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Preface

The many beings are numberless; I vow to save them all.
Traditional Zen vow

The one process now going on that will take millions of years to correct is the loss
of genetic and species diversity by the destruction of natural habitats. This is the
folly our descendants are least likely to forgive us.

Edward O. Wilson, 1984

This book is about applying the concepts and tools of genetics to problems in conservation.
Our guiding principle in writing has been to provide the conceptual basis for understanding the
genetics of biological problems in conservation. We have not attempted to review the extens-
ive and ever growing literature in this area. Rather we have tried to explain the underlying 
concepts and to provide enough clear examples and key citations for further consideration. We
also have strived to provide enough background so that students can read and understand the
primary literature.

Our primary intended audience is broadly trained biologists who are interested in under-
standing the principles of conservation genetics and applying them to a wide range of particu-
lar issues in conservation. This includes advanced undergraduate and graduate students in
biological sciences or resource management, as well as biologists working in conservation
biology for management agencies. The treatment is intermediate and requires a basic under-
standing of ecology and genetics.

This book is not an argument for the importance of genetics in conservation. Rather, it is
designed to provide the reader with the appropriate background to determine how genetic
information may be useful in any specific case. The primary current causes of extinction are
anthropogenic changes that affect ecological characteristics of populations (habitat loss, frag-
mentation, introduced species, etc.). However, genetic information and principles can be
invaluable in developing conservation plans for species threatened with such effects.
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xiv PREFACE

The usefulness of genetic tools and concepts in the conservation of biological diversity is
continually expanding as new molecular technologies, statistical methods, and computer pro-
grams are being developed at an increasing rate. Conservation genetics and molecular ecology
are under explosive growth, and this growth is likely to continue for the foreseeable future.
Indeed we have recently entered the age of genomics. New laboratory and computational
technologies for generating and analyzing molecular genetic data are emerging at a rapid pace.

There are several excellent texts in population genetics available (e.g., Hartl and Clark 1997;
Halliburton 2004; Hedrick 2005). These texts concentrate on questions related to the central
focus of population and evolutionary genetics, which is to understand the processes and mech-
anisms by which evolutionary changes occur. There is substantial overlap between these texts
and this book. However, the theme underlying this book is the application of an understanding
of the genetics of natural populations to conservation.

We have endeavored to present a balanced view of theory and data. The first four chapters
(Part I) provide an overview of the study of genetic variation in natural populations of plants
and animals. The middle eight chapters (Part II) provide the basic principles of population
genetics theory with an emphasis on concepts especially relevant for problems in conserva-
tion. The final eight chapters (Part III) synthesis these principles and apply them to a variety of
topics in conservation.

We emphasize the interpretation and understanding of genetic data to answer biological
questions in conservation. Discussion questions and problems are included at the end of each
chapter to engage the reader in understanding the material. We believe well written problems
and questions are an invaluable tool in learning the information presented in the book. These
problems feature analysis of real data from populations, conceptual theoretical questions, and
the use of computer simulations. A website contains example data sets and software programs
for illustrating population genetic processes and for teaching methods for data analysis.

We have also included a comprehensive glossary. Words included in the glossary are bolded
the first time that they are used in the text. Many of the disagreements and long-standing con-
troversies in population and conservation genetics result from people using the same words to
mean different things. It is important to define and use words precisely.

We have asked many of our colleagues to write guest boxes that present their own work in
conservation genetics. Each chapter contains a guest box that provides further consideration of
the topics of that chapter. These boxes provide the reader with a broader voice in conservation
genetics, as well as familiarity with recent case study examples, and some of the major contrib-
utors to the literature in conservation genetics.

The contents of this book have been influenced by lecture notes and courses in population
genetics taken by the senior author from Bob Costantino and Joe Felsenstein. We also thank
Fred Utter for his contagious passion to uncover and describe genetic variation in natural 
populations. This book began as a series of notes for a course in conservation genetics that 
the senior author began while on sabbatical at the University of Oregon in 1993. About one-
quarter of the chapters were completed within those first 6 months. However, as the demands
of other obligations took over, progress slowed to a near standstill. The majority of this book
has been written by the authors in close collaboration over the last 2 years.

Acknowledgments

We are grateful to the students in the Conservation Genetics course at the University of
Montana over many years who have made writing this book enjoyable by their enthusiasm
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List of Symbols

This list includes mathematical symbols with definitions and references to the primary chapters
in which they are used. There is some duplication of usage which reflects the general usage in
the literature. However, the specific meaning should be apparent from the context and chapter.

Symbol Definition Chapter

Latin symbols

A number of alleles at a locus 3, 4, 5, 6
B number of lethal equivalents per gamete 13
c probability of recolonization 15
d 2 squared difference in number of repeat units between 

the two microsatellite alleles in an individual 10
D Nei’s genetic distance 9
D coefficient of gametic disequilibrium 10, 17
D ′ standardized measure of gametic disequilibrium 10
DB gametic disequilibrium caused by population 10

subdivision
DC composite measure of gametic disequilibrium 10
DST proportion of total heterozygosity due to genetic 

divergence between subpopulations 19
e probability of extinction of a subpopulation 15
E probability of an event A
f inbreeding coefficient 6
F pedigree inbreeding coefficient 6, 10, 13, A
F proportion by which heterozygosity is reduced relative  

to heterozygosity in a random mating population 9
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1

Introduction

We are at a critical juncture for the conservation and study of biological diversity:
such an opportunity will never occur again. Understanding and maintaining that
diversity is the key to humanity’s continued prosperous and stable existence on
Earth.

US National Science Board Committee on International 
Science’s Task Force on Global Biodiversity (1989)

The extinction of species, each one a pilgrim of four billion years of evolution, is an
irreversible loss. The ending of the lines of so many creatures with whom we have
traveled this far is an occasion of profound sorrow and grief. Death can be
accepted and to some degree transformed. But the loss of lineages and all their
future young is not something to accept. It must be rigorously and intelligently
resisted.

Gary Snyder (1990)

1.1 Genetics and conservation, 4

1.2 What should we conserve?, 5

1.3 How should we conserve biodiversity?, 10

1.4 Applications of genetics to conservation, 11

Guest Box 1 The role of genetics in conservation, 13

Whitebark pine, Section 1.1
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4 PART I INTRODUCTION

We are living in a time of unprecedented extinctions (Myers and Knoll 2001). Current
extinction rates have been estimated to be 50–500 times background rates and are increas-
ing; an estimated 3,000–30,000 species go extinct annually (Woodruff 2001). Projected
extinction rates vary from 5 to 25% of the world’s species by 2015 or 2020. Approximately
25% of mammals, 11% of birds, 20% of reptiles, 34% of fish, and 9–34% of major plant 
taxa are threatened with extinction over the next few decades (IUCN 2001). Over 50% of
animal species are considered to be either critically endangered, endangered, or vulnerable
to extinction (IUCN 2001).

Conservation biology provides perhaps the most difficult and important questions ever
faced by science (Pimm et al. 2001). The problems are difficult because they are so com-
plex and cannot be approached by the reductionist methods that have worked so well in
other areas of science. Moreover, solutions to these problems require a major readjust-
ment of our social and political systems. There are no more important scientific challenges
because these problems threaten the continued existence of our species and the future of
the biosphere itself.

Aldo Leopold inspired a generation of biologists to recognize that the actions of
humans are imbedded into an ecological network that should not be ignored (Meine
1998). The organized actions of humans are controlled by sociopolitical systems that 
operate into the future on a time scale of a few years at most. All too often our systems of
conservation are based on the economic interest of humans in the immediate future. We
tend to disregard, and often mistreat, elements that lack economic value but that are
essential to the stability of the ecosystems upon which our lives and the future of our
species depend.

1.1 Genetics and conservation

Genetics has a long history of application to human concerns. The domestication of 
animals is thought to have been perhaps the key step in the development of civilization
(Diamond 1997). Early peoples directed genetic change in domestic and agricultural
species to suit their needs. It has been estimated that the dog was domesticated over 15,000
years ago, followed by goats and sheep around 10,000 years ago (Darlington 1969; Zeder
and Hess 2000). Wheat and barley were the first crops to be domesticated in the Old World
approximately 10,000 years ago; beans, squash, and maize were domesticated in the New
World at about the same time (Darlington 1969).

The initial genetic changes brought about by cultivation were not due to intentional
selection but apparently were inherent in cultivation itself. Genetic change under domest-
ication was later accelerated by thousands of years of purposeful selection as animals and
crops were chosen to be more productive or to be used for other purposes. This process
became formalized in the discipline of agricultural genetics after the rediscovery of
Mendel’s principles at the beginning of the 20th century.

The “success” of these efforts can be seen everywhere. Humans have transformed
much of the landscape of our planet into croplands and pasture to support the over 6 bil-
lion humans alive today. Recently, however, we have begun to understand the cost at which
this success has been achieved. The replacement of wilderness by human exploited envi-
ronments is causing the rapidly increasing loss of species and ecosystems throughout the
world. The continued growth of the human population imperils a large proportion of the
wild species that now remain.
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CHAPTER 1 INTRODUCTION 5

In 1974, Otto Frankel published a landmark paper entitled “Genetic conservation: our
evolutionary responsibility” that set out conservation priorities from a genetic perspective:

First, . . . we should get to know much more about the structure and dynamics 
of natural populations and communities. . . . Second, even now the geneticist can
play a part in injecting genetic considerations into the planning of reserves of any
kind. . . . Finally, reinforcing the grounds for nature conservation with an evolution-
ary perspective may help to give conservation a permanence which a utilitarian, and
even an ecological grounding, fail to provide in men’s minds.

Frankel, an agricultural plant geneticist, came to the same conclusions as Leopold, a
wildlife biologist, by a very different path. In Frankel’s view, we cannot anticipate the
future world in which humans will live in a century or two. Therefore, it is our responsibil-
ity to “keep evolutionary options open” for future humans. It is time to apply our under-
standing of genetics to conserving the natural ecosystems that are threatened by human
civilization.

Recent advances in molecular genetics, including sequencing of the entire genomes of
many species, have revolutionized applications of genetics (e.g., medicine and agricul-
ture). For example, it recently has been suggested that genetic engineering should be con-
sidered as a conservation genetics technique (Adams et al. 2002). Many native trees in the
northern temperate zone have been devastated by introduced diseases (e.g., European
and North American elms, and the North American chestnut). Adams et al. (2002) have
suggested that transfer of resistance genes by genetic engineering is perhaps the only avail-
able method for preventing the loss of important tree species.

The loss of key tree species is likely to affect many other species as well. For example,
whitebark pine is currently one of the two most import food resources for grizzly bears in
the Yellowstone National Park ecosystem (Mattson and Merrill 2002). However, virtually
all of the whitebark pine in this region is projected to be extirpated because of an exotic
pathogen (Mattson et al. 2001). The use of genetic engineering to improve crop plants has
been very controversial. There no doubt will be a lively debate in the near future about the
use of these procedures to prevent the extinction of natural populations.

As in other areas of genetics, model organisms have played an important research role in
conservation genetics (Frankham 1999). Many important theoretical issues in conserva-
tion biology cannot be answered by research on threatened species (e.g., how much gene
flow is required to prevent the inbreeding effects of small population size?). Such empirical
questions are often best resolved in species that can be raised in captivity in large numbers
with a rapid generation interval (e.g., the fruit fly Drosophila, the guppy, deer mouse, and
the mustard plant). Such laboratory investigations can also provide excellent training
opportunities for students. We have tried to provide a balance of examples from model and
threatened species. Nevertheless, where possible we have chosen examples from threat-
ened species even though many of the principles were first demonstrated with model
species.

1.2 What should we conserve?

Conservation can be viewed as an attempt to protect the genetic diversity that has been
produced by evolution over the previous 3.5 billion years on our planet (Eisner et al. 1995).

CATC01  28/05/2007  12:01PM  Page 5

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight

Hugo
Highlight



6 PART I INTRODUCTION

Genetic diversity is one of three forms of biodiversity recognized by the IUCN as deserv-
ing conservation, along with species and ecosystem diversity (McNeely et al. 1990). We can
consider the implications of this relationship between genetic diversity and conservation
at many levels: genes, individuals, populations, species, genera, etc.

1.2.1 Phylogenetic diversity

The amount of genetic divergence based upon phylogenetic relationships is often con-
sidered when setting conservation priorities for different species (Mace et al. 2003). For
example, the United States Fish and Wildlife Service (USFWS) assigns priority for listing
under the United States Endangered Species Act (ESA) on the basis of “taxonomic distinc-
tiveness” (USFWS 1983). Species of a monotypic genus receive the highest priority. The
tuatara raises several important issues about assigning conservation value and allocating
our conservation efforts based upon taxonomic distinctiveness (Example 1.1).

Example 1.1 The tuatara: A living fossil

The tuatara is a lizard-like reptile that is the remnant of a taxonomic group that
flourished over 200 million years ago during the Triassic Period (Figure 1.1).
Tuatara are now confined to some 30 small islands off the coast of New Zealand
(Daugherty et al. 1990). Three species of tuatara were recognized in the 19th cen-
tury. One of these species is now extinct. A second species, Sphenodon guntheri,
has been ignored by legislation designed to protect the tuatara, which “lumped” 
all extant tuatara into a single species, S. punctatus. The legislatively defined
monotypy of tuatara has led to the belief that the species is relatively widespread
and that the extinction of 10 of the total of 40 populations over the past century is
not of serious concern. The failure to recognize S. guntheri has brought this
species to the brink of extinction.

Figure 1.1 Adult male tuatara.
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CHAPTER 1 INTRODUCTION 7

Daugherty et al. (1990) reported allozyme and morphological differences from
24 of the 30 islands on which tuatara are thought to remain. These studies support
the status of S. guntheri as a distinct species and indicate that fewer than 300 indi-
viduals of this species remain on a single island, North Brother Island in Cook
Strait. Another population of S. guntheri became extinct earlier in this century.
Daugherty et al. (1990) argue that not all tuatara populations are of equal conser-
vation value. As the last remaining population of a separate species, the tuatara
on North Brother Island represent a greater proportion of the genetic diversity
remaining in the genus Sphenodon and deserve special recognition and protection.

On a larger taxonomic scale, how should we value the tuatara relative to other
species of reptiles? The two tuatara species are the last remaining represent-
atives of the Sphenodontida, one of four extant orders of reptiles (tuatara, snakes
and lizards, alligators and crocodiles, and tortoises and turtles). In contrast, there
are approximately 5,000 species in the Squamata, the speciose order that con-
tains lizards and snakes.

One position is that conservation priorities should regard all species as equally
valuable. This position would equate the two tuatara species with any two species
of reptiles. Another position is that we should take phylogenetic diversity into
account in assigning conservation priorities. The extreme phylogenetic position is
that we should assign equal conservation value to each major sister group in a
phylogeny. According to this position, the two tuatara species would be weighed
equally with the over 5,000 species of other snakes and lizards. Some intermedi-
ate between these two positions seems most reasonable.

Vane-Wright et al. (1991) have presented a method for assigning conservation value on
the basis of phylogenetic relationships. This system is based upon the information content
of the topology of a particular phylogenetic hierarchy. Each extant species is assigned an
index of taxonomic distinctness that is inversely proportional to the number of branching
points to other extant lineages. May (1990) has estimated that the tuatara represents
between 0.3 and 7% of the taxonomic distinctness, or perhaps we could say genetic 
information, among reptiles. This is equivalent to saying that each of the two tuatara
species are equivalent to approximately 10–200 of the “average” reptile species. Crozier and
Kusmierski (1994) have developed an approach to set conservation priorities that is based
upon phylogenetic relationships and genetic divergence among taxa. Faith (2002) recently
has presented a method for quantifying biodiversity for the purpose of identifying conser-
vation priorities that considers phylogenetic diversity both between and within species.

There is great appeal to placing conservation emphasis on distinct evolutionary lin-
eages with few living relatives. Living fossils, such as the tuatara or the coelacanth
(Thomson 1991), represent important pieces in the jigsaw puzzle of evolution. Such
species are relics that are representatives of taxonomic groups that once flourished. Study
of the primitive morphology, physiology, and behavior of living fossils can be extremely
important in understanding evolution. For example, tuatara morphology has hardly
changed in nearly 150 million years. Among the many primitive features of the tuatara is a
rudimentary third, or pineal, eye on the top of the head. Tuatara also represent an import-
ant ancestral outgroup for understanding vertebrate evolution.
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8 PART I INTRODUCTION

In contrast, others have argued that our conservation strategies and priorities should be
based primarily upon conserving the evolutionary process rather than particular pieces of
the evolutionary puzzle that are of interest to humans (Erwin 1991). Those species that
will be valued most highly under the schemes that weigh phylogenetic distinctness are
those that may be considered evolutionary failures. Evolution occurs by changes within a
single evolutionary lineage (anagenesis) and the branching of a single evolutionary lin-
eage into multiple lineages (cladogenesis). Conservation of primitive, nonradiating taxa is
not likely to be beneficial to the protection of the evolutionary process and the environ-
mental systems that are likely to generate future evolutionary diversity (Erwin 1991).

Figure 1.2 illustrates the phylogenetic relations among seven hypothetical species (from
Erwin 1991). Species A and B are phylogenetically distinct taxa that are endemic to small
geographic areas (e.g., tuataras in New Zealand). Such lineages carry information about
past evolutionary events, but they are relatively unlikely to be sources of future evolution.
In contrast, the stem resulting in species C, D, E, and F is relatively likely to be a source of
future anagenesis and cladogenesis. In addition, species such as C, D, E, and F may be
widespread, and, therefore, are not likely to be the object of conservation efforts.

The problem is more complex than just identifying species with high conservation
value; we must take a broader view and consider the habitats and environments where our
conservation efforts could be concentrated. Conservation emphasis on A and B type
species will lead to protection of environments that are not likely to contribute to future
evolution (e.g., small islands on the coast of New Zealand). In contrast, geographic areas
that are the center of evolutionary activity for diverse taxonomic groups could be
identified and targeted for long-term protection.

Recovery from our current extinction crisis should be a central concern of conservation
(Myers et al. 2000). It is important to maintain the potential for the generation of future
biodiversity. We should identify and protect contemporary hotspots of evolutionary radi-
ation and the functional taxonomic groups from which tomorrow’s biodiversity is likely to
originate. In addition, we should protect those phylogenetically distinct species that are of
special value for our understanding of biological diversity and the evolutionary process.
These species are also potentially valuable for future evolution of biodiversity because of

Time

A

Area 1

Centers of endemism Evolutionary front

B

Area 2

C D

Area 3

E F

Figure 1.2 Hypothetical phylogeny of seven species. Redrawn from Erwin (1991).
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CHAPTER 1 INTRODUCTION 9

their combination of unusual phenotypic characteristics that may give rise to a future evo-
lutionary radiation.

1.2.2 Populations, species, or ecosystems

A related, and sometimes impassioned, dichotomy between protecting centers of biodi-
versity or phylogenetically distinct species is the dichotomy between emphasis on species
conservation or on the conservation of habitat or ecosystems (Soulé and Mills 1992).
Conservation efforts to date have emphasized the concerns of individual species. For
example, the ESA has been the legal engine behind much of the conservation efforts in 
the United States. However, it is frustrating to see enormous resources being spent on 
a few high profile species when little is spent on less charismatic taxa or in preventing 
environmental deterioration that would benefit many species. It is clear that a more 
comprehensive and proactive conservation strategy emphasizing protection of habitat
and ecosystems, rather than species, is needed. Some have advocated a shift from saving
things, the products of evolution (species, communities, or ecosystems), to saving the
underlying processes of evolution “that underlie a dynamic biodiversity at all levels”
(Templeton et al. 2001).

It has been argued that more concern about extinction should be focused on the extinc-
tion of genetically distinct populations, and less on the extinction of species (Hughes et al.
1997; Hobbs and Mooney 1998). The conservation of many distinct populations is
required to maximize evolutionary potential of a species and to minimize the long-term
extinction risks of a species. In addition, a population focus would also help prevent costly
and desperate “last-minute” conservation programs that occur when only one or two
small populations of a species remain. The first attempt to estimate the rate of population
extinction worldwide was published by Hughes et al. (1997). They estimate that tens 
of millions of local populations that are genetically distinct go extinct each year.
Approximately 16 million of the world’s three billion genetically distinct natural popula-
tions go extinct each year in tropical forests alone.

Luck et al. (2003) have considered the effect of population diversity on the functioning
of ecosystems and so-called ecosystem services. They argue that the relationship
between biodiversity and human well being is primarily a function of the diversity of 
populations within species. They have also proposed a new approach for describing popu-
lation diversity that considers the value of groups of individuals to the services that they
provide.

Ceballos and Ehrlich (2002) have recently compared the historical and current distribu-
tions of 173 declining mammal species from throughout the world. Their data included all
of the terrestrial mammals of Australia and subsets of terrestrial mammals from other con-
tinents. Nearly 75% of all species they included have lost over 50% of their total geographic
range. Approximately 22% of all Australian species are declining, and they estimated that
over 10% of all Australian terrestrial mammal populations have been extirpated since the
19th century. These estimates, however, all assume that population extirpation is propor-
tional to loss of range area.

The amount of genetic variation within a population may also play an important
ecosystem role in the relationships among species. Bangert et al. (2005) found in experi-
ments that greater genetic diversity in cottonwood trees resulted in greater species rich-
ness in the arthropod community dependent upon these trees. The generality of this result
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10 PART I INTRODUCTION

needs to be tested. This study used interspecific hybrids rather than just differing amounts
of genetic variation within intraspecific populations. Nevertheless, this is an interesting
concept that deserves to be explored.

Conservation requires a balanced approach that is based upon habitat protection that
also takes into account the natural history and viability of individual species. Consider 
chinook salmon in the Snake River basin of Idaho that are listed under the ESA. These fish
spend their first 2 years of life in small mountain rivers and streams far from the ocean.
They then migrate over 1,500 km downstream through the Snake and Columbia Rivers
and enter the Pacific Ocean. There they spend two or more years ranging as far north as
the coast of Alaska before they return to spawn in their natal freshwater streams. There 
is no single ecosystem that encompasses these fish, other than the biosphere itself.
Protection of this species requires a combination of habitat measures and management
actions that take into account the complex life history of these fish.

1.3 How should we conserve biodiversity?

Extinction is a demographic process: the failure of one generation to replace itself with a
subsequent generation. Demography is of primary importance in managing populations
for conservation (Lacy 1988; Lande 1988). Populations are subject to uncontrollable
stochastic demographic factors as they become smaller. It is possible to estimate the
expected mean and variance of a population’s time to extinction if one has an understand-
ing of a population’s demography and environment (Belovsky 1987; Goodman 1987;
Lande 1988).

There are two main types of threats causing extinction: deterministic and stochastic
threats (Caughley 1994). Deterministic threats are habitat destruction, pollution, overex-
ploitation, species translocation, and global climate change. Stochastic threats are random
changes in genetic, demographic, or environmental factors. Genetic stochasticity is ran-
dom genetic change (drift) and increased inbreeding (Shaffer 1981). Genetic stochasticity
leads to loss of genetic variation (including beneficial alleles) and increase in frequency of
harmful alleles. An example of demographic stochasticity is random variation in sex
ratios, e.g., producing only male offspring. Environmental stochasticity is simply random
environmental variation, such as the occasional occurrence of several harsh winters in 
a row.

Under some conditions, extinction is likely to be influenced by genetic factors. Small
populations are also subject to genetic stochasticity that can lead to loss of genetic vari-
ation through genetic drift. The inbreeding effect of small populations is likely to lead to a
reduction in the fecundity and viability of individuals in small populations. For example,
Frankel and Soulé (1981, p. 68) have suggested that a 10% decrease in genetic variation due
to the inbreeding effect of small populations is likely to cause a 10–25% reduction in repro-
ductive performance of a population. This, in turn, is likely to cause a further reduction in
population size, and thereby reduce a population’s ability to persist (Gilpin and Soulé 1986).

Some have argued that genetic concerns can be ignored when projecting the viability 
of small populations because they are in much greater danger of extinction by purely
demographic stochastic effects (Lande 1988; Pimm et al. 1988; Frankham 2003). It has
been argued that such small populations are not likely to persist long enough to be affected
by inbreeding depression and that efforts to reduce demographic stochasticity will also
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CHAPTER 1 INTRODUCTION 11

reduce the loss of genetic variation. The disagreement over whether or not genetics
should be considered in demographic predictions of population persistence has been
unfortunate and misleading. Extinction is a demographic process that is likely to be
influenced by genetic effects under some circumstances. The important issue is to deter-
mine under what conditions genetic concerns are likely to influence population persist-
ence (Nunney and Campbell 1993).

Perhaps most importantly, we need to recognize when management recommendations
based upon demographic and genetic considerations may be in conflict with each other.
For example, small populations face a variety of genetic and demographic effects that
threaten their existence. Management plans aim to increase the population size as soon as
possible to avoid the problems associated with small populations. However, efforts to max-
imize growth rate may actually increase the rate of loss of genetic variation by relying on
the reproductive success of a few individuals (Caughley 1994).

Ryman and Laikre (1991) considered supportive breeding in which a portion of wild
parents are brought into captivity for reproduction and their offspring are released back
into the natural habitat where they mix with wild conspecifics. Programs similar to this are
carried out in a number of species to increase population size and thereby temper stoch-
astic demographic effects. Under some circumstances, supportive breeding may reduce
effective population size and cause a drastic reduction in genic heterozygosity.

Genetic information also can provide valuable insight into the demographic structure
and history of a population (Escudero et al. 2003). Examination of the number of unique
genotypes in populations that are difficult to census are currently being used to estimate
total population size (Schwartz et al. 1998). Many demographic models assume a single
random mating population. Examination of the distribution of genetic variation over the
distribution of a species can identify what geographic units can be considered as separate
demographic units. Consider the simple example of a population of trout found within a
single small lake, for which it would seem appropriate to consider these fish a single demo-
graphic unit. However, under some circumstances the trout in a single small lake may
actually represent two or more separate reproductive (and demographic) groups with 
little or no exchange between them (e.g., Ryman et al. 1979).

The issue of population persistence is a multidisciplinary problem that involves many
aspects of the biology of the populations involved. A similar statement can be made about
most of the issues we are faced with in conservation biology. We can only resolve these
problems by an integrated approach that incorporates demography and genetics, as well
as other biological considerations that are likely to be critical for a particular problem (e.g.,
behavior, physiology, or interspecific interactions).

1.4 Applications of genetics to conservation

Darwin (1896) was the first to consider the importance of genetics in the persistence of
natural populations. He expressed concern that deer in British nature parks may be subject
to loss of vigor because of their small population size and isolation. Voipio (1950) pre-
sented the first comprehensive consideration of the application of population genetics to
the management of natural populations. He was primarily concerned with the effects of
genetic drift in game populations that were reduced in size by trapping or hunting and
fragmented by habitat loss.
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The modern concern for genetics in conservation began around 1970 when Sir Otto
Frankel (1970) began to raise the alarm about the loss of primitive crop varieties and their
replacement by genetically uniform cultivars (Guest Box 1). It is not surprising that these
initial considerations of conservation genetics dealt with species that were used directly as
resources by humans. Conserving the genetic resources of wild relatives of agricultural
species remains an important area of conservation genetics (Maxted 2003).

The application of genetics to conservation in a more general context did not blossom
until around 1980, when three publications established the foundation for applying the
principles of genetics to conservation of biodiversity (Soulé and Wilcox 1980; Frankel and
Soulé 1981; Schonewald-Cox et al. 1983).

Perpetuation of biodiversity primarily depends upon the protection of the environment
and maintenance of habitat. Nevertheless, genetics has played an important and diverse
role in conservation biology in the last few years. Nearly 10% of the articles published in
the journal Conservation Biology since its inception in 1988 have “genetic” or “genetics” in
their title. Probably at least as many other articles deal with largely genetic concerns but
do not have the term in their title. Thus, approximately 15% of the articles published in
Conservation Biology have genetics as a major focus.

The subject matter of papers published on conservation genetics is extremely broad.
However, many of articles dealing with conservation and genetics fit into one of the fol-
lowing five broad categories:

1 Management and reintroduction of captive populations, and the restoration of biolo-
gical communities.

2 Description and identification of individuals, genetic population structure, kin relation-
ships, and taxonomic relationships.

3 Detection and prediction of the effects of habitat loss, fragmentation, and isolation.
4 Detection and prediction of the effects of hybridization and introgression.
5 Understanding the relationships between adaptation or fitness and the genetic charac-

ters of individuals or populations.

These topics are listed in order of increasing complexity and decreasing uniformity of
agreement among conservation geneticists. Although the appropriateness of captive
breeding in conservation has been controversial (Snyder et al. 1996), procedures for
genetic management of captive populations are well developed with relatively little con-
troversy. However, the relationship between specific genetic types and fitness or adapta-
tion has been a particularly vexing issue in evolutionary and conservation genetics.
Nevertheless, recent studies have shown that natural selection can bring about rapid
genetic changes in populations that may have important implications for conservation
(Stockwell et al. 2003) (see Guest Box 8).

Genetics is likely to play an even greater role in conservation biology in the future
(Hedrick 2001; Frankham 2003). Invasive species are currently recognized as one of the top
two threats to global biodiversity (Walker and Steffen 1997). Studies of genetic diversity
and the potential for rapid evolution of invasive species may provide useful insights into
what causes species to become invasive (Lee 2002). More information about the genetics
and evolution of invasive species or native species in invaded communities, as well as their
interactions, may lead to predictions of the relative susceptibility of ecosystems to inva-
sion, identification of key alien species, and predictions of the subsequent effects of
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CHAPTER 1 INTRODUCTION 13

removal. In addition, genetic engineering and cloning of endangered species may also
come to play a role in conservation (Ryder and Benirschke 1997; Ryder et al. 2000; Loi et al.
2001; Adams et al. 2002).

This is an exciting time to be interested in the genetics of natural populations.
Molecular techniques make it possible to detect genetic variation in any species of interest,
not just those that can be bred and studied in the laboratory (Wayne and Morin 2004). This
work is meant to provide a thorough examination of our understanding of the genetic
variation in natural populations. Based upon that foundation, we will consider the applica-
tion of this understanding to the many problems faced by conservation biologists with the
hope that our more informed actions can make a difference.

Guest Box 1 The role of genetics in conservation
L. Scott Mills and Michael E. Soulé

Although most conservationists have ignored genetics and most geneticists have
ignored the biodiversity catastrophe, by 1970 some agricultural geneticists, led by
Sir Otto Frankel (1974) had begun to sound an alarm about the disappearance of
thousands of land races – crop varieties coaxed over thousands of years to adapt to
local soils, climates, and pests. Frankel challenged geneticists to help promote an
“evolutionary ethic” focused on maintaining evolutionary potential and food secu-
rity in a rapidly changing world.

Frankel’s pioneering thought inspired the first international conference on con-
servation biology in 1978. It brought together ecologists and evolutionary geneti-
cists to consider how their fields could help slow the extinction crisis. Some of the
chapters in the proceedings (Soulé and Wilcox 1980) foreshadowed population 
viability analysis and the interactions of demography and genetics in small popula-
tions (the extinction vortex). Several subsequent books (Frankel and Soulé 1981;
Schonewald-Cox et al. 1983; Soulé 1987) consolidated the role of genetic thinking
in nature conservation.

Thus, topics such as inbreeding depression and loss of heterozygosity were
prominent since the beginning of the modern discipline of conservation biology,
but like inbred relatives, they were conveniently forgotten at the end of the 20th
century. Why? Fashion. Following the human proclivity to champion simple, sin-
gular solutions to complex problems, a series of papers on population viability 
in the late 1980s and early 1990s argued that – compared to demographic and 
environmental accidents – inbreeding and loss of genetic variation were trivial con-
tributors to extinction risk in small populations. Eventually, however, this swing in
scientific fashion was arrested by the friction of real world complexity.

Thanks to the work of F1 and F2 conservation geneticists, it is now clear that
inbreeding depression can increase population vulnerability by interacting with
random environmental variation, not to mention deterministic factors including
habitat degradation, new diseases, and invasive exotics. Like virtually all dualisms,
the genetic versus nongenetic battles abated in the face of the overwhelming 
evidence for the relevance of both.
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Genetic approaches have become prominent in other areas of conservation bio-
logy as well. These include: (1) the use of genetic markers in forensic investigations
concerned with wildlife and endangered species; (2) genetic analyses of hybridiza-
tion and invasive species; (3) noninvasive genetic estimation of population size; and
(4) studies of taxonomic affiliation and distance. And, of course, the specter of
global climate change has renewed interest in the genetic basis for adaptation as
presaged by Frankel 30 years ago. Nowadays, genetics is an equal partner with eco-
logy, systematics, physiology, epidemiology, and behavior in conservation, and
both conservation and genetics are enriched by this pluralism.

Problem 1.1

An extensive bibliography that includes thousands of papers considering the role
of genetics in conservation is available online at http://www.lib.umt.edu/guide/
allendorf.htm. Search this bibliography for the papers with the words genetics and
conservation in the title or keywords to get an idea of the variety of papers pub-
lished on this topic. You should find several hundred papers in this category. Note
which types of problems are of greatest concern and which taxonomic groups are
included and which are poorly represented. Use this bibliography to answer ques-
tions 2 and 3 below.

Problem 1.2

What are the top five journals that publish papers in conservation and genetics as
determined by the number of published papers in the bibliography?

Problem 1.3

Pick a species of conservation concern that you are interested in. Search for all of
the papers published on this species in the bibliography. Remember to search for
both the common name (e.g., silversword) and the scientific name (Argyroxiphium).
Based upon these titles, what are the major conservation issues of concern for the
species that you have chosen?

Problem 1.4

A paper was published in May 2005 proclaiming that the ivory-billed woodpecker
is not extinct (Fitzpatrick et al. 2005). This species had not been seen since 1944,
and was thought to be long extinct. This paper reported evidence of at least a
handful of individuals persisting in the Big Woods region of Arkansas. Bird lovers
and conservationist have been celebrating the exciting news for days. However,
the recovery of this species is uncertain. Why?
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2

Phenotypic Variation 
in Natural 

Populations

Few persons consider how largely and universally all animals are varying. We
know however, that in every generation, if we would examine all the individuals of
any common species, we should find considerable differences, not only in size
and color, but in the form and proportions of all the parts and organs of the body.

Alfred Russel Wallace (1892, p. 57)

It would be of great interest to determine the critical factors controlling the variabil-
ity of each species, and to know why some species are so much more variable
than others.

David Lack (1947)

2.1 Color pattern, 18

2.2 Morphology, 20

2.3 Behavior, 23

2.4 Differences among populations, 26

Guest Box 2 Looks can be deceiving: countergradient variation in 
secondary sexual color in sympatric morphs of sockeye salmon, 29

Genetics has been defined as the study of differences among individuals (Sturtevant and
Beadle 1939). If all of the individuals within a species were identical, we could still study
and describe their morphology, physiology, behavior, etc. However, geneticists would be

Western terrestrial garter snake, Section 2.3
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out of work. Genetics and the study of inheritance are based upon comparing the similar-
ity of parents and their progeny relative to the similarity among unrelated individuals
within populations or species.

Variability among individuals is also essential for adaptive evolutionary change. Natural
selection cannot operate unless there are phenotypic differences between individuals.
Transformation of individual variation within populations to differences between popula-
tions or species by the process of natural selection is the basis for adaptive evolutionary
change described by Darwin almost 150 years ago (Darwin 1859). Nevertheless, there 
is surprisingly little in Darwin’s extensive writings about the extent and pattern of dif-
ferences between individuals in natural populations. Rather Darwin relied heavily on
examples from animal breeding and the success of artificial selection to argue for the
potential of evolutionary change by natural selection (Ghiselin 1969).

Alfred Russel Wallace (the co-founder of the principle of natural selection) was perhaps
the first biologist to emphasize the extent and importance of variability within natural
populations (Figure 2.1). Wallace felt that “Mr. Darwin himself did not fully recognise 
the enormous amount of variability that actually exists” (Wallace 1923, p. 82). Wallace
concluded that for morphological measurements, individuals commonly varied by up to
25% of the mean value; that is, from 5 to 10% of the individuals within a population differ
from the population mean by 10–25% (Wallace 1923, p. 81). This was in opposition to the
commonly held view of naturalists in the 19th century that individual variation was com-
paratively rare in nature.

Mendel’s classic work was an attempt to understand the similarity of parents and
progeny for traits that varied in natural populations. The original motivation for Mendel’s

Figure 2.1 Diagram from Alfred Russel Wallace of variation in body dimensions of 40 red-
winged blackbirds in the United States. From Wallace (1923, p. 64).
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work was to test a theory of evolution proposed by his botany professor (Unger 1852) that
proposed that “variants arise in natural populations which in turn give rise to varieties and
subspecies until finally the most distinct of them reach species level” (Mayr 1982, p. 711).
The importance of this inspiration can be seen in the following quote from Mendel’s 
original paper (1865): “. . . this appears, however, to be the only right way by which we can
finally reach the solution of a question the importance of which cannot be overestimated
in connection with the history of the evolution of organic forms”.

Population genetics was limited to the study of species that could be studied experiment-
ally in the laboratory for most of the 20th century. Experimental population genetics was
dominated by studies that dealt with Drosophila fruit flies until the mid-1960s because of
the difficulty in determining the genetic basis of phenotypic differences between indi-
viduals (Lewontin 1974). Drosophila that differed phenotypically in natural populations
could be brought into the laboratory for detailed analysis of the genetic differences under-
lying the phenotypic differences. Similar studies were not possible for species with long
generation times that could not be raised in captivity in large numbers. However, popula-
tion genetics underwent an upheaval in the 1960s when biochemical techniques allowed
genetic variation to be studied directly in natural populations of any organism.

Molecular techniques today make it possible to study differences in the DNA sequence
itself in any species. Projects are currently underway to sequence the entire genome of 
several species. However, even this level of detail will not provide sufficient information to
understand the significance genetic variation in natural populations. Adaptive evolution-
ary change within populations consists of gradual changes in morphology, life history,
physiology, and behavior. Such traits are usually affected by a combination of many genes
and the environment so that it is difficult to identify single genes that contribute to 
the genetic differences between individuals for many of the phenotypic traits that are of
interest.

This difficulty has been described as a paradox in the study of the genetics of natural
populations (Lewontin 1974). We are interested in the phenotype of those characters for
which genetic differences at individual loci have only a slight phenotypic effect relative 
to the contributions of other loci and the environment. “What we can measure is by
definition uninteresting and what we are interested in is by definition unmeasurable”
(Lewontin 1974, p. 23). This paradox can only be resolved by a multidisciplinary approach
that combines molecular biology, developmental biology, and population genetics so 
that we can understand the developmental processes that connect the genotype and the
phenotype (e.g. Lewontin 1999; Clegg and Durbin 2000).

The more complex and distant the connection between the genotype and the pheno-
type, the more difficult it is to determine the genetic basis of observed phenotypic differ-
ences. For example, human behavior is influenced by many genes and an extremely
complex developmental process that continues to be influenced by the environment
throughout the lifetime of an individual (Figure 2.2). It is relatively easy to identify genetic
differences in the structural proteins, enzymes, and hormones involved in behavior
because they are direct expressions of DNA sequences in the genotype. We also know 
that these genetic differences result in differences in behavior between individuals; for
example, a mutation in the enzyme monoamine oxidase A apparently results in a tendency
for aggressive and violent behavior in humans (Morell 1993). However, it is extremely
difficult in general to identify the specific differences in the genotype that are responsible
for such differences in behavior.
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We are faced with a dilemma in our study of the genetic basis of phenotypic variation in
natural populations. We can start with the genotype (bottom of Figure 2.2) and find
genetic differences between individuals at specific loci; however, it is difficult to relate
those differences to the phenotypic differences between individuals that are of interest.
The alternative is to start with the phenotype of interest (top of Figure 2.2), and determine
if the phenotypic differences have a genetic basis; however, it is usually extremely difficult
to identify which specific genes contribute to those phenotypic differences (Mackay 2001).

In this chapter, we consider the amount and pattern of phenotypic variation in natural
populations. We introduce approaches and methodology used to understand the genetic
basis of phenotypic variation. In the next chapter, we will examine genetic variation
directly in chromosomes and molecules and consider how it relates to evolution and 
conservation.

2.1 Color pattern

Mendel chose to study the inheritance of seven characters that had clearly distinguishable
forms without intermediates: tall versus dwarf plants, violet versus white flowers, green

Environment

Brain physiology

Brain morphology
Brain development

Biochemistry
outside the brain

Brain biochemistry

Variation of
metabolites

Structural
proteins

Enzymes

Variation of
metabolites

Phenotype

Genotype

Enzymes Hormones
Structural
proteins

Figure 2.2 Diagrammatic representation of interconnections between genotype and
environment resulting in expression of the phenotype of a human. Redrawn from Vogel and
Motulsky (1986).
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CHAPTER 2 PHENOTYPIC VARIATION IN NATURAL POPULATIONS 19

versus yellow pods, etc. His landmark success depended upon the selection of qualitative
traits in which the variation could be classified into discrete categories rather than quantit-
ative traits in which individuals vary continuously (e.g., weight, height, etc.).

The presence of such discrete polymorphisms in species has sometimes been problem-
atic for naturalists and taxonomists. For example, the king coat color pattern in cheetahs
was first described as a cheetah–leopard hybrid (van Aarde and van Dyk 1986). Later, 
animals with this pattern were recognized as a new species of cheetah (Acinonyx rex). It 
was then suggested that this coat pattern was a genetic polymorphism within cheetahs.
Inheritance results with captive cheetahs eventually confirmed that this phenotype results
from a recessive allele at an autosomal locus (van Aarde and van Dyk 1986).

Rare color phenotypes in some species sometimes attract wide interest from the public.
For example, a photojournalist published a picture of a white-phase black bear near
Juneau, Alaska, in the summer of 2002. In response to public concerns, the Alaska Board of
Game ordered an emergency closure of hunting on all “white-phase” black bears in the
Juneau area during the 2002 hunting season. The Kermode or “spirit” bear is a white phase
of the black bear that occurs at low to moderate frequencies in coastal British Columbia
and Alaska (Marshall and Ritland 2002). The white color is caused by a recessive allele with
single base pair substitution. White phases of species like the tiger are often maintained in
zoos because of public interest. A single, recessive autosomal allele is responsible for the
white color. However, this allele also causes abnormal vision in tigers (Thornton 1978).

Discrete color polymorphisms are widespread in plants and animals. For example, a
recent review of color and pattern polymorphisms in anurans (frogs and toads) cites 
polymorphisms in 225 species (Hoffman and Blouin 2000). However, surprisingly little
work has been done that describes the genetic basis of these polymorphisms or their adap-
tive significance. Hoffman and Blouin (2000) report that the mode of inheritance has been
described in only 26 species, but conclusively demonstrated in only two! Nevertheless,
available results suggest that in general color pattern polymorphisms are highly heritable
in anurans.

Color pattern polymorphisms have been described in many bird species (Hoekstra and
Price 2004). Polymorphism in this context can be considered to be the occurrence of two
or more discrete, genetically based phenotypes in a population in which the frequency of
the rarest type is greater than 1% (Hoffman and Blouin 2000). For example, red and gray
morphs of the eastern screech owl occur throughout its range (VanCamp and Henny
1975). This polymorphism has been recognized since 1874 when it was realized that red
and gray birds were conspecific and that the types were independent of age, sex, or season
of the year.

The genetic basis of this phenotypic polymorphism has been studied by observing
progeny produced by different mating types in a population in northern Ohio (VanCamp
and Henny 1975). Matings between gray owls produced all gray progeny. The simplest
explanation of this observation is a single locus with two alleles, where the red allele (R) 
is dominant to the gray allele (r). Under this model, gray owls are homozygous rr, and 
red owls are either homozyous RR or heterozygous Rr. Homozygous RR red owls are
expected to produce all red progeny regardless of the genotype of their mate. One-half of
the progeny between heterozygous Rr owls and gray bird (rr) are expected to be red and
one-half are expected to be gray. We cannot predict the expected progeny from matings
involving red birds without knowing the frequency of homozygous RR and heterozygous
Rr birds in the population. Progeny frequencies from red parents in Table 2.1 are compatible
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with most red birds being heterozygous Rr; this is expected because the red morph is 
relatively rare in northern Ohio based upon the number of families with red parents in
Table 2.1. We will take another look at these results in Chapter 5 after we have considered
estimating genotypic frequencies in natural populations.

A series of papers of flower color polymorphism in the morning glory provides a
promising model system for connecting adaptation with the developmental and molecu-
lar basis of phenotypic variation (reviewed in Clegg and Durbin 2000). Flower color vari-
ation in this species is determined primarily by allelic variation at four loci that affect flux
through the flavonoid biosynthetic pathway. Perhaps the most surprising finding is that
almost all of the mutations that determine the color polymorphism are the result of the
insertion of mobile elements called transposons. In addition, the gene that is most clearly
subject to natural selection is not a structural gene that encodes a protein, but is rather a
regulatory gene that determines the floral distribution of pigmentation.

We have entered an exciting new era where for the first time it has become possible to
identify the genes responsible for color polymorphisms. A recent series of papers have
shown that a single gene, melanocortin-1 receptor (Mc1r), is responsible for color poly-
morphism in a variety of birds and mammals (Majerus and Mundy 2003; Mundy et al.
2004) (see Guest Box 12). Field studies of natural selection, combined with study of genetic
variation in Mc1r, will eventually lead to understanding of the roles of selection and muta-
tion in generating similarities and differences between populations and species.

2.2 Morphology

Morphological variation is everywhere. Plants and animals within the same population
differ in size, shape, and numbers of body parts. However, there are serious difficulties
with using morphological traits to understand patterns of genetic variation. The biggest
problem is that variations in morphological traits are caused by both genetic and environ-
mental differences among individuals. Therefore, variability in morphological traits can-
not be used to estimate the amount of genetic variation within populations or the amount
of genetic divergence between populations. In fact, we will see in Section 2.4 that morpho-
logical differences between individuals in different populations may actually be misleading
in terms of genetic differences between populations.

Morphological differences are sometimes observed over time in natural populations.
For example, pink salmon on the west coast of North America have tended to become

Table 2.1 Inheritance of color polymorphism in eastern screech
owls from northern Ohio (VanCamp and Henny 1975).

Progeny
Number 

Mating of families Red Gray

Red × red 8 23 5
Red × gray 46 68 63
Gray × gray 135 0 439
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CHAPTER 2 PHENOTYPIC VARIATION IN NATURAL POPULATIONS 21

smaller at sexual maturity between 1950 and 1974 (Figure 2.3). Pink salmon have an
unusual life history in that all individuals become sexually mature and return from the
ocean to spawn in fresh water at 2 years of age, and all fish die after spawning (Heard 1991).
Therefore, pink salmon within a particular stream comprise separate odd- and even-year
populations that are reproductively isolated from each other (Aspinwall 1974). Both 
the odd- and even-year populations of pink salmon have become smaller over this time
period. This effect is thought to be largely due to the effects of selective fishing for larger
individuals.

Most phenotypic differences between individuals within populations have both genetic
and environmental causes. Geneticists often represent this distinction by partitioning the
total phenotypic variability for a trait (VP) within a populations into two components:

VP = VG + VE (2.1)

where VG is the proportion of phenotypic variability due to genetic differences between
individuals and VE is the proportion due to environmental differences. The heritability of a
trait is defined as the proportion of the total phenotypic variation that has a genetic basis
(VG/VP).

One of the first attempts to tease apart genetic and environmental influences on mor-
phological variation in a natural population was by Punnett (of Punnett square fame) in
1904. He obtained a number of velvet belly sharks from the coast of Norway to study the
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Figure 2.3 Decrease in size of pink salmon caught in two rivers in British Columbia, Canada,
between 1950 and 1974. Two lines are drawn for each river: one for the salmon caught in odd-
numbered years, the other for even years. Redrawn from Ricker (1981).
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development of the limbs in vertebrates. The velvet belly is a small, round-bodied,
viviparous shark that is common along the European continental shelf. Punnett counted
the total number of vertebrae in 25 adult females that each carried from two to 14 fully
developed young. He estimated the correlation between vertebrae number in females and
their young to test the inheritance of this morphological character. He assumed that the
similarity between females and their progeny would be due to inheritance since the
females and their young developed in completely different environments (Figure 2.4).

Punnett (1904) concluded “the values of these correlations are sufficiently large to prove
that the number of units in a primary linear meristic series is not solely due to the indi-
vidual environment but is a characteristic transmitted from generation to generation”. 
In fact, approximately 25% of the total variation in progeny vertebrae number can be
attributed to the effect of their mothers (r = 0.504; P < 0.01). We will take another look at
these data in Chapter 11 when we consider the genetic basis of morphological variation in
more detail (also see Tave 1984).

Some phenotypic variation can be attributed to neither genetic nor environmental 
differences among individuals. Bilateral characters of an organism may differ in size,
shape, or number. Take, for example, the number of gill rakers in fish species. The left and
right branchial arches of the same individual usually have the same number of gill rakers
(Figure 2.5). However, some individuals are asymmetric; that is, they have different num-
ber of gill rakers on the left and right sides. Fluctuating asymmetry of such bilateral traits
occurs when most individuals are symmetric and there is no tendency for the left or right
side to be greater in asymmetric individuals (Palmer and Strobeck 1986).

What is the source of such fluctuating asymmetry? The cells on the left and right sides
are genetically identical, and it seems unreasonable to attribute such variability to environ-
mental differences between the left and right side of the developing embryo. Fluctuating
asymmetry is thought to be the result of the inability of individuals to control and integ-
rate development so that random physiological differences occur during development and
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Figure 2.4 Regression of the mean number of total vertebrae in sharks before birth on 
the total number of vertebrae in their mothers (P < 0.01). Data from Punnett (1904).
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result in asymmetry (Palmer and Strobeck 1997). That is, fluctuating asymmetry is a 
measure of developmental noise – random molecular events (Lewontin 2000). Mather
(1953) called the regulation or suppression of these chance physiological differences to be
the genotypic stabilization of development, and proposed that developmental stability
could be measured by fluctuating asymmetry. Thus, increased “noise” or accidents during
development (i.e., decreased developmental stability) will result in greater fluctuating
bilateral asymmetry. The amount of fluctuating asymmetry in populations may be a 
useful measure of stress resulting from either genetic or environmental causes in natural
populations (Leary and Allendorf 1989; Clarke 1993; Zakharov 2001).

2.3 Behavior

Behavior is another aspect of the phenotype and thus will be affected by natural selection
and other evolutionary processes, just as any phenotypic characteristic will be. Human
behavioral genetic research has been controversial over the years because of concerns that
the results from behavioral genetic studies might be used to stigmatize individuals or
groups of people. Genetically based differences in behavior are of special interest in 
conservation because many behavioral differences are of importance for local adaptation
and because captive breeding programs often result in changes in behavior as a result of
adaptation to captivity.

Most research in behavioral genetics has used laboratory species such as mice and
Drosophila. These studies have focused on determining the genetic, neurological, and
molecular basis of differences in behavior among individuals. Drosophila behavioral gen-
eticists are especially creative in naming genes affecting behavior; they have recently
identified a gene known as couch potato that is associated with reduced activity in adults
(Bellen et al. 1992).

The extent to which genetic factors are involved in differences in bird migratory behavior
has been studied systematically over the last 20 years in the blackcap, a common 
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Figure 2.5 Fluctuating asymmetry for gill rakers on lower first branchial arches from a
randomly mating population of rainbow trout. Redrawn from Leary and Allendorf (1989).
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warbler of Western Europe (Berthold 1991; Berthold and Helbig 1992). Selection experi-
ments have shown that the tendency to migrate itself is inherited and is based upon a 
multilocus system with a threshold for expression (Figure 2.6). In addition, differences
between geographic populations in the direction of migration is also genetically influ-
enced (Figure 2.7).

The importance of genetically based differences in behavior for adaptation to local con-
ditions has been shown by an elegant series of experiments with the western terrestrial
garter snake (Arnold 1981). This garter snake occurs in a wide variety of habitats through-
out the west of North America from Baja to British Columbia, and occurs as far east as
South Dakota. Arnold has compared the diets of snakes living in the foggy and wet coastal
climate of California and the drier, high elevation, inland areas of that state. As hard as it
may be to believe, the major prey of coastal snakes is the banana slug; in contrast, banana
slugs do not occur at the inland sites.

Arnold captured pregnant females from both locations and raised the young snakes in
isolation away from their littermates and mother to remove this possible environmental
influence on behavior. The young snakes were offered a small chunk of freshly thawed
banana slug. Naive coastal snakes usually ate the slugs; inland snakes did not (Figure 2.8).
Hybrid snakes between the coastal and inland sites were intermediate in slug-eating 
proclivity. These results confirm that the difference between populations in slug-eating
behavior has a strong genetic component.

Studies with several salmon and trout species have demonstrated innate differences in
migratory behavior that correspond to specializations in movement from spawning and
incubation habitat in streams to lakes favorable for feeding and growth (reviewed in
Allendorf and Waples 1996). Fry emerging from lake outlet streams typically migrate
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Figure 2.6 Results of a two-way selective breeding experiment for migratory behavior with
blackcaps from a partially migratory Mediterranean population. P, parental. From Berthold
and Helbig (1992).
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Figure 2.7 Results of tests in orientation cages allowing blackcaps to choose direction of
migration. Solid and open triangles represent birds from Germany and Austria, respectively.
The difference in direction of migration corresponds to geographic differences between these
populations. The solid circles show the orientation of hybrids experimentally produced
between the two parental groups. From Berthold and Helbig (1992).
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Figure 2.8 Response of newborn garter snakes to availability of pieces of banana slugs as
food. Snakes from coastal populations tend to have a high slug feeding score. A score of 
10 indicates that a snake ate a piece of slug on each of the 10 days of the experiment. Inland
snakes rarely ate a piece of slug on even one day. From Arnold (1981).
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upstream upon emergence, and fry from inlet streams typically migrate downstream.
Differences in the compass orientation behavior of newly emerged sockeye salmon corre-
spond to movements to feeding areas.

Kaya (1991) has shown that behavioral adaptations have evolved in Arctic grayling in
just a few generations under strong selection. Arctic grayling from the Big Hole River have
been planted in lakes throughout Montana, USA, over the last 50 years. Arctic grayling
from mountain lakes emerge as fry from gravel in streams and immediately migrate into a
nearby lake. Fry from adults that spawn upstream from the lake innately swim down-
stream after emerging. Conversely, fry from adults that spawn downstream innately swim
upstream after emerging. Fry that swim in the wrong direction upon emergence would 
be expected to have greatly reduced survival. Such differences between upstream and
downstream spawning populations have apparently arisen by natural selection since the
introduction of these populations.

2.4 Differences among populations

Populations from different geographic areas are detectably different for many phenotypic
attributes in almost all species. Gradual changes across geographic or environment gradi-
ents are found in many species. However, there is no simple way to determine if such a
cline for a particular phenotype results from genetic or environmental differences
between populations. One way to test for genetic differences between populations is to
eliminate environmental differences by raising individuals under identical environmental
differences in a so-called common-garden. That is, by making VE in expression 2.1 equal to
zero, any remaining phenotypic differences must be due to genetic differences between
individuals.

The classic common-garden experiments were conducted with altitudinal forms of
yarrow plants along an altitudinal gradient from the coast of central California to over
10,000 ft (over 3,000 m) in the Sierra Nevada Mountains (Clausen et al. 1948). Individual
plants were cloned into genetically identical individuals by cutting them into pieces and
rooting the cuttings. The clones were then raised at three different altitudes (Figure 2.9).
Phenotypic differences among plants from different altitudes persisted when the plants
were grown in common locations at each of the altitudes (Figure 2.9). Coastal plants had
poor survival at high altitude, but grew much faster than high altitude plants when grown
at sea level.

Transplant and common-garden experiments are much more difficult with animals
than with plants for several obvious reasons. However, James and her colleagues have par-
titioned clinal variation in size and shape of the red-winged blackbird into genetic and
environmental components by conducting transplantation experiments (reviewed in
James 1991). Eggs were transplanted between nests in northern and southern Florida, and
between nests in Colorado and Minnesota. A surprisingly high proportion of the regional
differences in morphology were explained by the locality in which the eggs developed
( James 1983, 1991).

James (1991) has reviewed experimental studies of geographic variation in bird species.
She found a remarkably consistent pattern of intraspecific variation in size in breeding
populations of North American bird species. Individuals from warm humid climates tend
to be smaller than birds from increasingly cooler and drier regions. In addition, birds from
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regions with greater humidity tend to have more darkly colored feathers. The consistent
patterns in body size and coloration among many species suggest that these patterns are
adaptations that have evolved by natural selection in response to differential selection in
different environments.

For example, there is some evidence that the color polymorphism that we considered
earlier in eastern screech owls affects the survival and reproductive success of individuals.
The frequency of red owls increases from north (less than 20% red) to south (approxim-
ately 80% red) (Pyle 1997). VanCamp and Henny (1975) found evidence that red owls 
suffered relatively greater mortality than gray owls during severe winter conditions in
Ohio, and suggested that this may be due to metabolic differences between red and gray
birds (Mosher and Henny 1976). A similar north–south clinal pattern of red and gray
morphs has also been reported in the ruffed grouse; Gullion and Marshall (1968) reported
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Figure 2.9 Representative clones of yarrow plants originating from five different altitudinal
locations grown at three altitudes: 30 m above sea level at Stanford, 1,200 m above sea level 
at Mather, and 3,000 m above sea level at Timberline. The San Gregorio clone was from a
coastal population, and the Big Horn Lake clone was from the highest altitude site (over 
3,000 m); the other three clones were from an altitudinal gradient between these two
extremes. From Clausen et al. (1948); redrawn from Strickberger (2000).

CATC02  28/05/2007  05:54PM  Page 27



28 PART I INTRODUCTION

that the red morph has lower survival during extreme winter conditions than the gray
morph.

2.4.1 Countergradient variation

Countergradient variation is a pattern in which genetic influences counteract envir-
onmental influences so that phenotypic change along an environmental gradient is 
minimized (Conover and Schultz 1995) (see Guest Box 2). For example, Berven et al. (1979)
used transplant and common-garden experiments in the laboratory to examine the
genetic basis in life history traits of green frogs. In the wild, montane tadpoles experience
lower temperatures; they grow and develop slowly and are larger at metamorphosis than
are lowland tadpoles that develop at higher temperatures. Egg masses collected from high
and low altitude populations were cultured side by side in the laboratory at temperatures
that mimic developmental conditions at high and low altitude (18 and 28°C). The differ-
ences observed between low and high altitude frogs raised under common conditions in
the laboratory for some traits were opposite in direction to the differences observed in
nature. That is, at low (montane like) temperatures, lowland tadpoles grew even slower
than, took longer to complete metamorphosis, and were larger than montane tadpoles.

A reversal of naturally occurring phenotypic differences under common environments
may occur when natural selection favors development of a similar phenotype in different
environments. Consider the developmental rate in a frog or fish species and assume that
there is some optimal developmental rate. Individuals from populations occurring natur-
ally at colder temperatures will be selected for a relatively fast developmental rate to com-
pensate for the reduction in developmental rate caused by lower temperatures. Individuals
in the lower temperature environment may still develop more slowly in nature. However,
if grown at the same temperature, the individuals from the colder environment will
develop more quickly. This will result in countergradient variation (Figure 2.10).
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Figure 2.10 Diagram of countergradient variation. The end points of the lines represent
outcomes of a reciprocal transplant experiment: N1 and N2 are the native phenotypes of each
population in its home environment. T1 and T2 are the phenotypes when transplanted to the
other environment. Redrawn from Conover and Schultz (1995).
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Therefore, phenotypic differences between populations are not a reliable indicator of
genetic differences between populations without additional information. In some cases,
all of the phenotypic differences between populations may result from environmental 
conditions. And, even if genetic differences do exist, they actually may be in the opposite
direction of the observed phenotypic differences between populations.

Differences among populations in the amount of total phenotypic variation within 
populations can also be misleading. Using the relationship represented by expression 2.1,
we would expect a positive association between VP and VG. That is, if VE is constant, then
greater total phenotypic variability (VP) in a population would be indicative of greater
genetic variability (VG). However, assuming that VE is constant is a very poor assumption
because different populations are subject to different environmental conditions. In addi-
tion, the reduction in genetic variation associated with small population size sometimes
can decrease developmental stability and thereby increase total phenotypic variability in
populations (Leary and Allendorf 1989).

Thus, it is not appropriate to use the amount of total phenotypic variability (VP) in 
separate populations to detect differences in the amount of genetic variation between 
populations. The relationship between VP and VG is not straightforward. It differs for dif-
ferent traits within a single population and also depends on the history of the population.
The genetic analysis of polygenic phenotypic variation is considered in more detail in
Chapter 12.

Guest Box 2 Looks can be deceiving: countergradient variation in secondary 
sexual color in sympatric morphs of sockeye salmon
Chris J. Foote

Sockeye salmon and kokanee are respectively the anadromous (sea-going, phys-
ically large) and nonanadromous (lake-dwelling, small) morphs of sockeye salmon
(Figure 2.11). Both morphs occur throughout the native range of the species in
North Pacific drainages of North America and Asia. The morphs are polyphyletic,
with one morph, likely sockeye, having given rise to the other on numerous inde-
pendent occasions throughout their range (Taylor et al. 1996). The morphs occur
together or separately in lakes (where sockeye typically spend their first year of life),
but wherever they occur sympatrically, even where they spawn together, they are
always genetically distinct in a wide array of molecular and physical traits (Taylor 
et al. 1996; Wood and Foote 1996). This reproductive isolation appears to result
from significant, size-related, prezygotic isolation coupled with the large selective
differences between marine and lacustrine environments (Wood and Foote 1996).

On viewing sockeye and kokanee on the breeding grounds, one is struck by the
large size difference between them (sockeye can be 2–3 times the length and 20–30
times the weight of kokanee), and by their shared, striking, bright red breeding
color (Craig and Foote 2001) (Figure 2.11). However, with respect to genetic differ-
entiation, looks can be deceiving. The size difference between the morphs results
largely from differences in food availability in the marine versus lacustrine environ-
ments, with only a slight genetic difference in growth evident between the morphs
when grown in a common environment (Wood and Foote 1990).
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In contrast, their similarity in breeding color masks substantial polygenic dif-
ferentiation in the mechanism by which they produce their red body color. The
progeny of sockeye that rear in fresh water throughout their life cannot turn red at
maturity like kokanee; rather they turn green (Craig and Foote 2001). Therefore, as
sockeye repeatedly gave rise to kokanee over the last 10,000 years, they did so by at
first producing a green freshwater morph that over time changed genetically to
converge on the ancestral red breeding color.

The convergence in breeding color in sockeye and kokanee is an example of
countergradient variation. Kokanee, which live in carotenoid-poor lake environ-
ments are three times more efficient in utilizing carotenoids than sockeye, which
live in a carotenoid-rich marine environment (Craig and Foote 2001). Interestingly,
the selective force for the re-emergence of red in kokanee appears to be inherited
from ancestral sockeye. Sockeye possess a very strong, and apparently innate, 
preference for red mates (Foote et al. 2004), a preference that is shared by kokanee.
This pre-existing bias appears to have independently driven the evolution of red
breeding colour in kokanee throughout their distribution. This contrasts with
other examples of countergradient variation, where natural selection, not sexual
selection, is thought to be the driving selective force (Conover and Shultz 1995).

Figure 2.11 Photograph of sockeye salmon (large) and kokanee (small) on the 
breeding grounds in Dust Creek – a tributary of Takla Lake, British Columbia.
Both kokanee and sockeye salmon have bright red bodies and olive green heads. 
Photo by Chris Foote.
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Problem 2.1

Several state fish and game departments from northern states in the United
States (e.g., Illinois) have stocked largemouth bass from Florida into lakes
because they are well known for their large size. However, the introduced fish
have been found to grow slower than native largemouth bass (Philipp 1991). Write
a short letter to the Director of the Illinois Department of Fish and Game that
explains the likely basis for these observations.

Problem 2.2

Cooke (1987) observed the following patterns of inheritance of a color polymor-
phism in the lesser snow goose:

Progeny

Mating White Blue

White × white 35,104 (98%) 809 (2%)
White × blue 3,873 (40%) 5,691 (60%)
Blue × blue 1,064 (10%) 9,707 (90%)

Assume that this trait is determined by a single locus. Propose a model that would
explain these results (see Table 2.1). Are there any progeny that do not conform
to the expectations of your model? How might these progeny be explained?

Problem 2.3

Select some plant or animal species that you have observed that exhibits pheno-
typic variation for some trait. Record your observations in some systematic way.
That is, either measure a number of individuals or classify a number of individuals
into two or more discrete categories for the trait that you have selected. Do you
think that the phenotypic differences you have observed have any genetic basis?
Propose an experimental procedure for testing for some genetic influence on the
phenotypic variation that you have observed.

Problem 2.4

The plots below show the regression of mean progeny values in 14 families of
rainbow trout for two meristic traits on the mid-parent value (the mid-parent value
is the mean of the maternal and paternal value; data from Leary et al. 1985). The
regression of the mean number of dorsal rays on the mid-parent values for these
families is highly significant (P < 0.001); the regression of the mean number of
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mandibular pores on the mid-parent values for these families is not significant.
Which of these two traits do you think has the greater heritability (that is, is most
influenced by genetic differences between individuals in this population)? Why?

Problem 2.5

The white-phase Kermode bear has been recognized as a subspecies of the
black bear (Nagorsen 1990). However, as discussed in Section 2.1, this color
phase is caused by a recessive allele at a single locus, and both white- and black-
phase bears occur within the same breeding population. Do you think that the
white-phase Kermode bears should be recognized as a separate subspecies or
group for purposes of conservation? How should the white-phase Kermode bears
best be protected?
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3

Genetic Variation in 
Natural Populations: 

Chromosomes and 
Proteins

The empirical study of population genetics has always begun with and centered
around the characterization of the genetic variation in populations.

Richard C. Lewontin (1974)

Geographic chromosomal variation, which in many instances does not correlate
with variation in phenotype, is increasingly being detected within both large and
small species of mammals. We argue that this cryptic chromosome variation can
pose a significant threat to translocation practices involving the admixture of
specimens between geographically distant populations.

Terrence J. Robinson and Frederick F. B. Elder (1993)

3.1 Chromosomes, 35

3.2 Protein electrophoresis, 47

3.3 Genetic variation within natural populations, 51

3.4 Genetic divergence among populations, 52

3.5 Strengths and limitations of protein electrophoresis, 54

Guest Box 3 Management implications of polyploidy in a 
cytologically complex self-incompatible herb, 55

Genetic variation is the raw material of evolution. Change in the genetic composition of
populations and species is the primary mechanism of evolutionary change within species.

Sumatran orangutan, Section 3.1.7
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In Chapter 2, we examined phenotypic variation in natural populations. In this chapter, 
we will examine the genetic basis of this phenotypic variation by examining genetic 
differences between individuals in their chromosomes and proteins. In Chapter 4, we will
examine variation in DNA sequences. This order, from the chromosomes that are visible
under a light microscope down to the study of molecules, reflects the historical sequence
of study of natural populations.

In our consideration of conservation, we are concerned with genetic variation at two
fundamentally different hierarchical levels:

1 Genetic differences among individuals within local populations.
2 Genetic differences among populations within the same species.

The amount of genetic variation within a population provides insight into the demo-
graphic structure and evolutionary history of a population. For example, lack of genetic
variation may indicate that a population has gone through a recent dramatic reduction in
population size. Genetic divergence among populations is indicative of the amount of
genetic exchange that has occurred among populations, and can play an important role in
the conservation and management of species. For example, genetic analysis of North
Pacific minke whales has shown that some 20–40% of the whale meat sold in Korean and
Japanese markets comes from a protected and genetically isolated population of minke
whales in the Sea of Japan (Baker et al. 2000).

Population geneticists struggled throughout most of the 20th century to measure
genetic variation in natural populations (Table 3.1). Before the advent of biochemical and
molecular techniques, genetic variation could only be examined by bringing individuals
into the laboratory and using experimental matings. The fruit fly (Drosophila spp) was 
the workhorse of empirical population genetics during this time because of its short gen-
eration time and ease of laboratory culture. For example, 41% of the papers (9 of 22) in 
the first volume of the journal Evolution published in 1947 used Drosophila; while just 10%
of the papers (21 of 212) in the volume of Evolution published in the year 2000 were 
on Drosophila.

The tools used to examine chromosomal and allozyme variation have been used for
many years. Their utility has been eclipsed by powerful new techniques that we will con-
sider in the next chapter, which allow direct examination of genetic variation in entire
genomes! Nevertheless, these “old” tools and the information that they have provided
continue to be valuable. The technique of allozyme electrophoresis will continue to fade

Table 3.1 Historical overview of primary methods used to
study genetic variation in natural populations.

Time period Primary techniques

1900–1970 Laboratory matings and chromosomes
1970s Protein electrophoresis (allozymes)
1980s Mitochondrial DNA
1990s Nuclear DNA
2000s Genomics
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CHAPTER 3 GENETIC VARIATION IN NATURAL POPULATIONS: CHROMOSOMES AND PROTEINS 35

away in the next decade or so as it is replaced by techniques that examine genetic variation
in the DNA that encodes the proteins studied by allozyme electrophoresis (Utter 2005).
Study of DNA sequences, however, cannot replace examination of chromosomes. We
expect there will be a rejuvenation of chromosomal studies in evolutionary and conser-
vation genetics when new technologies are developed that allow rapid examination of
chromosomal differences between individuals (deJong 2003).

3.1 Chromosomes

Surprisingly little emphasis has been placed on chromosomal variability in conservation
genetics (Benirschke and Kumamoto 1991; Robinson and Elder 1993). This is unfortunate
because heterozygosity for chromosomal differences often causes reduction in fertility
(Nachman and Searle 1995; Rieseberg 2001). For example, the common cross between a
female horse with 64 chromosomes and a male donkey with 62 chromosomes produces a
sterile mule that has 63 chromosomes. Some captive breeding programs unwittingly have
hybridized individuals that are morphologically similar but have distinct chromosomal
complements: orangutans (Ryder and Chemnick 1993), gazelles (Ryder 1987), and dik-diks
(Ryder et al. 1989). Similarly, translocation or reintroduction programs may cause prob-
lems if individuals are translocated among chromosomally distinct groups (for example
see Guest Box 3).

The possible occurrence of hybridization in captivity of individuals from chromosom-
ally distinct populations is much more common than would generally be expected because
small, isolated populations have a greater rate of chromosomal evolution than common
widespread taxa (Lande 1979). Thus, the very demographic characteristics that make a
species a likely candidate for captive breeding are the same characteristics that favor the
evolution of chromosomal differences between groups. For example, extensive chromo-
somal variability has been reported in South American primates (Matayoshi et al. 1987) and
some plants (Example 3.1).

The direct examination of genetic variation in natural population began with the
description of differences in chromosomes between individuals. One of the first reports of
differences in the chromosomes of individuals within populations was by Stevens (1908),
who described different numbers of supernumerary chromosomes in beetles (White
1973). For many years, study of chromosomal variation in natural populations was dom-
inated by the work of Theodosius Dobzhansky and his colleagues on Drosophila
(Dobzhansky 1970) because of the presence of giant polytene chromosomes in the salivary
glands (Painter 1933). However, the study of chromosomes in other species lagged far
behind. For example, until 1956 it was thought that humans had 48, rather than 46 chro-
mosomes in each cell. It is amazing that the complete human genome was sequenced
within 50 years of the development of the technical ability to even count the number of
human chromosomes.

3.1.1 Karyotypes

A karyotype is the characteristic chromosome complement of a cell, individual, or
species. Chromosomes in the karyotype of a species are usually arranged beginning with
the largest chromosome (Figure 3.1). The large number of microchromosomes in the
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Figure 3.1 Karyotype (2n = 84) of a female cardinal. From Bass (1979).

shown karyotype is typical for many bird species (Shields 1982). Evidence suggests that
bird microchromosomes are essential, unlike the supernumerary chromosomes discussed
later in this section (Shields 1982).

Chromosomes of eukaryotic cells consist of DNA and associated proteins. Each chro-
mosome consists of a single highly folded and condensed molecule of DNA. Some large
chromosomes would be several centimeters long if they were stretched out – thousands of
times longer than a cell nucleus. The DNA in a chromosome is coiled again and again and

Example 3.1 Cryptic chromosomal species in the graceful tarplant

The graceful tarplant (Holocarpha virgata) is a classic example of the importance
of chromosomal differentiation between populations for conservation and man-
agement. Clausen (1951) described the karyotype of plants from four populations
of this species ranging from Alder Springs in northern California to a population
near San Diego, California. These populations can hardly be distinguished mor-
phologically and live in similar habitats. Plants from all of these populations had a
haploid set of four chromosomes (n = 4). However, the size and shape of these
four chromosomes differed among populations. Experimental crossings revealed
that matings between individuals in different populations either failed to produce
F1 individuals or the F1 individuals were sterile.

Clausen (1951) concluded that these populations were distinct species
because of their chromosomal characteristics and infertility. Nevertheless, he felt
that it would be “impractical” to classify them as taxonomic species because of
their morphological similarity and lack of ecological distinctness. These popula-
tions are classified as the same species today. Nevertheless, for purposes of 
conservation, each of the chromosomally distinct populations should be treated
as separate species because of their reproductive isolation. Translocations of
individuals among populations could have serious harmful effects because of
reduction in fertility or the production of sterile hybrids.
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is tightly packed around histone proteins. Chromosomes are generally thin and difficult to
observe even with a microscope. Before cell division (mitosis and meiosis), however, they
condense into thick structures that are readily seen with a light microscope. This is the
stage when we usually observe chromosomes (Figure 3.1). The chromosomes right before
cell division have already replicated so that each chromosome consists of two identical 
sister chromatids (Figure 3.2).

Chromosomes function as the vehicles of inheritance during the processes of mitosis
and meiosis. Mitosis is the separation of the sister chromatids of replicated chromosomes
during somatic cell division to produce two genetically identical cells. Meiosis is the pair-
ing of and separation of homologous replicated chromosomes during the division of sex
cells to produce gametes.

Certain physical characteristics and landmarks are used to describe and differentiate
chromosomes. The first is size; the chromosomes are numbered from the largest to the
smallest. The centromere appears as a constricted region and serves as the attachment
point for spindle microtubules that are the filaments responsible for chromosomal move-
ment during cell division (Figure 3.2). The centromere divides a chromosome into two
arms. Chromosomes in which the centromere occurs approximately in the middle are
called metacentric. In acrocentric chromosomes, the centromere occurs near one end of
the chromosome. Staining techniques have been developed that differentially stain differ-
ent regions of a chromosome to help distinguish chromosomes that have similar size and
centromere location (Figure 3.3).

3.1.2 Sex chromosomes

Many groups of plants and animals have evolved sex-specific chromosomes that are
involved in the process of sex determination (see Rice 1996 for an excellent review). In
mammals, females are homogametic XX and males are heterogametic XY (Figure 3.3).
The chromosomes that do not differ between the sexes are called autosomes. For exam-
ple, there are 28 pairs of chromosomes in the karyotype of African elephants (2n = 56)
(Houck et al. 2001); thus, each African elephant has 54 autosomes and two sex chromo-
somes. The heterogametic sex is reversed in birds: males are homogametic ZZ and
females are heterogametic ZW (see Figure 3.1). Note that the XY and ZW notations are
strictly arbitrary and are used to indicate which sex is homogametic. For example,

Centromere

Chromosome

Long arm

Short arm

Sister chromatids 

Telomere

Telomere

Figure 3.2 Diagram of an unreplicated chromosome and a chromosome that has replicated
into two identical sister chromatids that are joined at the centromere.
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Lepidopterans (butterflies and moths) are ZZ/ZW; this indicates that the males are the
homogametic sex.

The heterogametic sex often differs between species in some taxa (Charlesworth 1991).
Some fish species are XX/XY, some are ZZ/ZW, some do not have detectable sex chromo-
somes, and a few species even have more than two sex chromosomes (Devlin and
Nagahama 2002). Many plant species do not have separate sexes, and, therefore, they do
not have sex chromosomes (Charlesworth 2002). However, both XX/XY and ZZ/ZW sex-
determination systems occur in dioecious plant species with separate male and female
individuals.

1

9 10 11 12 13 14 15 16

17 18 19 20 21 22 X Y

2 83 4 5

Human
Chimpanzee
Gorilla
Orangutan

6 7

Figure 3.3 Karyotypes and chromosomal banding patterns of humans, chimpanzees, gorillas,
and orangutans. From Strickberger (2000); from Yunis and Prakash (1982).
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Heteromorphic sex chromosomes can provide useful markers for conservation, and the
sex of individuals can be determined by karyotypic examination. However, many other far
easier procedures can be used to sex individuals by their sex chromosomes 
complement. For example, one of the two X chromosomes in most mammal species 
is inactivated and forms a darkly coiling structure (a Barr body) that can be readily
detected with a light microscope in epithelial cells scraped from the inside of the mouth of
females but not males (White 1973). We will see in the next chapter that DNA sequences
specific to one of the sex chromosomes can be used in many taxa to identify the sex of 
individuals.

3.1.3 Polyploidy

Most animal species contain two sets of chromosomes and therefore are diploid (2n) for
most of their life cycles. The eggs and sperm of animals are haploid and contain only one
set of chromosomes (1n). Some species, however, are polyploid because they possess more
than two sets of chromosomes: triploids (3n), tetraploids (4n), pentaploids (5n), hexa-
ploids (6n), and even greater number of chromosome sets. Polyploidy is relatively rare in
animals, but it does occur in invertebrates, fishes, amphibians, and lizards (White 1973).
Polyploid is common in plants and is a major mechanism of speciation (Stebbins 1950;
Soltis and Soltis 1999). Approximately 40% of all flowering plant species are polyploids and
nearly 75% of all grasses are polyploid.

Perhaps the most interesting cases of polyploidy occur when diploid and tetraploid
forms of the same taxon exist in sympatry. For example, both diploid (Hyla chrysoscelis) and
tetraploid (H. versicolor) forms of gray tree frogs occur throughout the central United
States (Ptacek et al. 1994). Reproductive isolation between diploids and tetraploids is main-
tained by call recognition; the larger cells of the tetraploid males result in a lower calling
frequency, which is recognized by the females (Bogart 1980). Hybridization between
diploids and tetraploids does occur and results in triploid progeny that are not fertile
(Gerhardt et al. 1994).

A thorough treatment of polyploidy is beyond the scope of this chapter. Nevertheless,
examination of ploidy levels is an important taxonomic tool when describing units of con-
servation in some plant taxa (see Guest Box 3; Chapter 16).

3.1.4 Numbers of chromosomes

Many closely related species have different numbers of chromosomes, as the horse and
mule discussed in Section 3.1. For example, a haploid set of human chromosomes has 
n = 23 chromosomes, while the extant species that are most closely related to humans 
all have n = 24 chromosomes (see Figure 3.3). This difference is due to a fusion of two
chromosomes to form a single chromosome (human chromosome 2) that occurred some-
time in the human evolutionary lineage following its separation from the ancestor of the
other species. This is an example of a Robertsonian fusion which we will consider in
Section 3.1.8.

Chromosome numbers have been found to evolve very slowly in some taxa. For 
example, the approximately or so 100 cetaceans have either 2n = 42 or 44 chromosomes
(Benirschke and Kumamoto 1991). In contrast, chromosome numbers have diverged
rather rapidly in other taxa. For example, the 2n number in horses (genus Equus) varies
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from 2n = 32 to 66 (Table 3.2). The Indian muntjac has a karyotype that is extremely 
divergent from other species in the same genus (Figure 3.4). In the next few sections we
will consider the types of chromosome rearrangements that bring about karyotypic
changes among species.

Table 3.2 Characteristic chromosome numbers of some
living members of the horse family (White 1973).

Species 2n

Przewalski’s horse Equus przewalski 66
Domestic horse E. cabbalus 64
Donkey E. asinus 62
Kulan E. hemionus 54
Grevy’s zebra E. grevyi 46
Burchell’s zebra E. burchelli 44
Mountain zebra E. zebra 32

Y2 XY1

Indian muntjac

XYChinese muntjac

Figure 3.4 The Chinese and Indian muntjac and their karyotypes. The Indian muntjac has
the lowest known chromosome number of any mammal. First-generation hybrids (2n = 27)
created in captivity between these species are viable (Wang and Lan 2000). The two Y
chromosomes in this species have resulted from a centric fusion between an autosome 
and the sex chromosomes (White 1973). From Strickberger (2000).
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3.1.5 Supernumerary chromosomes

Supernumerary chromosomes (also called B chromosomes) are not needed for normal
development and vary in number in many plant and animal species. They are usually
small, lack functional genes (heterochromatic), and do not pair and segregate during 
meiosis (White 1973; Jones 1991). In general, the presence or absence of B chromosomes
does not affect the phenotype or the fitness of individuals (Battaglia 1964). It is thought
that B chromosomes are “parasitic” genetic elements that do not play a role in adaptation
( Jones 1991). B chromosomes have been reported in many species of higher plants
(Müntzing 1966). In animals, B chromosomes have been described in many invertebrates,
but they are rarer in vertebrates. However, Green (1991) has described extensive polymor-
phism for B chromosomes in populations of the Pacific giant salamander along the west
coast of North America.

3.1.6 Chromosomal size

In many species differences in size between homologous chromosomes have been
detected. In most of the cases it appears that the “extra” region is due to a heterochromatic
segment that does not contain functional genes (White 1973, p. 306). These extra hetero-
chromatic regions resulting in size differences between homologous chromosomes are
analogous to supernumerary chromosomes, except that they are inherited in a Mendelian
manner. Heterochromatic differences in chromosomal size seem to be extremely com-
mon in several species of South American primates (Matayoshi et al. 1987).

3.1.7 Inversions

Inversions are segments of chromosomes that have been turned around so that the gene
sequence has been reversed. Inversions are produced by two chromosomal breaks and a
rejoining, with the internal piece inverted (Figure 3.5). An inversion is paracentric if both
breaks are situated on the same side of the centromere (Figure 3.6), and pericentric if the
two breaks are on opposite side of the centromere (Figure 3.7).

Heterozygosity for inversions is often associated with reduced fertility. Recombination
(crossing over) within inversions produces aneuploid gametes that form inviable zygotes
(Figures 3.6 and 3.7). The allelic combinations at different loci within inversion loops will
tend to stay together because of the low rate of successful recombination within inver-
sions. In situations where several loci within an inversion affect the same trait, the allelic
combinations at the loci are referred to as a supergene). Examples of phenotypes con-
trolled by supergenes include shell color and pattern in snails (Ford 1971), mimicry in 
butterflies (Turner 1985), and flower structure loci in Primula (Kurian and Richards 1997).

Inversions are exceptionally common in some taxonomic groups because they do not
have the usual harmful effects of producing inviable zygotes (White 1973, p. 241). For
example, crossing over and recombination does not occur in male dipteran (two-winged)
flies (e.g., Drosophila). Therefore, lethal chromatids will only be produced in females in
these species. However, there seems to be a meiotic mechanism in these species so that
chromatids without a centromere or with two centromeres pass into the polar body rather
than into the egg nucleus so that fertility is not reduced. Chromosomes with a single 
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Sumatra Borneo
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Figure 3.5 Pericentric inversion in chromosome 2 of two subspecies of orangutans from
Sumatra and Borneo (chromosomes from Seuanez 1986).
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centromere having deficiencies or duplications that are produced in heterozygotes for
pericentric inversions (Figure 3.7) are just as likely to be passed into the egg nucleus as 
normal chromosomes.

Paracentric inversions are difficult to detect because they do not change the relative
position of the centromere on the chromosome. They can only be detected by examina-
tion of meiotic pairing or by using some technique that allows visualization of the genic
sequence on the chromosome, such as in polytenic chromosomes of Drosophila and 
other Dipterans. Several chromosome-staining techniques that reveal banding patterns
were discovered in the early 1970s (see Figure 3.3; Comings 1978). These techniques have

A A

B E

C

D

E

F F

B

C

D

Centromere

A

A

B

B

C

C D

D

E

E

F

F

A

B C D
E F

F
F

FA

A

A

B

B

C
C
D

D

E

E

E
D C

B

A

A

A

A

B

B

B

B

E

E

EC

C

E D C F

D

D
F

C

D F

F

Figure 3.6 Crossing over in a heterozygote for a paracentric inversion. The two
chromosomes are shown in the upper left. The pairing configuration and crossing over
between two nonsister chromatids is shown in the upper right. Separation of chromosomes
during the first meiotic division is shown in the lower left. The resulting chromosomal
products of meiosis are shown in the lower right. Only two chromosomes have complete 
sets of genes; these are noncrossover chromosomes that have the same sequences as the two
original chromosomes. From Dobzhansky et al. (1977).
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been extremely helpful in identifying homologous chromosomes in karyotypes and for
detecting chromosomal rearrangements such as paracentric inversions (e.g., Figure 3.6).
However, relatively few species have been studied with these techniques, so that we know
little about the frequency of paracentric inversions in natural populations.

Pericentric inversions are more readily detected than paracentric inversions because
they change their relative position on the centromere. Two frequent pericentric inversions
have been described in orangutans (Pongo pygmaeus). Orangs from Borneo (P. p. pygmaeus)
and Sumatra (P. p. abelii) are fixed for different forms of an inversion at chromosome 2
(Seuanez 1986; Ryder and Chemnick 1993) (see Figure 3.5). All wild captured orangs have
been homozygous for these two chromosomal types, while over a third of all captive-born
orangs have been heterozygous (Table 3.3). A pericentric inversion of chromosome 9 
is polymorphic in both subspecies (Table 3.3). The persistence of the polymorphism in
chromosome 9 for this period of time is surprising.
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Figure 3.7 Crossing over in a heterozygote for a pericentric inversion. The two
chromosomes are shown in the upper left. The pairing configuration and crossing over
between two nonsister chromatids is shown in the upper right. The resulting products of
meiosis are shown below. Only the two top chromosomes have complete sets of genes; 
these are noncrossover chromosomes that have the same sequences as the two original
chromosomes. From Dobzhansky et al. (1977).
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Divergence in proteins and mitochondrial DNA sequences between Bornean and
Sumatran orangutans support the chromosomal evidence that these two subspecies have
been isolated for over a million years (Ryder and Chemnick 1993). Two groups of authors
proposed in 1996 that the orangs of Borneo and Sumatra should be recognized as separate
species on the basis of these chromosomal differences and molecular genetic divergence
(Xu and Arnason 1996; Zhi et al. 1996). Muir et al. (1998) strongly disagreed with this 
recommendation based on a variety of arguments. They conclude in a more detailed study
of mtDNA that the pattern of genetic divergence among orangutans is complex and is not
adequately described by a simple Sumatra–Borneo split (Muir et al. 2000).

Chromosomal polymorphisms seem to be unusually common in some bird species
(Shields 1982). Figure 3.1 shows the karyotype of a cardinal that is heterozygous for 
a pericentric inversion of chromosome 5 (Bass 1979). Figure 3.8 shows all three karyo-
typic combinations of these two inversions. There is evidence that suggests that such 

Table 3.3 Chromosomal inversion polymorphisms in the orangutan (Ryder and Chemnick
1993). The inversion in chromosome 2 distinguishes the Sumatran (S) and Bornean (B)
subspecies. The two inversion types in chromosome 9 (C and R) are polymorphic in both
subspecies.

Chromosome 2 Chromosome 9

BB SB SS CC CR RR

Wild born 51 0 41 67 22 3

Zoo born 90 44 82 71 34 3

A A B B

Figure 3.8 Three possible karyotypes for the chromosome 5 polymorphism for a pericentric
inversion in cardinals. Chromosome 5A is acrocentric, while chromosome 5B is metacentric. 
Modified from Bass (1979).
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chromosomal polymorphisms may be associated with important differences in morpho-
logy and behavior among individuals. For example, Rising and Shields (1980) have
described pericentric inversion polymorphisms in slate-colored juncos that are associated
with morphological differences in bill size and appendage size. They suggest that this
polymorphism is asso-ciated with habitat partitioning during the winter when they live
and forage in flocks.

Throneycroft (1975) has described an extremely interesting pericentric inversion in
chromosome 2 of white-throated sparrows. Individuals with the inversion have a white
median stripe on their head while individuals lacking the inversion have a tan stripe. There
is strong disassortative mating for this polymorphism; that is, birds tend to select mates
with the opposite color pattern. Tuttle (2003) has described a variety of behavioral differ-
ences between these two morphs: white males are more aggressive, spend less time guard-
ing their mates, and provide less parental care.

3.1.8 Translocations

A translocation is a chromosomal rearrangement in which part of a chromosome
becomes attached to a different chromosome. Reciprocal or mutual translocations result
from a break in each of two nonhomologous chromosomes and an exchange of chromo-
somal sections. In general, polymorphisms for translocations are rare in natural popula-
tions because of infertility problems in heterozygotes.

Robertsonian translocations are a special case of translocations in which the break points
occur very close to either the centromere or the telomere (Figure 3.9). A Robertsonian
fusion occurs when a break occurs in each of two acrocentric chromosomes near their
centromeres, and the two chromosomes join to form a single metacentric chromosome.
Robertsonian fissions also occur where this process is reversed. Robertsonian polymor-
phisms can be relatively frequent in natural populations because the translocation involves
the entire chromosome arm and balanced gametes are usually produced by heterozygotes
(Searle 1986; Nachman and Searle 1995). Lamborot (1991) has presented an elegant 
example of several Robertsonian polymorphisms in a lizard species from central Chile
(Figure 3.10).

The Western European house mouse (Mus musculus domesticus) has an exceptionally
variable karyotype (Nachman and Searle 1995). The rate of evolution of Robertsonian
changes in this species is nearly 100 times greater than in most other mammals (Nachman
and Searle 1995). Over 40 chromosomal races of this species have been described in
Europe and North Africa on the basis of Roberstonian translocations (Hauffe and Searle

Fission 

Fusion 

Figure 3.9 Diagram of Robertsonian fusion and fission.
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1998). As expected, hybrids between three of these races have reduced fertility. On average,
the litter size of crosses with one hybrid parent is 44% less than crosses between two 
parents from the AA race (Table 3.4).

3.2 Protein electrophoresis

The first major advance in our understanding of genetic variation in natural populations
began in the mid-1960s with the advent of protein electrophoresis (Powell 1994). The

A B C

3

4

D E F

3

4

Figure 3.10 Chromosomes 3 and 4 from karyotypes of the lizard Liolaemus monticola
separated by the Maipo and Yeso Rivers in central Chile. A through C are the northern
chromosomal type (2n = 38, 39, and 40); D through F are the southern chromosomal 
type (2n = 34). The southern and northern types are distinguished by a Robertsonian
rearrangement in chromosome 4. In addition, the northern type is polymorphic from 
a Robertsonian rearrangement of chromosome 3. From Lamborot (1991).
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study of variation in amino acid sequences of proteins by electrophoresis allowed an
immediate assessment of genetic variation in a wide variety of species (Lewontin 1974).
There is a direct relationship between genes (DNA base pair sequences) and proteins
(amino acid sequences). Proteins have an electric charge and migrate in an electric field at
different rates depending upon their charge, size, and shape. A single amino acid substitu-
tion can affect migration rate and thus can be detected by electrophoresis. Moreover, the
genomes of all animals (from elephants to Drosophila), all plants (from sequoias to the
Furbish lousewort), and all prokaryotes (from Escherichia coli to HIV) encode proteins.
Empirical population genetics has become universal, as genetic variation has been
described in natural populations of thousands of species in the last 30 years.

Figure 3.11 outlines the procedures in the gel electrophoresis of enzymes (also see May
1998). There are two fundamental steps to electrophoresis. The first is to separate proteins
with different mobilities in some kind of a supporting medium (usually a gel of starch or
polyacrylamide). However, most tissues contain proteins encoded by hundreds of differ-
ent genes. The second step of the process, therefore, is to locate the presence of specific
proteins. This step is usually accomplished by taking advantage of the specific catalytic
activity of different enzymes. Specific enzymes can be located by using a chemical solution
containing the substrate specific for the enzyme to be assayed, and a salt that reacts with
the product of the reaction catalyzed by the enzyme, producing a visible product.

For example, the enzyme lactate dehydrogenase (LDH) catalyzes the reversible inter-
conversion of lactic acid and pyruvic acid and causes the release of hydrogen ions (H+):

Lactic acid + (NAD+) Pyruvic acid + NADH + (H+)

We can “see” LDH on a gel by using a dye that is soluble and colorless but that becomes
nonsoluble and purple when coupled with the hydrogen ions produced wherever LDH is
present in the gel. Figure 3.12 shows the variation at an LDH gene (LDH-B2) that is
expressed in the liver tissue of rainbow trout. All of the individuals in this figure are
progeny from a laboratory mating between a single female and a single male that were
both heterozygous (100/69) at this locus. Alleles are generally identified by their relative

 
 LDH  ⎯→⎯←⎯⎯             

Table 3.4 Litter sizes produced by mice heterozygous for Robertsonian translocations
characteristic of three different chromosomal races (AA, POS, and UV). From Hauffe 
and Searle (1998).

Female Male No. of litters Litter size

AA AA (control) 17 6.7 ± 0.8
AA (AA × POS) 16 4.1 ± 0.4
AA (AA × UV) 18 2.6 ± 0.3
AA (UV × POS) 19 3.8 ± 0.3
AA (control) AA 18 6.8 ± 0.4
(AA × POS) AA 7 1.0 ± 0
(AA × UV) AA 10 3.1 ± 0.6
(POS × UV) AA 11 4.0 ± 0.5
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Figure 3.11 Allozyme electrophoresis. (A) A tissue sample is homogenized in a buffer
solution and centrifuged. (B) The supernatant liquid is placed in the gel with filter paper
inserts. (C) Proteins migrate at different rates in the gel because of differences in their charge,
size, or shape. (D) Specific enzymes are visualized in the gel by biochemical staining
procedures. From Utter et al. (1987).
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migration distance in the gel. Thus, the 69 allele migrates approximately 69% as far as the
common allele, 100. The observed frequencies (3, 7, and 3) of the three genotypes 100/100,
100/69, and 69/69 are close to the expected 1 : 2 : 1 Mendelian proportions from a cross
between two heterozygotes.

We can stain different gels for many enzymes and thus examine genetic variation at
many protein loci. Figure 3.13 shows variation at the enzyme aconitate dehydrogenase in
Chinook salmon from a sample from the Columbia River of North America.

1 2

69

100

3 4 5 6 7 8 9 10 11 12 13

Figure 3.12 Inheritance of a polymorphism for a lactate dehydrogenase (LDH) locus 
(LDH-B2) expressed in liver tissue of rainbow trout. Heterozygotes for LDH are five banded
because four protein subunits combine to form a single functional enzyme. All 13 samples on
this gel are liver samples from progeny produced by a mating between two heterozygotes
(100/69). Genotypes are: 1 and 2 (100/69), 3 (69/69), 4–7 (100/69), 8 (69/69), 9 (100/100), 10
(69/69), 11 (100/69), and 12–13 (100/100). From Utter et al. (1987).

1 2

110

100

86

75

origin
3 4 5 6 7 8 9 10 11 12

+

→

Figure 3.13 Gel electrophoresis of the enzyme aconitate dehydrogenase in the livers of 12
Chinook salmon. The relative mobilities of the allozymes encoded by four alleles at this locus
are on the right. The genotypes of all 12 individuals are: 1 (110/110), 2 (100/110), 3 (100/100), 
4 (110/86), 5 (110/75), 6 (75/75), 7 (86/75), 8 (100/75), 9 (86/86), 10 (100/86), 11 (110/100), and
12 (110/110). From Utter et al. (1987).
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3.3 Genetic variation within natural populations

The most commonly used measure to compare the amount of genetic variation within
different populations is heterozygosity. At a single locus, heterozygosity is the proportion
of individuals that are heterozygous; heterozygosity (H) ranges between zero and one.
Two different measures of heterozygosity are used. H0 is the observed proportion of het-
erozygotes. For example, seven of the 12 individuals in Figure 3.13 are heterozygotes so H0
at this locus in this sample is 0.58 (7/12 = 0.58). He is the expected proportion of hetero-
zygotes if the population is mating at random; the estimation of He is discussed in detail in
the Chapter 5. He provides a better standard to compare the relative amount of variation in
different populations as long as the populations are mating at random (Nei 1977). Protein
electrophoresis is commonly used to estimate heterozygosity at many loci in a population
by taking the mean heterozygosities over all loci.

Another measure often used is polymorphism or the proportion of loci that are genetic-
ally variable (P). The likelihood of detecting genetic variation at a locus increases as more
individuals are sampled from a population. This dependence on sample size is partially
avoided by setting an arbitrary limit for the frequency of the most common allele. We use
the criterion that the most common allele must have a frequency of 0.99 or less.

Data from natural populations

Harris (1966) was one of the first to describe protein heterozygosity at multiple loci 
(Table 3.5). He described genetic variation in the human population in England and found
three of 10 loci to be polymorphic (P = 0.30).

Nevo et al. (1984) have summarized the results of protein electrophoresis surveys of
some 1,111 species! Average heterozygosities for major taxonomic groups are shown in
Figure 3.14. Different species sometimes have enormous differences in the amount of
genetic variation they possess (Table 3.6). Differences between species in amounts of
genetic variation can have important significance. Remember, evolutionary change can-
not occur unless there is genetic variation present and this can have significant implica-
tions for conservation.

Table 3.5 Genetic variation at 10 protein loci in humans (Harris 1966).

Allele frequency

Locus 1 2 3 He H0

AP 0.600 0.360 0.040 0.509 0.510
PGM-1 0.760 0.240 – 0.365 0.360
AK 0.950 0.050 – 0.095 0.100
7 loci 1.000 – – 0.000 0.000

Total 0.097 0.097
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Dicotyledons

Mollusks

Mammals

Crustaceans

Insects

Drosophila

Fish

Amphibians

Reptiles

Birds

0 0.02 0.04 0.06 0.08

Average heterozygosity

0.1 0.12 0.14 0.16

Figure 3.14 Average heterozygosities (HS ) from major taxa. From Gillespie (1992); data from
Nevo et al. (1984).

Table 3.6 Summary of genetic variation demonstrating range of genetic variation found 
in different species of animals and plants (Nevo et al. 1984). HS is the mean expected
heterozygosity (He) over all loci for all populations examined.

Species No. of loci P (%) HS

Roundworm 21 29 0.027
American toad 14 34 0.116
Polar bear 29 2 0.000
Moose 23 9 0.018
Humans 107 47 0.125
Apache trout 30 0 0.000
Alligator 44 7 0.016

Red pine 35 3 0.007
Ponderosa pine 35 83 0.180
Yellow evening primrose 20 25 0.028
Salsify 21 9 0.026
Gilia 13 52 0.106

3.4 Genetic divergence among populations

The total amount of genetic variation within a species (HT) can be partitioned into 
genetic differences among individuals within a single population (HS) and genetic 
differences among different populations (Nei 1977). The proportion of total genetic 
variation within a species that is due to differences among populations is generally 
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Figure 3.15 Comparison of the mean number of alleles per allozyme locus in
widespread and restricted species of plants in 10 genera (Karron 1991). One to four
species of each type were compared within each genus. The solid line shows equal
mean values. In nine of 10 cases the mean of the widespread species was greater than
the mean of the restricted species.

Example 3.2 Do rare plants have less genetic variation?

There are several reasons to expect that rare species with restricted geographic
distributions will have less genetic variation. First, loss of genetic variation caused
by chance events (e.g., genetics and the founder effect, Chapter 6) will be greater
in smaller populations. In addition, species with restricted geographic distributions
will occur in a limited number of environments and will therefore be less affected
by natural selection to exist under different environmental conditions.

Karron (1991) provided a very interesting test of this expectation by comparing
the amount of genetic variation at allozyme loci in closely related species. He
compared congeneric species from 10 genera in which both locally endemic and
widespread species were present. One to four species of each type (rare and
widespread) were used in each genus. In nine of 10 cases, the widespread
species had a greater number of average alleles per locus (Figure 3.15).

These data support the prediction that rare species contain less genetic variation
than widespread species. On the average, widespread species tend to have greater
molecular genetic variation than rare endemic species with a limited distribution in
nine of 10 genera. However, this relationship is not so simple. The amount of genetic
variation in a species will be profoundly affected by the history of a species, as well
as by its current condition. For example, some very common and widespread species
have little genetic variation because they may have gone through a recent popula-
tion bottleneck (see the red pine, Example 11.2). Rare endemic species should
have relatively little genetic variation unless their current rareness is recent and
they historically were more widespread. Thus, “rareness” should be used cau-
tiously as a predictor of the amount of genetic variation within individual species.
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represented by FST:

The estimation of FST is considered in detail in Chapter 9. Ward et al. (1992) have sum-
marized the estimated values of these parameters in animal species (Table 3.7).

Some interesting patterns emerge from Table 3.7. First, invertebrates tend to have
greater variation within populations (HS) than vertebrates. This reflects the tendency for
local populations of invertebrates to be larger than vertebrates because of the relationship
where species with smaller body size tend to have larger population size (Cotgreave 1993).
An analogous pattern is seen for plants. Species with a wider range, and therefore greater
total population size, have greater total heterozygosity (HT) than endemic plants, which
have a more narrow range (Example 3.2). We will examine the relationship between popu-
lation size and genetic variation in Chapter 6.

In addition, those taxa that we would expect to have greater ability for movement 
and exchange among populations have less genetic divergence among populations. For
example, bird species have the same mean amount of genetic variation within popu-
lations, but they have much less genetic divergence among populations than fish or 
mammals. This difference reflects the greater ability of birds for exchange among 
geographically isolated populations because of flight. We will consider the relationship
between exchange among populations and genetic divergence in Chapter 9.

3.5 Strengths and limitations of protein electrophoresis

Protein markers have been the workhorse for describing the genetic structure of natural
populations over the last 30 years (Lewontin 1991). The strengths of protein electrophoresis

F
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    = −1

Table 3.7 Comparison of HT, HS, and FST for different major taxa of animals (Ward et al.
1992) and plants classified by their geographic range (Hamrick and Godt 1990, 1996).

Taxa HT HS FST No. of species

Amphibians 0.136 0.094 0.315 33
Birds 0.059 0.054 0.076 16
Fish 0.067 0.054 0.135 79
Mammals 0.078 0.054 0.242 57
Reptiles 0.124 0.090 0.258 22

Crustaceans 0.088 0.063 0.169 19
Insects 0.138 0.122 0.097 46
Mollusks 0.157 0.121 0.263 44

Endemic plants 0.096 0.063 0.248 100
Regional plants 0.150 0.118 0.216 180
Widespread plants 0.202 0.159 0.210 85
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are many. First, genetic variation at a large number of nuclear loci can be studied with 
relative ease, speed, and low cost. In addition, the genetic basis for variation of protein loci
can often be inferred directly from electrophoretic patterns because of the codominant
expression of isozyme loci, the constant number of subunits for the same enzyme in differ-
ent species, and consistent patterns of tissue-specific expression of different loci. Third, it is
relatively easy for different laboratories to examine the same loci and use identical allelic
designations so that data sets from different laboratories can be combined (White and
Shaklee 1991).

Protein electrophoresis also has several weaknesses. First, it can examine only a specific
set of genes within the total genome – those that code for water-soluble enzymes. In addi-
tion, this technique cannot detect genetic changes that do not affect the amino acid
sequence of a protein subunit. Thus, silent substitutions within codons or genetic changes
in noncoding regions within genes cannot be detected with protein electrophoresis.
Finally, this technique usually requires that multiple tissues be taken for analysis and stored
in ultra-cold freezers. Thus, individuals to be analyzed often must be sacrificed and the
samples must be treated with care and stored under proper refrigeration. Techniques 
that examine DNA directly using the polymerase chain reaction (PCR) do not require
lethal sampling and can often use old (or even ancient) specimens that have not been 
carefully stored.

Protein electrophoresis is still the best tool for certain questions. For example, so-called
cryptic species occur in many groups of invertebrates. Protein electrophoresis is the quick-
est and best initial method for detecting cryptic species in a sample of individuals from an
unknown taxonomic group. Individuals from different species will generally be fixed for
different alleles at some loci. The absence of heterozygotes at these loci would suggest the
presence of two reproductively isolated, genetically divergent groups (Ayala and Powell
1972). As we will see in the next chapter, PCR-based DNA techniques generally either
require prior genetic information or they rely upon techniques in which heterozygotes
cannot be distinguished from some homozygotes.

Guest Box 3 Management implications of polyploidy in a cytologically complex
self-incompatible herb
Andrew Young and Brian G. Murray

The button wrinklewort (Asteraceae) is a perennial herb that occurs in the 
temperate grasslands of Australia’s southeast (Figure 3.16). This ecosystem has
been substantially reduced in extent and condition over the last 150 years due 
to pasture improvement for sheep grazing. The fate of the button wrinklewort
populations has paralleled that of its habitat, with the species now persisting in only
27 populations ranging in size from as few as seven to approximately 90,000 plants,
but over half of the populations have less than 200 reproductive individuals.

Many smaller populations are declining (Young et al. 2000a), especially in the
southern part of the species range, with reductions in fruit production of up 
to 90%. Like many of the Asteraceae, the button wrinklewort has a genetically 
controlled sporophytic self-incompatibility system (Young et al. 2000a, 2000b).
Crossing experiments show that the most likely cause of this reduced fecundity 
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Figure 3.16 Sketch and karyoptyes of diploid (A, 2n = 22), and tetraploid 
(B, 2n = 44) button wrinkleworts.  From Murray and Young (2001).

in small populations is mate limitation resulting from low allelic richness at the 
self-incompatibility (S) locus (see Section 8.4). Pollen grains can only fertilize plants
that do not have the same S allele as carried by the pollen. Genetic and demo-
graphic rescue of small button wrinklewort populations could be achieved by
increasing S-allele richness through translocation of plants among populations –
especially from large, genetically diverse, and demographically viable northern
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populations to small, declining southern ones. However, this approach is com-
plicated by the substantial cytological variation exhibited by the species.

Cytogenetic analysis reveals that button wrinklewort is chromosomally variable
(Murray and Young 2001) (Figure 3.16). In the northern populations the dominant
cytotype is diploid 2n = 22, with occasional individuals exhibiting a second stable
haploid chromosome number of x = 13. In this case 2n = 26 individuals have an
additional pair of each of the small and large metacentric chromosomes. In the
south, the majority of the populations are 2n = 44 autotetraploids for the common
x = 11 cytotype, though 2n = 52 individuals based on x = 13 are observed at very
low frequencies.

Despite maintaining higher allelic richness on average than equivalent-sized
diploid populations (Brown and Young 2000), polyploid populations are more
mate-limited than diploids owing to the greater likelihood of matching S alleles
among tetraploid genotypes (Young et al. 2000b). Note that while this makes the
inclusion of divergent genetic material even more of an imperative, importing S
alleles from northern diploid populations presents a range of genetic problems: 
(1) diploid × tetraploid crosses, though viable, produce substantially fewer fruits than
crosses within ploidy level; (2) the triploid progeny of diploid × tetraploid crosses
have reduced pollen fertility due to the production of unbalanced gametes during
meiosis; and (3) backcrossing of triploids to either diploids or tetraploids produces
a range of aneuploids with low fertility (Young and Murray 2000).

Taken together these limitations argue against mixing diploid and tetraploid
plants despite the potential advantages of increased mate availability through the
introduction of novel S alleles. However, analysis of the tetraploid populations
shows that they appear to tolerate a good deal of chromosomal variation, with the
presence of aneuploids ranging from 2n = 43 to 2n = 46 at frequencies of up to 0.23
(Murray and Young 2001). The presence of such individuals suggests the possibility
of recent natural gene flow between diploid and tetraploid races indicating that 
fertility and fitness barriers to S-allele transfer across ploidy levels may not be 
insurmountable. Nevertheless, currently, a conservative approach of separate man-
agement of chromosome races is advisable, with translocation of plants between
populations with the same chromosome number being the best management
method to affect genetic rescue and restore demographic viability.

Problem 3.1

Herzog et al. (1992) have described a polymorphism in chromosome 3 of the
black-handed spider monkey. The centromere is in the middle of the chromosome
in one type (type A) of chromosome 3, while in the other type (type B) the 
centromere is near the end of the chromosome; both chromosomal types are 
of equal total length. There are no observable differences in any of the other 
chromosomes.

(a) What type of chromosomal rearrangement is likely to be responsible for
this polymorphism? Be as specific as possible.
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(b) Assume that a zoo that is interested in developing a captive breeding pro-
gram for this species contacts you as a consulting geneticist. Would you
recommend that individuals brought into captivity be screened for this
chromosomal polymorphism? If so, how should this information be used
in the breeding program? Write a letter to the director of the zoo that
explains and justifies your answer. Make sure that you address the poten-
tial effect of this rearrangement both in the captive population and in the
wild following reintroduction.

Problems 3.2–3.7

The diagrams below are hypothetical results of protein electrophoresis of a 
sample of 20 individuals from a population of sea otters. Note that samples from
each individual were electrophoresed and stained for three different enzymes that
each are each encoded by a single locus (A–C). This population is diploid and
mates at random with respect to these loci.

Locus A

Locus B

Locus C

Problem 3.2

Designate the most common allele at each locus as 1, the second most common
allele as 2, and so on. Write down the genotype (e.g., 11, 12, etc.) of each indi-
vidual in the table opposite. For example, the first individual is homozygous for the
common allele at locus A (11); the second individual is heterozygous (12 ) at A,
and individual 16 is homozygous for the rare allele at this locus (22).
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Problem 3.3

What proportion of the three loci in this sample are polymorphic?

Problem 3.4

What is the observed heterozygosity for each locus?

Problem 3.5

What is the average observed heterozygosity over all three loci?

Problem 3.6

What are the expected genotypic distributions for locus A in progeny from a mat-
ing between individuals 1 and 2?

Problem 3.7

What are the expected genotypic distributions for locus C in progeny from a mat-
ing between individuals 1 and 16? How about between individuals 11 and 13?

Problem 3.8

Ling-Ling was a female giant panda at the National Zoo in Washington, DC
(O’Brien et al. 1984). In March of 1983, Ling-Ling copulated with her male com-
panion Hsing-Hsing. Ling-Ling was also artificially inseminated with sperm from a
male giant panda at the London Zoo, Chia-Chia. On 21 July 1983 she gave birth to
a baby that died shortly after birth. The following genotypes were detected at six
protein loci by protein electrophoresis. Which male was the father of Ling-Ling’s
baby?

Locus Ling-Ling Baby Hsing-Hsing Chia-Chia

1 AA Aa Aa AA
2 Bb bb bb bb
3 Cc Cc cc cc
4 dd Dd Dd dd
5 Ee Ee EE Ee
6 FF FF FF Ff
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Problem 3.9

Molecular genetic markers have allowed us to study reproductive behavior in wild
populations that was not possible previously. For example, evidence of extra-pair
copulations is accumulating in many bird species. Price et al. (1989) used a single
allozyme locus (lactate dehydrogenase, LDH ) to study parentage in house wrens.
The authors were interested in detecting both extra-pair copulations (when the
female mates with a male other than her “mate”) and egg dumping (when a female
lays an egg in the nest of another female).

They presented the following data shown:

Chicks
Parental genotypes No.
(female ×× male) of pairs FF FS SS

SS × SS 6 0 4 29
SS × FS 6 0 13 18
FS × SS 4 0 10 11
FF × SS 2 0 8 2

Do these data provide evidence for either extra-pair copulations or egg dumping
in this population?

Problem 3.10

The eastern reef egret in Australia usually has solid gray plumage. There is also a
white morph that is fairly common in some populations. Assume that the white
phenotype is due to a recessive allele (g) and that the dominant allele (G) pro-
duces gray plumage.

(a) What are the expected phenotypic ratios for male and female progeny
from a cross between a white female and a gray male that had a white
mother? Assume that this locus is on an autosome.

(b) Assume instead that the G locus occurs on the Z chromosome. How
would this affect the expected phenotypic ratios for male and female
progeny from a cross between a white female and a gray male that had a
white mother?

Remember that in birds males are ZZ, and females are ZW. In addition, the W
chromosome does not contain functional gene copies for many of the genes that
are found on the Z. Therefore,

Males: GG = gray Females: GW = gray
Gg = gray gW = white
gg = white
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Problem 3.11

Black and Johnson (1979) reported a highly unusual pattern of inheritance of
allozyme polymorphisms in the intertidal anemone Actina tenebrosa from
Rottnest Island in Western Australia. This species is viviparous, and up to five
young are brooded by adults at a time until they are released as relatively large
juveniles. The following parental and progeny genotypes were found at three
allozyme loci:

Progeny genotypes
Parental No. of

Locus genotype broods FF FS SS

MDH FF 25 68 0 0
FS 53 0 158 0
SS 11 0 0 35

PGM FF 44 145 0 0
FS 9 0 33 0

SOD FF 71 225 0 0
FS 18 0 50 0
SS 1 0 0 2

How would you explain these results? That is, what system of mating and repro-
duction would explain the observed parent–progeny combinations?
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4

Genetic Variation in 
Natural Populations: 

DNA

The number of genes prescribing a eukaryotic life form such as a Douglas fir or
human being runs into the tens of thousands. The nucleotide pairs composing them
vary among species from one billion to ten billion. If the DNA helices in one cell of
a mouse, a typical animal species, were placed end on end and magically enlarged
to have the same width as wrapping string, they would extend for over nine 
hundred kilometers, with about four thousand nucleotide pairs packed into every
meter. Measured in bits of pure information, the genome of a cell is comparable to
all editions of the Encyclopedia Britannica published since its inception in 1768.

E. O. Wilson (2002)

My mitochondria comprise a very large proportion of me. I cannot do the calcula-
tion, but I suppose there is almost as much of them in sheer dry bulk as there is the
rest of me. Looked at in this way, I could be taken for a very large, motile colony 
of respiring bacteria, operating a complex system of nuclei, microtubules, and
neurons, and, at the moment, running a typewriter.

Lewis Thomas (1974)

4.1 Mitochondrial and chloroplast DNA, 64

4.2 Single copy nuclear loci, 69

4.3 Multilocus techniques, 74

4.4 Sex-linked markers, 77

4.5 DNA sequences, 78

Thermus aquaticus (“Taq”), Box 4.1
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4.6 Additional techniques and the future, 78

4.7 Genetic variation in natural populations, 81

Guest Box 4 Multiple markers uncover marine turtle behavior, 82

A constantly expanding number of methods are used for detecting variation in DNA
sequences in natural populations. We will discuss only some of the primary approaches
that are used to study variation of DNA in natural populations. Sunnucks (2000) has
reviewed the principle methods for DNA analysis and their advantages and disadvantages
(also see Schlötterer 2004). It is important to remember that there is no universal “best”
technique. The best technique to examine genetic variation depends upon the question
being asked. The tool-kit of a molecular geneticist is analogous to the tool-box of a carpen-
ter. Whether a hammer or power screwdriver is the appropriate tool depends on whether
you are trying to drive in a nail or set a screw.

This chapter provides a conceptual overview of the primary techniques employed to
study genetic variation in natural populations. Our emphasis is on the nature of the genetic
information produced by each technique and how it can be used in conservation genetics.
Detailed descriptions of the techniques and procedures can be found in the original papers.
Most of these techniques are reviewed in Smith and Wayne (1996) and Hoelzel (1998).

4.1 Mitochondrial and chloroplast DNA

The first studies of DNA variation in natural populations examined animal mitochondrial
DNA (mtDNA) because it is a relatively small circular molecule (approximately 16,000
bases in vertebrates and many other animals) that is relatively easy to isolate from genomic
DNA and occurs in thousands of copies per cell. These characteristics allowed investiga-
tors to isolate thousands of copies of mtDNA molecules by ultracentrifugation.

In 1979, two independent groups published the first reports of genetic variation in DNA
from natural populations. Avise et al. (1979a, 1979b) used restriction enzyme analysis of
mtDNA to describe sequence variation and the genetic population structure of mice and
pocket gophers. Avise (1986) provides an overview of the early work by Avise and his col-
leagues. Brown and Wright (1979) examined mtDNA to determine the sex of lizard species
that hybridized to produce parthenogenetic species. A paper by Brown et al. (1979) com-
pared the rate of evolution of mtDNA and the nuclear DNA in primates. This latter work
was done in collaboration with Allan C. Wilson whose laboratory became a center for the
study of the evolution of mtDNA (Wilson et al. 1985).

Several characteristics of animal mtDNA make it especially valuable for certain applica-
tions in understanding patterns of genetic variation. First, it is haploid and maternally
inherited in most species. That is, a progeny generally inherits a single mtDNA genotype
from its mother (Figure 4.1). There are thousands of mtDNA molecules in an egg, but rel-
atively few in sperm. In addition, mitochondria from the sperm are actively destroyed
once they are inside the egg. There are many exceptions to strict maternal inheritance. For
example, there is evidence of some incorporation of male mitochondria (“paternal leak-
age”) in species that generally show maternal inheritance, e.g., mice (Gyllensten et al.
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1991) and humans (Awadalla et al. 1999). In addition, some species show double uni-
parental inheritance of mtDNA in which there are separate maternally and paternally
inherited mtDNA molecules (Sutherland et al. 1998). Paternal leakage may lead to hetero-
plasmy (the presence of more than one mitochondrial genotype within an individual).

Mitochondrial DNA molecules are especially valuable for reconstructing phylogenetic
trees because there is generally no recombination between mtDNA molecules. Unlike
nuclear DNA, the historical genealogical record of descent is not “shuffled” by recombina-
tion between different mtDNA lineages during gamete production, as occurs in nuclear
DNA during meiosis. Recombination between lineages is not likely because mtDNA gen-
erally occurs in only one lineage per individual (one haploid genome) because the male
gamete does not contribute mtDNA to the zygote. Thus, the mtDNA of a species can be
considered a single nonrecombining genealogical unit with multiple alleles or haplotypes
(Avise 2004).

Plant mitochondrial and chloroplast DNA have been somewhat less useful than animal
mtDNA for genetic studies of natural populations primarily because of low variation
(Clegg 1990; Powell 1994). However, the discovery of microsatellite sequences in chloro-
plast DNA has provided a very useful marker (Provan et al. 2001) (see Section 4.2.1). The
pattern of inheritance of these cytoplasmic molecules is variable in plants. For example,
mtDNA is generally maternally inherited in plants but is paternally inherited in many
conifers. There is also no recombination for mitochondrial and chloroplast molecules in
many plant species. McCauley et al. (2005) found primarily maternal inheritance (9% of all
individuals) in Silene vulgaris, a gynodioecious plant, and that heteroplasmy occurred in
over 20% of all individuals.

4.1.1 Restriction endonucleases and RFLPs

The discovery of restriction endonucleases (restriction enzymes) in 1968 (Meselson and
Yuan 1968) marked the beginning of the era of genetic engineering (i.e., the cutting and
splicing together of DNA fragments from different chromosomes or organisms).
Restriction endonucleases are enzymes in bacteria that cleave foreign DNA, such as DNA

M2

M2

M2

M1

M1

M1

M1

M1

M1

M2

M2

Figure 4.1 Pedigree showing maternal inheritance of two mtDNA genotypes: M1 and M2. 
By convention in pedigrees, males are represented by squares and females are represented by
circles. Each progeny inherits the mtDNA of its mother.
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from intracellular viral pathogens (bacteriophages) harmful to the bacteria. The bacterial
DNA is protected from cleavage because it is methylated. The most commonly used
restriction endonuclease is EcoRI from the bacterium Escherichia coli. EcoRI cleaves a
specific six base sequence: GAATTC (and the reverse compliment CTTAAG). The cleav-
age is uneven, such that each strand is left with an overhang of AATT as follows:

5′-XXXXXXXXXGAATTCXXXXXXX-3′
3′-XXXXXXXXXCTTAAGXXXXXXX-5′

U
T

5′-XXXXXXXXXG AATTCXXXXXXX-3′
3′-XXXXXXXXXCTTAA  GXXXXXXX-5′

where the overhang is in bold and the Xs represent the sequence flanking the restriction
site sequence.

