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ix

  I have taught biostatistics in the health sciences and published a book 
in 2003 with Wiley on that topic. That book is a textbook for upper -
 level undergraduates and graduate students in the health science depart-
ments at universities. Since coming to the Lankenau Institute 17 months 
ago, I was tasked to prepare a course in biostatistics for nurses and 
physicians (particularly the hospital residents and fellows that do 
medical research). I quickly learned that although the material in my 
book was relevant, it contained too much material and was not in a 
digestible form for them. I prepared a six - lecture course (1 hour each) 
for physicians, and a two - lecture course for the nurses. To prevent 
boredom, I introduced some funny but educational cartoon slides. The 
course currently exists and has been refi ned as PowerPoint presenta-
tions and has been moderately successful. I also am starting a similar 
course at statistics.com. 

 The physicians and nurses have a busy schedule, and what they 
need is a concise and clearly explained set of lectures that cover only 
the areas of statistics that are essential to know about in medical 
research. This means topics that are not taught in traditional introduc-
tory statistics courses. So Kaplan – Meier curves, repeated measures 
analysis of variance, hazard ratios, contingency tables, logrank tests, 
bioequivalence, cross - over designs, noninferiority, selection bias, and 
group sequential methods are all included, but they are introduced on 
a conceptual level without the need for theory. It is when and why these 
methods work that they need to know, and not a detailed account of 
how they work mathematically. I feel that it would be appropriate to 
have a textbook for such a course that can be taught in - house at research 
centers or online courses. The book is intended to be approximately 
160 pages along with suitable references. 

 Preface     
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 I am very grateful to Professor Marlene Egger, who carefully 
reviewed the manuscript and made several wonderful suggestions that 
helped with the clarity and improved the content of the book.      

Michael R. Chernick
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1

The Essentials of Biostatistics for Physicians, Nurses, and Clinicians, 
First Edition. Michael R. Chernick.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

  CHAPTER 1 

The What, Why, and 

How of Biostatistics 

in Medical Research     

    1.1    DEFINITION OF STATISTICS 
AND BIOSTATISTICS 

 The  Oxford Dictionary of Statistics  (2002, p. 349) defi nes statistics as 
 “ The science of collecting, displaying, and analyzing data. ”  Statistics 
is important in any scientifi c endeavor. It also has a place in the hearts 
of fans of sports, particularly baseball. Roger Angel in his baseball 
book,  Late Innings , says  “ Statistics are the food of love. ”  

 Biostatistics is the branch of statistics that deals with biology, both 
experiments on plants, animals, and living cells, and controlled experi-
ments on humans, called clinical trials. Statistics is classifi ed by scien-
tifi c discipline because in addition to many standard methods that are 
common to statistical problems in many fi elds, special methods have 
been developed primarily for certain disciplines. So to illustrate, in 
biostatistics, we study longitudinal data, missing data models, multiple 
testing, equivalence and noninferiority testing, relative risk and odds 
ratios, group sequential and adaptive designs, and survival analysis, 
because these types of data and methods arise in clinical trials and other 
medical studies. Engineering statistics considers tolerance intervals and 
design of experiments. Environmental statistics has a concentration in 
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2 CHAPTER 1 The What, Why, and How of Biostatistics in Medical Research  

the analysis of spatial data, and so does geostatistics. Econometrics is 
the branch of statistics studied by economists, and deals a lot with 
forecasting and time series. 

 Statisticians are professionals trained in the collection, display, and 
analysis of data and the distribution theory that characterizes the vari-
ability of data. To become a good applied statistician, one needs to learn 
probability theory and the methods of statistical inference as developed 
by Sir Ronald A. Fisher, Jerzy Neyman, Sir Harold Jeffreys, Jimmie 
Savage, Bruno deFinetti, Harald Cramer, Will Feller, A. N. Kolmogorov, 
David Blackwell, Erich Lehmann, C. R. Rao, Karl and Egon Pearson, 
Abraham Wald, George Box, William Cochran, Fred Mosteller, Herman 
Chernoff, David Cox, and John Tukey in the twentieth century. These 
are some of the major developers of the foundations of probability and 
statistics. Of course, when selecting a list of famous contributors like 
this, many have been unintentionally omitted. In the late twentieth 
century and early twenty - fi rst century, computer - intensive statistics 
arose, and a partial list of the leaders of that development are Brad 
Efron, Leo Brieman, David Freedman, Terry Speed, Jerry Friedman, 
David Siegmund, and T. L. Lai. In the area of biostatistics, we should 
mention Thomas Fleming, Stuart Pocock, Nathan Mantel, Peter 
Armitage, Shein - Chung Chow, Jen - pei Liu, and Gordon Lan. You will 
be introduced to these and other famous probabilists and statisticians 
in this book. An applied statistician must also become familiar with at 
least one scientifi c discipline in order to effectively consult with scien-
tists in that fi eld. 

 Statistics is its own discipline because it is much more than just a 
set of tools to analyze data. Although statistics requires the tools of 
probability, which are mathematical, it should not be thought of as a 
branch of mathematics. It is the appropriate way to summarize and 
analyze data when the data contains an element of uncertainty. This is 
very common when measurements are taken, since there is a degree of 
inaccuracy in every measurement. Statisticians develop mathematical 
models to describe the phenomena being studied. These models may 
describe such things as the time a bus will arrival at a scheduled stop, 
how long a person waits in line at a bank, the time until a patient dies 
or has a recurrence of a disease, or future prices of stocks, bonds, or 
gasoline. 

 Based on these models, the statistician develops methods of estima-
tion or tests of hypotheses to solve certain problems related to the data. 
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1.2 Why Study Statistics? 3

Because almost every experiment involves uncertainty, statistics is the 
scientifi c method for quantitative data analysis. 

 Yet in the public eye, statistics and statisticians do not have a great 
reputation. In the course of a college education, students in the health 
sciences, business, psychology, and sociology are all required to take 
an introductory statistics course. The comments most common from 
these students are  “ this is the most boring class I ever took ”  and  “ it 
was so diffi cult, that I couldn ’ t understand any of it. ”  This is the fault 
of the way the courses are taught and not the fault of the subject. An 
introductory statistics course can be much easier to understand and 
more useful to the student than, say, a course in abstract algebra, topol-
ogy, and maybe even introductory calculus. Yet many people don ’ t 
view it that way. 

 Also, those not well trained in statistics may see articles in medi-
cine that are contradictory but still make their case through the use of 
statistics. This causes many of us to say  “ You can prove anything with 
statistics. ”  Also, there is that famous quote attributed to Disraeli. 
 “ There are lies, damn lies and statistics. ”  In 1954, Darrell Huff wrote 
his still popular book,  How to Lie with Statistics . Although the book 
shows how graphs and other methods can be used to distort the truth 
or twist it, the main point of the book is to get a better understanding 
of these methods so as not to be fooled by those who misuse them. 
Statisticians applying valid statistical methods will reach consistent 
conclusions. The data doesn ’ t lie. It is the people that manipulate the 
data that lie. Four books that provide valuable lessons about misusing 
statistics are Huff  (1954) , Campbell  (1974) , Best  (2001) , and Hand 
 (2008) .  

   1.2    WHY STUDY STATISTICS? 

 The question is really why should medical students, physicians, nurses, 
and clinicians study statistics? Our focus is on biostatistics and the 
students we want to introduce it to. One good reason to study statistics 
is to gain knowledge from data and use it appropriately. Another is to 
make sure that we are not to be fooled by the lies, distortions, and 
misuses in the media and even some medical journals. The medical 
journals now commonly require good statistical methods as part of a 
research paper, and the sophistication of the methods used is greater. 
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4 CHAPTER 1 The What, Why, and How of Biostatistics in Medical Research  

So we learn statistics so that we know what makes sense when reading 
the medical literature, and in order to publish good research. 

 We also learn statistics so that we can provide intelligent answers 
to basic questions of a statistical nature. For many physicians and 
nurses, there is a fear of statistics. Perhaps this comes from hearing 
horror stories about statistics classes. It also may be that you have seen 
applications of statistics but did not understand it because you have no 
training. So this text is designed to help you conquer your fear of sta-
tistics. As you learn and gain confi dence, you will see that it is logical 
and makes sense, and is not as hard as you fi rst thought. 

 Major employers of statisticians are the pharmaceutical, biotech-
nology, and medical device companies. This is because the marketing 
of new drugs, biologics, and most medical devices must be approved 
by the U.S. Food and Drug Administration (FDA), and the FDA requires 
the manufacturers to demonstrate through the use of animal studies and 
controlled clinical trials the safety and effectiveness of their product. 
These studies must be conducted using valid statistical methods. So 
any medical investigator involved in clinical trials sponsored by one of 
these companies really needs to understand the design of the trial and 
the statistical implications of the design and the sample size require-
ments (i.e., number of patients need in the clinical trial). This requires 
at least one basic biostatistics course or good on - the - job training. 

 Because of uncontrolled variability in any experimental situation, 
statistics is necessary to organize the data and summarize it in a way 
so that signals (important phenomena) can be detected when corrupted 
by noise. Consequently, bench scientists as well as clinical researchers 
need some acquaintance with statistics. Most medical discoveries need 
to be demonstrated using statistical hypothesis testing or confi dence 
interval estimation. This has increased in importance in the medical 
journals. Simple  t  - tests are not always appropriate. Analyses are getting 
much more sophisticated. Death and other time - to - event data require 
statistical survival analysis methods for comparison purposes. 

 Most scientifi c research requires statistical analysis. When Dr. 
Riffenburgh (author of the text  Statistics in Medicine , 1999) is told by 
a physician  “ I ’ m too busy treating patients to do research, ”  he answers, 
 “ When you treat a patient, you have treated a patient. When you do 
research, you have treated ten thousand patients. ”  

 In order to amplify these points, I will now provide fi ve examples 
from my own experience in the medical device and pharmaceutical 
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1.2 Why Study Statistics? 5

industries where a little knowledge of statistics would have made life 
easier for some of my coworkers. 

 In the fi rst scenario, suppose you are the coordinator for a clinical 
trial on an ablation catheter. You are enrolling subjects at fi ve sites. You 
want to add a new site to help speed up enrollment. The IRB for the 
new site must review and approve your protocol for the site to enter 
your study. A member of the IRB asks what stopping rule you use for 
safety. How do you respond? You don ’ t even know what a stopping 
rule is or even that the question is related to statistics! By taking this 
course, you will learn that statisticians construct stopping rules based 
upon accumulated data. In this case, there may be safety issues, and 
the stopping rule could be based on reaching a high number of adverse 
events. You won ’ t know all the details of the rule or why the statistician 
chose, it but you will at least know that the statistician is the person 
who should prepare the response for the IRB. 

 Our second example involves you as a regulatory affairs associate 
at a medical device company that just completed an ablation trial for a 
new catheter. You have submitted your premarket approval application 
(PMA). In the statistical section of the PMA, the statistician has pro-
vided statistical analysis regarding the safety and effi cacy of your 
catheter in comparison to other marketed catheters. A reviewer at the 
FDA sent you a letter asking why Peto ’ s method was not used instead 
of Greenwood ’ s approximation. You do not know what these two 
methods are or how they apply. 

 From this course, you will learn about survival analysis. In studying 
the effectiveness of an ablation procedure, we not only want to know 
that the procedure stopped the arrhythmia (possibly atrial fi brillation), 
but also that the arrhythmia does not recur. Time to recurrence is one 
measure of effi cacy for the treatment. Based on the recurrence data 
from the trial, your statistician constructs a time - to - event curve called 
the Kaplan – Meier curve. 

 If we are interested in the probability of recurrence within 1 year, 
then the Peto and Greenwood methods are two ways to get approximate 
confi dence intervals for it. Statistical research has shown differences in 
the properties of these two methods for obtaining approximate confi -
dence intervals for survival probabilities. As an example, Greenwood ’ s 
estimate of the lower confi dence bound can be too high in situations 
where the number of subjects still at risk at the time point of interest 
is small. 
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6 CHAPTER 1 The What, Why, and How of Biostatistics in Medical Research  

 In these situations, Peto ’ s method gives a better estimate of this 
lower bound. In general, neither method is always superior to the other. 
Since the FDA posed this question, the statistician would opt to provide 
the Peto estimate in addition to Greenwood for the FDA to compare 
the two lower confi dence bounds. Knowing these simple facts would 
help you deal with the FDA question quickly, effectively, and accu-
rately (Fig.  1.1 ).   

 In situation 3, you are in regulatory affairs and are reviewing an 
FDA letter about a PMA submission. The FDA wants you to report 
results in terms of confi dence intervals, in addition to the  p  - values, 
before they give fi nal approval to the treatment. You recognize this as 
a statistical question, but are worried because if it takes signifi cant time 
to supply the request, the launch date of the new device will be delayed 
and will upset marketing ’ s plans. You don ’ t even know what a confi -
dence interval is! 

 In this case, since you have the necessary data to do the binomial 
test on success probability, you can easily compute an exact confi dence 

     Figure 1.1.     Example of a Kaplan – Meier curve.  Taken from Altman  (1991) ,  Practical 
Statistics for Medical Research . Chapman and Hall/CRC, p. 374.   
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1.2 Why Study Statistics? 7

interval. Your statistician can provide this for you in less than 1 day 
and you are greatly relieved. 

 In situation 4, you are a clinical research associate in the middle of 
an important phase III trial. Based upon a data analysis done by the 
statistics group and an agreement with the FDA prior to the trial, the 
primary endpoint can be changed from a condition at the 6 - month 
follow - up visit to that same condition at the 3 - month follow - up visit. 
This is great news, because it means that the trial can be fi nished 
sooner! 

 There is a problem though. The protocol only required follow - up 
visits at 2 weeks and 6 months, and the 3 - month follow - up was optional. 
Unfortunately, some sites opted not to conduct the 3 - month follow - up. 
Your clinical manager now wants you to have all the patients that are 
past the 3 - month time point since the procedure was done and did not 
have the 3 - month follow - up to come in for an unscheduled visit. When 
you requested that the investigators do this, a nurse and one investigator 
balked at the idea and demanded to know why this is necessary. You 
need an answer from your statistician! 

 To placate the investigator, the statistician tells the investigator that 
they could not use the 3 - month follow - up initially because the FDA 
had not seen data to indicate that a 3 - month follow - up would be enough 
to determine long - term survival. However, during the early part of the 
trial, the statistician was able to fi nd relevant survival curves to indicate 
the survival probability fl attens out at 3 months ’  duration. This was 
enough to convince the FDA that the 3 - month endpoint was suffi cient 
to determine long - term survival. If we now have the unscheduled visits, 
these could be the subjects ’  last visit, and many subjects will not need 
a 6 - month follow - up, allowing a shorter accrual time and a chance to 
get the product to market faster. 

 This explanation helped, but the problem could have been avoided 
had the clinician had the foresight to see the importance of making the 
3 - month follow - up mandatory in the protocol. The investigator was 
pleased because although it would cost more to add these unscheduled 
visits, this would be more than compensated by the dropping of the 
6 - month follow - up, for those getting the unscheduled visit, and pos-
sibly some others. 

 In the last situation (situation 5), imagine you are the VP of the 
Clinical and Regulatory Affairs Departments at a medical device 
company. Your company hired a contract research organization (CRO) 
to run a blinded randomized control phase III clinical trial. You have a 
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8 CHAPTER 1 The What, Why, and How of Biostatistics in Medical Research  

statistics group, but the CRO is tasked to handle the data collection, 
processing, and analysis, so as to keep your company blinded and thus 
maintain greater integrity for the data and to avoid any presumption 
of bias. 

 The CRO can view the data in an unblinded fashion as they prepare 
their report. You are very curious to see the results, since a successful 
trial outcome is of paramount importance. Now, as the report is com-
plete, you are the only representative of the company who can see the 
report. As you look at the report, you see  p  - values for statistical tests. 
You recall only a little statistics but remember to look for  p  - values 
below 0.05 because those were indicative of statistical signifi cance. 
You are alarmed, when looking at a demographic comparison of treat-
ment and control groups by age and gender, to see high  p  - values. One 
 p  - value was 0.56. You would like to show this to your statistician, but 
cannot, because he must remain blinded. 

 If you had taken a course like this one, you would know that for 
effi cacy variables, the hypotheses are set up to be rejected, and low 
 p  - values are good. But we want the demographic factors to be nearly 
the same for both groups. For demographics, we do not want to reject 
the null hypothesis, and a high  p  - value is actually good news!! 

 The main reason for similarity between the groups with respect to 
all these demographic factors is randomization. Fisher originally sug-
gested randomization in experiments because of confounding of effects. 
Perhaps unknown to the investigators, the treatment is more effective 
in women than men. Suppose we have 100 patients in each group. In 
the control group, 30 are women and 70 are men. In the treatment 
group, 80 are women and 20 are men, and we see a statistically signifi -
cant effect. Is it due to the treatment or the fact that so many more 
women are in the treatment group than in the control group? 
Unfortunately, we do not know! This is what is called confounding. 

 Randomization overcomes this problem because it tends to balance 
out factors that we are not interested in. Simple random sampling will 
proportion the men and women nearly in the proportions that they occur 
in the patient population. This too avoids bias and confounding. In situ-
ation 5, the high  p  - value shows that the randomization is doing its job! 

 We now summarize what we have learned in this section.

   1.     Statistics and statisticians played an important role in research. 
Their role in medical research and particularly randomized 
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1.3 The Medical Literature 9

controlled clinical trials continues to increase rapidly, as the 
demand for fi nding new and better treatments for severe diseases 
increases.  

  2.     The regulatory agencies and pharmaceutical companies con-
tinue to emphasize controlled clinical trials for the evaluation of 
effi cacy and safety for a new drug.  

  3.     Physicians and nurses cannot ignore statistics. It is everywhere, 
and is mandated by the FDA to provide proof of safety and 
effi cacy of new drugs, devices, and combination therapies.     

   1.3    THE MEDICAL LITERATURE 

 Chapter  6  of Doug Altman ’ s book, Altman  (1991) , discusses statistical 
methods in the medical literature. He quotes the famous statistician, Sir 
David Cox, who in 1983 said:  “ One does feel that statistical techniques 
both of design and analysis are sometimes adopted as rituals designed 
to assuage the last holders of absolute power (editors of journals) and 
perhaps also regulatory agencies, and not because the techniques are 
appreciated to be scientifi cally important. ”  I agree with this statement 
not only as it applied in 1983, but even to a large extent, still today, 27 
years later! 

 Altman uses very strong language regarding problems with the 
medical literature. He claims  “ Examples of substandard design and 
incorrect analysis can be seen in almost any issue of any medical 
journal. ”  He goes on to say:  “ The importance of sound design and 
analysis cannot be overemphasized. Clearly the conclusions from a 
study must rely on the methods having been correct. If conclusions are 
unreliable because of faulty methodology, then the study cannot be 
clinically worthwhile. Worse, it may be clinically harmful by reason of 
the conclusions being misleading, and a clinically harmful study is 
surely unethical. ”  

 Evidence of the growth of the use of statistical methods in medical 
research is given in this table about the journal  Pediatrics , taken from 
table 16.1, page 479 of Altman ’ s book. The number of papers is on an 
increasing trend, the percentage of papers without statistics is decreas-
ing, and the percentage with more sophisticated techniques is increas-
ing over the three decades (Table  1.1 ).   
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10 CHAPTER 1 The What, Why, and How of Biostatistics in Medical Research  

 From 1982 to 2010, this trend has continued, and fortunately, the 
quality of the statistical refereeing has improved as well. Altman also 
looked at errors in a particular journal,  Arthritis and Rheumatism , 
comparing the late 1960s to 1982 (Table  1.2 ).   

 We see from the tables that the medical literature was notorious for 
incorrect use of statistical methods. Trends from the late 1960s to the 

  Table 1.1 
Use of Statistical Procedures in the Journal  Pediatrics  

        Year  

   1952     1962     1972     1982  

  No. of papers    67    98    115    151  

  % with no statistical procedures    66%    59%    45%    30%  

  % with procedures other than  t , chi - square, or  r     3%    5%    12%    35%  

 From Altman  (1991)  with permission. 

  Table 1.2 
Errors Found in  Arthritis and Rheumatism  1967 – 1968 Compared 
With 1982 (Continued) 

  Year of publication    1967 – 1968    1982  

   Number of papers      n     =    47      n     =    74  

  Error type  

  Undefi ned method    14 (30%)    7 (9%)  

  Inadequate description of measure of location or 
dispersion  

  6 (13%)    7 (9%)  

  Repeated observations treated as independent    1 (2%)    4 (5%)  

  Two groups compared on more than 10 variables at 
5% level  

  3 (6%)    4 (5%)  

  Multiple  t  - tests instead of ANOVA    2 (4%)    18 (24%)  

  Chi - squared tests used when observed frequencies are 
too small  

  3 (6%)    4 (5%)  

  At least one of these errors in the paper    28 (60%)    49 (66%)  

 From Altman  (1991) , with permission. 
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1.4 Medical Research Studies 11

early 1980s show an increase in the use of statistical methods and 
particularly the more sophisticated ones. The frequency of occurrence 
of elementary - type errors declined over this period. Because statistics 
is used more frequently and with more sophistication, there is an 
increase in the percentage of papers that have at least one error, as well 
as an increase in the percentage of papers that contain the more recent 
type of errors from multiple testing and the use of multiple  t  - tests 
instead of the analysis of variance.  

   1.4    MEDICAL RESEARCH STUDIES 

 Medical research studies involving human subjects can be put into four 
categories.

   1.     Cross - sectional studies  

  2.     Retrospective studies  

  3.     Prospective studies (other than clinical trials)  

  4.     Controlled clinical trials, including pharmacokinetic and phar-
macodynamic studies    

 While the controlled clinical trial falls under the category of pro-
spective studies, we choose to separate it out because of its clear 
importance in the evaluation of new drugs and medical devices. 

   1.4.1    Cross - Sectional Studies Including Surveys 

  Defi nition:  A cross - sectional study is one that is taken at a given point 
in time. 

 Surveys including election polls and censuses are both examples 
of cross - sectional studies. These studies are conducted when only one 
point in time is relevant to the question at hand (e.g., censuses, public 
opinion polls, election polls, and marketing surveys). Here, only the 
current opinion matters. Not interested in looking far into the future. 
But often in medicine, we are interested in changes over time after a 
medical intervention. This goes for both effi cacy variables and quality 
of life variables. So we do not see many cross - sectional studies in 
medical research except in epidemiological studies.  
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12 CHAPTER 1 The What, Why, and How of Biostatistics in Medical Research  

   1.4.2    Retrospective Studies 

  Defi nition:  A retrospective study is one that examines relationships 
based on past data. 

 One important example of a retrospective study is the case - control 
study (these could also be prospective). Such studies are intended to 
be similar to what prospective clinical trials are intended to do. The 
cases are the subjects with the outcome of interest (like a treatment 
group in a clinical trial). The control subjects are similar demographi-
cally or otherwise to their matched case subjects, but for which the 
outcome did not occur. 

 A particular example might be a situation where subjects who 
contracted a particular disease such as lung cancer are asked about their 
past exposure to a risk factor. The same questions are administered to 
control subjects who did not get lung cancer. In this case, the risk factor 
is cigarette consumption.  

   1.4.3    Prospective Studies Other Than Clinical Trials 

  Defi nition:  A prospective study is one that is planned in the present and 
takes place in the future. 

 Examples include cohort studies and clinical trials. Clinical trials 
are particularly important to us, as we have already mentioned. So we 
consider them as a category of their own. 

 An example of a cohort study is a study that follows a group of 
disease - free subjects who have a certain risk factor for a disease to 
see if they eventually develop the disease. The subjects could be 
young college students, the disease could be emphysema, and the risk 
factor could be smoking. From cohort studies, statisticians and epide-
miologists determine relative risks based on exposure levels to risk 
factors.  

   1.4.4    Controlled Clinical Trials 

 In the context of clinical trials, an experiment is a study that assigns 
subjects to treatment groups in order to assess differences among treat-
ments. A randomized experiment is one in which randomization is used 
for the selection process. 
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1.4 Medical Research Studies 13

  Defi nition:  An experiment performed to evaluate the effect of 
intervention(s) or treatment(s) for a group of human subjects against a 
control group that does not get a treatment(s) (placebo) or gets different 
treatment(s). 

 The purpose is to see if the difference in treatment creates 
differences in outcomes for the treatment group versus the control 
group. The gold standard for clinical trials is the double - blinded 
randomized controlled trial. When constructed properly, these trials 
provide good statistical information about the differences between 
two groups or several groups (often there can be more than one 
treatment). The control group could be on a drug that is an active com-
petitor to the study drug or on placebo, or, more generally, a different 
treatment protocol, a different medical device or surgical procedure, 
and so on. 

 The use of randomization and blinding is to protect the study 
from biases that could invalidate the results. Not all clinical trials are 
 blinded, randomized, or completely prospective . Sometimes in device 
trials, historical controls or objective performance criteria (OPCs) are 
used for comparison with the treatment. This makes the comparator 
retrospective while the treatment is done prospectively. Since the trial 
only has one arm, there is no blinding or randomization in this type 
of trial.  

   1.4.5    Conclusions 

    1.     There are several types of studies in medical research.  

  2.     Each study has its advantages and disadvantages.  

  3.     Cross - sectional studies only look at one point in time.  

  4.     Most medical research and particularly clinical trials are con-
cerned with how patients improve or get worse over time as a 
function of alternative treatments.  

  5.     Because of (4), cross - sectional studies are not common in 
medical research other than in some epidemiologic studies.  

  6.     Double - blind randomized control clinical trials provide the gold 
standard for evaluating a new treatment versus current standard 
care and/or placebo when done properly. But they are also the 
most costly and diffi cult to implement studies.     
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14 CHAPTER 1 The What, Why, and How of Biostatistics in Medical Research  

 1.5   EXERCISES 

      1.   What is a Kaplan – Meier curve?   

   2.   For what kind of data do you compute Kaplan – Meier curves?   

   3.   Why is randomization important in clinical trials?   

   4.   What does Greenwood ’ s method refer to?   

   5.   Why do we compute  p  - values? When is it good for  p  - values to be small 
and when is it all right if they are large?   

   6.   What are cross - sectional studies and why are they uncommon in medical 
research?   

   7.   What are retrospective studies?   

   8.   What are prospective studies?   

   9.   What are controlled clinical trials and why is blinding important?   
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  CHAPTER 2 

Sampling from 

Populations     

     One of the key aspects of statistics and statistical inference is to draw 
conclusions about a population based on a sample. Our ability to make 
good inferences requires an intelligent design and must include some 
form of random sampling. Random sampling is needed so that the 
sample can be analyzed based on the probability mechanism that gener-
ates the sample. This way, estimates based on the sample data can be 
obtained, and inference drawn based on the probability distribution 
associated with the sample. 

 To illustrate, suppose we select fi ve students at random from a math 
class of 40 students. We will formally defi ne random sampling later. If 
we give a math test to these students based on the material they have 
studied in the class, and we average the fi ve scores, we will have a 
prediction of what the class average for that test will be. This prediction 
will be unbiased (meaning that if we repeatedly took samples of and 
averaged them, the average of the averages will approach the class 
average). 

 In practice, we do not repeat the process, but we do draw inference 
based on the properties of the sampling procedure. On the other hand, 
suppose we selected the fi ve students to be the ones with the highest 
class average thus far in the class. In that case, we would not have a 
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16 CHAPTER 2 Sampling from Populations

random sample, and the average of this group could be expected to be 
higher than the class average. The amount that it is higher is the bias 
of the prediction. Bias is something we want to avoid because usually 
we cannot adjust our estimate to get a good prediction. 

 In addition to bias (which can be avoided by randomization), an 
estimate or prediction will have a variance. The variance is a measure 
of the variability in estimates that would be obtained by repeating the 
sampling process. While bias cannot be controlled by the sample size, 
the variance can. The larger the sample size is, the smaller is the vari-
ance of the estimate, or in the example, above the prediction of the 
class average. 

 Suppose that instead of taking a random sample of size 5, we took 
a random sample of size 10. Then, for an estimate known to be unbi-
ased (e.g., the sample mean) will still be unbiased, and its variance will 
be lower, meaning that it will tend to be closer to the value for the 
entire class. You can imagine that if we chose 39 out of the 40 at 
random, the prediction would be extremely close to the class average, 
and if we had taken all 40, it will equal the class average and have zero 
variance. 

 An excellent example that illustrates the need for random sampling 
and the bias in prediction when the sample is not random is the  Literary 
Digest  ’ s prediction of the winner of the 1936 U.S. Presidential elec-
tion. Franklin Roosevelt was the incumbent and the Democratic 
nominee. Alfred Landon was the Republican nominee. To predict the 
winner, the  Literary Digest  mailed out 10 million ballots asking regis-
tered voters which candidate they preferred. A total of 2.3 million out 
of the 10 million ballots were returned and on the basis of the results 
for the 2.3 million the  Literary Digest  predicted Landon to be a big 
winner. 

 Although the number of voters in the election would be a lot more 
than the actual or even the intended sample, that sample size is large 
enough that if it were a random sample of those who would vote, it 
would have a very small standard deviation (in political surveys, 
approximately 2 standard deviations for the estimate is called the 
margin of error), and the prediction would be highly reliable. The result 
of the election, however, was that Roosevelt won by a landslide, obtain-
ing 62% of the popular vote. This high visibility poll totally destroyed 
the credibility of the  Literary Digest , and soon caused it to cease pub-
lication. How could they have gone so wrong? 
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2.1 Defi nitions of Populations and Samples  17

 A subsequent analysis of their sampling method indicated that 
the original mailing list of 10 million was based primarily on tele-
phone directories and motor vehicle registration lists. In modern 
times, such a sampling method would be acceptable, since the percent-
age of eligible voters that have telephones and drivers licenses is 
nearly 100%. 

 But, in 1936, the United States was recovering from the great 
depression, and telephones and automobiles were a luxury. So a large 
majority of the people with telephones and/or cars were affl uent. The 
affl uent Americans tended to be Republicans, and were much more 
likely to vote for Landon than the Democrats, many of whom were 
excluded because of this sampling mechanism. As poor and middle -
 income Americans represented a much larger portion of American 
society in 1936, and they would be more likely to vote for Roosevelt, 
this created a large bias that was not recognized by those individuals 
at the Literary Digest who were conducting the survey. This shows that 
samples not chosen at random may appear on the surface to be like a 
random sample, but could have a large enough bias to get the prediction 
wrong. If a truly random sample of 2.3 million registered voters likely 
to vote were selected and the true proportion that would vote for 
Roosevelt were 62%, then it would be nearly impossible for the survey 
to pick Landon.  

   2.1    DEFINITIONS OF POPULATIONS 
AND SAMPLES 

 At this stage, we have informally discussed populations and samples. 
Now as we get into the details of random samples and other types 
of sampling methods, we will be more formal. The term  population  
refers to a collection of people, animals, or objects that we are inter-
ested in studying. Usually, there is some common characteristic 
about this population that interests us. For example, the population 
could be the set of all Americans having type II diabetes. A sample 
would be a subset of this population that is used to draw inferences 
about the population. In this example, we might have a drug like 
metformin that we think will control the sugar levels for these 
patients. There may be millions of Americans that have type II 
diabetes. 
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18 CHAPTER 2 Sampling from Populations

 But we shall draw inference about the population based on a sample 
of 1000 subjects with type II diabetes that we were able to enroll in a 
clinical trial. If the trial is properly conducted statistically, we may 
estimate a treatment effect in the population based on an estimate from 
the sample of 1000 subjects in the trial. This estimate, if favorable, may 
lead the FDA to approve the drug for treatment of type II diabetes to 
any American with type II diabetes. 

 Without a proper statistical design and analysis, the inference to 
the population would not be valid and would not lead to an approval 
even if the results are positive for the sample. The sample estimate 
could be biased, and the probability that a decision favors the conclu-
sion of effectiveness when the drug is really not effective (called the 
type I error or signifi cance level) would not be appropriately 
controlled. 

 So to summarize, a population is a collection of things or people 
that have similarities and possibly subgroup differences that you are 
interested in learning about. A sample is simply a subset of the popula-
tion that you take measurements on to draw inferences about those 
measurements for the population the sample was taken from.  

   2.2    SIMPLE RANDOM SAMPLING 

 One of the easiest and most convenient ways to take a sample that 
allows statistical inference is by taking a simple random sample. As 
mentioned earlier, many methods of sampling can create biases. Simple 
random sampling assures us that sample estimates like the arithmetic 
mean are unbiased. 

 Simple random sampling involves selecting a sample of size  n  from 
a population of size  N . The number of possible ways to draw a sample 
of size  n  out of a population of size  N  is the binomial coeffi cient   Cn

N  
(read as  “ combinations of  N  choose  n  ” ), the number of combinations 
of  N  things taken  n  at a time. This is known in combinatorial mathemat-
ics to be  N !/[ n !( N     –     n )!]. By  “  n ! ” , we mean the product  n ( n     −    1) 
( n     −    2)    . . .    3 2 1. In simple random sampling, we make the selection 
probability the same for each possible choice for the sample  n . So 
the probability that any particular set occurs is   1/ Cn

N. In Section  2.3 , 
we will show a method for taking simple random samples based on 
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2.3 Selecting Simple Random Samples 19

using a pseudo - random number generator on the index set for the 
population.  

   2.3    SELECTING SIMPLE RANDOM SAMPLES 

 Simple random sampling can alternatively be defi ned as sampling at 
random without replacement from the population. Going by our origi-
nal defi nition, a brute force way to generate a random sample would 
be to enumerate and order all the possible samples from 1 to   Cn

N and 
randomly select an integer  k , where   1 ≤ ≤k Cn

N . 
 To illustrate this method, we will look at a simple example where 

 N     =    6 and  n     =    4. Then the number of possible samples is 
  C4

6 6 4 2 6 5 2 15= = × =!/[ ! !] / . Suppose these six elements represent 
patients, and we denote them as the set {A, B, C, D, E, F}. Using this 
notation, we can enumerate the 15 distinct samples any way we want 
and assign integer indices from 1 to 15. A systematic enumeration 
might look as follows:

   1.     {A, B, C, D}  

  2.     {A, B, C, E}  

  3.     {A, B, C, F}  

  4.     {A, B, D, E}  

  5.     {A, B, D, F}  

  6.     {A, B, E, F}  

  7.     {A, C, D, E}  

  8.     {A, C, D, F}  

  9.     {A, C, E, F}  

  10.     {A, D, E, F}  

  11.     {B, C, D, E}  

  12.     {B, C, D, F}  

  13.     {B, C, E, F}  

  14.     {B, D, E, F}  

  15.     {C, D, E, F}    
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20 CHAPTER 2 Sampling from Populations

 We then use a table of uniform random numbers, or on the computer, 
generate a uniform pseudorandom number. A computer pseudorandom 
number generator is an algorithm that will generate a sequence of 
numbers between 0 and 1 that have properties approximating those of 
a sequence of independent uniform random numbers. To assign a 
random index to the random number we generate, we do the following: 
We fi rst break up the interval [0, 1)  *   into 15 disjointed (i.e., nonover-
lapping) intervals of equal length 1/15. So the intervals are [0, 1/15), 
[1/15, 2/15) [2/15, 3/15),    . . .    , [14/15, 1). Let  U  denote the random 
number selected by the table or the computer generated value. Then 

  If               0    ≤     U     <    0.0667, then the index is 1 (0.0667 is a decimal 
approximation to 1/15).  

  If 0.0667    ≤     U     <    0.1333, then the index is 2.  

  If 0.1333    ≤     U     <    0.2000, then the index is 3.  

  If 0.2000    ≤     U     <    0.2667, then the index is 4.  

  If 0.2667    ≤     U     <    0.3333, then the index is 5.  

  If 0.3333    ≤     U     <    0.4000, then the index is 6.  

  If 0.4000    ≤     U     <    0.4667, then the index is 7.  

  If 0.4667    ≤     U     <    0.5333, then the index is 8.  

  If 0.5333    ≤     U     <    0.6000, then the index is 9.  

  If 0.6000    ≤     U     <    0.6667, then the index is 10.  

  If 0.6667    ≤     U     <    0.7333, then the index is 11  

  If 0.7333    ≤     U     <    0.8000, then the index is 12.  

  If 0.8000    ≤     U     <    0.8667, then the index is 13.  

  If 0.8667    ≤     U     <    0.9333, then the index is 14.  

  If 0.9333    ≤     U     <    1.0000, then the index is 15.    

 For example, suppose the computer generated the number 04017 
corresponding to 0.4017. Since 0.4000    ≤    0.4017    <    0.4667, the index is 

  *       “ [0, 1) ”  means all values  x  such that is greater than or equal to 0 but less than 1,  “ (0, 1) ”  
means all  x  greater than 0 but less than 1,  “ (0, 1] ”  means all  x  greater then 0 bur less than 
or equal to 1, and  “ [0,1] ”  means all  x  greater than or equal to 0 but less than or equal to 1. 
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7. Then referring to the systematic list, we see that the index 7 corre-
sponds to the sample {A, C, D, E}. 

 Now this method is feasible when  N  and  n  are small like 6 and 4 
above, since the number of combinations is only 15. But as  N  and  n  
get larger, the number of combinations gets out of hand very quickly. 
So a simpler alternative is to consider the sampling without replace-
ment approach. In this approach, the individual patients get ordered. 
One ordering that we could have is as follows:

   1 is A  

  2 is B  

  3 is C  

  4 is D  

  5 is E  

  6 is F    

 Now we divide [0, 1) into six equal intervals and assign the uniform 
random number as follows:

   If 0.0000    ≤     U     <    0.1667, then the index is 1.  

  If 0.1667    ≤     U     <    0.3333, then the index is 2.  

  If 0.3333    ≤     U     <    0.5000, then the index is 3.  

  If 0.5000    ≤     U     <    0.6667, then the index is 4.  

  If 0.6667    ≤     U     <    0.8333, then the index is 5.  

  If 0.8333    ≤     U     <    1.0000, then the index is 6.    

  Example:  From a table of uniform random numbers, suppose the fi rst 
number to be 00439 for 0.00439, since 0.00439 is in the interval [0, 
0.1667], we choose index 1 corresponding to patient A. Now A is taken 
out so we rearrange the indexing.

   1 is B  

  2 is C  

  3 is D  
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  4 is E  

  5 is F    

 Now we must divide [0, 1) into fi ve equal parts. 
 So we get:

   If 0.0000    ≤     U     <    0.2000, then the index is 1.  

  If 0.2000    ≤     U     <    0.4000, then the index is 2.  

  If 0.4000    ≤     U     <    0.6000, then the index is 3.  

  If 0.6000    ≤     U     <    0.8000, then the index is 4.  

  If 0.8000    ≤     U     <    1.0000, then the index is 5.    

 The second uniform random number from the table is 29676, corre-
sponding to 0.29676. Now since 0.2000    ≤     U     <    0.4000, the index is 2 
corresponding to C. So now our sample includes A and C. Again, in 
order to sample without replacement from the remaining four patients 
B, D, E, and F, we divide [0, 1) into four equal parts and redefi ne the 
indices as 

  1 is B  

  2 is D  

  3 is E  

  4 is F    

 For the intervals, we get:

   If 0.0000    ≤     U     <    0.2500, then the index is 1.  

  If 0.2500    ≤     U     <    0.5000, then the index is 2.  

  If 0.5000    ≤     U     <    0.7500, then the index is 3.  

  If 0.7500    ≤     U     <    1.0000, then the index is 4.    

 The third uniform random number in the table is 69386. So  U     =    0.69386. 
We see that 0.5000    ≤     U     <    0.7500. So the index is 3, and we choose 
patient E. Now we have three of the four required patients in our 
sample. They are A, C, and E. So for the fi nal patient in the sample, 
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we pick at random between B, D, and F. The indices are chosen as 
follows:

   1 is B  

  2 is D  

  3 is F    

 To divide [0, 1) into three equal parts we get:

   If 0.0000    ≤     U     <    0.3333 then the index is 1.  

  If 0.3333    ≤     U     <    0.6667 then the index is 2.  

  If 0.6667    ≤     U     <    1.0000, then the index is 3.    

 The fi nal random number from the table is 68381. So  U     =    0.68381. 
 We see that 0.6667    ≤     U     <    1.0000. So the index for the last patient 

is 3, corresponding to patient F. The random sample of size 4 that we 
chose is {A, C, E, F}. This approach seems a little more awkward, but 
it does generate a simple random sample using only four random 
numbers. Although it is awkward, it avoids enumerating all 15 combi-
nations and therefore remains a feasible approach as  N  and  n  get large. 

 A simpler approach that also generates a simple random sample is 
the rejection method. In the rejection method, we do not repartition the 
interval [0, 1) after choosing each patient. We stay with the original 
partition. This saves some calculations, but could lead to a longer string 
of numbers. We simply start with the approach that we previously used 
in sampling without replacement, but since we do not change the parti-
tion or assignment of indices, it is now possible to repeat an index (for 
bootstrap sampling, this will be perfectly fi ne). But since a simple 
random sample cannot repeat an element (a patient in our hypothetical 
example), we cannot include a repeat. So whenever a patient repeats, 
we reject the duplicate sample and pick another random sample. This 
continues until we have a complete sample of size  n  ( n     =    4 in our 
example). 

 Using the same table and running down the fi rst column, the 
sequence of numbers is 00439, 29676, 69386, 68381, 69158, 00858, 
and 86972. In the previous examples, we ran across the fi rst row and 
then the second. In this case, we get a different sequence by going down 
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the fi rst column. We did this to illustrate repeat values and how they 
are handled in generating the sample. 

 Recall that when we subdivide the interval into six equal parts, we 
get:

   If 0.0000    ≤     U     <    0.1667 then the index is 1.  

  If 0.1667    ≤     U     <    0.3333 then the index is 2.  

  If 0.3333    ≤     U     <    0.5000 then the index is 3.  

  If 0.5000    ≤     U     <    0.6667 then the index is 4.  

  If 0.6667    ≤     U     <    0.8333 then the index is 5.  

  If 0.8333    ≤     U     <    1.0000 then the index is 6.    

 Also recall the correspondence of patients to indices:

   1 is A  

  2 is B  

  3 is C  

  4 is D  

  5 is E  

  6 is F    

 So the random sequence generates A, B, E, E, E, A, F. Since we didn ’ t 
get a repeat among the fi rst three patients, A, B, and E are accepted. 
But the fourth random number repeats E, so we reject it and take the 
fi fth random number. The fi fth number repeats E again so we reject it 
and look at the sixth random number in the sequence. The sixth random 
number chooses A, which is also a repeated patient, so we reject it and 
go to the seventh random number. This number leads to the choice of 
F, which is not a repeat so we accept it. We now have four different 
patients in our sample so we stop. 

