. Be-
cause of the construction of the coefficients, we obtain that for each l ≤ d + 1:∑

gl,kαk
n = 0 .

The next step is to show on the set
⋂d+1

k=1
+Enk , the matrix

(
gl,k
)
l,k≤d+1

is non-singular. This will then give the desired contradiction, because the
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above linear system would only admit the solution αk = 0 for all k ≤ d + 1.
Because of the definition of the stopping times Tnk

we immediately obtain
that gk,k ≥ γnk

. For the non-diagonal elements we distinguish the cases l < k

and l > k. For l < k we use the fact that on T̃nl
<∞, we have that Tnl

< Tnk
.

It follows that |∆(Hnk ·M)Tnl
| ≤ 2βnk

(
(trace([M, M ]Tnl

))
1
2 + 1

)
and hence

|gl,k| ≤ βnk
. If l > k then |∆(Hnk ·M)Tnl

| ≤ κnk

(
(trace([M, M ]Tnl

))
1
2 +1

)
and

hence |gl,k| ≤ κnk
. We now multiply the last column of the matrix gl,k with

the fraction 1
βnd+1(d+1)2 and then we multiply the last row by

βnd+1(d+1)2

γnd+1
.

The result is that the diagonal element at place (d + 1, d + 1) is equal to 1
and that the other elements of the last row and the last column are bounded
in absolute value by 1

(d+1)2 . We continue in the same way by multiplying the

column d by 1
βnd

(d+1)2
and the row d by βnd

(d+1)2

γnd
. The result is that the

element at place (d, d) is 1 and that the other elements on row d and column
d are bounded by 1

(d+1)2 . We note that the elements at place (d, d + 1) and
(d + 1, d) are further decreased by this procedure so that the bound 1

(d+1)2

will remain valid. We continue in this way and we finally obtain a matrix with
1 on the diagonal and with the off-diagonal elements bounded by 1

(d+1)2 . By
the classical theorem, due to Hadamard [G 66, Satz 1], such a matrix with
dominant diagonal is non-singular. The proof of the claim is now completed
and so are the proofs of the Theorems 15.A, 15.B and 15.C. �

15.4.4 A proof of M. Yor’s Theorem 15.1.6 for the L1-convergent
Case

We now show how the ideas of the proof given in [Y 78a] fit in the general
framework described above. We will use the generalisation of Theorem 15.A to
processes with jumps (see the remarks following the proof of Theorem 15.A).
In the next theorem we suppose that M is a d-dimensional local martingale.

Theorem 15.4.7. Let (Hn)n≥1 be a sequence of M -integrable predictable sto-
chastic processes such that each (Hn ·M) is a uniformly integrable martingale
and such that the sequence of random variables ((Hn ·M)∞)n≥1 converges
to a random variable f0 ∈ L1(Ω,F ,P) with respect to the L1-norm; (or even
only with respect to the σ(L1, L∞)-topology).

Then there is an M -integrable predictable stochastic process H0 such that
H0 ·M is a uniformly integrable martingale and such that (H0 ·M)∞ = f0.

Proof. If fn converges only weakly to f0 then we take convex combinations in
order to obtain a strongly convergent sequence. We therefore restrict the proof
to the case where fn converges in L1-norm to f0. By selecting a subsequence
we may suppose that ‖fn‖L1 ≤ 1 for each n and that ‖fn− f0‖L1 ≤ 4−n. Let
N be the càdlàg martingale defined as Nt = E[f0 | Ft]. From the maximal
inequality for L1-martingales it then follows that:
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P
[
sup

t
|(Hn ·M)t −Nt| ≥ 2−n

]
≤ 2−n .

The Borel-Cantelli lemma then implies that

sup
t

sup
n
|(Hn ·M)t| <∞ a.s..

For each natural number k we then define the stopping time Tk as:

Tk = inf {t | there is n such that |(Hn ·M)t| ≥ k} .

Because of the uniform boundedness in t and n we obtain that the sequence
Tk satisfies P[Tk < ∞] → 0. Also the sequence Tk is clearly increasing. For
each k and each n we have that

‖(Hn ·M)Tk‖H1 ≤ k + ‖(Hn ·M)Tk
‖L1 .