How can we use restriction enzymes to detect DNA sequence polymorphisms? If 
we cut a DNA sequence with a restriction enzyme, some individuals will have only one
restriction site, while others might have two or three. A circular DNA molecule (such as
mtDNA) with one restriction site will yield one linear DNA fragment after cleavage
(Figure 4.2). If two cleavage sites exist, then two linear DNA fragments are produced 
from the cleavage. We can visualize the number of fragments using gel electrophoresis to
separate them by length; short fragments migrate faster than long ones (Figure 4.2).

This is the basis of the restriction fragment length polymorphism (RFLP) technique
for detecting DNA polymorphisms. Restriction site polymorphisms are usually generated
by a single nucleotide substitution in the restriction site (e.g., from GAATTC to

Lane 1
Type A

Lane 2
Type B

16,000 bp

11,500 bp

4,500 bp

A B

Figure 4.2 Hypothetical examination of sequence differences in mtDNA revealed by
restriction enzyme analysis. Type A has only one cleavage site, which produces a single 
linear fragment of 16,000 base pairs; type B has two cleavage sites, which produce two linear
fragments of 11,500 and 4,500 base pairs. Electrophoresis of the digested products results in
the pattern shown. The DNA fragments move in the direction indicated by the arrow, and 
the smaller fragments migrate faster.
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GATTTC). This causes the loss of the restriction site in the individual because the enzyme
will no longer cleave the individual’s DNA. Thus a restriction site polymorphism is
detectable as an RFLP following digestion of the molecule with a restriction enzyme and
gel electrophoresis.

Each restriction enzyme cuts a different specific DNA sequence (usually four or six base
pairs in length). For example, Taq1 cuts at TCGA. More than 400 different enzymes are
commercially available. Thus we can easily study polymorphism across an mtDNA
molecule by using a large number of different restriction enzymes.

Figure 4.3 shows RFLP variation in the mtDNA molecule of two subspecies of cutthroat
trout digested by two restriction enzymes (BglI and BglII) that each recognize six base pair
sequences. There are three cut sites for BglI in the W (westslope cutthroat trout) haplo-
type; there is an additional cut site in the Y (Yellowstone cutthroat trout) haplotype so that
the largest fragment in the W haplotype is cut into two smaller pieces. The Y haplotype
also has an additional cut site for BglII resulting in one more fragment than in the W haplo-
type. RFLP analysis is also useful for studies of nuclear genes following PCR amplification
of a gene fragment (see below).

4.1.2 Polymerase chain reaction

Detection and screening of mtDNA polymorphism is most often conducted using poly-
merase chain reaction (PCR) (Box 4.1), followed by restriction enzyme analysis or by
directly sequencing of the PCR product. For conducting PCR, “universal” primers are
available for both mtDNA (Kocher et al. 1989) and chloroplast DNA (Taberlet et al. 1991).
These primers will amplify a specific sequence (e.g., the cytochrome b gene) across a wide
range of taxa. This universality has facilitated the accumulation of many DNA studies
since the 1980s. The restriction enzyme approach involves cutting the PCR fragment 
into smaller pieces and visualizing the fragments by gel electrophoresis (see above).
Sequencing is becoming more common as the process becomes less expensive and auto-
mated (see Section 4.5). For example, the complete mtDNA sequences for 53 humans
from diverse origins have been published (e.g., Ingman et al. 2000).

W1 W2  Y1  Y2 W1 W2  Y1  Y2 

S

W W W WY Y Y Y

BgI I BgI II S

Figure 4.3 RFLP of mtDNA in cutthroat trout digested by two restriction enzymes (BglI and
BglII). The W lanes are two (W1 and W2) westslope cutthroat trout and the Y lanes are two
(Y1 and Y2) Yellowstone cutthroat trout. The S lanes are size standards. From Forbes (1990).
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Box 4.1 Polymerase chain reaction

The polymerase chain reaction (PCR) can generate millions of copies of a specific
target DNA sequence in about 3 hours, even when starting from small DNA
quantities (e.g., one target DNA molecule!). Millions of copies are necessary 
to facilitate analysis of DNA sequence variation. PCR involves the following
three steps conducted in a small (0.5 ml) plastic tube in a thermocycling
machine: (1) denature (make single-stranded) a DNA sample from an individual

Extend primers with
Taq polymeraseq

Primers extended

Cycle 1:
2 copies

Cycle 2:
4 copies

Cycle 3:
8 copies

Targeted DNA sequence

Denature and
anneal primers

Primers

Figure 4.4 The main steps of the polymerase chain reaction (PCR): denaturing of 
the double-stranded template DNA, annealing of primers flanking the target sequence,
and extension from each primer by Taq polymerase to add nucleotides across the 
target sequence and generate a double-stranded DNA molecule.
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by heating the DNA to 95°C; (2) cool the sample to about 60°C to allow hybrid-
ization (i.e., annealing) of a primer (i.e., a DNA fragment of approximately 20 bp)
to each flanking region of the target sequence; and (3) reheat slightly (72°C) 
to facilitate extension of the single strand into a double-stranded DNA by the
enzyme Taq polymerase (Figure 4.4). These three steps are repeated 30–40
times until millions of copies result.

PCR was invented by Mullis in 1988. He used a DNA polymerase enzyme
from the heat-stable organism Thermus aquaticus (thus the name “Taq”). This
bacterium was originally obtained from hot springs of Yellowstone National Park
in Montana and Wyoming. PCR has revolutionized modern biology and has
widespread applications in the areas of genomics, population genetics, forensics,
medical diagnostics, and gene expression analysis. Mullis was awarded the Nobel
Prize in Chemistry in 1993 for his contributions to the development of PCR.

4.2 Single copy nuclear loci

4.2.1 Microsatellites

Microsatellites have become the most widely used DNA marker in population genetics for
genome mapping, molecular ecology, and conservation studies. Microsatellite DNA markers
were first discovered in the 1980s (Schlötterer 1998). They are also called VNTRs (variable
number of tandem repeats) or SSRs (simple sequence repeats) and consist of tandem repeats
of a short sequence motif of one to six nucleotides (e.g., cgtcgtcgtcgtcgt, which can be rep-
resented by (cgt)n where n = 5). The number of repeats at a polymorphic locus ranges
from approximately five to 100. PCR primers are designed to hybridize to the conserved
DNA sequences flanking the variable repeat units (Example 4.1). Microsatellite PCR prod-
ucts are generally between 75 and 300 base pairs (bp) long, depending on the locus.
Microsatellites are usually analyzed using PCR followed by gel electrophoresis (Figure 4.5).

1 2 3 4 5 6 7 8 9

Figure 4.5 Microsatellite variation in the hairy-nosed wombat. The sub-bands or stutter
bands occur as a result of “slippage” during PCR amplification. Allele sizes for each individual
are: 1 (187/191), 2 (187/189), 3 (187/199), 4 (187/189), 5 (195/199), 6 (191/191), 7 (191/191), 
8 (183/191), and 9 (183/183). From Taylor et al. (1994).
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Example 4.1

Modified GenBank sequence data base entry for the Lla71CA locus in the hairy-
nosed wombat (Figure 4.5). The primers in the sequence at the bottom have been
capitalized and the dinucelotide repeat region (CA) is shown in bold. The “n”s in
the sequence are base pairs that could not be resolved in the sequencing process.

1: AF185107. Lasiorhinus latif

LOCUS AF185107 310 bp DNA linear MAM 01-JAN-2000
DEFINITION Lasiorhinus latifrons microsatellite Lla71CA sequence.

AUTHORS Beheregeray, L. B., Sunnucks, P., Alpers, D. L. and 
Taylor, A. C.

TITLE Microsatellite loci for the hairy-nosed wombats (Lasiorhinus
krefftii and Lasiorhinus latifrons)

JOURNAL Unpublished
AUTHORS Taylor, A. C.
JOURNAL Submitted (31-AUG-1999) Biological Sciences, Monash 

University, Wellington Rd., Clayton, VIC 3168, Australia
FEATURES Location/Qualifiers

source 1..310
repeat_region 109..154

/rpt_type=tandem
/rpt_unit=ca

BASE COUNT 99 a 94 c 42 g 68 t 7 others
ORIGIN
1 gngctcggnn cccctggatc acagaatcta aatctgagca tctcagAATG AGAAGGTATC

61 TCCAGGataa ccannnccct ctacctaaac aagaattcca ctcccctaca cacacacaca

121 cacacacaca cacacacaca cacacacaca cacactcaat agacccaaca agtggaatgt

181 cacacagcct ttggggnagg tgggggatat acttCCTATG ACATAGCCTA TACCacttct

241 gaatagtaac tttcctatcc ataaatctaa aacctacttc ccactctttt ctgctagttc

301 tataatctgg

The main advantage of these markers is that they are usually highly polymorphic, even
in small populations and endangered species (e.g., polar bears or cheetahs). This high poly-
morphism results from a high mutation rate (see Chapter 12). A microsatellite mutation
usually results in a change in the number of repeats (usually an increase or decrease of one
repeat unit). The rate of mutation is typically around one mutation in every 1,000 or
10,000 meioses (10−3 or 10−4 per generation).

Primer pairs developed in one species can often be used in closely related species
because primer sites are generally highly conserved. For example, about 50% of primers
designed from cattle will work in wild sheep and goats that diverged approximately 20 mil-
lion years ago (Maudet et al. 2001). This is an enormous advantage because over 3,500
microsatellites have been mapped in cattle; thus cattle primers can be tested to find 
polymorphic markers across the genome of any ungulate, without the time and cost of
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cloning and mapping for each new species. Similar transfer of makers is possible for wild
canids, felids, primates, salmonids, and galliform birds because genome maps are available
with microsatellites.

Microsatellite primer sets for thousands of species can be found at several websites.
Molecular Ecology Notes has a website that contains all primers published in that journal 
plus many others. The United States National Center for Biotechnology Information
(NCBI) maintains one of the primary websites for sequence information: http://
www.ncbi.nih.gov/. This resource was established in 1988 (Wheeler et al. 2000). For 
example, Example 4.1 shows the GenBank sequence database entry for the microsatellite
locus shown in Figure 4.5.

Chloroplast microsatellites

An unusual type of microsatellite has been found to occur in the genome of chloroplasts
(Provan et al. 2001). Chloroplast microsatellites are usually mononucleotide repeats and
often have less than 15 repeats (Figure 4.6). These markers have proved to be exceptionally
useful in the study of a wide variety of plants. Furthermore, the uniparental inheritance of
chloroplasts (usually maternal in angiosperms and paternal in gymnosperms) make them
useful for distinguishing the relative contributions of seed and pollen flow to the genetic
structure of natural populations by comparing nuclear and chloroplast markers.

4.2.2 PCRs of protein coding loci

PCR primers can be designed to detect genetic variation at protein coding loci that include
protein coding regions (exons) which often contain noncoding regions (introns). Coding
regions tend to be much less variable than noncoding regions. Therefore, PCR primers
can be designed using exon sequences that will produce a PCR product that consists 

Population 1

127 bp

1 2 3 1 2 3

125 bp

1_1
1_2
1_3
2_1
2_2
2_3

GACCTCCTTT TTTTTTTTTT ATTTTATATC

GACCTCCTTT TTTTTTTTTT ATTTTATATC

GACCTCCTTT TTTTTTTTTT ATTTTATATC

GACCTCCTTT TTTTTTT... ATTTTATATC

GACCTCCTTT TTTTTTTTT. ATTTTATATC

GACCTCCTTT TTTTTTT... ATTTTATATC

126 bp

124 bp

Population 2

Figure 4.6 Chloroplast microsatellite polymorphism in six individuals of the
leguminous tree Caesalpinia echinata from two populations (from Provan et al. 2001). The
three individuals from Population 1 all have the 127 allele; the sequence of these individuals,
shown below the gel, indicates that they have 13 copies of the (T) mononucleotide repeat.
Two different alleles are present in the three individuals from Population 2.
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primarily of the more variable introns. Figure 4.7 shows a polymorphism in an intron from
a growth hormone gene (GH-1) in coho salmon. There are three alleles at this locus that
differ by the number of copies of a 31 bp repeat (Forbes et al. 1994). The repeat occurs 11
times in the *a allele, nine times in *b, and eight times in *c.

Comparison of progeny and parental genotypes is the only direct way to confirm the
genetic basis of polymorphisms such as seen in Figure 4.7. For example, Figure 4.8 shows

Figure 4.7 Length polymorphism in an intron for a growth hormone gene (GH-1) in coho
salmon (Oncorhynchus kisutch). The lanes at the ends are size standards. There are three alleles
at this locus that differ by the number of copies of a 31-base pair repeat. The repeat occurs 
11 times in the *a allele, 9 times in *b, and 8 in *c. The genotypes from left to right are a/a, a/a,
a/a, a/a, b/b, b/b, a/b, a/b, c/c, a/c, a/c, a/c, and a/c. From S. H. Forbes (unpublished data).

1 2 3 4 5 6 7 8 9 10

Figure 4.8 Inheritance of a length polymorphism in an intron for a growth hormone gene
(GH-2) in pink salmon. The first lane on the left is a size standard and the next is the mother of
a family of gynogenetic haploid progeny from a single female produced by fertilizing the eggs
with sperm that had been irradiated so that the male genome was not incorporated into the
developing embryo (Spruell et al. 1999a). Progeny 1, 3, 4, 6, 8, and 10 inherited the smaller
allele (GH-2*C446) and progeny 2, 5, 7, and 9 inherited the GH-2*C527 allele.
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the of inheritance of a polymorphism in intron C of the growth hormone gene (GH-2) in
pink salmon. All of the individuals on this gel are gynogenetic haploid progeny produced
by fertilizing the eggs from a single female with sperm that had been irradiated so that the
male genome was not incorporated into the developing embryo (Spruell et al. 1999a). The
mother of this family was a heterozygote for two alleles (GH-2*C446 and GH-2*C527) that
differ in size by 81 bp. Four of the offspring inherited the *C527 allele and six inherited the
alternative smaller allele.

4.2.3 Single nucleotide polymorphisms

Single base polymorphisms (SNPs) are the most abundant polymorphism in the genome,
with one occurring about every 500 bp in many wild animal populations (Brumfield et al.
2003; Morin et al. 2004). For example, a G and a C might exist in different individuals at a
particular nucleotide position within a population (or within a heterozygous individual).
Because the mutation rate at a single base pair is low (about 10−8 changes per nucleotide
per generation), SNPs usually consist of only two alleles. Thus SNPs are usually biallelic
markers. Transitions are a replacement of a purine with a purine (G ↔ A) or a pyrimidine
with a pyrimidine (C ↔ T). Transversions are a replacement of a purine with a pyrimidine
(A or G to C or T) or vice versa (C or T to A or G). Even though there are twice as many
possible transversions as transitions, SNPs in most species tend to be transitions. This is
because of the nature of the mutation process (transitions are more common than
transversions) and that transversions in coding regions are more likely to cause an amino
acid substitution than transitions.

SNPs have great potential for many applications in describing genetic variation in nat-
ural populations. For example, Akey et al. (2002) described allele frequencies at over 26,000
SNPs in three human populations! Two randomly chosen humans will differ at up to sev-
eral million single nucleotide sites over their entire genomes. SNPs may be even more
common in other species because humans arose recently in evolutionary terms from rel-
atively few founders and thus have somewhat limited genome variation.

SNPs could are likely to replace microsatellites as the marker of choice for many applica-
tions in conservation genetics. They should be especially useful for studies involving 
partially degraded DNA (from noninvasive and ancient DNA samples) because they are
short and thus can be PCR amplified from DNA fragments of less than 50 bases (PCR
primers flanking SNPs must each be about 20 bases long). Theoretical population geneti-
cists have begun developing statistical approaches for analyzing the masses of SNP data
that are expected to emerge in the next few years (e.g., Kuhner et al. 2000). The time it
takes until SNPs become popular in conservation depends on the speed with which new
technologies become available to permit rapid and inexpensive screening of SNPs in many
species. A recent paper (Smith et al. 2005a) describes genetic variation at 10 SNP loci in
over 1,000 Chinook salmon from throughout the rim of the north Pacific Ocean (Figure 4.9).

Ascertainment bias is a crucial issue in many applications of SNPs (Morin et al. 2004).
Ascertainment bias results from the selection of loci from an unrepresentative sample of
individuals, or using a particular method, which yields loci that are not representative of
the spectrum of allele frequencies in a population. For example, if few individuals are used
for SNP discovery (e.g., via DNA sequencing), then SNP loci with rare alleles will be
underrepresented, and future genotyping studies using those SNPs will reveal a (false)
deficit of rare alleles (e.g., false bottleneck signature). Ascertainment bias has the potential
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to introduce a systematic bias in estimates of variation within and among populations.
The protocol used to identify SNPs for a study must be recorded in detail, including the
number and origin of individuals screened, to enable ascertainment bias to be assessed and
potentially corrected.

4.3 Multilocus techniques

Multilocus techniques assay many genome locations simultaneously with a single PCR
reaction (Bruford et al. 1998). The advantage of these techniques is that many loci can be
examined readily with little or no information about sequences from the genome. The
major disadvantages are that it is generally difficult to associate individual bands with par-
ticular loci, and heterozygotes can often not be distinguished from one of the homozygous
classes. Thus we usually cannot resolve between a heterozygote (with one band) and the
homozygote “dominant” type (also with one band, but two copies of it). Consequently, we
cannot compute individual (observed) heterozygosity to test for Hardy–Weinberg propor-
tions. In addition, these markers are biallelic and thus provide less information per locus
than the more polymorphic microsatellites. It can require 5–10 times more of these loci to
provide the same information as multiple allelic microsatellite loci (e.g., Waits et al. 2001).
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Figure 4.9 SNP genotyping assay in Chinook salmon (locus OtspP450). Each dot represents 
an individual fish whose genotype is determined by its position with respect to the two axes,
which indicate the amount of each allele-specific probe (adenine [A] or thymine [T]) cleaved
during the course of the assay. The ellipses indicate clusters of single genotypes. The Xs
represent unreadable samples (due to air bubbles, failed PCR, etc.). From Smith et al. 
(2005).
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However, more loci (10–25) can be analyzed per PCR and per gel lane using some of these
techniques, compared to microsatellites (5–10 loci per lane using fluorescent labels).

4.3.1 Minisatellites

Minisatellites are tandem repeats of a sequence motif that is approximately 20 to several
hundred nucleotides long – much longer than microsatellite motifs. Minisatellites were first
discovered by Jefferys et al. in 1985, and used for DNA “fingerprinting” in human forensics
cases. They were soon after used in wildlife populations, for example, to study paternity
and detect extra-pair copulations in birds thought to be monogamous. For example, Fig-
ure 4.10 shows a minisatellite analysis of the endangered kakapo, a highly endangered
flightless parrot (see Example 18.1) that is endemic to New Zealand.
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*

Potential fathers
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Figure 4.10 Minisatellite gel of kakapo from New Zealand. Two comparisons are shown 
on this gel: (A) paternity analysis showing the mother, her chicks, and all potential fathers;
examples of bands not present in the mother are marked with an arrow; (B) comparison of
minisatellite profiles for unrelated males from Stewart Island and a single bird, Richard Henry
(asterisked), captured on the South Island. These profiles demonstrate substantial genetic
divergence between the Fiordland and Stewart Island populations. Males from Stewart Island
share an average of 69% of their bands while the Fiordland bird shares an average of 48% of its
bands with males from Stewart Island. From Miller et al. (2003).
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Minisatellites are generally highly polymorphic and thus are most useful for interindi-
vidual studies such as parentage analysis and individual identification (e.g., DNA “finger-
printing”). Alleles are identified by the number of tandem repeats of the sequence motif.
Disadvantages include a difficulty determining allelic relationships (identifying alleles that
belong to one locus). This can be difficult because most minisatellite typing systems reveal
bands (alleles) from many loci that are all visualized together in one gel lane. Also, the
repeat motifs are long, so they cannot be studied in samples of partially degraded DNA
generally containing small fragments of only 100–300 bp.

4.3.2 RAPDs

The RAPD (randomly amplified polymorphic DNA) method is a fingerprinting technique
involving PCR amplification using an arbitrary primer sequence. Each PCR contains only
one primer of about 10 bp long. Thus the primer acts as both the forward and reverse
primer. Individual primers hybridize to hundreds of sites in the genome. However
amplification occurs only between sites located less than about 2 kb apart (i.e., the max-
imum size of a PCR product). PCR conditions (e.g., annealing temperature) are usually
chosen such that 10–20 fragments are amplified per primer. Thus relatively few primers
can produce many fragments and screen many loci throughout the genome.

RAPDs were first described in late 1990 by two independent teams (Welsh and
McClelland 1990; Williams et al. 1990). One team coined a different name (AP-PCR or
arbitrary primed PCR), which has not been used nearly as much as the simpler acronym
RAPD. RAPD kits are available from commercial companies. They can be used to find
polymorphic markers for any species, even if no sequence information exists. The main
drawback is it is often difficult to achieve reproducible results. Some journals will no
longer publish studies using RAPDs because of these problems with repeatability.

4.3.3 AFLPs

The AFLP technique uses PCR to generate DNA fingerprints (i.e., multilocus band
profiles). These “fingerprints” are generated by selective PCR amplification of DNA frag-
ments produced by cleaving genomic DNA. This technique was named AFLP because it
resembles the RFLP technique (Vos et al. 1995). However, these authors said that AFLP is
not an acronym for amplified fragment length polymorphism because it does not detect
length polymorphisms. The main advantage of AFLP is that many polymorphic markers
can be developed quickly for most species even if no sequence information exists for the
species. In addition, the markers generally provide a broad sampling of the genome. AFLP
is faster, less labor intensive, and provides more information than other commonly used
techniques. Furthermore, AFLPs are more reproducible than RAPDs. The AFLP tech-
nique can be used to develop diagnostic markers for different animal breeds, ecotypes, or
sexes (Griffiths and Orr 1999).

4.3.4 PINEs and ISSRs

There are a variety of small nuclear elements that occur thousands of times throughout
the genomes of most species (Avise 2004). For example, a single 300 bp repetitive element
(Alu) occurs more than 500,000 times in the human genome, and constitutes an amazing
5–6% of the human genome! It is possible to design PCR primers using the sequences of
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repetitive elements to generate multiple DNA fragments from a single PCR (Nelson et al.
1989; Buntjer and Lenstra 1998). For example, PINEs (paired interspersed nuclear ele-
ments) use primers identical to one end of the element that are designed so that they initi-
ate DNA replication away from the end of the element, progressing into the surrounding
genomic DNA (Spruell et al. 1999a). This procedure results in a number of fragments from
a single PCR reaction that can be used to detect genetic variation (Figure 4.11). PINE frag-
ments are more reproducible and reliable than RAPD fragments because longer primers
can be used, and they are easier to use than AFLPs because they require only a single PCR
without any preparatory steps. These markers have been especially valuable at detecting
hybridization between species (Spruell et al. 2001) and for identifying species (Buntjer and
Lenstra 1998) (see Chapter 20).

Inter-simple sequence repeat (ISSR) markers use a similar procedure to generate a large
number of DNA fragments from a single PCR. However, rather than using the sequences
of repetitive elements for PCR primers, ISSR primers are based upon the simple sequence
repeats found in microsatellites.

4.4 Sex-linked markers

Genetic markers in sex determining regions can be especially valuable in understanding
genetic variation in natural populations. For example, markers that are specific to sex

bull trout F1 hybrids brook trout
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100
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Figure 4.11 PINE fragments used to identify hybrids between bull and brook trout.
Fragments found in bull trout but not brook trout are indicated by arrows along the left side
of the gel. Fragments found in brook trout but not bull trout are indicated by arrows along 
the right side of the gel. Sizes of fragments of known length are given in base pairs on the
right. From Spruell et al. (2001).

CATC04  28/05/2007  05:57PM  Page 77



78 PART I INTRODUCTION

determining the Y or W chromosomes can be used to identify the gender of individuals in
species in which it is difficult to identify gender phenotypically, as in many bird species
(Ellegren 2000b). In addition, Y chromosome markers, like mtDNA, are especially useful
for phylogenetic reconstruction because Y chromosome DNA is haploid and nonrecom-
bining in mammals.

Mammals can be sexed using PCR amplification of Y chromosome fragments, or by 
co-amplification of a homologous sequence on both the Y and X that are subsequently dis-
criminated by either size, restriction enzyme cleavage of diagnostic sites, or by sequencing
(Fernando and Melnick 2001). Similar molecular sexing techniques exist for birds and
other taxa (e.g., amphibians). The W chromosome of birds has conserved sequences not
found on the Z, allowing nearly universal avian sexing PCR techniques (e.g., Huynen et al.
2002). Some plants also have sex-linked sequences (Korpelainen 2002).

4.5 DNA sequences

The first application of DNA sequencing to the study of genetic variation in natural popu-
lations was by Kreitman (1983) who published the DNA sequences of 11 alleles at the alco-
hol dehyrogenase locus from Drosophila melanogaster. Initial studies of DNA variation were
technically involved and time consuming so that it was expensive and difficult to sample
large numbers of individuals from natural populations. However, the advent of the poly-
merase chain reaction in the mid-1980s removed these obstacles.

DNA sequencing methods were first developed independently by Walter Gilbert and
Frederick Sanger. Gilbert and Sanger, along with Paul Berg, were awarded the Nobel Prize
in Chemistry in 1980. Sanger and his colleagues used their own sequencing method to
determine the complete nucleotide sequence of the bacteriophage fX174, the first genome
ever completely sequenced. The worldwide genome sequencing capacity in the year 2001
was 2,000 bp per second.

4.6 Additional techniques and the future

There is expanding potential for genetics to contribute to conservation, thanks to techno-
logical advances in molecular biology allowing automated screening of huge numbers of
DNA markers more quickly and cheaply in a growing number of species. Along with new
approaches for DNA typing (e.g., DNA arrays) new disciplines are emerging such as
genomics and population genomics. We briefly discuss below aspects of genomics and
recent developments likely to aid conservation genetics in the very near future.

4.6.1 Genomics

Genomics can be defined as investigations into the structure and function of very large
numbers of genes. Structural genomics includes the genetic mapping, physical mapping,
and sequencing of entire genomes or chromosomes. Functional genomics investigates the
function of DNA sequences – for example, the effect of a nucleotide substitution on fitness
or disease susceptibility. Comparative genomics assesses the nature and significance of 
differences between genomes by determining the relationship between genotype and 
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phenotype through comparing different genomes and morphological and physiological
attributes (O’Brien et al. 1999). Comparative genomics allows reconstruction of relation-
ships among taxa and an understanding of molecular and genome evolution. It is also a
powerful way to build new genome maps in previously unstudied (but related) species
(Lyons et al. 1997).

“Population genomics” refers to the study of many DNA markers (e.g., mapped 
markers and coding genes) in many individuals from different populations (Luikart et al.
2003). The two main advantages of studying many loci are increased power for most stat-
istical analyses and improved genome coverage, allowing less biased inference and the
identification of certain loci (or nucleotides or chromosome regions) that behave differ-
ently and that thus could be under selection and may be important for fitness, mate choice,
local adaptation, or speciation (see Section 9.6.3).

Informative population genomic studies require: (1) the development of genome
resources such as numerous DNA markers (preferably mapped) or sequences from gene
fragments (e.g., ESTs or expressed sequence tags); and (2) large-scale genotyping capabil-
ities facilitated by PCR multiplexing or rapid genotyping assays.

4.6.2 More informative molecular markers

The availability of molecular genetic markers has clearly been a major driving force of the
expanding role that genetics plays in conservation. The number and kind of available
molecular markers influences our ability to address questions crucial to conservation. It is
difficult to predict which kinds of markers and analysis systems will be adopted in the near
future to improve studies in conservation genetics. But trends will likely follow the trends
in human genetics and model species, with perhaps a 5–10-year lag time (Schlötterer
2004). Thus, markers in or near genes, linked markers, SNPs, and DNA sequences will be
increasing used.

We predict that major advances in the “quality” of marker data over the next few years
will include: (1) markers in or near genes of known and important function; and (2) sets of
physically linked markers with known interlocus map distances. Markers in genes will
allow us to address questions concerning the genetic basis of adaptation and speciation, as
well as to understand the importance of locus-specific versus genome-wide effects. The
availability of sets of linked markers will allow the use of linkage disequilibrium informa-
tion to improve estimates of population parameters such as the magnitude and date of
population growth events, the amount and date of admixture or hybridization events, and
to conduct individual-based assignment tests, for example. The development of markers
in genes and linked markers will be facilitated by the discovery and sequencing of
expressed sequence tags (ESTs).

Expressed sequence tags are useful for developing informative DNA markers for con-
servation genetic studies, because they are in coding genes. ESTs are unique DNA
sequences derived from a cDNA library (and thus from a transcribed sequence). ESTs are
discovered by extracting mRNA from a tissue and using reverse transcriptase PCR. The
PCR products (cDNAs) are then sequenced. The sequence can be used in a BLAST search
to determine if the gene (or a similar gene) from which the sequence originates is known
and annotated. Once ESTs are available, primers can be designed to sequence them and
identify polymorphic markers (e.g., SNPs or microsatellites; Vigouroux et al. 2002).
Conserved primers (in exons) can be developed to amplify genes among divergent taxa.
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Huge EST data bases are being generated for species of economic and ecological import-
ance (e.g., galliform birds, salmonid fish, many mammals, and crop plants). EST libraries
and data bases also can be developed for nonmodel organisms.

4.6.3 Improved genotyping technologies

One can predict that in the future data sets will become larger with more loci, individuals,
and populations. The principal benefits from larger data sets will be more accurate and
precise estimates of population parameters. Larger data sets will become more common
thanks to advances such as automation and high throughput technologies, including PCR
multiplexing, and genotyping without gel electrophoresis. Examples of automation and
high throughput are the use of pipetting robots and capillary sequencers with faster run
times.

The time and costs of producing large informative data sets can be greatly reduced 
by multiplex PCR. Multiplexing is the co-PCR amplification of more than one locus in 
a single PCR tube by using primer pairs from more than one locus. In addition to PCR
multiplexing, laboratory time and cost can be reduced by the elimination of post-PCR
handling of PCR products – i.e., the elimination of gel electrophoresis. Another approach
to achieve high throughput (and thus reduce cost per locus) is to conduct numerous 
analyses in parallel – for example by using DNA chips or microarroays (see Section 4.6.4)
to simultaneously assay hundreds or thousands of loci.

Reviewing the enormous and growing number of approaches for multiplexing and for
rapid genotyping is beyond the scope of this book. We suggest readers search the recent 
literature and see review papers (e.g., Syvanen 2001), most of which relate to SNP geno-
typing because SNPs are highly amenable to automated analysis (Morin et al. 2004). In the
more distant future, perhaps in 5–10 years, DNA sequencing will likely become auto-
mated and cheap enough to become widely used to produce large data sets with multiple
loci and for numerous individuals.

4.6.4 DNA arrays

DNA arrays generally consist of thousands of DNA fragments (20–25 bases) bound in a
grid pattern on a small glass slide or nylon filter paper the size of a credit card. Arrays are
used most often to detect gene expression (i.e., the production of mRNA). Gene expres-
sion studies allow us to identify genes associated with adaptations, e.g., to environmental
change or disease pathogens. Recently, arrays also have been used for genotyping thou-
sands of SNPs simultaneously ( Jaccoud et al. 2001).

To construct a DNA array, DNA fragments are spotted single-stranded and fixed to a
surface such as a glass slide. Expression analysis and genotyping are based on hybridization
with a sample of denatured genomic DNA that is tagged with a radioactive or fluorescent
label. At locations on the array where hybridization occurs, the labeled sample DNA will
be detectable by a scanner. The output consists of a list of hybridization events, indicating
the presence or the relative abundance of DNA sequences in the sample.

Robot technology is used to prepare most arrays by spotting the DNA fragments. For
macroarrays, the DNA spot size is larger allowing only hundreds instead of thousands of
spots of DNA per filter. Some arrays are prepared using a lithographic process and are
called biochips or DNA chips. Even more DNA fragments can be put on chips than on
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arrays. Other types of arrays exist, e.g., for detecting gene expression. These arrays might
contain DNA fragments of 500–5,000 bases in length.

4.7 Genetic variation in natural populations

The multiplicity of techniques presented in this chapter makes it possible to detect and
study genetic variation in any species of choice. Some genetic variation has been dis-
covered in virtually every species that has been studied. The Wollemi pine is a fascinating
exception to this rule (Example 4.2).

As we mentioned at the beginning of this chapter, there is no single “best” technique to
study variation in natural populations. The most appropriate technique to be used in a par-
ticular study depends on the question that is being asked. Generally, the relative amount of
genetic variation detected by different techniques within a population or species is concord-
ant. It is often informative to use more than one kind of marker. For example, using both
mtDNA and nuclear markers allows assessment of female- versus male-mediated gene
flow (see Guest Box 4; Section 9.5).

Substantial differences in the amount of genetic variation can occur even between 
different populations within the same species. From a conservation perspective, such
intraspecific differences are more meaningful than differences between species because
they may indicate recent reductions in genetic variation caused by human actions.

Example 4.2 The Wollemi pine: coming soon to a garden near you?

The discovery of this tree in 1994 has been described as the botanical find of the
century. At the time of discovery, the Wollemi pine was thought to have been
extinct for over 100 million years; there are no other extant species in this genus
(Jones et al. 1995). There are currently less than 100 individuals known to exist in
a “secret” and inaccessible canyon in Wollemi National Park, 150 km west of
Sydney, Australia (Hogbin et al. 2000).

An initial study of 12 allozyme loci and 800 AFLP fragments failed to reveal any
genetic variation (Hogbin et al. 2000). Recent study of 20 microsatellite loci also
failed to detect any genetic variation in this species (Peakall et al. 2003). The
exceptionally low genetic variation in this species combined with its known sus-
ceptibility to exotic fungal pathogens provides strong justification for current 
policies of strict control of access and the secrecy of their location.

The Wollemi pine reproduces both by sexual reproduction and asexual coppic-
ing in which additional stems grow from the base of the tree. Some individual trees
are more than 500 years old, and there are indications that coppicing can result in
the longevity of a plant greatly exceeding the age of individual trunks (Peakall et
al. 2003). It is possible that genets are thousands of years old.

There are currently plans to make Wollemi pine available as a horticultural plant
in 2005 or 2006. The plant is distinct in appearance and somewhat resembles its
close relative, the Norfolk Island pine, which is a popular ornamental tree through-
out the world.

CATC04  28/05/2007  05:57PM  Page 81



82 PART I INTRODUCTION

Table 4.1 Summary of genetic variation in four samples of brown bears from North America.
The allozyme (34 loci) data are from K. L. Knudsen et al. (unpublished data); the microsatellite
(eight loci) and mtDNA data are from Waits et al. (1998). The allozyme samples for
Alaska/Canada are from the Western Brooks Range in Alaska, and the microsatellite and
mtDNA samples for this sample are from Kluane National Park, Canada. He is the mean
expected heterozygosity (see Section 3.3), A is the average number of alleles observed, and h is
gene diversity. h is computationally equivalent to He, but is termed gene diversity because
mtDNA is haploid so that individuals are not heterozygous (Nei 1987, p. 177).

Allozymes Microsatellites mtDNA

Sample He § He § h §

Alaska/Canada 0.032 1.2 0.763 7.5 0.689 5
Kodiak Island 0.000 1.0 0.265 2.1 0.000 1
NCDE 0.014 1.1 0.702 6.8 0.611 5
YE 0.008 1.1 0.554 4.4 0.240 3

NCDE, Northern Continental Divide Ecosystem (including Glacier National Park); YE, Yellowstone Ecosystem
(including Yellowstone National Park).

Table 4.1 shows differences in the amount of genetic variation found between different
population samples of brown bears from North America as detected with allozymes,
microsatellites, and mtDNA. The same relative pattern of variation is apparent at all three
marker types. Not surprisingly, the isolated population of bears on Kodiak Island has rel-
atively little genetic variation. There are approximately 3,000 bears on this island that have
been isolated for approximately some 5,000–10,000 years. More surprising is the substan-
tially lower genetic variation in bears from the Yellowstone ecosystem in comparison to
their nearest neighboring population in the Northern Continental Divide Ecosystem. The
Yellowstone population has been isolated for nearly 100 years. As we will see later, this
reduction in genetic variation in YE bears may have important significance for the long-
term viability of this population (see Section 14.3.1).

Guest Box 4 Multiple markers uncover marine turtle behavior
Nancy N. FitzSimmons

Applications of genetic markers to the study of marine turtle populations have
allowed a phenomenal increase in our understanding of their migratory behavior
and the geographic scope of populations. Genetic studies have provided strong 
evidence that, in most species, nesting females display strong natal homing. This
results in regional breeding populations that have their own unique genetic struc-
ture (e.g., Meylan et al. 1990). Recently, genetic studies have been combined with
satellite tracking to study the behavior of juvenile turtles in pelagic environments
(Polovina et al. 2004). This has confirmed that in some species, juveniles traverse
back and forth across entire ocean basins before selecting resident feeding grounds,
often hundreds to thousands of kilometers from where they were born.
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Most studies have relied upon data from mtDNA, originally using restriction
digests of purified mtDNA, and, later, sequencing portions of the mtDNA, espe-
cially the control region (Bowen and Karl 1996). This reliance on mtDNA was
justified because much of the focus for conservation action involves the nesting
beach populations of females and it has been important to know the historical rela-
tionships and extent of gene flow among the nesting females.

What about the males? Because they rarely come ashore, studies of male marine
turtles have been limited as it requires considerably more effort to capture them at
feeding grounds or in the areas they congregate to mate. Genetic studies of males,
or studies using nuclear markers, provide a means to test whether males, like
females, display natal homing and the extent to which gene flow among popula-
tions is mediated by males.

For Australian nesting populations of green turtles, mtDNA data have iden-
tified seven breeding populations (Figure 4.12). These data confirm the operation
of natal homing in females, most of which share feeding grounds with turtles 
from other populations. To assess the occurrence of male-mediated gene flow, 
the same breeding populations were analyzed for genetic variation at nine 
nuclear microsatellite loci (FitzSimmons et al. 1997b; N. N. FitzSimmons et al.,
unpublished data). In most cases, estimates of nuclear gene flow were much

Figure 4.12 Breeding populations of green turtles in Australia. Shown are sample
locations for genetic studies from the southern Great Barrier Reef (sGBR; three
rookeries), Coral Sea, northern Great Barrier Reef (nGBR; two rookeries), Gulf of
Carpentaria (GoC; three rookeries), and Ashmore Reef, Sandy Island, and Northwest
Shelf (two rookeries). Overlapping feeding ground ranges are shown for the nGBR 
and sGBR breeding populations. Note that turtles from the sGBR that use the GoC 
or Torres Strait as feeding grounds must pass through a large congregation of nGBR
breeding turtles when en route to their natal sGBR locations.
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greater than expected based upon the mtDNA data; averaging 32 times greater
gene flow attributed to males than females. However, these populations did exhibit
significant genetic divergence, suggesting that natal homing also occurs in males.

It was also intriguing that estimates of gene flow from the nuclear markers did
not correlate with that of mtDNA. Did this mean that natal homing behavior in
males is influenced by geographic location? Alternatively, does geography
influence opportunities for gene flow between populations irrespective of homing
behavior? This was investigated by testing the degree of natal homing in males.
Tissue samples were collected from mating males at breeding congregations in 
the southern and northern Great Barrier Reef and the Gulf of Carpentaria
(FitzSimmons et al. 1997a). The mtDNA control region haplotypes were deter-
mined, and the frequencies for all males in each area were compared to those of the
breeding females in the same area. Any differences would indicate that the breed-
ing males, unlike the females, were not mating in their natal regions. In fact there
were no differences, suggesting that male-mediated gene flow likely occurs
through opportunistic matings between males and females from different popula-
tion while they are en route to their natal regions to breed.

In some comparisons between marine turtle populations in Australia, greater
structure has been observed using the microsatellite markers than with other
nuclear markers, possibly indicating a more recent separation of populations and
accumulation of novel mutations in these rapidly evolving markers. This is in sharp
contrast to other nuclear markers including anonymous single copy nuclear loci
(FitzSimmons et al. 1997b), and allozymes, which could not distinguish among
populations (Norman et al. 1994). Current research includes the development of
SNPs to help identify the origins of turtles at feeding grounds and those individuals
adversely affected by human activities.

Problems 4.1 and 4.2

The illustrations opposite show hypothetical electrophoretic gel patterns for three
microsatellite loci in an isolated population of snow leopards in Nepal. Each band
represents a different allele. The alleles differ in the number of repeats that they
contain. The number of repeats present in each allele is given to the right of each gel.

Individuals with two bands are heterozygotes, and those with a single band are
homozygotes. A biologist is trying to determine who is the father of five progeny
(P1 to P5 below) born to each of five females (F1 to F5 below); for example, P2 is the
progeny of F2). There are only 10 adult males in this population (M1 to M10 below).

Problem 4.1

Designate alleles on the basis of the number of repeats they possess. Write down
the genotype of each individual locus in the table provided below (e.g., 10/10, 5/8,
etc.) for each locus.
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Problem 4.2

Do a paternity exclusion analysis for each of the five progeny based on these
data. That is, try to identify the true father by eliminating potential fathers on the
basis of genotypic incompatibilities.

F1 P1 F2 P2 F3 P3 F4 P4 F5 P5 M1 M2 M3 M4 M5 M6 M7 M8 M9M10

uSAT-1
12
11
10

8

5

F1 P1 F2 P2 F3 P3 F4 P4 F5 P5 M1 M2 M3 M4 M5 M6 M7 M8 M9M10

uSAT-3

10

8

6

2

F1 P1 F2 P2 F3 P3 F4 P4 F5 P5 M1 M2 M3 M4 M5 M6 M7 M8 M9M10

uSAT-2
22
21

19
18
17
16
15
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No.

F1
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P4
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M1
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M10

uSAT-1 uSAT-2 uSAT-3
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For example, M1 cannot be the father of P1 based on genotypes at the uSAT-1
locus. The mother of P1 (female F1) was homozygous 10/10 at uSAT-1, and
therefore must have transmitted this allele to P1. P1 is 10/8, and therefore the 8
allele had to be transmitted by the father of P1. M1 does not carry the 8 allele and
therefore cannot be the father of P1.

If all males but one can be excluded, the remaining male must be the father.
Who is the father of each of the five progeny? Are there any progeny for which
more than one male is the potential father?

Problem 4.3

PCR null alleles are found at some microsatellite loci. These alleles have substitu-
tions at one or both of the primer sites so that they do not amplify during PCR.
Heterozygotes for a null allele and another allele appear to be homozygotes for
that allele. For example, individual 9 in Figure 4.5 could actually be a 183/null
heterozygote rather than a 183/183 homozygote. Assume that you can perform
experimental matings with hairy-nosed wombats and that all odd-numbered indi-
viduals are males and all even-numbered individuals are females. Design an
experimental mating using the individuals shown in Figure 4.5 that would allow
you to test if individual 9 is a 183/183 homozygote or a 183/null heterozygote. Be
sure to explain how you would use the progeny from the mating to determine if
individual 9 is a 183/183 homozygote or a 183/null heterozygote. How many
progeny would you have to examine to be sure of the genotype of individual 9?

Problem 4.4

Identify the father of the three chicks shown in Figure 4.10. Assume that the same
male fathered all three chicks. Note: some of the bands that are not identified as
being diagnostic in this figure may also provide useful information about paternity.

Problems 4.5 and 4.6

Assume that the following 1,020 bp are the DNA sequence for part of a rainbow
trout nuclear encoded growth hormone gene (GH-2) in two individuals that are
homozygous for different alleles. The top sequence is real while the bottom
sequence has been created for the purposes of these problems; these sequences
are identical except for the bases in Individual 2 that are in bold and upper case.
Do a hypothetical search for genetic variation. Assume that these 1,020 bp 
are the product of a PCR reaction. “Screen” these two individuals for RFLP by
digesting this product with the restriction enzyme HumfII that cuts DNA in the 
middle of the sequence 5′-AATT-3′. By convention, the sequence listed is the 
coding strand beginning with the “upstream” or 5′ end of the DNA. Note: an elec-
tronic version of these sequences that you can screen for “aatt” with your word
processor is available on the web page.
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INDIVIDUAL 1
1 gtcaagttac agggttgtgt ctgtctgtgt gactgagtgt aactttgttc attcattatg

61 tcctagacaa cagaggtttg tgtcgtctgt gttttgaccc tcatttgtca agtcatcgag

121 tacgtttttt gtttttagga gtcacctctt cccgaactca tggaaagatt catgattgat

181 ttgacgcatt atactgattg ttccatagtc acatacaaaa acaggtccca tcggcgagag

241 gtggtacatg gagaaaatct catgtttcct cctgttgata cattaaaaca tgtgttctcc

301 atctataaaa acagtggccc caaacaagcg gcaacatact gaaccgacca ccacactttc

361 aagtgaagta atcatccttg gcaattaaga gaaaaaaatg ggacaaggta aaccagcttt

421 tattttattt ttttaagtgg gaagtcagtg taccatttaa taccatttaa ctttaacatt

481 aaatcactga ggcaggggcc aagaaggcag agaaagagtg aacaagtaat gtactgccat

541 gagggtataa tctacttaca cagaaccact tcctttaaca acctaaccat gtgatctatt

601 agatttacat ttgagttatt tagcagagac tcttatccag agcgacttac aggagcaatt

661 agggttaagt gccttgctca agggcacatc aacagatttc tcacctagtc agctcaggga

721 ttcaaaccag taacctttca gttactggcc caactctctt aatcgctagg ctaatgagaa

781 agatagcaaa ttgagaatat cttactattg agaatatctt actaacatgt cgcaacatca

841 tttgacttac tcgtttttat acatttctta ttttctgtca tctctctttt agtgtttctg

901 ctgatgccag tcttactggt cagttgtttc ctgggtcaag gggcggcgat ggaaaaccaa

961 cggctcttca acatcgcggt caaccgggtg caacacctcc acctattggc tcagaaaatg

INDIVIDUAL 2
1 gtcaagAtac agggttgtgt ctgtctgtgt gactgagtgt aactttgttc attcattatg

61 tcctagacaa cagaggtttg tgtcgtctgt gttttgaccc tcatttgtca agtcatcgag

121 tacgtttttt gtttttagga gtcacGGctt cccgaactca tggaaaAatt catgattgat

181 ttgacgcatt atactgattg ttccatagtc acatacaaaa acaggtccca tcggcgagag

241 gtggtacatg gagaaaatct catgtttcct cctgttgata cattaaaaca tgtgttctcc

301 atctataaaa acagtggccc caaacaagcg gcaacatact gaaTcgacca ccacactttc

361 aagtgaagta atcatccttg gcaattaaga gaaaaaaatg ggacaaggta aaccagcttt

421 tattttattt ttttaagtgg gaagtcagtg taccatttaa taccatttaa ctttaacatt

481 taatcactga ggcaggggcc aagaaggcag agaaagagtg aacaagtaat gtacAgccat

541 gagggtataa tctacttaca cagaaccact tcctttaaca acctaaccat gtgatctatt

601 agatttacat ttgagttatt tagcagagac tcttatccag agcgacttac aggagcaatt

661 agggttaagt gccttgctca agggcacatc aacagatttc tcacctagtc agctcaggga

721 ttcaGaccag taacctttca gttactggcc caactctctt aatcgctagg ctaatgagaa

781 agatagcaaa ttgagaatat cttactattg agaatatctt actaacatgt cgcaacatca

841 tttgacttac tcgtttttat acatttctta ttttctgtca tctctctttt agtgtttctg

901 ctgaGgccag tcttactggt cagttgtttc ctgggtcaag gggcAgcgat ggaaaaccaa

961 cggctcttca acatcgcggt caaccgggtg caaTacctcc acctaGtggc tcagaaaatg

Problem 4.5

How many restriction fragments would you expect from this experiment with each
individual? How large would you expect each fragment to be? Draw what you
would expect a gel to look like after restricting these two PCR products with this
restriction enzyme. Remember that the position on the gel will be determined
solely by the size of the piece of DNA. The sample in the lane on the far right of the
gel is a “size standard” that contains four fragments of 100, 200, 300, and 400 bp.

Problem 4.6

Draw the expected gel pattern for a progeny produced by crossing these two 
individuals.
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Problem 4.7

Sue Haig has been studying the genetic population structure of spotted owls for
many years (e.g., Haig et al. 2004). Spotted owls, like many birds, have little
genetic variation in comparison with other taxa. Over 400 RAPD fragments were
examined but only some 20 of these varied between individuals. A comparison of
males and females revealed that six of these fragments had different frequencies
in males and females. All six fragments were more frequent in females than in
males. On what chromosome do you think the region coding for these six frag-
ments is located? Should these fragments be used to describe genetic population
structure of spotted owls? Why or why not?

Problem 4.8

Birds sometimes produce twins that develop inside the same egg. The gel in the
figure below shows minisatellite DNA from two emu twins (T1 and T2) produced on
an emu farm (Bassett et al. 1999). The twins’ parents (1 and 2) and two other
emus from the same farm are also shown. C is a chicken. Based on this gel, do
you think these emu twins are identical or fraternal? Identical twins are produced
by a single fertilized egg that develops into two genetically identical individuals.
Fraternal twins are produced by two separate eggs that are fertilized by two
sperm.

Individuals

1 2 Progeny
Size

standard

400 bp

300 bp

200 bp

100 bp
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Problem 4.9

Pick a species of conservation concern that you are interested in and search the
GenBank sequence database (http://www.ncbi.nih.gov/) to see how much
sequence information is available for this species. Have sections of the mtDNA
sequence of this species been published? How many sets of microsatellite
primers have been described for this species? Have microsatellite primers been
published for any congeneric species that may be useful for this species?

Problem 4.10

The entire 16,642 base pair sequence for the mtDNA molecule in rainbow trout
can be found on this book’s website in a WORD and a text file (rainbow trout
mtDNA; Zardoya et al. 1995). Use your favorite word processing program to screen
this molecule for EcoRI cut sites (5′-GAATTC-3′) by searching for the sequence
GAATTC. Describe the expected number and size of the DNA fragments after this
molecule is digested by EcoRI.

EcoRI is a six-based cutter. That is, it requires six consecutive bases to digest
DNA. There are also four-based cutters. Try “digesting” this molecule with MboI
(5′-GATC-3′). How many fragments would you expect after digestion by MboI?
Don’t describe the length of the fragments because there are too many!

Hint: there are no cut sites that overlap from one line to another.

C � � C E E CT1 T2
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5

Random Mating 
Populations: 

Hardy–Weinberg 
Principle

In a sexual population, each genotype is unique, never to recur. The life
expectancy of a genotype is a single generation. In contrast, the population of
genes endures.

James F. Crow (2001)

Today, the Hardy–Weinberg Law stands as a kind of Newton’s First Law 
(bodies remain in their state of rest or uniform motion in a straight line, except
insofar as acted upon by external forces) for evolution: Gene frequencies in a
population do not alter from generation to generation in the absence of migration,
selection, statistical fluctuation, mutation, etc.

Robert M. May (2004)

5.1 The Hardy–Weinberg principle, 94

5.2 Hardy–Weinberg proportions, 97

5.3 Testing for Hardy–Weinberg proportions, 99

5.4 Estimation of allele frequencies, 105

5.5 Sex-linked loci, 108

5.6 Estimation of genetic variation, 110

Guest Box 5 Testing alternative explanations for deficiencies of 
heterozygotes in populations of brook trout in small lakes, 112

One-horned rhinoceros, Section 5.3
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94 PART II MECHANISMS OF EVOLUTIONARY CHANGE

A description of genetic variation by itself, as in Chapters 3 and 4, will not help us under-
stand the evolution and conservation of populations. We need to develop the theoretical
expectations of the effects Mendelian inheritance in natural populations in order to under-
stand the influence of natural selection, small population size, and other evolutionary 
factors that affect the persistence of populations and species. The strength of population
genetics is the rich foundation of theoretical expectations that allows us to test the predic-
tions of hypotheses to explain the patterns of genetic variation found in natural populations.

This chapter introduces the structure of the basic models used to understand the genet-
ics of populations (Crow 2001). In later chapters, we will explore expected changes in allele
and genotype frequencies in the presence of such evolutionary factors as natural selection
or mutation. In this chapter, we will focus on the relationship between allele frequencies
and genotype frequencies. In addition, we will examine techniques for estimating allele
frequencies and for testing observed genotypic proportions with those expected.

Models

We will use a series of models to consider the pattern of genetic variation in natural popu-
lations and to understand the mechanisms that produce evolutionary change. Models
allow us to simplify the complexity of the world around us. Models may be either concep-
tual or mathematical. Conceptual models allow us to simplify the world so that we can
represent reality with words and in our thoughts. Mathematical models allow us to specify
the relationship between empirical quantities that we can measure and parameters that
we specify in our biological theory. These models are essential in understanding the fac-
tors that affect genetic change in natural populations, and in predicting the effects of
human actions on natural populations.

In addition, models are very helpful in a variety of additional ways:

1 Models make us consider and define the parameters that need to be considered.
2 Models allow us to test hypotheses.
3 Models allow us to generalize results.
4 Models allow us to predict how a system will operate in the future.

The use of models in biology is sometimes criticized because genetic and ecological sys-
tems are complex, and simple models ignore many important properties of these systems.
This criticism has some validity. Nevertheless, as a general rule of thumb, models that 
we develop to understand natural populations should be as simple as possible. That is, a
hypothesis or model should not be any more complicated than necessary (Ocham’s
razor). There are several reasons for this. First, hypotheses and models are scientifically
useful only if they can be tested and rejected. Simpler models are easier to reject, and,
therefore, are more valuable. Second, simple models are likely to be more general and
therefore more applicable to a wider number of situations.

5.1 The Hardy–Weinberg principle

We will begin with the simplest model of population genetics: a random mating popula-
tion in which no factors are present to cause genetic change from generation to generation.
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This model is based upon the fundamental framework of Mendelian segregation for
diploid organisms that are reproducing sexually in combination with fundamental prin-
ciples of probability (Box 5.1). These same principles apply to virtually all species, from ele-
phants to pine trees to violets. We will make the following assumptions in constructing
this model:

1 Random mating. “Random mating obviously does not mean promiscuity; it simply
means . . . that in the choice of mates . . . there is neither preference for nor aversion to
the union of persons similar or dissimilar with respect to a given trait or gene” (Wallace
and Dobzhansky 1959). Thus, it is possible that a population may be randomly mating
with regard to most loci, but be mating nonrandomly with regard to others that are
influencing mate choice.

2 No mutation. We assume that genetic information is transmitted from parent to
progeny (i.e., from generation to generation) without change. Mutations provide the
genetic variability that is our primary concern in genetics. Nevertheless, mutation rates
are generally quite small and are only important in population genetics from a long-
term perspective, generally hundreds or thousands of generations. We will not consider
the effects of mutations on changes in allele frequencies in detail since in conservation
genetics we are more concerned with factors that can influence populations in a more
immediate time frame.

3 Large population size. Many of the theoretical models that we will consider assume an
infinite population size. This assumption may effectively be correct in some popula-
tions of insects or plants. However, it is obviously not true for many of the populations
of concern in conservation genetics. Nevertheless, we will initially consider the ideal
large population in order to develop the basic concepts of population genetics, and we
will then consider the effects of small population size in later chapters.

4 No natural selection. We will assume that there is no differential survival or reproduc-
tion of individuals with different genotypes (that is, no natural selection). Again, this
assumption will not be true at all loci in any real population, but it is necessary that we
initially make this assumption in order to develop many of the basic concepts of popula-
tion genetics. We will consider the effects of natural selection in later chapters.

5 No immigration. We will assume that we are dealing with a single isolated population.
We will later consider multiple populations in which gene flow between populations is
brought about through exchange of individuals.

There are two important consequences of these assumptions. First, the population will
not evolve. Mendelian inheritance has no inherent tendency to favor one allele. Therefore,
allele and genotype frequencies will remain constant from generation to generation. This
is known as the Hardy–Weinberg equilibrium. In the next few chapters we will explore
the consequences of relaxing these assumptions on changes in allele frequency from gen-
eration to generation. We will not be able to consider all possibilities. However, our goal is
to develop an intuitive understanding of the effects of each of these evolutionary factors.

The second important outcome of the above assumptions is that genotype frequencies
will be in binomial (Hardy–Weinberg) proportions. That is, genotypic frequencies after
one generation of random mating will be a binomial function of allele frequencies. It is
important to distinguish between the two primary ways in which we will describe the
genetic characteristics of populations at individual loci: allele (gene) frequencies and geno-
typic frequencies.
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Box 5.1 Probability

Genetics is a science of probabilities. Mendelian inheritance itself is based upon
probability. We cannot know for certain which allele will be placed into a gamete
produced by a heterozygote, but we know that there is a one-half probability that
each of the two alleles will be transmitted. This is an example of a random, or
stochastic, event. There are a few simple rules of probability that we will use to
understand the extension of Mendelian genetics to populations.

The probability (P ) of an event is the number of times the event will occur (a)
divided by the total number of possible events (n):

P = a /n

For example, a die has six faces that are equally likely to land up if the die is
tossed. Thus, the probability of throwing any particular number is one-sixth:

P = a /n = 1/6

We often are interested in combining the probabilities of different events.
There are two different rules that we will use to combine probabilities.

The product rule states that the probability of the probability of two or more
independent events occurring simultaneously is equal to the product of their indi-
vidual probabilities. For example, what is the probability of throwing a total of 12
with a pair of dice? This can only occur by a six landing up on the first die and also
on the second die. According to the product rule:

P = 1/6 × 1/6 = 1/36

The sum rule states that the probability of two or more mutually exclusive
events occurring is equal to the sum of their individual probabilities. For example,
what is the probability of throwing either a five or six with a die? According to the
sum rule:

P = 1/6 + 1/6 = 2/6 = 1/3

In many situations, we need to use both of these rules to compute a prob-
ability. For example, what is the probability of throwing a total of seven with a pair
of dice?

Solution: There are six mutually exclusive ways that we can throw seven with
two dice: 1 + 6, 2 + 5, 3 + 4, 4 + 3, 5 + 2, and 6 + 1. As we saw in the example for
the product rule, each of these combinations has a probability of 1/6 × 1/6 = 1/36
of occurring. They are all mutually exclusive so we can use the sum rule.
Therefore, the probability of throwing a seven is:

1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 6/36 = 1/6
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The Hardy–Weinberg principle greatly simplifies the task of describing the genetic
characteristics of populations; it allows us to describe a population by the frequencies of
the alleles at a locus rather than by the many different genotypes that can occur at a single
diploid locus. This simplification becomes especially important when we consider mul-
tiple loci. For example, there are 59,049 different genotypes possible at just 10 loci that each
has just two alleles. We can describe this tremendous genotypic variability by specifying
only 10 allele frequencies if the populations is in Hardy–Weinberg proportions.

This principle was first described by a famous English mathematician G. H. Hardy
(1908) and independently by a German physician Wilhelm Weinberg (1908). The principle
was actually first used by an American geneticist W. E. Castle (1903) in a description of the
effects of natural selection against recessive alleles. However, this aspect of the paper by
Castle was not recognized until nearly 60 years later (Li 1967). A detailed and interesting
history of the development of population genetics is provided by Provine (2001). There is
great irony in our use of Hardy’s name to describe a fundamental principle that has been of
great practical value in medical genetics and now in our efforts to conserve biodiversity.
Hardy (1967) saw himself as a “pure” mathematician whose work had no practical rele-
vance: “I have never done anything ‘useful’. No discovery of mine has made, or is likely to
make, directly or indirectly, for good or ill, the least difference to the amenity of the
world.”

5.2 Hardy–Weinberg proportions

We will first consider a single locus with two alleles (A and a) in a population such that the
population consists of the following numbers of each genotype:

AA Aa aa Total
N11 N12 N22 N

Each homozygote (AA or aa) contains two copies of the same allele while each heterozy-
gote (Aa) contains one copy of each of its constituent. Therefore, the allele frequencies are:

(5.1)

where p + q = 1.0.
Our assumption of random mating will result in random union of gametes to form

zygotes. Thus, the frequency of any particular combination of gametes from the parents
will be equal to the product of the frequencies of those gametes, which are the allele fre-
quencies. This is shown graphically in Figure 5.1. Thus, the expected genotypic propor-
tions are predicted by the binomial expansion:

(p + q)2 = p2 + 2pq + q2

(5.2)
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N
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These proportions will be reached in one generation, providing all of the above assump-
tions are met and allele frequencies are equal in males and females. Additionally, these
genotypic frequencies will be maintained forever, as long as these assumptions hold.

The Hardy–Weinberg principle can be readily extended to more than two alleles with
two simple rules:

1 The expected frequency of homozygotes for any allele is the square of the frequency of
that allele.

2 The expected frequency of any heterozygote is twice the product of the frequency of
the two alleles present in the heterozygote.

In the case of three alleles the following genotypic frequencies are expected:

p = freq(A1)
q = freq(A2)
r = freq(A3)

and

(p + q + r)2 = p2 + 2pq + q2 + 2pr + 2qr + r 2

(5.3)
A1A1 A1A2 A2A2 A1A3 A2A3 A3A3

Female gametes (frequency)

Male
gametes

(frequency)

A (p = 0.6) a (q = 0.4)

A (p = 0.6) AA (p 2 = 0.36) aA (qp = 0.24)

a (q = 0.4) aA (pq = 0.24) aa (q 2 = 0.16)

Figure 5.1 Hardy–Weinberg proportions at a locus with two alleles (A and a) generated by
the random union of gametes produced by females and males. The area of each rectangle 
is proportional to the genotypic frequencies.
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5.3 Testing for Hardy–Weinberg proportions

Genotypic frequencies of samples from natural populations can be tested readily to see 
if they conform to Hardy–Weinberg expectations. However, there are a profusion of
papers that discuss the sometimes hidden intricacies of testing for goodness-of-fit to
Hardy–Weinberg proportions. Lessios (1992) has provided an interesting and valuable
review of this literature. Guest Box 5 provides an example of how testing for departures
from Hardy–Weinberg can provide important insights into the mating system, social
behavior, and genetic structure of populations.

Dinerstein and McCracken (1990) described genetic variation using allozyme elec-
trophoresis at 10 variable loci in a population of one-horned rhinoceros from the Chitwan
valley of Nepal. The following numbers of each genotype were detected at a locus with
two alleles (100 and 125) encoding the enzyme lactate dehydrogenase. Do these values dif-
fer from what we expect with Hardy–Weinberg proportions?

100/100 100/125 125/125 Total
N11 = 5 N12 = 12 N22 = 6 N = 23

We first need to estimate the allele frequencies in this sample. We do not know the true
allele frequencies in this population, which consisted of some 400 animals at the time of
sampling. However, we can estimate the allele frequency in this population based upon
the sample of 23 individuals. The estimate of the allele frequency of the 100 allele obtained
from this sample will be designated as P (called p hat) to designate that it is an estimate
rather than the true value.

and

We now can estimate the expected number of each genotype in our sample of 23 indi-
viduals genotype assuming Hardy–Weinberg proportions:

100/100 100/125 125/125
Observed 5 12 6
Expected (P2N = 5.3) (2PQN = 11.5) (Q2N = 6.3)

The agreement between observed and expected genotypic proportions in this case is very
good. In fact, this is the closest fit possible in a sample of 23 individuals from a population
with the estimated allele frequencies. Therefore, we would conclude that there is no indica-
tion that the genotype frequencies at this locus are not in Hardy–Weinberg proportions.

The chi-square method provides a statistical test to determine if the deviation between
observed genotypic and expected Hardy–Weinberg proportions is greater than we would
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100 PART II MECHANISMS OF EVOLUTIONARY CHANGE

expect by chance alone. We first calculate the chi-square value for each of the genotypes
and sum them into a single value:

= 0.02 + 0.02 + 0.01 = 0.05

The X2 value becomes increasingly greater as the difference between the observed and
expected values becomes greater.

The computed X2 value is then tested by comparing it to a set of values (Table 5.1) cal-
culated under the assumption that the null hypothesis we are testing is correct; in this case,
our null hypothesis is that the population from which the samples was drawn is in
Hardy–Weinberg proportions. We need one additional value to apply the chi-square test,
the degrees of freedom. In using the chi-square test for Hardy–Weinberg proportions, the
degrees of freedom is equal to the number of possible genotypes minus the number of 
alleles.

 
=

−
+

−
+

−
 
(   . )

.
  

(   . )

.
  

(   . )

.

5 5 3

5 3

12 11 5

11 5

6 6 3

6 3

2 2 2

  
X

OBSERVED EXPECTED
EXPECTED

2
2

  
(   )

=
−∑

Table 5.1 Critical values of the chi-square distribution for up to five degrees of freedom (v).
The proportions in the table (corresponding to α = 0.05, 0.01, etc.) represent the area to the
right of the critical value of chi-square given in the table, as shown in the figure below. The
null hypothesis is usually not rejected unless the probability associated with the calculated 
chi-square is less than 0.05.

Probability (P )
Degrees of
freedom 0.90 0.50 0.10 0.05 0.01 0.001

1 0.02 0.46 2.71 3.84 6.64 10.83
2 0.21 1.39 4.60 5.99 9.21 13.82
3 0.58 2.37 6.25 7.82 11.34 16.27
4 1.06 3.86 7.78 9.49 13.28 18.47
5 1.61 14.35 9.24 11.07 15.09 20.52

0

α

χ2
α,v
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Number Number of Degrees of 
of alleles genotypes freedom

2 3 1
3 6 3
4 10 6
5 15 10

By convention, if the probability estimated by a statistical test is less than 0.05, then the
difference between the observed and expected values is said to be significant. We can see in
Table 5.1 that the chi-square value with one degree of freedom must be greater than 3.84
before we would conclude that the deviation between observed and expected proportions
is greater than we would expect by chance with one degree of freedom. Our estimated X2

value of 0.05 for the lactate dehyrogenase locus in the one-horned rhino is much smaller
than this. Therefore, we would accept the null hypothesis that the population from which
this sample was drawn was in Hardy–Weinberg proportions at this locus. Example 5.1
gives a situation where the null hypothesis of Hardy–Weinberg proportions can be
rejected. An example of the chi-square test for Hardy–Weinberg proportions in the case of
three alleles is given in Example 5.2.

Example 5.1 Test for Hardy–Weinberg proportions

Leary et al. (1993a) reported the following genotype frequencies at an allozyme
locus (mIDHP-1) in a sample of bull trout from the Clark Fork River in Idaho:

Genotype Observed Expected Chi-square

100/100 1 (#2N = 5.8) 3.97
100/75 22 (2#$N = 12.5) 7.22
75/75 2 ($2N = 6.8) 3.38

Total 25 (25.1) 14.58

Estimated frequency of 100 = # = [(2 × 1) + 22]/50 = 0.480
Estimated frequency of 75 = $ = [22 + (2 × 2)]/50 = 0.520
Degrees of freedom = 1

The calculated X 2 of 14.58 is greater than the critical value for P < 0.001 with 
1 d.f. of 10.83 (see Table 5.1). Therefore, the probability of getting such a large 
deviation by chance alone is less than 0.001. Therefore we would reject the null
hypothesis that the sampled population was in Hardy–Weinberg proportions at
this locus.

There is a significant excess of heterozygotes in this sample of bull trout. We
will return to this example in the next chapter to see the probable cause of this
large deviation from Hardy–Weinberg proportions.
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Example 5.2 Test for Hardy–Weinberg proportions at a locus (aminoacylase-1,
Acy-1) with three alleles in the Polish brown hare (Hartl et al. 1992)

Genotype Observed Expected Chi-square

100/100 4 (#2N = 2.1) 1.72
100/81 6 (2#$N = 9.7) 1.41
81/81 14 ($2N = 11.0) 0.82

100/66 4 (2#%N = 4.0) 0.00
81/66 7 (2$%N = 9.2) 0.53
66/66 3 (% 2N = 1.9) 0.64

Total 38 (37.9) 5.12

Estimated frequency of 100 = # = [(2 × 4) + 6 + 4]/76 = 0.237
Estimated frequency of 81 = $ = [6 + (2 × 14) + 7]/76 = 0.539
Estimated frequency of 66 = % = [4 + 7 + (2 × 3)]/76 = 0.224
There are six genotypic classes and two independent allele frequencies at a
locus with three alleles
Degrees of freedom = 6 − 3 = 3

The calculated X 2 of 5.12 is less than the critical value with 3 d.f. of 7.82 (see
Table 5.1). Therefore, we accept the null hypothesis that the sampled population
was in Hardy–Weinberg proportions at this locus.

5.3.1 Small sample sizes or many alleles

Sample sizes in conservation genetics are often smaller than our statistical advisors recom-
mend because of the limitations imposed by working with rare species. The chi-square
test is only an approximation of the actual probability distribution, and the approximation
becomes poor when expected numbers are small. The usual rule-of-thumb is to not 
use the chi-square test when any expected number is less than five. However, some have
argued that this rule is unnecessarily conservative and have suggested using smaller 
limits on expected values (three by Cochran (1954), and one by Lewontin and Felsenstein
(1965)).

In addition, there is a systematic bias in small samples because of the discreteness of 
the possible numbers of genotypes. Levene (1949) has shown that in a finite sample of N
individuals, the heterozygotes are increased by a fraction of 1/(2N − 1) and homozygotes
are correspondingly decreased (see Crow and Kimura 1970, pp. 55–56). For example, if
only one copy of a rare allele is detected in a sample then the only genotype containing 
the rare allele must be heterozygous. However, the simple binomial Hardy–Weinberg pro-
portions will predict that some fraction of the sample is expected to be homozygous for
the rare allele; however, this is impossible because there is only one copy of the allele in the
sample. The above adjustment will correct for this bias.
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Exact tests provide a method to overcome the limitation of small expected numbers
with the chi-square test (Fisher 1935). Exact tests are performed by determining the probab-
ilities of all possible samples assuming that the null hypothesis is true (Example 5.3). The
probability of the observed distribution is then added to the sum of all less probable pos-
sible sample outcomes. Weir (1996, pp. 98–101) describes the use of the exact test, and
Vithayasai (1973) presented tables for applying the exact test with two alleles.

Example 5.3 The exact test for Hardy–Weinberg proportions (Weir 1996)

In this case, we would reject the null hypothesis of Hardy–Weinberg proportions
because our calculated chi-square value is greater than 3.84. However, an exact
test indicates that we would expect to get a deviation as great or greater than the
one we observed some 8% (0.082) of the time. Therefore, we would not reject the
null hypothesis in this case using the exact test.

Genotypes

100/100 100/80 80/80

21 19 0 # = 0.763 X 2 = 3.88
(23.3) (14.5) (2.3)

There are 10 possible samples of 40 individuals that would provide us with the
same allele frequency estimates. We can calculate the exact probabilities for each
of these possibilities if the sampled population was in Hardy–Weinberg propor-
tions using the binomial distribution as shown below:

Possible samples
Cumulative

100/100 100/80 80/80 Probability probability X 2

30 1 9 0.0000 0.0000 34.67
29 3 8 0.0000 0.0000 25.15
28 5 7 0.0001 0.0001 17.16
27 7 6 0.0023 0.0024 10.69
26 9 5 0.0205 0.0229 5.74
21 19 0 0.0594 0.0823 3.88
25 11 4 0.0970 0.1793 2.32
22 17 1 0.2308 0.4101 1.20
24 13 3 0.2488 0.6589 0.42
23 15 2 0.3411 1.0000 0.05

In practice, exact tests are performed using computer programs because calculat-
ing the exact binomial probabilities is extremely complicated and time consuming.
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Testing for Hardy–Weinberg proportions at loci with many alleles, such as microsatel-
lite loci, is also a problem because many genotypes will have extremely low expected num-
bers. There are A(A − 1)/2 heterozygotes and A homozygotes at a locus with A alleles.
Therefore, there are the following possible numbers of genotypes at a locus in a popula-
tion with A alleles:

(5.4)

For example, Olsen et al. (2000) found an average of 23 alleles at eight microsatellite loci 
in pink salmon in comparison to an average of 2.3 alleles at 24 polymorphic allozyme loci
in the same population. There are a total of 279 genotypes possible with 23 alleles (expres-
sion 5.4). Exact tests for Hardy–Weinberg proportions are possible with more than two
alleles (Louis and Dempster 1987; Guo and Thompson 1992). However, the number of
possible genotypes increases very quickly with more than two alleles and computation
time becomes prohibitive. Hernandez and Weir (1989) have described a method of approx-
imating the exact probabilities.

Nearly exact tests are generally used to analyze data from natural populations using
computer-based permutation or randomization testing. In the case of Example 5.3, a com-
puter program would randomize genotypes by sampling, or creating, 40 diploid indi-
viduals from a pool of 61 copies of the 100 allele and 19 copies of the 80 allele. A chi-square
value is then calculated for 1,000 or more of these randomized data sets and its value com-
pared to the statistic obtained from the observed data set. The proportion of chi-square
values from the randomized data sets that give a value as large or larger than the observed
one provides an unbiased estimation of the probability that the null hypothesis is true.

5.3.2 Multiple simultaneous tests

In most studies of natural populations, multiple loci are examined from several popula-
tions resulting in multiple tests for Hardy–Weinberg proportions. For example, if we
examine 10 loci in 10 population samples, 100 tests of Hardy–Weinberg proportions will
be performed. If all of these loci are in Hardy–Weinberg proportions (that is, our null hypo-
thesis is true at all loci in all populations), we expect to find five significant tests if we use
the 5% significance level. Thus, simply applying the statistical procedure presented here
would result in rejection of the null hypothesis of Hardy–Weinberg proportions approx-
imately five times when our null hypothesis is true. This is called a type I error. (A type II
error occurs when a false null hypothesis is accepted.)

There are a variety of approaches that can be used to treat this problem (see Rice 1989).
One common approach is to use the so-called Bonferroni correction in which the
significance level (say 5%) is adjusted by dividing it by the number of tests performed
(Cooper 1968). Therefore in the case of 100 tests, we would use the adjusted nominal level
of 0.05/100 = 0.0005. The critical chi-square value for P = 0.0005 with one degree of free-
dom is 12.1. That is, we expect a chi-square value greater than 12.1 with one degree of free-
dom less than 0.0005 of the time if our null hypothesis is correct. Thus, we would reject the
null hypothesis for a particular locus only if our calculated chi-square value was greater
than 12.1. This procedure is known to be conservative and results in a loss of statistical
power to detect multiple deviations from the null hypothesis. A procedure known as the
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sequential Bonferroni can be used to increase power to detect more than one deviation
from the null hypothesis (Rice 1989).

It is also extremely important to examine the data to detect possible patterns for those
loci that do not conform to Hardy–Weinberg proportions. For example, let us say that
eight of our 100 tests have probability values less than 5%; this value is not much greater
than our expectation of five. If the eight cases are spread fairly evenly among samples and
loci and none of the individual probability values are less than 0.0005 obtained from the
Bonferroni correction, then it is reasonable to not reject the null hypothesis that these
samples are in Hardy–Weinberg proportions at these loci.

However, we may reach a different conclusion if all eight of the deviations from
Hardy–Weinberg proportions occurred in the same sample, and all the deviations were in
the same direction (e.g., a deficit of heterozygotes). This would suggest that this particular
sample was taken from a population that was not in Hardy–Weinberg proportions.
Perhaps this sample was collected from a group that consisted of two separate random
mating populations (Wahlund effect; see Chapter 9).

Another possibility is that all eight deviations from Hardy–Weinberg proportions
occurred at the same locus in eight different population samples, and all the deviations
were in the same direction (e.g., a deficit of heterozygotes). This would suggest that there
is something unusual about this particular locus. For example, the presence of a null allele,
as we saw in Problem 4.3, would result in a tendency for a deficit of heterozygotes.

5.4 Estimation of allele frequencies

So far we have estimated allele frequencies when the number of copies of each allele in a
sample can be counted directly from the genotypic frequencies. However, sometimes we
cannot identify the alleles in every individual in a sample. The Hardy–Weinberg principle
can be used to estimate allele frequencies at loci in which there is not a unique relationship
between genotypes and phenotypes. We will consider two such situations that are often
encountered in analyzing data from natural populations.

5.4.1 Recessive alleles

There are many cases in which heterozygotes cannot be distinguished from one of the
homozygotes. For example, color polymorphisms and metabolic disorders in many
organisms are caused by recessive alleles. The frequency of recessive alleles can be estim-
ated if we assume Hardy–Weinberg proportions:

(5.5)

Dozier and Allen (1942) described differences in coat color in the muskrat of North
America. A dark phase, the so-called blue muskrat, is generally rare relative to the ordinary
brown form but occurs at high frequencies along the Atlantic coast between New Jersey
and North Carolina. Breeding studies (Dozier 1948) have shown that the blue phase is
caused by a recessive allele (b) which is recessive to the brown allele (B). A total of 9,895
adult muskrats were trapped on the Backwater National Wildlife Refuge, Maryland in
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1941. The blue muskrat occurred at a frequency of 0.536 in this sample. If we assume
Hardy–Weinberg proportions (see expression 5.2), then:

Q2 = 0.536

and taking the square root of both sides of this relationship:

Q = = 0.732

The estimated frequency of the B allele is (1 − 0.732) = 0.268.
Example 5.4 demonstrates how the genotypic proportions in a population for a reces-

sive allele can be tested for Hardy–Weinberg proportions.

Example 5.4 Color polymorphism in the eastern screech owl

We concluded in Chapter 2, based on the data below from Table 2.1, that the red
morph of the eastern screech owl is caused by a dominant allele (R) at a single
locus with two alleles; grey owls are homozygous for the recessive allele (rr ).

Progeny
No.

Mating of families Red Gray

Red × red 8 23 5
Red × gray 46 68 63
Gray × gray 135 0 439

Total 189 91 507

We can estimate the allele frequency of the r allele at this locus by assuming that
this population is in Hardy–Weinberg proportions and the total progeny observed.

$ 2 = (507/598) = 0.847
$ = = 0.921
# = 1 − $ = 0.079

We can also check to see if the progeny produced by matings with red birds is
close to what we would expect if this population was in Hardy–Weinberg propor-
tions. Remember red birds may be either homozygous (RR) or heterozygous
(Rr ). What proportion of grey progeny do we expect to be produced by matings
between two red parents?

Three things must occur for a progeny to be grey: (1) the mother must be het-
erozygous (Rr ); (2) the father must be heterozygous (Rr ); and (3) the progeny
must receive the recessive allele (r ) from both parents:

0 847.

0 536.
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Prob(progeny rr ) = Prob(mother Rr ) × Prob(father Rr ) × 0.25

The proportion of normal birds in the population who are expected to be hetero-
zygous is the proportion of heterozygotes divided by the total proportion of red birds:

Prob(parental bird (Rr ) = (2pq)/(p2 + 2pq) = 0.959

Therefore, the expected proportion of grey progeny is:

0.959 × 0.959 × 0.25 = 0.230

This is fairly close to the observed proportion of 0.178 (5/28). Thus, we would con-
clude that this population appears to be in Hardy–Weinberg proportions at this
locus.

5.4.2 Null alleles

Null alleles at protein coding loci are alleles that do not produce a detectable protein prod-
uct; null alleles at microsatellite loci are alleles that do not produce a detectable PCR (poly-
merase chain reation) amplification product. Null alleles at allozyme loci result from
alleles that produce either no protein product or a protein product that is enzymatically
nonfunctional (Foltz 1986). Null alleles at microsatellite loci result from substitutions that
prevent the primers from binding (Brookfield 1996). Heterozygotes for a null allele and
another allele appear to be homozygotes on a gel. The presence of null alleles results in an
apparent excess of homozygotes relative to Hardy–Weinberg proportions (see Problem
4.3). Brookfield (1996) discusses the estimation of null allele frequencies in the case of
more than three alleles.

The familiar ABO blood group locus in humans presents a parallel situation to the case
of a null allele in which all genotypes cannot be distinguished. In this case, the IA and IB alle-
les are codominant, but the I O allele is recessive (i.e., null). This results in the following
relationship between genotypes and phenotypes (blood types):

Genotypes Blood types Expected frequency Observed number
IAIA, IAI O A p2 + 2pr NA
IBIB, IBI O B q2 + 2qr NB
IAIB AB 2pq NAB
I OI O O r 2 NO

where p, q, and r are the frequencies of the IA, IB, and I O alleles.
We can estimate allele frequencies at this locus by the expectation maximization (EM)

algorithm that finds the allele frequencies that maximize the probability of obtaining the
observed data from a sample of a population assumed to be in Hardy–Weinberg propor-
tions (Dempster et al. 1977). This is an example of a maximum likelihood estimate,
which has many desirable statistical properties (Fu and Li 1993).
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We could estimate the frequency p directly, as in Example 5.2, if we knew how many
individuals in our sample with blood type A were IAIA and how many were IAI O:

(5.6)

where N is the total number of individuals. However, we cannot distinguish the pheno-
types of the IAIA and IAI O genotypes. The EM algorithm solves this ambiguity with a tech-
nique known as gene-counting. We start with guesses of the allele frequencies, and use
them to calculate the expected frequencies of all genotypes (step E of the EM algorithm),
assuming Hardy–Weinberg proportions. Then, we use these genotypic frequencies to
obtain new estimates of the allele frequencies, using maximum likelihood (step M). We
then use these new allele frequency estimates in a new E step, and so forth, in an iterative
fashion, until the values converge.

We first guess the three allele frequencies (remember p + q + r = 1.0). The next step is 
to use these guesses to calculate the expected genotype frequencies assuming Hardy–
Weinberg proportions. We next use gene-counting to estimate the allele frequencies from
these genotypic frequencies. The count of the IA alleles is twice the number of IAIA geno-
types plus the number of IAI O genotypes. We expect p2 of the total individuals with blood
type A (p2 + 2pr) to be homozygous IAIA, and 2pr of them to be heterozygous IAI O. These
counts are then divided by the total number of genes in the sample (2N ) to estimate the 
frequency of the IA allele, as we did in expression 5.6. A similar calculation is performed for
the IB allele with the following result:

(5.7)

R = 1 − P − Q

These equations produce new estimates of p, q, and r that can be substituted into the right
hand side of the equations in expression 5.7 to produce new estimates of p, q, and r. This
iterative procedure is continued until the estimates converge. That is, until the estimated
values on the left side are nearly equal to the values substituted into the right side.

5.5 Sex-linked loci

We so far have considered only autosomal loci in which there are no differences between
males and females. However, the genotypes of genes on sex chromosomes will often 
differ between males and females. The most familiar situation is that of genes on the X
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chromosome of mammals (and Drosophila) in which females are homogametic XX and
males are heterogametic XY. In this case, genotype frequencies for females conform to the
Hardy–Weinberg principle. However, the Y chromosome is largely void of genes so that
males will have only one gene copy, and the genotype frequency in males will be equal to
the allele frequencies. The situation is reversed in bird species: females are heterogametic
ZW and males are homogametic ZZ (Ellegren 2000b). In this case, genotype frequencies
for the ZZ males conform to the Hardy–Weinberg principle, and the genotype frequency
in the ZW females will be equal to the allele frequencies (Figure 5.2).

Phenotypes resulting from rare recessive X-linked alleles will be much more common
in males than in females because q2 will always be less than q. The most familiar case of this
is X-linked red–green color blindness in humans in which approximately 5% of males in
some human groups lack a certain pigment in the retina of their eyes so they do not per-
ceive colors as most people do. In this case, q = 0.05 and therefore we expect the frequency
of color blindness in females to be q2 = (0.05)2 = 0.0025. Thus, we expect 20 times more
red–green color blind males than females in this case.

A variety of other mechanisms for sex determination occur in other animals and 
plants (Bull 1983). Many plant species possess either XY or ZW systems. The use of XY 
or ZW indicates which sex is heterogametic (Charlesworth 2002). The sex chromosomes
are identified as XY in species in which males are heterogametic and ZW in species in
which females are heterogametic. Many reptiles have a ZW system (e.g., all snakes)
(Graves and Shetty 2001). A wide variety of genetic sex determination systems are found 
in fish species (Devlin and Nagahama 2002) and in invertebrates. Some species have no
detectable genetic mechanism for sex determination. For example, sex is determined by
the temperature in which eggs are incubated in some reptile species (Graves and Shetty
2001).

The classic XY system of mammals and Drosophila with the Y chromosome being
largely devoid of functional genes, as taught in introductory genetic classes, has been over-
generalized. A broader taxonomic view suggests that mammals and Drosophila are excep-
tions and that both sex chromosomes contain many functional genes across a wide variety
of animal taxa. Morizot et al. (1987) found that functional genes for the creatine kinase

Z-bearing eggs W-bearing eggs

Sperm

ZA (p)

ZA (p) ZAZa (pq)

Za (q)

Males Females

ZAW (p)

ZAZa (pq) ZaZa (q 2) ZaW (q)

ZAZA (p2)

WZa (q)

Figure 5.2 Expected genotypic proportions with random mating for a Z-linked locus with
two alleles (A and a).
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enzyme locus are present on both the Z and W chromosomes of Harris’ hawk. Wright and
Richards (1983) found that two of 12 allozyme loci that they mapped in the leopard 
frog were sex linked and that two functional gene copies of both loci are found in XY
males. Functional copies of a peptidase locus are present on both the Z and W chromo-
somes in the salamander Pleurodeles waltlii (Dournon et al. 1988). Two allozyme loci 
in rainbow trout have functional alleles on both the X and Y chromosomes (Allendorf 
et al. 1994). Differences in allele frequencies between males and females for genes found
on both sex chromosomes will result in an excess of heterozygotes in comparison to
expected Hardy–Weinberg proportions in the heterogametic sex (Clark 1988; Allendorf 
et al. 1994).

5.6 Estimation of genetic variation

We often are interested in comparing the amount of genetic variation in different popula-
tions. For example, we saw in Table 4.1 that brown bears from Kodiak Island and
Yellowstone National Park had less genetic variation than other populations for
allozymes, microsatellites, and mtDNA. In addition, comparisons of the amount of
genetic variation in a single population sampled at different times can provide evidence for
loss of genetic variation because of population isolation and fragmentation due to habitat
loss or other causes. In this section we will consider measures that have been used to com-
pare the amount of genetic variation.

5.6.1 Heterozygosity

The average expected (Hardy–Weinberg) heterozygosity at n loci within a population is
the best general measure of genetic variation:

(5.8)

It is easier to calculate one minus the expected homozygosity, as in expression 5.8, than
summing over all heterozygotes because there are fewer homozygous than heterozygous
genotypes with three or more alleles. Nei (1987) has referred to this measure as gene 
diversity, and pointed out that it can be thought of as either the average proportion of 
heterozygotes per locus in a randomly mating population or the expected proportion 
of heterozygous loci in a randomly chosen individual. Gorman and Renzi (1979) have
shown that estimates of He are generally insensitive to sample size and that even a few 
individuals are sufficient for estimating He if a large number of loci are examined. In gen-
eral, comparisons of He among populations are not valid unless a large number of loci 
are examined.

There are a variety of characteristics of average heterozygosity that make it valuable for
measuring genetic variation. It can be used for genes of different ploidy levels (e.g., haploid
organelles) and in organisms with different reproductive systems. We will see in later chap-
ters that there is considerable theory available to predict the effects of reduced population
size on heterozygosity (Chapter 6), that average heterozygosity is also a good measure of
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the response of a population to natural selection (Chapter 11), and that it can also provide
an estimation of the inbreeding coefficients of individuals (Chapter 14).

5.6.2 Allelic richness

The total number of alleles at a locus has also been used as a measure of genetic variation
(see Table 4.1). This is a valuable complementary measure of genetic variation because it is
more sensitive to the loss of genetic variation because of small population size than het-
erozygosity, and it is an important measure of the long-term evolutionary potential of pop-
ulations (Allendorf 1986) (see Section 6.4).

The major drawback of the number of alleles is that, unlike heterozygosity, it is highly
dependent on sample size. Therefore, comparisons between samples are not meaningful
unless samples sizes are similar because of the presence of many low frequency alleles in
natural populations. This problem can be avoided by using allelic richness, which is a
measure of allelic diversity that takes into account sample size (El Mousadik and Petit
1996). This measure uses a rarefaction method to estimate allelic richness at a locus for a
fixed sample size, usually the smallest sample size if a series of populations are sampled
(see Petit et al. 1998). Allelic richness can be denoted by R( g), where g is the number of
genes sampled.

The effective number of alleles is sometimes used to describe genetic variation at a
locus. However, this parameter provides no more information about the number of alleles
present at a locus than does heterozygosity. The effective number of alleles is the number
of alleles that if equally frequent would result in the observed heterozygosity or homozy-
gosity. It is computed as Ae = 1/Σ p i

2 where pi is the frequency of the ith allele. For example,
consider two loci that both have an He of 0.50. The first locus has two equally frequent alle-
les ( p = q = 0.5), and the second locus has five alleles at frequencies of 0.68, 0.17, 0.05, 0.05,
and 0.05. Both of these loci will have the same value of Ae = 2.

5.6.3 Proportion of polymorphic loci

The proportion of loci that are polymorphic (P) in a population has been used to compare
the amount of variation between populations and species at allozyme loci (see Table 3.5).
Strictly speaking, a locus is polymorphic if it contains more than one allele. However, gen-
erally some standard definition is used to avoid problems associated with comparisons of
samples that are different sizes. That is, the larger the sample, the more likely we are to
detect a rare allele. A locus is usually considered to be polymorphic if the frequency of the
most common allele is less than either 0.95 or 0.99 (Nei 1987). The 0.99 standard has been
used most often, but it is not reasonable to use this definition unless all sample sizes are
greater than 50 (which is often not the case).

This measure of variation is of limited value. In some circumstances it can provide a use-
ful measure of another aspect of genetic variation that is not provided by heterozygosity or
allelic richness. It has been most valuable in studies of allozyme loci with large sample
sizes in which many loci are studied, and many of the loci are monomorphic. However, it
is of much less value in studies of highly variable loci (e.g., microsatellites) in which most
loci are polymorphic in most populations. In addition, microsatellite loci are often
selected to be studied because they are highly polymorphic in the preliminary analysis.
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Guest Box 5 Testing alternative explanations for deficiencies of heterozygotes in
populations of brook trout in small lakes
Vincent Castric and Louis Bernatchez

Moderate departures from Hardy–Weinberg expected proportions have commonly
been ignored in empirical studies of natural populations. Yet, when such departures
are real, they may provide important insights into the species’ mating system, social
behavior, or population genetic structure. Recent advances in statistical population
genetics now offer the potential to exploit individual multilocus genotypic informa-
tion to test more rigorously for possible sources of heterozygote deficiencies.

Populations of brook trout from small lakes in Maine, USA, were found to
exhibit stronger heterozygote deficits (higher FIS) than populations from larger
lakes at six microsatellite loci (Castric et al. 2001). Technical artifacts, such as null
alleles (see Section 5.4.2) or selective amplification of shorter alleles, were unlikely
to account for the relationship with lake size since they would be systematic for all
samples (see Problem 4.3). Three biologically plausible explanations were sub-
sequently tested by Castric et al. (2002).

First, it is known that brook trout may exhibit a morphologically subtle trophic
polymorphism in north temperate lakes. If morphs are somewhat reproductively
isolated and genetically divergent, sampling of both forms together would result in
fewer heterozygotes than expected in a randomly mating population (Wahlund
effect). Using an individual-based maximum likelihood method, we found that the
presence of two genetically divergent subpopulations in our sample could not
account for the observed heterozygote deficiencies (Figure 5.3a), and so rejected
this explanation.
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Figure 5.3 Statistical analysis of genotypes sampled from Clish Lake to test for the
causes of a deficit of heterozygotes at six microsatellite loci in brook trout from small
lakes. (a) Evidence against the Wahlund effect being the sole explanation for the
observed heterozygote deficiency. The maximum likelihood partition in the observed
population (arrow) is not significantly more likely than the distribution of maximum
likelihood partitions based on randomized populations. (b) Evidence that the observed
relatedness among sampled individuals from the same sample from Clish Lake 
is higher than expected with random mating. The FIS of this sample was 0.153 
(P = 0.007). From Castric et al. (2002).
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154 bp

150 bp

Problem 5.2

Test the chromosomal inversion types reported in orangutans (see Table 3.3) for
conformance to Hardy–Weinberg proportions. You should do a total of four tests,
one for each of the two polymorphisms (chromosomes 2 and 9) in both wild- and
zoo-born animals. Note: there is an Excel program (HW program) on the book
website that you can use to do these calculations.

Second, mating among relatives could perhaps be more frequent in small lakes
and lead to heterozygote deficiencies. In two of the lakes, significantly more fish
had low individual multilocus heterozygosity than expected with random mating.
Thus, more inbred fish apparently were sampled than expected in a randomly mat-
ing population. This suggested that small lakes may bias the reproductive system of
this fish towards more frequent matings among relatives.

Third, sampling of genetically related fish would also lead to departures from
Hardy–Weinberg proportions. In the same two lakes, the distribution of pair-
wise individual relatedness coefficients departed from its random expectation
(Figure 5.3b), and suggested that perhaps kin groups were sampled.

These results showed that lake size not only affects the number of individuals in
a population, but also can affect the mating system.

Problem 5.1

The gel below shows genetic variation at a microsatellite locus (COCL4) in 
16 majestic mountain whitefish sampled from the Bear River, Utah, USA 
(A. Whiteley, unpublished data). There are two alleles in this population (154 and
150). The two individuals marked with arrows are controls with known genotypes
from other populations. Calculate the allele frequencies in this sample of 16 fish
and test for conformance to Hardy–Weinberg proportions.
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Problem 5.3

The following genotypic data were collected at 34 allozyme loci from brown bears
on the mainland of Alaska and Canada (see Table 4.1). Complete the table below.
Is there any indication that these genotypes differ from expected Hardy–Weinberg
proportions? The most common allele at each locus is designated as 1.

Calculate the mean expected heterozygosity (He), and the proportion of loci that
are polymorphic (P) for this population sample at these 34 loci. Note: your answer
should be similar to the value presented for this sample in Table 4.1.

Problem 5.4

O’Donald and his colleagues have studied the genetics and evolution of color
phases of the Arctic skua (Stercorarius parasiticus) for many years on Fair Isle,
Scotland (O’Donald and Davis 1959, 1975). Some birds have pale plumage with a
white neck and body while other birds have a dark brown head and body. The
breeding adults and their chicks (normally two per brood) are caught and
classified just before flying.

The following results were obtained through 1951–1958:

Chicks

Parental types Pale Dark

Pale × pale 29 0
Pale × dark 52 86
Dark × dark 25 240

Total 106 326

Locus

GPI-2

LDH-A

PGD

PGM-1

TPI-1

29-loci

Genotypes Allele frequencies

11

81

77

39

55

67

83

X 2 df Probability12

2

6

30

26

16

–

22

0

0

7

2

0

–

13

–

–

1

–

–

–

23

–

–

3

–

–

–

1

0.988

2

0.012

3

0.000

33

–

–

3

–

–

–
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Describe a single locus model that fits the above inheritance results. Assume
that the chicks represent a random sample of the population and use your genetic
model to estimate allele frequencies. What proportion of chicks resulting from
matings between dark parents are expected to be pale if your genetic model is
correct and the population is in Hardy–Weinberg proportions? Does this agree
with the observations? (See Example 5.4.)

Problem 5.5

Groombridge et al. (2000) have described the loss of genetic variation in kestrels
(Falco punctatus) on the Indian Ocean Island of Mauritius by comparing geno-
types at 10 microsatellite loci in 26 individuals from museum specimens up to 150
years old and 75 individuals from the extant Mauritius population. Only three of
these 10 loci are polymorphic in the extant population (5, 82-2, and Fu-2 ). We will
examine these data in more detail in the next chapter. There is an Excel file
(Mauritius kestrel data) on the book website that presents the original data from
these authors.

(a) Test if the genotype frequencies from the extant population are in
Hardy–Weinberg proportions using the genotypic data presented in
Sheet 1. (Note: do not test the historical sample for Hardy–Weinberg 
proportions because the sample size is so small and there are so many
alleles at some loci.)

(b) Use the allele frequencies presented in Sheet 2 to calculate the average
expected heterozygosity (He) of the historical and current population of
Mauritius kestrels at these 10 loci.

Problem 5.6

Seven of 50 black bears sampled on Princess Royal Island off the coast of British
Columbia were white (Marshall and Ritland 2002). As discussed in Chapter 2,
white bears are homozygous for a recessive allele at a single autosomal locus
(aa).

(a) Estimate the frequency of the a allele in black bears on this island.
(b) What is the probability that the first cub produced by a mating between a

white (aa) and a black bear (AA or Aa) in this population will be white?

Problem 5.7

The Gouldian finch of northern Australia is polymorphic for facial color. Most birds
are black-faced, but some birds are red-faced. Inheritance results have indicated
that black-faced coloring is caused by a recessive allele (r ) that is Z-linked
(Buckley 1987). The following phenotypes were observed in birds from the
Yinberrie Hills (Franklin and Dostine 2000):

CATC05  28/05/2007  05:58PM  Page 115



116 PART II MECHANISMS OF EVOLUTIONARY CHANGE

Black Red % red

Males 97 45 31.7

Females 93 23 19.8

Total 190 68 26.4

Are the observed frequencies compatible with the proposed model of black-faced
coloring being caused by a Z-linked recessive allele?

Problem 5.8

Spruell et al. (1999a) described a null allele at a microsatellite locus (SSA197 ) in
pink salmon on the basis of inheritance analysis. A total of 16 alleles were found at
this locus, including the null allele. The following genotypes resulted from combin-
ing (or binning) all alleles smaller than 150 base pairs into one allelic class (A) and
binning all alleles greater than 150 base pairs into another allelic class (B). Let us
call the null allele homozygotes (O) so we can estimate allele frequencies using
the approach presented in Section 5.4 for the ABO blood group locus.

AA AB BB OO
7 11 11 2

Use the Excel program ABO estimation on the book website to estimate the 
frequency of the null allele in this sample.

Problem 5.9

We saw in Section 5.3 that an examination of the pattern across samples and loci
can be important for identifying possible causes for observed deviations from
Hardy–Weinberg proportions. Let us again consider a situation where eight devi-
ations (P < 0.05) from Hardy–Weinberg proportions are detected in a study of 10
loci examined in 10 population samples. Assume that all eight of these deviations
are found in the sample population and there is an excess of heterozygotes in all
cases. Suggest a possible explanation for this observation.
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6

Small Populations 
and Genetic Drift

The race is not always to the swift, nor the battle to the strong, for time and chance
happens to us all.

Ecclesiastes 9:11

Whether our concern is the wild relatives of cultivated plants or wild animals, the
conservationist is faced with the ultimate sampling problem – how to preserve
genetic variability and evolutionary flexibility in the face of diminishing space and
with very limited economic resources. Inevitably we are concerned with the gen-
etics and evolution of small populations, and with establishing practical guidelines
for the practicing conservation biologist.

Sir Otto H. Frankel and Michael E. Soulé (1981, p. 31)

6.1 Genetic drift, 118

6.2 Changes in allele frequency, 122

6.3 Loss of genetic variation: the inbreeding effect of small populations, 123

6.4 Loss of allelic diversity, 126

6.5 Founder effect, 129

6.6 Genotypic proportions in small populations, 136

6.7 Fitness effects of genetic drift, 138

Guest Box 6 The inbreeding effect of small population size reduces  
population growth rate in mosquitofish, 141

Land snail, Example 6.2
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Genetic change will not occur in populations if all the assumptions of the Hardy–Weinberg
equilibrium are met (Section 5.1). In this and the next several chapters we will see what
happens when the assumptions of Hardy–Weinberg equilibrium are violated. In this chap-
ter, we will examine what happens when we violate the assumption of infinite population
size. That is, what will be the effect on allele and genotype frequencies when population
size (N ) is finite?

All natural populations are finite so genetic drift will occur in all natural populations,
even very large ones. For example, consider a new mutation that occurs in an extremely
large population of insects that numbers in the millions. Whether or not the single copy of
a new mutation is lost from this population will be determined primarily by the sampling
process that determines what alleles are transmitted to the next generation. Thus, the fate
of this rare allele in even an extremely large population will be determined by genetic drift.

Understanding genetic drift and its effects is extremely important for conservation.
Fragmentation and isolation due to habitat loss and modification has reduced the popula-
tion size of many species of plants and animals throughout the world. We will see in future
chapters how genetic drift is expected to affect genetic variation is these populations. More
importantly, we will consider how genetic drift may reduce the fitness of individuals in
these populations and limit the evolutionary potential of these populations to evolve by
natural selection.

6.1 Genetic drift

Genetic drift is random change in allele frequencies from generation to generation
because of sampling error. That is, the finite number of genes transmitted to progeny will
be an imperfect sample of the allele frequencies in the parents (Figure 6.1). The mathemat-
ical treatment of genetic drift began with R. A. Fisher (1930) and Sewall Wright (1931) who
considered the effects of binomial sampling in small populations. This model is therefore
often referred to as the Wright–Fisher or Fisher–Wright model. However, Fisher and
Wright strongly disagreed on the importance of drift in bringing about evolutionary
change. Genetic drift is often called the “Sewall Wright effect” in recognition that the
importance of drift in evolution was largely introduced by Wright’s arguments.

It is often helpful to consider extreme situations in order to understand the expected
effects of relaxing assumptions on models. Consider the example of a plant species capable
of self-fertilization with a constant population size of N = 1, consisting of a single indi-
vidual of genotype Aa; the allele frequency in this generation is 0.5. We cannot predict
what the allele frequency will be in the next generation because the genotype of the single
individual in the next generation will depend upon which alleles are transmitted via the
chance elements of Mendelian inheritance. However, we do know that the allele fre-
quency in the next generation has to be 0.0, 0.50, or 1.0 because the only three possible
genotypes are AA, Aa, or aa. In fact, based upon Mendelian expectations there is a 50%
probability that allele frequency will become either zero or one in the next generation.

Genetic drift is an example of a stochastic process in which the actual outcome cannot
be predicted because it is affected by random elements (chance). Tossing a coin is one
example of a stochastic process. One-half of the time, we expect a head to result, and one-
half of the time we expect a tail. However, we do not know what the outcome of any
specific coin toss will be. We can mimic or simulate the effects of genetic drift by using a
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Generation Frequency
(white)

0 0.5

0.5

1 0.6

0.6

2 0.8

0.8

3 0.4

Allele frequencies in
gamete pool are
exactly the same as
the gamete-producing
adults

Random sample of 10
gametes drawn from
the gamete pool

Figure 6.1 Random sampling of gametes resulting in genetic drift in a population. Allele
frequencies in the gamete pools (large boxes) are assumed to reflect exactly the allele
frequencies in the adults of the parental generation (small boxes). The allele frequencies
fluctuate from generation to generation because the population size is finite (N = 5). From
Graur and Li (2000).
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series of coin tosses. Consider a population initially consisting of two heterozygous (Aa)
individuals, one male and one female. Heterozygotes are expected to transmit the A and a
alleles with equal probability to each gamete. A coin is tossed to specify which allele is
transmitted by heterozygotes; an outcome of head (H) represents an A allele; and a tail (T)
represents an a. No coin toss is needed for homozygous individuals since they will always
transmit the same allele.

The results of one such simulation using these rules are shown in Table 6.1 and Fig-
ure 6.2. In the first generation, the female transmitted the A allele to both progeny because
both coin tosses resulted in heads. The male transmitted an A allele to his daughter and an
a allele to his son because the coin tosses resulted in a head and then a tail. Thus, the allele
frequency (p) changed from 0.5 in the initial generation to 0.75 in the first generation, and
the expected heterozygosity in the population changed as well. This process is continued
until the seventh generation when both individuals become homozygous for the a allele,
and, thus, no further gene frequency changes can occur.

Table 6.1 shows one of many possible outcomes of genetic drift in a population with
two individuals. However, we are nearly certain to get a different result if we start over
again. In addition, it would be helpful to simulate the effects of genetic drift in larger 

H H H T

T H H T

H H T H

T T

Aa

Aa

Aa

Aa

Aa

Aa

AA

Aa

Figure 6.2 Simulation of genetic drift in a population consisting of a single female (circle) 
and male (square) each generation. A coin is tossed twice to simulate the two gametes
produced by each heterozygote. A head (H) indicates that the A allele is transmitted and 
a tail (T) indicates the a allele. Homozygotes always transmit the allele for which they 
are homozygous.
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populations. In principle, this can be done by tossing a coin; however, it quickly becomes
extremely time consuming.

A better way to simulate genetic drift is through computer simulations. Computational
methods are available to produce a random number that is uniformly distributed between
zero and one. This random number can be used to determine which allele is transmitted
by a heterozygote. For example, if the random number is in the range of 0.0 to 0.5, we can
specify that the A allele is transmitted; similarly, a random number in the range of 0.5 to 1.0
would specify an a allele. Models such as this are often referred to as Monte Carlo simula-
tions in reference to the gambling tables in Monte Carlo. Figure 6.3 shows changes in allele
frequencies in three populations of different sizes as simulated with a computer. The

Table 6.1 Simulation of genetic drift by coin tossing in a population of one female and one
male over seven generations. A coin is tossed twice to specify which alleles are transmitted by
heterozygotes; an outcome of head (H) represents an A allele; and a tail (T) represents an a.
The first toss represents the allele transmitted to the female in the next generation and the
second toss the male (as shown in Figure 6.2). p is the frequency of the A allele. The observed
and expected heterozygosities (assuming Hardy–Weinberg proportions) are also shown.

Generation Mother Father p H0 He

0 Aa (HH) Aa (HT) 0.50 1.000 0.500
1 AA Aa (TT) 0.75 0.500 0.375
2 Aa (TH) Aa (HT) 0.50 1.000 0.500
3 Aa (HH) Aa (TH) 0.50 1.000 0.500
4 Aa (TT) AA 0.75 0.500 0.375
5 aA (HT) aA (TT) 0.50 1.000 0.500
6 Aa (TT) aa 0.25 0.500 0.375
7 aa aa 0.00 0.000 0.000

A
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eq
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y

N = 10
N = 50

N = 200

1.0

0.8

0.6

0.4

0.2

0.0
0 201510

Generations
5

Figure 6.3 Results of computer simulations of changes in allele frequency by genetic drift for
each of three population sizes (N ) with an initial allele frequency of 0.5.
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smaller the population size, the greater are the changes in allele frequency due to drift
(compare N of 10 and 200).

The sampling process that we have examined here has two primary effects on the
genetic composition of small populations:

1 Allele frequencies will change.
2 Genetic variation will be lost.

We can model genetic changes in small populations either by changes in allele frequencies
or increase in homozygosity caused by inbreeding. As allele frequencies change because of
genetic drift, heterozygosity is expected to decrease (and homozygosity increase). For
example, heterozygosity became zero in generation 16 with N of 10 because only one
allele remained in the population. Once such a “fixation” of one allele or another occurs, it
is permanent; only mutation (Chapter 12) or gene flow (Chapter 9) from another popula-
tion can introduce new alleles. We will consider the effects of genetic drift on both allele
frequencies and genetic variation in the next two sections.

6.2 Changes in allele frequency

We cannot predict the direction of change in allele frequencies from generation to genera-
tion because genetic drift is a random process. The frequency of any allele is equally likely
to increase or decrease from one generation to the next because of genetic drift. Although
we cannot predict the direction of change in allele frequency, we can describe the expected
magnitude of the change in allele frequency. In general, the smaller the population, the
greater the change in allele frequency that is expected (Figure 6.3).

The change in allele frequencies from one generation to the next because of genetic
drift is a problem in sampling. A finite sample of gametes is drawn from the parental gen-
eration to produce the next generation. Both the sampling of gametes and the coin toss
can be described by the binomial sampling distribution (see Appendix Section A2.1). The
variance of change in allele frequency from one generation to the next is thus the binomial
sampling variance:

Given that the current allele frequency is p with a population size of N, there is approx-
imately a 95% probability that the allele frequency in the next generation will be in the
interval:

(6.1)

For example, with an allele frequency of 0.50 and an N of 10, the allele frequency in the
next generation will be in the interval 0.28 to 0.72 with 95% probability (expression 6.1). In
contrast, with a p of 0.5 and an N of 200, this interval is only 0.45–0.55.

  
′ = ±p p

pq
N

    
( )

( )
2

2

  
V

pq
N

q   =
2
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6.3 Loss of genetic variation: the inbreeding effect of small populations

Genetic drift is expected to cause a loss of genetic variation from generation to generation.
Inbreeding occurs when related individuals mate with one another. Inbreeding is one
consequence of small population size; see Chapter 13 for a detailed consideration of
inbreeding. For example, in an animal species with N = 2, the parents in each generation
will be full sibs (that is, brother and sister). Matings between relatives will cause a loss of
genetic variation. The inbreeding coefficient ( f ) is the probability that the two alleles at a
locus within an individual are identical by descent (that is, identical because they are
derived from a common ancestor in a previous generation). We will consider several dif-
ferent inbreeding coefficients that have specialized meaning (e.g., FIS, FST, etc. in Chapter 9
and F in Chapter 13). We will use the general inbreeding coefficient f in this chapter as
defined above, along with its counterpart heterozygosity (h), which is equal to 1 − f.

In general, the increase in homozygosity due to genetic drift will occur at the following
rate per generation:

∆f = (6.2)

This effect was first discussed by Gregor Mendel who pointed out that only half of the
progeny of a heterozygous self-fertilizing plant will be heterozygous; one-quarter will be
homozygous for one allele and the remaining one-quarter will be homozygous for the
other allele (Table 6.2). This is as predicted by expression 6.2 (N = 1, ∆f = 0.50).

We have seen that the expected rate of loss of heterozygosity per generation is 
∆f = 1/2N; therefore, after t generations:

ft = 1 − (1 − )t (6.3)
  

1

2N

  

1

2N

Table 6.2 This table appeared in Mendel’s original classic paper in 1865. He was considering
the expected genotypic ratios in subsequent generations from a single hybrid (i.e.,
heterozygous) individual that reproduced by self-fertilization. Mendel assumed that each
plant in each generation had four offspring. The homozygosity (Homo) and heterozygosity
(Het) columns did not appear in the original paper.

Ratio
Generation AA Aa aa AA : Aa : aa Homo Het

1 1 2 1 1 : 2 : 1 0.500 0.500
2 6 4 6 3 : 2 : 3 0.750 0.250
3 28 8 28 7 : 2 : 7 0.875 0.125
4 120 16 120 15 : 2 : 15 0.938 0.062
5 496 32 496 31 : 2 : 31 0.939 0.031

n 2n – 1 : 2 : 2n – 1 1 – (1/2)n (1/2)n
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ft is the expected increase in homozygosity at generation t and is known by a variety of
names (e.g., autozygosity, fixation index, or the inbreeding coefficient) depending upon
the context in which it is used.

It is often more convenient to keep track of the amount of variation remaining in a popu-
lation using h (heterozygosity), where:

f = 1 − h (6.4)

Therefore, the expected decline in h per generation is:

∆h = − (6.5)

so that after one generation:

ht+1 = (1 − )ht (6.6)

The heterozygosity after t generations can be found by:

ht = (1 − )th0 (6.7)

where h0 is the initial heterozygosity (Example 6.1).

Example 6.1 Mauritius kestrels bottleneck

Kestrels on the Indian Ocean Island of Mauritius went through a bottleneck of one
female and one male in 1974 (Nichols et al. 2001). The population had fewer than
10 birds throughout the 1970s, and there were less than 50 birds in this population
for many years because of the widespread use of pesticides from 1940 to1960.
However, this population grew to nearly 500 birds by the mid-1990s. Nichols et al.
(2001) examined the loss in genetic variation in this population at 10 microsatellite
loci by comparing living birds to 26 ancestral birds from museum skins that were
up to 170 years old. The heterozygosity of the restored population was 0.099
compared to heterozygosity in the ancestral birds of 0.231. The amount of het-
erozygosity expected to remain in Mauritius kestrels after one generation of a 
bottleneck of N = 2 can be estimated using expression 6.6:

(1 − )ht = (1 − )(0.231) = 0.173

We can use expression 6.7 to see that the amount of heterozygosity in the
restored population of Mauritius kestrels is approximately the same as would we
would expect after a bottleneck of two individuals for three generations:

1
4

1
2N

  

1

2N

  

1

2N

  

1

2N
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(1 − )th0 = (0.75)3(0.231) = 0.097

The actual bottleneck in Mauritius kestrels was almost certainly longer than 
three generations with more birds than two birds each generation. However, the
expressions in this chapter all assume discrete generations and cannot be
applied directly to species such as the Mauritius kestrels that have overlapping
generations.

Figure 6.4 shows this effect at a locus with two alleles and an initial frequency of 0.5 in a
series of computer simulations of eight populations that consist of 20 individuals each.
These 20 individuals possess 40 gene copies at any given locus. Forty gametes must be
drawn from these 40 parental gene copies to form the next generation. The genotype of
any one selected gamete does not affect the probability of the next gamete that is drawn;
this is similar to a coin toss where one outcome does not affect the probability of the 
next toss.

Two of the eight populations simulated became fixed for the A allele and one became
fixed for the a allele. Both of the alleles were retained by five of the populations after 20
generations. The heterozygosity in each of the populations is shown in Figure 6.5. There
are large differences among populations in the decline in heterozygosity over time.
Nevertheless, the mean decline in heterozygosity for all eight populations is very close to
that predicted with expression 6.6.

The heterozygosity at any single locus with two alleles is equally likely to increase or
decrease from one generation to the next (except in the case when the allele frequencies
are at 0.5). This may seem counterintuitive in view of expression 6.6, which describes a
monotonic decline in heterozygosity. Heterozygosity at a locus with two alleles is at a

1
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5

Figure 6.4 Computer simulations of genetic drift at a locus having two alleles with initial
frequencies of 0.5 in eight populations of 20 individuals each.
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maximum when the two alleles are equally frequent (p = q = 0.5) (Figure 6.6). The fre-
quency of any particular allele is equally likely to increase or decrease due to genetic drift.
Thus, heterozygosity will increase if the allele frequency drifts towards 0.5, and it will
decrease if the allele frequency drifts toward 0 or 1. However, the expected net loss is
greater than the net gain in heterozygosity in each generation by 1/2N.

6.4 Loss of allelic diversity

We have so far measured the loss of genetic variation caused by small population size by
the expected reduction in heterozygosity (h). There are other ways to measure genetic
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Figure 6.5 (a) Expected heterozygosities (2pq) in the eight populations (N = 20) undergoing
genetic drift as shown in Figure 6.3. The dashed line shows the expected change in
heterozygosity using expression 6.6. (b) Mean heterozygosity for all loci (solid line) and 
the expected heterozygosity using expression 6.6 (dashed line).
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variation and its loss. A second important measure of genetic variation is the number of
alleles present at a locus (A). There are advantages and disadvantages to both of these 
measures.

Heterozygosity has been widely used because it is proportional to the amount of
genetic variance at a locus, and it lends itself readily to theoretical considerations of the
effect of limited population size on genetic variation. In addition, the expected reduction
in heterozygosity because of genetic drift is independent of the number of alleles present.
Finally, estimates of heterozygosity from empirical data are relatively insensitive to sample
size, whereas estimates of the number of alleles in a population are strongly dependent
upon sample size. Therefore, comparisons of heterozygosities in different species or popu-
lations are generally more meaningful than comparisons of the number of alleles detected.

Nevertheless, heterozygosity has the disadvantage of being relatively insensitive to the
effects of bottlenecks (Allendorf 1986). The difference between heterozygosity and A is
greatest with extremely small populations (Figure 6.7). For example, a population with
two individuals is expected to lose only 25% (1/2N = 25%) of its heterozygosity. Thus, 75%
of the heterozygosity in a population will be retained even through such an extreme 
bottleneck. However, two individuals can possess a maximum of four different alleles.
Thus, considerably more of the allelic variation may be lost during a bottleneck if there are
many alleles present at a locus.

The effect of a bottleneck on the number of alleles present is more complicated than the
effect on heterozygosity because it is dependent on the number and frequencies of alleles
present (Allendorf 1986) (Question 6.1). The probability of an allele being lost during a
bottleneck of size N is:

(1 − p)2N (6.8)

where p is the frequency of the allele. This is the probability of sampling all of the gametes
to create the next generation (2N ) without selecting at least one copy of the allele in ques-
tion. Rare alleles (say p < 0.10) are especially susceptible to loss during a bottleneck.
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Figure 6.6 Expected heterozygosity (2pq) at a locus with two alleles as a function of allele
frequency.
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However, the loss of rare, potentially important, alleles will have little effect on heterozy-
gosity. For example, an allele at a frequency of 0.01 has a 60% chance of being lost follow-
ing a bottleneck of 25 individuals (expression 6.8). Figure 6.8 shows the probability of the
loss of rare alleles during a bottleneck of N individuals.

Question 6.1 We have seen that the proportion of heterozygosity remaining after
a bottleneck of a single generation is (1 − 1/2N ), regardless of the number of 
alleles present and their frequencies. However, the amount of allelic diversity
expected to remain after a bottleneck does depend on allele frequencies. Show
that the number of alleles expected to remain after a bottleneck of N = 2 differs at
a locus with two alleles if one of the alleles is rare (say q = 0.1 and p = 0.9) in com-
parison to when the two alleles are equally frequent (p = q = 0.5).

In general, if a population is reduced to N individuals for one generation, then the
expected total number of alleles (A′) remaining is:

E(A′) = A − (1 − pj)
2N (6.9)

where A is the initial number of alleles and pj is the frequency of the jth allele. For example,
consider a locus with two alleles at frequencies of 0.9 and 0.1 and a bottleneck of just two
individuals. In this case:

E(A′) = 2 − (1 − 0.9)4 − (1 − 0.1)4 = 1.34

  j
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Figure 6.7 Simulated loss of heterozygosity and allelic diversity at eight microsatellite loci
during a bottleneck of two individuals for five generations. The original allele frequencies are
from a population of brown bears from the Western Brooks Range of Alaska. Redrawn from
Luikart and Cornuet (1998).
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Thus, on the average, we expect to lose one of these two alleles nearly two-thirds of the
time. In contrast, there is a much greater expected probability of retaining both alleles at a
locus with two alleles if the two alleles are equally frequent:

E(A′) = 2 − (1 − 0.5)4 − (1 − 0.5)4 = 1.88

Thus, the expected loss of alleles during a bottleneck depends upon the number and fre-
quencies of the alleles present. This is in contrast to heterozygosity, which is lost at a rate of
1/2N regardless of the current heterozygosity.

The loss of alleles during a bottleneck will have a drastic effect on the overall genotypic
diversity of a population. As we saw in Section 4.2, the number of genotypes grows very
quickly as the number of alleles increases. For example, the number of possible genotypes
at a locus with 2, 5, and 10 alleles is 3, 15, and 55, respectively. Thus, the loss of alleles 
during a bottleneck will greatly reduce the genotypic diversity in a population that is sub-
ject to natural selection.