 The rejection method can also be shown mathematically to gener-
ate a simple random sample. So we had the advantage of only doing 
one partitioning, but with it came the repeats and the need to sometimes 
have to generate more than four random numbers. In theory, we could 
get many repeats, but a long series of repeats is not likely. In this case, 
we needed seven random numbers instead of just four. The rejection 
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method is preferred on the computer because generating new random 
numbers is faster than calculating new partitions. So although it looks 
to be wasteful in practice, it is usually computationally faster. 

 Now for each patient, we are interested in a particular characteristic 
that we can measure. For this example, we choose age in years at their 
last birthday. Let us assume the ages for the patients are as follows:

   A is 26  

  B is 17  

  C is 45  

  D is 70  

  E is 32  

  F is 9    

 The parameter of interest is the average age of the population. We 
will estimate it using the sample estimate. Since the population is 6, 
and we know the six values, the population mean, denoted as   μ  , is (26    
+    17    +    45    +    70    +    32    +    9)/6    =    33.1667. In our example, we will not 
know the parameter value because we will only see the sample of size 
4 and will not know the ages of the two patients that were not selected. 
Now, if we generated the random sample using the exact random 
numbers that we got from the reject technique, we would have {B, C, 
E, F} as our sample, and the sample mean will be (17    +    45    +    
32    +    9)/4    =    19.5. This is our estimate. It is a lot smaller than the true 
population mean of 33.1667. 

 This is because patient D is not in the sample. D is the oldest patient 
and is 70. So his addition in the average would increase the mean and 
his absence decreases it. So if we added D to the sample, the average 
would be (17    +    45    +    70    +    32    +    9)/5    =    34.6. So adding D to the sample 
increases the mean from 19.5 to 34.6. On the other hand, if we think 
of the sample as being {B, C, D, E, F}, the removal of D drops the 
mean from 34.6 to 19.5. So the infl uence of D is 15.1 years! This is 
how much D infl uences the mean. This shows that the mean is a param-
eter that is heavily infl uenced by outliers. We will address this again 
later. 

 The sample mean as an estimator is unbiased. That means that if 
we averaged the estimate for the 15 possible samples of size 4, we 
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26 CHAPTER 2 Sampling from Populations

would get exactly the population mean, which is 31.1667. This result 
can be proven mathematically. In this case, since we know what the 
fi nite population is, we can calculate the 15 possible sample means and 
take their average to verify that it equals the population mean. Recall 
the 15 possible samples are:

   {A, B, C, D} with sample mean    =    (26    +    17    +    45    +    70)/4    =    39.50  

  {A, B, C, E} with sample mean    =    (26    +    17    +    45    +    32)/4    =    30.00  

  {A, B, C, F} with sample mean    =    (26    +    17    +    45    +    9)/4    =    24.25  

  {A, B, D, E} with sample mean    =    (26    +    17    +    70    +    32)/4    =    36.25  

  {A, B, D, F} with sample mean    =    (26    +    17    +    70    +    9)/4    =    30.50  

  {A, B, E, F} with sample mean    =    (26    +    17    +    32    +    9)/4    =    21.00  

  {A, C, D, E} with sample mean    =    (26    +    45    +    70    +    32)/4    =    43.25  

  {A, C, D, F} with sample mean    =    (26    +    45    +    70    +    9)/4    =    43.25  

  {A, C, E, F} with sample mean    =    (26    +    45    +    32    +    9)/4    =    28.00  

  {A, D, E, F} with sample mean    =    (26    +    70    +    32    +    9)/4    =    34.25  

  {B, C, D, E} with sample mean    =    (17    +    45    +    70    +    32)/4    =    41.00  

  {B, C, D, F} with sample mean    =    (17    +    45    +    70    +    9)/4    =    35.25  

  {B, C, E, F} with sample mean    =    (17    +    45    +    32    +    9)/4    =    25.75  

  {B, D, E, F} with sample mean    =    (17    +    70    +    32    +    9)/4    =    32.00  

  {C, D, E, F} with sample mean    =    (45    +    70    +    32    +    9)/4    =    39.00    

 In this case, the largest mean is 43.25, and the smallest is 21.00, and 
the value closest to the population mean is 34.25. This shows that the 
estimate has a lot of variability. To verify the property of unbiasedness, 
we need to average these 15 estimates and verify that the average is 
33.1667. This goes as follows: 

 The expected value of the averages is (39.5    +    30.0    +    24.25    +    
36.25    +    30.5    +    21.0    +    43.25    +    37.5    +    28.0    +    34.25    +    41.0    +    
35.25    +    25.75    +    32.0    +    39.0)/15    =    497.50/15    =    33.1667 rounded 
to four decimal places. 

 In Section  2.5 , we will generate bootstrap samples. In bootstrap-
ping, we do simple random sampling with replacement. So this can be 
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accomplished easily by using the approach of the rejection method 
without the need to reject, since repeats are acceptable. 

 The basic bootstrap idea is to let the original sample data serve as 
the population, and then you sample with replacement from the sample 
data. The original sample is size  n , and bootstrapping is usually done 
by taking  m  samples with replacement with  m      =      n . 

 However, in recent years, it has been discovered that although 
 m      =      n  usually works best, there are situations where the choice of  m      =      n  
leads to a particular type of incorrect solution which statisticians call 
inconsistency. In several of these cases, a consistent bootstrap approach 
can be obtained by making  m     <<     n.   *   This is called the  m  - out - of -  n  
bootstrap. For the statistical theory of consistency to hold, both  n  and 
 m  tend to infi nity, but with  m  going at a slower rate. So we will see 
that bootstrap sampling is conceptually very similar to simple random 
sampling. The only difference is that replacement is used for the boot-
strap. For the bootstrap estimates, we will also look at the ages of the 
six patients.  

   2.4    OTHER SAMPLING METHODS 

 Stratifi ed random sampling is just a little more complicated; the simple 
random sampling in a set of  m  strata are defi ned indexed by  k  where 
 k     =    1, 2,    . . .    ,  m , and each strata gets a simple random sample of size 
 n k  . An example of stratifi cation might be age group, with  k     =    1 for ages 
1 – 12,  k     =    2 for ages 13 – 20,  k     =    3 for ages 21 – 35,  k     =    4 for ages 36 – 55, 
 k     =    5 for ages 56 – 75, and  k     =    6 for anyone over 75. A stratifi ed random 
sample can work better than a simple random sample if each stratum 
has a relatively homogeneous group, but there are marked differences 
between strata. 

 Other forms of sampling are convenience sampling, cluster sam-
pling, and systematic sampling. Cluster sampling is a random sampling 
approach that is used when it is easier to randomly select a group of 
elements for a sample rather than the individual elements themselves. 
Examples could be lists of districts or counties within a state. In cluster 
sampling, the item being sampled is a cluster. A cluster is a group of 
objects generally found in the same location. For example, in sampling 

  *      By  “  m     <<     n , ”  we mean that  m  is much less than  n . 
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households in a particular city, the city could be divided up into blocks. 
A subset of the city blocks is selected at random, and each household 
on the block is included in the sample. Cluster sampling is a conve-
nient and economic way for organizations such as the U. S. Census 
Bureau to conduct surveys. So, for example, we may look at residents 
of Manhattan, New York as the population. Every city block in 
Manhattan is eligible for selection, and a random sample of city blocks 
is taken, and every household on the chosen blocks are included. 

 Convenience sampling and systematic sampling are both nonran-
dom methods and are not recommended in general. In special cases, 
these methods may work, but often they don ’ t. Systematic sampling 
can be used (but not necessarily recommended) when an ordered list 
of the population members is available. Samples are chosen by a sys-
tematic algorithm. For example, if the population size  n     =    500, and we 
want a sample of size 100, we can choose every fi fth case on the list, 
such as those with indices 1, 6, 11, 16, 21, 26, 31,    . . .    , 491, and 496. 
This is not the only way if we skip 1; we can accomplish the sample 
choosing 2, 7, 12, 17    . . .    , 492, and 497. We could also start with the 
third, fourth, or fi fth index in the sequence. If we start with 5, the 
sequence is 5, 10, 15, 20, 25,    . . .    , 495, and 500. 

 Systematic sampling can work if the ordering has no relationship 
to the value of the outcome variable. A case where systematic sampling 
can fail is when the outcomes are cyclical in time. For instance, if the 
pattern is sinusoidal and the period is 5 units, then we could be sam-
pling at the peaks of the cycle when we pick every fi fth case in sequence 
and the fi rst case is a peak. This would lead to a positive bias in the 
estimate for the outcome variable ’ s mean. On the other hand, starting 
at a trough would create a negative bias on the estimate of the outcome 
variable ’ s mean. 

 Convenience sampling only means that you fi nd a sample of size 
 n  out of the population of size  N  in a simple and convenient way. There 
is no way to draw inference from such a sample. Convenience sampling 
should never be recommended.  

   2.5    GENERATING BOOTSTRAP SAMPLES 

 Bootstrap sampling is simple random sampling from the observed data 
(also called the empirical distribution). It amounts to sampling with 
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replacement  m  times from the data where each data point has probabil-
ity 1/ n  for each of the  m  draws, where  n  is the number of data points. 
As mentioned in Section  2.3 ,  m  is usually equal to  n , but sometimes it 
is advantageous to take  m      <<      n . 

 In this section, we will show how bootstrap samples can be gener-
ated, much as we did for simple random samples in Section  2.3 . We 
will further discuss the bootstrap when we get to hypothesis testing and 
confi dence intervals, where it is commonly applied. Without going into 
detail now, let us say that bootstrap estimation is based on using the 
sampling distribution of estimates obtained from bootstrap samples. 

 In theory, that sampling distribution can be derived directly from 
the data. However, this is not often easy to do (especially as  n  gets 
large), so the distribution is approximated by Monte Carlo methods. 
That means that we get a collection of B bootstrap samples by sampling 
with replacement from the original data B times, each time taking a 
sample of size  m . In our example, we will take  m      =      n , where  n  is the 
size of the original sample. 

 The bootstrap samples, typically, differ from the original sample 
because some observations get repeated in the bootstrap sample and 
others are left out. This will become apparent in the example. To gener-
ate a bootstrap sample, we again partition the interval [0, 1). In this 
case, since we have  n  samples indexed 1, 2, 3,    . . .    ,  n , we divide the 
interval into  n  equal disjoint parts. Again taking  U  to be a uniform 
random number from a table of random numbers, we get:

   If 0    ≤     U     <    1/ n , the index is 1.  

  If 1/ n     ≤     U     <    2/ n , the index is 2.  

  If 2/ n     ≤     U     <    3/ n , the index is 3.  

   ·   

   ·   

   ·   

  If ( n     −    2)/ n      ≤      U     <    ( n     −    1)/ n , the index is  n     −    1.  

  If ( n     −    1)/ n      ≤      U     <     n / n     =    1, the index is  n     

 Let us take the same population of six patients {A, B, C, D, E, F} that 
we used in Section  2.3 , but it now represents the sample of patients. 
Again, the correspondence of patients to indices:
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   1 is A  

  2 is B  

  3 is C  

  4 is D  

  5 is E  

  6 is F    

 The variable of interest is the patient ’ s age, so again:

   A is 26  

  B is 17  

  C is 45  

  D is 70  

  E is 32  

  F is 9    

 A bootstrap sample will sample six times with replacement from 
the six patients, and mean age will be computed for each bootstrap 
sample. There are 6 6     =    46,656 possible bootstrap samples when order 
is counted. This is a little too much for a human to handle, but not so 
large to cause diffi culty for today ’ s computers. To get the bootstrap 
distribution for the mean, we would enumerate all 46,656 possible 
bootstrap samples get the age distribution for each of these bootstrap 
samples. For each bootstrap sample we compute, its mean and the set 
of all 46,656 means provides the bootstrap sampling distribution for 
the mean. This is very tedious and unnecessary. 

 We can get a good approximation of the distribution from just 100 
to 1000 randomly selected bootstrap samples. The number of randomly 
selected bootstrap samples is often denoted as B. That approach is what 
we call the Monte Carlo approximation to the bootstrap distribution. 
For illustrative purposes, we will take B    =    10 even though in practice 
the number B needs to be much larger to get a good approximation to 
the bootstrap distribution. The random numbers and the corresponding 
patients and ages for the ten bootstrap samples are as follows: 
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2.5 Generating Bootstrap Samples 31

  Bootstrap sample 1 : 69386, 71708, 88608, 67251, and 00169 cor-
responding to patients E, E, F, E, B, and A and ages 32, 32, 9, 32, 
17, 26, with bootstrap mean estimate 24.67. 

  Bootstrap sample 2 : 68381, 61725, 49122, 75836, 15368, and 52551 
corresponding to patients E, D, C, E, A, and D, and ages 32, 70,45, 
32, 26, and 70, with bootstrap mean estimate 45.83. 

  Bootstrap sample 3 : 69158, 38683, 41374, 17028, 09304, and 10834 
corresponding to patients E, C, C, B, A, and A, and ages 32, 45, 45, 
17, 26, and 26, with bootstrap mean estimate 31.83. 

  Bootstrap sample 4 : 00858, 04352, 17833, 41105, 46569, and 90109 
corresponding to patients A, A, B, C, C, and F, and ages 26, 26, 17, 
45, 45, and 9, with bootstrap mean estimate 28.00. 

  Bootstrap sample 5 : 86972, 51707, 58242, 16035, 94887, and 83510 
corresponding to patients F, D, D, A, F, and F, and ages 9, 70, 70, 
26, 9, and 9, with bootstrap mean estimate 32.17. 

  Bootstrap sample 6 : 30606, 45225, 30161, 07973, 03034, and 82983 
corresponding to patients B, C, B, A, A, and E, and ages 17, 45, 17, 
26, 26, and 32, with bootstrap mean estimate 27.17. 

  Bootstrap sample 7 : 93864, 49044, 57169, 43125, 11703, and 87009 
corresponding to patients F, C, D, C, A, and F, and ages 9, 45, 70, 
45, 26 and 9, with bootstrap mean estimate 34.0. 

  Bootstrap sample 8 : 61937, 90217, 56708, 35351, 60820, and 90729 
corresponding to patients D, F, D, C, D, and F, and ages 70, 9, 70, 
45, 70 and 9, with bootstrap mean estimate 45.5. 

  Bootstrap sample 9 : 94551, 69538, 52924, 08530, 79302, and 34981 
corresponding to patients F, E, D, A, D, and C, and ages 9, 32, 70, 
26, 70 and 45, with bootstrap mean estimate 42.0. 

  Bootstrap sample 10 : 68381, 61725, 49122, 75836, 15368, and 
52551 corresponding to patients E, C, C, D, E, and B, and ages 32, 
45, 45, 70, and 17, with bootstrap mean estimate 33.83. 

 The mean of the bootstrap distribution is (24.67    +    45.83    +    31.83    
+    28.0    +    32.17    +    27.17    +    34.0    +    45.5    +    42.0    +    34.83)/10    =    31.88. 
The bootstrap mean will converge to the true mean for the six patients 
as the number of bootstrap samples B gets large. As we already 
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suggested, 10 is not a large number, and you can see that since the 
original sample mean is 33.17, the estimate is off by 1.29 years. A value 
of B    =    100 or 500 should make the estimate much closer. 

 Properties of the bootstrap samples to note are the repetitions. 
In bootstrap sample 1, E occurs three times and C and D are both 
left out. In bootstrap sample 2, E and D each repeat once, and B 
and F are left out. Bootstrap sample 9 has only one repetition, and 
only B is left out. I that sense it is closest to the original sample, 
but its mean is 42.0 compared with the mean of 33.17 for the 
original sample. The large difference is due to the fact that the 
oldest patient E is repeated and the second youngest is the one 
left out. 

  2.6   EXERCISES 

       1.    Why do we need to collect samples when we want to determine population 
characteristics?   

    2.    Provide a defi nition in your own words for the following terms:

   (a)     Sample  

  (b)     Census  

  (c)     Parameter  

  (d)     Statistic      

    3.    Describe and contrast the following types of sampling designs. Also, state 
when if ever it is appropriate to use the particular designs.

   (a)     Simple random sample  

  (b)     Stratifi ed random sample  

  (c)     Convenience sample  

  (d)     Systematic sample  

  (e)     Cluster sample  

  (f)     Bootstrap sample      

    4.    What is meant by parameter estimation?   

    5.    For sample designs (a), (b), (c), and (d) in exercise 3, explain under what 
circumstances bias can enter?   

    6.    How does bootstrap sampling differ from simple random sampling?   

    7.    What is the rejection sampling method and when is it used?   
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    8.    Why would a convenience sample of the elderly on vacation in Hawaii 
probably not be representative of the elderly in retirement homes?   

    9.    What role does the sample size play in the accuracy of a statistical 
inference?   

    10.    Why is the choice of the design for the sample more critical than the size 
of the sample?   

    11.    Why is bias more important than variance in research?      
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  CHAPTER 3 

Graphics and 

Summary Statistics     

    3.1    CONTINUOUS AND DISCRETE DATA 

 Numerical or quantitative data can be continuous or discrete. Discrete 
data are data that consist of a fi nite or a countably infi nite (mathemati-
cally equivalent to the integers) set of numbers. The binomial distribu-
tion that counts the number of successes is a discrete distribution with 
a fi nite number of outcomes 0 to  n  successes out of  n . In contrast, the 
Poisson distribution counts the number of events occurring in a unit 
time interval. It can take on any integer value that is nonnegative. So 
it has a countably infi nite set of values for the probability distribution. 
A property of discrete data is that between any two values, there are 
real numbers that are not possible data points. 

 On the other hand, continuous data have the property that there 
exist two real numbers that are possible values, and any real number 
between those numbers is a possible data point. Data that are continu-
ous include such things as weight, volume, area, and density. Although 
height and weight are considered continuous, they are usually measured 
on a discrete scale, such as inches and pounds respectively. 

 We call these data continuous because although we can only 
measure height to the nearest inch, say, in theory, a person could have 
a height between two units of measurement. Practically speaking, if the 
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units are fi ne and the possible values are large, it makes more sense to 
treat the data as though it were continuous even though technically it 
may be discrete.  

   3.2    CATEGORICAL DATA 

 Categorical data is data that is not numerical. Often there is no natural 
order to categorical data, although there may be a qualitative ordering, 
such as degree of severity. However, if we use a scale such as a Likert 
scale to order the categories, they do not have the typical numerical 
meaning. For example, a 2 on the scale may not be twice as severe as 
1. So ratios of the scaled data have no real meaning. Categorical data 
can be dichotomous, such as true or false, male or female, yes or no, 
alive or dead. It also can consist of three or more categories. So race, 
religion, ethnicity, and education level are all examples of categorical 
data with more than two categories. Among these four examples, only 
education level has a natural ordering in terms of the hierarchy of grade 
levels: graduate school    >    college    >    high school    >    elementary school, 
for example.  

   3.3    FREQUENCY HISTOGRAMS 

 Fo r continuous data, frequency histograms offer us a nice visual 
summary of the data and the shape of its distribution. The range of 
possible values for the data is divided into disjoint intervals usually of 
equal length, and the number of data points in each interval is shown 
as a bar. The art of generating frequency histograms is in the decision 
as to how many intervals to choose. If you choose too many intervals, 
some intervals could be sparse or empty, and the bars could look spikey. 
If you take too few intervals, the bars may fl atten and you lose some 
of the shape of the distribution. 

 We shall produce a histogram for a set of body mass index (BMI) 
measurements for 120 U.S. adults. The data looks as follows in Table  3.1 .   

 To better discern patterns in this data, it is convenient to order the 
data from lowest in the top left corner to highest in the bottom right 
corner in ascending order down the columns, for example (could alter-
natively have chosen to go ascending across the rows). The result is 
show in Table  3.2 .   
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  Table 3.1 
Body Mass Index: Sample of 120  U . S . Adults 

  27.4    31.0    34.2    28.9    25.7    37.1    24.8    34.9    27.5    25.9  

  23.5    30.9    27.4    25.9    22.3    21.3    37.8    28.8    28.8    23.4  

  21.9    30.2    24.7    36.6    25.4    21.3    22.9    24.2    27.1    23.1  

  28.6    27.3    22.7    22.7    27.3    23.1    22.3    32.6    29.5    38.8  

  21.9    24.3    26.5    30.1    27.4    24.5    22.8    24.3    30.9    28.7  

  22.4    35.9    30.0    26.2    27.4    24.1    19.8    26.9    23.3    28.4  

  20.8    26.5    28.2    18.3    30.8    27.6    21.5    33.6    24.8    28.3  

  25.0    35.8    25.4    27.3    23.0    25.7    22.3    35.5    29.8    27.4  

  31.3    24.0    25.8    21.1    21.1    29.3    24.0    22.5    32.8    38.2  

  7.3    19.2    26.6    30.3    31.6    25.4    34.8    24.7    25.6    28.3  

  26.5    28.3    35.0    20.2    37.5    25.8    27.5    28.8    31.1    28.7  

  24.1    24.0    20.7    24.6    21.1    21.9    30.8    24.6    33.2    31.6  

 From this table, it is now easy to see at a glance that 18.3 is the 
lowest BMI value and 38.8 is the highest. It is also easy to see the 
values that repeat by scanning down the columns, and we quickly see 
that 27.4 occurs the most times (fi ve) and 27.3 next (four times). The 
values: 21.1, 21.9, 22.3, 24.0, 25.4, 26.5, 28.3, and 28.8 occur three 

  Table 3.2 
Body Mass Index Data: Sample of 120  U .  S . Adults (Ascending 
Order Going Down the Columns) 

  18.3    21.9    23.0    24.3    25.4    26.6    27.5    28.8    30.9    34.8  

  19.2    21.9    23.1    24.3    25.6    26.9    27.5    28.8    30.9    34.9  

  19.8    21.9    23.1    24.5    25.7    27.1    27.6    28.9    31.0    35.0  

  20.2    22.3    23.3    24.6    25.7    27.3    28.2    29.3    31.1    35.5  

  20.7    22.3    23.4    24.6    25.8    27.3    28.3    29.5    31.3    35.8  

  22.4    22.3    23.5    24.7    25.8    27.3    28.3    29.8    31.6    35.9  

  21.1    22.4    24.0    24.7    25.9    27.3    28.3    30.0    31.6    36.6  

  21.1    22.5    24.0    24.8    25.9    27.4    28.4    30.1    32.6    37.1  

  21.1    22.7    24.0    24.8    26.2    27.4    28.6    30.2    32.8    37.5  

  21.3    22.7    24.1    25.0    26.5    27.4    28.7    30.3    33.2    37.8  

  21.3    22.8    24.1    25.4    26.5    27.4    28.7    30.8    33.6    38.2  

  21.5    22.9    24.2    25.4    26.5    27.4    28.8    30.8    34.2    38.8  
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  Table 3.3 
Frequency and Cumulative Frequency Histogram for  BMI  Data 

   Class interval 
for BMI levels  

   Frequency ( f )     Cumulative 
frequency ( cf )  

   Relative 
frequency (%)  

   Cumulative 
relative 

frequency (%)  

  18.0 – 20.9    6    6    5.00    5.00  

  21.0 – 23.9    24    30    20.00    25.00  

  24.0 – 26.9    32    62    26.67    51.67  

  27.0 – 29.9    28    90    23.33    75.00  

  30.0 – 32.9    15    105    12.50    87.50  

  33.0 – 35.9    9    114    7.50    95.00  

  36.0 – 38.9    6    120    5.00    100.00  

  Total    120    120    100.00    100.00  

times, and 21.3, 22.7, 23.1, 24.1. 24.3, 24.6, 24.7, 24.8, 25.8, 25.9, 27.5, 
28.7, 30.8, 30.9, and 31.6 occur two times. We decide for the histogram 
to break the data into 7 equally spaced intervals. The histogram for this 
data is displayed here in Table  3.3 .   

 Expressing this as a bar chart, we get Figure  3.1 .    

     Figure 3.1.     Relative frequency histogram for BMI data.  
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   3.4    STEM - AND - LEAF DIAGRAMS 

 John Tukey devised a quick way to summarize the data in a similar 
way to a histogram but still preserving all the individual data points. 
He called it a stem - and - leaf diagram because it looks like a stem with 
the individual points protruding out like leaves on a tree branch. 

 We see from Table  3.4  that the leaves produce the shape of the 
histogram on its side. This is a little different, because we chose 21 
equally spaced intervals instead of 7 so that the stem could be the fi rst 

  Table 3.4 
Stem - and - Leaf Diagram for  BMI  Data 

   Stems 
(intervals)  

   Leaves 
(observations)  

   Frequency  

  18.0 – 18.9    3    1  

  19.0 – 19.9    28    2  

  20.0 – 20.9    278    3  

  21.0 – 21.9    111335999    9  

  22.0 – 22.9    333457789    9  

  23.0 – 23.9    011345    6  

  24.0 – 24.9    000112335667788    15  

  25.0 – 25.9    04446778899    11  

  26.0 – 26.9    255569    6  

  27.0 – 27.9    1333344444556    13  

  28.0 – 28.9    233346778889    12  

  29.0 – 29.9    358    3  

  30.0 – 30.9    01238899    8  

  31.0 – 31.9    01366    5  

  32.0 – 32.9    68    2  

  33.0 – 33.9    26    2  

  34.0 – 34.9    289    3  

  35.0 – 35.9    0589    4  

  36.0 – 36.9    6    1  

  37.0 – 37.9    158    3  

  38.0 – 38.9    28    2  

  Total     —     120  
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two digits. The way to reconstruct the data from the diagram is as 
follows: The interval with the stem 18 only has one value, and the leaf 
is a 3. So the value of the data point is 18.3. The fourth interval from 
the top has a stem of 21, and there are nine observations in the intervals. 
The leaves are 1, 1, 1, 3, 3, 5, 9, 9, and 9. So the nine values are 21.1, 
21.1, 21.1, 21.3, 21.3, 21.5, 21.9, 21.9, and 21.9. The data in the other 
intervals are reconstructed in exactly the same way.    

   3.5    BOX PLOTS 

 In order to appreciate box plots, we need to explain the interquartile 
range. The interquartile range is the middle 50% of the data. The lower 
end is the 25th percentile of the data, and the upper end is the 75th 
percentile. The width of the interquartile range is equal to: 

 75th Percentile – 25th Percentile. 
 As we will see later in the text, the interquartile range is a 

robust measure of variability. The box plot, or, more formally, the 
box - and - whisker plot, is given as follows: The midline of a box - and -
 whisker plot is the median or 50th percentile. The body or box portion 
of the plot is the interquartile range going from the 25th percentile to 
the 75th percentile. The ends of the whiskers are given different defi ni-
tions by several authors. Often, it runs in the lower end from the 1st 
percentile to the 25th percentile, and in the upper end from the 75th 
percentile to the 99th percentile. Sometimes, the lower end is the 5th 
percentile, and the upper end, the 95th percentile. Points beyond the 
ends of the whiskers are potential outliers, and are highlighted as indi-
vidual dots. 

 The following cartoon shows an example of what the box - and -
 whisker plot looks like (Fig.  3.2 ).    

   3.6    BAR AND PIE CHARTS 

 We shall use a particular data set that we call the Pugh data to exhibit 
both bar charts and pie charts. Both types of charts can be applied to 
categorical data. Bar charts are preferred when the categories have a 
natural ordering. The bars are displayed across as the order of the cat-
egories increases. The pie chart is preferred to give a good idea of the 
proportion of the data in each category. By using a pie or circular shape, 
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     Figure 3.2.     Explanation of box-and-whisker plots   (taken from the  Cartoon Guide to 
Statistics  with permission).   
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3.6 Bar and Pie Charts 41

there is no natural order exhibited. The bar chart can also be used when 
there is no natural order, but it is easy for the viewer to think that, since 
the bars go from left to right, the bar chart, like the histogram, is dis-
playing the categories in increasing order. 

 In Figure  3.3 , the Pugh data provides a measure of severity of liver 
disease. The Pugh categories run from 1 to 7 in increasing level of 
severity. Here is a bar chart for the Pugh data.   

 Note that the bar chart looks just like a relative frequency histo-
gram, but remember that the numbers represent categories and not 
intervals of real numbers. So a 2 is not twice as severe as a 1, for 
example. But as we move from left to right, the severity increases. So, 
for the Pugh, data the bar chart is appropriate 

 Next, we shall look at the same data viewed as a pie chart (Fig.  3.4 ).   
 It is much easier to identify the differences in proportions visually 

from the pie chart. The order is lost unless you recognize that order of 
severity starts with 1 in the upper right quadrant and increases as you 
move clockwise from there. For data like this, it may be useful to 
present both types of graphs so that the viewer will recognize both 
features clearly. But had there not been a natural ordering to the data, 
only the pie chart should be used. 

     Figure 3.3.     Relative frequency bar graph for Pugh categories of 24 pediatric patients 
with liver disease.  
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     Figure 3.4.     Pie chart for Pugh level for 24 children with liver disease.  
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 Bar charts are sometimes used to compare two groups with respect 
to a measure. To show the variability in the data that went into the value 
presented by the bar, an error bar like the whisker portion of a box plot 
is used to show the variability. However, the box plot is a much better 
choice for the comparison because it shows the difference between the 
medians of the distribution in the proper way and provides more detail 
about the variability and skewness of the data.  

   3.7    MEASURES OF THE CENTER OF 
A DISTRIBUTION 

 There are several measures of central tendency for a data set. They 
include 

  1.     arithmetic mean;  

  2.     geometric mean;  

  3.     harmonic mean;  

  4.     mode; and  

  5.     median.    
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 Of these fi ve, we will only discuss the most common: 1, 4, and 5. 
 The next cartoon (Fig.  3.5 ) describes the sample mean of a data set 

(this is the arithmetic mean, but when  “ arithmetic ”  is left off, it is 
understood).   

 Note that the value, 38, is much larger than all the other values, 
and may be considered an outlier. We have already seen that outliers 
can have a large infl uence on the sample mean. If we removed 38, the 
sample mean would be (5    +    7    +    3    +    7)/4    =    22/4    =    5.5. 

     Figure 3.5.     Explanation of the sample mean  (taken from the  Cartoon Guide to Statistics  
with permission).   
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     Figure 3.6.     Defi nitions for the sample median: even and odd cases  (taken from the 
 Cartoon Guide to Statistics  with permission).   

 This is a lot smaller than the average of 12, when the number 38 
is included. We shall next look at the median, and for this example, see 
how the median is affected by the outlier. 

 The following cartoon (Fig.  3.6 ) defi nes median and illustrates how 
it is affected by the outlier in the TV viewing example.   

 In this case, with the value 38 included, the median is 7 (compared 
with 12 for the mean), and by taking the outlier out of the data set, the 
median drops only to 6 (compared with 5.5 for the mean). So the 
removal of the outlier has a big effect on the mean, dropping it by 6.5 
hours, but not so large for the median, dropping it by only 1 hour. In 
statistics, we say that the median is  “ robust ”  with respect to outliers, 
and the mean is not robust. Note that when 38 is removed, the data has 
a distribution that is far less skewed to the right. When the data are 
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  *      A continuous distribution has an infi nite mean if  =  xf ( x ) dx     =     ∞ , where  f ( x ) is the probability 
density function, and the integral is taken over all  x  where  f ( x )    >    0. 

symmetric or close to symmetric, the mean and median are nearly 
equal, and the mean has statistical properties that favor it over the 
median. But for skewed distributions or data with one or more gross 
outliers, the median is usually the better choice. 

 For discrete data, the mode is the most frequently occurring value. 
Sometimes, there can be more than one mode. For continuous data, the 
mode of the distribution is the highest peak of the probability density 
function. If the density has two or more peaks of equal height that is 
the highest, then these peaks are all modes. Sometimes, authors will be 
less strict and refer to all the peaks of the probability density function 
to be modes. Such distributions are called multimodal, and in the case 
of two peaks, bimodal. 

 The normal distribution and other symmetric distributions (such as 
Student ’ s  t  distribution) have one mode (called unimodal distributions), 
and in that case, the mode    =    median    =    mean. So the choice of the 
measure to use depends on a statistical property called effi ciency. There 
are also symmetric distributions that do not have a fi nite mean.  *   The 
Cauchy distribution is an example of a unimodal symmetric distribution 
that does not have a fi nite mean. For the Cauchy, the median and mode 
both exist and are equal. 

 Now let ’ s give a formal defi nition for the mode. The mode of a 
sample is the most frequently occurring value. It will not be unique if 
two or more values tie for the highest frequency of occurrence. 
Probability distributions with one mode are called unimodal. 
Distributions with two or more peaks are called multimodal. Strictly 
speaking, a distribution only has two or more distinct modes if the 
peaks have equal maximum height in the density (probability distribu-
tion for a continuous distribution) or probability mass function (name 
for the frequency distribution for a discrete distribution). However, 
when not strict, Figure  3.7 b is called bimodal even though the peaks 
do not have the same height.   

 Figure  3.7  shows the distinction between a unimodal and a bimodal 
density function. 

 Had the two peaks had the same height, then the bimodal distribu-
tion would have two distinct modes. As it is, it only has one mode. But 
we still call it bimodal to distinguish it from the unimodal distribution. 
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The mean, median, and mode may all be different in the bimodal case. 
In the symmetric bimodal case, the mean and median may be the same, 
but neither of the two modes would equal the median (one will be 
below and the other above both the mean and the median). 

 For symmetric unimodal distributions: mean    =    median    =    mode. 
For unimodal distributions that are right skewed: mean    <    median    <    
mode. For unimodal distributions that are left skewed: 
mean    >    median    >    mode. Although the mode can sometimes be a good 
measure of central tendency, at least in the case of the symmetric 
bimodal distribution, the natural center is in the  “ middle ”  between the 
two modes at where there is a trough. That middle of the valley between 
the peaks is where the median and mean are located.  

   3.8    MEASURES OF DISPERSION 

 Measures of dispersion or spread (also called variability) that we 
discuss in this section are:

     Figure 3.7.     Example of a unimodal and a bimodal distribution.  *   The bimodal 
distribution in the picture has two peaks but the peak to the right is the mode because it is 
the highest peak.  
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  *      In the example above, we chose a symmetric unimodal distribution and an asymmetric 
bimodal distribution. Unimodal distributions can also be skewed and bimodal distributions 
symmetric. 
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3.8 Measures of Dispersion 47

   1.     interquartile range;  

  2.     mean absolute deviation; and  

  3.     standard deviation.    

 We have already encountered and defi ned the interquartile range 
because of its importance in illustrating the spread of the data in a box -
 and - whisker plot. So we will now move on to the defi nitions of (2) and 
(3) above. 

 The mean absolute deviation of a sample is defi ned as follows: 

 The  mean absolute deviation  (MAD) for a sample is the average 
absolute difference between the sample mean and the observed 
value. Its formula is:

    MAD E E ni
i

n
= −

=∑ 1
,  , 

where   Ei = the  i th observation,   E is the sample mean, and  n  is the 
sample size. The MAD like the median is less sensitive to outliers 
than the next measure we discuss, the standard deviation. 

 The standard deviation of a sample is the square root of the estimate 
of the variance. The variance measures the average of the squared 
deviations from the mean. The sample estimate of variance would then 
be given by the formula   V E E ni

n
i= ∑ −( )= 1

2
, where   E  is the sample 

mean, and   Ei  is the  i th observation. Usually, we would divide by  n  as 
in the formula above, but for normally distributed observations from a 
random sample, this estimate is proportional to a chi - square random 
variable with  n     −    1 degrees of freedom.  *   The expected value  †   of a chi -
 square random variable is equal to its degrees of freedom. So if instead 
of  n  in the denominator we used  n     −    1 and label the estimate as  S  2 , then 
( n     −    1)  S  2 /  σ   2  is known to have exactly a chi - square distribution with 
 n     −    1 degrees of freedom, where   σ   2  is the true population variance. 

 Therefore, as previously discussed, its expected value  E [( n     −    1) 
 S  2 /  σ   2 ]    =     n     −    1, or  E [ S  2 /  σ   2 ]    =    1. But this means  E [ S  2 ]    =      σ   2 . So  S  2  is an 

  †      Expected value is a statistical term for the mean of a distribution. 

  *      Think of the degrees of freedom as a parameter that determines the shape of the chi - square 
distribution. 
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     Figure 3.8.     Properties of the sample mean and sample standard deviation  
 (taken from the  Cartoon Guide to Statistics  with permission).   

unbiased estimate of the population variance. So this means that 
 E ( V )    =    ( n     −    1) σ  2 / n , which means that  V  is biased on the side of under-
estimating   σ   2 . Hence, it is more common to use  S  2  for the estimate. But 
sometimes, I think too much is made of this, because for large  n , the 
bias is small (i.e., ( n     −    1)/ n  is close to 1). Furthermore, since we esti-
mate the standard deviation by taking the square root of an unbiased 
estimate of the variance, that will give us a slightly biased estimate of 
the standard deviation anyway. 

 Although we have only discussed the unbiasedness property for the 
variance estimate  S  2  when the observations come from a random sample 
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(i.e., are independent and identically distributed normal random vari-
ables), the unbiasedness of  S  2  actually holds more generally. We shall 
now discuss some properties of the mean and standard deviation to 
explain why these two measures are sometimes preferred. This is again 
illustrated nicely by a few cartoons (Figs.  3.8  and  3.9 ).   

 We call this an empirical rule because it was discovered by looking 
at mound - shaped data. It works because mound - shaped data look 
approximately like samples from the normal distribution, and the 
normal distribution has exactly those percentages given in the rule. If 
a distribution has a variance,  *   the Chebyshev inequality gives a lower 
bound on the percentage of cases within  k  standard deviations of 
the mean. 

  *      A variance is defi ned for any fi nite population or fi nite sample. However, if a distribution 
has an infi nite range the distribution (or infi nite population) does not necessarily have a 
fi nite variance. We require   μ      =     ∫  x f ( x )  dx     <     ∞  and   σ   2     =     ∫ ( x     −      μ  ) 2  f ( x )  dx     <     ∞  for the distribu-
tion with density  f  to have a fi nite variance. 

     Figure 3.9.     The empirical rule for mound-shaped distributions   (taken from 
the  Cartoon Guide to Statistics  with permission).   
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  Chebyshev ’ s inequality : The interval [  μ      −     k σ  ,   μ      +     k σ  ] contains at 
least 100(1    −    1/ k  2 )% of the distribution or data, where   μ   is the mean 
and   σ   is the standard deviation. Compare this with the empirical rule. 
Chebyshev ’ s inequality guarantees at least 0% within 1 standard devia-
tion of the mean (essentially guarantees nothing), while the empirical 
rule gives 68%. Chebyshev ’ s inequality guarantees at least 75% with 
2 standard deviations of the mean, while the empirical rule gives 95%. 
Chebyshev ’ s inequality always guarantees lower percentages than the 
empirical rule. This is because Chebyshev ’ s rule must apply to all dis-
tributions that have variances while the empirical rule applies only to 
distributions that are approximately normally distributed. 

   3.9     EXERCISES 

       1.    What does a stem - and - leaf diagram show?   

    2.    What does a relative frequency histogram show?   

    3.    What is the difference between a histogram and a relative frequency 
histogram?   

    4.    How is a relative frequency histogram different from a cumulative relative 
frequency histogram?   

    5.    What portion of the data is contained in the box portion or body of a box -
 and - whiskers plot?   

    6.    When are pie charts better than bar charts?   

    7.    What relationship can you make to the three measures of location (mean, 
median, and mode) for right - skewed distributions?   

    8.    What is the relationship between these measures for left - skewed 
distributions?   

    9.    What is the defi nition of mean absolute error (deviation)?   

    10.    What is the defi nition of mean square error?   

    11.    Under what conditions does a probability distribution contain approxi-
mately 95% of its mass within 2 standard deviations of the mean?      
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  CHAPTER 4 

Normal Distribution 

and Related Properties     

    4.1    AVERAGES AND THE CENTRAL 
LIMIT THEOREM 

 How does the sample mean behave? If the sample comes from a normal 
distribution with mean   μ   and standard deviation   σ  , then the sample 
average of  n  observations is also normal with the mean   μ  , but with 
standard deviation   σ / n . So the nice thing here is that the standard 
deviation gets smaller as  n  increases. This means that our estimate (the 
sample mean) is an unbiased estimator of   μ  , and so it tends to get closer 
to   μ   as  n  gets large. 

 However, even knowing that we cannot make exact inference 
because what we actually know is that   Z X n= − =( )/( )ˆ /μ σ
  n X( )ˆ /− μ σ , where   X

^ 
  is the sample mean, has a normal distribution 

with mean 0 and variance 1. To draw inference about  μ  we need to 
know  σ . Because   σ   causes diffi culties, we call it a nuisance parameter. 
In the late nineteenth century and in the fi rst decade of the twentieth 
century, researchers would replace   σ   with a consistent estimate of it, 
the sample standard deviation S. They would then do the inference 
assuming that   n X( ) Sˆ /− μ  has a standard normal distribution. 
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 This, however, is not exactly right, because S is a random quantity 
and not the constant   σ  . However, for large  n,  the resulting distribution 
is close to the standard normal. But this is not so when  n  is small. 
Gosset, whose pen name was Student, had experiments involving small 
 n . In this case, Gosset was able to discover the exact distribution, and 
a formal mathematical proof that he was correct was later derived by 
R. A. Fisher. We will discuss Gosset ’ s  t  - distribution later in this chapter. 

 It is also true for any distribution with a fi nite variance that the 
sample mean is an unbiased estimator of the population mean, and if 
  σ   is the standard deviation for these observation, which we assume are 
independent and come from the same distribution, then the standard 
deviation of the sample mean is   σ / n. However, inference cannot be 
exact unless we know the distribution of the sample mean, except for 
the parameter   μ  . Again,   σ   is a nuisance parameter, and we will use 
  n X( ) Sˆ /− μ  to draw inference. 

 However, we no longer can assume that each observation has a 
normal distribution. In Gosset ’ s case, as long as the observations were 
independent and normally and identically distributed with mean   μ   and 
standard deviation   σ  ,   n X( ) Sˆ /− μ  would have the  t  - distribution with 
 n     −    1 degrees of freedom. The  “ degrees of freedom ”  is the parameter 
for the  t  - distribution, and as the degrees of freedom get larger, the 
 t  - distribution comes closer to a standard normal distribution. But in our 
current situation where the distribution for the observations may not be 
normal,   n X( ) Sˆ /− μ  may not have a  t  - distribution either. Its exact 
distribution depends on the distribution of the observations. So how do 
we do the statistical inference? 