Since the sequence fn = (Hn ·M)∞ is uniformly integrable (it is even
norm convergent), we have that also the sequence of conditional expec-
tations, ((Hn ·M)Tk

)n≥1 is uniformly integrable and hence the sequence(
(Hn ·M)Tk

)
n≥1

is weakly relatively compact in H1. Taking the appropri-
ate linear combinations will give a limit in H1 of the form Kk ·M with Kk

supported by [[0, Tk]] and satisfying (Kk ·M) = NTk . We now take a sequence
(km)m≥1 such that ‖NTkm

− f0‖ ≤ 2−m. If we define

H0 = Kk1 +
∑
m≥2

Kkm1]]Tkm−1 ,Tkm ]] ,

we find that H0 ·M is uniformly integrable and that (H0 ·M)∞ = f0. �

15.4.5 Proof of Theorem 15.D

The basic ingredient is Theorem 15.C. Exactly as in M. Yor’s theorem we do
not have — a priori — a sequence that is bounded in H1. The lower bound w
only permits to obtain a bound for the L1-norms and we need again stopping
time arguments. This is possible because of a uniform bound over the time
interval, exactly as in the previous part. The uniformity is obtained as in
Lemma 9.4.6.

Definition 15.4.8. We say that an M -integrable predictable process H is w-
admissible for some non-negative integrable function w if H ·M ≥ −w, i.e.
the process stays above the level −w.

Remark 15.4.9. The concept of a-admissible integrands, where a > 0 is a de-
terministic number, was used in [DS 94] (here reproduced as Chap. 9) where
a short history of this concept is given. The above definition generalises the
admissibility as used in Chap. 9 in the sense that it replaces a constant func-
tion by a fixed non-negative integrable function w. The concept was also used
by the second named author in [S 94, Proposition 4.5].
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Exactly as in Chap. 9 we introduce the cone

C1,w = {f | there is aw-admissible integrandH such that f ≤ (H ·M)∞} .

Theorem 15.4.10. Let M be a Rd-valued local martingale and w ≥ 1 an
integrable function.

Given a sequence (Hn)n≥1 of M -integrable Rd-valued predictable processes
such that

(Hn ·M)t ≥ −w , for all n, t ,

there are convex combinations

Kn ∈ conv{Hn, Hn+1, . . .} ,

and there is a super-martingale (Vt)t∈R + , V0 = 0, such that

lim
s↘t

s∈Q+

lim
n→∞(Kn ·M)s = Vt for t ∈ R+, a.s.,

and an M -integrable predictable process H0 such that

((H0 ·M)t − Vt)t∈R + is increasing.

In addition, H0 ·M is a local martingale and a super-martingale.

Before proving Theorem 15.D we shall deduce a corollary which is similar
in spirit to Theorem 9.4.2, and which we will need in Sect. 15.5 below. For
a semi-martingale S we denote by Me(S) the set of all probability measures
Q on F equivalent to P, such that S is a local martingale under Q.

Corollary 15.4.11. Let S be a semi-martingale taking values in Rd such that
Me(S) �= ∅ and w ≥ 1 a weight function such that there is some Q ∈Me(S)
with EQ[w] <∞.

Then the convex cone C1,w is closed in L0(Ω,F ,P) with respect to the
topology of convergence in measure.

Proof of Corollary 15.4.11. As the assertion of the corollary is invariant under
equivalent changes of measure we may assume that the original measure P is
an element of Me(S) for which EP[w] < ∞, i.e., we are in the situation of
Theorem 15.B above. As in the proof of Theorem 15.B we also may assume
that S is in H1(P) and therefore a P-uniformly integrable martingale.

Let
fn = (Hn · S)∞ − hn

be a sequence in C1,w, where (Hn)n≥1 is a sequence of w-admissible integrands
and hn ≥ 0. Assuming that (fn)n≥1 tends to a random variable f0 in measure
we have to show that f0 ∈ C1,w.