6.5 Founder effect

The founding of a new population by a small number of individuals will cause abrupt
changes in allele frequency and loss of genetic variation (Example 6.2). Such severe “bot-
tlenecks” in population size are a special case of genetic drift. Perhaps surprisingly, how-
ever, even extremely small bottlenecks have relatively little effect on heterozygosity. For
example, with sexual species the smallest possible bottleneck is N = 2. Even in this extreme
case, the population will only lose 25% of its heterozygosity (see expression 6.5). Stated in
another way, just two individuals randomly selected from any population, regardless of
size, will contain 75% of the total heterozygosity in the original population. We can also
use expression 6.5 to estimate the size of the founding population if we know how much
heterozygosity has been lost through the founding bottleneck (Question 6.2).
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Figure 6.8 Probability of retaining a rare allele (P = 0.01, 0.05, or 0.10) after a bottleneck of
size N for a single generation (expression 6.8).
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Example 6.2 Effects of founding events on allelic diversity in a snail

The land snail Theba pisana was introduced from Europe into western Australia in
the 1890s. A colony was founded in 1925 on Rottnest Island with animals taken
from the mainland population near Perth. Johnson (1988) reported the allele fre-
quencies at 25 allozyme loci. Figure 6.9 shows the loss of rare alleles caused 
by the bottleneck associated with the founding of a population in Perth on the
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Figure 6.9 Effects of bottlenecks on the number of rare alleles at 25 allozyme loci in 
the land snail Theba pisana that was introduced from Europe into western Australia in
the 1890s. Data from Johnson (1988).
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mainland and in the second bottleneck associated with the founding of a popula-
tion on nearby Rottnest Island. The height of each bar represents the number of
alleles in that sample that had the frequency specified on the x-axis. For example,
there were eight alleles that had a frequency of less than 0.05 in the founding
French population. However, there were no alleles in either of the two Australian
populations at a frequency of less than 0.05.

The distribution of allele frequencies, such as plotted in Figure 6.9, can be used
to detect bottlenecks even when data are not available from the pre-bottlenecked
population (Luikart et al. 1998). Rare alleles (frequency less than 0.05) are
expected to be common in samples from populations that have not been bottle-
necked in their recent history, such as observed in the French sample (see
Chapter 12). The complete absence of such rare alleles in Australia would have
suggested that these samples came from recently bottlenecked populations even
if the French sample was not available for comparison.

Question 6.2 We will see in Example 6.3 that the founding of a new population of
Laysan finches on Southeast Island resulted in a reduction in average heterozy-
gosity of 8% in comparison to the founding population on Laysan Island. Assume
that all of the loss in heterozygosity was caused by the initial founding event; that
is, assume that there has been no additional loss of heterozygosity on Southeast
Island because of small population size. What is the number of founders that would
be expected to produce the observed result of an 8% reduction in heterozygosity?

A laboratory experiment with guppies demonstrates this effect clearly (Nakajima et al.
1991). Sixteen separate subpopulations were derived from a large random mating labor-
atory colony of guppies by mating a female with a single male. After four generations,
each of these subpopulations contained more than 500 individuals. Approximately 45 fish
were then sampled from each subpopulation and genotyped at two protein loci that were 
polymorphic in the original colony (Table 6.3).

The mean heterozygosity at both loci in these 16 subpopulations was 0.358, in compar-
ison to heterozygosity in the original colony of 0.482. Thus, the mean heterozygosity in 
the subpopulations, following a bottleneck of two individuals, was 26% lower than in the
population from which the subpopulations were founded. This agrees very closely with
the prediction from expression 6.5 that predicts a 25% reduction following a bottleneck of
two individuals.

The total amount of heterozygosity lost during a bottleneck depends upon how long it
takes the population to return to a “large” size (Nei et al. 1975). That is, species such as
guppies, in which individual females may produce 50 or so progeny, may quickly attain
large enough population sizes following a bottleneck so that little further variation is lost
following the initial bottleneck. However, species with lower population growth rates may
persist at small population sizes for many generations during which heterozygosity is 
further eroded.
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The growth rate of a population following a bottleneck can be modeled using the 
so-called logistic growth equation that describes the size of a population after t genera-
tions based upon the initial population size (N0), the intrinsic growth rate (r), and the equi-
librium size of the population (K ):

(6.10)

The constant e is the base of the natural logarithms (approximately 2.72), and b is a con-
stant equal to (K − N0)/N0.

We can estimate the total expected loss in heterozygosity in the guppy example depend-
ing upon the rate of population growth of the subpopulations. The initial size of the sub-
populations (N0) was 2, and we assume the equilibrium size (K ) was 500. We can then
examine three different intrinsic growth rates (r): 1.0, 0.5, and 0.2. An r of 1.0 indicates that
population size is increasing by a factor of 2.72 (e) each generation when population size is
far below K. Similarly, rs of 0.5 and 0.2 indicate growth rates of 1.65 and 1.22 at small popu-
lation sizes, respectively. A detailed discussion of use of the logistic equation to describe
population growth can be found in chapters 15 and 16 of Ricklefs and Miller (2000).

Expression 6.10 can be used to predict the expected population size in each generation
following the bottleneck. We expect heterozygosity to be eroded at a rate of 1/2N in each

  
N t

K
be

( )  
  

=
+ −1 rt

Table 6.3 Allele frequencies (p) and heterozygosities (h) at two loci in 16 subpopulations of
guppies founded by a single female and male. He is the mean heterozygosity at the two loci.

AAT-1 PGM-1

Subpopulation p h p h He

1 0.521 0.499 0.677 0.437 0.468
2 0.738 0.387 0.600 0.480 0.433
3 0.377 0.470 0.131 0.227 0.349
4 0.915 0.156 0.939 0.114 0.135
5 0.645 0.458 0.638 0.461 0.460
6 0.571 0.490 0.548 0.495 0.492
7 0.946 0.102 0.833 0.278 0.190
8 0.174 0.287 0.341 0.449 0.368
9 0.617 0.473 0.500 0.500 0.486

10 0.820 0.295 0.640 0.461 0.378
11 0.667 0.444 0.917 0.152 0.298
12 0.219 0.342 0.531 0.498 0.420
13 1.000 0 0.838 0.272 0.136
14 0.250 0.375 0.853 0.251 0.313
15 0.375 0.469 0.740 0.385 0.427
16 0.152 0.258 0.582 0.486 0.372

Average 0.562 0.344 0.644 0.372 0.358

Original colony 0.581 0.487 0.605 0.478 0.482
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of these generations. Figure 6.10 shows the expected loss in heterozygosity in our guppy
example for 10 generations following the bottleneck. As expected, populations having a
relatively high growth rate (r = 1.0) will lose little heterozygosity following the initial bot-
tleneck. However, heterozygosity is expected to continue to erode even 10 generations fol-
lowing the bottleneck in populations with the slowest growth rate. In general, bottlenecks
will have a greater and more long lasting effect on the loss of genetic variation in species
with smaller intrinsic growth rates (e.g., large mammals) than species with high intrinsic
growth rates (e.g., insects).

Founder events and population bottlenecks will have a greater effect on the number of
alleles in a population than on heterozygosity (see Figure 6.6). Some classes of loci in ver-
tebrates have been found to have many nearly equally frequent alleles. For example, Gibbs
et al. (1991) have described 37 alleles at the hypervariable major histocompatibility (MHC)
locus in a sample of 77 adult blackbirds from Ontario (Figure 6.11). As we have seen, two
birds chosen at random from this population are expected to contain 75% of the heterozy-
gosity. However, two birds can at best possess four of the 37 different MHC alleles. Thus, at
least 33 of the 37 detected alleles (89%) will be lost in a bottleneck of two individuals
(Question 6.3). Thus, bottlenecks of short duration may have little effect on heterozygos-
ity but will reduce severely the number of alleles present at some loci (Example 6.3).

Question 6.3 Gibbs et al. (1991) have described 37 nearly equally frequent alle-
les at the hypervariable major histocompatibility (MHC) locus in a sample of 77
adult blackbirds from Ontario (Figure 6.11). How much genetic variation would
you expect to be retained at this locus if this population went through a very small
population bottleneck (say 10 breeding individuals) and then quickly recovered to
over 100 individuals? Consider both heterozygosity and allelic diversity.

H
et

er
oz

yg
os

ity

1.0 

0.8 

0.6 

0.4 

0.2 

0.0
0 321 10987

Generations
654

r = 0.2

r = 0.5

r = 1.0

N = 14

N = 187

N = 494

Figure 6.10 Expected heterozygosities in subpopulations of guppies going through a
bottleneck of two individuals and growing at different rates (r) according to the logistic
growth equation (expression 6.10). N is the expected population size for each growth rate 
at the 10th generation.

CATC06  28/05/2007  06:04PM  Page 133



134 PART II MECHANISMS OF EVOLUTIONARY CHANGE

Example 6.3 Founding events in the Laysan finch

The Laysan finch is an endangered Hawaiian honeycreeper found on several
islands in the Pacific Ocean (Tarr et al. 1998). The species underwent a bottle-
neck of approximately 100 birds on Laysan Island after the introduction of rabbits
in the early 1900s (Figure 6.12). The population recovered rapidly after eradica-
tion of the rabbits and has fluctuated around a mean of 10,000 birds since 1968. In
1967, the US Fish and Wildlife Service translocated 108 finches to Southeast
Island, one of several small islets approximately 300 km northwest of Laysan that
comprise Pearl and Hermes Reef. The translocated population declined to 30–50
birds and then rapidly increased to some 500 birds on Southeast Island. Several
smaller populations have since become established in other islets within the reef.
Two birds colonized Grass Island in 1968 and six more finches were moved to this
islet in 1970. The population of birds on Grass Island has fluctuated between 20
and 50 birds. In 1973, a pair of finches founded a population on North Island. The
population of birds on North Island has fluctuated between 30 and 550 birds.

Tarr et al. (1998) assayed variation at nine microsatellite loci to examine the
effects of the founder events and small population sizes in these four populations
(Table 6.4). Their empirical results are in close agreement with theoretical expecta-
tions. All three newly founded populations have fewer alleles than the founding
population on Laysan. The average heterozygosity on Southeast Island is approx-
imately 8% less than on Laysan Island; the heterozygosities on the two other
islands are approximately 30% less than the original founding population on Laysan.

However, heterozygosities at four of the nine loci are actually greater in the
post-bottleneck population on Southeast Island than on Laysan; see the discus-
sion in Section 6.3. Thus, it is important to examine many loci to detect and quant-
ify the effects of bottlenecks in populations on heterozygosity.
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Figure 6.11 Distribution of frequencies of alleles at the highly variable MHC locus detected in
red-wing blackbirds. The height of each bar represents the number of the alleles that had the
frequency specified on the x-axis. Thus, just over 20% of the 37 alleles had frequencies of 
less than 1% in the sample. Compare this to Figure 6.9 which is the equivalent plot of allele
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6.6 Genotypic proportions in small populations

We saw in the guppy example (see Table 6.3) that the separation of a large random mating
population into a number of subpopulations can cause a reduction in heterozygosity, and a
corresponding increase in homozygosity. However, genotypes within each subpopulation
will be in Hardy–Weinberg proportions as long as random mating occurs within the sub-
populations. It may seem paradoxical that heterozygosity is decreased in small popula-
tions, but the subpopulations themselves remain in Hardy–Weinberg proportions. The
explanation is that the reduction in heterozygosity is caused by changes in allele frequency
from one generation to the next, while Hardy–Weinberg genotypic proportions will occur
in any one generation as long as mating is random.

In fact, there actually is a tendency for an excess of heterozygotes in small populations
of animals and plants with separate sexes (Example 6.4). Different allele frequencies in the
two sexes will cause an excess in heterozygotes relative to Hardy–Weinberg proportions
(Robertson 1965; Kirby 1975; Brown 1979). An extreme example of this is that of hybrids
produced by males from one strain (or species) and females from another so that all
progeny are heterozygous at any loci where the two strains differ. In this case, however,
genotypic proportions will return to Hardy–Weinberg proportions in the next generation.

Example 6.4 Small populations of bull trout

The expected excess of heterozygotes in small populations can sometimes be
used to detect populations with a small number of individuals. For example, Leary

Pearl and Hermes
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Figure 6.12 Map of Pearl and Hermes Reef and colonization history of the three finch
populations from Example 6.3. Ranges of population size on the islands are shown in
parentheses. The inset is the Hawaiian Archipelago. Redrawn from Tarr et al. (1998).

CATC06  28/05/2007  06:04PM  Page 136



CHAPTER 6 SMALL POPULATIONS AND GENETIC DRIFT 137

et al. (1993a) examined bull trout from a hatchery population at four polymorphic
allozyme loci and found a strong tendency for an excess of heterozygotes (Table 6.5;
see Example 5.1). On the average, there was a 38% excess of heterozygotes at
four polymorphic loci; a 25% excess of heterozygotes would be expected if all of
the progeny came from just two individuals (see expression 6.8).

Further examination of genotype frequencies suggests that these fish were pro-
duced by a very small number of parents. The exceptionally high proportion of het-
erozygotes (0.88) at mIDHP-1 suggests that most fish came from a single-pair
mating between individuals homozygous for the two different alleles at this locus;
all progeny from such a mating will be heterozygous at the locus. Allele frequen-
cies at the four polymorphic loci also support the inference that most of these fish
resulted from a single-pair mating. The only allele frequencies possible in a full-sib
family are 0.00, 0.25, 0.50, 0.75, and 1.00 because the two parents possess four
copies of each gene (see Table 6.6); the allele frequencies at all four loci are near
these values.

When we asked about the source of these fish after this genetic evaluation, we
were told that the fish sampled were produced from at most three wild females
and two wild males that were taken from the Clark Fork River in Idaho.

Table 6.5 Observed (and expected) genotypic proportions in bull trout
sampled from a hatchery population. P(1) is the estimated frequency of the
1 allele. *, P < 0.05; ***, P < 0.001.

Genotype

Locus 11 12 22 £(1) F

GPI-A 10 15 0 0.700 −0.43*
(12.2) (10.5) (2.2)

IDDH 24 1 0 0.980 0.00
(24.1) (1.0) (0.0)

mIDHP-1 1 22 2 0.480 −0.76***
(5.8) (12.5) (6.8)

IDHP-1 12 13 0 0.740 −0.35
(13.7) (9.6) (1.7)

Mean −0.38

In small populations, allele frequencies are likely to differ between the sexes just due to
chance. On average, the frequency of heterozygotes in the progeny population will exceed
Hardy–Weinberg expectations by a proportion of:

(6.11)
1

8

1

8N Nm f

  +
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where Nm and Nf are the numbers of male and female parents (Robertson 1965). This result
holds regardless of the number of alleles at the locus concerned.

Let us consider the extreme case of a population with one female and one male (N = 2)
and two alleles (Table 6.6). There are six possible types of matings. Mating between iden-
tical homozygotes (either AA or aa) will produce monomorphic progeny. Progeny pro-
duced by matings between two heterozygotes will result in expected Hardy–Weinberg
proportions. However, the other three matings will result in an excess of heterozygotes.
The extreme case is a mating between opposite homozygotes, which will produce all het-
erozygous progeny. On the average, there will be a 25% excess of heterozygotes in popula-
tions produced by a single male and a single female (expression 6.11).

With more than two alleles, there will be a deficit of each homozygote and an overall
excess of heterozygotes. However, some heterozygous genotypes may be less frequent
than expected by Hardy–Weinberg proportions, despite the overall excess of heterozygotes.

6.7 Fitness effects of genetic drift

We have considered in some detail how genetic drift is expected to affect allele frequencies
and reduce the amount of genetic variation in small populations. We will now take an 
initial look at the effects that this loss of genetic variation is expected to have on the popu-
lation itself (see Guest Box 6). That is, how will the loss of genetic variation expected in
small populations affect the capability of a population to persist and evolve? We will take a
more in depth look at these effects in later chapters.

6.7.1 Changes in allele frequency

Large changes in allele frequency from one generation to the next are likely in small popu-
lations due to chance. This effect may cause an increase in frequency of alleles that have
harmful effects. Such deleterious alleles are continually introduced by mutation but are
kept at low frequencies by natural selection. Moreover, most of these harmful alleles are
recessive so that their harmful effects on the phenotype are only expressed in homozy-

Table 6.6 Expected Mendelian genotypic proportions at a locus with two alleles in a
population with a single female and a single male. FIS equals [1 − (H0/He)] and is a measure of
the deficit of heterozygotes observed relative to the expected Hardy–Weinberg proportions
(see Chapter 9). A negative FIS indicates an excess of heterozygotes.

Mating AA Aa aa Freq(A) FIS

AA × AA 1.00 0 0 1.00 –
AA × Aa 0.50 0.50 0 0.75 −0.33
AA × aa 0 1.00 0 0.50 −1.00
Aa × Aa 0.25 0.50 0.25 0.50 0.00
Aa × aa 0 0.50 0.50 0.25 −0.33
aa × aa 0 0 1.00 0.00 –
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gotes. It is estimated that every individual in a population harbors several of these harmful
recessive alleles in a heterozygous condition without any phenotypic effects (see Chapter 13).

Let us consider the possible effect of a population bottleneck of two individuals. As we
have seen, most rare alleles will be lost in such a small bottleneck. However, any allele for
which one of the two founders is heterozygous will be found in the new population at 
a frequency of 25%. Thus, rare deleterious alleles present in the founders will jump in 
frequency to 25%. Of course, at most loci the two founders will not carry a harmful allele.
However, every individual carries harmful alleles at some loci. Therefore, we cannot 
predict which particular harmful alleles will increase in frequency following a bottleneck,
but we can predict that several harmful alleles that were rare in the original population
will be found at much higher frequencies. And if the bottleneck persists for several genera-
tions, these harmful alleles may become more frequent in the new population.

This effect is commonly seen in domestic animals such as dogs in which breeds often
originated from a small number of founders. Different dog breeds usually have some 
characteristic genetic abnormality that is much more common within the breed than in
the species as a whole (Hutt 1979). For example, different kinds of hemolytic anemia are
common in several dog breeds (e.g., basenjis, beagles, and Alaskan malamutes).

Dalmatians were originally developed from a few founders that were selected for their
running ability and distinctive spotting pattern. Dalmatians are susceptible to kidney
stones because they excrete exceptionally high amounts of uric acid in their urine. This dif-
ference is due to a recessive allele at a single locus (Trimble and Keeler 1938). Apparently,
one of the principal founders of this breed carried this recessive allele, and it subsequently
drifted to high frequency in this breed.

6.7.2 Loss of allelic diversity

We have seen in Section 6.4 that genetic drift will have a much greater effect on the allelic
diversity of a population than on heterozygosity if there are many alleles present at a locus.
Evidence from many species indicates that loci associated with disease resistance often
have many alleles (Clarke 1979). The best example of this is the major histocompatibility
complex (MHC) in vertebrates (Edwards and Hedrick 1998). The MHC in humans con-
sists of four or five tightly linked loci on chromosome 6 (Vogel and Motulsky 1986). Many
alleles occur at all of these loci; for example, there are 10 or more nearly equally frequent
alleles at the A locus and 15 or more at the B locus.

MHC molecules assist in the triggering of the immune response to disease organisms.
Individuals heterozygous at MHC loci are relatively more resistant to a wider array of
pathogens than are homozygotes (see Hughes 1991). Most vertebrate species that have
been studied have been found to harbor an amazing number of MHC alleles (Hughes
1991) (see Figure 6.11). Thus, the loss of allelic diversity at MHC loci is likely to render
small populations of vertebrates much more susceptible to disease epidemics (Paterson 
et al. 1998; Gutierrez-Espeleta et al. 2001).

6.7.3 Inbreeding depression

The harmful effects of inbreeding have been known for a long time. Experiments with
plants by Darwin and others demonstrated that loss of vigor generally accompanied 
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continued selfing and that crossing different lines maintained by selfing restored the lost
vigor. Livestock breeders also generally accepted that continued inbreeding within a herd
or flock could lead to a general deterioration that could be restored by outcrossing. The
first published experimental report of the effects of inbreeding in animals were with rats
(Crampe 1883; Ritzema-Bos 1894).

The implication of these results for wild populations did not go unnoticed by Darwin. 
It occurred to him that deer kept in British parks might be affected by isolation and 
“long-continued close interbreeding”. He was especially concerned because he was 
aware that the effects of inbreeding may go unnoticed because they accumulate slowly.
Darwin inquired about this effect and received the following response from an experi-
enced gamekeeper:

. . . the constant breeding in-and-in is sure to tell to the disadvantage of the whole
herd, though it may take a long time to prove it; moreover, when we find, as is very
constantly the case, that the introduction of fresh blood has been of the greatest use
to deer, both by improving their size and appearance, and particularly by being of
service in removing the taint of “rickback” if not other diseases, to which deer are
sometime subject when the blood has not been changed, there can, I think, be no
doubt but that a judicious cross with a good stock is of the greatest consequence, and
is indeed essential, sooner or later, to the prosperity of every well-ordered park.
(Darwin 1896, p. 99)

Despite Darwin’s concern and warning, these early lessons from agriculture were
largely ignored by those responsible for the management of wild populations of game 
and by captive breeding programs of zoos for nearly 100 years (see Voipio 1950 for an
exception).

A seminal paper in 1979 by Kathy Ralls and her colleagues had a dramatic effect on 
the application of genetics to the management of wild and captive populations of 
animals. They used zoo pedigrees of 12 species of mammals to show that individuals 
from matings between related individuals tended to show reduced survival relative to
progeny produced by matings between unrelated parents. The pedigree inbreeding
coefficient (F ) is the expected increase in homozygosity for inbred individuals; it is 
also the expected decrease in heterozygosity throughout the genome of inbred individ-
uals (see Chapter 13). One of us (FWA) can clearly remember being excitedly questioned
in the hallway by our departmental mammalogist who had just received his weekly issue
of Science and could not believe the data of Ralls and her colleagues. Subsequent studies
(Ralls and Ballou 1983; Ballou 1997; Lacy 1997) have supported their original conclusions
(Figure 6.13).

Inbreeding depression may result from either increased homozygosity or reduced het-
erozygosity (Crow 1948). That is, a greater number of deleterious recessive alleles will be
expressed in inbred individuals because of their increased homozygosity. In addition,
fitness of inbred individuals will be reduced at loci at which the heterozygotes have a selec-
tive advantage over all homozygous types (heterozygous advantage or overdominance).
Both of these mechanisms are likely to contribute to inbreeding depression, but it is
thought that increased expression of deleterious recessive alleles is the more important
mechanism (Charlesworth and Charlesworth 1987; Hedrick and Kalinowski 2000).
Inbreeding depression is considered in detail in Chapter 13.
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Guest Box 6 The inbreeding effect of small population size reduces population
growth rate in mosquitofish
Paul L. Leberg and David L. Rogowski

Although domestic breeding programs, experiments, and observations from zoos
indicate that inbreeding can have a detrimental effect on the well being of indi-
viduals, it is not clear to what extent the depression of individual survival, growth,
and fecundity, translates to reduced viability of populations. Conservation biologists
are most interested in the fates of populations; if the effects of inbreeding on popu-
lation viability are trivial, scarce financial resources would be best expended on
issues other than inbreeding avoidance and genetic management (e.g., restoration
of gene flow or immigration). Numerous investigations have demonstrated that
inbreeding has affected population growth (which is closely associated with viabil-
ity when population sizes are small) in the laboratory; however, most of these have
been conducted with Drosophila or houseflies that are not very similar to many
threatened taxa. Studies of the effects of inbreeding on population growth are very
difficult in vertebrates, and there have been few attempts to examine this question
under conditions reflecting the complexity of natural systems.

Using large pools, set up as small ponds with predators, prey populations, and
nutrient cycles, it is possible to study the role of founder numbers and relatedness
on population growth in fish under conditions that are more complex than those
typical of laboratory studies (Leberg 1991, 1993, unpublished data). Mosquitofish
are similar in size and life history to the guppy; their short life span and rapid 
reproduction makes studies of population processes easier than in longer lived 
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Figure 6.13 Effects of inbreeding on juvenile mortality in 44 captive populations of mammals
(16 ungulates, 16 primates, and 12 small mammals). The line shows equal mortality in inbred
and noninbred progeny. The preponderance of points below the line (42 of 44) indicates that
inbreeding generally increased juvenile mortality. The open circles indicate populations in
which juvenile mortality was significantly different (P < 0.05; exact test). Data from Ralls and
Ballou (1983).
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vertebrates. Furthermore, several species of mosquitofish are endangered making
them of conservation interest, although our experiments are based on very abund-
ant taxa. Growth rates were estimated as the log of the ratio of two population 
censuses divided by the number of weeks between samples. While related to the
intrinsic rate of increase (r) of the population size (expression 6.10), the growth
rates presented here are only surrogates for r.

Population growth rates for populations were much lower in populations
founded with related individuals (higher inbreeding coefficients, expression 6.3)
than unrelated individuals (Figure 6.14). Direct comparisons should be made only
between points connected by lines as these populations had the same number and
sex ratio of founders and differed only in the relatedness of the founders. It is
unclear whether the negative effects of inbreeding on population growth were prim-
arily due to decreased survival or to reduced fecundity rates. However, decreases 
in fecundity must have played some role as the proportions of juveniles (in a popu-
lation), average brood sizes, and the size of males were reduced in the most inbred
populations. As inbreeding can decrease population growth rates (Mills and
Smouse 1994; Newman and Pilson 1997), it has the potential to reduce the recovery
of populations from reductions in size, thus increasing the potential of more inbred
matings. Inbreeding and reduced population growth rates can have important
implications for the viability of populations, especially in smaller populations that
have a greater risk of being extirpated as a result of stochastic processes.
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Figure 6.14 Relationship of founder relatedness to growth (±1 SE) of mosquitofish
populations, for three numbers of founders. Pairs of points connected by lines indicate
populations founded with the same number of founders; however founders differed 
in their degree of relatedness as indicated by the fixation index (higher index values
indicate that founders are more related). The number of individuals used to found the
experimental populations is located above each pair of points.
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Problem 6.1

Define genetic drift. What are the two main effects of genetic drift on the genetic
composition of populations?

Problem 6.2

Why is allelic diversity lost faster than heterozygosity in small populations? What
is the primary characteristic of an allele that will determine its probability of being
lost in a bottleneck?

Problem 6.3

Simulate genetic drift in a population (N = 2) with one female (Aa) and one male
(Aa) by flipping a coin as shown in Figure 6.2 until the frequency of the A allele
becomes one or zero. Present your results as shown in Table 6.1. How many gen-
erations did it take before one allele or the other became fixed? Which allele
became fixed? If you did this simulation 100 times, how many times would you
expect the a allele to become fixed?

Problem 6.4

Simulate genetic drift in a population with one female and one male by flipping a
coin, except this time begin with the female being AA and the male being Aa.
Present your results as shown in Table 6.1. How many generations did it take
before one allele or the other became fixed? Which allele became fixed? If you did
this simulation 100 times, how many times would you expect the a allele to
become fixed?

Problem 6.5

There are a variety of computer programs available for simulating the effects of
genetic drift. Populus (Alstad 2001) is a particularly useful educational software
package for simulating genetic drift and other population genetic processes that
we will use. Open the Mendelian Genetics/Genetic Drift module of Populus and
determine if your answers to the two previous questions are correct. That is, what
is the relationship between the initial allele frequency and the probability of an
allele eventually becoming fixed in a population? Set the number of loci to the
maximum of 10 and vary the population size and initial allele frequency.

Problem 6.6

We saw in Example 6.3 that heterozygosities at individual loci may increase even
though overall heterozygosity will be reduced as predicted by expression 6.5. Set
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the initial allele frequency with Populus at 0.25 with 10 loci and explore the
observed pattern of genetic drift with a population size of 25 for 100 generations.
You should see that heterozygosity will increase after one generation at approx-
imately half of the loci. Remember, in this case heterozygosity will increase if the
allele frequency increases and will decrease if the allele frequency decreases.
How many generations does it take before the heterozygosity at all 10 loci is less
than in the initial population? How many loci do you think would be necessary to
monitor in a population to get an accurate measure of the size of a population?

Problem 6.7

Kimura and Ohta (1969) have shown that the expected time until fixation occurs in
a population is approximately 4N generations. Set the initial allele frequency with
Populus at 0.5 with 10 loci and explore if this expectation seems to hold. It may be
helpful to begin with very small population sizes and then explore results with
larger populations. Is this result sensitive to the initial allele frequency?

Problem 6.8

The following allele frequencies were estimated at two microsatellite loci in brown
bears from Scandinavia (Waits et al. 2000):

Locus Alleles

Mu51 102 110 112 114 116 118 120 122
0.080 0.241 0.098 0.011 0.006 0.098 0.408 0.057

Mu61 205 207 211
0.472 0.301 0.227

Assume that a new population of brown bears is founded on an island in the Baltic
Sea from two bears randomly selected from this population. Use expression 6.9 
to predict the number of alleles expected at these two loci in this newly founded
population. The expected heterozygosity at 19 microsatellite loci in this population
was 0.66. What do you expect the heterozygosity to be at these loci in the newly
founded population after a generation of random mating? Compare the proportion
of alleles expected to be lost at these two loci to the proportion of heterozygosity
expected to be lost in a bottleneck of N = 2.

Problem 6.9

Kurt Vonnegut (1985) wrote a science fiction novel (Galápagos) about a time in
the future when all humans are descended from two men and two women who
happened to be on a cruise to the Galápagos Islands in 1986. What proportion of
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the total heterozygosity in a population do we expect to be retained after a bottle-
neck of four individuals (see expression 6.5)? One could argue on this basis that
even extreme bottlenecks, such as four individuals, would not have a major effect
on populations or species. Do you agree with this argument? Why not?

Problem 6.10

Johnson (1988) reported the following allele frequencies at 25 allozyme loci in the
land snail Theba pisana, which was introduced from Europe into western Australia
in the 1890s (see Example 6.2). Describe the amounts of genetic variation in
these three samples (heterozygosity and allelic diversity). Assume that all of the
loss in heterozygosity was caused by the initial founding events; that is, assume
that there has been no additional loss of heterozygosity in the mainland Australia
or Rottnest Island populations because of small population size. What is the num-
ber of founders in the two founding events that would explain the differences in
heterozygosities in these three populations?

Australia

Locus Allele France Perth Rottnest

G6PDH 105 0.03 – –
100 0.97 1.00 1.00

IDH-1 110 0.14 – –
100 0.79 0.92 0.77
90 0.07 0.08 0.23

LDH 100 0.97 1.00 1.00
77 0.03 – –

LAP-1 106 0.35 – –
103 0.26 – –
100 0.39 1.00 1.00

LGP-2 127 0.11 – –
118 0.09 – –
109 0.09 – –
100 0.69 1.00 1.00
82 0.02 – –

LTP-1 100 0.78 0.88 1.00
96 0.22 0.12 –

LTP-2 105 – 0.06 –
100 0.40 0.29 0.80
95 0.44 0.65 0.20
90 0.16 – –

LTP-3 111 0.02 – –
100 0.70 0.60 1.00
91 0.26 0.40 –
84 0.02 – –
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Australia

Locus Allele France Perth Rottnest

MDH-3 100 0.97 1.00 1.00
70 0.03 – –

PGM-2 130 0.07 0.10 0.34
117 0.21 – –
100 0.72 0.90 0.66

PGM-3 225 0.03 – –
175 0.21 0.60 0.71
155 0.34 – –
140 0.02 – –
100 0.40 0.40 0.29

14 loci 100 1.00 1.00 1.00
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Effective Population 
Size

Effective population size is whatever must be substituted in the formula (1/2N) to
describe the actual loss in heterozygosity.

Sewall Wright (1969)

Effective population size (Ne) is one of the most fundamental evolutionary para-
meters of biological systems, and it affects many processes that are relevant to 
biological conservation.

Robin Waples (2002)

7.1 Concept of effective population size, 148

7.2 Unequal sex ratio, 151

7.3 Nonrandom number of progeny, 153

7.4 Fluctuating population size, 157

7.5 Overlapping generations, 158

7.6 Variance effective population size, 159

7.7 Cytoplasmic genes, 159

7.8 Gene genealogies and lineage sorting, 162

7.9 Limitations of effective population size, 163

Medium ground finch, Example 7.2
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7.10 Effective population size in natural populations, 166

Guest Box 7 Estimation of effective population size in Yellowstone 
grizzly bears, 167

We saw in the previous chapter that we expect heterozygosity to be lost at a rate of 1/2N in
finite populations (see expression 6.2). However, this expectation holds only under certain
conditions that will rarely apply to real populations. For example, such factors as the num-
ber of individuals of reproductive age rather than the total of all ages, the sex ratio, and dif-
ferences in reproductive success among individuals must be considered. Thus, the actual
number of individuals in a natural population (so-called census size, Nc) is not sufficient for
predicting the rate of genetic drift. We will use the concept of effective population size to
deal with the discrepancy between the demographic size and population size relevant to
the rate of genetic drift in natural populations.

Perhaps the most important assumption of our model of genetic drift has been the
absence of natural selection. That is, we have assumed that the genotypes under investiga-
tion do not affect the fitness (survival and reproductive success) of individuals. We would
not be concerned with the retention of genetic variation in small populations if the
assumption of genetic neutrality were true for all loci in the genome. However, the
assumption of neutrality, and the use of neutral loci, allows us to predict the effects of finite
population size with great generality. In Chapter 8 we will consider the effects of incorpor-
ating natural selection into our basic models of genetic drift.

7.1 Concept of effective population size

Our consideration in the previous chapter of genetic drift dealt only with “ideal” popula-
tions. Effective population size (Ne) is defined as the size of the ideal population (N) that
will result in the same amount of genetic drift as in the actual population being considered.
The basic ideal population consists of “N diploid individuals reconstituted each generation
from a random sample of 2N gametes” (Wright 1939, p. 298). In an ideal population indi-
viduals produce both female and male gametes (monoecy) and self-fertilization is pos-
sible. Under these conditions, heterozygosity will decrease exactly by 1/2N per generation.

We can see this by considering an ideal population of N individuals (say 10) in which
each individual is heterozygous for two unique alleles (Figure 7.1). All of these 10 indi-
viduals will contribute equally to the gamete pool to create each individual in the next gen-
eration. Thus, each allele will be at a frequency of 1/2N = 0.05 in the gamete pool. A new
individual will only be homozygous if the same allele is present in both gametes. For the
purposes of our calculations, it does not matter which allele is sampled first because all
alleles are equally frequent. Let us say the first gamete chosen is α15. This individual will be
homozygous only if the next gamete sampled is also α15. What is the probability that the
next gamete sampled is α15? This probability is simply the frequency of the α15 allele in
the gamete pool, which is 1/2N = 0.05 because all 20 alleles (2 × 10) are at equal frequency
in the gamete pool (Figure 7.1). Therefore, the expected homozygosity is 1/2N, and the
expected heterozygosity of each individual in the next generation is 1 − (1/2N ) = 0.95.
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This conceptual model becomes more complicated if self-fertilization is prevented, or if
the population is dioecious and is equally divided between males and females. In these
two cases, the decrease in heterozygosity due to sampling individuals from the gamete
pool will skip a generation because both gametes in an individual cannot come from the
same parent. Nevertheless, the mean rate of loss per generation over many generations is
similar in this case; heterozygosity is lost at a rate more closely approximated by 1/(2N +
1) (Wright 1931; Crow and Denniston 1988). The difference between these two expecta-
tions, 1/2N and 1/(2N + 1), is usually ignored because the difference is insignificant except
when N is very small.

For our general purposes, the ideal population consists of a constant number of N
diploid individuals (N/2 females and N/2 males) in which all parents have an equal prob-
ability of being the parent of any individual progeny. We will consider the following effects
of violating the following assumptions of such idealized populations on the rate of genetic
drift:

1 Equal numbers of males and females.
2 All individuals have an equal probability of contributing an offspring to the next 

generation.
3 Constant population size.
4 Nonoverlapping (discrete) generations.

h = 1.0

Gamete
pool

Equal frequency
of 20 alleles

Equal contribution
of 10 individuals

Randomly pick
two gametes

h = 1 – (1/2N ) = 0.95

N = 10

α1α2

α7α8

α13α14

α3α4

α9α10

α15α16

α5α6

α11α12

α17α18

α19α20

Figure 7.1 Diagram of reduction in heterozygosity (h) in an ideal population consisting of 10
individuals that are each heterozygous for two unique alleles (h = 1). Two gametes are picked
from the gamete pool to create each individual in the next generation. Let us say the first
gamete chosen is α15. This individual will be heterozygous unless the next gamete sampled 
is also α15. What is the probability that the next gamete sampled is α15? This is the frequency
of the α15 allele in the gamete pool, which is 1/2N = 0.05 because of the equal contribution of
individuals to the gamete pool. Therefore, the expected heterozygosity of each individual in
the next generation is 1 − (1/2N ) = 0.95.
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We have already examined two expected effects of genetic drift: changes in allele fre-
quency (Section 6.2) and a decrease in heterozygosity (Section 6.3). Thus, there are at least
two possible measures of the effective population size (i.e., the rate of genetic change due
to drift). First, the “variance effective number” (NeV) is whatever must be substituted in
expression 6.1 to predict the expected changes in allele frequency; second, the “inbreeding
effective number” (NeI) is whatever must be substituted in expression 6.2 to predict the
expected reduction in heterozygosity (Example 7.1). Crow (1954) and Ewens (1982) have
described effective population numbers that predict the expected rate of decay of the pro-
portion of polymorphic loci (P); we will only consider the first two kinds of effective popu-
lation size (NeV and NeI) because they have more relevance for understanding the loss of
genetic variation in populations.

Example 7.1 Effective population size of grizzly bears

Harris and Allendorf (1989) estimated the effective population size of grizzly bear
populations using computer simulations based upon life history characteristics
(survival, age at first reproduction, litter size, etc.). They estimated Ne by compar-
ing the actual loss of heterozygosity in the simulated populations to that expected
in ideal populations of N = 100 (Figure 7.2). Over a wide range of conditions, the
effective population size was approximately 25% of the actual population size.
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Figure 7.2 Estimation of effective size of grizzly bear populations (Nc = 100) by
computer simulation. The dashed line shows the expected decline in heterozygosity
over 10 generations (100 years) in an ideal population using expression 6.7. The solid
line shows the decline in heterozygosity in a simulated population. The decline in
heterozygosity in the simulated population is equal to that expected in an ideal
population of 34 bears; thus, Ne = 34. (m is the slope of the regression of the log 
of heterozygosity on time.) From Harris and Allendorf (1989).
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Crow and Denniston (1988) have clarified the distinction between these two measures
of effective population size. In many cases, a population has nearly the same effective 
population number for either effect. Specifically, their values are identical in constant size
populations in which the age and sex distributions are unchanging. We will first consider
Ne to be the inbreeding effective population size under different circumstances because
this number is most widely used, and we will then consider when these two numbers 
will differ.

7.2 Unequal sex ratio

Populations often have unequal numbers of males and females contributing to the next
generation. The two sexes, however, contribute an equal number of genes to the next gen-
eration regardless of the total of males and females in the population. Therefore, the
amount of genetic drift attributable to the two sexes must be considered separately.
Consider the extreme case of one male mating with 100 females. In this case, all progeny
will be half-sibs because they share the same father. In general, the rarer sex is going to
have a much greater effect on genetic drift, so that the effective population size will seldom
be much greater than twice the size of the rarer sex.

What is the size of the ideal population that will lose heterozygosity at the same rate as
the population we are considering which has different numbers of females and males? We
saw in Section 6.3 that the increase in homozygosity due to genetic drift is caused by an
individual being homozygous because its two gene copies were derived from a common
ancestor in a previous generation. The inbreeding effective population size in a monoe-
cious population in which selfing is permitted may be defined as the reciprocal of the prob-
ability that two uniting gametes come from the same parent. With separate sexes, or if
selfing is not permitted, uniting gametes must come from different parents; thus, the effec-
tive population size is the probability that two uniting gametes come from the same
grandparent.

The probability that the two uniting gametes in an individual came from a male grand-
parent is 1/4. (One-half of the time uniting gametes will come from a grandmother and a
grandfather, and 1/4 of the time both gametes will come from a grandmother.) Given that
both gametes come from a grandfather, the probability that both come from the same
male is 1/Nm, where Nm is the number of males in the grandparental generation. Thus, 
the combined probability that both uniting gametes come from the same grandfather is
(1/4 × 1/Nm) = 1/4Nm. The same probabilities hold for grandmothers. Thus, the com-
bined probabilities of uniting gametes coming from the same grandparent is then:

(7.1)

This is more commonly represented by solving for Ne with the following result:

(7.2)

As we would expect, if there are equal numbers of males and females (Nf = Nm = 0.5N ),
then this expression reduces to Ne = N.
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Melampy and Howe (1977) described skewed sex ratios in the tropical tree Triplaris
americana from four sites in Costa Rica. We can use expression 7.2 to predict what effect
the observed excess of females would have on the effective population size (Table 7.1).
There is a substantial reduction in Ne of this tree only at site 4 where males comprise
approximately 20% of the population.

In general, a skewed sex ratio will not have a large effect on the Ne : N ratio unless there
is a great excess of one sex or the other. Figure 7.3 shows this for a hypothetical population
with a total of 100 individuals. Ne is maximum (100) when there are equal numbers of
males and females, but declines as the sex ratio departs from 50 : 50. However, small
departures from 50 : 50 have little effect on Ne. The dashed lines in this figure show that the
Ne : N ratio will only be reduced by half if the least common sex is less than 15% of the total
population. In the most extreme situations, the Ne will be approximately four times the
rarer sex:

Table 7.1 Sex ratios of the tropical tree Triplaris americana at four study
sites in Costa Rica (Melampy and Howe 1977). Nc is the census population
size, which in this case is the number of trees present at a site.

Sites Females Males Nc Ne Ne/Nc

1 61 41 102 98.1 0.96
2 58 42 100 97.4 0.97
3 56 44 100 98.6 0.99
4 47 12 59 38.2 0.65
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Figure 7.3 The effect of sex ratio on effective population size for a population with a total of
100 males and females using expression 7.2. The dashed lines indicate the sex ratios at which
Ne will be reduced by half because of a skewed sex ratio.
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Nf Nm Ne

1,000 1 4.0
1,000 2 8.0
1,000 3 12.0
1,000 4 15.9
1,000 5 19.9

The estimated Ne will not be a very good indicator of the loss of allelic diversity when
sex ratios are extremely skewed (Question 7.1).

Question 7.1 Consider the hypothetical situation where a single tree is left stand-
ing after the clearcut of an entire population of ponderosa pine. This lone tree
holds over 5,000 seeds that were fertilized by pollen from a random sample of the
entire pre-clearcut population of 500 trees. What proportion of the heterozygosity
and allelic diversity present in the pre-clearcut population would you expect to be
present in a new population founded from these 5,000 seeds?

7.3 Nonrandom number of progeny

Our idealized model assumes that all individuals have an equal probability of contributing
progeny to the next generation. That is, a random sample of 2N gametes is drawn from 
a population of N diploid individuals. In real populations, parents seldom have an equal
chance of contributing progeny because they differ in fertility and in the survival of their
progeny. The variation among parents results in a greater proportion of the next gen-
eration coming from a smaller number of parents. Thus, the effective population size 
is reduced.

It is somewhat surprising just how much variation in reproductive success there actu-
ally is even when all individuals have equal probability of reproducing. Figure 7.4 shows
the expected frequency of progeny number in a very large, stable population in which the
mean number of progeny is two and all individuals have equal probability of reproducing.
Take, for example, a stable population of 20 individuals (10 males and 10 females). On
average, each individual will have two progeny. However, approximately 12% of all indi-
viduals will not contribute any progeny! Consider that the probability of any male not
fathering a particular child in this population is (0.90 = 9/10). The probability of a male
not contributing any of the 20 progeny therefore is (0.90)20, or approximately 12%. The
same statistical reasoning holds for females as well. Thus, on average, two or three of the
20 individuals in this population will not contribute any genes to the next generation while
an expected one out of the 20 individuals (5% from Figure 7.4) will produce five or more
progeny.

We can adjust for nonrandom progeny contribution following Wright (1939). Consider
N individuals that contribute varying numbers of gametes (k) to the next generation of the
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same size (N ) so that the mean number of gametes contributed per individual is K = 2. The
variance of the number of gametes contributed to the next generation is:

(7.3)

The proportion of cases in which two random gametes will come from the same parent is:

(7.4)

As we saw in the previous section, the effective population size may be defined as the
reciprocal of the probability that two gametes come from the same parent. Thus, we may
write the effective population size as:

(7.5)

Random variation of k will produce a distribution that approximates a Poisson distribu-
tion. A Poisson distribution has a mean equal to the variance; thus, Vk = K = 2 and Ne = N
for the idealized population. However, as the variability among parents (Vk) increases the
effective population size decreases. An interesting result is that the effective population
size will be larger than the actual population size if Vk < 2. In the extreme where each 
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Figure 7.4 Expected frequency of number of progeny per individual in a large stable
population in which the mean number of progeny per individual is two and all individuals
have equal probability of reproducing.
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parent produces exactly two progeny, Ne = 2N − 1. Thus, in captive breeding where we can
control reproduction, we may nearly double the effective population size by making sure
that all individuals contribute equal numbers of progeny.

This potential near doubling of effective population size occurs because there are two
sources of genetic drift: reproductive differences among individuals and Mendelian segre-
gation in heterozygotes. These two sources contribute equally to genetic drift. Thus, elim-
inating the first source of drift will double the effective population size. Unfortunately,
there is no way to eliminate the second source of genetic drift (Mendelian segregation),
except by nonsexual reproduction (cloning, etc.).

The following example considers three hypothetical populations of constant size N = 10
with extreme differences in individual reproductive success (Table 7.2). Each population
consists of five pairs of mates. In Population A, only one pair of mates reproduces success-
fully. In Population B, each of the five pairs produces two offspring so that there is no 
variance in reproductive success. There is an intermediate amount of variability in 
reproductive success in Population C.

We can estimate Ne for each of these populations using expressions 7.3 and 7.5 as shown
in Table 7.3. Thus, Population B is expected to lose only approximately 3% (1/2Ne = 0.026)
of its heterozygosity per generation while Populations A and C are expected to lose 24 and
5%, respectively. There are very few examples in natural populations where the reproduc-
tive success of individuals is known so that Ne can be estimated using this approach
(Example 7.2).

Table 7.2 Estimation of effective population size in three hypothetical populations of
constant size N = 10 with extreme differences in individual reproductive success. Each
population consists of five pairs of mates. In Population A, only one pair of mates reproduces
successfully. In Population B, each of the five pairs produces two offspring so that there is 
no variance in reproductive success. There is an intermediate amount of variability in
reproductive success in Population C.

A B C

i ki ki −− ª (ki −− ª )2 ki ki −− ª (ki −− ª )2 ki ki −− ª (ki −− ª )2

1 10 8 64 2 0 0 0 –2 4
2 10 8 64 2 0 0 0 –2 4
3 0 –2 4 2 0 0 3 1 1
4 0 –2 4 2 0 0 3 1 1
5 0 –2 4 2 0 0 2 0 0
6 0 –2 4 2 0 0 2 0 0
7 0 –2 4 2 0 0 1 –1 1
8 0 –2 4 2 0 0 1 –1 1
9 0 –2 4 2 0 0 4 2 4

10 0 –2 4 2 0 0 4 2 4

160 0 20
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Example 7.2 Effective population size of Darwin’s finches

Grant and Grant (1992a) reported the lifetime reproductive success of two
species of Darwin’s ground finches on Daphne Major, Galápagos: the cactus
finch and the medium ground finch. They followed survival and lifetime reproduc-
tive success of four cohorts born in the years 1975–1978. Figure 7.5 shows the
lifetime reproductive success of the 1975 cohort for both species. The variance in
reproductive success for both species was much greater than expected in ideal
population (see Figure 7.2). Over one-half of the birds in both species did not pro-
duce any recruits to the next generation, and several birds produced eight or more
recruits. Eighteen cactus finches produced 33 recruits (( = 1.83) distributed with a

Table 7.3 Estimation of effective population size for three
hypothetical populations with high, low, and intermediate
variability in family size using expression 7.5.

∑∑ (ki −− ª )2 Vk Ne 1/2Ne

Population A 160 16 2.11 0.237

Population B 0 0 19.00 0.026

Population C 20 2 9.50 0.053

Geospiza fortis (N = 65)
Geospiza scandens (N = 18)
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Figure 7.5 Lifetime reproductive success of the 1975 cohort of the cactus finch and
medium ground finches on Isla Daphne Major, Galápagos. The x-axis shows the
number of recruits (progeny that breed) produced. Thus, over 50% of the breeding
birds for both species did not produce any progeny that lived to breed. From Grant 
and Grant (1992a).
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variance (Vk) of 6.74; 65 medium ground finches produced 102 recruits (( = 1.57)
distributed with a variance (Vk) of 7.12. The average number of breeding birds
(census population sizes) for these years was approximately 94 cactus finches
and 197 medium ground finches. The estimated Ne based on these data is 38 cactus
finches and 60 medium ground finches. Thus, the Ne : Nc ratio for these two
species is 38/94 = 0.40 and 60/197 = 0.30.

Expression 7.5 assumes that the variance in progeny number is the same in males and
females. However, the variation in progeny number among parents is likely to be different
for males and females. For many animal species, the variance of progeny number for males
is expected to be larger than that for females. For example, according to the 1990 Guinness
Book of World Records, the greatest number of children produced by a human mother is 69;
in great contrast, the last Sharifian Emperor of Morocco is estimated to have fathered
some 1,400 children! We can take such differences between the sexes into account as
shown

(7.6)

The estimation of effective population size with nonrandom progeny number becomes
much more complex if we relax our assumption of constant population size. In the case of
separate sexes, the following expression may be used:

(7.7)

where Nt–2 is N in the grandparental generation (Crow and Denniston 1988).

7.4 Fluctuating population size

Natural populations may fluctuate greatly in size. The rate of loss of heterozygosity
(1/2N) is proportional to the reciprocal of population size (1/N ). Generations with small
population sizes will dominate the effect on loss of heterozygosity. This is analogous to 
the sex with the smallest population size dominating the effect on loss of heterozygosity
(see Section 7.2). Therefore, the average population size over many generations is a poor
metric for the loss of heterozygosity over many generations.

For example, consider three generations for a population that goes though a severe bot-
tleneck, say N1 = 100, N2 = 2, and N3 = 100. A very small proportion of the heterozygosity
will be lost in generations 1 and 3 (1/200 = 0.5%); however, 25% of the heterozygosity will
be lost in the second generation. The exact heterozygosity remaining after these three
generations can be found as shown:
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The average population size over these three generations is (100 + 2 + 100)/3 = 67.3.
Using expression 6.7 we would expect to lose only approximately 2% of the heterozygosity
over three generations with a population size of 67.3, rather than the 25.7% heterozygos-
ity that is actually lost.

We can estimate the effective population size over these three generations by using the
mean of the reciprocal of population size (1/N ) in successive generations, rather than the
mean of N itself. This is known as the harmonic mean. Thus,

(7.8)

After a little algebra, this becomes:

(7.9)

Generations with the smallest N have the greatest effect. A single generation of small
population size may cause a large reduction in genetic variation. A rapid expansion in
numbers does not affect the previous loss of genetic variation; it merely reduces the cur-
rent rate of loss. This is known as the “bottleneck” effect as discussed in Section 6.5.

We can use expression 7.9 to predict the expected loss of heterozygosity in the example
that we began this section with:

We expect to lose 23.8% of the heterozygosity in a population where Ne = 5.77 over three
generations (see expression 6.7). This is very close to the exact value of 25.7% that we cal-
culated previously.

7.5 Overlapping generations

We so far have considered only populations with discrete generations. However, most
species have overlapping generations. Hill (1979) has shown that the effective number in
the case of overlapping generation is the same as that for a discrete-generation population
having the same variance in lifetime progeny numbers and the same number of individuals
entering the population each generation. Thus, the occurrence of overlapping generations
itself does not have a major effect on effective population size. However, this result
assumes a constant population size and a stable age distribution. Crow and Denniston
(1988) concluded that Hill’s results would be approximately correct for populations that
are growing or contracting, as long as the age distribution is fairly stable.
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7.6 Variance effective population size

The two measures of population size (NeI and NeV) will differ when the population size is
changing. In general, the inbreeding effective population size (NeI) is more related to the
number of parents since it is based on the probability of two gametes coming from the
same parent. The variance effective population size (NeV) is more related to the number of
progeny since it is based on the number of gametes contributed rather than the number of
parents (Crow and Kimura 1970, p. 361).

Consider the extreme of two parents that have a very large number of progeny. In this
case, the allele frequencies in the progeny will be an accurate reflection of the allele fre-
quencies in the parents; therefore, NeV will be nearly infinite. However, all the progeny will
be full-sibs and thus their progeny will show the reduction in homozygosity expected in
matings between full-sibs; thus, NeI is very small. In the other extreme, if each parent has
exactly one offspring then there will be no tendency for inbreeding in the populations,
and, therefore, NeI will be infinite. However, NeV will be small.

Therefore, if a population is growing, the inbreeding effective number is usually less
than the variance effective number (Waples 2002). If the population size is decreasing, the
reverse is true. In the long run, these two effects will tend to cancel each other and the two
effective numbers will be roughly the same (Crow and Kimura 1970; Crow and Denniston
1988).

7.7 Cytoplasmic genes

Genetic variation in cytoplasmic gene systems (e.g., mitochondria and chloroplasts) has
come under active investigation in the last few years because of advances in techniques to
analyze differences in DNA sequences. We will consider mitochondrial DNA (mtDNA)
because so much is known about genetic variation of this molecule. The principles we will
consider also apply to genetic variation in chloroplast DNA (cpDNA). However, cpDNA is
paternally inherited in some plants (Harris and Ingram 1991).

There are three major differences between mitochondrial and nuclear genes that are
relevant for this comparison:

1 Individuals usually possess many mitochondria that share a single predominant
mtDNA sequence. That is, individuals are effectively haploid for a single mtDNA type.

2 Individuals inherit their mtDNA genotype from their mother.
3 There is no recombination between mtDNA molecules.

The effective population size for mtDNA is smaller than that for nuclear genes because
each individual has only one haplotype and uniparental inheritance (Birky et al. 1983).

For purposes of comparison, we will use h to compare genetic drift at mtDNA with
nuclear genes even though mtDNA is haploid so that individuals are not heterozygous. It
may seem inappropriate to use h as a measure of variation for mtDNA since it is haploid
and individuals therefore cannot be heterozygous for mtDNA. Nevertheless, h is called
gene diversity in this context and is a valuable measure of the variation present within a
population (Nei 1987, p. 177). It can be thought of as the probability that two randomly
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sampled individuals from a population will have the same mtDNA genotype, and has also
been called gene diversity (Nei 1987, p. 177).

The probability of sampling the same mtDNA haplotype in two consecutive gametes is
1/Nf , where Nf is the number of females in the population. And since Nf = 0.5N,

(7.10)

In the case of a 1 : 1 sex ratio, there are four times as many nuclear genes as mitochon-
drial genes (Nf):

(7.11)

Things become more interesting with an unequal sex ratio. If we use expression 7.2 for
Ne for nuclear genes, then the ratio between the effective number of nuclear genes (2Ne) to
the effective number of mitochondrial genes is:

which, after a little bit of algebra, becomes

(7.12)

In general, drift is of more importance and bottlenecks have greater effects for genes in
mtDNA than for nuclear genes (Example 7.3). Figure 7.7 shows the relative loss of vari-
ation during a bottleneck of a single generation for a nuclear and mitochondrial gene.

Example 7.3 Effects of a bottleneck in the Australian spotted mountain trout

Ovenden and White (1990) demonstrated that genetic variation in mtDNA is much
more sensitive to bottlenecks than nuclear variation in the southern Australian
spotted mountain trout from Tasmania (Figure 7.6). These fish spawn in fresh
water, and the larvae are immediately washed to sea where they grow and
develop. The juvenile fish re-enter fresh water the following spring where they
remain until they spawn. Landlocked populations of spotted mountain trout also
occur in isolated lakes that were formed by the retreat of glaciers some
3,000–7,000 years ago.

Ovenden and White found 58 mtDNA genotypes identified by the presence or
absence of restriction sites in 150 fish collected from 14 coastal streams. There is
evidence of a substantial exchange of individuals among the 14 coastal stream
populations. In contrast, they found only two mtDNA genotypes in 66 fish collected
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from landlocked populations in isolated lakes. However, the lake populations and
coastal populations had nearly identical heterozygosities at 22 allozyme loci
(Table 7.4). As expected, the allelic diversity of the lake populations was smaller
than the coastal populations.

The reduced genetic variation in mtDNA in the landlocked populations is appar-
ently due to a bottleneck associated with their founding and continued isolation.
Oveden and White suggested that the founding bottleneck may have been exacer-
bated by natural selection for the landlocked life history in these populations.
Regardless of the mechanism, the reduced Ne of the landlocked populations has
had a dramatic effect on genetic variation in mtDNA but virtually no effect on
nuclear heterozygosity.

T

VICTORIA

TASMANIA

Bass Strait

146°E

40°S

Apollo Bay

Levon River Don River
Doctors Creek

Manuka Creek

Mesa Creek

Hughes Creek

Meredith River

Griffiths Creek

Isabella
Lagoon

Allens Creek
Fortescue Creek

Browns River
Nicholls Rivulet

Snug Creek

0 100 km

Figure 7.6 Map of southern Australian spotted mountain trout populations. Allens
Creek and Fortescue Creek are coastal populations that exhange migrants with 
each other and other coastal populations. Isabella Lagoon is an isolated landlocked
population. Map from Ovenden and White (1990) and trout from McDowall (1990).
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Table 7.4 Expected heterozygosity (He), diversity (h) at mtDNA, and average number
of alleles (A) per locus in three populations of the southern Australian spotted mountain
trout from Tasmania at 22 allozyme loci and mtDNA. The Allens Creek and Fortesque
Creek populations are coastal populations that are connected by substantial exchange
of individuals. The Isabella Lagoon population is an isolated landlocked population.

Nuclear loci mtDNA

Sample § He § h

Allens Creek 1.9 0.123 28 0.946
Fortescue Creek 1.9 0.111 25 0.922
Isabella Lagoon 1.3 0.104 2 0.038
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Figure 7.7 Amount of heterozygosity or diversity remaining after a bottleneck of a single
generation for a nuclear and mitochondrial gene with equal numbers of males and females.
For example, there is no mitochondrial variation left after a bottleneck of two individuals
because only one female is present. In contrast, 75% of the nuclear heterozygosity will remain
after a bottleneck of two individuals (see expression 6.5).

7.8 Gene genealogies and lineage sorting

So far we have described genetic changes in populations due to genetic drift by changes in
allele frequencies from generation to generation. There is an alternative approach to study
the loss of genetic variation in populations that can be seen most easily in the case of
mtDNA in which each individual receives the mtDNA haplotype of its mother. We can
trace the transmission of mtDNA haplotypes over many generations. That is, we can trace
the genealogy of the mtDNA genotype of each individual in a population (Figure 7.8). We
can see in the example shown in Figure 7.8 that only two of the original 18 haplotypes
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remain in a population after just 20 generations due to a process called stochastic lineage
sorting.

The gene genealogy approach also can be applied to nuclear genes, although it is some-
what more complex because of diploidy and recombination. The recent development of
the application of genealogical data to the study of population-level genetic processes is
the major advance in population genetics theory in the last 50 years (Fu and Li 1999; Schaal
and Olsen 2000). This development has been based upon two major advances, one tech-
nical and one conceptual. The technological advance is the collection of DNA sequence
data that allow tracing and reconstructing gene genealogies. The conceptual advance that
has contributed to the theory to interpret these results is called “coalescent theory”.

Lineage sorting, as in Figure 7.8, will eventually lead to the condition where all alleles in
a population are derived from (i.e., coalesce to) a single common ancestral allele. The time
to coalescence is expected to be shorter for smaller populations. In fact, the mean time to
coalescence is equal Ne. Coalescent theory provides a powerful framework to study the
effects of genetic drift, natural selection, mutation, and gene flow in natural populations
(Rosenberg and Nordborg 2002).

7.9 Limitations of effective population size

The effective population size can be used to predict the expected rate of loss of heterozy-
gosity or change in allele frequencies resulting from genetic drift. In practice, however, we
generally need to know the rate of genetic drift in order to estimate effective population

Earlier history

1

10

20

Figure 7.8 The allelic lineage sorting process of mtDNA haplotypes in a population. Each
node represents an individual female and branches lead to daughters. The tree was generated
by assuming a random distribution of female progeny with a mean of one daughter per
female. From Avise (1994).
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size. Thus, effective population size is perhaps best thought of as a standard, or unit of
measure, rather than as a predictor of the loss of heterozygosity. That is, if we know the
rate of change in allele frequency or loss of heterozygosity in a given population, we can
use the expected rates expected in an ideal population to represent that rate (see Examples
7.1 and 7.4, and Guest Box 7). We will consider the estimation of effective population size
in more detail in Chapter 14.

Example 7.4 Effective population size in a marine fish.

A comparison of genetic variation at seven microsatellite loci in New Zealand
snapper from the Tasman Bay has shown that the Ne may be four orders of 
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Figure 7.9 Loss of genetic variation of New Zealand snapper from Tasman Bay. 
(a) The decline in the number of alleles (Na) and expected heterozygosity (He) at seven
microsatellite loci. (b) The loss of alleles at the GA2B locus between 1950 and 1998. The
frequency of the most common allele is shown above the arrow. From Hauser et al. (2002).
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magnitude smaller than Nc in this population (Hauser et al. 2002). Collection of a
time series of scale samples began in 1950 just after the commencement of a
commercial fishery on this population. Genetic variation, as measured by both the
number of alleles and heterozygosity, declined between 1950 and 1998 in this
population (Figure 7.9).

The estimated Ne over this time period in this population based on the reduction
in heterozygosity and temporal changes in allele frequency are 46 and 176,
respectively. The minimum estimated population size during this period was 
3.3 million fish in 1985; thus, Ne/Nc is of the order of 0.0001! These results support
the conclusion of Hedgecock (1994) that the Ne : Nc ratio may be very small in a
variety of marine species. This suggests that even very large exploited marine fish
populations may be in danger of losing substantial genetic variation.

Perhaps the greatest value of effective population size is heuristic. That is, we can better
our understanding of genetic drift by comparing the effects of different violations of the
assumptions of ideal populations on Ne (e.g., Figure 7.2). Similarly, in applying the concept
of effective population size to managing populations, certain specific effective population
sizes are often used as benchmarks. For example, it has been suggested that an Ne of at least
50 is necessary to avoid serious loss of genetic variation in the short term (Soulé 1980;
Allendorf and Ryman 2002).

7.9.1 Allelic diversity and Ne

Effective population size is not a very good indicator of the loss of allelic diversity within
populations. That is, two populations that go through a bottleneck of the same Ne may
lose very different amounts of allelic diversity. This difference is greatest when the bottle-
neck is caused by an extremely skewed sex ratio. Bottlenecks generally have a greater
effect on allelic diversity than heterozygosity. However, as we saw in Question 7.1, a popu-
lation with an extremely skewed sex ratio may experience a substantial reduction in het-
erozygosity with very little loss of allelic diversity.

The duration of a bottleneck (intense versus diffuse) will also affect heterozygosity and
allelic diversity differently (England et al. 2003). Consider two populations that fluctuate in
size over several generations with the same Ne, and therefore the same loss of heterozygos-
ity. A brief but very small bottleneck (intense) will cause substantial loss of allelic diversity.
However, a diffuse bottleneck spread over several generations can result in the same loss of
heterozygosity, but will cause a much smaller reduction in allelic diversity.

In summary, populations that experience the same rate of decline of heterozygosity
may experience very different rates of loss of allelic diversity. Therefore, we must consider
more than just Ne when considering the rate of loss of genetic variation in populations.

7.9.2 Generation interval

The rate of loss of genetic variation through time depends upon both Ne and mean genera-
tion interval because 1/(2Ne) is the expected rate of loss per generation. The generation
interval (g) is the average age of reproduction, not the age of first reproduction (Harris and
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Allendorf 1989). In conservation biology, we are usually concerned with the loss of genetic
variation over some specified period of time because that is the measure of time used in
developing policies. For example, “endangered” has been defined as having greater than a
5% chance of becoming extinct within 100 years. Therefore, it is equally important to con-
sider generation interval and Ne when predicting the expected rate of decline of heterozy-
gosity in natural populations.

Conditions that reduce Ne often lengthen the generation interval. Therefore, popula-
tions with smaller effective population sizes may actually retain more genetic variation
over time than populations with larger effective population sizes (Ryman et al. 1981). This
relationship also is often true for differences between species. For example, Keall et al.
(2001) estimated the census population size of five species of reptiles on North Brother
Island in Cook Strait, New Zealand (Table 7.5). The generation interval for these five
species was estimated based upon their life history (age of first reproduction, longevity,
etc.; C. H. Daugherty, personal communication). As expected, the species with larger
body size (e.g., tuatara) have smaller population sizes and longer generation intervals. The
loss of heterozygosity over time is strikingly similar in these five species although they
have very different population sizes. That is, the longer generation interval balances the
smaller population sizes of the species with larger body size.

7.10 Effective population size in natural populations

The ratio of effective to census population size (Ne : Nc) in natural populations is of general
importance for the conservation of populations. Census size is generally much easier to
estimate than Ne. Therefore, establishing a general relationship between Nc and Ne would
allow us to predict the rate of loss of genetic variation in a wide variety of species (Waples
2002).

Frankham (1995) provided a comprehensive review of estimates of effective population
size in over 100 species of animals and plants. He concluded that estimates of Ne/Nc aver-
aged approximately 10% in natural populations for studies in which the effects of unequal

Table 7.5 Expected loss in heterozygosity after 1,000 years for five species of reptiles on
North Brother Island in Cook Strait, New Zealand. Ne estimates for each species are 20% of
the estimated census size (Keall et al. 2001). The estimated generation interval ( g) was then
used to estimate the number of generations (t) and predict the proportion of heterozygosity
(h) remaining after 1,000 years using expression 6.3.

Species Nc Ne g (years) t h

Tuatara 350 70 50 20 0.866
Duvuacel’s gecko 1,440 288 15 67 0.890
Common gecko 3,738 747 5 200 0.875
Spotted skink 3,400 680 5 200 0.863
Common skink 4,930 986 5 200 0.904
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sex ratio, variance in reproductive success, and fluctuations in population size were
included (Figure 7.10). However, Waples (2002) concluded that Frankham (1995) overestim-
ated the contribution of temporal changes by computing the Ne : Nc ratio as a harmonic
mean divided by an arithmetic mean. The empirical estimates of Ne that do not include the
effect of temporal changes (Frankham 1995) suggest that 20% of the adult population size
is perhaps a better general value to use for Ne.

The actual value of Ne/Nc in a particular population or species will differ greatly
depending upon demography and life history. For example, Hedgecock (1994) has argued
that the high fecundities and high mortalities in early life history stages of many marine
organisms can lead to exceptionally high variability in mortality in different families. 
Thus, Nc may be many orders of magnitude greater than Ne in some populations (see
Example 7.4).

Guest Box 7 Estimation of effective population size in Yellowstone grizzly bears
Craig R. Miller and Lisette P. Waits

Grizzly bears have been extirpated from over 99% of their historical range south of
the Canadian border (Allendorf and Servheen 1986). During the last century, bears
of the Yellowstone ecosystem became isolated from bears in Canada and northern
Montana (Figure 7.11). Further, at least 220 bear mortalities occurred between
1967 and 1972 resulting from garbage dump closures and the removal of bears
habituated to garbage (Craighead et al. 1995). Assessments of genetic variation
with allozymes, mtDNA, and nuclear microsatellite DNA all indicated that the
Yellowstone population has significantly lower variability than all other North
American mainland populations (see Table 4.1).

0.0 0.11 0.2 0.4 0.6 0.8 1.0

Comprehensive estimates

0.5

0.0 0.340.2 0.4 0.6 0.8 1.0

All estimates

0.5
NeNN /NcNN

Figure 7.10 Distribution of estimates of Ne/Nc in natural populations. Comprehensive
estimates that include unequal sex ratio, variance in reproductive success, and fluctuations in
population size are above, and estimates that included only one or two of these effects are
below. The means of the estimates (0.11 and 0.34) are indicated below each line. From
Frankham (1995).
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168 PART II MECHANISMS OF EVOLUTIONARY CHANGE

In the modern Yellowstone population, estimated heterozygosity at eight
nuclear microsatellite loci is approximately 20% lower than in the nearby Glacier
population (Paetkau et al. 1998). If we assume that Yellowstone bears historically
had the same heterozygosity as Glacier bears, we can estimate Ne in Yellowstone
since isolation using the expectation that heterozygosity declines at a rate of 1/2Ne
per generation (recall Ht = H0(1 − 1/2Ne)

t, and expression 6.7). With approx-
imately eight generations since the time of isolation (i.e., t = 8), this implies an Ne of
only 22. This is depicted in Figure 7.11 as hypothesis B. More troubling is the pos-
sibility that most of the postulated decline in heterozygosity occurred following
dump closure, implying a very small Ne and a rapid increase in the rate of inbreed-
ing (hypothesis C).

If Ne in Yellowstone has been this small, then genetic drift, inbreeding, and loss of
quantitative genetic variation may reduce the population’s viability (see Chapter
14). We estimated the effective population size during the 20th century to 
distinguish among hypotheses B and C, and a third possibility that variation in
Yellowstone was historically low and that Ne has remained moderate across the last
century (hypothesis A) (Miller and Waits 2003).

DNA was extracted from museum specimens (bones, teeth, and skins) taken
from the periods 1910–1920 and 1960–1970, and individuals were genotyped at 
the same eight loci as above. We used the changes in allele frequency over time to
estimate the harmonic mean Ne using maximum likelihood. For both the periods
1915–1965 and 1965–1995, the estimated Ne is approximately 80 (95% CI approx-
imately 50–150). Allelic diversity has declined significantly (P < 0.05), but only
slightly (Miller and Waits 2003). Estimates of population size in Yellowstone
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Figure 7.11 Three potential hypotheses (A–C) explaining the low level of genetic
diversity observed in the modern Yellowstone grizzly bear population. Genetic 
samples taken at times indicated by “-S-” were used to resolve among hypotheses. 
From Miller and Waits (2003).
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between the 1960s and 1990s are surrounded by large uncertainty, but a summary
suggests a harmonic mean N of around 280 individuals. Combining these values
yields an estimate of Ne/Nc = 27%; this is similar to an estimate of 25% obtained
from a simulation approach (see Example 7.1).

Hence it appears that hypothesis A is supported most by our data. The lower
genetic variation in Yellowstone bears appears to predate the decline of population
size in the 20th century. With Ne apparently near 80, we argue that the need for
gene flow into Yellowstone is not pressing yet. Management should focus mostly
on habitat protection, restoring natural connectivity, and limiting human-caused
mortalities. If natural connectivity cannot be achieved within a few additional gen-
erations (20–30 years), we recommend the translocation of a small number of indi-
viduals into Yellowstone (or perhaps artificial insemination using nonresident
males, if such technology becomes available for bears). Translocations might be
warranted sooner if population vital rates (e.g., survival and reproduction) decline
substantially. This example illustrates the usefulness of temporally spaced samples
and historical museum specimens to estimate Ne and provide information of great
relevance to conservation.

Problem 7.1

Only 10% of the bulls do all of the breeding in some colonies of the southern ele-
phant seal. What effect do you expect this mating system to have on the rate of
loss of heterozygosity in these colonies? As an example, compare the expected
loss of heterozygosity in an ideal population of 100 individuals (50 males and 50
females) in which only five of the males contribute offspring to the next generation.

Problem 7.2

Bison at the National Bison Range in Montana have been found to be polymorphic
at a blood group locus with two common alleles and one allele that is rare 
(r = 0.01). A geneticist has suggested that the heterozygosity, and hence genetic
variation, in the herd could and should be increased by preferentially using bulls
that have the rare allele. Do you think this suggestion is a good way to increase
genetic variation in this herd? Why or why not?

Problem 7.3

A population consisting of 1,000 individuals is reduced to a single female and a
single male. The population then doubles in size each generation until it reaches
its former size. What proportion of the heterozygosity in the original population
would you expect to be lost because of this bottleneck?
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170 PART II MECHANISMS OF EVOLUTIONARY CHANGE

Problem 7.4

We saw in Section 7.3 that there are two sources of genetic drift: variability in
reproductive success and Mendelian segregation in heterozygotes. If we elimin-
ate variability in reproductive success we can nearly double the effective popula-
tion size. Why is it impossible in a random mating population to eliminate
Mendelian segregation so that we could further increase effective population
size? That is, couldn’t we just screen all the progeny at a particular locus to insure
that the numbers of alleles in the progeny are the same as in the parental genera-
tion? There is at least one way to eliminate Mendelian segregation (although it
has other serious drawbacks); can you describe such a way?

Problem 7.5

The tuatara has temperature-dependent sex determination (TSD) so that sexual
differentiation of the gonads is sensitive to the incubation temperature of eggs
during a critical period of embryonic development. In the case of tuatara, higher
temperatures during development result in more males being produced (Cree et
al. 1995). What effect do you think TSD may have on effective population sizes
over long periods of time?

Problem 7.6

Assume that the lone pine tree from Question 7.1 is heterozygous A1A2 at a particu-
lar locus. What is the probability that a tree in the post-clearcut population will be
homozygous for the A1 allele? What is the probability that a tree in the post-
clearcut population will be homozygous for the A2 allele? What is the probability
that a tree in the post-clearcut population will be homozygous for either of the two
alleles? Does your answer agree with the solution provided in Question 7.1? Hint:
remember that each of the 5,000 seeds will inherit either the A1 or A2 allele from
the maternal tree.

Problem 7.7

The authors of Guest Box 7 have concluded that the need for gene flow into the
grizzly bear population of Yellowstone National Park is not pressing yet. The
authors of this book do not agree with this conclusion. What do you think?

Problem 7.8

How many of the original 18 mtDNA haplotypes remain in the population shown in
Figure 7.8 after 20 generations of lineage sorting?
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Natural Selection

I have called this principle, by which each slight variation, if useful, is preserved,
by the term Natural Selection.

Charles Darwin (1859)

Then comes the question, Why do some live rather than others? If all the indi-
viduals of each species were exactly alike in every respect, we could only say it is
a matter of chance. But they are not alike. We find that they vary in many different
ways. Some are stronger, some swifter, some hardier in constitution, some more
cunning.

Alfred Russel Wallace (1923)

8.1 Fitness, 173

8.2 Single locus with two alleles, 174

8.3 Multiple alleles, 179

8.4 Frequency-dependent selection, 184

8.5 Natural selection in small populations, 186

8.6 Natural selection and conservation, 188

Guest Box 8 Rapid adaptation and conservation, 192

Orchid Dactylorhiza sambucina, Example 8.2
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172 PART II MECHANISMS OF EVOLUTIONARY CHANGE

We have so far assumed that different genotypes have an equal probability of surviving and
passing on their alleles to future generations. That is, we have assumed that natural selec-
tion is not operating. If this assumption were actually true in real populations, we would
not be concerned with genetic variation in conservation because genetic changes would
not affect a population’s longevity or its evolutionary future. However, as we saw in
Chapter 6, there is ample evidence that the genetic changes that occur when a population
goes through a bottleneck often result in increased frequencies of alleles that reduce an
individual’s probability of surviving to reproduce.

In addition, some alleles and genotypes affect greater survival and reproductive success
under different environmental conditions. Therefore, genetic differences between local
populations may be important for continued persistence of those populations. In addition,
individuals that are moved by human actions between populations or environments may
not be genetically suited to survive and reproduce in their new surroundings. Perhaps
worse from a conservation perspective, gene flow caused by such translocations may
reduce the adaptation of local populations.

For example, many native species of legumes (Gastrolobium and Oxylobium) in western
Australia naturally synthesize large concentrations of the fluoroacetate, which is the active
ingredient in 1080 (a poison used to remove mammalian pests) (King et al. 1978). Native
marsupials in western Australia have been found to be resistant to 1080 because they have
been eating plants that contain fluoroacetate for thousands of years. Therefore, 1080 is not
effective against native mammals in western Australia, which means it can be used as a
specific poison for introduced foxes and feral cats that are a serious problem. However,
members of the same 1080-resistant mammal species (e.g., brush-tailed possums) that
occur to the east, beyond the range of the fluoroacetate-producing legumes, are suscept-
ible to 1080 poisoning. Therefore, translocating brush-tailed possums into western
Australia from eastern populations may not be successful because the introduced indi-
viduals would not be “adapted” to consume the local vegetation.

Many of the best examples of local adaptation are from plant species because it is pos-
sible to do reciprocal transplantations and measure components of fitness ( Joshi et al.
2001). Nagy and Rice (1997) performed reciprocal transplant experiments with coastal and
inland California populations of the native annual Gilia capitata. They compared perform-
ance for four traits: seedling emergence, early vegetative size (leaf length), probability of
surviving to flowering, and number of inflorescences. Native plants significantly outper-
formed non-natives for all characters except leaf length. Figure 8.1 shows the results for
the proportion of plants that survived to flowering. On average, the native inland plants
had over twice the rate of survival compared to non-native plants grown on the inland site;
the native coastal plants had 5–10 times greater survival rates compared to non-native
plants grown on the coastal site.

The adaptive significance of the vast genetic variation that we can now detect using the
techniques of biochemical and molecular genetics remains controversial (Gillespie 1992;
Mitton 1997). Most of the models that we use to interpret data and predict effects in nat-
ural populations assume selective neutrality. This is done not because we believe that all
genetic variation is neutral; rather, neutrality is assumed because we sometimes have no
choice if we want to use the rich theory of population genetics to interpret data and make
predictions because most models assume the absence of natural selection.

Sewall Wright developed powerful theoretical models that allow us to predict the effects
of small populations on genetic variability. These models assume selective neutrality. 
For example, heterozygosity will be lost at a rate of 1/2N per generation in the ideal 
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population. What is the expected rate of loss of heterozygosity if the genetic variability 
is affected by natural selection? The answer depends upon the pattern and intensity of 
natural selection in operation. And since no one has ever been successful in measuring
these values at any locus in any natural populations, we cannot predict the expected rate of
loss of heterozygosity unless we ignore the effects of natural selection. And worse yet,
since natural selection acts differently on each locus, there is not one answer, but rather
there is a different answer for each of the thousands of variable loci that are likely to exist 
in any population. In this chapter, we will begin to consider the effects of natural selection
on allele and genotype frequencies.

8.1 Fitness

Natural selection is the differential success of genotypes in contributing to the next genera-
tion. In the simplest conceptual model, there are two major life history components that
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Figure 8.1 Reciprocal transplant experiment with Gilia capitata showing local adaptation for
the proportion of plants that survived to flowering. The native subspecies had significantly
greater survival than the non-native subspecies in each of the five experiments. For example,
approximately 45% of the seeds from the inland subspecies survived to flowering in 1993 at
the inland site; however, only some 15% of the seeds from the non-native subspecies survived
to flowering in the same experiment. a and b are the proportion of the inland and costal
plants, respectively, that survived at the inland site; A and B are the proportion of the inland
and costal plants, respectively, that survived at the coastal site. From Nagy and Rice (1997). 
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174 PART II MECHANISMS OF EVOLUTIONARY CHANGE

may bring about selective differences between genotypes: viability and fertility. Viability
is the probability of survival to reproductive age, and fertility is the average number of off-
spring per individual that survive to reproductive maturity for a particular genotype.

The effect of natural selection on genotypes is measured by fitness. Fitness is the aver-
age number of offspring produced by individuals of a particular genotype. Fitness can be
calculated as the product of viability and fertility, as defined above, and we can define
fitness for a diallelic locus as:

Genotype Viability Fertility Fitness
AA v11 f11 (v11)( f11) = W11
Aa v12 f12 (v12)( f12 ) = W12
aa v22 f22 (v22)( f22 ) = W22

These are absolute fitnesses; that is, they are based on the total number of expected
progeny from each genotype. It is often convenient to use relative fitnesses to predict
genetic changes caused by natural selection. Relative fitnesses are estimated by the ratios
of absolute fitnesses. For example, in the data below, fitnesses have been standardized by
dividing by the fitness of the genotype with the highest fitness (AA). Thus, the relative
fitness of heterozygotes is 0.67 because, on average, heterozygotes have 0.67 times as
many progeny as AA individuals (1.80/2.70 = 0.67).

Absolute Relative 
Genotype Viability Fertility fitness fitness

AA 0.90 3.00 2.70 1.00
Aa 0.90 2.00 1.80 0.67
aa 0.45 2.00 0.90 0.33

8.2 Single locus with two alleles

We will begin by modeling changes caused by differential survival (viability selection) in
the simple case of a single locus with two alleles. Consider a single diallelic locus with dif-
ferential reproductive success in a large random mating population in which all of the
other assumptions of the Hardy–Weinberg model are valid. We would expect the follow-
ing result after one generation of selection:

Zygote Relative Frequency 
Genotype frequency fitness after selection

AA p2 w11 (p2w11)/w
Aa 2pq w12 (2pqw12)/w
aa q2 w22 (q2w22)/w

where w is used to normalize the frequencies following selection so that they sum to one.
This is the average fitness of the population, and it is the fitness of each genotype weighted
by its frequency.

W = p2w11 + 2pqw12 + q2w22 (8.1)
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After one generation of selection the frequency of the A allele is:

(8.2)

and, similarly, the frequency of the a allele is:

(8.3)

It is often convenient to predict the change in allele frequency from generation to 
generation, ∆p, caused by selection. We get the following result if we solve for ∆p in the
current case:

[p(w11 − w12 ) + q(w12 − w22 )] (8.4)

We can see that the magnitude and direction of change in allele frequency is dependent on
the fitnesses of the genotypes and the allele frequency.

Expression 8.4 can be used to predict the expected change in allele frequency after one
generation of selection for any array of fitnesses. The allele frequency in the following gen-
eration will be:

p′ = p + ∆p (8.5)

We will use this model to study the dynamics of selection for three basic modes of natural
selection with constant fitnesses:

1 Directional selection.
2 Heterozygous advantage (overdominance).
3 Heterozygous disadvantage (underdominance).

8.2.1 Directional selection

Directional selection occurs when one allele is always at a selective advantage. The advan-
tageous allele under directional selection may either be dominant, intermediate, or reces-
sive to the alternative allele as shown below:

Dominant w11 = w12 > w22
Intermediate w11 > w12 > w22
Recessive w11 > w12 = w22

The advantageous allele will increase in frequency and will be ultimately fixed by natural
selection under all three modes of directional selection (Figure 8.2). Thus, the eventual or
equilibrium outcome is independent of the dominance of the advantageous allele.
However, the rate of change of allele frequency does depend on dominance relationships
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176 PART II MECHANISMS OF EVOLUTIONARY CHANGE

as well as the intensity of selection. For example, selection on a recessive allele is ineffective
when the recessive allele is rare because most of the copies of that allele occur in heterozy-
gotes and are therefore “hidden” from selection.

8.2.2 Heterozygous advantage (overdominance)

Heterozygous advantage occurs when the heterozygote has the greatest fitness:

w11 < w12 > w22

This mode of selection is expected to maintain both alleles in the population as a stable
polymorphism. This pattern of selection is often called overdominance. In the case of
dominance, the phenotype of the heterozygote is equal to the phenotype of one of the
homozygotes. In overdominance, the phenotype (i.e., fitness) of the heterozygote is
greater than the phenotype of either homozygotes (Example 8.1).

Let us examine the simple case of heterozygous advantage in which the two homozy-
gotes have equal fitness:

AA Aa aa
Fitness 1 − s 1.0 1 − s

where s (the selection coefficient) is greater than 0 and less than or equal to 1. We can
examine the dynamics of this case of selection by plotting the values of ∆p as a function of
allele frequency (Figure 8.3). When p is less than 0.5, selection will increase p, and when p
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Figure 8.2 Change in allele frequency under directional selection when the homozygote for
the favored allele has twice the fitness of the homozygote for the unfavored allele (1.00 vs.
0.50). The heterozygote either has the same fitness as the favored allele (1.0; dominant), 
the same fitness as the unfavored allele (recessive; 0.50), or has intermediate fitness (0.75). 
The initial frequency of the favored allele is 0.03.
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is greater than 0.5, selection will decrease p. Thus, 0.5 is a stable equilibrium; that is, when
p is perturbed from 0.5, it will return to that value.

Any overdominant fitness set will produce a stable intermediate equilibrium allele fre-
quency ( p*). However, the value of p* depends upon the relative fitnesses of the homozy-
gotes. If we solve expression 8.4 for ∆p = 0 we get the following result:

(8.6)

Thus, the equilibrium allele frequency will be near 0.5 if the two homozygotes have nearly
equal fitnesses. However, if one homozygote has a great advantage over the over, that
allele will be much more frequent at equilibrium.
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Table 8.1 Differential survival of GPI genotypes in the copepod
Gammarus insensibilis held in the laboratory for 36 hours at high
temperature (27°C). From Patarnello and Battaglia (1992).

Genotype

100/100 100/80 80/80

Alive 48 90 12
Dead 47 53 27
Total 95 143 39

Relative survival 0.803 1.000 0.490

Example 8.1 Natural selection at an allozyme locus

Patarnello and Battaglia (1992) have described an example of heterozygous
advantage at a locus encoding the enzyme glucose phosphate isomerase (GPI) in
a copepod (Gammarus insensibilis) that lives in the Lagoon of Venice. Individuals
were collected in the wild, acclimated in the laboratory at room temperature, and
then held at a high temperature (27°C) for 36 hours. Individuals with different
genotypes differed significantly in their survival at this temperature (Table 8.1; 
P < 0.005). Heterozygotes survived better than either of the homozygotes.

A persistent problem in measuring fitnesses of individual genotypes is whether
any observed differences are due to the locus under investigation or to other loci
that are linked to that locus (Eanes 1987). In vitro measurements show that het-
erozygotes at the GPI locus in Gammarus insensibilis have greater enzyme activ-
ity than either homozygote over a wide range of temperatures. In addition, the
80/80 homozygote has the greatest mortality and the lowest enzyme activity.
Patarnello and Battaglia (1992) have argued that the observed differences are
caused by the GPI genotype on the basis of these enzyme kinetic properties and
other considerations.
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8.2.3 Heterozygous disadvantage (underdominance)

Underdominance occurs when the heterozygote is least fit:

w11 > w12 < w22

An examination of ∆p as a function of p reveals that underdominance will produce what is
called an unstable equilibrium (Figure 8.4). The p* value is found using the same formula
as for overdominance (expression 8.6). However, this equilibrium is unstable because allele
frequencies will tend to move away from the equilibrium value once they are perturbed.
Underdominance, therefore, is not a mode of selection that will maintain genetic variation
in natural populations.

We saw in Chapter 3 that heterozygotes for chromosomal rearrangements often have
reduced fertility because they produce unbalanced or aneuploid gametes. Foster et al.
(1972) examined the behavior of translocations in population cages of Drosophila
melanogaster. They set up cages in which homozygotes for the chromosomal rearrange-

(+)

∆p p
0.5 1.0

(−)

Figure 8.3 Expected change in allele frequency (∆p) as a function of allele frequency (p) in 
the case of heterozygous advantage when the homozygotes have equal fitness.

(+)

∆p p
0.5 1.0

(−)

Figure 8.4 Expected change in allele frequency (∆p) as a function of allele frequency (p) in 
the case of heterozygous disadvantage.
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ments had equal fitness; in this case, the unstable equilibrium frequency is expected to be
0.5 (see expression 8.6). As predicted by this analysis, the populations quickly went to
fixation for whichever chromosomal type became most frequent in the early generations
because of genetic drift (Figure 8.5).

8.2.4 Selection and Hardy–Weinberg proportions

The absence of departures from Hardy–Weinberg proportions is sometimes taken as 
evidence that a particular locus is not affected by natural selection. However, this inter-
pretation is incorrect for several reasons. First, differences in fecundity will not affect
Hardy–Weinberg proportions. Thus, only differential survival can be detected by testing
for Hardy–Weinberg proportions. Second, even strong differences in survival may not
cause departures from Hardy–Weinberg proportions. For example, Lewontin and
Cockerham (1959) have shown that at a locus with two alleles, differential survival will not
cause a departure from Hardy–Weinberg proportions if the product of the fitnesses of the
two homozygotes is equal to the square of the fitness of the homozygotes. Finally, the
goodness-of-fit test for Hardy–Weinberg proportions has little power to detect departures
from Hardy–Weinberg proportions caused by differential survival (see Problem 8.9).

8.3 Multiple alleles

Analysis of the effects of natural selection becomes more complex when there are more
than two alleles at a locus because the number of genotypes increases dramatically with a
modest increase in the number of alleles; remember, there are 55 possible genotypes with
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Figure 8.5 Population cage results with Drosophila melanogaster showing change in frequency
of a chromosomal translocation in 10 populations when the two homozygotes have equal
fitness that is approximately twice that of heterozygotes (Foster et al. 1972). Populations were
founded by 20 individuals and population sizes fluctuated between 100 and 400 flies.
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just 10 alleles at a single locus. Nevertheless, our model of selection can be readily
extended to three alleles (A1, A2, and A3):

Genotype A1A1 A1A2 A2A2 A1A3 A2A3 A3A3
Fitness w11 w12 w22 w13 w23 w33
Frequency p2 2pq q2 2pr 2qr r 2

The average fitness of the population is:

W = p2w11 + 2pqw12 + q2w22 + 2prw13 + 2qrw23 + r 2w33 (8.7)

And the expected allele frequencies in the next generation are:

(8.8)

We can find any equilibria that exist for a particular set of fitnesses by setting p′ = p = p*
and solving these equations. The following conditions emerge after a bit of maths:

where z1 = (w12 − w22 )(w13 − w33 ) − (w12 − w23 )(w13 − w23 )

where z2 = (w23 − w33)(w12 − w11) − (w23 − w13 )(w12 − w13 )

where z3 = (w13 − w11)(w23 − w22 ) − (w13 − w12 )(w23 − w12 )

where:

z = z1 + z2 + z3 (8.9)

If these equations give negative values for the allele frequencies that means there is no
three-allele equilibrium (i.e., at least one allele will be lost due to selection). The equilib-
rium will be stable if the equilibrium is a maximum for average fitness (see expression 8.6)
and will be unstable if it is a minimum for average fitness. In general, a three-allele equilib-
rium will be stable if z1, z2, and z3 are greater than zero and:

(w11 + w22) < (2w13) (8.10)

There are no simple rules for a locus with three alleles as there are for a dialleic locus.
However, the following statements may be helpful:
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1 There is at most one stable equilibrium for two or more alleles.
2 A stable equilibrium will be globally stable; that is, it will be reached from any starting

point containing all three alleles.
3 If a stable polymorphism exists, the mean fitness of the population exceeds that of any

homozygote. If such a homozygote existed, it would become fixed in the population.
4 Heterozygous advantage (i.e., all heterozygotes have greater fitness than all homozy-

gotes) is neither necessary nor sufficient for a stable polymorphism.

The dynamics of selection acting on three alleles can be shown by plotting the trajecto-
ries of allele frequencies on triangular coordinate paper. Figure 8.6 shows allele frequency
change when all of the homozygotes have a fitness of 0.9 and all heterozygotes have a
fitness of 1.0. In this case, we would expect a stable equilibrium to occur when all three
alleles are equally frequent at a frequency of 0.33.

Templeton (1982) has described a very interesting set of fitnesses for three alleles at the
human β-chain hemoglobin locus (Table 8.2). Figure 8.7 shows the expected trajectories of
gene frequencies at this locus. The stable two-allele polymorphism with the A and S alleles
is a familiar example of heterozygous advantage (using expression 8.6, p* = 0.89).
However, the fitness of the homozygotes for the C allele is greater than the AS heterozy-
gotes. Nevertheless, the C allele will be selected against when it is rare because the AC and
SC genotypes both have relatively low fitnesses. Thus, the C allele will be removed by selec-
tion from a population if it occurs as a new mutation in a population with the A and S alle-
les present. The only way the C allele can successfully invade a population is if it increases
in frequency through genetic drift so that the CC genotype becomes frequent enough to
outweigh the disadvantage of the C allele when heterozygous. However, recent data have

q
p

r

Figure 8.6 Expected trajectory of allele frequency change in the case of heterozygous
advantage with three alleles plotted on triangular coordinate paper. All homozygotes have 
a fitness of 0.9, and all heterozygotes have a fitness of 1.0. As shown in the upper left, allele
frequencies are represented by the relative lengths of the three perpendicular lines from any
point to the three sides of the triangle.
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suggested that C allele heterozygotes do not have decreased fitness (Modiano et al. 2001),
and, therefore, would be expected to replace the A and S alleles in malarial regions.

8.3.1 Heterozygous advantage and multiple alleles

Overdominance was once thought to be the major mechanism maintaining genetic vari-
ation in natural populations (see discussion in Lewontin 1974, pp. 23–31). However, 
modern molecular techniques have revealed that many alleles exist at some loci in natural
populations. For example, Singh et al. (1976) discovered 37 different alleles at a locus 
coding for xanthine dehydrogenase in a sample of 73 individuals collected from 12 natural
populations of Drosophila pseudoobscura.

Can overdominance maintain many alleles at a single locus? This question was
approached in a classic paper by Lewontin et al. (1978). The following discussion is based
on their paper. They estimated the proportion of randomly chosen fitness sets that would
maintain all alleles through overdominance. For a locus with two alleles, heterozygous
advantage is both necessary and sufficient to maintain both alleles. If fitnesses are selected

Table 8.2 Estimated relative fitness at the β-hemoglobin
locus in West African human populations (Templeton 1982).

Genotype Fitness Phenotype

AA 0.9 Malarial susceptibility
AS 1.0 Malarial resistance
SS 0.2 Sickle-cell anemia
AC 0.9 Malarial susceptibility
SC 0.7 Malarial susceptibility
CC 1.3 Superior malarial resistance

r = 1.0

q = 1.0 p = 1.0

Figure 8.7 Expected allele frequency trajectories for the fitnesses of the hemoglobin locus
shown in Table 8.2. There are two stable equilibria indicated by stars at the top of the triangle
(r = 1.0) and towards the bottom right (r = 0.0) of the triangle. The equilibrium indicated by
the black circle at the bottom right is unstable. p = freq(A); q = freq(S); r = freq(C ).
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at random, the heterozygotes will have the greatest fitness one-third of the time because
there are three genotypes (Table 8.3). However, it becomes increasingly unlikely that all
heterozygotes will have greater fitness than all homozygotes as the number of alleles
increases. In addition, heterozygous advantage (i.e., all heterozygotes have greater fitness
than all homozygotes) is neither necessary nor sufficient to maintain an A allele polymor-
phism when A is greater than two. In fact, fitness sets capable of maintaining an A allele
polymorphism quickly become extremely unlikely as n increases (Table 8.3). For example,
heterozygous advantage is sufficient to always produce a stable polymorphism with two
alleles. However, only 34% of all fitness sets with four alleles in which all heterozygotes
have greater fitness than all homozygotes will maintain all four alleles. Thus, overdomi-
nance with constant fitness is not an effective mechanism for maintaining many alleles at
individual loci in natural populations (Kimura 1983).

Spencer and Marks (1993) have revisited this issue with different results. Rather than
randomly assigning fitness as done by Lewontin et al. (1978), they simulated evolution by
allowing new mutations with randomly assigned fitnesses to occur within a large popu-
lation and then determined how many alleles could be maintained in the population by
viability selection. They found that up to 38 alleles were sometimes maintained by selection
in their simulated populations. In general, they found many more alleles could be main-
tained by this type of selection than predicted by Lewontin et al. (1978).

Spencer and Marks (1993) argued that their approach, which examines how a polymor-
phism may be constructed by evolution, is a complementary approach to understanding
evolutionary dynamics when used along with traditional models that focus only on con-
ditions that maintain equilibrium. Nevertheless, the conclusions of Lewontin et al. (1978)
are still likely to be valid, even if the approach of Spencer and Marks (1993) is more real-
istic. One major drawback of the results of Spencer and Marks (1993) is that their models
do not include genetic drift, and, as we will see in Section 8.5, heterozygous advantage is only
effective in maintaining alleles that are relatively common in a population at equilibrium.

Hedrick (2002) has considered the maintenance of many alleles at a single locus by “bal-
ancing selection” at the MHC locus. He then assumed resistance to pathogens is conferred
by specific alleles and the action of each allele is dominant. He concluded that this model
of selection could maintain stable multiple allele polymorphisms, even in the absence of
any intrinsic heterozygous advantage, because heterozygotes will have higher fitness in
the presence of multiple pathogens.

Table 8.3 Proportion of randomly chosen fitness that maintains all A alleles 
in a stable equilibrium (Lewontin et al. 1978). The third column shows the
proportion of fitness sets expected to maintain all A alleles considering only those
fitness sets in which all heterozygotes have greater fitness than all homozygotes.

n All fitness sets Heterozygous advantage

2 0.33 1.00
3 0.04 0.71
4 0.0024 0.34
5 0.00006 0.10
6 0 0.01
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8.4 Frequency-dependent selection

We have so far assumed that fitnesses are constant. However, fitnesses are not likely to be
constant in natural populations (Kojima 1971). Fitnesses are likely to change under differ-
ent environmental conditions. Fitnesses may also change when allele frequencies change;
this is called frequency-dependent selection. This type of selection is a potentially power-
ful mechanism for maintaining genetic variation in natural populations (Clarke and
Partridge 1988).

8.4.1 Two alleles

Let us begin with the simple case where the fitness of a genotype is a direct function of its
frequency. For example,

AA Aa aa
1 − p2 1 − 2pq 1 − q2 (8.11)

With this model of selection, a genotype becomes less fit as it becomes more common
in a population. The change in allele frequency at any value of p can be calculated with
expression 8.4. We can predict the expected effects of this pattern of selection by examina-
tion of the plot of ∆p versus allele frequency; we will get the same plot as Figure 8.3. In this
case, there is an equilibrium at p* = 0.5 where ∆p is zero. Is this equilibrium stable or
unstable? When p is less than 0.5, w11 > w22 and therefore p will increase; when p is greater
than 0.5, w11 < w22 and p will decrease. This is a stable equilibrium.

Note that the homozygotes have a fitness of 0.75, and the heterozygote has a fitness of
0.5 at equilibrium. Therefore, this is a stable polymorphism in which the heterozygote has
a disadvantage at equilibrium. We can see that our rules for understanding the effects of
selection with constant fitnesses are not likely to be helpful in understanding the effects of
frequency-dependent selection. In general, frequency-dependent selection will produce a
stable polymorphism whenever the rare phenotype has a selective advantage. However,
there is no general rule about the relative fitnesses at the equilibrium.

8.4.2 Multiple alleles: self-incompatibility locus in plants

In contrast to heterozygous advantage, frequency-dependent selection can be extremely
powerful for maintaining multiple alleles. The self-incompatibility locus (S) of many
flowering plants is an extreme example of this (Wright 1965a; Vieira and Charlesworth
2002; Castric and Vekemans 2004). In the simplest system, pollen grains can only fertilize
plants that do not have the same S allele as carried by the pollen. Homozygotes cannot be
produced at this locus, and at least three alleles must be present at this locus.

The expected equilibrium with three alleles will be a frequency of 0.33 for each allele
because fitnesses are equivalent for all three alleles. At equilibrium, any pollen grain will
be able to fertilize one-third of the plants in the population (Table 8.4). However, a fourth
allele produced by mutation (S4) would have a great selective advantage because it will be
able to fertilize every plant in the population. Thus, we would expect the fourth allele to
increase in frequency until it reaches a frequency equal to the other three alleles.
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Any new mutation at the S locus is expected to have an initial selective advantage
because of its rarity regardless of the existing number of alleles. However, we also would
expect rare alleles to be susceptible to loss because of genetic drift. Therefore, the total
number of S alleles will be an equilibrium between mutation and genetic drift.

Emerson (1939, 1940) described 45 nearly equal-frequency S alleles in a narrow endemic
plant (Oenothera organensis) that occurs in an area of approximately 50 km2 in the Organ
Mountains, New Mexico. Emerson originally thought that the total population size of this
species was approximately 500 individuals. More recent surveys indicate that the total popu-
lation size may be as great as 5,000 individuals (Levin et al. 1979). Regardless of the actual
population size, this is an enormous amount of variability at a single locus. As expected,
because of its small population size, this species has very little genetic variation at other
loci as measured by protein electrophoresis (Levin et al. 1979).

8.4.3 Frequency-dependent selection in nature

There is mounting evidence that frequency-dependent selection is an important mech-
anism for maintaining genetic variation in natural populations. We have already examined
the ability of frequency-dependent selection in maintaining a large number of alleles at
self-sterility loci. You are encouraged to read the review by Clarke (1979); additional refer-
ences on frequency-dependent selection can be found in a collection of papers edited by
Clarke and Partridge (1988). Frequency-dependent selection often results from mecha-
nisms of sexual selection, predation and disease, and ecological competition (Example 8.2).

Example 8.2 Frequency-dependent selection in an orchid

Gigord et al. (2001) have presented an elegant example of frequency-dependent
selection in the orchid Dactylorhiza sambucina. This species has a dramatic
flower color polymorphism; both yellow- and purple-flowered individuals occur
throughout the range of the species in Europe. Laboratory experiments sug-
gested that behavioral responses by pollinators to the lack of reward might result
in a reproductive advantage for rare color morphs. This was confirmed in an
experiment that demonstrated that rare color morphs had a selective advantage
in natural populations (Figure 8.8).

Table 8.4 Genotypes possible at the self-incompatibility locus (S) in a species of
flowering plants with three alleles.

Parental genotypes Progeny frequencies

Ovule Pollen S1S2 S1S3 S2S3

S1S2 S3 0.00 0.50 0.50
S1S3 S2 0.50 0.00 0.50
S2S3 S1 0.50 0.50 0.00
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8.5 Natural selection in small populations

We will now consider what happens when we combine the effects of genetic drift and nat-
ural selection. In other words, we will see what effect finite population size has on the
models of natural selection that we have studied previously. There are two general effects
of adding genetic drift to these models. First, natural selection becomes less effective
because the random changes caused by drift can swamp the effects of increased survival or
fertility. In general, changes in allele frequency are determined primarily by genetic drift
rather than by natural selection when the product of the effective population size and 
the selection coefficient (Nes) is less than one (Li 1978). Thus, a deleterious allele that
reduces fitness by 5% will act as if it were selectively neutral in a population with an Ne of
20(20 × 0.05 = 1.00).

Second, the effects of natural selection become less predictable. The results of our 
models are deterministic so that we always get the same result if we begin with the same
fitnesses and the same initial allele frequency. However, the stochasticity due to genetic
drift makes it more difficult to predict what the effects of natural selection will be.

8.5.1 Directional selection

Genetic drift will make directional selection less effective. This may be harmful in small
populations in two ways. First, the effects of random genetic drift can outweigh the effects
of natural selection so that alleles that have a selective advantage may be lost in small 
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Figure 8.8 Frequency-dependent selection in the orchid Dactylorhiza sambucina.
Relative male reproductive success of the yellow morph increases as the frequency 
of the yellow morph decreases. Male reproductive success was estimated by the
average proportion of pollinia (mass of fused pollen produced by many orchids)
removed from plants by insect pollinators. The horizontal line corresponds to equal
reproductive success between the two morphs. The intersection between the
regression line and the horizontal line is the value of predicted morph frequencies 
at equilibrium (represented by vertical dashed line). From Gigord et al. (2001)).
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populations. Second, alleles that are at a selective disadvantage may go to fixation in small
populations through genetic drift.

Wright (1931, p. 157) first suggested that small populations would continue to decline in
vigor slowly over time because of the accumulation of deleterious mutations, which natu-
ral selection would not be effective in removing because of the overpowering effects of
genetic drift. A number of theoretical papers have considered the expected rate and import-
ance of this effect for population persistence (Lynch and Gabriel 1990; Gabriel and Bürger
1994; Lande 1995). As deleterious mutations accumulate, population size may decrease
further and thereby accelerate the rate of accumulation of deleterious mutations. This
feedback process has been termed mutational meltdown (Lynch et al. 1993).

8.5.2 Underdominance and drift

Most chromosomal rearrangements (translocations, inversions, etc.) cause reduced fertil-
ity in heterozygotes because of the production of aneuploid gametes. Homozygotes for
such chromosomal mutations, however, may have increased fitness. Thus, chromosomal
mutations generally fit a pattern of underdominance and will always be initially selected
against, regardless of their selective advantage when homozygous. However, we know that
chromosomal rearrangements are sometimes incorporated into populations and species.
In fact, rearrangements are thought to be an important factor in reproductive isolation and
speciation.

How can we reconcile our theory with our knowledge from natural populations? That
is, how can chromosomal rearrangements be incorporated into a population when they
will always be initially selected against? The answer is, of course, genetic drift. If random
changes in allele frequency perturb the population across the threshold of the unstable p*,
then natural selection will act to “fix” the chromosomal rearrangement. Thus, we would
expect faster rates of chromosomal evolution in species with small local deme sizes.

In fact, it has been proposed that the rapid rate of chromosomal evolution and speci-
ation in mammals is due to their social structuring and reduced local deme sizes (Wilson 
et al. 1975). A paper by Russell Lande (1979) examined the theoretical relationship
between local deme sizes and rates of chromosomal evolution. As discussed in Chapter 3,
chromosomal variability is of special importance for conservation because the demo-
graphic characteristics that make a species a likely candidate for being threatened are the
same characteristics that favor the evolution of chromosomal differences between groups.
Therefore, reintroduction or translocation programs may reduce the average fitness of a
population if individuals are exchanged among chromosomally distinct groups.

8.5.3 Heterozygous advantage and drift

We have seen that heterozygous advantage in a two-allele system will always produce a
stable polymorphism with infinite population size. However, overdominance may actu-
ally accelerate the loss of genetic variation in finite populations if the equilibrium allele 
frequency is near 0 or 1 (Robertson 1962).

Consider the following fitness set:

AA Aa aa
1 − s1 1 1 − s2
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The following equilibrium allele frequency results if we substitute these fitness values into
expression 8.6:

(8.12)

When p* is less than 0.2 or greater than 0.8, this mode of selection will actually lose
genetic variation more quickly than the neutral case where s1 = s2 = 0 unless selection is
very strong or the population size is very large (Figure 8.9). Ne(s1 + s2) is used as a measure
of the effectiveness of selection in this analysis; the effectiveness of selection increases as
effective population size (Ne) increases and the intensity of selection (s1 + s2) increases. For
example, Ne(s1 + s2) will equal 60 when (s1 + s2) = 0.2 and Ne = 300 or (s1 + s2) = 0.4 and Ne
= 150. Thus, heterozygous advantage is only effective at maintaining fairly common alleles
(frequency > 0.2) except in large populations.

8.6 Natural selection and conservation

An understanding of natural selection is important for the management and conservation
of populations. Adaptation to captive conditions is a major concern for captive breeding
programs of plants and animals (Frankham et al. 1986; Ford 2002) (see Chapter 18). We
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Figure 8.9 Relative effectiveness of heterozygous advantage to maintain polymorphism. 
The retardation factor is the reciprocal of the rate of decay of genetic variation relative to the
neutral case, and N is actually Ne. Values of less than one indicate a more rapid rate of loss of
genetic variation than expected with selective neutrality. Thus, even strong natural selection
[e.g., N(s1 + s2) = 60] is not effective at maintaining a polymorphism if the equilibrium allele
frequency is less than 0.20 or greater than 0.80. From (Crow and Kimura 1970).
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saw in Chapter 1 that the size of pink salmon on the west coast of North America has
declined dramatically in just 25 years, apparently in response to selective fishing pressure.
There are many examples of rapid responses to natural selection in wild populations.
Stockwell et al. (2003) have recently reviewed the potential importance of short-term
responses to natural selection in conservation biology.

Evidence for natural selection on morphological traits is widespread in natural popula-
tions (see Guest Box 8). However, detecting the effects of natural selection at individual
loci has proven to be a very difficult problem ever since the discovery of widespread 
molecular polymorphisms in natural populations (Lewontin 1974; Watt 1995; but see
Section 9.6.3).

Nachman et al. (2003) have presented an elegant example of the action of natural selec-
tion on an individual locus resulting in local adaptation. Rock pocket mice are generally
light-colored and match the color of the rocks on which they live. However, mice that live
on dark lava are dark colored (melanic), and this concealing coloration provides protection
from predation (Figure 8.10). These authors examined several candidate loci that were
known to result in changes in pigmentation in other species. They found mutations in the
melanocortin-1 receptor gene that were responsible for the dark coloration in one popula-
tion of lava-dwelling mice that were melanic. However, they found no evidence of muta-
tions at this locus in another melanic population. Thus, the similar adaptation of dark

Figure 8.10 Light and dark phenotypes of rock pocket mice on light-colored rocks and dark
lava. From Nachman et al. (2003).
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coloration apparently has evolved by different genetic mechanisms in different popula-
tions (see Guest Box 12).

There is substantial evidence for natural selection acting on MHC loci in many species
(Edwards and Hedrick 1998). Nevertheless, how this information should be applied in a
conservation perspective has been controversial. Hughes (1991) recommended that “all
captive breeding programs for endangered vertebrate species should be designed with the
preservation of MHC allelic diversity as their main goal”. There are a variety of potential
problems associated with following this recommendation (Gilpin and Wills 1991; Miller
and Hedrick 1991; Vrijenhoek and Leberg 1991). The primary problem is that “selecting”
individuals on the basis of their MHC genotype could reduce genetic variation throughout
the rest of the genome (Lacy 2000a). We will revisit these issues in later chapters when we
consider the identification of units of conservation (Chapter 16) and captive breeding
(Chapter 18).

Frequency-dependent selection has special importance for conservation because of the
many functionally distinct alleles that are maintained by frequency-dependent selection at
some loci. We have seen that allelic diversity is much more affected by bottlenecks than is
heterozygosity (see Section 6.4). Reinartz and Les (1994) concluded that some one-third of
the remaining 14 natural populations of Aster furactus in Wisconsin, USA had reduced seed
sets because of a diminished number of S alleles. Young et al. (2000a) have considered the
effect of loss of allelic variation at the S locus on the viability of small populations (see
Guest Box 3). In addition, frequency-dependent selection probably contributes to the large
number of alleles present at some loci associated with disease resistance (e.g., MHC; see
Section 6.7). Thus, the loss of allelic diversity caused by bottlenecks is likely to make small
populations more susceptible to epidemics.

Many local adaptations of native populations will be difficult to detect because they will
only be manifest during periodic episodes of extreme environmental conditions, such as
winter storms (Example 8.3), drought, or fire (Gutschick and BassiriRad 2003). Weins
(1977) has argued that short-term studies of fitness and other population characteristics
are of limited value because of the importance of “ecological crunches” in variable envir-
onments. For example, Rieman and Clayton (1997) suggest that the complex life histories
(e.g., mixed migratory behaviors) of bull trout are adaptations to periodic disturbances
such as fire that may affect populations only every 25–100 years.

Example 8.3 Intense natural selection on cliff swallows during winter storms

Brown and Brown (1998) reported dramatic selective effects of body size on the
survival of cliff swallows in a population from the Great Plains of North America
(Figure 8.11). Cliff swallows in these areas are sometimes exposed to periods of
cold weather in late spring that reduce the availability of food. Substantial mortality
generally results if the cold spell lasts 4 or more days. A once in a hundred year 6-
day cold spell occurred in 1996 that killed approximately 50% of the cliff swallows
in southwestern Nebraska.

Comparison of survivors and dead birds revealed that larger birds were much
more likely to survive (Figure 8.11a). Mortality patterns did not differ in males and
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Figure 8.11 Intense natural selection on cliff swallows during a harsh winter storm. 
(a) Larger birds were much more likely to survive the storm than smaller birds. Body
size is a multivariate measure that includes wing length, tail length, tarsus length, and
culmen length and width. (b) Adult progeny in the next generation were much larger
than the mean of the population before the storm event. Thus, natural selection
increased the size of this population. Arrows indicate means. From Brown and Brown
(1998).
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females, but older birds were less likely to survive. Morphology did not differ with
age. Nonsurvivors were not in poorer condition before the storm suggesting that
selection acted on size and not condition. Larger birds apparently were favored in
extreme cold weather due to the thermal advantage of larger size and the ability to
store more body fat.

Examination of the adult progeny of the survivors indicated that mean body size
of the population responded to the selective event caused by the storm. The body
size of progeny was significantly greater than the body size of the population
before the storm (Figure 8.11b). Thus body size had a substantially high heritabil-
ity (see Section 2.2; Chapter 11).

Guest Box 8 Rapid adaptation and conservation
Craig A. Stockwell and Michael L. Collyer

Recent work has demonstrated that adaptive evolution often occurs on contempor-
ary time scales (years to decades), making it of particular relevance to conservation
planning (Ashley et al. 2003; Stockwell et al. 2003). Reports of rapid evolution span
a variety of species, traits, and situations, suggesting that rapid adaptation is the
norm rather than the exception (Stockwell et al. 2003). Furthermore, rapid adapta-
tion is often associated with the same anthropogenic factors responsible for the
current extinction crisis, including overharvest, habitat degradation, habitat frag-
mentation, and exotic species (Stockwell et al. 2003). Rapid evolution has 
crucial importance to conservation biology.

Here, we briefly discuss the implications of rapid adaptation for conservation
biology in the context of exotic species and actively managed species. First, many
case studies of rapid adaptation involve non-native species. For instance, intro-
duced fish populations have been shown to undergo rapid adaptation in response
to novel predator regimes and breeding environments (Stockwell et al. 2003).
Further, exotic species may create novel selection pressures for native biota (see
Chapter 19). Such is the case with the soapberry bug that apparently evolved
shorter beak length in response to the smaller seed pods of the exotic flat-potted
golden rain tree (Carroll et al. 2001). Finally, invasion dynamics may be influenced
by the evolution of exotics as they encounter novel selection pressure(s) during
invasion (García-Ramos and Rodríguez 2002).

Rapid adaptation can also result in the evolution of less preferred phenotypes.
For instance, selective harvest has been associated with evolution of smaller body
size in harvested populations of fish (Olsen et al. 2004a) and bighorn sheep (see
Guest Box 11; Coltman et al. 2003). Likewise, rapid adaptation of smaller egg size
has been observed for a captive population of chinook salmon (Heath et al. 2003).
In this case, wild populations supplemented with this stock have also shown a
decrease in egg size (Heath et al. 2003).

Rapid adaptation may also occur for so-called refuge populations that are estab-
lished as a hedge against extinction. For instance, a recently established population
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of the White Sands pupfish has undergone rapid adaptation in body shape 
(Figure 8.12). The native (Salt Creek) population is characterized by slender body
shapes, indicative of adaptive streamlining because of high water flow during 
periodic flash floods at Salt Creek. The introduced population at Mound Spring has
evolved a deep-bodied shape, presumably in response to the absence of high flows
(Collyer et al. 2005). This evolution took place in less than three decades. The func-
tional importance of body shape may preclude the refuge population’s usefulness
as a genetic replicate of the native population.
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0.31Native
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Lost River
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0.930.930.93

Saline river

(b)
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Brackish spring

Figure 8.12 Body shape variation among native and recently established populations
of White Sands pupfish. (a) A male pupfish is shown with the 13 anatomical landmarks
used to calculate morphological distances from a generalized Procrustes analysis.
These distances (on a relative scale) are shown in (b) along with deformation grids
that depict shape change from an overall mean form. The directions of the arrows
indicate that introduced populations were derived from Salt Creek. Experimental
research (Collyer 2003) demonstrated that body shape variation in this system is
strongly heritable, revealing that the evolutionary shape divergence of the Mound
Spring population exceeded native shape divergence in as little as three decades.
Modified from Collyer et al. (2005).
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In all of these cases, evolutionary responses have occurred on limited time scales
(often less than 50 years). Thus, for managed species, evolution may occur within
the timeframe of a typical management plan. This in turn can influence the dynam-
ics of population persistence. If selection is particularly harsh, a population may go
extinct even as it evolves due to demographic stochasticity (Gomulkiewicz and
Holt 1995). Further, rapid adaptation is likely to occur in the context of restoration
efforts due to the fact that populations often encounter novel environmental con-
ditions at restoration sites (Stockwell et al. 2005). These observations collectively
suggest that an evolutionary approach to conservation is especially timely.

Problem 8.1

The rate of evolution of a population adapting to a new environment is positively
correlated with the genetic variability of a population. How does one measure
“rate of evolution”, “adaptation”, and “genetic variability”?

Problem 8.2

A population is in Hardy–Weinberg proportions at a particular locus. Do you think
that it is it valid to conclude that little or no natural selection is occurring at that
locus? Remember to consider the effects of both differential survival and differ-
ential fertility.

Problem 8.3

What is the expected equilibrium allele frequency (p*) in each of the following
cases after an infinite number of generations in a population with two alleles? The
initial allele frequency is p0. Assume that only natural selection is affecting allele
frequencies.

(a) w11 = w12 = w22; p0 = 0.40.
(b) w11 > w12 = w22; p0 = 0.01.
(c) w11 = w22 = 0.9, w12 = 1.0; p0 = 0.41.
(d) w11 = 0.9, w12 = 1.0, w22 = 0.5; p0 = 0.41.
(e) w11 = w22 = 1.0, w12 = 0.5; p0 = 0.61.

Problem 8.4

How would your answers for Problem 8.3 change if genetic drift was also acting
because of small population size (say Ne = 20)? If more than one equilibrium is
possible, identify which equilibrium frequency is more likely to be reached.
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Problem 8.5

A single individual in a population is heterozygous for a chromosomal transloca-
tion. Homozygotes for both the common and translocated chromosome have
fitnesses of 1.0, but the fitness of the heterozygotes is reduced by 50%. How will
the fate of this translocation in the population differ if N = 10, as compared to, say,
N = 1,000?

Problem 8.6

Is heterozygous advantage (overdominance) more, less, or equally effective in
maintaining genetic variation in a large (say Ne > 1,000) as compared to a small
(say Ne < 100) population?

Problem 8.7

We saw in Chapter 7 that greater variability in reproductive success will decrease
effective population size and correspondingly increase the effects of genetic drift.
Intense natural selection at a particular locus will cause an increase in the variabil-
ity in reproductive success among individuals. This leads to an apparent paradox:
increased natural selection causes increased drift. We often think of selection and
drift as opposing forces. This paradox can be resolved by considering the locus of
action. That is, intense natural selection at a single locus will cause a reduction in
effective population size that will increase the effects of genetic drift over the
entire genome. Consider the possible implications of this effect for conservation.

Problem 8.8

There is evidence from a variety of species that adaptation to captive conditions
can occur in just a few generations. It is likely that such rapid changes are caused
by the increase in frequency of alleles that exist in wild populations at low fre-
quency (say less than 0.05). What kind of genotype–phenotype relationship do
you believe these alleles, which are responsible for adaptation to captivity, are
likely to demonstrate: recessive or dominant?

Problem 8.9

The program HW Power by Pedro J. N. Silva (2002) is available on the book 
website. This program allows the evaluation of the power of standard tests for
Hardy–Weinberg proportions with two alleles. Familiarize yourself with this pro-
gram by running different conditions. Now use this program to find the power of
testing for Hardy–Weinberg proportions to detect differential survival with het-
erozygous advantage. For example, how large a sample is necessary from a 
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population to have a 50% chance of detecting an excess of heterozygotes when
the fitness of both homozygotes is by reduced 15%? Is your answer dependent on
the allele frequency?

Problem 8.10

Supplementation of populations is sometimes part of recovery plans for declining
populations or species. Assume that a population of melanic pocket mice living on
dark lava is declining, and that supplementation from an outside population is rec-
ommended. Do you think it would be better to use an adjacent population of light-
colored mice or a distant population of dark-colored mice as the source population
of individuals to be used for supplementation? Why?
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Population 
Subdivision

There is abundant geographical variation in both morphology and gene frequency
in most species. The extent of geographic variation results from a balance of
forces tending to produce local genetic differentiation and forces tending to pro-
duce genetic homogeneity.

Montgomery Slatkin (1987)

The term “species” includes any subspecies of fish or wildlife or plants, and any
distinct population segment of any species of vertebrate fish or wildlife which
breeds when mature.