 The saving grace that allows approximate inference is the central 
limit theorem, which states that under the conditions assumed in the 
previous paragraph, as long as the distribution of the observations has 
a moment slightly higher than 2 (sometimes called the 2    +      δ   moment),  *   
  n X( ) Sˆ /− μ  will approach the standard normal distribution as  n  gets 
large. Figure  4.1  illustrates this.   

 So we see distributions with a variety of shapes, and all have very 
different distributions when  n     =    2, and less different when  n     =    5, but 
all very close to the shape of a normal distribution when  n     =    30.  

  *      Recall that the population mean is  E ( X ). This is called the fi rst moment.  E ( X  2 ) is called 
the second moment. The variance is  E [ X     −     E ( X )] 2     =     E ( X  2 )    −    [ E ( X )] 2 , and is called the second 
central moment. The 2    +      δ   moment is then E( X  2      +        δ   ) with   δ      >    0. 
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4.3 Student’s t-Distribution 53

   4.2    STANDARD ERROR OF THE MEAN 

 The standard deviation of the sample mean is sometimes called the 
standard error of the mean. We have seen in the previous section that 
the standard error of the mean is   σ / n. This is very important, because 
it indicates that the variance approaches 0 as  n  gets large.  

   4.3    STUDENT ’ S  T  - DISTRIBUTION 

 We have already explained some of the history regarding the  t  -
 distribution. Now let ’ s look at it in more detail. The  t  is a symmetric 

     Figure 4.1.     The effect of shape of population distribution and sample size on the 
distribution of means of random samples. 
  Source:   Kuzma, J. W. (1984).  Basic Statistics for the Health Sciences . Mountain View, CA: 
Mayfi eld Publishing Company, fi gure 7.2, p. 82.   
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     Figure 4.2.     Picture of Student ’ s  t  - distributions (2 and 4 degrees of freedom) and the 
standard normal distribution   ̂   . 
   *      df  is an abbreviation for degrees of freedom.  

Normal

df* = 4

df = 2

unimodal distribution with fatter tails (density drops slower than the 
normal), and especially fatter when the degrees of freedom is 5 or less. 
See Figure  4.2 .   

 Here is why the  t  - distribution is important. Our test statistic will 
be standard normal when we know the standard deviation and the 
observations are normal. But to know what the standard deviation is 
equal to is not common in practice. So in place of our test statistic

    Z m n m X ni= − = ∑( ) /( / ), / ,μ σ  where   

the sample mean, and   μ   is the population mean, we use

    T m S n S X m ni
i

n
= − = − −⎡

⎣⎢
⎤
⎦⎥=∑( ) /( / ), ( ) /( ) .μ  where 2

1
1    

 This pivotal quantity for testing has a Student ’ s  t  - distribution with  n     −    1 
degrees of freedom, and  T  approaches  Z  as  n  gets large. These state-
ments hold exactly when the  X i s  are independent and identically dis-
tributed normal random variables. But it also works for large  n  for other 
distributions thanks to the central limit theorem.   
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   4.4     EXERCISES 

       1.    What is a continuous distribution?   

    2.    What is important about the normal distribution that makes it different 
from other continuous distributions?   

    3.    How is the standard normal distribution defi ned?   

    4.    For a normal distribution, what percentage of the distribution is within 
one standard deviation of the mean?   

    5.    What percentage of the normal distribution falls with two standard devia-
tions of the mean?   

    6.    How are the median, mean, and mode related for the normal 
distribution   

    7.    What two parameters determine a normal distribution?   

    8.    In a laboratory in a hospital where you are testing for subjects with low -
 density lipoprotein and the distribution for healthy individuals is a par-
ticular known normal distribution, how would use this information to 
defi ne abnormal amounts of lipoprotein?   

    9.    What are degrees of freedom for a  t  - statistic for the sample mean?   

    10.    How is the t distribution related to the normal distribution? What is dif-
ferent about the t statistic particularly when the sample size is small?   

    11.    Assume that the weight of women in the United States who are between 
the ages of 20 and 35 years has a normal distribution (approximately), 
with a mean of 120   lbs and a standard deviation of 18   lbs. Suppose you 
could select a simple random sample of 100 of these women. How many 
of these women would you expect to have their weight between 84 and 
156   lbs? If the number is not an integer, round off to the nearest integer.   

    12.    Given the sample population of women as in 11, suppose you could 
choose a simple random sample of size 250. How many women would 
you expect to have weight between 102 and 138   lbs? Again round off to 
the nearest integer if necessary.   

    13.    The following table shows patients with rheumatoid arthritis treated with 
sodium aurothiomalate (SA). The patients are divided into those that had 
adverse reactions (AE) and those that didn ’ t. In addition to SA, their age 
is given. Of the 68 patients, 25 did not have AEs and 43 did (Table  4.1 ).

   (a)     Construct a stem - and - leaf diagram for the ages for each group.    

  (b)     Construct a stem - and - leaf diagram for the total dose for each group.  

  (c)     Do a side - by - side comparison of a box - and - whisker plot for age for 
each group.  
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  Table 4.1 
Table of Rheumatoid Arthritis on Sodium Aurothiomalate 

   Patients without adverse reactions     Patients with adverse reactions  

   Patient 
ID  

   Age     Total SA 
dose (mg)  

   Patient 
ID  

   Age     Total SA 
dose (mg)  

  001    42    1510    003    59    1450  

  002    67    1280    005    71    960  

  004    60    890    006    53    1040  

  007    55    1240    009    53    370  

  008    52    900    012    74    2000  

  010    60    860    014    29    1390  

  011    32    1200    015    54    650  

  013    61    1400    018    68    1150  

  016    48    1480    019    66    500  

  017    69    3300    023    52    400  

  020    39    2750    024    57    350  

  021    49    850    026    63    1270  

  022    36    1800    027    51    540  

  025    31    1340    028    68    1100  

  031    37    1220    029    51    1420  

  032    45    1220    030    39    1120  

  035    39    1480    033    60    990  

  036    55    2310    034    59    1340  

  037    44    1330    041    44    1200  

  038    41    1960    042    57    2800  

  039    72    960    043    48    370  

  040    60    1430    044    49    1920  

  050    48    2500    045    63    1680  

  055    60    1350    046    28    450  

  062    73    800    047    53    300  

              048    55    330  

              049    49    400  

              051    41    680  

              052    44    930  

              053    59    1240  
(Continued)
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   Patients without adverse reactions     Patients with adverse reactions  

   Patient 
ID  

   Age     Total SA 
dose (mg)  

   Patient 
ID  

   Age     Total SA 
dose (mg)  

              054    51    1280  

              056    46    1320  

              057    46    1340  

              058    40    1400  

              059    37    1460  

              060    62    1500  

              061    49    1550  

              063    55    2050  

              064    52    820  

              065    45    1310  

              066    33    750  

              067    29    990  

              068    65    1100  

  Averages    51    1494.4    Averages    51.79    1097.91  

Table 4.1 
(Continued)

  (d)     Do a side - by - side comparison of a box - and - whisker plot for total 
dose.  

  (e)     Do the box - and - whisker plots for age look the same or different? 
What do you infer from this?  

  (f)     Do the box - and - whisker plots for total dose look the same or differ-
ent? If they are different, what are some possible explanations?         
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  CHAPTER 5 

Estimating Means 

and Proportions     

    5.1    THE BINOMIAL AND POISSON DISTRIBUTIONS 

 Consider a discrete variable that has two possible values, such as 
success or failure (e.g., success could be complete remission, while 
failure would be incomplete or no remission). Let 1 denote success and 
0 denote failure. Suppose that we want to determine the proportion of 
successes in a population that for practical purposes we can consider 
to be infi nite. We take a simple random sample of size  n . We can con-
sider this sample to represent a set of observations of  n  independent 
identically distributed random variables that each have probability  p  to 
be a success and 1    −     p  to be a failure Then the number of successes is 
a discrete random variable with parameters  n  and  p , and is called the 
binomial distribution. As  n  gets large, the central limit theorem applies, 
and even though the binomial distribution is discrete and the normal 
distribution is continuous, the binomial is well approximated by the 
normal distribution. Sometimes, to improve the approximation due to 
the discrete nature of the binomial, a continuity correction is applied. 
However, with the increased speed of the modern computer, it is now 
very feasible to do exact inference using the Clopper — Pearson 
approach. 
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 Now we will describe another important discrete distribution the 
Poisson distribution. In clinical trials, we often consider the time from 
entrance in the study to the occurrence of a particular event as an end-
point. We will cover this in more depth when we reach the survival 
analysis topic. One of the simplest parametric models of time to an 
event is the exponential distribution. This distribution involves a single 
parameter   λ   called the rate parameter. It is a good model for some time 
to failure data, such as light bulbs. For the exponential distribution, the 
probability that the time to the fi rst event is less than  t  is 1    −    exp( −   λ t ) 
for 0    ≤     t     <     ∞ . The Poisson distribution is related to the exponential 
distribution in the following way: It counts the number of events that 
occur in an interval of time of a specifi ed length  t  (say  t     =    1). 

 We have the following relationship: Let  N  be the number of events 
in the interval [0, 1] when events occur according to an exponential 
distribution with parameter   λ  . Let the exponential random variable be 
 T . Then  P [ N     ≥     k ]    =     P [ T     ≤    1]  k      =    [1    −    exp( −   λ  )]  k  . This relates the Poisson 
to the exponential mathematically. This says that there will be at least k 
events in [0, 1] as long as the fi rst k events are all less than 1. So:

    P N k P N kk[ ] [ exp( )] [ ].< = − − − = ≤ −1 1 1λ    

 For  k     ≥    1, using the binomial expansion for [1    −    exp( −   λ  )]  k  , we can 
derive the cumulative Poisson distribution. 

 The following fi gure shows an example of a binomial distribution 
with  n     =    12 and  p     =    1/3. In the fi gure,   π   is used to represent the param-
eter  p . The Poisson distribution is also given for   λ      =    0.87 and  t     =    1. 
Note that the binomial random variable can take on integer values from 
0 to 12 in this case, but the Poisson can be any integer greater or equal 
to zero (though the probability that  N     >    5 is very small. Also note that 
the probability that the number of successes is 11 is very small, and for 
12, it is even smaller, while the probability of 0 or 1 success is much 
larger than for 11 or 12. This shows that this binomial is skewed to the 
right. This Poisson is also skewed right to an even larger extent (Figs. 
 5.1  and  5.2 ).    

   5.2    POINT ESTIMATES 

 In Chapter  3 , we learned about summary statistics. We have discussed 
population parameters and their sample analogs for measures of central 
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     Figure 5.1.     Binomial distribution  n     =    12,  p     =    1/3. Note that the number of successes is 
1less than the number displayed on the x - axis. So 1 corresponds to 0 successes, 2 
corresponds to 1 success, 3 corresponds to 2 successes,    . . .    , 13 corresponds to 12 
successes.  
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     Figure 5.2.     Poisson distribution with lambda    =    0.87. Note that the number of events is 
1 less than the number displayed on the  x  - axis. So 1 corresponds to 0 events, 2 
corresponds to 1 event and so on.  
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5.2 Point Estimates 61

tendency and dispersion. These sample analogs are often used as point 
estimates for the parameters. Sometimes, for a given population param-
eter from an assumed parametric family of distributions (e.g., the 
normal distribution), there are two or more possible choices for a point 
estimate. 

 For example, with continuous parametric families like the Gamma 
and Beta distributions, we can fi nd maximum likelihood estimates or 
method of moment estimates for the parameters. How then can we 
choose an optimal estimate? Statistical theory has been developed to 
defi ne properties that estimators should have. Among the nice proper-
ties, we have consistency, unbiasedness, minimum variance, minimum 
mean square error, and effi ciency. Consistency is an important property. 
It tells us that even though the sample is random and subject to vari-
ability, as the sample size gets larger, the estimate gets close to the true 
parameter and will become arbitrarily close as  n  goes to infi nity. 

 The sample mean is consistent because if the population distribu-
tion has mean   μ   and standard deviation   σ  , then the sample mean has 
for its sampling distribution mean   μ   and standard deviation   σ / n. So 
as  n  gets larger, the standard deviation goes to zero. This is enough to 
show consistency in probability. 

 The sample mean is also unbiased. To be unbiased, we must have 
for every  n  that the sampling distribution for the estimator has its mean 
equal to the true value of the parameter. We know this is the case for 
the sample mean. If we consider the class of all unbiased estimators 
for a parameter, we might consider the best estimate from this class to 
be the one with the lowest variance. 

 We call these minimum variance unbiased estimates. However, even 
a minimum variance unbiased estimator may not always be the best. 
Accuracy is a measure of how close the estimate tends to be to the 
parameter. An estimate with a small bias and small variance can be better 
or more accurate than an estimate with no bias but a large variance. 

 To see this, let us consider mean square error. The mean square 
error is the average of the squared distance between the estimator and 
the parameter. It is natural to want the mean square error to be small. 
Denote the mean square error by  MSE , and  B  the bias, and   σ   2  the vari-
ance of the estimator. It then happens that  MSE     =     B  2     +      σ   2 . So mathe-
matically, what we have just said in word simply means that if one 
estimator has   MSE B1 1

2
1
2= + σ , and another estimator is unbiased with 

mean square error   MSE2 2
2= σ , then  MSE  2     >     MSE  1 , if   σ σ2

2
1
2

1
2> +B . 
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 This can easily happen if  B  1  is small, and   σ 2
2 is much larger than 

  σ1
2. An estimator is called effi cient if as  n  gets large, it approaches the 

lowest possible mean square error. So if there is an unbiased estimator 
that has the smallest possible variance among all consistent estimates, 
then it is the best. If a biased estimator is consistent and has its variance 
approaching the lowest possible value, then it is effi cient because the 
bias approaches zero under these same conditions. This is important 
when considering maximum likelihood estimation.  

   5.3    CONFIDENCE INTERVALS 

 Point estimates are useful but do not describe the uncertainty associated 
with them. Confi dence intervals include the point estimate (often at the 
center of the interval), and they express the uncertainty by being an 
interval whose width depends on the uncertainty of the estimate. 
Formally, confi dence intervals are defi ned as being one - sided or two -
 sided, and they have a confi dence level associated with them. For 
example, a 95% two - sided confi dence interval for the mean would have 
the interpretation that if samples of size  n  are repeatedly taken, and for 
each such sample, a 95% confi dence interval for the mean is calculated, 
then approximately 95% of those intervals would include the popula-
tion mean and approximately 5% of the intervals would not.  *   

 As an example, we will show you how to determine a two - sided 
95% confi dence interval for the mean,   μ  , of a normal distribution when 
the standard deviation,  σ , is assumed known. In that case, the sample 
mean   X

^   has a normal distribution with mean   μ   and standard deviation 
  σ / n . So let   Z X n= −( )/( / )ˆ μ σ .  Z  has a normal distribution with 
mean 0 and standard deviation 1. From the table of the standard normal 
distribution, we have  P [ − 1.96    ≤     Z     ≤    1.96]    =    0.95. We use this fact to 

  *      In contrast for another form of inference called the Bayesian approach, the analogue to 
the confi dence interval is the credible interval. Because it treats parameters like random 
variables, a 95% credible interval is an interval that has probability 0.95 of including the 
parameter. This is not so for confi dence intervals. The Bayesian method takes what is called 
a prior distribution, and based on Bayes ’  rule creates a posterior distribution combining the 
prior with the likelihood function for the data. A credible region is determined by integrating 
the probability density of the posterior distribution until the area under the curve between 
 a  and  b , with  a     <     b , integrates to 0.95. 
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construct the interval. Since   Z X n n X= − = −( )/( / ) ( )/ˆ ˆμ σ μ σ , we 
have   P n X[ 1.96 ( )/ 1.96] 0.95− ≤ − ≤ =ˆ μ σ . We invert this probability 
statement about Z into a probability statement about  μ  falling inside an 
interval as follows:

   P n X P n X

n P X

[ 1.96 ( )/ 1.96] [ 1.96 / ( )

1.96 / ] [ 1

− ≤ − ≤ = − ≤ −

≤ = − −

ˆ ˆ

ˆ

μ σ σ μ

σ ..96 / 1.96 / ]σ μ σn X n≤ − ≤ − +ˆ . 

Then multiplying all three sides of the inequality in the probability 
statement by  − 1, we have   P X n X n[ / / ]ˆ . ˆ .+ ≥ ≥ − =1 96 1 96σ μ σ   0 95. . 
This probability statement can be interpreted as the interval 
  [ / / ]ˆ . , ˆ .X n X n− +1 96 1 96σ σ  is a two - sided 95% confi dence interval 
for the unknown parameter   μ  . We can calculate the endpoints of this 
interval since   σ   is known. However, in most practical problems   σ   is an 
unknown nuisance parameter. For  n  very large, we can use the sample 
estimate  S  for the standard deviation in place of   σ   and calculate the 
endpoints of the interval in the same way. 

 If the sample size is small, then  Z  is replaced by   T n X S= −( )/ˆ μ . 
This statistic  T  has a Student  t  - distribution with  n     −    1 degrees of 
freedom. But then to make the same statement with 95% confi dence 
the normal percentile value of 1.96 must be replaced by the correspond-
ing value from the t distribution with  n     −    1 degrees of freedom. From 
a table for the central  t  - distribution that can be found in many 
text books (Chernick and Friis ( 2003 , p. 371), we see for  n     −    1    =    4, 9, 
14, 19, 29, 40, 60, 120, we have the comparable  t  - percentile  C     =    2.776, 
2.262, 2.145, 2.093, 2.045, 2.021, 2.000, 1.980. As the degrees 
of freedom get larger,  C  approaches the normal percentile of 1.960. 
So between 40 and 60, the approximation by the normal is pretty 
good. 

 The cartoon in Figure  5.3  illustrates the concept visually. In an 
experiment like the one shown there, since the confi dence interval is a 
95% two - sided interval, and the true parameter value is 0.5, we would 
expect 19 intervals to include 0.5 and 1 to miss. But this too is subject 
to variability. In the example above, all 20 intervals included 0.5, 
although one almost missed. If we repeated this experiment indepen-
dently, we could get 19, 18, 17, or all 20 intervals containing 0.5. It is 
theoretically possible for a number smaller than 17 to include 0.5 but 
that would be highly unlikely. 
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     Figure 5.3.     Explanation of 95% confi dence interval,  taken from Chernick and Friis 
( 2003 ), fi gure 8.2, p. 156 with permission.   
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 A one - sided confi dence interval will either be an interval of the 
form [ a ,  ∞ ) or ( −  ∞ ,  b ]. These come about most often when looking at 
the difference of two parameters, such as arithmetic means for one 
group versus another. Suppose group 2 has mean greater than group 1, 
that is,   μ   1     −      μ   2     <    0. Let  X  be the sample mean for group 1, and let  Y  
be the sample mean for group 2. Then we construct a confi dence inter-
val for   μ   1     −      μ   2  of the form ( −  ∞ ,  b ] with say a 95% confi dence level. 
Then, in repeating this process many times, 95% of the time, the true 
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mean difference will be less than the  b  that is determined from the 
sample, and 5% of the time, it will be larger. 

 We conclude with 95% confi dence that the difference   μ   1     −      μ   2  is 
less than b. If  b     <    0, we reject the notion that the group 1 mean is larger 
than the group 2 mean, and conclude that group 2 has the larger mean. 
We do not set a fi nite lower limit because we are not concerned about 
how much larger it is. On the other hand, if we are only interested if 
group 1 has a larger mean than group 2, we would take an interval of 
the form [ a ,  ∞ ) and reject the notion that group 1 has a larger mean 
than group 2 if  a     >    0. Here we do not worry about the upper bound 
because we do not care how much larger it is. 

 In the next chapter, we will discuss hypothesis tests and will see 
the relationship between hypothesis testing and confi dence intervals 
presented there. The two - tailed and one - tailed hypothesis tests corre-
spond exactly to the two - sided and one - sided confi dence intervals. 

 We illustrated confi dence intervals for a one sample problem for 
simplicity. This easily extends to the two sample situation for mean 
differences and for other parameters in one - sample and two - sample 
problems for parametric families of distributions. In our examples,  Z  
and  T  play the role of what we call pivotal quantities. A pivotal quantity 
is a random variable whose distribution is known and the resulting 
probability statement can be converted into a confi dence interval. 

 Because of the 1 – 1 correspondence between hypothesis testing and 
confi dence intervals, nonparametric confi dence intervals can be 
obtained through nonparametric tests. So too can bootstrap confi dence 
interval be defi ned.  

   5.4    SAMPLE SIZE DETERMINATION 

 We will demonstrate fi xed sample size estimation criteria for confi -
dence intervals using parametric assumptions. The approach is to 
specify a width or half - width for the interval and a confi dence level. 
Then, the width can be expressed in terms of the sample size  n . We 
will demonstrate that for the estimation of a population mean and for 
the difference between two population means. 

 Why is sample size determination important in medical research? 
When conducting an experiment or a clinical trial, cost is an important 
consideration. The number of tests in an experiment has an effect on the 
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cost of the experiment. In a clinical trial, the sample size is usually deter-
mined by the number of patients that are recruited. Each patient must get 
a regimen of drugs, have tests taken on each of a series of hospital visits, 
and be examined by the investigating doctors and nurses. The patients 
volunteer and do not incur much of the cost. Sometimes, the pharmaceu-
tical company will even pay the transportation cost. So the sample size 
is one of the main cost drivers for the sponsor. Therefore, meeting objec-
tives with the smallest defensible sample size is important. 

 To illustrate the idea, let us consider a normal distribution with a 
known variance, and we are simply interested in accurate estimation of 
the population mean. Recall that for a sample size  n , a two - sided 95% 
confi dence interval for the mean is   [ / / ]ˆ . , ˆ .X n X n− +1 96 1 96σ σ . The 
width of this interval is   2 1 96( . )σ / n, and since the interval is sym-
metric, we can specify the requirement equally well by the half - width, 
which is   1 96. σ / n . We require the half - width to be no larger than d. 
Then we have   1 96. σ / n d≤ . Since  n  is in the denominator of this 
inequality, the minimum would occur when equality holds. But that 
value need not always be an integer. To meet the requirement, we take 
the next integer above the estimated value. So we solve the equation 
  1 96. σ / n d=  for  n . Then   n d n d= =1 96 1 96 2 2 2. ( . )σ σ/ or / . 

 Chernick and Friis ( 2003 , p. 177) also derive the required equal or 
unequal sample sizes when considering confi dence intervals for the 
difference of two normal means with a known common variance. 
Without losing generality, we take  n  to be the smaller sample size, and 
 kn  to be the larger sample size, with  k     ≥    1 to be the ratio of the larger 
to the smaller sample size. The resulting sample size  n  is the next integer 
larger than (1.96) 2 ( k     +    1)  σ   2 /( kd  2 ). The total sample size is then ( k     +    1) n.  
This is minimized at  k     =     1  but for practical reasons, we may want a 
larger number of patients in the treatment group in a clinical trial.  

   5.5    BOOTSTRAP PRINCIPLE AND BOOTSTRAP 
CONFIDENCE INTERVALS 

 The bootstrap is a nonparametric method for making statistical infer-
ences without making parametric assumptions about the population 
distribution. All that we infer about the population is the distribution 
we obtain from the sample (the empirical distribution). The bootstrap 
does it in a very different way than the parametric approach. It is also 
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quite different from most nonparametric approaches that differ from the 
bootstrap because these nonparametric tests are based solely on rank-
ings, while the bootstrap uses the actual values. Similar to parametric 
procedures, which require pivotal quantities, the bootstrap appears to 
function best when an asymptotically pivotal quantity can be used. 

 Recall that the difference between bootstrap sampling and simple 
random sampling is that 

  1.     Instead of sampling from a population the bootstrap samples 
from the original sample.  

  2.     Sampling is done with replacement instead of without 
replacement.    

 Bootstrap sampling behaves in a similar way to random sampling in 
that each sample is a random sample of size  n  taken from the empirical 
distribution function  F n  , which gives each observation an equal chance 
each draw, while simple random sampling is sampling from a popula-
tion distribution  F  (fi nite in population size  N ), but for which, uncon-
ditionally on each draw, each observation has the same chance of 
selection, and for the overall sample of size  n , every distinct sample 
has the same chance   1/Cn

N, where   Cn
N is the number of ways  n  objects 

can be selected out of  N  as defi ned in Chapter  1 . 
 The bootstrap principle is very simple. We want to draw inference 

about a population based on the sample without make extraneous 
unverifi able assumptions. So we consider sampling with replacement 
from the empirical distribution  F n  . It is a way to mimic the sampling 
process. Like actors in a play, the empirical distribution acts the part 
of the population distribution. Sampling with replacement produces a 
bootstrap sample that plays the role of the original sample. Repeating 
the process (like performing a play over again) acts like what repeated 
sampling of size  n  from the population would be. Generating bootstrap 
samples is like simulating the sampling process. 

 We now illustrate the simplest bootstrap confi dence interval, called 
Efron ’ s percentile method, which is obtained by generating a histogram 
of bootstrap estimates of the parameter and using the appropriate per-
centiles to form the confi dence interval. We consider an example taken 
from Chernick and Friis ( 2003 ). 

 In this experiment, a pharmaceutical company wants to market a 
new blood - clotting agent that will minimize blood loss during surgery 
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or from injury such as liver trauma. In the early stages, a small experi-
ment to be part of the proof of concept is conducted on pigs. In the 
experiment, 10 pigs are in the treatment group, and 10 in the control 
group. All 20 pigs have the same type of liver injury induced. The 
control group gets a low dose of the drug, and the treatment group gets 
a high dose. Blood loss is measured for each pig, and we are interested 
in seeing if the high dose is signifi cantly more effective at reducing the 
loss of blood. We will do the inference by generating 95% confi dence 
intervals for the difference in blood loss. The sample size results are 
given in Table  5.1 .   

 Perusing the data, we see the appearance that there is signifi cantly 
less blood loss in the treatment pigs. If we generate a two - sided 95% 
confi dence interval for the mean difference, assuming normal distribu-
tions with the same variance, for simplicity, the pivotal quantity involves 
a pooled estimate of variance, and it has a  t  - distribution with 18 degrees 
of freedom. The 95% confi dence interval for the treatment mean — the 
control mean is [ − 2082.07,  − 120.93]. Since this does not contain 0, we 
would conclude that the treatment mean is lower than the control mean. 

  Table 5.1 
Pig Blood Loss Data (mL) 

   Control pig ID 
number  

   Control group 
blood loss  

   Treatment pig 
ID number  

   Treatment group 
blood loss  

  C1    786    T1    543  

  C2    375    T2    666  

  C3    4446    T3    455  

  C4    2886    T4    823  

  C5    478    T5    1716  

  C6    587    T6    797  

  C7    434    T7    2828  

  C8    4764    T8    1251  

  C9    3281    T9    702  

  C10    3837    T10    1078  

  Sample mean    2187.40    Sample mean    1085.90  

  Sample standard 
deviation  

  1824.27    Sample standard 
deviation  

  717.12  
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 However, the data suggest that the distributions are not normal, and 
the sample sizes are too small for the central limit theorem to take 
effect. Also, the equal variance assumption is highly suspect. If we use 
a well - known  t  - distribution approximation, the approximate 95% 
confi dence interval is [ − 2361.99, 158.99]. This interval includes 0. 
Based on these assumptions, we cannot conclude that the means 
are different. For detailed calculations see Chernick and Friis ( 2003 , 
pp. 163 – 166). 

 Because of the small sample size and apparent nonnormality, a 
nonparametric or bootstrap confi dence interval would be more appro-
priate. Chernick and Friis ( 2003 ) also generate a bootstrap confi dence 
interval using the percentile method. 

 Now, as in the case of Chernick and Friis ( 2003 ), let us compare a 
95% confi dence interval for the treatment mean is [572.89, 1598.91] 
based on the parametric method that uses the  t  - distribution. Using 
Resampling Stats software and generating 10,000 bootstrap samples, 
the bootstrap percentile method 95% confi dence interval is [727.1, 
1558.9]. This is quite different from the parametric interval, and is a 
tighter interval. The difference is another indication that the treatment 
data is not normal, and neither is the sample mean. The same type of 
result could be shown for the control group and for the mean 
difference. 

 Other bootstrap confi dence intervals can be generated and are 
called bootstrap  t , double bootstrap, BCa, and tilted bootstrap. See 
Chernick ( 2007 ) for details on these methods. 

  5.6   EXERCISES 

       1.    Defi ne the following 

  (a)     Inferential statistics  

  (b)     Point estimate of a population parameter  

  (c)     Confi dence interval for a population parameter  

  (d)     Bias of an estimate  

  (e)     Mean square error      

    2.    What are the two most important properties for an estimator?   

    3.    What is the disadvantage of just providing a point estimate?   

    4.    What is the standard error of the mean?   
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    5.    If a random sample of size  n  is taken from a population with a distribution 
with mean   μ   and standard deviation   σ  , what is the standard deviation (or 
standard error) of the sample mean equal to?   

    6.    Suppose you want to construct a confi dence interval for the mean of a 
single population based on a random sample of size  n  from a normal 
distribution. How does a 95% confi dence interval differ if the variance is 
known versus when the variance is unknown?   

    7.    Describe the bootstrap principle.   

    8.    Explain how the percentile method bootstrap confi dence interval for a 
parameter is obtained.   

    9.    Suppose we randomly select 25 students who are enrolled in a biostatistics 
course and their heart rates are measured at rest. The sample mean is 66.9 
and the sample standard deviation is  S     =    9.02. Assume the sample comes 
from a normal distribution and the standard deviation is unknown. 
Calculate a 95% two - sided confi dence interval for the mean.   

    10.    How would you compute a one - sided 95% confi dence interval of the form 
( −  ∞ , a] based on the data in exercise 9? Why would you use a one - sided 
confi dence interval?   

    11.    The mean weight of 100 men in a particular heart study is 61   kg, with a 
standard deviation of 7.9   kg. Construct a 95% confi dence interval for the 
mean.   

  Table 5.2  
Plasma Glucose Levels for Ten Diabetic 
Patients 

   Plasma glucose (mmol/L)  

   Patient     Before     After     Difference  

  01    4.64    5.44    0.80  

  02    4.95    10.01    5.06  

  03    5.11    8.43    3.22  

  04    5.21    6.65    1.44  

  05    5.30    10.77    5.47  

  06    6.24    5.69     − 0.55  

  07    6.50    5.88     − 0.62  

  08    7.15    9.98    2.83  

  09    6.01    8.55    2.54  

  10    4.90    5.10    0.20  
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    12.    Ten diabetic patients had their plasma glucose levels (mmol/L) before and 
after 1 hour of oral administration of 100   g of glucose. The results are 
shown in Table  5.2 .

   (a)     Calculate the mean difference in plasma glucose levels.    

  (b)     Calculate the standard error of the mean.  

  (c)     Assuming a normal distribution for the change in plasma glucose. 
Based on the results in the table how many diabetic patients would 
you need to sample to get a 95% two - sided confi dence interval for 
the mean difference to have width 0.5   mmol/L? Treat the estimated 
standard error as if it were a known constant for this calculation.         
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  CHAPTER 6 

Hypothesis Testing     

     The classic approach to hypothesis testing is the approach of Neyman 
and Pearson, initially developed in the 1930s. It differed from the 
approach of signifi cance testing that was proposed by R. A. Fisher but 
was clear and methodical, whereas some of Fisher ’ s ideas were obtuse 
and poorly explained. The differing opinions of the giants in the fi eld 
of statistics led to many controversial exchanges. However, although 
Fisher was probably the greatest contributor to the rigorous develop-
ment of mathematical statistics, his fi ducial theory was not convincing 
and was largely discredited. 

 The Neyman and Pearson approach starts out with the notion of a 
null and alternative hypothesis. The null hypothesis represents an unin-
teresting result that the experimenter wants to refute on the basis of the 
data from an experiment. It is called the null hypothesis because it 
usually represents no difference, as, for instance, there is no difference 
in the primary endpoint of a clinical trial when comparing a new treat-
ment with a control treatment (or placebo). 

 The approach fi xes the probability of falsely rejecting the 
null hypothesis and then determines a fi xed sample size that will 
likely result in correctly rejecting the null hypothesis, when the differ-
ence is at least a specifi ed amount, say   δ  . When we reject the null 
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hypothesis, we are accepting the alternative. Whether we reject or 
do not reject the null hypothesis, we are making a decision, and associ-
ated with that decision is a probability that we made the wrong 
decision. These ideas will be discussed more thoroughly in the next 
section.  

   6.1    TYPE I AND TYPE II ERRORS 

 The type I error or signifi cance level (denoted as   α  ) for a test is the 
probability that our test statistic is in the rejection region for the null 
hypothesis, but in fact the null hypothesis is true. The choice of a cutoff 
that defi nes the rejection region determines the type I error, and can be 
chosen for any sample size  n     ≥    1. 

 The type II error (denoted as  β ) depends on the cutoff value and 
the true difference   δ      ≠    0, when the null hypothesis is false. It is the 
probability of not rejecting the null hypothesis when the null hypothesis 
is false, and the true difference is actually   δ  . The larger delta is, the 
lower the type II error becomes. The probability of correctly rejecting 
at a given  δ  is called the power of the test. The power of the test is 
1    −      β  . We can defi ne a power function f (  δ  )    =    1    −      β   (  δ  ). We use the 
notation   β  (  δ  ) to indicate the dependency of   β   on   δ  . When   δ      =    0, 
 f (  δ  )    =      α  . 

 We can relate to these two types of errors by considering a real 
problem. Suppose we are trying to show the effectiveness of a drug by 
showing that it works better than placebo. The type I and type II errors 
correspond to false claims. The type I error is the claim that the drug 
is effective when it is not (i.e., is not better than placebo by more than 
  δ  ). The type II error is the claim that the drug is not effective when it 
really is effective (i.e., better than placebo by at least   δ  ). 

 However, it increases as |  δ  | increases (often in a symmetric fashion 
about 0, i.e.,  f (  δ  )    =     f [ −   δ  ]). Figure  6.1  shows the power function for a 
test that a normal population has a mean zero versus the alternative that 
the mean is not zero for sample sizes  n     =    25 and 100 and a signifi cance 
level of 0.05. The solid curve is for  n     =    25, and the dashed for  n     =    100. 
We see that these power functions are both symmetric about 0, and 
meet with a value of 0.05 at   δ      =    0. Since 100 is four times larger than 
25, the power function increases more steeply for  n     =    100 compared to 
 n     =    25.    
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     Figure 6.1.     Power functions for a normal distribution with mean   δ   and sample sizes 25 
and 100. Null hypothesis   δ      =    0.  
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   6.2    ONE - TAILED AND TWO - TAILED TESTS 

 The test described with the power function in Figure  6.1  is an example 
of a two - tailed test. Two - tailed tests are test where we consider both 
  δ      >    0 and   δ      <    0 as part of the alternative. A one - tailed test is a test 
where only one side is of interest for the alternative. So, for example, 
if you want to show drug A is better than drug B at lowering cholesterol, 
we would only be interested to see if drug A had a larger drop from 
baseline in cholesterol than drug B. Then, if we take   δ      =    change from 
baseline for A    −    change from baseline for B, we are interested if   δ      <    0. 
But   δ      >    0 is no more interesting than   δ      =    0. So in this case,   δ      >    0 is as 
much a part of the null hypothesis as   δ      =    0. There are also cases where 
  δ      ≤    0 is not interesting, and is included in the null hypothesis because 
we are only interested if we believe   δ      >    0.  

   6.3     P  - VALUES 

 The  p  - value is simply the probability of getting a value as extreme or 
more extreme than the actual value of the observed statistic when the 
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null hypothesis is true. There is a relationship between  p  - values and 
the level of the test. The  p  - value is the lowest level at which the test 
will reject the null hypothesis. Therefore, it is more informative about 
the evidence against the null hypothesis. A  p  - value can be one sided or 
two sided, depending whether or not the test is one or two tailed.  

   6.4    COMPARING MEANS FROM TWO 
INDEPENDENT SAMPLES: TWO - SAMPLE  T  - TEST 

 We start out by considering comparison of capture thresholds from two 
treatment groups as a way to introduce the  t -  test for two independent 
samples. In a clinical trial where pacing leads are implanted along with 
a pacemaker, we want to show that the treatment, a steroid - eluting lead 
attached in the heart, provides a 1   V lower capture threshold than a 
nonsteroid lead, the control treatment. The test hypothesis is that the 
difference in mean capture threshold at 6 months postimplant is zero. 
This is the uninteresting result that we call the null hypothesis. For 
the trial to be successful, we need to reject the null hypothesis in favor 
of the alternative hypothesis that the difference: Treatment Group 
Average — Control Group Average is negative. 

 We then choose the sample size to be large enough that we are very 
likely to reject the null hypothesis when the mean threshold for the 
treatment group is at least 1   V lower than for the control group. This 
we call a clinically signifi cant difference. 

 If we reject the null hypothesis, we say the difference is statistically 
signifi cant. We use the Neyman – Pearson approach discussed earlier. 
In the clinical trial, we can determine a value for the test statistic 
called the critical value such that we reject the null hypothesis if 
the test statistic is as negative, or even more negative than the critical 
value. 

 We set   α      =    0.05 and do a one - sided test (i.e., only reject for large 
negative values, since we are only interested in showing statistically 
signifi cantly lower thresholds and not signifi cantly higher ones). This 
determines, based on the chosen signifi cance level and the sample size, 
a critical value for the test statistic: The mean threshold difference 
normalized by dividing by an estimate of the standard deviation of the 
difference. This test statistic may be assumed to have a Student ’ s 
 t  - distribution with 2 n     −    2 degrees of freedom ( df ) when the null 
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hypothesis of zero difference is true, and  n  is the number of patients in 
the treatment group and also the number in the control group. 

 So then based on the  t  - distribution, we fi nd a critical value, call 
it  −  C α  . If the test statistic  T     ≤     −  C α  , we reject the null hypothesis. If 
 T     >     −  C α  , we cannot reject the null hypothesis. As we know, the power 
function depends on the distribution of the test statistic under the alter-
native hypothesis and the chosen critical value  −  C α  . This distribution 
is a noncentral  t  - distribution. Just trust that statisticians can use such 
distributions to compute power and required sample size. It is not 
something that you need to learn. 

 In this test, we assume both samples come from normal populations 
with the same variance and hence the same standard deviation. This is 
a more realistic assumption for the pacing leads trial. Also, because 
steroid - eluting leads had already been approved by the FDA for a com-
petitor, it is accepted that the steroid lead is preferred. Consequently, 
the patients and the sponsor would both like to see more steroid leads 
implanted during the trial, but still enough control leads so that the test 
for difference in means will have the required statistical power (gener-
ally taken to be 0.80). 

 The test statistic  t     =    ( m  1     −     m  2 )/ SD , where m 1  is the sample mean 
for the fi rst population with sample size n 1  and m 2  is the sample mean 
for the second population with sample size n 2  and the pooled standard 
deviation given by the following equation:

    SD n n n n s n n= ( ) + ( ){ } −( ) + −( ) + −[ ]1 1 1 1 21 2 1 2 2
2

1 2/ / / .    

 Under the null hypothesis and the above conditions,  t  has Student ’ s  t  -
 distribution with  n  1     +     n  2     −    2  df . We have seen the power function for 
this test in Figure  6.1 .  

   6.5    PAIRED  T  - TEST 

 The tests we have studied so far that involve two populations consid-
ered independent samples. With the paired  t -  test, we are deliberately 
making the samples dependent, since we have matched pairs. The 
pairing is used to create positive correlation that will reduce the vari-
ability of the estimate (say the difference of two sample means). One 
common way to do this is to have the patient as the pairing variable. 
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This will usually lead to a smaller variance for the difference of the 
two means, such as in crossover trials or the change in test scores in a 
particular subject before and after an intervention. 

 Steps for the paired  t -  test.

   1.     Form the paired differences  d i      =     X Ti      −     X Ci   for  i     =    1, 2,    . . .    ,  n,  
where  i  is the index for the paired variables (e.g., patients)  

  2.     State the null hypothesis H 0 :   μ  T      =      μ  C   versus the alternative 
H 1 :   μ  T      ≠      μ  C   (or equivalently H 0 :   μ  T      −      μ  C      =    0 versus the alterna-
tive H 1 :   μ  T      −      μ  C      ≠    0)  

  3.     Choose a signifi cance level   α   (often   α      =    0.01, 0.05, or 0.10).  

  4.     Determine the critical region: the region that has values of the 
test statistic t in the upper   α  /2 or lower   α  /2 tails of the sampling 
distribution (in this case for a central  t  with  n     −    1  df  where 
 n     =     n T      =     n C  .  

  5.     Calculate   t d S nT C d= − −{ ( )}/[ / ]ˆ μ μ , where  S d   is the standard 
deviation of the paired differences, and   d

^ 
  is the mean of the 

paired differences.  

  6.     Reject the null hypothesis if the test statistic  t  (computed in step 
5 above) falls in the rejection region for the test; otherwise, do 
not reject the null hypothesis.    

 The example of daily temperatures in Washington, DC, compared with 
New York is next illustrate to dramatically depict the situations where 
pairing works best. Although this is a weather example, similar improve-
ments can occur in clinical trials or epidemiology studies where pairing 
is done by patient as in a cross - over trial or propensity score matching 
in a case - control study. The paired data is given in Table  6.1 .   

 The data are paired by date. We see that over the course of the year, 
the average temperature varies periodically with the lowest tempera-
tures in the winter months and the highest in the summer. The date the 
temperatures were taking is the 15th of the month for all months in the 
year. Because New York and Washington are relatively close, they often 
share the same weather system on a particular date. Note that from this 
data, the highest mean temperature in Washington is 93 ° F occurring on 
July 15 and the lowest mean temperature is 26 ° F on December 15. For 
New York, the highest mean temperature is 89 ° F, also occurring on July 
15, and the lowest mean temperature is 24 ° F on December 15. Over 
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  Table 6.1 
Daily Average Temperature in Washington,  DC , and New 
York City 

   Date     Washington, DC ( ° F)     New York City ( ° F)  

      1.    January 15    31    28  

      2.    February 15    35    33  

      3.    March 15    40    37  

      4.    April 15    52    45  

      5.    May 15    70    68  

      6.    June 15    76    74  

      7.    July 15    93    89  

      8.    August 15    90    85  

      9.    September 15    74    69  

   10.    October 15    55    51  

   11.    November 15    32    27  

   12.    December 15    26    24  

the course of the year, temperatures in DC range from 93 ° F to 26 ° F, a 
difference of 67 ° F, and in New York, from 89 ° F to 24 ° F, a difference 
of 65 ° F. But the difference in mean temperature between New York 
and Washington ranges only from 2 to 5 ° F. However, New York is 
always lower than DC each date of matching. 