It will be convenient to replace the time index set [0,∞[ by [0,∞] by closing
S and Hn ·S at infinity, which clearly may be done as the martingale (St)t∈R +



348 15 A Compactness Principle

as well as the negative parts of the super-martingales ((Hn · S)t)t∈R + are P-
uniformly integrable. Identifying the closed interval [0,∞] with the closed
interval [0, 1], and identifying the processes S and Hn · S with process which
remain constant after time t = 1, we deduce from Theorem 15.D that we may
find Kn ∈ conv{Hn, Hn+1, . . .}, a w-admissible integrand H0 and a process
(Vt)t∈R + such that

lim
s↘t

s∈Q+

lim
n→∞(Kn · S)s = Vt, a.s. for t ∈ R+

and
lim

n→∞(Kn · S)∞ = V∞ ,

((H0 · S)t − Vt)t∈R +∪{∞} is increasing.

In particular ((Kn · S)∞)n≥1 converges almost surely to the random vari-
able U∞ which is dominated by (H0 · S)∞.

As (fn)n≥1 was assumed to converge in measure to f0 we deduce that
f0 ≤ (H0 · S)∞, i.e. f0 ∈ C1,w. �

To pave the way for the proof of Theorem 15.D we start with some lemmas.

Lemma 15.4.12. Under the assumptions of Theorem 15.D there is a sequence
of convex combinations

Kn ∈ conv{Hn, Hn+1, . . .} ,

and a sequence (Ln)n≥1 of w-admissible integrands and there are càdlàg super-
martingales V = (Vt)t∈R + and W = (Wt)t∈R + with W − V increasing such
that

Vt = lim
s↘t

s∈Q+

lim
n→∞(Kn ·M)s , for t ∈ R+, a.s.

Wt = lim
s↘t

s∈Q+

lim
n→∞(Ln ·M)s , for t ∈ R+, a.s.

and such that W satisfies the following maximality condition: For any sequence
(L̃n)n≥1 of w-admissible integrands such that

W̃t = lim
s↘t

s∈Q+

lim
n→∞(L̃n ·M)s

and W̃ −W increasing we have that W̃ = W .

Proof. By Theorem 15.1.3 we may find Kn ∈ conv{Hn, Hn+1, . . .} such that,
for every t ∈ Q+, the sequence ((Kn ·M)t)n≥1 converges a.s. to a random
variable V̂t. As w is assumed to be integrable we obtain that the process
(V̂t)t∈Q+ is a super-martingale and therefore its càdlàg regularisation,
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Vt = lim
s↘t

,s∈Q+

V̂s , t ∈ R+

is an a.s. well-defined càdlàg super-martingale.
Let W denote the family of all càdlàg super-martingales W = (Wt)t∈R +

such that W − V is increasing and such that there is a sequence (Ln)n≥1 of
w-admissible integrands such that

Wt = lim
s↘t

s∈Q+

lim
n→∞(Ln ·M)s , for t ∈ R+

is a.s. well-defined.
Introducing — similarly as in [K 96a] — the order W 1 ≥ W 2 on W , if

W 1 −W 2 is increasing, we may find a maximal element W ∈ W, with an
associated sequence (Ln)n≥1 of w-admissible integrands.

Indeed, let (Wα)α∈I be a maximal chain inW with associated sequences of
integrands (Lα,n)n≥1; then (Wα

∞)α∈I is an increasing and bounded family of
elements of L1(Ω,F ,P) and therefore there is an increasing sequence (αj)j≥1

such that (Wαj∞ )j≥1 increases to the essential supremum of (Wα∞)α∈I . The
càdlàg super-martingale W = limj→∞ Wαj is well-defined and we may find
a sequence (Lαj ,nj )j≥1, which we reliable by (Ln)n≥1, so that

Wt = lim
s↘t

s∈Q+

lim
n→∞(Ln ·M)s .

Clearly W satisfies the required maximality condition. �

Lemma 15.4.13. Under the assumptions of the preceding Lemma 15.4.12 we
have that for T ∈ R+, the maximal functions

((Ln ·M)− (Lm ·M))∗T = sup
t≤T
|(Ln ·M)t − (Lm ·M)t|

tend to zero in measure as n, m→∞.

Proof. The proof of the lemma will use — just as in (9.4.6) and [K 96a] — the
buy low - sell high argument motivated by the economic interpretation of Ln

as trading strategies (see Remark 9.4.7).
Assuming that the assertion of the lemma is wrong there is T ∈ R+, α > 0

and sequences (nk, mk)k≥1 tending to ∞ such that

P
[
sup
t≤T

((Lnk − Lmk) ·M)t > α

]
≥ α .