US Endangered Species Act of 1973

9.1 F-statistics, 199

9.2 Complete isolation, 204

9.3 Gene flow, 205

9.4 Gene flow and genetic drift, 206

9.5 Cytoplasmic genes and sex-linked markers, 210

9.6 Gene flow and natural selection, 214

9.7 Limitations of FST and other measures of subdivision, 218

9.8 Estimation of gene flow, 220

9.9 Population subdivision and conservation, 226

Guest Box 9 Hector’s dolphin population structure and conservation, 227

Grevillea barklyana, Example 9.1
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So far we have considered only random mating (i.e., panmictic) populations. Natural popu-
lations of most species are subdivided or “structured” into separate local random mating
units that are called demes. The subdivision of a species into separate subpopulations
means that genetic variation within species exists at two primary levels:

1 Genetic variation within local populations.
2 Genetic diversity between local populations.

We saw in Chapter 3 that there are large differences between species in the proportion
of total genetic variation that is due to differences among populations (FST). For example,
Schwartz et al. (2002) found very little genetic divergence (FST = 0.033) at nine microsatel-
lite loci among 17 Canada lynx population samples collected from northern Alaska to cen-
tral Montana (over 3,100 km). However other species of vertebrates, including carnivores,
can be highly structured over a relatively short geographic distance (Figure 9.1). For exam-
ple, Spruell et al. (2003) found 20 times this amount of genetic divergence among bull trout
populations within the Pacific Northwest of the United States (FST = 0.659). Even separate
spawning populations of bull trout just a few kilometers apart within a small tributary of
Lake Pend Oreille in Idaho had twice the amount of genetic divergence (FST = 0.063) than
the widespread population samples of lynx (Spruell et al. 1999b).

Understanding the patterns and extent of genetic divergence among populations is cru-
cial for protecting species and developing effective conservation plans (see Guest Box 9).
For example, translocation of animals or plants to supplement suppressed populations
may have harmful effects if the translocated individuals are genetically different from the
recipient population (Storfer 1999; Edmands 2002). In addition, developing priorities for
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Figure 9.1 General relationship between geographic distance and genetic distance at
microsatellite loci for four species of mammals. Lynx and coyotes show little genetic
differentiation over thousands of kilometers; wolves (not shown) are similar to coyotes in 
this respect. However, less mobile species have significant differences in allele frequencies
between populations over only a few hundreds of kilometers. Bighorn sheep, for example,
live on mountain tops and tend not to disperse across deep valleys and forests that often
separate mountain ranges. Modified from Forbes and Hogg (1999); additional unpublished
data from M. Schwartz.
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the conservation of a species requires an understanding of adaptive genetic differentiation
among populations. Perhaps most importantly, an understanding of genetic population
structure is essential for identifying units to be conserved. For example, as stated in the
quote at the beginning of the chapter, distinct populations can be listed under the US
Endangered Species Act and receive the same protection as biological species.

The use of the terms migration and dispersal is somewhat confusing. The classic popu-
lation genetics literature uses migration to refer to the movement of individuals from 
one genetic population to another (i.e., genetic exchange among breeding groups). This
exchange is generally referred to as dispersal in the ecology literature. Migration in the
ecology literature refers to movement of individuals during their lifetime from one geo-
graphic region to another. For example, anadromous salmon undertake long migrations
from their natal stream to the ocean where they feed for several years before migrating to
their natal streams for reproduction. In the genetic sense, migration of salmon refers to an
individual returning to a spawning population other than its natal population.

In this chapter, we will consider populations that are subdivided into a series of partially
isolated subpopulations that are connected by some amount of genetic exchange (migra-
tion). We will first consider how genetic variation is distributed at neutral loci within 
subdivided populations because of the effects of two opposing processes: gene flow and
genetic drift. We will next consider the effects of natural selection on the distribution of
genetic variation within species. Finally, we will consider the application of this analysis to
the observed distribution of genetic variation in natural populations.

9.1 F -statistics

The oldest and most widely used metrics of genetic differentiation are F-statistics. Sewall
Wright (1931, 1951) developed a conceptual and mathematical framework to describe the
distribution of genetic variation within a species that used a series of inbreeding
coefficients: FIS, FST, and FIT. FIS is a measure of departure from Hardy–Weinberg propor-
tions within local demes or subpopulations; as we have seen, FST is a measure of allele 
frequency divergence among demes or subpopulations; and FIT is a measure of the overall
departure from Hardy–Weinberg proportions in the entire base population (or species)
due to both nonrandom mating within local subpopulations (FIS) and allele frequency
divergence among subpopulations (FST).

In general, inbreeding is the tendency for mates to be more closely related than two
individuals drawn at random from the population. It is crucial to define inbreeding relative
to some clearly specified base population. For example, using the entire species as the base
population, a mating between two individuals within a local population will produce
“inbred” progeny because individuals from the same local populations are likely to have
shared a more recent common ancestor than two individuals chosen at random from
throughout the range of a species. As we will see, FST is a measure of this type of inbreeding.

These parameters were initially defined by Wright for loci with just two alleles. They
were extended to three or more alleles by Nei in 1977, who used the parameters GIS, GST,
and GIT in what he termed the analysis of gene diversity. F and G are now often used 
interchangeably in the literature.

F-statistics are a measure of the deficit of heterozygotes relative to expected
Hardy–Weinberg proportions in the specified base population. That is, F is the proportion
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by which heterozygosity is reduced relative to heterozygosity in a random mating popula-
tion with the same allele frequencies:

F = 1 − (H0/He) (9.1)

where H0 is the observed proportion of heterozygotes and He is the expected
Hardy–Weinberg proportion of heterozygotes.

FIS is a measure of departure from Hardy–Weinberg proportions within local 
subpopulations:

FIS = 1 − (H0/HS) (9.2)

where H0 is the observed heterozygosity averaged over all subpopulations, and HS is the
expected heterozygosity averaged over all subpopulations. FIS will be positive if there is a
deficit of heterozygotes and negative if there is an excess of heterozygotes. Inbreeding
within local populations, such as selfing, will cause a deficit of heterozygotes (Example 9.1).
As we saw in Chapter 6, a small effective population size can cause an excess of hetero-
zygotes and result in negative FIS values.

Example 9.1 Selfing in a Australian shrub

Ayre et al. (1994) studied genetic variation in the rare Australian shrub Grevillea
barklyana, which reproduces by both selfing and outcrossing. They found a
significant (P < 0.001) deficit of heterozygotes at the Gpi locus in a sample of
progeny from one of their four populations:

Genotypes

A/A A/B B/B

112 43 31 # = 0.718 & IS = 0.429
(95.9) (75.3) (14.8)

We can estimate the proportion of selfing that can explain these results by solving
for S in expression 9.7:

This results in an estimated 60% of the progeny in this population being produced
by selfing and the remaining 40% by random mating, if we assume that the deficit
of heterozygotes is caused entirely by selfing.

S
F
F

  
(   )

=
+
2

1
IS

IS
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FST is a measure of genetic divergence among subpopulations:

FST = 1 − (HS/HT) (9.3)

where HT is the expected Hardy–Weinberg heterozygosity if the entire base population
were panmictic (Example 9.2). HT is the expected Hardy–Weinberg proportion of het-
erozygotes using the allele frequencies averaged over all subpopulations. FST ranges from
zero, when all subpopulations have equal allele frequencies, to one, when all the subpopu-
lations are fixed for different alleles. FST is sometimes called the fixation index.

FIT is a measure of the total departure from Hardy–Weinberg proportions that includes
departures from Hardy–Weinberg proportions within local populations and divergence
among populations:

FIT = 1 − (H0/HT)

Example 9.2 The Wahlund effect in a lake of brown trout

The approach of Nei (1977) can be used to compute F-statistics with genotypic
data from natural populations. For example, two nearly equal size demes of brown
trout occurred in Lake Bunnersjöarna in northern Sweden (Ryman et al. 1979).
One deme spawned in the inlet, and the other deme spawned in the outlet. The
fish spent almost all of their life in the lake itself rather than in the inlet and outlet
streams. These two demes were nearly fixed for two alleles (100 and null ) at the
LDH-A2 locus. Genotype frequencies for a hypothetical sample taken from the
lake itself of 100 individuals, made up of exactly 50 individuals from each deme,
are shown below:

100/100 100/null null/null Total p 2pq

Inlet deme 50 0 0 50 1.000 0.000

Outlet deme 1 13 36 50 0.150 0.255

Lake sample 51 13 36 100 0.575 0.489
(expected) (33.1) (48.9) (18.1)

The mean expected heterozygosity within these two demes (HS) is 0.128 (the
mean of 0.000 and 0.255). Thus, the value of FST for this population at this locus is
0.738:

FST = 1 − (HS/HT) = 1 − (0.128/0.489) = 0.728

That is, the heterozygosity of the sample of fish from the lake is approximately
74% lower than we would expect if this population was panmictic.
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These three F-statistics are related by the expression:

FIT = FIS + FST − (FIS)(FST) (9.4)

This approach will be used in this chapter to describe the effects of population subdivision
on the genetic structure of populations.

9.1.1 Subdivision and the Wahlund effect

This deficit of heterozygotes relative to Hardy–Weinberg proportions, caused by the sub-
division of a population into separate demes, is often referred to as the Wahlund principle.
For example, a large deficit of heterozygotes was found at many loci when brown trout
captured in Lake Bunnersjöarna (Example 9.2) were initially analyzed without knowledge
of the two separate subpopulations (Ryman et al. 1979). Wahlund was a Swedish geneticist
who first described this effect in 1928. He analyzed the excess of homozygotes and deficit
of heterozygotes in terms of the variance of allele frequencies among S subpopulations:

(9.5)

When Var(q ) = 0, all subpopulations have the same allele frequencies and the population is
in Hardy-Weinberg (HW) proportions. As Var(q ) increases, the allele frequency differences
among subpopulations increases and the deficit of heterozygotes increases. In fact,

(9.6)

so that we can express the genotypic array of the population in terms of either FST or Var(q ):

Genotype HW Wright Wahlund
AA p2 p2 + pqFST p2 + Var(q )
Aa 2pq 2pq − 2pqFST 2pq − 2Var(q )
aa q2 q2 + pqFST q2 + Var(q )

These two approaches for describing the genotypic effects of population subdivision
(Wright and Wahlund) are analogous to the two ways we modeled genetic drift in Chapter
6: either an increase in homozygosity or a change in allele frequency.

The Wahlund effect can readily be extended to more than two alleles (Nei 1965). How-
ever, the variance in frequencies will generally differ for different alleles. The frequency 
of particular heterozygotes may be greater or less than expected with Hardy–Weinberg
proportions. Nevertheless, there will always be an overall deficit of heterozygotes due to
the Wahlund effect.

9.1.2 When is FIS not zero?

Generally the first step in analyzing genotypic data from a natural population is to test for
Hardy–Weinberg proportions. As we have seen, FIS is a measure of departure from
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expected Hardy–Weinberg proportions. A positive value indicates an excess of homozy-
gotes, and a negative value indicates a deficit of homozygotes. Interpreting the causes of
an observed excess or deficit of homozygotes can be difficult.

The most general cause of an excess of homozygotes is nonrandom mating or popula-
tion subdivision. In the case of the Wahlund effect, the presence of multiple demes within
a single population sample will produce an excess of homozygotes at all loci for which the
demes differ in allele frequency.

Inbreeding within a single deme will produce a similar genotypic effect. That is, the tend-
ency for related individuals to mate will also produce an excess of homozygotes. Perhaps
the simplest example of this is a plant that reproduces by both self-pollination and out-
crossing. Assume that a proportion S (i.e., the selfing rate) of the matings in a population
are the result of selfing and the remainder (1 − S) result from random mating. The equilib-
rium value of FIS in this case will be:

(9.7)

For example, consider a population in which half of the progeny are produced by selfing
and half by outcrossing (S = 0.5). In this case, FIS will be 0.33. (See Example 9.1.)

Null alleles at allozyme and microsatellite loci are another possible source of an excess
of homozygotes (see Section 5.4 for a description of null alleles).

Perhaps the best way to discriminate between nonrandom mating (either inbreeding or
including multiple populations in a single sample) or a null allele to explain an excess of
homozygotes, is to examine if the effect appears to be locus specific or population specific.
All loci that differ in allele frequency between demes will have a tendency to show an
excess of homozygotes. Assume you examine 10 loci in 10 different population samples 
(10 × 10 = 100 total tests), and that you detect a significant (P < 0.05) excess of homo-
zygotes for 12 tests. If eight of the 12 deviations are in a single population, this would 
suggest that this population sample consisted of more than one deme. In contrast, a
homozygote excess due to a null allele should be locus specific. In the same example as
above, if eight of the deviations were at just one of the 10 loci, this would suggest that a null
allele at appreciable frequency was present at that locus.

It may also be possible to discriminate between inbreeding or including multiple popu-
lations in a single sample (the Wahlund effect) to explain an observed excess of homo-
zygotes caused by nonrandom mating. Inbreeding will reduce the frequency of all 
heterozygotes. However, as discussed in the previous section, some heterozygotes will be
in excess and some will be in deficit in the case of more than two alleles.

A deficit of homozygotes (excess of heterozygotes) may also occur under some circum-
stances. We saw in Section 6.6 that we expect a slight excess of heterozygotes in small ran-
domly mating populations. Natural selection may also cause an excess of heterozygotes if
heterozygotes have a greater probability of surviving than homozygotes (see Section 8.2
and Table 8.1). However, the differential advantage of heterozygotes has to be very great
to have a detectable effect on genotypic proportions (see Problem 9.6).

Differences in allele frequency between the sex chromosomes will result in an excess of
heterozygotes in comparison to expected Hardy–Weinberg proportions in the hetero-
gametic sex for sex-linked loci (Clark 1988; Allendorf et al. 1994). For example, Berlocher
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(1984) observed the following genotypic frequencies at a sex-linked allozyme locus (Pgm)
with two alleles (100 and 82) in the walnut husk fly for which males are XY and females 
are XX:

100/100 100/82 82/82

Females 25 0 0
Males 4 21 0

Based on these genotypic data, only the 100 allele is present on the X chromosome, but the
82 allele is at an estimated frequency of 0.84 (21/25) on the Y chromosome.

9.2 Complete isolation

Let us consider a large random mating population that is subdivided into many com-
pletely isolated demes. Let us consider the effect of this subdivision on a single locus with
two alleles. Assume all Hardy–Weinberg conditions are valid except for small population
size within each individual isolated subpopulation. Genetic drift will occur in each of the
isolated demes; eventually, each deme will become fixed for one allele or other.

What is the effect of this subdivision on our two measures of the genetic characteristics
of populations: allele frequencies and genotype frequencies? If the initial allele frequency
of the A allele in the large, random mating population was p, the allele frequency in our
large, subdivided population will still be p because we expect p of the isolates to become
fixed for the A allele, and (1 − p) of the isolates to become fixed for the a allele. Thus, subdi-
vision (nonrandom mating) itself has no effect on overall allele frequencies.

We can see this effect in the guppy example from Table 6.3 where 16 subpopulations
were founded by a single male and female from a large population. Genetic drift within
each subpopulation acted to change allele frequencies at the two loci: AAT-1 and PGM-1 
for four generations. However, the average allele frequencies over the 16 subpopulations
at both loci are very close to the frequencies in the large founding population. Therefore,
allele frequencies in the populations as a whole were not affected by subdivision.

However, the subdivision into 16 separate subpopulations did affect the genetic struc-
ture of this population. We can use the F-statistics approach developed in the previous sec-
tion to describe this effect at the AAT-1 locus. In this case, HS is the mean expected
heterozygosity averaged over the 16 subpopulations (0.344), and HT is the Hardy–Weinberg
heterozygosity (0.492) using the average allele frequency averaged over all subpopulations
(0.562). Therefore:

FST = 1 − (HS/HT) = 1 − (0.344/0.492) = 0.301

In words, the average heterozygosity of individual guppies in this population has been
reduced by 31% because of the subdivision and subsequent genetic drift within the 
subpopulations.
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We know from Section 6.3 that heterozygosity will be lost by genetic drift at a rate of
1/2Ne per generation. Therefore, we expect FST among completely isolated populations to
increase as follows (modified from expression 6.3):

(9.8)

where Ne is the effective population size of each subpopulation and t is the number of 
generations (Figure 9.2). The application of this expression to real populations is limited
because it assumes a large number of equal size subpopulations and constant population
size.

9.3 Gene flow

In most cases, there will be some genetic exchange (gene flow) among demes within a
species. We must therefore consider the effects of such partial isolation on the genetic
structure of species. Let us first consider the simple case of two demes (A and B) of equal
size that are exchanging individuals in both directions at a rate m. Therefore, m is the 
proportion of individuals reproducing in one deme that were born in the other deme. In
this case:

q ′A = (1 − m)qA + mqB (9.9)
q ′B = mqA + (1 − m)qB

For example, consider two previously isolated populations that begin to exchange
migrants at a rate of m = 0.10 (10% exchange). Assume that the allele frequency in popula-
tion A is 1.0, and in population B it is 0.0. The above model can be used to predict the
effects of gene flow between these two populations as shown in Figure 9.3.
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Figure 9.2 Expected increase in FST over time (generations) among completely isolated
populations of different population sizes using expression 9.8.
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Equilibrium will be reached when qA = qB, and q* will be the average of the initial allele
frequencies in the two demes; in this case, q* = 0.5. In general, there are two primary
effects of gene flow:

1 Gene flow reduces genetic differences between populations.
2 Gene flow increases genetic variation within populations.

Gene flow among populations is the cohesive force that holds together geographically
separated populations into a single evolutionary unit – the species. In the rest of this chapter
we will consider the interaction between the homogenizing effects of gene flow and the
action of genetic drift and natural selection that cause populations to diverge.

9.4 Gene flow and genetic drift

In the absence of other evolutionary forces, any gene flow between populations will bring
about genetic homogeneity. With lower amounts of gene flow it will take longer, but even-
tually all populations will become genetically identical. However, we saw in Section 6.1
that genetic drift causes isolated subpopulations to become genetically distinct. Thus, the
actual amount of divergence between subpopulations will be a balance between the
homogenizing effects of gene flow making subpopulations more similar and the disrup-
tive effects of drift causing divergence among subpopulations. We examine this using a
series of models for different patterns of gene flow. All of these models will necessarily be
much simpler than the actual patterns of gene flow in natural populations.

9.4.1 Island model

We will begin with the simplest model that combines the effects of gene flow and genetic
drift. Assume that a population is subdivided into a series of demes, each of size N, that
exchange individuals at a rate of m. That is, each generation an individual has probability m
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Figure 9.3 Expected changes in allele frequencies in two demes that are exchanging 10% of
their individuals each generation (m = 0.10) using expression 9.9.
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of breeding in a deme other than that of his or her birth. Let us further assume that a
migrant is equally likely to immigrate into any of the other demes. This model is called the
island model of migration (Figure 9.4).

As before, we will measure divergence among subpopulations (demes) using FST.
Genetic drift within each deme will act to increase divergence among demes, i.e., increase
FST. However, migration between demes will act to decrease FST. As long as m > 0, there
will be some steady-state (equilibrium) value of FST at which the effects of drift and gene
flow will be balanced.

Sewall Wright (1969) has shown that at equilibrium under the island model of migra-
tion with an infinite number of demes:

(9.10)

Fortunately, if m is small this approaches the much simpler:

(9.11)

This approximation provides an accurate estimation of the amount of divergence under
the island model. For example, the expected equilibrium value of FST with one migrant per
generation (mN = 1) using expression 9.11 is 0.200; the value resulting from the simulation
shown in Figure 9.5 with 20 subpopulations (FST = 0.215) is very close to this expected
value. One important result of this analysis is that very little gene flow is necessary for popu-
lations to be genetically connected (Question 9.1).
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Figure 9.4 Pattern of exchange among five subpopulations under the island model of
migration. Each subpopulation of size N exchanges migrants with the other subpopulations
with equal probability. The total proportion of migrants into a subpopulation is m so that 
an average of (1/4 mN ) migrants are exchanged between each pair of subpopulations each
generation.
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Question 9.1 Is one migrant per generation sufficient to insure that two or more
populations are genetically identical?

Expression 9.11 also provides a surprisingly simple result: the amount of divergence
among demes depends only on the number of migrant individuals (mN ), and not the pro-
portion of exchange among demes (m). Thus, we expect to find approximately the same
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Figure 9.5 Relationship between migration, FST, and allelic divergence. Computer
simulations were carried out with 20 subpopulations (N = 200) and different expected
amounts of migration. The first value on each graph (e.g., 0.0080) is the FST for that particular
distribution of allele frequencies: mN = 25; mN = 10; mN = 5; mN = 2; mN = 1; and mN = 0.5.
From Allendorf and Phelps (1981).
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amount of divergence among demes of size 200 with m = 0.025, as we do with demes of
size 50 with m = 0.1 (0.025 × 200 = 0.1 × 50 = 5 migrants per generation).

The dependence of divergence on only the number of migrants irrespective of popula-
tion size may seem counterintuitive. Remember, however, that the amount of divergence
results from the opposing forces of drift and migration. The larger the demes are, the
slower they are diverging through drift; thus, proportionally fewer migrants are needed to
counteract the effects of drift. Small demes diverge rapidly through drift, and thus propor-
tionally more migrants are needed to counteract drift.

9.4.2 Stepping-stone model

In natural populations, migration is often greater between subpopulations that are near
each other (Slatkin 1987). This violates the assumption of equal probability of exchange
among all pairs of subpopulations with the island model of migration. The stepping-stone
model of migration was introduced (Kimura and Weiss 1964) to take into account both
short-range migration (which occurs only between adjacent subpopulations) and long-
range migration (which occurs at random between subpopulations). Linear stepping-
stone models (Figure 9.6) are useful for modeling populations with a one-dimensional
linear structure, as occurs along a river, river valley, valley, or a mountain ridge, for exam-
ple. Two-dimensional stepping-stone models are useful for modeling populations with a
grid structure (or 2D checker board pattern) across the landscape.

The mathematical treatment of the stepping-stone model is much more complex than
the island model. In general, migration in the stepping-stone model is less effective at
reducing differentiation caused by drift because subpopulations exchanging genes tend to
be genetically similar to each other. Therefore, there will be greater differentiation (i.e.,
greater FST) among subpopulations with the stepping-stone than the island model for the
same amount of genetic exchange (m). In addition, in the stepping-stone model, adjacent
subpopulations should be more similar to each other than geographically distant popula-
tions (isolation by distance) (see Figure 9.1). With the island model of migration, genetic
divergence will be independent of geographic distance (Figure 9.7).

9.4.3 Continuous distribution model

In some species, individuals are distributed continuously across large landscapes (e.g.
coniferous tree species across boreal forests) and are not subdivided by sharp barriers to
gene flow (Figure 9.8). Nonetheless, gene flow can be limited to relatively short distances
leading to genetic differentiation because of isolation by distance (Wright 1943). It is
impossible to identify and sample discrete population units because no sharp boundaries
exist. In this case, the neighborhood is defined as the area from which individuals can be

NN N N N

Figure 9.6 Pattern of exchange among subpopulations under the single-dimension stepping-
stone model of migration. Each subpopulation of size N exchanges m/2 individuals with each
adjacent subpopulation.
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considered to be drawn at random from a panmictic population. We can estimate the geo-
graphic distance at which individuals will become genetically differentiated due to limited
gene flow. For example, if the mean gene flow distance is 1 km then we would expect sub-
stantial genetic differentiation between individuals separated by, say, 5–10 km (Manel et al.
2003).

9.5 Cytoplasmic genes and sex-linked markers

Maternally inherited cytoplasmic genes and sex-linked markers generally show different
amounts of differentiation among populations than autosomal loci for several reasons.
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Figure 9.7 Expected relationship between genetic divergence and geographic distance with
the island (a) and stepping-stone (b) model of migration. The stepping-stone model results in
isolation by distance because there is greater gene flow between adjacent subpopulations.
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First, they usually have a smaller effective population size than autosomal loci and there-
fore show greater divergence due to genetic drift. In addition, differences in migration
rates between males and females can cause large differences between cytoplasmic genes
and sex-linked markers compared to autosomal loci.

9.5.1 Cytoplasmic genes

The expected amount of allele frequency differentiation with a given amount of gene flow
is different for mitochondrial and nuclear genes because of haploidy and uniparental inher-
itance. We can calculate FST to compare the amount of allelic differentiation for nuclear
and mitochondrial genes. However, since mtDNA is haploid, individuals are hemizygous
rather than homozygous or heterozygous. We expect more differentiation at mtDNA than
for nuclear genes because of their smaller effective size. That is, the greater genetic drift
with smaller effective population size will bring about greater differentiation populations
that are connected by the same amount of gene flow. If migration rates are equal in males
and females, then we expect the following differentiation for mtDNA with the island
model of migration (Birky et al. 1983):

Figure 9.8 Continuous distribution of individuals where no sharp boundaries separate
individuals (gray dots) into discrete groups. Nonetheless, genetic isolation arises over
geographic distance because nearby individuals are more likely to mate with each other 
than with individuals that are farther away (isolation by distance). We can place a circle 
of the appropriate neighborhood size anywhere (see two circles) and individuals inside 
will represent a panmictic group in Hardy–Weinberg proportions.
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(9.12)

This expression is sometimes written to consider only females:

(9.13)

where Nf is the number of females in the population. Expressions 9.12 and 9.13 are iden-
tical if there are an equal number of males and females in the population (Nf = Nm) because
(2Nf) = N.

Thus, with equal migration rates in males and females, we expect approximately two to
four times as much allele frequency differentiation at mitochondrial genes than at nuclear
genes (Figure 9.9). We can see this effect in the study of sockeye salmon shown in Sec-
tion 9.6.3; the FST at mtDNA was greater than the FST at all but one of the 20 nuclear loci
examined.

This difference in FST for a nuclear locus and for mtDNA is expected to be greater for
species in which the emigration rates of males are greater than those of females (Example
9.3). Female green turtles deposit their eggs in rookeries on oceanic beaches. Analysis of
mtDNA variation shows large genetic differences even between nearby beaches. This sug-
gests that the females are extremely philopatric (Bowen et al. 1992). That is, females have
a strong tendency to deposit their eggs in the same rookeries in which they began their
own life. However, analysis of nuclear genes indicates substantial gene flow among rook-
eries that apparently results from females mating with males at sea before they return to
their natal beaches (Karl et al. 1992). FitzSimmons et al. (1997b) found similar results with
green turtles on the Australian coast (see Guest Box 4). Rookeries south and north of 
the Great Barrier Reef were nearly fixed for different haplotypes at mtDNA (FST = 0.83; 
P < 0.001), but lacked any divergence at eight nuclear loci (FST = 0.014; NS).
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Figure 9.9 Expected values of FST with the island model of migration for a nuclear locus
(expression 9.11) and mtDNA (expression 9.12).
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Example 9.3 Divergence at nuclear loci and cpDNA in the white campion

McCauley (1994) compared the distribution of genetic variation at seven allozyme
loci and chloroplast DNA in white campion (Table 9.1). As expected, a much
greater proportion of the variation was distributed among populations for the
cpDNA marker (FST = 0.674) compared to the nuclear loci (FST = 0.134).
However, this difference is even greater than expected with the island model of
migration at equilibrium (see Figure 9.9). FST = 0.134 is expected to result from 1.6
migrants per generation with the island model (Figure 9.9 and expression 9.11).
This amount of gene flow should result in an FST for cpDNA of 0.385 (expression
9.12). This value is outside the 95% confidence interval for the estimated FST for
cpDNA.

The simplest explanation for this discordance between nuclear loci and cpDNA
is that most of the gene flow is from pollen rather than seeds. Therefore, migration
rates will be greater for nuclear genes than for maternally inherited genes such as
cpDNA. This same effect has been seen in many plants, especially ones that are
wind pollinated (Ouborg et al. 1999).

Table 9.1 Estimates of FST from 10 populations of white
campion at seven allozyme loci and cpDNA. The 95% confidence
limits are provided in the bottom two rows (McCauley 1994).

Locus FST

GPI 0.125
IDH 0.083
LAP 0.172
MDH 0.230
PGM 0.145
6-PGD 0.042
SKDH 0.083
Allozymes 0.134 (0.073–0.195)
cpDNA 0.674 (0.407–0.941)

9.5.2 Sex-linked markers

Genes on the Y chromosome of mammals present a parallel situation to mitochondrial
genes. The Y chromosome is haploid and is only transmitted through the father. Thus, the
expectations that we just developed for cytoplasmic genes also apply to Y-linked genes
except that we must substitute the number of males for females. Comparison of the pat-
terns of differentiation at autosomal, mitochondrial, and Y-linked genes can provide valu-
able insight into the evolutionary history of species and current patterns of gene flow
(Example 9.4).
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Example 9.4 Y chromosome isolation in a shrew hybrid zone

A Y chromosome microsatellite locus and 10 autosomal microsatellite loci were
typed across a hybrid zone between the Cordon and Valais races of the common
shrew in western France (Balloux et al. 2000). There is a contact where the two
races occur on either side of a stream. Gene flow is somewhat limited, but the 
two races show relatively little divergence at the autosomal microsatellite loci 
(FST = 0.02) (Brünner and Hausser 1996; Balloux et al. 2000).

Almost all gene flow in these shrews appears female mediated, and male
hybrids are generally inviable. No alleles were shared across the hybrid zone at
the Y-linked locus (Figure 9.10). However, the FST value between races at the Y-
linked microsatellite loci is just 0.19; this low value does not reflect the absence of
alleles shared between races because of the high within-race heterozygosity at
this locus (this effect is discussed in Section 9.7). RST is an analogue of FST that
takes the relative size of microsatellite alleles (i.e., allelic state) into consideration.
The strong divergence is reflected in a value RST (0.98). It is important to incorp-
orate allele length (mutational) information when HS is high, because mutations
likely contribute to population differentiation when populations are long isolated as
in this example (see Section 9.7).
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Figure 9.10 Allele frequency distribution of a Y-linked microsatellite locus (L8Y ) in the
European common shrew. Males of the Cordon race are represented by black bars, and
Valais males by white bars. From Balloux et al. (2000).

9.6 Gene flow and natural selection

We will now examine the effects of natural selection on the amount of genetic divergence
expected among subpopulations in an island model of migration (Allendorf 1983). We pre-
viously concluded that the amount of divergence, as measured by FST, is dependent only
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upon the product of migration rate and deme size (mN ). Does this simple principle hold
when we combine the effects of natural selection with the island model of migration? As
we will see shortly, the answer is no.

9.6.1 Heterozygous advantage

Assume the following fitnesses hold within each deme:

AA Aa aa

Fitness 1 − s 1.0 1 − s

Because of its complexity, one of the best ways to analyze this system is using computer
simulations. We will examine the results of simulations combining natural selection with
the island model of migration in which there are 20 subpopulations. Natural selection will
act to maintain a stable equilibrium of p* = 0.5 in each deme. Thus, this model of selection
will reduce the amount of divergence among demes (Table 9.2). The greater the value of s,
the greater will be the reduction in FST (Table 9.2). Even relatively weak selection can have
a marked effect on FST; for example, see s = 0.01 and mN = 0.5 in Table 9.2. It is also appar-
ent that genetic divergence among demes is no longer only a function of mN. For a given
value of mN, natural selection becomes more effective, and thus FST is reduced, as popula-
tion size increases.

Table 9.2 Simulation results (except top row) of steady-state FST values for 20 demes and
selective neutrality (s = 0) or heterozygous advantage in which both homozygous
phenotypes have a reduction in fitness of s. Each value is the mean of 20 repeats. Expected
values were calculated by FST = 1/(4mN + 1).

mN

0.5 1 2 5 10 25 N

Expected 0.3333 0.2000 0.1111 0.0476 0.0244 0.0099

s = 0.00 0.3070 0.2043 0.1245 0.0418 0.0198 – 25
0.3350 0.1826 0.1077 0.0484 0.0264 0.0120 50
0.3216 0.1884 0.1061 0.0437 0.0251 0.0095 100

s = 0.01 0.2826 0.1640 0.0666 0.0499 0.0220 – 25
0.2431 0.1534 0.0824 0.0406 0.0232 0.0117 50
0.1782 0.1236 0.0930 0.0383 0.0355 0.0109 100

s = 0.05 0.1930 0.1259 0.0714 0.0441 0.0237 – 25
0.1327 0.1072 0.0620 0.0341 0.0238 0.0092 50
0.0827 0.1072 0.0432 0.0242 0.0185 0.0110 100

s = 0.10 0.1217 0.1039 0.0533 0.0429 0.0216 – 25
0.0938 0.0763 0.0503 0.0307 0.0207 0.0087 50
0.0410 0.0290 0.0317 0.0217 0.0103 0.0070 100
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9.6.2 Divergent directional selection

Assume the following relative fitnesses in a population consisting of 20 demes:

AA Aa aa

Demes 1−10 1 1 − t/2 1 − t

Demes 11−20 1 − t 1 − t/2 1

This pattern of divergent directional selection will act to maintain allele frequency differ-
ences among demes so that large differences can be maintained even with extensive
genetic exchange. Again, selection is more effective with larger demes (Table 9.3).

9.6.3 Comparisons among loci

Gene flow and genetic drift are expected to affect all loci uniformly throughout the
genome. However, the effects of natural selection will affect loci differently depending
upon the intensity and pattern of selection. As we have noted above, even fairly weak 
natural selection can have a substantial effect on divergence. Therefore, surveys of genetic

Table 9.3 Simulation results of steady-state FST values for 20 demes with differential
directional selection. Each value is the mean of 20 repeats. One homozygous genotype has a
reduction in fitness of t in 10 demes; the other homozygous genotype has the same reduction
in fitness in the other 10 demes. Heterozygotes have a reduction in fitness of one-half t in all
demes.

mN

0.5 1 2 5 10 25 N

Expected 0.3333 0.2000 0.1111 0.0476 0.0244 0.0099

t = 0.00 0.3070 0.2043 0.1245 0.0418 0.0198 – 25
0.3350 0.1826 0.1077 0.0484 0.0264 0.0120 50
0.3216 0.1884 0.1061 0.0437 0.0251 0.0095 100

t = 0.01 0.3343 0.1703 0.1070 0.0556 0.0220 – 25
0.2979 0.1192 0.1000 0.0381 0.0256 0.0099 50
0.2997 0.1850 0.1146 0.0354 0.0229 0.0105 100

t = 0.05 0.3560 0.1857 0.1204 0.0497 0.0217 – 25
0.4618 0.2679 0.1489 0.0550 0.0265 0.0113 50
0.5950 0.4230 0.1982 0.0632 0.0207 0.0118 100

t = 0.10 0.4700 0.2446 0.1632 0.0473 0.0289 – 25
0.6242 0.3653 0.2611 0.0771 0.0356 0.0128 50
0.8054 0.6575 0.4432 0.1589 0.0632 0.0193 100
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differentiation at many loci throughout the genome can be used to detect outlier loci that
are candidates for the effects of natural selection.

Detecting locus-specific effects is critical because only genome-wide effects inform us
reliably about population demography and phylogenetic history, whereas locus-specific
effects can help identify genes important for fitness and adaptation. An example of a locus-
specific effect is differential directional selection whereby one allele is selected for in one
environment but the allele is disadvantageous in a different environment. This selection
would generate a large allele frequency difference (high FST) only at this locus relative to
neutral loci throughout the genome. For example, just a 10% selection coefficient favoring
different alleles in two environments can generate large differences with this pattern of
selection between the selected locus (FST = 0.66) and neutral loci (FST = 0.20), as shown in
Table 9.3 with local population sizes of N = 100.

It is crucial to identify outlier loci, not only because such loci might be under selection
and help us to understand adaptive differentiation, but also because outlier loci can
severely bias estimates of population parameters (e.g., FST or the number of migrants).
Most estimates of population parameters assume that loci are neutral. For example,
Allendorf and Seeb (2000) found with sockeye salmon that a single outlier locus with
extremely high FST could bias high estimates of the mean FST from 0.09 to 0.20 (Figure
9.11). This bias more than doubles the FST estimate!

In another example, Wilding et al. (2001) genotyped 306 AFLP loci in an intertidal snail
(the rough periwinkle) collected along rocky ocean shorelines. Fifteen of the 306 loci had
an FST substantially higher than expected for neutral loci in a comparison of two morpho-
logical forms (H and M) that were collected along the same shoreline (Figure 9.12).
Interestingly, these same 15 loci also were found to be outliers at other shoreline locations,
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Figure 9.11 Genome-wide versus locus-specific effects, and the identification of outlier loci
that are candidates for being under selection. Gene flow and genetic drift lead to similar
genome-wide allele frequency differentiation (FST) among populations of sockeye salmon 
for 19 nuclear loci with an FST less than 0.20. One nuclear locus (sAH ) has a much greater FST
and is a candidate for being under natural selection. From Allendorf and Seeb (2000).
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supporting the hypothesis that these 15 loci are under selection. Furthermore, when these
15 loci are used in phylogeny reconstruction, the phylogeny is concordant with morpho-
logy and habitat type rather than geographic distance between the locations of the popu-
lations. This illustrates the importance of removing outlier loci when inferring historical
relationships between populations. Similarly, estimates of the time since populations
diverged should be based only on neutral markers, as should estimates of gene flow and
migration rates (Luikart et al. 2003).

9.7 Limitations of FST and other measures of subdivision

The measure of subdivision, FST, has limitations when using loci with high levels of vari-
ation, such as microsatellites. FST often is biased downwards when variation within
subpopulations (HS) is high. For example, if HS = 0.90, FST cannot be higher than 
approximately 0.10 (1 − 0.90 = 0.10; see expression 9.3). The source of this bias is obvious:
when variation within populations is high, the proportion of the total variation distributed
between populations can never be very high (Hedrick 1999).

Another limitation of classic FST measures (and related measures like GST) is that they do
not consider the identity of alleles (i.e., genealogical degree of relatedness). For example,
in the common shrew example in Example 9.4, the FST for a Y-linked microsatellite is 
only 0.19 across a hybrid zone between races even though the two races share no alleles 
at this locus. An examination of Figure 9.10 clearly shows that all of the alleles on either
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Figure 9.12 Locus-specific FST estimates between two morphological forms (H and M) of the
rough periwinkle collected along the same shoreline at Thornwick Bay, UK, show outlier loci
from the neutral expectation. Fifteen AFLP loci (dots above solid line) had exceptionally high
FST values (> 0.20) compared to the mean observed FST (< 0.04) and to the null distribution 
of “neutral” FST values (~0.0–0.2). The solid line is the upper 99% percentile of the null
distribution of FST for the simulated neutral loci. Very few outliers were found when
comparing same-morphology populations (i.e., H vs. H, or M vs. M) from different
geographic areas. From Wilding et al. (2001).
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side of the hybrid zone are more similar to each other than to any of the alleles on the other
side of the hybrid zone. A measure related to FST, called RST, uses information on the
length of alleles at microsatellite loci, and is much higher in this case (RST = 0.98). This
example illustrates the importance of computing different summary statistics, in this case,
FST and RST.

RST is analogous to FST, and is defined as the proportion of variation in allele length that
is due to differences among populations. RST assumes that each mutation changes an
allele’s length by only one repeat unit, e.g., a mutation adds or removes one dinucleotide
“CA” unit (see Example 4.1; see also stepwise mutation model in Section 12.1.2). This is
important because if mutations cause only a one-step change, then any populations with
alleles differing by few steps will have experienced substantial recent gene flow, whereas
populations with alleles differing by many steps will have had little or no gene flow (such
that isolation has allowed accumulation of many mutational steps between populations).
This is the pattern that we see in Figure 9.10.

Another measure of differentiation that uses information on allele genealogical rela-
tionships is phi-st (ΦST), which is computed by Excoffier’s AMOVA framework (Excoffier
et al. 1992). Measures using genealogical information (like Φ and RST) use the degree of
differentiation between alleles as a weighting factor that increases the metric (e.g., FST)
proportionally to the number of mutational differences between alleles.

Another widely used measure of population genetic differentiation is Nei’s genetic dis-
tance (D; Nei 1972). This measure will increase linearly with time for completely isolated
populations and the infinite allele model of mutation with selective neutrality.
Nonetheless, D is often used and appears to perform relatively well for nonisolated popu-
lations (Paetkau et al. 1997). Nei’s (1978) unbiased D provides a correction for sample size.
This correction is not so important for comparison between species, but can be for con-
servation in cases where intraspecific populations are being compared. Without this 
correction, poorly sampled populations will on average appear to be the most divergent.
Another reliable and widely used measure of genetic distance is Cavalli-Sforza and
Edwards’ chord distance (Cavalli-Sforza and Edwards 1967). There are numerous other
genetic distance measures (e.g., see Paetkau et al. 1997) that are less widely used and
beyond the scope of this book.

9.7.1 Hierarchical structure

Populations are often substructured at multiple hierarchical levels, e.g., locally and region-
ally. For example, several subpopulations (demes) might exist on each side of a barrier such
as a river or mountain ridge. Here, two hierarchical levels are: (1) the local deme level; and
(2) the regional group of demes on either side of the river (Figure 9.13). It is useful to iden-
tify such hierarchical structures and to quantify the magnitude of differentiation at each
level to help guide conservation management (e.g., identification of management units
and evolutionary significant units; see Chapter 16). For example, if regional populations
are highly differentiated but local demes within regions are not, managers should often
prioritize translocations between local demes and not between regional populations.

Hierarchical structure is often quantified using hierarchical F-statistics that partition the
variation into local and regional components, i.e., the proportion of the total differenti-
ation due to differences between subpopulations within regions (FSR), and the proportion
of differentiation due to differences between regions (FRT). Hierarchical structure is also
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often quantified using AMOVA (analysis of molecular variance) (Excoffier et al. 1992),
which is analogous to the standard statistical approach ANOVA (analysis of variance).

9.8 Estimation of gene flow

Gene flow is important to measure in conservation biology because low or reduced gene
flow can lead to local inbreeding and inbreeding depression, whereas high or increased
gene flow can limit local adaptation and cause outbreeding depression. Measuring and
monitoring gene flow can help to maintain viable populations (and metapopulations) in
the face of changing environments and habitat fragmentation. Recent research shows that
renewed gene flow (following isolation) can result in “genetic rescue”, through heterosis
in “hybrid” offspring (Tallmon et al. 2004). Finally, rates of gene flow in animals are corre-
lated with rates of dispersal; thus knowing rates of gene flow can help predict the likeli-
hood of recolonization of vacant habitats following extirpation or overharvest (i.e.,
“demographic rescue”). However, over 90% of the gene flow in plant species is due to
pollen movement and not seed dispersal (Petit et al. 2005).

Rates of gene flow can be estimated in two general ways using molecular markers. First,
indirect estimates of average migration rates (Nm) can be obtained from: (1) allele fre-
quency differences (FST) among populations; (2) the proportion of private alleles in popu-
lations; or (3) a likelihood-based approach using information both on allele frequencies
and private alleles (see below). The migration rate estimate is an average over the past tens
to hundreds of generations (see below).

Total

FRTFF

FSRFF

Sub 1

Region A

Sub 2

Sub 1

Region B

Sub 2

Figure 9.13 Organization of hierarchical population structure with two levels of subdivision:
subpopulations within regions (FSR) and regions within the total species (FRT). Each region 
has two subpopulations. FSR is the proportion of the total diversity due to differences between
subpopulations within regions. FRT is the proportion of the total diversity due to differences
between regions.
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Second, direct estimates of current dispersal rates can be obtained using genetic tagging
and a mark–recapture approach that directly identifies individual immigrants by identify-
ing their “foreign” genotypes (i.e., genotypes unlikely to originate from the local gene
pool). This approach can give estimates of migration rates in the current generation. We
now discuss the indirect and direct (assignment test) approaches, in turn, below.

9.8.1 FST and indirect Nm

We can estimate the average number of migrants per generation (Nm) by using the island
model of migration (see Figure 9.4; Guest Box 9). For example, an FST of 0.20 yields an estim-
ate of one migrant per generation (Nm = 1) under the island model of migration (Fig-
ure 9.9, nuclear markers). Less differentiation (FST = 0.10) leads to a higher estimate of
gene flow (Nm = 2). Expression 9.12 can be rearranged to allow estimation of the average
number of migrants (Nm) from FST, under the island model, as follows:

(9.14)

The following assumptions are required for interpreting estimates of Nm from the 
simple island model:

1 An infinite number of populations of equal size (see also Section 9.4.1).
2 That N and m are the same and constant for all populations (thus migration is symmetric).
3 Selective neutrality and no mutation.
4 That populations are at migration–drift equilibrium (a dynamic balance between migra-

tion and drift).
5 Demographic equality of migrants and residents (e.g., all have the same probability of

reproduction).

The assumptions of this simple model are unlikely to hold in natural populations. This
has lead to criticism of the usefulness of Nm estimates from the island model approach
(Whitlock and McCauley 1999). Nonetheless, performance evaluations using both simula-
tions and analytical theory, suggest that the approach gives reasonable estimates of Nm
even when certain assumptions are violated (Slatkin and Barton 1989; Mills and Allendorf
1996).

A major limitation to estimating Nm from FST (and from other methods below) is that
FST must be moderate to large (FST > 0.05 − 0.10). This is because the variance in estimates
of FST (and thus confidence intervals on Nm estimates) is high at low FST. Confidence inter-
vals on one Nm estimate could range, for example, from less than 10 up to 1,000 (depend-
ing on the number and variability of the loci used). This high variance is unfortunate
because managers often need to know if, for example, Nm is 5 versus 50, because 50 would
be high enough to allow recolonization and demographic rescue on an ecological time
scale, whereas 5 might not. The high variance of Nm estimates at low FST, along with the
model assumptions, means that we often cannot interpret Nm estimates literally; instead
often we use Nm to roughly assess the approximate magnitude of migration rates (e.g.,
“high” versus “low”).

Another limitation of indirect approaches is that few natural populations are at 
equilibrium, primarily because many generations are required to reach equilibrium. For

  
Nm
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F

  
(   )

≈
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example, if a population becomes fragmented, but N remains large, drift will be weak. In
this case, many generations are required for FST to increase to the equilibrium level (even
with zero migration)! The approximate time required to approach equilibrium is given by
the following expression: 1/[2m + 1/(2N )]. We see that if N is large (and m is small), the
time to equilibrium is large. Thus, in large population fragments (with no migration), FST
will increase slowly and the reduced gene flow will not be detectable by indirect methods
until after many generations of isolation. In such a case, direct estimates of gene flow
(below) are preferred, to complement the indirect estimates. Nonetheless, for conserva-
tion genetic purposes, fragments with large N are relatively less crucial to detect because
they are relatively less susceptible to rapid genetic change.

If N is small, then drift will be rapid and we might detect increased FST after only a few
generations. Such a scenario of severe fragmentation is obviously the most important to
detect for conservation biologists. It will also be the most likely to be detectable using an
indirect (e.g., FST-based) genetic monitoring approach.

In summary, although Nm estimates from FST must be interpreted with caution, they
can provide useful information about gene flow and population differentiation.
Nonetheless, the use of different and complementary methods (several indirect plus direct
methods) is recommended (Neigel 2002).

9.8.2 Private alleles and Nm

Another indirect estimator of Nm is the private alleles method (Slatkin 1985). A private
allele is one found in only one population. Slatkin showed that a linear relationship exists
between Nm and the average frequency of private alleles. This method works because if
gene flow (Nm) is low, populations will have numerous private alleles that arise through
mutation, for example. The time during which a new allele remains private depends only
on migration rates, such that the proportion of alleles that are private decreases as migra-
tion rate increases. If gene flow is high, private alleles will be uncommon.

This method could be less biased than the FST island model method (above), when using
highly polymorphic markers, because it apparently is less sensitive to problems of homo-
plasy created by back mutations, than is the FST method (Allen et al. 1995). Homoplasy is
most likely when using loci with high mutation rates and back mutation, like some
microsatellites (e.g., evolving under the stepwise mutation model).

For example, Allen et al. (1995) studied grey seals and obtained estimates of Nm of 41
using the FST method, 14 using the RST method, and 5.6 from the private allele method.
The lowest Nm estimate might arise from the private alleles method because this method
could be less sensitive to homoplasy, which causes underestimation of FST or RST, and thus
overestimation of Nm (Allen et al. 1995). The values of Nm from this study must be inter-
preted with caution as the assumptions of the island model are probably not met and Nm
values are fairly high and thus have a high variance. Furthermore, the reliability of the 
private alleles method has not been thoroughly investigated for loci with potential homo-
plasy (e.g., microsatellites).

In another study, Nm estimates from allozyme markers were highly correlated with dis-
persal capability among 10 species of ocean shore fish (Waples 1987). Three estimators of
Nm were compared: Nei and Chesser’s FST-based method (FSTn), Weir and Cockerham’s
FST-based method (FSTw), and the private alleles method. The two FST-based estimators
gave highly correlated estimates of Nm, whereas the private alleles method gave less 
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correlated estimates. This lower correlation could result from a low incidence of private
alleles in some species. These species were studied with up to 19 polymorphic allozymes
with heterozygosities ranging from 0.009 to 0.087 (mean 0.031). Low polymorphism
markers might be of little use with the private alleles method because very few private alle-
les might exist. More studies are needed comparing the performance of different Nm estim-
ators (e.g., likelihood-based methods below) and different marker types (microsatellites
versus allozymes or single nucleotide polymorphisms).

9.8.3 Maximum likelihood and the coalescent

A maximum likelihood estimator of Nm was published by Beerli and Felsenstein (2001).
This method is promising because, unlike classic methods (above), it does not assume
symmetric migration rates or identical population sizes. Furthermore, likelihood-based
methods use all the data in their raw form (Appendix Section A4), rather than a single sum-
mary statistic, such as FST. The statistic FST does not use information such as the propor-
tion of alleles that are rare. Thus, the likelihood method should give less biased and more
precise estimates of Nm than classic moments-based methods (Beerli and Felesenstein
2001). Indeed, a recent empirical study in garter snakes (Bittner and King 2003) suggests
that coalescent methods are likely to give more reliable estimates of Nm than FST-based
methods, because the FST-based methods are more biased by lack of migration–drift equi-
librium and changing population size.

Beerli and Felsenstein (2001) state that “Maximum likelihood methods for estimating
population parameters, as implemented in migrate and genetree will make the classical
FST-based estimators obsolete . . .”. While this is likely true for some scenarios, new meth-
ods and software should be used cautiously (and in conjunction with the classic methods),
at least until performance evaluations have thoroughly validated the new methods (e.g.,
see Appendix Section A3.2). A problem with evaluating the performance of the many 
likelihood-based methods is they are computationally slow. For example, it can take days
or weeks of computing time to obtain a single Nm estimate (e.g., using 10–20 loci per 
population). This makes the validation of methods difficult because validation requires
hundreds of estimates for each of numerous simulated scenarios (i.e., different migration
rates and patterns, population sizes, mutation dynamics, and sample sizes). The software
program migrate (Beerli and Felesenstein 2001) for likelihood-based estimates of Nm is
freely available (see this book’s website) (see also genetree from Bahlo and Griffiths 2000).

The coalescent modeling approach (a “backward looking” strategy of simulating
genealogies) is usually used in likelihood-based analysis in population genetics (see
Appendix Section A5). The coalescent is useful because it provides a convenient and com-
putationally efficient way to generate random genealogies for different gene flow patterns
and rates. The efficiency of constructing coalescent trees is important, because likelihood
(see Appendix Section A4) involves comparisons of enormous numbers of different
genealogies in order to find those genealogies (and population models) that maximize the
likelihood of the observed data. The coalescent also facilitates the extraction of genealo-
gical information from data (e.g., divergence patterns between microsatellite alleles or
DNA sequences), by easily incorporating both random drift and mutation into population
models. Traditional estimators of gene flow sometimes do not use genealogical informa-
tion, and are based on “forward looking” models for which simulations are slow and 
probability computations are difficult.
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9.8.4 Assignment tests and direct estimates of Nm

Direct estimates of migration (Nm) can be obtained by directly observing migrants mov-
ing between populations. Direct estimates of Nm have been obtained traditionally by
marking many individuals after birth and following them until they reproduce or by track-
ing pollen dispersal by looking for the spread of rare alleles or morphological mutants in
seeds or seedlings. The number of dispersers that breed in a new (non-natal) population
then becomes the estimated Nm.

An advantage of direct estimates is that they detect migration patterns of the current
generation without the assumption of population equilibrium (migration–mutation–drift
equilibrium). This allows up-to-date monitoring of movement and more reliable detection
of population fragmentation (reduced dispersal) without waiting for populations to
approach equilibrium (see above).

An important limitation of direct estimates is that they might not detect pulses of
migrants that can occur only every 5–10 years, as in species where dispersal is driven by
cyclical population demography or periodic weather conditions. Unlike direct estimates,
indirect estimates of Nm estimate the average gene flow over many generations and thus
will incorporate effects of pulse migration. For example, 10 migrants every 10 generations
will have the same impact on indirect Nm estimates as will one migrant per generation for
each of 10 generations.

Another limitation of direct estimates is that they often cannot estimate rates of “evolu-
tionarily effective” gene flow. Direct estimates of Nm only assume that an observed
migrant will reproduce and pass on genes (with the same probability as a local resident
individual). However, migrants might have a reduced mating success if they cannot obtain
a local territory, for example. Alternatively, migrants might have exceptionally high mating
success if there is a “rare male” or “foreign individual” advantage. Furthermore, immig-
rants could produce offspring more fit than local individuals if heterosis occurs following
crossbreeding between immigrants and residents. Heterosis can lead to more gene flow
than expected from neutral theory, for any given number of migrants (see “genetic res-
cue”, Section 15.5). Because direct observation of migrants generally does not detect local
mating success (effective gene flow), direct observations generally only estimate dispersal
and not gene flow (i.e., migration), unless we assume observed migrants reproduce.

Unfortunately, direct estimates of Nm are difficult to obtain using traditional field 
methods of capture–mark–recapture. Following individuals from their birth place until
reproduction is extremely difficult or impossible for many species.

Assignment tests offer an attractive alternative to the traditional capture–mark–
recapture approach to estimate direct estimates of Nm. For example, we can genotype
many individuals in a single population sample, and then determine the proportion of
“immigrant” individuals, i.e., individuals with a foreign genotype that is unlikely to have
originated locally. For example, a study of a galaxiid fish (the inanga) revealed that one
individual sampled in New Zealand had an extremely divergent (“foreign”) mtDNA 
haplotype, which was very similar to the haplotypes found in Tasmania (Figure 9.14). It is
likely the individual originated in Tasmania and migrated to New Zealand. The inanga
spawns in fresh water, but spends part of its life history in the ocean.

One problem with using only mtDNA is we cannot estimate male-mediated migration
rates (because mtDNA in maternally inherited). Further, the actual migrant could have
been the mother or grandmother of the individual sampled. We could test if the migrant
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or its mother was the actual immigrant by genotyping many autosomal markers (e.g.,
microsatellites). For example, if a parent was the migrant then only half of the individual’s
genome (alleles) would have originated from another population (and not the Y chromo-
some). We can estimate the proportion of an individual’s genome arising from each or two
parental population via admixture analysis (see Chapter 20).

Assignment tests based on multiple autosomal makers are useful for identifying 
immigrants. For example, for a candidate immigrant, we first remove the individual 
from the data set and then compute the expected frequency of its genotype (p2) in each
candidate population of origin by using the observed allele frequencies (p) from each 
population (Figure 9.15). If the likelihood for one population is far higher than the other,

New Zealand

Tasmania

Chile

100

82

100

100

52

100

1%

*

Figure 9.14 Detection of a migrant between populations of inanga using a phylogram
derived from mtDNA control region sequences. One mtDNA type (marked with a star)
sampled in New Zealand was very similar to the mtDNA types found in Tasmania. This
suggests that a small amount of gene flow occurs between the New Zealand populations and
Tasmania. Drawing of inanga from McDowall (1990); phylogram from Waters et al. (2000).
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we “assign” the individual to the most likely population. The likelihood can be computed
as the frequency of the genotype in the population (expected under Hardy–Weinberg 
proportions).

The power of assignment tests increases with the number of loci (and the polymor-
phism level of the loci). Computing the multilocus assignment likelihood requires the
multiplication together of single-locus probabilities (multiplication rule), and thus
requires the assumption of independence among loci (e.g., no linkage disequilibrium).

9.9 Population subdivision and conservation

Understanding the genetic population structure of species is essential for conservation and
management (see Guest Box 9). The techniques to study genetic variation and the genetic
models that we have presented in this chapter allow us to rather quickly understand the
genetic population structure of any species of interest. The application of this information,
however, is often not straightforward and is sometimes controversial. For example, how
“distinct” does a population have to be to be considered a distinct population segment
(DPS) in order to be listed under the Endangered Species Act (USA)? The application of
genetic information to identify appropriate units for conservation and management is
considered in detail in Chapter 16.

Population 1

? ?

AA

Allele frequencies:
p = 0.3 and q = 0.7

Expected genotype
frequency of AA
= p2 = (0.3)2 = 0.09

aa         Aa
AA

aa         aa

Population 2

Allele frequencies:
p = 0.4 and q = 0.6

Expected genotype
frequency of AA
= p2 = (0.4)2 = 0.16

Aa         Aa
AA

aa         aa

The suspected
immigrant has
genotype AA

Figure 9.15 Simplified example of using an assignment test to identify an immigrant (AA).
We first remove the individual in question from the data set and then compute its expected
genotype frequency (p2) in each population using the observed allele frequencies for each
population (p1 and p2, respectively), and assuming Hardy–Weinberg proportions. If the
individual with the genotype AA was captured in Population 1 but its expected genotype
frequency is far higher in Population 2, then we could conclude the individual is an
immigrant. The beauty of assignment tests is they are relatively simple but potentially
powerful if many loci (each with many alleles) are used. Note that obtaining the multilocus
likelihoods generally requires multiplication of single-locus probabilities (multiplication rule),
and thus requires independent loci in gametic equilibrium.
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Population subdivision influences the evolutionary potential of a species, that is, the
ability of a species to evolve and adapt to environmental change. To understand this, it is
helpful to consider extremes of subdivision (Figure 9.16). For example, a species with no
subdivision would have such high gene flow that local adaptation would not be possible.
Thus, the total range of types of multilocus genotypes would be limited. On the other
hand, if subdivision is extreme then new beneficial mutations that arise will not readily
spread across the species. Furthermore, subpopulations may be so small that genetic drift
overwhelms natural selection. Thus local adaptation is limited and random change in
allele frequencies dominates so that harmful alleles may drift to high frequency or go to
fixation. An intermediate amount of population subdivision will result in substantial
genetic variation both within and between local populations; this population structure has
the greatest evolutionary potential.

Guest Box 9 Hector’s dolphin population structure and conservation
C. Scott Baker and Franz B. Pichler

Population subdivisions are important to help define the “unit to conserve” for rare
or threatened species or the “unit to manage” for exploited species. The problem of
delimiting population units is especially difficult for marine species where there is
often an absence of obvious geographic barriers.

Hector’s dolphins are endemic to the coastal waters of New Zealand, with a
total estimated abundance of about 7,000. They appear phylopatric, and are mostly
concentrated along the central regions of the east and west coasts of South Island
(Figure 9.17). In North Island, Hector’s dolphins are rare, perhaps less than 100
individuals, and are found currently in only a small part of their former range
(Dawson et al. 2001). As a coastal species, Hector’s dolphins are prone to entangle-
ment and drowning in gillnets. The extent of this incidental mortality or “bycatch”
and the potential for local population decline has become a critical and contentious
issue in the management of local fisheries, particularly in North Island.

(a) No subdivision (b) Intermediate subdivision (c) Extreme subdivision

Figure 9.16 Range of possible degrees of population subdivision. Intermediate degrees of
subdivision generally yield the highest adaptive potential with possibilities for local adoption
to local environments, yet with occasional gene flow and large enough local effective size to
prevent rapid inbreeding and loss of variation.
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Figure 9.17 Phylogenetic relationship and distribution of the New Zealand Hector’s
dolphin mtDNA types (haplotypes) based on 440 base pairs of control region
sequences from 280 individuals. A parsimony cladogram (e.g., see Section 16.3) 
shows the number of inferred mutational substitutions (vertical bars) distinguishing
each haplotype and the sample frequencies of each haplotype for each of the four
regional populations, the North Island (NI) and East Coast (EC), West Coast (WC)
and South Coast (SC) of the South Island. Modified from Pichler (2002) and Pichler
and Baker (2000).
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We initiated a range-wide survey of mtDNA diversity among Hector’s dolphins
to help designate the appropriate population units for setting limits to bycatch and
to better understand long-term gene flow among local populations. Our initial
sample collection started with dolphins found beachcast or taken as fisheries’
bycatch but was expanded to include historical specimens (teeth and bone dating
from 1870) and samples from free-ranging dolphins collected using a “skin
scrubby” (a nylon scrub pad on the end of a pole, used to collect sloughed skin from
bow-riding dolphins; Harlin et al. 1999) or a small biopsy dart.

Our results have shown a striking degree of differentiation in mtDNA lineages
among four regional populations: North Island and the east, west, and south coasts
of South Island (Figure 9.17). The frequencies of the 17 identified mtDNA haplo-
types differed significantly among regions (P < 0.001), and many were found in
only one region. Based on Wright’s fixation index (FST = 0.55), average long-term
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migration (mNf) among the four regions was estimated to be less than one female
per generation. Maternal gene flow was highest between the larger east and west
coast populations of South Island (mNf ~ 3; FST = 0.337). The North Island popula-
tion was the most isolated, and diversity was far reduced relative to the South
Island populations. Historical samples from North Island included three haplo-
types but two of these were not found in the contemporary population sample
(Pichler and Baker 2000) and might have been misattributed or misplaced, as beach-
cast specimens, by wind and current (Baker et al. 2002a). Analysis of six micro-
satellite loci also showed low diversity and strong differentiation of the North
Island population (FST = 0.4545) but considerably weaker differentiation among the
three South Island populations, where only the west and east coast ones differed
significantly (FST = 0.038) (Pichler 2002).

The scale of mtDNA differentiation across the species-wide range of Hector’s
dolphins has important implications for the conservation and evolutionary poten-
tial of population units. The strong frequency-based differences for mtDNA (and
moderate differences for microsatellites) among the three South Island popula-
tions confirm that these should be managed as independent demographic units.
Although connected on a long-term or evolutionary time scale, a loss to local abund-
ance or genetic diversity would not be replaced by immigration or gene flow from
other populations on a management time scale. The North Island population,
however, is completely isolated from the South Island. Based on its fixed mtDNA
difference and quantitative morphological differences, A. N. Baker et al. (2002a) pro-
posed to recognize the North Island population as a subspecies, Cephalorhynchus
hectori maui, or “Maui’s” dolphin after the Polynesian demigod who fished up the
North Island.

Maui’s dolphin is now recognized as “critically endangered” by the World
Conservation Union (IUCN) and the New Zealand government has closed part of
the North Island coast to all gillnet fishing in an effort to protect this rare dolphin.
This study of Hector’s dolphin illustrates the usefulness of molecular analyses
(along with morphological data) for identifying population units for conservation
(see also Chapter 16).

Problem 9.1

Chromosomal polymorphisms generally result in reduced fitness of heterozy-
gotes (heterozygous disadvantage; see Section 8.2). What type of population
structure (see Figure 9.16) would you expect to result in relatively large chromo-
somal differences among subpopulations?

Problem 9.2

Statements are often made in the literature that one migrant per generation among
populations (mN = 1) is sufficient to cause geographically separate populations 
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to be “effectively panmictic”. Do you agree with these statements? If not, how
much migration do you think is necessary to bring about effective panmixia? (Hint:
see Figure 9.5.)

Problem 9.3

Tallmon et al. (2000) examined genetic variation at six polymorphic allozyme loci
in the long-toed salamander from 34 lakes in the Selway-Bitterroot Wilderness on
the Montana–Idaho border. The following diagram shows the frequency of the
100 allele at the PMI locus in five of these populations; this locus had only two 
alleles (100 and 120) in these five populations so the frequency of the 120 allele is
one minus the frequency of the 100 allele shown below. That is, the frequency of
the 120 allele in the sample from Terilyn Lake was 1.000 − 0.608 = 0.392.

Calculate the FST for this locus in these samples using expression 9.3. Use your
FST value and expression 9.14 to estimate the approximate numbers of migrants
per generation into each of the subpopulations. Does the geographic pattern of
allele frequencies at PMI seem to fit the expectations of the island model of migra-
tion (as is assumed by expression 9.3) or is there evidence of isolation by distance
in these data? (See Figure 9.7.)

Problem 9.4

In Section 9.2, we calculated FST at the AAT-1 locus in the guppies from Table 6.3
to be 0.301. Calculate FST at the PGM-1 locus in this same population.

Problem 9.5

What is the expected FST in the guppy population from Table 6.3 after thousands
of generations of complete isolation?

Carlton
0.166

Mills
0.625

Glen
0.034

Gash
0.367

Terilyn
0.608

5 km
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Problem 9.6

How many individuals must be sampled to detect a deviation from Hardy–
Weinberg proportions that results from heterozygote advantage (overdominance
selection)? To address this question we can conduct a power analysis (e.g.,
Appendix Section A3.2), and compute the power of statistical tests to detect a 
heterozygote excess. Go to the class website and download the program HW
Power. Click on the icon to launch the program. Select the “Natural selection”
model, and type in fitness values that are 10% higher for the heterozygote
(“W12”). Run the program until you find the sample size that provides a 50%
chance (0.50 probability, i.e., power = 0.50) of detecting a significant deviation at
the P < 0.05 level of significance (see Appendix Section A3.2).

(a) What is the sample size?
(b) What is the effect on power of changing the allele frequency (“p”) from

0.40 to 0.10?
(c) If you increase the amount of heterozygote advantage to 30%, how does

power change?

Problem 9.7

Compute the statistical power of the chi-square test to detect inbreeding of 10%.
As in Problem 9.6, launch the program HW Power and select the “Inbreeding
model” and “f: 0.10”).

(a) What is the sample size necessary to achieve a power of 0.50 to detect
10% inbreeding?

(b) What sample size is necessary to achieve a power of 0.80? (Note: 0.80 
is considered by many statisticians as a “reasonably high power” for a 
statistical test or experiment, such that the experiment is generally worth
conducting; see Appendix Section A3.2.)

Problem 9.8

Why does an intermediate amount of population substructure offer the greatest
adaptive potential? Can you think of a species with no or little genetic substruc-
ture, even though it is widespread geographically?

Problem 9.9

The following genotypes were found at the PER locus in the annual ryegrass
Lolium multiforum sampled at two different life history stages (Mitton 1989). He
observed a significant deficit of heterozygotes in seedlings while the adult plants
were in Hardy–Weinberg proportions.

CATC09  28/05/2007  06:06PM  Page 231



232 PART II MECHANISMS OF EVOLUTIONARY CHANGE

11 12 22

Seedlings 278 626 758

Adults 22 87 76

Estimate the FIS and test these two samples for Hardy–Weinberg proportions.
Estimate the proportion of progeny produced by selfing in this population by
assuming that the observed deficit of homozygotes in the seedlings sample is
caused by selfing (see Example 9.1). What is the most likely explanation for the
difference between these two life history stages? That is, why are the adults in
Hardy–Weinberg proportions even though there is a substantial excess of
homozygotes in the seedlings?
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Multiple Loci

It is now generally understood that, as a consequence of selection, random
genetic drift, co-ancestry, or gene flow, alleles at different loci may not be ran-
domly associated with each other in a population. While this effect is generally
regarded as a consequence of linkage, even genes on different chromosomes
may be held temporarily or permanently out of random association by forces of
selection, drift and nonrandom mating.

Richard C. Lewontin (1988)

Population geneticists recently have devoted much attention to the topic of
gametic disequilibrium. The analysis of multiple-locus genotypic distributions can
provide a sensitive measure of selection, genetic drift, and other factors that
influence the genetic structure of populations.

David W. Foltz et al. (1982)

10.1 Gametic disequilibrium, 234

10.2 Small population size, 239

10.3 Natural selection, 240

10.4 Population subdivision, 245

10.5 Hybridization, 246

10.6 Estimation of gametic disequilibrium, 250

Guest Box 10 Dating hybrid populations using gametic disequilibrium, 252

Field cricket, Section 10.5, Example 10.3
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We have so far considered only individual loci. Population genetic models become much
more complex when two or more loci are considered simultaneously. Fortunately, many
of our genetic concerns in conservation can be dealt with from the perspective of indi-
vidual loci. Nevertheless, there are a variety of situations in which we must concern our-
selves with the interactions between multiple loci. For example, genetic drift in small 
populations can cause nonrandom associations between loci to develop. Therefore, the
consideration of multilocus genotypes can provide another method of detecting the
effects of genetic drift in natural populations.

In addition, the genotype of individuals over many loci (say 10 or more) may be used to
identify individuals genetically because the genotype of each individual (with the excep-
tion of identical twins or clones) is genetically unique if enough loci are considered. This
genetic “fingerprinting” capability has many potential applications in understanding popu-
lations, estimating population size (Chapter 14), and in applying genetics to problems in
forensics (Chapter 20).

The nomenclature of multilocus genotypes is particularly messy and often inconsistent.
It is difficult to find any two papers (even by the same author!) that use the same gene sym-
bols and nomenclature for multilocus genotypes. Therefore, we have made a special effort
to use the simplest possible nomenclature and symbols that are consistent as possible with
previous usage in the literature.

The term linkage disequilibrium is commonly used to describe the nonrandom asso-
ciation between alleles at two loci (Lewontin and Kojima 1960). However, this term is mis-
leading because, as we will see, unlinked loci may be in so-called “linkage disequilibrium”.
Things are complicated enough without using misnomers that lead to additional confu-
sion when considering multilocus models. The term gametic disequilibrium is a much
more descriptive and appropriate term to use in this situation. We have chosen to use
gametic disequilibrium in order to reduce confusion.

We will first examine general models describing associations between loci and their
evolutionary dynamics from generation to generation. We will then explore the various
evolutionary forces that cause nonrandom associations between loci to come about in nat-
ural populations (genetic drift, natural selection, population subdivision, and hybridiza-
tion). Finally, we will compare various methods for estimating associations between loci in
natural populations.

10.1 Gametic disequilibrium

We now focus our interest on the behavior of two autosomal loci considered simultane-
ously under all of our Hardy–Weinberg equilibrium assumptions. We know that each locus
individually will reach a neutral equilibrium in one generation under Hardy–Weinberg
conditions. Is this true for two loci considered jointly? We will see shortly that the answer
is no.

Allele frequencies are insufficient to describe genetic variation at multiple loci.
Fortunately, however, we do not have to keep track of all possible genotypes. Rather we
can use the gamete frequencies to describe nonrandom associations between alleles at dif-
ferent loci. For example, in the case of two loci that each have two alleles, there are just two
allele frequencies, but there are nine different genotype frequencies. However, we can
describe this system with just four gamete frequencies.
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Let G1, G2, G3, and G4 be the frequencies of the four gametes AB, Ab, aB, and ab respec-
tively as shown below. If the alleles at these loci are associated randomly then the fre-
quency of any gamete type will be the product of the frequencies of its two alleles:

Gamete Frequency
AB G1 = (p1)(p2)
Ab G2 = (p1)(q2 )

(10.1)aB G3 = (q1)(p2 )
ab G4 = (q1)(q2 )

where ( p1; q1) and ( p2; q2) are the frequencies of the alleles (A; a) and (B; b), at locus 1 and 2
respectively. The expected frequencies of two-locus genotypes in a random mating popu-
lation can then be found as shown in Table 10.1.

D is used a measure of the deviation from random association between alleles at the two
loci (Lewontin and Kojima 1960). D is known as the coefficient of gametic disequilibrium
and is defined as:

D = (G1G4) − (G2G3) (10.2)

or:

D = G1 − p1p2 (10.3)

If alleles are associated at random in the gametes (as in expression 10.1), then the popu-
lation is in gametic equilibrium and D = 0. If D is not equal to zero, the alleles at the two 
loci are not associated at random with respect to each other and the population is said to
be in gametic disequilibrium (Example 10.1). For example, if a population consists only of
a 50 : 50 mixture of the gametes A1B1 and A2B2, then:

G1 = 0.5

G2 = 0.0

G3 = 0.0

G4 = 0.5

Table 10.1 Genotypic array for two loci showing the expected
genotypic frequencies in a random mating population.

AA Aa aa

BB (G1)
2 2G1G3 (G3)

2

Bb 2G1G2 2G1G4 + 2G2G3 2G3G4

bb (G2)
2 2G2G4 (G4)

2
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and,

D = (0.5)(0.5) − (0.0)(0.0) = +0.25

Example 10.1 Genotypic frequencies with and without gametic disequilibrium

Let us consider two loci at which allele frequencies are p1 = 0.4(q1 = 1 − p1 = 0.6)
and p2 = 0.7(q2 = 1 − p2 = 0.3) in two populations. The two loci are randomly
associated in one population, but show maximum nonrandom association in the
other. The gametic frequency values below show the case of random association
of alleles at the two loci (gametic equilibrium, D = 0) and the case of maximum
positive disequilibrium (D = +0.12; see Section 10.1.1 for an explanation of the
maximum value of D).

Gamete D == 0 D (max)

AB (p1)(p2) = 0.28 0.40
Ab (p1)(q2) = 0.12 0.00
aB (q1)(p2) = 0.42 0.30
ab (q1)(q2) = 0.18 0.30

In a random mating population, the following genotypic frequencies will result in
each case as shown below. The expected genotypic frequencies with D = 0 are
shown without brackets, and the expected genotypic frequencies with maximum
positive gametic disequilibrium are shown in square brackets:

AA Aa aa Total

BB 0.08 0.24 0.18 0.49
[0.16] [0.24] [0.09] [0.49]

Bb 0.07 0.20 0.15 0.42
[0.0] [0.24] [0.18] [0.42]

bb 0.01 0.04 0.03 0.09
[0.0] [0.0] [0.09] [0.09]

Total 0.16 0.48 0.36
[0.16] [0.48] [0.36]

Notice that each locus is in Hardy–Weinberg proportions in the populations with
and without gametic disequilibrium.
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The amount of gametic disequilibrium (i.e., the value of D) will decay from generation
to generation as a function of the rate of recombination (r) between the two loci:

D′ = D(1 − r) (10.4)

So that after t generations:

Dt′ = D0(1 − r)t (10.5)

If the two loci are not linked (i.e., r = 0.5), the value of Dt will be halved each generation
until equilibrium at D = 0. Linkage (r < 0.5) will delay the rate of decay of gametic disequi-
librium. Nevertheless, D eventually will be equal to zero, as long as there is some recomb-
ination (r > 0.0) between the loci. However, if the two loci are tightly linked, it will take
many generations for them to reach gametic equilibrium (Figure 10.1).

We therefore expect that nonrandom associations of genotypes between loci (i.e.,
gametic disequilibrium) would be much more frequent between tightly linked loci. For
example, Zapata and Alvarez (1992) summarized observed estimates of gametic disequi-
librium between five allozyme loci in several natural populations of Drosophila
melanogaster on the second chromosome (Figure 10.2). The effective frequency of recom-
bination is the mean of recombination rates in females and males assuming no recomb-
ination in males. Only pairs of loci with less than 15% recombination showed consistent
evidence of gametic disequilibrium.

10.1.1 Other measures of gametic disequilibrium

D is a poor measure of the relative amount of disequilibrium at different pairs of loci
because the possible values of D are constrained by allele frequencies at both loci. The
largest possible positive value of D is either p1q2 or p2q1, whichever value is smaller; and the

G
am

et
ic

 d
is

eq
ui

lib
riu

m

1.00 

0.75

0.50

0.25 

0.00
0 10 20 1009060 70 80

Generation
30 40 50

r = 0.001

r = 0.01

r = 0.1

r = 0.5

Figure 10.1 Decay of gametic disequilibrium (Dt/D0) with time for various amounts of
recombination (r) between the loci from expression 10.3.

CATC10  28/05/2007  06:03PM  Page 237



238 PART II MECHANISMS OF EVOLUTIONARY CHANGE

largest negative value of D is the lesser value of p1p2 or q1q2. We can see that the largest pos-
itive value of D occurs when G1 is maximum. p1 is equal to G1 plus G2, and p2 is equal to G1
plus G3. Therefore, the largest possible value of G1 is the smaller of p1 and p2. We can see
this in Example 10.1 in which the largest positive value of D occurs when G1 is equal to p1
which is less than p2. Once the values of G1, p1, and p2 are set, all of the other gamete fre-
quencies must follow.

This allele frequency constraint of D reduces its value for comparing the amount of
gametic equilibrium for the same loci in different populations or for different pairs of loci
in the same population. For example, consider two pairs of loci in complete gametic dis-
equilibrium. In case 1 both loci are at allele frequencies of 0.5, while in case 2 both loci are
at frequencies of 0.8. The following gamete frequencies result:

Frequencies

Gamete Case 1 Case 2
AB 0.5 0.9
Ab 0.0 0.0
aB 0.0 0.0
ab 0.5 0.1

The value of D in case 1 will be +0.25, while it will be +0.09 in case 2.
Several other measures of gametic disequilibrium have been proposed that are useful

for various purposes (Hedrick 1987). A useful measure of gametic disequilibrium should
have the same range regardless of allele frequencies. This will allow comparing the
amount of disequilibrium among pairs of loci with different allele frequencies.
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Figure 10.2 Observed estimates of gametic disequilibrium between five allozyme loci in
several natural populations of D. melanogaster on the second chromosome. The effective
frequency of recombination is the mean of recombination rates in females and males
assuming no recombination in males. From Zapata and Alvarez (1992).
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Lewontin (1964) suggested using the parameter D′ to circumvent the problem of the
range of values being dependent upon the allele frequencies:

(10.6)

Thus, D′ ranges from 0 to 1 for all allele frequencies. However, even D′ is not independent
of allele frequencies, and, therefore, is not an ideal measure of gametic disequilibrium
(Lewontin 1988). Nevertheless, recent analysis has concluded that the D′ coefficient is a
useful tool for the estimation and comparison of the extent of overall disequilibrium
among many pairs of multiallelic loci (Zapata 2000).

The correlation coefficient (R) between alleles at the two loci has also been used to meas-
ure gametic disequilibrium:

(10.7)

R has a range of values between −1.0 and +1.0. However, this range is reduced somewhat if
the two loci have different allele frequencies. Both D′ and R will decay from generation to
generation by a rate of (1 − r), as does D, because they are both functions of D.

10.1.2 Associations between cytoplasmic and nuclear genes

Just as with multiple nuclear genes, non-random associations between nuclear loci and
mtDNA genotypes may occur in populations.

Gamete Frequency
AM G1
Am G2 (10.8)
aM G3
am G4

Again, D is a measure of the amount of gametic equilibrium and is defined as in expression
10.2. D between nuclear and cytoplasmic genes will decay at a rate of one-half per genera-
tion, just as for two unlinked nuclear genes. That is,

D′ = D(0.5) (10.9)

and, therefore,

Dt = D(0.5)t (10.10)

10.2 Small population size

Nonrandom associations between loci will be generated by genetic drift in small popula-
tions. We can see this readily in the extreme case of a bottleneck of a single individual 
capable of reproducing by selfing because a maximum of two gamete types can occur
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within a single individual. In general, we can imagine the four gamete frequencies to 
be analogous to four alleles at a single locus. Changes in frequency from generation to
generation caused by drift will often result in nonrandom associations between alleles at
different loci. The expected value of D due to drift is zero. Nevertheless, drift-generated
gametic disequilibria may be very great and are equally likely to be positive or negative in
sign. For example, genome-wide investigations in humans have found that large blocks 
of gametic disequilibrium occur throughout the genome in human populations. These
blocks of disequilibrium are thought to have arisen during an extreme population bottle-
neck that occurred some 25,000–50,000 years ago (Reich et al. 2001).

Gametic disequilibrium produced by a single generation of drift may take many genera-
tions to decay. Therefore, we would expect substantially more drift-generated gametic dis-
equilibrium between closely linked loci. In fact, the expected amount of disequilibrium for
closely linked loci is:

(10.11)

where R2 is the square of the correlation coefficient (R) between alleles at the two loci (see
expression 10.5) (Hill and Robertson 1968; Ohta and Kimura 1969). For unlinked loci, the
following value of R2 is expected (Weir and Hill 1980):

(10.12)

10.3 Natural selection

Let us examine the effects of natural selection with constant fitnesses at two loci each with
two alleles. We will designate the fitness of a genotype to be wij, where i and j are the two
gametes that join to form a particular genotype. There are two genotypes that are het-
erozygous at both loci (AB/ab and Ab/aB); we will assume that both double heterozygotes
have the same fitness (i.e., w23 = w14).

AA Aa aa
BB w11 w13 w33
Bb w12 w23 = w14 w34
bb w22 w24 w44

The frequency of the AB gamete after one generation of selection will be:

(10.13)

where W is the average fitness of the population. We can simplify this expression by Wi
defining to be the average fitness of the ith gamete.
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(10.14)

and then,

(10.15)

and,

(10.16)

We can derive similar recursion equations for the other gamete frequencies:

(10.17)

There are no general solutions for selection at two loci. That is, there is no simple 
formula for the equilibria and their stability. However, a number of specific models of
selection have been analyzed. The simplest of these is the additive model where the fitness
effects of the two loci are summed to yield the two-locus fitnesses. Another simple case is
the multiplicative model where the two-locus fitnesses are determined by the product of
the individual locus fitnesses. In both of these cases, heterozygous advantage at each locus
is necessary and sufficient to insure stable polymorphisms at both loci.

A detailed examination of the effects of natural selection at two loci is beyond the scope
of our consideration. Interested readers are directed to appropriate population genetics
sources (e.g., Hartl and Clark 1997; Hedrick 2005). We will consider two situations of
selection at multiple loci that are particularly relevant for conservation.

10.3.1 Genetic hitchhiking

Natural selection at one locus can affect closely linked loci in many ways. Let us first con-
sider the case where directional selection occurs at one locus (B) and the second locus is
selectively neutral (A). The following fitness set results:

A1A1 A1A2 A2A2
B1B1 w11 w11 w11
B1B2 w12 w12 w12
B2B2 w22 w22 w22

where w11 < w12 < w22.
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Imagine that the favored B2 allele is a new mutation at the B locus. In this case, the selec-
tive advantage of the B2 allele frequencies may carry along either the A1 or A2 allele,
depending upon which allele is initially associated with the B2 mutation. This is known as
genetic hitchhiking and will result in a so-called selective sweep. The magnitude of this
effect depends on the selection differential, the amount of recombination (r), and the ini-
tial gametic array (Figure 10.3). A selective sweep will reduce the amount of variation at
loci that are tightly linked to the locus under selection.

For example, low activity alleles at the glucose-6-phosphate dehydrogenase locus in
humans are thought to reduce risk from the parasite responsible for causing malaria
(Tishkoff et al. 2001). The pattern of gametic disequilibrium between these alleles and
closely linked microsatellite loci suggests that these alleles have increased rapidly in fre-
quency by natural selection since the onset of agriculture in the past 10,000 years.

10.3.2 Associative overdominance

Selection at one locus also can affect closely linked neutral loci when the genotypes at the
selected locus are at an equilibrium allele frequency. Consider the case of heterozygous
advantage where, using the previous fitness array, w11 = w22 = 1.0 and w12 = (1 + s). The
effective fitnesses at the A locus are affected by selection at the B locus (s) and D; the
marginal fitnesses are the average fitness at the A locus considering the two-locus geno-
types. These would be the estimated fitnesses at the A locus if only that locus were
observed. If D is zero then all the genotypes at the A locus will have the same fitness.
However, if there is gametic disequilibrium (i.e., D is not equal to zero) then heterozygotes
at the A locus will experience a selective advantage because of selection at the B locus.

This effect has been called associative overdominance (Ohta 1971) or pseudo-
overdominance (Carr and Dudash 2003). This pattern of selection has also been called
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Figure 10.3 The effect of hitchhiking on a neutral locus that is initially in complete gametic
disequilibrium with a linked locus that is undergoing directional selection (w11 = 1.0; 
w12 = 0.75; w22 = 0.5). r is the amount of recombination between the two loci. The dashed 
line shows the expected change at the selected locus.
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marginal overdominance (Hastings 1981). However, marginal overdominance has more
generally been used for the situation where genotypes experience multiple environments
and different alleles are favored in different environments (Wallace 1968). This can lead to
an overall greater fitness of heterozygotes even though they do not have a greater fitness in
any single environment.

Heterozygous advantage is not necessary for linked loci to experience associative over-
dominance. Heterozygous individuals at a selectively neutral locus will have higher aver-
age fitnesses than homozygotes if the locus is in gametic disequilibrium with a locus
having deleterious recessive alleles (Ohta 1971).

We can see this with the genotypic arrays in Example 10.1. Let us assume that the b
allele is a recessive lethal (i.e., fitness of the bb genotype is zero). In the case of gametic
equilibrium (D = 0), exactly q2

2 (0.3 × 0.3 = 0.09) of genotypes at the A locus have a fitness
of zero. Thus, the mean or marginal fitness at the A locus is 1 − 0.09 = 0.91. However, in
the case of maximum positive disequilibrium, only the aa genotypes have reduced fitness
because the AA and Aa genotypes do not occur in association with the bb genotype. Thus,
the fitness of AA, Aa, and aa are 1, 1, and 0.75. There are many more aa than AA homozy-
gotes in the population; therefore, Aa heterozygotes have greater fitness than the mean of
the homozygotes.

Associative overdominance is one possible explanation for the pattern seen in many
species in which individuals that are more heterozygous at many loci have greater fitness.
Example 10.2 presents an example where associative overdominance is most likely respons-
ible for heterozygosity–fitness correlations (HFCs) in great reed warblers.

10.3.3 Genetic draft

We saw in Section 10.3.1 that directional selection at one locus can reduce the amount 
of genetic variation at closely linked loci following a selective sweep. This is a special case
of a more general effect in which selection at one locus will reduce the effective population
size of linked loci. This has been termed the Hill–Robertson effect (Hey 2000) because 
it was first discussed in a paper that considered the effect of linkage between two loci 
under selection (Hill and Robertson 1966). Observations with Drosophila have found 
that regions of the genome with less recombination tend to be less genetically variable 
as would be expected with the Hill–Robertson effect (Begun and Aquadro 1992;
Charlesworth 1996).

This effect has potential importance for conservation genetics. For example, we would
expect a strong Hill–Robertson effect for mtDNA where there is no recombination. A
selective sweep of a mutant with some fitness advantage could quickly fix a single haplo-
type and therefore greatly reduce genetic variation. Therefore, low variation at mtDNA
may not be a good indicator of the effective population size experienced by the nuclear
genome.

Gillespie (2001) has presented an interesting consideration of the effects of hitchhiking
on regions near a selected locus. He has termed this effect genetic draft and has suggested
that the stochastic effects of genetic draft may be more important than genetic drift in
large populations. In general, it would reduce the central role thought to be played by
effective population size in determining the amount of genetic variation in large popula-
tions. The potential effects of genetic draft seem to not be important for the effective popu-
lation sizes usually of concern in conservation genetics.
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Example 10.2 Associative overdominance and HFCs in great reed warblers

Individuals that are more heterozygous at many loci have been found to have
greater fitness in many species (Britten 1996; David 1998; Hansson and
Westerberg 2002). Such heterozygosity–fitness correlations (HFCs) have three
possible primary explanations. First, the association may be a consequence of 
differences in inbreeding among individuals within a population. Inbred individuals
will tend to be less heterozygous and experience inbreeding depression. Second,
the loci being scored may be in gametic disequilibrium with loci that affect the
traits being studied, resulting in associative overdominance. Lastly, the associ-
ations may be due to heterozygous advantage at the loci being studied. This latter
explanation seems unlikely for loci such as microsatellites that are generally
assumed to be selectively neutral. There is some evidence that HFCs at allozyme
loci may be due to the loci themselves (Thelen and Allendorf 2001).

Hansson et al. (2004) distinguished between inbreeding versus associative
overdominance in great reed warblers by testing for HFC within pairs of siblings
with the same pedigree. This comparison eliminated the reduced genome-wide
heterozygosity of inbred individuals as an explanation because full siblings have
the same pedigree inbreeding coefficient (F ). Fifty pairs of sibling were com-
pared in which only one individual survived to adult age. Paired siblings were
confirmed to have the same genetic parents (by molecular methods) and were
matched for sex, size (length of the innermost primary feather), and body mass
(when 9 days old).

The surviving sibs tended to have greater multilocus heterozygosity at 19
microsatellite loci (Figure 10.4; P < 0.05). In addition, the surviving sibs also had
significantly greater d 2 values (P < 0.01). This measure is the squared difference
in number of repeat units between the two alleles, d 2 = (number of repeats at
allele A − number of repeats at allele B)2. The difference in repeat score between
alleles carries information about the amount of time that has passed since they
shared a common ancestral allele (see the coalescent in Appendix Section A5).
This assumes a single-step model of mutation. Heterozygotes with smaller values
possess two alleles that are likely to have shared a common ancestral allele more
recently than heterozygotes with larger d 2 values (see Figure 12.1). Therefore,
heterozygotes with lower d 2 possess two alleles marking chromosomal segments
that are more likely to carry the same deleterious recessive allele responsible for
associative overdominance. The strong relationship between d 2 and recruitment
suggests that associative overdominance is responsible for the observed HFC.

The studied population of great reed warblers was small and recently founded.
Thirty-five of 162 pairwise tests for gametic disequilibrium were significant (uncor-
rected for multiple tests, P < 0.05), suggesting widespread gametic disequilibrium
in this population because of its recent founding and small size (see Section 10.2).
These authors conclude that associative overdominance is likely to be responsible
for the HFC that they have observed. They also argue that gametic disequilibrium
is likely to be responsible for many observations of HFC in other species, especi-
ally in cases of recently founded or small populations.
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10.4 Population subdivision

Population subdivision will generate nonrandom associations (gametic disequilibrium)
between alleles at multiple loci if the allele frequencies differ among subpopulations at
both loci. This is an extension to two loci of the Wahlund principle, the excess of homozy-
gotes caused by population subdivision at a single locus, to two loci (Sinnock 1975) (see
Section 9.2). In general, for k equal-sized subpopulations:

D = C + cov(p1, p2) (10.18)

where C is the average D value within the k subpopulations (Nei and Li 1973; Prout 1973).
This effect is important when two or more distinct subpopulations are collected in a 

single sample. For example, many populations of fish living in lakes consist of several
genetically distinct subpopulations that reproduce in different tributary streams. Thus, a
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Figure 10.4 Difference between surviving and nonsurviving great reed warbler siblings
(50 matched pairs) in: (a) multilocus heterozygosity (MLH; P < 0.05) and (b) mean d2

(P < 0.01). Arrows indicate mean difference. The greater MLH and d2 of surviving birds
apparently results from associative overdominance. From Hansson et al. (2004).
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single random sample taken of the fish living in the lake will comprise several separate
demes. Makela and Richardson (1977) have described the detection of multiple genetic
subpopulations by an examination of gametic disequilibrium among many pairs of loci.

Cockerham and Weir (1977) have introduced a so-called composite measure of gametic
disequilibrium that partitions gametic disequilibrium into two components: the usual
measure of gametic disequilibrium, D, plus an added component that is due to the nonran-
dom union of gametes caused by population subdivision (DB).

DC = D + DB (10.19)

In a random mating population, D and DC will have the same value. We will see in the next
section that the composite measure is of special value when estimating gametic disequilib-
rium from population samples. Campton (1987) has provided a helpful and exceptionally
lucid discussion of the derivation and use of the composite gametic disequilibrium measure.

10.5 Hybridization

Hybridization between populations, subspecies, or species will result in gametic disequi-
librium. Figure 10.5 outlines the resulting genotypes and gametes in the first two genera-
tions in this case. The F1 hybrid will be heterozygous for all loci at which the two taxa
differ. The gametes produced by the F1 hybrid will depend upon the linkage relationship of
the two loci. If the two loci are unlinked, then all four gametes will be produced in equal
frequencies because of recombination.
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Figure 10.5 Outline of gamete formation in a hybrid between two parental taxa fixed for
different alleles at two loci. Taxon one is AABB, and taxon two is aabb. The gametes produced
by F1 hybrids are influenced by the rate of recombination (r). These four gametes will be
equally frequent (25% each) for unlinked loci (r = 0.5). There will be an excess of parental
gametes (AB and ab in this case) if the loci are linked (r < 0.5).
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Table 10.2 shows the genotypes produced by hybridization between two taxa that are
fixed for different alleles at two unlinked loci. This assumes that the two taxa are equally
frequent and mate at random. We can see here that gametic disequilibrium (D) will be
reduced by exactly one-half each generation. For unlinked loci, recombination will elim-
inate the association between loci in heterozygotes. However, only one-half of the popu-
lation in a random mating population will be heterozygotes in the first generation.
Recombination in the two homozygous genotypes will not have any effect. Therefore,
gametic disequilibrium (D) will be reduced by exactly one-half each generation. A similar
effect will occur in later generations even though more genotypes will be present. That is,
recombination will only affect the frequency of gametes produced in individuals that are
heterozygous at both loci (AaBb).

Gametic disequilibrium will decay at a rate slower than one-half per generation if the
loci are linked. Tight linkage will greatly delay the rate of decay of D. For example, it will
take 69 generations for D to be reduced by one-half if there is 1% recombination between
loci (see expression 10.5).

Gametic disequilibrium also will decay at a slower rate if the population does not mate
at random because there is positive assortative mating of the parent types. This will reduce
the frequency of double heterozygotes in which recombination can act to reduce gametic
disequilibrium. We can see this using expression 10.8. In this case, the D component of the
composite measure (DC) will decline at the expected rate, but DB will persist depending
upon the amount of assortative mating. Random mating in a hybrid population can be
detected by testing for Hardy–Weinberg proportions at individual loci.

These two alternative explanations of persisting gametic disequilibrium in a hybrid can
be distinguished. Assortative mating will affect all pairs of loci (including cytoplasmic and
nuclear associations) while the effect of linkage will differ between pairs depending upon
their rate of recombination. Example 10.3 describes the multilocus genotypes in a natural

Table 10.2 Expected genotype frequencies and coefficient of gametic disequilibrium (D) in 
a random mating hybrid swarm.

Genotype frequencies

First Second Third
Genotypes Parental generation generation generation Equilibrium

AABB 0.500 0.250 0.141 0.098 0.063
AABb 0.094 0.118 0.125
AAbb 0.016 0.035 0.063
AaBB 0.094 0.118 0.125
AaBb 0.500 0.312 0.267 0.250
Aabb 0.094 0.118 0.125
aaBB 0.016 0.035 0.063
aaBb 0.094 0.118 0.125
aabb 0.500 0.250 0.141 0.098 0.063

D – +0.250 +0.125 +0.063 0.000
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hybrid zone between two species of crickets. In this case, most genotypes are similar to the
parental taxa and gametic disequilibrium persists over all loci because of assortative mating.
Guest Box 10 presents a true hybrid swarm in which mating is at random (all loci are in Hardy-
Weinberg proportions), but gametic disequilibrium persists at linked loci (Example 10.4).

Example 10.3 Cytonuclear disequilibrium in a hybrid zone of field crickets

Hybrid zones occur where two genetically distinct taxa are sympatric and
hybridize to form at least partially fertile progeny. Observations of the distribution
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Figure 10.6 Gametic disequilibrium between mtDNA and three nuclear loci in 
a hybrid zone between two species of field crickets, Gryllus pennsylvanicus (P) 
and G. firmus (F). The mtDNA from G. firmus is significantly more frequent for
homozygotes (FF) for the G. firmus nuclear allele at all three loci. ***, P < 0.001; 
**, P < 0.01. From Harrison and Bogdanowicz (1997).
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of multilocus genotypes within hybrid zones and the patterns of introgression
across hybrid zones can provide insight into the patterns of mating and the fitnesses
of hybrids that may contribute to barriers to gene exchange between taxa.

Harrison and Bogdanowicz (1997) describe gametic disequilibrium in a hybrid
zone between two species of field crickets, Gryllus pennsylvanicus and G. firmus.
These two species hybridize in a zone that extends from New England to Virginia
in the United States. Analyses of four anonymous nuclear loci, allozymes, mtDNA,
and morphology at three sites in Connecticut indicate that nonrandom associ-
ations between nuclear markers, between nuclear and mtDNA (Figure 10.6), and
between genotypes and morphology persist primarily because of more frequent
matings between parental types. That is, the crickets at these three sites in this
hybrid appear to be primarily parental with a few F1 individuals and even fewer
later generation hybrids.

These two species of field crickets are genetically similar. There are no fixed
diagnostic differences at allozyme loci, and more than 50 anonymous nuclear loci
had to be screened to find four that were diagnostic. These two taxa meet the 
criteria for species according to some species concepts but not others.
Regardless, as we will see in Chapter 16, the long-term persistence of parental
types throughout an extensive hybrid zone indicates that these species are clearly
distinct biological units.

Example 10.4 Gametic disequilibrium in a hybrid swarm

Forbes and Allendorf (1991) studied gametic disequilibrium in a hybrid swarm of
cutthroat trout (see Guest Box 10). They observed the following genotypic distri-
bution between two closely linked diagnostic allozyme loci. At both loci, the upper-
case allele (A and B) designates the allele fixed in the Yellowstone cutthroat trout and
the lower-case allele (a and b) is fixed in westslope cutthroat trout. There is a large
excess of parental gamete types. The allele frequencies at the two loci are p1 = 0.589
and p2 = 0.518. The expected genotypes if D = 0 are presented in parentheses:

LDH-A2

ME-4 AA Aa aa Total

BB 7 0 0 7
(2.6) (3.6) (1.3)

Bb 3 12 0 15
(4.8) (6.8) (4.9)

bb 0 1 5 6
(1.2) (2.2) (1.0)

Total 10 13 5
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The estimated value of D in this case is 0.213 and D ′ = 1.000 using the EM
method described in Section 10.6.1. The estimated gamete frequencies are pre-
sented below:

Gamete D == 0 D == 0.213

AB (p1)( p2) = 0.305 0.518
Ab (p1)( q2) = 0.284 0.071
aB (q1)( p2) = 0.213 0.000
ab (q1)( q2) = 0.198 0.411

We will examine hybridization and its genotypic effects again in Chapter 17 when we
consider the effects of hybridization on conservation.

10.6 Estimation of gametic disequilibrium

There is no simple way to estimate gametic equilibrium values from population data
(Kalinowski and Hedrick 2001). As described in the next section, even the simplest case of
two alleles at a pair of loci is complicated. Estimation becomes more difficult when we
consider that most loci have more than two alleles, and we often have genotypes from
many loci. There are a total of n(n − 1)/2 pairwise combinations of loci if we examine n
loci. So with 10 loci, there are a total of 45 combinations of two-locus gametic equilibrium
values to estimate.

10.6.1 Two loci with two alleles each

Let us consider the simplest case of two alleles at a pair of loci (see genotypic array in Table
10.1). The gamete types (e.g., AB or Ab) cannot be observed directly but must be inferred
from the diploid genotypes. For example, AABB individuals can only result from the union
of two AB gametes, and AABb individuals can only result from the union of an AB gamete
and an Ab gamete. Similar inferences of gametic types can be made for all individuals that
are homozygous at one or both loci. In contrast, gamete frequencies cannot be inferred
from double heterozygotes (AaBb) because they may result from either union of AA and bb
gametes or Ab and aB gametes. Consequently, gametic disequilibrium cannot be calcu-
lated directly from diploids.

Several methods are available to estimate gametic disequilibrium values in natural popu-
lations when the two gametic types of double heterozygotes cannot be distinguished. 
The simplest way is to ignore them, and simply estimate D from the remaining eight geno-
typic classes. The problem with this method is that double heterozygous individuals may
represent a large proportion of the sample (Example 10.4), and their exclusion from the
estimate will result in a substantial loss of information.

The best alternative is the expectation maximization (EM) algorithm that provides a
maximum likelihood estimate of gamete frequencies assuming random mating (Hill
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1974). We previously used the EM approach in the case of a null allele where not all 
genotypes could be distinguished at a single locus (see Section 5.4.2). This approach 
uses an iteration procedure along with the maximum likelihood estimate of the gamete
frequencies:

(10.20)

where N is the sample size, N11 is the number of AABB genotypes observed, N12 is the num-
ber of AaBB genotypes observed, and N21 is the number of AABb genotypes observed. This
expression is not as opaque as it first appears. The first three sums in the right-hand paren-
theses are the observed numbers of the G1 gametes in genotypes that are homozygous at
least one locus. The fourth value is the expected number of copies of the G1 gamete in the
double heterozygotes.

We need to make an initial estimate of gamete frequencies and then iterate using this
expression. Our initial estimate can either be the estimate of gamete frequencies with 
D = 0, or we can use the procedure described in the previous paragraph to initially estimate
D from the remaining eight genotypic classes. The other three gamete frequencies can be
solved directly once we estimate G1 and the single locus allele frequencies. Iteration can
sometimes converge on different gamete values depending upon the initial gamete fre-
quencies (Excoffier and Slatkin 1995). Kalinowski and Hedrick (2001) present a detailed
consideration of the implications of this problem when analyzing data sets with multiple
loci.

It is crucial to remember that the EM algorithm assumes random mating and
Hardy–Weinberg proportions. The greater the deviation from expected Hardy–Weinberg
proportions, the greater the probability that this iteration will not converge on the max-
imum likelihood estimate. Stephens et al. (2001) have provided an algorithm to estimate
gamete frequencies that assumes that the gametes in the double heterozygotes are likely
to be similar to the other gametes in the samples. This method is likely to be less sensitive
to nonrandom mating in the population being sampled.

10.6.2 More than two alleles per locus

The numbers of possible multilocus genotypes expands rapidly when we consider more
than two alleles per locus. For example, there are six genotypes and nine gametes at a sin-
gle locus with three alleles. Therefore, there are 6 × 6 = 36 diploid genotypes and 9 × 9 =
81 possible combinations of gametes at two loci each with three alleles. D values for each
pair of alleles at two loci can be estimated and tested statistically (Kalinowksi and Hedrick
2001). The iteration procedure is more likely to converge to a value other than the max-
imum likelihood solution as the number of alleles per locus increases. Therefore, it is
important to start the iteration from many different starting points with highly polymor-
phic samples.

So far we have considered genotypes at a pair of loci. There is much more information
available if we consider the distribution of genotypes over many loci simultaneously. This
is not a simple problem (Waits et al. 2001)! And, there are much larger data sets that are
being used. For example, studies with humans sometimes use screens of over 1,000
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microsatellite loci to detect regions of the genome that may contain genes associated with
particular diseases.

Guest Box 10 Dating hybrid populations using gametic disequilibrium
Stephen H. Forbes

Newly formed hybrids have nonrandom association of alleles contributed by the
two parental taxa, and this can be used to assess the age of a hybrid population 
(see Table 10.2). Persistence of these associations (gametic disequilibrium, or GD)
between unlinked loci indicates recent admixture, while decay of GD between
closely linked loci indicates a much earlier hybridization event. Given random 
mating, large Ne, large sample size, and known linkage relationships, the GD for a
single pair of loci would reliably indicate the age of a hybrid population. In practice,
however, hybridization may be geographically localized, with limited numbers of
founders, limited Ne in following generations, and limited sample sizes. When a
limited number of gametes contribute to the next generation, stochastic variation
in the frequencies of two-locus genotypes contributes to variance in GD estimates.
This variance cannot be reduced by sampling more individuals, but can only be
reduced by using many pairs of loci.

We demonstrated these issues using GD analysis in hybrid populations of cut-
throat trout (Forbes and Allendorf 1991). The westslope and Yellowstone cutthroat
trout subspecies differ genetically as much as do most trout species. Diagnostic
allozyme loci with fixed allelic differences between the subspecies were genotyped
in hybrid populations formed by the introduction of Yellowstone cutthroat trout
into native westslope populations occupying small lakes and creeks. We began with
the assumption that most pairs of arbitrarily chosen loci are unlinked. As will be
seen, if some are linked, this will be evident in the data.

All trout in both populations were hybrids beyond the F1 generation. In Cataract
Creek (Figure 10.7), the mean GD was near zero, and the distributions of all pair-
wise tests had equivalent numbers of positive and negative values, suggesting com-
plete decay of GD among unlinked loci. The variance among locus pairs, however,
was substantial; in fact, there were significant positive and negative individual tests
(chi-square values > 3.84). A key point, however, is that negative GD values (asso-
ciations between nonparental alleles) can be generated only by the genetic drift 
and sampling variances, and only after the initial GD due to admixture has 
largely decayed. In contrast to Cataract Creek, the GD distribution in Forest Lake
(Figure 10.7) had a more positive skew. This indicates a population not yet at
gametic equilibrium for unlinked markers. Note the effect of sample size, however,
in both populations. The skew towards positive D values is much greater in sample
sizes greater than 100 fish.

Hybrid populations at equilibrium for unlinked markers may still retain high
GD for linked loci, and three locus pairs here showed evidence of linkage. Pair A
showed significant disequilibrium in all Forest Lake samples, but none in Cataract
Creek. This is consistent with the unlinked markers indicating that Cataract Creek
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Figure 10.7 Gametic disequilibrium at nine diagnostic loci in two hybrid swarms of
native westslope cutthroat trout and introduced Yellowstone cutthroat trout in two
locations, Cataract Creek and Forest Lake. Each diamond indicates the amount of
gametic disequilibrium for each pair of loci. Q is distributed as a chi-square with one
degree of freedom and plotted with the sign of D. Positive associations (+D) are due 
to persistence in the hybrids of allele combinations from the parental types. Negative
associations (–D) can only be generated be genetic drift or sampling variance where
association due to admixture has largely decayed. The pairs of loci labeled A, B, and C
are linked. From Forbes and Allendorf (1991).
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is the older hybrid population, and it suggests that pair A is not closely linked. Pairs
B and C both showed high GD across temporally distinct samples, indicating closer
linkage. Pair B was previously shown to be linked in experimental matings (r = 0.32
in females, r = 0.05 in males). Neither pair B nor pair C is informative in both 
populations, apparently because one locus in each pair is not strictly diagnostic in
all parental stocks. Nonetheless, decay of GD for pair A contrasts the age of
Cataract Creek from that of Forest Lake, and still older hybrid populations than
Cataract Creek could be distinguished by GD decay for closely linked pairs such as
B and C.

Detecting recent hybridization using unlinked loci does not call for detailed
genetic maps, but dating older hybridization does call for more linkage data. Here,
one linkage was known from prior mapping in experimental matings, and two
more were inferred (but not accurately measured) from the population data.
Increasingly, however, improving genetic maps for many taxa will enable the
choice of linked loci with known map distances.

Problem 10.1

The effects of genetic hitchhiking are likely to be especially important in popula-
tions that have gone though a bottleneck. Why?

Problem 10.2

Can the amount of recombination between two loci be estimated by examining the
genotypic proportions in a population?

Problem 10.3

If a population is completely A1B2/A2B1 what is the value of D?

Problem 10.4

The number of generations needed for D to go halfway to zero is found by noting
when Dt = 0.5 D0. For a given amount of recombination, we need to solve the
equation:

(1 − r )t = 0.5

t ln(1 − r ) = ln(0.5)

t = ln(0.5)/ln(1 − r )

With unlinked loci, t = ln(0.5)/ln(1 − 0.5) = 1 and D is therefore halved in a single
generation. Vary the fraction of recombination and evaluate the half-life as a func-
tion of r and plot your results on the graph below:
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Problem 10.5

What would you consider a small fraction of recombination? (Hint: examine your
answer to the previous problem and Figure 10.2.)

Problem 10.6

Given heterozygous advantage at one locus (A) and selective neutrality at the
other (B ) as shown below. What is the marginal fitness at locus B when D = +0.25
and the allele frequencies at locus A are at equilibrium? How about if D = −0.25?

AA Aa aa
BB w11 = 0.8 w13 = 1.0 w33 = 0.8
Bb w11 = 0.8 w13 = 1.0 w33 = 0.8
Bb w11 = 0.8 w13 = 1.0 w33 = 0.8

Problem 10.7

Given that strong gametic disequilibrium was observed between alleles at two loci
in different populations, how would you design a research program to determine
the cause of this association?

Problem 10.8

Several studies have found a positive correlation between multilocus heterozy-
gosity and measures of fitness in a variety of plant and animal species (Britten
1996). How can such correlations be explained? How could you distinguish
among alternative possible explanations for such correlations?
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Problem 10.9

We saw in Example 10.3 that parental types persisted in a hybrid zone between
two species of field crickets because of assortative mating between parental
types. We should be able to see this by testing for Hardy–Weinberg proportions
for the genotype frequencies presented at three loci in Figure 10.6. For example,
at locus pUC5, the genotype numbers are 12 FF, 6 FP, and 7 PP. Test all three
loci in this figure for Hardy–Weinberg proportions. Do your results support the
authors’ conclusion of assortative mating between parental types?

Problem 10.10

Example 10.4 and Guest Box 10 consider hybrid swarms of trout that appear to
mating at random. Test the two loci shown in Example 10.4 for Hardy–Weinberg
proportions. Does the population from which this sample was taken appear to be
mating at random? Estimate D from this genotypic table using the eight genotypic
classes for which gametes can be unambiguously defined. How does your estim-
ate compare to the EM estimate provided in the example?

CATC10  28/05/2007  06:03PM  Page 256



11

Quantitative 
Genetics

Most of the major genetic concerns in conservation biology, including inbreeding
depression, loss of evolutionary potential, genetic adaptation to captivity, and out-
breeding depression, involve quantitative genetics.

Richard Frankham (1999)

An overview of theoretical and empirical results in quantitative genetics provides
some insight into the critical population sizes below which species begin to experi-
ence genetic problems that exacerbate the risk of extinction.

Michel Lynch (1996)

11.1 Heritability, 258

11.2 Selection on quantitative traits, 264

11.3 Quantitative trait loci (QTLs), 269

11.4 Genetic drift and bottlenecks, 274

11.5 Divergence among populations (QST), 276

11.6 Quantitative genetics and conservation, 278

Guest Box 11 Response to trophy hunting in bighorn sheep, 282

Bighorn sheep, Guest Box 11
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Most phenotypic differences among individuals within natural populations are quantit-
ative rather than qualitative. Some individuals are larger, stronger, or can run faster than
others. Such phenotypic differences cannot be classified by the presence or absence of cer-
tain characteristics, such as plumage color or bands on a gel. The inheritance of quantit-
ative traits is usually complex, and many genes are involved (i.e., polygenic). In addition to
genetics, the environment to which individuals are exposed will also affect their pheno-
type (see Figure 2.2). The single locus genetic models that we have been using until this
point are inadequate for understanding this variation. Instead of considering the effects 
of one gene at a time, we will examine multifactorial inheritance and partition the gen-
etic basis of such phenotypic variation into various sources of variation by statistical 
procedures.

Quantitative genetics began shortly following the rediscovery of Mendel’s principles to
resolve the controversy of whether discrete Mendelian factors (genes) could explain the
genetic basis of continuously varying characters (Lynch and Walsh 1998). The theoretical
basis of quantitative genetics was developed primarily by R. A. Fisher (1918) and Sewall
Wright (1921b). The empirical aspects of quantitative genetics were developed primarily
from applications to improve domesticated animals and agricultural crops (Lush 1937;
Falconer and Mackay 1996).

The models of quantitative genetics have been applied to understanding genetic vari-
ation in natural populations only in the last 20 years or so (Roff 1997). The abundance 
of molecular markers now available makes it possible to identify quantitative trait loci
(QTLs) – the specific regions that are responsible for variation in continuous traits (Barton
and Keightley 2002). Understanding the evolutionary effects of QTLs will allow us to
improve our understanding of how genes influence phenotypic variation and improve our
understanding of the evolutionary importance of genetic variation.

The principles of quantitative genetics also can be applied to a variety of problems in
conservation (reviews by Barker 1994; Lande 1996; Lynch 1996; Storfer 1996; Frankham
1999). We saw in Chapter 2 that pink salmon on the west coast of North America have
become smaller at sexual maturity over a period of 25 years (see Figure 2.3). This appar-
ently resulted from the effects of a size-selective fishery in which larger individuals had a
higher probability of being caught (Ricker 1981). In addition, understanding the quant-
itative genetic basis of traits is essential for predicting genetic changes that are likely to
occur in captive propagation programs as populations become “adapted” to captivity (see
Chapter 18).

This chapter provides a conceptual overview of the application of the approaches of
quantitative genetics to problems in conservation. Our emphasis is on the interpretation
of results of quantitative genetic experiments with model species in the laboratory and on
more recent studies of quantitative genetic variation in natural populations. Detailed con-
sideration of quantitative genetic principles can be found in Falconer and Mackay (1996)
and Lynch and Walsh (1998).

11.1 Heritability

There are three major types of quantitative characters that are affected by a combination
of polygenic inheritance and the environment:
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1 Continuous characters. These characters are continuously distributed in populations
(e.g., weight, height, and body temperature). For example, Figure 11.1 shows the body
length of pink salmon at sexual maturity in an experimental population from Alaska
(Funk et al. 2005).

2 Meristic characters. The values of these characters are restricted to integers; that is
they are countable (e.g., number of vertebrae, number of fingerprint ridges, and clutch
size). For example, Figure 11.2 shows the distribution of the total number (left plus
right) of gill rakers on the upper gill arch in the same population of pink salmon as
Figure 11.1.
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Figure 11.1 Body length of (a) male and (b) female pink salmon at sexual maturity in a
population from Alaska. There is no difference in the mean length of males and females in 
this population. However, males have a significantly greater variance and standard deviation
of body length. From Funk et al. (2005).
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3 Threshold characters. These are characters in which individuals fall into a few discrete
states, but there is an underlying continuously distributed genetic basis to the trait in
question (e.g., alive or dead, sick or well).

The total amount of phenotypic variation for a quantitative trait within a population
can be thought of as arising from two major sources: environmental differences between
individuals and genetic differences between individuals. Writing this statement in the form
of a mathematical model, we have:

VP = VE + VG (11.1)

The genetic differences between individuals can be attributed to three different sources:

VA = additive effects (effects of gene substitution)

VD = dominance effects (effects of interactions between alleles)

VI = epistatic effects (effects of interactions between loci)

Therefore,

VP = VE + VG

= VE + VA + VD + VI (11.2)

11.1.1 Broad sense heritability

Heritability is a measure of the influence of genetics in determining phenotypic differ-
ences between individuals for a trait within a population. Heritability in the broad sense
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Figure 11.2 Distribution of the total number (left plus right) of gill rakers on the upper gill
arch in the same population of pink salmon as Figure 11.1. There are no differences between
males and females for this trait.
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(HB) is the proportion of the phenotypic variability that results from genetic differences
between individuals. That is,

(11.3)

For example, Sewall Wright removed virtually all of the genetic differences between
guinea pigs within lines by continued sister-brother matings for many generations. The
total variance (VP) in the population as a whole (consisting of many separate inbred lines)
for the amount of white spotting was 573. The average variance within the inbred lines
was 340; this must be equal to VE because genetic differences between individuals within
the lines were removed from inbreeding. Thus,

VP = VE + VG

573 = 340 + VG

VG = 573 − 340 = 233

and,

HB = 233/573 = 0.409

11.1.2 Narrow sense heritability

Conservation biologists are often interested in predicting how a population will respond
to selective differences among individuals in survival and reproductive success (Stockwell
and Ashley 2004). Similarly, animal and plant breeders are often interested in improving
the performance of agricultural species for specific traits of interest (e.g., growth rate or
egg production). However, broad sense heritability may not provide a good prediction of
the response. We will see shortly that a trait may not respond to selective differences even
though variation for the trait is largely based upon genetic differences between individuals.

Another definition of heritability is commonly used because it provides a measure of
the genetic resemblance between parents and offspring and, therefore, the predicted
response of a trait to selection. Heritability in the narrow sense (HN) is the proportion of
the total phenotypic variation that is due to additive genetic differences between individuals:

(11.4)

If not specified, heritability generally (but not always) refers to narrow sense heritability,
both in this chapter and in the published literature.

We can see the need for the distinction between broad and narrow sense heritability in
the following hypothetical example. Assume that differences in length at sexual maturity
are determined primarily by a single locus with two alleles in a fish species, and that het-
erozygotes at this locus are longer than either of the two homozygotes. In this example,
the broad sense heritability for this trait is nearly 1.00 since almost all of the variation is due
to genetic differences.
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Let us do a thought selection experiment in a random mating population in which these
two alleles are equally frequent:

Genotype Length Frequency
A1A1 10 cm p2 = 0.25
A1A2 12 cm 2pq = 0.50
A2 A2 10 cm q2 = 0.25

Thus, one-half of the fish in this population are approximately 12 cm long and the other
one-half are 10 cm long. What would happen if we selected only the longer 12 cm fish for
breeding in an attempt to produce larger fish? All of the fish selected for breeding will 
be heterozygotes. The progeny from A1A2 × A1A2 matings will segregate in Mendelian 
proportions of 25% A1A1 : 50% A1A2 : 25% A2A2. Therefore, the progeny generation is
expected to have the same genotype and phenotype frequencies as the parental genera-
tion. That is, there will be no response to selection even though all of the phenotypic dif-
ferences have a genetic basis (HB = 1.00).

In this example, all of the phenotypic differences are due to dominance effects (VD)
resulting from to the interaction between the A1 and A2 alleles in the heterozygotes. Thus,
there is no response to selection, and the narrow sense heritability is zero (HN = 0).
However, this population would have responded to this selection if the two alleles were
not equally frequent. We will see in Section 11.2.1 that heritability will be different at dif-
ferent allele frequencies.

Heritability is another area where the nomenclature and the symbols used in publica-
tions can cause confusion to the reader. Narrow sense heritability is often represented by
h2 and broad sense heritability by H2. The square in these symbols is in recognition of
Wright’s (1921b) original description of the resemblance between parents and offspring
using his method of path analysis in which under the additive model of gene action, an
individual’s phenotypes is determined by h2 + e 2, where e 2 represents environmental
effects and h2 is the proportion of the phenotypic variance due to the genotypic value (see
Lynch and Walsh 1998, appendix 2). We have chosen not to use these symbols in hopes of
reducing possible confusion.

11.1.3 Estimation of heritability

Heritability can be estimated by several different methods that depend upon comparing
the relative phenotypic similarity of individuals with different degrees of genetic relation-
ship. One of the most direct ways to estimate heritability is by regressing the progeny phe-
notypic values on the parental phenotypic values for a trait. The narrow sense heritability
can be estimated by the slope of the regression of the offspring phenotypic value on the
mean of the two parental values (called the mid-parent value).

Alatalo and Lundberg (1986) estimated the heritability of tarsus length in a natural popu-
lation of the pied flycatcher using nest boxes in Sweden. The narrow sense heritability was
estimated by twice the slope of the regression line of the progeny value on the maternal
value. The slope is doubled in this case because only the influence of the maternal parent
was considered. The male parents were not included in this analysis because previous
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results had shown that nearly 25% of progeny were the result of extra-copulations rather
than fathered by the social father. Heritability was estimated to be 0.53 in an examination
of 331 nests (Figure 11.3a). In addition, 54 clutches were exchanged as eggs between par-
ents to separate genetic and post-hatching environmental effects. There was no detectable
resemblance at all between foster mothers and their progeny (Figure 11.3b).

The relatively high heritability in this example is somewhat typical of estimates for mor-
phological traits in natural populations (Roff 1997). Our reanalysis in Chapter 2 of
Punnett’s (1904) data on vertebrae number in velvet belly sharks results in a heritability
estimate of 0.63 (P < 0.01; see Figure 2.4). Similar high heritabilities for a variety of meristic
traits (vertebrae number, fin rays, etc.) in many fish species have been reported (reviewed
in Kirpichnikov 1981). Many morphological characters in bird species also have high nar-
row sense heritabilities (e.g., Table 11.1).