 This is a clear case where this small difference would not be detect-
able with a two - sample (independent samples)  t -  test. But it would 
be easily detected by a paired  t -  test or a nonparametric approach 
(sign test).  

   6.6    TESTING A SINGLE BINOMIAL PROPORTION 

 The binomial distribution depends on two parameters  n  and  p . It rep-
resents the sum of  n  independent Bernoulli trials. A Bernoulli trial is a 
test with two possible outcomes that are often labeled as success and 
failures. The binomial random variable is the total number of successes 
out of the  n  trials. So the binomial random variable can take on any 
value between 0 and  n . The binomial distribution has mean equal to 
 np  and variance  np (1    −     p ). These results are to construct the pivotal 
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quantity for construction confi dence interval and testing hypotheses 
about the unknown parameter  p . 

 For a confi dence interval, the central limit theorem can be applied 
for large  n . So let   Z X np np p= − −( ) −( )⎡⎣ ⎤⎦1 2/ / 1ˆ ˆ , where   p^

 
  is the 

sample estimate of  p , and  X  is the number of successes. The estimate 
we use is   p^

 
          =     X/n . Z has an approximate normal distribution with mean 

0 and variance 1. This is the continuity - corrected version. Removing 
the term  − 1/2 from the numerator gives an approximation without the 
continuity correction. Here  Z  can be used to invert to make a confi dence 
interval statement about  p  using the standard normal distribution. 
However, for hypothesis testing, we can take advantage of the fact that 
 p     =     p  0  under the null hypothesis to construct a more powerful test. 
 p  0  is used in place of   p^

 
  and  p  in the defi nition of  Z . So we have 

  Z X np np p= − −( ) −( )⎡⎣ ⎤⎦0 0 01 2 1/ / . Under the null hypothesis, this 
continuity - corrected version has an approximate standard normal 
distribution.  

   6.7    RELATIONSHIP BETWEEN CONFIDENCE 
INTERVALS AND HYPOTHESIS TESTS 

 Suppose we want to test the null hypothesis that   μ   1     −      μ   2     =    0 versus the 
two - sided alternative that   μ   1     −      μ   2     ≠    0. We wish to test at the 0.05 sig-
nifi cance level. Construct a 95% confi dence interval for the mean dif-
ference. For the hypothesis test, we reject the null hypothesis if and 
only if the confi dence interval does not contain 0. The resulting hypoth-
esis test has signifi cance level 0.05. Conversely, suppose we have a 
hypothesis test with the null hypothesis   μ   1     −      μ   2     =    0 versus the alterna-
tive that   μ   1     −      μ   2     ≠    0. Look at the region of values for the test statistic 
where the null hypothesis is rejected. This region determines a set of 
values for   μ   1     −      μ   2  that defi nes a 95% confi dence region for   μ   1     −      μ   2 . 

 The same type of argument can be used to equate one - sided confi -
dence intervals with one - sided tests. So what we have shown is that for 
every hypothesis test about a parameter with a given test statistic, there 
corresponds a confi dence interval whose confi dence level    =    1    −    signifi -
cance level of the test. On the other hand, if we can construct a confi -
dence interval (one or two - sided) for a parameter   θ  , we can defi ne a 
test of hypothesis about   θ   based on the confi dence interval, and the 
hypothesis test will have signifi cance level   α   if the confi dence level is 
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1    −      α  . Confi dence levels are often expressed as a percentage, so the 
confi dence level for the interval is 100(1    −      α  )%. 

 It should be noted that hypothesis tests are often constructed in a 
way that the test statistic assumes the value of nuisance parameters 
(e.g., the standard deviation of a normal distribution when testing that 
the mean is different from 0) under the null hypothesis. This is done 
because the test is designed to reject the null hypothesis, and such a 
formulation generally leads to a more powerful test than the one you 
would get by simply inverting the null hypothesis. Remember that 
confi dence intervals have a different goal, namely to identify the most 
plausible values for parameter based on the data, and the null hypoth-
esis has no relevance. For example, in hypothesis testing for a propor-
tion, when using a normal approximation, the unknown standard 
deviation (which statisticians call a nuisance parameter) is replaced by 
the value under the null hypothesis. Under the null hypothesis, let us 
assume  p     =    1/2. Then if  n  is the sample size, the standard deviation for 
the sample proportion is   p p n1−( ) / , or, substituting  p     =    1/2, it is 
  1 2/( )n . But for the confi dence interval we would use  p      in place of 
the unknown  p  making it   ˆ ˆp p n1 /−( ) , which will be different in 
general.  

   6.8    SAMPLE SIZE DETERMINATION 

 We will again look at the pacing leads example to demonstrate sample 
size determination. Here we are only considering fi xed sample sizes. 
Group sequential and adaptive designs allow the fi nal sample size to 
depend on the data, and hence the sample size is unconditionally a 
random integer N. 

 What is the required sample size for a test? It depends on how big 
the treatment effect has to be. It also depends on the standard deviation 
of the test statistic. Averaging sample values reduces the standard 
deviation. If a random variable  X  has a standard deviation   σ  , then if 
you average  n , such variables that have the same mean and standard 
deviation and are independent of each other the sample mean has stan-
dard deviation   σ / n. This explains why we get increasing power as 
we increase  n . 

 The sample standard deviation gets smaller and approaches 0 as 
 n     →     ∞ . So the idea is to specify a power that you want to achieve, say 
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0.80, at an alternative mean difference. Then pick the fi rst value of  n  
that achieves that desired power. Just as with the confi dence intervals, 
we can sometimes construct a formula for the sample size. However, 
when things get more complicated, the sample size can still be deter-
mined numerically by computer and software packages, such as SAS, 
STATA, Minitab, Power and Precision, PASS 2000, and nQuery 
Advisor, all have capabilities to do sample size determination. 

 In the Tendril DX trial, one of the steroid - eluting pacing lead trials 
that I was involved in, an unpaired  t -  test (as well as a bootstrap test) 
were carried out. For the  t -  test, I assumed a common standard deviation 
for the capture thresholds for the steroid and the control leads. I used 
 δ     =    0.5   V and consider the equal sample size case and the case where 
the treatment group gets three times the number of patients that the 
control group gets. The test was done at the 0.10 signifi cance level for 
a two - sided test (even though a one - sided test is appropriate). The result 
was that 99 patients were need for the treatment group and 33 for the 
control, with a total sample size of 132. 

 On the other hand, if we were able to recruit equal numbers in both 
groups, we would only have need 49 in each group for a total of 98, 
saving 34 patients. Choosing equal sample sizes is the optimal choice 
if there were no practical constraints and both groups had distributions 
with the same variance. It would not, however, be optimal if the vari-
ances were known to be very different. Detailed output from nQuery 
Advisor 4.0 can be found on page 202 of Chernick and Friis ( 2003 ).  

   6.9    BOOTSTRAP TESTS 

 We shall demonstrate the use of Efron ’ s percentile method bootstrap 
for testing. We will illustrate the approach with a numerical example, 
the pig blood loss data. Recall that previously, we listed the 10 blood 
loss values for the treatment group. They were 543, 666, 455, 823, 
1716, 797, 2828, 1251, 702, and 1078. This gives a sample mean of 
1085.9. 

 We found, using Resampling Stats software, that a two - sided 
approximate percentile method 95% confi dence interval for the popula-
tion mean   μ   (based on 10,000 bootstrap samples would be [727.1, 
1558.9]. Now, consider the test where we have a null hypothesis that 
  μ      =      μ   0  versus the alternative that   μ      ≠      μ   0 . Then recalling the relationship 
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in Section  6.7  relating confi dence intervals and to hypothesis tests, we 
reject H 0  if   μ   0     <    727.1, or if   μ   0     >    1558.9, and do not reject if 
727.1    ≤      μ   0     ≤    1558.9. There are many other bootstrap confi dence inter-
vals, and each can be used to construct a test. See Efron and Tibshirani 
( 1993 ) or Chernick ( 2007 ) for details.  

   6.10    MEDICAL DIAGNOSIS: SENSITIVITY 
AND SPECIFICITY 

 Screening tests are used to identify patients who should be referred for 
further diagnostic evaluation. To determine the quality of a screening 
test, it is best to have a gold standard to compare it with. The gold 
standard provides a defi nitive diagnosis of the disease. For healthy 
individuals, the tests, if they are numerical, there is a range called the 
normal range. 

 Formulating the screening test as a statistical hypothesis testing 
problem, we would see that these two types of error could be the type 
I and type II errors for the hypothesis test. In medical diagnosis, we 
have special terminology. Table  6.2  shows the possible results.   

 In this case, we apply a screening test to  n  patients with the fol-
lowing outcomes. Based on the gold standard,  m  of the patients had the 
disease, and  n     −     m  did not. Of the  m  diseased patients,  “  a  ”  were found 
positive based on the test, and  c  were found negative. So  m     =     a     +     c.  
Of the  n     −     m  patients that were not diseased based on the gold standard 
 b  tested positive, and  d  were found negative. So  b     +     d     =     n     −     m . The 
off - diagonal terms represent the two types of error. The number of false 
positives is  b , and the number of false negatives is  c . 

  Table 6.2 
Sensitivity and Specifi city for a Diagnostic Test Compared to a 
Gold Standard 

   Test results     True condition of the patient 
based on gold standard  

   Total  

   Diseased     Not diseased  

  Positive for disease     A      b      s     =     a     +     b   

  Negative for disease     C      d      n     −     s     =     c     +     d   

  Total     m     =     a     +     c      n     −     m     =     b     +     d      n     =     a     +     b     +     c     +     d   
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 The estimate of the unconditional probability of a false positive is 
estimated to be  b / n  based on this sample. The estimate of the uncondi-
tional false negative probability is  c / n . Perhaps of greater interest are 
the conditional probabilities of error. These rates are estimates as  c / m  
for false negative probability, given the patient has the disease (by 
the gold standard), and the conditional false positive probability 
 b /( b     +     d )    =     b /( n     −     m ). 

 Now we shall defi ne the specialized terms called sensitivity and 
specifi city.  Sensitivity  is defi ned as the probability that a screening test 
declares the patient diseased given that the patient has the disease. 
Mathematically, the estimate of sensitivity for the above table is 1    −     c /
( a     +     c )    =     a /( a     +     c )    =    1    −     c / m . So sensitivity is 1 - probability of a false 
positive. 

  Specifi city  is the probability that the screening test declares 
the patient well given that the patient the patient does not have the 
disease (based on the gold standard). Mathematically, the specifi city 
estimate is 1    −     b /( b     +     d )    =     d /( b     +     d )    =    1    −     b /( n     −     m ). So specifi city is 
1 - probability of a false negative. 

 Ideally, a test should have high sensitivity and specifi city. However, 
measurement error and imperfect discrimination rules prevent perfec-
tion (i.e., specifi city    =    1 and sensitivity    =    1). But just as there is a 
tradeoff of type I and type II error when  n  is fi xed, but the threshold is 
allowed to change sensitivity, and specifi city can be changed to increase 
one at the cost of the other. So it is usually important to decide which 
type error is the most serious for the application and make the tradeoff 
accordingly. Friis and Sellers ( 1999 ) provide more detail regarding 
screening tests. 

 The curve that shows the tradeoff between specifi city and sensitiv-
ity is called the receiver operating characteristic (ROC) curve. Useful 
references on diagnostic testing that include discussion of ROC curves 
are Pepe ( 2004 ), Zhou et al. ( 2002 ), Krzanowski and Hand ( 2009 ), 
G ö nen ( 2007 ) and Broemeling ( 2007 ).  

   6.11    SPECIAL TESTS IN CLINICAL RESEARCH 

 Superiority testing is the standard testing approach in clinical trials and 
involves testing a null hypothesis that the treatment is no different from 
the control or worse than the control versus a one - sided alternative that 
the treatment is better or superior to the control. This is simply a 
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one - sided hypothesis with power function requirement at a fi xed   δ  . So 
the approach is the same as in the Tendril DX lead example. Noninferiority 
and equivalence are different and require more detailed explanations. 

 Briefl y for noninferiority, the null hypothesis becomes that the 
treatment is worse than the control by at least a   δ  , called the noninfe-
riority margin. The alternative is that treatment may be better, but is at 
least within the margin required to say that it is not inferior. Noninferiority 
tests are one sided. Equivalence testing means that we want to show 
that the treatment and control are essentially the same (i.e., within a 
margin of equivalence   δ  ). So, equivalence tests are two - sided tests that 
would simply reverse the null and alternative hypotheses if there were 
no margin (i.e.,   δ      =    0). The existence of a positive margin and the 
reversal of the null with the alternative make equivalence testing a little 
complicated, and it deserves a more detailed discussion also. 

   6.11.1    Superiority Tests 

 Not much needs to be said for superiority. It is the standard test that 
fi ts in naturally to the Neyman – Pearson approach. The one - sided two -
 sample  t -  test as described in Section  6.2 .  

   6.11.2    Equivalence and Bioequivalence 

 Bioequivalence and equivalence are the same in terms of the formal 
approach to hypothesis testing. The only difference is that bioequiva-
lence means that two drug formulations must be essentially the same 
in terms of their pharmacokinetic and pharmacodynamic (PK/PD) char-
acteristics. This is common when developing a new formulation of a 
treatment or developing a generic replacement for an approved drug 
whose patent has expired. 

 When doing equivalence or bioequivalence testing, the conclusion 
you want to reach is that the two treatments are nearly the same. This 
is like trying to  “ prove ”  the null hypothesis. For a parameter of interest, 
we want to show that the difference in the estimates for the subjects on 
each treatment is within an acceptable range called delta. The Neyman –
 Pearson approach fi xes the level of the test for the null hypothesis of 
no difference and tries to use the data to reject this hypothesis. If we 
reject, we have accepted the alternative because we controlled the type 
II error with an adequately large sample size. 
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 In equivalence testing, we want to accept the null hypothesis. To 
do this in the Neyman – Pearson framework so that the type II error is 
controlled, we simply switch the roll of the null and alternative hypoth-
eses. Often, in equivalence testing, it is feasible to do cross - over 
designs, which remove subject - to - subject variability by allowing each 
subject to act as their own control. 

 Example: You want to show that a generic drug or a new formula-
tion of an approved drug is basically the same as the approved drug 
with respect to PK and PD characteristics. At Auxilium Pharmaceuticals 
Inc., we had a testosterone gel that was approved and trademarked as 
Testim ® . We wanted to see if we could show that a new formulation 
with a better odor was equivalent in terms of the PK parameters, area 
under the curve (AUC), time of maximum concentration (Tmax), and 
value of maximum concentration (Cmax). For each of the parameters, 
there is a test of bioequivalence that can be performed. We designed a 
cross - over trial to perform these tests. 

 Steps in Equivalence Testing 

  1.     Pose a clinically important difference   δ  .  

  2.     State a pair of null hypotheses: H 0L :  d     <     −   δ   and H OH :  d     >      δ  , 
where d is the observed mean difference. The alternative hypoth-
esis is then H 1 :  −   δ      ≤     d     ≤      δ  .  

  3.     Choose a signifi cance level   α  .  

  4.     Find the appropriate critical value (usually from the standard 
normal or the  t  - distribution).  

  5.     Calculate the appropriate test statistics for the two tests of null 
hypotheses.  

  6.     Compare these test statistics to their critical values, and if both 
null hypotheses are rejected, you have rejected nonequivalence 
or accepted equivalence at the level   α  .    

 In the case where the data are normally distributed, we can use 
Schuirmann ’ s two one - sided  t -  tests. The same idea can be used with 
other tests when the data are not normally distributed. We next describe 
Schuirmann ’ s test. 

 When each test of the null hypotheses is a one - sided Student ’ s  t -
  test, it is called Schuirmann ’ s two one - sided  t -  tests (TOST). A simple 
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way to do the test is to construct a two - sided confi dence interval for 
the mean difference, and if   δ   lies outside the interval, you reject non-
equivalence. To ensure that the two one - sided tests each have level   α  , 
you must choose a symmetric 100(1    −    2  α  ) % confi dence interval. This 
is a little counterintuitive, because for example, it is a 90% confi dence 
interval that is used to construct a test at the 5% signifi cance level. 
However, this is right, because we must reject both  t -  tests to claim 
equivalence.  

   6.11.3    Noninferiority Tests 

 Noninferiority is a one - sided test that a new treatment is not clinically 
signifi cantly worse than a particular established treatment. Signifi cantly 
worse is defi ned by a chosen   δ   just as was needed to demonstrate 
equivalence. 

 Steps in Noninferiority Testing 

  1.     Select a clinically important difference   δ  .  

  2.     State as the null hypothesis H 0 :  d     ≥      δ  , where  d     =     M n      −     M s  , and 
 M n   is the mean for the new treatment, and  M s   is the mean for 
the old one. Then the alternative hypothesis H 1  is that  d     <      δ  .  

  3.     Choose a signifi cance level  α .  

  4.     Determine the critical value for the appropriate test.  

  5.     Calculate the test statistic (d or a scaled version of it).  

  6.     Reject H 0  if the test statistic exceeds the critical value.      

   6.12    REPEATED MEASURES ANALYSIS OF 
VARIANCE AND LONGITUDINAL DATA ANALYSIS 

 In clinical trials, measurements are taken on key variables at several 
patient visits to the site. If a change from baseline at the end of the trial 
is all that is of interest, conventional analysis of variance (ANOVA) or 
covariance can be used. However, if one is interested in how the results 
change over several visit (i.e., are interested in trends), then the multiple 
measurements on the same subject at different time points introduces 
correlations that conventional methods do not account for. When we 
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are interested in the time evolution of the measurements for many 
patients over a short number of visits, say 3 to 6, we are doing longi-
tudinal analysis, and the measurements over time for a particular patient 
are called repeated measures. 

 The correlation structure within a patient must be modeled and 
estimated parametrically from the data. Common parametric structures 
for the correlation matrix are AR(1), Toeplitz, and compound symme-
try, among others. These patterns correspond to statistical dependency 
models. For example, AR(1) is a fi rst - order autoregressive time series 
model, where  Y ( t )    =      ρ Y ( t     −    1)    +     ε ( t ),  − 1    <      ρ      <    1, and  ε ( t ) is an inde-
pendent random variable with mean 0 and constant variance for all 
times  t . Sometimes, if there is suffi cient data, the covariance can be 
estimated without modeling a particular correlation structure. In soft-
ware packages, such as SAS, Proc Mixed is to declare the covariance 
to be unspecifi ed. 

 In SAS, repeated measures analysis of variance can be done using 
the GLM procedure or the procedure  “ Mixed, ”  but the two procedures 
handle various similar statements differently, and some cases can only 
be done with Proc Mixed. The Mixed Procedure is intended to do mixed 
effects analysis of variance, where mixed effects means that some of 
the effects can be treated as fi xed, but other may be best modeled as 
random effects. 

 Why might we be interested in random effects? In many clinical 
trials, many different centers from different parts of the country or in 
different countries enroll patients for the trial. However, sometimes 
there is signifi cant variation between the sites. We may want to see if 
these differences do exist, and so to do that, we model the site as a 
factor in the ANOVA model. Usually, it makes sense to consider the 
sites chosen as though they represented a random sample from the 
population of all potential sites. In such cases, the site becomes a 
random effect. Other factors may also in a similar way need to be 
modeled as random effects. 

 This topic is fairly advanced and beyond the scope of the course. 
But it is such an important part of clinical trials analysis. Also, missing 
data is a common practical problem, and mixed models provide a way 
to handle missing data that is sometimes appropriate. The following 
references provide detailed treatment of longitudinal data analysis and 
missing data modeling and analysis. Hardin and Hilbe ( 2003 ), Verbeke 
and Molenberghs ( 1997 ), Hand and Crowder ( 1996 ), and Little and 
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Rubin ( 2002 ) are my recommendations. Little and Rubin deal specifi -
cally with missing data and the various approaches to handling them 
based on the type of missing data. Hardin and Hilbe ( 2003 ) take the 
generalized estimating function approach, which is an alternative way 
of dealing with longitudinal data that we did not cover. The book gives 
a thorough and very readable treatment even for nonstatisticians.  

   6.13    META - ANALYSIS 

 Two problems may occur when conducting clinical trials.

   1.     Often a study may not have suffi cient sample size to reach 
defi nitive conclusions.  

  2.     Two or more studies may have confl icting results (not because 
there was anything wrong with any of the studies, but rather 
because type I and type II errors can occur even when the study 
is well powered).    

 A technique called meta - analysis is being used more often recently to 
combine information in order to reach stronger conclusions that are 
also more likely to be correct than what any single study might tell us. 
This can be done either by combining estimates or  p  - values in an 
appropriate way. Care is required in the choice of studies to be com-
bined. Also publication bias (the bias due to a tendency to only publish 
positive results) is a common problem. To remedy this, for FDA regu-
lated trials, the FDA requires posting trial information on the Internet 
(for all phase III trials), including all trial results and data after the trial 
is completed. This certainly will help to eliminate publication bias. 

 Hedges and Olkin ( 1985 ) was the pioneering work on formal sta-
tistical approaches to meta - analysis using frequentist approaches. 
Stangl and Berry ( 2000 ) provide thorough coverage of the Bayesian 
approach to meta - analysis. In this section, we will illustrate the use of 
Fisher ’ s test for combining  p  - values to strengthen inference from 
several tests. 

 Fisher ’ s test is based on the following results: Under the null 
hypothesis in each of  k  hypothesis tests, the individual  p  - values have 
a uniform distribution on [0, 1]. If we let  U  represent a random variable 
with this uniform distribution, then let  L     =     − 2 ln( U ) where  “ ln ”  denotes 
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the natural logarithm function. Then  L  has a chi - square distribution 
with 2  df . 

 Now suppose we have  k  independent tests, and we let  L k      =     − 2 ln( V ), 
where  V  is the product of the k independent uniforms. So  L k      =     − 2 ln( U  1 , 
 U  2     . . .     U k  )    =     − 2 ln( U  1 )    −    2 ln( U  2 )    −     . . .  − 2 ln( U k  ).  L k   is the sum of  k  
independent chi - square random variable with 2  df , and hence it is 
known to have a chi - square distribution with  df  equal to the sum of the 
 df  for the chi - square random variables being summed. So  L k   is chi -
 square with 2 k df .  V  is the probability that all  k  null hypotheses are 
true, which, under the independence assumption, is the product of the 
individual  p  - values. Because  L k   is a simple transformation of  V  with a 
known chi - square distribution, it is more convenient to work with  L k   
rather than  V.  

 We fi rst illustrate this with a consulting application that I provided 
to a medical device company. The company conducted a clinical trial 
in the United States and some countries in Europe. The device was a 
cutting balloon catheter used for angioplasty. The manufacturer believed 
that the restenosis rate would be lower for the cutting balloon compared 
with conventional balloon angioplasty. Historically, the conventional 
approach had a disappointing 40% restenosis rate. Since the manufac-
turer expected the new method would have about a 25% rate, which 
would clearly be a clinically signifi cant improvement, they used these 
assumptions to determine the necessary sample size. 

 Initially, the plan was to get FDA approval, which only required a 
study in the United States. But recruitment was going slower than they 
had hoped. So they chose to expand the trial to several sites in European 
countries. Unfortunately, the results were not consistent across the 
various countries. See Table  6.3 .   

 We see that country E (which is the United States) had the lowest 
rate and it is below the anticipated 25%. Ironically had the company 
waited until the required number patients were treated in the United 
States, they would have had a successful trial. But even though coun-
tries C and D also have rate signifi cantly lower than 40%, countries A 
and B do not, raising the question as to why. Using country as a main 
effect, an ANOVA clearly shows a signifi cant difference between coun-
tries. The most likely explanation is difference in the techniques of the 
physicians in the European countries, where they may have had less 
experience with the cutting balloon catheter, or differences in the sever-
ity of the disease across the various countries. 
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  Table 6.4 
Cutting Balloon Angioplasty Combined  p -  Value Meta - Analysis by 
Fisher ’ s Test 

   Study     Cutting balloon 
restenosis proportion  

   Conventional 
balloon restenosis 

proportion  

    p -  value      − 2 ln( U )  

  Grt    173/551    170/559    0.7455    0.5874  

  Molstad    5/30    8/31    0.5339    1.2551  

  Inoue    7/32    13/32    0.1769    3.4641  

  Kondo    22/95    40/95    0.0083    9.5830  

  Ergene    14/51    22/47    0.0483    6.0606  

  Nozaki    26/98    40/93    0.022    7.6334  

  Suzuki    104/357    86/188    0.001    13.8155  

  Combined            0.000107    42.3994  

  Table 6.3 
Balloon Angioplasty Restenosis Rates 
by Country 

   Country     Restenosis rate % (no. of 
failures/no. of patients)  

  A    40% (18/45)  

  B    41% (58/143)  

  C    29% (20/70)  

  D    29% (51/177)  

  E    22% (26/116)  

 The client did have several published studies of the use of the 
cutting balloon for angioplasty. The hope is that combining this data 
with the pooled results in the clinical trial, a clinically signifi cant 
improvement over the conventional rate of 40% could be shown and 
used to improve the case for approval of the treatment. 

 I conducted a meta - analysis using six independent studies with 
the cutting balloon along with the company ’ s clinical trial (referred to 
as GRT). Table  6.4  shows the meta - analysis using Fisher ’ s  p  - value 
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combination method. The other studies are labeled using the last name 
of the fi rst author.   

 We note that the most convincing study is Suzuki, which other than 
GRT had the largest sample size. Also, although, some of the studies 
are small, most of the proportions run from 18 to 30%, making the 
expected 25% very plausible. This meta - analysis is conclusive even 
though the GRT result and the Molstad (because of small sample size) 
paper are not convincing. One drawback of Fisher ’ s approach is that it 
treats each study equally regardless of sample size. There are other 
ways to combine the  p  - values where the studies are weighted according 
to sample size. 

 Perhaps the simplest reasonable approach would be to just total the 
number of restenosis events divided by the total sample size generating 
two proportions that can be compared directly. In this case, the propor-
tions are 351/1214 and 379/1045 for cutting balloon and conventional 
balloon, respectively. These sample proportions are 28.9 and 36.3%, 
respectively, a difference of 7.4%. 

 Using a normal approximation for the two - sample two - sided test, 
we get an approximate value of 3.56 for the test statistic, assuming the 
common proportion under the null hypothesis  p  0     =    0.40. The two - sided 
 p  - value is less than 0.002, since for a standard normal distribution 
 P [ Z     >    3.1]    =    0.001 and hence  P [| Z |    >    3.1]    =    0.002. Since 3.56    >    3.1, 
we know the  p  - value is lower. 

 Although this analysis may seem compelling, it would not help to 
get an approval. The FDA may accept results from meta - analysis, but 
it would require a protocol and control and approval of the clinical 
trials. Only GRT had a protocol and was a controlled clinical trial, with 
its protocol accepted by the FDA. So they would not consider this as 
clear and convincing statistical evidence. 

 Another example is based on fi ve published studies of blood loss 
in pigs, comparing those with versus those without pretreatment with 
the clotting agent NovoSeven ® . Table  6.5  shows the  p  - values for the 
individual studies and the combined  p  - value using Fisher ’ s combina-
tion test. One advantage of Fisher ’ s method is that information about 
the data in each study is not needed, and the tests applied in each study 
need not be the same. For example, in one study, a nonparametric test 
might be used, while in another, a parametric test is used. All that we 
need to know is that the studies are comparable and valid, and have the 
individual  p  - value in each case.   
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 In this case, we see that the combined  p  - value is only slightly lower 
than the Lynn 2 study. 

 The fi rst major statistical reference on meta - analysis is Hedges and 
Olkin ( 1985 ). Because of the increased popularity of meta - analyses in 
medical research, there have been a number of excellent books appear-
ing in recent years. This includes Rothstein et al. ( 2005 ), Hartung et al. 
(2008), Whitehead (2002), Stangl and Berry ( 2000 ), and Borenstein 
et al. ( 2009 ). Higgins and Green (2008) is a text that provides a summary 
of systematic reviews of intervention studies covering numerous meta -
 analyses for the Cochrane Group. Michael Borenstein ’ s company has 
commercial software to do meta - analysis. Another good recent refer-
ence is Egger et al. (2001). 

  6.14   EXERCISES 

       1.    DB3 gives baseline serum theophylline levels for patients with emphy-
sema. Perform an equivalence test to learn if the data are free from a sex 
bias, that is, if mean baseline level is equivalent for men and women. 
There are  n  1     =    6 women and  n  2     =    10 men. A difference in means of at 
least 2 indicates a bias. The sample means and standard deviations for 
women and men are  m  1     =    12.67,  s  1     =    3 for the women, and  m  2     =    9.68 
and  s  2     =    3.65 for the men. You can assume that the standard deviation 
is the same for men and women, and hence use a pooled estimate of the 
standard deviation for the  t -  test.   

  Table 6.5 
Meta - Analysis of Five Studies of Pig 
Blood Loss 

   Study      p  - value      − 2 ln( p )  

  Lynn 1    0.44    1.641961  

  Lynn 2    0.029    7.080919  

  Martinowitz    0.095    4.714083  

  Schreiber 1    0.371    1.983106  

  Schreiber 2    0.086    6.91614  

  Total        20.33621  

  Combined    0.026      
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    2.    How are equivalence tests different from standard hypothesis tests?   

    3.    What is the difference between equivalence testing and non - inferiority?   

    4.    What is a pooled standard deviation and when can it be applied?   

    5.    Describe the 1   :   1 correspondence between hypothesis tests and confi dence 
intervals. How do confi dence intervals give you more information than 
 p  - values?   

    6.    Defi ne the following quantities:

   (a)     Hypothesis test  

  (b)     Null hypothesis  

  (c)     Alternative hypothesis  

  (d)     Signifi cance level  

  (e)     Power of the test  

  (f)     Power function  

  (g)      p  - value  

  (h)     Type I error  

  (i)     Type II error      

    7.    In a factory, an occupational medicine physician who was conducting a 
medical research study found the mean blood level of the clerical workers 
was 11.2 based on a sample. State the null and alternative hypotheses 
when testing to see if the population of clerical workers has a mean blood 
level of 11.2.   

    8.    Describe the difference between a one - tailed and a two - tailed test and 
describe situations where one is more appropriate than the other.   

    9.    Defi ne specifi city and sensitivity and relate them to the type I and type II 
error rates.   

    10.    What are meta - analyses? Why might they be needed?   

    11.    Based on the data in Table  6.1 , do you think it is plausible that the true 
mean difference in temperature between New York and Washington would 
be 3 ° F? Would the power of the test be higher, lower, or the same if the 
true mean difference were 5 ° F? Does the power depend on the true mean 
difference? If so, why?   
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94 CHAPTER 6 Hypothesis Testing

    12.    A vaccine against type III group B  Streptococcus  (GBS) was tested on 20 
healthy volunteers. Table  6.6  shows the results on the antibodies before 
and after immunization.

   (a)     What type of test would you apply?    

  (b)     Would a bootstrap test be better than a paired  t  - test?  

  (c)     Should the test be one - sided or two - sided? Provide justifi cation for 
your answer.           

   

  

 

 

 

 

  Table 6.6 
Antibody Changes from Vaccine Given to 
20 Healthy Volunteers 

   Antibody concentration to type III GBS  

   Volunteer 
no.  

   Before 
immunization  

   After 
immunization  

     1    0.4    0.4  

     2    0.4    0.6  

     3    0.5    0.8  

     4    0.5    0.6  

     5    0.4    0.5  

     6    0.5    0.5  

     7    0.5    0.6  

     8    0.4    0.5  

     9    0.4    0.4  

  10    0.6    0.7  

  11    0.7    10.2  

  12    0.7    1.1  

  13    0.8    0.9  

  14    0.9    1.2  

  15    1.0    1.9  

  16    1.0    0.9  

  17    1.1    2.1  

  18    1.0    2.0  

  19    1.6    8.1  

  20    2.1    3.8  
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  CHAPTER 7 

Correlation, Regression, 

and Logistic Regression     

     In this chapter, we will cover correlation, discussing the Pearson 
product moment correlation coeffi cient. The Pearson correlation coef-
fi cient (due to Karl Pearson) is a common measure of association that 
is interrelated with simple linear regression and goes back to the begin-
ning of the twentieth century. It is a natural parameter of the bivariate 
normal distribution. So its properties and interpretation apply to two 
variables whose joint distribution is at least, approximately, a bivariate 
normal distribution. An example of a nonparametric measure of asso-
ciation will be discussed in Chapter  9 . 

 Specifi cally, there is a mathematical relationship between the slope 
of the regression line in simple linear regression (only one independent 
variable) and the correlation coeffi cient. This will be shown when we 
cover simple linear regression. Multiple regression is an extension of 
linear regression to two or more independent variables, and the multiple 
correlation coeffi cient is an extension of the square of the Pearson cor-
relation coeffi cient. 

 Logistic regression is similar to multiple regression, but whereas 
in multiple regression the dependent variable is a continuous numerical 
variable, in logistic regression, the dependent variable is binary (it 
can be an outcome like success or failure). The expected value of the 
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96 CHAPTER 7 Correlation, Regression, and Logistic Regression

dependent variable conditional on the independent variables (which can 
be discrete or continuous) is a probability  p , with possible values on the 
interval [0, 1]. Logistic regression is covered separately in Section  7.6 .  

   7.1    RELATIONSHIP BETWEEN TWO VARIABLES 
AND THE SCATTER PLOT 

 The Pearson correlation coeffi cient that we will discuss in Section  7.2  
measures linear association. While it may detect some forms of curved 
relationships, it is not the best measure for those associations. The 
linear association may be positive as in the equation

    Y X= −5 10.     (7.1)   

 Here  X  and  Y  are related with a positive slope of and a  Y  intercept 
of  − 10. We will see that this relationship with the addition of an inde-
pendent random component will give a positive correlation. This simply 
means that as  X  increases,  Y  tends to increase. If Equation  7.1  held 
exactly, we would drop the word  “ tends. ”  However, the addition of a 
random component means that if the random component is negative, 
the observed value of  Y  at  X     =     X  1  could be smaller than the observed 
value of  Y  at  X  0 , where  X  0     <     X  1 . In most cases, the data will not fall 
perfectly on a straight line, and so we defi ne the difference  Y     −      Y

^ 
  to be 

the residual at  X . For example, if the fi tted line happens to be   
  Y
^ 
    =    3.5 X     +    2, and at  X     =    2, we observe  Y     =    8.7, then  Y     −      Y

^ 
      =    8.7    −    

(3.5(2)    +    2)    =    8.7    −    9    =     − 0.3. So the residual at  X     =    2 is  − 0.3. For all 
the data point ( X i  ,  Y i  ) for  i     =    1, 2,    . . .     n , we compute the residuals. We 
then square the residuals and take their sum. This is called the mean 
square error. Note that in this case, the slope  “  b  ”  for the fi tted line is 
3.5, and the intercept  “  a  ”  is 2. Had we used a different value for  “  b  ”  
and  “  a , ”  we would have gotten different residuals and hence a different 
mean square error. The method of least squares is a common way to fi t 
 “  b  ”  and  “  a . ”  It simply amounts to fi nding the value of  “  b  ”  and  “  a  ”  that 
makes the mean square error the smallest. This minimum is unique in 
many instances, and the resulting values for  “  b  ”  and  “  a  ”  are called the 
least squares estimates of the slope and intercept, respectively. Note 
that this minimum will be greater than 0 unless all the points fall exactly 
on a straight line. 
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7.1 Relationship Between Two Variables and the Scatter Plot 97

 Table  7.1  is a listing of systolic and diastolic pressure for 48 elderly 
men. Figure  7.1  is a scatter plot of this data.     

 A scatter plot is used to portray the relationship between two vari-
ables. It displays the relationship by marking the data on a grid of ( X , 
 Y ) pairs. This is a plot in Cartesian coordinates of the measurements  X  
and  Y  for the individual subjects. In the case of Figure  7.1 ,  X  is the 

  Table 7.1 
Systolic and Diastolic Blood Pressure for a 
Sample of 48 Elderly Men 

   Subject 
number  

   Systolic blood 
pressure  

   Diastolic 
blood pressure  

  01    140    78  

  02    170    101  

  03    141    84  

  04    171    92  

  05    158    80  

  06    175    91  

  07    151    78  

  08    152    82  

  09    138    81  

  10    136    80  

  11    173    95  

  12    143    84  

  13    117    75  

  14    141    83  

  15    120    76  

  16    163    89  

  17    155    97  

  18    114    76  

  19    151    90  

  20    136    87  

  21    143    84  

  22    163    75  

  23    141    81  

  24    163    94  

c07.indd   97c07.indd   97 6/15/2011   4:08:51 PM6/15/2011   4:08:51 PM



98 CHAPTER 7 Correlation, Regression, and Logistic Regression

   Subject 
number  

   Systolic blood 
pressure  

   Diastolic 
blood pressure  

  25    145    81  

  26    151    83  

  27    134    85  

  28    178    99  

  29    128    73  

  30    147    78  

  31    146    80  

  32    160    91  

  33    173    79  

  34    143    87  

  35    152    69  

  36    137    85  

  37    146    83  

  38    162    83  

  39    158    77  

  40    152    86  

  41    152    93  

  42    106    67  

  43    147    79  

  44    111    71  

  45    149    83  

  46    137    77  

  47    136    84  

  48    132    79  

Table 7.1 
(Continued)

systolic blood pressure and  Y  is the corresponding diastolic blood pres-
sure taken at the same time. If the two variables are highly positively 
correlated, the pattern of dots will closely resemble a straight line with 
a little scatter. 

 In Figure  7.1 , we can perhaps visualize a straight line running 
through the data but mainly what we observe is a tendency for the 
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7.2 Pearson’s Correlation 99

     Figure 7.1.     Scatter diagram of systolic and diastolic blood pressure  (data from Table  7.1 ) .  
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diastolic pressure to be higher than its average when the systolic 
pressure is higher than its average and lower than its average when the 
systolic pressure is below its average. Next in Section  7.2 , we will see 
how the Pearson correlation describes aspects of the scatter plot, and 
in Section  7.3 , how a regression line can be plotted through the data 
using the least squares criterion.  

   7.2    PEARSON ’ S CORRELATION 

 The Pearson correlation coeffi cient is a parameter that has a natural 
place in the bivariate distribution. When we have a sample such as in 
the scatter plot for systolic and diastolic blood pressure, we can obtain 
a sample estimate. Generally,   ρ   is used to denote the parameter, and  r  
to denote the sample estimate of   ρ  .

      
r X X Y Y X X Y Yi i

i

n

i

n

i i
i

n

i

n
= −( ) −( ) −( ) −( )

== ==∑∑ ∑∑ˆ ˆ ˆ ˆ .
11

2 2

11
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100 CHAPTER 7 Correlation, Regression, and Logistic Regression

 Here,   Y
^ 
  and   X

^ 
  are their respective sample means, and  X i   and 

 Y i   are the respective blood pressure readings for the  i th subject. 
This formula is best for understanding the meaning because it shows 
r to be the ratio of the sample estimate of the covariance between 
 X  and  Y  divided by the square root of the product of their 
variances. To see it, divide numerator and denominator by  n . In 
the denominator, rewrite  n  as   nn. Put one  n  under the sums 
involving  X , and one under the sums involving  Y . Then the 
denominator is an estimate of the square root of the product of 
sample variances, and the numerator is a sample estimate of the 
covariance. 

 A more complicated computational formula calculates  r  faster, and 
is mathematically equivalent to the expression above. Both  r  and   ρ   have 
the property that they can take on any value in [ − 1, 1], but cannot take 
on a value outside that interval. 

 One common hypothesis test that is conducted when the data is 
suspected to be correlated is to test that the population correlation coef-
fi cient   ρ      =    0 versus the two - sided alternative that   ρ      ≠    0. This test is the 
same as the test that the slope of the regression line is 0. Under the 
null hypothesis that   ρ      =    0, the quantity   r n r( ) /− −2 1 2 ) has a  t  -
 distribution with  n     −    2 degrees of freedom. 

 In this case, if we reject the null hypothesis of no correlation, 
we can conclude that the two variables are related. But it does not 
address the issue of why they are related. Often, we study relationships 
between variables because we suspect a causal link. The simple test 
for correlation cannot provide us with information on causation. 
Sound theory is required to make the causal link. In many situations, 
we must at least have the value for  X  occur before  Y  in time for  X  
to be able to cause  Y , and in such situations, we can rule out the 
possibility that  Y  causes  X . Over the past 20 years, a great deal 
of research in statistical modeling has led to advances in fi nding 
models and plausible assumptions where a signifi cant relationship 
can imply a causal relationship. In this branch of statistics, which is 
sometimes called causal inference, the names of Pearl, Rubin, and 
Robins stands out. Some articles that may be of interest are Robins 
( 1999 ), Hern á n et al. ( 2000 ), and Hern á n et al. ( 2005 ). There are also 
the books, Pearl ( 2000, 2009 ), Rubin ( 2006 ), and van der Laan and 
Robins ( 2003, 2010 ).  
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7.3 Simple Linear Regression and Least Squares Estimation  101

     Figure 7.2.     Scatter plot for six observations illustrating regression line and residuals.  
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   7.3    SIMPLE LINEAR REGRESSION AND 
LEAST SQUARES ESTIMATION 

 A scatter plot of six points with a line fi t through it is illustrated in 
Figure  7.2 , taken from fi gure 12.3 from Chernick and Friis ( 2003 )   

 The least squares solution for the slope and intercept is the one (the 
solution is not always unique) that picks a value for  “  b , ”  the slope 
estimate, and  “  a , ”  the intercept estimate, so that. Now  b  is related to r 
as we shall show. The least squares estimate of b is

    b X X Y Y X Xi i
i

n

i
i

n
= −( ) −( ) −( )

= =∑ ∑ˆ ˆ ˆ .
1

2

1
   

 Let

    S Y Y n S X X ny i
i

n

y i
i

n
= −( ) −( ) = −( ) −( )

= =∑ ∑ˆ ˆ .
2

1

2

1
1 1and    

 Then

    b S S ry x= ( / ) .    