Defining the stopping times

Tk = inf{t ≤ T | ((Lnk − Lmk) ·M)t ≥ α}

we have P [Tk ≤ T ] ≥ α.
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Define L̂k as
L̂k = Lnk1[[0,Tk]] + Lmk1]]Tk,∞[[

so that L̂k is a w-admissible predictable integrand.
Denote by dk the function indicating the difference between Lnk ·M and

Lmk ·M at time Tk, if Tk <∞, i.e.,

dk = ((Lnk − Lmk) ·M)Tk
1{Tk<∞} .

Note that, for t ∈ R+,

(L̂k ·M)t = (Lnk ·M)t1{t≤Tk} + ((Lmk ·M)t + dk)1{t>Tk} .

By passing to convex combinations
∑∞

j=k αjL̂
j of L̂k we therefore get that,

for each t ∈ Q+,( ∞∑
j=k

αjL̂
j ·M

)
t

=
( ∞∑

j=k

αjL
nj ·M

)
t

1{t≤Tk} +
( ∞∑

j=k

αjL
mj ·M

)
t

1{t>Tk} +Dk
t

where (Dk
t )k≥1 =

(∑∞
j=k αjdj1{t>Tk}

)
k≥1

is a sequence of random variables
which converges almost surely to a random variable Dt so that (Dt)t∈Q+ is
an increasing adapted process which satisfies P[DT > 0] > 0 by Lemma 9.8.1.

Hence (L̂k)k≥1 is a sequence of w-admissible integrands such that, for all
t ∈ Q+, (L̂k ·M)t converges almost surely to Ŵt = Wt + Dt, and P[DT >
0] > 0, a contradiction to the maximality of W finishing the proof. �

Lemma 15.4.14. Under the conditions of Theorem 15.D and Lemma 15.4.12
there is a subsequence of the sequence (Ln)n≥1, still denoted by (Ln)n≥1, and
an increasing sequence (Tj)j≥1 of stopping times, Tj ≤ j and P [Tj = j] ≥
1− 2−j, such that, for each j, the sequence of processes ((Ln ·M)(Tj)−)n≥1 is
uniformly bounded and the sequence ((Ln ·M)Tj)n≥1 is a bounded sequence of
martingales in H1(P).

Proof. First note that, fixing j ∈ N, C > 0, and defining the stopping times

Un = inf{t | |(Ln ·M)t| ≥ C} ∧ j ,

the sequence ((Ln ·M)Un)n≥1 is bounded in H1(P). Indeed, this is a sequence
of super-martingales by [AS 94], hence

E [|(Ln ·M)Un |] ≤ 2E
[
((Ln ·M)Un)−

]
≤ 2(C + E[w]) ,

whence
E [|∆(Ln ·M)Un |] ≤ 2(C + E[w]) + C .

As the maximal function (Ln ·M)∗Un
is bounded by C + |∆(Ln ·M)Un |

we obtain a uniform bound on the L1-norms of the maximal functions ((Ln ·
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M)∗Un
)n≥1, showing that ((Ln ·M)Un)n≥1 is a uniformly bounded sequence in

H1(P).
If we choose C > 0 sufficiently big we can make P[Un < j] small, uniformly

in n; but the sequence of stopping times (Un)n≥1 still depends on n and we
have to replace it by just one stopping time Tj which works for all (Ln

k)k≥1

for some subsequence (nk)k≥1; to do so, let us be a little more formal.
Assume that T0 = 0, T1, . . . , Tj−1 have been defined as well as a subse-

quence, still denoted by (Ln)n≥1, such that the claim is verified for 1, . . . , j−1;
we shall construct Tj. Applying Lemma 15.4.13 to T = j we may find a sub-
sequence (nk)k≥1 such that, for each k,

P
[(

(Lnk+1 ·M)− (Lnk ·M)
)∗
j
≥ 2−k

]
< 2−(k+j+2) .

Now find a number Cj ∈ R+ large enough such that

P
[
(Ln1 ·M)∗j ≥ Cj

]
< 2−(j+1)

and define the stopping time Tj by

Tj = inf
{
t
∣∣∣ sup

k
|(Lnk ·M)t| ≥ Cj + 1

}
∧ j

so that Tj ≤ j and
P [Tj = j] ≥ 1− 2−j .