Quantitative genetic studies in natural populations have been rare because they require
large breeding programs or known pedigrees. It is now possible to estimate relatedness in
natural populations using a large number of molecular markers (Queller and Goodnight
1989; Wang 2002). These estimates of relatedness can now be used to provide pedigrees for
species in the wild and to estimate heritabilities and genetic correlations (Ritland 2000;
Moore and Kukuk 2002). Caution is necessary, however; even a small amount of pedigree
uncertainty may make it difficult to obtain reliable heritability estimates from wild popula-
tions in this way (Coltman 2005).
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Figure 11.3 Mother–offspring regression estimation of heritability of tarsus length in the 
pied flycatcher (HN = 0.53): (a) regression with mother and (b) regression with foster mother.
Each point represents the mean tarsus length of progeny from one nest. From Alatalo and
Lundberg (1986).
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11.1.4 Genotype–environment interactions

We saw in Figure 2.9 that the environment can have a profound effect on the phenotypes
of yarrow plants resulting from a particular genotype. We also saw evidence for local adap-
tation with reciprocal transplants in Gilia capitata (Figure 8.1) in which plants had greater
fitness in their native habitat. In a statistical sense, these are examples of interactions
between genotypes and environments. We can expand our basic model to include these
important interactions as follows:

VP = VE + VG + VG×E (11.5)

Genotype–environment interactions are of major concern in conservation biology when
translocating individuals to alleviate inbreeding depression (genetic rescue, Chapter 15)
and when reintroducing captive populations into the wild (Chapter 18). We will see in
Chapter 18 that many traits that are advantageous in captivity may greatly reduce the
fitness of individuals in the wild.

11.2 Selection on quantitative traits

Evolutionary change by natural selection can be thought of as a two-step process. First,
there must be phenotypic variation for the trait that results in differential survival or repro-
ductive success (i.e., fitness). Second, there must be additive genetic variation for the trait
(HN > 0; fisher 1930). Heritability in the narrow sense can also be estimated by the
response to selection. This is usually called the “realized” heritability (Figure 11.4). If a trait
does not respond at all to selection then there is no additive genetic variation and HN = 0. If
the mean of the selected progeny is equal to the mean of the selected parents, then HN = 1.
Generally, the mean of the selected progeny will be somewhere in between these two
extremes (0 < HN < 1.0). Francis Galton coined the expression “regression” to describe 
the general tendency for progeny of selected parents to “regress” towards the mean of the

Table 11.1 Heritability estimates from parent–offspring regression for morphological traits
for three species of Darwin’s finches in the wild (Grant 1986). Heritability ranges between
zero and one. However, estimates of heritability can be greater than 1.0 (as here); for
example, the slope of the regression of progeny on mid-parent values for weight and bill
length was greater than 1.0 in Geospiza conirostris. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Character G. fortis G. scandens G. conirostris

Weight 0.91*** 0.58 1.09***
Wing cord length 0.84*** 0.26 0.69*
Tarsus length 0.71*** 0.92*** 0.78**
Bill length 0.65*** 0.58* 1.08***
Bill depth 0.79*** 0.80* 0.69***
Bill width 0.90** 0.56* 0.77**
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unselected population. Galton lived in the 19th century and was a cousin of Charles
Darwin (Provine 2001).

In this case, heritability is the response to selection divided by the total selection differ-
ential. Thus,

(11.6)

where S is the difference in the means between the selected parents and the whole popula-
tion, and R is the difference in the means between the progeny generation and the whole
population in the previous generation. Expression 11.6 is sometimes written in the form of
the breeders’ equation to allow prediction of the expected gain from artificial selection:

R = HNS (11.7)

Figure 11.5 illustrates two generations of artificial selection for a trait with a heritability
of 0.33. The breeder selects by truncating the population and uses only individuals above a
certain threshold as breeders. The mean of the progeny from these selected parents will
regress two-thirds (1 − 0.33) of the way toward the original population mean.

11.2.1 Heritabilities and allele frequencies

Heritability for a particular trait is not constant. It will generally vary in different popula-
tions that are genetically divergent. However, it may also vary within a single population
under different environmental conditions. In addition, heritability within a population
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Figure 11.4 Illustration of the meaning of narrow sense heritability based upon a selection
experiment and expression 11.5. If there is no response to selection then HN = 0; if the mean 
of the progeny from selected parents is equal to the mean of the selected parents, then HN = 1.
Modified from Crow (1986).
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will not be constant even within the same environment because it is influenced by allele
frequencies.

Let us examine this effect with a simple single locus model in which all phenotypic vari-
ation has a genetic basis. In a single locus case such as this, heritability can be calculated
directly by calculating the appropriate variances:

VG = p2(w11 − W)2 + 2pq(w12 − W)2 + q2(w22 − W)2 (11.8)

VA = 2[p(wA1 − W)2 + q(wA2 − W)2] (11.9)

where

Culled Selected

Population mean Mean of selected group

Regression

S

R

Original mean Mean after
two generations

of selection

Figure 11.5 Two generations of selection for a trait with a heritability of 0.33. The progeny
mean moves one-third (0.33) of the distance from the population mean toward the mean 
of the selected parents. From Crow (1986).
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(11.10)

and

(11.11)

VA is very closely related to average heterozygosity, and will also be maximum at p = q = 0.5.
Since we have assumed that VE is zero, the narrow sense heritability is the additive genetic
variance divided by the total genetic variance.

(11.12)

We can use this approach to estimate heritability in the example of height in a plant
determined by a single locus where homozygotes are 10 cm and heterozygotes are 12 cm
tall. We saw before that HN was zero when the two alleles are equally frequent. We can 
use expressions 11.8–11.12 to estimate heritability over all possible allele frequencies
(Figure 11.6). In addition, we can consider the case where the heterozygotes are inter-
mediate to the homozygotes (case A) and the case of complete dominance when the 
heterozygotes have the same phenotype as the taller homozygotes (case B), as well as the
overdominant case where the heterozygotes are taller than either homozygotes (case C):
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Figure 11.6 Hypothetical example of heritability (VA/VG) for plant height determined by 
a single locus with two alleles: (A) the additive case where heterozygotes are intermediate 
to both homozygotes, (B) complete dominance so that the heterozygotes have the same
phenotype as the taller homozygotes (A2A2), and (C) the case of overdominance where the
heterozygotes are taller than either of the homozygotes. It is assumed that all of the variability
in height is genetically determined (i.e., VE = 0).
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Genotype Additive (A) Dominant (B) Overdominant (C)
A1A1 10 cm 10 cm 10 cm
A1A2 11 cm 12 cm 12 cm
A2A2 12 cm 12 cm 10 cm

There are several important features of the relationship between allele frequency and 
heritability in this model (Figure 11.6). In case A, all of the genetic variance is additive so
heritability is always 1.0. In the case of dominance (case B), heritability is high when the
dominant allele (A2) is rare but low when this allele is common. As we saw in Chapter 8,
selection for a high frequency dominant allele is not effective so heritability will be low.
Finally in the case of overdominance (case C), heritability is high when either of the alleles
is rare because increasing the frequency of a rare allele will increase the frequency of het-
erozygotes and thus the population will be taller the next generation. That is, the popula-
tion will respond to selection when either allele is rare, and therefore heritability will be
high. However, the frequency of heterozygotes is greatest when the two alleles are equally
frequent; therefore, heritability will be zero at p = q = 0.5.

11.2.2 Genetic correlations

Genetic correlations are a measure of the genetic associations of different traits. Such cor-
relations may arise from two primary mechanisms. First, many genes affect more than a
single character so that they will cause simultaneous effects on different aspects of the 
phenotype; this is known as pleiotropy. For example, a gene that increases growth rate 
is likely to affect stature and weight. Pleiotropy will cause genetic correlations between 
different characters. Gametic disequilibrium between loci affecting different traits is
another possible cause of genetic correlations between characters.

Selection (either natural of artificial) for a particular trait will often result in a secondary
response in the value of another trait because of genetic correlations. Distinguishing
between pleiotropy and gametic disequilibrium as causes of such secondary responses is
difficult because many loci may affect the trait under selection. Therefore, the effects of
associated alleles from other loci and pleiotropy of some of the selected alleles are both
quite probable.

Figure 11.7 demonstrates genetic correlation between two meristic traits in the experi-
mental population of pink salmon from Figure 11.1. The parental values for one trait,
pelvic rays, were a good predictor of the progeny phenotypes for another trait, pectoral
rays (P < 0.05). The reciprocal regression (progeny pelvic rays on mid-parent pectoral
rays) is also significant (P < 0.01). The actual point estimate of the genetic correlation
between these traits (0.64) takes into account both of these parental–progeny relationships
(Funk et al. 2005):

(11.13)

where covXY is the “cross-variance” that is obtained from the product of the value of trait X
in parents and the value of trait Y in progeny, and covXX and covYY are the progeny–parent
covariance for traits X and Y separately.
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We can see with Figure 11.7 that if we selected by using parents with many pelvic rays
the number of pectoral rays in the progeny would increase. In this case, the genetic corre-
lation is almost certainly caused by pleiotropy. Genes that decrease developmental rate
tend to increase counts for a suite of meristic traits in the closely related rainbow trout
(Leary et al. 1984b).

11.3 Quantitative trait loci (QTLs)

The field of quantitative genetics developed to allow the genetic analysis of traits affected
by multiple loci in which it was impossible to identify individual genes having major 
phenotypic effects. Formal genetic analysis could only be performed for traits in which 
discrete (qualitative) phenotypes (round or wrinkled, brown or albino, etc.) could be
identified to test their mode of inheritance. Classic quantitative genetics treated the
genome as a black box and employed estimates of a variety of statistical parameters (e.g.,
heritabilities, genetic correlations, and the response to selection) to describe the genetic
basis of continuous (quantitative) traits. However, the actual genes affecting these traits
could not be identified with this approach. Alan Robertson (1967) described this pheno-
menon as the “fog of quantitative variation”.

The fog is now lifting. The current abundance of molecular markers now available
makes it possible to identify those specific regions of the genome that are responsible for
variation in continuous traits. Understanding the evolutionary effects of these so-called
QTLs allows us to determine how specific genes influence phenotypic variation and
understand the evolutionary importance of genetic variation. Perhaps even more import-
ant from a conservation perspective, this approach also allows us to determine how many
genes affect phenotypic variation of particular interest.

Knowing whether a particular trait is affected primarily by a single gene or by many
genes with small effects, may influence recommendations based upon genetic considera-
tions. For example, captive golden lion tamarins suffer from a diaphragmatic defect that
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Figure 11.7 Genetic correlation between meristic traits in pink salmon. Regression of
number of rays in the pectoral fins of progeny on the mid-parent (MP) values of number of
rays in the pelvic fins (slope = 0.342; P < 0.023).
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seems to be hereditary (Bush et al. 1996). The presence or absence of this condition is one
criterion used in the selection of individuals for release into the wild (Example 11.1).

11.3.1 Genomic distribution of loci affecting quantitative traits

The basic problem with genetic analysis of a quantitative trait is that many different geno-
types may result in the same phenotype. Therefore, genetic dissection of QTLs requires an
experimental system in which the effects of individual genomic regions or marker genes
can be identified.

DDT resistance in Drosophila is an example of this (Crow 1957). A DDT-resistant strain
was produced by raising flies in a large experimental cage with the inner walls painted with
DDT. The concentration of DDT was increased over successive generations as the flies
became more and more resistant until over 60% of the flies survived doses of DDT that 

Example 11.1 Should golden lion tamarins with diaphragmatic defects be
released into the wild?

Golden lion tamarins held in captivity have a relatively high frequency of diaphrag-
matic defects detectable by radiography (Bush et al. 1996). No true hernias were
observed, but 35% of captive animals had marked defects in the muscular
diaphragm that provided a potential site for liver or gastrointestinal herniation.
Only 2% of wild living animals had this defect. This difference between captive
and wild animals could be the result of relaxation of selection against the pres-
ence of such defects in captivity or genetic drift in captivity (see Chapter 18).

All captive-born animals that are candidates for release in the wild are now
screened for this defect before release. Individuals with a relatively severe defect
are disqualified for reintroduction. Approximately 10% of all captive animals are
expected to be disqualified using this criterion. This procedure is designed to pro-
tect the wild population against an increase in a potentially harmful defect that
may have a genetic basis.

This screening procedure seems appropriate. However, its effectiveness will
depend upon the genetic basis of this defect. If it is caused by a single gene with a
major effect, then this selection is expected to be effective in limiting the increase
of the genetic basis for this defect in the wild. If, however, this defect is caused 
by many genes with small effect, this selective removal of a few animals will have
little effect.

In addition, there is a potential concern with such selection of animals for rein-
troduction. As we have seen, selection can reduce the amount of genetic vari-
ation. Disqualifying say 25 or 50% of candidates for reintroduction could potentially
reduce genetic variation in the reintroduced animals. For example, Ralls et al.
(2000) concluded that the selective removal of an allele responsible for chon-
drodystrophy in California condors would not be advisable because of the poten-
tial reduction of genetic variation in the captive population. Thus, there is no
simple answer to the question of whether or not animals with defects should be
released into the wild (see Example 18.4).
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initially killed over 99% of all flies. flies from the resistant strain then were mated to flies
from laboratory strains that had not been selected for DDT resistance. The F1 flies were
mated to produce an F2 generation that had all possible combinations of the three major
chromosomal pairs as identified by marker loci on each chromosome (Figure 11.8).

The results of this elegant experiment demonstrate that genes affecting DDT resistance
occur on all three chromosomes. The addition of any one of the three chromosomes
(Figure 11.8) increases DDT resistance. Furthermore, the effects of different chromo-
somes are cumulative. That is, the more copies of chromosomes from the resistant strain,
the more resistant the F2 flies were to DDT.
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Figure 11.8 Results of an experiment demonstrating that genes affect DDT resistance in
Drosophila (Crow 1957). The addition of any one of the chromosomes from the strain selected
for DDT resistance increases DDT resistance. Redrawn from Crow (1986).
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11.3.2 Mapping QTLs

The availability of many genetic markers now makes it possible to determine more pre-
cisely the number and position of QTLs affecting phenotypes of interest by a variety of
approaches. The most straightforward approach is similar to the DDT example: two
parental lines that differ widely for a phenotype of interest are crossed (Table 11.2). If these
lines are homozygous for alleles at many loci affecting the trait, the F1 hybrids will be het-
erozygous at these loci. The average trait score or phenotype for any marker locus (A, B, C,
etc.) can be calculated in the F2 generation. If the marker is on a chromosome that does
not contain a QTL, then the marker locus will segregate independently from the trait and
all three genotypes at the marker will have the same phenotypic mean.

Table 11.2 shows the result of this approach on a chromosome that contains a QTL with
two alleles, where the Q+ allele causes a greater phenotypic value than the Q− allele. If 
the marker locus is close to the QTL, then genotypes at the marker locus (B in this case)
will have different mean phenotypes because of linkage. Some loci on the same chromo-
some will show independent segregation because of recombination. Such loci (A in this
case) will segregate independently from the trait; therefore, all three genotypes at the
marker will have the same phenotypic mean.

The size of the difference in mean phenotype effect will depend upon the magnitude of
effect of the QTL and the amount of recombination between the marker and the QTL.
The tighter the linkage, the greater will be the difference in mean phenotypes between

Table 11.2 Relationship between marker genotypes at a linked marker locus (B) and an
unlinked locus (A) with a QTL (modified from Kearsey 1998). The Q+ allele at the QTL 
causes an increase in the phenotype. The strong association between the phenotype of
interest and genotypes at the B locus suggests that a QTL affecting the trait is linked to the 
B locus.

F1

A1 B1 Q++

A2 B2 Q−−

Frequencies of F2 genotypes

Marker genotype Q++Q++ Q++Q−− Q−−Q−− Mean phenotype

A1A1 0.25 0.50 0.25 Intermediate
A1A2 0.25 0.50 0.25 Intermediate
A2A2 0.25 0.50 0.25 Intermediate
B1B1 Most Few Rare High
B1B2 Few Most Few Intermediate
B2B2 Rare Few Most Low
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genotypes at the marker locus. Figure 11.9 shows the expected relationship between the
mean phenotype of the marker locus and the map distance between the marker locus and
the QTL. The genetic map distance is measured in centiMorgans (cM); 1 cM equals 1%
recombination. Therefore, loci that are at least 50 cM apart will segregate independently
and are said to be unlinked. Loci on the same chromosome are syntenic. In this example,
the A locus and the QTL are syntenic but unlinked.

This approach has been used to determine the genetic basis of the derived life cycle
mode of paedomorphosis in the Mexican axolotl (Voss 1995; Voss and Shaffer 1997).
Mexican axolotls do not undergo metamorphosis and have a completely aquatic life cycle.
In contrast, closely related tiger salamanders undergo metamorphosis in which their
external gills are absorbed and other changes occur before they become terrestrial. Voss
(1995) crossed these two species and found that the F1 hybrids underwent metamorphosis.
He then backcrossed the F1 hybrids to a tiger salamander and found evidence for a major
single gene controlling most of the variation in this life history difference, with additional
loci having smaller effects.

Voss and Shaffer (1997) used a similar backcross approach in two crosses to search for
QTLs affecting metamorphosis. They scored 262 AFLP marker loci in the backcross
progeny. Only one region of the genome, which contained three AFLP markers, was asso-
ciated with this life cycle difference. They hypothesized that a dominant allele (MET ) 
at a QTL in this region was associated with the metamorphic phenotype in the tiger 
salamander, and the recessive met allele from the Mexican axolotl was associated with 
paedomorphosis. This result has been confirmed by additional analysis of nearly 1,000 
segregating marker loci (Smith et al. 2005b). No other regions were found to contribute 
to this life history difference. It is interesting to note that this same QTL also contributes to
continuous variation for the timing of metamorphosis in the tiger salamander (Voss and
Smith 2005).
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Figure 11.9 Hypothetical relationship between the mean phenotype of marker loci in the F2
generation on a chromosome containing a QTL at map position 70 (see Table 11.2).
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11.3.3 Candidate loci

Another way to identify genes associated with phenotypes of interest is the candidate
locus approach in which knowledge of gene function is used to select a subset of genes that
are likely to affect the trait of interest (Phillips 2005). The QTL approach is a top-down
approach that begins with the phenotype in order to search for responsible genes. In con-
trast, the candidate gene approach begins with the genes and searches for phenotypic
effects of interest (see Figure 2.2).

Voss et al. (2003) used the candidate locus approach to understand the genetic basis 
of paedomorphosis with the same species as described above. They tested if two 
thyroid hormone receptor loci affected the timing of metamorphosis. Thyroid hormone
receptors are strong candidate genes for metamorphic timing because they mediate gene
expression pathways that regulate developmental programs underlying the transforma-
tion of an aquatic larva into a terrestrial adult. They found a significant affect on metamor-
phic timing for one of these two loci. However, the effect was not straightforward as 
both the magnitude and direction of the phenotypic effect depended upon the genetic
background.

11.4 Genetic drift and bottlenecks

The loss of genetic variation (heterozygosity and allelic diversity) via genetic drift will also
affect quantitative variation. However, some surprises have been found in studies of the
effects of population bottlenecks on quantitative genetic variation. In some cases, even
extreme population bottlenecks have resulted in the increase of genetic variation as meas-
ured by quantitative genetics.

We saw in Chapter 6 that heterozygosity at neutral loci will be lost at a rate of 1/(2Ne)
per generation. We can relate the effects of genetic drift on allele frequencies at a locus
with two alleles to additive quantitative variation as follows (Falconer and Mackay 1996):

VA = ∑ 2pq[a + d(q − p)]2 (11.14)

where p and q are allele frequencies so that 2pq is the expected frequency of heterozygotes,
a is half the phenotypic difference between the two homozygotes, and d is the dominance
deviation.

This model results in the simple prediction that VA, and therefore HN, will be lost at the
same rate as neutral heterozygosity in the case where all of the variation is additive (d = 0).
Empirical results of the relationship between HN, molecular genetic variation, and the
effects of bottlenecks have been somewhat contradictory (see review in Gilligan et al.
2005). For example, Gilligan et al. (2005) found that quantitative genetic variation for two
meristic characters in Drosophila (abdominal and sternopleural bristle numbers) declined
at the same rate as heterozygosity at seven allozyme loci in laboratory populations main-
tained at a variety of effective population sizes. In contrast, van Oosterhout and Brakefield
(1999) found no significant reduction in the heritability of wing pattern characters in the
butterfly Bicyclus anynana reared at small population sizes in the laboratory.
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Other studies have reported increases in quantitative genetic variation in populations
following bottlenecks. In one of the earliest studies, Bryant et al. (1986) found that herit-
ability of several morphological traits in the house fly increased after an experimental 
bottleneck.

The most important explanation for this apparent discrepancy is the assumption that all
of the quantitative genetic variation is additive. We expect traits under strong natural
selection to behave considerably differently to selectively neutral traits.

Consider the effect of natural selection on a phenotypic trait using the single locus selec-
tion models we examined in Chapter 8. We saw that all of the genetic variation for a trait
under strong directional natural selection will eventually be depleted (see Figure 8.2). In
general, natural selection will use up or remove additive genetic variation for a trait so alle-
les that increase fitness should increase in frequency until they reach fixation, while genes
associated with reduced fitness should be reduced in frequency and eventually be lost from
the population. Therefore, we expect that traits that are strongly associated with fitness
should have lower heritabilites than traits that are under weak or no natural selection. A
vast body of empirical information in many species supports this expectation (Mousseau
and Roff 1987; Roff and Mousseau 1987). For example, Kruuk et al. (2000) found a strong
negative association between the heritability of a trait and its association with fitness in a
wild population of red deer (Figure 11.10).

We do not expect strong selection for a trait to remove all genetic variation. Consider
our example in Section 11.1.2 of a single locus affecting length in a fish population in 
which the heterozygotes are longer than either of the homozygotes. This is a case of 
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Figure 11.10 Relationship between the narrow sense heritability of traits and their
correlation with total fitness in a population of red deer. These results demonstrate that
morphometric traits tend to have greater heritabilities than life history traits, and traits with 
a greater effect on fitness tend to have lower heritabilities. From Kruuk et al. (2000).
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heterozygous advantage or overdominance as we saw in Section 8.2. Directional selection
for length will eventually lead to an equilibrium allele frequency of 0.5 in which the popu-
lation will no longer respond to selection for longer length (HN = 0). However, the broad
sense heritability may still be quite high if most of the phenotypic variation in this trait 
is caused by this locus. In this case, VA will be zero but there will be substantial genetic 
variation affecting this trait due to dominance effects resulting from interactions between
the two alleles (VD, see expression 11.1).

What will happen in this case if the equilibrium population goes through a bottleneck
which causes a change in allele frequency at this locus because of genetic drift? This bottle-
neck will change allele frequencies away from 0.5, and, therefore, narrow sense heritability
(HN) for this trait will increase!

The increase in heritability after a bottleneck can also result from simple dominance
(Willis and Orr 1993). Selection against a rare deleterious recessive allele is ineffective
when the allele is rare. Thus, these deleterious recessive alleles will remain in the popula-
tion at low frequency. Most of these rare alleles will be lost during a bottleneck, but some
will increase in frequency as we saw in Chapter 6. The increase in frequency of these alleles
will decrease the average fitness of the population and will also increase the heritability of
the traits affected by these alleles. Robertson (1952) found that the additive genetic vari-
ation for initially rare recessive alleles will increase in small populations until the expected
reduction in heterozygosity is approximately 0.50, but declines to zero after that.

More complex models of quantitative genetic variation that he observed increase in
additive genetic variation; this is primarily caused by the conversion of dominance to addi-
tive genetic variation (Wang et al. 1998). The conversion of epistatic effects (VI) to additive
genetic variation will also contribute to the phenomenon.

11.5 Divergence among populations (QST)

Quantitative genetics can also be used to understand genetic differentiation among local
populations within species (Merilä and Crnokrak 2001). This approach has been especially
interesting when used to understand the patterns of local adaptation caused by differential
natural selection acting on heritable traits. We also expect local populations of species to
differ for quantitative traits because of the effects of genetic drift. Understanding the rela-
tive importance of genetic drift and natural selection as determinants of population differ-
entiation is an important goal when studying quantitative traits.

We saw in Chapter 9 that the amount of genetic differentiation among populations is
often estimated by the fixation index FST, which is the proportion of the total genetic vari-
ation that is due to genetic differentiation among local populations. An analogous measure
of population differentiation for quantitative traits has been termed QST (Spitze 1993):

(11.15)

where VGB is the additive genetic variation due to differences among populations and VGW
is the mean additive genetic variation within populations. QST is expected to have the same
value as FST if it is estimated from the allele frequencies at the loci affecting the quantitative
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trait under investigation. This assumes that the local populations are in Hardy–Weinberg
proportions (FIS = 0) and the loci are in gametic equilibrium.

QST is much more difficult to estimate than FST because it requires common garden
experiments to distinguish genetic differences among populations from environmental
influences on the trait. It also requires partitioning the within-population variation into
genetic and environmental components, usually by measuring the variation among 
families. These requirements make it extremely difficult to estimate QST except in plant
species and animal species that can be readily raised in experimental conditions (e.g.,
Drosphila and Daphnia). Caution is needed in reading the literature because a number of
papers that compare FST and QST have not appropriately estimated QST (e.g., Storz 2002).
Simply partitioning the proportion of total phenotypic variation that is attributable to popu-
lation differences is not comparable to FST because it includes nonadditive genetic effects,
maternal effects, and nongenetic (i.e. environmental) effects.

The comparison of FST and QST can provide valuable insight into the effects of natural
selection on quantitative traits. FST is relatively easy to measure at a wide variety of molecu-
lar markers, which are generally assumed to not be strongly affected by natural selection.
Thus, the value of FST depends only on local effective population sizes (genetic drift) and
dispersal (gene flow) among local populations. Consequently, differences between FST and
QST can be attributed to the effects of natural selection on the quantitative trait.

There are three possible relationships between FST and QST (Table 11.3). First, if 
QST > FST, then the degree of differentiation in the quantitative trait exceeds that expected 
by genetic drift alone, and, consequently, directional natural selection favoring different 
phenotypes in different populations must have been involved to achieve this much dif-
ferentiation. Second, if QST and FST estimates are roughly equal, the observed degree of 
differentiation at the quantitative trait is the same as expected with genetic drift alone.
Finally, if QST < FST, the observed differentiation is less than that to be expected on the basis
of genetic drift alone. This means that natural selection must be favoring the same mean
phenotype in different populations.

Laboratory experiments with house mice have supported the validity of this approach
to understand the effects of natural selection on quantitative traits (Morgan et al. 2005).
Comparison of QST and FST in laboratory lines with known evolutionary history generally
produced the correct evolutionary inference in the interpretation of comparisons within

Table 11.3 Possible relationships in natural populations of divergence at neutral molecular
markers (FST) and a quantitative trait (QST).

Result Interpretation

QST > FST Differential directional selection on the quantitative trait

QST = FST The amount of differentiation at the quantitative trait is similar to that
expected by genetic drift alone

QST < FST Natural selection favoring the same phenotype in different 
populations
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and between lines. In addition, QST was relatively greater than FST for those traits for which
strong directional selection was applied between lines.

11.6 Quantitative genetics and conservation

How should we incorporate quantitative genetic information into conservation and man-
agement programs? Quantitative genetics has not played a major role in conservation
genetics, which has been dominated by studies of molecular genetic variation at individual
loci. Some have argued that quantitative genetic approaches may be more valuable than
molecular genetics in conservation since quantitative genetics allows us to study traits
associated with fitness rather than just markers that are neutral or nearly neutral with respect
to natural selection (Storfer 1996). This is a compelling but somewhat misleading argument.

Quantitative genetics provides an invaluable conceptual basis for understanding genetic
variation in populations. This approach is important for many crucial issues in conserva-
tion. For example, quantitative genetics is essential for understanding inbreeding depres-
sion (Chapter 13). If inbreeding depression is caused by a few loci with major effects, then
the alleles responsible for inbreeding depression may be removed or “purged” from a popu-
lation. However, inbreeding depression caused by many loci with small effects will be
extremely difficult to purge (see discussion in Section 13.6). Similar considerations come
into play with such important issues as the loss of evolutionary potential in small popula-
tions, and the effective population size required to maintain adequate genetic variation to
increase the probability of long-term survival of populations and species.

Nevertheless, the empirical estimation of the primary parameters of quantitative genet-
ics will generally not provide useful information for the management of particular species.
For example, comparative estimates of quantitative genetic variation (i.e., heritability) in
different populations are much less useful than molecular estimates of genetic variation.
Part of the problem is statistical. The large standard errors generally associated with herit-
ability estimates make it very difficult to detect significant differences (Storfer 1996). This
problem is more limiting when working with rare species because hundreds to thousands
of progeny from 25 or more families are needed for precise estimates of heritability
(Falconer and Mackay 1996). We once heard a well-known evolutionary geneticist say that
almost all heritability estimates are in the interval 0.50 ± 0.25.

The problem is also biological. As we saw in Section 11.4, small bottlenecks that cause a
substantial loss of genetic variation and a reduction in fitness due to inbreeding depression
may actually cause an increase in HN because of the conversion of dominance and epistatic
genetic variation into additive genetic variation. In addition, it is the estimates of additive
genetic variation for those traits most closely associated with fitness that we expect to be
most misleading. Finally, heritability estimates are strongly influenced by the environ-
ment and could change substantially between years within the same population (see
Section 11.1.4). For these and other reasons, estimates of heritabilities are unlikely to be
useful for making conservation decisions.

11.6.1 Response to selection in the wild

Quantitative genetics provides a framework to understand and predict the possible effects
of selection acting on wild populations (see Guest Box 8). For example, many commercial
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fisheries target particular age or size classes within a population (Conover and Munch
2000). In general, larger individuals are more likely to be caught than smaller individuals.
The expected genetic effect (i.e., response, R) of such selectivity on a particular trait
depends upon the selection differential (S), and the narrow sense heritability (HN), as we
saw in expression 11.6. We saw in Figure 2.3 that the mean size of pink salmon caught off
the coast of North America declined between 1950 and 1974 (12 generations) apparently
because of size-selective harvest; approximately 80% of the returning adult pink salmon
were harvested in this period (Ricker 1981). The mean reduction in body weight in 97 popu-
lations over these years was approximately was approximately 28%.

As we have seen, additive genetic variation is necessary for a response to natural selec-
tion. Empirical studies have found that virtually every trait that has been studied has 
some additive genetic variance (i.e., HN > 0) (Roff 2003). Thus, evolutionary change is 
not expected to be constrained by the lack of genetic variation for a trait. An exception 
to this has been found in a rainforest species of Drosophila in Australia (Hoffmann et al.
2003). These authors found no response to selection for resistance to desiccation after 
30 generations of selection! A parent-offspring regression analysis estimated a narrow
sense heritability of zero with the upper 95% confidence value of 0.19. This result is 
especially puzzling since there are clinal differences between populations for this trait.
This suggests there has been a history of selection and response for this trait. This is not 
the only report of lack of response to traits associated with the effects of global warming.
Baer and Travis (2000) suggested that the lack of genetic variation was responsible for 
a lack of response to artificial selection for acute thermal stress tolerance in a livebear-
ing fish.

Genetic correlations among traits can also constrain the response to selection in the
wild when there is substantial additive genetic variation for a trait (see Section 11.2.2). For
example, Etterson and Shaw (2001) studied that the evolutionary potential of three popu-
lations of a native annual legume in tallgrass prairie fragments in North America to
respond to the warmer and more arid climates predicted by global climate models.
Despite substantial heritabilities for the traits under selection, between-trait genetic corre-
lations that were antagonistic to the direction of selection limited the adaptive evolution of
these populations. The predicted rates of evolutionary response taking genetic correla-
tions into account were much slower than the predicted rate of change with heritabilities
alone.

11.6.2 Can molecular genetic variation provide a good estimate of quantitative variation?

As we saw in Section 11.4, we expect an equivalent loss of molecular heterozygosity and
additive genetic variation during a bottleneck. Therefore, comparison of heterozygosity
may provide a good estimate of the loss of quantitative variation. Briscoe et al. (1992) 
studied the loss of molecular and quantitative genetic variation in laboratory populations
of Drosophila. They found that substantial molecular and quantitative genetic variation
was lost during captivity even though census sizes were of the order of 5,000 individuals.
More importantly for our question, they found that heterozygosity at nine allozyme 
loci provided an excellent estimate of the loss of quantitative genetic variation as 
measured by HN for sternopleural bristle number (Figure 11.11). Some studies from 
natural populations have also found that molecular genetic variation support this result
(Example 11.2).
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Example 11.2 Lack of molecular and quantitative genetic variation in the red pine

The red pine is a common species with a broad range across the north–central
and northeastern United States and southeastern Canada. Early studies detected
very little genetic variation for quantitative characters in this species (Fowler and
Lester 1970). This was a somewhat surprising result considering that red pine
consists of millions of individuals occupying a vast range. The low level of quantit-
ative genetic variation presumably results from one or a series of population size
bottlenecks associated with the most recent glaciation, during which glaciers cov-
ered almost all of the present range of red pine, some 15,000–20,000 years ago.

A series of studies of molecular genetic variation in this species are concordant
with this result. Fowler and Morris (1977) found no allozyme variability in samples
from five widely separated geographic sources. Allendorf et al. (1982) found
almost no variation at 27 allozyme loci in red pine; three of the four rare alleles
detected in red pine were null alleles that produced no detectable enzyme. In con-
trast, these authors found an average heterozygosity of 18% using the same
allozyme loci with ponderosa pine. Ponderosa pine also shows great quantitative
genetic variation for all the traits that have been studied (Madsen and Blake
1977). Two additional allozyme studies found no variation throughout the range of
red pine (Simon et al. 1986; Mosseler et al. 1991).

Direct examination of DNA has also been concordant with these results.
Mosseler et al. (1992) found almost no variation for a number of randomly
amplified polymorphic markers in red pine. Some genetic variation has been
found in chloroplast microsatellites from red pine (Echt et al. 1998). For example,
Walter and Epperson (2001) found genetic variation in 10 chloroplast microsatel-
lite loci in individuals collected throughout the range of red pine. However, the
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Figure 11.11 Relationship between quantitative genetic variation (HN for sternopleural
bristle number) and molecular genetic variation (heterozygosity at nine allozyme loci) in
eight laboratory strains of Drosophila. From Briscoe et al. (1992).
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amount of chloroplast DNA variation in red pine is substantially less than that
found in other pine species. Only six haplotypes were found and 78% of all trees
had the same haplotype. The other five haplotypes differed at a single locus, and
all except one were caused by a single base pair change.

The red pine must have gone through a very small and prolonged bottleneck
associated with glaciation within the last 20,000 years, less than 1,000 genera-
tions ago. There has not been enough time for this species to recover genetic vari-
ation for either quantitative genetic traits or a series of molecular genetic markers.

Nevertheless, as we saw in Section 11.4, the relationship between molecular and quantit-
ative variation is not so simple. Bottlenecks have been found to increase the heritability for
some traits, but are always expected to reduce molecular genetic variation. In addition, dif-
ferent types of genetic variation will recover at different rates from a bottleneck because of
different mutation rates (see Section 12.5). The overall high mutation for quantitative
traits because they are polygenic means that quantitative genetic variation may recover
from a bottleneck more quickly than molecular quantitative variation (Lande 1996; Lynch
1996). In addition, even populations with fairly low effective population sizes can maintain
enough additive genetic variation for substantial adaptive evolution (Lande 1996). We also
expect a weak correlation between molecular and quantitative genetic variation because
of statistical sampling. Substantial variation in additive genetic variation between small
population is expected (Lynch 1996). There may also be large differences between quantit-
ative traits because they will be differentially affected by natural selection.

Therefore, the amount of molecular genetic variation within a population should be
used carefully to make inferences about quantitative genetic variation. The closer the rela-
tionship between the populations being compared, the more informative the comparison
will be. The strongest case is the comparison of a single population at different times, as in
the Drosophila example. Reduced genetic variation for molecular genetic variation over
time is likely to reflect loss of genetic variation at the genes responsible for additive genetic
variation. However, comparisons between species will not be very informative for the rea-
sons described in the preceding paragraph. Therefore, lack of molecular genetic variation
within a species should not be taken to mean that adaptive evolution is not possible
because of the absence of additive genetic variation.

11.6.3 Does divergence for molecular genetic variation provide a good estimate 
of population divergence for quantitative traits?

Comparisons in natural populations have generally found that QST and FST are highly 
correlated. Merilä and Crnokrak (2001), in a review of 18 studies, found a strong correla-
tion between QST and FST (mean r = 0.75), and concluded that differentiation at molecular
markers is “closely predictive” of differentiation at loci coding quantitative traits. In addi-
tion, differentiation at quantitative traits (QST) typically exceeds differentiation at molecu-
lar markers (FST). This suggests a prominent role for natural selection in determining
patterns of differentiation at quantitative trait loci.

A comparison of quantitative and molecular markers is a useful approach for under-
standing the role of natural selection and drift in determining patterns of differentiation in
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natural populations. Nevertheless, we believe that there are too little data currently avail-
able to generalize these results and validate this approach. For example, it is somewhat
surprising that QST almost always exceeds FST given that so many quantitative traits seem
to be under stabilizing selection. This result suggests that different local populations
almost always have different optimum phenotypic values. Another interpretation is that
the optimum mean value is similar in different populations but that environmental differ-
ences result in different combinations of genotypes producing a similar phenotype (see
countergradient selection in Section 2.4).

Once again, the amount of molecular genetic variation between populations should 
be used carefully to make inferences about quantitative genetic variation. Substantial
molecular genetic divergence between populations suggests some isolation between these
populations and therefore provides strong evidence for the opportunity for adaptive
divergence. And it is fair to say that some adaptive differences are likely to occur between
populations that have been isolated long enough to accumulate substantial molecular
genetic divergence. However, the reverse is not true. Lack of molecular genetic divergence
should not be taken to suggest that adaptive differences do not exist. As we saw in Section
9.6, even fairly weak natural selection can have a profound effect on the amount of genetic
divergence among populations.

Guest Box 11 Response to trophy hunting in bighorn sheep
David W. Coltman

Bighorn sheep populations are often managed to provide a source of large-horned
rams for trophy hunting. In many places strict quotas of the number of rams that
may be harvested each year are enforced through the use of a lottery system for
hunting permits. However, in other parts of their endemic range, any ram that
reaches a minimum legal horn size can be taken during the annual fall hunting sea-
son. In one population of bighorn sheep at Ram Mountain, Alberta, Canada, a total
of 57 rams were harvested under such an unrestricted management regime over a
30-year period. This corresponded to an average harvest rate of about 40% of the
legal-sized rams in a given year, with the average age of a ram at harvest of 6 years.
Since rams in this population do not generally reach their peak reproductive years
until 8 years of age (Coltman et al. 2002), hunters imposed an artificial selection
pressure on horn size that had the potential to elicit an evolutionary response, 
provided that the horn size was heritable.

The heritability of horn size, or any other quantitative trait, can be estimated
using pedigree information. Mother–offspring relationships in the Ram Mountain
population were known through observation, and father–offspring relationships
were determined using microsatellites for paternity (Marshall et al. 1998) and sib-
ship analyses (Goodnight and Queller 1999). An “animal model” analysis (named as
such because it estimates the expected genetic “breeding value” for each individual
animal in the population) was conducted, which uses relatedness across the entire
pedigree to estimate narrow sense heritability using maximum likelihood. Horn
length was found to be highly heritable, with narrow sense HN = 0.69 (Coltman
et al. 2003).
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The examination of individual “breeding values” (which is twice the expected
deviation of each individual’s offspring from the long-term population mean)
revealed that rams with the highest breeding values were harvested earliest (Fig-
ure 11.12a) and therefore had lower fitness than rams of lower breeding value. As 
a consequence the average horn length observed in the population has declined
steadily over time (Figure 11.12b). Unrestricted harvesting has therefore con-
tributed to a decline in the trait that determines trophy quality by selectively 
targeting rams of high genetic quality before their reproductive peak.

Problem 11.1

Tarsus length in barn swallows is a polygenic trait. A population has an average
length of 21 mm. The survivors of a severe winter storm from this population have
an average tarsus length of 25 mm. The average tarsus length in the progeny of
the swallows that survived the storm is 24 mm. What is the estimated narrow
sense heritability (HN) of tail length in this population?

Problem 11.2

The following two graphs show the relationship between parental and mean
progeny phenotypes for two different traits (body length and number of eggs pro-
duced) from Morgan Creek, Resurrection Bay, Alaska. Which trait has the smaller
narrow sense heritability (HN) based on these relationships?
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Figure 11.12 (a) Relationship between the age at harvest for trophy-harvested rams
and their breeding value. (b) Relationship between mean (± SE) horn length of 4-year-
old rams and year (N = 119 rams).
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Problem 11.3

How much quantitative genetic variation would you expect to find in the Wollemi
pine (see Example 4.2)?

Problem 11.4

The slope of the regression of progeny vertebrae number on maternal vertebrae
number in velvet belly sharks is 0.42 (see Figure 2.4). What is the estimated nar-
row sense heritability for this trait?

Problem 11.5

We have seen that small population size will cause the loss of molecular genetic
variation in populations (see Chapter 6). A number of studies have found that
additive genetic variation (HN) for traits associated with fitness often increases 
following a population bottleneck. Why?

Problem 11.6

Alan Robertson’s classic 1967 paper on the nature of quantitative genetic vari-
ation contains the following quote from a colleague of his, “I can’t help feeling that
those people who introduced the notion of the selective advantage of a gene have
completely confused the issue. After all, natural selection acts on phenotypes.”
Robertson states that this statement represents a legitimate point of view and
would make a very good subject for a student essay. Why do geneticists insist on
understanding the genetic basis for phenotypic differences associated with differ-
ences in fitness? Hint: see Section 11.2.
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Mutation

Mutation is the ultimate source of all the genetic variation necessary for evolution
by natural selection; without mutation evolution would soon cease.

Michael Whitlock and Sarah Otto (1999)

Mutations can critically affect the viability of small populations by causing inbreed-
ing depression, by maintaining potentially adaptive genetic variation in quantit-
ative characters, and through the erosion of fitness by accumulation of mildly
deleterious mutations.

Russell Lande (1995)

12.1 Process of mutation, 286

12.2 Selectively neutral mutations, 291

12.3 Harmful mutations, 296

12.4 Advantageous mutations, 297

12.5 Recovery from a bottleneck, 297

Guest Box 12 Color evolution via different mutations in pocket mice, 299

Mutations are errors in the transmission of genetic information from parents to progeny.
The process of mutation is the ultimate source of all genetic variation in natural popula-
tions. Nevertheless, this variation comes at a cost because most mutations that have 

Minke whale, Example 12.2
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phenotypic effect are harmful (deleterious). Mutations occur both at the chromosomal
level and the molecular level. As we will see, mutations may or may not have a detectable
effect on the phenotype of individuals.

An understanding of the process of mutation is important for conservation for several
reasons. The amount of standing genetic variation within populations is largely a balance
between the gain of genetic variation from mutations and the loss of genetic variation
from genetic drift. Thus, an understanding of mutation is needed to interpret patterns of
genetic variation observed in natural populations.

Moreover, the accumulation of deleterious mutations in populations, which is depend-
ent on mutation rates, is one source of inbreeding depression and may threaten the per-
sistence of some populations. In addition, the rate of adaptive response to environmental
change is proportional to the amount of standing genetic variation for fitness within popu-
lations. Thus, long-term persistence of populations may require large population sizes in
order to maintain important adaptive genetic variation.

Unfortunately, there are few empirical data available about the process of mutation
because mutation rates are rare. The data that are available generally come from a few
model organisms (e.g., mice, Drosophila, or Arabidopsis) that are selected because of their
short generation time and suitability for raising a large number of individuals in the 
laboratory. However, we must be careful in generalizing results from such model species;
the very characteristics that make these organisms suitable for these experiments may
make them less suitable for generalizing to other species. For example, the per generation
mutation rate tends to be greater for species with longer generation length (Drake et al.
1998).

How common are mutations? On a per locus or per nucleotide level they are rare. For
example, the rate of mutation for a single nucleotide is in the order a few per billion
gametes per generation. However, from a genomic perspective, mutations are actually
very common. The genome of most species consists of billions of base pairs. Therefore, it
has been estimated (Lynch et al. 1999) that each individual may possess hundreds of new
mutations! Fortunately, almost all of these mutations are in nonessential regions of the
genome and have no phenotypic effect.

We will consider the processes resulting in mutations and examine the expected rela-
tionships between mutation rates and the amount of genetic variation within populations.
We will examine evidence for both harmful and advantageous mutations in populations.
Finally, we will examine the effects of mutation rates on the rate of recovery of genetic
variation following a population bottleneck.

12.1 Process of mutation

Chromosomes and DNA sequences are normally copied exactly during the process of
replication and are transmitted to progeny. Sometimes, however, errors occur that pro-
duce new chromosomes or new DNA sequences. Empirical information on the rates of
mutation is hard to come by because mutations are so rare. Thousands of progeny must be
examined to detect mutational events. Thus, estimating the rates of mutations or describ-
ing the types of changes brought about by mutation is generally incredibly difficult. Thus,
most of our direct information about the process of mutation comes from model organ-
isms (Example 12.1).
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Example 12.1 Coat color mutation rate in mice

Schlager and Dickie (1971) presented the results of a direct and massive experi-
ment to estimate the rate of mutation to five recessive coat color alleles in mice:
albino, brown, nonagouti, dilute, and leaden. They examined more than seven
million mice in 28 inbred strains. Overall, they detected 25 mutations in over two
million gene transmissions for an average mutation rate of 1.1 × 10−5 per gene
transmission. As expected, the reverse mutation rate (from the recessive to the
dominant allele) was much lower, approximately 2.5 × 10−6 per gene transmis-
sion. The reverse mutation rate is expected to be lower because there are more
ways to eliminate the function of a gene to reverse a defect. This assumes that the
recessive coat color mutations are caused by mutations that cause loss of func-
tion (similar to the null alleles for allozyme loci).

Guest Box 12 presents a modern molecular study of the mutation process in
pocket mice that produce a melanistic or dark morph.

Most mutations with phenotypic effects tend to reduce fitness. Thus, as we will see in
Chapter 14, the accumulation of mutations can decrease the probability of survival of
small populations. Nevertheless, rare beneficial mutations are important in adaptive evo-
lutionary change (Elena et al. 1996). In addition, some recent experimental work with the
plant Arabidopsis thaliana has suggested that roughly half of new spontaneous mutations
increase fitness (Shaw et al. 2002); however, this result has been questioned in view of data
from other experiments (Bataillon 2003; Keightley and Lynch 2003).

Mutations are commonly said to occur randomly, but there is some evidence that some
aspects of the process of mutation may be an adaptive response to environmental con-
ditions. There has been an ongoing controversy that mutations in prokaryotes may be
directed toward particular environmental conditions (Lenski and Sniegowski 1995). In
addition, there is accumulating evidence that the rate of mutations in eukaryotes may
increase under stressful conditions and thus create new genetic variability that may be
important in adaptation to changing environmental conditions (Capy et al. 2000).

12.1.1 Chromosomal mutations

We saw in Chapter 3 that rates of chromosomal evolution vary tremendously among 
different taxonomic groups. There are two primary factors that may be responsible for dif-
ferences in the rate of chromosomal change: (1) the rate of chromosomal mutation; and
(2) the rate of incorporation of such mutations into populations (Rieseberg 2001).
Differences between taxa in rates of chromosomal change may result from differences in
either of these two effects.

White (1978) estimated a general mutation rate for chromosomal rearrangements of
the order of one per 1,000 gametes in a wide variety of species from lilies to grasshoppers
to humans. Lande (1979) considered different forms of chromosomal rearrangements 
in animals and produced a range of estimates between 10−4 and 10−3 per gamete per 
generation. There is evidence in some groups that chromosomal mutation rates may be 
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substantially higher than this. For example, Porter and Sites (1987) detected spontaneous
chromosomal mutations in five of 31 males that were examined.

The apparent tremendous variation in chromosomal mutation rates suggests that some
of the differences between taxa could result from differences in mutation rates. In addition,
there is some evidence that chromosomal polymorphisms may contribute to increased
chromosomal mutation rates. That is, chromosomal mutation rates may be greater in
chromosomal heterozygotes than homozygotes (King 1993). In addition, we will see in
Section 12.1.4 that genomes with more transposable elements may have higher chromo-
somal mutation rates.

12.1.2 Molecular mutations

There are several types of molecular mutations in DNA sequences: (1) substitutions, the
replacement of one nucleotide with another; (2) recombinations, the exchange of a
sequence from one homologous chromosome to the other; (3) deletions, the loss of one or
more nucleotides; (4) insertions, the addition of one or more nucleotides; and (5) inver-
sions, the rotation by 180° of a double-stranded DNA segment of two or more base pairs
(see Graur and Li 2000).

The rate of spontaneous mutation is very difficult to estimate directly because of their
rarity. Mutation rates are sometimes estimated indirectly by an examination of rates of
substitutions over evolutionary time in regions of the genome that are not affected by nat-
ural selection. The rate of substitution per generation will be equal to the mutation rate
for selectively neutral mutations. The average rate of mutation in mammalian nuclear
DNA has been estimated to be 3–5 × 10−9 nucleotide substitutions per nucleotide site per
year (Graur and Li 2000). The mutation rate, however, varies enormously between differ-
ent regions of the nuclear genome. The rate of mutation in mammalian mitochondrial
DNA has been estimated to be at least 10 times higher than the average nuclear rate.

The mutation rate for protein coding loci (e.g., allozymes) is very low. Not all DNA
mutations will result in a change in the amino acid sequence because of the inherent
redundancy of the genetic code. Nei (1987, p. 30) reviewed the literature on direct and indir-
ect estimates of mutation rates for allozyme loci. Most direct estimates of mutation rates
in allozymes have failed to detect any mutant alleles; for example, Kahler et al. (1984)
examined a total of 841,260 gene transmissions from parents to progeny at five loci and
failed to detect any mutant alleles. General estimates of mutation rates for allozyme loci
are in the order of 10−6 to 10−7 mutants per gene transmission (Nei 1987).

The rate of mutation at microsatellite loci is much greater than in other regions of the
genome because of the presence of simple sequence repeats (Li et al. 2002). Two mech-
anisms are thought to be responsible for mutations at microsatellite loci: (1) mispairing of
DNA strands during replication; and (2) recombination. Estimates of mutation rates at
microsatellite loci have generally been approximately 10−3 mutants per gene transmission
(Ellegren 2000a) (Table 12.1). Microsatellite mutations appear largely to follow the step-
wise mutation model (SMM) where single repeat units are added or deleted with near
equal frequency (Valdes et al. 1993) (Figure 12.1). However, the actual mechanisms of
microsatellite mutation are much more complicated than this simple model (Estoup and
Angers 1998; Li et al. 2002).

Recent evidence has suggested new mutations may occur in clusters because they occur
early during gametogenesis (Woodruff et al. 1996). Woodruff and Thompson (1992) found
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Table 12.1 Mutations observed at the OGO1c tetranucleotide repeat microsatellite locus in
pink salmon (Steinberg et al. 2002). Approximately 1,300 parent–progeny transmissions were
observed in 50 experimental matings. Mutations were found only in the four matings shown.
The mutant allele is indicated by bold type and the most likely progenitor of the mutant allele
is underlined. The overall mutation rate estimated from these data is 3.9 × 10−3 (5/1,300).

Progeny genotypes
Dam Sire
(a/b) (c/d ) a/c a/d b/c b/d Mutant genotypes

342/350 408/474 1 1 3 3 342/478
295/366 303/362 1 2 4 2 295/366
269/420 346/450 8 16 10 8 420/446 (2)
348/348 309/448 5 4 0 0 348/444

11C

10B

9B

11A

10A 13B

9A

13A

12A

11B
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11D

10C

9D

Figure 12.1 Pattern of mutation for microsatellites beginning with a single ancestral allele
(shaded circle) with 10 repeats. Most mutations are a gain or loss of single repeat (stepwise
mutation model, SMM). The dashed arrow shows a multiple step mutation (from 10 to 13
repeats). Alleles are designated by the number of repeats and a letter which distinguishes
different alleles with the same number of repeats.
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that as many as 20% of new mutations in Drosophila represented clusters of identical
mutant alleles sharing a common premeiotic origin. Cluster mutations at microsatellite
loci have been found in several other species (Steinberg et al. 2002). The occurrence of
clustered mutations results in nonuniform distributions of novel alleles in a population
that could influence interpretations of mutation rates and patterns as well as estimates of
genetic population structure. For example, Woodruff et al. (1996) have shown that mutant
alleles that are part of clusters are more likely to persist and be fixed in a population than
mutant alleles entering the population independently.

12.1.3 Quantitative characters

As we saw in Chapter 11, the amount of genetic variation in quantitative characters for
morphology, physiology, and behavior that can respond to natural selection is measured
by the additive genetic variance (VA). The rate of loss of additive genetic variance due to
genetic drift in the absence of selection is the same for the loss of heterozygosity (i.e.,
1/2Ne). The effective mutation rate for quantitative traits is much higher than the rate for
single gene traits because mutations at many possible loci can affect a quantitative trait. The
input of additive genetic variance per generation by mutation is Vm. The expected genetic
variance at equilibrium between these two factors is VA = 2NeVm (Lande 1995, 1996).

Estimates of mutation rates for quantitative characters are very rare and somewhat
unreliable. It is thought that Vm is roughly on the order of 10−3 VA (Lande 1995). However,
some experiments suggest that the great majority of these mutations are highly detri-
mental and therefore are not likely to contribute to the amount of standing genetic 
variation within a population. Thus, the effective Vm responsible for much of the standing
variation in quantitative traits in natural populations may be an order of magnitude lower,
10−4 VA (Lande 1996).

12.1.4 Transposable elements, mutation rates, and stress

Much of the genome of eukaryotes consists of sequences associated with transposable ele-
ments that possess an intrinsic capability to make multiple copies and insert themselves
throughout the genome. For example, approximately half of the human genome consists
of DNA sequences associated with transposable elements (Lynch 2001). This activity is
analogous to the “cut and paste” mechanism of a word processor. Transposable elements
are potent agents of mutagenesis (Kidwell 2002). For example, Clegg and Durbin (2000)
have studied mutations that affect flower color in the morning glory. Nine out of 10 muta-
tions that they identified were the result of transposable elements. A consideration of the
molecular basis of transposable elements is beyond our consideration (see chapter 7 of
Graur and Li 2000). Nevertheless, the mutagenic activity of these elements is of potential
significance for conservation.

Transposable elements can cause a wide variety of mutations. They can induce chromo-
somal rearrangements such as deletions, duplications, inversions, and reciprocal transloca-
tions. Kidwell (2002) has suggested that “transposable elements are undoubtedly responsible
for a significant proportion of the observed karyotypic variation among many groups”. In
addition, transposable elements are responsible for a wide variety of substitutions in DNA
sequences, ranging from insertion of the transposable element sequence to substitutions,
deletions, and insertions of a single nucleotide (Kidwell 2002).
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Stress has been defined as any environmental change that drastically reduces the fitness
of an organism (Hoffmann and Parson 1997). McClintock (1984) first suggested that trans-
posable element activity could be induced by stress. A number of transposable elements in
plants have been shown to be activated by stress (Grandbastien 1998; Capy et al. 2000).
Some transposable elements in Drosophila have been shown to be activated by heat stress,
but other studies have not found an effect of heat shock (Capy et al. 2000). In addition,
hybridization has also been found to activate transposable elements and cause mutations
(Kidwell and Lisch 1998).

12.2 Selectively neutral mutations

Many mutations in the DNA sequence have no phenotypic effect so they are neutral with
regard to natural selection (e.g., mutations in noncoding regions). In this case, the amount
of genetic variation within a population will be a balance between the gain of variation by
mutation and the loss by genetic drift (Figure 12.2). The distribution of neutral genetic
variation among populations is primarily a balance between gene flow and genetic drift.
Gene flow among subpopulations retards the process of differentiation until eventually a
steady state may be reached between the opposing effects of gene flow and genetic drift.
However, the process of mutation may also contribute to allele frequency divergence
among populations in cases where the mutation rate approaches the migration rate.

12.2.1 Genetic variation within populations

The amount of genetic variation within a population at equilibrium will be a balance
between the gain of variation as a function of the neutral mutation rate (µ) and the loss of
genetic variation by genetic drift as a function of effective population size (Ne).
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Figure 12.2 Simulations of genetic drift of neutral alleles introduced into a large population
by mutation.
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We will first consider the so-called infinite allele model in which we assume that every
mutation creates a new allele that has never been present in the population. This model is
appropriate if we consider variation in DNA sequences. A gene consists of a large number
of nucleotide sites, each of which may be occupied by one of four bases (A, T, C, or G).
Therefore, the total number of possible allelic states possible is truly a very large number!
For example, there are over one million possible alleles if we just consider 10 base pairs 
(104 = 1,048,576). In this case, the average expected heterozygosity (H ) at a locus (or over
many loci with the same mutation rate) is:

(12.1)

where µ is the neutral mutation rate and θ = 4Neµ (Kimura 1983).
The much greater variation at microsatellite loci compared to allozymes results from

the differences in mutation rates that we discussed in Section 12.1.2. Figure 12.3 shows the
equilibrium heterozygosity for microsatellites and allozymes using mutation rates of 10−4

and 10−6, respectively. Thus, we expect a heterozygosity of 0.038 at allozyme loci and 0.80
at microsatellite loci with an effective population size of 10,000. However, we also expect a
substantial amount of variation in heterozygosity between loci (Figure 12.4).

The heterozygosity values for microsatellite loci in Figure 12.3 are likely to be overestim-
ates because of several important assumptions in this expectation. Microsatellite muta-
tions tend to occur in steps of the number of repeat units. Therefore, each mutation will
not be unique, but rather will be to an allelic state (say 11 copies of a repeat) that already
occurs in the population. This is called homoplasy in which two alleles that are identical 
in state have different origins (e.g., alleles 11C and 11D in Figure 12.1. Therefore the actual
expected heterozygosity is less than predicted by expression 12.1. Allozymes also tend to
follow a stepwise model of mutation (Ohta and Kimura 1973), but this will have a smaller
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Figure 12.3 Expected heterozygosity in populations of different size using expression 12.1 for
microsatellites (µ = 10−4) and allozymes (µ = 10−6).
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effect because of the fewer number of alleles present in a population because of the smaller
mutation rate.

It is also important to remember that the mutation rate used here (µ) is the neutral
mutation rate. Mutations in DNA sequence within some regions of the genome are likely
to not be selectively neutral. Therefore, different regions of the genome will have different
effective neutral mutation rates, even though the actual rate of molecular mutations is 
the same. For example, mutations in protein coding regions may affect the amino acid
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Figure 12.4 Simulated heterozygosities at 200 loci in a population with Ne = 10,000 and the
infinite allele model of mutation produced with the program easypop. (a) Microsatellite loci
with µ = 10−4. (b) Allozyme with µ = 10−6. The expected heterozygosities are 0.800 and 0.038
(expression 12.1). From Balloux (2001).
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sequence of an essential protein and thereby reduce fitness. Such mutations will not be
neutral and therefore will not contribute to the amount of variation maintained by our
model of drift–mutation equilibrium considered here. In these regions, so-called purging
selection will act to stop these mutations reaching high frequencies in a population. In con-
trast, mutations in the DNA sequence in regions of the genome that are not functional are
much more likely to be neutral. This expectation is supported by empirical results; exons,
which are the coding regions of protein loci, are much less variable than the introns, which
do not encode amino acids (Graur and Li 2000).

12.2.2 Population subdivision

The process of mutation may also contribute to allele frequency divergence among popu-
lations. The relative importance of mutation on divergence (e.g., FST) depends primarily
upon the relative magnitude of the rates of migration and of mutation. Under the infinite
alleles model (IAM) of mutation with the island model of migration (Crow and Aoki
1984), the expected value of FST is approximately:

(12.2)

Greater mutation rates will increase FST when new mutations are not dispersed at
sufficient rates to attain equilibrium between genetic drift and gene flow. Under these 
conditions, new mutations may drift to substantial frequencies in the population in which
they occur before they are distributed among other populations via gene flow (Neigel and
Avise 1993). Mutation rates for allozymes are generally thought to be less than 10−6 so that
divergence at allozyme loci is unlikely to be affected by different mutation rates unless the
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Example 12.2 How many whales are there in the ocean?

Expression 12.1 can also be used to estimate the effective population size of nat-
ural populations if we know the mutation rate (µ). For example, Roman and
Palumbi (2003) estimated the historical (pre-whaling) number of humpback, fin,
and minke whales in the North Atlantic Ocean by estimating θ for the control
region of mtDNA. In the case of mtDNA, θ = 2Ne(f)µ because of maternal inherit-
ance and haploidy.

Their genetic estimates of historical population sizes for humpback, fin, and
minke whales are far greater than those previously calculated, and are 6–20 times
higher than the current population estimates for these species. This discrepancy
is crucial for conservation because the International Whaling Commission man-
agement plan uses the estimated historical population sizes as guidelines for set-
ting allowable harvest rates. We should be careful using estimates of Ne with this
approach because there are a host of possible pitfalls (e.g., how reliable are our
estimates of mutation rate?). Roman and Palumbi (2003) provide an excellent 
discussion of the limitations of this method for estimating Ne.
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subpopulations are completely isolated. Mutation rates for some microsatellite loci may
be as high as 10−4 (Eisen 1999).

Mutation under the infinite alleles model may accelerate the rate of divergence at
microsatellite loci among subpopulations that are very large and are connected by little
gene flow. The actual expected effect of mutation is much more complicated than this, and
it depends upon the rate of mechanism of mutation. For example, constraints on allele size
at microsatellite loci under the stepwise mutation model may reverse the direction of this
effect (i.e., decrease the rate of divergence) under some conditions (Nauta and Weissing
1996).

In general, mutations will have an important effect on population divergence only when
the migration rates are very low (say 10−3 or less) and the mutation rates are unusually
high (10−3 or greater) (Nichols and Freeman 2004; Epperson 2005). However, as we saw in
Chapter 9, FST will underestimate genetic divergence at loci with very high within-deme
heterozygosities (HS) (Hedrick 1999). Large differences in HS caused by differences in
mutation rates among loci (e.g., Steinberg et al. 2002) can result in discordant estimates of
FST among microsatellite loci. This may result in an underestimation of both the degree of
genetic divergence among populations if all loci are pooled for analysis and the estimation
of FST (see Olsen et al. 2004b).

We saw in the previous section that long-term Ne can be estimated using the amount of
heterozygosity in a population if we know the mutation rate. However, we also know
from Chapter 9 that the amount of gene flow affects the amount of genetic variation in a
population. Therefore, estimates of Ne using expression 12.1 may be overestimates
because they reflect the total Ne of a series of populations connected by gene flow rather
than the Ne of the local population. Consider two extremes. In the first, a population on an
island is completely isolated from the rest of the members of its species (mN = 0). In this
case, estimates of Ne using expression 12.1 will reflect the local Ne. In the other extreme, a
species consists of a number of local populations that are connected by substantial gene
flow (say mN = 100); in this case the estimates of Ne using expression 12.1 will reflect the
combined Ne of all populations (Table 12.2).

Table 12.2 Computer simulations of estimates of effective population size (Ne) using
expression 12.1 in a series of 20 populations (Ne = 200) that are connected by different
amounts of gene flow with an island model of migration (easypop; Balloux 2001). A mutation
rate of 10−4 was used to simulate the expected heterozygosities at 100 microsatellite loci. 
The simulations began with no genetic variation in the first generation and ran for 10,000
generations. FST* is the expected FST with this amount of gene flow corrected for a finite
number of populations (Mills and Allendorf 1996). Ne is the estimated effective population size
based upon the mean local heterozygosity (HS) using expression 12.1.

mN HT HS FST FST* •e

0 0.814 0.076 0.907 1.000 205
0.5 0.665 0.477 0.283 0.311 2,274
1.0 0.635 0.516 0.187 0.184 2,667
2.0 0.621 0.558 0.100 0.101 3,156
5.0 0.618 0.592 0.041 0.043 3,630

10.0 0.606 0.594 0.020 0.022 3,665
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12.3 Harmful mutations

Most mutations that affect fitness have a detrimental effect. Natural selection acts to keep
these mutations from increasing in frequency. Consider the joint effects of mutation and
selection at a single locus with a normal allele (A1) and a mutant allele (A2) that reduces
fitness as shown below:

A1A1 A1A2 A2A2
1 1 − hs 1 − s

where s is the reduction in fitness of the homozygous mutant genotype and h is the degree
of dominance of the A2 allele. A2 is recessive when h = 0, dominant when h = 1, and 
partially dominant when h is between 0 and 1.

If the mutation is recessive (h = 0), then at equilibrium:

(12.3)

When A2 is partially dominant, q will generally be very small and the following approx-
imation holds (Figure 12.5):
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Figure 12.5 The expected equilibrium frequency of a deleterious allele (q*) with
mutation–selection balance for different degrees of dominance (h) and intensity of 
selection (s). From Hedrick (1999).
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(12.4)

See Lynch et al. (1999) for a consideration of the importance of mildly deleterious mutations
in evolution and conservation.

12.4 Advantageous mutations

Genetic drift plays a major role in the survival of advantageous mutations, even in
extremely large populations. That is, most advantageous mutations will be lost during the
first few generations because new mutations will always be rare. The initial frequency of a
mutation will be one over the total number of gene copies at a locus (i.e., q = 1/2N ). An
advantageous allele that is recessive will have the same probability of initial survival in a
population because the advantageous homozygotes will not occur in a population until
the allele happens to drift to relatively high frequency. For example, a new mutation will
have to drift to a frequency over 0.30 before even 10% of the population will be homozy-
gotes with the selective advantage. Therefore, the great majority of advantageous muta-
tions that are recessive will be lost.

Dominant advantageous mutations have a much greater chance of surviving the initial
period because their fitness advantage will be effective in heterozygotes that carry the new
mutation. However, even most dominant advantageous mutations will be lost within the
first few generations because of genetic drift. For example, over 80% of dominant advant-
ageous mutations with a selective advantage of 10% will be lost within the first 20 gen-
erations (Crow and Kimura 1970, p. 423). This effect can be seen in a simple example.
Consider a new mutation that arises that increases the fitness of the individual that carries
it by 50%. However, even if the individual that carries this mutation contributes three
progeny to the new generation, there is a 0.125 probability that none of the progeny carry
the mutation because of the vagaries of Mendelian segregation (0.5 × 0.5 × 0.5 = 0.125).

Gene flow and spread of advantageous mutations may be an important cohesive force
in evolution (Rieseberg and Burke 2001). Ehrlich and Raven (1969) argued in a classic paper
that the amounts of gene flow in many species are too low to prevent substantial differenti-
ation among subpopulations by genetic drift or local adaptation, so that local populations
are essentially independently evolving units in many species. We saw in Chapter 9 that
even one migrant per generation among subpopulations can cause all alleles to be present
in all subpopulations. However, even much lower amounts of gene flow can be sufficient
to cause the spread of an advantageous allele (say s > 0.05) throughout the range of a
species (Rieseberg and Burke 2001). The rapid spread of such advantageous alleles may
play an important role in maintaining the genetic integration of subpopulations con-
nected by very small amounts of genetic exchange.

12.5 Recovery from a bottleneck

The rate of recovery of genetic variation from the effects of a bottleneck will depend 
primarily on the mutation rate (Lynch 1996). The equilibrium amount of neutral 
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heterozygosity in natural populations (see expression 12.1) will be approached at a time
scale equal to the shorter of 2Ne or 1/(2µ) generations (Kimura and Crow 1964).

We can see this expectation in Figure 12.6 for microsatellites and allozymes. In these
simulations of 100 typical microsatellite and allozyme loci, the expected heterozygosity at
microsatellite loci returned to 50% of that expected at equilibrium after 2,000 generations
in populations of 5,000 individuals. It took approximately three times as long at the loci
with mutation rates typical of allozymes. In this case, 1/(2µ) is 5,000 generations for
microsatellites and 100 times that for allozymes. However, 2Ne is 10,000 for both types of
markers.

As we saw in Section 12.1.3, the estimated mutation rates (Vm) for phenotypic char-
acters affected by many loci (quantitative characters) is similar to the rates of mutations at
microsatellite loci. Therefore, we would expect quantitative genetic variance for quantit-
ative characters to be restored at rates comparable to those of microsatellites (Lande 1996).
Thus, recovery of microsatellite variation following a severe bottleneck may be a good
measure of the recovery of polygenic variation for fitness traits.

Figure 12.7 provides a somewhat simplistic graphic representation of the effects of a
severe population bottleneck on different sources of genetic variation. Microsatellites,
allozymes, and quantitative traits are all expected to lose genetic variation at approxim-
ately the same rates. However, mtDNA will lose genetic variation more rapidly because 
of its smaller Ne. The rates of recovery of variation will depend upon the mutation rates 
for these different sources of genetic variation.
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Figure 12.6 Simulated recovery of heterozygosity at 100 loci in a population of 5,000
individuals following an extreme bottleneck using easypop. The initial heterozygosity was
zero. The mutation rates are 10−4 for microsatellites and 10−6 for allozymes. Heterozygosity is
standardized as the mean heterozygosity over all 100 loci divided by the expected equilibrium
heterozygosity using expression 12.1 (0.670 and 0.020, respectively). From Balloux (2001).
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Guest Box 12 Color evolution via different mutations in pocket mice
Michael W. Nachman

Mutation is the ultimate source of genetic variation, yet the specific mutations
responsible for evolutionary change have rarely been identified. We have been
studying the genetic basis of color variation in pocket mice from the Sonoran
Desert to try to find the mutations responsible for adaptive melanism. This
research seeks to answer questions such as: Does adaptation result from a few
mutations of major effect or many mutations of small effect? What kinds of genes
and mutations underlie adaptation? Do these mutations change gene structure or
gene regulation? Do similar phenotypes in different populations arise independ-
ently, and if so, do they arise from mutations at the same gene or from mutations at
different genes?

Rock pocket mice are granivorous rodents well adapted to life in the desert.
They remain hidden in burrows during the day, are active only at night, feed 
primarily on seeds, and do not drink water. In most places, these mice live on light-
colored rocks and are correspondingly light in color. In several different places in
the Sonoran Desert, these mice live on dark basalt of recent lava flows, and the
mice in these populations are dark in color (see Figure 8.10). The close match
between the color of the mice and the color of the rocks is presumed to be an adapta-
tion to avoid predation. Owls are among the primary predators, and even though
owls hunt at night, they are able to discriminate between mice that match and do
not match their background under conditions of very low light.

The genetic basis of melanism is amenable to analysis because of the wealth of
background information on the genetics of pigmentation in laboratory mice and
other animals (Bennett and Lamoreux 2003). We developed markers in several 
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Figure 12.7 Diagram of relative expected effects of a severe population bottleneck on
different types of genetic variation. The smaller Ne for mtDNA causes more genetic variation
to be lost during a bottleneck. The rate of recovery following a bottleneck is largely
determined by the mutation rate (see Section 12.1). SNP, single nucleotide polymorphism.
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candidate genes and we then looked for nonrandom associations between gen-
otypes at these genes and color phenotypes in populations of pocket mice near the
edge of lava flows, where both light and dark mice are found together.

This search revealed that mutations in the gene encoding the melanocortin-1
receptor (Mc1r) are responsible for color variation in one population in Arizona
(Nachman et al. 2003). This receptor is part of a signaling pathway in melanocytes,
the specialized cells in which pigment is produced. This work shows that an import-
ant adaptation – melanism – is caused by one gene of major effect in this case. More-
over, only four amino acid changes distinguish light and dark animals, demonstrating
that relatively few mutations are involved. These mutations produce a hyperactive
receptor that results in the production of more melanin in melanocytes and there-
fore in darker mice.

Surprisingly, nearly phenotypically identical dark mice have arisen inde-
pendently in this species in several populations in New Mexico (Hoekstra and
Nachman 2003). In these mice from New Mexico, however, Mc1r is not responsible
for the differences in color. While the specific genes responsible for melanism in
New Mexico have not yet been found, it is clear that the genetic basis of melanism
in these populations is different from the genetic basis of melanism in the popula-
tion from Arizona.

These results demonstrate that there may be different genetic solutions to a
common evolutionary problem. Thus, the genetic basis of local adaptation may be
different for isolated populations subjected to the same selective regime. Similarly,
Cohan and Hoffmann (1986) found that isolated laboratory populations of
Drosophila became adapted to high ethanol concentrations by different physiolo-
gical mechanisms involving changes at different loci. From a conservation perspec-
tive, it is important to recognize that phenotypically similar populations may be
quite distinct genetically. This has important implications, for example, for plan-
ning translocations of individuals between populations (e.g., to supplement declin-
ing populations). Translocations between phenotypically similar but isolated
populations may result in reduced fitness when the translocated individuals mate
with native individuals.

Problem 12.1

What is the expected equilibrium frequency of a lethal recessive mutation that has
a mutation rate of 0.00001?

Problem 12.2

What is the expected equilibrium frequency of a partially dominant mutation that is
lethal in homozygotes and reduces the fitness of heterozygotes by 0.05, and that
has the same mutation rate as the recessive mutation in the previous problem
(0.00001)?
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Problem 12.3

What do you think the equilibrium frequency would be for a dominant lethal allele
with a mutation rate of 0.00001?

Problem 12.4

We generally consider that genetic drift is only a concern in relatively small popu-
lations. Why are most advantageous mutations lost because of genetic drift even
in populations with very large effective population sizes?

Problem 12.5

Why do you think most mutations are recessive or almost recessive (h ≈ 0)?

Problem 12.6

An insect with a very large effective population size (Ne >> 1,000,000) has a 
moderate amount of genetic variation for microsatellites, but virtually no variation
at allozyme loci because of a very small historical bottleneck. Roughly how many
generations ago do you think the bottleneck occurred? Assume the mutation rate
for microsatellites is 10−3 and for allozymes 10−6 in this species.
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13

Inbreeding Depression

That any evil directly follows from the closest interbreeding has been denied by
many persons; but rarely by any practical breeder; and never, as far as I know, by
one who has largely bred animals which propagate their kind quickly. Many physi-
ologists attribute the evil exclusively to the combination and consequent increase
of morbid tendencies common to both parents: and that this is an active source of
mischief there can be no doubt.

Charles Darwin (1896, p. 94)

Probably the oldest observation about population genetics is that individuals 
produced by matings between close relatives are often less healthy than those
produced by mating between more distant relatives.

A. Ives and Michael Whitlock (2002)

13.1 Pedigree analysis, 307

13.2 Gene drop analysis, 310

13.3 Estimation of F and relatedness with molecular markers, 313

13.4 Causes of inbreeding depression, 315

13.5 Measurement of inbreeding depression, 317

13.6 Genetic load and purging, 323

Guest Box 13 Understanding inbreeding depression: 20 years of experiments 
with Peromyscus mice, 327

Peromyscus mouse, Guest Box 13
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The term “inbreeding” is used to mean many different things in population genetics
(Question 13.1). Jacquard (1975) described five different effects of nonrandom mating that
are measured by inbreeding coefficients. The multiple use of “inbreeding” can sometimes
lead to confusion so it is important to be precise when using this term. Templeton and
Read (1994) have described three different phenomena of special importance for conserva-
tion that are all measured by “inbreeding coefficients”:

1 Genetic drift (FST, see Section 9.1).
2 Nonrandom mating within local populations (FIS; see Section 9.1).
3 The increase in genome-wide homozygosity (pedigree F ) caused by matings between

related individuals (e.g., father–daughter mating in ungulates, or matings between
cousins in birds).

Question 13.1 What is an “inbred population”?

We will focus on this last meaning in this chapter.
Inbreeding (mating between related individuals) will occur in both large and small 

populations. In large populations, inbreeding may occur by nonrandom mating because 
of self-fertilization or by a tendency for related individuals to mate with each other. For
example, in many tree species nearby individuals tend to be related and are likely to mate
with each other because of geographic proximity (Hall et al. 1994). However, substantial
inbreeding will occur even in randomly mating small populations simply because all 
or most individuals within a small population will be related. In an extreme example of 
a population of two, after one generation, only brother–sister matings are possible. In a
slightly larger population with 10 breeders, the most distant relatives will be cousins after
only a few generations. This has been called the “inbreeding effect” of small populations
(Crow and Kimura 1970, p. 101).

Inbred individuals generally have reduced fitness in comparison to noninbred indi-
viduals from the same population because of their increased homozygosity. Inbreeding
depression is the reduction in fitness (or phenotype value) of progeny from matings
between related individuals relative to the fitness of progeny between unrelated indi-
viduals (Example 13.1). Inbreeding depression in natural populations will contribute to
the extinction of populations under some circumstances (Keller and Waller 2002) (see
Chapter 14).

Example 13.1 Inbreeding depression in the monkeyflower

The monkeyflower is a self-compatible wildflower that occurs throughout western
North America, from Alaska to Mexico. Willis (1993) studied two annual popula-
tions of this species on adjacent mountains about 2 km apart in the Cascade
mountains of Oregon. Seeds were collected from both populations and germin-
ated in a greenhouse. Hand pollinations produced self-pollinations and pollina-
tions from another randomly chosen plant from the same population. Seeds
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13.1 Pedigree analysis

“Inbred” individuals will have increased homozygosity and decreased heterozygosity over
their entire genome. The pedigree inbreeding coefficient (F, the probability of identity by
descent) is the expected increase in homozygosity for inbred individuals; it is also the
expected decrease in heterozygosity throughout the genome. F ranges from zero (for 
noninbred individuals) to one (for totally inbred individuals).

An individual is inbred if its mother and father share a common ancestor. This definition
must be put into perspective because any two individuals in a population are related if we
trace their ancestries back far enough. We must, therefore, define inbreeding relative to
some “base” population in which we assume all individuals are unrelated to one another.
We usually define the base population operationally as those individuals in a pedigree
beyond which no further information is available (Ballou 1983).

resulting from these pollinations were germinated in the greenhouse, and ran-
domly chosen seedlings were transplanted back into their original population. The
transplanted seedlings were marked and followed throughout the course of their
life (Figure 13.1). Cumulative inbreeding depression through several life history
stages was estimated by the proportional reduction in fitness in selfed versus out-
crossed progeny (1 − ws/wo). A similar set of seedlings was maintained in the
greenhouse. The amount of inbreeding depression in the greenhouse was similar
to that found in the wild.
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Figure 13.1 Cumulative inbreeding depression in two wild populations of the
monkeyflower. Inbreeding depression was measured as the proportional reduction 
in fitness in selfed versus outcrossed progeny (1 − ws/wo). From Willis (1993).
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An inbred individual may receive two copies of the same allele that was present in a
common ancestor of its parents. Such an individual is identical by descent at that locus
(i.e., autozygous). The probability of an individual being autozygous is its pedigree
inbreeding coefficient, F. All autozygous individuals will be homozygous unless a muta-
tion has occurred in one of the two copies descended from the ancestral allele in the base
population. The alternative to being autozygous is allozygous. Allozygous individuals
possess two alleles descended from the different ancestral alleles in the base population.
Figure 13.2 illustrates the relationship of the concepts of autozygosity, allozygosity, homo-
zygosity, and heterozygosity.

Is it really necessary to introduce these two new terms? Yes. Autozygosity and allozy-
gosity are related to homozygosity and heterozygosity, but they refer to the descent of 
alleles through Mendelian inheritance rather than the molecular state of the allele in ques-
tion. This distinction is important when considering the effects of pedigree inbreeding on
individuals. We assume that the founding individuals in a pedigree are allozygous for two
unique alleles. However, these allozygotes may either be homozygous or heterozygous 
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A2 A2
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Allozygous and
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Genotypes in
present population

Alleles in ancestral population,
all presumed to be not 

identical by descent

Figure 13.2 Patterns and definitions of genotypic relationships with pedigree inbreeding.
Autozygous individuals in the present population contain two alleles that are identical 
by descent from a single gene in the ancestral population. In contrast, allozygous individuals
contain two alleles derived from different genes in the ancestral population. Redrawn from
Hartl and Clark (1997).
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at a particular locus, depending upon whether the two alleles are identical in state or not.
For example, an allozygote would be homozygous if it had two alleles that are identical in
DNA sequence.

We can see this using Figure 12.1. An individual with one copy of the 10A allele and one
copy of the 10C allele (i.e., 10A/10C) would be homozygous in state for 10 repeats, but
would be allozygous. In contrast, an individual with two copies of the 10B allele (10B/10B)
would be homozygous and autozygous.

13.1.1 Estimation of the pedigree inbreeding coefficient

Several methods are available for calculating the pedigree inbreeding coefficient. We 
will use the method of path analysis developed by Sewall Wright (1922). Figure 13.3 
shows the pedigree of an inbred individual X. By convention, females are represented 
by circles, and males are represented by squares in pedigrees. Diamonds are used either to
represent individuals whose sex is not unknown or to represent individuals whose sex is
not of concern.

(a)

(b)

A CA

A

D

D

X

E

X

E

B C

B

Figure 13.3 Calculation of the inbreeding coefficient for individual X using path analysis. 
(a) Conventional representation of pedigree for an individual whose mother and father had
the same mother. (b) Path diagram to represent this pedigree to calculate the inbreeding
coefficient. Shaded individuals in (a) need not be included in (b) because they are not part of
the path through the common ancestor (individual A) and therefore do not contribute to the
inbreeding of individual X.
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What is the inbreeding coefficient of individual X in Figure 13.3a? The first step is to
draw the pedigree as shown in Figure 13.3b so that each individual appears only once.
Next we examine the pedigree for individuals who are ancestors of both the mother and
father of X. If there are no such common ancestors, then X is not inbred, and FX = 0. In this
case, there is one common ancestor, individual A. Next, we trace all of the paths that lead
from one of X’s parents, through the common ancestor, and then back again to the other
parent of X. There is only one such path in Figure 13.3 (DAE); it is helpful to keep track of
the common ancestor by underlining.

The inbreeding coefficient of an individual can be calculated by determining N, 
the number of individuals in the loop (not including the individual of concern) con-
taining the common ancestor of the parents of an inbred individual. If there is a single 
loop then:

F = (1/2)N(1 + FCA) (13.1)

where FCA is the inbreeding coefficient of the common ancestor. The term (1 + FCA) is
included because the probability of a common ancestor passing on the same allele to two
offspring is increased if the common ancestor is inbred. For example, if the inbreeding
coefficient of an individual is 1.0, then it will always pass on the same allele to two progeny.
If there is more than one loop, then the inbreeding coefficient is the sum of the F values
from the separate loops:

F = ∑ [(1/2)N(1 + FCA)] (13.2)

In the present case (Figure 13.3), there is only one loop with N = 3 and the common ances-
tor (A) is not inbred, therefore:

FX = (1/2)3(1 + 0) = 0.125

This means that individual X is expected to be identical by descent (IBD) at 12.5% of his
or her loci. Or, stated another way, the expected heterozygosity of individual X is expected
to be reduced by 12.5%, compared to individuals in the base population. See Example 13.2
for calculating F when the common ancestor is inbred (FCA > 0).

Figure 13.5 shows a complicated pedigree obtained from a long-term population study
of the great tit in the Netherlands (van Noordwijk and Scharloo 1981). They have shown
that the hatching of eggs is reduced by approximately 7.5% for every 10% increase in F.
Ten different loops contribute to the inbreeding of the individual under investigation
(Table 13.1). The total inbreeding coefficient of this individual is 0.1445.

13.2 Gene drop analysis

The pedigree analysis in the previous section provides an estimate of the increase in
homozygosity and reduction in heterozygosity due to inbreeding. However, as we have
seen in previous chapters, we are also interested in the loss of allelic diversity, as well as 
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heterozygosity. A simple computer simulation procedure called gene drop analysis has
been developed for more detailed pedigree analysis (MacCluer et al. 1986).

In this procedure, two unique alleles are assigned to each individual in the base popula-
tion. Monte Carlo simulation methods are used to assign a genotype to each progeny
based upon its parents’ genotypes and Mendelian inheritance (Figure 13.6). This proced-
ure is followed throughout the pedigree until each individual is assigned a genotype. This

D E

A C

I

K

J

F H

B

G

Figure 13.4 Hypothetical pedigree in which the common ancestor (G) of an inbred
individual’s (K) parents is also inbred. See Example 13.1. Shaded individuals are not part
of the path through either of the common ancestors (individuals B and G) and therefore
do not contribute to the inbreeding of individuals G and K.

Example 13.2 Calculating pedigree F

Figure 13.4 shows a pedigree in which a common ancestor of an inbred individual
is inbred. What is the inbreeding coefficient of individual K in this figure?

There is one loop that contains a common ancestor of both parents of K (I G J).
Therefore, using expression 13.2, FK = (1/2)3(1 + FG). The common ancestor in
this loop, G, is also inbred; there is one loop with three individuals through a com-
mon ancestor for individual G (D B E). Therefore, FG = (1/2)3(1 + FB) = 0.125.
Individual B is not inbred (FB = 0) since she is a founder in this pedigree.
Therefore, FG = 0.125, and FK = (1/2)3(1.125) = 0.141.
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Figure 13.5 Complicated pedigree from a population of great tits in the Netherlands. The
inbreeding coefficient of the bottom individual (?) is 0.1445 (see Table 13.1). From van
Noordwijk and Scharloo (1981).
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Figure 13.6 Pedigree from Figure 13.3 showing one possible outcome of gene dropping 
in which genotypes are assigned to descendants by Monte Carlo simulation of Mendelian
segregation beginning with two unique alleles in each founder.

312 PART III GENETICS AND CONSERVATION

CATC13  28/05/2007  06:09PM  Page 312



CHAPTER 13 INBREEDING DEPRESSION 313

Table 13.1 Calculation of inbreeding coefficient of the individual (?) at the bottom of 
the pedigree shown in Figure 13.5.

Length Common
Path (N ) ancestor FCA (1/2)N(1 ++  FCA)

BCFA 4 F 0 0.0625
BHEA 4 H 0 0.0625
BCDIKHEA 8 K 0 0.0039
BCDIJHEA 8 J 0 0.0039
BHKMLGFA 8 M 0 0.0039
BHKNLGFA 8 N 0 0.0039
BCDIKNLGFA 10 N 0 0.0010
BCDIKMLGFA 10 M 0 0.0010
BCFGLMKHEA 10 M 0 0.0010
BCFGLNKHEA 10 N 0 0.0010

Total – – – 0.1445

simulation is then repeated many times (say 10,000). Analysis of the genotypes in indi-
viduals of interest can provide information about the expected inbreeding coefficient,
decline in heterozygosity, expected loss of allelic diversity, and many other characteristics
that may be of interest (Example 13.3).

13.3 Estimation of F and relatedness with molecular markers

To understand the effect of inbreeding on fitness in natural populations it is necessary to
know the inbreeding coefficient of individuals. Unfortunately, it is extremely difficult to
estimate inbreeding coefficients in the field because pedigrees usually are not available.
Pedigrees of wild populations are likely to be only a few generations deep, to have gaps,
and be inaccurate. However, an individual’s inbreeding coefficient can be estimated from
the degree of homozygosity at molecular markers of its genome relative to the genomes of
other individuals within the same population.

We saw in Section 13.1 that the pedigree inbreeding coefficient, F, is the expected
increase in homozygosity due to identity by descent. For example, the offspring of a full-
sib mating will have only 75% of the heterozygosity in their parents (Table 13.2). Offspring
produced by half-sib matings will have only 87.5% of the heterozygosity observed in their
parents. Therefore, we expect individual heterozygosity (H) at many loci to be reduced by
a value of F. Pedigree F can be estimated by comparison of multilocus heterozygosity of
individuals over many loci.

Individual inbreeding has been estimated using molecular markers in a wolf population
from Scandinavia (Ellegren 1999; Hedrick et al. 2001). Twenty-nine microsatellite loci
were examined in captive gray wolves for which the complete pedigree was known
(Figure 13.8). The distribution of individual heterozygosity ranged from about 0.20 to
0.80. The pedigree inbreeding coefficient was significantly correlated with heterozygosity
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A 12 B 34 C 56

D E F

G H I

J

A 12 B 34 C 56

D 13 E 14 F 46

G 14 11 H I 16

Living population

Living population

J 66

Figure 13.7 Example of a gene drop analysis in a hypothetical captive population with
three founders (see Example 13.2). From Haig et al. (1990).

Example 13.3 Gene drop analysis

Haig et al. (1990) have presented an example of gene drop analysis in their con-
sideration of the effect of different captive breeding options on genetic variation in
guam rails (Figure 13.7). The upper part of the figure shows a sample pedigree in
which three founders (A, B, C) are given six unique alleles. The lower part of the
figure shows one result of a gene drop simulation. Two of the birds (G and I) are
heterozygous; the heterozygosity has thus declined 50%. Only three of the initial
six alleles are present in the living population (1, 4, and 6); thus 50% of the alleles
have been lost. The proportional representation of each of the founders can also
be calculated from this result. Four of the eight genes are descended from A
(50%); one of the eight from B (12.5%); and three of the eight genes from C
(37.5%). This simulation would be repeated 10,000 times to get statistical estim-
ates of these parameters.
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(Figure 13.9; r 2 = 0.52, P < 0.001). Thus, the 29 microsatellite loci are an accurate indicator
of individual inbreeding level. Precise estimates of inbreeding coefficients using heterozy-
gosity requires many loci because the variance in heterozygosity estimates is large (i.e.,
confidence intervals are wide; Pemberton 2004).

13.4 Causes of inbreeding depression

Inbreeding depression may result from either increased homozygosity or reduced het-
erozygosity (Crow 1948). Increased homozygosity leads to the expression of a greater
number of deleterious recessive alleles in inbred individuals, thereby lowering their fitness.
Reduced heterozygosity reduces the fitness of inbred individuals at loci where the hetero-
zygotes have a selective advantage over homozygotes (heterozygous advantage or over-
dominance; see Section 8.2).

The probability of being homozygous for rare deleterious alleles increases surprisingly
rapidly with inbreeding. Consider a recessive lethal allele at a frequency of 0.10 (q) and that
the average inbreeding coefficient in a population is 10% (F ). The proportion of heterozy-
gotes will be reduced by 10% and each of the homozygotes will be increased by half of that
amount (see Section 9.1):

AA Aa aa
Expected p2 + pqF 2pq − 2pqF q2 + pqF
F = 0 0.810 0.180 0.010
F = 0.10 0.819 0.162 0.019

Thus, the expected proportion of individuals to be affected by this deleterious allele (a) will
nearly double with just a 10% increase in inbreeding.

Table 13.2 Expected decline of genome-wide heterozygosity with different
modes of inbreeding (modified from Dudash and Fenster 2000). The rate of loss
per generation increases with the relatedness of parents. With selfing, 50% of
the heterozygosity is lost per generation because one-half of the offspring from a
heterozygote (Aa) will be homozygotes (following the 1 : 2 : 1 Mendelian ratios
of 1 AA : 2 Aa : 1 aa).

Mode of inbreeding

Generation Half-sib Full-sib Selfing

0 1.000 1.000 1.000
1 0.875 0.750 0.500
2 0.781 0.625 0.250
3 0.695 0.500 0.125
4 0.619 0.406 0.062
5 0.552 0.328 0.031

10 0.308 0.114 0.008
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It is crucial to know the mechanisms causing inbreeding depression because it affects
the ability of a population to “adapt” to inbreeding. A population could adapt to inbreed-
ing if inbreeding depression is caused by deleterious recessive alleles that potentially could
be removed (purged by selection). However, inbreeding depression caused by heterozy-
gous advantage cannot be purged because overdominant loci will always suffer reduced
fitness as homozygosity increases due to increased inbreeding.

Both increased homozygosity and decreased heterozygosity are likely to contribute to
inbreeding depression, but it is thought that increased expression of deleterious recessive
alleles is the more important mechanism (Charlesworth and Charlesworth 1987; Ritland
1996; Carr and Dudash 2003). For example, Remington and O’Malley (2000) performed 

Russian

Swedish

Finnish

Estonian

Figure 13.8 Pedigree of captive wolf population. The black symbols are those animals
included in the study evaluating the use of 29 microsatellite loci to estimate inbreeding
coefficient. The gray individuals are the four founder pairs (assumed F = 0) from four
countries. From Hedrick et al. (2001).
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a genome-wide evaluation of inbreeding depression caused by selfing during embryonic
viability in loblolly pines. Nineteen loci were found that contributed to inbreeding depres-
sion. Sixteen loci showed predominantly recessive action. Evidence for heterozygous
advantage was found at three loci.

13.5 Measurement of inbreeding depression

Some inbreeding depression is expected in all species (Hedrick and Kalinowski 2000; see
Guest Box 13). Deleterious recessive alleles are present in the genome of all species
because they are continually introduced by mutation, and natural selection is inefficient in
removing them because most copies are “hidden” phenotypically in heterozygotes that do
not have reduced fitness (see Chapter 12). We, therefore, expect all species to show some
inbreeding depression due to the increase in homozygosity of recessive deleterious alleles.
For example, Figure 13.10 shows inbreeding depression for infant survival in a captive 
population of callimico monkeys.

13.5.1 Lethal equivalents

The effects of inbreeding depression on survival are often measured by the mean number
of “lethal equivalents” (LEs) per diploid genome. A lethal equivalent is a set of deleterious
alleles that would cause death if homozygous. Thus, one lethal equivalent may either be a
single allele that is lethal when homozygous, two alleles each with a probability of 0.5 of
causing death when homozygous, or 10 alleles each with a probability of 0.10 of causing
death when homozygous.
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Figure 13.9 Relationship between individual heterozygosity (H ) at 29 microsatellite loci and
inbreeding coefficient (F ) in a captive wolf population. The solid line represents the regression
of H on F, the dashed line is the expected relationship between H and F, assuming an H of 0.75
in noninbred individuals. From Ellegren (1999).
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We can see the effect of 1 LE in the example of a mating between full-sibs that will 
produce a progeny with an F of 0.25 (Figure 13.11). Individuals A and B each carry one
lethal allele (a and b, respectively). The probability of individual E being homozygous for
the a allele is (1/2)4 = 1/16; similarly, there is a 1/16 probability that individual E will be
homozygous bb. Thus, the probability of E not being homozygous for a recessive allele at
either of these two loci is (15/16)(15/16) = 0.879. Thus, 1 LE per diploid genome will result
in approximately a 12% reduction (1 − 0.879) in survival of individuals with an F of 0.25.

The number of LEs present in a species or population is generally estimated by regress-
ing survival on the inbreeding coefficient (Figure 13.12). The effects of inbreeding on the
probability of survival, S, can be expressed as a function of F (Morton et al. 1956):
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Figure 13.10 Relationship between inbreeding and infant survival in captive callimico
monkeys. Callimico show a 33% reduction in survival resulting from each 10% increase in
inbreeding (P < 0.001). Data are from 790 captive-born callimico, 111 of which are inbred. 
The numbers above the bars are the number of individuals studied at each inbreeding level.
From Lacy et al. (1993, p. 367).
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Figure 13.11 Effect of a single lethal equivalent per diploid genome on survival of inbred
progeny produced by a mating between full-sibs (F = 0.25).  The probability of E not being
homozygous for a recessive allele inherited from either A or B is 0.879. Therefore, one LE per
diploid genome will result in approximately a 12% reduction in survival of individuals with an
F of 0.25. See text for explanation.
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S = e−(A+BF)

ln S = −A − BF
(13.3)

where e−A is survival in an outbred population and B is the rate at which fitness declines
with inbreeding (Hedrick and Miller 1992). B is the reduction in survival expected in a
completely homozygous individual. Therefore, B is the number of LEs per gamete, and 2B
is the number of LEs per diploid individual. B is estimated by the slope of the weighted
regression of the natural log of survival on F. The callimico monkeys shown in Figure 13.10
have an estimated 7.90 LEs per individual (B = 3.95) (Lacy et al. 1993).

13.5.2 Estimates of inbreeding depression

The range of LEs per individual estimated for captive mammal populations varies from
about 0 to 30. The median number of LEs per diploid individual for captive mammals was
estimated to be 3.14 (see Figure 6.13; Ralls et al. 1988). This corresponds to about a 33%
reduction of juvenile survival, on average, for offspring with an inbreeding coefficient of
0.25 (Figure 13.13). This value underestimates the magnitude of inbreeding depression in
natural populations because it only includes the reduction of fitness for one life history
stage ( juvenile survival and not adult survival, embryonic survival, fertility, etc.), and
because captive environments are less stressful than natural environments, and stress typic-
ally increases inbreeding depression (see below).

There are fewer estimates of the number of LEs using pedigree analysis in plant species.
Most studies of inbreeding depression in plants compare selfed and outcrossed progeny
from the same plants (see Example 13.1). In this situation, inbreeding depression is usually
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Figure 13.12 Relationship between inbreeding coefficient and reduction in fitness.
Inbreeding depression is the reduction in fitness of inbred individuals and is measured by 
the number of lethal equivalents per gamete (B). Redrawn from Keller and Waller (2002).
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measured as the proportional reduction in fitness in selfed versus outcrossed progeny 
(δ = 1 − (ws/wo)). These can be converted by:

(13.4)

and

B = −2 ln(1 − δ) (13.5)

Some plant species show a tremendous amount of inbreeding depression. For example,
Figure 13.14 shows estimates of inbreeding depression for embryonic survival in 35 indi-
vidual Douglas fir trees based upon comparison of the production of sound seed by selfing
and crossing with pollen from unrelated trees. On average, each tree contained approx-
imately 10 LEs. This is equivalent to over a 90% reduction in embryonic survival! Perhaps
more interesting, however, is the wide range of LEs in different trees (Figure 13.14).
Conifers in general seem to have high inbreeding depression, but inbreeding depression is
especially great in Douglas fir (Sorensen 1999).

Most studies of inbreeding depression have been made in captivity or under controlled
conditions, but experiments with both plants (e.g., Dudash 1990) and animals (e.g.,
Jiménez et al. 1994) have found that inbreeding depression is more severe in natural envir-
onments (Example 13.4). Estimates of inbreeding depression in captivity may be severe
underestimates of the true effect of inbreeding in the wild (but not always, see Armbruster
et al. 2000 and Example 13.1).
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Figure 13.13 Distribution of the estimated cost of inbreeding in progeny with an inbreeding
coefficient (F ) of 0.25 in 40 captive mammal populations. Cost is the proportional reduction in
juvenile survival; mean LE = 3.14. From Ralls et al. (1988).
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sound seed by selfing and crossing with pollen from unrelated trees. Redrawn from Sorensen
(1969).

Crnokrak and Roff (1999) have recently reviewed the available empirical literature 
of inbreeding depression for wild species. They concluded that in general “the cost of
inbreeding under natural conditions is much higher than under captive conditions”. They
tested this for mammals by comparing traits directly related to survival in wild mammals

Example 13.4 Inbreeding depression in the wild

Meagher et al. (2000) compared inbreeding depression in house mice in the 
laboratory and in seminatural enclosures. Inbreeding (F = 0.25) caused an 
11% reduction in litter size, but had no effect on birth-to-weaning survival in 
the laboratory. Inbred mice had a 52% reduction in mean fitness for adult mice in
seminatural enclosures (81% for males and 22% for females). These two fitness
components taken together resulted in a cumulative inbreeding depression (see
Figure 13.1) of 57%:

This fitness decline is over four times as great as previous estimates in the 
house mouse measured entirely in the laboratory. The primary difference was 
the greatly reduced fitness of inbred adult mice in the seminatural enclosures
(Figure 13.15).
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to the findings of Ralls et al. (1988) for captive species. They found that the cost of inbreed-
ing on survival was much higher in wild than in captive mammals.

In addition, there is evidence that inbreeding depression is more severe under 
environmental stress and challenge-events (e.g., extreme weather, pollution, or disease)
(Armbruster and Reed 2005). Bijlsma et al. (1997) found a synergistic interaction between
stress and inbreeding with laboratory Drosophila so that the effect of environmental stress

Figure 13.15 Total cumulative number of weaned progeny from inbred (F = 0.25; 
solid squares) and outbred mice (F = 0; open squares) in six seminatural enclosures. 
Equal numbers of inbred and outbred mice were placed in each of six seminatural
enclosures. (a) Inbred males sired significantly fewer offspring in all six enclosures. 
(b) Inbred females produced significantly fewer offspring in three of six enclosures. 
From Meagher et al. (2000).
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is greatly enhanced with greater inbreeding. These conditions may occur only occasion-
ally, and thus it will be difficult to measure their effect on inbreeding depression. For exam-
ple, Coltman et al. (1999) found that individual Soay sheep that were more heterozygous
at 14 microsatellite loci had greater overwinter survival in harsh winters, apparently due to
greater resistance to nematode parasites. In addition, this effect disappeared when the
sheep were treated with antihelminthics (Figure 13.16).

13.5.3 Are there species without inbreeding depression?

Some have suggested that some species or populations are unaffected by inbreeding (e.g.,
Shields 1993). However, lack of statistical evidence for inbreeding depression does not
demonstrate the absence of inbreeding depression. This is especially true because of the
low power to detect even a substantial effect of inbreeding in many studies because of
small sample sizes and confounding factors (Kalinowski and Hedrick 1999). In a compre-
hensive review of the evidence for inbreeding depression in mammals, Lacy (1997) was
unable to find “statistically defensible evidence showing that any mammal species is unaf-
fected by inbreeding”.

Measuring inbreeding depression in the wild is extremely difficult for several reasons.
First, pedigrees are generally not available and the alternative molecular-based estimates
might not be precise (see Section 13.3). Thus power to detect inbreeding depression is low
in most studies. Second, fitness is difficult to measure in the wild. Inbreeding depression
might occur only in certain life history stages (e.g., zygotic survival or life time reproduc-
tive success) or under certain stressful conditions (e.g., severe winters or high predator
density). Most studies in wild populations do not span enough years or life history stages
to reliably measure inbreeding depression.

13.6 Genetic load and purging

Some have suggested that small populations may be “purged” of deleterious recessive 
alleles by natural selection (Templeton and Read 1984). Deleterious recessive alleles may
reach substantial frequencies in large random mating populations because most copies 
are present in heterozygotes and are therefore not affected by natural selection. For 
example, over 5% of the individuals in a population in Hardy–Weinberg proportions will
be heterozygous for an allele that is homozygous in only one out of 1,000 individuals. Such
alleles will be exposed to natural selection in inbred or small populations and will thereby
be reduced in frequency or eliminated. Thus, populations with a history of inbreeding
because of nonrandom mating (e.g., selfing) or small Ne (e.g., a population bottleneck)
may be less affected by inbreeding depression because of the purging of deleterious reces-
sive alleles.

Reduced differences in fitness between inbred and noninbred individuals within a popu-
lation that has gone through a bottleneck is not evidence for purging (Figure 13.17). Many
nonlethal deleterious alleles may become fixed in such populations. The fixation of these
alleles will cause a reduction in fitness of all individuals following the bottleneck relative to
the individuals in the population before the bottleneck (so-called “genetic load”).
However, inbreeding depression will appear to be reduced following fixation of deleterious

CATC13  28/05/2007  06:09PM  Page 323



H
et

er
oz

yg
os

ity

1.11 

1.08

1.05

1.02

0.99 

0.96

(a)

19921989 1995

39

165

84

140

131

98

H
et

er
oz

yg
os

ity

1.20 

1.15 

1.10

1.05

1.00

0.95 

0.90

(b)
19921989
Year

1995

0

6

39

45

11

20

Figure 13.16 Relative observed individual heterozygosity of Soay sheep during three severe 
winters with high mortality. (a) Sheep that died (black bars) had far lower heterozygosity 
than sheep that lived (open bars), when not treated with antihelminthics. (b) However, when
treated with antihelminthics (to remove intestinal parasites), no difference in survival was
detected between inbred (black bars) and outbred (open bars) individuals. Parasite load was
higher in inbred individuals (with low heterozygosity), leading to their increased mortality
during the stress of severe winters. A standardized relative heterozygosity was used because
not all individuals were genotyped at all loci such that H = (proportion heterozygous typed
loci/mean heterozygosity at typed loci). Numbers above bars indicate sample size. From
Coltman et al. (1999).
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alleles because of depressed fitness of outbred individuals (F = 0) rather than by increased
inbred fitness (fitness rebound) (Byers and Waller 1999). To test for purging, the fitness 
of individuals in the post-bottleneck population must be compared with the fitness of 
individuals in the pre-bottleneck population. Alternatively, we might test for purging by
comparing the fitness of offspring from resident (relatively inbred) individuals versus 
outbred offspring of crosses between residents and individuals from the pre-bottleneck
population.

A review found little evidence for purging in plant populations (Byers and Waller 1999).
Only 38% of the 52 studies included found evidence of purging. And when purging was
found, it removed only a small proportion of the total inbreeding depression (roughly
10%). These authors concluded that “purging appears neither consistent nor effective
enough to reliably reduce inbreeding depression in small and inbred populations” (Byers
and Waller 1999).

A review of evidence for purging in animals came to similar conclusions. Ballou (1997)
found evidence for a slight decline in inbreeding depression in neonatal survival among
descendants of inbred animals in a comparison of 17 captive mammal species. However, he
found no indication for purging in weaning survival or litter size in these species. He con-
cluded that the purging detected in these species is not likely to be strong enough to be of
practical use in eliminating inbreeding depression in populations of conservation interest.
In addition, inbreeding depression can be substantial in both Hymenoptera (Antolin 1999)
and mites (Saito et al. 2000) in which males are haploid so that deleterious recessive alleles
are exposed to natural selection in males every generation and therefore should be purged
relatively efficiently.

Failure of purging to decrease inbreeding depression can be explained by several mech-
anisms. First, purging is expected to be most effective in the case of lethal or semilethal

Fitness

Before After

Mutant-free

Load

ID
F = 0

F = 0.25

Figure 13.17 Diagram showing decreased inbreeding depression (ID) in a population 
before and after a bottleneck in which all of the inbreeding depression is due to increased
homozygosity for deleterious recessive mutant alleles. The open circles show the average
fitness of hypothetical “mutant-free” individuals that have no deleterious alleles. The shaded
circles show the average fitness of individuals produced by random mating. The dark circles
show the average fitness of individuals with an F of 0.25. This illustrates that reduced
inbreeding depression following a bottleneck can be caused by an increase in the fixed 
genetic load rather than by purging.
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recessive alleles (Lande and Schemske 1985; Hedrick 1994); however, when inbreeding
depression is very high (more than 10 lethal equivalents), even lethals may not be purged
except under very close inbreeding (Lande 1994). Second, the lack of evidence for purging
is consistent with the hypothesis that a substantial proportion of inbreeding depression is
caused by many recessive alleles with minor deleterious effects. Alleles with minor effects
are unlikely to be purged by selection, because selection cannot efficiently target harmful
alleles when they are spread across many different loci and different individuals. Third, it is
not possible to purge the genetic load at loci under heterozygote advantage (heterotic
loci), as mentioned above. On the contrary, the loss of alleles at heterotic loci generally
reduces heterozygosity and thus fitness.

Husband and Schemske (1996) found that inbreeding depression for survival after early
development and reproduction and growth was similar in selfing and nonselfing plant
species (also see Ritland 1996). They suggested that this inbreeding depression is due prim-
arily to mildly deleterious mutations that are not purged, even over long periods of time.
Willis (1999) found that most inbreeding depression in the monkeyflower (see Example
13.1) is due to alleles with small effect, and not to lethal or sterile alleles. Bijlsma et al.
(1999) have found that purging in experimental populations of Drosophila is effective only
in the environment in which the purging occurred because additional deleterious alleles
were expressed when environmental conditions changed.

Ballou (1997) suggested that associative overdominance may also be instrumental in
maintaining inbreeding depression. Associative overdominance occurs when heterozy-
gous advantage or deleterious recessive alleles at a selected locus results in apparent het-
erozygous advantage at linked loci (see Section 10.3.2; Pamilo and Pálsson 1998).
Kärkkäinen et al. (1999) have provided evidence that most of the inbreeding depression in
the self-incompatible perennial herb Arabis petraea is due to overdominance or associative
overdominance.

Inbreeding depression due to heterozygous advantage cannot be purged. However, it is
unlikely that heterozygous advantage is a major mechanism for inbreeding depression
(Charlesworth and Charlesworth 1987). Nevertheless, there is recent strong evidence for
heterozygous advantage at the major histocompatibility complex (MHC) in humans.
Black and Hedrick (1997) found evidence for strong heterozygous advantage (nearly 50%)
at both HLA-A and HLA-B in South Amerindians. Carrington et al. (1999) found that het-
erozygosity at HLA-A, -B, and -C loci was associated with extended survival of patients
infected with the human immunodeficiency virus (HIV). Strong evidence for the selective
maintenance of MHC diversity in vertebrate species comes from other approaches as well
(see references in Carrington et al. 1999).

Speke’s gazelle has been cited as an example of the effectiveness of purging in reducing
inbreeding depression in captivity (Templeton and Read 1984). Willis and Wiese (1997),
however, have concluded that this apparent purging may have been due to the data analy-
sis rather than purging itself; this interpretation has been disputed by Templeton and Read
(1998). Ballou (1997), in his reanalysis of the Speke’s gazelle data, found that purging
effects were minimal and nonsignificant. Perhaps most importantly, he found that the
inbreeding effects in Speke’s gazelle were the greatest in any of the 17 mammal species he
examined. Kalinowski et al. (2000) recently have concluded that the apparent purging in
Speke’s gazelle is the result of a temporal change in fitness and not a reduction in inbreed-
ing depression (see response by Templeton 2002).
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The degree of inbreeding depression resulting from inbreeding or bottlenecks is
difficult to predict in any given species for several reasons. We saw in Figure 13.14 that
there may be great differences in the numbers of LEs within individuals from the same
population. Moreover, the alleles across the genome that survive a bottleneck will depend
on random sampling effects. For example, Lacy and Ballou (1998) found different magni-
tudes of inbreeding depression in different sets of individuals sampled from the same popu-
lation of beach mice (see Guest Box 13; Wade et al. 1996). Second, mice populations with a
history of inbreeding and bottlenecks were expected to suffer less from inbreeding depres-
sion. But instead these populations still suffered substantial inbreeding depression relative
to other mice populations. In addition, they experienced less purging (over 10 generations
in captivity) than other populations, probably because historical purging had already
removed the “purgable” lethal and semilethal alleles.

Even if a population’s history of inbreeding is known, it can be difficult to predict the
cost of inbreeding on fitness (see Guest Box 13). The difficulty of predicting the magnitude
of inbreeding depression makes it difficult for managers to design specific management
strategies to minimize inbreeding depression, even when a population’s history and 
biology is well known. Managers must simply consider that substantial inbreeding depres-
sion is possible in any population, especially under changing environments or stressful
conditions.

Guest Box 13 Understanding inbreeding depression: 20 years of experiments with
Peromyscus mice
Robert C. Lacy

At first glance, inbreeding depression would seem to be well understood
scientifically. It is a widespread consequence of matings between close relatives,
and there is a simple mechanistic explanation – increased expression of recessive
deleterious alleles in inbred individuals. However, when conservation geneticists
began looking more closely at inbreeding depression, in order to make predictions
about the vulnerability of populations and to provide sound management advice,
the picture became much less clear.

For almost 20 years, my colleagues at the Brookfield Zoo and I have been study-
ing the effects of inbreeding in some Peromyscus mice (white-footed mice, old-field
mice, and beach mice). We started with simple hypotheses and simple expecta-
tions, but have been led to conclude that inbreeding depression is a complex phe-
nomenon that defies easy prediction. We first sought to show that populations of
mice that were long isolated on small islands had already been purged of their dele-
terious alleles, leaving them able to inbreed with minimal further impact. Instead,
we found that the island mice had low reproductive performance prior to inbreed-
ing in the lab, and their fitness declined as fast or faster than in mice from more
genetically diverse mainland populations when we forced inbred matings (Brewer
et al. 1990).

We then tested whether we would get the same results if we repeated our 
measures of inbreeding depression on replicate laboratory stocks, each derived
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from the same wild populations. We found that different breeding stocks of 
a species could show very different effects of inbreeding (Lacy et al. 1996). The
damaging effects of inbreeding showed up in different traits (e.g., in litter size 
versus pup survival versus growth rates), and to different extents. We found that
the inbreeding depression was due largely to effects in the inbred descendants of
some founders, while descendants of other founder pairs seemed to have little
problem with inbreeding. This suggests that the effects of inbreeding are due
mostly to a few alleles, and which animals carry these alleles is largely a matter of
chance. This situation might provide a good opportunity for selection to be effec-
tive at purging those deleterious alleles, when they are expressed in inbred
homozygotes. When we examined our data to see if inbreeding depression did
become less through the generations of experimental inbreeding (Lacy and Ballou
1998), we found purging in some subspecies but not in others (Figure 13.18). Thus,
it may be that the cause of inbreeding depression (recessive alleles versus heterozy-
gous advantage or associative overdominance, few versus many loci, unconditional
effects versus environmentally dependent effects) varies among natural popula-
tions, even of the same species.

While we cannot predict the specific effects of inbreeding for any one or a few
lineages, at a broader scale, inbreeding depression may be more predictable. When
averaged across many lineages, and assessed as an impact on overall fitness (consider-
ing the cumulative effect on mating propensity, litter size, and survival), inbreeding
depression is very consistent across three subspecies of mice, as measured in our
laboratory environment. Unfortunately, many studies of inbreeding depression
have measured only one or a few components of fitness, and on unreplicated popu-
lations, with small sample sizes. Thus, we still do not know which species are most
susceptible to inbreeding depression.

Conservation geneticists are now in the unenviable position of knowing that
inbreeding depression can be a serious problem in small populations, but not being
able to make accurate predictions about how severe the effects will be, or if they
can be reduced or managed through selection programs. And, this is not a problem
that can be solved simply with more data because of potential differences in the
effects of inbreeding between different populations of the same species. Therefore,
having good data on the effects of inbreeding in one population of a species may
not necessarily be a reliable predictor of the effects of inbreeding in other popula-
tions of the same species. In addition, the effects of inbreeding within one popula-
tion are likely to differ greatly depending on which individuals become the
founders of the inbred lineage.

CATC13  28/05/2007  06:09PM  Page 328



CHAPTER 13 INBREEDING DEPRESSION 329

Figure 13.18 (a) Expected response of fitness to repeated generations of inbreeding, 
if the genetic load is due entirely to recessive lethal alleles (100% purging), over-
dominance (no purging), or half of each. (b and c) Observed responses to inbreeding 
in three subspecies of Peromyscus polionotus mice, measured as the depression in initial
litter size and biomass of progeny weaned within 63 days, as predicted from regressions
on inbreeding levels of litters and of prior generations. From Lacy and Ballou (1998).
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Problem 13.1

What is meant by the term “inbreeding” and why is it important to define the term
“inbreeding” when using it?

Problem 13.2

In what sense are we all inbred?

Problem 13.3

Explain how inbreeding occurs even in random mating populations.

Problem 13.4

How can an individual that is autozygous (IBD) be heterozygous?

Problem 13.5

Identify all inbred individuals in Figure 13.5 and calculate their inbreeding
coefficients.

Problem 13.6

How is inbreeding depression measured?

Problem 13.7

We saw in Example 13.1 that there was a 66.5% mean reduction in fitness as
measured by seed production in two populations of monkeyflowers (δ = 0.665).
How many lethal equivalents are there per diploid individual in these two popula-
tions? How does this compare to the amount of inbreeding depression estimated
in mammals?

Problem 13.8

What are the two primary genetic mechanisms that cause inbreeding depres-
sion? Which mechanism is thought to be the most common cause of inbreeding
depression?
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Problem 13.9

What is meant by the term “purging”?

Problem 13.10

Which of the two mechanisms that cause inbreeding depression does not allow
for purging? Why is purging impossible at loci evolving under this mechanism?

Problem 13.11

Why are mildly deleterious alleles difficult to purge? Hint: why are lethal alleles
easily purged?

Problem 13.12

The pedigree below is from a song sparrow population on Mandarte Island in
western Canada that Keller (1998) has found to carry an average of 5 LEs per
diploid genome. Identify all inbred individuals in the pedigree below and calculate
their inbreeding coefficients (from Keller and Waller 2002).

2230 2369

69520 54533 64976 59412

69518 69535

56902

69631

73543

56918

56916
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Problem 13.14

Assume that individuals F1 to F4 opposite are the founders of a captive breeding
program for larlarlongs, an extraterrestrial species native to the planet Tralfalmadore.
Use coin-flips to derive one possible outcome of a gene drop analysis for this 
pedigree. Assume that individuals A–D are the only surviving larlarlongs in the 
universe. What are the allele frequencies for individuals A–D based upon the 
outcome of your single gene drop? What are the observed and expected 

Favourite
252

Bolingbroke
86

Phoenix

Foljambe (above)
263

Favourite (above)
(Cow)

Foljambe
263

Young
Strawberry

R. Barker’s
Bull 52

Haughton

Hill’s Red

Son of
Lakeland’s Bull

Dalton Duke
188

Favourite
(Cow)

Dobson’s
Bull 218

Hubback
319

Smith’s Bull
608

Studley Bull
626

Alcock’s
Bull 19

Smith’s Bull
608 Jolly’s Bull

337

612 558 422 626

669 422 626

Problem 13.13

The following pedigree appeared in one of the original papers on inbreeding (from
Wright 1923). Calculate the inbreeding coefficient for Favourite 252, the founda-
tion bull for all Shorthorn cattle. Note: the upper parent in each case is the bull and
the lower parent is the cow; and Studley Bull 626 is sometimes listed just as 626.
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heterozygosities for individuals A–D based upon the outcome of your single gene
drop? If you performed 10,000 such gene drops, what do you think the average
observed heterozygosity would be for individuals A–D? How many of the eight
original alleles remain in the captive population of larlarlongs based upon your 
single gene drop outcome?

Problem 13.15

A recent paper has come to the surprising conclusion that the most recent com-
mon ancestor (MRCA) of all humans present on the Earth today probably lived
within the last few thousand years (Rohde et al. 2004). What are the crucial values
that you would need to know in order to estimate the time since the MRCA for any
species?

12 34 56 78

F1 F2 F3 F4

A B C D
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14

Demography and 
Extinction

As some of our British parks are ancient, it occurred to me that there must have
been long-continued close interbreeding with the fallow-deer (Cervus dama) kept
in them; but on inquiry I find that it is a common practice to infuse new blood by
procuring bucks from other parks.

Charles Darwin (1896, p. 99)

What are the minimum conditions for the long-term persistence and adaptation 
of a species or a population in a given place? This is one of the most difficult 
and challenging intellectual problems in conservation biology. Arguably, it is the
quintessential issue in population biology, because it requires a prediction 
based on a synthesis of all the biotic and abiotic factors in the spatial–temporal
continuum.

Michael E. Soulé (1987)

14.1 Estimation of population size, 336

14.2 Inbreeding depression and extinction, 338

14.3 Population viability analysis, 342

14.4 Loss of phenotypic variation, 350

14.5 Loss of evolutionary potential, 355

14.6 Mitochondrial DNA, 355

Clarkia pulchella, Section 14.2
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14.7 Mutational meltdown, 357

14.8 Long-term persistence, 357

14.9 The 50/500 rule, 359

Guest Box 14 Noninvasive population size estimation in wombats, 360

The quote from Darwin above shows that both evolutionary biologists and wildlife 
managers have recognized for over 100 years that the persistence of small isolated popu-
lations may be threatened by inbreeding. Nevertheless, the potential harmful effects of
inbreeding and the importance of genetics in the persistence of populations have been
somewhat controversial and remain so to this day (Soulé and Mills 1992; Caughley 1994;
Frankham and Ralls 1998; Mann and Plummer 1999).