 The least squares estimate of  “ a ”  is obtained by solving
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102 CHAPTER 7 Correlation, Regression, and Logistic Regression

    ˆ ˆ ˆ ˆ .Y a bX a Y bX= + = −or    

 To illustrate solving a simple linear regression problem, we use 
weight and height data obtained for 10 individuals. The data and the 
calculations are illustrated in Table  7.2 .   

 We fi rst calculate  b  and  a .

    ( )( )  andX X Y Y− − =∑ ˆ ˆ 201   

    ( )X X− =∑ ˆ . .2 9108 90   

    So b = =201 9108 90 0 0221/ . . .   

Then    a Y bX= − = − =ˆ ˆ ( . ) . . .63 0 0221 154 10 59 59    

 Now let us see how we would get confi dence intervals for new 
values of  Y  when  X     =     x . First let us defi ne a few terms.

   1.     Sum of squares error:  SSE     =     Σ ( Y i      −      Y
^ 
  ) 2   

  2.     Standard error of estimate:   S SSE ny x. [ /( )]= − 2   

  Table 7.2 
Calculations for Inference about the Predicted  Y  - Value and the 
Slope of the Regression Line 

   Subject 
ID  

    X     =    Weight 
(lbs)  

    X     −      X
^ 
      ( X     −      X

^ 
 ) 2       Y     =    Height 

(in)  
   Predicted 
height  Y p    

    Y     −      Y
^ 
      ( Y     −      Y

^ 
 ) 2   

  01    148     − 6.1    37.21    64    62.87    1.13    1.29  

  02    172    17.9    320.41    63    63.40     − 0.40    0.16  

  03    203    48.9    2391.21    67    64.08    2.92    8.52  

  04    109     − 45.1    2034.01    60    62.00     − 2.00    4.01  

  05    110     − 44.1    1944.81    63    62.02    0.97    0.95  

  06    134     − 20.1    404.01    62    62.56     − 0.56    0.31  

  07    195    40.9    1672.81    59    63.90     − 4.90    24.05  

  08    147     − 7.1    50.41    62    62.84     − 0.84    0.71  

  09    153     − 1.1    1.21    66    62.98    3.02    0.15  

  10    170    15.9    252.81    64    63.35    0.65    0.42  

  Total    1541        9108.9                49.56  
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7.3 Simple Linear Regression and Least Squares Estimation  103

  3.     Standard for   Y
^ 
  given  X     =     x :

  
SE Y S n x X X Xy x i( ) ( ) ( )ˆ ˆ ˆ

.= + − ∑ −−1 2 2

    

.

 A 100(1    −      α  )% confi dence interval for predicted value of  Y  given 
 X     =     x  is then [ Y  ^     −     t n    − 2 (  α  ) SE ( Y  ^ ),  Y  ^     +     t n    − 2 (  α  ) SE ( Y  ^ )], where  t n    − 2 (  α  ) is 
the 100(1    −      α  /2) percentile of a  t  - distribution with  n     −    2 degrees of 
freedom. 

 A confi dence interval for a prediction of  Y  is sometimes called a 
prediction interval. Now let ’ s go through the steps above to get a pre-
diction interval for  Y  given  X     =    110 for the example in Table  7.2 . 
SSE    =    49.56 (see table). Then   Sy x. ( . / ) .= =49 56 8 2 73. So,

    SE Y( ) . ( ( . ) /( . ) . .^ = + − =−2 73 10 110 154 1 108 9 0 561 2    

 Hence, a 95% prediction interval for  Y  given  X     =    110 is

    [ . . ( . ), . . ( . )] [ . , . ].62 02 2 306 0 56 62 02 2 306 0 56 60 73 63 31− + =    

 To test the hypothesis H 0    β      =    0, where   β   is the slope parameter of 
the regression equation, we use the test statistic  t     =    ( b     −      β  )/ SE ( b )    =     b / SE ( b ), 
since the hypothesized value for   β      =    0. Now   SE b S X Xy x i( ) ( ).= ∑ −⎡⎣ ⎤⎦

ˆ 2 . 
For our example,   SE b( ) . / . .= =2 73 9108 9 0 0286. So,  t     =    0.77. We 
refer to a  t  - distribution with 8 degrees of freedom to determine the  p  -
 value, and we cannot conclude that   β   is signifi cantly different from 0. 
Since  ρ  is a simple multiple of   β  , we also cannot conclude that  ρ  is 
signifi cantly different from 0. In this case, the  p  - value is greater than 
0.2, since it is two - sided, and the 90th percentile of a  t  - distribution with 
8 degrees of freedom is 1.397 and  t     =    0.77    <<    1.397. 

 One important point about simple linear regression is the term 
linear. Linear here means that the relationship is linear in the parameters 
and not necessarily in the independent variable. So although we often 
think of the linear regression equation as  Y     =      β X     +      α  , this is both linear 
in the independent variable  X , as well as the parameters   α   and   β  . 
However, the equations  Y     =      β X  2     +      α  , or  Y     =      β   ln( X )    +      α  , also fi t the 
simple linear regression model, although they involve nonlinear func-
tions of the independent variable  X . 

 The term nonlinear regression is defi ned as a form of regression 
where the equation for  Y  is nonlinear in the parameters that we wish to 
estimate. So, for example,

c07.indd   103c07.indd   103 6/15/2011   4:08:52 PM6/15/2011   4:08:52 PM
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    Y g x x= = +( , ) exp( ),θ θ θ θ1 2 3    

 is a simple nonlinear regression because it is nonlinear in the parameter 
 θ  3 , and it cannot be transformed into a linear regression. Multiple linear 
regression is also linear in the parameters. There is a nonlinear regres-
sion analog to simple nonlinear regression. However, we will not cover 
nonlinear regression, and the interested reader should refer to Gallant 
( 1987 ) and Bates and Watts ( 1988 ), which are both authoritative texts 
on nonlinear regression.  

   7.4    SENSITIVITY TO OUTLIERS AND 
ROBUST REGRESSION 

 Outliers are unusual or extreme observations within a given data set. 
We might expect laboratory data and other measured data taken on 
humans to be normally distributed, with approximately 95% of the 
cases falling within two standard deviations of the mean. Nevertheless, 
particularly in large samples, extreme values may occur. This could be 
due to the actually occurrence of an extreme value from the normal 
distribution, or it could be a measurement, coding, or data entry error. 
In small samples, this is also possible with all the same explanations. 
However, the chance of an extreme outcome from a normal distribution 
is much less likely to occur in small samples. 

 For the simple linear regression problem discussed in the previous 
section, we showed how to compute the slope and intercept parameters 
as a least squares solution. Since the method involves minimizing the 
sum of squared residuals, these parameter estimates are very sensitive 
to outliers. This is analogous to the sensitivity of the sample mean to 
outliers. The sample mean is the least squares estimate of the mean 
from a sample of independent identically distributed observations. 
Because the sum of squares is minimized, outliers pull the estimate 
toward their value, and hence execute great infl uence than observations 
near the true population mean. 

 In regression, the slope is pulled up or down depending on the 
direction of the outlier. Robust regression methods are used to mini-
mize the infl uence of outliers at the price of statistical effi ciency. 
However, when outliers are possible, the sacrifi ce in effi ciency is often 
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7.4 Sensitivity to Outliers and Robust Regression  105

more than made up for by the reduction in the bias that the outlier(s) 
may cause. Later, we shall see that there are also diagnostics that can 
be used in regression to tell when the least squares estimates are infl u-
enced by outliers. 

 There are two strategies for dealing with outliers in regression. One 
is to detect and remove the outliers. The other is to use a robust regres-
sion procedure in place of least squares. Robust regression is sometimes 
preferred because it is viewed as accommodating outliers, whereas the 
removal of an outlier really is a statement that the data point has no 
value toward the estimation of the parameter. 

 Deciding that the outlier is an erroneous observation is not some-
thing that you can know by just looking at the data, and so removal of 
outliers should only be done when, after checking the source for gen-
erating the data, an actual error is identifi ed. Outliers in regression also 
have greater infl uence on the slope when they are near the upper or 
lower limits on the  x  - axis. These outliers are called leverage points. In 
general, any point near the upper or lower limits on the  x  - axis is a 
leverage point. But if the leverage point does not affect the estimate 
very much when it is removed, it is not an outlier with respect to the 
bivariate distribution of  X  and  Y . 

 One robust regression method is to fi nd the estimated coeffi cients 
that minimize the sum of absolute errors. By doing this, the outliers 
have less infl uence than when the deviations are squared. In the case 
of the mean, a robust sample estimate is the median. It turns out that 
the median minimizes the sum of absolute deviations of the observa-
tions from the estimate. So taking the mean absolute error for regres-
sion parameter estimates is analogous to using the median as an estimate 
of the mean for a simple random sample. There are many other robust 
regression procedures. We will not cover them here. See Huber ( 1981 ) 
or Maronna et al. ( 2006 ) for the details. 

 I choose a very dramatic example from the 2000 presidential 
election votes counted in the state of Florida. Although this is not a 
medical example, it is a very familiar example that makes the case very 
well. The number of votes received by Patrick Buchanan in Palm Beach 
County was very high relative to other counties, and hence represents 
an outlier. 

 You may recall that the Gore campaign contested the voting 
results in Florida due to several irregularities that they believe cost 
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Gore votes. They contended that due to the closeness of the race 
between Bush and Gore, the contested votes could swing the state 
over from Bush to Gore, and hence the election would go to Gore, 
since Florida had enough electoral votes to change the outcome of 
the votes in the electoral college. One irregularity was the butterfl y -
 shaped ballot in Palm Beach County. The democrats theorized that 
the unusual butterfl y shape of the ballot could confuse voters, and 
they could mark Buchanan ’ s box thinking that they had voted 
for Gore. 

 In this case we could put the data on a scatter plot with counts by 
county plotted for Gore versus Buchanan, Bush versus Buchanan, or 
even Ralph Nader versus Buchanan, and in each case, Palm Beach 
County will be a huge outlier. The data were made public on the 
Internet, and many statisticians analyzed the data in a variety of ways. 
Table  7.3  shows the vote by county for Gore, Bush, and Buchanan. 
There are a total of 67 counties in Florida.   

 There are many things that can be observed from the data, and 
the scatter plots will help greatly. First, Gore and Bush were the 
main party candidates and received the lion ’ s share of the votes. 
Buchanan and Nader were alternative party candidates, and Nader 
received far more votes than Buchanan. The number of votes from 
county to county varies quite a bit for all candidates simply because 
the population size of the counties varies so much. Dade (where Miami 
is located), Broward, and Palm Beach are the three largest counties in 
Florida. 

 Palm Beach is a heavily populated by registered Democrats, and 
so Gore won the county by a large margin 268,945 to 152,846. Not 
including Palm Beach County, Buchanan ’ s votes ranged from 9 in 
Glades to 1010 in Pinellas. Gore ’ s vote totals ranged from 788 in 
Lafayette to 386,518 in Broward County. Bush ’ s vote totals ranged 
from 1316 in Liberty to 289,456 in Dade County. In Palm Beach 
County, Buchanan got 3407 votes. This is more than three times the 
amount of votes he got in any other county! By comparison, in Broward 
and Dade counties, Buchanan only got 789 and 561, respectively. 
Figure  7.3  shows Gore ’ s votes versus Buchanan ’ s, and Figure  7.4  
shows Bush ’ s votes versus Buchanan ’ s.   

 This seems to present a prima facie case that there is some irregu-
larity going on in Palm Beach County, and that it is likely that many 
of the votes for Buchanan were not intended for him. But then 
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     Figure 7.3.     County vote totals in Florida; Gore versus Buchanan.  
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     Figure 7.4.     County votes totals in Florida: Bush versus Buchanan.  
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110 CHAPTER 7 Correlation, Regression, and Logistic Regression

why worry, Buchanan didn ’ t come close to winning the state or even 
Palm Beach County, and 3407 votes is not a lot. Some were probably 
intended to go to Buchanan. In fact, we can do a regression analysis 
by excluding Palm Beach and fi tting a regression line to the Gore versus 
Buchanan data, and predict the number of votes Buchanan would be 
expected to have given that Gore had 268,945. This will be an estimate 
of how many out of the 3407 might be legitimate, and the remainder 
would belong to Gore, Bush, or Nader. 

 Since we do not know how to split it up, someone playing devil ’ s 
advocate could say that Bush probably would have gotten something 
like the proportion that he otherwise got, and the differential would not 
be enough to swing the election to Gore. But Bush only won by 
approximately 2000 votes, so if all those votes were for Gore, it could 
swing the election to Gore ’ s favor. 

 If we just did a little data mining, we would have seen this anomaly 
even if we didn ’ t know about the butterfl y ballot. But now the butterfl y 
ballot becomes important because (1) Palm Beach is primarily 
Democratic; and (2) the ballot makes it easy to mistake Buchanan for 
Gore, but not Buchanan for Bush. Now adding up all the votes from 
the counties we get: 

 Gore 2,907,342   Bush 2,828,127. 

 So Gore would have actually won by close to 80,000 votes. But 
this does not include the absentee ballots, many of which came from 
the troops overseas. So the absentee ballots swung the vote to Bush. 
Although we can estimate how many additional votes we think Gore 
should have gotten from Palm Beach County there is uncertainty in our 
estimates, and in the end, we would not be highly confi dent that Gore 
won Florida. A better resolution, as I see it, would be to have Florida 
do a reelection. 

 Some would argue that it would not be fair to allow registered 
voters to vote if they hadn ’ t voted on election day. Now those voters 
could be excluded because we have records of every registered 
voter who cast a ballot. Of course even this would not replicate the 
results because some voters could change their mind and some that 
legitimately voted for Nader or Buchanan could switch to Gore or 
Bush. There is also the issue of the absentee ballots. There really is no 
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7.5 Multiple Regression 111

good resolution to the problem. Also the Bush campaign said that for 
every county that Gore contests, Bush could also fi nd counties that he 
would contest. Perhaps the Supreme Court ’ s decision was correct. If 
there is no good way to correct a mistake you should stay with the 
results you have. It was the right decision, but their reasoning was 
wrong.  

   7.5    MULTIPLE REGRESSION 

 The differences between simple linear regression and multiple linear 
regression are 

  1.     One independent predictor variable versus two or more indepen-
dent predictor variables  

  2.     The bivariate correlation squared is replaced by the multiple 
correlation coeffi cient  R  2 .  

  3.     In multiple linear regression, the correlation matrix replaces the 
correlation coeffi cient.  

  4.     Partial correlations can be defi ned in multiple regression.    

 Recall that as mentioned in the section on simple linear regression, 
the form of multiple regression that we are referring to in this section 
is linear regression, which involves an equation that is linear in the 
parameters and not necessarily the independent variables. Multiple 
nonlinear regression is not a topic for this text, but Gallant ( 1987 ) is 
an excellent text that concentrates on nonlinear regression (both simple 
and multiple). 

 Not written in the equation above is the additive independent error 
term denoted by  ε . This error term has mean 0 and a variance   σ   2  that 
is constant (does not change as the independent variables change). 
Under these assumptions, the least squares estimates of the regression 
parameters are minimum variance unbiased estimators. Also, if  ε  has a 
normal distribution, the parameter estimates are maximum likelihood 
estimates. This property also holds for simple linear regression. The 
property that the least squares estimates are minimum variance among 
unbiased estimates is called the Gauss – Markov theorem. A proof can 
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112 CHAPTER 7 Correlation, Regression, and Logistic Regression

be found in Draper and Smith ( 1998 , p. 136). The maximum likelihood 
result can also be found in Draper and Smith ( 1998 , p. 137). 

 In practice, once we consider multiple regression, there is an 
issue of how many candidate variables should be included in the 
regression. Also, some of the variables that we think affect the depen-
dent variable may be related to each other, and so some different 
selections of subsets of the variables may produce essentially the same 
predictions. However, in such cases, we have a phenomenon called 
multicollinearity. 

 When this happens, it is not a good idea to include all the variables. 
This is because there may be different sets of values that could be used 
for the parameters to almost identically fi t the data. When this is the 
case, the estimates are unstable, meaning that slight changes in the data 
could produce large changes in the regression parameters. Consequently, 
multicollinearity must be avoided. 

 There are diagnostics for determining when multicollinearity or 
near multicollinearity occurs. Belsley et al. ( 1980 ) cover this in detail. 
Another way to avoid multicollinearity is to use one of the many pos-
sible procedures for selecting a subset of the independent variables. 
Among the possibilities are best subset selection (requiring an evalua-
tion of all possible subsets, which can be a lot of possibilities), forward 
selection (adding variables in one at a time based on an  F  to enter 
criterion), backward selection (start with all variables in the model and 
remove one at a time based on an  F  to exit criterion), and stepwise 
selection (at each stage, when a proper subset of the variables is in the 
regression model  F  to enter and  F  to exit, criteria are looked at to decide 
if the next step should be to add or drop a variable, and which variable 
to remove [add]). 

 Other texts on regression cover these methods in detail, but are not 
important to cover in this text. These methods are all available in most 
statistical packages that include multiple regression. 

 We will illustrate multiple regression by again using the Florida 
2000 Presidential Election results. We will attempt to predict Buchanan ’ s 
votes in Palm Beach on the basis of the data from all the other counties, 
but not simply use Bush ’ s or Gore ’ s or Nader ’ s votes in a simple linear 
regression. Rather, we will look at a multiple regression model using 
Bush, Gore, and Nader, and the possible subsets of these. We hope to 
get a better prediction by using more than one predictor, but we also 
realize that these vote totals are positively correlated because of the 
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7.5 Multiple Regression 113

variability of the size of the counties, and hence all candidate votes 
increase together because the increase is primarily due to the larger size 
of county. 

 Using the software package SAS, we looked at three of the possible 
multiple regression models. Let  N  1     =    Gore ’ s total votes in the county, 
 N  2     =    Bush ’ s total,  N  3     =    Nader ’ s total, and M    =    Buchanan ’ s total votes 
(the dependent variable). The three models are as follows:

   1.      M     =      β   1  N  1     +      β   2  N  2     +      β   3  N  3     +      α .   

  2.      M     =      β   2  N  2     +      β   3  N  3     +      α .   

  3.      M     =      β   2  N  2     +      β   3  N  3     +      β   23  N  2  N  3.     

 In model 1, the coeffi cient   β   1  was not statistically signifi cant. So 
model 1 was dispensed with, and only models 2 and 3 remained under 
consideration. The SAS code used to obtain the results is given in italics 
as follows:

    data fl orida  ;  

    input county$ gore bush buchanan nader;   

   cards;   

   alachua 47300 34062 262 3215   

   baker 2392 5610 73 53   

    ‘    

  .  

  .  

   walton 5637 12176 120 265   

   washingtn 2796 4983 88 93   

   ;   

   run;   

   data fl orid2;  

    set fl orida;   

   if county     =      ’ palmbch ’  then delete;   

   nbinter     =     nader * bush;     
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114 CHAPTER 7 Correlation, Regression, and Logistic Regression

   run;   

   proc reg;   

   model buchanan     =     nader bush gore;   

   run;   

   proc reg;   

   model buchanan     =     nader bush;   

   run;   

   proc reg;   

   model buchanan     =     nader bush nbinter;   

   run;       

 The data statement at the beginning creates the SAS data set 
 “ fl orida, ”  with  “ county ”  as a character variable, which is indicated by 
 “ $ ”  after it in the input statement, and  “ gore, bush, buchanan and nader ”  
as numerical variables representing the vote totals for that candidate in 
the given county. The input statement tells how to assign the data that 
will be read. The cards statement indicates that the data read according 
to the input statement is to follow. The symbol  “ ; ”  at the end of the 
data indicates the completion of reading the data. The statement  “ run ”  
indicates the fi nish of the data step. 

 The next statement is a new data step used to modify the original 
data set. The set statement means to copy the data set fl orida into 
fl orid2. The  “ if statement ”  deletes the line corresponding to Palm Beach 
county, so that the model will be constructed without including Palm 
Beach. The statement  “ nbinter    =    nadir * bush ”  creates a variable equal 
to the product of Nader ’ s total with Bush ’ s total. This variable will be 
used as the interaction term in the third regression. 

 The fi rst regression generates model 1, where we can test the sig-
nifi cance of Gore ’ s total when included with Bush and Nader. This is 
part of the standard SAS output for this procedure. The second regres-
sion is for the model that includes Bush and Nader ’ s votes only to 
predict Buchanan ’ s total. The third regression incorporates an interac-
tion term between Bush and Nader. 

 The output is now presented in bold face, as follows: 
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7.5 Multiple Regression 115

   Variable      df      Parameter         Standard      T   for H 0 :       

           Estimate      Error      Parameter      
=      0   

   Prob      
>      |T|   

   INTERCEP      1      54.757978      14.29169893      3.831      0.0003   

   NADER      1      0.077460      0.01255278      6.171      0.0001   

   BUSH      1      0.001795      0.00056335      3.186      0.0023   

   GORE      1       – 0.000641      0.00040706       − 1.574      0.1205   

 Model: MODEL1 (using votes for Nader, Bush, and Gore to predict 
votes for Buchanan  ) 
 Dependent Variable: BUCHANAN 

Analysis of Variance

 Parameter Estimates 

   Source      df   
   Sum of 
Squares      Mean Square      F   - Value   

   Prob      
>      F   

   Model      3      2777684.5165      925894.82882      114.601      0.0001   

   Error      62      500914.34717      8079.26366           

   Total      65      3278598.8636               

       Root 
MSE   

   89.88472      R   2       0.8472       

       Dep 
Mean   

   211.04545      Adj   R   2       0.8398       

       C.V.      42.59022               

 Model: MODEL2 (using votes for Nader and Bush to predict votes 
for Buchanan) 
 Dependent Variable: BUCHANAN 

 Analysis of Variance 

   Source      df   
   Sum of 
Squares   

   
   Mean Square      F   - Value   

   Prob      
>      F   

   Model      2      2757655.9253      1378827.9626      166.748      0.0001   

   Error      63      520942.93834      8268.93553           

   Total      65      3278598.8636               

       Root 
MSE   

   90.93369      R 2       0.8411       
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116 CHAPTER 7 Correlation, Regression, and Logistic Regression

 Model: MODEL3 (using votes for Nader and Bush plus an interac-
tion term Nader * Bush to predict votes for Buchanan) 
 Dependent Variable: BUCHANAN 

 Analysis of Variance 

   Source      df      Sum of 
Squares   

      Prob      
>      F      Mean Square      F   - Value   

   Model      3      2811645.8041      937215.26803      124.439      0.0001   

   Error      62      466953.05955      7531.50096           

   Total      65      3278598.8636               

       Root 
MSE   

   86.78422      R 2       0.8576       

       Dep 
Mean   

   211.04545      Adj   R   2       0.8507       

       C.V.      41.12110               

   Variable      df      Parameter   
   
   Standard      T   for H 0 :       

           Estimate      Error      Parameter    
  =      0   

   Prob    
  >      |  T  |   

   INTERCEP      1      36.353406      16.7731503      2.261      0.0273   

   NADER      1      0.098017      0.01512781      6.479      0.0001   

   BUSH      1      0.001798      0.00046703      3.850      0.0003   

   NBINTER      1       − 0.000000232      0.000000009       − 2.677      0.0095   

 Parameter Estimates 

   Variable      df      Parameter         Standard      T   for H 0 :       

           Estimate      Error      Parameter      
=      0   

   Prob   
   >      |  T  |   

   INTERCEP      1      60.155214      14.03642389      4.286      0.0001   

   NADER      1      0.072387      0.01227393      5.898      0.0001   

   BUSH      1      0.001220      0.00043382      2.812      0.0066   

 Parameter Estimates 

       Dep 
Mean   

   211.04545      Adj R 2       0.8361       

       C.V.      43.08725               
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7.6 Logistic Regression 117

                      For each model, the value of  R  2  describes the percentage of the 
variance in the votes for Buchanan that can be explained by the predic-
tor variables. This is a measure of the goodness of fi t for the model. 
The adjusted  R  2  is slightly smaller and takes into account the fact that 
the estimates have greater variability in prediction due their correlation 
in estimation from a common data set. 

 Both the  R  2  and adjusted  R  2  are highest in model 3. The  R  2  and 
adjusted  R  2  in models 1 and 2 are almost the same. But model 2 is 
preferable to 1 because Gore ’ s coeffi cient is not statistically signifi cant. 
Each model is highly predictive, as indicated by the  p  - value for the 
overall  F  - test, which is 0.0001 in each case. 

 It appears that model 3 is the best. So we will use model 3 to predict 
Buchanan ’ s total in Palm Beach County. Here are the predictions that 
each model would give.

   Model 1: 587.710 votes for Buchanan  

  Model 2: 649.389 votes for Buchanan  

  Model 3: 659.236 votes for Buchanan    

 We see that none of the models predict more than 660 votes for 
Buchanan. Not mentioned in the section on simple linear regression 
were the simple linear regression models. Without going into the details, 
which can be found in Chernick and Friis ( 2003 ), the prediction for the 
simple linear regression models ranged from 600 to 1076. 

 Recall that Palm Beach actually recorded 3407 votes for Buchanan. 
This is more than three times the amount obtained by any of the predic-
tions. Subtracting the predictions from 3407, we see that Buchanan 
received between 2331    =    3407    −    1076 and 2807    =    3407    −    600 that we 
believe were mistakes. Our best estimate is 3407    −    660    =    2747. In any 
case, if these votes should have gone to Gore, this swing would have 
a signifi cant impact on the results.  

   7.6    LOGISTIC REGRESSION 

 Logistic regression is a method used to predict binary outcomes on the 
basis of one or more predictor variables. The goals are the same as with 
linear regression. We attempt to construct a model to best describe the 
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relationship between a response variable and one or more explanatory 
variables. The difference that distinguishes logistic regression from 
other forms of regression is that there are only two possible outcomes, 
and the job is to estimate the probabilities of the two possible outcomes 
or the odds of the outcome of interest. 

 Because we have a dichotomous response variable, we use a very 
different methodology from the one employed in ordinary linear regres-
sion. The text by Hosmer and Lemeshow ( 2000 ) is one of the most 
readable texts devoted to logistic regression and providing instructive 
examples. 

 In this section, we provide one simple example along with its solu-
tion. For logistic regression, we have predictor variables  X 1 , X 2 ,    . . .    X k   
and are interested in 

  E [ Y |  X 1 , X 2 ,    . . .    X k  ], where  Y  is the dichotomous outcome variable. 
This expectation is a probability because  Y  only takes on the values 0 
and 1, and so the conditional expectation is the conditional probability 
that  Y     =    1. For simplicity, we will go through the notation when there 
is only one predictor variable  X  in the model. Then we let 
  π  ( x )    =     E [ Y|X     =     x ]. Now because  Y  is dichotomous and   π  ( x ) is a prob-
ability, it is constrained to belong to (0, 1). The possible values for  X  
may be unconstrained (i.e., may be anywhere between  −  ∞  and  +  ∞ ) 

 Then if we want the parameters   α   and   β   for the right - hand side of 
the equation to be of the linear form   α      +      β x  when  X     =     x , then the left -
 hand side cannot be constrained to a bounded interval such as (0, 1). 
So we defi ne the logit transformation  g ( x )    =    ln[  π  ( x )/{1    −      π  ( x )}]. First 
we note that the transformation   ω  ( x )    =      π  ( x )/{1    −      π  ( x )} takes values 
from (0, 1) to (0,  ∞ ). Then applying the logarithm transforms, it takes 
values from (0,  ∞ ) to ( −  ∞ ,  ∞ ). 

 So the logistic regression model is  g ( x )    =      α      +      β x . The observed 
values of g( X ) will have an additive random error component. We can 
express this on the probability scale by inverting the transformation to 
get   π  ( x )    =    exp(  α      +      β x )/[1    +    exp(  α      +      β x )]. To see this requires a little 
basic algebra as follows: exp(ln[ x ])    =     x  since the natural logarithm and 
the exponential function are inverse functions of each other. Now exp
( g [ x ])    =    exp((  α      +      β x ))    =    exp{ln[  π  ( x )/(1    −      π  [ x ])]}    =      π  ( x )/{1    −      π  ( x )}. 
So we now solve the equation   π  ( x )/{1    −      π  [ x ])    =    exp((  α      +      β x )) for   π  ( x ). 
So multiplying both sides by 1    −      π  ( x ), we get   π  ( x )    =    {1    −      π  ( x )}
exp((  α      +      β x )). Distributing exp((  α      +      β x )) on the right - hand side gives 
us   π  ( x )    =    exp((  α      +      β x ))    −      π  ( x )exp((  α      +      β x )), and then by adding   π  ( x )
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7.6 Logistic Regression 119

exp((  α      +      β x )) to both sides, we have   π  ( x )    +      π  ( x )exp((  α      +      β x ))    =    
exp((  α      +      β x )). Now, we factor out   π  ( x ) from the left - hand side of the 
equation and get   π  ( x )[1    +    exp((  α      +      β x ))]    =    exp((  α      +      β x )). Finally, we 
divide both sides by [1    +    exp((  α      +      β x ))] and get

    π α β α β( ) exp(( )) /[ exp(( ))].x x x= + + +1    

 Our objective in logistic regression is to estimate the parameters   α   
and   β   to provide the  “ best fi t ”  in some statistical sense. Now, in ordinary 
linear regression, when the error terms are normally distributed with 
mean equal to zero and a constant variance, least squares, and maximum 
likelihood are the same. In the logistic regression model, however, 
maximum likelihood and least squares are not equivalent because the 
error term is not normally distributed. Now we proceed to see where 
maximizing the likelihood will take us. 

 Suppose the data consists of the pair ( x i  ,  y i  ) for  i     =    1, 2,    . . .    ,  n . 
The  x i  s are the observed values for  X , and the  y i  s are the observed  Y  -
 values. Remember that the  y i  s are dichotomous and only can be 0 or 1. 
The likelihood function is then

      

 The solution is obtained by taking partial derivatives with respect 
to   α   and   β   to obtain the two equations  Σ [ y i      −      π  ( x i  )]    =    0 and 
 Σ  x i  [ y i      −      π  ( x i  )]    =    0. The parameters   α   and   β   enter these equations 
through the relationship   π  ( x i  )    =    exp((  α      +      β x i  ))/[1    +    exp((  α      +      β x i  ))]. 
These equations must be solved numerically since they are not linear 
in   α   and   β  . It is also not obvious that the solution is unique. 

 For the fi ne details, see Hosmer and Lemeshow ( 2000 ) or Hilbe 
( 2009 ). The logistic regression model is a special case of the general-
ized linear model due to Nelder. The generalized linear model is linear 
in the regression parameters but replaces the response  Y  with a function 
called the link function. In the case of logistic regression, the logit 
function is the link function. If you want to learn more about general-
ized linear model, including other examples, consult McCullagh and 
Nelder ( 1989 ). 

 The data in Table  7.4  was adapted from Campbell and Machin 
( 1999 ) by Chernick and Friis ( 2003 ), and is used here to illustrate a 
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120 CHAPTER 7 Correlation, Regression, and Logistic Regression

  Table 7.4 
Hemoglobin Level ( H  b ), Packed Cell Volume ( PCV ), Age, 
and Menopausal Status for 20 Women   *    

   Subject 
number  

   Hb (g/dL)     PCV (%)     Age (years)     Menopause 
(0    =    no, 1    =    yes)  

     1    11.1    35    20    0  

     2    10.7    45    22    0  

     3    12.4    47    25    0  

     4    14.0    50    28    0  

     5    13.1    31    28    0  

     6    10.5    30    31    0  

     7    9.6    25    32    0  

     8    12.5    33    35    0  

     9    13.5    35    38    0  

  10    13.9    40    40    0  

  11    15.1    45    45    1  

  12    13.9    47    49    0  

  13    16.2    49    54    1  

  14    16.3    42    55    1  

  15    16.8    40    57    1  

  16    17.1    50    60    1  

  17    16.6    46    62    1  

  18    16.9    55    63    1  

  19    15.7    42    65    1  

  20    16.5    46    67    1  

    *   From Chernick and Friis ( 2003 , p. 286, table 12.10).   

logistic regression analysis. The purpose of this data is to fi t a logistic 
regression model to see if the odds of becoming anemic differ for 
women under 30 years of age compared with women over 30. Female 
patients with hemoglobin levels below 12   g/dL were classifi ed as anemic.   

 We see from the data that two out of the fi ve women under 30 were 
anemic, while only 2 of the 15 women over 30 were anemic. None of 
the women experiencing menopause were anemic. It is because during 
menstruation, younger, nonmenopausal women have blood and hemo-
globin loss, while postmenopausal women would not. So it was hypoth-
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esized that the nonmenopausal women would be at greater risk for 
anemia than the postmenopausal women. By risk we mean the probabil-
ity of being anemic given whether or not you are postmenopausal. So 
we are saying that we expect that just conditioning on nonmenopausal 
or postmenopausal, we would expect the conditional probability to be 
higher for nonmenopausal women. 

 Another common way to look at the difference in risks such as 
anemia when comparing two groups like this is the odds ratio, say 
 O  1 / O  2 , where  O  1     =      π   1 /(1    −      π   1 ) and  O  2     =      π   2 /(1    −      π   2 ).  O  1  and  O  2  are 
called the odds — say 1 denotes nonmenopausal women and 2 denotes 
postmenopausal women. Relative risk is   π   1 /  π   2 . So when   π   1  and   π   2  are 
small, 1    −      π   1  and 1    −      π   2  are close to 1, and the odds ratio and relative 
risk are nearly the same. But when they are not small, the two measures 
can differ. Lachin ( 2000 ) is an excellent text on biostatistics that empha-
sizes relative risks and odds ratios. So it is a great source to use to clear 
up any confusion you might have. 

 Campbell and Machin only used the age dichotomized at 30, and 
estimated that the regression parameter for age group was 1.4663, with 
a standard error of 1.1875. The Wald test is the analog in logistic regres-
sion to the  t  - test for signifi cance of the parameter. The value of the 
Wald statistic was 1.5246, which translates to a  p  - value of 0.2169. So 
at least for the two age groups, there was not a statistically signifi cant 
difference. However, age could still be an important factor if the cut 
point should be different or if age is left on a continuous scale. Also, 
it may be that there is too much patient to patient variability for 20 
women to be an adequate sample size. Also, age is correlated with 
menopause. So it may be that age would be far more important if the 
dichotomous menopause variable were not included in the model. 

 The result of performing the logistic regression using the actual 
ages, as was done by Chernick and Friis ( 2003 ), gives a coeffi cient of 
 − 0.2077, with a standard deviation of 0.1223, indicating a possible 
decrease in the risk of anemia with increasing age. The Wald statistic 
is 2.8837, corresponding to a  p  - value of 0.0895. This is signifi cant at 
the 10% level, but not at the 5% level. It could well be that we would 
fi nd greater signifi cance with a larger sample of women. The choice of 
30 to dichotomize was probably a bad choice. We note that 6 of the 15 
women over 30 were not menopausal, and the coeffi cient of 1.4663 
was in the opposite direction of what the alternative hypothesis would 
suggest. 
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  7.7   EXERCISES 

       1.    Defi ne the following terms:

   (a)     Association  

  (b)     The Pearson correlation coeffi cient  

  (c)     Simple linear regression  

  (d)     Multiple linear regression  

  (e)     Nonlinear regression  

  (f)     Scatter plot  

  (g)     Slope of the regression line in simple linear regression      

    2.    What assumptions are needed for the Pearson correlation coeffi cient to be 
a meaningful measure of the relationship between two variables?   

    3.    What is the mathematical relationship between the correlation coeffi cient 
and the slope of the simple linear regression line? Can the slope be nega-
tive and the correlation be positive? If the correlation is zero, what is the 
value of the slope?   

    4.    Regarding outliers:

   (a)     How would you defi ne an outlier?  

  (b)     Does an outlier always imply an error in the data?  

  (c)     Give an example of an outlier that represented an error in the data.  

  (d)     Give an example where the outlier is more important to the research 
than the other observations.      

    5.    What is logistic regression? How is it different from ordinary linear 
regression?   

    6.    How does multiple linear regression differ from simple linear 
regression?   

    7.    What is the defi nition of the multiple correlation coeffi cient  R  2 ?   

    8.    How is  R  2  useful in evaluating the goodness of a model?   

    9.    What is the equivalent to  R  2  in simple linear regression?   

    10.    What is multicollinearity? Why does it pose problems estimating regres-
sion parameters?   

    11.    What is stepwise regression? Why is it used?   

    12.    Refer to Table  7.5 . A psychiatric epidemiologist studied information he 
collected on the anxiety and depression levels for 11 subjects. Produce a 
scatter diagram for anxiety score on the  x  - axis and depression score on 
the  y  - axis.     
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  Table 7.5 
Anxiety and Depression Scores for 11 
Subjects 

   Subject ID     Anxiety score     Depression score  

     1    24    14  

     2    9    5  

     3    25    16  

     4    26    17  

     5    35    22  

     6    17    8  

     7    49    37  

     8    39    41  

     9    8    6  

  10    34    28  

  11    28    33  

    13.    Again referring to Table  7.5 , calculate the following: (a) mean anxiety 
score, (b) mean depression score, (c) standard deviations for depression 
and anxiety scores, and (d) Pearson correlation between anxiety score and 
depression score.   

    14.    An experiment was conducted to study the effect of increasing the dosage 
of a certain barbiturate. Three readings were recorded at each dose. Refer 
to Table  7.6 .

   (a)     Plot the scatter diagram (scatter plot)    

  (b)     Determine by least squares the simple linear regression line relating 
dosage X to sleeping time Y.  

  (c)     Provide a 95% two - sided confi dence interval for the slope.  

  (d)     Test that there is no linear relationship at the 0.05 level.      

    15.    Fit the model and predict the sleeping time for a 12    μ M/kg?> 

  (a)     The Pearson product moment correlation coeffi cient  

  (b)     A test result as to whether or not the correlation coeffi cient is signifi -
cantly different from 0 at the 0.05 signifi cance level.  

  (c)     The same test as (b) but at the 0.01 signifi cance level.      
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    16.    Table  7.7  shows the Math Olympiad scores for 33 math students at 
Churchville Elementary School in Churchville, Pennsylvania in 2002. We 
are interested in how well the fi rst score (test 2) predicts the students next 
score (test 3). Plot the scatter diagram for this data. Compute the Pearson 
correlation coeffi cient and the square of the correlation coeffi cient. 
Calculate the mean score for test 2 and the mean score for test 3.     

    17.    Math Olympiad and regression toward the mean. The least squares regres-
sion equation for exam score 3,  y  as a function of exam score 2,  x , is:

    y x= +0 4986 1 0943. . .    

 The possible scores for exam 2 are 0, 1, 2, 3, 4, and 5. For each pos-
sible score, use the above regression equation to predict the score for exam 
3 for a student who got that score on exam 2. Fill in the predicted scores 
for Table  7.8 .     

    18.    Having computed the average scores on exams 2 and 3, you know that in 
both cases, the average is somewhere between 2 and 3. So scores on exam 
2 of 0, 1, and 2 are below average, and scores of 3, 4, and 5 are above 
average. Compare the scores on exam 2 with their predicted score for 
exam 2 scores of 0, 1, and 2. Are the predicted scores lower or higher than 
the exam 2 score? Now, for scores 3, 4, and 5, are the predicted scores 

  Table 7.6 
Dosage Versus Sleeping Time 

   Sleeping time  Y  (hours)     Dosage  X  ( μ M/kg)  

  4    3  

  6    3  

  5    3  

  9    10  

  8    10  

  7    10  

  13    15  

  11    15  

  9    15  

   Σ  Y     =    72     Σ  X     =    84  

   Σ  Y  2     =    642     Σ  X  2     =    1002  

   Σ  XY     =    780      
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  Table 7.7 
Math Olympiad Scores for Churchville Students 

   Student number     Score on exam 2     Score on exam 3  

     1    5    4  

     2    4    4  

     3    3    1  

     4    1    3  

     5    4    4  

     6    1    1  

     7    2    3  

     8    2    2  

     9    4    4  

  10    4    3  

  11    3    3  

  12    5    5  

  13    0    1  

  14    3    1  

  15    3    3  

  16    3    2  

  17    3    2  

  18    1    3  

  19    3    2  

  20    2    3  

  21    3    2  

  22    0    2  

  23    3    2  

  24    3    2  

  25    3    2  

  26    3    2  

  27    2    0  

  28    1    2  

  29    0    1  

  39    2    2  

  31    1    1  

  32    0    1  

  33    1    2  
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  Table 7.8 
Predicting Student's Olympiad 3 Exam 
Score Based on Olympiad 2 Exam Score 

   Exam 2 score     Predicted exam 3 score  

  0      

  1      

  2      

  3      

  4      

  5      

higher or lower than the exam 2 score? What changes when we move 
from below the average to above the average? The result is a mathematical 
property called regression toward the mean. This occurs in any regression 
problem. Some people thought it was a tendency to move toward medi-
ocrity. But that is a fallacy called the regression fallacy.        
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  CHAPTER 8 

Contingency Tables     

     Contingency tables are cross - tabulations of one categorical variable 
versus another. They are used to test hypotheses about association 
between the variables or differences among proportions. We will see 
that the chi - square test is an approximate test for association when the 
data set is large enough. Large enough means that each cell in the table 
is fi lled with a reasonable number of counts (5 as a minimum is a good 
rule of thumb). 

 On the other hand, Fisher ’ s exact test and its generalizations achieve 
the exact signifi cance level, but require an added assumption that the 
row sums and the column sums are fi xed at their observed levels when 
comparing the existing table with other possible arrangement that occur 
under the null hypothesis of no association (sometimes referred to as 
independence). 

 The simplest table is the 2    ×    2, where each variable can have only 
two categories. However, in general, we have the  R     ×     C  table where  R  
is the number of categories for the row variable, and  C  is the number 
of categories for the column.  

   8.1   2    ×    2 TABLES AND CHI - SQUARE  

 For an example of a 2    ×    2 table, consider the case: Let us consider 
whether or not there is a difference in the preference for western 
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medicine versus alternative medicine between men and women. 
Suppose we have a questionnaire where we ask the respondents if they 
prefer western medicine or alternative medicine, and we tell them that 
they must choose one over the other. We also keep track of the gender 
of all the respondents. Table  8.1  illustrates the 2    ×    2 table that corre-
sponds to the results of such a survey.   