Clearly |(Lnk ·M)t| ≤ Cj + 1 for t < Tj , whence ((Ln
k ·M)(Tj)−)k≥1 is

uniformly bounded.
We have that Tj ≤ Unk

for each k, where Unk
is the stopping time defined

above (with C = Cj + 1). Hence we deduce from the H1(P)-boundedness of
((Lnk ·M)Unk )k≥1 the H1(P)-boundedness of (Lnk ·M)Tj . This completes the
inductive step and finishes the proof of Lemma 15.4.14. �
Proof of Theorem 15.D. Given a sequence (Hn)n≥1 of w-admissible integrands
choose the sequences Kn ∈ conv{Hn, Hn+1, . . .} and Ln of w-admissible in-
tegrands and the super-martingales V and W as in Lemma 15.4.12. Also fix
an increasing sequence (Tj)j≥1 of stopping times as in Lemma 15.4.14.

We shall argue locally on the stochastic intervals ]]Tj−1, Tj ]]. Fix j ∈ N and
let

Ln,j = Ln1]]Tj−1,T j ]] .

By Lemma 15.4.14 there is a constant Cj > 0 such that (Ln,j)n≥1 is
a sequence of (w + Cj)-admissible integrands and such that (Ln,j ·M)n≥1 is
a sequence of martingales bounded in H1(P) and such that the jumps of each
Ln,j ·M are bounded downward by w − 2Cj . Hence — by passing to convex
combinations, if necessary — we may apply Theorem 15.B to split Ln,j into
two disjointly supported integrands Ln,j =rLn,j +sLn,j and we may find an
integrand H0,j supported by ]]Tj−1, Tj ]] such that
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lim
n→∞ ‖(

rLn,j −H0,j) ·M‖H1(P) = 0

(Zj)t = lim
q↘t

q∈Q+

lim
n→∞(sLn,j ·M)q

where Zj is a well-defined adapted càdlàg increasing process.
Finally we paste things together by defining H0 =

∑∞
j≥1 H0,j and Z =∑∞

j≥1 Zj . By Lemma 15.4.12 we have that

Wt = lim
s↘t

s∈Q+

(Ln ·M)s

is a well-defined super-martingale. As

Z = (H0 ·M)−W

is an increasing process and as (H0 ·M) is a local martingale and a super-
martingale by [AS 94] we deduce from the maximality of W that H0 · M
is in fact equal to W . Hence (H0 · M) − V is increasing and the proof of
Theorem 15.D is finished. �

15.5 Application

In this section we apply the above theorems to give a proof of the Optional De-
composition Theorem due to N. El Karoui, M.-C. Quenez [EQ95], D. Kramkov
[K 96a], Föllmer-Kabanov [FK98], Kramkov [K 96b] and Föllmer-Kramkov
[FK 97]. We refer the reader to these papers for the precise statements and
for the different techniques used in the proofs.

We generalise the usual setting in finance in the following way. The process
S will denote an Rd-valued semi-martingale. In finance theory, usually the idea
is to look for measures Q such that under Q the process S becomes a local
martingale. In the case of processes with jumps this is too restrictive and
the idea is to look for measures Q such that S becomes a sigma-martingale.
A process S is called a Q-sigma-martingale if there is a strictly positive,
predictable process ϕ such that the stochastic integral ϕ · S exists and is a
Q-martingale. We remark that it is clear that we may require the process
ϕ · S to be an H1-martingale and that we also may require the process ϕ to
be bounded (compare Chap. 14). As easily seen, local martingales are sigma-
martingales. In the local martingale case the predictable process ϕ can be
chosen to be decreasing and this characterises the local martingales among the
sigma-martingales. The concept of sigma-martingale is therefore more general
than the concept of local martingale. The set Me(S) denotes the set of all
equivalent probability measures Q on F such that S is a Q-sigma-martingale.
It is an easy exercise to show that the setMe(S) is a convex set. We suppose
that this set is non-empty and we will refer to elements ofMe(S) as equivalent
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sigma-martingale measures. We refer to Chap. 14 for more details and for
a discussion of the concept of sigma-martingales. We also remark that if S is
a semi-martingale and if ϕ is strictly positive, bounded and predictable, then
the sets of stochastic integrals with respect to S and with respect to ϕ ·S are
the same. This follows easily from the formula H · S = H

ϕ · (ϕ · S).