There are a variety of reasons for this controversy. Some have suggested that inbreeding
is unlikely to have significant harmful effects on individual fitness in wild populations.
Others have suggested that inbreeding may affect individual fitness, but is not likely to
affect population viability (Caro and Laurenson 1994). Still others have argued that
genetic concerns can be ignored when estimating the viability of small populations
because they are in much greater danger of extinction due to stochastic demographic
effects (Lande 1988; Pimm et al. 1988). Finally, some have suggested that it may be best 
not to incorporate genetics into demographic models because genetic and demographic
“currencies” are difficult to combine, and we have insufficient information about the
effects of inbreeding in most wild populations (Beissinger and Westphal 1998).

The disagreement over whether or not genetics should be considered in demographic
predictions of population persistence has been unfortunate and misleading. It is extremely
difficult to separate genetic and environmental factors when assessing the causes of popu-
lation extinction. This is because inbreeding depression initially usually causes subtle
reductions in birth and death rates that interact with other factors to increase extinction
probability (Mills et al. 1996). Obvious indications of inbreeding depression (severe con-
genital birth defects, monstrous abnormalities, or otherwise easily visible fitness deficiencies)
are not likely to be detectable until after severe inbreeding depression has accumulated in a
population.

Extinction is a demographic process that will be influenced by genetic effects under
some circumstances. The key issue is to determine under what conditions genetic 
concerns are likely to influence population persistence (Nunney and Campbell 1993).
There have been important recent advances in our understanding of the interaction
between demography and genetics in order to improve the effectiveness of our attempts 
to conserve endangered species (e.g., Landweber and Dobson 1999; Oostermeijer et al.
2003).

Perhaps most importantly, we need to recognize when management recommendations
based upon strict demographics or genetics may actually be in conflict with each other.
For example, Ryman and Laikre (1991) have considered supportive breeding in which a
portion of wild parents are brought into captivity for reproduction and their offspring are
released back into the natural habitat where they mix with wild individuals. Programs like
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this are carried out in a number of species to increase population size and thereby temper
stochastic demographic fluctuations. Under some circumstances, however, supportive
breeding may reduce effective population size and cause a reduction in heterozygosity that
may have harmful effects on the population (Ryman and Laikre 1991). This example
demonstrates a conflict in that supplemental breeding can provide demographic benefits
yet be genetically detrimental.

The primary causes of species extinction today are deterministic and result from
human-caused habitat loss, habitat modification, and overexploitation (Caughley 1994;
Lande 1999). Reduced genetic diversity in plants and animals is generally a symptom of
endangerment, rather than its cause (Holsinger et al. 1999). Nevertheless, genetic effects
of small populations have an important role to play in the management of many threat-
ened species. For example, Ellstrand and Elam (1993) examined the population sizes of 743
sensitive plant taxa in California. Over 50% of the occurrences contained less than 100 
individuals. In general, those populations that are the object of management schemes are
often small and therefore are likely to be susceptible to the genetic effects of small popula-
tions. Many parks and nature reserves around the world are small and becoming so 
isolated that they are more like “megazoos” than healthy functioning ecosystems.
Consequently many populations will require management (including genetic manage-
ment) to insure their persistence (Ballou et al. 1994).

It is also important to be aware that genetic problems associated with small populations
go beyond inbreeding depression and the associated loss of heterozygosity. In this chapter,
we will consider the effects of inbreeding depression and several other genetic factors that
can potentially act to reduce the probability of persistence of small populations.

14.1 Estimation of census population size

The number of individuals in a population is the most fundamental demographic 
characteristic of a population. Accurate estimates of abundance or census population
size (Nc) are essential for effective conservation and management (Sutherland 1996).
Moreover, the rate of loss of genetic variation in an isolated population will be primarily
affected by the number of breeding individuals in the population. And, it seems that it
should be relatively easy to estimate population size compared to the obvious difficulties
of estimating other demographic characteristics, such as the gender-specific age distribu-
tion of individuals in a population. However, estimating the number of individuals in a
population is usually difficult even under what may appear to be straightforward situ-
ations. For example, estimating the number of grizzly bears in the Yellowstone Ecosystem
has been an especially contentious issue (Eberhardt and Knight 1996). This is perhaps 
surprising for a large mammal that is fairly easy to observe and occurs within a relatively
small geographic area.

Genetic analyses can provide help in estimating the number of individuals in a popula-
tion (see Guest Box 14). A variety of creative methods have been applied to this problem
(Schwartz et al. 1998). For example, we saw in Section 12.2.1 that the amount of variation
within a population can be used to estimate effective population sizes, which can be
modified to estimate historical census population sizes (Roman and Palumbi 2003). Here
we consider the two primary genetic methods for estimating population size. Bellemain 
et al. (2005) provide an excellent comparison of these methods.
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14.1.1 Rarefaction methods

The simplest method for estimating the minimum size of a population is from the number
of unique genotypes observed. Kohn et al. (1999) used feces from coyotes to genotype
three hypervariable microsatellite loci in a 15 km2 area in California near the Santa Monica
Mountains. They detected 30 unique multilocus genotypes in 115 feces samples. Thus,
their estimate of the minimum Nc was 30.

The actual Nc of a population may be much greater than the number of genotypes
detected depending on what proportion of the population was sampled. For example, it is
likely that not all the coyotes in this population were sampled in the collection of 115 feces.
However, the estimate of total population size can be modified to take into account the
probability of not sampling individuals. The cumulative number of unique multilocus
genotypes ( y) can be expressed as a function of the number of feces sampled (x), and the
asymptote of this curve (a) can be estimated with iterative nonlinear regression with a
computer to provide an estimate of local population size:

(14.1)

where b is the rate of decline in value of the slope (Kohn et al. 1999). In this case, the 
estimate was 38 individuals with a 95% confidence interval of 36–40 coyotes. Eggert et al.
(2003) have provided an alternative estimator that behaves similarly to expression 14.1
(Bellemain et al. 2005).

14.1.2 Capture–mark–recapture methods

A mark–recapture approach can also be used with genetic data to estimate population size
(Bellemain et al. 2005) (Example 14.1). The multilocus genotypes of individuals can be
considered as unique “tags” that exist in all individuals and are permanent.

The simplest mark–recapture method to estimate population size is the Lincoln-
Peterson index (Lincoln 1930):

(14.2)

where N1 is the number of individuals in the first sample, N2 is the total number of indi-
viduals in the second sample, and R is the number of individuals recaptured in the 
second sample. For example, suppose that 10 (N1) animals were captured in the first 
sample, and one-half of 10 (N2) animals captured in the second sample were marked 
(R = 5). This would suggest that the 10 animals in the first sample represented one-half of
the population so that the total population size would be 20:
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Genetic capture–mark–recapture is potentially a very powerful method for estimating 
population size over large areas (Bellemain et al. 2005). It also is noninvasive (that is, does
not require handling or manipulating animals). However, there are a variety of potential
pitfalls (Taberlet et al. 1999). One potential problem is the failure to distinguish individuals
due to using too few or insufficiently variable loci. For example, a new capture might 
be erroneously recorded as a recapture if the genotype is not unique (due to low marker
polymorphism). This has been termed the shadow effect (Mills et al. 2000). The shadow
effect can result in an underestimation of population size and will also affect confidence
intervals (Waits and Leberg 2000). A second problem is that genotyping errors could gen-
erate false unique genotypes and thereby cause an overestimate of population size (Waits
and Leberg 2000).

14.2 Inbreeding depression and extinction

We saw in Chapter 13 that inbreeding depression is a universal phenomenon. In this 
section we will examine when inbreeding depression is likely to affect population viabil-
ity. Three conditions must hold for inbreeding depression to reduce the viability of 
populations:

1 Inbreeding must occur.
2 Inbreeding depression must occur.
3 The traits affected by inbreeding depression must reduce population viability.

Example 14.1 Genetic tagging of humpback whales

Palsbøll et al. (1997) used a genetic capture–mark–recapture approach to estimate
the number of humpback whales in the North Atlantic Ocean. Six microsatellite
loci were analyzed in samples collected on the breeding grounds by skin biopsy or
from sloughed skin in 1992 and 1993. A total of 52 whales sampled in 1992 were
“recaptured” in 1993 as shown below:

Females Males
1992 231 382
1993 265 408
Recaptures 21 31

Substitution into expression 14.1 provides estimates of 2,915 female and 5,028
male humpback whales. Palsbøll et al. (1997) used a more complex estimator that
has better statistical properties and estimated the North Atlantic humpback whale
population to be 2,804 females (95% CI of 1,776–4,463) and 4,894 males (95%
CI of 3,374–7,123). The total of 7,698 whales was in the upper range of previous
estimates based on photographic identification.

CATC14  28/05/2007  06:09PM  Page 338



CHAPTER 14 DEMOGRAPHY AND EXTINCTION 339

Conditions 1 and 2 will hold to some extent in all small populations. As discussed earlier
and below, matings between relatives must occur in small populations, and some deleteri-
ous recessive alleles will be present in all populations. However, condition 3 is the crux of
the controversy. There is little empirical evidence that tells us when inbreeding depression
will affect population viability and how important that effect will be.

For inbreeding depression to affect population viability it must affect traits that influ-
ence population viability. For example, Leberg (1990) found that eastern mosquitofish
populations founded by two siblings had a slower growth rate than populations founded
by two unrelated founders (see Guest Box 6). However, it has been difficult to isolate
genetic effects in the web of interactions that affect viability in wild populations (Soulé and
Mills 1998) (Figure 14.1). Laikre (1999) noted that many factors interact when a population
is driven to extinction, and it is generally impossible to single out “the” cause.

Some authors have asserted that there is no evidence for genetics affecting population
viability (Caro and Laurenson 1994):

Although inbreeding results in demonstratable costs in captive and wild situations, 
it has yet to be shown that inbreeding depression has caused any wild population 
to decline. Similarly, although loss of heterozygosity has detrimental impact on
individual fitness, no population has gone extinct as a result.

Habitat loss and degradation

Population structure

Age-specific reproduction
and survival rates

Probability
of extinction

Population growth rate

Effective population size

Census population size

Environment

Inbreeding
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Genetic
variation

Inbreeding
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Impact of random
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events

Figure 14.1 Extinction vortex showing interactions between demographic and genetic 
effects of habitat loss and isolation that can cause increased probability of extinction. Redrawn
from Soulé and Mills (1998).
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This observation prompted several papers that tested for evidence of the importance of
genetics in population declines and extinction.

Newman and Pilson (1997) founded a number of small populations of the annual plant
Clarkia pulchella by planting individuals in a natural environment. All populations were
founded by the same number of individuals (12); however, in some populations the
founders were unrelated (high Ne treatment) and in some they were related ( low Ne treat-
ment). All populations were demographically equivalent (that is, the same Nc) but differed
in the effective population size (Ne) of the founding population. A significantly greater 
proportion of the populations founded by unrelated individuals persisted throughout the
course of the experiment (Figure 14.2).

Saccheri et al. (1998) found that extinction risk of local populations of the Glanville fritil-
lary butterfly increased significantly with decreasing heterozygosity at seven allozyme loci
and one microsatellite locus after accounting for the effects of environmental factors.
Larval survival, adult longevity, and hatching rates of eggs were all reduced by inbreeding,
and were thought to be the fitness components responsible for the relationship between
heterozygosity and extinction.

Westemeier et al. (1998) monitored greater prairie chickens for 35 years and found that
egg fertility and hatching rates of eggs declined in Illinois populations after these birds
became isolated from adjacent populations during the 1970s. These same characteristics
did not decline in adjacent populations that remained large and widespread. These results
suggested that the decline of birds in Illinois was at least partially due to inbreeding 
depression. This conclusion was supported by the observation that fertility and hatching
success recovered following translocations of birds from the large adjacent populations
(Figure 14.3).
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Figure 14.2 Population survival curves for populations of Clarkia pulchella founded by related
(low Ne) and unrelated founders (high Ne). All populations were founded with 12 individuals.
From Newman and Pilson (1997).
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Madsen et al. (1999) studied an isolated population of adders in Sweden that declined
dramatically some 35 years ago and has since suffered from severe inbreeding depression.
The introduction of 20 males from a large and genetically variable population of adders
resulted in a dramatic demographic recovery of this population. This recovery was
brought about by increased survival rates, even though the number of litters produced by
females per year actually declined during the initial phase of recovery.

Some have argued that the existence of species and populations that have survived 
bottlenecks is evidence that inbreeding is not necessarily harmful (Simberloff 1988; Caro
and Laurenson 1994). However, we need to know how many similar populations went
extinct following such bottlenecks to interpret the significance of such observations. For
example, the creation of inbred lines of mice usually results in the loss of many of the lines
(Bowman and Falconer 1960; Lynch 1977). This argument is similar to using the existence
of 80-year-old smokers as evidence that cigarette smoking is not harmful. Only popula-
tions that have survived a bottleneck can be observed after the fact. Soulé (1987) termed
this the “fallacy of the accident”.

Nevertheless, this does not mean that populations that have lost substantial genetic 
variation because of a bottleneck are somehow “doomed” or are not capable of recovery.
An increase in the frequency of some deleterious alleles and the loss of genome-wide 
heterozygosity is inevitable following a bottleneck. However, the magnitude of these
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nonresident birds began in August 1992. Numbers on top line represent the number of fully
incubated clutches. From Westemeier et al. (1998).
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effects on fitness-related traits (survival, fertility, etc.) may not be large enough to 
constrain recovery. For example, the tule elk of the Central Valley of California has gone
through a series of bottlenecks since the 1849 gold rush (McCullough et al. 1996).
Simulation analysis was used to estimate that tule elk have lost approximately 60% of their
original heterozygosity (McCullough et al. 1996). Analyses of allozymes (Kucera 1991) and
microsatellites (D. R. McCullough, personal communication) have confirmed relatively
low genetic variation in the tule elk. Nevertheless, the tule elk has shown a remarkable
capacity for population growth, and today there are 22 herds totaling over 3,000 animals
(McCullough et al. 1996). Tule elk still may be affected by the genetic effects of the bottle-
neck in the future if they face some sort of challenge-event (e.g., disease).

14.3 Population viability analysis

Predictive demographic models are essential for determining whether or not populations
are likely to persist in the future. Such risk assessment is essential for identifying species of
concern, setting priorities for conservation action, and developing effective recovery plans.
For example, one of the criteria for being included on the IUCN Red List (IUCN 2001) is
the probability of extinction within a specified period of time (see Table 14.1). Some quant-
itative analysis is needed to estimate the extinction probability of a taxon based on known
life history, habitat requirements, threats, and any specified management options. This
approach has come to play an important role in developing conservation policy (Shaffer 
et al. 2002).

Population viability analysis (PVA) is the general term for models that take into
account a number of processes affecting population persistence to simulate the demo-
graphy of populations in order to calculate the risk of extinction or some other measure 
of population viability (Ralls et al. 2002). The first use of this approach was by Craighead 
et al. (1973) who used a computer model of grizzly bears in Yellowstone National Park.
They demonstrated that closing of the park dumps to bears and the park’s approach to
problem bears was driving the population to extinction. McCullough (1978) developed an
alternative model that came to different conclusions about the Yellowstone grizzly bear
population. Both of these models were deterministic models in which the same outcome
will always result with the same initial conditions and parameter values (e.g., stage-specific
survival rates).

Mark Shaffer (1981) developed the first PVA model that incorporated chance events
(stochasticity) into population persistence while a graduate student at Duke University.
Shaffer described four sources of uncertainty: demographic stochasticity, environ-
mental stochasticity, natural catastrophes, and genetic stochasticity (also see Shaffer
1987). Small populations with a positive growth rate will always increase in size and per-
sist. However, chance fluctuations in demographic events may result in the extinction of
small populations with a positive growth rate.

Incorporation of stochasticity into PVA was a crucial step in attempts to understand 
and predict the population dynamics of small populations. Many aspects of population
dynamics are processes of sampling rather than completely deterministic events (e.g.,
stage-specific survival, sex determination, and transmission of alleles in heterozygotes,
etc.). The predictability of an outcome decreases in a sampling process as the sample size is
reduced. For example, in a large population the sex ratio will be near 50 : 50. However, this
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might not be true in a small population in which a large excess of males may significantly
reduce the population growth rate (Leberg 1998).

In addition, there will be synergistic interactions between demographic processes and
genetic effects. fluctuations in population size may result in genetic bottlenecks during
which inbreeding may occur and substantial genetic variation may be lost. Even if the popu-
lation grows and recovers from the bottleneck it will carry the legacy of this event in its
genes. The loss of genetic variation during a bottleneck may have a variety of effects on
demographic parameters (survival, reproductive rate, etc.). This may lead to large fluctu-
ations in population size, increasing the probability of extinction (see Figure 14.1). These
interactions have been called “extinction vortices” (Gilpin and Soulé 1986) and considera-
tion of these interactions is a central part of PVA (Lacy 2000b).

14.3.1 The VORTEX simulation model

The complexity of the factors affecting population persistence means the useful PVA 
models must also be complex. It is possible for individuals to develop their own computer
program to model population viability. The development of such a model, however,
requires a lot of time and there is always a good probability that such a model will contain
some programming errors. The usual alternative is to use an available software package
for PVA that serve the same role as commercially available statistical packages. A number
of such packages are available (Brook et al. 2000). We have chosen to present results using
vortex because of its power, user friendliness, and widespread use (Lacy et al. 2003; Miller
and Lacy 2003).

PVA requires information on birth and survival rates, reproductive rates, habitat 
capacity, and many other factors. It is important to understand the basic structure of the
model being used in order to interpret the results. Figure 14.4 shows the relationships
among the primary life history, environmental, and habitat components used by vortex.

As we saw in Section 6.5, a population growing exponentially increases according to the
equation:

Nt = N0e r (14.3)

where N0 is the initial population size (t = 0), Nt is the number of individuals in the popula-
tion after t units of time (years in vortex), r is the exponential growth rate, and the con-
stant e is the base of natural logarithms (approximately 2.72). A population is growing if r
> 0 and is declining if r < 0. Population size is stable if r = 0. Lambda (λ) is the factor by
which the population increases during each time unit. That is,

Nt+1 = Ntλ (14.4)

Let us use vortex to consider a PVA of grizzly bears from the Rocky Mountains of the
USA. Figure 14.5 shows a summary of the vortex input values used. The actual values are
taken from Harris and Allendorf (1989), but have been modified for use here.

These life history values result in a deterministic intrinsic growth rate (r) of 0.005 
(λ = 1.005). Therefore, our simulated grizzly bear population is expected to increase by 
a factor of 1.005 each year (Figure 14.6). That is, if there are 1,000 bears in year t = 0 
there will be 1,005 bears in year t = 1 (1,000 * 1.005) and 1,010 bears in year t = 2, etc. The
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generation interval for grizzly bears is approximately 10 years. Therefore, this growth rate
will result in just over a 5% increase in population size after one generation. It is important
to look at the deterministic projections of population growth in any analysis with vortex.
If r is negative, then λ will be less than 1, and the population is in deterministic decline (the
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Figure 14.4 Flow chart of the primary components that occur within each subpopulation
with the vortex simulation model. EV, environmental variation; K, carrying capacity; 
N, subpopulation size; ni, number of iterations; np, number of subpopulations; ny, years
simulated; t, year. From Lacy (2000b).
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VORTEX 9.42 -- simulation of population dynamics
 
   1 population(s) simulated for 200 years, 1 iterations
   Extinction is defined as no animals of one or both sexes.
   No inbreeding depression
   EV in reproduction and mortality will be concordant.
 
   First age of reproduction for females: 5   for males: 5
   Maximum breeding age (senescence): 30
   Sex ratio at birth (percent males): 50
  
Population 1: Population 1
  
  Polygynous mating;
     % of adult males in the breeding pool = 100

  % adult females breeding = 33
    EV in % adult females breeding: SD = 9

    Of those females producing progeny, ...
     28.00 percent of females produce 1 progeny in an average year
     44.00 percent of females produce 2 progeny in an average year
     28.00 percent of females produce 3 progeny in an average year
 
    % mortality of females between ages 0 and 1 = 20
     EV in % mortality: SD = 4
    % mortality of females between ages 1 and 2 = 18
     EV in % mortality: SD = 4
    % mortality of females between ages 2 and 3 = 15
     EV in % mortality: SD = 4
    % mortality of females between ages 3 and 4 = 15
     EV in % mortality: SD = 4
    % mortality of females between ages 4 and 5 = 15
     EV in % mortality: SD = 4
    % mortality of adult females (5<=age<=30) = 12
     EV in % mortality: SD = 4
 
    (Same mortality values for males)
 
   Initial size of Population 1: 100
     (set to reflect stable age distribution)
   Carrying capacity = 1000
     EV in Carrying capacity = 0
 
   Animals harvested from Population 1, year 1 to year 1 at 1 year 
intervals: 0
 
   Animals added to Population 1, year 1 through year 1 at 1 year 
intervals: 0

Figure 14.5 vortex input summary for population viability analysis of grizzly bears. 
This output has been slightly modified from that produced by the program. EV is the
environmental variation for the parameter. Values used are modified from Harris and
Allendorf (1989).
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number of deaths outpaces the number of births) and will become extinct even in the
absence of any stochastic fluctuations.

We can use vortex to examine how much stochastic variability in population growth
we may expect (Figure 14.6). On the average, expression 14.3 does a good job of predicting
growth rate. However, there is a wide range of results from each simulation even though
the same input values were used. The differences among runs results from vortex using
random numbers to mimic the life history of each individual.

What will happen if we incorporate genetic effects (inbreeding depression) into this
model? Genetic effects due to inbreeding and loss of variation will come into play when
the population size becomes small. For example, one of the runs reached an N of 34 
after 100 years. This population than proceeded to grow very quickly and exceed 500 
bears 90 years later. However, what would have happened if we had kept track of 
pedigrees within this populations and then reduced juvenile survival as a function of 
the inbreeding coefficient (F )? Remember that the effective population size of grizzly bears
is approximately one-quarter of the population size (see Guest Box 7). Therefore, the Ne
was much smaller than 34 during this period. The increased juvenile mortality of progeny
produced by the mating of related individuals would have hindered this population’s
recovery.
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Figure 14.6 Stochastic variability in the growth of a grizzly bear population in five vortex

simulations using input from Figure 14.5. The dark solid line is the expected growth rate with
r = 0.005 (λ = 1.005) and an initial population size (N0) of 100, using expression 14.4. The dark
dashed line is the mean of the five simulated populations.
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We can incorporate inbreeding depression with vortex by assigning a number of 
lethal equivalents (LEs) associated with decreased survival during the first year of life
(Figure 14.7). Figure 14.8 shows the effects of inbreeding depression with these life history
values on population persistence in 1,000 simulation runs for 0, 3, and 6 LEs per diploid
genome. In the absence of any inbreeding depression (0 LE), the persistence probability is
similar in the first and second hundred years of the simulations. However, even moderate
inbreeding depression (3 LEs) reduces the probability of population persistence by
approximately 25% in the second hundred years.

Note that even strong inbreeding depression has no effect on population persistence
until after 100 years (approximately 10 generations) because it will take many generations
for inbreeding relationships to develop within a population. This is an important point to
recognize when considering the management of real populations. As we saw in Guest 
Box 7, Yellowstone grizzly bears have now been completely isolated for nearly 100 years.
Some have argued that there is no reason to be concerned about the possible harmful gen-
etic effects of this isolation because the population has persisted and seems to be doing well.
However, it would be very difficult to detect inbreeding depression in a wild population of
grizzly bears because we do not have good estimates of vital rates. In addition, Figure 14.7

200

180

160

140

120

100

80

60

40

20

0
0 20 40 60 80 100 120 140 160 180 200

Time (years)

N
um

be
r 

of
 b

ea
rs

Figure 14.7 Results of five different vortex simulations of grizzly bears using input from
Figure 14.5 except for the carrying capacity and initial population size. Each simulated
population began with 200 bears and had a carrying capacity of 200. Inbreeding depression
was incorporated as 3 LEs that increased mortality in the first year of life.
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shows that some populations that have accumulated substantial inbreeding depression
may show positive growth rates. The effects of inbreeding depression are expected to be
seen more quickly in species with shorter generation intervals.

14.3.2 What is a viable population?

An evaluation of the viability of a population requires identifying the time horizon of 
concern and the required probability of persistence or remaining above some minimum
population size. There is no generally accepted time horizon or level of risk with regard 
to species extinctions (Shaffer et al. 2002). The World Conservation Union (IUCN) have
offered standard criteria for placing taxa into categories of risk (Table 14.1). These criteria
include predictions of the probability of extinction, as well as a variety of other alternative
criteria (e.g., reduction in population size, current geographic range, or current population
size). For example, a species may be considered to be facing an extremely high risk of
extinction in the wild (i.e., “critically endangered”) if its current population size is less than
50 mature individuals, without performing a PVA.

Early applications of PVA often set out to determine the minimum population size at
which a population was likely to persist over some timeframe. The minimum viable popu-
lation (MVP) concept was used to identify a goal or target for recovery actions. For exam-
ple, one of the early grizzly bear recovery plans used the results of Shaffer’s early work to
set recovery targets for four of the six populations of between 70 and 90 bears (Allendorf
and Servheen 1986). The term MVP has fallen out of favor for a variety of reasons. Many
feel that the goal of conservation should not be to set a minimum number of individuals or
a minimal distribution of a species. However, the concept of MVP is reasonable if we build
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in an appropriate margin of safety. Nevertheless, the term is not needed as long as we
define the timeframe and probability of persistence that we are willing to accept.

Demographic criteria

Table 14.1 lists a variety of demographic criteria that have been used or suggested in the 
literature. There is no correct set of universal criteria to be used. Setting the timeframe 
and minimum probability of persistence are policy decisions that need to be specific for
the situation at hand. Nevertheless, biological considerations should be used to set these
criteria. Shorter periods have been recommended because errors are propagated in each
time step in longer time periods (Beissinger and Westphal 1998). However, we should 
also be concerned with more than just the immediate future with which we can provide
reliable predictions of persistence. The analogy of the distance we can see into the “future”
using headlights while driving at night is appropriate here. We can only see as far as our
headlights reach, but we need to be concerned about what lies beyond the reach of them
(Shaffer et al. 2002). Population viability should be predicted on both short (say 10 genera-
tions) and long (more than 20 generations) timeframes.

There are a wide range of values presented in Table 14.1. The most stringent is the 99%
probability of persistence for 1,000 years used by Shaffer in 1981. The IUCN values are the

Table 14.1 Examples of demographic criteria for evaluating the results of population 
viability analyses.

Minimum
persistence

Source Category probability (%) Timeframe

Shaffer (1978) Minimum viable 95 100 years
population (MVP)

Shaffer (1981) MVP 99 1,000 years

Thompson (1991) Threatened 50 10 years
Endangered 95 100 years

Rieman et al. Low risk 95 100–200 years
(1993) High risk 50 100–200 years

AEPDC 1999* Vulnerable 90 Medium-term future
Endangered 80 Near future
Critically 50 Immediate future

endangered

IUCN (2001) Vulnerable 90 100 years
Endangered 80 20 years or 5 generations
Critically 50 10 years or 3 generations

endangered

*Australian Environment Protection and Biodiversity Act 1999.
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closest thing to generally accepted standards, and are fundamentally sound. They incorpor-
ate the concept of both short-term urgency (10 or 20 years) and long-term concerns. They
also take into account that the appropriate timeframe will differ depending on the generation
interval of the species under concern. For example, tuatara (see Example 1.1) do not
become sexually mature until after 20 years, and their generation interval is approximately
50 years. Therefore, 10 years is just one-fifth of a tuatara generation, but it would represent
10 generations for an annual plant.

Genetic criteria

Persistence over a defined time period is not enough. We are also concerned that the loss
of genetic variation over the time period does not threaten the long-term persistence of
the population or species under consideration. A variety of authors have suggested genetic
criteria to be used in evaluating the viability of populations. Soulé et al. (1986) suggested
that the goal of captive breeding programs should be to retain 90% of the heterozygosity in
a population for 200 years. By necessity, these kinds of guidelines are somewhat arbitrary.
Nevertheless, the genetic goal of retaining at least 90–95% of heterozygosity over 100–200
years seems reasonable for a PVA (Allendorf and Ryman 2002). A loss of heterozygosity of
10% is equivalent to a mean inbreeding coefficient of 0.10 in the population.

14.3.3 Beyond viability

Probability viability analyses have great value beyond simply predicting the probability of
extinction. Perhaps more importantly, PVA can be used to identify threats facing popula-
tions and identify management actions to increase the probability of persistence. This can
be done by sensitivity testing in which a range of possible values for uncertain para-
meters are tested to determine what effects those uncertainties might have on the results.
In addition, such sensitivity testing reveals which components of the data, model, and
interpretation have the largest effect on population projections. This will indicate which
aspects of the biology of the population and its situation contribute most to its vulnerabil-
ity and, therefore, which aspects might be most effectively targeted for management. In
addition, uncertain parameters that have a strong impact on results are those which might
be the focus for future research efforts, to better specify the dynamics of the population.
Close monitoring of such parameters might also be important for testing the assumptions
behind the selected management options and for assessing the success of conservation
efforts (Example 14.2).

14.4 Loss of phenotypic variation

Inbreeding depression is not necessary for the loss of genetic variation to affect population
viability. Reduction in variability itself, even without a reduction in individual fitness, may
reduce population viability (e.g., Conner and White 1999).

Honey bees present a fascinating example of the potential importance of genetic 
variation itself ( Jones et al. 2004). Honey bee colonies have different amounts of genetic
variation depending on how many males the queen mates with. Brood nest temperatures
tend to be more stable in colonies in which the queen has mated with multiple males
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Example 14.2 PVA of the Sonoran pronghorn

The Sonoran pronghorn is one of five subspecies and was listed as endangered
under the US Endangered Species Act in 1967 (Hosack et al. 2002). The pronghorn
is endemic to western North America, and it has received high conservation prior-
ity because it is the only species in the family Antilocapridae. The pronghorn
resembles an antelope in superficial physical characteristics, but it has a variety of
unusual morphological, physiological, and behavioral traits (Byers 1997).

The Sonoran subspecies is restricted to approximately 44,000 ha in south-
western Arizona. There were approximately 200 individuals in this population
based on census estimates in the 1990s. A group of 22 biologists from a variety of 
federal, state, tribal, university, and environmental organizations convened a PVA
workshop in September 1996. Nine primary questions and issues were identified
as key to pronghorn recovery. All of these questions were explored with PVA 
simulation modeling during the workshop. The final three of those questions are
presented below:

7 Can we identify a population size below which the population is vulnerable,
but above which it could be considered for downlisting to a less threatened
category?

8 Which factors have the greatest influence on the projected population 
performance?

9 How would the population respond (in numbers and in probability of persist-
ence) to the following possible management actions: increase in available
habitat; cessation of any research that subjects animals to the dangers of
handling; exchange of some pronghorn with populations in Mexico; and
supplementation of the wild population from a captive population?

Estimates of the life history parameters used by VORTEX were provided by parti-
cipants of the workshop. Some of the values were available from field data, but
there were no quantitative data available for many parameters. For these para-
meters, the field biologists provided “best guesses”. The participants performed 
a sensitivity analysis to evaluate the response of the simulated populations to
uncertainty by varying eight parameters: inbreeding depression, fecundity, fawn
survival, adult survival, effects of catastrophes, harvest for research purposes,
carrying capacity, and size and sex /age structure of the initial population.

Results indicated that the Sonoran pronghorn population had a 23% probability
of extinction within 100 years using the best parameter estimates. This probability
increased markedly if the population fell below some 100 individuals. Sensitivity
analysis indicated that fawn survival rates had the greatest effects on population
persistence (Figure 14.9). Sensitivity analysis also indicated that short-term 
emergency provisioning of water and food during droughts would substantially
increase the probability of population persistence. The workshop concluded that
this population is at serious risk of extinction, but that a few key management actions
could greatly increase the probability of the population persisting for 100 years.
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(Figure 14.10). Honey bee workers regulate temperature by their behavior; they fan out
hot air when the temperature is perceived as being too hot and cluster together and gener-
ate metabolic heat when the temperature is perceived as being too low. Increased genetic
variation for response thresholds produces a more graded response to temperature and
results in greater temperature regulation within the hive.

14.4.1 Life history variation

Individual differences in life history (age at first sexual maturity, clutch size, etc.) that have
at least a partial genetic basis occur in virtually all populations of plants and animals. Many
of these differences may have little effect on individual fitness because of a balance or
trade-off between advantages and disadvantages. Nevertheless, the loss of this life history
variability among individuals may reduce the likelihood of persistence of a population.

For example, Pacific salmon return to fresh water from the ocean to spawn and then 
die (Groot and Margolis 1991). In most species, there are individual differences in age at
reproduction that often have a substantial genetic basis (Hankin et al. 1993). For example,
Chinook salmon usually become sexually mature at age 3, 4, or 5 years. The greater 
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Figure 14.9 Results of PVA on the Sonoran pronghorn. The bars indicate the
probability of extinction within 100 years for various values of eight parameters 
that were varied during sensitivity testing (H, high; M, medium; L, low; N, no; Y, yes).
Extinction probabilities were fairly insensitive to some parameters (e.g., initial
population size), but were greatly affected by others (e.g., adult and juvenile survival
rates). From Hosack et al. (2002).
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fecundity of older females (because of their greater body size) is balanced by their lower
probability of survival to maturity. These different life history types have similar fitnesses.
Pink salmon are exceptional in that all individuals become sexually mature and return
from the ocean to spawn in fresh water at 2 years of age (Heard 1991). Therefore, pink
salmon within a particular stream comprise separate odd- and even-year populations that
are reproductively isolated (Aspinwall 1974).

Consider a hypothetical comparison of two streams for purposes of illustration. The
first stream has separate odd- and even-year populations, as is typical for pink salmon. In
the second stream, there is phenotypic (and genetic) variation for the time of sexual matur-
ity so that approximately 25% of the fish become sexually mature at age 1 year and 25% of
the fish become sexually mature at age 3; the remaining 50% of the population becomes
mature at age 2.

All else being equal, we would expect the population with variability in age of return to
persist longer than the two reproductively isolated populations. The effective population
size (Ne) of the odd- and even-year populations would be one-half the Ne of the single
reproductive population with life history variability (Waples 1990). Thus, inbreeding
depression would accumulate twice as rapidly in the two reproductively isolated popula-
tions than in the single variable population. The two smaller populations would also each
be more susceptible to extinction from demographic, environmental, and catastrophic
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Figure 14.10 Hourly temperature variation in a genetically diverse and uniform honey 
bee colony. This graph shows the average hourly temperature for a representative pair of
experimental colonies that differed only in the number of males with which the queen mated.
The uniform colony queen mated with a single male; the diverse colony queen mated with
multiple males.
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stochasticity. For example, a catastrophe that resulted in complete reproductive failure for
1 year would cause the extinction of one of the populations without variability.

14.4.2 Mating types and sex determination

The occurrence of separate genders or mating types is another case where the loss of 
phenotypic variation can cause a reduction in population viability without a reduction in
the fitness of inbred individuals. Approximately 50% of flowering plant species have
genetic incompatibility mechanisms (see Guest Box 3; Nettancourt 1977). In one of these
self-incompatibility systems, individuals are of different mating types which possess 
different genotypes at the self-incompatibility (S) locus (Richards 1986). Pollen grains can
only fertilize plants that do not have the same S allele as that carried by the pollen.
Homozygotes cannot be produced at this locus, and the minimum number of alleles at
this locus in a sexually reproducing population is three. Smaller populations are expected
to maintain many fewer S alleles than larger populations at equilibrium (Wright 1960).

Les et al. (1991) have considered the demographic importance of maintaining a large
number of S alleles in plant populations. A reduction in the number of S alleles because 
of a population bottleneck will reduce the frequency of compatible matings and may
result in reduced levels of seed set. Demauro (1993) reported that the last Illinois popu-
lation of the lakeside daisy was effectively extinct even though it consisted of approx-
imately 30 individuals because all the plants apparently belonged to the same mating 
type. Reinartz and Les (1994) concluded that some one-third of the remaining 14 natural
populations of Aster furactus in Wisconsin had reduced seed sets because of a diminished
number of S alleles.

A similar effect can occur in the nearly 15% of animal species that are haplodiploid in
which sex is determined by genotypes at one or more hypervariable loci (ants, bees, wasps,
thrips, whitefly, certain beetles, etc.) (Crozier 1971). Heterozygotes at the sex-determining
locus or loci are female, and the hemizygous haploids or homozygous diploid individuals
are male (Packer and Owen 2001). Diploid males have been detected in over 30 species of
Hymenoptera, and evidence suggests that single locus sex determination is common.
Most natural populations have been found to have 10–20 alleles at this locus. Therefore,
loss of allelic variation caused by a population bottleneck will increase the number of
diploid males produced by increasing homozygosity at the sex-determining locus or loci.

Diploid males are often inviable, infertile, or give rise to triploid female offspring (Packer
and Owen 2001). Thus, diploid males are effectively sterile, and will reduce a population’s
long-term probability of persisting both demographically and genetically. The decreased
numbers of females will reduce the foraging productivity of the nest in social species or
reduce the population size of other species. In addition, the skewed sex ratio will reduce
effective population size and lead to further loss of genetic variation throughout the
genome because of genetic drift.

A much weaker gender effect may occur in animal species in which sex is determined by
three or more genetic factors. Leberg (1998) found that species with multiple factor sex
determination (MSD) can experience large decreases in viability relative to species with
simple sex determination systems in the case of very small bottlenecks. This effect results
from increased demographic stochasticity because of greater deviations from a 1 : 1 sex
ratio, not because of any reduction in fitness. MSD is rare, but it has been described in fish,
insects, and rodents.
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14.5 Loss of evolutionary potential

The loss in genetic variation caused by a population bottleneck may cause a reduction in a
population’s ability to respond by natural selection to future environmental changes.
Bürger and Lynch (1995) predicted, on the basis of theoretical considerations, that small
populations (Ne < 1,000) are more likely to go extinct due to environmental change
because they are less able to adapt than are large populations.

The ability of a population to evolve is affected both by heterozygosity and the number
of alleles present. Heterozygosity is relatively insensitive to bottlenecks in comparison to
allelic diversity (Allendorf 1986). Heterozygosity is proportional to the amount of genetic
variance at loci affecting quantitative variation ( James 1971). Thus, heterozygosity is a
good predictor of the potential of a population to evolve immediately following a bottle-
neck. Nevertheless, the long-term response of a population to selection is determined by
the allelic diversity either remaining following the bottleneck or introduced by new muta-
tions (Robertson 1960; James 1971).

The effect of small population size on allelic diversity is especially important at loci 
associated with disease resistance. Small populations are vulnerable to extinction by 
epidemics, and loci associated with disease resistance often have an exceptionally large
number of alleles. For example, Gibbs et al. (1991) described 37 alleles at the major 
histocompatibility complex (MHC) in a sample of 77 adult blackbirds. Allelic variability 
at the MHC is thought to be especially important for disease resistance (Edwards and Potts
1996; Black and Hedrick 1997). For example, Paterson et al. (1998) found that certain
microsatellite alleles within the MHC of Soay sheep are associated with parasite resistance
and greater survival.

This effect of loss of variation due to inbreeding on response to natural selection has
been demonstrated in laboratory populations of Drosophila by Frankham et al. (1999).
They subjected several different lines of Drosophila to increasing environmental stress by
increasing the salt (NaCl) content of the rearing medium until the line went extinct.
Outbred lines performed the best; they did not go extinct until the NaCl concentration
reached an average of 5.5% (Figure 14.11). Highly inbred lines went extinct at a salt con-
centration of 3.5%. Lines that experienced an expected 50–75% loss of heterozygosity due
to inbreeding went extinct at a mean of roughly 5% NaCl. Thus, loss of genetic variation
due to inbreeding made these lines less able to adapt to continuing environmental change.

14.6 Mitochondrial DNA

Recent results have suggested that mutations in mitochondrial DNA (mtDNA) may
decrease the viability of small populations (Gemmell and Allendorf 2001). Mitochondria
are generally transmitted maternally so that deleterious mutations that affect only males
will not be subject to natural selection. Sperm are powered by a group of mitochondria at
the base of the flagellum, and even a modest reduction in power output may reduce male
fertility yet have little effect on females. A recent study of human fertility has found that
mtDNA haplogroups are associated with sperm function and male fertility (Ruiz-Pesini 
et al. 2000). In addition, the mitochondrial genome has been found to be responsible for
cytoplasmic male sterility, which is widespread in plants (Schnable and Wise 1998).
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The viability of small populations may be reduced by an increase in the frequency of
mtDNA genotypes that lower the fitness of males. Since females and males are haploid for
mtDNA, it has not been recognized that mtDNA may contribute to the increased genetic
load of small populations. The effective population size of the mitochondrial genome is
generally only one-quarter that of the nuclear genome, so that mtDNA mutations are
much more sensitive to genetic drift and population bottlenecks than nuclear loci.

Whether or not an increase in mtDNA haplotypes that reduce male fertility will affect
population viability will depend on the mating system and reproductive biology of the
particular population. However, it seems likely that reduced male fertility may decrease
the number of progeny produced under a wide array of circumstances. At a minimum, the
presence of mtDNA genotypes that reduce the fertility of some males would increase the
variability in male reproductive success and thereby decrease effective population size.

(a) Outbred

100%

(b) 1B
75%

50%

~0%

(c) 3B

(d) Inbred

3.0 4.0
NaCI concentration (%)

5.0 6.0

Figure 14.11 Results of an experiment demonstrating that loss of genetic variation can
reduce a population’s ability to respond by natural selection to environmental change. Lines
of Drosophila with different relative amounts of expected heterozygosity (as indicated on the
right of the figure) were exposed to increasing NaCl concentrations. Each dot represents the
NaCl concentration at which lines went extinct. Modified from Frankham et al. (1999).
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This would increase the rate of loss of heterozygosity and other effects of inbreeding
depression that can reduce population viability.

14.7 Mutational meltdown

Wright (1931, p. 157) first suggested that small populations would continue to decline in
vigor slowly over time because of the accumulation of deleterious mutations that natural
selection would not be effective in removing because of the overpowering effects of
genetic drift (recall Section 8.5). Recent papers have considered the expected rate and
importance of this effect for population persistence (Lynch and Gabriel 1990; Gabriel and
Bürger 1994; Lande 1995). As deleterious mutations accumulate, population size may
decrease further and thereby accelerate the rate of accumulation of deleterious mutations.
This feedback process has been termed “mutational meltdown”.

Lande (1994) concluded that the risk of extinction through this process “may be com-
parable in importance to environmental stochasticity and could substantially decrease the
long-term viability of populations with effective sizes as a large as a few thousand”. The
expected timeframe of this process is hundreds or thousands of generations. Experiments
designed to detect empirical evidence for this effect have had mixed results (e.g., Lynch 
et al. 1999).

14.8 Long-term persistence

When considering longer periods than those of a typical PVA, avoiding the loss of genetic
variation is not enough for persistence. Environmental conditions are likely to change
over time, and a viable population must be large enough to maintain sufficient genetic
variation for adaptation to such changes. Evolutionary response to natural selection is
generally thought to involve a gradual change of quantitative characters through allele fre-
quency changes at the underlying loci, and discussions on the population sizes necessary
to uphold “evolutionary potential” have focused on retention of additive genetic variation
of such traits.

There is current disagreement among geneticists regarding how large a population
must be to maintain “normal” amounts of additive genetic variation for quantitative traits
(Franklin and Frankham 1998; Lynch and Lande 1998). The suggestions for the effective
sizes needed to retain evolutionary potential range from 500 to 5,000. The logic underly-
ing these contrasting recommendations is somewhat arcane and confusing. We, therefore,
review some of the mathematical arguments used to support the conflicting views.

Franklin (1980) was the first to make a serious attempt to provide a direct estimate of
the effective size necessary for the retention of additive genetic variation (VA) of a quant-
itative character. He argued that for evolutionary potential to be maintained in a small 
population, the loss of VA per generation must be balanced by new variation due to muta-
tions (Vm). VA will be lost at the same rate as heterozygosity (1/2Ne) at selectively neutral
loci, so the expected loss of additive genetic variation per generation is VA/2Ne. Therefore,

(14.5)
  
∆V V

V
N

A m
A

e

   = −
2

CATC14  28/05/2007  06:09PM  Page 357



358 PART III GENETICS AND CONSERVATION

(see also Lande and Barrowclough 1987; Franklin and Frankham 1998). At the equilibrium
between loss and gain, ∆VA is zero, and:

(14.6)

Using abdominal bristle number in Drosophila as an example, Franklin (1980) also noted
that Vm ≈ 10−3VE, where VE is the environmental variance (i.e., the variation in bristle
number contributed from environmental factors). Furthermore, assuming that VA and VE
are the only major sources of variation, the heritability (HN, the proportion of the total
phenotypic variation that is due to additive genetic effects; see Chapter 11) of this trait is
HN = VA/(VA + VE), and VE/(VA + VE) = 1 − HN. Thus, expression 14.6 becomes (cf. Franklin
and Frankham 1998):

(14.7)

The heritability of abdominal bristle number in Drosophila is about 0.5. Therefore, the
approximate effective size at which loss and gain of VA are balanced (i.e., where evolution-
ary potential is retained) would be 500.

Lande (1995) reviewed the recent literature on spontaneous mutation and its role in
population viability. He concluded that the approximate relation between mutational
input and environmental variance observed for bristle count in Drosophila (Vm ≈ 10−3VE)
appears to hold for a variety of quantitative traits in several animal and plant species. He
also noted, however, that a large portion of new mutations seem to be detrimental, and
that only about 10% are likely to be selectively neutral (or nearly neutral), contributing to
the potentially adaptive additive variation of quantitative traits. Consequently, he suggested
that a more appropriate value of Vm is Vm ≈ 10−4VE, and that Franklin’s (1980) estimated
minimum Ne of 500 necessary for the retention of evolutionary potential should be raised
to 5,000.

In response, Franklin and Frankham (1998) suggest that Lande (1995) overemphasized
the effects of deleterious mutations and that the original estimate of Vm ≈ 10−3VE is more
appropriate. They argued that empirical estimates of Vm typically have been obtained
from long-term experiments where a large fraction of the harmful mutations have had the
opportunity of being eliminated, such that a sizeable portion of those mutations have
already been accounted for. They also pointed out that in most organisms, heritabilities of
quantitative traits are typically smaller than 0.5, and that this is particularly true for fitness-
related characters. As a result, the quotient HN/(1 − HN) in expression 14.7 is typically
expected to be considerably smaller than unity, which reduces the necessary effective size.
Franklin and Frankham (1998) concluded that an Ne of the order of 500–1,000 should be
generally appropriate.

Lynch and Lande (1998) criticized the conclusions of Franklin and Frankham (1998) and
argued that much larger effective sizes are justified for the maintenance of long-term
genetic security. They maintain that the problems with harmful mutations must be taken
seriously. An important point is that a considerable fraction of new mutations are expected
to be only mildly deleterious with a selective disadvantage of less than 1%. Such mildly
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deleterious mutations behave largely as selectively neutral ones and are not expected to be
“cleansed” from the population by selective forces even at effective sizes of several hun-
dred individuals. In the long run, the continued fixation of mildly deleterious alleles may
reduce population fitness to the extent that it enters an extinction vortex (i.e., mutational
meltdown; Lynch et al. 1995).

According to Lynch and Lande (1998) there are several reasons why the minimum Ne for
long-term conservation should be at least 1,000. At this size, at least the expected (average)
amount of additive genetic variation of quantitative traits is of the same magnitude as for
an infinitely large population, although genetic drift may result in considerably lower 
levels over extended periods of time. Furthermore, Lynch and Lande (1998) considered
populations with Ne > 1,000 highly unlikely to succumb to the accumulation of uncon-
ditionally deleterious alleles (i.e., alleles that are harmful under all environmental condi-
tions) except on extremely long time scales. They also stressed, however, that many single
locus traits, such as disease resistance, require much larger populations for the main-
tenance of adequate allele frequencies (Lande and Barrowclough 1987), and suggest that
effective target sizes for conservation should be of the order of 1,000–5,000.

Discussion of the population sizes adequate for long-term persistence of populations
from a genetics perspective will continue. Regardless of the precise value of this figure,
there is agreement that the long-term goal for actual population sizes to insure viability
should be thousands of individuals, rather than hundreds.

14.9 The 50/500 rule

The 50/500 rule was introduced by Franklin (1980). He suggested that as a general rule-of-
thumb, in the short term the effective population size should not be less than 50, and in the
long term the effective population size should not be less than 500. The short-term rule
was based upon the experience of animal breeders who have observed that natural selec-
tion for performance and fertility can balance inbreeding depression if ∆F is less than 1%;
this corresponds to an effective population size using ∆F = 1/2Ne (see expression 6.2). The
basis of the long-term rule was discussed in detail in the previous section.

There are many problems with the use of simple rules such as this in a complicated
world. There are no real thresholds (such as 50 or 500) in this process; the loss of genetic
variation is a continuous process. The theoretical and empirical basis for this rule is not
strong and has been questioned repeatedly in the literature. In addition, such simple rules
can and have been misapplied. We once heard a biologist for a management agency use
this rule to argue that genetics need not be considered in developing a habitat manage-
ment plan that affected many species. After all, if Ne is less than 50, then the population is
doomed so that we don’t need to be concerned with genetics, and if Ne is greater than 50,
then the population is safe so we don’t need to be concerned with genetics.

Nevertheless, we believe that the 50/500 rule is a useful guideline for the management
of populations. Its function is analogous to a warning light on the dashboard of a car. If the
Ne of an isolated population is less than 50, we should be concerned about a possible
increased probability of extinction because of genetic effects. There is experimental evid-
ence with house flies, however, that suggests that the Ne may have to be greater than 50 to
escape extinction even in the short term (Reed and Bryant 2000). These numbers should
not, however, be used as targets. When the low fuel light comes on in your car, you do not
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stop filling the fuel tank once the light goes off. It is also important to remember that
50/500 is based only on genetic considerations. Some populations may face substantial risk
of extinction because of demographic stochasticity before they are likely to be threatened
by genetic concerns (Lande 1988; Pimm et al. 1988).

Guest Box 14 Noninvasive population size estimation in wombats
Andrea C. Taylor

Animals that are rare, cryptic, or endangered are notoriously difficult to study by
traditional methods such as trapping and observation. One of the more intractable
parameters for such species is population size. Two advances in molecular genetics
have together paved the way for alternative approaches to “counting” animals. The
first is the use of optimized methods for extracting the typically low quality and
quantity DNA present in remotely collected field samples such as hair, feces, and
saliva. The second is the development of polymerase chain reaction (PCR) based
genetic assays (e.g., microsatellite analysis, Chapter 4) that allow researchers to
assign individual-specific genotypes to such samples.

Amongst the world’s most endangered mammals is the Australian northern hairy-
nosed wombat. All known members of the species reside in a single small colony
within Epping Forest National Park in central Queensland, thought to be as small
as 25 individuals upon its “discovery” in the 1970s. Our ability to actively manage
the species is crucially dependent on knowledge of its population size. However,
methods available to date have been wholly inadequate: regular burrow activity
assessments provide data only on long-term population trends, and estimates of popu-
lation size based on trapping data are extremely imprecise (Figure 14.12). Being shy,
nocturnal, and burrowing (individuals spend only 2–6 hours per night above ground)
as well as highly endangered, this species is well qualified to receive the benefits of
some creative alternative noninvasive approaches to abundance estimation.

The wombat’s total reliance on burrows for daytime refuge means all indi-
viduals could theoretically be sampled by hair-collection devices, in this case 
double-sided carpet tape suspended between two posts on either side of burrow
entrances. Over seven consecutive nights in September 2000, all active burrows
(those showing signs of recent excavation, footprints, etc.) were taped in this man-
ner, and 60 randomly selected hair-containing tapes chosen per night for further
analysis. DNA (from single hairs, because of the possibility that multiple wombats
may visit a burrow on any given night) was extracted in the field to minimize loss
during hair storage, and later genotyped. Although northern hairy-nosed wombats
have very low levels of genetic variation, use of the 10 most variable microsatellite
markers provides sufficient individual specificity (Banks et al. 2003).

A total of 81 distinct genotypes were observed, presumably representing 81 dif-
ferent wombats. A mark–recapture analysis assuming heterogeneity in detection
probability among individuals and implemented in the program capture (Otis et al.
1978), suggested a most likely population size of 113. This analysis uses informa-
tion from the number of wombats detected only once, twice, three times, and so
on to estimate the number of others that were present but not sampled at all, hence
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Figure 14.12 Population size estimates for hairy-nosed wombats based on trapping
data (1993) and mark–recapture genetic analysis using noninvasive sampling (2000) and
the programs capture (Hair A) and capwire (Hair B). The bars show the 95% confidence 
intervals of the estimates.

the disparity between the estimated population size and the number of distinct
genotypes detected. Because capture was designed for trapping studies in which
animals are typically only captured once per nightly session, it cannot incorporate
multiple detections of individuals per sampling session, as occurs frequently in
noninvasive studies. Craig Miller and colleagues have recently produced a modified
mark–recapture model to incorporate multiple detections of individuals per session,
i.e. “capture with replacement” (capwire). Analysis of the northern hairy-nosed
wombat data with this new model gave an estimate of 88 individuals (Miller et al.
2005). The 95% confidence intervals for both hair-based estimates are a substantial
improvement over those based on trap samples (Figure 14.12).

Problem 14.1

We saw in Section 14.1 that the multilocus genotypes of individuals can be con-
sidered as “tags” that exist in all individuals and are permanent. Palsbøll et al. (1997)
used a mark–recapture approach with genotypes at six microsatellite loci to estim-
ate the number of humpback whales in the North Atlantic Ocean. Per Palsbøll 
has generously provided a subset of their data, which is available in an Excel file
(humpback genotypes) on the book web page. The first two columns give the
identification number and sex of each sample; identification numbers that begin
with 92XXXX were sampled in 1992, and numbers that begin with 93XXXX were
sampled in 1993. The two alleles present at the six loci (A–F) are listed in the next
12 columns. For example, the two alleles present in each whale at each locus are
in the A_1 and A_2 columns. Use these data, along with expression 14.1, to estimate
the number of female and male humpback whales in the North Atlantic Ocean.
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Problem 14.2

We saw in Section 14.4.2 that sex is determined in Hymenoptera (bees, ants, and
wasps) by genotypes at one or more hypervariable loci. Heterozygotes at the sex-
determining locus or loci are female, and the hemizygous haploid or homozygous
diploid individuals are male. At equilibrium, all alleles at this type of sex-determining
locus are expected to be equally frequent; that is, if there are A alleles, then each
allele is expected to be at a frequency of 1/A. What proportion of diploids is expected
to be male in a population with 20 alleles at equilibrium? What increase in diploid
males is expected if a bottleneck reduces the number of alleles to 10 or 5?

Problem 14.3

Wolves were hunted and poisoned to extinction in Sweden and Norway by 
the mid-20th century. Three wolves migrated from Russia and founded a new
Scandinavian wolf population in the early 1980s. That population now consists of
approximately 100 animals. How large do you think the Scandinavian wolf popula-
tion should be to maintain genetic variation that may be important for the viability
(continued persistence) and continued evolution of this population? There is
some possibility of gene flow into this population from Russian wolves. Do you
think that it is important that gene flow between the Scandinavian and the Russian
populations be maintained in the future? Why?

Problem 14.4

What do you think is an appropriate timeframe for evaluating population viability?
100 years? 1,000 years? (See Table 14.1.)

Problem 14.5

Do you think the timeframe for the evaluation of population viability should be in
units of years or generations? Why? (See Table 14.1.)
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Metapopulations and 
Fragmentation

An important case arises where local populations are liable to frequent extinction,
with restoration from the progeny of a few stray immigrants. In such regions the
line of continuity of large populations may have passed repeatedly through
extremely small numbers even though the species has at all times included count-
less millions of individuals in its range as a whole.

Sewall Wright (1940)

Theoretical results have shown that a pattern of local extinction and recoloniza-
tion can have significant consequences for the genetic structure of subdivided
populations; consequences that are relevant to issues in both evolutionary and
conservation biology.

David McCauley (1991)

15.1 The metapopulation concept, 364

15.2 Genetic variation in metapopulations, 365

15.3 Effective population size, 369

15.4 Population divergence and fragmentation, 371

15.5 Genetic rescue, 372

15.6 Long-term population viability, 374

Guest Box 15 Fitness loss and genetic rescue in stream-dwelling topminnows, 377

White campion, Section 15.5
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The models of genetic population structure that we have examined to this point have assumed
a connected series of equal size populations in which the population size is constant.
However, the real world is much more complicated than this. Local populations differ in
size, and local populations of some species may go through local extinction events and then
be recolonized by migrants from other populations. These events will have complex, and
sometimes surprising, effects on the genetic population structure and evolution of species.

These considerations are becomingly increasingly important because of ongoing loss 
of habitat and fragmentation. Many species that historically were nearly continuously 
distributed across broad geographic areas are now restricted to increasingly smaller and
more isolated patches of habitat. In this chapter, we will combine genetic and demo-
graphic models to understand the distribution of genetic variation in species. We will also
consider how these processes affect the viability of populations.

15.1 The metapopulation concept

Sewall Wright (1940) was the first to consider the effects of extinction of local populations
on the genetics of species. Wright was interested in the effect that such local extinctions
would have on the genetic structure and evolution of species. He considered the case
where local populations are liable to frequent extinction and are restored with the
“progeny of a few stray immigrants” (Figure 15.1).

1

2

3

4

5

6

7

8

9

10

11

12
Time

Figure 15.1 Diagram of a species in which local populations are liable to frequent extinction
and recolonization. Time proceeds from left to right. Twelve different local patches are
represented by a horizontal row (numbered 1 through 12). Note that the bottom two local
populations never go extinct whereas all others go extinct every 2–9 time steps. For example,
the subpopulation in patch 7 went extinct at the end of time steps 2, 6, and 15. The darkly
shaded subpopulations in the upper right corner have passed through small groups of
migrants six times. Modified from Wright (1940).
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Wright pointed out that such local extinctions and recolonization events would act as
bottlenecks that would make the effective population size of a group of local subpopula-
tions much smaller than expected based on the number of individuals present within the
subpopulations. Therefore, many of the subpopulations would be derived from a few local
subpopulations that persist for long time periods. In modern terms, the genes in many 
of the subpopulations would “coalesce” to a single gene that was present in a “source” 
subpopulation in the relatively recent past.

He also discussed that genetic drift during such periodic bottlenecks would provide 
a mechanism for fixation of chromosomal rearrangements that are favorable when
homozygous. Such arrangements are selected against in heterozygotes (see Section 8.2)
and therefore will be selectively removed in large populations where natural selection 
is effective. Wright felt that such “nonadaptive inbreeding effects” in local populations
might create a greater diversity of multilocus genotypes and thus make natural selection
more effective within the species as a whole. He later suggested that differential rates of
extinction and recolonization among local populations could result in intergroup selec-
tion that could lead to the increase in frequency of traits that were “socially advantageous”
but individually disadvantageous (Wright 1945).

The term metapopulation was introduced by Richard Levins (1970) to describe a 
“population of populations”, a collection of subpopulations that occupy separate patches
of a subdivided habitat (Dobson 2003). In Levins’s model, a metapopulation is a 
group of small populations that occupy a series of similar habitat patches isolated by
unsuit-able habitat. The small local populations have some probability of extinction (e)
during a particular time interval. Empty habitat patches are subject to recolonization 
with probability (c) by individuals from other patches that are occupied. Meta-
population dynamics are a balance between extinction and recolonization so that at any
particular time some proportion of patches are occupied (p) and some are extinct. At 
equilibrium,

(15.1)

The concept of metapopulations has become a valuable framework for understanding the
conservation of populations and species (Hanski and Gilpin 1997). The general definition
of a metapopulation is a group of local populations that are connected by dispersing 
individuals (Hanski and Gilpin 1991). More realistic models have incorporated differences
in local population size and differential rates of exchange among populations as well as 
differential rates of extinction and colonization (Figure 15.2). In general, larger patches are
less likely to go extinct because they will support larger populations. Patches that are near
other occupied patches are more likely to be recolonized. In addition, immigration into a
patch that decreases the extinction rate for either demographic or genetic reasons has
been called the rescue effect (Brown and Kodric-Brown 1977; Ingvarsson 2001).

15.2 Genetic variation in metapopulations

It is important to consider both spatial and temporal scales in considering the genetic 
size of metapopulations. Slatkin (1977) described the first metapopulation genetic 
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models. Hanski and Gilpin (1991) have described three spatial scales for consideration
(Figure 15.3):

1 The local scale is the scale at which individuals move and interact with one another in
their course of routine feeding and breeding activities.

2 The metapopulation scale is the scale at which individuals infrequently move from one
local population to another, typically across habitat that is unsuitable for their feeding
and breeding activities.

3 The species scale is the entire geographic range of a species; individuals typically have
no possibility of moving to most parts of the range. Metapopulations on opposite ends
of the range of a species do not exchange individuals, but they remain part of the same
genetic species because of movement among intermediate metapopulations.

The effect of metapopulation structure on the pattern of genetic variation within a
species depends upon the spatial and temporal scale under consideration. For example,
the effective population size in the short term is the amount of genetic drift from genera-
tion to generation within local populations. It can be measured by allele frequency
changes from generation to generation (see Chapter 7). The long-term effective popula-
tion size is the rate at which genetic variation is lost over long periods of time (tens or 
hundreds of generations) within metapopulations.

We can use our models of genetic subdivision introduced in Section 9.1 to see this 
relationship (Waples 2002). Effective population size is a measure of the rate of loss of 
heterozygosity over time. The short-term effective population size is related to the decline
of the expected average heterozygosity within subpopulations (HS). The long-term effec-
tive population size is related to the decline of the expected heterozygosity if the entire
metapopulation were panmictic (HT).

Consider a metapopulation consisting of six subpopulations of 25 individuals each, that
are “ideal” as defined in Section 7.1 so that Ne = N = 25. The total population size of this
metapopulation is 6 × 25 = 150 = NT. The subpopulations are connected by migration
under the island model of population structure so that each subpopulation contributes a
proportion m of its individuals to a global migrant pool every generation, and each sub-
population receives the same proportion of migrants drawn randomly from this migrant

Figure 15.2 The pattern of occupancy of habitat patches of different sizes and isolation in a
metapopulation. Darker shading indicates a higher probability that a patch will be occupied.
Large patches that are close to other populations have the greatest probability of being occupied.
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pool (see Section 9.4). The rate of decline of both HS and HT will depend upon the amount
of migration among subpopulations (Figure 15.4).

In the case of complete isolation, the local effective population size is N = 25 and 
heterozygosities within subpopulations decline at a rate of 1/2N = 1/50 = 2.0% per genera-
tion. However, different alleles will be fixed by chance in different subpopulations.
Therefore, heterozygosity in the global metapopulation (HT) will become “frozen” and
will not decline. This can be seen in Figure 15.4. Five of the six isolated subpopulations
went to fixation within the first 100 generations.

In the other extreme of effective panmixia among the subpopulations, the local effective
population size will be NT so that heterozygosities within subpopulations decline at a rate
of 1/2NT = 1/300 = 0.3% per generation. In this case, the heterozygosity in the global
metapopulation (HT) will decline at the same rate as the local subpopulations. Eventually
all subpopulations will go to fixation for the same allele so that HT will become zero
(Figure 15.4).

Thus, complete isolation will result in a small short-term effective population size, but
greater long-term effective population size. The case of effective panmixia has the extreme
opposite effect. That is, greater short-term effective population size, but smaller long-term
effective population size (Figure 15.5).

The case of an intermediate amount of gene flow has the best of both worlds. The intro-
duction of new genes by migration will maintain greater heterozygosities within local
populations than the case of complete isolation. However, a small amount of migration
will not be enough to restrain the subpopulations from drifting to near fixation of different
alleles. Therefore, a small amount of gene flow will maintain nearly the same amount of

m 
m

Species

Figure 15.3 Hierarchical spatial organization of an entire species consisting of three
metapopulations each consisting of a cluster of local populations that each exchange
individuals. A small amount of gene flow between the three metapopulations (m) maintains
the genetic integrity of the entire species. The two metapopulations on opposite ends of the
range do not exchange individuals, but they remain part of the same genetic species because
of movement between the intermediate metapopulation.
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Figure 15.4 Changes in allele frequency in six subpopulations each of N = 25 connected by
varying amount of migration under the island model. (a) The case of complete isolation 
(m = 0). (b) The case of one migrant per generation (mN = 1; m = 0.04). (c) The case of effective
panmixia among subpopulations (mN = 10; m = 0.4). The graphs are from the Populus
simulation program. From Alstad (2001).
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heterozygosity within local subpopulations as the case of effective panmixia and will main-
tain long-term heterozygosity at nearly the same rate as the case of complete isolation
(Figure 15.4).

15.3 Effective population size

The effective population size of a metapopulation is extremely complex. Wright (1943) has
shown that under these conditions with a large number of subpopulations that:

(15.2)

where NeT is the long-term effective population size of the metapopulation. Thus, increas-
ing population subdivision (as measured by FST) will increase the long-term effective popu-
lation size of the metapopulation (Nunney 2000). Expression 15.2 also indicates that that
the effective size of the metapopulation will be greater than the sum of the Nes of the 
subpopulations when there is divergence among the subpopulations.

The validity of expression 15.2 and our conclusions for natural populations depend
upon the validity of our assumptions of no local extinction (e = 0) and N within subpopula-
tions being constant and equal. However, in the classic metapopulation of Levins (1970),
extinction and recolonization of patches (subpopulations) is common. Wright (1940)
pointed out that in the case of frequent local extinctions, the long-term Ne may be much
smaller than the short-term Ne because of the effects of bottlenecks associated with 
recolonization:
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Figure 15.5 Expected decline in local (HS) and total (HT) heterozygosity in a population with
six subpopulations of N = 25 each. In the case of effective panmixia (mN = 10) the decline in
both local and global heterozygosities are equivalent and are equal to (1/2NT = 1/300 per
generation). In the case of complete isolation, local heterozygosity declines at an rate of 
1/2N = 0.02 per generation, but global heterozygosity is constant because random drift 
within local subpopulations causes the fixation of different alleles.
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For example, the entire ancestry of the darkly shaded group of related populations in
Figure 15.1 have “passed through small groups of migrants six times in the period shown”
(Wright 1940). Thus, these populations are expected to have low amounts of genetic vari-
ation even thought their current size may be very large.

This effect can be seen in Figure 15.6, which shows a metapopulation consisting of three
habitat patches, from Hedrick and Gilpin (1997). The local populations in all three patches
initially have high heterozygosity. The population in patch 1 goes extinct and is recolon-
ized by a few individuals from patch 2 in generation 20, resulting in low heterozygosity.
The population in patch 1 goes extinct and is recolonized again from patch 2. However, the
few colonists from patch 2 have low heterozygosity because of an earlier extinction and
recolonization in patch 2; this results in near zero heterozygosity in patch 1. Patches 2 and
3 are later recolonized by migrants from patch 1 so that heterozygosity is zero in the entire
metapopulation.

Hedrick and Gilpin (1997) explored a variety of conditions with computer simulations
to estimate long-term NeT as a function of decline in HT. They found that the rate of patch
extinction (e) and the characteristics of the founders were particularly important. Slatkin
(1977) described two extreme possibilities regarding founders. In the “propagule pool”
model, all founders come from the same founding local population. In the “migrant pool”
model, founders are chosen at random from the entire metapopulation. As expected, high
rates of patch extinction greatly reduce NeT. In addition, if vacant patches were colonized
by a few founders, or if the founders came from the same subpopulation, rather than the
entire metapopulation, HT and NeT are greatly reduced.

Relaxing the assumption that all subpopulations contribute an equal number of
migrants also affects long-term NeT as a function of decline in HT. Nunney (1999) con-
sidered the case where differential productivity of the subpopulations brings about differ-
ential contributions to the migrant pool due to the accumulation of random differences
among individuals in reproductive success. In this case, the effective size of a metapopula-
tion (NeT) is reduced by increasing FST by what Nunney (1997) has called “interdemic
genetic drift”.

High H Low H H = 0Patch 1

High H

High H

Low H H = 0
Patch 2

H = 0
Patch 3

Generation

0 50 100

Figure 15.6 Effect of local extinction and recolonization by a few founders on the
heterozygosity (H ) in a metapopulation consisting of three habitat patches. Redrawn from
Hedrick and Gilpin (1997).
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As we have seen, most species have a large amount of heterozygosity at allozyme and
nuclear DNA loci. On this basis, Hedrick and Gilpin (1997) concluded that most species
have not functioned as a classic Levins-type metapopulation during their evolutionary 
history (see Figure 15.7).

We expect metapopulation dynamics to have a greater effect on variation at mtDNA than
nuclear DNA because of the smaller effective population size of mtDNA (see Chapter 7).
Grant and Leslie (1993) found that a variety of vertebrate species (mammals, birds, and
fish) in southern Africa show greatly reduced amounts of variation at mtDNA compared
to nuclear variation, relative to vertebrate species in the northern hemisphere. For example,
a cichlid fish (Pseudocrenilabrus philander) had unusually high amounts of genetic variation
both within (HS = 6.2%) and between populations (FST = 0.30) at allozyme loci. However,
this species has virtually no genetic variation at mtDNA. Grant and Leslie (1993) suggested
that the absence of genetic variation at mtDNA results from cycles of drought and rainfall
in the semiarid regions of Africa, which have caused relatively frequent local extinctions and
recolonizations that have not been severe enough to cause the loss of nuclear variability.

It is clear that the effect of metapopulation structure on the effective population size of
natural populations is complex. The long-term effective population size may either be
greater or less than the sum of the local Nes depending on a variety of circumstances: 
rates of extinction and recolonization, patterns of migration, and the variability in size 
and productivity of subpopulations. It is especially important to distinguish between local
and global effective population size because these two parameters often respond very 
differently to the same conditions. All of these factors should be considered in evaluating
conservation programs for endangered species (Waples 2002).

15.4 Population divergence and fragmentation

The effects of extinction and recolonization on the amount of divergence among popula-
tions (FST) is extremely complex (McCauley 1991). Gilpin (1991) has considered the effects
of the relative rates of extinctions and recolonization on genetic divergence (Figure 15.7).
If e > c, then the metapopulation is not viable. If both extinction and recolonization occur
regularly and c > e, then patch coalescence will occur in which all patches descend from a
single patch. For example, patches 1–5 (filled black) in Figure 15.1 coalesce to a single
ancestral patch in seven steps back in time. If the rate of colonization is much greater than
local extinctions (c >> e) then all patches will have similar allele frequencies (panmixia).
Allele frequency divergence (FST > 0) among local populations is expected only in a fairly
narrow range of rates of colonization and extinction.

Perhaps most importantly, patterns of extinction and recolonization in nature may
invalidate many inferences resulting from models that assume equilibrium (e.g., F *ST =
1/(4mN + 1) with the island model of migration). The effects of metapopulation dynamics
(local extinctions and recolonizations) depend largely on the number and origin of
founders that recolonize patches. We began this chapter with a model by Wright (1940) in
which the genetic differentiation of local populations was enhanced because patches are
founded by a few individuals so that genetic differentiation was enhanced by bottlenecks.
In contrast, extinctions and recolonizations may act as a form of gene flow and reduce
genetic differentiation if patches are founded by several individuals drawn from different
patches (Slatkin 1987):
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Few founders Many  founders from
from one patch several patches

15.5 Genetic rescue

The term genetic rescue was coined to describe the increase in fitness of small populations
resulting from the alleviation of inbreeding depression by immigrants (Thrall et al. 1998).
Genetic rescue is generally considered to occur when the population fitness increases by
more than can be attributed to the demographic contribution of migrant individuals
(Ingvarsson 2001). Genetic rescue may play a critical role in the persistence of small nat-
ural populations and may, under some circumstances, be an effective conservation tool
(Tallmon et al. 2004) (see Guest Box 15). Increasingly widespread evidence that genes from
a pulse of immigrants into a local population often results in heterosis that increases popu-
lation growth rate, also has important implications for the study of evolution and
metapopulation dynamics. However, the occurrence of outbreeding depression following
heterosis in the first generation indicates that care is needed in considering the source of
populations for rescue (see Chapter 17).

Recent studies report positive fitness responses to low levels of migration (gene flow)
into populations that have suffered recent demographic declines and suggest that natural
selection can favor the offspring of immigrants (Example 15.1). Madsen et al. (1999) stud-
ied an isolated population of adders in Sweden that declined dramatically some 35 years
ago, and that has since suffered from severe inbreeding depression. The introduction of 
20 males from a large and genetically variable population of adders resulted in a dramatic
demographic recovery of this population. This recovery was brought about by increased
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Figure 15.7 Effects of metapopulation dynamics on genetic divergence among local
populations. From Gilpin (1991).
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survival rates, even though the number of litters produced by females per year actually
declined during the initial phase of recovery. A genetic rescue effect has been uncovered in
experimental populations of house flies, but only following many generations in which it
was not detected (Bryant et al. 1999).

Two recent studies provide evidence that genetic rescue may be an important phe-
nomenon. In experimentally inbred populations of a mustard (Brassica campestris), one
immigrant per generation significantly increased the fitness of four of six fitness traits 
in treatment populations compared to (no immigrant) control populations (Newman 
and Tallmon 2001). Interestingly, there was no fitness difference between one-immigrant
and 2.5-immigrant treatments after six generations, but there was greater phenotypic

Example 15.1 Genetic rescue of an isolated population of bighorn sheep

Hogg et al. (in press) documented genetic rescue in a natural population of
bighorn sheep on the National Bison Range, an isolated wildlife refuge, in
Montana. The population was founded in 1922 with 12 individuals from Alberta,
Canada. The mean population size from 1922 to 1985 was approximately 40 
individuals. Starting in 1985, 15 individuals (mostly from Alberta, Canada) were
introduced over a 10-year period.

The restored gene flow caused an increase in the expected heterozygosity at
eight microsatellite loci from 0.44 to more than 0.60. The gene flow also erased
the genetic bottleneck signature consisting of a severe deficit of rare alleles (Hogg
et al., in press).

Survival and reproductive success were remarkably higher in the outbred than
in the inbred individuals. For example, the average annual reproductive success
(number of lambs weaned) for females was 2.2-fold higher in outbred individuals
compared to inbred resident animals. Average male annual reproductive success
(number of lambs fathered) was 2.6-fold higher in outbred individuals. Survival 
for both females and males was higher in outbred individuals; average life span
was 2 years longer in outbred animals compared to inbred ones with only resident
genes.

This study was exceptional in that individual-based measures of fitness were
available through a long-term (25-year) study. Most studies of genetic rescue
report only a correlative increase in population size with genetic variation (e.g.,
mean heterozygosity), with no direct evidence that the increased genetic variation
causes the increase in population size. In correlative studies, environmental fac-
tors could be the cause of increase in population size. In this study the inbred and
outbred individuals coexisted in the same environment. This allowed for control of
or removal of environmental effects. Finally, individual-based measures of fitness
rescue are generally better than population-based measures (e.g., increased
population growth rate) because it is possible to recover individual fitness without
actually increasing population size, for example, if an environmental challenge or
disease outbreak prevents a population size increase even following increased
individual fitness.
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divergence among populations in the one-migrant treatment, which could facilitate local
adaptation in spatially structured populations subject to divergent selection pressures. In
small, inbred white campion populations, Richards (2000) found that gene flow increased
germination success and that the success of immigrant pollen correlated positively with
the amount of inbreeding in recipient populations.

Genetic rescue may be of critical importance to entire metapopulations by reducing
local inbreeding depression and increasing the probability of local population persistence;
in turn, this maintains a broad geographic range that buffers overall metapopulation
extinction and provides future immigrants for other populations. Genetic rescue might
also play a vital role in the spread of invasive species along the leading edge of invasion by
supplying established, small propagules with adequate genetic variation to respond to
selection and adapt to the new environment. In long-established plant populations, it is
conceivable that plants emerging from long-dormant seed banks could also provide an
intergenerational genetic rescue.

15.6 Long-term population viability

There is sometimes confusion regarding when to apply short- or long-term genetic goals,
and how they relate to the conservation of local populations versus entire species. The
short-term goals are appropriate for the conservation of local populations. As indicated
above, those goals are aimed at keeping the rate of inbreeding at a tolerable level. The
effective population sizes at which this may be achieved, however, are typically not large
enough for new mutations to compensate for the loss of genetic variation through genetic
drift. Some gene flow from neighboring populations is necessary to provide reasonable
levels of genetic variation for quantitative traits to insure long-term persistence.

The long-term goal, where the loss of variation is balanced by new mutations, refers 
primarily to a global population, which may coincide with a species or subspecies that 
cannot rely on the input of novel genetic variation from neighboring populations. This
global population may consist of one more-or-less panmictic unit, or it may be composed
of multiple subpopulations that are connected by some gene flow, either naturally or
through translocations (Mills and Allendorf 1996). It is the total assemblage of intercon-
nected subpopulations that form a global population that must have an effective size meet-
ing the criteria for long-term conservation (e.g., Ne ≥ 500–1,000). The actual size of this
global population will vary considerably from species to species depending on the number
and size of the constituent subpopulations and on the pattern of gene flow between them
(Waples 2002).

The accumulation of mildly deleterious mutations as considered in Section 14.6 may
also affect the long-term viability of metapopulations (Higgins and Lynch 2001). Under
some circumstances, metapopulation dynamics can reduce the effective population size 
so that even mutations with a selection coefficient as high as s = 0.2 can behave as nearly
neutral and cause the erosion of metapopulation viability.

The long-term viability of a metapopulation or species is influenced by the number 
and complexity of the subpopulations. Metapopulation viability can be increased by 
the maintenance of a number of populations across multiple, diverse, and semi-
independent environments as illustrated in Example 15.2, describing the study of Hilborn
et al. (2003).
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Example 15.2 Metapopulation structure and long-term productivity and persist-
ence of sockeye salmon

Complex genetic population structure can play an important role in the long-term
viability of populations and species. Sockeye salmon within major regions gener-
ally consist of hundreds of discrete or semi-isolated individual local demes
(Hilborn et al. 2003). The amazing ability of sockeye salmon to return and spawn
in their natal spawning sites results in substantial reproductive isolation among
local demes. Local demes of sockeye salmon with major lake systems generally
show pairwise FST values of 0.10–0.20 at allozyme and microsatellite loci, indicat-
ing relatively little gene flow.

These local demes occur in a variety of different habitats, which, combined with
the low amount of gene flow, results in a complex of locally adapted populations.
Sockeye salmon spawning in tributaries to Bristol Bay, Alaska, display a wide vari-
ety of life history types associated with different breeding and rearing habitats.
Bristol Bay sockeye salmon spawn in streams and rivers from 10 cm to several
meters deep in substrate ranging from small gravel to cobble. Some streams have
extremely clear water while others spawn in sediment-laden streams just down-
stream from melting glaciers. Sockeye salmon also spawn on beaches in lakes
with substantial ground water. Different demes spawn at different times of the
year. The date of spawning is associated with the long-term average thermal
regime experienced by incubating eggs so that fry emerge in the spring in time to
feed on zooplankton and aquatic insects. Fish from different demes have a variety
of morphological, behavior, and life history differences associated with this habitat
complexity.

Up to 40 million fish are caught each year in the Bristol Bay sockeye fishery in
several fishing areas associated with different major tributaries. There is a large
year-to-year variability in overall productivity but the range of the productivity of
this fishery has been generally consistent for nearly 100 years (Figure 15.8).
However, the productivity of different demes and major drainages has changed
dramatically over the years. The relative productivity of local demes has changed
as the marine and freshwater climates change. Local reproductive units that are
minor components of a mixed stock fishery during one climatic regime may 
dominate during others. Therefore, maintaining productivity over long time scales
requires protecting against the loss of local populations during certain environ-
mental regimes.

The long-term stability of this complex system stands in stark contrast to the
dramatic collapse and extirpation of a highly productive population of an intro-
duced population of this species in the Flathead River drainage of Montana
(Spencer et al. 1991). The life history form of this species that spends its entire life
in fresh water is known as kokanee. Sockeye salmon were introduced into
Flathead Lake in the early 20th century, and by the 1970s some 50,000–100,000
fish returned to spawn in one primary local population and supported a large
recreational fishery. Opossum shrimp were introduced into Flathead Lake in 1983
and had a major effect on the food web in this ecosystem. A primary effect was the
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Figure 15.8 (a) Map of fishing districts (dark areas) around Bristol Bay, Alaska. 
(b) Catch history of the three major sockeye salmon fishing areas within Bristol Bay.
The overall productivity of the system has been generally stable, but the relative
contributions of the three major areas have changed greatly. For example, the Egegik
district (see map) generally contributed less than 5% to the fishery until 1975, but has
been a major contributor since then.
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predation of opossum shrimp on the zooplankton that was the major food
resource of the kokanee. This productive single deme of kokanee went from over
100,000 spawners in 1985 to extirpation just 3 years later.

This example illustrates the importance of maintaining multiple semi-isolated
subpopulations with different life histories to help insure long-term population and
species persistence.

Guest Box 15 Fitness loss and genetic rescue in stream-dwelling topminnows
Robert C. Vrijenhoek

The “guppy-sized” livebearing topminnow Poeciliopsis monacha inhabits rocky
arroyos in northwestern Mexico. The upstream portion of a small stream, the
Arroyo de los Platanos, dried completely during a severe drought in 1976, but
within 2 years fish recolonized this area from permanent springs that exist down-
stream. The founder population was homozygous at loci that were polymorphic in
the source population, a loss of variation that corresponded with manifestations of
inbreeding depression.

Fitness of the source and founder populations was compared with that of 
coexisting asexual forms of Poeciliopsis that experienced the same extinction/
recolonization event. The reproductive mode of cloning preserves the heterozy-
gosity and limits inbreeding depression in the asexual fish. Compared to local
clones, the inbred founder population of P. monacha exhibited poor developmental
stability (e.g., asymmetry in bilateral morphological traits) and an increased 
parasite load (Vrijenhoek and Lerman 1982; Lively et al. 1990). Genetic variation 
at allozyme loci in this species is associated with the ability to survive seasonal
stresses in these desert streams – cold temperatures, extreme heat, and hypoxia
(Vrijenhoek et al. 1992).

Prior to the extinction event in 1976, the sexual P. monacha constituted 76% of
the fish population in the upper Platanos and 24% of the fish were asexual. After
recolonization the sexual fish constituted no more than 10% for the next 5 years
(10–15 generations). Corresponding frequency shifts did not occur downstream in
permanent springs where levels of heterozygosity remained stable in P. monacha.

By 1983, P. monacha had been eliminated from several small pools in the upper
Platanos while the clones flourished there. We rescued the founder population by
transplanting 30 genetically variable females from a downstream location where 
P. monacha was genetically variable. By the following spring (2–3 generations), 
P. monacha regained numerical dominance over the clones (Vrijenhoek 1989), and
its parasite loads dropped to levels that were typical of the permanent localities
downstream (Lively et al. 1990). Restoration of genetic variability reversed inbreed-
ing depression in P. monacha and restored its fitness relative to that of the competing
fish clones (Figure 15.9).

Setting aside the special reproductive features of Poeciliopsis, it is easy to imagine
similar interactions between a rare endangered species and its competitors and 
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Figure 15.9 Population dynamics of Poeciliopsis topminnows. (a) The upper portion of 
the Arroyo de los Platanos. (b) The main stream of the Arroyo de Jaguari. Histogram
bars, arranged by year, record the frequencies of P. monacha females (dark gray) and the
triploid clones (light gray) in each sample. The mean gene diversity in P. monacha across
four polymorphic allozyme loci is traced by the black line. The open arrow indicates 
a single transplant of 30 P. monacha females into the upper Platanos population in 1983.
Modified from Vrijenhoek (1989).

parasites. Furthermore, loss of heterozygosity in small populations and inbreeding
depression can have manifold effects on fitness that might reduce a population’s
capacity to resist displacement by alien competitors and combat novel diseases.
The genotypic differences among individuals of a sexually reproducing species help
to reduce intraspecific competition and provide the variability needed to persist 
in an evolutionary arms race with rapidly evolving parasites and pathogens (Van
Valen 1973).
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Problem 15.1

We saw in this chapter that we expect metapopulation dynamics of relatively high
rates of local extinction (e) and recolonization (c) to have a greater effect on genes
coded in the mitochondria than in the nucleus because of the smaller Ne of
mtDNA. Do you think it would be possible to identify populations with high rates 
of local extinction by a comparison of the patterns of genetic variation at mtDNA
versus nuclear genes in a species?

Problem 15.2

Explain how the process of extinction and recolonization in local populations
could reduce genetic variation in an entire population or species.

Problem 15.3

In the extreme case of complete isolation of subpopulations within a metapopu-
lation, how will heterozygosity in the global metapopulation (HT) change? Why?
How will heterozygosity within local subpopulations (HS) change?

Problem 15.4

In a model by Wright (1940), the genetic differentiation among local populations
was enhanced by metapopulation structure. In contrast, work by Slatkin (1987)
suggested that metapopulation structure can reduce genetic differentiation
among populations. How can we reconcile these two views? Explain how both
can be true depending on the characteristics of the metapopulation.

Problem 15.5

Does demographic or genetic connectivity require more exchange of individuals
between local populations? How would your answer to this question change if the
local populations were very small (say Ne < 100) or very large (say Ne >> 1,000)?
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Units of 
Conservation

The zoo directors, curators, geneticists and population biologists who attempt to
pursue the elusive goal of preservation of adaptive genetic variation are now con-
sidering the question of which gene pools they should strive to preserve.

Oliver A. Ryder (1986)

The choices of what to conserve must often be made with regard to populations
that are not separate completely from others, or when information regarding the
relationships and degrees of distinction among populations is very incomplete.

Jody Hey et al. (2003)

16.1 What should we try to protect?, 382

16.2 Systematics and taxonomy, 385

16.3 Phylogeny reconstruction, 387

16.4 Description of genetic relationships within species, 392

16.5 Units of conservation, 404

16.6 Integrating genetic, phenotypic, and environmental information, 415

Guest Box 16 Identifying conservation units in Pacific salmon, 417

Grand skink, Section 16.4.2
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The identification of appropriate taxonomic and population units for protection and man-
agement is essential for the conservation of biological diversity. For species identification
and classification, genetic principles and methods are relatively well developed; nonetheless
species identification can be controversial. Within species, the identification and protection
of genetically distinct local populations should be a major focus in conservation because
the conservation of many distinct populations helps maximize evolutionary potential and
minimize extinction risks (Hughes et al. 1997; Hilborn et al. 2003; Luck et al. 2003).
Furthermore, the local population is often considered the functional unit in ecosystems.

Identification of population units is necessary so that management and monitoring 
programs can be efficiently targeted toward distinct or independent populations. Biologists
and managers must be able to identify populations and geographic boundaries between
populations in order to effectively plan harvesting quotas (e.g., to avoid overharvesting) 
or to devise translocations and reintroductions of individuals (e.g., to avoid mixing of
adaptively differentiated populations). In addition, it is sometimes necessary to prioritize
which population units (or taxa) to conserve because limited financial resources preclude
conservation of all units.

Finally, many governments and agencies have established legislation and policies to 
protect intraspecific population units. This requires the identification of population units.
For example, the ESA (Endangered Species Act of the USA) allows listing and full protec-
tion of distinct population segments (DPS) of vertebrate species (Example 16.1). Species
and subspecies identification is based upon traditional, established taxonomic criteria as
well as genetic criteria (although criteria for species identification are sometimes contro-
versial). The choice of criteria to use to delineate intraspecific units for conservation has
been highly controversial. Other countries, for example in Europe and Australia, also have
laws that depend on the identification of distinct taxa and populations for the protection of
species and habits (Example 16.1).

Example 16.1 The US Endangered Species Act (ESA) and conservation units

The ESA of the United States is one of the most powerful pieces of conservation
legislation in the world. The ESA has been a major stimulus motivating biologists
to develop criteria for identifying population units for conservation. This is because
the ESA provides legal protection for subspecies and “distinct population segments”
(DPSs) of vertebrates, as if they were full species. According to the ESA:

The term “species” includes any subspecies of fish or wildlife and plants, and
any distinct population segment of any species of vertebrate fish or wildlife
which interbreeds when mature.

However, the ESA does not provide criteria or guidelines for delineating DPSs.
The identification of intraspecific units for conservation is controversial. This is 
not surprising given that the definition of a “good species” is controversial (see
Section 16.5). Biologists have vigorously debated the criteria for identifying DPSs
and other conservation units ever since the US Congress extended full protection
of the ESA to “distinct” populations, but did not provide guidelines.

CATC16  28/05/2007  06:11PM  Page 381



382 PART III GENETICS AND CONSERVATION

Genes 

Species 

Ecosystems 

Populations 

Figure 16.1 Primary levels of biodiversity recognized by the IUCN (solid circles), and a fourth 
level – populations – recognized as perhaps most crucial for species’ long-term persistence 
(Hughes et al. 1997; Luck et al. 2003). In reality, biodiversity exists across a continuum 
of many hierarchical levels of organization including genes, genomes (i.e., multilocus
genotypes), local populations, communities, ecosystems, and biomes. Additional levels of
diversity include metapopulations, subspecies, genera, families, and so on.

Legislations in other countries around the world have provisions that recognize
and protect intraspecific units of conservation. For example, Canada passed the
Species at Risk Act (SARA) in 2003. The SARA aims to “prevent wildlife species
from becoming extinct, and to secure the necessary actions for their recovery”.
Under the SARA, “wildlife species” means a species, subspecies, variety, or geo-
graphically or genetically distinct population of animal, plant, or other organism,
other than a bacterium or virus, which is wild by nature.

In Australia, the Endangered Species Protection Act (ESPA) also allows protec-
tion for subspecies and distinct populations. But, like the ESA in the United States,
there are problems with defining and identifying intraspecific units (Woinarski and
Fisher 1999).

In this chapter, we examine the components of biodiversity and then consider methods
to assess taxonomic and population relationships. We discuss the criteria, difficulties, and
controversies in the identification of conservation units. We also consider the identifica-
tion of appropriate population units for legal protection and for management actions (e.g.,
supplemental translocation of individuals between geographic regions). Recall that in the
previous chapter, we considered three spatial scales of genetic population structure for
conservation: local, metapopulation, and species.

16.1 What should we try to protect?

Genes, species, and ecosystems are three primary levels of biodiversity (Figure 16.1) 
recognized by the IUCN. There has been some controversy as to which level should
receive priority for conservation efforts (e.g., Bowen 1999). However, it is clear that all
three levels must be conserved for successful biodiversity conservation. For example, it is
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as futile to conserve ecosystems without species, as it is to save species without large,
healthy ecosystems.

An example of this kind of futility is that of the African rhinoceros, which are being 
protected mainly in zoos and small nature reserves, but for which little habitat (free from
poachers) is currently available. Without conserving vast habitats for future rhino popula-
tions, it seems pointless to protect rhinos in small nature reserves surrounded by armed
guards and fences.

It is not too late for rhinos. Vast habitats do exist, and rhinos could be successful in 
these habitats if poaching is eliminated. In addition to conserving rhino species and their
habitats, it is also important to conserve genetic variation within rhino species because
variation is a prerequisite for long-term adaptive change and the avoidance of fitness
decline through inbreeding depression (see Chapter 14). Clearly, it is important to recog-
nize and conserve all levels of biodiversity: ecosystems, species, and genes.

The debate over whether to protect genes, species, or ecosystems is, in a way, a false tri-
chotomy because each level is an important component of biodiversity as a whole.
Nonetheless, considering each level separately can help us appreciate the interacting com-
ponents of biodiversity, and the different ways that genetics can facilitate conservation at
different levels. Appreciation of each level also can promote understanding and multidis-
ciplinary collaborations across research domains. Finally, a fourth level of biodiversity – that
of genetically distinct local populations – is arguably the most important level for focusing
conservation efforts (Figure 16.1). The conservation of multiple, genetically distinct popu-
lations is necessary to insure long-term species survival and the functioning of ecosystems,
as mentioned above (Luck et al. 2003).

We can also debate which temporal component of biodiversity to prioritize for conserva-
tion: past, present, or future biodiversity. All three components are important, although
future biodiversity often warrants special concern (Example 16.2).

Example 16.2 Temporal considerations in conservation: past, present, and future

What temporal components of biodiversity do we wish to preserve? Do we want to
conserve ancient isolated lineages, current patterns of diversity (ecological and
genetic), or the diversity required for future adaptation and for novel diversity to
evolve? Most would agree “all of the above”. All three temporal components are
interrelated and complementary (Figure 16.2). For example, conserving current
diversity helps insure future adaptive potential. Similarly, conserving and studying
ancient lineages (“living fossils”) can help us understand factors important for
long-term persistence. Nonetheless, one can argue that the most important tem-
poral component to consider is future biodiversity, i.e., the ability of species and
populations to adapt to future environments (e.g., global climate change). If popu-
lations do not adapt to future environments then biodiversity will decline – leading
to loss of ecosystem functioning and services. Figure 16.2 illustrates how different
temporal components of biodiversity (past, present, and future) can be related to
different scientific disciplines (systematics, ecology, and evolutionary biology,
respectively). These components also are often related to different hierarchical
levels of biodiversity: species, ecosystems, and genes, respectively.
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Another choice that is often debated is whether we should emphasize protecting the
existing patterns of diversity or the processes that generate diversity (e.g., ecological and
evolutionary processes themselves)? Again the answer is, in general, both. It is clear that
we should prioritize the preservation of the process of adaptation so that populations and
species can continually adapt to future environmental changes. However, one important
step toward preserving natural processes is to quantify, monitor, and maintain natural 
patterns of population subdivision and connectivity (e.g., identify intraspecific population
units and boundaries). This, for example, would prevent extreme fragmentation and 
promote continued natural patterns of gene flow among populations.

How do we conserve the “processes” of evolution, including adaptive evolutionary
change? We must first maintain healthy habitats and large wild populations because only
in large populations can natural selection proceed efficiently (see Section 8.5). In small
populations, genetic drift leads to random genetic change, which is generally nonadaptive.
Drift can preclude selection from maintaining beneficial alleles and eliminating deleterious
ones. To maintain evolutionary process we also must preserve multiple populations – 
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Figure 16.2 The temporal framework (past, present, and future), corresponding
disciplines (systematics, ecology, and evolutionary biology), and levels of biodiversity
(species, ecosystems, and genes) that are often considered when prioritizing
biodiversity for conservation. Modified from Bowen (1999).
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ideally from different environments so that selection pressures remain diverse and mul-
tilocus genotype diversity remains high. In this scenario, a wide range of local adaptations
are preserved within species, as well as some possibility of adaptation to different future
environmental challenges.

16.2 Systematics and taxonomy

The description and naming of distinct taxa is essential for most disciplines in biology. In
conservation biology, the identification of taxa (taxonomy) and assessing their evolution-
ary relationships (systematics) is crucial for the design of efficient strategies for biodivers-
ity management and conservation. For example, failing to recognize the existence of a 
distinct and threatened taxon can lead to insufficient protection and subsequent extinc-
tion. Identification of too many taxa (oversplitting) can waste limited conservation
resources. The misidentification of a sister taxon could lead to nonideal choice of source
populations for supplementing endangered populations.

There are two fundamental aspects of evolution that we must consider: phenotypic
change through time (anagenesis) and the branching pattern of reproductive relation-
ships among taxa (cladogenesis). The two primary taxonomic approaches are based on
these two aspects.

Historically, taxonomic classification was based primarily upon phenotypic similarity
(phenetics), which reflects evolution via anagenesis. That is, groups of organisms that
were phenotypically similar were grouped together. This classification is conducted 
using clustering algorithms (described below) that group organisms based exclusively on
“overall similarity” or outward appearance. For example, populations that share similar
allele frequencies are grouped together into one species. In this example, the clustering by
overall similarity of allele frequencies is phenetic. The resulting diagram (or tree) used 
to illustrate classification is called a phenogram, even if based upon genetic data (e.g.,
allele frequencies).

A second approach is to classify organisms on the basis of their phylogenetic relation-
ships (cladistics). Cladistic methods group together organisms that share derived traits
(originating in a common ancestor), reflecting cladogenesis. Under cladistic classification,
only monophyletic groups can be recognized, and only genealogical information is 
considered. The resulting diagram (or tree) used to illustrate relationships is called 
a cladogram (or sometimes, a phylogeny). Phylogenetics is discussed below (see 
Section 16.3).

Our current system of taxonomy combines cladistics and phenetics, and it is sometimes
referred to as evolutionary classification (Mayr 1981). Under evolutionary classification,
taxonomic groups are usually classified on the basis of phylogeny. However, groups that
are extremely phenotypically divergent are sometimes recognized as separate taxa even
though they are phylogenetically related. A good example of this is birds (Figure 16.3).
Birds were derived from a dinosaur ancestor, as evidenced from the fossil record showing
reptiles with feathers (bird–reptile intermediates). Therefore, birds and dinosaurs are sister
groups that should be classified together under a strictly cladistic classification scheme.
However, birds underwent rapid evolutionary divergence associated with their develop-
ment of flight. Therefore, birds are classified as a separate class while dinosaurs are
classified as a reptile (class Reptilia).
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There is a great deal of controversy associated with the “correct” method of
classification. We should use all kinds of information available (morphology, physiology,
behavior, life history, geography, and genetics) and the strengths of different schools 
(phenetic and cladistic) when classifying organisms (Mayr 1981; see also Section 16.6).

Birds

Reptiles

Crocodiles

Snakes and
lizards

Turtles and
tortoises

Mammals

Figure 16.3 Phylogenetic relationships of birds, mammals, and reptiles. Note that crocodiles
and birds are more closely related to each other than either is to other reptiles. That is,
crocodiles share a more recent common ancestor with birds than they do with snakes, lizards,
turtles, and tortoises. Therefore, the classification of the class Reptilia is not monophyletic.
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16.3 Phylogeny reconstruction

A phylogenetic tree is a pictorial summary that illustrates the pattern and timing of
branching events in the evolutionary history of taxa (Figure 16.4). A phylogenetic tree con-
sists of nodes for the taxa being considered and branches that connect taxa and show their
relationships. Nodes are at the tips of branches and at branching points (representing
extinct ancestral taxa). A phylogenetic tree represents a hypothesis about relationships
that is open to change as more taxa or characters are added. The same phylogeny can be
drawn many different ways. Branches can be rotated at any node without changing the
relationship between the taxa, as illustrated in Figure 16.5.

Branch lengths are often proportional to the amount of genetic divergence between
taxa. If the amount of divergence is proportional to time, a phylogeny can show time since
divergence between taxa. Molecular divergence (through mutation and drift) will be pro-
portional to time if mutation accumulation is stochastically constant (like radioactive
decay). The idea that molecular divergence can be constant is called the molecular clock
concept. In conservation biology, the molecular clock and divergence estimates can help
identify distinct populations and prioritize them based on their distinctiveness or diver-
gence times. One serious problem with estimating divergence times is that extreme
genetic drift (e.g., bottlenecks and founder events) can greatly inflate estimates of 
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Figure 16.4 A phylogenetic tree (phylogeny). A polytomy (node ‘C’) is when more than two
taxa are joined at the same node because data cannot resolve which (two) of the three taxa 
are most closely related. A widely controversial polytomy 10–20 years ago was that of
chimpanzees, gorillas, and humans. However, extensive genetic data now show that chimps
and humans are more closely related (i.e., sister taxa). From Freeman and Herron (1998).
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A B C D E F F E D C B A

A B F E D C A F E D C B

A B C F E D A B C D E F

Figure 16.5 Six phylogenetic trees showing identical relationships among taxa. Note that
branches can be rotated at the nodes without changing relationships represented on the trees
(e.g., E vs. F in the top two trees). From Freeman and Herron (1998).

divergence times leading to long branch lengths and misleading estimates of phylogenetic
distinctiveness (see Section 9.7).

16.3.1 Methods

There are two basic steps in phylogeny reconstruction: (1) generate a matrix of character
states (e.g., derived versus ancestral states); and (2) build a tree from the matrix. Cladistic
methods use only shared derived traits, synapomorphies, to infer evolutionary relation-
ships. Phenogram construction is based on overall similarity. Therefore, a phylogenetic
tree may have a different topology from a phenogram using the same character state
matrix (Example 16.3).

The actual construction of phylogenies is much more complicated than this simple
example. It is sometimes difficult to determine the ancestral state of characters. Moreover,
the number of possible evolutionary trees to compare rises at an alarming rate. For exam-
ple, there are nearly 35 million possible rooted, bifurcating trees with just 10 taxa and over
8 × 1021 possible trees with 20 taxa! In addition, there are a variety of other methods
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Table 16.1 Character states for five traits used to construct a phenogram and
cladogram of lizards, crocodiles, and birds. Traits: 1, heart (three or four chambered); 
2, inner ear bones (present or absent); 3, feathers (present or absent); 4, wings (present
or absent); and 5, hollow bones (present or absent).

Traits*

Taxon 1 2 3 4 5

A Lizards 0 0 0 0 0
B Crocodiles 1 1 0 0 0
C Birds 1 1 1 1 1

* 0, ancestral; 1, derived.

Table 16.2 Phenotypic similarity matrix for lizards,
crocodiles, and birds based upon the proportion of shared
characters states in Table 16.1.

Lizards Crocodiles Birds

Lizards 1.0
Crocodiles 0.6 1.0
Birds 0.0 0.4 1.0

Example 16.3 Phenogram and cladogram of birds, crocodiles, and lizards

As we have seen, birds and crocodiles are sister taxa based upon phylogenetic
analysis, but crocodiles are taxonomically classified as reptiles because of their
phenetic similarity with snakes, lizards, and turtles. These conclusions are based
on a large number of traits. Here we will consider five traits (Table 16.1) to demon-
strate how a different phenogram and cladogram can result from the matrix of
character states.

Lizards and crocodiles are more phenotypically similar to each other than either
is to birds because they share three out of five traits (0.6), while crocodile and
birds share just two out of five traits (0.4) (Table 16.2). We can construct a
phenogram based upon clustering together the most phenotypically similar groups
(Figure 16.6a). The phenotypic similarity of lizards and crocodiles results from
their sharing ancestral character states because of the rapid phenotypic changes
that occurred in birds associated with adaptation to flight.

Parsimony methods were among the first to be used to infer phylogenies, and
they are perhaps the easiest phylogenetic method to explain and understand
(Felsenstein 2004, p. 1). There are many possible phylogenies for any group of
taxa. Parsimony is the principle that the phylogeny to be preferred is the one that
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Figure 16.6 (a) Phenogram and (b) cladograms showing phenotypic and evolutionary
relationships, respectively, among lizards, crocodile, and birds. Numbers in (a) are
genetic distance estimates (e.g., 0.60 distance units between lizards and crocodiles).
Vertical slashes in (b) on branches represent changes. Numbers below slashes on the
bottom (most parsimonious) tree correspond to the traits (i.e., evolutionary change 
in traits) listed in Table 16.1.

requires the minimum amount of evolution. To use parsimony, we must search all
possible phylogenies and identify the one or ones that minimize the number of
evolutionary changes.

There are only three possible bifurcating phylogenies for lizards, crocodiles,
and birds. Figure 16.6b shows these trees and the number of evolutionary
changes from the ancestral to the derived trait to explain the character state
matrix. The upper two phylogenies both require seven changes because certain
evolutionary changes had to occur independently in the crocodile and bird
branches. The bottom tree requires only five evolutionary changes to explain the
character state matrix. Thus, the bottom tree is the most parsimonious. Birds and
crocodiles form a monophyletic group because they share two synapomorphies
(traits 1 and 2).
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besides parsimony for inferring phylogenies (Hall 2004). The field of inferring phylogenies
has been marked by more heated controversy than perhaps any other area of evolutionary
biology (see Felsenstein 2004).

16.3.2 Gene trees and species trees

It is important to realize that different genes can result in different phylogenies of species,
and that gene trees are often different from the true species phylogeny (Nichols 2001).
Different gene phylogenies can arise due to four main phenomena: lineage sorting and
associated genome sampling error, sampling error of individuals or populations, natural
selection, or introgression (following hybridization).

Lineage sorting and sampling error

Ancestral lineage sorting occurs when different DNA sequences from a mother taxon are
sorted into different daughter species such that lineage divergence times do not reflect
population divergence times. For example, two divergent lineages can be sorted into 
two recently isolated populations, where less-divergent lineages might become fixed in 
different ancient daughter populations. Lineage sorting makes it important to study many
different genes (or independent DNA sequences) to avoid sampling error associated with
sampling too few (or an unrepresentative set of ) genetic characters (loci).

Sampling error of individuals occurs when too few individuals or nonrepresentative sets
of individuals are sampled from a species such that the inferred gene tree differs from the
true species tree. For example, many early studies using mtDNA analysis included only a
few individuals per geographic location, which could lead to erroneous phylogeny inference.
Limited sampling is likely to detect only a subset of local lineages (i.e., alleles), especially
for lineages at low frequency.

We can use simple probability to estimate the sample size that we need to detect rare
genotypes. For example, how many individuals must we sample to have a greater than
95% chance of detecting an allele with frequency of 0.10 (p = 0.1)? Each time we examine
one sample, we have a 0.90 chance (1 − p) of not detecting the allele in question and a 0.10
chance (p) of detecting it. Using the product rule (see Appendix Section A1), the probabil-
ity of not detecting an allele at p = 0.1 in a sample of size x is (1 − p)x. Therefore, the sample
size required to have a 95% chance of sampling an allele with frequency of 0.10 is 29 
haploid individuals or 15 diploids for nuclear markers: (1 − 0.1)29 = 0.047.

Natural selection

Directional selection can cause gene trees to differ from species trees if a rare allele
increases rapidly to fixation because of natural selection (selective sweep, see Section
10.3.1). For example, a highly divergent (ancient) lineage may be swept to fixation in a
recently derived species. Here the ancient age of the lineages would not match the recent
age of the newly derived species. In another example, balancing selection could maintain
the same lineages in each of two long-isolated species, and lead to erroneous estimation of
species divergence, as well as a phylogeny discordant with the actual species phylogeny
(and with neutral genes). To avoid selection-induced errors in phylogeny reconstruction,
many loci should be used. Analysis of many loci can help identify a locus with unusual
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(deviant) phylogenetic patterns due to selection (as in Section 9.6.3). For example, selec-
tion might cause rapid divergence at one locus that is not representative of the rest of the
genome (or of the true species tree).

Introgression

Introgression also causes gene trees to differ from species trees. For example, hybridiza-
tion and subsequent backcrossing can cause an allele from species X to introgress into
species Y. This has happened between wolves and coyotes that hybridize in northeastern
United States, where coyote mtDNA has introgressed into wolf populations. Here, female
coyotes hybridize with male wolves, followed by the F1 hybrids mating with wolves, such
that coyote mtDNA introgresses into wolf populations (Roy et al. 1994). This kind of uni-
directional introgression of mtDNA (maternally inherited) has been detected in deer,
mice, fish, and many other species.

MtDNA gene tree versus species tree

An example of a gene tree not equaling the species tree is illustrated in a study of mallard
ducks and black ducks (Avise 1990). The black duck apparently recently originated (perhaps
via rapid phenotypic evolution) from the more widely distributed mallard duck. This likely
occurred when a peripheral mallard population became isolated, evolved into the black duck
and became fixed for a single mtDNA lineage (e.g., via lineage sorting or selection). The
mallard population is much larger and maintains several divergent mtDNA lineages, includ-
ing the lineage fixed in the black duck (Figure 16.7). Thus, while the black duck is mono-
phyletic, the mallard is paraphyletic relative to the black duck for mtDNA. Because the black
duck mtDNA is common in the mallard, the black duck appears to be part of the mallard
species when considering only mtDNA data. However, the black duck has important 
phenotypic, adaptive, and behavioral differences meriting recognition as a separate species.

This duck example illustrates a problem that is likely to occur when identifying species
from molecular data alone (and from only one locus). It shows the importance of con-
sidering nonmolecular characteristics (such as life history, morphology, and geography)
along with the molecular data (see Section 16.6). This example is analogous to the widely
cited example of brown bears that are paraphyletic to polar bears for mtDNA lineages.
Despite the lack of monophyly, brown bears have important phenotypic, adaptive, and
behavioral differences meriting recognition as a separate species apart from polar bears
(Paetkau 1999).

16.4 Description of genetic relationships within species

Identifying populations and describing population relationships is crucial for conservation
and management (e.g., monitoring population status, measuring gene flow, and planning
translocation strategies). Population relationships are generally assessed using multilocus
allele frequency data and statistical approaches for clustering individuals or populations
with a dendrogram or tree in order to identify genetically similar groups.

Population trees and phylogenetic trees look similar to each other, but they display fund-
amentally different types of information. Phylogenies show the time since the most recent
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common ancestor (TMRCA) between taxa. Phylogenies represent relationships among
taxa that have been reproductively isolated for many generations. A phylogeny identifies
monophyletic groups – isolated groups that shared a common ancestor. Phylogenetic
trees can be used both for species and for genes (e.g., mtDNA) (Nichols 2001). In the case
of species, the branch points represent speciation events; in the case of genes, branch
points represent common ancestral genes.

Population trees, in contrast, generally identify groups that have similar allele frequen-
cies because of ongoing genetic exchange (i.e., gene flow). The concept of TMRCA is not
meaningful for populations with ongoing gene flow. Populations with high gene flow will
have similar allele frequencies and cluster together in population trees.

The differences between population and phylogenetic trees, as described here, are
somewhat oversimplified to help explain the differences. In reality there is a continuum in
the degree of differentiation among populations in nature. Some populations within the
same species may have been reproductively isolated for many generations. In this case,
genealogical information and the phylogenetic approach can be used to infer population
relationships (see Section 16.4.3).

The description of genetic population structure is the most common topic for a conser-
vation genetics paper in the literature. Individuals from several different geographic loca-
tions are genotyped at a number of loci to determine the patterns and amounts of gene
flow among populations. This population-based approach assumes that all individuals

Mallard/Black ancestor

430,000
years ago

Present

Black
(eastern

N. America)

Mallard
(widespread,

northern hemisphere)

B A

Figure 16.7 Simplified diagrammatic representation of the possible matriarchal ancestry of
mallard and black ducks. The mtDNA lineage A is shown in dark lines, and the black duck
portion of the phylogeny is shaded. From Avise (1990).
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sampled from one area were born there and represent a local breeding population.
However, new powerful approaches have been developed that allow the description of
population structure using an individual-based approach. That is, many individuals are
sampled, generally over a wide geographic range, and then placed in population units on
the basis of genotypic similarity.

16.4.1 Population-based approaches

A bewildering variety of approaches have been used to describe the genetic relationships
among a series of populations. We will discuss several representative approaches.

The initial step in assessing population relationships (after genotyping many indi-
viduals) often is to conduct statistical tests for differences in allele frequencies between
sampling locations. For example, a chi-square test is used to test for allele frequency differ-
ences between samples (e.g., Roff and Bentzen 1989). If two samples are not significantly
different, they often are pooled together to represent one population. It can be important
to resample from the same geographic location (in different years or seasons) to test for
sampling error and for stability of genetic composition through time. After distinct popu-
lation samples have been identified, the genetic relationships (i.e., genetic similarity)
among populations can be inferred.

Population dendrograms

Population relationships are often assessed by constructing a dendrogram based on the
genetic similarity of populations. The first step in dendrogram construction is to compute
a genetic differentiation statistic (e.g., FST or Nei’s D; see Sections 9.1 and 9.7) between
each pair of populations. A genetic distance can be computed using any kind of molecular
marker (e.g., allozyme frequencies, DNA haplotypes) and a vast number of metrics (e.g.,
Cavalli-Sforza’s chord distance, Slatkin’s RST, and Wright’s FST; see Section 9.7). This yields
a genetic distance matrix (Table 16.3).

The second step is to use a clustering algorithm to group populations with similar 
allele frequencies (e.g., low FST). The most widely used cluster algorithms are UPGMA

Table 16.3 Genetic distance (D; Nei 1972) matrix based upon allele
frequencies at 15 allozyme loci for five populations of a perennial
lily. Data from Godt et al. (1997).

Population

FL1 FL2 FL3 SC NC

FL1 –
FL2 0.001 –
FL3 0.003* 0.002* –
SC 0.029 0.032 0.030 –
NC 0.059 0.055 0.060 0.062 –

Asterisks and underlining are explained in Example 16.4.
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(unweighted pair group method with arithmetic averages) and neighbor-joining (Salemi
and Vandamme 2003). UPGMA clustering for dendrogram construction is illustrated by a
study assessing population relationships of a perennial lily from Florida (Example 16.4).

Neighbor-joining is one of the most widely used algorithms for constructing dendro-
grams from a distance matrix (Salemi and Vandamme 2003). Neighbor-joining is different
from UPGMA in that the branch lengths for sister taxa (e.g., FL1 and FL2, Table 16.3) can
be different, and thus can provide additional information on relationships between 
populations. For example, FL1 is more distant from FL3 than FL2 is from FL3 (Table 16.3).
This is not evident in the UPGMA dendrogram (Figure 16.8), but would be in a neighbor-
joining tree. It follows that neighbor-joining is especially useful for data sets with lineages
evolving at substantially different rates. Other advantages include that neighbor-joining is

Genetic distance

FL1

FL2
FL3
SC
NC

0.064 0.048 0.032 0.016 0.000

Figure 16.8 Dendrogram generated using the UPGMA clustering algorithm and 
the genetic distance matrix from Table 16.3. FL is Florida; SC and NC are South
Carolina and North Carolina, respectively. From Godt et al. (1997).

Example 16.4 Dendrogram construction via UPGMA clustering of lily populations

UPGMA (unweighted pair group method with arithmetic averages) clustering was
used to assess relationships among five populations of a perennial lily (Tofieldia
racemosa) from northern Florida (Godt et al. 1997). Allele frequencies from 15 poly-
morphic allozyme loci were used to construct a genetic distance matrix (Table 16.3)
and subsequently a dendrogram using the UPGMA algorithm.

The UPGMA algorithm starts by finding the two populations with the smallest
interpopulation distance in the matrix. It then joins the two populations together 
at an internal node. In our lily example here, population FL1 and FL2 are 
grouped together first because the distance (0.001) is the smallest (underlined in
Table 16.3). Next, the mean distance from FL1 and from FL2 to each other popu-
lation is used to cluster taxa. The next shortest distance is the mean of FL3 to FL1
and FL3 to FL2 (i.e., the mean of 0.002 and 0.003; see asterisks in Table 16.3);
thus FL3 is clustered as the sister group of FL1 and FL2. Next SC is clustered 
followed by NC (Figure 16.8).

In this example, the genetic distance is correlated with the geographic distance
in that SC is geographically and genetically closer to the Florida populations than
it is to the North Carolina one. See Guest Box 16 for another example application
of dendrogram construction using UPGMA.
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fast and thus useful for large data sets and for bootstrap analysis (see next paragraph),
which involves the construction of hundreds of replicate trees. It also permits correction
for multiple character changes when computing distances between taxa. Disadvantages
are it gives only one possible tree and it depends on the model of evolution used.

Bootstrap analysis is a widely used sampling technique for assessing the statistical
error when the underlying sampling distribution is unknown. In dendrogram construc-
tion, we can bootstrap resample across loci from the original data set, meaning that we
sample with replacement from our set of loci until we obtain a new set of loci, called a
“bootstrap replicate”. For example, if we have genotyped 12 loci, we randomly draw 
12 numbers from 1 and 12 and these numbers (loci) become our bootstrap replicate data
set. We repeat this procedure 100 times to obtain 100 data sets (and 100 dendrograms).
The proportion of the random dendrograms with the same cluster (i.e., branch group)
will be the bootstrap support for the cluster (see Figure 16.9a).

Multidimensional representation of relationships among populations

Dendrograms cannot illustrate complex relationships among multiple populations
because they consist of a one-dimensional branching diagram. Thus dendrograms can
oversimplify and obscure relationships among populations. Note that this is not a limita-
tion in using dendrograms to represent phylogenic relationships, as these can be repres-
ented by a one-dimensional branching diagram as long as there has not been secondary
contact following speciation.

There are a variety of multivariate statistical techniques (e.g., principal component
analysis, PCA) that summarize and can be used to visualize complex data sets with mul-
tiple dimensions (e.g., many loci and alleles) so that most of the variability in allele frequen-
cies can be extracted and visualized on a two- or three-dimensional plot (Example 16.5).
Related multivariate statistical techniques include PCoA (principal coordinates analysis),
FCA (frequency correspondence analysis), and MDS (multidimensional scaling).

Example 16.5 How many species of tuatara are there?

We saw in Example 1.1 that tuatara on North Brother Island in Cook Strait, New
Zealand, were described as a separate species primarily on the basis of variation
at allozyme loci (Daugherty et al. 1990). A neighbor-joining dendrogram based on
allele frequencies at 23 allozyme loci suggested that the North Brother tuatara
population is highly distinct because it is separated on a long branch (Figure 16.9a).

More recent molecular genetic data, however, have raised some important
questions about this conclusion. Analysis of mtDNA sequence data indicates that
tuatara from North Brother and three other islands in Cook Strait are similar to
each other, and that they are all distinct form the northern tuatara populations
(Hay et al. 2003; Hay et al., in preparation). Allele frequencies at microsatellite loci
also support the grouping of tuatara from Cook Strait (Hay et al., in preparation).

Principal component analysis (PCA) of the allozyme data supports the similarity
of the Cook Strait tuatara populations. Three major population groupings are
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Figure 16.9 (a) Neighbor-joining dendrogram (the numbers on the branches are the
bootstrap values) and (b) principal component analysis based on allele frequencies 
at 23 allozyme loci. (c) The map of New Zealand shows the geographic locations of
populations sampled. Open circles indicate where fossil remains have been found.
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apparent in the plot of the first two components of the PCA analysis (Figure
16.9b). The first component distinguishes between the northern group and the
Cook Strait populations; the North Brother population clusters closely with the
Western Cook Strait populations on this axis. PC2 separates the North Brother
population from the other populations. The North Brother population clusters with
the other Cook Strait populations on PC1, which explains nearly 50% of the vari-
ation. The North Brother population is distinct only for the second main variance
component (PC2), which explains 34% of the variation. These results suggest
that the Cook Strait populations are much more genetically similar to each other
than they are to the northern populations.

North Brother Island is very small and the tuatara on this island have substan-
tially less genetic variation at microsatellite loci. Thus, genetic distinctiveness of
the North Brother tuatara is likely due to a small population and rapid genetic drift
rather than long-term isolation that might warrant species status.

This example illustrates the limitations of one-dimensional tree diagrams and
the possible loss (or oversimplification) of information when data are collapsed
into one dimension.

16.4.2 Individual-based methods

Individual-based approaches are used to assess population relationships through first iden-
tifying populations by delineating genetically similar clusters of individuals. Clusters of
genetically similar individuals are often identified by building a dendrogram in which each
branch tip is an individual. Second, we quantify genetic relationships among the clusters
(putative demes).

Individual-based methods for assessing population relationships make no a priori
assumptions about how many populations exist or where boundaries between popula-
tions occur on the landscape. If individual-based methods are not used, we risk wrongly
grouping individuals into populations based on somewhat arbitrary traits (e.g., color) or
an assumed geographic barrier (a river) identified by humans subjectively.

One example of erroneous a priori grouping would be migratory birds that we 
sample on migration routes or on overwintering grounds. Here, we might wrongly group
together individuals from different breeding populations, because we sampled them
together at the same geographic location. A similar potential problem could exist in
migratory butterflies, salmon, and whales, for example, if we sample mixtures containing
individuals from different breeding groups with different geographic origins.

An individual-based approach was used by Pritchard et al. (2000) to assess relationships
among populations of the endangered Taita thrush in Africa. The authors built a tree of
individuals based on pairwise genetic distance between individuals. Each individual was
genotyped at seven microsatellite loci (Galbusera et al. 2000). The genetic similarity index
(Nei’s genetic distance) between each pair of individuals was computed, and then a 
clustering algorithm (neighbor-joining) was used to group similar individuals together on
branches. The geographic location of origin of individuals was also plotted on the branch
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tips to help identify population units. The analysis revealed three distinct populations 
represented by three discrete clusters of individuals (Figure 16.10).