 The table above presents the observed frequencies from a survey 
of men and women. Out of 100 men, 49 favored western medicine, and 
51 favored alternative medicine. Out of 100 women, 30 favored western 
medicine, and 70 favored alternative medicine. The expected frequen-
cies represent the total (not necessarily an integer because it is an 
average) in each of the four cells under the assumption of no associa-
tion. The cell counts are represented algebraically as  A  for men favoring 
western medicine,  B  for men favoring alternative medicine, and  C  for 
women favoring western medicine, and  D  for women favoring alterna-
tive medicine. 

 The expected value under the null hypothesis of no difference or 
independence for the cell containing  A , we shall denote as  E ( A ), and 
similarly for  B ,  C , and  D .  E ( A ) is the product of the two proportions 
involving  A  multiplied by  N  (the grand total). So  E ( A )    =     N [( A     +     B )/ N ]
[( A     +     C )/ N ]    =     N ( A     +     B )( A     +     C )/ N  2     =    ( A     +     B )(A    +    C)/ N . By the same 
argument, E (B)    =    (B    +    A)( B     +     D )/ N , and  E ( C )    =    ( C     +     D )( C     +     A )/ N , 
and  E ( D )    =    ( D     +     C )( D     +     B )/ N . Applying these formula in the example 
in Table  8.1 , the values in parentheses are obtained using  A     =    49, 
 B     =    51,  C     =    30, and  D     =    70. 

  Table 8.1 
Preference for Type of Medical Care by Gender 

   Type of medical care preference  

   Gender     Western medicine     Alternative medicine     Row total  

  Men    49 (39.5) A    51 (60.5) B    100 (100) A    +    B  

  Women    30 (39.5) C    70 (60.5) D    100 (100) C    +    D  

  Column total    79 (79) A    +    C    121 (121) B    +    D    200 (200) 
N    =    A    +    B    +    C    +    D  

      Grand total  

   Expected frequencies are shown in parentheses.   
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8.2 Simpson’s Paradox in the 2 × 2 Table 129

 In general, Karl Pearson ’ s chi - square test determines the goodness 
of fi t of the observed data to the expected value under a model. This is 
a general asymptotic result that applies to a wide variety of problems, 
including testing for independence between two variables, as in the 
current example. The asymptotic distribution in the general case of an 
 R     ×     C  contingency table is the central chi - square distribution with 
( R     −    1)( C     −    1) degrees of freedom. So in the 2    ×    2 table,  R     =    2 and 
 C     =    2, and hence the degrees of freedom is 1. The chi - square statistic 
is given by the formula

    χ2 2= −∑( ) ,O E Ei i i   

where  O i   is the observed total in for cell  I , and  E i   is the expected total 
for cell i.

    
χ2 2 2

2

49 39 5 39 5 30 39 5 39 5

51 60 5 60 5 70 60

= − + − +
− + −

( . ) / . ( . ) / .

( . ) / . ( .55 60 5 7 552) / . . .=
   

 For  α     =    0.05, the critical value for a chi - square random variable 
with 1 degree of freedom is 3.84. So, since 7.55    >>    3.84, the choice of 
type of medical care does differ between men and women.  

   8.2    SIMPSON ’ S PARADOX IN THE 2    ×    2 TABLE 

 Sometimes, as for example in a meta - analysis, it may be reasonable to 
combine results from two or more experiments, each of which produces 
a 2    ×    2 table. We simple cumulate for the corresponding cells in each 
table the sum of the counts over all the tables. 

 However, this creates an apparent paradox, known as Simpson ’ s 
paradox. Basically, Simpson ’ s paradox occurs when we see an apparent 
association in each of the individual tables, but not in the combined 
table or the association reverses! 

 To understand this better, we take the following example from 
Lloyd ( 1999 , pp. 153 – 154). For this analysis (a fi ctitious example used 
to illustrate the issue), a new cancer treatment is given, experimentally, 
to the patients in hospital A, who have been categorized as either ter-
minal or nonterminal. 

 Before we analyze the patients based on their terminal/nonterminal 
category, we naively think that we can see a difference in survival 
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simply based on the treatment without regard to their status. Hospital 
A follows the patients, and records the results after 2 years of follow -
 up, hoping to see better survival under the new treatment. The results 
are given in Table  8.2   . 

 By examining the table, the results seem clear. There were 221 
patients receiving the new treatment, and 221 the old. But the old treat-
ment appears better because 177 survived, compared with only 117 
under the new treatment. The survival rate for patients under the old 
treatment is 80.1%, and only 52.9% for the new treatment. This is puz-
zling to the investigators, because they thought that the new treatment 
was better! 

 The investigators think about it, and now they say to themselves 
 “ maybe the greater survival in the old treatment group could be due to 
an imbalance of terminally ill patients. ”  Since terminally ill patients 
are likely to die regardless of treatment, it is possible that the observed 
difference is explained, because many more patients were terminally 
ill in the new treatment group. 

 They decide to split the data into two groups and generate two 2    ×    2 
tables. Table  8.3  is the table for the terminal patients, and Table  8.4  for 
the nonterminal patients.   

  Table 8.2 
All Patients: Survival Versus Treatment 

   Treatment     Survived 2 years     Died within 2 years     Total  

  New    117    104    221  

  Old    177    44    221  

  Total    294    148    442  

  Table 8.3 
Terminal Patients Only: Survival Versus 
Treatment 

   Treatment     Survived 2 years     Died within 2 years     Total  

  New    17    101    118  

  Old    2    36    38  

  Total    19    137    156  
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 Here, the picture is quite different. The survival rate is much lower 
in the terminal patients (as we should expect), and many more terminal 
patients got the new treatment compared with the old 118 versus 38. 
In the terminal group, the survival rate for those getting the new treat-
ment is 14.4% compared with only 5.2% for patients on the old treat-
ment. For the nonterminal patients, the new treatment group has a 
survival rate of 97.1%, slightly higher than the 95.6% for the old treat-
ment group. 

 So here is the paradox. The new treatment is apparently better in 
both subgroup analyses (although probably not statistically signifi -
cantly better for the nonterminal patients). So based on the subgroup 
analysis, the new treatment might get regulatory approval. However, if 
we only had the combined results, we would be convinced that the new 
treatment is inferior to the old treatment. 

 So why does Simpson ’ s paradox occur and how do we resolve it? 
First, notice the imbalance between the subgroups. Only 156 patients 
were terminal compared with 286 in the nonterminal group. Also, in 
the terminal group, there were far more patients getting the new treat-
ment (118), while only 38 patients got the old treatment. These imbal-
ances mask the benefi t of the new treatment when the data is combined. 
Also notice that the survival rates are so drastically different for termi-
nal and nonterminal patients. 

 A total of 275 out of 286 nonterminal patients survived (96.15%), 
whereas only 19 out of 156 survived among the terminal patients only 
(12.18%). So the combination of the two groups makes no sense. It is 
like adding apples with oranges. In reality, the combined table is mean-
ingless and presents a distorted picture. 

 In such cases, we would not combine these two studies in a meta -
 analysis, as they are estimating radically different success probabilities. 

  Table 8.4 
Nonterminal Patients Only: Survival Versus 
Treatment 

   Treatment     Survived 2 years     Died within 2 years     Total  

  New    100    3    103  

  Old    175    8    183  

  Total    275    11    286  
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So the investigators were right in thinking that the status of the disease 
had a confounding effect on the result in the combined table, and the 
analysis should have done only on the separate groups. Thus, Simpson ’ s 
paradox is not a true paradox, but rather a misunderstanding about the 
proportions in the tables. 

 Another way to deal with this to avoid the occurrence of Simpson ’ s 
paradox would be stratifi cation. Make sure that there are suffi ciently 
large numbers of terminal and nonterminal patients. Also through ran-
domization we can make sure that an equal number in each group get 
the new treatment as get the old. The stratifi cation can force any ratio 
of nonterminal to terminal; a 1 to 1 balance is not necessary, but an 
approach that creates a near 1 to 1 balance will do the job.  

   8.3    THE GENERAL  R     ×     C  TABLE 

 The  R     ×     C  table is a generalization of the 2    ×    2, where the column 
variable can have two or more categories denoted by  C , and the row 
variable can also have two or more categories denoted by  R . The chi -
 square statistic has the same form, but as mentioned earlier, the asymp-
totic distribution under the null hypothesis is a central chi - square, with 
( R     −    1)( C     −    1) degrees of freedom, compared with 1 for the 2    ×    2 table. 

 To illustrate, we will look at an example of a 3    ×    3 table. The data 
is a sample taken from a registry of women with breast cancer. The 
research problem is to see if there is a relationship with the ethnicity 
of the patient and the stage of the cancer. The three ethnicities consid-
ered are Caucasian, African American, and Asian. The three stages are 
called  in situ , local, and distant. The data in the 3    ×    3 table is given 
next in Table  8.5 .   

 The chi - square statistic is again obtained by taking the observed 
minus expected squared divide by the expected in each of the nine cells 
and summing them together. We see that the Asians seem to be very 
different from their expected value under the independence model. 
Also, the in situ stage has all ethnicities, with totals very different from 
their expected values. The chi - square statistic is 552.0993. For the chi -
 square with degrees of freedom    =    (3    −    1)(3    −    1)    =    2    ×    2    =    4. A value 
of 16.266 corresponds to a  p  - value of 0.001. So the  p  - value for a chi -
 square value of 552.0993. 

 Thus far, all the tables we have studied had plenty of counts in each 
cell. So the chi - square test is highly appropriate and gives results very 
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close to other asymptotic and exact nonparametric tests. However, 
when some cells are sparse (i.e., 0 – 4 counts in those cells), Fisher ’ s 
exact test for 2    ×    2 tables and its generalization to the R    ×    C table is a 
better choice. That is the topic of the next section.  

   8.4    FISHER ’ S EXACT TEST 

 In contingency tables, the counts in each cell may be totally random, 
and hence the row and column totals are not restricted. However, there 
are cases where the row totals and column totals (called marginal totals 
or margins) are fi xed in advance. In such cases, it makes sense to con-
sider as the sample space all possible tables that yield the same totals 
for each row and each column. The distribution of such tables under 
the null hypothesis of independence is known to be a hypergeometric 
distribution. 

 So one could ask under the null hypothesis is our observed table 
likely to occur or not based on the known hypergeometric distribution. 
This idea goes back to Fisher ( 1935 ) for 2    ×    2 tables, and can easily 
be generalized to any  R     ×     C  table. This idea has been applied even 
when the rows and column need not be the same as in the observed 
table, with the argument being that it still makes sense to condition on 
the given values for the row and column totals. In fact, the Fisher exact 
test gives nearly the same results as the chi - square when the chi - square 
is appropriate as an approximation, and the chi - square test does not 

  Table 8.5 
Association Between Ethnicity and Breast Cancer Stage From a 
Registry Sample   *    

   Stage of breast cancer  

   Ethnicity      In situ      Local     Distant     Total  

  Caucasian    124 (232.38)    761 (663,91)    669 (657.81)    1554  

  African 
American  

  36 (83.85)    224 (239.67)    301 (237.47)    561  

  Asian    221 (64.87)    104 (185.42)    109 (183.71)    434  

  Total    381    1089    1079    2549  

    *   Note:   Count with expected count in parentheses.   
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involve any conditioning on the marginal totals. As a historical note, 
Conover ( 1999 ) points out that the same idea appeared in Irwin ( 1935 ) 
and Yates ( 1934 ). So it is not clear whether or not Fisher should be 
credited as the originator. 

 Now, let us see, in the case of the 2    ×    2 table how the hypergeomet-
ric distribution occurs under the null hypothesis. Let  N  be the total 
number of observations. The totals for the two rows are  r  and  N     −     r  for 
our data set. Similarly we have column totals of  c  and  N     −     c . Table  8.6  
shows the complete picture.   

 Because the values  r ,  c , and  N  are fi xed in advance, the only 
random variable remaining is  x , by our notation the entry in the cell for 
row 1 and column 1. Now,  x  can vary from 0 to the minimum of  c  and 
 r . This restriction happens because the sum of the two columns in row 
1 must be  r , and the sum of the two rows in column 1 must be  c . 

 As we provide different values for  x , we get different 2    ×    2 con-
tingency tables. So the possible values of  x  determine all the possible 
2    ×    2 tables with the margins fi xed. For the null hypothesis of indepen-
dence, the probability of  p  1  that an observation falls in row 1 is equal 
to the probability  p  2  that an observation falls in row 2 regardless of 
what column it is in. The same argument can be made for the columns. 
The random variable  T     =     x  has the hypergeometric distribution that 
is for  x     =    0, 1,    . . .    , min( r, c )  P ( T     =     x )    =     C ( r, x ) C ( N     −     r ,  c     −     x )/ C ( N ,  c ) 
and  P ( T     =     x )    =    0 for any other value of  x  where  C ( n ,  m )    =     n !/[( n     −     m )! 
 m !] for any  m     ≤     n . 

 A one - sided  p  - value for the test for independence in a 2    ×    2 table 
is calculated as follows:

   1.     Find all 2    ×    2 tables with the same row and column totals of the 
observed table where cell (1, 1), row 1 and column 1, has a total 
less than or equal to  x  from the observed table, and a probability 
less than or equal to the observed probability.  

  Table 8.6 
Basic 2    ×    2 Contingency Table 

        Column 1     Column 2     Row totals  

  Row 1     x      r     −     x      r   

  Row 2     c     −     x      N     −     r     −     c     +     x      N     −     r   

  Column totals     c      N     −     c      N   
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8.4 Fisher’s Exact Test 135

  2.     Use the above formula for the hypergeometric distribution to cal-
culate the probability of these tables under the null hypothesis.  

  3.     Sum the probabilities for all such tables.    

 This gives a one - sided  p  - value. To get a  p  - value for the other side, 
sum all the probabilities of tables where cell (1, 1) has values greater 
than or equal to  x , and probability lower than the observed probability. 
The two - sided  p  - value is just the sum of the two one - sided  p  - values 
minus the observed probability, because the sum would count the 
observed probability twice. 

 We now illustrate an example of testing skills at detecting order. 
Now suppose as hypothesized by Agresti ( 1990 , p. 61) that an experi-
ment was conducted to test the null hypothesis of random guesses 
versus the alternative of skill in detecting order. Agresti ’ s well - known 
text was revised (see Agresti [ 2002 ]). The patient is given a medicine 
and water. She is told that four of the cups have the water poured fi rst, 
and four had the medicine place in the cup fi rst, and then the water was 
added. The cups are numbered 1 – 8. Because she knows that four are 
water fi rst, and four are medicine fi rst, the table is constrained to have 
both row margins and both column margins totaling four. The table 
looks like Table  8.7 .   

 Here, the conditioning is uncontroversial, because the experimenter 
told the patient the row and column constraints. There are now only 
fi ve possible tables: (1) perfect guessing  x     =    4, (2) two mistakes out of 
eight guesses when  x     =    1, (3) four mistakes out of eight guesses when 
 x     =    2, (4) six mistakes out of eight guesses when  x     =    3, and (5) eight 
mistakes out of eight guesses when  x     =    4. Clearly, the more mistakes 
that there are, the further we are from the alternative hypothesis. The 

  Table 8.7 
Patient Taking Medicine Experiment: Possible 
2    ×    2 Tables 

   Placed in cup 
fi rst  

   Patient guesses 
medicine  

   Patient 
guesses water  

   Row totals  

  Medicine     x     4    −     x     4  

  Water    4    −     x      x     4  

  Column totals    4    4    8  
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null hypothesis expects four mistakes. This test is naturally one sided, 
since the patient claims skill, meaning she get more right than four out 
of eight, and less than four simply says that she is no better or worse 
at guessing than by chance. We do the experiment and get a result where 
she guesses 1  “ water fi rst ”  wrong and 1  “ medicine fi rst ”  wrong. Her 
table looks like Table  8.8 .   

 There is one table more extreme than the observed, and that is the 
perfect guess table with  x     =    4. The  p - value  for this experiment is the 
sum of the probabilities that  x     =    3 and  x     =    4. So  p     =     C (4, 3) C (4, 1)/ C (8, 
4)    =    (4!/[3! 1!])(4!/[1! 3!])/(8!/[4! 4!])    =    4(4) 4!/8 7 6 5)    =    16/70    =    8/
35    =    0.229. Perfect guessing has probability 1/70    =    0.0142. So the  p -
  value for the experiment is 0.229    +    0.014    =    0.243. This is not statisti-
cally signifi cant. Only a perfect score would have been signifi cant for 
a sample size of eight, with four of each mixture. 

 Fisher ’ s exact test is an example of nonparametric procedures that 
go by various names: permutation tests, randomization tests or reran-
domization tests. For a modern treatment of these procedures, see Good 
( 2000 ). In Fisher ’ s original book (Fisher  1935 ), the exact problem is 
presented except that instead of a patient taking medicine, it is a lady 
tasting tea. The experiment itself is covered in detail in Salsburg (2001), 
a beautiful story of the history of the development of statistics through 
the twentieth entury.  

   8.5    CORRELATED PROPORTIONS AND 
MCNEMAR ’ S TEST 

 When considering the paired  t  - test, we recognized the advantage of 
reducing variance through the use of correlated observations. Since we 

  Table 8.8 
Patient Taking Medicine Experiment: Observed 
Table 

   Placed in cup 
fi rst  

   Patient guesses 
medicine  

   Patient 
guesses water  

   Row totals  

  Medicine    3    1    4  

  Water    1    3    4  

  Column totals    4    4    8  
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were looking at mean differences, it was positive correlation that 
helped. McNemar ’ s test is used for correlated categorical data. We can 
use it to compare proportions when the data are correlated. Even if there 
are more than two categories for the variables, McNemar ’ s test can be 
used if there is a way to pair the observations from the groups. 

 As an example, suppose that we have subjects who are attempting 
to quit smoking. We want to know which technique is more effective: 
a nicotine patch or group counseling. So we take 300 subjects who get 
the nicotine patch and compare them to 300 subjects who get the coun-
seling. We pair the subjects by characteristics that we think could also 
affect successful quitting and pair the subjects accordingly. 

 For example, sex, age, level of smoking, and number of years you 
have smoked may affect the diffi culty for quitting. So we match sub-
jects on these factors as much as possible. Heavy smokers who are 
women and have smoked for several years would be matched with other 
women who are heavy smokers and have smoked for a long time. We 
denote by 0 as a failure to quit, where quitting is determined by not 
smoking a cigarette for 1 year after the treatment. We denote by 1 a 
success at quitting. 

 The possible outcomes for the pairs are (0, 0), (0, 1), (1, 0), and 
(1, 1). We will let the fi rst coordinate correspond to the subject who 
receives the nicotine patch, and the second coordinate his match who 
gets counseling instead. The pairs (0, 0) and (1, 1) are called concordant 
pairs because the subjects had the same outcome. The pair (0, 0) means 
they both failed to quit, while the pair (1, 1) means that they both were 
able to quit. The other pairs (0, 1) and (1, 0) are called discordant pairs 
because the matched subjects had opposite outcomes. 

 The concordant pairs provide information indicating possible posi-
tive correlation between members of the pair without providing infor-
mation about the difference between proportions. Similarly, the 
discordant observations are indicative of negative correlation between 
the members of the pair. The number of 1s and 0s in each group then 
provides the information regarding the proportions. 

 What we mean is that if I only tell you a pair is concordant and not 
whether it is (0, 0) or (1, 1), you know that they are correlated but do 
not know the actual outcome for either subject in the pair. The same 
idea goes for the discordant observations. Although you know the 
results are opposite, indicating a possible negative correlation, and we 
know we have added a success and a failure to the total, we do not 
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know if it is added to the nicotine patch group or the group counseling 
group. 

 Table  8.9  is a 2    ×    2 table that counts the number of each of the four 
possible pairs for this matched experiment.   

 Under the null hypothesis that success does not depend on the 
treatment, we would expect the discordant observations (0, 1) and (1, 
0) to be approximately equal. So the expected total given the discordant 
total  R     +     Y  would be ( R     +     Y )/2. McNemar ’ s test statistic is 
 T     =    ( R     −    [ R     +     Y ]/2) 2 /{( R     +     Y )/2}    +    ( Y     −    [ R     +     Y ]/ 2 ) 2 /{( R     +     Y )/2}. This 
is just like the chi - square statistic summing  “ the observed minus 
expected squared divided by expected. ”  After some algebra we see for 
the 2    ×    2 table, this simplifi es to ( R     −     Y ) 2 /[2( R     +     Y )], and so the test is 
equivalent to testing for large values of  W     =    ( R     −     Y ) 2 /( R     +     Y ). For a 
more detailed account, see Conover ( 1999 , p. 166). In this example, 
we get (92    −    48) 2 /(92    +    48)    =    (44) 2 /140    =    0.1936/140    =    13.82. Now 
under the null hypothesis, T is asymptotically chi - square with 1 degree 
of freedom.  T     =     W /2    =    6.91. Consulting the chi - square table, we see 
that the  p  - value is slightly less than 0.01. 

 For more than two categories in each group the idea of concordant 
and discordant pairs extends, and McNemar ’ s test can be applied to an 
 R     ×    2 table.  

   8.6    RELATIVE RISK AND ODDS RATIO 

 Relative risks and odds ratios are important in medical research and 
are common in epidemiology studies as well. For a detailed discussion 
of these concepts, see Lachin ( 2000 ), and, from the epidemiologists 

  Table 8.9 
Outcomes for Pairs of Subjects Attempting to Stop Smoking 

        Counseling failure     Counseling success     Nicotine patch total  

  Nicotine patch 
failure  

   N     =    143 (0, 0)     R     =    48 (0, 1)     N     +     R     =    191  

  Nicotine patch 
success  

   Y     =    92 (1, 0)     Z     =    17 (1, 1)     Y     +     Z     =    109  

  Counseling total     N     +     Y     =    235     R     +     Z     =    65     N     +     Y     +     R     +     Z     =    300  
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perspective, Friis and Sellers ( 1999 ). Both concepts are germane to 
contingency tables where proportions are considered. Relative risk is 
used in cohort studies. Suppose we have a population of subjects who 
have different exposure to risk factors for a particular disease. 

 We have a record of their medical history and information on past 
exposure. Then we follow these patients to see if they get the disease. 
The occurrences of new cases of the disease, in this population, are 
compared between groups with different exposure to see if the exposure 
affects the incidence rates. Table  8.10  shows the concept of relative risk 
in a 2    ×    2 table.   

 The relative risk can vary from 0 to  ∞ . It is the ratio of the propor-
tion of the cases where the disease occurs, given the factor is present 
to the proportion of cases where the disease occurs, given the factor is 
absent. It shows how many times the risk increases or decreases accord-
ing to whether or not the factor is present. So a relative risk of 2 for 
lung cancer when the subject is a smoker compared with a nonsmoker 
is interpreted as smoking doubles your risk of getting lung cancer. Table 
 8.11  shows a 2    ×    2 table for lung cancer with smoking as a factor from 
a cohort study.   

 So we see from Table  8.11  that the relative risk is 6.53, which 
means that you are over 6.5 times more likely to get lung cancer if you 
smoke than if you don ’ t smoke. So a relative risk greater than 1 in this 
case means that the factor increases your chances of getting the disease. 

 Consequently we often test that the relative risk is different from 
1 or perhaps greater than 1 if we anticipate a negative effect from the 
factor. In Chapter  10 , when we cover survival analysis, we will see how 
the survival models allow us to obtain tests of hypotheses on the rela-
tive risk or construct confi dence intervals for it. This is often done when 
the Cox proportional hazard model is fi t to the survival data. In such a 

  Table 8.10 
Assessment of Relative Risk in a 2    ×    2 Table 

   Outcome  

   Factor     Present     Absent     Total  

  Yes     a      b      a     +     b   

  No     c      d      c     +     d   

  RR (relative risk)    =    [ a /( a     +     b ])/[ c /( c     +     d )]    =     a ( c     +     d )/[ c ( a     +     b )]  
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situation, the relative risk is the same as the hazard ratio. This will be 
explained in Chapter  10 . 

 A closely related concept is the odds ratio. Suppose we want to do 
a case - control study to look at the risk that smoking cases with respect 
to lung cancer rather than a cohort study. For such a study, we would 
have a 2    ×    2 table of the form given as Table  8.12 .   

 Now Table  8.13  shows the calculation for a particular small case -
 control study.   

  Table 8.12 
2    ×    2 Assessment of an Odds Ratio 

   Factor     Cases     Controls  

  Yes     a      B   

  No     c      D   

  Total     a     +     c      b     +     d   

  OR (odds ratio)    =    ( a / c )/( b / d )    =     ad /( bc )  

  Table 8.13 
2    ×    2 Assessment of an Odds Ratio 

   Smoker     Lung cancer cases     Controls  

  Yes    18    15  

  No    9    12  

  Total    29    27  

  OR (odds ratio)    =    18(12)/[(15)9]    =    1.6  

  Table 8.11 
Assessment of Relative Risk in a 2    ×    2 Table from Lung Cancer 
Cohort Study 

   Lung cancer  

   Smokers     Present     Absent     Total  

  Yes    98    202    300  

  No    35    665    700  

  RR (relative risk)    =     a ( c     +     d )/[ c ( a     +     b )]    =    98(700)/[35(300)]    =    6.53  
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 In this study, we see that the interpretation of the odds is that the 
odds are 1.6 times greater that a nonsmoker who is otherwise similar 
to the smoker. Odds represent the ratio of the probability of occurrence 
to the probability that the disease does not occur, and the odds ratio is 
just a ratio of the odds for cases divided by the odds for controls. This 
is a little different from relative risk but conveys a similar message. 
When the risk (probability of occurrence of the disease) is low, the odds 
ratio provides a good approximation to the relative risk. 

 We looked at point estimates for relative risk and odds ratios, but 
we did not show you how to get confi dence intervals. Confi dence inter-
vals for these estimates are found in Lachin ( 2000 , p. 24 for relative 
risk). We will discuss relative risk again in the context of survival 
analysis in Chapter  10 . 

  8.7   EXERCISES 

       1.    Defi ne the following:

   (a)     Chi - square test  

  (b)     Contingency table  

  (c)     Odds ratio  

  (d)     Relative risk  

  (e)     Cohort study  

  (f)     Case - control study  

  (g)     Test for independence in 2    ×    2 table      

    2.    In a survey study, subjects were asked to report their health as excellent, 
good, poor, and very poor. They were also asked to answer whether or not 
they had smoked at least 250 cigarettes in their lifetime. Suppose Table 
 8.14  represents the outcome of the survey.   

 Determine if there is a relationship between cigarette usage and reported 
health status at the 5% signifi cance level, one sided. What is the  p  - value 
for the chi - square test? Why is it appropriate to use the chi - square test?   

    3.    For the same subjects in the survey in the above table, the subjects were 
asked if they were currently smoking, had quit smoking or never smoked. 
Table  8.15  shows the survey results on smoking status versus health 
assessment.   

 Is reported health status related to smoking status? Test at the 5% level 
one - sided. 
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  Table 8.15 
Relationship Between Reported Health 
Status and Smoker vs. Non-smoker 
Categories 

   Reported 
health status  

   Current 
smoker  

   Quit 
smoking  

   Never 
smoked  

   Total  

  Excellent    20    42    40    102  

  Good    250    300    285    835  

  Poor    117    72    70    259  

  Very poor    29    18    12    59  

  Total    416    432    407    1255  

  Table 8.14 
Relationship Between Reported Health 
Status and Smoking Usage 

   Reported 
health status  

   Smoked 250 or 
more cigarettes  

   Smoked 0 to 
249 cigarettes  

   Total  

  Excellent    30    72    102  

  Good    350    485    835  

  Poor    121    138    259  

  Very poor    39    20    59  

  Total    540    715    1255  

 Why is the chi - square test appropriate here?   

   4.   In the same survey, the subjects also were asked to classify themselves 
according race, with the choices African American, Asian, Hispanic, Native 
Americans, or European American. Twelve subjects failed to respond. 
Table  8.16  shows race versus smoking status.   

 Is race related to smoking status? Test at 5%. Should you do the test 
one - sided or two - sided? Is the chi - square an appropriate test? Does it matter 
that 12 subjects did not respond? If a much higher percentage of the sub-
jects did not respond what might invalidate the analysis?   

    5.    Again using the same survey data, suppose we have statistics at baseline 
regarding the subjects drinking status, as well as their smoking status. 
Given the results in the following table, what would you conclude about 
the relationship between smoking status and drinking status? Test at the 5% 
level (Table  8.17 ).     
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  Table 8.16 
Relationship Between Race and Smoking Status 

   Race     Current 
smoker  

   Quit 
smoking  

   Never 
smoked  

   Total  

  African American    40    34    40    114  

  Asian    33    34    65    142  

  Hispanic    117    92    70    279  

  Native American    20    28    12    60  

  European American    202    232    214    648  

  Total    412    430    401    1243  

  Table 8.17 
Relationship Between Smoking and Alcohol Consumption 

   Smoking 
status  

   Current 
alcohol user  

   Light 
alcohol user  

   Former 
alcohol user  

   Never used 
alcohol  

   Total  

  Heavy    40    24    10    40    114  

  Moderate    33    30    49    30    142  

  Light    30    72    20    38    160  

  None    110    158    232    339    839  

  Total    213    284    311    447    1255  

    6.    A clinical trial is conducted at an academic medical center. Diabetic patients 
were randomly assigned to a new experimental drug to control blood sugar 
levels versus a standard approved drug using a 1   :   1 randomization. Two 
hundred patients were assigned to each group, and the 2    ×    2 table (Table 
 8.18 ) shows the results.   

 Test at the 5% level to determine if the new drug is more effective. Is 
it appropriate to apply the chi - square test? Why would it be diffi cult to do 
Fisher ’ s test without a computer? How many contingency tables are pos-
sible with the given row and column marginal totals?   

    7.    A study involving 75 patients who at one time used sodium aurothiomalate 
(SA) as a treatment for rheumatoid arthritis. The purpose was to examine 
whether or not the toxicity of SA could be linked to the patients sulphoxi-
dation capacity assessed by the sulphoxidation index (SI). For SI, a value 
of 6.0 was used to separate impaired sulphoxidation (SI    >    6.0), with unim-
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paired sulphoxidation (SI    ≤    6.0). The results are given in the 2    ×    2 table 
below (Table  8.19 ).

   (a)     Using Fisher ’ s exact test, determine whether or not impaired sulphoxi-
dation affects toxicity.    

  (b)     Perform a chi - square test on the 2    ×    2 table.  

  (c)     Are the results of the tests similar?             

  

 

 

 

 

 

 

 

 

 

 

 

  Table 8.19 
Relationship Between High or Normal 
Sulphoxidation Index and Major Toxicity 
Reaction 

   Major adverse reaction (toxicity)  

             Yes     No     Total  

  Impaired sulphoxidation (SI    >    6.0)    Yes    32    9    41  

  No    12    22    34  

  Total    44    31    75  

  Table 8.18 
Fasting Blood Glucose Levels (normal vs. out of 
normal range) vs. Drug Treatment Group 

   Fbg level at 
follow - up  

   Patients with 
investigational drug  

   Patients with 
approved drug  

   Total  

  Normal    119    21    140  

  Not normal    81    179    260  

  Total    200    200    400  
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  CHAPTER 9 

Nonparametric Methods     

     Most of the statistical methods that we have covered in this book 
have involved parametric models. The bootstrap, Fisher ’ s exact test, 
and the chi - square test are the exceptions. A parametric model is one 
that involves probability distributions that depend on a few parameters 
(usually fi ve or less). For example, when we assume a normal distribu-
tion the parameters, it depends on are the mean and variance. We then 
use the data to estimate the parameters, and we base our inference on 
the sampling distribution for these estimates based on the parametric 
model. But in many practical situations, the parametric model may be 
hard to justify, or may be found to be inappropriate when we look at 
the sample data. 

 Nonparametric methods on the other hand only assume that the 
distribution function  F  is continuous. Ranking the data or considering 
permutations of the data are two ways to construct test statistics that are 
distribution free under the null hypothesis. Distribution free mean that 
the distribution of the test statistic is known exactly when the null 
hypothesis is assumed, and does not depend on the form or parameters 
of the original data. So, for example, the sign test has a binomial distri-
bution with  p     =    1/2 under the null hypothesis, and Fisher ’ s exact test has 
a specifi c hypergeometric distribution when the null hypothesis is true. 
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146 CHAPTER 9 Nonparametric Methods

 There is a price paid for this, however. That price is that some 
information in the data is ignored. In the case of rank tests, we ignore 
the numerical values of the observations and just consider how they 
are ordered. So when a parametric model is consistent with the data, 
the maximum likelihood estimates make effi cient use of the data and 
provide a more powerful test than its nonparametric counterpart, which 
cannot exploit the information in the distribution ’ s family.  

   9.1    RANKING DATA 

 We use rank tests when we want to make inferences about two or more 
populations and we don ’ t have a good parametric model (that theoretical 
or empirical work would suggest). Suppose, for example, that we have 
samples from two populations. Our null hypothesis is that the two dis-
tributions are identical. In this case, we pool the observations and order 
the pooled data from the smallest value to the largest value. This is like 
temporarily forgetting the population the data points were taken from. 
Under the null hypothesis, this shouldn ’ t matter, since the distributions 
are the same. So the data should be well mixed (i.e., there will not be 
a tendency for the sample from population 1 to have mostly high ranks 
or mostly low ranks). In fact, we would expect that the average rank 
for each population would be nearly the same. On the other hand, if the 
populations were different, then the one with the larger median would 
tend to have more of the higher ranks than the one with the lower median. 

 This is the motivation for the Wilcoxon rank - sum test. Comparing 
the average of the ranks is very similar to comparing the sum of the 
ranks (if the sample sizes are equal or nearly so). The Wilcoxon rank -
 sum test (equivalent to the Mann – Whitney test) compares the sum of 
the ranks from, say, population one, and compares it with the expected 
value for that rank sum under the null hypothesis. This test is the topic 
of the next section. It can be generalized to three or more populations. 
The generalization is called the Kruskal – Wallis test.  

   9.2    WILCOXON RANK - SUM TEST 

 The Wilcoxon rank - sum test is a nonparametric analog to the unpaired 
 t  - test. See Conover  (1999)  for additional information about this test. 
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As previously mentioned, the test statistic is obtained by ranking the 
pooled observations, and then summing the ranks of, say, the fi rst 
population (could equally well have chosen the second population). 

 We will illustrate the test fi rst scores of a leg - lifting test for elderly 
men Table  9.1 .   

 For this problem, the sum of all the ranks is ( N  1     +     N  2 )( N  1     +     N  2     +    1)
/2    =    (5    +    5) (5    +    5    +    1)/2    =    10(11)/2    =    55, since  N  1     =     N  2     =    5. Now, 
since  N  1 /( N  1     +     N  2 )    =    probability of randomly selecting a patient from 
group 1 and  N  2 /( N  1     +     N  2 )    =    probability of randomly selecting a patient 
from group 2, if we multiply  N  1 /( N  1     +     N  2 ) by ( N  1     +     N  2 )( N  1     +     N  2     +    1)/2, 
it gives the expect rank - sum for group 1. This is  N  1 ( N  1     +     N  2     +    1)/2, 
which in our example is 5(11)/2    =    27.5. From the tables for the Wilcoxon 
test, we see that a rank - sum less than 18 or greater than 37 will be 
signifi cant at the 0.05 level for a two - side test. Since  T 1    =    25, we 
cannot reject the null hypothesis. 

 As a second example, we take another look at the pig blood loss 
data. Table  9.2  shows the data the pooled rankings.   

 The  p  - value for this test is greater than 0.20, since the 80% confi -
dence interval for T1 is [88, 122], which contains 112. Now, although 

  Table 9.1 
Left Leg Lifting Among Elderly Males Getting Physical Therapy: 
Comparing Treatment and Control Groups 

   Unsorted scores     Scores sorted by rank  

   Control group     Treatment group     Control group (rank)     Treatment group (rank)  

  25    26        16 (1)  

  66    85    18 (2)      

  34    48    25 (3)      

  18    68        26 (4)  

  57    16    34 (5)      

   N  1     =    5     N  2     =    5        48 (6)  

          57 (7)      

          66 (8)      

              68 (9)  

              85 (10)  

           T 1    =     Σ  R     =    25     T 2    =     Σ  R     =    30  
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148 CHAPTER 9 Nonparametric Methods

the Wilcoxon test cannot reject the null hypothesis that the distributions 
are the same, the  t  - test (one sided) rejected the null hypothesis that the 
means are equal. Why do we get confl icting results? First of all, we 
made two very dubious assumptions when applying the  t  - test. They 
were (1) both populations have normal distributions, and (2) the distri-
butions have the same variances. Standard tests for normality such as 
Wilk – Shapiro or Anderson – Darling would reject normality, and the 
control group standard deviation is about 2.5 times larger than the treat-
ment group. The  F  - test for equality of variances would likely reject 
equality of variances. 

 The  t  - test is therefore not reliable. So it should not be a surprise 
that the test could give erroneous results. Since neither assumption is 
needed for a nonparametric rank test, it is more trustworthy. The fact 
that the result is nonsignifi cant may just be an indication that the sample 
size is too small. Recall also that the Wilcoxon test is not the most 
powerful. 

 We shall now look at another simpler analog to the two - sample 
independent  t -  test. It is called the sign test, and just looks at the sign 
of the difference between the two means.  

  Table 9.2 
Pig Blood Loss Data (mL) 

   Control group pigs (pooled ranks)     Treatment group pigs (pooled ranks)  

  786 (9)    543 (5)  

  375 (1)    666 (7)  

  4446 (19)    455 (3)  

  2886 (16)    823 (11)  

  478 (4)    1716 (14)  

  587 (6)    797 (10)  

  434 (2)    2828 (15)  

  4764 (20)    1251 (13)  

  3281 (17)    702 (8)  

  3837 (18)    1078 (12)  

  Sample mean    =    2187.40 (rank - sum    =    112)    Sample mean    =    1085.90 
(rank - sum    =    98)  

  Sample  SD     =    1824.27    Sample  SD     =    717.12  
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9.3 Sign Test 149

   9.3    SIGN TEST 

 Suppose we are testing the difference in the  “ center ”  of two populations 
that are otherwise the same. This is the same situation that we encoun-
tered with the Wilcoxon rank - sum test, except here we will be consider-
ing paired observations. So the sign test is an analog to the paired  t -  test. 
Another test called the Wilcoxon signed - rank test is a little more com-
plicated and more powerful because it uses the idea of ranking the data 
as well as considering the sign of the paired difference. For simplicity, 
we will only cover the signed test, and the interested reader can go to 
Conover  (1999)  or any of the other many books on nonparametric 
statistics to learn more about the signed - rank test. 

 Now, the idea behind the sign test is that we simply look at the 
paired differences and record whether the difference is positive or nega-
tive. We ignore the magnitude of the difference and hence sacrifi ce some 
of the information in the data. However, we can take our test statistic 
to be the number of cases with a positive sign (or we could choose the 
number with a negative sign). We are assuming the distribution is con-
tinuous. So the difference will not be exactly zero. If we choose to do 
the test in practice when the distribution is discrete, we can simply 
ignore the cases with 0 as long as there are not very many of them. 
Whether we choose the positive signs or the negative signs, under the 
null hypothesis that the distributions are identical, our test statistic has 
a binomial distribution with parameter  n     =    the number of pairs (or the 
number of pairs with a nonzero difference in situations where differ-
ences can be exactly 0) and  p     =     P ( X     >     Y )    =    1/2, where  X     −     Y  is the 
paired difference of a randomly chosen pair and the test statistic is the 
number of positive differences (or  P ( X     <     Y ) if  X     −     Y  is the paired dif-
ference and the test statistic is the number of negative pairs). 

 Now under the alternative hypothesis that the distributions differ 
in terms of their center, the test statistic is binomial with the same  n  
and  p     =     P ( X     >     Y ). However, the parameter  p  is not equal to 1/2. So the 
test amounts to the coin fl ipping problem. Is the coin fair? A coin is 
fair if it is just as likely to land heads as tails. We are asking the same 
question about positive signs for our paired differences. So if we 
compute an exact binomial confi dence interval for the proportion of 
positive paired differences a two - sided test at the 5% signifi cance level 
amounts to determining whether or not a two - sided 95% confi dence 
interval for  p  contains 1/2. 
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 If we want to do a one - sided test with the alternative that  p    >     1/2, 
then we compute a 95% confi dence interval of the form (a, 1] and reject 
the null hypothesis if a    >    1/2, or for the opposite side and confi dence 
interval of the form [0, b) with b    <    1/2. Table  9.3  shows how the sign 
test is applied comparing average temperatures in New York and 
Washington paired by date.   

 We note that the number of plus signs is 12, which is the highest 
possible, favoring Washington as being warmer than New York. So 
since it is the most extreme; the probability of 12 pluses is the one - sided 
 p  - value. So  p     =    (1/2) 12     =    0.000244. Since the binomial distribution is 
symmetric about 1/2 under the null hypothesis ( p     =    1/2), the two - sided 
 p  - value is just double the one - sided  p  - value which is 0.000488.  

   9.4    SPEARMAN ’ S RANK - ORDER 
CORRELATION COEFFICIENT 

 Thus far, we know about Pearson ’ s correlation coeffi cient, which is 
suitable for bivariate normal data, and its estimate is related to the slope 

  Table 9.3 
Daily Temperatures for Two Cities: Paired Nonparametric 
Sign Test 

   Day     Washington mean 
temperature ( ° F)  

   New York mean 
temperature ( ° F)  

   Paired 
difference  

   Sign  

      1.  January 15    31    28    3     +   

      2.  February 15    35    33    2     +   

      3.  March 15    40    37    3     +   

      4.  April 15    52    45    7     +   

      5.  May 15    70    68    2     +   

      6.  June 15    76    74    2     +   

      7.  July 15    93    89    4     +   

      8.  August 15    90    85    5     +   

      9.  September 15    74    69    5     +   

   10.  October 15    55    51    4     +   

   11.  November 15    32    27    5     +   

   12.  December 15    26    24    2     +   
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estimate from the least squares line. But how do we measure a mono-
tonic relationship that is not linear or the data is very nonnormal? 
Spearman ’ s rank - order correlation coeffi cient is a nonparametric 
measure of such relationships. 