Theorem 15.5.1 (Optional Decomposition Theorem). Let S = (St)t∈R +

be an Rd-valued semi-martingale, such that the set Me(S) �= ∅, and V =
(Vt)t∈R + a real-valued semi-martingale, V0 = 0 such that, for each Q ∈
Me(S), the process V is a Q-local super-martingale.

Then there is an S-integrable Rd-valued predictable process H such that
(H · S)− V is increasing.

Remark 15.5.2. The Optional Decomposition Theorem is proved in [EQ95] in
the setting of Rd-valued continuous processes. The important — and highly
non-trivial — extension to not necessarily continuous processes was achieved
by D. Kramkov in his beautiful paper [K 96a]. His proof relies on some of
the arguments from Chap. 9 and therefore he was forced to make the follow-
ing hypotheses: The process S is assumed to be a locally bounded Rd-valued
semi-martingale and V is assumed to be uniformly bounded from below. Later
H. Föllmer and Y.M. Kabanov [FK 98] gave a proof of the Optional Decompo-
sition Theorem based on Lagrange-multiplier techniques which allowed them
to drop the local boundedness assumption on S. Föllmer and Kramkov [FK97]
gave another proof of this result.

In the present paper our techniques — combined with the arguments of
D. Kramkov — allow us to abandon the one-sided boundedness assumption
on the process V and to pass to the — not necessarily locally bounded —
setting for the process S.

For the economic interpretation and relevance of the Optional Decompo-
sition Theorem we refer to [EQ95] and [K96a].

We start the proof with some simple lemmas. The first one — which we
state without proof — resumes the well-known fact that a local martingale is
locally in H1.

Lemma 15.5.3. For a P-local super-martingale V we may find a sequence
(Tj)j≥1 of stopping times increasing to infinity and P-integrable functions
(wj)j≥1 such that the stopped super-martingales V Tj satisfy

|V Tj | ≤ wj a.s., for j ∈ N .

The next lemma is due to D. Kramkov ([K 96a, Lemma 5.1]) and similar
to Lemma 15.4.12 above.

Lemma 15.5.4. In the setting of the Optional Decomposition Theorem 15.5.1
there is a semi-martingale W with W−V increasing, such that W is a Q-local
super-martingale, for each Q ∈Me(S) and which is maximal in the following
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sense: for each semi-martingale W̃ with W̃ −W increasing and such that W̃
is a Q-local super-martingale, for each Q ∈ Me(S), we have W = W̃ .

Proof of the Optional Decomposition Theorem 15.5.1. For the given semi-
martingale V we find a maximal semi-martingale W as in the preceding
Lemma 15.5.4. We shall find an S-integrable predictable process H such that
we obtain a representation of the process W as the stochastic integral over
H , i.e.,

W = H · S
which will in particular prove the theorem.

Fix Q0 ∈ Me(S) and apply Lemma 15.5.3 to the Q0-local super-martingale
W to find (Tj)j≥1 and wj ∈ L1(Ω,F ,Q0). Note that it suffices — similarly
as in [K 96a] — to prove Theorem 15.5.1 locally on the stochastic intervals
]]Tj−1, Tj]]. Hence we may and do assume that |W | ≤ w for some Q0-integrable
weight-function w ≥ 1. Since S is a sigma-martingale for the measure Q0, we
can by the discussion preceding the Theorem 15.5.1, and without loss of gener-
ality, assume that S is an H1(Q0)-martingale. So we suppose that the weight
function w also satisfies |S| ≤ w, where | . | denotes any norm on Rd.

Fix the real numbers 0 ≤ u < v and consider the process uW v starting at
u and stopped at time v, i.e.,

uW v
t = Wt∧v −Wt∧u ,

which is a Q-local super-martingale, for each Q ∈ Me(S), and such that
|uW v| ≤ 2w.

Claim 15.5.5. There is an S-integrable 2w-admissible predictable process
uHv, which we may choose to be supported by the interval ]u, v], such that

(uHv · S)∞ = (uHv · S)v ≥ f = uW v
v = uW v

∞ .