This example illustrates a strength of the individual-based approach: the ability to 
identify migrants. Individuals (i.e., branches) labeled with “N” and an asterisk (bottom of
tree, Figure 16.10) were sampled from the “N” location (Ngangao) but cluster genetically
with Mbololo (labeled “M”). This suggests these individuals are migrants from Mbololo
into the Ngangao population.

An individual-based and model-based approach to identify populations as clusters of
individuals was introduced by Pritchard et al. (2000). “Model based” refers to the use of a
model with k populations (demes) that are assumed to be in Hardy–Weinberg (HW) and
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Figure 16.10 Tree of individuals (Taita thrush) constructed using the genetic distance
between individuals and the neighbor-joining tree building algorithm (Chawia, 17 individuals;
Ngangao, 54 individuals; Mbololo, 80 individuals). The three curved slashes (N, M, and C)
across the branches identify the three population clusters. The letters on branch tips are
sampling locations (i.e., population names); asterisks on branch tips represent putative
immigrants (e.g., three migrants from Ngangao into Chawia (top of figure). Modified from
Pritchard et al. (2000).
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gametic equilibrium. This approach first tests if our data fit a model with k = 1, 2, 3, or
more populations. The method uses a computer algorithm to search for the set (k) of indi-
viduals that minimizes the amount of HW and gametic disequilibrium in the data. Many
or all possible sets of individuals are tested. Once k is inferred (step 1), the algorithm estim-
ates, for each individual, the (posterior) probability (Q) of the individual’s genotype origin-
ating from each population (step 2). If an individual is equally likely to have originated
from population X and Y, then Q will be 0.50 for each population.

For example, Berry et al. (2005) used 15 microsatellites and Pritchard’s model-based
approach to study dispersal and the affects of agricultural land conversion on the connect-
ivity of insular populations of the grand skink from New Zealand. The skink lives in small
populations (approximately 20 individuals) on rock outcrops separated by 50–150 m of
inhospitable vegetation (native tussocks grassland or exotic pasture). A total of 261 skinks
were genotyped from 12 rock outcrops. The number of dispersers inferred from
Pritchard’s cluster analysis was lower for the exotic pasture than for the native grassland
habitat. For example, nine known dispersers were detected among rock outcrops within
the native grassland site T1, versus only one disperser within the exotic pasture site P1
(Figure 16.11; see open squares above bar graphs representing dispersers). This study sug-
gests that exotic pasture fragments populations; this likely increases population extinction
risks by increasing genetic and demographic stochasticity (see Chapter 14).

Individual-based analyses can also be conducted with many multivariate statistical
methods (e.g., PCA) if individuals are used as the operational unit (instead of populations).
These multivariate approaches make no prior assumptions about the population structure
model, e.g., HW and gametic equilibrium are not assumed.

Individual-based methods are useful to identify cryptic subpopulations and localize
population boundaries on the landscape. Once genetic boundaries are located, we can test
if the boundaries are concordant with some environmental gradient or some ecological or
landscape feature (e.g., a river or temperature gradient). This approach of associating popu-
lation genetic “boundaries” with landscape or environmental features has been called
landscape genetics (Manel et al. 2003).

A final strength of individual-based methods is that they can help evaluate data quality
by detecting human errors in sampling; for example, a sample with the wrong population
label. Such mislabeled samples would show up as outliers (or candidate “migrants”) from
a different population (Figure 16.11).

A disadvantage of individual-based methods is that they often require the analysis of
many individuals (hundreds), sampled across relatively evenly spaced locations. In a con-
tinuous population, we might wrongly infer a genetic discontinuity (barrier) between
sampling locations if clusters of individuals are sampled from locations far apart. For
example, in an isolation by distance scenario (see Figure 9.8), we could infer different (dis-
crete) populations by sampling distant locations with no individuals in between the loca-
tions. However, this problem could arise even with the classic population-based methods
(see Section 16.4.1).

A potential problem with individual-based methods is that they still can yield uncertain
results if genetic differentiation among populations is not substantial. Plus the perform-
ance and reliability of individual-based methods has not been thoroughly evaluated (but
see Evanno et al. 2005 for a performance evaluation of the individual-based clustering
method of Pritchard et al. 2000). Thus it seems useful and prudent to use both individual-
based and population-based methods.
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16.4.3 Phylogeography

Phylogeography is the assessment of the correspondence between phylogeny and 
geography (Avise 2000b). We expect to find phylogeographic structuring among popula-
tions with long-term isolation. Isolation for hundreds of generations is generally required
for new mutations to arise locally, and to preclude their spread across populations.
Phylogeographic structure is expected in species with limited dispersal capabilities, with
philopatry, or with distributions that span strong barriers to gene flow (e.g., mountains,
rivers, roads, and human development). In conservation biology, detecting phylogeo-
graphic structuring is important because it helps identify long-isolated populations that
might have distinct gene pools and local adaptations. Long-term reproductive isolation 
is one major criterion widely used to identify population units for conservation (see
Section 16.5.2).

Intraspecific phylogeography was pioneered initially by J. C. Avise and colleagues (Avise
et al. 1987). In a classic example, Avise et al. (1979a) analyzed mtDNA from 87 pocket
gophers from across their range in southeastern United States. The study revealed 23 
different mtDNA genotypes, most of which were localized geographically (Figure 16.12).
A major discontinuity in the maternal phylogeny clearly distinguished eastern and west-
ern populations. A potential conservation application of such results is that eastern and
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Figure 16.11 Bayesian clustering of individual skink genotypes. Each site is shown separately:
(a) site T1 (native tussocks) and (b) site P1 (exotic pasture). Individuals are represented across
the x-axis by a vertical bar that may be divided into shaded segments that represent the
individual’s probability of originating (Q) from each of the rocks at a study site (computed
using structure 2.0; Pritchard et al. 2000). Skinks are also grouped across the x-axis according
to the rock they were captured on (e.g., 1, 2, 3, or 4). Filled squares above an individual
indicate that the natal rock was known and the individual did not disperse, open squares
indicate that the individual was a known disperser (from mark–recapture data), and dashes
indicate that the natal rock was not known for that individual. The arrow points toward one
(of several) putative immigrants. From Berry et al. (2005).
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western populations of pocket gopher appear to be highly divergent with long-term isola-
tion and thus potentially adaptive differences; this could warrant management as separate
units. However additional data (including nuclear loci and nongenetic information)
should be considered before making conservation management decisions (e.g., Section
16.6 and Guest Box 4).

Phylogeographic studies can help identify biogeographic provinces containing distinct
flora and fauna worth conserving as separate geographic units in nature reserves. For
example, multispecies phylogeographic studies in the southwest United States (Avise
1992) and northwest Australia (Moritz and Faith 1998) have revealed remarkably con-
cordant phylogeographic patterns across multiple different species. Such multispecies
concordance can be used to identify major biogeographic areas that can be prioritized as
separate conservation units and to identify locations to create nature reserves (Figure 16.13).
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Figure 16.12 Mitochondrial DNA phylogenetic network for 87 pocket gophers; mtDNA
genotypes are represented by lower case letters and are connected by branches in a parsimony
network. Slashes across branches are substitutions. Nine substitutions separate the two major
mtDNA clades encircled by heavy lines. From Avise (1994).

CATC16  28/05/2007  06:11PM  Page 402



CHAPTER 16 UNITS OF CONSERVATION 403

A promising phylogeographic approach is nested clade analysis (NCA) (Templeton
1998). NCA involves three steps: (1) building a parsimony network of alleles such that hier-
archically nested clades are identified (i.e., recent derived clades versus ancestral clades);
(2) testing for statistically significant geographic structuring of alleles within clades; and 
(3) interpreting the biological cause of structuring (e.g., isolation by distance, recent frag-
mentation, or range expansion). Step 3 uses an inference key that lists expectations of each
cause of a given structuring pattern. For example, NCA predicts that under isolation by
distance (i.e., restricted gene flow), the derived alleles will be localized geographically
whereas ancestral alleles will be less localized. This is because under restricted gene flow
new alleles will not have had time to spread geographically. This pattern is not expected
under range expansion (Templeton 1998).

There has been substantial debate over the usefulness of NCA (e.g., Knowles and
Maddison 2002). The main shortfall of NCA is that it does not incorporate error or 
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Figure 16.13 Phylogeographic analysis for three species sampled from each of four
geographic areas from the tropical rain forests of northeastern Australia between Cooktown
and Townsville: Windsor Tableland (WT), Carbine Tableland (CT), Atherton Tableland
(AT), and Cardwell Ranges (CR). Note the deep phylogenetic break (long branches)
separating the WT/CT populations in the north from the CR/AT populations in the south 
for all three species (prickly skink, chowchilla, and gray-headed robin). These results suggest
long-term isolation for numerous species between the northern and southern rain forests.
These regions merit conservation as separate systems. From Moritz and Faith (1998).
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uncertainty. This is the same problem with most phylogenetic approaches. For example,
NCA does not consider interlocus variation (as do coalescent-based population genetic
models; e.g., Appendix A9 and Figure A12). Thus NCA might provide the correct infer-
ence about phylogeographic history, but we cannot quantify the probability of it being
correct. Another occasionally cited shortfall is that NCA is somewhat ad hoc in using an
inference key in order to distinguish among many different historical processes.

Fortunately, the emerging field of “statistical phylogeography” promises to combine
the strengths of NCA with formal modeling and statistical tests to allow for more objective
testing of alternative hypotheses that could explain phylogeographic patterns (Knowles
and Maddison 2002). Until formal modeling and validated statistical phylogeography
approaches are available, it seems prudent to use NCA in combination with other
approaches such as AMOVA (analysis of molecular variation) that use genealogical informa-
tion in ways similar to or complementary to NCA (e.g., see Turner et al. 2000).

16.5 Units of conservation

It is critical to identify species and units within species to help guide management, 
monitoring, and other conservation efforts, and to facilitate application of laws to con-
serve taxa and their habitats. In this section we consider the issues of identifying species
and intraspecific conservation units.

16.5.1 Species

Identification of species is often problematic, even for some well-known taxa. One prob-
lem is that biologists cannot even agree on the appropriate criteria to define a species. In
fact, more than two dozen species concepts have been proposed over the last decades.
Darwin (1859) wrote that species are simply highly differentiated varieties. He observed
that there is often a continuum in the degree of divergence from between populations, to
between varieties, species, and higher taxonomic classifications. In this view, the magni-
tude of differentiation that is required to merit species status can be somewhat arbitrary.

The biological species concept (BSC) of Mayr (1942, 1963) is the most widely used
species definition, at least for animals. This concept emphasizes reproductive isolation and
isolating mechanisms (e.g., pre- and postzygotic). Criticisms of this concept are that: (1) it
can be difficult to apply to allopatric organisms (because we cannot observe or test for 
natural reproductive barriers in nonoverlapping populations); (2) it cannot easily accom-
modate asexual species (that may not interbreed only because they are asexual); and 
(3) it has difficulties dealing with introgression between highly distinct forms. Further, 
an emphasis on “isolating mechanisms” implies that selection counteracts gene flow.
However, the BSC generally does not allow for interspecific gene flow, even at a few 
segments of the genome (i.e., limited introgression) (Wu 2001).

The phylogenetic species concept (PSC; Cracraft 1989) relies largely on monophyly,
such that all members of a species must share a single common ancestor. This concept has
fewer problems dealing with asexual organisms (e.g., many plants, fish, etc.) and with
allopatric forms. However, it does not work well under hybridization and it can lead to
oversplitting, for example as more and more characters are used (e.g., using powerful
DNA sequencing techniques) more “taxa” might be identified.
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A problem using the PSC can arise if biologists interpret fixed DNA differences (mono-
phyly) between populations as evidence for species status. For example, around the world
many species are becoming fragmented, and population fragments are becoming fixed
(monophyletic) for different DNA polymorphisms. Under the PSC, this could cause the
proliferation of “new” species if biologists strictly apply the PSC criterion of monophlyly
for species identification. This could result in oversplitting and the waste of limited con-
servation resources. This potential problem of fragmentation-induced oversplitting 
is described in a paper titled “Cladists in wonderland” (Avise 2000a). To avoid such over-
splitting, multiple independent DNA sequences (e.g., not mtDNA alone) should be used,
along with many nongenetic characters when possible.

Other species definitions include the ecological species concept based on a distinct 
ecological niche (Van Valen 1976), and the evolutionary species concept often used by
paleontologists to identify species based on change within lineages through time but with-
out splitting (anagenesis) (Simpson 1961). The different concepts overlap, but emphasize
different types of information. Generally, it is important to consider many kinds of 
information or criteria when identifying and naming species. If most criteria (or species
concepts) give the same conclusion (e.g., species status is warranted), than we can be more
confident in the conclusion.

African cichlid fishes illustrate some of the difficulties with the different species 
concepts. Approximately 1,500 species of cichlids have recently evolved a diverse array of
morphological differences (e.g., mouth structure, body color) and ecological differences
(e.g., feeding and behaviors such as courtship). Morphological differences are relatively
pronounced among cichlids. However, the degree of genetic differentiation among cich-
lids is relatively low compared to other species, due to the recent radiation of African cich-
lid species (less than 1–2 million years ago!). Further complicating species identification
using molecular markers, is that reproductive isolation can be transient. For example,
some cichlid species are reproductively isolated due to mate choice based on fixed color
differences between species. However, this isolation breaks down during years when
murky water prevents visual color recognition and leads to temporary interspecific gene
flow (Seehausen et al. 1997)!

Molecular genetic data can help identify species, especially cryptic species that have 
similar phenotypes (see also Section 20.1). For example, the neotropical skipper butterfly
was recently identified as a complex of at least 10 species, in part by the sequencing of a
standard gene region (DNA “barcoding”). The 10 species have only subtle differences in
adults and are largely sympatric (Hebert et al. 2004). However, they have distinctive cater-
pillars, different caterpillar food plants, and a relatively high genetic divergence (3%) in the
mitochondrial gene cytochrome c oxidase I (COI) gene.

Molecular data can also help identify taxa that are relatively well studied. For exam-
ple, a recent study of African elephants used molecular genetic data to detect previously
unrecognized species. Elephants from tropical forests are morphologically distinct 
from savannah elephants. Roca et al. (2001) biopsy-dart sampled 195 free-ranging 
elephants from 21 populations. Three populations were forest elephants in central 
Africa, 15 were savannah elephants (located north, east, and south of the forest 
populations), and three were unstudied and thus unclassified populations. DNA 
sequencing of 1,732 base pairs from four nuclear genes revealed 52 nucleotide sites 
that were phylogenetically informative (i.e., at least two individuals shared a variant
nucleotide).

CATC16  28/05/2007  06:11PM  Page 405



406 PART III GENETICS AND CONSERVATION

All savannah elephant populations were closer genetically to every other savannah 
population than to any of the forest populations, even in cases where the forest population
was geographically closer (Roca et al. 2001). Phylogenetic analyses revealed five fixed site
differences between the forest and savannah elephants (Figure 16.14). By comparison, nine
fixed differences exist between Asian and African elephants. Hybridization was considered
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Figure 16.14 (a) Minimum spanning network showing relationships among nine haplotypes
observed for the X-linked BNG gene for African forest and savannah elephants and the 
Asian elephant. Each slash mark along branches separating each haplotypes represents one
nucleotide difference. From Roca et al. (2001). (b) Neighbor-joining cluster analysis of 189
African elephants and 14 Asian elephants based on proportion of shared alleles (Dps) at 
16 microsatellite loci. From Comstock et al. (2002).
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to be “extremely limited”, although the number of individuals sampled was only moder-
ate, and one savannah individual apparently contained one nucleotide diagnostic for the
forest elephants. The genetic data (see also Comstock et al. 2002; Figure 16.14b), com-
bined with the morphological and habitat differences, suggests that species-level status is
warranted. This study represents a nice example of combining genetic and nongenetic
data. The results could influence conservation strategies, making it more urgent to pro-
tect and manage these increasingly endangered taxa separately.

Sometimes genetic data may show that recognized species are not supported by 
reproductive relationships. Some authors have recognized the black sea turtle (Chelonia
spp.) as a distinct species on the basis of skull shape, body size, and color (Pritchard 1999).
However, molecular analyses of mtDNA and three independent nuclear DNA fragments
suggest that reproductive isolation does not exist between the black and green forms (Karl
and Bowen 1999). Over the years, taxonomists have proposed more than a dozen species
for different Chelonia populations, with oversplitting occurring in many other taxa as well.
Nonetheless, for conservation purposes, it is clear that black turtles are distinct and could
merit recognition as an intraspecific conservation unit (see Section 16.5.2) that posses
potential local adaptations. Unfortunately, populations are declining, and additional data
on potentially adaptive differences are needed (e.g., food sources and feeding behavior, etc.).

16.5.2 Evolutionary significant units

An evolutionary significant unit (ESU) can be defined broadly as a population or group
of populations that merit separate management or priority for conservation because of
high distinctiveness (both genetic and ecological). The first use of the term ESU was by
Ryder (1986). He used the example that five (extant) subspecies of tigers exist, but there is
not space in zoos or captive breeding programs to maintain viable populations of all five.
Thus sometimes we must choose which subspecies to prioritize for conservation action,
and perhaps maintain only one or two global breeding populations (each perhaps consist-
ing of more than one named subspecies). Since Ryder, the term ESU has been used in a
variety of frameworks for identifying conservation units (Example 16.6).

There is considerable confusion and controversy in the literature associated with the
term ESU. For example, the US Endangered Species Act (ESA) lacks any definition of a 
distinct population segment (DPS; see Example 16.1). Waples (1991) suggested that a 
population or group of populations (of salmon) would be a DPS if it is an ESU. This has
lead to some confusion because some biologists equate a DPS and an ESU. We will use the
term DPS when referring to officially recognized “species” under the ESA, and the term
ESU in the more generally accepted sense.

It can be difficult to provide a single concise, detailed definition of the term ESU because
of the controversy and different uses and definitions of the term in the literature. This ESU
controversy is analogous to that surrounding the different species concepts mentioned
above. The controversy is not surprising considering the problems surrounding the
definition of species, and the fact that identifying intraspecific units is generally more
difficult than identifying species (Waples 1991). It is also not surprising considering the dif-
ferent rates of evolution that often occur for different molecular markers and phenotypic
traits used in ESU identification. Different evolutionary rates lead to problems analogous
to that in the classification of birds (Aves) as a separate taxonomic class (due to their rapid
evolution), when in fact birds are monophyletic within the class Reptilia (see Figure 16.3).
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In practice, an understanding of the underlying principles and the criteria used in the
different ESU frameworks will help when identifying ESUs. The main criteria in several
different ESU concepts are listed in Example 16.6, and synthesized at the end of this section
(see also Fraser and Bernatchez 2001). Here we discuss some details about three widely

Example 16.6 Proposed definitions of evolutionary significant units

1 Ryder (1986): populations that actually represent significant adaptive 
variation based on concordance between sets of data derived by different
techniques. Ryder (1986) clearly argues that this subspecies problem 
is “considerably more than taxonomic esoterica”. (Main focus: zoos for 
potential ex situ conservation of gene pools of threatened species.)

2 Waples (1991): populations that are reproductively separate from other
populations (e.g., as inferred from molecular markers) and that have dis-
tinct or different adaptations and that represent an important evolutionary
legacy of a species. (Main focus: integrating different data types, and pro-
viding guidelines for identifying “distinct population segments” or DPSs (of
salmon) which are given “species” status for protection under the United
States Endangered Species Act.)

3 Dizon et al. (1992): populations that are distinctive based on morphology,
geographic distribution, population parameters, and genetic data. (Main
focus: concordance across some different data types, but always requiring
some degree of genetic differentiation.)

4 Moritz (1994): populations that are reciprocally monophyletic (see Fig-
ure 16.15) for mtDNA alleles and that show significant divergence of allele
frequencies at nuclear loci. (Main focus: defining practical criteria for recog-
nizing ESUs based on population genetics theory, while considering that
variants providing adaptation to recent or past environments may not be
adaptive (or might even retard the response to natural selection) in future
environments.)

5 USFWS and NOAA (1996b) (US policy for all vertebrates): (1) discreteness
of the population segment (DPS) in relation to the remainder of the species
to which it belongs; and (2) the significance of the population segment to the
species to which it belongs. This DPS policy does not use the term ESU,
but has a framework similar to that of Waples’ (1991) salmon ESU policy.

6 Crandall et al. (2000): populations that lack: (1) “ecological exchangeabil-
ity” (i.e., they have different adaptations or selection pressures – e.g., life
histories, morphology, quantitative trait locus variation, habitat, predators,
etc. – and different ecological roles within a community); and (2) “genetic
exchangeability” (e.g., they have had no recent gene flow, and show con-
cordance between phylogenetic and geographic discontinuities). (Main
focus: emphasizing adaptive variation and combining molecular and eco-
logical criteria in a historical timeframe. Suggests returning to the more
holistic or balanced and two-part approach of Waples.)
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used ESU frameworks, each with somewhat different criteria as follows: (1) reproductive
isolation and adaptation (Waples 1991); (2) reciprocal monophyly (Moritz 1994); and 
(3) “exchangeability” of populations (Crandall et al. 2000). This will provide a background
on principles and concepts, as well as a historical perspective of the controversy surrounding
the different frameworks for identifying units of conservation.

Isolation and adaptation

Waples (1991) was the first to provide a detailed framework for ESU identification. His
framework included the following two main requirements for an ESU: (1) long-term
reproductive isolation (generally hundreds of generations) so that an ESU represents a
product of unique past evolutionary events that is unlikely to re-evolve (at least on an eco-
logical time scale); and (2) ecological or adaptive uniqueness such that the unit represents
a reservoir of genetic and phenotypic variation likely important for future evolutionary
potential. This second part requiring ecological and adaptive uniqueness was termed the
“evolutionary legacy” of a species by Waples (1991, 1998). This framework has become the
official policy of the United States Fish and Wildlife Service and the National Marine
Fisheries Service (USFWS and NOAA 1996b).

Waples (2005) recently argued that ESU identification is often most helpful if an 
intermediate number of ESUs are recognized within each species, e.g., when the goal is to
preserve a number of genetically distinct populations within a species. Waples (2005)
reviewed many of the published ESU concepts and criteria (e.g., see Example 16.6) and
concluded that they could often identify only a single ESU or a large number (hundreds) 
of ESUs in Pacific salmon species. This is a tentative conclusion based on the published 
criteria for other ESU concepts, many of which are subjective or qualitative. There is a
need for more empirical examples in which multiple ESU concepts are applied to a common
problem (as in Waples 2005).

Reciprocal monophyly

Moritz (1994) offered simple and thus readily applicable molecular criteria for recogniz-
ing an ESU: “ESUs should be reciprocally monophyletic for mtDNA (in animals) and 
show significant divergence of allele frequencies at nuclear loci”. Mitochondrial DNA 
is widely used in animals because it has a rapid rate of evolution and lacks recombina-
tion, thus facilitating phylogeny reconstruction. Cytoplasmic markers are often used in
plants as they also lack recombination. “Reciprocally monophytic” means that all DNA 
lineages within an ESU must share a more recent common ancestor with each other 
than with lineages from other ESUs (Figure 16.15). These molecular criteria are relat-
ively quick and easy to apply in most taxa because the necessary molecular markers 
(e.g., “universal” PCR primers) and data analysis software have become widely available.
Further, speed is often important in conservation where management decisions may 
have to be made quickly, and before thorough ecological studies of a species can be 
conducted.

An occasionally cited advantage of the Moritz (1994) monophyly criterion is that it can
employ population genetics theory to infer the time since population divergence. For
example, it takes a mean of 4Ne generations for a newly isolated population to coalesce to
a single gene copy and therefore become reciprocally monophyletic (through drift and
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mutation) at a nuclear locus (Neigel and Avise 1986). This means that if a population 
splits into two daughter populations of size Ne = 1,000, it would take an expected 1,000
generations to become reciprocally monophyletic for mtDNA. For mtDNA to become
monophyletic it requires fewer generations because the effective population size is approx-
imately four times smaller for mtDNA than for nuclear DNA; thus lineage sorting is faster
(see Section 9.5). Here it is important to recall that adaptive differentiation can occur in a
much shorter time period than does monophyly (see, for example, Guest Box 8).

A disadvantage of the Moritz ESU concept is it generally ignores adaptive variation,
unlike the two-step approach that also incorporates the “evolutionary legacy” of a species
(Waples 1991). The framework of Moritz is based on a cladistic phylogenetic approach
(Section 16.2) using neutral loci. Thus, unfortunately, the Moritz approach makes it more
likely that smaller populations (e.g., bottlenecked populations) will be identified as ESUs.
Small populations quickly become monophyletic due to drift or lineage sorting. Worse,
natural selection is most efficient in large populations. Consequently, the strict Moritz
framework is unlikely to identify ESUs with substantial adaptive differences.

One limitation of using only molecular information is that a phylogenetic tree might
not equal the true population tree. This is analogous to the “gene tree versus species tree”
problem discussed in Section 16.3.2 (Example 16.7). This problem of population trees not
equaling gene trees is worse at the intraspecific level because there is generally less time
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Figure 16.15 Development of phylogenetic structure of alleles between populations. After 
a population splits into two, the phylogenetic relationship of the alleles in the two daughter
populations usually proceeds from polyphyly through paraphyletic conditions to reciprocal
monophyly. The alleles (or lineages) are labeled A, B, C, D, and E. When two populations 
(1 and 2) become isolated, both will initially have some alleles that are more closely related to
alleles in the other population (polyphyly). The filled circle at the root of the B and C branches
represents the most recent common ancestor between B and C. After many generations of
isolation, one population might become monophyletic, e.g., for alleles for D and E in the
paraphyly example (see also the black duck, Figure 16.7). But the other population might
maintain an allele that is more related to an allele in the other population (e.g., the mallard
duck, Figure 16.7). After approximately four Ne generations, both daughter populations will
usually be monophyletic with respect to each other (reciprocal monophyly). Modified from
Moritz (1994).
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Figure 16.16 UPGMA dendrograms for mtDNA haplotypes ( left) and scnDNA (single
copy nuclear DNA) genotypes (right) in silver-eyes (Zosterops lateralis) and yellow
white-eyes (Z. lutea). The distribution of silver-eye haplotypes is shown in solid black
(top map), and for yellow white-eyes in white circles (bottom two maps). Note the
middle map shows that the yellow white-eye samples from northwestern Australia
group in the mtDNA tree with silver-eye samples from eastern Australia, but group
with the yellow white-eyes in the scnDNA tree. Modified from Degnan (1993).
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Example 16.7 Lack of concordance between mtDNA and nuclear genes in 
white-eyes

Degnan (1993) compared dendrograms from mtDNA and nuclear DNA for two
species of white-eye from Australia. The mtDNA data yielded a single gene tree
that does not reflect the organismal tree based on phenotypic characters. In con-
trast, the two nuclear DNA loci revealed phylogeographic patterns consistent with
the traditional classification of the two species (Figure 16.16). The author concluded
that the discordance between the mtDNA and nuclear DNA (and phenotype) likely
results from past hybridization between the two species of white-eye and mtDNA
introgression. Evidence for hybridization might have been lost in nuclear genes
through recombination.

This study provides a clear empirical demonstration that single gene genea-
logies cannot be assumed to accurately represent the true organismal phylogeny.
Further, it emphasizes the need for analyses of multiple, independent DNA
sequences when inferring phylogeny and identifying conservation units. This is
especially true for populations within species where relatively few generations
have passed. For example, if we were trying to identify ESUs (or species) in this
study by using mtDNA alone, we might identify three ESUs (corresponding to the
three mtDNA haplogroups in Figure 16.16); However these three are not concor-
dant with the two groups identified by phenotype, nuclear DNA, and geography.
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since reproductive isolation at the intraspecific level, and thus more problems with lineage
sorting and paraphyly. Consequently, problems of gene trees not matching population
trees (and different genes giving different trees) will be relatively common at the intra-
specific level. Unfortunately, in the conservation literature, mtDNA data are often used
alone to attempt to identify ESUs. This should occur less often as nuclear DNA markers
become more readily available.

Exchangeability

Crandall et al. (2000) suggested that ESU identification be based on the concepts of ecolo-
gical and genetic “exchangeability”. The idea of exchangeability is that individuals can be
moved between populations and can occupy the same niche, and can perform the same
ecological role as resident individuals, without any fitness reduction due to genetic mech-
anisms (e.g., outbreeding depression). If we can reject the hypothesis of exchangeability
between populations, then those populations represent ESUs. Ideally, exchangeability
assessment would be based on heritable adaptive quantitative traits. Strengths of this
approach are that it integrates genetic and ecological (adaptive) information and that it is
hypothesis based.

Exchangeability can be tested using common-garden experiments and reciprocal 
transplant experiments. For example, if two plant populations from different locations
have no reduced fitness when transplanted between locations, they might be exchange-
able and would not warrant separate ESU status (see also Section 2.4, Figure 2.9, and
Figure 8.1).

The main problem with this approach is it is not generally practical – i.e., it is difficult 
to test the hypothesis of exchangeability in many species. For example, it is difficult to
move a rhinoceros (or most any endangered species) from one population to another 
and then to measure its fitness and the fitness of its offspring. Such studies are especially
problematic in endangered species where experiments are often not feasible. Although
difficult to test, exchangeability is a still worthy concept to consider when identifying
ESUs. Even when we cannot directly test for exchangeability, we might consider surrogate
measures of exchangeability, such as life history differences, the degree of environmental
differentiation, or the number of functional genes showing signatures of adaptive differen-
tiation (see Section 16.6). Surrogates are often used when applying Waples’ ESU definition
(see Guest Box 16).

Synthesis

Substantial overlap in criteria exists among different ESU concepts. Several concepts 
promote a two-step approach involving isolation and adaptive divergence. The main 
principles and criteria are the following: reproductive isolation (no gene flow), adaptive
differentiation, and concordance across multiple data types (e.g., genetic, morphological,
behavioral, life history, and geographic). The longer the isolation and the more different
the environment (i.e., selection pressures), the more likely are populations to represent
distinct units worthy of preservation and separate management. We should not rely 
on any single criterion, such as reciprocal monophyly of mtDNA. In fact, the greater the
number of different data types showing concordant differentiation between populations,
the stronger the evidence for ESU status.
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16.5.3 Management units

Management units (MUs) usually are defined as populations that are demographically
independent. That is, their population dynamics (growth rate) depend mostly on local
birth and death rates rather than on immigration. The identification of these units, similar
to “stocks” recognized in fisheries biology, would be useful for short-term management –
such as delineating hunting or fishing areas, setting local harvest quotas, and monitoring
habitat and population status.

MUs, unlike ESUs, generally do not show long-term independent evolution or strong
adaptive differentiation. MUs should represent populations that are important for the
long-term persistence of an entire ESU (and/or species). The conservation of multiple
populations, not just one or two, is critical for insuring the long-term persistence of species
(Hughes et al. 1997; Hobbs and Mooney 1998).

MUs are generally smaller than ESUs, such that an ESU might contain several MUs.
MUs often are divergent subpopulations within a major metapopulation that represents
an ESU. For example, fish populations are often structured on hierarchical levels such as
small streams (as MUs) that are nested within a major river drainage (an ESU, e.g., Guest
Box 16). Moritz (1994) defined the term “management unit” as a population that has sub-
stantially divergent allele frequencies at many loci.

One potential limitation of using allele frequency differentiation (e.g., FST) to identify
MUs is that FST cannot directly be interpreted as evidence for demographic independence.
For example, large populations experience little drift (and little allele frequency differentia-
tion) and thus can be demographically independent even if allele frequencies are similar.
The same Nm (and hence FST) can result in different migration rates (m) for different 
population sizes (N). As N goes up, m goes down for the same FST (Table 16.4). So in a large
population, the number of migrants can be very small, and the population could be demo-
graphically independent yet have a relatively low FST.

A related difficulty is determining if migration rates would be sufficient for recoloniza-
tion on an ecological time scale, e.g., if a MU became extinct or overharvested. Allele fre-
quency data can be used to estimate migration rates (Nm), but at moderate to high rates of
migration (Nm > 5–10) genetic estimators are notoriously imprecise, such that confidence
intervals on the Nm estimate might include infinity (Waples 1998). Unfortunately, the

Table 16.4 Inferring demographic independence of populations by using genetic
differentiation data (FST) requires knowledge of the effective population size (Ne). Here, 
the island model of migration was assumed to compute Nem and m (proportion of migrants)
from the FST (as in Figure 9.9). Recall that the effective population size is generally far less than
the census size in natural populations (see Section 7.10).

Demographic
FST Ne m Nem independence

0.10 50 0.040 2 Unlikely

0.10 100 0.020 2 Likely

0.10 1,000 0.002 2 Yes
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range of Nm we are most interested in for MU identification is often moderate to high
(5–50). Additional problems with Nm estimation exist (e.g., Whitlock and McCauley 1999;
and Section 9.8.1).

The identification of conservation units can be difficult when population differences are
subtle or if hierarchical structure is complex. For example, in green turtles (mentioned 
in Section 16.5.1), two ESUs have been proposed: the Atlantic Ocean and the Indo-Pacific
region (e.g., Karl and Bowen 1999). Within each ESU, more than 10 MUs have been 
recognized; however population differences and demographic independence is difficult to
delineate. In the humpback whale, extensive molecular and demographic studies have
suggested the presence of one ESU containing numerous MUs, most of which correspond
to major stocks identified by migration routes (Baker et al. 1998). A similar scenario was
proposed for koalas in Australia, which was suggested to contain only one ESU but many
MUs, based on mtDNA, microsatellite DNA variation, and biogeography (e.g., Houlden
et al. 1999).

Two general errors can occur in MU diagnosis (as with ESU identification): identifying
too few or too many units. Recognizing too few units could lead to underprotection and
then to the reduction or loss of local populations. This problem could arise, for example, if
statistical power is too low to detect genetic differentiation when differentiation is biolo-
gically significant.

For example, too few MUs (and underprotection) may be established if only one MU is
identified when the species is actually divided into five demographically independent
units. Consider that the sustainable harvest rate is 2% per year on the basis of total popu-
lation, but that all the harvest comes from only one of the five MUs. Then the actual 
harvest rate for the single harvested MU is 10% (assuming equal size of the five MUs). 
This high harvest rate could result in overexploitation and perhaps extinction of the one
harvested MU population. For example, if the harvested population’s growth rate is only
4% per year and the harvest rate is 10%, overexploitation would be a problem (Taylor and 
Dizon 1999).

Here, undersplitting could result from either a lack of statistical power (e.g., due to too
few data) or to the misidentification of population boundaries (e.g., due to cryptic popu-
lation substructure). To help avoid misplacement of boundaries, researchers should 
sample many individuals that are widely distributed spatially, and use recently developed,
individual-based statistical methods (see Section 16.4.2 and caveats therein; see also Manel
et al. 2003).

Diagnosing too many MUs (oversplitting) could lead to unnecessary waste of conserva-
tion management resources. This error could occur if, for example, populations are desig-
nated as MUs because they have statistically significant differences in allele frequencies,
but this differentiation is not associated with important biological differences. This
becomes a potential problem as more and more molecular markers are used that are
highly polymorphic (and thus statistically powerful).

For example, if many highly polymorphic microsatellites are genotyped, and different
populations have “significantly” different allele frequencies (P < 0.01), they might not 
necessarily warrant recognition as different MUs. This is because the magnitude of differ-
entiation could be low (e.g., FST << 0.01) even though this relatively small difference is
significantly different (P < 0.01). Note that an FST of 0.01 suggests that populations prob-
ably exchange numerous migrants, on average, per generation (recall that if FST = 0.1,
then approximately two migrants per generation would occur, assuming the island model,
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expression 9.3). In this case, the populations might not be demographically independent
and not merit separate MU status. Researchers and managers must be careful to under-
stand the difference between the biological significance and the statistical significance of
genetic differentiation measures (e.g., see Waples 1998; Hedrick 1999). Also recall that the
island model has numerous assumptions unlikely to be met in natural populations (see
Section 9.8.1; Whitlock and McCauley 1999).

16.6 Integrating genetic, phenotypic, and environmental information

Many kinds of information should be integrated, including life history traits, environ-
mental characteristics, phenotypic divergence, and patterns of gene flow (isolation/
phylogeography), for the identification of conservation units (Figure 16.17; Guest Box 16).
For example, if two geographically distant populations (or sets of populations) show large
molecular differences that are concordant with life history (e.g., flowering time) and mor-
phological (e.g., flower shape) differences, we would be relatively confident in designating
them as two geographic units important for conservation (perhaps ESUs).

Researchers should always consider if the environment or habitat type of different 
populations has been different for many generations, because this could lead to adapta-
tions (even in the face of high gene flow) that are important for the long-term persistence
of species. The more kinds of independent information that are concordant, the more sure
one can be that a population merits recognition as a conservation unit. The principle of
considering multiple data types and testing for concordance is critical for identifying con-
servation units.

ESU

Life history
e.g., timing of reproduction

Behavior
e.g., courtship display

Morphology
e.g., color pattern, horn
shape, bill shape, flower
shape

Environment
e.g., habitat type,
climate

Geography
e.g., vast distances,
physical barriers

Socioeconomic factors
e.g., commercial value,
aesthetic value

Molecular genetics
e.g., allele frequencies or
genetic distance;
phylogeography;
discordance between
divergence at candidate
(“adaptive”) genes and
neutral markers

Figure 16.17 Sources of information that can help diagnose an evolutionary significant unit.
Modified from Moritz et al. (1995).
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When concordance is lacking among data types, difficulties arise. For example, imagine
that two populations show morphological differences in size or color, but show evidence
of extensive recent gene flow. This scenario has arisen occasionally in studies that measure
phenotypic traits from only small samples or nonrepresentative samples of individuals
from each population (e.g., only 5–10 individuals of different sexes or ages). In this exam-
ple taxonomic “oversplitting” results from biased or limited sampling, and status is not
warranted. This hypothetical example relates to the green/black turtle “species” dilemma
described above, where more extensive sampling and study (including life history and
adaptive trait information) is needed.

It is prudent to not use only molecular or only morphological information to identify
ESUs, because adaptive differences can exist between populations even when little molec-
ular or morphological differentiation is detectable (e.g., see Merilä and Crnokrak 2001). It
is especially important to not base gene flow estimates on only one type of molecular
marker (e.g., mtDNA). Rather, researchers should combine many loci along with ecological
information. When ecological information is scarce (for example life history information
can be difficult to collect), researchers could at least consider climate, habitat type, adaptive
gene markers, etc., when identifying an ESU.

One example of how to integrate adaptive and “neutral” molecular variation is to con-
sider them on two separate axes in order to identify populations with high distinctiveness
for both adaptive and neutral diversity (Figure 16.18). For many species (e.g., mammals,
salmon, and agricultural plants and their relatives), it is becoming feasible to detect adap-
tive molecular variation by genotyping numerous mapped markers including candidate
genes (Luikart et al. 2003; Morin et al. 2004).

Adaptive molecular or
phenotypic difference

A
da

pt
iv

e 
di

ve
rg

en
ce

(s
el

ec
tio

n) High conservation
priority (populations

highly distinct)

Phylogeographic or
genetic structureNeutral divergence

(mutation/drift)

Low
priority

Figure 16.18 Adaptive information, including adaptive genes under selection, could be
integrated with information from neutral markers and information on long-term isolation.
Such an approach could help identify the most appropriate source population (i.e., non-
adaptively differentiated population) from which to translocate individuals into small,
declining populations that require supplementation. This approach could also help rank or
prioritize populations for conservation management. From Luikart et al. (2003); modified
from Moritz (2002).

CATC16  28/05/2007  06:11PM  Page 416



CHAPTER 16 UNITS OF CONSERVATION 417

Guest Box 16 Identifying conservation units in Pacific salmon
Robin S. Waples

Pacific salmon populations considered for listing as threatened or endangered
“species” under the US Endangered Species Act (ESA) have been evaluated by 
the National Marine Fisheries Service (NMFS) using a concept of evolutionary
significant units (ESUs) developed by Waples (1991, 1995). Under this framework, a
population or (more often) group of populations is considered an ESU if it is sub-
stantially isolated reproductively and contributes substantially to ecological and
genetic diversity of the species as a whole. Molecular genetic data are particularly
informative for the first criterion. The second criterion emphasizes adaptive differ-
ences, but direct information about adaptations is generally lacking, so life history
and ecological data are typically used as proxies.

In one example application, the NMFS evaluated a petition to list steelhead in
the Illinois River in southern Oregon under the ESA. The Biological Review Team
(BRT; Busby et al. 1993) found some support for the petitioners’ claims of local dif-
ferences in phenotypic and life history traits between Illinois River steelhead and
nearby Rogue River steelhead, but in a broader geographic survey the traits of
Illinois River fish were found to be shared by many other populations in southern
Oregon and northern California. Furthermore, three of four genetic samples col-
lected from within the Illinois River drainage were more similar to a population
from outside the basin than to any of the other Illinois River samples. As a con-
sequence of these findings, which illustrate the importance of an appropriate 
geographic context for evaluating distinctiveness, the BRT concluded that Illinois
River steelhead do not, by themselves, constitute an ESU.

The BRT again expanded the geographic scope of its evaluations to determine
the boundaries of the ESU to which Illinois River steelhead belong. Several lines 
of evidence suggest that Cape Blanco, which forms the northern boundary for the
Klamath Mountains Geological Province (KMP), is also the northern boundary 
for this ESU. The KMP is distinctive geologically and ecologically (interior valleys
receive less precipitation than any other location in the Pacific Northwest west 
of the Cascade Range) and supports a large number of endemic species. In the
marine environment, the strength and consistency of coastal upwelling south of
Cape Blanco yields high productivity in nearshore waters utilized by salmon.
Tagging studies suggest that coho salmon and steelhead from south of Cape
Blanco may not be strongly migratory, remaining instead in these productive
oceanic waters.

Identifying the southern extent of this ESU was more problematical. The KMP
and the distinctive Klamath–Rogue freshwater zoogeographic zone include the
Klamath River basin but not areas further south. However, Cape Mendocino (well
to the south of the Klamath River) is a natural landmark associated with changes in
ocean currents and represents the approximate southern limit of two important
life history traits for steelhead: adult fish that return to fresh water in the summer,
and subadults that spend only a few months at sea before returning to fresh water
on a false spawning run at a size that inspired their name, “half-pounders”. Finally,
the area of increased upwelling extends well into central coastal California.

CATC16  28/05/2007  06:11PM  Page 417



418 PART III GENETICS AND CONSERVATION

Figure 16.19 Dendogram constructed using UPGMA and pairwise genetic distances
between populations (Nei’s 1978 unbiased distance) computed from allele frequencies
at 39 polymorphic allozyme loci. The population groups A, B, and C are in different
ESUs. From Busby et al. (1994).

This issue was resolved by additional genetic sampling from the northern
California coast, which showed a sharp genetic transition south of the Klamath
River. At several genetic loci, alleles that were rare or absent north of the Klamath
River suddenly appeared at appreciable frequencies (Figure 16.19). These results
suggest considerable reproductive isolation between steelhead from the Klamath
River and populations to the south (those in cluster C), and as a result the BRT 
concluded that the Klamath River forms the southern boundary for this ESU
(Busby et al. 1994).

This example illustrates how combining different kinds of information can 
help identify intraspecific units for conservation. Here, the kinds of information
included life history (migratory behavior), geology (river drainage system), 
ecology and environment (precipitation, ocean currents, and productivity), and
demography (tagging and movement studies), as well as genetics (allele frequency
differences).
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Problem 16.1

What are the three hierarchical levels of biodiversity recognized by the IUCN and
some other organizations? Name two additional organizational levels. Is any one
level most important to focus on for conservation efforts? Why or why not?

Problem 16.2

Name three temporal aspects of biodiversity conservation. Which is most import-
ant and should be prioritized?

Problem 16.3

Describe several scenarios, mechanisms, and evolutionary processes that can
lead to isolated populations failing to show reciprocal monophyly of DNA lineages.

Problem 16.4

What are the three main schools of taxonomic classification? Which school is a
combination of the other two? Which is most widely used today? Which is most
appropriate for studies of evolutionary history?

Problem 16.5

Define paraphyly and polyphyly. Does our currently accepted classification of birds
(relative to reptiles) represent an example of paraphyly or polyphyly? Are reptiles
monophyletic in our currently accepted classification? (Consider Figure 16.3.)

Problem 16.6

The figure below (a) shows a hypothetical phylogenetic tree with three derived
alleles x, y, and z, that arose from the ancestral allele w. Figure (b) shows circles
representing geographic areas in which each allele from (a) is distributed (modified
from Moritz and Faith 1998). Conduct a phylogeographic analysis and overlay the
phylogeny of alleles onto the geographic distribution (b) of alleles. Is there evidence
for phylogeographic structuring? Why or why not? Now, imagine another geographic
distribution of alleles (c); does figure (c) reveal phylogeographic structuring?

(a)

z y x

w (b) (c)

w

y
x z

w, y

y, x
x, y w, z
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Problem 16.7

What is an ESU? What are the main principles and criteria used for ESU
identification?

Problem 16.8

How does a management unit differ from an ESU? How might molecular markers
be used to help identify management units?

Problem 16.9

What kinds of information are most useful for identifying units for conservation?

Problem 16.10

Below are four allelic DNA sequences from a species of domestic ungulate (family
Bovidae). Nucleotide positions are numbered 1 to 40 (numbers are written verti-
cally) above the sequences. For example, nucleotide position 7 has a substitution
(G) in sequence 2 and 4, which is different from the “ t” in reference sequence 1.

(a) Build a parsimony network (as in Figures 16.12 and 16.14a) by hand 
by connecting the sequences based on their similarity at polymorphic
nucleotide sites (in bold and capitals). The two circles (connected by a
line) below the sequences are to get you started drawing the network.
Circles represent sequences 1 and 3 and the line connecting the circles
show the one substitution at base pair position 23 that exists between the
two sequences (haplotypes) 1 and 3.

Base pair position (1–40)

1234567891 1111111112 2222222223 3333333334
0 1234567890 1234567890 1234567890

1) gagtattata agggcgagtg tcatttcttc aacgggaccg
2) gagtatGCta agAgcgagtg tcatttcttc aaccggacgg
3) gagtattata agggcgagtg tcTtttcttc aacgggaccg
4) gagtatGCta agAgcgagtg tcatttGttc aacgggacgg

(b) Conduct a BLAST search (at http://www.ncbi.nlm.nih.gov/BLAST/) with
sequence number 1, and identify the gene and species of origin of the
sequence.

23 3
1
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Hybridization

Hybridization, with or without introgression, frequently threatens populations in a
wide variety of plant and animal taxa because of various human activities.

Judith M. Rhymer and Daniel Simberloff (1996)

We conclude by suggesting that when viewed over the long-term of millennia,
introgressive hybridization may have contributed importantly to the generation of
species diversity in birds.

Barbara R. Grant and Peter R. Grant (1998)

17.1 Natural hybridization, 423

17.2 Anthropogenic hybridization, 428

17.3 Fitness consequences of hybridization, 429

17.4 Detecting and describing hybridization, 434

17.5 Hybridization and conservation, 443

Guest Box 17 Hybridization and the conservation of plants, 446

Rates of hybridization and introgression have increased dramatically worldwide because
of widespread intentional and incidental translocations of organisms and habitat modi-
fications by humans (see Guest Box 17). Hybridization has contributed to the extinction of
many species through direct and indirect means (Levin et al. 1996; Allendorf et al. 2001).

Banksia, Section 17.2
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The severity of this problem has been underestimated by conservation biologists (Rhymer
and Simberloff 1996). The increasing pace of the three interacting human activities that
contribute most to increased rates of hybridization (introductions of plants and animals,
fragmentation, and habitat modification) suggests that this problem will become even
more serious in the future. For example, increased turbidity in Lake Victoria, Africa, has
reduced color perception of cichlid fishes and has interfered with the mate choice that pro-
duced reproductive isolation among species (Seehausen et al. 1997). Increased turbidity
because of land development and forest harvesting has led to increased hybridization
among stickleback species in British Columbia, Canada (Wood 2003).

On the other hand, hybridization is also part of the evolutionary process. Hybridization
has long been recognized as playing an important role in the evolution of plants (Arnold
1997) (Figure 17.1). In addition, recent studies have found that hybridization also has
played an important role in the evolution of animals (Arnold 1997; Dowling and Secor
1997; Grant and Grant 1998). Several reviews have emphasized the creative role that

Hybridization

Natural

Type 2Type 1 Type 3

Natural
introgression

Natural hybrid
taxon

Natural hybrid
zone

Anthropogenic

F1s only Hybrid swarmBackcrosses

F1s are sterile

Type 5Type 4 Type 6

Widespread
introgression

Hybridization
without introgression

Demographic effects
might be important

Complete
admixture

Figure 17.1 Framework to categorize hybridization. Each type should be viewed as a 
general descriptive classification used to facilitate discussion rather than a series of strict, 
all-encompassing divisions. Types 1–3 represent hybridization events that are a natural part of
the evolutionary legacy of taxa; these taxa should be eligible for protection. Types 4–6 divide
anthropogenic hybridization into three categories that have different consequences from a
conservation perspective. From Allendorf et al. (2001).
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hybridization may play in adaptive evolution and speciation (e.g. Rieseberg 1997; Grant
and Grant 1998; Seehausen 2004). Many early conservation policies generally did not
allow protection of hybrids. However, increased appreciation of the important role of
hybridization as an evolutionary process has caused a re-evaluation of these policies.
Determining whether hybridization is natural or anthropogenic is crucial for conserva-
tion, but it is often difficult (Allendorf et al. 2001).

Hybridization provides an exceptionally tough set of problems for conservation biolo-
gists. The issues are complex and controversial, beginning with the seemingly simple task
of even defining hybridization (Harrison 1993). Hybridization has sometimes been used to
refer to the interbreeding of species (e.g., Grant and Grant 1992b). However, we believe
that this taxonomically restrictive use of hybridization can be problematic (especially since
it is sometimes difficult to agree on what is a species!). We have adopted the more general
definition of Harrison (1990) that includes matings between “individuals from two popu-
lations, or groups of populations, which are distinguishable on the basis of one or more
heritable characters”.

The term “hybrid” itself sometimes has a negative connotation, especially when used in
conjunction with its opposite “purebred”. In the United States, a proposed policy to treat
hybrids and hybridization under the Endangered Species Act (ESA) used the term “inter-
cross” (suggested by John Avise) and “intercross progeny” rather than hybrid to avoid the
connotations of the term hybrid (USFWS and NOAA 1996a).

Detection of hybridization can also be difficult, although it is becoming much easier
through the application of various molecular techniques over the last two decades.
Despite improved molecular data that can be collected with relative ease, interpreting the
evolutionary significance of hybridization and determining the role of hybrid populations
in developing conservation plans is more difficult than often appreciated. According to
one review: “It is an understatement to say that hybridization is a complex business!”
(Stone 2000).

In this chapter, we first consider the role that natural hybridization has played in the pro-
cess of evolution. We next consider the possible harmful effects of anthropogenic
hybridization and the fitness of hybrid individuals and populations. We also present and
discuss genetic methods for detecting and evaluating hybridization. Finally, we consider
the possible use of hybridization as a tool in conservation.

17.1 Natural hybridization

Consideration of the role of hybridization in systematics and evolution goes back to
Linnaeus and Darwin (see discussion in Arnold 1997, p. 6). Botanical and zoological work-
ers have tended to focus on the two opposing aspects of hybridization. Botanists have 
generally accepted hybridization as a pervasive and important aspect of evolution (e.g.,
Stebbins 1959; Grant 1963). They demonstrated that many plant taxa have hybrid origins
and demonstrated that hybridization is an important mechanism for the production of
new species and novel adaptations. In contrast, early evolutionary biologists working with
animals were very interested in the evolution of reproductive isolation leading to speci-
ation (Mayr 1942; Dobzhansky 1951). They emphasized that hybrid offspring were often
relatively unfit, and that this led to the development of reproductive isolation and even-
tually speciation.
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17.1.1 Intraspecific hybridization

Intraspecific hybridization in the form of gene flow among populations has several 
important effects. It has traditionally been seen as the cohesive force that holds species
together as units of evolution (Mayr 1963). This view was challenged by Ehrlich and Raven
(1969) who argued that the amount of gene flow observed in many species is too low to
prevent differentiation thorough genetic drift or local adaptation.

The resolution to this conflict is the recognition that even very small amounts of gene
flow can have a major cohesive effect. We saw in Chapter 9 that an average of one migrant
individual per generation with the island model of migration is sufficient to make it likely
that all alleles will be found in all populations. That is, populations may diverge quantit-
atively in allele frequencies, but qualitatively the same alleles will still be present. We saw 
in Chapters 9 and 12 that just one migrant per generation can greatly increase the local
effective population size.

Rieseberg and Burke (2001) have presented a model of species integration that considers
the effects of the spread of selectively advantageous alleles. They have shown that new
mutations that have a selective advantage will spread across the range of a species much
faster than selectively neutral mutations with low amounts of gene flow. They have pro-
posed that it is the relatively rapid spread of highly advantageous alleles that holds a species
together as an integrated unit of evolution.

High amounts of gene flow can restrict the ability of populations to adapt to local condi-
tions. Genetic swamping occurs when gene flow causes the loss of locally adapted alleles
or genotypes (Lenormand 2002). This effect may be greatest in sparsely populated popula-
tions in which gene flow tends to be from densely populated areas (García-Ramos and
Kirkpatrick 1997). In such cases, the continued immigration of locally unfit genotypes
reduces the mean fitness of a population and potentially could lead to what has been called
a hybrid sink effect. This is a self-reinforcing process in which immigration produces
hybrids that are unfit, which reduces local density and increases the immigration rate
(Lenormand 2002).

Riechert et al. (2001) have provided evidence that gene flow in a desert spider has caused
genetic swamping and the reduction in fitness of local populations. Riparian habitats favor
spiders with a genetically determined nonaggressive phenotype in comparison to adjacent
arid habitats in which a competitive, aggressive phenotype is favored. Nearly 10% of the
matings of riparian spiders are with an arid-land partner. The resulting offspring have
reduced survival in the riparian habitat compared to matings between riparian spiders.
Modeling has shown that cessation of gene flow between spiders in different habitat types
is expected to quickly result in the divergence in frequency of aggressive and nonaggres-
sive phenotypes in the two habitats (Figure 17.2).

17.1.2 Interspecific hybridization

Hybridization and introgression between species may occur more often than usually 
recognized (see Guest Box 17). For example, Grant and Grant (1992b) estimated that
approximately 10% of all bird species have bred with another species and produced hybrid
progeny. Bush (1994) defined speciation as a process of divergence of lineages that are
sufficiently distinct from one another to follow independent evolutionary paths. Many

CATC17  28/05/2007  06:12PM  Page 424



CHAPTER 17 HYBRIDIZATION 425

independent lineages are capable of hybridizing and exchanging genes (introgression) for
quite long times without losing their phenotypic identities.

Interspecific hybridization can be an important source of genetic variation for some
species. Grant and Grant (1998) have studied two species of Galápagos finches on the vol-
canic island of Daphne Major for over 30 years. The have found that hybridization between
the two species (medium ground finch and cactus finch) has been an important source of
genetic variation for the rarer cactus finch species. And they have suggested that their
results may apply to many bird species. Interspecific introgression, or leakage between
species, may cause a major shift in the way we think about species (Zimmer 2002).

Such introgression is especially important for island populations in which the effective
population size is restricted because of isolation and the amount of available habitat. Two
species of land snails (Partula) occur sympatrically on the island of Moorea in French
Polynesia. In spite of being markedly different both phenotypically and ecologically, estim-
ates of genetic distance based on molecular markers between some sympatric populations
of these species are lower than is typical for conspecific comparisons for these taxa on dif-
ferent islands. Clarke et al. (1998) concluded that this apparent paradox was best explained
by “molecular leakage, the convergence of neutral and mutually advantageous genes in
two species through occasional hybridization”.
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Figure 17.2 Predicted response to cessation of gene flow between desert spiders living 
in riparian and arid habitat patches as measured by the frequency of the nonaggressive
phenotype that has higher fitness in riparian but not arid environments. From Riechert 
et al. (2001).
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Mitochondrial DNA seems particularly prone to introgression and molecular leakage
(Ballard and Whitlock 2004). There are many examples of cases where the mtDNA
molecule of one species has completely replaced the mtDNA of another species, in some
populations without any evidence of nuclear introgression. For example, the mtDNA 
in a population of brook trout in Lake Alain in Québec is identical to the Québec 
Arctic char genotype, yet the brook trout are morphologically indistinguishable from 
normal brook trout and have diagnostic brook trout alleles at nuclear loci (Bernatchez 
et al. 1995).

Hybrid zones

An interspecific hybrid zone is a region where two species are sympatric and hybridize to
form at least partially fertile progeny. Hybrids zones usually result from secondary contact
between species that have diverged in allopatry. Recent molecular analysis of plants and
animals has revealed that hybrid zones occur widely in many taxa (Harrison 1993). Barton
and Hewitt (1985) reviewed 170 reported hybrid zones and concluded that hybrids were
selected against in most hybrid zones that have been studied. Nevertheless, some hybrid
zones appear to be stable and persist over long periods of time through a balance between
dispersal of parental types and selection against hybrids (Harrison 1993). Hybrid zones
may act as selective filters that allow introgression of only selectively advantageous alleles
between species (Martinsen et al. 2001).

Arnold (1997) has proposed three models to explain the existence of a stable hybrid
zone without genetic swamping of one or both of the parental species. In the Tension
Zone Model, first- and second-generation hybrids are less fit than the parental types, but a
balance between dispersal into the hybrid zone and selection against hybrids produces an
equilibrium, with a persistent, narrow hybrid zone containing F1 individuals but few or no
F2 or beyond hybrids. This model does not depend upon ecological differences between
the habitats of the two parental types. In the Bounded Hybrid Superiority Model, hybrids
are fitter than either parental species in environments that are intermediate to the parental
habitats, but are less fit than the parental species in their respective native habitats
(Example 17.1). The Mosaic Model is similar to the Bounded Hybrid Superiority Model,
but the parental habitats are patchy rather than there being an environmental gradient
between two spatially separated parental habitats. Under both models, theory predicts
that hybridization and backcrossing would occur for many generations, creating intro-
gressed populations containing individuals varying in their proportions of genetic mater-
ial from the parental species.

17.1.3 Hybrid taxa

Approximately one-half of all plant species have been derived from polyploid ancestors,
and many of these polyploid events involved hybridization between species or populations
within the same sp ecies (Stebbins 1950). Recent evidence suggests that all vertebrates
went through an ancient polyploid event that might have involved hybridization (Lynch
and Conery 2000). Other major vertebrate taxa have gone through additional polyploid
events. For example, all salmonid fishes (trout, salmon, char, whitefish, and grayling) 
went through an ancestral polyploid event some 25–50 million years ago (Allendorf and
Waples 1996).
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Some hybrid taxa of vertebrates are unisexual. For example, unisexual hybrids between
the northern redbelly dace and the finescale dace occur across the northern USA.
Reproduction of such unisexual species is generally asexual or semisexual, and they are
often regarded as evolutionary dead ends. However, it appears that some tetraploid 
bisexual taxa had their origins in a unisexual hybrid (e.g., all salmonid fish).

Asexual hybrid taxa may provide some interesting challenges to conservation. Some
recognized species of corals have been found to be long-lived first-generation hybrids that
primarily reproduce asexually (Vollmer and Palumbi 2002). However, this interpretation
has been controversial. Others have argued that interbreeding does occur between hybrid
corals and their parental species (Miller and van Oppen 2003). Regardless, understanding
which corals are reproducing asexually and which are reproducing sexually is essential for
setting conservation priorities for corals.

17.1.4 Transgressive segregation

Hybridization sometimes produces phenotypes that are extreme or outside the range of
either parental type. This has been called transgressive segregation. Rieseberg et al.
(2003) have shown that sunflower species that are found in extreme habitats tend to be
ancient interspecific hybrids. They argue that new genotypic combinations resulting from
hybridization have led to the ecological divergence and success of these species. A review
of many hybrid species concluded that transgressive phenotypes are generally common in
plant populations of hybrid origin (Rieseberg et al. 1999).

Example 17.1 Genetic analysis of a hybrid zone between Sitka and white spruce

Bennuah et al. (2004) have used genetic analysis of nuclear DNA markers to
study a hybrid zone between the more coastal Sitka spruce and the more inland
white spruce in northwestern British Columbia. Their results suggested that the
stable, narrow hybrid zone is most likely maintained by hybrid superiority limited to
environments that are intermediate to the ecological niches of the parental
species (bounded hybrid superiority).

Genotypes of individuals in the hybrid zone suggested that they were all later
generation hybrids (beyond the F1 and F2 generations). A hybrid index based
upon the genotypes was estimated to reflect the relative contribution of Sitka
spruce and white spruce genomes. There is also a steep and wide geographic
cline across the hybrid zone of parental contributions that was concordant with the
climatic gradient from maritime to continental climate of the two parental species.
A patchy distribution of hybrid index estimates corresponding to environmental
variation, as expected with the Mosaic Model, was not observed.

The hybrid superiority in transitional habitats could result from a combination of
higher cold and drought hardiness of the white spruce and the higher growth
potential of the Sitka spruce. The authors recommended that the relatively steep
cline observed in the hybrid index across the maritime/continental climate eco-
tone should be managed by limiting longitudinal seed transfer for reforestation.

CATC17  28/05/2007  06:12PM  Page 427



428 PART III GENETICS AND CONSERVATION

17.2 Anthropogenic hybridization

The increasing pace of introductions of plants and animals and habitat modifications have
caused increased rates of hybridization among plant and animal species. The introduction
of plants and animals outside their native range clearly provides the opportunity for
hybridization among taxa that were reproductively isolated. However, it is sometimes not
appreciated just how much habitat modifications have increased rates of hybridization.

In many cases, it is difficult to determine whether hybridization is “natural” or the direct
or indirect result of human activities. In some cases, authors have referred to hybridization
events resulting from habitat modifications as natural since they do not involve the intro-
duction of species outside their native range. Decline in abundance itself because of
anthropogenic changes also promotes hybridization among species because of the greater
difficulty in finding mates. In both of these cases, however, we believe that hybridization
should be considered to be the indirect result of human activities.

Wiegand (1935) was perhaps the first to suggest that introgressive hybridization is
observed most frequently in habitats modified by humans. The creation of extensive areas
of new habitats around the world has the effect of breaking down mechanisms of isolation
between species (Rhymer and Simberloff 1996). For example, two native Banksia species in
western Australia hybridize only in disturbed habitats where more vigorous growth has
extended the flowering seasons of both species and removed asynchronous flowering as a
major barrier to hybridization (Lamont et al. 2003). In addition, taxa that can adapt quickly
to new habitats may undergo adaptive genetic change very quickly. It now appears that
many of the most problematic invasive plant species have resulted from hybridization
events (Ellstrand and Schierenbeck 2000; Gaskin and Schaal 2002). This topic is considered
in more detail in Chapter 19.

Increased turbidity in aquatic systems because of deforestation, agricultural practices,
and other habitat modifications has increased hybridization among aquatic species that
use visual clues to reinforce reproductive isolation (Wood 2003). This has threatened sym-
patric species on the western coast of Canada (Kraak et al. 2001) and cichlid fish species in
Lake Victoria (Seehausen et al. 1997). It is estimated that nearly half of the hundreds of
species in Lake Victoria have gone extinct in the last 50 years primarily because of the
introduction of the Nile perch in the 1950s (Goldman 2003). The waters of this lake have
grown steadily murkier, in part due to algal blooms resulting from the decline of cichlids.
Mating between species now appears to be widespread and the loss of this classic example
of adaptive radiation is now threatened (Goldman 2003).

Many other forms of habitat modification can lead to hybridization (Rhymer and
Simberloff 1996). For example, the modification of patterns of water flows may bring
species into contact that have been previously geographically isolated. It is likely that
hybridization will continue to be more and more of a problem in conservation. Global
environmental change may further increase the rate of hybridization between species in
cases where it allows geographic range expansion.

Hybridization can contribute to the decline and eventual extinction of species in two
general ways. In the case of sterile or partially sterile hybrids, hybridization results in a loss
of reproductive potential and may reduce the population growth rate below that needed
for replacement (demographic swamping). In the case of fertile hybrids, genetically dis-
tinct populations may be lost through genetic mixing.
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17.2.1 Hybridization without introgression

Many interspecific hybrids are sterile so that introgression (i.e. gene flow between popula-
tions whose individuals hybridize) does not occur. For example, matings between horses
and donkeys produce mules, which are sterile because of chromosomal pairing problems
during meiosis. Sterile hybrids are evolutionary dead-ends. Nevertheless, the production
of these hybrids reduces the reproductive potential of populations and can contribute to
the extinction of species (see Section 17.5.3).

17.2.2 Hybridization with introgression

In many cases, hybrids are fertile and may displace one or both parental taxa through the
production of hybrid swarms (populations in which all individuals are hybrids by varying
numbers of generations of backcrossing with parental types and mating among hybrids).
This phenomenon has been referred to by many names (genetic assimilation, genetic
extinction, or genomic extinction). The term “genetic assimilation”, which has been used
in the literature (e.g., Cade 1983), should not be used in order to avoid confusion.
Waddington (1961) used this phrase to mean a process in which phenotypically plastic
characters that were originally “acquired” become converted into inherited characters by
natural selection (Pigliucci and Murren 2003).

Genomic extinction is a more appropriate term than the phrase genetic extinction as it
is not genes or single locus genotypes that that are lost by hybridization; it is combinations
of genotypes over the entire genome that are irretrievably lost. Genomic extinction results
in the loss of the legacy of an evolutionary lineage. That is, the genome-wide combination
of alleles and genotypes that have evolved over evolutionary time will be lost by genetic
swamping through introgression with another lineage.

17.3 Fitness consequences of hybridization

Hybridization may have a wide variety of effects on fitness. In the case of heterosis, or
hybrid vigor, hybrids have enhanced performance or fitness relative to either parental
taxa. In the case of outbreeding depression, the hybrid progeny have lower performance
or fitness than either parent (Lynch and Walsh 1998). Both heterosis and outbreeding have
many possible causes, and the overall fitness of hybrids results from an interaction among
these different effects. To further complicate matters, much of the heterosis that is often
detected in F1 hybrids is lost in subsequent generations so that a particular cross may result
in heterosis in the first generation and outbreeding depression in subsequent generations
(Figure 17.3).

There are two primary mechanisms that may reduce the fitness of hybrids. The first
mechanism is genetic incompatibilities between the hybridizing taxa; this has been referred
to as both intrinsic outbreeding depression and endogenous selection. Outbreeding
depression may also result from reduced adaptation to environmental conditions by
hybrids; this has been referred to as extrinsic outbreeding depression and also as exogen-
ous selection.
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17.3.1 Hybrid superiority (heterosis)

In many regards, heterosis is the opposite of inbreeding depression. Therefore, the under-
lying causes of heterosis are the same as the causes of inbreeding depression: increased
homozygosity and reduced heterozygosity (Crow 1993). The primary cause of heterosis is
the sheltering of deleterious recessive alleles in hybrids. In addition, increased heterozy-
gosity will increase the fitness of hybrid individuals for loci where the heterozygotes have a
selective advantage over homozygote types. There is evidence that hybridization can serve
as a stimulus for the evolution of invasiveness in plants (Ellstrand and Schierenbeck 2000).

The best example of heterosis has come from crossing inbred lines of corn to produce
high-yielding hybrid corn. Virtually all agricultural corn grown today in the United States
is hybrid, as compared to less than 1% of the corn planted in 1933 (Sprague 1978). A large
number of self-fertilized lines of corn have been established from highly polymorphic 
populations. The yield of each inbred line decreases as homozygosity increases. Many
lines are discontinued because their performance is so low. Inbred lines are expected to
become homozygous for different combinations of deleterious recessive alleles. These
deleterious recessive alleles will be sheltered in hybrids by heterozygosity. In addition,
many alleles resulting in increased yield are dominant. The hybrids between two inbred
lines are superior to both the inbred lines as well as corn from the original highly polymor-
phic populations. Many combinations of inbred lines are tested so that the combinations
that produce the most desirable hybrids can be used.
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Figure 17.3 Heuristic model for visualizing the balance between inbreeding depression,
hybrid vigor (heterosis), and outbreeding depression. Individual species exhibit different
optimal levels of outcrossing, as illustrated by the plot of fitness relative to average genetic
distance among breeders. For example, species A shows considerable inbreeding depression
and also outbreeding depression. Species B exhibits little inbreeding depression and hybrid
vigor. Redrawn from Waples (1995).
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Population subdivision of natural populations (see Chapter 9) can provide the appropri-
ate conditions for heterosis. Different deleterious recessive alleles will drift to relatively
high frequencies in different populations. Therefore, progeny produced by matings
between immigrant individuals are expected to have greater fitness than resident indi-
viduals. This effect is expected to result in a higher effective migration rate because 
immigrant alleles will be present at much higher frequencies than predicted by neutral
expectations (Ingvarsson and Whitlock 2000; Whitlock et al. 2000; Morgan 2002).

Experiments involving immigration into inbred, laboratory populations of African
satyrne butterflies have revealed surprisingly strong heterosis (Saccheri and Brakefield
2002). Immigrants were, on average, over 20 times more successful in contributing 
descendants to the fourth generation than were inbred nonimmigrants. The mechanism
underlying this rapid spread of immigrant alleles was found to be heterosis. The dispro-
portionately large impact of some immigrants suggests that rare immigration events may
be very important in evolution, and that heterosis may drive their fitness contribution.

Hybrids may also have a fitness advantage because they possess advantageous traits
from both parental populations (see Example 17.1). As we saw in Section 17.1.4, Rieseberg
et al. (2003) found that hybridization between sunflower species produced progeny that
are adapted to environments very different from those occupied by the parental species.
This was associated with the hybrids possessing new combinations of genetic traits.
Choler et al. (2004) found hybrids between two subspecies of an alpine sedge in the Alps
that occurred only in marginal habitats for the two parental subspecies.

17.3.2 Intrinsic outbreeding depression

Intrinsic outbreeding depression results from genetic incompatibilities between hybridiz-
ing taxa.

Chromosomal

Reduced fitness of hybrids can result from heterozygosity for chromosomal differences
between populations or species (see Chapter 3). Differences in chromosomal number or
structure may result in the production of aneuploid gametes that result in reduced survival
of progeny. We saw in Table 3.4 that hybrids between races of house mice with different
chromosomal arrangements produce smaller litters in captivity. Hybrids between chro-
mosomal races of the threatened owl monkey from South America show reduced fertility
in captivity (De Boer 1982).

Genic

Reduced fitness of hybrids can also result from genetic interactions between genes 
originating in different taxa (Whitlock et al. 1995). Dobzhansky (1948) first used the word
“co-adaptation” to describe reduced fitness in hybrids between different geographic popu-
lations of the fruit fly Drosophila pseudoobscura. This term became controversial (and 
somewhat meaningless) following Mayr’s (1963) argument that most genes in a species are
co-adapted because of the integrated functioning of an individual.

Reduced fitness of hybrids can potentially occur because of the effects of genotypes at
individual loci. Perhaps the best example is that of the direction of shell coiling in snails
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( Johnson 1982). Shells of some species of snails coil either to the left (sinistral) or to the
right (dextral). Variation in shell-coiling direction occurs within populations of snails of the
genus Partula which are found on islands in the Pacific Ocean. Many species in this genus
are now threatened with extinction because of the introduction of other snails (Mace et al.
1998). The variation in shell coiling in many snail species is caused by two alleles at a single
locus (Sturtevant 1923; Johnson 1982). Snails that coil in different directions find mating
difficult or impossible. Thus, the most common phenotype (sinistral or dextral) in a popu-
lation will generally be favored leading to the fixation of one type or the other. Hybrids
between sinistral and dextral coiling populations may have reduced fitness because of the
difficulty of mating with snails of the other type ( Johnson et al. 1990).

Outbreeding depression may result from genic interactions between alleles at multiple
loci (epistasis) (Whitlock et al. 1995). That is, alleles that enhance fitness within their
parental genetic backgrounds may reduce fitness in the novel genetic background produced
by hybridization. Such interactions between alleles are known as Dobzhansky–Muller
incompatibilities because they were first described by these two famous Drosophila geneti-
cists ( Johnson 2000). Dobzhansky referred to these interactions as co-adapted gene com-
plexes. Such interactions are thought to be responsible for the evolution of reproductive
isolation and eventually speciation.

There are few empirical examples of specific genes that show such Dobzhansky–Muller
incompatibilities. Rawson and Burton (2002) have recently presented an elegant example
of functional interactions between loci that code for proteins involved in the electron
transport system of mitochondria in an intertidal copepod Tigriopus californicus. A nuclear
gene encodes the enzyme cytochrome c (CYC) while two mtDNA genes encode subunits
of cytochrome oxidase (COX). CYC proteins isolated from different geographic popula-
tions each had significantly higher activity in combination with the COX proteins from
their own source population. These results demonstrate that proteins in the electron
transport system form co-adapted combinations of alleles and that disruption of these co-
adapted gene complexes lead to functional incompatibilities that may lower the fitness of
hybrids.

Self-fertilization in plants has long been recognized as potentially facilitating the 
evolution of adaptive combinations of alleles at many loci. Many populations of primarily
self-fertilizing plants are dominated by a few genetically divergent genotypes that differ at
multiple loci. Parker (1992) has shown that hybrid progeny between genotypes of the
highly self-fertilizing hog peanut have reduced fitness (Figure 17.4). These genotypes 
naturally co-occur in the same habitats and the hybrid progeny have reduced fitness in a
common-garden. Thus, the reduced fitness of hybrids apparently results from Dobzhansky–
Muller incompatibilities between genotypes.

17.3.3 Extrinsic outbreeding depression

Extrinsic outbreeding depression results from the reduced fitness of hybrids because of
loss of local adaptation by ecologically mediated selection.

Mechanisms of escape from predation in northwestern garter snakes provide an excel-
lent example of potential extrinsic outbreeding depression. Brodie (1992) has described a
variety of color patterns and multiple behavioral strategies for escape from bird predators.
Striped snakes are more visible than spotted snakes when still, but their stripes make it
more difficult to detect their motion or judge their speed. Spots or blotches disrupt the
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outline of the snake’s body and make them more difficult to detect visually. The escape
behaviors of garter snakes tend to match their color pattern. That is, striped snakes try to
escape when threatened, while spotted snakes often use an evasive stop-and-go behavior.

This association between color patterns and behavior also occurs at the species level. In
general, striped patterns in North American snakes are associated with diurnal activity
and flight as a primary defense ( Jackson et al. 1976). Blotched or broken patterns tend to
occur in snakes with secretive habits or aggressive antipredator behavior. Hybrids between
species or populations with different combinations of coloration and behavior are likely to
have reduced fitness because of having the wrong combination of coloration and behavior.

Sage et al. (1986) studied a hybrid zone between two species of mice in Europe (Mus
musculus and M. domesticus). Hybrids had significantly greater loads of pinworm (nem-
atodes) and tapeworm (cestodes) parasites than either of the parental taxa (Figure 17.5). 
A total of 93 mice were examined within the hybrid zone. Fifteen of these mice had 
exceptionally high nematodes (>500) while 78 mice had “normal” numbers of nematodes
(<250). Fourteen of the 15 mice with high nematode loads were hybrids while 37 of the 
78 mice with normal loads were hybrids (P < 0.005). Cestode infections showed a similar
pattern in hybrid and parental mice.

Increased susceptibility to diseases and parasites, as above, is an important potential
source of outbreeding depression because of the importance of disease in conservation
and the complexity of immune systems and their associated gene complexes. Currens 
et al. (1997) found that hybridization with introduced hatchery rainbow trout native to a 
different geographic region increased the susceptibility of wild native rainbow trout to
myxosporean parasites. Similarly, Goldberg et al. (2005) found that hybrid largemouth
bass from two genetically distinct subpopulations were more susceptible to largemouth
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Figure 17.4 Fitness as measured by lifetime seed biomass of parental genotypes (biotypes S
and C) and their hybrids in the highly self-fertilizing hog peanut. The two parental families
marked with asterisks are the parents of the hybrids. From Parker (1992).
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bass virus. Parris (2004) found that hybrid frogs show increased susceptibility to emergent
pathogens compared to the parental species.

Hybridization between hatchery and wild populations is a major conservation problem
for many fish species. For example, up to 2 million Atlantic salmon are estimated to escape
from salmon farms each year. Hybrids (F1, F2, and backcrosses) between farm and wild fish
all show lower survival rates than wild salmon (McGinnity et al. 2003). Nevertheless, farm
and hybrid salmon show faster growth rates as juveniles and therefore may displace juven-
ile wild salmon. The repeated escapes of farmed salmon present a substantial threat to the
remaining wild populations of Atlantic wild salmon through accumulation of fitness
depression by introgression. These issues are considered in more detail in the next chapter.

17.4 Detecting and describing hybridization

The detection of hybrid individuals relied upon morphological characteristics until the
mid-1960s. However, not all morphological variation has a genetic basis, and the amount
of morphological variation within and among populations is often greater than recog-
nized (Campton 1987). The detection of hybrids using morphological characters generally
assumes that hybrid individuals will be phenotypically intermediate to parental individu-
als (Smith 1992). This is often not the case because hybrids sometimes express a mosaic of
parental phenotypes. Furthermore, individuals from hybrid swarms that contain most 
of their genes from one of the parental taxa are often morphologically indistinguishable
from that parental taxon (Leary et al. 1996). Morphological characters do not allow one to
determine whether an individual is a first-generation hybrid (F1), a backcross, or a later
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Figure 17.5 Nematode burdens (number of worms per mouse) in hybrid and parental mice.
The hybrid index is based upon four diagnostic allozyme loci. Pure Mus musculus has an index
of –8 and pure M. domesticus has an index of +8. From Sage et al. (1986).
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generation hybrid. These distinctions are crucial because if a population has not become a
hybrid swarm and still contains a reasonable number of parental individuals, it could
potentially be recovered by removal of hybrids or by a captive breeding program.

The use of molecular genetic markers greatly simplifies the identification and descrip-
tion of hybridized populations. This procedure began with the development of protein
electrophoresis (allozymes) in the mid-1960s. Recent advances in molecular techniques,
especially the development of the polymerase chain reaction (PCR), have greatly increased
the number of loci that can be used to detect hybridization (see Figure 4.10). In addition,
these techniques are more applicable to small populations threatened with extinction
because sampling can be noninvasive.

Genetic analysis of hybrids and hybridization is based upon loci at which the parental
taxa have different allele frequencies. Diagnostic loci that are fixed or nearly fixed for 
different alleles in two hybridizing populations are the most useful although hybridization
can also be detected using multiple loci at which the parental types differ in allele frequency
(Cornuet et al. 1999) (Example 17.2).

Example 17.2 Hybridization between the threatened Canada lynx and bobcat

The Canada lynx is a wide ranging felid that occurs in the boreal forest of Canada
and Alaska (Schwartz et al. 2004). The southern distribution of native lynx
extends into the northern contiguous USA from Maine to Washington State. Lynx
are also located in Colorado where a population was introduced in 1999. The
Canada lynx is listed as “threatened” under the US ESA. Canada lynx are elusive
animals and their presence routinely has been detected by genetic analysis of
mtDNA from hair and fecal samples (Mills et al. 2001). Samples of hair and feces
confirmed that Canada lynx were present in northern Minnesota, after a 10-year
suspected absence from the state. In 2001, a trapper was prosecuted for trapping
a lynx. The trapper thought it was a bobcat, while the biologist registering the pelt
and the enforcement officer processing the case thought it was a lynx. Initial ana-
lysis based on mtDNA showed the sample was a lynx. However, upon hearing the
controversy and recognizing that mtDNA could only determine the matriline of the
cat, Schwartz et al. (2004) decided to design and test an assay that could detect
hybridization between bobcats and lynx. Hybridization between these species
had never before been confirmed in the wild.

The controversial sample was a hybrid. In addition, another sample from a 
carcass and a hair sample collected on a putative lynx backtrack were also
identified as hybrids using microsatellite analysis. The hybrids were identified as
having one lynx diagnostic allele and one bobcat diagnostic allele (Figure 17.6). A
heterozygote with one allele from each parental species is expected in a F1 hybrid
(although some F2 hybrids will also be heterozygous for species-diagnostic alleles
at some loci). The species-diagnostic alleles were identified (at two loci) by ana-
lyzing microsatellites in 108 lynx and 79 bobcats across North America, far away
from potential hybridization zones between the two species. In addition, mtDNA
analysis revealed that all hybrids had lynx mothers (i.e., lynx mtDNA). All three
hybrid samples had Canada lynx mtDNA and therefore were produced by matings
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Figure 17.6 (a) Microsatellite gel image showing genotype profiles (locus Lc106) for 
10 lynx, 10 bobcats, and three putative hybrids. Dark bands represent alleles; lighter
bands are “stutter” bands. Outer lanes show size standards. (b) Allele frequencies for
locus Lc106 in bobcats and lynx. This locus is diagnostic because the allele size ranges do
not overlap between species. From Schwartz et al. (2004).

between female Canada lynx and male bobcats. After these results were pub-
lished, researchers from Maine and New Brunswick requested that some of their
study animals be screened using the hybrid test. Four additional hybrids were dis-
covered – two in Maine and two in New Brunswick. However, in a screening of
hundreds of lynx samples from the Rocky Mountains (another area where the two
species co-occur), no hybrids were discovered.

These data have important conservation implications. First, bobcat trapping 
is legal, while it is illegal to trap lynx anywhere in conterminous United States. 
The trapping of bobcats in areas where Canada lynx are also present could be
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Cutthroat trout (CT)

P AABBCC. . . . . ZZ/M aabbcc. . . . . zz/m

(CT& × RT%) (CT& × RT%)

F1 AaBbCc. . . . . Zz/M AaBbCc. . . . . Zz/m 

F2 AaBBcc. . . . ZZ/M AaBBCc. . . . ZZ/M AaBbcc. . . . ZZ/M
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 AABBcc. . . . ZZ/M aaBBcc. . . . ZZ/M Aabbcc. . . . ZZ/M

 Many other genotypes
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×

Figure 17.7 Outline of genetic analysis of hybridization between two species: cutthroat trout
and rainbow trout. Alleles present in one species at diagnostic nuclear loci are designated by
capital letters and the alleles in the other species by lower case letters. The parental (P)
mtDNA haplotypes are designated by M and m, respectively.

problematic because both lynx and lynx–bobcat hybrids can be incidentally taken
from extant populations. On the other hand, any factors that may favor bobcats in
lynx habitat may lead to the production of hybrids and thus be potentially harmful
to lynx recovery. Efforts need to be undertaken to describe the extent, rate, and
nature of hybridization between these species, and to understand the ecological
context in which hybridization occurs.

Figure 17.7 outlines the use of diagnostic loci to analyze hybridization. First-generation
(F1) hybrids will be heterozygous for alleles from the parental taxa at all diagnostic loci.
Later generation hybrids may result either from matings between hybrids or backcrosses
between hybrids and one of the parental taxa (Example 17.3). The absence of such geno-
types resulting in later generation hybrids suggests that the F1 hybrids are sterile or have
reduced fertility (Example 17.4). These two examples with different pairs of trout species
demonstrate the contrasting results depending upon whether or not the F1 hybrids are fer-
tile (Example 17.3) or sterile (Example 17.4).

Example 17.3 Hybrid swarms of cutthroat trout and rainbow trout

The loss of native cutthroat trout by hybridization with introduced rainbow trout
has been recognized as a major threat for over 75 years in the western USA
(Allendorf and Leary 1988). The westslope cutthroat trout is one of four major sub-
species of cutthroat trout. The geographic range of westslope cutthroat trout is the
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Table 17.1 Genotypes at eight diagnostic nuclear allozyme loci in a sample of
westslope cutthroat trout, Yellowstone cutthroat trout, and their hybrids from 
Forest Lake, Montana (Allendorf and Leary 1988). Heterozygotes are WY, while
individuals homozygous for the westslope cutthroat trout allele are indicated as W
and individuals homozygous for the Yellowstone cutthroat trout allele are indicated as
Y. All individuals in this sample are later generation hybrids; thus, the fish in this lake are
a hybrid swarm.

Nuclear encoded loci

No. mtDNA Aat1 Gpi3 Idh1 Lgg Me1 Me3 Me4 Sdh

1 YS W W WY W W W W Y
2 YS W WY WY WY Y W WY Y
3 WS WY Y Y W Y WY Y WY
4 WS Y W WY WY W Y W WY
5 YS Y Y Y WY WY WY Y Y
6 YS WY Y W WY W W W Y
7 WS WY WY Y W WY W W W
8 WS WY Y WY WY Y W Y Y
9 WS Y Y WY WY W WY WY W

10 WS WY Y WY WY WY Y W Y
11 YS Y W W WY W Y W Y
12 WS W WY Y WY W WY WY Y
13 YS W Y W Y W WY W W
14 YS Y Y WY WY WY WY WY W
15 WS WY Y WY Y W Y WY W

largest of all cutthroat trout subspecies and includes the Columbia, Fraser,
Missouri, and Hudson Bay drainages of the United States and Canada. The west-
slope cutthroat trout is genetically highly divergent at both nuclear and mitochon-
drial genes from the three other major subspecies of cutthroat trout: the coastal,
Yellowstone, and Lahontan cutthroat trout. For example, 10 of 46 nuclear
allozyme loci are fixed or nearly fixed for different alleles between westslope and
Yellowstone cutthroat trout. This amount of divergence is far beyond that usually
seen within a single species.

Introgressive hybridization with introduced rainbow trout and Yellowstone 
cutthroat trout occurs throughout the range of the westslope subspecies.
Hybridization of cutthroat and rainbow trout generally results in the formation of
random mating populations in which all individuals are hybrids by varying num-
bers of generations of backcrossing with parental types and mating among
hybrids (i.e., hybrid swarms).

Table 17.1 shows genotypes at eight diagnostic nuclear loci between native
westslope cutthroat trout and Yellowstone cutthroat trout introduced into Forest
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Example 17.4 Near sterility in hybrids between bull and brook trout

Bull trout are legally protected as “threatened” in the United States under the US
ESA. Hybridization with introduced brook trout is potentially one of the major
threats to the persistence of bull trout. Bull trout and brook trout have no overlap in
their natural distribution, but secondary contact between these species has occurred
as a result of the introduction of brook trout into the bull trout’s native range.

Leary et al. (1993a) described a rapid and almost complete displacement of bull
trout by brook trout in which the initial phases were characterized by frequent hybrid-
ization. In the South Fork of Lolo Creek in the Bitterroot River drainage, Montana,
brook trout first invaded in the late 1970s. In the initial sample collected in 1982,
bull trout (44%) were the most abundant, followed by hybrids (36%) and brook
trout (20%), and matings appeared to be occurring at random. By 1990, however,
brook trout (65%) were more abundant than bull trout (24%) and hybrids (12%).

Table 17.2 shows genotypes at eight diagnostic nuclear loci between native bull
trout and brook trout introduced into Mission Creek, Montana in a sample of 15
individuals that were selected to be genetically analyzed because they appeared
to be hybrids. Eleven of the 15 fish in this sample contained alleles from both
species indicating that they are hybrids. However, in striking contrast to Example
17.3, 10 of the 11 hybrids were heterozygous at all eight loci suggesting that they
are F1 hybrids. It is extremely unlikely that a later generation hybrid would be het-
erozygous at all loci. For example, there is a 0.50 probability that an F2 hybrid will
be heterozygous at a diagnostic locus (see Figure 17.7). Thus, thus there is a
(0.50)8 = 0.004 probability that an F2 will be heterozygous at all eight loci. The F1

hybrids in this sample have both bull and brook trout mtDNA indicating that both
reciprocal crosses are resulting in hybrids.

This general pattern has been seen throughout the range of bull trout. Almost all
hybrids appear to be F1 hybrids with very little evidence of F2 or backcross indi-
viduals (Kanda et al. 2002). The near absence of progeny from hybrids of bull and
brook trout may result from either the sterility of the hybrids, their lack of mating
success, the poor survival of their progeny, or combinations of these factors. Over
90% of the F1 hybrids are male suggesting some genetic incompatibility between
these two genomes.

Lake, Montana in a representative sample of 15 individuals taken from the lake.
All but one of these 15 fish are homozygous for both westslope and Yellowstone
alleles at different loci. Each individual in this sample appears to be a later genera-
tion hybrid (see Figure 17.7). Thus, the fish in this lake are a hybrid swarm.
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17.4.1 Multiple loci and gametic disequilibrium

The distribution of gametic disequilibria (D) between pairs of loci is helpful to describe the
distribution of hybrid genotypes and to estimate the “age” of hybridized populations (see
Table 10.2; Guest Box 10). Recently hybridized populations will have a high D because they
will contain parental types and many F1 hybrids. By contrast, genotypes will be randomly
associated among loci in hybrid swarms that have existed for many generations. This will
occur rather quickly for unlinked loci because D will decay by one-half each generation
(see expression 10.3). However, nonrandom association of alleles at different loci might
persist for many generations at pairs of loci that are closely linked. Barton (2000) and
Agapow and Burt (2001) have provided single measures of gametic disequilibrium that can
provide a meaningful measure to compare the amount of gametic disequilibrium at a
number of unlinked loci in hybrid swarms.

Genetic data must be interpreted at both the individual and population level to under-
stand the history of hybridization in populations (Barton and Gale 1993). Hybrid indi-
viduals can be first-generation (F1) hybrids, second-generation hybrids (F2s), backcrosses
to one of the parental taxa, or later generation hybrids. Parental types and F1 hybrids can
be reliably identified if many loci are examined. However, it is very difficult to distinguish
between F2s, backcrosses, and later generation hybrids, even if many loci are examined
(Boecklen and Howard 1997).

New statistical approaches for assigning individuals to their population of origin based
upon many highly polymorphic loci are especially valuable for identifying hybrids
(Hansen et al. 2000). These techniques may be useful even when putative “pure” popula-
tions are not available to provide baseline information. Example 17.5 presents genetic
analysis of a particularly difficult hybridization situation in which known parental types
were not available to determine the genetic composition of the parental taxa.

Example 17.5 Genetic mixture analysis of Scottish wildcats

The Scottish wildcat has had full legal protection since 1988 (Beaumont et al.
2001). The presence of feral domestic cats and the possibility of hybridization
have, however, made this protection ineffective because it has been impossible to
unambiguously distinguish wildcats from hybrids. The amount of hybridization
between domestic cats and existing wildcats is unknown. Some believe that there
has been little hybridization until recently. However, the behavioral similarity
between cats in a study area containing morphologically domestic cat and 
morphologically wildcat individuals suggests that hybridization may have had a
substantial impact on the genetic composition of wildcats in Scotland.

Beaumont et al. (2001) studied nine microsatellite loci in 230 wild-living 
Scottish cats (including 13 museum skins) and 74 house cats from England 
and Scotland. In addition, pelage characteristics of the wild-living cats were
recorded (Figure 17.8). Hybridization between Scottish wildcats and domestic
cats was tested in order to identify hybrid populations and to guide conservation
management.
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Wildcat Hybrid Domestic

No rump
spots

Tail
tapering

Tail bushy with
pointed tip

Tail bushy with
blunt tip

Figure 17.8 Diagram showing three (tail shape, dorsal stripe, and rump spots) of the
five morphologically diagnostic characters used to distinguish wildcats and domestic
cats. Tail tip color and paw color are not illustrated. From Beaumont et al. (2001).

The genetic mixture analysis method of Pritchard et al. (2000) using a Markov
chain Monte Carlo approach (see Appendix Section A5) was used without specifying
the allele frequencies of the source populations to estimate q (the proportion of an
individual’s genome that comes from the wildcat population). The distribution of q
is integrated over all possible gene frequencies in the two parental populations
weighted by their posterior density to obtain a posterior density for q that is inde-
pendent of the parental frequencies.

This analysis revealed five main genetic groupings of individuals (Figure 17.9):
two groups of wild-living cats (high $ values), one group intermediate to the two
wild-living cats, one group very similar to the domestics (perhaps introgressed),
and the domestics themselves. The authors concluded that most of the wildcats
have not experienced recent introgression from domestics. However, morpholog-
ical and genetic data suggest that earlier introgression from domestic cats has
occurred. The authors conclude there is strong evidence of a population of individ-
uals that are different from domestic cats that may be worthy of legal protection.
However, this will be difficult because there is no diagnostic test of a true wildcat
that contains no domestic cat ancestry. In fact the evidence suggests that such
cats may not exist.
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Figure 17.9 Genetic mixture analysis of hybridzation between domestic cats and
Scottish wildcats. Q is the proportion an individual’s genome that comes from 
the wildcat population. This figure illustrates the ranked distribution of Q among
individuals. Also shown are lines giving the 95% equal-tail posterior probability
intervals for each individual. The dashed lines are from museum specimens. Individuals
with low Q values are likely to be domestic cats, and individuals with high Q values are
likely to be wildcats.

17.5 Hybridization and conservation

Hybridization is a natural part of evolution. Taxa that have arisen through natural
hybridization should be eligible for protection. Nevertheless, increased anthropogenic
hybridization is causing the extinction of many taxa (species, subspecies, and locally
adapted populations) by both replacement and genetic mixing. Conservation policies
should be designed to reduce anthropogenic hybridization. Nevertheless, developing 
policies to deal with the complex issues associated with hybridization has been difficult.
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17.5.1 Protection of hybrids

Protection of hybrids under the US ESA has had a controversial history (Haig and
Allendorf, in press). In May 1977, the US Department of the Interior’s Office of the
Solicitor issued a statement that “because it defines ‘fish or wildlife’ to include any 
offspring without limitation, the Act’s plain meaning dictates coverage of hybrids of listed
animal species. The legislative history buttresses this conclusion for animals and also
makes clear its applicability to plants.” However, response from the US fish and Wildlife
Service ( July 1977) indicated “. . . since the Act was clearly passed to benefit endangered
species, . . . it must have meant the offspring of two listed species and was not meant to
protect a hybrid where that protection would in fact cause jeopardy to the continued 
existence of a species.” The Solicitor responded (August 1977, and reaffirmed in 1983) stat-
ing that “hybrids of listed species are not protected under the ESA” because he had learned
there was the potential for a listed species to be harmed by hybridization. Overall, the US
fish and Wildlife Service’s early position was to “discourage conservation efforts for
hybrids between taxonomic species or subspecies and their progeny because they do not
help and could hinder recovery of endangered taxon.”

This series of correspondences and decisions that denied ESA protection for organisms
with hybrid ancestry became known as the “Hybrid Policy” (O’Brien and Mayr 1991).
O’Brien and Mayr pointed out that we would lose invaluable biological diversity if the ESA
did not protect some subspecies or populations that interbreed (e.g., the Florida panther),
or taxa derived from hybridization (e.g., the red wolf ). Further, Grant and Grant (1992b)
pointed out that few species would be protected by eliminating protection for any species
interbreeding since so many plant and animal species interbreed to some extent.
Discussions such as these and the Florida panther situation contributed to the US Fish and
Wildlife Service suspending the Hybrid Policy in December 1990.

A proposed policy on hybrids was published in 1996 (USFWS and NOAA 1996a). This
“Intercross Policy” was scheduled to be finalized 1 year later, but has still not been
approved. Thus, no official policy provides guidelines for dealing with hybrids under the
ESA. The absence of a final policy probably results from the difficulty in writing a hybrid
policy that would be flexible enough to apply to all situations, but which would still 
provide helpful recommendations.

17.5.2 Intentional hybridization

Some populations of listed taxa are small or have gone through a recent bottleneck, and
therefore they contain little genetic variation. In some cases, it might be advisable to
increase genetic variation in these populations through intentional hybridization. Under
what circumstances should genetic rescue (see Section 15.5) by purposeful hybridization
be used as a tool in conservation?

In extreme cases, some taxa might only be recovered through the use of intentional
hybridization. However, the very characteristics of the local populations that make them
unusual or exceptionally valuable could be lost through this purposeful introgression. In
addition, such introductions could cause the loss of local adaptations and lower the mean
fitness of the target population. The most well-known example of this dilemma is the deci-

CATC17  28/05/2007  06:12PM  Page 444



CHAPTER 17 HYBRIDIZATION 445

sion to bring in panthers from Texas (USA) to reduce the apparent effects of inbreeding
depression in Florida panthers.

Intentional hybridization should be used only after careful consideration of potential
harm. Intentional hybridization would be appropriate when the population has lost sub-
stantial genetic variation through genetic drift and the detrimental effects of inbreeding
depression are apparent (e.g., reduced viability or an increased proportion of obviously
deformed or asymmetric individuals). Populations from as similar an environment as 
possible (that is, the greatest ecological exchangeability) should be used as the donor 
population (Crandall et al. 2000). In these situations, even a small amount of introgression
might sufficiently counteract the effects of reduced genetic variation and inbreeding
depression without disrupting local adaptations (Ingvarsson 2001).

Hybridization is least likely to result in outbreeding depression when there is little
genetic divergence between the populations. Thus, it is most appropriate in the case of
intraspecific hybridization as with the Florida panther example. Intrinsic outbreeding
depression is probably not a major concern in most circumstances of intraspecific
hybridization. However, in some circumstances genetic exchange between intraspecific
populations could result in extrinsic outbreeding depression through the loss of important
local adaptations that are crucial for the viability of local populations. This is more prob-
able as the amount of genetic divergence between populations increases at molecular
markers. Thus, populations that are genetically similar at molecular makers and are sim-
ilar for a wide range of adaptive traits are the best candidates for intentional hybridization.

17.5.3 Hybridization without introgression

Hybridization may present a demographic threat to native species even without the 
occurrence of genetic admixture through introgression (type 4). In this case, hybridization
is not a threat through genetic mixing, but wasted reproductive effort could pose a demo-
graphic risk. For example, females of the European mink hybridize with males from the
introduced North American mink. Embryos are aborted so that hybrid individuals are not
detected, but wastage of eggs through hybridization has accelerated the decline of the
European species (Rozhnov 1993).

The presence of primarily F1 hybrids should not jeopardize protection of populations
affected by type 4 hybridization. However, care should be taken to determine conditions
that favor the native species to protect and improve its status and reduce the wasted repro-
ductive effort of hybridization. In extreme (and expensive) cases, it may be possible to selec-
tively remove all of the hybrids and the non-native species to recover a native population.

Bull trout in Crater Lake National Park, Oregon occur in a single stream, Sun Creek
(Buktenica 1997). Introduced brook trout far outnumbered bull trout in this stream in the
early 1990s and threatened to completely replace the native bull trout. The US National
Park Service undertook a plan to recover this population by removing the brook trout. An
effort was made to capture and identify every fish in this stream. Brook trout were
identified by visual observation and removed. Putative bull trout and hybrids were sam-
pled by fin clips for genetic analysis and held until genetic testing revealed the identity of
each individual (Spruell et al. 2001). Pure bull trout were then held in a small fishless
stream and a hatchery. Sun Creek was then chemically treated to remove all fish from the
stream. After treatment, the pure bull trout were placed back into Sun Creek. This popu-
lation is currently increasing in abundance and distribution.
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17.5.4 Hybridization with introgression

This is a much more difficult conservation situation than the case of sterile hybrids. It 
is not possible to select nonhybridized individuals from a hybrid swarm to be used in
recovery because every fish is a hybrid. Thus, once introgression spreads throughout the
range of a species, that species is effectively extinct and cannot be recovered.

Perhaps surprisingly, introgression and admixture may spread even if hybrid individuals
have reduced fitness. Heterosis is not necessary for introgression to spread and cause
genomic extinction. In fact, population models (Epifanio and Philipp 2001) indicate that
introgression may spread even when hybrids have severely reduced fitness (e.g., just 10%
that of the parental taxa). This occurs because the production of hybrids is unidirectional, a
sort of genomic ratchet. That is, all of the progeny of a hybrid will be hybrids. Thus, the
frequency of hybrids within a local population may increase even when up to 90% of 
the hybrid progeny do not survive. The increase in the proportion of hybrid individuals in
the population may occur even when the proportion of admixture in the population 
(i.e., the proportion of alleles in a hybrid swarm that come from each of the hybridizing
taxa) is constant.

Guest Box 17 Hybridization and the conservation of plants
Loren H. Rieseberg

Hybridization is a common feature in vascular plants. Estimates from several well-
studied floras suggest that approximately 11% of plant species hybridize (Ellstrand
et al. 1996) and that close to a quarter of these are rare or endangered (Carney et al.
2000). In most instances, hybridization will not harm the rare taxon. Species 
with strong premating barriers, for example, or that have coexisted naturally for
thousands of generations, are unlikely to be threatened by hybridization. Only
when premating barriers are weak or when rare species come into contact with
non-native species (or native species that have recently become aggressive due to
human-induced habitat disturbance) is hybridization likely to cause genomic
extinction. Because loss of rare populations may occur quickly, contact between
native species and recently introduced or newly aggressive congeners requires
swift assessment and action (Buerkle et al. 2003).

Plant species from islands or other isolated floras are particularly vulnerable to
hybridization because premating barriers often are weak and geographic ranges
are small. Perhaps the best-studied example is the Catalina Island mahogany,
whose population size has dwindled to six pure adult trees (Rieseberg and Gerber
1995). This distinctive species is restricted to Wild Boar Gully on the southwest side
of Santa Catalina Island off the coast of California. When the population was first
discovered in 1897, it consisted of more than 40 trees, but it has declined rapidly
over the past century. Two factors appear to have caused this decline: grazing and
rooting by introduced herbivores, and interspecific hybridization with its more
abundant congener, mountain mahogany. Although the mountain mahogany is
not found in Wild Boar Gully, hybridization between the two mahogany species
appears to be frequent. In addition to the six pure Catalina mahogany trees in the

CATC17  28/05/2007  06:12PM  Page 446



CHAPTER 17 HYBRIDIZATION 447

gully, five other adult trees and at least 7% of newly established seedlings are of
hybrid origin. Presumably, wind pollination allows mountain mahogany trees
from nearby canyons to sire hybrid plants in Wild Boar Gully.

Other vulnerable island species include the Haleakala greensword and several
Canary Island species in the genus Argyranthemum. In fact, the Haleakala greensword
is now extinct; two hybrids contain the only known remnants of its genome (Carr
and Medeiros 1998).

The wild relatives of crops often are vulnerable to hybridization as well; indeed,
22 of the 25 most important crops are known to hybridize with wild relatives
(Ellstrand 2003)! Examples of ongoing introgression include the California black
walnut, which hybridizes with the cultivated walnut, and the common sunflower.
Populations of common sunflowers along cultivated sunflower fields consist
entirely of crop–wild hybrids (Figure 17.10; Linder et al. 1998), a finding consistent
with computer simulations indicating that wild plants were likely to be replaced by
crop–wild hybrids in less than 20 generations (Wolf et al. 2001).

Although most examples of genomic extinction by hybridization represent
island endemics or crop relatives, even abundant mainland species may be at risk if
faced with an aggressive congener. The native cordgrass (Spartina foliosa) in the San
Francisco Bay is threatened by invading cordgrass (S. alternifolia) because the
invader produces 21-fold more viable pollen than the native, and hybrids are strong
and vigorous (Antilla et al. 1998). Simulations predict that native cordgrass could
be extinct in 3–20 generations (Wolf et al. 2001).
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Figure 17.10 The proportion of cultivar genome carried by individuals from three
“wild” sunflower populations that are sympatric with cultivated sunflowers. Note that
all “wild” individuals are actually crop–wild hybrids. From Linder et al. (1998).
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Problem 17.1

Do you expect allozyme or microsatellite loci to become diagnostic more quickly
following the advent of reproductive isolation between two taxa? Why?

Problem 17.2

Why is the examination of mtDNA alone not adequate to detect hybridization
between taxa?

Problem 17.3

What is a hybrid swarm?

Problem 17.4

Some authors have argued that hybridization is not harmful because it simply
introduces new genetic variation. They further argue that this increased genetic
variation may allow an increase in fitness and adaptation by natural selection.
Furthermore, any introduced variation that is harmful will be removed by natural
selection. What is wrong with this argument? Hint: consider the effect of hybridiza-
tion on polygenic traits and genetic divergence among local populations.

Problem 17.5

The tree species hau kuahiwi (Hibiscadelphus giffardianus) is native to the 
Island of Hawai’i and was derived from a single tree in 1911. Closely related trees
in the genus Hibiscadelphus occur on other nearby islands in the Hawai’ian
archipelago. Some conservationists have suggested that this species should be
hybridized with congeneric species to increase genetic variation and to increase
the long-term viability of this species. What do you think? What information should
be considered in making this recommendation?

Problem 17.6

The Haleakala greensword from Hawai’i is extinct (Guest Box 17). However, two
hybrid individuals between this and the relatively common Haleakala silversword
have been found in the wild. How would you go about regenerating the Haleakala
greensword by selective breeding beginning with these two hybrid individuals?
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Conservation Breeding 
and Restoration

For nearly 3,000 taxa of birds and mammals, conservation breeding may be the
only possible way to avoid extinction.

Torbjörn Ebenhard (1995)

A major challenge of ex situ conservation will be to ensure that sexually prop-
agated samples of rare plants do not become museum specimens incapable of
surviving under natural conditions.

Spencer Barrett and Joshua Kohn (1989)

18.1 The role of conservation breeding, 452

18.2 Reproductive technologies and genome banking, 457

18.3 Founding populations for conservation breeding programs, 459

18.4 Genetic drift in captive populations, 461

18.5 Natural selection and adaptation to captivity, 464

18.6 Genetic management of conservation breeding programs, 466

18.7 Supportive breeding, 470

18.8 Reintroductions and translocations, 472

Guest Box 18 Effects of population bottlenecks on introduced species of birds, 479

Guam rail, Example 18.7
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Captive breeding represents the last chance of survival for many species faced with immin-
ent extinction in the wild. The Guam rail, black-footed ferret, and the kakapo (Example 18.1)
would all almost certainly be extinct if the last few remaining individuals in the wild were
not captured and brought into captivity where they have been bred successfully. Less
charismatic and well-known animal species have also avoided extinction by captive breed-
ing programs. The white abalone became the first marine invertebrate to be listed under
the Endangered Species Act (ESA) of the United States in 2001. A captive breeding pro-
gram was begun in 1999 to bring this species back from the brink of extinction and estab-
lish a self-sustaining population in the wild (USGS 2002).

Example 18.1 The kakapo: a conservation breeding challenge

The kakapo (night parrot) is one of the most unusual and rarest birds in the world
(Cresswell 1996). It is a flightless and large (1.5–4 kg) parrot that was widespread
throughout New Zealand. Kakapo are solitary birds that breed once every 2–5
years and live for many decades. Kakapo are the only flightless bird, the only New
Zealand bird, and the only parrot in which lek behavior has been observed. Males
construct tracks that lead to a shallow bowl on a prominent high point. The low fre-
quency booming of the males from their bowls, to attract females, travels up to 5
km and can go on every night for up to 4 months.

By the 1950s the only known kakapo consisted of a relic population in Fiordland
on the South Island. The primary cause of decline was predation by introduced
mammals (rats, cats, and stoats). Intensive investigation of this population in the
1970s revealed that it consisted only of a few males (Merton et al. 1984; Elliot et
al. 2001). Another small population was discovered on Stewart Island in 1977.
Some 61 kakapo were transferred to other islands because of high rates of preda-
tion by cats on Stewart Island. One male (named Richard Henry) from Fiordland,
the last known surviving individual from mainland New Zealand, was transferred
in 1975 and is part of the conservation breeding program.

The kakapo breeding program reached a low of 51 birds in 1995. There are cur-
rently 86 living kakapo, nearly one-half have been produced by the conservation
breeding program. This program has faced a series of challenges associated with
the unusual natural history of this bird. The lek breeding system has resulted in
very high variance in male mating success. Approximately one-third of the birds
born in the breeding program have been sired by a single male (named Felix).
Supplemental feeding has been used in an attempt to increase the frequency of
breeding. This did increase breeding success but not breeding frequency, but it
also produced a significant excess of males (Clout et al. 2002). This effect is con-
sistent with the general observation that polygynous birds produce an excess of
the larger and more costly sex by females that are in good condition.

Little genetic variation has been found in the founding birds from Stewart Island
(Triggs et al. 1989; Robertson et al. 2000; Miller et al. 2003). In contrast, the single
bird from the mainland, Richard Henry, is more genetically variable; he is also
substantially genetically divergent from the Stewart Island birds at these markers
(see Figure 4.10). Thus, the Stewart Island birds may have naturally had a very
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small effective population size compared to birds on the South Island. Only 40%
of eggs produced by females have hatched. This is an extremely low number for a
bird species and may be caused by inbreeding depression associated with the low
effective population size of birds on Stewart Island.

A rapid increase in population size is essential for kakapo recovery since it is
vulnerable to extinction because of its small population size and low reproductive
rate. However, the near absence of genetic variation in Stewart Island birds
means that it is essential that Richard Henry contribute progeny. He has only sired
three progeny to date. Thus, there is a conflict between the demographic needs of
increasing the number of birds as soon as possible and increasing the genetic
variation in kakapo by incorporating the lone remaining bird from the more genetic-
ally variable Fiordland population.

The management plan emphasizes the importance of increasing the con-
tribution of the Fiordland population into the breeding population. Felix has been
temporarily removed from the breeding population in the hope that Richard Henry
will sire more progeny. Richard Henry is at least 50 years old and may no longer
be able to sire progeny. An effort is currently underway to find new birds from
Fiordland. However, it is not at all clear that any birds remain in this population –
the last known individuals died in the late 1980s and the characteristic booming
has not been heard since then. However, a hunter did report seeing what he
thought to be a kakapo in 2004.

The kakapo has become an icon of conservation in New Zealand. Every animal
is named, and births and deaths are national news. Six chicks hatched in March
2005, and four of these survived. A national contest was held to name them.

Several plant species have also been rescued from extinction by similar intervention.
Kokia cookei is one of Hawai’i’s most beautiful and endangered plants (Mehrhoff 1996). It is
a medium-sized tree with very large red and somewhat curved flowers. This species was
discovered on the island of Molokai in 1871, and became extinct in the wild in 1918.
Extinction resulted from habitat loss and predation by introduced species. The species is
apparently adapted to bird pollination, and the loss of native nectar-feeding birds may have
contributed to the decline of the species (USFWS 1998). Four seeds were collected from
the last remaining tree in 1915. Only one mature tree resulted from these four seeds. This
tree produced hundreds of progeny, but none of the progeny survived reintroduction. In
1976, a branch from the last remaining Kokia cookei was successfully grafted onto a closely
related species. Twenty-eight grafted Kokia cookei were transplanted back to Molokai in
1991. Most of these transplants survived, but none have yet flowered.

The World Conservation Union (IUCN) has defined ex situ conservation as “the con-
servation of components of biological diversity outside their natural habitats” (IUCN
2002). There are a variety of ex situ (or offsite) techniques that are potentially valuable
tools in the conservation of a wide variety of taxa that are threatened with extinction (e.g.,
captive breeding and germplasm banking). The Russian N. I. Vavilov initiated systematic
collection of plant germplasm samples that have long been used to conserve genetic
resources associated with plants used by humans (Frankel 1974). Eberhart et al. (1991)
have reviewed the long-term management of germplasm collections for the conservation

CATC18  28/05/2007  06:12PM  Page 451



452 PART III GENETICS AND CONSERVATION

of wild plant species. Others have considered the application of biotechnical advances
(e.g., cloning and artificial insemination) in the conservation of wild animals (Bawa et al.
1997; Ryder and Benirschke 1997; Rennie 2000) and microbes (Gams 2002).

We use the more general term conservation breeding to include efforts to manage the
breeding of plant and animals species that do not strictly involve captivity. For example,
kakapo breeding is managed by moving groups of birds to predator-free islands, but they
are not held in captivity (see Example 18.1).

Captive breeding has played a major role in the development of conservation biology.
The first book on conservation biology (Soulé and Wilcox 1980) devoted five of 19 chap-
ters to captive breeding. Modern conservation genetics had its beginnings in the use and
application of genetic principles for the off-site preservation of plant genetic resources
(Frankel 1974) and the development of genetically sound protocols for captive breeding
programs in zoos (Ralls et al. 1979). Some conservationists even have equated conserva-
tion genetics with captive breeding. Caughley (1994) concluded that there was little appli-
cation of genetics in conservation other than captive breeding programs in zoos.

The maintenance of genetic diversity and demographic security are the primary goals
for management of conservation breeding programs. These two goals often are com-
patible. However, there are situations in which maintaining the genetic characteristics 
of a population may reduce the population growth rate so that a conflict arises (see 
Example 18.1). This is most likely to occur when a species with only a few remaining 
individuals is brought into captivity in a last-ditch effort for survival. Demographic secu-
rity will best be achieved by rapidly increasing the census size of the captive population.

Maintenance of genetic diversity generally requires maximizing effective population size
by reducing variation in reproductive success among individuals (see Chapter 7). However,
some individuals or pairs of individuals may by much more successful in captivity than
others. Thus, maximizing the growth rate of a captive population may actually reduce the
effective population size and result in more rapid erosion of genetic variation. In addition,
allowing just a few founders to produce most of the captive population is expected to
accelerate the rate of adaptation to captive conditions. Thus, maintaining the genetic char-
acteristics of a captive population may come at the cost of reduced population growth rate.

Our goal in this chapter is to consider the genetic issues involved in conservation 
breeding and the introduction of individuals into the wild (Doremus 1999). When should
captive breeding be considered as a conservation option? What are the potential problems
with a conservation breeding program? What criteria should be used when choosing 
populations and individuals to introduce or move between populations? We also provide
an overview of the principles involved in actually genetically managing captive popula-
tions. Interested readers should consult other sources that provide detailed instructions for
genetic management of conservation breeding programs (e.g., Ballou and Foose 1996).

18.1 The role of conservation breeding

There are three primary roles of offsite conservation breeding as part of a management or
recovery program to conserve a particular species:

1 Provide demographic and genetic support for wild populations.
2 Establish sources for founding new populations in the wild.
3 Prevent extinction of species that have no immediate chance of survival in the wild.
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The genetic objectives of these three roles are very different. Captive individuals used to
provide demographic and genetic support for wild populations should be genetically
matched to the wild population into which they will be introduced so that they do not
reduce the fitness of the population by outbreeding depression. In contrast, introduced
new populations should have enough genetic variation present so that they can become
adapted to their new environment by natural selection. In the last case, the initial concern
of a captive breeding program is to insure that the species can be maintained in captivity
(Midgley 1987). This may involve preferentially propagating individuals capable of repro-
ducing in captivity and may result in the adaptation to captivity.

Captive breeding has made many contributions to conservation other than just con-
servation breeding (e.g., public education, research, and professional training). The public
display of species plays a very important role in conservation in providing opportunities
for the public to come into contact with a wide variety of species that would otherwise just
be names or pictures in books. The first author of this book became interested in biology
because of visits to the Philadelphia zoo as a school child.

The goals of a display program are to establish an easily managed population that is well
adapted to the captive environment (Frankham et al. 1986). These experiences provide an
excellent opportunity for education and also provide the setting for the public to develop
affection and appreciation of a wide variety of species. Most people around the world will
never have the opportunity to see a tiger, elephant, or a great ape in the wild. Zoos pro-
vide an important role in allowing the public to develop a first-hand connection to these
species. People are more likely to support conservation efforts if they have knowledge,
understanding, and appreciation of the species involved.

There is also a danger in this. Seeing elephants or tigers in the zoo may encourage the
public and politicians to believe that these “species” are now protected from extinction.
However, a species is not just a collection of individuals that has been removed from the
ecosystem in which they have survived and evolved for millions of years.

A condor is 5 percent feathers, flesh, blood, and bone. All the rest is place. Condors
are soaring manifestations of the place that built them and coded their genes. (Devall
and Sessions 1984, p. 317.)

The ecologist David Barash (1973) has said this in a somewhat different fashion:

Thus, the bison cannot be separated from the prairie, or the epiphyte from its
tropical perch. Any attempt to draw a line between these is clearly arbitrary, so the
ecologist studies the bison–prairie, acacia–bromeliad units.

Thus, the display of charismatic species to the public should be accompanied with edu-
cational efforts that emphasize that long-term species existence can only occur within the
complex web of connections and interactions in their native ecosystems.

18.1.1 When is conservation breeding an appropriate tool for conservation?

This is an important and difficult question. Conservation breeding should be used spar-
ingly because it is difficult and expensive, and worldwide resources are limited. In addition,
directing resources to captive breeding and taking individuals into captivity may hamper
efforts to recover species in the wild.
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Captive breeding is perhaps too often promoted as a recovery technique. For example,
Conservation Assessment and Management Plans under the Conservation Breeding
Specialist Group of the IUCN have recommended captive breeding for 36% of the 3,314
taxa considered (Seal et al. 1993). In the USA, captive breeding has been recommended in
64% of 314 approved recovery plans for species listed under the ESA (Tear et al. 1993). The
resources are not available to include captive breeding in the recovery plans of such a high
proportion of species. It is important that it be used only for those species in which it can
have the greatest effect.

Intensive field-based conservation may be an effective and cost-efficient alternative to
captive propagation. Balmford et al. (1995) found that in situ management of well-protected
reserves for large-bodied mammals resulted in comparable population growth rates and
was consistently less expensive than captive propagation. These authors suggest that 
captive breeding is most cost-effective for smaller bodied taxa and will only remain the best
option for large mammals that are restricted to one or two vulnerable wild populations.

18.1.2 Priorities for conservation breeding

It is clear that only a relatively small proportion of the thousands of animal species that 
are threatened in the wild can be maintained in captivity because of constraints on space
and other resources (Balmford et al. 1996; Snyder et al. 1996). It is generally assumed that 
a maximum of roughly 500 animal species could be maintained offsite in conservation
breeding programs (IUDZG/CBSG 1993). As we have seen, however, captive breeding
programs are often recommended for many taxa. Given this situation, what criteria should
be used to determine which species should be maintained in conservation breeding programs?

Zoos have historically focused on large and charismatic species in breeding programs.
Balmford et al. (1996) have spelled out three general sets of criteria that should be con-
sidered in selecting candidate animal species for captive breeding:

1 Economic considerations. Which species can be conserved successfully in a captive
breeding program most economically?

2 Biological suitability for captive breeding. Which species can be bred and raised success-
fully in captivity?

3 Likelihood of successful reintroduction. For which species is successful reintroduction
to the wild a realistic option?

We suggest a fourth criterion: the potential effect on habit preservation. Will develop-
ment of a captive breeding program increase or decrease the likelihood of habitat protect?

Invertebrates are generally better candidates for captive breeding than are large and
charismatic vertebrates, for which enormous resources have been used (Pearce-Kelly et al.
1998). Invertebrates have a relatively high probability of success for both the rearing and
release phases. They also have small size and require relatively little space and cost. They
typically have high reproductive potential and population size increases relatively rapidly
in captivity and after release. Finally, there is a wealth of knowledge and techniques for
rearing numerous invertebrate species. For example, crickets, katydids, beetles, and but-
terflies have been widely and successfully raised in captivity.

Plants generally are better candidates for offsite breeding programs than animals for a
variety of reasons (Templeton 1991). Many plants can be maintained for long periods as
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dormant seeds. This may be used to increase the generation interval and therefore reduce
the rate of genetic change during offsite breeding. Other plants, such as trees, live a long
time so that offsite breeding programs that may take hundreds of years may only represent
a handful of generations. This again will minimize the rate of genetic change by genetic
drift and selection. Other problems with offsite breeding can be reduced because of the
variety of modes of reproduction that are possible for plants with short generation 
intervals (e.g., selfing, apomixis, and clonal reproduction; Figure 18.1).