 Suppose we have a relationship given by   Y X=  measured with 
no error and defi ned for all  X     ≥    0. Recall that Pearson ’ s correlation can 
be between  − 1 and 1, and is only equal to 1 or  − 1 if there is a perfect 
linear relationship. Now this square root function is a monotonic func-
tion but is nonlinear. So the Pearson correlation would be less than 1. 
In such cases, we would prefer that a correlation measure for a perfect 
monotonic functional relationship would equal 1 if it is an increasing 
function such as the square root or  − 1 for a negative exponential (i.e., 
 Y     =    exp( −  X )). Spearman ’ s rank correlation coeffi cient does that. In fact, 
there are two nonparametric correlation measures that have been 
devised to satisfy this condition for perfect monotonic relationships and 
be properly interpretable for any continuous bivariate distribution. 
Spearman rank correlation  “   ρ   ”  and Kendall ’ s  “   τ   ”  introduced by 
Spearman  (1904)  and Kendall  (1938) , respectively. We shall only 
discuss Spearman ’ s   ρ  . 

 Spearman ’ s   ρ   in essence is calculated by the same formula as 
Pearson ’ s correlation, but with the measured values replaced by their 
ranks. What exactly do we mean by this? For each  X i  , replace the value 
by the rank of  X i   when ranked with relationship to the set of observed 
 X s with rank 1 for the smallest values in increasing order up to rank  n  
for the largest of the  X s. Do the same for each  Y i  . Then take the ranked 
pairs and compute the correlation for these pair just like you would 
with Pearson ’ s correlation coeffi cient. For example, suppose we con-
sider the pair ( X  5 ,  Y  5 ), and  X  5  is ranked third out of 20, and  Y  5  sixth out 
of 20, Then we replace the pair with (3, 6) their ranked pair. 

 The computational formula for Spearman ’ s rank correlation is
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 In the case of no ties, this formula simplifi es to
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    ρ = − −1 6 12T n n/[ ( )},   

where   T R X R Yi
n

i i= ∑ −=1
2[ ( ) ( )] . 

 As an example, let us look at the correlation between the tempera-
ture in Washington and New York over the 12 months of the year. The 
reason the paired t test worked so well was because most of the variation 
was due to seasonal effects that were removed through the paired differ-
ences. This variation will translate into high correlation between  X i  , the 
temperature in New York on the 15th of month  i , with  Y i  , the temperature 
Washington, DC on the 15th of the  i th month. Using the ranks, we show 
in Table  9.4  how the Spearman correlation is calculated in this case.    

  Table 9.4 
Daily Temperatures for Two Cities: Spearman Rank Correlation 

   Day    Washington mean 
temperature ( ° F)  

  New York mean 
temperature ( ° F)  

  Ranked 
pairs  

  Term  

    Y  (rank)      X  (rank)     [ r ( x ), 
 ry )]  

   [ r ( y i  )    −     r ( x i  )] 2   

      1.  January 15    31 (2)    28 (3)    (3, 2)    1  

      2.  February 15    35 (4)    33 (4)    (4. 4)    0  

      3.  March 15    40 (5)    37 (5)    (5, 5)    0  

      4.  April 15    52 (6)    45 (6)    (6, 6)    0  

      5.  May 15    70 (8)    68 (8)    (8, 8)    0  

      6.  June 15    76 (10)    74 (10)    (10, 10)    0  

      7.  July 15    93 (12)    89 (12)    (12. 12)    0  

      8.  August 15    90 (11)    85 (11)    (11, 11)    0  

      9.  September 15    74 (9)    69 (9)    (9, 9)    0  

   10.  October 15    55 (7)    51 (7)    (7, 7)    0  

   11.  November 15    32 (3)    27 (2)    (2, 3)    1  

   12.  December 15    26 (1)    24 (1)    (1.1)    0  

   T                 2  

    ρ      =    1    −    6 T /
[ n ( n  2     −    1)]  

                  =    1    −    12/
            [12(143)]
    =    142/143
    =    0.9930  
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   9.5    INSENSITIVITY OF RANK TESTS TO OUTLIERS 

 Of course, with univariate data outliers are the extremely large or 
extremely small observations. For bivariate data, it is less obvious what 
should constitute an outlier, as there are many directions to consider. 
Observations that are extreme in both dimensions will usually be outli-
ers, but not always. For example, if data are bivariate normal, the 
contours of constant probability are ellipses whose major axis is along 
the linear regression line. When the data are highly correlated, these 
ellipses are elongated. 

 If a bivariate observation falls on or near the regression line, it is 
a likely observation, and if the correlation is positive, and if  X  and  Y  
are both large or both small, we may not want to consider such obser-
vations to be outliers. The real outliers are the points that are far from 
the center of the semi - minor axis. Another measure, called the infl uence 
function, determines a different direction, namely the direction that 
most highly affects the estimate of a parameter. For the Pearson correla-
tion, the contours of constant infl uence are hyperbolae. So outliers with 
respect to correlation are values that are far out on the hyperbolic 
contours. 

 We noticed previously that outliers affect the mean and variance 
estimates, and they can also affect the bivariate correlation. So, 
confi dence intervals and hypothesis tests can be invalidated by 
outliers. However, nonparametric procedures are designed to apply to 
a wide variety of distributions, and so should not be sensitive to outli-
ers. Rank tests clearly are insensitive to outliers because a very large 
value is only one rank higher than the next largest, and this does not at 
all depend on the magnitude of the observations or how far separated 
they are. 

 As an illustration, consider the following data set of 10 values, 
whose ordered values are 16, 16.5, 16.5, 16.5, 17, 19.5, 21, 23, 24, 
and 30. The largest value, 30, clearly appears to be an outlier. 
The sample mean is 20, and half the range is 7, whereas the 
number 30 is 10 units removed from the mean. The largest and 
second largest observations are separated by six units, but in term 
of ranks, 24 has rank 9 and 30 has rank 10, a difference in rank that 
is the same as between 23 and 24, which have ranks 8 and 9, 
respectively. 
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  9.6   EXERCISES 

       1.    Table  9.5  provides a modifi cation of the pig blood loss data as an exercise 
for the Wilcoxon rank - sum test   

 Do the results differ from the standard two - sample  t -  test using pooled 
variances? Are the resulting  p  - values similar? Compare the  t -  test and the 
Wilcoxon rank - sum test for a one - side alternative that the treatment group 
has a lower blood loss average than the control group.   

    2.    Apply the Wilcoxon rank - sum test to the data in Table  9.6  on the relation-
ship between the number of patients with schizophrenia and the season of 
their birth by calling fall and winter as group 1, and spring and summer as 
group 2. The four individual seasons represent data points for each group. 
Ignore the possibility of a year effect.   

 Do we need to assume that births are uniformly distributed? If we knew 
that there were a higher percentage of births in the winter months, how 
would that affect the conclusion?   

    3.    Based on Table  9.7 , which is a modifi cation of the temperature data for 
New York and Washington, apply the sign test to see if the difference in 
the temperatures is signifi cant.     

    4.    Using the data from Table  9.7  in exercise 3, compute the Spearman rank 
correlation coeffi cient between the two cities   

  Table 9.5 
Pig Blood Loss Data (Modifi ed) 

   Control group pigs     Treatment group pigs  

  786    643  

  375    666  

  3446    555  

  1886    823  

  465    1816  

  580    997  

  434    2828  

  3964    1351  

  2181    902  

  3237    1278  

  Sample mean    =    1785.40    Sample mean    =    1185.90  
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  Table 9.6 
Season of Birth for 600 Schizophrenic 
Patients over 6 Years 

    Season     Number of patients  

  Year 1    Fall    20  

  Winter    35  

  Spring    20  

  Summer    25  

  Year 1    Total    100  

  Year 2    Fall    32  

  Winter    38  

  Spring    10  

  Summer    15  

  Year 2    Total    95  

  Year 3    Fall    27  

  Winter    43  

  Spring    13  

  Summer    17  

  Year 3    Total    105  

  Year 4    Fall    19  

  Winter    36  

  Spring    18  

  Summer    28  

  Year 4    Total    101  

  Year 5    Fall    33  

  Winter    36  

  Spring    14  

  Summer    21  

  Year 5    Total    104  

  Year 6    Fall    23  

  Winter    41  

  Spring    22  

  Summer    9  

  Year 6    Total    95  
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  Table 9.7 
Temperature Comparisons between Two Cities 

   Day     Washington mean 
temperature ( ° F)  

   New York mean 
temperature ( ° F)  

   Paired 
difference  

   Sign  

      1.  January 15    31    38     − 7     –   

      2.  February 15    35    33    2     +   

      3.  March 15    40    37    3     +   

      4.  April 15    52    45    7     +   

      5.  May 15    70    68    2     +   

      6.  June 15    76    74    2     +   

      7.  July 15    93    89    4     +   

      8.  August 15    90    85    5     +   

      9.  September 15    74    69    5     +   

   10.  October 15    55    51    4     +   

   11.  November 15    32    27    5     +   

   12.  December 15    26    24    2     +   

  Table 9.8 
Aggressiveness Scores for 12 Sets of Identical Twins Based on 
Birth Order 

   Twin 
set  

   1st born 
aggressiveness score  

   2nd born 
aggressiveness score  

   Paired 
difference  

   Sign of paired 
difference  

     1    85    88     − 3     –   

     2    71    78     − 7     –   

     3    79    75    4     +   

     4    69    64    5     +   

     5    92    96     − 4     –   

     6    72    72    0    0  

     7    79    64    15     +   

     8    91    89    2     +   

     9    70    62    8     +   

  10    71    80     − 9     –   

  11    89    79    10     +   

  12    87    75    12     +   
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  Table 9.9 
Aggressiveness Scores for 12 Sets of Identical Twins Based on 
Birth Order 

   Twin set     1st born 
aggressiveness 
score (rank)  x   

   2nd born 
aggressiveness 
score (rank)  y   

   Ranked 
pair ( x .  y )  

   Term  r ( x i  ) r ( y i  )  

     1    85 (8)    88 (10)    (8, 10)    80  

     2    71 (3.5)    78 (7)    (3.5, 7)    24.5  

     3    79 (6.5)    75 (5.5)    (6.5, 5.5)    35.75  

     4    69 (1)    64 (2.5)    (1, 2.5)    2.5  

     5    92 (12)    96 (12)    (12, 12)    144  

     6    72 (5)    72 (4)    (5, 4)    20  

     7    79 (6.5)    64 (2.5)    (6.5, 2.5)    16.25  

     8    91 (11)    89 (11)    (11, 11)    121  

     9    70 (2)    62 (1)    (2, 1)    2  

  10    71 (3.5)    80 (9)    (3.5, 9)    31.5  

  11    89 (10)    79 (8)    (10, 8)    80  

  12    87 (9)    75 (5.5)    (9, 5.5)    49.5  

    5.    Given the aggressiveness scores for the twins shown in Table  9.8 , apply 
the sign test to see of the there is a difference depending on order of birth.   

 Remember that when the paired difference is 0, we ignore the case. So 
in this case, we treat the 11 sets without ties (8 pluses and 3 minuses). Are 
the results statistically signifi cant at the 5% level (two - sided)? What is the 
two - sided  p  - value? What is the  p  - value for the one - sided alternative that 
the fi rst born is more aggressive?   

    6.    Using Table  9.9 , compute the Spearman rank correlation coeffi cient for the 
aggressiveness scores. Does this suggest that both twins tend to be similar 
in degree of aggressiveness?            
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  CHAPTER 10 

Survival Analysis     

     Survival analysis is based on data where patients are followed over 
time until the occurrence of a particular event such as death, relapse, 
recurrence, or some other event that is of interest in to the investigator. 
Of particular interest is the construction of an estimate of a survival 
curve which is illustrated in Figure  10.1 . Survival probability at t rep-
resents the probability that an event does not occur by time t.   

 In the fi gure, the  x  - axis shows time in years and the  y  - axis survival 
probability. In this case, the function  S ( t ) is a Weibull curve with 
 S ( t )    =    exp( − (  λ t )   β   ) and   λ      =    0.4 and   β      =    2.0. In a clinical study,  S ( t ) 
represents the probability that the time from initiation in the study 
( t     =    0) until the occurrence of the event for an arbitrary patient is 
greater than a specifi ed value t. The curve represents the value for this 
probability as a function of  t . Data on the observed time to the event 
for each patient is the information to use to estimate the survival curve 
for all  t  in (0,  ∞ ). See Section  10.4.2  for more details on the Weibull 
family of survival curves. 

 The survival curve or the comparison of two or more survival 
curves is often important in determining the effectiveness of a new 
treatment. It can be used for effi cacy as in the case of showing that an 
anticoagulant is effective at reducing stroke for patients with atrial 
fi brillation. More often, it is used as a safety parameter, such as in the 
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10.1 Time-to-Event Data and Right Censoring  159

determination of a particular adverse event that the treatment is sus-
pected to cause. The term survival analysis came about because it was 
originally used when mortality was the outcome, but it can be used for 
time - to - event data for any event. More generally, the curve does not 
necessarily have to be a function of time. It is even possible for time 
to be replaced by a variable that increases with time, such as the cost 
of a worker ’ s compensation claim where the event occurs when the 
claim is closed.  

   10.1    TIME - TO - EVENT DATA AND 
RIGHT CENSORING 

 What characterizes survival data is that some patients have incomplete 
results. In a particular study, there is a time at which the study ends 
and the data must be analyzed. At that point, some of the patients may 
not have experienced the event (either because they will never have the 
event or because the event will occur some time later). The data for 
these patients should not be thrown out because that would (1) ignore 
valuable information about the time to event, since these patients time 

     Figure 10.1.     A typical survival curve.  
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160 CHAPTER 10 Survival Analysis

to event must at least be longer than the time from study initiation until 
the termination of the study (called the censoring time); and (2) leaving 
them out biases the estimate of parameters, such as median or mean 
survival time, since the censored observations are more likely to be the 
longer times than those that were not censored. So from (2), we see 
that the median time - to - event is underestimated if the censored data are 
ignored. Other censoring could occur if the patient becomes lost to 
follow - up prior to the date of completion for the study. 

 What makes survival analysis different is the existence of incom-
plete data on some patients whose time to event is right censored (i.e., 
cut off at the end of the study). The key to the analysis is to fi nd para-
metric, semi - parametric, or nonparametric ways to estimate the sur-
vival curve utilizing both the complete and incomplete observations. 
This will often allow for a less biased median survival time estimate. 
The remainder of the chapter will cover various methods. 

 The fi rst method is the life table. Although the methods we describe 
here are straightforward, there are many practical diffi culties. One of 
these is the problem of unreported events. This is a very big problem 
with medical devices. Attempts have been made to address the issue of 
bias in estimates due to underreporting. But these methods must rely 
heavily on assumptions about the underreporting. The article by 
Chernick et al.  (2002)  covers the issue in detail.  

   10.2    LIFE TABLES 

 The survival curve  S ( t ) is defi ned to be equal to the probability that 
 T     >     t  where  T  is the random variable representing the time to the event. 
The data is Table  10.1  is taken from Altman ( 1991 , p. 367). In this 
example events are restricted to the time (0,  L ] with events occurring 
after time L, right censored.   

 We notice from the table that patients are accrued over time for 
slightly less than 6 months. The study is terminated at 18 months after 
the fi rst patient is enrolled in the study. Four patients died during the 
trial six were either living at the end of the trial or lost to follow - up. 
Specifi cally, patients 1, 5, 7, and 10 died, patients 3, 6, 8, and 9 com-
pleted the study alive and patients 2 and 4 were lost to follow - up. This 
table provides us with exactly all we need to construct the various types 
of survival curves. 
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10.2 Life Tables 161

  Table 10.1 
Survival Times for Patients 

   Censor code  *       Patient no.     Time at entry 
(months)  

   Time to death or 
censoring (months)  

   Survival time 
(months)  

  1    1    0.0    11.8    11.8  

  0    2    0.0    12.5    12.5  †    

  0    3    0.4    18.0    17.6  †    

  0    4    1.2    4.4    3.2  †    

  1    5    1.2    6.6    5.4  

  0    6    3.0    18.0    15.0  †    

  1    7    3.4    4.9    1.5  

  0    8    4.7    18.0    13.3  †    

  0    9    5.0    18.0    13.0  †    

  1    10    5.8    10.1    4.3  

    *   Death occurred    =    1, censoring    =    0,  L     =    18.0.  

   †   Censored observation.   

 Life tables give survival probability estimates for intervals of time 
whereas survival curves are continuous over time (although their non-
parametric estimates are step functions that only change when events 
occur). Life tables must be used when the only information that is 
available is the number of events occurring in the intervals. If we have 
the exact times when each event occurs, and all the times when censor-
ing occurs, we can estimate the survival curve by parametric or non-
parametric methods. 

 We can also create a life table by choosing time intervals and count-
ing the number of events and censoring times that occur in each speci-
fi ed interval. However, the use of life tables when we have the exact 
times for the events and censoring is ineffi cient, since it ignores some 
of the available information about survival (namely, where in the inter-
val each event occurs). In addition to the interval survival probability, 
the life table provides an estimate of the cumulative survival probability 
at the end of the time interval for each interval. Whether we are esti-
mating cumulative survival over time or for life table intervals, there 
is a key equation that is exploited. It is shown as Equation  10.1 .

    S t P t t S t t t( ) ( | ) ( ) ,2 2 1 1 2 1 0= > ≥for any     (10.1)  
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162 CHAPTER 10 Survival Analysis

where  S ( t )    =    survival probability at time  t     =     P ( T     >     t ),  t  1  is the previous 
time of interest, and  t  2  is some later time of interest (for a life table,  t  1  
is the beginning of the interval, and  t  2  is the end of the interval. 

 For the life table, we must use the data as in Table  10.1  to construct 
the estimates that we show in Table  10.2 . In the fi rst time interval, say 
[0,  a ], we know that  S (0)    =    1 and S( a )    =     P ( a |0) S (0)    =     P ( a |0). This is 
gotten by applying Equation  10.1 , with  t  1     =    0 and  t  2     =     a , and substitut-
ing 1 for  S (0). The life table estimate was introduced by Cutler and 
Ederer  (1958) , and therefore it also is sometimes called the Cutler –
 Ederer method. We exhibit the life table as Table  10.2 , and then will 
explain the computations.   

 In constructing Table  10.2  from the data displayed in Table  10.1 , 
we see that including event times and censoring times, the data range 
from 1.5 to 17.6 months. Note that since time of entry dies not start at 
the beginning of the study, the time to event is shifted by subtracting 
the time of entry from the time of the event (death or censoring). We 
choose to create 3 - month intervals out to 18 months. The seven 
intervals comprising all times greater than 0 are: (0, 3), [3, 6), [6, 9), 
[9, 12), [12, 15), [15, 18) and [18,  ∞ ). Intervals denoted [ a ,  b ) include 
the number  “ a ”  and all real numbers up to but not including  “  b . ”  
Intervals ( a ,  b ) include all real numbers greater than  “  a  ”  and less 
than  “  b  ”  but do not include  “  a  ”  or  “  b . ”  In each interval, we need to 

  Table 10.2 
Life Table for Patients From Table  10.1  

   Time 
interval 
 I  j   

   No. of 
deaths 
in  I j    

   No. 
withdrawn 

in  I j    

   No. at 
risk in  I j    

   Avg. No. 
at risk in  I j    

   Est. 
prop. of 
deaths 
in  I j    

   Est. 
prop. 

Surv. at 
end of  I j    

   Est. 
cum. 

surv. at 
end of  I j    

  [0, 3)    1    0    10    10    0.1    0.9    0.9  

  [3, 6)    2    1    9    8.5    0.235    0.765    0.688  

  [6, 9)    0    0    6    6    0.0    1.0    0.688  

  [9, 12)    1    0    6    6    0.167    0.833    0.573  

  [12, 
15)  

  0    3    5    5    0    1.0    0.573  

  [15, 
18)  

  0    2    2    2    0    1.0    0.573  

  [18,  ∞ )    0    0    0    0     —      —      —   
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10.2 Life Tables 163

determine the number of subjects who died during the interval, the 
number withdrawn during the interval, the total number at risk at 
the beginning of the interval, and the average number at risk during the 
interval. 

 To understand Table  10.2 , we need to explain the meaning of the 
column heading. 

 Column 1 is labeled  “ Time interval ”  and is denoted  I j   for the  j th 
interval. 

 Column 2 contains the number that died in the  j th interval and is 
denoted  D j  . 

 Column 3 contains the number that withdrew during the  j th interval 
and is denoted  W j  . 

 Column 4 contains the number at risk at the start of the  j th interval 
and is denoted  N j  . 

 Column 5 is the average number at risk during the  j th interval and 
is denoted  N j    ’  . 

 Column 6 is the estimated proportion of deaths during the interval 
and is denoted as  q j  . 

 Column 7 is the estimated proportion of subjects surviving the 
interval and is denoted by  p j  . 

 Column 8 is the cumulative probability of surviving the interval. 

 We note that the deaths are determined just by counting the deaths 
with event time falling in the interval. The withdrawals are simply 
determined by counting the number of censoring times falling in the 
interval. The number at risk at the beginning of the interval is just the 
total at time 0 minus all deaths and withdrawals that occurred from 
time 0 up to but not including time  “  a  ”  where  “  a  ”  is the beginning time 
for the interval. 

 Now the average number remaining over the jth interval is 
 N j   ’     =     N j      −    ( W j  /2). We then get the estimated proportion that are dead, 
to be  q j      =     D j  / N j   ’ . Then the estimated proportion surviving the interval 
is  p j      =    1    −     q j  . Remember the key recursion in Equation  10.1 ? It gives 
 S j      =     p j S j       −    1 . This recursive equation allows  S  1  to be determined from the 
known value  S  0  after calculating  p  1 . Then  S  2  is calculated using  S  1  and 
 p  2 , and this continues up to the time of the last event or censor time. 
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This is the Cutler – Ederer method, and just about any life table is gener-
ated in a very similar fashion.  

   10.3    KAPLAN – MEIER CURVES 

 The Kaplan – Meier curve is a nonparametric estimate of the survival 
function (see Kaplan and Meier  1958 ). It is computed using the same 
conditioning principle that we used for the life table. However, here we 
estimate the survival at every time point, but only do the iterative com-
putations at the event or censoring times. The estimate is taken to be 
constant between points. It has sometimes been called the product limit 
estimator, because at each time point, it is calculated as the product of 
conditional probabilities. Next, we describe in detail how the curve is 
estimated. 

   10.3.1    The Kaplan – Meier Curve: A Nonparametric 
Estimate of Survival 

 For all time from 0 to  t  1 , where t 1  is the time of the fi rst event, the 
Kaplan – Meier survival estimate is  S  km ( t )    =    1. At time  t  1 ,  S  km (t 1 )    =     S  km (0)
( n  1     −     D  1 )/ n  1 , where n 1  is the total number at risk, and  D  1  is the number 
that die (have an event) at time t 1 . Since  S  km (0)    =    1,  S  km ( t  1 )    =    ( n  1     −     D  1 )/ n  1 . 
For the example in Table  10.3 , below we see that  S  km ( t  1 )    =    

  Table 10.3 
Kaplan – Meier Survival Estimates for Example in Table  10.1  

   Time     No. of 
deaths 
in  D j    

   No. 
withdrawals 

 W j    

   No. at 
risk  n j    

   Est. 
prop. of 
deaths  q j    

   Est. prop. 
surviving 
 p j    =       1     −     q j    

   Est. 
cumulative 

survival 
 S  km ( t j  )  

   t  1     =    1.5    1    0    10    0.1    0.9    0.9  

   t  2     =    4.3    1    1    9    0.125    0.875    0.788  

   t  3     =    5.4    1    0    6    0.143    0.857    0.675  

   t  4     =    11.8    1    0    6    0.167    0.833    0.562  

  18    >     t     >    11.8    0    5    5    0    1.0    0.562  

   t     ≥    18    0    0    0    0    —    —  
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10.3 Kaplan–Meier Curves 165

(10    −    1)/10    =    0.9. At the next death time  t  2 ,  S  km ( t  2 )    =     S  km ( t  1 )( n  2     −     D  2 )/ n  2.  
For  n  2 , we use the value of  N  2  in Table  10.2 , and get  S  km ( t  2 )    =    (0.9)
(8    −    1)/8    =    0.9(7/8)    =    0.9(0.875)    =    0.788. Note that  n  2     =    8 because 
there was one withdrawal between time t 1  and t 2 . The usual convention 
is to assume  “ deaths before losses. ”  This means that if events occur at 
the same time as censored observations, the censored observations are 
left in the patients at risk for each event at that time and removed before 
the next event occurring at a later time.   

 We notice a similarity in the computations when comparing 
Kaplan – Meier with the life table estimates. However the event times 
do not coincide with the endpoints of the intervals and this leads to 
quantitative differences. For example, at t    =    4.3, the Kaplan – Meier 
estimate is 0.788, whereas the life table estimate is 0.688. At t    =    5.4, 
the Kaplan – Meier estimate is 0.675 whereas the life table is 0.688. At 
and after t    =    11.8 the Kaplan – Meier estimate is 0.562, and the life table 
estimate is 0.573. Although there are numerical differences qualita-
tively, the two methods give similar results.  

   10.3.2    Confi dence Intervals for the 
Kaplan – Meier Estimate 

 Approximate confi dence intervals at any specifi c time t can be obtained 
by using Greenwood ’ s formula for the standard error of the estimate and 
the asymptotic normality of the estimate. For simplicity, let  S j   denote 
 S  km ( t j  ). Greenwood ’ s estimate of variance is   V S q n pj j i

j
i i i= ∑ =

2
1[ ( )]/ . 

Greenwood ’ s approximation for the 95% confi dence interval at time  t j   
is   S V S Vj j j j− +⎡⎣ ⎤⎦1 96 1 96. , . . 

 Although Greenwood ’ s formula is computationally easy through a 
recursion equation, the Peto approximation is much simpler. The vari-
ance estimate for Peto ’ s approximation is   U S S nj j j j= −2 1( )/ . Peto ’ s 
approximation for the 95% confi dence interval at time  t j   is 
  S U S Uj j j j− +⎡⎣ ⎤⎦1 96 1 96. , . . 

 Dorey and Korn (1987) have shown that Peto ’ s method can give 
better lower confi dence bounds than Greenwood ’ s, especially at long 
follow - up times where there are very few patients remaining at risk. In 
the example in Table  10.3 , we shall now compare the Peto 95% confi -
dence interval with Greenwood ’ s at time  t     =     t  3 . For Greenwood, we 

c10.indd   165c10.indd   165 6/15/2011   4:09:04 PM6/15/2011   4:09:04 PM



166 CHAPTER 10 Survival Analysis

V S q n p V Sj2 2
2

2 2 2 1 1
2 20 788 0 125 8 0 875 0 009= + = +−[ ( ) ] ( . ) [ . { ( . ) ./ / / /(( . ) }]

. ( . . ) . ( . ) .

0 9

0 621 0 0179 0 0111 0 621 0 029 0 0180

2

= + = =

need to calculate  V  3 , which requires recursively calculating  V  1  and  V  2  
fi rst. 

  V  1     =    (0.9) 2 [0.1/{10[0.9])]    =    (0.9)(0.01)    =    0.009. Then

    . Finally, 

 V  3     =    (0.675) 2 [0.143/{7(0.857)}    +    0.018/(0.788) 2 ]    =    0.4556[0.143/6]    =    
0.0109. So the 95% Greenwood confi dence interval is 

   0 675 1 96 0 0109 0 675 1 96 0 0109

0 675 0 2046 0 675

. . . , . . .

[ . . , .

− +⎡⎣ ⎤⎦
= − + 00 2046 0 4704 0 8796. ] [ . , . ]=

  

 For Peto ’ s estimate of variance,  U  3 , we simply calculate 

.

   

U S S n3 3
2

3 3
2

2

1 0 675 1 0 675 7

0 675 0 325 7 0 45

= − = −
= =

( ) ( . ) ( . )

( . ) ( . ) .

/ /

/ 556 0 0464 0 0212.( . ) .= . 

So Peto ’ s estimate is 

   
0 675 1 96 0 0212 0 675 1 96 0 0212

0 675 0 285 0 675 0

. . . , . . .

[ . . , .

− +⎡⎣ ⎤⎦
= − + .. ] [ . , . ]285 0 390 0 960=

 

 In this example, we see that Peto ’ s interval is much wider and hence 
more conservative than Greenwood ’ s. However, that does not neces-
sarily make it more accurate. Both methods are just approximations, 
and we cannot say that one is always superior to the other.  

   10.3.3    The Logrank and Chi - Square Tests: 
Comparing Two or More Survival Curves 

 To compare two survival curves in a parametric family of distributions, 
such as the negative exponential or the Weibull distribution, we only 
need to test for differences in the parameters. However, for a nonpara-
metric estimate, we look for departures in the two Kaplan – Meier 
curves. The logrank test is a nonparametric test for testing equality of 
two survival curves against the alternative of some difference. Details 
about the test can be found in the original work of Mantel  (1966)  or in 
texts such as Lee ( 1992 , pp. 109 – 112) or Hosmer et al.  (2008) . 

 Rather than go into the detail of computing the logrank test for 
comparing the two survival curves, we can conduct a similar test that 

.
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has an asymptotic chi - square distribution with  k     −    1 degrees of freedom, 
where  k  is the number of survival curves being compared. For compar-
ing two curves, the test statistic is chi - square with 1 degree of freedom 
under the null hypothesis. The chi - square statistic as usual takes the 
form   ∑ −=i

k
i i iO E E1

2( ) / , where  n  is the number of event times. 
 The expected values  E i   are computed by pooling the survival data 

and computing the expected numbers in each group based on the pooled 
data (which is the expected number when the null hypothesis is true, 
and we condition on the total number of events at the event time points 
and sum up the expected numbers. Our example is from a breast cancer 
trial. 

 In the breast cancer study, the remission times for the treatment 
group, getting cyclophosphamide, methatrexate, and fl uorouracil 
(CMF), are 23 months, and four patients censored at 16, 18, 20, and 
24 months. For the control group, remission times were at 15, 18, 19, 
19, and 20, and there were no censoring times. Table  10.4  shows the 
chi - square calculation for expected frequencies in the treatment and 
control groups in a breast cancer trial.   

 Based on the table above, we can compute the chi - square statistic, 
(1    −    3.75) 2 /4.75    +    (5    −    2.25) 2 /2.25    =    1.592    +    3.361    =    4.953. From the 
chi - square table with 1 degree of freedom, we see that a value of 3.841 
corresponds to a  p  - value of 0.05 and 6.635 to a  p  - value of 0.01. Hence, 
since 3.841    <    4.953    <    6.635, we know that the  p  - value for this test is 

  Table 10.4 
Computation of Expected Numbers for the Chi - Square Test in 
the Breast Cancer Example 

   Remission 
time  T   

   Number of 
remissions 

at  T d T    

   Number 
at risk in 
treatment 
group  n  1   

   Number at 
risk in control 

group  n  2   

   Expected 
frequency 

in treatment 
group  E  1   

   Expected 
frequency 
in control 
group  E  2   

  15    1    5    5    0.5    0.5  

  18    1    4    4    0.5    0.5  

  19    2    3    3    1.0    1.0  

  20    1    3    1    0.75    0.25  

  23    1    2    0    1.0    0.0  

  Total     —      —     —    3.75    2.25  
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between 0.01 and 0.05, and the survival curves differ signifi cantly at 
the 5% level. 

 The logrank test is very similar except that instead of  E i   in 
the denominator, we compute   V = ∑ =i

m
iv1  , , where  m  is the number 

of time points for events from the pooled data, and 
  v n n d n d n ni i i i i i i i= − −1 2

2 1( ) [ ( )]/ , where  n  1   i     =     number at risk in group 1 
at time  t i  ,  n  2   i      =    number at risk at time  t i   in group 2,  n i      =     n  1   i      +     n  2   i  , and 
 d i      =    combined number of deaths (events pooled from all groups) that 
have occurred by time  t i  . For two groups, the logrank test also has an 
approximate chi - square distribution with 1 degree of freedom under the 
null hypothesis. A nice illustration of the use of the logrank test with 
the aid of SAS software can be found in Walker and Shostak  (2010) . 
Additional examples of two - sample and  k  - sample tests can be found in 
many standard references on survival analysis, including, for example, 
Hosmer et al.  (2008) .   

   10.4    PARAMETRIC SURVIVAL CURVES 

 When the survival function has a specifi c parametric form, we can 
estimate the survival curve by estimating just a few parameters (usually 
1 to 4 parameters). We shall describe two of the most common para-
metric models, the negative exponential and the Weibull distribution 
models. 

   10.4.1    Negative Exponential  *   Survival Distributions 

 The negative exponential survival distribution is a one - parameter 
family of probability models determined by a parameter   λ  , called the 
rate parameter or failure rate parameter. It has been found to be a good 
model for simple product failures, such as the electric light bulb. In 
survival analysis, we have several related functions. For the negative 
exponential model, the survival function  S ( t )    =    exp( −   λ t ), where  t     ≥    0 
and   λ      >    0. The distribution function  F ( t )    =    1    −     S ( t )    =    1    −    exp( −   λ t ),  f ( t ) 
is the density function, which is the derivative of  F ( t ),  f ( t )    =      λ  exp( −   λ t ). 
The hazard function  h ( t )    =     f ( t )/ S ( t ). For the negative exponential model, 

  *      Also simply referred to as the exponential distribution. 
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  Table 10.5 
Negative Exponential Survival Estimates for Patients From 
Table  10.3  

   Time 
 T   

   Number 
of 

deaths 
 Dj   

   Number of 
withdrawals 

 Wj   

   Number 
at risk 

 n j    

   Est. 
prop, 

of 
deaths 

 q j    

   Est. prop. 
surviving 

 p j    

   KM 
survival 
estimate  

   Negative 
exp. 

survival 
estimate  

  1.5    1    0    10    0.1    0.9    0.9    0.940  

  4.3    1    1    8    0.125    0.875    0.788    0.838  

  5.4    1    0    7    0.143    0.857    0.675    0.801  

  11.8    1    0    6    0.167    0.833    0.562    0.616  

  18    0    5    5    0    1    0.562    0.478  

 h ( t )    =      λ  exp( −   λ t )/exp( −   λ t )    =      λ  . In this case, we will fi t an exponential 
model to the data used to fi t the Kaplan – Meier curve in Table  10.3 . 
Table  10.5  compares the estimated negative exponential survival curve 
with the Kaplan – Meier estimate.   

 The exponential survival curve differs markedly from the Kaplan –
 Meier curve, indicating that the negative exponential does not ade-
quately fi t the data.  

   10.4.2    Weibull Family of Survival Distributions 

 The Weibull model is more general and involves two parameters   λ   and 
  β  . The negative exponential is the special case of a Weibull model, 
when   β      =    1. The Weibull is common in reliability primarily because it 
is the limiting distribution for the minimum of a sequence of indepen-
dent identically distributed random variables. In some situations, a 
failure time can be the fi rst of many possible event times, and hence is 
a minimum. So under common conditions, the Weibull occurs as an 
extreme value limiting distribution similar to the way the normal dis-
tribution is the limiting distribution for sums or averages. 

 For the Weibull model  S ( t )    =    exp( − (  λ t )   β   ),  F ( t )    =    1    −    exp( − (  λ t )   β   ), 
 f ( t )    =      λ  β  (  λ t )   β     − 1 exp[ − (  λ t )   β   ], and  h ( t )    =      λ  β  (  λ t )   β     − 1 . For the Weibull model, 
  λ      >    0 and   β      >    0.   
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   10.5    COX PROPORTIONAL HAZARD MODELS 

 The Cox proportional hazards regression model is called semi -
 parametric because it includes regression parameters for covariates 
(which may or may not be time dependent), but in terms of the baseline 
hazard function, it is completely general (hence not parametric). So part 
of the modeling is parametric, and another part is nonparametric, hence 
the term semi - parametric. In SAS  ®  , the model can be implemented 
using the procedure PHREG, or STCOX in STATA. An excellent and 
detailed treatment with SAS applications can be found in Walker and 
Shostak ( 2010 , pp. 413 – 428). A similar treatment using the STATA 
software package can be found in  Cleves et al. (2008) . 

 The purpose of the model is to test for the effects of a specifi c set 
of k covariates on the event times. These covariates can be numerical 
or categorical. In the case of categorical variables, such as treatment 
groups, the model can estimate relative risks for the occurrence of an 
event in a fi xed interval when the patient gets treatment A versus when 
the patient gets treatment B. 

 For example, in the RE - LY trial to compare three treatments, two 
doses of dabigatran and warfarin as a control, the Cox model was used 
to estimate the relative risk of the patient getting a stroke during the 
trial while on one treatment versus another. This ratio was used to test 
for superiority or noninferiority of the dabigatran doses versus warfarin 
with respect to stroke or systemic embolism as the event. The model 
was also used for other types of event, with major bleeding being a 
primary safety endpoint. 

 The model is defi ned by its hazard function  h ( t )    =      λ  ( t )exp(  β   1  X  1     +      
β   2  X  2     +     . . .     +      β  m X m  ), where m is the number of covariates the  X i   are the 
covariates and is the baseline hazard function ( t  represents time). We 
only consider  t     ≥    0. It is called a proportional hazards model because 
 h ( t ) is proportional to   λ  ( t ), since  h ( t )/  λ  ( t ) is a constant (does not depend 
on  t ) that is determined by the covariates. The parameters   β  i   are esti-
mated by maximizing the partial likelihood. The estimation procedure 
will not be described here, but its computation requires the use of 
numerical methods and high - speed computers. 

 There are many books on survival analysis that cover the Cox 
model, and even some solely dedicate to the method. A recent text 
providing an up - to - date theoretical treatment is O ’ Quigley  (2008) , 
which includes over 700 references. Other texts worthy of mention are 
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Cox and Oakes  (1984) , Kalbfl eisch and Prentice  (1980, 2002) , Therneau 
and Grambsch ( 2000 ), Lachin  (2000) , Klein and Moeschberger ( 2003 , 
paperback 2010), Hosmer and Lemeshow  (1999) , Cleves et al.  (2008) , 
Klein and Moeschberger  (2003) , and Hosmer et al.  (2008) . There have 
been a number of extensions of the Cox model, including having the 
covariates depend on time. See Therneau and Grambsch  (2000)  if you 
want a lucid and detailed account of these extensions. Parametric 
regression models for survival curves can be undertaken using the SAS 
procedure LIFEREG and the corresponding procedure STREG in 
STATA.  

   10.6    CURE RATE MODELS 

 The methods for analysis of cure rate models are similar to those previ-
ously mentioned, and require the same type of survival information. 
However, the parametric models previously described all have cumula-
tive survival curves tending to zero as time goes to infi nity. For cure 
rate models, a positive probability of a cure is assumed. So the cumula-
tive survival curve for a cure rate model converges to  p    >     0 as time 
goes to infi nity, where  p  is called the cure probability, cure fraction or 
cure rate. Often the goal in these models is to estimate  p . 

 For nonparametric methods such as the Kaplan – Meier approach,  p  
is diffi cult to detect. It would be the asymptotic limit as  t  gets larger, 
but the Kaplan – Meier curve gives us no information about the behavior 
of the survival curve beyond the last event time or censoring time 
(whichever is last). So to estimate the cure rate requires a parametric 
mixture model. 

 The mixture model for cure rates was fi rst introduced by Berkson 
and Gage  (1952) . The general model is given by the following 
equation:

    S t p p S t( ) ( ) ( )= + −1 1   

where  p  is the cure probability, and  S  1 ( t ) is the survival curve for those 
who are not cured.  S  1 ( t ) is the conditional survival curve given the 
patient is not cured. The conditional survival curve can be estimated 
by parametric or nonparametric methods. For an extensive treatment 
of cure rate models using the frequentist approach, see Maller and Zhou 
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172 CHAPTER 10 Survival Analysis

 (1996) . The Bayesian approach to cure rate models can be found in 
Ibrahim et al.  (2001) . 

 We illustrate a parametric mixture survival curve with an exponen-
tial survival curve with rate parameter   λ      =    1, for the conditional sur-
vival curve  S  1 ( t ) and with survival probability  p     =    0.2. This curve is 
shown in Figure  10.2 .   

 Although cure rate modeling began with Berkson and Gage in the 
1950s, much of the literature came about in the 1990s when computing 
became much faster and the EM algorithm for the frequency approach 
and MCMC methods for Bayesian approaches became easy to imple-
ment. Until recently, the free software WinBUGS was the main option 
for doing MCMC methods for the Bayesian approach to modeling. 
However, very recently in SAS Version 9.2, MCMC methods have been 
added as a procedure in SAS/STAT. Users of SAS software may fi nd 
this more convenient. 

     Figure 10.2.     Exponential cure rate model with cure rate  p     =    0.20 and exponential rate 
parameter   λ      =    1.  Sente videm patum ad inam nonvere timorio rterumunina nihi, catum
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  10.7   EXERCISES 

       1.    Defi ne the following:

   (a)     Life table  

  (b)     Kaplan – Meier curve  

  (c)     Negative exponential survival distribution  

  (d)     Cure rate model  

  (e)     Chi - square test to compare two survival curves      

    2.    If the survival function  S ( t )    =    1    −     t / b  for 0    ≤     t     ≤     b , where b is a fi xed 
positive constant, calculate the hazard function. When is the hazard func-
tion lowest? Is there a highest rate?   

    3.    Suppose    +    denotes a censoring event, and that the event times in months 
for group1 are [8.1, 12, 17 33 + , 55, and 61] while for group 2 they are 
[32, 60, 67, 76 + , 80 + , and 94]. Test to see if the survival curves are dif-
ferent using the chi - square test.   

    4.    Suppose the survival time since a bone marrow transplant for eight 
patients who received the transplant is 3, 4.5, 6, 11, 18.5 20, 26, and 35. 
No observations were censored.

   (a)     What is the median survival time for these patients?  

  (b)     What is the mean survival time?  

  (c)     Construct a life table where each interval is 5 months.      

    5.    Using the data in example 4:

   (a)     Calculate a Kaplan – Meier curve for the survival distribution  

  (b)     Fit a negative exponential model.  

  (c)     Compare  b  with  a .  

  (d)     Is the negative exponential survival distribution a good fi t in this case?      

    6.    Modify the data in example 4 by making 6, 18.5, and 35 censoring times 

  (a)     Estimate the median survival time.  

  (b)     Why would an average of all the survival times (excluding the cen-
soring times) be inappropriate?  

  (c)     Would an average including the censoring times be appropriate?      

    7.    Now using the data as it has been modifi ed in exercise 6, repeat exercise 
5a.   

    8.    Listed below are survival and censoring times (using the    +    sign for cen-
soring) for six males and six females. 
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 Males: 1, 3, 4 + , 9, 11, 15 

 Females 1, 3 + , 6, 9, 10, 11 + 

   (a)     Calculate the Kaplan – Meier curve for males  

  (b)     Calculate the Kaplan – Meier curve for females  

  (c)     Test for a difference between the male and female survival curves 
using the chi - square test.  