Assuming this claim for a moment, we proceed similarly as D. Kramkov
([K 96a, Proof of Theorem 2.1]): fix n ∈ N and denote by T (n) the set of time
indices

T (n) =
{

j

2n

∣∣∣∣ 0 ≤ j ≤ n 2n

}
and denote by Hn the predictable process

Hn =
n2n∑
j≥1

(j−1)2−n

Hj2−n

,

where we obtain (j−1)2−n

Hj2−n

as a 2w-admissible integrand as above with
u = (j − 1)2−n and v = j2−n. Clearly Hn is a 2w-admissible integrand such
that the process indexed by T (n)

((Hn · S)j2−n −Wj2−n)j=0,...,n2n
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is increasing.
By applying Theorem 15.D to the Q0-local martingale S — and by passing

to convex combinations, if necessary — the process

W̃t = lim
s↘t

s∈Q+

lim
n→∞(Hn · S)s

is well-defined and we may find a predictable S-integrable process H such that
H · S − W̃ is increasing; as W − W̃ is increasing too, we obtain in particular
that H · S −W is increasing.

As H · S ≥W we deduce from [AS 94] that, for each Q ∈ Me(S), H · S is
a Q-local martingale and a Q-super-martingale. By the maximality condition
of W we must have H · S = W thus finishing the proof of the Optional
Decomposition Theorem 15.5.1.

We still have to prove the claim. This essentially follows from Corol-
lary 15.4.11.

Let us define L∞
w to be the space of all measurable functions g such that

g
w is essentially bounded. This space is the dual of the space L1

w−1(Q0) of
functions g such that EQ0 [w |g|] <∞. By the Banach-Dieudonné theorem or
the Krein-Smulian theorem (see Chap. 9 for a similar application), it follows
from Corollary 15.4.11 that the set

B = {h | |εh| ≤ w and εh ∈ C1,2w for some ε > 0} ,

is a weak-star-closed convex cone in L∞
w (the set C1,2w was defined in Defi-

nition 15.4.8 above). Now as easily seen, if the claim were not true, then the
said function f is not in B. Since B−L∞

w + ⊂ B we have by Yan’s separation
theorem ([Y 80]), that there is a strictly positive function h ∈ L1

w−1 such that
EQ0 [hf ] > 0 and such that EQ0 [hg] ≤ 0 for all g ∈ B. If we normalise h so
that EQ0 [h] = 1 we obtain an equivalent probability measure Q, dQ = h dQ0

such that EQ[f ] > 0. But since S is dominated by the weight function w, we
have that the measure Q is an equivalent martingale measure for the pro-
cess S. The process W is therefore a local super-martingale under Q. But
the density h is such that EQ[w] < ∞ and therefore the process uW v, being
dominated by 2w, is a genuine super-martingale under Q. However, this is
a contradiction to the inequality EQ[f ] > 0. This ends the proof of the claim
and the proof of the Optional Decomposition Theorem. �

Remark 15.5.6. Let us stress out that we have proved above that in Theo-
rem 15.5.1 for each process W with W − V increasing, W a Q-local super-
martingale for each Q ∈ Me(S) and W being maximal with respect to this
property in the sense of Lemma 15.5.4, we obtain the semi-martingale repre-
sentation W = H · S.

Remark 15.5.7. Referring to the notation of the proof of the optional decom-
position theorem and the claim made in it, the fact that the cone B is weak-
star-closed in L∞

w yields a duality equality as well as the characterisation of
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maximal elements in the set of w-admissible outcomes. These results are par-
allel to the results obtained in the case of locally bounded price processes. We
refer to Chap. 14 for more details.
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espaces de Banach H1 et BMO. Séminaire de Probabilités XII, Springer
Lecture Notes in Mathematics 649, pp. 98–113.

[D 75] J. Diestel, (1975), Geometry of Banach spaces — selected topics. Springer
Lecture Notes in Mathematics 485, Springer, Berlin, Heidelberg, New
York.

[DRS93] J. Diestel, W. Ruess, W. Schachermayer, (1993), On weak compactness in
L1(µ, X). Proc. Am. Math. Soc., vol. 118, pp. 447–453.

[DU77] J. Diestel, J.J. Uhl, (1977), Vector Measures. Mathematical Surveys, vol.
15. Providence, R.I.: American Mathematical Society (AMS).