  (d)     Compute the logrank statistic and perform the same test as in  c  using 
this statistic? Do you reach the same conclusion as in  c ? Are the 
chi - square and logrank test statistics close in value? Are the  p  - values 
nearly the same?      

    9.    What assumptions are required for the Cox proportional hazard model? 
Why is it called a semi - parametric method?   

    10.    Suppose a cure model is known to have  S  1 ( t )    =    exp( − 0.5 t ). 

 Recall  S ( t )    =     p     +    (1    −     p ) S  1 ( t ). Suppose that we know that  S (2)    =    0.5259. 
Can you calculate the cure rate for this model? If so what is it?      
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The Essentials of Biostatistics for Physicians, Nurses, and Clinicians, 
First Edition. Michael R. Chernick.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

           Chapter  1  

    1.     What is a Kaplan – Meier curve ?   

 A Kaplan – Meier curve is an estimate of cumulative survival over time based on 
possibly right - censored time - to - event data. It is an estimate obtained without 
making a parametric assumption about the shape of the survival curve.   

    3.     Why is randomization important in clinical trials?    

 In clinical trials, we are comparing two or more treatments. Confounding can occur 
when the subjects in one treatment group has very different characteristics than the 
other. In one case, there may be a much higher percentage of males in one group 
than in the other, or one group might tend to have older patients than the other. In 
such situations, a signifi cant difference in response between the two groups could 
be due to the difference in treatment, but it also could be due to differences in ages 
or gender. Randomization tends to balance out these factors, thus eliminating the 
confounding.   

    7.     What are retrospective studies?    

 Retrospective studies are any type of study where all the data were generated in the 
past and are now being used for the purpose of an investigation that was not con-
sidered prior to the collection of data.   

    9.     What are controlled clinical trials and why is blinding important?    

 In clinical trials, we are comparing two or more treatments on human subjects. The 
trial is considered controlled when randomization is properly used and blinding is 

 Solutions to Selected 

Exercises     
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included. When the investigator and/or the patient know which treatment group 
they are in before the completion of the treatment, they could act in a way that 
creates bias in the estimates. If both the investigator and the patient are unaware of 
the treatment the patients are more likely to all be treated in the same manner and 
bias will not creep into the study.     

 Chapter  2  

    3.     Describe and contrast the following types of sampling designs. Also state when 
if ever it is appropriate to use the particular designs: 

   (a)      Simple random sample   

  (b)      Stratifi ed random sample   

  (c)      Convenience sample   

  (d)      Systematic sample   

  (e)      Cluster sample   

  (f)      Bootstrap sample       

 (a)   Simple random sampling is just sampling at random without replacement from 
a well - defi ned population. 

 (b)   Stratifi ed random sampling is a sampling procedure where the data are divided 
into groups (strata) that make the subpopulations homogeneous groups. In each 
strata, a specifi c number patients are sampled at random without replacement. 
So it is a collection of simple random samples drawn for each strata. Stratifi ed 
random sampling is better than simple random sampling when subpopulations 
are homogeneous, and there are differences between the groups. If the original 
population is already very homogeneous, there is no benefi t to stratifi cation over 
simple random sampling. It is possible to obtain unbiased estimates of the popu-
lation mean by either sampling technique, but one estimate will have a lower 
variance compared with the other depending on the degree of homogeneity 
within and between the subpopulations. 

 (c)   A convenience sample is any sample that is collected in an operationally con-
venient way. This is usually not an acceptable way to sample because it is not 
possible to draw inferences about the population from the sample. This is 
because inference depends on having known probabilities for drawing elements 
from the population. 

 (d)   Systematic sampling is an ordered way of selecting elements from the popula-
tion. So, for example, if you wish to take a 20% sample, you can enumerate 
the population and draw the fi rst and skip the next four until you have run 
through the entire population. Systematic sampling can sometimes be easier 
than random sampling, and if there is no pattern to the ordering it may behave 
like a simple random sample. However, if there are patterns, such as cycles, 
the method can be extremely biased. In the 20% sample, suppose that the data 
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formed a sine wave as you step through the order. If the peak of the cycle 
occurs at the fi rst case and repeats every fi ve you will only collect the high 
values, and the mean will be much larger than the population mean. Similarly, 
if the trough occurs in the fi rst sample and the cycle length is fi ve, you collect 
only the lowest values from the population, and the sample mean will be 
too low. 

 (e)   Cluster sampling is another way that may be more convenient than simple 
random sampling. For example, when the Census Bureau does survey sam-
pling in a city, it may be convenient to sample every house on a particular 
block since the blocks form a list that can be randomly sampled. In such situ-
ations, cluster sampling has advantages. 

 (f)   Bootstrap sampling is not a procedure to sample from the population per 
se. Instead, we have a sample (presumably random), and bootstrapping is 
sampling with replacement from this sample to try to infer properties of 
the population based on the variability of the bootstrap samples. In the 
ordinary case when the sample size is  n , we also take  n  elements for the boot-
strap sample by sampling with replacement from the  n  elements in the original 
sample.   

    6.     How does bootstrap sampling differ from simple random sampling?    

 As described earlier, bootstrap samples with replacement from a random sample, 
whereas simple random sampling samples without replacement from a 
population.   

    7.     What is rejection sampling and how is it used?    

 Rejection sampling is a method for sampling at random without replacement. A 
common way to sample without replacement is to eliminate the elements from the 
population as they are selected in sequence and randomly sample each time from 
the reduced population. With rejection sampling you can achieve the same proper-
ties without changing the population you draw the samples from. You simply keep 
a running list of all the elements that have thus far been sampled, and if the new 
one is a repeat of one of the old ones, you throw it out and try again always making 
sure that nothing repeats.   

    10.     Why is the sampling design choice more critical than the size of the sample?    

 If you make a bad choice of design you can create a large bias that cannot 
be overcome by an increase in sample size no matter how large you make it. 
However if the sample size is too small but the design is appropriate, you 
can obtain unbiased estimates of the population parameters. Increasing the sample 
size will not prevent us from obtaining an unbiased estimate, and since the 
accuracy of an unbiased estimate depends only on its variance, the sample 
size increase will reduce the variance and make the estimate more accurate. 
So with a good design, we can improve the estimate by increasing the sample 
size. But no increase in sample size will remove a bias that is due to the poor 
design.     
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 Chapter  3  

    1.     What does a stem - and - leaf diagram show?    

 A stem - and leaf diagram has the nice property of describing the shape of the data 
distribution in a way similar to a histogram but without losing information about 
the exact value of the cases with a histogram bin.   

    3.     What is the difference between a histogram and a relative frequency 
histogram ?   

 A histogram has a bar height that equals the number of cases belonging to the bin 
interval, The relative frequency histogram has the same shape, but the height rep-
resents the number of cases belonging to the bin interval divided by the total 
number  n  of cases in the entire sample. So the height of the bar represents a pro-
portion or percentage of the data falling in the interval (or a frequency relative to 
the total).   

    5.     What portion of the data is contained in the box portion or body of a box -
 and - whiskers plot?    

 The bottom of the box is the 25th percentile and the top is the 75th percentile. So 
the box contains 50% of the data.   

    7.     What relationship can you make to the three measures of location (mean, 
median, and mode) for right – skewed distributions?    

 For unimodal distributions that are right skewed: mean    <    median    <    mode.   

    10.     What is the defi nition of mean square error?    

 The mean square error is the average of the squared deviations of the observations 
from their target. Note that the target is not always the mean. Using this defi nition 
one can show that Mean Square Error    =     B  2     +    Variance, where B is the bias (the 
difference between the mean and the target). When the estimate is unbiased,  B     =    0, 
and Mean Square Error    =    Variance.     

 Chapter  4  

    1.     What is a continuous distribution?    

 A continuous distribution is a probability distribution with a density defi ned on an 
interval, the whole real line, or a set of disjoint intervals.   

    2.     What is important about the normal distribution that makes it different from 
other continuous distributions?    

 The normal distribution is a special continuous distribution because of the central 
limit theorem, which states that for most distributions (continuous or discrete) 
the average of a set of  n  independent observations with that distribution has a 
distribution that is approximately a normal distribution if  n  is large (usually 30 or 
more).   
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    6.     How are the median, mean, and mode related for the normal distribution?    

 For any normal distribution by the symmetry property, the mean and median are 
the same, and the distribution is also unimodal with the mode at the mean. So the 
three measures are always equal for normal distributions.   

    10.     How is the t distribution related to the normal distribution? What is different 
about the   t   - statistic particularly when the sample size is small?    

 Student ’ s  t  - distribution with  n  degrees of freedom is approximately the same as a 
standard normal distribution when  n  is large (large is somewhere between 30 and 
100. When  n  is small, the  t  - distribution is centered at 0, and is symmetric, but the 
tails drop off much more slowly than for the standard normal distribution (small 
is from 2 to 30). The smaller the degrees of freedom are, the heavier are the tails 
of the distribution.   

    11.     Assume that the weight of women in the United States who are between the 
ages of 20 and 35 years has a normal distribution (approximately), with a 
mean of 120   lbs and a standard deviation of 18   lbs. Suppose you could select 
a simple random sample of 100 of these women. How many of these women 
would you expect to have their weight between 84 and 156   lbs? If the number 
is not an integer, round off to the nearest integer.    

 First, let us compute the  Z  - statistic. Suppose  X  is the weight of a girl chosen at 
random, then her  Z  - statistic is ( X     −    120)/18. By the assumption that  X  is normal 
or approximately so,  Z  has a standard normal distribution. We want the probability 
 P [84    ≤     X     ≤    156]. This is the same as  P [(84    −    120)/18    ≤    Z    ≤    (156    −    120)/18]    =     P 
[ − 2    ≤     Z     ≤    2]    =    0.9544. See the table of the standard normal distribution. So the 
expected number of women would be 0.9544(100)    =    95.44 or 95 rounded to the 
nearest integer.     

 Chapter  5  

    2.     What are the two most important properties for an estimator?    

 The most important properties of a point estimator are its bias and variance. These 
are the components of the estimator ’ s accuracy.   

    3.     What is the disadvantage of just providing a point estimate?    

 As noted in problem 2, accuracy is the most important property of an estimator 
and without knowledge or an estimate of the mean square error (or equivalently 
the bias and variance) you do not know how good the estimator is.   

    5.     If a random sample of size   n   is taken from a population with a distribution 
with mean  μ  and standard deviation    σ   , what is the standard deviation (or 
standard error) of the sample mean equal to?    

 For a random sample of size  n , the sample mean is unbiased and has a standard 

deviation of   σ n .   
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    8.     Explain how the percentile method bootstrap confi dence interval for a param-
eter is obtained.    

 To obtain a percentile method bootstrap confi dence interval with confi dence 
level 100(1    −      α  )%, generate many (e.g., 1000) bootstrap samples. Calculate the 
estimate of interest for each bootstrap sample. Order the estimates from lowest to 
highest. Find the fi rst integer greater than or equal to 100  α  /2. Let ’ s call that  m . 
Then look for the  m th bootstrap estimate, call it   E m( )

* . Then fi nd the fi rst integer 
greater than 100(1    −      α  /2). Call that integer  ml . Find the  ml th bootstrap estimate in 
the ordered list and call that   E ml( )

* . Then the interval [  E m( )
* ,   E ml( )

* ] is a two - sided 
100(1    −     α ) % bootstrap percentile confi dence interval for the parameter being 
estimated.   

    11.     The mean weight of 100 men in a particular heart study is 61   kg, with a 
standard deviation of 7.9   kg. Construct a 95% confi dence interval for the 
mean.    

 We assume that the 100 men constitute a random sample of size 100, and that the 
central limit theorem will apply to the average weight. So fi rst we compute 
the Z - statistic for the lower and upper bounds of the 95% confi dence interval. Call 
the confi dence interval [ L ,  U ], then for the Z - scores the interval is [( L     −    61)/7.9, 
( U     −    61)/7.9]. To make this a symmetric two - sided interval, we want ( L     −    61)/7.9 
to be the 2.5 percentile of a standard normal random variable and ( U     −    61)/7.9 to 
be the 97.5 percentile. From our table for the standard normal, we look for the 
point  X  with area from 0 to  X  equal to 0.975/2    =    0.4875. We see that this gives a 
value of  X     =    2.24. So ( U     −    61)/7.9    =    2.24. By symmetry, ( L     −    61)/7.9    =     − 2.24. We 
can now solve for  U  and  L .  U     =    2.24(7.9)    +    61    =    17.696    +    61    =    78.696 and  L     =    
61    −    2.24(7.9)    =    61    −    17.696    =    43.304.     

 Chapter  6  

    2.     How are equivalence tests different from standard hypothesis tests?    

 The standard Neyman – Pearson method for hypothesis testing make the hypothesis 
of no signifi cant difference the null hypothesis with the power of the test controlled 
for the alternative by the necessary sample size. However, in equivalence testing, 
we want no signifi cant difference to be the alternative. Some people call this 
 “ proving the null hypothesis. ”  In the Neyman – Pearson approach, we cannot  “ prove 
the null hypothesis ”  without formally making it the alternative. That is because the 
type I error is only the probability that we reject the null hypothesis when the null 
hypothesis is  “ true. ”  It does not control the probability of accepting the null 
hypothesis when the null hypothesis is  “ true. ”  If the sample size is small, it is hard 
to reject the null hypothesis regardless of whether or not it is  “ true. ”  So to control 
that probability, we make the null hypothesis the alternative and then controlling 
the power of the test controls the probability of accepting the hypothesis when it 
is  “ true, ”  since that is precisely the defi nition of power. By no signifi cant difference 
we mean that the difference between the two groups is in absolute value less than 
a defi ned margin of equivalence  δ .   
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    3.     What is the difference between equivalence testing and noninferiority?    

 In equivalence testing, we require that the difference be no greater than a specifi ed 
 δ  and no less than  −   δ  . In noninferiority testing, there is no restriction on how much 
larger the treatment mean is compared to the control mean, but the treatment mean 
minus the control mean cannot be less than  −   δ  , where   δ   is now called the nonin-
feriority margin.   

    8.     Describe the difference between a one - tailed and a two - tailed test and describe 
situations where one is more appropriate than the other.    

 Sometimes, the alternative is only interesting in one direction. For example, in 
clinical trials, we are usually only interested in showing that the treatment is supe-
rior to the control. This would mean that we want the average treatment effect to 
be statistical signifi cantly higher than the control. If the average treatment effect 
is less than the average control treatment effect, it is just as bad as if there were 
no difference.   

    10.     What are meta - analyses? Why might they be needed?    

 Meta - analyses are analyses that combine information from several studies on the 
same or similar endpoints. The purpose is to use the information to draw stronger 
conclusions about the endpoint than was possible from any individual study. The 
can be necessary when several small studies show trends that are not statistically 
signifi cant but are all or most in the same direction. The meta - analysis may be able 
to provide research results that are signifi cant rather than just a trend.   

    11.     Based on the data in Table    6.1   , do you think it is plausible that the true mean 
difference in temperature between New York and Washington would be 3 ° F? 
Would the power of the test be higher, lower, or the same if the true mean 
difference were 5 ° F? Does the power depend on the true mean difference? If 
so, why?    

 Yes: The observed difference is 3 °  or more higher in Washington versus New York 
in January, March, April, July, August, September, October, and November, and is 
2 °  higher in the other 4 months (February, May, June, and December). 

 Assuming the variance of the difference does not change the power of the test 
would be higher if the true mean difference were 5 °  instead of 3 ° . This is because 
the greater the separation of the center of the distribution, the less the distributions 
overlap.     

 Chapter  7  

    1.     Defi ne the following terms: 

   (a)      Association   

  (b)      The correlation coeffi cient   

  (c)      Simple linear regression   

  (d)      Multiple linear regression   
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  (e)      Nonlinear regression   

  (f)      Scatter plot   

  (g)      Slope of the regression line in simple linear regression       

 (a)   Association is a general term for a relationship between two variables. It 
includes the Pearson correlation coeffi cient, Kendall ’ s tau, and Spearman ’ s rho 
among others. 

 (b)   The correlation coeffi cient usually refers to the Pearson product moment cor-
relation, which is a measure of the strength of the linear association between 
two variables. Sometimes Kendall ’ s tau and Spearman ’ s rho are also called 
correlations. Spearman ’ s rank correlation measures the degree to which  X  
increases as  Y  increase or  X  decreases as  Y  increases. It is 1 when  Y  is exactly 
a monotonically increasing function of  X , and  − 1 when  Y  is exactly a mono-
tonically decreasing function of  X . 

 (c)   Simple linear regression is the curve relating two variables  X  and when 
 Y  =     af ( X )    +     b     +     e , where  a  and  b  are the parameters, and  e  represents a random 
noise component. In this formulation,  Y  is a linear function of the parameters 
 a  and  b , and  f  is any function of  X . The regression function is  af ( X )    +     b . If 

 f ( X )    =     X ,  Y  is linear in  X  also, but  f ( X ) could also be   X  or  X  2  or log( X ). 
 (d)   Multiple linear regression is similar to linear regression except that Y is a 

function of two or more variables  X  1 ,  X  2 ,    . . .     X n  , where  n     ≥    2. 
 (e)   Nonlinear regression can have Y be a function of one or more variables. It 

differs from linear regression in that it must be nonlinear in parameters. So, for 
example,  Y  could be exp( b ) X a  , or some other complicated expression.  Y     =     X a      +     e  
is nonlinear. But if the noise term were multiplicative, that is,  Y     =     X a e , then it is 
transformable to a linear regression, since ln( Y )    =    ln( e )    +     a  ln( X ) In this case, we 
can solve by least squares with a zero intercept restriction. ln( e ) is the additive 
noise term, and  Z     =    ln( Y ) has a linear regression  Z     =     aW     +      δ  , where  W     =    ln( X ) 
and   δ      =    ln( e ). The only parameter now is  a , and  Z  is a linear function of the 
parameter  a . Usually, in nonlinear regression, iterative procedures are needed 
for the solution, while in linear regression, the least squares solution is obtained 
in closed form by solving equations that are called the normal equations. 

 (f)   A scatter plot is a graph of pairs ( X ,  Y ) that graphically shows the degree of 
relationship between the variables  X  and  Y  and is often the fi rst step toward 
fi tting a model of  Y  as a function of  X.  

 (g)   In simple linear regression, where  Y     =     af ( X )    +     b     +     e . The parameter a is called the 
slope of the regression line. When  f ( X )    =     X , the least squares regression line is fi t 
through the scatter plot of the data. The closer the data points fall near the least 
squares line the higher is the correlation between  X  and  Y , and the better the linear 
regression line fi ts the data. The slope of that regression line is the least squares 
estimate of  a , and the  Y  intercept for the line is the least squares estimate of  b .   

    5.     What is logistic regression? How is it different from ordinary linear 
regression?    

 Logistic regression involves a response variable that is binary. The predictor vari-
ables can be continuous or discrete or a combination of both. Call  Y  the binary 
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variable, then the regression of  Y  on the predictor vector   X      =    ( X  1 ,  X  2 ,    . . .    ,  X k  ) is 
the probability that  Y     =    1 given   X      =      x  . We let   π  (  x  )    =     E [ Y |  X      =      x  ]. The logistic 
regression expresses  g (  x  )    =    the logit function of   π  (  x  ), namely  g (  x  )    =    ln[  π  (  x  )/
{1    −      π  (  x  )}], with the function  g  linear in the prediction vector   x  . Here the coef-
fi cient of each  X i      =     x i   is   β  i  ,  i     =    1, 2,    . . .    ,  k . It differs from ordinary linear regression 
in that  E ( Y |  X      =      x  ) is a probability belonging to the interval [0, 1], and the logit 
transformation is used to transform it to ( −  ∞ ,  ∞ ). It is linear like ordinary linear 
regression, but only after the logit transformation.   

    7.     What is the defi nition of the multiple correlation coeffi cient   R   2 ?    

 For multiple linear regression, the multiple correlation coeffi cient is the proportion 
of the variance in  Y  that is explained by the estimated regression equation divided 
by the total variance in  Y . It is a measure of goodness of fi t to the line, and when 
 R  2     =    1, the regression equation explains all of the variance implying that all the 
data fall exactly on the regression line.   

    9.     What is the equivalent to   R   2  in simple linear regression?    

 In simple linear regression, the square of the Pearson correlation coeffi cient is 
analogous to  R  2 . The square of the correlation is the percentage of the variance in 
 Y  explained by the variable  X . When the data fall perfectly on a line the correlation 
equals  ± 1, and its square equals 1.   

    11.     What is stepwise regression? Why is it used?    

 Stepwise regression is a procedure for selecting a subset of a set of proposed 
predictor variables to include in the regression model. It uses criteria to either add 
a variable or subtract a variable at any stage until there are no more variables 
satisfying the drop or add criterion. Stepwise regression is used because often in 
practice we know a set of variables that are related to the response variable, but 
we don ’ t know how correlated they are among each other. When there is correla-
tion, a subset of the variables will do better at predicting new values for the 
response than the full set of variables. This is because the estimated coeffi cients 
can be unstable when there is correlation among the variables. This is called the 
multicollinearity problem, because high correlation means that one of the predic-
tor variable, say  X  1,  is nearly expressible as a linear combination of other predictor 
variables. If the multiple correlation between the variables and  X  1  the regression 
coeffi cients are not unique.   

    14.     An experiment was conducted to study the effect of increasing the dosage of 
a certain barbiturate. Three readings were recorded at each dose. Refer to 
Table    7.6   . 

   (a)      Plot the scatter diagram (scatter plot)   

  (b)      Determine by least squares the simple linear regression line relating 
dosage   X   to sleeping time   Y  .   

  (c)      Provide a 95% two - sided confi dence interval for the slope.   

  (d)      Test that there is no linear relationship at the 0.05 level.       

both.indd   183both.indd   183 6/15/2011   4:08:22 PM6/15/2011   4:08:22 PM



184 Solutions to Selected Exercises

      (b)   Least squares the simple linear regression line relating dosage  X  to sleeping 
time  Y . 
  E ( Y | X )    =     a     +     bX , where the intercept   b X X Y Yi

n
i i i

n= ∑ − − ∑=
∧ ∧

=1 1( )( )/
  ( ) ( ) [ ( ) ]X X X Y nX Y X X n Xi i

n
i
n

i j i
n

j
n

i j− = ∑ ∑ − ∑ ∑ −∧
= =

∧ ∧
= =

∧2
1 1 1 1

2/
and  a     =     Y  ̂      −     bX  ̂  . From Table  7.6  we see  Σ  Y     =    72 so  Y  ̂      =    72/9    =    8 and  Σ  X     =    84 
so  X  ̂      =    84/9    =    9.33. 
 Now  b     =    [6048    −    9(72/9)(84/9)]/[7056    −    9(84/9)(84/9)]    =    5376/6272    =    0.857143, and 
 a     =    8    −    0.857(9.33)    =    0.00286. The regression line is therefore  Y     =    0,857 X     +    0.00286. 

 (c)   A two - sided 95% confi dence interval for b is obtained by recalling that 

   SSE Y Y Y Y n Yi i
n

j
n

i j= − − ∑ ∑ −∧
= =

∧Σ( ) ( )2
1 1

2.   SS SSE ny x. [ ( )]= −/ 2

and   SE b S X Xy x i( ) [ ( ) ].= ∑ −( ∧ 2
. Also,  t     =    ( b     −      β  )/ SE ( b ) has a  t  - distribution 

with  n     −    2 degrees of freedom. So the degrees of freedom for this case is 7. 
  SSE     =    5184    −    9(64)    =    4608 and   SSy x. .= =4608 7 25 66/  and   SE b( ) =
  25 66 7056 9 9 33 25 66 79 1995 0 3242. [ ( . ) ] . . .− = =/ . Therefore, a 
two - sided 95% confi dence interval for  b  is [ b     −    0.324 t  7 (0.975),  b     +    0.324 t  7 (0.975)]. 
From the  t  tables in the appendix, we see that  t  7 (0.975)    =    2.365. So the confi -
dence interval    =    [0.857    −    0.324(2.365), 0.857    +    0.324(2.365)]    =    [0.091, 1.62]. 

 (d)   Since 0 is not contained in the interval, we would reject the hypothesis that 
  β      =    0.     

 Chapter  8  

    2.     In a survey study subjects were asked to report their health as excellent, good, 
poor and very poor. They were also asked to answer whether or not they had 
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 (a)   Scatter plot 
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smoked at least 250 cigarettes in their lifetime. Suppose Table    8.14    represents 
the outcome of the survey . 

  Determine if there is a relationship between cigarette usage and reported 
health status at the 5% signifi cance level one - sided. What is the   p   - value for the 
chi - square test? Why is it appropriate to use the chi - square test?    
 Yes, we reject the null hypothesis at the 0.05 level. Based on SAS Version 9.2 Proc 
Freq, chi - square  p  - value    <    0.0001, indicating a highly signifi cant relationship 
between smoking frequency and health status. Over 70% of the patients in the 
excellent category smoke fewer than 250 cigarettes. Similarly, 58% of patients in 
the good health category smoke fewer than 250 cigarettes. In the poor health cat-
egory, 53% are from the smoke fewer than 250 cigarettes. But in the very poor 
health category 64% are from the smoke 250 or more category 
 The chi square test is appropriate because the sample sizes are large and each cat-
egory has at least 20 counts.   

    6.     A clinical trial is conducted at an academic medical center. Diabetic patients 
were randomly assigned to a new experimental drug to control blood sugar 
levels versus a standard approved drug using a 1   :   1 randomization. 200 patients 
were assigned to each group and the 2    ×    2 table (Table    8.18   ) shows the results.  

  Test at the 5% level to determine if the new drug is more effective. Is it 
appropriate to apply the chi - square test? Why would it be diffi cult to do 
Fisher ’ s test without a computer? How many contingency tables are possible 
with the given row and column marginal totals?    
 Based on both the chi - square test and Fisher ’ s exact test, we see that the drug is very 
effective.  p  - value for both test is much less than 0.0001. The chi - square test s appropri-
ate because each cell has at least 21 patients in it. Fisher ’ s test would be diffi cult to do 
by hand because there are many contingency tables to look at. But using SAS 9.2, this 
is not really a problem. There are 141 such tables with the fi xed marginal totals.     

 Chapter  9  

    2.     Apply the Wilcoxon rank - sum test to the data in the following table on the rela-
tionship between the number of patients with schizophrenia and the season of 
their birth by calling fall and winter as group 1 and spring and summer as 
group 2. The four individual seasons represent data points for each group. 
Ignore the possibility of a year effect (Table    9.6   ).  

  Do we need to assume that births are uniformly distributed? If we knew 
that there were a higher percentage of births in the winter months how would 
that affect the conclusion?    

 The ordered data and ranks are as follows:
    

  9 — summer    1  

  10 — spring    2  

  13 — spring    3  

  14 — spring    4  

  15 — summer    5  
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 By groups we have ranks and sum of ranks as follows:

  17 — summer    6  

  18 — spring    7  

  19 — fall    8  

  20 — fall    9.5  

  20 — spring    9.5  

  21 — summer    11  

  22 — spring    12  

  23 — fall    13  

  25 — summer    14  

  27 — fall    15  

  28 — summer    16  

  32 — fall    17  

  33 — fall    18  

  35 — winter    19  

  36 — winter    20.5  

  36 — winter    20.5  

  38 — winter    22  

  41 — winter    23  

  43 — winter    24  

      Group 1 (fall 
and winter)  

  Group 2 (spring 
and summer)  

      8    1  
      9.5    2  
      13    3  
      15    4  
      17    5  
      18    6  
      19    7  
      20.5    9.5  
      20.5    11  
      22    12  
      23    14  
      24    16  
  Rank sum    209.5    90.5  
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     It appears obvious that group 1 has the larger numbers. 
 From the table for the Wilcoxon rank - sum test when  n 1    =     n 2    =    12 we have for 
 T     =    209.50. The  p  - value given here was obtained using the following SAS code:

 data schizo; 
 input group$ season$ nschizo 
 ; 
 datalines; 
 g2 summer 9 
 g2 summer 15 
 g2 summer 17 
 g2 summer 21 
 g2 summer 25 
 g2 summer 28 
 g2 spring 10 
 g2 spring 13 
 g2 spring 14 
 g2 spring 18 
 g2 spring 20 
 g2 spring 22 
 g1 fall 19 
 g1 fall 20 
 g1 fall 23 
 g1 fall 27 
 g1 fall 32 
 g1 fall 33 
 g1 winter 35 
 g1 winter 36 
 g1 winter 36 
 g1 winter 38 
 g1 winter 41 
 g1 winter 43 
 ; 
 run; 

 ods graphics on; 
   proc npar1way data    =    schizo; 
 class group; 
 var nschizo; 
 run; 

   ods graphics off; 
   data schizo; 
 input group$ season$ nschizo 
 ; 
 datalines; 
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 g2 summer 9 
 g2 summer 15 
 g2 summer 17 
 g2 summer 21 
 g2 summer 25 
 g2 summer 28 
 g2 spring 10 
 g2 spring 13 
 g2 spring 14 
 g2 spring 18 
 g2 spring 20 
 g2 spring 22 
 g1 fall 19 
 g1 fall 20 
 g1 fall 23 
 g1 fall 27 
 g1 fall 32 
 g1 fall 33 
 g1 winter 35 
 g1 winter 36 
 g1 winter 36 
 g1 winter 38 
 g1 winter 41 
 g1 winter 43 
 ; 
 run; 
 ods graphics on; 

   proc npar1way data    =    schizo; 
 class group; 
 var nschizo; 
 run; 

   ods graphics off; 
    The result is included in the following SAS output:
     
     
 The SAS System                                       12:10 Monday, December 6, 2010 
2 
  
                                                          The NPAR1WAY Procedure 
  
       Wilcoxon Scores (Rank Sums) for Variable nschizo 

                                                    Classifi ed by Variable group 
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       Sum of Expected Std Dev Mean 
    group N Scores Under H0 Under H0 Score          
     ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ   ƒ  ƒ  ƒ  ƒ  ƒ  ƒ  ƒ 
    g2 12 90.50 150.0 17.312976 7.541667 
    g1 12 209.50 150.0 17.312976 17.458333 
  
          Average scores were used for ties. 
  
  
                Wilcoxon Two - Sample Test 
  
                Statistic      90.5000 
  
                Normal Approximation 
                Z       - 3.4078 
                One - Sided Pr    <    Z 0.0003 
                Two - Sided Pr    >    |Z| 0.0007 
  
                t Approximation 
                One - Sided Pr    <    Z 0.0012 
                Two - Sided Pr    >    |Z| 0.0024 
  
             Z includes a continuity correction of 0.5. 
  
  
                Kruskal - Wallis Test 
  
                Chi - Square 11.8111 
                DF         1 
                Pr    >    Chi - Square 0.0006  

 Yes, we do need births to be at least uniform over the seasons. This is because 
we are ranking based on number of births over a season. If there tended to be more 
births in the fall and winter compared with summer and spring, the higher number 
of schizophrenic patients could be due to the higher number of total births rather 
than a tendency for schizophrenics to be born during winter and fall. If there were 
a higher number of births in the winter, then we could not reach our intended con-
clusion. We would need to know the number of births in each season and adjust 
accordingly by looking at proportion of schizophrenic births rather than the total 
number.   

    6.     Using Table    9.9   , compute the Spearman rank correlation coeffi cient for the 
aggressiveness scores. Does this suggest that both twins tend to be similar in 
degree of aggressiveness?    

 Recall that the formula for Spearman ’ s rank correlation is given as follows:

both.indd   189both.indd   189 6/15/2011   4:08:22 PM6/15/2011   4:08:22 PM



190 Solutions to Selected Exercises

    

ρ =
− +{ }

− +{ }
=

=

∑
∑

R X R Y n n

R X n n R

i i
i

n

i
i

n

( ) ( ) ([ ] )

( ) ([ ] ) (

1

2

2

1

2

1 2

1 2

/

/ YY n ni
i

n
) ([ ] )

.
2

1

21 2
=∑ − +{ }/

   

 In the case of no ties, this formula simplifi es to

    ρ = − −1 6 12T n n/[ ( )},   

where   T R X R Yi
n

i i= ∑ −=1
2[ ( ) ( )] . 

 Since we have ties, we cannot use the simplifi ed formula. 
 So in this example, the estimate

    

ρ = ∑ − ∑ − ∑ −= = ={ ( ) ( ) } [{ ( ) }{ ( )i i i i i i iR X R Y R X R Y1
12

1
12 2

1
12 2507 507/ 5507

535 0 507 0 649 0 507 0 649 0 507 0

28 142 2

}]

( . . ) ( . . )( . . )

( )

= − − −
= =

/

/ 228 20 164 0 001389/ , . .=
 

The correlation is negligible, meaning there is practically no relationship between 
order of birth and aggressiveness of the twins. A statistical test would show that 
the correlation is not statistically signifi cantly different from 0. So the twins tend 
to be similar in the amount of aggressiveness shown in their scores.     

 Chapter  10  

    2.     If the survival function   S  (  t  )    =    1     −     t  /  b   for 0    ≤      t      ≤      b  , where   b   is a fi xed positive 
constant, and   S  (  t  )    =    0 for   t      >      b  , calculate the hazard function. When is the 
hazard function lowest? Is there a highest rate?    

  F ( t )    =    1    −     S ( t )    =    1    −    (1    −     t / b )    =     t / b  for 0    ≤     t     ≤     b  in this case, and  F ( t )    =    1 for 
 t     >     b . Now  f ( t )    =     dF ( t )/ dt     =    1/ b  for all 0    ≤     t     ≤     b  and  f ( t )    =    0 otherwise. Now the 
hazard function is defi ned as  h ( t )    =     f ( t )/ S ( t )    =    1/[ bS ( t )]    =    1/ b (1    −     t / b )    =    1/( b     −     t ) 
for 0    ≤     t     ≤     b . At  t     =    0, the hazard function is 1/ b , and that is its lowest value. For 
 b     >     t     >    0 h ( t )    =    1/( b     −     t )    >    1/ b , since  b     >     b     −     t . So the hazard function is increas-
ing. But as  t     →     b ,  b     −     t     →    0, and  h ( t )    =    1/( b     −     t )    →     ∞ . So there is no maximum 
value for the hazard function.   

    4.     Suppose the survival time since a bone marrow transplant for eight patients 
who received the transplant is 3, 4.5, 6, 11, 18.5 20, 26, and 35. No observa-
tions were censored. 

   (a)      What is the median survival time for these patients?   

  (b)      What is the mean survival time?   

  (c)      Construct a life table where each interval is 5 months.       
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 (a)   Since the data is complete and there are 8 event times, the median is the average 
of the 4th and 5th ordered observations, which is (11    +    18.5)/2    =    14.75 months. 

 (b)   The mean survival is just the arithmetic average of the eight event times, which 
is (3    +    4.5    +    6    +    11    +    18.5    +    20    +    26    +    35)/8    =    15.5 months. 

 (c)   A life table for this data using 5 - month intervals is as follows:

   Time 
Interval  I j    

   No. of 
deaths 
in  I j    

   No. 
withdrawn 

in  I j    

   No.at 
risk in  I j    

   Avg. no. 
at risk 
in  I j    

   Est. 
prop. of 
deaths 
in  I j    

   Est. 
prop. 

Surv. at 
end of  I j    

   Est. 
cum. 

surv. at 
end of  I j    

  [0, 5)    2    0    8    8    0.25    0.75    0.75  

  [5, 10)    1    0    6    6    0.167    0.833    0.585  

  [10 15)    1    0    5    5    0.200    .8    0.468  

  [15,20)    1    0    4    4    0.250    0.750    0.341  

  [20,25)    1    0    3    3    0.333    0.667    0.227  

  [25,30)    1    0    2    2    0.500    0.500    0.114  

  [30,35)    0    0    2    2    0.000    1.000    0.114  

  [35,40)    1    0    1    1    1.000    0.000    0.000  

  [40,  ∞ )    0    0    0    0     —      —      —   

          10.     Suppose a cure model is known to have   S   1 (  t  )    =    exp( − 0.5  t  ).  

  Recall   S  (  t  )    =      p      +    (1      −      p  )   S   1 (  t  ). Suppose that we know that   S  (2)    =    0.5259. 
Can you calculate the cure rate for this model? If so what is it?    

  S ( t )    =     p     +    (1    −     p ) S  1 ( t ). Since we know  S  1 ( t )    =    exp( − 0.5 t ), we only need to deter-
mine  pS ( t ). 
 We are given  S (2)    =    0.5259, and we can use this information to solve for  p . 
  S (2)    =    0.5259, on the one hand, and

    
S p p p p

p

( ) ( )exp[ ( . ) ] ( )( . )

( . ) .

2 1 0 5 1 0 3679

1 0 3679 0 367

2= + − − = + −
= − + 99.

  

    So p( . ) . . . .1 0 3679 0 5259 0 3679 0 1580− = − =   

    P = − = =0 1580 1 0 3679 0 1580 0 6321 0 4295. ( . ) . . ./ /    

 So  S ( t )    =    0.4295    +    0.5705exp( − 0.5 t ), and the probability of cure is 0.4295. This 
means that approximately 43% of the patients receiving this treatment will be cured 
of the disease based on this model.            
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Statistical Tables     
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  Table 4 
  χ   2  Distribution 

    df       p   

   0.99     0.95     0.90     0.10     0.05     0.01     0.001  

     1    0.0 3 157    0.00393    0.0158    2.706    3.841    6.635    10.827  

     2    0.0201    0.103    0.211    4.605    5.991    9.210    13.815  

     3    0.115    0.352    0.584    6.251    7.815    11.345    16.266  

     4    0.297    0.711    1.064    7.779    9.488    13.277    18.467  

     5    0.554    1.145    1.610    9.236    11.070    15.086    20.515  

     6    0.872    1.635    2.204    10.645    12.592    16.812    22.457  

     7    1.239    2.167    2.833    12.017    14.067    18.475    24.322  

     8    1.646    2.733    3.490    13.362    15.507    20.090    26.125  

     9    2.088    3.325    4.168    14.684    16.919    21.666    27.877  

  10    2.558    3.940    4.865    15.987    18.307    23.209    29.588  

  11    3.053    4.575    5.578    17.275    19.675    24.725    31.264  

  12    3.571    5.226    6.304    18.549    21.026    26.217    32.909  

  13    4.107    5.892    7.042    19.812    22.362    27.688    34.528  

  14    4.660    6.571    7.790    21.064    23.685    29.141    36.123  

  15    5.229    7.261    8.547    22.307    24.996    30.578    37.697  

  16    5.812    7.962    9.312    23.542    26.296    32.000    39.252  

  17    6.408    8.672    10.085    24.769    27.587    33.409    40.790  

  18    7.015    9.390    10.865    25.989    28.869    34.805    42.312  

  19    7.633    10.117    11.651    27.204    30.144    36.191    43.820  

  20    8.260    10.851    12.443    28.412    31.410    37.566    45.315  

  21    8.897    11.591    13.240    29.615    32.671    38.932    46.797  

  22    9.542    12.338    14.041    30.813    33.924    40.289    48.268  

  23    10.196    13.091    14.848    32.007    35.172    41.638    49.728  

  24    10.856    13.848    15.659    33.196    36.415    42.980    51.179  

  25    11.524    14.611    16.473    34.382    37.652    44.314    52.620  

  26    12.198    15.379    17.292    35.563    38.885    45.642    54.052  

  27    12.879    16.151    18.114    36.741    40.113    46.963    55.476  

  28    13.565    16.928    18.939    37.916    41.337    48.278    56.893  

  29    14.256    17.708    19.768    39.087    42.557    49.588    58.302  

  30    14.953    18.493    20.599    40.256    43.773    50.892    59.703  

 S ource :   Adapted from Table IV of R. A. Fisher and F. Yates (1974).  Statistical Tables for 
Biological, Agricultural, and Medical Research.  6th ed. London: Longman Group, Ltd. (Previously 
published by Oliver  &  Boyd, Ltd., Edinburgh). Used with permission of the authors and 
publishers. 
 Taken from Chernick and Friis  (2003) , Appendix D, pp. 368 – 369, with permission. 
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  Table 6 
Percentage Points, Student ’ s  t -  Distribution 

   F      0.90     0.95     0.975     0.99     0.995  

    n   

     1    3.078    6.314    12.706    31.821    63.657  

     2    1.886    2.920    4.303    6.965    9.925  

     3    1.638    2.353    3.182    4.541    5.841  

     4    1.533    2.132    2.776    3.747    4.604  

     5    1.476    2.015    2.571    3.365    4.032  

     6    1.440    1.943    2.447    3.143    3.707  

     7    1.415    1.895    2.365    2.998    3.499  

     8    2.397    1.860    2.306    2.896    3.355  

     9    1.383    1.833    2.262    2.821    3.250  

     10    1.372    1.812    2.228    2.764    3.169  

     11    1.363    1.796    2.201    2.718    3.106  

     12    1.356    1.782    2.179    2.681    3.055  

     13    1.350    1.771    2.160    2.650    3.012  

     14    1.345    1.761    2.145    2.624    2.977  

     15    1.341    1.753    2.131    2.602    2.947  

     16    1.337    1.746    2.120    2.583    2.921  

     17    1.333    1.740    2.110    2.567    2.898  

     18    1.330    1.734    2.101    2.552    2.878  

     19    1.328    1.729    2.093    2.539    2.861  

     20    1.325    1.725    2.086    2.528    2.845  

     21    1.323    1.721    2.080    2.518    2.831  

     22    1.321    1.717    2.074    2.508    2.819  

     23    1.319    1.714    2.069    2.500    2.807  

     24    1.318    1.711    2.064    2.492    2.797  

     25    1.316    1.708    2.060    2.485    2.787  

     26    1.315    1.706    2.056    2.479    2.779  

     27    1.314    1.703    2.052    2.473    2.771  

     28    1.313    1.701    2.048    2.467    2.763  

     29    1.311    1.699    2.045    2.462    2.756  

     30    1.310    1.697    2.042    2.457    2.750  

     40    1.303    1.684    2.021    2.423    2.704  

     60    1.296    1.671    2.000    2.390    2.660  

  120    1.289    1.658    1.980    2.358    2.617  

   ∞     1.282    1.645    1.960    2.326    2.576  

 S ource :   Beyer, William H., ed. (1966).  Handbook of Tables for Probability and Statistics.  
Cleveland, Ohio: The Chemical Rubber Co., p. 226. 
 Taken from Chernick and Friis  (2003) , Appendix F, pp. 371 – 372, with permission. 
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