[D 53] J.L. Doob, (1953), Stochastic Processes. Wiley, New York.
[Du 92] D. Duffie, (1992), Dynamic asset pricing theory. Princeton University

Press.
[DFS 03] D. Duffie, D. Filipovic, W. Schachermayer, (2003), Affine Processes and

Applications in Finance. Annals of Applied Probability, vol. 13, no. 3, pp.
984–1053.

[DH86] D. Duffie, C.F. Huang, (1986), Multiperiod security markets with differ-
ential information; martingales and resolution times. Journal of Mathe-
matical Economics, vol. 15, pp. 283–303.

[DS 58] N. Dunford, J. Schwartz, (1958), Linear Operators. I. General theory. Pure
and Applied Mathematics, vol. 6, New York and London: Interscience
Publishers.

[DR87] Ph. Dybvig, S. Ross, (1987), Arbitrage. In: J. Eatwell, M. Milgate, P. New-
man (eds.), The new Palgrave dictionary of economics, vol. l, pp. 100–106,
Macmillan, London.

[ET 76] I. Ekeland, R. Temam, (1976), Convex Analysis and Variational Problems.
North Holland, Amsterdam. Reprint: 1999, SIAM Classics in Applied
Mathematics 38.
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[FK 97] H. Föllmer, D. Kramkov, (1997), Optional Decompositions under Con-
straints. Probability Theory and Related Fields, vol. 109, pp. 1–25.
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[FL 00] H. Föllmer, P. Leukert, (2000), Efficient Hedging: Cost versus Shortfall
Risk. Finance and Stochastics, vol. 4, no. 2, pp. 117–146.
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Gundy. Séminaire de Probabilités XXVIII, Springer Lecture Notes in
Mathematics 1583, pp. 92–97.

[MR 97] M. Musiela, M. Rutkowski, (1997), Martingale Methods in Financial Mod-
elling. Springer-Verlag, Berlin.

[N 75] J. Neveu, (1975), Discrete Parameter Martingales. North-Holland,
Amsterdam.

[PT 99] H. Pham, N. Touzi, (1999), The fundamental theorem of asset pricing
with cone constraints. Journal of Mathematical Economics, vol. 31, pp.
265–279.

[PY 82] J. Pitman, M. Yor, (1982), A decomposition of Bessel Bridges. Zeitschrift
f. Wahrscheinlichkeit u. Verw. Gebiete, vol. 59, no. 4, pp. 425–457.

[P 86] S.R. Pliska, (1986), A stochastic calculus model of continuous trading:
optimal portfolios. Math. Oper. Res., vol. 11, pp. 371–382.

[P 97] S.R. Pliska, (1997), Introduction to Mathematical Finance. Blackwell Pub-
lishers.

[P 90] P. Protter, (1990), Stochastic Integration and Differential Equations. A
new approach. Applications of Mathematics, vol. 21, Springer-Verlag,
Berlin, Heidelberg, New York (second edition: 2003, corrected third print-
ing: 2005).

[R 98] R. Rebonato, (1998), Interest-rate Option models. 2nd ed., Wiley, Chich-
ester.

[RY91] D. Revuz, M. Yor, (1991), Continuous Martingales and Brownian Mo-
tion. Grundlehren der Mathematischen Wissenschaften, vol. 293, Springer
(third edition: 1999, corrected third printing: 2005).

[R 70] R.T. Rockafellar, (1970), Convex Analysis. Princeton University Press,
Princeton, New Jersey.

[R 93] L.C.G. Rogers, (1993), Notebook, private communication. Dec. 20, 1993.



References 371

[R 94] L.C.G. Rogers, (1994), Equivalent martingale measures and no-arbitrage.
Stochastics and Stochastic Reports, vol. 51, no. 1–2, pp. 41–49.

[RW 00] L.C.G. Rogers, D. Williams, (2000), Diffusions, Markov Processes and
Martingales. Volume 1 and 2, Cambridge University Press.

[R 04] D. Rokhlin, (2004) The Kreps-Yan Theorem for L∞. Preprint.
[RS 05] D. Rokhlin, W. Schachermayer, (2005), A note on lower bounds of mar-

tingale measure densities. Preprint.
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[Y 80] J.A. Yan, (1980), Caractérisation d’ une classe d’ensembles convexes de
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Springer Lecture Notes in Mathematics 649, pp. 265–309.
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