Guidelines for selecting candidate plants for conservation collections have been pre-
sented by the Center for Plant Conservation (1991). The decision to protect (or abandon) a
particular population or species must be made within a larger framework of conservation.
In addition, these guidelines are based on a natural genetic hierarchy: species, populations
(or ecotypes), individuals, and alleles. The goal is to address diversity at several levels of
organization rather than sampling a particular species without regard to genetic variation
and future long-term viability. This approach includes five sampling decisions:

1 Which species should be collected?
2 How many populations within a species should be sampled?
3 How many individuals should be sampled per population?
4 How many propagules should be collected from each individual?
5 When should collections be made from multiple year periods?

18.1.3 Potential dangers of captive propagation

The use of captive breeding has been controversial. It is expensive, is sometimes ineffec-
tive, and may harm wild populations both indirectly and directly if not done correctly

Long-term
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Figure 18.1 Possible modes of reproduction for offsite breeding of plants and possible
interchange between offsite plants and in situ populations. Redrawn from Brown and 
Briggs (1991).
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(Snyder et al. 1996). Perhaps the most serious criticism is that efforts directed toward cap-
tive breeding detract from grappling with the real problems (e.g., loss of habitat and pro-
tection). The dangers of captive breeding are clearly demonstrated by the use of fish
hatcheries to maintain stocks of Pacific salmon on the west coast of North America
(Example 18.2).

Example 18.2 Who needs protection? We have hatcheries

Fish hatcheries have a long and generally unsuccessful history in conservation
efforts to protect populations of fish. Pacific salmon began a rapid decline on 
the west coast of the lower United States in the late 1800s with the advent of 
the salmon-canning industry (Lichatowich 1999). The State of Oregon sought
advice from the newly created US Commission on Fish and Fisheries that was
directed by Spencer Baird, a scientist with the Smithsonian Institution. In 1875
Baird (Lichatowich 1999, p. 112) recommended that:

. . . instead of protective laws, which cannot be enforced except at very
great expense and with much ill feeling, measures be taken, either by the
joint efforts of the States and Territories interested or by the United States,
for the immediate establishment of a hatching establishment on the
Columbia River, and the initiation during the present year of the method of
artificial hatching of these fish.

Unfortunately, this recommendation from the leading fisheries scientist of the
United States set in motion a paradigm for the conservation of salmon through
hatcheries rather than facing the real problems of excessive fishing, dams that
blocked spawning migrations, and habitat changes in the spawning rivers and
streams. These efforts have failed profoundly (Meffe 1992). Some 26 different
groups of Pacific salmon and anadromous rainbow trout (steelhead) are listed as
threatened or endangered under the US ESA at the time of writing this chapter.
The role of hatcheries in salmon conservation continues to be controversial.
There is current disagreement about whether hatchery populations should be
considered part of the distinct population segments that are listed and protected
under the ESA (Myers et al. 2004; see also Guest Box 16).

A number of recent studies have been performed to assess the possible genetic
effects on wild populations of releasing hatchery fish into the wild. The consensus
is clear: hybridization with hatchery fish has a dramatic, harmful effect on the
fitness of wild populations of salmon (Reisenbichler and Rubin 1999; Waples
1999; McGinnity et al. 2003).

Reisenbichler and others have published several papers that compare the 
relative fitness of progeny of hatchery steelhead (the anadromous form of rain-
bow trout) to wild fish. Three primary results emerge from these studies. First, pro-
geny from hatchery fish uniformly show reduced rates of survival. For example,
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Figure 18.2 Results showing reduction in relative survival throughout the life cycle 
of progeny from hatchery steelhead spawning in the wild relative to the survival of
progeny from wild fish. Data for the Kalama River winter steelhead (WST) are the
geometric means (GM) for three year classes, or the arithmetic means (AM) for two
year classes with an exceptional year class omitted. SST, summer steelhead. From
Reisenbichler and Rubin (1999).

Leider et al. (1990) found that the reproductive success of hatchery fish spawning
in the wild relative to wild fish ranged from 5 to 15% in four successive year
classes. Second, progeny of hatchery fish have reduced survival at all life history
stages between emergence from the gravel until returning from the ocean as
adults (Reisenbichler and Rubin 1999 (Figure 18.2). Finally, the decline of fitness
observed in hatchery fish is proportional to the number of generations that the
hatchery stock has been maintained in captivity. Chilcote (2003) found that intrin-
sic measures of population productivity of 12 populations of steelhead in Oregon
declined as a function of the number of hatchery spawners.

18.2 Reproductive technologies and genome banking

Reproductive technologies initially developed for agricultural species (e.g., cattle, 
sheep, and chickens) can be transferred to some related wild species to facilitate their 
conservation. These technologies include genome banking, cryopreservation, artificial
insemination, and cloning.

Genome banking is the storage of sperm, ova, embryos, seeds, tissues, or DNA.
Genome resource banking can help move genetic material without moving individuals. It
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might, for example, allow for managed gene flow into isolated populations without the
risks of translocating individuals. Genome banking also serves as an insurance against
population or species extinction. It lengthens generation intervals and thereby reduces
random genetic drift. It increases efficiency of captive breeding and reduces the number of
individuals kept in captivity. Finally, banks are a source of tissue and DNA for basic and
applied research.

Genome banking is widely used for agricultural crop and farm animal preservation 
to help insure future agricultural productivity. Genome banking is also increasingly 
used for wild taxa. For example, for wild animals there exists a genome bank at the
Smithsonian Institution’s National Zoo where there are more than 1,500 samples of 
frozen sperm or embryos from 69 species (including ~2% of mammalian species 
worldwide). Similarly, the San Diego Zoo maintains a “frozen zoo” with samples (includ-
ing cell lines and tissues) from more than 7,000 species of endangered mammals, birds, 
and reptiles.

For wild plants there is increasing interest to establish seed banks. Researchers suggest
that many tropical and rain forest species seeds can be banked. However the ability to bank
seeds is known for only about 4% of angiosperms (flowering plants). The FAO (Food and
Agriculture Organization) reports that 6 million accessions exist in over 1,300 seed banks
around the world. However less than about 10% are from wild plants.

Cryopreservation is the freezing and storage (often in liquid nitrogen at –180°C) of
sperm, ova, embryos, seeds, or tissues to manage and safeguard against loss of genetic vari-
ation in agricultural or wild populations. It is the principal storage method for animal
material. In plants, seeds are often preserved dry at room temperature and can remain
viable for 50–200 years. But for some plant species longevity increases if seeds are frozen
and some seed banks are kept at −20°C or colder.

Artificial insemination (AI) is a widely used and important technique for captive
breeding. AI allows animals to breed that would not breed naturally, perhaps due to beha-
vior problems such as aggression towards mates. Further, a genetically important male
can still be used within a breeding program long after his death. Finally, instead of moving
animals, sperm can be collected and cryopreserved and shipped for AI (as mentioned
above). AI has been used, for example, in breeding programs for the black footed ferret and
killer whales in the USA, the cheetah in Namibia, koalas in Australia, and gazelles in Spain
and Saudi Arabia. AI was recently used successfully with corn snakes at the Henry Doorly
Zoo in Omaha, Nebraska.

Cloning for conservation is controversial and often debated (Example 18.3). Cloning is
generally conducted by: (1) removing the nucleus from a donor egg cell of the animal that
will carry the cloned embryo; and (2) injecting into the carrier’s egg cell the nucleus from a
cell of the animal to be cloned. For example, a nucleus from a tissue cell of a European wild
sheep (mouflon) was injected into the nucleus-free cell of a close relative species, the
domestic sheep. The resulting mouflon lamb was born and mothered by the domestic
sheep. This is an example of cross-species cloning, which is more difficult than within-
species cloning because of risks of incompatibility of mitochondrial genes from the donor
egg and the nuclear genes from the animal to be cloned.

These technologies provide valuable opportunities for protecting species and increas-
ing genetic variation within species on the brink of extinction. Nevertheless, it is essential
that they be integrated so that they support ongoing conservation efforts rather than
being used as alternatives.
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18.3 Founding populations for conservation breeding programs

Developing a captive breeding program begins with the selection of the founding individuals.
In many situations when a species is on the brink of extinction, there is no choice involved
because all remaining individuals are brought into captivity. In other cases, however, captive
breeding programs are established when long-term survival of a species in the wild is
unlikely even though many individuals currently occur in the wild (e.g., tigers). In such cases,
there are a variety of questions to be decided. Which subspecies or populations should be
the source of individuals to be brought into captivity? How many subspecies or popula-
tions should be maintained? Should subspecies and populations be maintained separately
or mixed together? How many individuals should there be in the founder population?

18.3.1 Source populations

Selecting the founding individuals and populations for a captive breeding program is an
important and difficult problem for many species. Source populations should be selected

Example 18.3 Is cloning a useful tool for animal conservation?

Cloning could potentially allow resurrection of a recently extinct species (Holt et al.
2004). For example, a subspecies of wild goat from the Pyrenees Mountains in
Spain became extinct recently when the last individual was killed by a falling tree.
Biologists had sampled tissue before the animal died, and a company called
Advanced Cell Technology is currently trying to clone the individual.

Cloning is very expensive, and it is technologically feasible for only a few
species that are related to model research organisms (e.g., mice) or important in
agriculture (e.g., cattle and sheep). Further, the success rate is very low, less than
0.1 to 5% of renucleated embryos lead to a live birth (Holt et al. 2004). It is gener-
ally agreed that long-extinct species, such as the woolly mammoth from the frozen
Siberian permafrost, cannot be cloned because their DNA is fragmented.

Another potential advantage of cloning is to help bolster populations and avoid
the extinction of critically endangered species such as the panda. However, the
benefits of cloning compared to that of more traditional captive breeding programs
is questionable and the disadvantages are substantial.

Disadvantages are that cloned individuals and populations are genetically iden-
tical and thus would be highly susceptible to the same infectious diseases and to
have low adaptive potential to environmental change. Further, the money spent
on cloning would often be better spent preserving habitat and conducting less
expensive breeding programs. Extensive healthy habitats are necessary to insure
long-term persistence of any species anyway.

Cloning should never be viewed as an alternative to habitat preservation and
breeding programs. In certain limited scenarios, cloning could be a last resort
approach in combination with habitat conservation and breeding programs to help
insure species persistence and even recover extinct taxa.
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in order to maximize genetic and ecological (adaptive) diversity. For example, there are
currently four remaining subspecies of tigers in the wild. Recent genetic results have
indicted substantial genetic divergence among these subspecies (Luo et al. 2004). A strong
argument can be made that each of these subspecies represents a separate evolutionary
significant unit (ESU; see Chapter 16) and separate captive breeding programs should be
established for each. However, space and other resources for captive breeding of tigers are
limited. There are currently approximately 1,000 spaces for tigers in captive breeding pro-
grams throughout the world. We then face a dilemma. How should we partition available
captive breeding spaces among the four subspecies to enhance survival and retention of
genetic variation?

Maguire and Lacy (1990) have provided a very informative consideration of this prob-
lem. They identified three conservation goals: (1) to maximize the number of surviving
subspecies; (2) to maximize genetic variation at the species level; and (3) to maximize
genetic diversity at the subspecies level. They choose a timeframe of 200 years (32 tiger
generations) to match recommendations for long-term conservation plans (Soulé et al.
1986). Their analysis also included consideration of the probabilities of persistence of the
subspecies in the wild.

The two extreme options are to choose only one subspecies for captive breeding or to
divide the 1,000 spaces equally among the four subspecies. They assume that the Ne : Nc
ratio in captive tigers is 0.4 (Ballou and Seidensticker 1987). In the latter case, each of the
four subspecies would have an Ne of approximately 100 tigers (250 × 0.40). Using expres-
sion 6.7, we would expect to lose approximately 14% of the heterozygosity in each sub-
species after 200 years (t = 32). General recommendations suggest a goal of retaining at
least 90% of the heterozygosity after 200 years (Soulé et al. 1986). This would require an 
Ne of approximately 150, and an Nc of 375 for each subspecies. Maguire and Lacy (1990)
recommend devoting half of the available captive spaces to the tigris subspecies and 
dividing the remainder equally among the other three subspecies.

18.3.2 Admixed founding populations

Another option is to establish a captive population by hybridizing genetically divergent
populations. For example, the State of Montana established a captive population of west-
slope cutthroat trout in 1985 to be used in a variety of restoration projects. Geographic 
populations of westslope cutthroat trout show substantial genetic divergence among popu-
lations: FST = 0.32 (Allendorf and Leary 1988). Space limitations required that only a single
captive population could be maintained. The choice was to use a single representative 
population to establish the captive population or to create a hybrid captive population by
crossing individuals from a wide spectrum of native westslope cutthroat trout populations.

Do we choose one population to be brought into captivity or do we create a captive
population by hybridizing individuals from different populations? The genetic choice that
we face here is between genes and genotypes. We can maximize the allelic diversity of
westslope cutthroat trout in the captive population by including fish from many streams in
our founding population. However, hybridizing these populations will cause the loss of
the unique combination of alleles (genotypes) that exist in each population. These genotypes
may be important for local adaptations. These combinations of genes, and the resulting
locally adapted phenotypes, will be lost through hybridization. In addition, the hybridiza-
tion of different populations could result in outbreeding depression (see Section 17.3).
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In some cases, genetically distinct populations have been brought into captivity and
hybridized without realizing potential problems. For example, we saw in Table 3.3 that
approximately 20% of orangutans born in captivity were hybrids between orangs 
captured in Borneo and Sumatra. These two populations are fixed for chromosomal 
differences and it has been proposed they are classified as separate species. Current 
conservation breeding plans avoid the production and use of hybrids between these taxa.

There are no simple prescriptive answers to the best strategy in establishing a captive
population. In the case of westslope cutthroat trout, the captive population was estab-
lished by mixing from some 20 natural populations. There was some concern in this case
about possible outbreeding depression caused by mixing together so many local popula-
tions. However, the alternative of using just one local population, which would contain
such a small proportion of the total overall genetic variation, was considered less desirable.

18.3.3 Number of founder individuals

The number of founders recommended for establishing a captive population depends 
substantially on the proportion of rare alleles desired to be captured, and on the popula-
tion growth rate expected in captivity. Approximately 30 diploid founders are required to
have a 95% probability of sampling an allele at frequency 0.05. However with 30 founders
there is only approximately a 45% probability of including an allele of frequency 0.01 (see
expression 6.8 and Figure 6.8). Thus we recommend a minimum of 30 founders and
preferably at least 50. Thirty founders will maintain approximately 98% of the original 
heterozygosity (see expression 6.6). If the rate of population growth is low, additional
founders or subsequent supplementation with additional individuals is recommended.

18.4 Genetic drift in captive populations

A primary genetic goal of captive breeding programs is to minimize genetic change in 
captivity. Genetic changes in captive populations may reduce the ability of captive popula-
tions to reproduce and survive when returned to the wild. There are two primary sources
of genetic change in captivity: genetic drift and natural selection.

18.4.1 Minimizing genetic drift

Genetic drift may cause the loss of heterozygosity and allelic diversity. This reduced
genetic diversity can have several consequences. First, inbreeding depression may limit
population growth and lower the probability that the introduced population will persist.
Second, reduced genetic diversity will limit the ability of introduced populations to evolve
in their new or changing environments. In general, the effects of genetic drift can be min-
imized in captivity by managing the population to maximize the effective population size.

The primary method for minimizing genetic drift and maximizing effective population
size is to equalize reproductive success among individuals. This is especially important for
the founder individuals of a captive breeding program. We saw in Chapter 7 that the ideal
population includes random variability in reproductive success. Under controlled captive
conditions, it may be possible to reduce variance in reproductive success to near zero. In
this case, the effective population may actually be nearly twice as great as the census population
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size (see expression 7.5). The most effective method to reduce variance in reproductive
success depends upon the type of breeding scheme used in captivity (see Section 18.5).

18.4.2 Deleterious alleles and mutational meltdown

Deleterious alleles that are present at low frequencies in natural populations may drift to
high frequencies in captive populations because of the founder effect combined with
relaxed natural selection (Example 18.4). Joron and Brakefield (2003) have suggested that
relaxed natural selection in captivity can mask reduced fitness due to inbreeding. For
example, wolves bred for conservation purposes in Scandinavia were found to have a high
frequency of hereditary blindness apparently caused by an autosomal recessive allele
(Laikre et al. 1993). Only six founders were originally brought into captivity (Figure 18.3).
At least one of these founders apparently was heterozygous for a recessive allele associated
with blindness. It is also possible that partial blindness may actually have some advantage
in captivity for a wild animal such as a wolf.

Some populations of salmon and trout have high frequencies of null alleles at enzyme
coding loci that are enzymatically inactive or nonfunctional (see Section 5.4.2; Allendorf 

Example 18.4 Chondrodystrophy in California condors (Ralls et al. 2000)

The captive population of California condors was founded with the last remaining
14 individuals in 1987. California condors have bred well in captivity and the first
individuals were reintroduced into the wild in 1992. However, nearly 5% of birds
born in captivity have suffered from chondrodystrophy, a lethal form of dwarfism.
This defect is apparently caused by a recessive allele that occurs at a frequency of
0.09 in the captive population.

Such deleterious alleles are likely to occur in any captive population founded by
a small number of founders (Laikre 1999). What should be done? Ralls et al.
(2000) considered three management options for this allele: (1) reduce its fre-
quency by selection; (2) minimize its phenotypic frequency by avoiding matings
between possible heterozygotes; or (3) ignore it.

Selective removal of this allele would require not using possible heterozygotes
in the breeding program. Under this scheme, over 50% of all birds would be elim-
inated from the breeding population. This is a very high cost to pay for elimina-
tion of a trait that affects less than 5% of all birds. In addition, it is likely that other
traits caused by deleterious recessive alleles occur in this population. Selective
removal of relatively low frequency alleles at multiple loci is generally not worth the
cost of reducing the effective population size and further eroding genetic variation
in the captive populations.

Ralls et al. (2000) recommend minimizing the phenotypic frequency of this trait
by avoiding pairings between possible heterozygotes. They suggest that some
selection would be feasible once the captive population has reached the carrying
capacity in captivity. In addition, possible heterozygotes could be given a lower
priority as candidates for introduction.
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et al. 1984). Such alleles are not as deleterious in these fishes because the gene duplication
provided by their polyploid ancestry provides some redundancy. Nevertheless, develop-
mental studies have found that these alleles do have harmful effects on developmental rate
and developmental stability (Leary et al. 1993b).

Extensive surveys of natural and hatchery populations of trout and salmon indicate that
enzymatically null alleles occur at high frequencies only in hatchery populations or nat-
ural populations that are restricted to lakes (Allendorf et al. 1984; Leary et al. 1993b,
unpublished data). For example, a null allele at a lactate dehydrogenase (LDH) locus
occurred at a frequency of 0.122 in a hatchery population of rainbow trout (Leary et al.
1993b). Homozygotes for this allele exhibited a 70% reduction in LDH activity in heart 
tissue. These hatchery populations usually have a large number of founders so that it is
unlikely that the founder effect contributed to the high frequencies of these alleles.

In addition, new mildly deleterious mutations will occur in captive populations; these
mutations may drift to high frequency in populations with a small Ne because natural
selection is not effective in small populations (see Chapter 8). Many of these new muta-
tions with mildly deleterious affects could accumulate in small populations and lead to 
so-called “mutational meltdown” (Lande 1995; see Chapter 14).

18.4.3 Inbreeding or genetic drift?

It is crucial to distinguish between the effects of inbreeding and genetic drift in captive 
populations. Some inbreeding (the mating of related individuals) will be unavoidable in
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Figure 18.3 Pedigree of the captive population of 442 wolves bred in Scandinavian zoos as of
January 1988. The numbers below the symbols indicate the number of individuals in a particular
family. A, Russian founders; B, full-sibs, imported 1980. From Laikre et al. (1993).
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small captive populations; this is the so-called inbreeding effect of small populations 
(see Chapter 6). In general, inbreeding should be avoided in captive populations because
the reduced fitness associated with inbreeding depression may threaten short-term persis-
tence of the captive population.

However, the loss of genetic variation by genetic drift is a more serious and lasting effect
than inbreeding. The harmful effects of inbreeding last for a single generation. That is, a
mating between an inbred individual and an unrelated mate will produce a noninbred
progeny. The long-term genetic well being of a captive population is more affected by the
unequal representation of founders and effective population size than by matings between
related individuals.

Schemes of mating with maximum avoidance of inbreeding will minimize the initial
rate of loss of heterozygosity. However, perhaps surprisingly, there are often systems of
mating that do a better job of retaining heterozygosity in the long term (Kimura and Crow
1963; Robertson 1964; Wright 1965b).

18.5 Natural selection and adaptation to captivity

Natural selection will occur in captivity and bring about adaptation to captive conditions.
Such changes will almost inevitably reduce the adaptiveness of the captive population to
wild or natural conditions. For example, tameness in response to contact with humans is
generally advantageous in captivity, but can have serious harmful effects in the wild.

The emphasis of captive breeding protocols has been primarily to reduce genetic drift
by maximizing effective population size. This emphasis is appropriate for captive breeding
programs of mammals and birds in zoos that have a relatively small number of individuals
that are managed using pedigrees (Ballou and Foose 1996). However, increasing effective
population size for some captive species (e.g., fish and plants) may increase the rate of
adaptation to captive conditions.

18.5.1 Adaptation to captivity

Adaptation to captivity is probably the greatest threat in species that produce many 
offspring (e.g., insects, fish, amphibians, etc.). For example, females of many fish species
produce thousands of eggs. Extremely strong natural selection can occur in the first few
generations when founding a captive hatchery population of fish.

Darwin (1896) was very interested in the genetic changes brought about by selection
during the process of domestication of animals bred in captivity. He attributed such
changes to three mechanisms:

1 Systematic selection.
2 Incidental (unintentional) selection.
3 Natural selection.

Systematic selection occurs when purposeful selection occurs for some desirable 
characteristics. For example, many hatchery populations of fish are selected for rapid
growth rate. Incidental selection occurs when captive management favors a particular
phenotype without being aware of their preference. For example, hatchery personnel may
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unconsciously favor a particular phenotype (e.g., large, colorful, etc.) when choosing fish
to be mated. Finally, natural selection will act to favor those individuals who have charac-
teristics that are favored under captive conditions. For example, many wild fish will not
feed when brought into captivity. Therefore, natural selection for behaviors that permit
feeding and surviving in captivity will be very strong.

This issue was raised many years ago by A. Starker Leopold (1944) in his consideration
of the effects of release of 14,000 hybrid (wild X domestic) turkeys on the wild population
of turkeys in southern Missouri, USA. It was common practice throughout many parts of
the USA to release such hybrid turkeys in order to enhance wild populations that were
hunted. Hybrid stocks were used because of the great difficulty in raising wild turkeys in
captivity. He found that the hybrid birds were unsuccessful in the wild because of their
tranquility, early breeding, and inappropriate behavior of chicks in response to the warn-
ing note of the hen:

Wild turkeys are wary and shy, which are advantageous characters in eluding 
natural and human enemies. They breed at a favorable time of the year. The hens
and young automatically react to danger in ways that are self-protective. . . . Birds 
of the domestic strain, on the other hand, are differently adapted. Many of the
physiological reactions and psychological characteristics are favorable to existence
in the barnyard but many preclude success in the wild. (Leopold 1944.)

Systematic selection and incidental selection can be greatly reduced in captivity by 
intensive effort. However, genetic divergence between wild and captive populations
because of natural selection cannot be eliminated. Efforts are currently underway to
reduce these effects in fish hatcheries by mimicking the natural environment (Brannon et
al. 2004). Nevertheless, it is impossible for a hatchery to simulate the complex and
dynamic ecological heterogeneity of a natural habitat. In fact, any hatchery must create an
environment that differs dramatically from the natural one to achieve its goal of producing
more progeny per parent than occurs under natural circumstances. By definition then, 
a goal of reducing mortality while retaining natural environmental conditions cannot 
be achieved; it is impossible to synthetically create conditions that are both identical to 
the natural ones and at same time provide a basis for increased survival (Spruell et al., 
submitted).

18.5.2 Minimizing adaptation to captivity

Natural selection is most effective in large populations (see Chapter 8). Thus, rapid adapta-
tion to captivity is expected to occur most rapidly in captive populations with a large Ne.
Minimizing variance in reproductive success via pedigree management will also act to
delay adaptation to captive conditions. However, pedigree management is probably not
necessary or not practical for many species kept in captivity.

In contrast to this view, Bryant and Reed (1999) have suggested that the absence of any
selection in captivity can lead to a deterioration in fitness and that captive programs
should allow the alleles of less adapted individuals to be lost from the captive population.
We agree with Lacy (2000a) that Bryant and Reed overestimate the likely deterioration of
fitness in this case; they also overlook several other problems with the strategy that they
propose.
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In species with high fecundity (such as many fish, amphibians, and insects), rapid 
adaptation to captivity is most likely to occur because hundreds of progeny can be pro-
duced by single matings. Thus, natural selection may be very intense, especially in the first
few generations after being brought into captivity.

For example, the Apache trout, which is native to the southwestern USA, is currently
listed as “threatened” under the ESA. A single captive population, originating from indi-
viduals captured in the wild in 1983 and 1984, is the cornerstone of a recovery effort with
an established goal of establishing 30 discrete populations within the native range of this
species. Advances in culture techniques and the high fecundity of these fish have resulted
in a program that spawns hundreds of mature fish and produces hundreds of thousands of
fry per year for reintroduction.

The large number of spawners suggests that the effective population size of this popula-
tion is very large so the loss of genetic variation due to drift is not a concern. Nevertheless,
these circumstances are ideal for natural selection to bring about rapid changes to captive
conditions that would reduce the probability of successful establishment of reintroduced
populations.

18.5.3 Interaction of genetic drift and natural selection

In many regards, actions taken to reduce genetic drift will also reduce the potential for 
natural selection. For example, minimizing variability in reproductive success among 
individuals will both maximize Ne and reduce the effects of natural selection (Allendorf
1993). However, as we saw in Chapter 8, natural selection is most effective in very large
populations. Therefore, intermediate size populations would be large enough to avoid
rapid genetic drift, but not so large that even weak natural selection could bring about
adaptation to captive conditions.

Woodworth et al. (2002) tested these predictions with experimental populations of
Drosophila to mimic captive breeding. They evaluated adaptation to captivity under
benign captive conditions for 50 generations using effective population sizes of 25, 50, 100,
250, and 500. The small populations demonstrated reduced fitness after 50 generations
due to inbreeding depression. The large populations demonstrated the most rapid 
adaptation to captive conditions. The least genetic change in captivity was observed in
intermediate size populations as measured by moving the populations to simulated 
wild conditions (Figure 18.4). These authors suggested that adaptation to captivity can be
minimized by subdividing or fragmenting the captive population into a series of inter-
mediate size populations. The effective population size of each population should be large
enough to minimize the harmful effects of inbreeding and genetic drift, but small enough
to minimize rapid adaptation to captive conditions.

18.6 Genetic management of conservation breeding programs

A primary genetic goal of captive breeding programs is to minimize genetic change caused
by genetic drift and natural selection. Specific actions to achieve this goal depend upon the
biology of the species. We first consider captive populations that are managed by keeping
track of individual pedigrees (e.g., large mammals and birds). We then consider species for
which large groups of individuals are held, but it is difficult or impractical to keep track of
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individuals (e.g., fishes and insects). Most of our examples here concern animals, but the
same underlying genetic principles hold for plants. The wide variety of possible modes of
reproduction in plants (see Figure 18.1) makes it harder to provide general guidelines to
apply these genetic principles. Guerrant (1996) provides an excellent review of maintain-
ing offsite populations of plants for reintroduction.

18.6.1 Pedigreed populations

Genetic management by individual pedigrees is extremely powerful. It provides both 
maximum genetic information about the captive population and also maximum power to
control the reproductive success of individuals chosen for mating. This approach is most
appropriate for large mammals and birds. Most of the genetics literature dealing with
management of captive populations deals with this situation.

Simply maximizing Ne may not be the best strategy for maintaining genetic variation in
pedigreed populations (Ballou and Lacy 1995). Remember that genetic variation can be
measured by either heterozygosity or allelic diversity. Maximizing Ne will minimize the
loss of heterozygosity (by definition), but it may not be the best approach to retain allelic
diversity. A strategy that uses all of the information contained in a pedigree can be devel-
oped to minimize the loss of heterozygosity and allelic diversity.

Ballou and Lacy (1995) provide a lucid explanation of captive breeding strategies to
maintain maximum genetic variation that is beyond the detail we will consider here. This
problem is extremely difficult because the pedigrees of captive populations are often
extremely complicated (see Figure 18.3) and genetic planning is often not initiated until
after the first few generations of captivity.

Simple rules of thumb such as equalizing the genetic contributions of founders to the
captive population are not valid. We can see this in the hypothetical example presented in
Figure 18.5 in which there are four founders of a captive population. What would be the
result of a breeding strategy that equalized the genetic contributions of the founders? We
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Figure 18.4 Expected relationship between fitness and population size (Ne) due to the
inbreeding effect of small populations and genetic adaptation to captivity. The combined line
represents the net effects of both factors. The effects are shown for populations maintained 
for approximately 50 generations under (a) benign captive conditions and (b) for these
populations when introduced into the wild. Redrawn from Woodworth et al. (2002).
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can be absolutely certain that we have lost one of the two alleles carried by individual F1 at
every locus since this founder only contributed one offspring to the captive population.
However, there is some possibility that both alleles from the three other founders have
been retained because they have contributed multiple progeny. Thus, we can maximize
the retention of allelic diversity in the captive population by weighting the desirable contri-
bution of each founder by weighting it by the expected proportion of a founder’s alleles
retained (founder genome equivalents; Lacy 1989).

Accurate calculations of kin relationships, inbreeding coefficients, and retention of
founder alleles require a complete knowledge of the pedigree. However, many pedigreed
captive populations have some individuals with one or both parents unknown. Tradition-
ally such individuals have been treated as founders unrelated to all nondescendant 
animals. In some circumstances, this can cause substantial errors in estimating genetic
parameters (Ballou and Lacy 1995). Incorporation of molecular genetic information can
often be used to resolve unknown relationships and may result in a substantially different
view of a captive population (e.g., the whooping crane; Jones et al. 2002).

Similarly, the founders of a captive population brought into captivity are generally
assumed to be unrelated for pedigree analysis. However, this may often not be the case.
Incorrect assignment of founder relatedness will result in erroneous estimates of inbreed-
ing coefficients, effective population size, and population viability. For example, the last
remaining individuals in the wild may consist of a just a few groups of sibs. This informa-
tion should be taken into account along with molecular genetic analysis of relationships 
in order to maximize the retention of genetic variation in the captive population. Thus,
correct classification of kin structure among founders is important for a captive breeding
program.

18.6.2 Nonpedigreed populations

For many species held in captivity it is difficult or impractical to keep track of individuals
and pedigrees. For example, a single female of the endangered Colorado pikeminnow may
produce as many as 20,000 eggs each year. Other procedures, therefore, need to be devel-
oped to achieve the goal of minimizing genetic change by genetic drift or selection.

The large census population sizes at which some species are maintained in captivity
should not be taken to mean that genetic drift is not a concern. For example, Briscoe et al.
(1992) studied the genetics of eight captive populations of Drosophila held in populations

G1G2 G3G4 G5G6 G7G8

F1 F2 F3 F4

Figure 18.5 Hypothetical pedigree of a captive population founded by four individuals. 
We know that one allele at each locus has been lost from founder F1 because he left only one
descendant in the captive population. Therefore, equalizing the contributions of these four
founders in future generations would lead to an overrepresentation of genes from F1.
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with approximately thousands of individuals. All eight populations lost substantial het-
erozygosity at nine allozyme loci. Values of Ne estimated by the decline in heterozygosity
were less than 5% of the census population size. Delpuech et al. (1993) reported similar
results in their review of five species of insects held in captivity. Populations of all of 
these species had retained approximately 20% or less of their original heterozygosity at
allozyme loci.

These results demonstrate the importance of genetic monitoring of populations.
Regular examination of allele frequencies at molecular genetic loci should be used to
detect the effects of genetic drift in captive populations in which individual reproductive
success is not being monitored.

Adaptation to captive conditions is an even greater concern for large populations held 
in captivity. For example, Frankham and Loebel (1992) found that the average fitness in
captivity of Drosophila doubled after being maintained for eight generations in captivity.
Many other studies have found evidence for rapid adaptation to captivity in a variety 
of organisms (see discussion in Gilligan and Frankham 2003). The genes selected for in
captivity are almost certain to decrease the fitness of individuals when they are returned 
to wild conditions. In addition, the strong selection in captivity will reduce the effective
population size of the captive population. In fact, strong variance in reproductive success
associated with this adaptation is the likely explanation of the small Ne : Nc ratios often
found in captive populations.

A conceptual framework for minimizing the rate of adaptation to captivity (R) is 
provided by a modified form of the breeders’ equation (see expression 11.7) (Frankham
and Loebel 1992):

(18.1)

where HN is the narrow sense heritability, S is the selection differential, m is the proportion
of genes contributed from wild individuals, and g is the generation interval.

Continued introduction of individuals from the wild (increased m) will slow the rate of
adaptation to captivity. However, this will often not be possible.

The generation length (g) can be manipulated by increasing the average age of the par-
ents. For example, doubling the mean age of parents will double the generation interval
and halve the rate of adaptation to captivity. However, increasing the age of parents will
also slow the rate of population growth so this approach is less feasible during the early
stages of captivity before the population reaches carrying capacitiy.

Of course, reducing the intensity of selection (S) will slow adaptation to captivity. 
All efforts should be made to reduce differential survival and reproduction (fitness) in 
captivity. This can be done by minimizing mortality in captivity and by making the 
environmental conditions as close as possible to wild conditions.

Reducing differences in the number of progeny produced by individuals (family size)
will also diminish the effects of selection in captivity (Allendorf 1993; Frankham et al.
2000). There will be no reproductive differences between individuals if all individuals pro-
duce the same number of progeny. In this situation, natural selection will only operate
through differences in the relative survival of genotypes within families of full- or half-sibs.
In a random mating population, approximately one-half of the additive genetic variance is
within families and half is between families. Therefore, the rate of adaptation will be

  
R

H S m
g

  
(   )

=
−N 1

CATC18  28/05/2007  06:12PM  Page 469



470 PART III GENETICS AND CONSERVATION

reduced by approximately 50% by equalizing family size. Equalizing family size will also
increase Ne.

18.7 Supportive breeding

Supportive breeding is the practice of bringing in a fraction of individuals from a wild
population into captivity for reproduction and then returning their offspring into their
native habitat where they mix with their wild counterparts (Ryman and Laikre 1991). The
goal of these programs generally is to increase survival during key life stages in order to
support the recovery of a wild population that is threatened with eminent extirpation.
These programs would seem to pose a relatively small risk of causing genetic problems.
Nevertheless, the favoring of only a segment of the wild population may also bring about
changes in the wild population due to genetic drift and selection (Example 18.5).

18.7.1 Genetic drift and supportive breeding

Supportive breeding acts to increase the reproductive rate of one segment of the popula-
tion (those brought into captivity). This will increase the variance in reproductive success
(family size) among individuals and therefore potentially reduce effective population size.
Demographic increases in population size may reduce the overall Ne and accelerate the
loss of genetic variation. This effect is most likely to occur for species with high reproduc-
tive rates where large differentials in reproductive success are possible (e.g., fishes, amphib-
ians, reptiles, and insects).

Example 18.5 Supportive breeding of the world’s largest freshwater fish

The Mekong giant catfish is a spectacular example of the potential problem with
supportive breeding (Hogan et al. 2004). This is perhaps the largest species 
of fish found in fresh water. It grows up to 3 m long and weighs over 300 kg! A 
century ago, this species was found throughout the entire Mekong River from
Vietnam to southern China. This species began disappearing from fish markets 
in the 1930s, and efforts to find individuals in fish markets have failed in the last
few years. Very few fish remain in the wild and the species is currently listed as
endangered on the IUCN “Red List” (critical world distribution).

The Department of fisheries of Thailand began a captive breeding program in
1984. Over 300 adult fish have been captured in the wild and brought into captivity
over the last 20 years. However, this program further threatens this species
because of the removal of adult fish from the wild and the release of large num-
bers of young fish from very few parents. For example, over 20 wild adults were
sacrificed in 1999 to supply eggs and milt for artificial propagation. More than
10,000 of these fingerlings were released back into the wild in 2001. However,
genetic analysis of the progeny indicated that roughly 95% of these progeny were
full-sibs produced by just two parents (Hogan et al. 2004).
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Consider the situation where the breeding population consist of Nw effective parents
that are reproducing in the wild and Nc effective parents that are breeding in captivity and
their progeny are then released into the wild to supplement the wild population (Figure 18.6).
Figure 18.7 presents the overall Ne as a function of the progeny that are produced in 

Captive Wild

NNC NW

N ′C N ′W

t + 1

t + 2 N ′

t

Figure 18.6 Schematic representation of supportive breeding. The total population of N
individuals is divided into a captive and a wild group of size Nc and Nw that reproduce in
captivity and in the wild, respectively. The N ′c and N ′w offspring are mixed before breeding 
in generation t + 2. From Ryman et al. (1995).
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Figure 18.7 Total effective population size (wild + captive) when a natural population of 
20 effective parents is supported by offspring from different numbers of captive parents, as
indicated by the numbers on the different curves. The x-axis is the proportion of parents
contributed by the captive parents. From Ryman and Laikre (1991).
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captivity. The overall effective size may be substantially smaller than the effective number
of parents reproducing in the wild when the contribution of the captive population is high.
For example, consider the case where the wild population consists of 22 effective parents
and that two of these parents are taken into captivity and then produce 50% of the total
progeny. In this case, the total effective population size will be approximately six rather
than the 22 that it would have been in the absence of a supportive breeding program.

Consideration of this problem has been extended to multiple generations (Wang and
Ryman 2001; Duchesne and Bernatchez 2002). The effects of supportive breeding on Ne is
complex. Moreover, the effects of supportive breeding on the inbreeding and variance
effective population sizes (see Section 7.6) may differ. Nevertheless, supportive breeding,
when carried out successfully over multiple generations, may increase not only the census
but also the effective size of the supported population as a whole. If supportive breeding
does not result in a substantial and continuous increase of the census size of the breeding
population, however, it might be genetically harmful because of elevated rates of inbreed-
ing and genetic drift.

18.7.2 Natural selection and supportive breeding

Supportive breeding can also have important genetic effects on supplemented populations
because alleles that are harmful in the wild but advantageous in captivity may rise to high
frequencies in captive populations (Lynch and O’Hely 2001). This genetic supplementa-
tion load will be especially severe when a captive population that is largely closed to
import makes a contribution to the breeding pool of individuals in the wild. Moreover,
theory indicates this load may become substantial in a wild supplemented population
when the captive breeders are always derived from the wild.

Many recent papers have modeled possible harmful genetic effects of supportive breed-
ing programs of natural populations (e.g., Duchesne and Bernatchez 2002; Ford 2002;
Theodorou and Couvet 2004). These populations can be managed to increase rather than
decrease effective population size. Nevertheless, the effects of supportive breeding on
adaptation of wild populations are more difficult to predict. Selection in captivity can 
substantially reduce the fitness of a wild population during supportive breeding. The 
continual introduction of wild individuals into the captive population can reduce, but is
not expected to eliminate, this effect. These programs can reduce the probability of local
extirpations, but it is essential to carefully design the genetic aspects of these programs.

18.8 Reintroductions and translocations

To insure a successful reintroduction, introduction, or supplemental translocation, we
should consider several issues: (1) where to release the individuals; (2) how many popula-
tions to establish; (3) how many individuals to release; (4) age and sex of individuals to
release; (5) which and how many source population to use; and (6) how to monitor the
population after the release of individuals. Genetics should play a role in all of these issues
(Sarrazin and Barbault 1996).

Monitoring after the release of individuals is crucially important in insuring the suc-
cess of reintroductions and translocations. Unfortunately, post-release studies of genetic
contribution or of population status are seldom conducted. Molecular markers can help
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monitor generic diversity, effective population size, and reproductive contribution of
released individuals. For example, if few founders actually reproduce, due to extreme
polygamy, paternity analysis could detect the problem by identifying only a few males as
fathers. If paternity analysis is not feasible, then monitoring for loss of alleles, rapid genetic
change, and small effective population size could help determine if few founders repro-
duce (Luikart et al. 1999) (Example 18.6).

18.8.1 Reintroductions

Where to release individuals depends on habitat suitability and availability. To maximize
the chances of a successful reintroduction, the habitat should be similar to that to which
the individuals to be released are adapted. Obviously, sufficient food, water, breeding 
habitat, and shelter or escape terrain should be available. Furthermore, the habitat should
be free from exotic predators or competitive invasive species. For example, when threat-
ened marsupials are reintroduced in Australia, exotic foxes and domestic cats should not
be present because they are highly efficient at killing the marsupials and preventing re-
establishment of the population. In the case of the African rhino, there is abundant habitat,
but little habitat free of human predators, i.e., poachers (see Section 16.1).

How many populations? At least two, and preferable several populations should be
established and maintained. Populations should be independent demographically and
environmentally to avoid a catastrophic species-wide decline due to severe weather, floods,
fire, or disease epizootics, for example. Two or more populations should be established

Example 18.6 Rapid genetic decline in a translocated plant (Krauss et al. 2002)

The Corregin grevillea is one of the world’s rarest plant species; only five plants
were known in the wild in 2000. These plants occurred in degraded and isolated
remnants of natural vegetation on road verges in Western Australia. In 1995, 10
plants were selected from the 47 plants known at the time to act as genetically 
representative founders for translocation into secure sites. Hundreds of ramets
(tissue-cultured propagules of these 10 clones) were produced from these plants.
By late 1998, 266 plants had been successfully translocated and were producing
large numbers of seeds.

Krauss et al. (2002) used AFLPs to determine the genetic contribution of the 10
founders to this translocated population and their first-generation progeny. They
found that only eight clones, not 10, were present in the translocated population.
In addition, 54% of all plants were from a single clone. They also found that F1

hybrids produced between founders were on average 22% more inbred and 20%
less heterozygous than their founders, largely because 85% of all seeds were the
product of only four clones. They estimated that the effective population size of
the translocated population was approximately two. That is, the loss in heterozy-
gosity from the founders to the next generation was what would be expected if two
founders had been used.

These results demonstrate the importance of genetic monitoring of transloca-
tion programs.
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within each different environment or for each divergent genetic lineage, whenever diver-
gent environments or lineages exist within a species’ range. The preservation of multiple
populations across multiple diverse environments can help insure long-term persistence
of a species (Hilborn et al. 2003; see also Example 15.2). Genetics can help determine if
populations are independent demographically through genetic mark–recapture to iden-
tify migrants. Molecular genetic markers are widely used to assess gene flow, an indicator
of the degree of population independence or isolation.

How many individuals to release depends, in part, on the breeding system, effective
population size, and population growth rate after the reintroduction (Example 18.7).
When feasible, at least 30–50 individuals should be reintroduced (see Guest Box 18). More
individuals will be required if the breeding system is strongly sex biased (e.g., strong
polygamy) or the effective population size is small compared to the census population size.
Also, when population size does not increase above approximately 100–200 individuals
within a few generations, more individuals should be released, when possible.

The sex and age of individuals can influence the success of the reintroductions and
translocations. For example, it is often important to release more females than males to
maximize population growth, which limits demographic stochasticity and subsequent
genetic drift. Many reintroductions of large game animals in western North America have
used about 60–80% females. For supplemental translocations in polygynous species, it is
better in reintroduce females than males if we want only limited gene flow, because a 
single male can potentially breed with many females thereby swamping a population 
with introduced genes. Further, a male in a polygynous population might never breed, if
he is not dominant, for example, making male-mediated gene flow highly variable and
unpredictable. In territorial carnivores such as grizzly bears it is often best to translocation

Example 18.7 Genetic management of a reintroduction: Guam rails (Haig et al.
1990)

Over 50,000 Guam rails were estimated to be present on Guam in the 1960s.
However, the introduction of the brown tree snake to Guam during World War II
caused extinction or severe endangerment of all Guam’s native forest birds. By
1986, Guam rails became extinct in the wild. However, 21 birds had been brought
into captivity in 1983 and 1984 to initiate a captive breeding program (Haig et al.
1990).

The birds bred very successfully in captivity. By 1989, 113 birds were in the cap-
tive population and plans began to introduce Guam rails to the nearby island of
Rota. Environmental conditions on Rota are similar to Guam except that the
brown tree snake is not present. Initial plans were to introduce 90 birds to Rota. A
number of factors were considered in designing an introduction program (e.g.,
behavior, demography, genetics, and the physical conditions of each animal)
(Griffith et al. 1989).

Haig et al. (1990) compared six possible genetic mating schemes to produce 90
chicks planned for introduction: (1) select chicks at random from the captive popu-
lation; (2) select on the basis of fitness; that is, use chicks from those birds that
produced the greatest number of progeny in captivity; (3) select chicks that would
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Table 18.1 Comparison of six breeding options (see text for explanation) for creating a
group of 90 Guam rails for an introduction program (Haig et al. 1990).

Founder Breeding
No. genome pairs

Option He of alleles equivalents needed

Founders 1.00 42 21 –
Current population 0.98 31.5 10.5 –
Random (no selection) 0.95 24.1 9.4 23
Select for fitness 0.98 20.5 8.3 8
Maximize allozyme heterozygosity 1.00 18.9 7.1 13
Equalize founder contribution 0.98 27.2 13.4 8
Maximize allelic diversity 1.00 29.3 13.7 23
Founder genome equivalents 1.00 29.2 14.4 16

maximize the heterozygosity of the introduce population at 23 allozyme loci; 
(4) select chicks to equalize founder contributions; (5) select chicks to max-
imize the allelic diversity in the introduced population; or (6) select chicks to 
maximize the founder genome equivalents (see Section 18.6.1). Each option
was evaluated in terms of how well it would maintain genetic diversity in the intro-
duced population using a gene drop analysis (see Section 13.2).

The results indicated that some strategies would have done a poor job of main-
taining genetic variation in the introduced population (Table 18.1). Selecting for
reproductive fitness in captivity or heterozygosity at allozyme loci would have
resulted in a substantial decline in allelic diversity in the introduced population.
This shows the importance of minimizing differences in reproductive success
among individuals in captivity.

The other three active options (equalize founder contributions, maximize allelic
diversity, and maximize founder genome equivalents) all performed fairly equally
(Table 18.1). The founder genome equivalent strategy seems best because it
would retain nearly as much allelic diversity, maintain more founder genome
equivalents, and require fewer breeding pairs, which would make it logistically
preferable.

Some authors have suggested individuals should be chosen for breeding 
in captivity to increase genetic variation at certain loci, which can be examined
with molecular techniques, that may have particular adaptive importance (Wayne
et al. 1986; Hughes 1991). However, the above results show that selecting for
increased variation at a few detectable loci can reduce the effective population
size and reduce genetic variation throughout the genome (see Chapter 7).

As of June 2005, there were nearly 200 Guam rails in captivity in Guam and US
facilities. Over 100 Guam rails have been introduced to Rota. Sixteen rails were
reintroduced to Guam in 1998 to a 24 ha enclosure that is surrounded by a 2 m
snake barrier. Five of these birds were still alive in October 2000.
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females because males are more likely to fight for territory, sometimes to the death.
Molecular genetic sexing can help determine sex before translocation in some species
(birds and reptiles), where sex is cryptic.

Age can influence the likelihood that a translocated individual remains in the location of
release and integrates socially into the new population. In large mammals, young juvenile
or yearling individuals are often more likely than adults to integrate socially and/or not
leave the release area. Currently there is no way to obtain age information for molecular
genetic approaches, although the amount of telomere DNA on chromosomes is corre-
lated with age and quantifying the amount might become feasible one day.

Which and how many source populations? For reintroductions and supplemental
translocations, the source population generally should have high genetic diversity, genetic
similarity, and environment similarity when compared to the new or recipient population.
Environmental similarity helps limit chances of maladaptation of the translocated indi-
viduals in the site of release. However, if populations have recently become fragmented
and differentiated, multiple differentiated source populations can help maximize genetic
diversity in reintroductions or translocations, with little risk of outbreeding depression.
For example, a source population with greater genetic divergence from the recipient popu-
lation will result in a greater increase in heterozygosity in the recipient population.

If no individuals are available from a similar environment, then individuals from 
several source populations could be mixed upon release to maximize diversity for natural
selection to act upon. Mixing of individuals from multiple sources is less desirable in 
supplemental translocations where some locally adapted individuals still persist because
releasing many mixed individuals could swamp the local gene pool and lead to loss of
locally adapted alleles.

18.8.2 Restoration of plant communities

These same genetic principles apply to developing sources to be used in restoration 
projects with plants (Fenster and Dudash 1994; Lesica and Allendorf 1999; Kephart 2004)
(Example 18.8). Restoration is an important tool for the preservation of native plant 
communities (Hufford and Mazer 2003). Restoration ecology is a synthesis of ecology and
population genetics.

In general, native local plants are the preferred source for restoration projects because
of the potential importance of local adaptations (Linhart and Grant 1996). A variety of
studies have found evidence that plants of relatively local origin are preferred as sources of
reintroduction and restoration (Keller et al. 2000; Vergeer et al. 2004).

In some cases, local source populations may not be available. In addition, restoration
projects may involve highly disturbed sites to which local genotypes are not adapted. In
such cases, hybrids between populations, or mixtures of genotypes from different popula-
tions, may provide the best strategy (Guerrant 1996; Vergeer et al. 2004) (Figure 18.9).
Mixtures of genotypes from ecologically distinct populations or hybrids of these genotypes
will possess high levels of genetic variation. Introduced populations with enhanced varia-
tion are more likely to rapidly evolve genotypes adapted to the novel ecological challenges
of severely disturbed sites.

Strains of plants that have been selected for captive conditions are a common source of
plants for restoration (Keller et al. 2000). Such cultivars are often readily available, and are
much less expensive than acquiring progeny from wild seed sources. However, the
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Figure 18.8 The Mauna Kea silversword.

Example 18.8 Genetic management of a reintroduction: Mauna Kea silversword
(Robichaux et al. 1998)

The Mauna Kea silversword is a member of the silversword alliance, a group of
Hawai’ian endemic plants that is one of the premier examples of adaptive radiation
(Baldwin and Robichaux 1995). This plant is named for its mountain habitat and its
striking rosette of dagger-shaped leaves covered with jewel-like silvery hairs
(Robichaux et al. 1998) (Figure 18.8). The Mauna Kea silversword historically was
common in exposed subalpine and alpine habitats high on the 4,205 m volcano
on the Island of Hawai’i. The introduction of sheep and other ungulates devas-
tated this plant, presumably because of heavy browsing. By the 1970s, only a
small remnant population confined to cliffs and rocks persisted.

Three plants from this remnant population of an estimated less than 100 plants
flowered in 1973. Most Mauna Kea silverswords live up to 50 years and are mono-
carpic (i.e., they flower only once before dying). Seeds from two of these plants
were removed, and over 800 plants resulted from outplanting seedlings from
these seeds on Mauna Kea. Today there are over 1,500 plants in the reintroduced
population that are first- or second-generation offspring of the two maternal
founders. This intervention and subsequent reintroduction dramatically increased
the size of the silversword population on Mauna Kea.

This large, reintroduced population went through a severe genetic bottleneck
because it is based on just two maternal plants. Analysis of seven variable
microsatellite loci indicated substantial loss of genetic variation in the outplanted
population in comparison to the native population (Friar et al. 2000). Three of the
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Figure 18.9 General relationship to degree and size of disturbance of three possible sources 
of plants to be used for restoration projects. In general, local plants should be preferred.
However, cultivars may be appropriate in small but highly disturbed areas because they are
more likely to quickly establish themselves. Hybrids between populations, or mixtures of
genotypes from different populations, may provide the best strategy for highly disturbed sites
to which local genotypes are not adapted. Introduced populations with enhanced variation
are more likely to rapidly evolve genotypes adapted to the novel ecological challenges of
severely disturbed sites. From Lesica and Allendorf (1999).

seven loci variable in the native plants, are fixed for a single allele. A total of eight
of the total of 21 alleles over all loci were not detected in the outplanted popula-
tion. The expected average heterozygosity in the outplanted population (0.074)
was 70% less than that of the native population (0.250).

The greatest immediate genetic concern for recovery is the loss of allelic 
variation at the self-incompatibility locus in Mauna Kea silverswords (Robichaux
et al. 1998; see Section 14.4.2). Loss of variation at this locus in the outplanted
population may greatly reduce seed production and reduce the species’ long-term
chances for recovery.

Efforts are underway to increase genetic variation by hand transferring pollen
from native plants that flower into the outplanting program. This is not an easy
task; collecting pollen often involves perching precariously on steep cliffs because
the remaining plants exist because they are out of the way of browsing ungulates.
Two plants flowered in 1997 and a large number of seeds were produced by hand
transfer of pollen. This doubled the number of founding maternal plants for the
outplanting program.

More founders are expected to be added in the future. The program is currently
concerned with balancing the genetic contributions of founders by equalizing
founder contributions. This may be difficult because so many plants have already
been outplanted and so few plants flower in any given year. In addition, the long
generation interval will make this even more challenging! This program is a clear
example of the importance of taking genetic concerns into consideration in the
recovery of species that have reached small numbers.
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widespread use of cultivars is likely to lead to the introduction of genes into the adjacent
resident population through cross-pollination, although the degree of genetic introgres-
sion will depend on the breeding system. Thus, widespread introductions of cultivars
could alter the resident neutral gene pool. For these reasons, the use of cultivars should be
restricted.

Guest Box 18 Effects of population bottlenecks on introduced species of birds
James V. Briskie

Colonial expansion in the 19th century not only brought a flood of European
immigrants to the new world, it also lead to the establishment of many European
birds in these foreign lands. The deliberate introduction of exotic birds was driven
by both utilitarian needs (e.g., gamebirds) and sentimental reasons (e.g., settlers
missed the song of familiar birds). Nowhere was this done with such sustained and
organized effort as New Zealand. Acclimatization societies imported over a hun-
dred species of birds, and although many failed to spread, today about 30 species 
of exotic birds range throughout New Zealand. Such species are now generally
viewed as a nuisance (and certainly not worthy for conservation purposes), but
they provide an exceptional opportunity to study how bottlenecks affect the fitness
of populations.

The great difficulty and expense of transporting birds around the world meant
that many species went through a severe bottleneck during their establishment.
For example, the cirl bunting was established by a release of only 11 birds. Other
species, such as the dunnock (250 founders), starling (653 founders), and blackbird
(800 founders) were released in greater numbers. Variation in the size of bottle-
necks experienced by each species provides a way to assess how the severity of a
bottleneck affects the fitness of a post-bottleneck population. Such information is
most valuable for the management of endangered native birds, though endangered
native species seldom have large and non-bottlenecked populations to use as con-
trols. In contrast, species introduced to New Zealand maintain large populations 
in their native range. The fitness effects of severe bottlenecks can therefore be
quantified by comparing introduced birds in New Zealand (“post-bottleneck”)
with populations of the same species in their native range (“pre-bottleneck”).

Hatching failure is one fitness trait known to be sensitive to the increased
inbreeding expected in a severely bottlenecked population. Typically, 5–10% of
eggs fail to hatch in a normal population, but highly inbred populations can have
much higher rates of hatching failure as a result of infertility and embryo death. For
example, the kakapo is a highly endangered parrot endemic to New Zealand that
declined to a low of only 50 birds (see Example 18.1). Although intensive conserva-
tion efforts have paid off and the population is now increasing, recent breeding
attempts have seen less than half their eggs hatch successfully. Levels of hatching
failure in other endangered New Zealand species are also high, especially when
populations drop below about 150 individuals. However, levels of hatching failure
in these species before they passed through a bottleneck are unknown simply
because they became endangered before any baseline information could be 
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collected. Perhaps island birds like the kakapo may have naturally high levels of
hatching failure? We simply don’t know.

An examination of introduced species indicates that endangered New Zealand
birds are not unique in this regard, and that high levels of hatching failure are
indeed the product of severe population bottlenecks (Figure 18.10). All introduced
species have levels of hatching failure below 10% (most below 5%) in their native
range, yet some of the same species in New Zealand experience levels of failure up
to 3–4 times higher.

These results also provide insight into the number of founders needed to avoid
fitness decline due to bottleneck effects for introduced birds. As high levels of
hatching failure in New Zealand populations are greatest in those species that
passed through the most severe bottlenecks, it is possible to estimate the number of
founders that would be required to start a new population and not induce higher
levels of hatching failure in later generations. Based on hatching failure rates alone,
at least 150 founders may be needed, a number much higher than that currently
used (usually about 40–70 individuals) by most conservation biologists to found
new populations of endangered birds. Whether other fitness traits are similarly
affected remains to be determined, but it is clear that managers may be unwittingly
contributing to the further endangerment of the species they are trying to save by
not fully understanding the genetic effects of population bottlenecks.

H
at

ch
in

g 
fa

ilu
re

 (
%

)

50

40

30

20

10

0

Number introduced
11001,000

In
native
range

Figure 18.10 Increase in hatching failure of 15 introduced birds species with decreased
numbers of individuals released by 19th century New Zealand acclimatization societies.
Circles are means ±95% confidence intervals. The open circle shows mean hatching
failure in the same species in their native range. Note that the x-axis is ordered from
large to small bottleneck size on a log scale. From Briskie and Mackintosh (2004).
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Problem 18.1

As we saw in Example 18.1, the kakapo conservation breeding program faces a
variety of unusual challenges. All but one of the founding kakapo came from a
population discovered on Stewart Island, which has very little genetic variation.
Richard Henry is the only founding bird from a population on the South Island that
contained more genetic variation. This population also was substantially geneti-
cally divergent from the Stewart Island population. Ideally, what proportion of the
genetic composition of the kakapo breeding population should come from Richard
Henry? The answer would be approximately 1/50 if we equalize the genetic contri-
butions of founders. The answer would be 1/2 if we equalize the genetic contribu-
tions of founding populations. What would you recommend?

Problem 18.2

Under what circumstances should captive breeding be considered as a useful tool
for conservation?

Problem 18.3

How could captive breeding be detrimental to the protection of habitat?

Problem 18.4

Why (and how) can the potential negative influence of natural selection and
genetic drift be balanced?

Problem 18.5

Give at least three ways molecular markers can facilitate conservation breeding.
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Invasive Species

Biological invaders are now widely recognized as one of our most pressing con-
servation threats.

Ingrid M. Parker et al. (2003)

The synergism arising from combining ecological, genetic, and evolutionary per-
spectives on invasive species may be essential for developing practical solutions
to the economic and environmental losses resulting from these species.

Ann K. Sakai et al. (2001)

19.1 Why are invasive species so successful?, 484

19.2 Genetic analysis of introduced species, 487

19.3 Establishment and spread of invasive species, 491

19.4 Hybridization as a stimulus for invasiveness, 492

19.5 Eradication, management, and control, 494

Guest Box 19 Rapid adaptation of invasive populations of St John’s Wort, 499

Invasion by nonindigenous (alien) species is recognized as second only to loss of habitat
and landscape fragmentation as a major cause of loss of global biodiversity (Walker and
Steffen 1997). The economic impact of these species is a major concern throughout the
world. For example, an estimated 50,000 nonindigenous species established in the United

St. John’s Wort, Guest Box 19
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States cause major environmental damages and economic losses that total more than an
estimated 125 billion dollars per year (Pimentel et al. 2000). Management and control of
nonindigenous species is perhaps the biggest challenge that conservation biologists will
face in the next few decades.

A chapter on invasive species may seem out of place in a book on conservation 
genetics. However, we have chosen to include such a consideration for several reasons.
Molecular genetic analysis of introduced species can provide valuable information about
the source and number of introduced populations. Also, understanding the ecological
genetics of invasive species biology may provide helpful insights into developing methods
of eradication or control. In addition, the study of species introductions offers exceptional
opportunities to answer fundamental questions in population genetics that are important
for the conservation of species. For example, how crucial is the amount of genetic vari-
ation present in introduced populations for their establishment and spread?

Molecular genetic analysis of introduced species (including diseases and parasites) can
provide valuable information (Walker et al. 2003). Understanding the “epidemiology of
invasions” (Mack et al. 2000) is crucial to control current invasions and prevent future inva-
sions. Understanding the source of the introduced population, the frequency with which a
species is introduced into an area, the size of each introduction, and the subsequent pat-
tern of spread is important in order to develop effective mechanisms of control. However,
observing such events is particularly difficult and assessment of the relative frequency of
introductions or pattern of spread is extremely difficult. Molecular markers provide an
important opportunity to answer these questions. In addition, many problematic diseases
and parasites have been introduced and spread. Molecular markers are being used exten-
sively to monitor and control these diseases (Criscione et al. 2005).

There is evidence that native species evolve and adapt to the presence of invasive
species. For example, the highly toxic cane toad has had devastating ecological effects 
after their introduction to Australia in 1935. Phillips et al. (2003) concluded that cane 
toads threaten populations of approximately 30% of Australian terrestrial snakes because
of their toxicity. Phillips and Shine (2004) predicted that eating cane toads would exert
selection that would favor larger body size and a decrease in relative head size to reduce
the relative prey mass of ingested cane toads in predatory snakes. A comparison of two
high risk and two low risk snake species supported this prediction and provided strong 
evidence of adaptive changes in native predators resulting from the introduction of a toxic
prey.

An understanding of genetics may also help predict which species are most likely to
become invasive. There are two primary stages in the development of an invasive species
(Figure 19.1). The first stage is the introduction, colonization, and establishment of a 
nonindigenous species in a new area. In other words, the introduced species must arrive,
survive, and establish. The second stage is the spread and replacement of native species by
the introduced species. The genetic principles that may help us predict whether or not a
nonindigenous species will pass through these two stages to become invasive are the same
principles that apply to the conservation of species and populations threatened with
extinction: (1) genetic drift and the effects of small populations; (2) gene flow and
hybridization; and (3) natural selection and adaptation.

In this chapter, we consider the possible importance of genetic change in the establish-
ment and spread of invasive species. We also examine the significant role that hybridiza-
tion may play in the development of invasive species. Finally, we consider ways in which
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genetic understanding may be applied to help predict which species are likely to be suc-
cessful invaders and to help control invasive species.

19.1 Why are invasive species so successful?

Not all introduced species become invasive. A general observation is that only one out of
every 10 introduced species becomes established, and only one out of every 10 newly
established species becomes invasive. Therefore, roughly only one out of every 100 intro-
duced species becomes a pest. The next few sections consider what factors may influence
whether a species becomes established and becomes invasive.

Invasive species provide an exceptional opportunity for basic research in the population
biology and short-term evolution of species. Many of the best examples of rapid evolution-
ary change come from the study of introduced populations (Lee 2002). For example,
Drosophila subobscura evolved a north–south cline in wing length 20 years after introduction

Lag time
Adaptation
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Establishment

Number of founders
Number of source populations

More

Stage 1
(eradication)

Less

Ecological effects
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spread

Spread
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Figure 19.1 The two stages of invasion that generally coincide with different management
responses. Propagule pressure is a continuum with greater pressure leading to an increased
chance of establishment and spread with shorter lag times. If spread involves small groups of
dispersing individuals, each group must be able to establish in a different area. Establishment
or subsequent spread may be inhibited where groups reach the limits of particular
environmental conditions. From Allendorf and Lundquist (2003).
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into North America that paralleled the pattern present in their native Europe of increased
wing length with latitude (Huey et al. 2000). Similarly, two species of goldenrods evolved a
cline in flowering time that resembled a cline in their native North America after being
introduced into Europe (Weber and Schmid 1998).

Many unresolved central issues in the application of genetics to conservation – such as
the inbreeding effects of small populations and the importance of local adaptation – can be
much better experimentally addressed with introduced species. Two apparent paradoxes
emerge from comparison of our previous conclusions of the effects of small population
size and local adaptation with the successful invasions by introduced species.

19.1.1 If population bottlenecks are harmful, then why are invasive species that 
have gone through a founding bottleneck so successful?

Much of the concern in conservation genetics relates to the potential harmful effects of
small population sizes. The loss of genetic variation through genetic drift and the inbreed-
ing effect of small populations contribute to the increased extinction rate of small popula-
tions (e.g., Frankham and Ralls 1998). However, colonization of introduced species often
involves a population bottleneck since the number of initial colonists is often small. Thus,
a newly established population is likely to be much less genetically diverse than the popu-
lation from which it is derived (Barrett and Kohn 1991).

The reduced genetic diversity can have two harmful consequences. First, inbreeding
depression may limit population growth, and lower the probability that the population
will persist. Second, reduced genetic diversity will limit the ability of introduced popula-
tions to evolve in their new environments. Thus we face a paradox: if population bottle-
necks are harmful, then why are invasive species that have gone through a founding
bottleneck so successful? One answer to this paradox is that introduced species often have
greater genetic variation than native species because they are a mixture of several source
populations (Example 19.1).

One solution to the first of the two genetic paradoxes lies in the strong observed effect
of propagule pressure on the invasiveness of species. That is, the clear association between
the greater number of introduced individuals and the number of release events and the
probability of an introduced species becoming invasive suggests that many invasive species
are not as genetically depauperate as expected. In addition, plant species can avoid the
reduction in genetic variation associated with colonization by their means of reproduction
(Barrett and Husband 1990).

Many invasive plant species reproduce asexually by apomixis or vegetative reproduction
(Baker 1995; Calzada et al. 1996). In both cases, the effects of inbreeding depression are
avoided because the progeny are genetically identical to the parental plants. In addition,
many invasive plant species are polyploids and can reproduce by selfing. In this situation,
genetic variation is maintained in the form of fixed heterozygosity because of genetic
divergence between the genomes combined in the formation of the allopolyploid (Brown
and Marshall 1981).

19.1.2 If local adaptation is important, then why are introduced species so successful 
at replacing native species?

The presence of local adaptations is often an important concern in the conservation of
threatened species (McKay and Latta 2002). That is, adaptive differences between local
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populations are expected to evolve in response to selective pressures associated with differ-
ent environmental conditions. The presence of such local adaptations in geographically
isolated populations often plays an important role in the management of threatened
species (Crandall et al. 2000).

When a species invades a new locality it will almost certainly face a novel environment.
However, many introduced species often outcompete and replace native species. For
example, introduced brook trout are a serious problem in the western United States where
they often outcompete and replace ecologically similar native trout species. However, the
situation is reversed in the eastern USA where brook trout are native. They are in serious
jeopardy because of competition and replacement from introduced rainbow trout that are
native to the western USA. Thus we face a second paradox: if local adaptation is common
and important, then why are introduced species so successful at replacing native species?

A variety of explanations have been proposed to explain why introduced species often
outperform indigenous species. First, some species may be intrinsically better competitors
because they evolved in a more competitive environment. Second, the possible absence of
enemies (e.g., herbivores in the case of plants) allows nonindigenous species to have more
resources available for growth and reproduction and thereby outcompete native species.
Siemann and Rogers (2001) found that an invasive tree species, the Chinese tallow tree,
had evolved increased competitive ability in their introduced range. Invasive genotypes

Example 19.1 Genetic variation increases during invasion of a lizard Kolbe et al.
(2004)

The brown anole is a small lizard that is native to the Caribbean, but has been
introduced widely throughout the world (Hawai’i, Taiwan, and mainland USA).
Introduced populations often reach high population densities, show exponential
range expansion, and are often competitively superior and predators of native
lizards.

The brown anole first appeared in the Florida Keys in the late 19th century. Its
range did not expand appreciably for 50 years, but widespread expansion
throughout Florida began in the 1940s and increased in the 1970s.

Genetic analyses of mtDNA suggest that at least eight introductions have
occurred in Florida from across this lizard’s native range. This has resulted in 
an admixture from different geographic source populations and has produced
populations that are substantially more genetically variable than native popula-
tions. Moreover, recently introduced brown anole populations around the world
originate from Florida, and some have maintained these elevated levels of genetic 
variation.

Kolbe et al. (2004) suggest that one key to the invasive success of this species
may be the occurrence of multiple introductions that transform among-population
variation in native ranges to within-population variation in introduced areas. These
genetically variable populations appear to be particularly potent sources for intro-
ductions elsewhere.
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were larger than native genotypes and produced more seeds; however, they had lower
quality leaves and invested fewer resources on defending them. Thus, there are a number
of reasons why introduced species may fare well even though native species may be locally
adapted.

In addition, local adaptation of native populations might only be essential during peri-
odic episodes of extreme environmental conditions (e.g., winter storms, drought, or fire).
For example, Rieman and Clayton (1997) have suggested that the complex life histories of
some fish species (mixed migratory behaviors, etc.) are adaptations to periodic disturb-
ances such as fire and flooding. Thus, introduced species may be able to outperform native
species in the short term (a few generations) because the performance of native species 
in the short term is constrained by long-term adaptations that may come into play every
50 or 100 years.

19.2 Genetic analysis of introduced species

Molecular genetic analysis of introduced species can provide valuable information 
about the origin of introduced taxa. In addition, study of the amount and distribution of
genetic variation in introduced species can provide valuable insight into the mechanisms
of establishment and spread. In some cases, even identifying the species of invasive 
organisms may be difficult without genetic analysis. In other cases, populations of a native
species may become invasive when introduced into a new ecosystem. Such populations
would technically not be considered to be alien since conspecific populations were already
present. Nevertheless, such populations may become invasive when introduced outside 
of their natural area (Genner et al. 2004). Current regulations dealing with invasive 
organisms are based upon species classification. However, recognizing biological differ-
ences between populations within the same species is important for the control of invasive
species.

19.2.1 Molecular identification of invasive species

In some cases, genetic identification may be necessary to identify the species of introduced
species. For example, populations of Asian swamp or rice eels (genus Monopterus) have
been found throughout the southeastern United States since 1994 (Collins et al. 2002).
Swamp eels have a variety of characteristics that make them a potentially disruptive
species. They are large predators (up to 1 m in length) that are capable of breathing out of
water and dispersing over land. They are also extremely tolerant of drought because they
produce large amounts of mucous that can prevent desiccation and burrow when water
levels drop.

The morphological similarity of swamp eels makes identification difficult. Collins et al.
(2002) sampled four locations in Georgia and Florida to see if these eels were the result of 
a single introduction or multiple introductions. Examination of mtDNA revealed that
introduced populations, even in close proximity (<40 km), were genetically distinct. These
genetically distinct populations represent at least two and possibly three different species.

Genetics may also allow the detection of an invasive species that is conspecific with a
native species. For example, Genner et al. (2004) used mtDNA to detect a non-native
morph from Asia of the gastropod Melanoides tuberulata in Lake Malawi, Africa, which is
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sympatric with indigenous forms of the same species. This non-native morph was not pre-
sent in historical collections and appears to be spreading rapidly and replacing the indigen-
ous form.

19.2.2 Distribution of genetic variation in invasive species

Examination of published descriptions of the amount and patterns of genetic variation 
in introduced species reveals two contrasting patterns. In the first, introduction and 
establishment is often associated with a population bottleneck, or bottlenecks, so that
introduced populations have less genetic variation than populations in the native range of
the species. Under some circumstances, this reduced genetic variation may actually stimu-
late invasion (Example 19.2). In the second pattern, introduction and establishment is
associated with admixture of more than one local population in the native range so that
populations in the introduced range have greater genetic variation. The bottleneck and
admixture situations result in very different patterns of genetic variation in introduced
species.

Bottleneck model

In many cases, introduced species may only have a few founders so that genetic variation is
reduced by the founder effect. The land snail that we examined in Example 6.2 is an excel-
lent example of this pattern ( Johnson 1988). This species was introduced from Europe to
Perth in western Australia. The Perth population has reduced heterozygosity and allelic
diversity compared to a population from France (see Figure 6.9; Problem 6.10). In addi-
tion, another population was founded on Rottnest Island by a limited number of founders
from the Perth population. This second bottleneck further reduced heterozygosity and
allelic diversity.

Example 19.2 Loss of genetic variation in an introduced ant species promotes a
successful invasion (Tsutsui et al. 2000)

Ants are among the most successful, widespread, and harmful invasive taxa.
Highly invasive ants are often unicolonial, and form supercolonies in which work-
ers and queens mix freely among physically separate nests. By reducing costs
associated with territoriality, unicolonial species can attain high worker densities,
allowing them to achieve interspecific dominance.

Tsutsui et al. (2000) examined the behavior and population genetics of the invas-
ive Argentine ant (Linepithema humile) in its native and introduced ranges. They
demonstrated with microsatellites that population bottlenecks have reduced the
genetic diversity of introduced populations. This loss is associated with reduced
intraspecific aggression among spatially separate nests, and leads to the forma-
tion of interspecifically dominant supercolonies. In contrast, native populations
are more genetically variable and exhibit pronounced intraspecific aggression.

These findings provide an example of how a genetic bottleneck associated with
introduction can lead to widespread ecological success.
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Stone and Sunnucks (1993) have described the invasion of northern and western Europe
of the gallwasp Andricus quercusalicis following human introduction of an obligate host plant,
the Turkey oak from southeastern Europe. Populations further from the native range show
reduced allelic diversity and heterozygosity (Figure 19.2). This suggests that this species
has experienced a series of bottlenecks as it spread throughout Europe over the last 300–
400 years. Patterns of allele frequency differentiation suggest that the invasion of this species
followed a stepping-stone process rather than multiple introductions from its native range.

Admixture model

In contrast to the bottleneck model, many introduced species actually have greater 
variation in comparison with populations from the native range because their founders
come from different local populations within the native range. Admixing individuals from
genetically divergent populations will increase genetic variation by converting genetic 
differences between populations to genetic variation between individuals within popu-
lations. We saw in Chapter 9 that the total heterozygosity (HT) within a species can be 
partitioned into genetic variation within and between subpopulations:

HT = HS + DST (19.1)

where HS is the average heterozygosity within subpopulations, and DST is the average gene
diversity between subpopulations. DST is related to the more familiar FST:

DST = (FST)(HT) (19.2)
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Figure 19.2 Relationship in an invasive gallwasp between distance from its native Hungary
and (a) allelic diversity and (b) expected heterozygosity. Populations further from the native
range show reduced genetic variation and patterns of allele frequency differentiation that
suggests a stepping-stone invasion process rather than multiple introductions from its native
range. From Stone and Sunnucks (1993).
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and,

(19.3)

Thus, DST is the proportion of the total heterozygosity due to genetic divergence between
subpopulations (Nei 1987, p. 189).

We saw in Example 9.2 that two separate demes of brown trout existed within a single
Swedish lake and had substantial genetic differentiation at the LDH-A2 locus (and many
other loci as well) (Ryman et al. 1979):

HT = HS + DST = HS + (FST)(HT)

= 0.128 + (0.728)(0.489) = 0.128 + 0.356 = 0.489

Thus, if we introduced an equal number of fish from each of these demes into a new 
lake and the fish mated at random, the expected heterozygosity in the newly founded 
population would be 0.489, nearly four times as great as in the original populations at 
this locus.

This effect can be seen in many introduced populations (see Example 19.1). Approx-
imately 400 chaffinches were imported from England into New Zealand between 1862
and 1877. Overwintering birds from several populations on the European continent were
included in the birds collected for introduction. Baker (1992) reported that chaffinches
from eight populations in New Zealand have an average heterozygosity that is 38% greater
(0.066 versus 0.048) than 10 native European populations at 42 allozyme loci. As expected,
chaffinches in New Zealand have greatly reduced differentiation among subpopulations
(FST = 0.040) compared to chaffinches in their native Europe (FST = 0.222).

19.2.3 Mechanisms of reproduction

Molecular genetic analysis can also be used to determine if an introduced plant species is
reproducing sexually or asexually, the breeding system, and the ploidy level of introduced
plants. Further examination could determine how many different clonal lineages are pre-
sent if an invader is reproducing asexually. This information, along with an understanding
of genetic population structure, is essential for the development of effective control meas-
ures for invasive weed species (Chapman et al. 2004).

For example, most strains of the marine green algae Caulerpa taxifolia are not invasive.
However, a small colony of C. taxifolia was introduced into the Mediterranean in 1984
from a public aquarium and spread widely and seriously reduced biological diversity in the
northwestern Mediterranean ( Jousson et al. 2000). The invasive strain differs from native
tropical strains because it reproduces asexually, grows more vigorously, and is resistant to
lower temperatures. Colonies of C. taxifolia have recently been reported on the coast of
California and this has raised concerns about the danger of an invasion similar to that in
the Mediterranean. Genetic analysis of the California alga has shown that it is the same
strain as the one responsible for the Mediterranean invasion ( Jousson et al. 2000). Thus,
the rapid eradication of this introduced alga should receive high priority in order to reduce
the probability of a new invasion.
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19.2.4 Quantitative genetic variation

Although much information can be gained from molecular markers, characterization of
the genetic variation controlling those life history traits most directly related to establish-
ment and spread is also crucial. These traits are likely to be under polygenic control with
strong interactions between the genotype and the environment; they cannot be analyzed
directly with molecular markers, although mapping quantitative trait loci (QTLs) affecting
fitness, colonizing ability, or other traits affecting invasiveness may be possible (Barrett
2000). For example, variation in the number of rhizomes producing above-ground shoots,
a major factor in the spread of the noxious weed johnsongrass, is associated with three
QTLs (Paterson et al. 1995). This knowledge may provide opportunities for predicting 
the location of corresponding genes in other species and for growth regulation of major
weeds.

Application of the methods of quantitative genetics could be useful for those species 
in which information can be obtained from breeding design or from parent–offspring 
comparisons. For example, one could compare the additive genetic variance/covariance
structure of a set of life history traits of different populations to evaluate the role of genetic
constraints on the evolution of invasiveness. Comparisons of the heritability of a trait
could be made among different, newly established populations or between invasive popu-
lations and the putative source population. Consideration of both the genetic and ecolo-
gical context of these traits is critical, given the potentially strong interaction of genetic
and environmental effects (Barrett 2000).

19.3 Establishment and spread of invasive species

One common feature of invasions is a lag time between initial colonization and the onset
of rapid population growth and range expansion (Sakai et al. 2001) (see Figure 19.1). This
lag time is often interpreted as an ecological phenomenon (the lag phase in an exponential
population growth curve). Lag times are also expected if evolutionary change is an 
important part of the colonization process. This process could include the evolution of
adaptations to the new habitat, the evolution of invasive life history characteristics, or the
purging of genetic load responsible for inbreeding depression (Figure 19.3). It appears
likely that in many cases there are genetic constraints on the probability of a successful
invasion, and the lag times of successful invasives could be a result of the time required 
for adaptive evolution to overcome these genetic constraints (Ellstrand and Schierenbeck
2000; Mack et al. 2000).

19.3.1 Propagule pressure

Propagule pressure has emerged as the most important factor for predicting whether or
not a nonindigenous species will become established (Kolar and Lodge 2001). Propagule
pressure includes both the number of individuals introduced and the number of release
events. Propagule pressure is expected to be an important factor in the establishment of
introduced species on the basis of demography alone. That is, it is unclear what role, if any,
genetic factors may play in the effect of propagule pressure.
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There are two primary ways in which the genetics of an introduced species may be
affected by propagule pressure. First, a greater number of founding individuals would be
expected to reduce the effect of any population bottleneck so that the newly established
population would have greater genetic variation. Second, and perhaps most importantly,
different releases may have different source populations. Therefore, hybridization
between individuals from genetically divergent native populations may result in intro-
duced populations having more genetic variation than native populations of the same
species (see Section 19.4).

19.3.2 Spread

Many recently established species often persist at low, and sometimes undetectable, num-
bers and then “explode” to become invasive years or decades later (Sakai et al. 2001).
Adaptive evolutionary genetic changes may explain the commonly observed lag time that
is seen in many species that become invasive (García-Ramos and Rodríguez 2002). Many of
the best examples of rapid evolutionary change come from the study of recently intro-
duced populations (Lee 2002).

19.4 Hybridization as a stimulus for invasiveness

Hybridization may play an important role in introduced species becoming invasive
(Example 19.3). As we have seen in the previous sections, many species become invasive
only after: (1) an unusually long lag time following initial arrival; and (2) multiple 
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Figure 19.3 Factors that influence the process by which an introduced species moves 
from initial establishment in a new range to widespread invasion of multiple habitats. Two
alternative, but not mutually exclusive, mechanisms are presented: rapid adaptation and the
general purpose genotype. Characteristics of the invading species (e.g., breeding system) or of
the invasion process (e.g., number of introductions) that influence these two mechanisms are
outlined. From Parker et al. (2003).
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introductions. Ellstrand and Schierenbeck (2000) have proposed that hybridization between
species, or genetically divergent source populations, may serve as a stimulus for the evolu-
tion of invasiveness on the basis of these observations. Ellstrand and Schierenbeck (2000)
proposed four genetic mechanisms to explain how hybridization may stimulate invasiveness.

Evolutionary novelty

Hybridization may result in the production of novel genotypes and phenotypes that do not
occur in either of the parental taxa. Evolutionary novelty can result either from the com-
bination of different traits from both parents or from traits in the hybrids that transgress
the phenotypes of both parents (transgressive segregation; see Section 17.1.4).

Genetic variation

An increase in the amount of genetic variation may in itself be responsible for the evolu-
tionary success of hybrids. That is, the greater genetic variation (heterozygosity and allelic
diversity) in hybrid populations may provide more opportunity for natural selection to
bring about adaptative evolutionary change. This mechanism is a group selection.

Fixed heterosis

Many invasive plant species have genetic or reproductive mechanisms that stabilize first-
generation hybridity and thus may fix genotypes at individual or multiple loci that demon-
strate heterosis. These mechanisms include alloployploidy, permanent translocation
heterozygosity, agamospermy, and clonal reproduction. The increased fitness resulting
from fixed heterozygosity may contribute to the invasiveness of many plant species.

Common cordgrass (Spartina anglica) has been identified as one of the world’s worst
invasive species by the World Conservation Union (IUCN 2001). Common cordgrass is a

Example 19.3 Hybrid mosquitoes may spread West Nile virus by acting as a
bridge between humans and birds

The rapid spread of West Nile virus in humans in North America provides an
unusual example of the possible role of hybridization in the spread of invasive
species (Couzin 2004). Mosquitoes in the Culex pipens complex are the primary
vectors for the spread of West Nile virus to humans in North America and Europe
(Fonseca et al. 2004). However, there have been few human outbreaks in Europe
even though the virus is endemic there and the birds that harbor it and the
mosquitoes that spread it are also present.

Microsatellite analysis of Culex mosquitoes in northern Europe indicated 
several reproductively isolated taxa of mosquitoes that differ in biting behavior
and physiology (Fonseca et al. 2004). In contrast, hybrids between these distinct
taxa are found throughout the United States. It appears that hybrid mosquitoes in
North America bite both humans and birds and apparently serve as bridge vectors
of the disease from birds to humans.
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perennial salt marsh grass that has been planted widely to stablize tidal mud flats. Its inva-
sion and spread leads to the exclusion of native plant species and the reduction of suitable
feeding habitat for wildfowl and waders. This species originated by chromosome doubling
of the sterile hybrid between the Old World S. maritime and the New World S. alterniflora.
Genetic analysis has found almost a total lack of genetic differences among individuals.
However, the allopolyploid origin of this species has resulted in fixed heterozygosity at all
loci for which these two parental species differed.

Reduction of genetic load

As we have seen, small isolated populations will accumulate deleterious recessive mutations
so that mildly deleterious alleles become fixed and lead to a slow erosion of average fitness
(see Section 14.7). Hybridization between populations would lead to a reduction in this
mutational genetic load (Whitlock et al. 2000; Morgan 2002). Ellstrand and Schierenbeck
(2000) have suggested that the increase in fitness of this effect may under some circum-
stances be sufficient to account for invasiveness.

19.5 Eradication, management, and control

Understanding the biology of invasive species is not necessary, and in many circumstances
will not even be helpful for their management and control (Simberloff 2001). Simberloff
has described this as a policy of “Shoot first, ask questions later” (see also Ruesink et al.
1995). This recommendation is in agreement with basic population biology. The best way
to reduce the probability that an introduced species becomes invasive is to eliminate it before
it becomes abundant, widespread, and has had sufficient time to evolve any adaptations
that may allow it to outcompete native species. Nevertheless, understanding population
biology, genetics, and evolution may be helpful in the prediction of the potential for invasive
species to evolve responses to management practices, and in the development of policy.

Genetics may play an important role in the potential of an established invader to evolve
defenses against the effects of a control agent (e.g., the evolution of resistance to herbicides
or biological control agents). The rate of change in response to natural selection is propor-
tional to the amount of genetic variation present (Fisher 1930). Therefore, the amount of
heterozygosity or allelic diversity at molecular markers that are likely to be neutral with
respect to natural selection may provide an indication of the amount of genetic variation
at loci that potentially could be involved in response to a control agent.

The amount of molecular genetic variation may not be a reliable general indicator of
the amount of heritable variation for adaptive traits (Frankham 1999; McKay and Latta
2002). However, molecular genetic variation is likely to be a reliable indicator for invasive
species of the potential for adaptive change because of the genetic effects of recent colon-
ization. For example, greatly reduced molecular variation in an invasive population 
relative to native populations of the same species is a good indicator of a small effective
population during the founding event; this is expected to reduce the amount of variation at
adaptive loci. In addition, greater molecular variation in an invasive population relative to
native populations of the same species is a good indicator of introductions from multiple
source populations. This would indicate that the invasive species likely has substantial
amounts of adaptive genetic variation to escape the effects of a control agent.
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Genetics should play a more central role in developing policy to manage and control
invasive species. Regulations generally have not taken into account that some genotypes
may be more invasive than others of the same species. According to the standards set by
the International Plant Protection Convention, import cannot be restricted for species
that are already widespread and not the object of an “official” control program (Baskin
2002). For example, several well-known noxious range weeds (e.g., the yellow star thistle)
are on the list of permitted imports in the State of Western Australia because they are
widespread and the government is not officially trying to control them. However, they are
subject to control attempts by landowners for whom they are a problem. Allowing the
future import of additional strains that could be more invasive seems unwise in situations
such as this.

19.5.1 Units of eradication

Eradication of introduced species is a potentially valuable tactic in restoration (Myers et al.
2000). The eradication of rats, mice, and other introduced mammals is becomingly
increasingly common on oceanic islands and isolated portions of continental land masses.
The New Zealand Department of Conservation applied 120 metric tons of poison bait
onto Campbell Island, a large subantarctic island (11,300 ha) approximately 700 km south
of the New Zealand mainland. A survey of the island in 2003 found no trace of brown rats
on the island, and an incredible recovery of bird and insect life.

Successful eradication requires a low risk of recolonization. Isolated island populations
or populations limited to isolated “habitat islands” have a low risk of recolonization.
However, other islands or regions that display no distinct geographic structure or barriers
are more problematic. The eradication of a portion of a population, or a sink population
within an unidentified source–sink dynamic, would result in rapid recolonization and a
waste of resources (see examples in Myers et al. 2000).

Genetics can be used to identify isolated reproductive units that are appropriate 
groups for eradication on the basis of patterns of genetic divergence (Calmet et al. 2001;
Robertson and Gemmell 2004). Little genetic differentiation between spatially isolated
populations is indicative of significant gene flow, while significant differentiation between
adjacent populations indicates limited dispersal. Examination of the patterns of genetic
variation can allow the identification of distinct population units with negligible immigra-
tion. With appropriate care, these population units could be eradicated with little chance
of recolonization. The identification of “units of eradication” is an interesting analogue to
the identification of units of conservation as seen in Chapter 16 (Robertson and Gemmell
2004). Genetic analysis would also allow distinction between an eradication failure (i.e.,
recovery by a few surviving individuals) and recolonization.

Robertson and Gemmell (2004) examined 18 microsatellite loci in two populations of
brown rats separated by a glacier on South Georgia Island in the Antarctic. Rats were unin-
tentionally introduced to South Georgia when commercial sealing started there in the late
1700s. The brown rats have devastated the island’s avifauna. In addition, remaining rat-free
areas on the island contain unusual assemblages of plants and animals that appear to be
unable to sustain populations in the presence of rats.

The eradication of rats from the entire island is a daunting task because of its great size
(400,000 ha). However, appropriate rat habitat is limited to coastal regions that are often
separated by glaciers, permanent snow and ice, and icy waters. If such barriers preclude
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dispersal, then each discrete population could be considered as an eradication unit.
Eradication of rats from South Georgia could then proceed sequentially with low risk of
natural recolonization.

One population, Greene Peninsula, was earmarked for an eradication trial. Genetic
diversity in 40 rats sampled from Greene Peninsula and a nearby population showed a 
pronounced genetic population differentiation that allowed individuals to be assigned to
the correct population of origin (Robertson and Gemmell 2004). The results suggested
limited or negligible gene flow between the populations and that glaciers, permanent ice,
and icy waters restrict rat dispersal on South Georgia. Such barriers define eradication
units that could be eradicated with low risk of recolonization, hence facilitating the
removal of brown rats from South Georgia.

19.5.2 Genetics and biological control

Invasive species can undergo rapid adaptive evolution during the process of range 
expansion. Here, such evolutionary change during invasions has important implications
for biological control programs (Wilson 1965). The degree to which such evolutionary
processes might affect biological control efficacy remains largely unknown (Müller-
Scharer et al. 2004).

The first application of genetics in the control of invasive species was the use of genetics
in association with the sterile insect technique. One approach has been to introduce 
genotypes that could subsequently facilitate control or render the pest innocuous (Foster
et al. 1972). Another approach was to release genotypes with chromosomal aberrations
whose subsequent segregation would result in reduced fertility and damage the popu-
lation (Foster et al. 1972). Recent efforts using the sterile insect technique have used 
transgenic insects homozygous for repressible female-specific lethal effects (Thomas et al.
2000). The release of males with this system may be an effective mechanism of control 
for some insect pests.

19.5.3 Pesticides and herbicides

Invasive species have the ability to evolve quickly in response to human control efforts
(Example 19.4). Therefore, application of genetic principles is important for developing
effective controls for invasive species. The evolution of resistance to insecticides and herbi-
cides has increased rapidly in many species over the last 50 years (Denholm et al. 2002).
Reducing the evolution of resistance to control measures in invasive species will require an
understanding of the origin, selection, and spread of resistant genes. Comparison of the
genomes of insect species such as Drosophila and malaria vector mosquitoes should aid the
development of new classes of insecticides, and should also allow the lifespan of current
pesticides to be increased (Hemingway et al. 2002).
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Example 19.4 Evolution of herbicide resistance in the invasive plant hydrilla

In the early 1950s, a female form of a dioecious strain of hydrilla was released into
the surface water of Florida in Tampa Bay and spread rapidly throughout the state
(Michel et al. 2004). Today hydrilla is one of the most serious aquatic weed prob-
lems in the USA. This invasive plant can rapidly cover thousands of contiguous
hectares, displacing native plant communities and causing significant damage to
the ecosystems.

Hydrilla has been controlled by the sustained use of the pesticide fluridone for
several weeks in lake water. Fluridone is an inhibitor of phytoene desaturase
(PDS), a rate-limiting enzyme in carotenoid biosynthesis. PDS is a nuclear-encoded
protein and has activity in the chloroplasts, the site of carotenoid synthesis. Under
high light intensities, carotenoids stabilize the photosynthetic apparatus by
quenching the excess excitation energy. Inhibition of PDS decreases colored
carotenoid concentration and causes photobleaching of green tissues.

An apparent decrease in the effectiveness of fluridone to control hydrilla has
been observed in a number of lakes. Evolution of herbicide resistance was 
considered unlikely to occur in the absence of sexual reproduction. Nevertheless,
a major effort was undertaken in 2001 and 2002 to test for herbicide-resistant
hydrilla in 200 lakes throughout Florida. No within-site variation in fluridone res-
istance was detected, and approximately 90% of the lakes contained fluridone-
sensitive hydrilla. However, three phenotypes of fluridone-resistant hydrilla 
populations were discovered in 20 water bodies of central florida. A hydrilla 
phenotype with low level resistance was found in eight lakes, a phenotype with
intermediate resistance was found in seven lakes, and the most resistant pheno-
type was found in five lakes (Figure 19.4).

Sequencing of the phytoene desaturase (pds) locus indicated that the three
fluridone-resistant types had different amino acid substitutions at codon 304 of the
sensitive form of PDS (Figure 19.5). The three PDS variants had specific activities
similar to the sensitive form of the enzyme but were 2–5 times less sensitive to
fluridone. In vitro activity levels of the enzymes correlated with in vivo resistance of
the corresponding populations.

It appears that fluridone resistance has arisen by somatic mutations that
caused a single biotype to quickly become the dominant type within a lake. The
establishment of herbicide-resistant biotypes as the dominant forms in these
lakes was not anticipated. Asexually reproducing plants are under strong uni-
parental constraints that limit their ability to respond to environmental changes
(Holsinger 2000).

The future expansion of resistant biotypes poses significant environmental
challenges in the future. Weed management in large water bodies relies heavily
on fluridone, the only Environmental Protection Agency (EPA)-approved synthetic
herbicide available for systemic treatments of lakes in the USA. Current plans
include regular monitoring to detect resistance and prevent the spread of these
herbicide-resistant biotypes.
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Figure 19.4 Differential response of hydrilla populations from lakes in Florida to 
the herbicide fluridone which causes photobleaching of green tissues by decreasing 
β-carotene content. Low β-carotene content indicates high susceptibility to the effects
of flurodine. Plots show mean and standard deviations of β-carotene content of hydrilla
shoot apices following a 14-day laboratory exposure to fluridone at different
concentrations in four different phenotypes.

Rainbow River ATTGCCTTAAACCGTTTCCTTCAGGAAcDNA/genomic DNA

Amino acid - I - - A - - L - - N - - R - - F - - L - - Q - - E -

- I - - A - - L - - N - - S - - F - - L - - Q - - E -

- I - - A - - L - - N - - C - - F - - L - - Q - - E -

- I - - A - - L - - N - - H - - F - - L - - Q - - E -

Lulu cDNA/genomic DNA

Amino acid

Pierce cDNA/genomic DNA

Amino acid

Okahumpka cDNA/genomic DNA

Amino acid

ATTGCCTTAAACAGTTTCCTTCAGGAA

ATTGCCTTAAACTGTTTCCTTCAGGAA

ATTGCCTTAAACCATTTCCTTCAGGAA

Figure 19.5 DNA sequences and their corresponding deduced amino acid substitutions
at codon 304 of the hydrilla pds gene that convert the susceptible biotype Rainbow
River into resistant biotypes: Lulu (low), Pierce (intermediate), and Okahumpka (high).
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Guest Box 19 Rapid adaptation of invasive populations of St John’s Wort
John L. Maron

St John’s Wort is a short-lived perennial plant native to Europe, North Africa, and
Asia. This plant has been introduced to North and South America, Australia, New
Zealand, and South Africa where it can grow at very high density, particularly in
disturbed or overgrazed grasslands. Exotic species like St John’s Wort are com-
monly introduced into communities where they confront different abiotic and
biotic conditions from where they are native. A key question in invasion biology
concerns how successful exotics cope with these novel environmental circum-
stances. Common-garden experiments in the native and introduced range coupled
with genetic analyses of plants can provide insight into the role of contemporary
evolution versus phenotypic plasticity and founder effects in shaping or constrain-
ing exotic plant success.

We compared phenotypes of St John’s Wort collected from widely distrib-
uted populations across North America and Europe in common-gardens in
Washington, California, Sweden, and Spain (Maron et al. 2004a). Both introduced
and native populations exhibited latitudinally based clines in size and fecundity in
common-gardens. Populations collected from northern latitudes generally outper-
formed those collected from southern latitudes when grown in northern latitude
gardens of Washington and Sweden. Conversely, populations from southern lati-
tudes outperformed plants from northern latitudes in southern gardens in Spain
and California. In contrast to size and fecundity, introduced plants from western
North American showed no relationship between leaf area and latitude of popula-
tion origin in any common-garden. European populations formed clines in leaf
area but these clines did not change between gardens; plants from northern popu-
lations had larger leaves than plants from southern populations in both a northern
and southern common-garden.

We also analyzed AFLP variation to infer the invasion history into North
America. Molecular genetic analyses revealed evidence of multiple introductions
of St John’s Wort into North America. Introduced plants possess as much molecu-
lar genetic variation as do natives, indicating that there has not been a large genetic
bottleneck in the introduced range.

The presence of geographic clines when plants are grown in a constant environ-
ment provides classic evidence for adaptation to broad-scale climatic conditions
across the native range. Clines in North American populations are notable because
they suggest rapid postintroduction evolution. The alternative – climate matching
– can be ruled out because introduced plants do not always occur at similar lati-
tudes as their most closely related native progenitor (Maron et al. 2004b).

While introduced and native plants do not differ significantly in size or fecundity,
they do have genetically based differences in some secondary defensive compounds
that are thought to provide resistance to generalist pathogens and herbivores.
North American St John’s Wort produces consistently lower levels of hypericin and
hypericide than do European conspecifics in common-gardens. Furthermore, based
on a separate experiment, in Spain, where we experimentally manipulated native
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pathogen pressure (by treating plants with fungicides), we found that North
American populations have higher probabilities of pathogen infection and, if infected,
pathogen-induced mortality, compared to European populations (Maron et al.
2004a). These results suggest that North American St John’s Wort has lost enemy
resistance, perhaps in response to less enemy pressure in the introduced range.

Problem 19.1

We saw in Chapters 6 and 15 that the loss of genetic variation caused by popula-
tion bottlenecks is harmful. Introduced species generally go through a founding
population bottleneck. Why are introduced species often so successful if popula-
tion bottlenecks are harmful?

Problem 19.2

We saw in Chapters 8 and 16 that local adaptation is an important concern for
conservation. Invasive species that have not had the opportunity to develop local
adaptations often replace native species that we would expect to be locally
adapted. Why?

Problem 19.3

Assume there are two conspecific populations that each has an average het-
erozygosity (HS) of 0.10. These two populations are moderately genetically
diverged from each other (FST = 0.20). What would be the average heterozygosity
in a new population that is founded by a large number of founders from each of
these populations? Assume an equal number of founders are derived from each
population.

Problem 19.4

A symposium in 1964 brought together a collection of the world’s best population
and evolutionary biologist to discuss the genetics of colonizing and invasive
species (Baker and Stebbins 1965). The following exchange took place between
R. C. Lewontin and Ernst Mayr (p. 481):

Lewontin: I would like to be a spokesman for the geneticists and clear up
the confusion that I think we’ve spread about the effect of small numbers in
colonizations. If there is colonization by a single fertilized female, there will
be a loss of genes and a radical change in gene frequencies at loci where
alleles are at intermediate frequencies. But the one thing that will not hap-
pen is a profound change in the total amount of genetic variation available.
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Mayr: But isn’t that based on certain assumptions? Suppose you had a
thousand loci each with 25 isoalleles, are you still telling us that you get 75%
of that variation in that one single pregnant female?

How do you think Lewontin replied? Who is correct?

Problem 19.5

How much gene flow do you think is needed before two geographically isolated
populations should be considered to be the same “unit of eradication”?

Problem 19.6

According to standards set by the International Plant Protection Convention,
imports cannot be restricted for species that are already widespread and are not
the object of an “official” control program. Do you think that this policy is biolo-
gically sound? Why?
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Forensic and Management 
Applications of Genetic 

Identification

Illegal wildlife “trade” represents the world’s third largest illegal trafficking after
drugs and weapons.

Jean Robert (2000)

This laboratory can track you down years later. We can detect a little bit of blood
on your clothing invisible to the naked eye and match it back to that killed animal
with absolute statistical certainty.

Ken Goddard (quoted in Pahl (2003))

20.1 Species identification, 504

20.2 Individual identification and probability of identity, 509

20.3 Parentage testing, 513

20.4 Sex identification, 515

20.5 Population assignment, 515

20.6 Population composition analysis, 518

Guest Box 20 Microsatellite DNA genotyping identifies problem 
bear and cubs, 521

Red king crab, Section 20.4.2
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Genetic identification is the use of molecular analyses to identify the species, individual, 
or even the population of origin of a sample (e.g., tissue or blood stain). Genetic iden-
tification greatly aids law enforcement and wildlife management. For example, molecular
identification of an individual (from its multilocus genotype) or a species (from its mtDNA
sequence) can provide information to help convict poachers of protected plants and 
animals. Genetic identification can also help monitor the presence of an endangered
species in a nature reserve or national park.

Applications of genetic identification in conservation genetics include the following:

1 Identification of the species of origin of tissues or products (e.g., whale meat or tiger
bones sold in open markets).

2 Identification of individuals or matching of tissue samples (e.g., matching blood stains
in a national park to a trophy animal in a taxidermy shop).

3 Determination of the parents of individuals (e.g., paternity or maternity of animals
claimed to be born in captivity, but possibly taken from the wild).

4 Determination of the sex of individuals (e.g., to monitor for illegal harvest of females
when only male harvest is allowed).

5 Identification of the population of origin of a group of individuals (e.g., a boatload of
fish or lobster), or of a single individual or tissue (e.g., an individual claimed to be from
a legal hunting area, rather than from a protected nature reserve).

6 Estimation of population composition of a mixed population (e.g., estimating the per
cent contribution of each of several breeding populations to a mixed population).

These applications are discussed in turn below. But first we provide brief background
information on the need for, and usefulness of, genetic identification in wildlife forensics
and management.

Poaching and trafficking are among the most serious threats to the persistence of many
wildlife populations, as suggested by the quotes above. Poaching and the illegal trade of
pets and wildlife products threaten taxa ranging from plants (e.g., orchids) to insects
(exotic tropical beetles and butterflies), reptiles (snakes, turtles, and lizards), fish (sturgeon
for making caviar), birds (parrots and canaries), and mammals (especially trophy-horned
ungulates, large carnivores, primates, elephants, rhinos, and cetaceans).

The most important international treaty prohibiting the trade of endangered spe-
cies is CITES (Convention on International Trade in Endangered Species), established 
in 1973 in association with the United Nations Environmental Program (UNEP). The 
main international program for monitoring wildlife trade is TRAFFIC – a network 
of dozens of staff and researchers across 20 countries jointly sponsored by the World 
Wide Fund for Nature (WWF) and the World Conservation Union (IUCN). Other 
organizations that work to control illegal wildlife trade include the international organ-
ization WildAid, headquartered in San Francisco, California, and PAW (Partnership 
for Action against Wildlife Crime) in the United Kingdom. Unfortunately, even with 
such programs, it is difficult to detect poaching and to enforce treaties and antipoach-
ing laws.

Wildlife genetic identification shares much in common with human forensic genetics
( Jobling and Gill 2004). However, wildlife forensics more often involves the identification
of species than does human forensics. A wildlife forensics laboratory in Ashland, Oregon
(US Fish and Wildlife Service, USFWS) is the only crime lab in the world dedicated entirely
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to wildlife. The Wildlife Forensics DNA Laboratory at Trent University in Ontario, Canada
was the first lab to produce DNA evidence to be used in a North American court, in 1991.
It has been involved in over 50 cases a year with convictions and fines ranging from 1,000
to $US50,000. There are more than a dozen labs in North America, Europe, Australia, and
other countries, that conduct wildlife forensics testing to help solve wildlife crimes such as
illegal trafficking.

In wildlife management, genetic identification (of species or individuals) is the first step
in many applications of molecular markers. For example, individualization of samples is
required in most noninvasive genetic studies, which use DNA from feces, shed hair, urine,
saliva, sloughed skin, or feathers. Once individuals have been identified, we can estimate
the abundance of individuals (see Section 14.1), monitor their movements, identify immi-
grants, and estimate sex ratios (see below).

Both molecular and statistical technologies are rapidly improving; together they pro-
vide enormous potential to facilitate wildlife forensics and conservation management.
Nonetheless, this potential is not fully exploited. There is much room for further develop-
ment and application of genetic approaches to help combat poaching and to improve
wildlife management. We hope this chapter will encourage agency biologists, academic
researchers, students, and funding organizations to further develop and apply genetic
identification approaches wherever useful for biodiversity conservation.

20.1 Species identification

Many kinds of molecular markers and polymerase chain reaction (PCR)-based analysis 
systems are being used to identify species for both forensics (law enforcement) and wildlife
management applications. Mitochondrial DNA analysis is the most widely used molecular
approach for animal species identification because many species have distinctive mtDNA
sequences, and because “universal” primers exist that work among taxa, e.g., among
mammals or even all vertebrates. Furthermore, mtDNA is relatively easy to extract from
most tissues, including hair, elephant tusks, and old skins, because of its high copy number
per cell (see Section 4.1).

Chloroplast DNA markers are commonly used in plants for species identification.
Universal primers for noncoding regions are widely used (Taberlet et al. 1991). These
primers work in a range of taxa from algae to gymnosperms and angiosperms.

A mtDNA fragment is going to be sequenced for a large proportion of the world’s
species as part of an ambitious and controversial initiative called “DNA barcoding” (Moritz
and Cicero 2004). The goal is to develop a huge data base of DNA sequences from a single
gene (e.g., cytochrome c oxidase I, COI) for use in species identification and species dis-
covery. This would facilitate biodiversity inventory, conservation, and the detection of 
illegal trafficking of wildlife.

Recently, nuclear DNA markers have been used to help identify species. Nuclear markers
are especially useful when interspecific hybridization is possible, because mtDNA analysis
cannot detect male-mediated gene flow or introgression. A disadvantage of single-copy
nuclear DNA (e.g., intron sequences) is the low rate of evolution, compared to mtDNA,
making it relatively difficult to find species-diagnostic nucleotide sites (Palumbi and
Cipriano 1998). However, nuclear microsatellites do have high rates of evolution, and
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species-diagnostic alleles have been identified in several species (e.g., sharks (Shivji et al.
2002) and mountain ungulates (Maudet et al. 2004)).

Other nuclear markers include species-diagnostic “fingerprinting” approaches that
involve PCR amplification of mammalian-wide interspersed repeat sequences. This offers
a quick method for identifying known and unknown species from tiny tissue samples or
processed meat samples, for example, using an automatic sequencing machine (Buntjer
and Lenstra 1998). Similar “fingerprinting” approaches using SINEs (short interspersed
elements) have been developed for salmonids (Spruell et al. 2001; see also Section 4.3).
AFLPs have been used as nuclear DNA markers for species identification; for example, in
detecting the trafficking of marijuana and endangered plants (Miller Coyle et al. 2003).

Recently, nuclear DNA single nucleotide polymorphisms (SNPs) and real-time PCR
(quantitative PCR) have been used to identify species of crab harvested in commercial
fisheries (Smith et al. 2005). Advantages of SNPs are that they are typically biallelic and rel-
atively easy to code in a data base (0 or 1), and they can be transferred between laboratories
with little error in genotype scoring (unlike some microsatellites, AFLPs, and other markers).
Thus SNPs are especially useful for forensic applications where data base errors and geno-
typing errors would be highly problematic.

20.1.1 Forensic genetics

One of the most widely publicized forensic applications of wildlife DNA analysis was the
identification of illegally traded whale meat sold in Japanese and Korean markets (Baker 
et al. 1996). PCR-based analysis of mtDNA control region sequences revealed that about
50% of the whale meat sampled from markets had originated from protected species and 
not from the southern minke whale species that Japan is allowed to harvest under their 
scientific whaling program. For this study, the researchers were not allowed to export the
tissue samples from Japan because many species of whale are protected by CITES (which
forbids transportation without a permit). Consequently, the researchers set up a portable
PCR machine and amplified the mtDNA in a hotel in Japan. They subsequently trans-
ported the synthetic DNAs (not regulated by CITES) back to laboratories in the USA and
New Zealand for sequence analysis.

A particularly laudable application of genetics in species identification is in the web-
based DNA Surveillance software program (Ross et al. 2003). DNA Surveillance is a computer
package that applies phylogenetic methods to the identification of species of whales, 
dolphins, and porpoises. One advantage of DNA Surveillance is it contains a data base of 
validated, prealigned sequences with wide taxonomic and geographic representation,
developed specifically for taxonomic identification (unlike GenBank, with limited sampling
and variable data quality). The user typically pastes a mtDNA sequence (e.g., 400–500 base
pairs of control region) of unknown origin into a data input window, and then receives
back an alignment, genetic distance estimates, and a tree (Example 20.1). This type of 
service is badly needed for other taxonomic groups.

Other examples of using DNA analysis for detecting illegal wildlife trade involves turtle
meat (Example 20.2), and pinniped penises. Pinniped (seals, sea lions, fur seals, and walrus)
penises are purchased in traditional Chinese medicine shops in Asia and North America.
To investigate the trade of pinniped penises, researchers purchased 21 samples of unknown
origin (labeled as pinnipeds) and sequenced 261 base pairs (bp) of the cytochrome b gene
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Data Entry
>Unknown1
GAAAATATATATTGTACAATAACCACAAGGCCACAGTATTA
ATGTAACTTGTGCATGTATGTACTCCCACATAACCCATAGTA
TATGTATAATTGTGCATTCAATTATCTTCACTACGGAAGTTAA
AATATTTATTAATAGTACAATAGTACATGTTCTTATGCATCCT

Select a database:

ctrl cyt b

All Cetaceans

Database

Mysticetes

Odontocetes

Phocoenidae

Delphininae + Stenoninae

Lissodelphininae

Genomic regions:
ctrl = mtDNA control Region (= D-Loop);
cyt b = cytochrome b

Ziphiidae

Delphinidae (subgroups)

Globicephalinae + Orcininae

Humpback Whale Populations

(a)

Figure 20.1 (a) Data entry and data base window in the DNA Surveillance web-based
computer program.

Example 20.1 Use of the DNA Surveillance website for taxonomic classification
of unknown cetacean samples

The web-based DNA Surveillance computer program is useful for identifying 
the cetacean species of origin of a tissue sample of unknown origin. To use the
program, you must obtain a mtDNA sequence (control region or cytochrome b
fragment) from your individual tissue sample, and then simply cut and paste the
sequence into the “Data Entry” window of the program.

Figure 20.1a shows a control region sequence of unknown origin (“>Unknown
1”) pasted into the “Data Entry” window. The sequence is from a meat sample pur-
chased in Japanese markets in 1999 (see DNA Surveillance website and Baker et
al. 2002b). Assuming it is from a baleen whale (Mysticetes), we simply “click” the
circle under “ctrl” and under “Mysticetes”, and then click on the “submit” button in
the DNA surveillance program window (Figure 20.1a). The program then aligns
the user-submitted sequence against a set of validated sequences, and outputs
(to the computer screen) a cluster dendrogram (Figure 20.1b). If we do not assume
the sequence was from a baleen whale, we could click the circle “All Cetaceans”,
but we would obtain a much larger tree (e.g., including dolphins, etc.).
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sperm whale
sperm whale

bowhead
bowhead
bowhead

North Atlantic right whale
North Atlantic right whale

North Pacific right whale
North Pacific right whale

southern right whale
southern right whale

Antarctic minke whale
Antarctic minke whale

dwarf minke whale
North Pacific minke whale

North Atlantic minke whale
North Atlantic minke whale

blue whale (pygmy?)
blue whale
blue whale

gray whale
gray whale

gray whale
Unknown1

pygmy right whale
pygmy right whale

fin whale
fin whale

humpback whale
humpback whale

Bryde’s whale (Solomon Is. form)
Bryde’s whale (Kochi form)

sei whale
sei whale
sei whale

Bryde’s whale (common form)
Bryde’s whale (common form)
Bryde’s whale (common form) (b)

(Malik et al. 1997). One sample from Bangkok turned out to be from domestic cattle, and
six could not be identified because of lack of published reference sequences, although two
were most similar to the African wild dog. The remaining samples were from seals. This
study suggests that the lucrative market for pinniped penises may be encouraging the
unregulated hunting of seals and other unidentified mammalian species. It also illustrates
the importance of a large reference data base. Information on the size of the international
market suggests that the trade of penises, bacula, and testes is lucrative and growing. For
example, Australia exports nearly 5,000 tons of domestic cattle penises to Chinese aphro-
disiac markets each year (Malik et al. 1997).

Figure 20.1 (Cont’d) (b) Distance phenogram of mtDNA control region sequences
from Mysticetes whales.

It turns out that “unknown 1” is actually a gray whale product purchased in
Japan. This is presumably a “Korean” western North Pacific gray whale, one of the
most endangered populations of whales, unlike the “California” or eastern North
Pacific population. This finding was published as a likely infraction of international
agreements (Baker et al. 2002b; C. Baker, personal communication).
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Example 20.2 Identification of illegally traded marine turtle meat

An example of species identification involves mtDNA sequencing of turtle meat
from markets in southeastern United States. Although all marine turtles are 
protected, most species of freshwater turtles in North America (e.g., the alligator
snapping turtle) can be legally traded. Biologists have feared that the remaining
legal trade in turtle products would act as a cover for illegally harvested species.
Roman and Bowen (2000) sequenced segments of the mitochondrial control
region and the cytochrome b gene to assess the composition of species in 
commerce. Of 36 purchased putative turtle meat products, eight were from the
American alligator, 19 were from the common snapping turtle, three from the
Florida softshell, one from the spiny softshell, and one from an alligator snapping
turtle (Figure 20.2). This study provides another example of molecular methods
showing that animal trade is not entirely legitimate, and mislabeling could poten-
tially threaten rare species. Clearly, genetic monitoring would be helpful to prevent
the illegal trade of rare and endangered turtle species.

Florida softshell

TM29

Spiny softshell

False map turtle

Red-eared slider

Common snapping turtle

Alligator snapping turtle

American crocodile

American alligator

TM14

100

100

79

100

100

74

10%

Figure 20.2 Neighbor-joining tree of reference mtDNA (cytochrome b) sequences and
putative turtle-meat samples (TM14 and TM29). TM14 is clearly not from a turtle, but
is from an alligator. TM29 is apparently from a spiny softshell turtle (although only 74%
of bootstrap-resample trees group TM29 with the spiny softshell). The 10% bar (lower
left) refers to percent sequence divergence.
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In a final example, more than 20% of caviar samples purchased from New York markets
had mislabeled species names, including some threatened species of sturgeon. PCR-based
mtDNA analysis was used for species identification (Birstein et al. 1998). The largest of the
sturgeon, the beluga from the Caspian Sea, was recently listed as “threatened” under the
ESA. Endangered status could end the importation of beluga caviar into the USA. Caviar
from beluga sturgeon has been sold in New York for more than $US75 per ounce.

20.1.2 Wildlife management

Species identification via DNA analysis is increasingly used in wildlife research and 
management. Sequencing of mtDNA is often used to monitor for the presence of 
endangered species in wildlife management areas. If an endangered species is detected in
an area, that area might be granted protection from logging or development. For example,
when the endangered long-footed potoroo (a small kangaroo) was first detected in 
forests of southeastern Australia, logging was halted in some areas. Porotoos, like many
marsupials, are nocturnal, elusive, and their presence is difficult to detect. Thus biologists
detected potoroos by using field signs (e.g., diggings), feces, and “hair traps” (consisting 
of baited plastic tubes with sticky tape around the tube entrance to recover hairs). DNA
analysis of hair and feces is necessary for species identification, because related potoroo
species occur in sympatry (B. Sherwin, personal communication).

DNA analysis of feces or shed hairs also helps monitor and map the spatial distribution
of hybridization in endangered species. For example, microsatellite analysis of fecal (and
tissue) DNA from lynx and bobcats has allowed identification of hybrids in Minnesota
(Schwartz et al. 2004). Hybridization, previously unknown in the wild, could limit the
recovery of endangered lynx populations. Three out of 20 individuals sampled were
hybrids (for more details, see Example 17.2). A similar application of fecal DNA analysis for
monitoring hybridization is being used to help prevent introgression of coyote genes into
the endangered red wolf (Adams et al. 2003).

Species identification from the analysis of fecal DNA is increasingly used to identify
bears or canids, for example, for management purposes. Confirming the presence of black
versus brown bears (or wolf versus coyotes) from feces often involves mtDNA testing –
e.g., sequencing of a species-diagnostic fragment of 100–300 bp. An interesting complica-
tion could arise if, for example, a brown bear consumes a black bear and the black bear’s
DNA (or another species’ DNA) shows up in the fecal sample. Or, for example, if one wolf
urinates on another wolf ’s feces, it could make individual identification difficult, because
DNA sequences from both wolves might be amplified during PCR.

20.2 Individual identification and probability of identity

Individual identification (DNA “fingerprinting”) is one of the most widely used applications
of molecular markers in conservation genetics, forensics, and molecular ecology. For
example, in the lynx–bobcat hybridization study above, researchers had to individualize
fecal samples to know the number of different individuals sampled. As another example,
wildlife officers might need to match a tissue sample (gut pile or blood stain) at the scene of
a wildlife crime to a trophy animal being transported, e.g., through an airport or highway
check point.
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To match individual samples, we must first genotype them with highly polymorphic
molecular markers (or with many moderately polymorphic markers). We then compute 
a match probability (or probability of identity, see below) by using allele frequencies 
estimated from the population of reference, e.g., the national park or the geographic 
location from which the sample at the “crime” scene originated. If allele frequencies from
the reference population are not available, we can still estimate the match probability, but
it requires additional markers to achieve a reasonably high power to resolve individuals
with high certainty (Menotte-Raymond et al. 1997; Box 20.1).

Box 20.1 Computation of the match probability (MP ) for an individual sample
(genotype) “in hand”

Here we consider a scenario where we have one sample in hand (e.g., a blood
stain at a wildlife crime scene) and we want to compute the probability of sampling
a different individual that has an identical multilocus genotype (in the same popu-
lation). This is often called the “match probability”.

To compute the MP, consider two loci that each has two alleles at the following
frequencies: p1 = 0.50, q1 = 0.50; and p2 = 0.90, q2 = 0.10, respectively. A blood
stain from the scene of a wildlife crime (e.g., poaching in a national park) has a
genotype that is heterozygous at both of these loci. What is the probability that
an individual sampled at random from the same population has the same geno-
type (as the individual whose blood stain is “in hand”)?

First we compute each single locus MP :

Locus one: 2p1q1 = 2 (0.50 × 0.50) = 0.50
Locus two: 2p2q2 = 2 (0.90 × 0.10) = 0.18

Then, the multilocus MP is the product of the two single locus probabilities: 
0.50 × 0.18 = 0.09 (assuming independence between loci). We conclude there
is a 9% chance of sampling a different individual with a double-heterozygous
genotype identical to the one “in hand”. Thus there is a 9% chance of matching
the blood stain to the wrong individual. Clearly, many more loci (and perhaps
more highly polymorphic loci) are needed to have a reasonably low chance (e.g.,
<1/10,000) of a match to the wrong individual. Recall that here we are assuming
unrelated individuals, no substructure, and that the allele frequencies are for the
population considered.

What if the wildlife crime occurs in a population with no reference data (i.e.,
allele frequencies are unknown)? How can we estimate the probability that an
individual sampled at random has the same double-heterozygous genotype 
as the individual “in hand”? Here we could assume that the frequency of the
observed heterozygous genotype at each locus is high (e.g., 0.50). This is the
highest frequency possible (assuming a biallelic locus and Hardy–Weinberg 
proportions), and gives the least power for individualization. Assuming that the
heterozygote genotype frequency is 0.50 is conservative and generally overestim-
ates the true MP (Menotte-Raymond et al. 1997).This is especially true if a locus
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is multiallelic, because the two alleles in a heterozygote “in hand” could never
have a population frequency as high as 0.50.

We then could compute the multilocus match probability as follows: 0.50 × 0.50
= 0.25. Here, the estimated 25% chance of sampling this multilocus genotype is
much greater than the 9% chance estimated (above) by using the reference allele
frequencies. This illustrates the power benefit of having reference allele frequen-
cies for the population. Note that if two samples match and are homozygous, we
cannot use the locus because we have no evidence the locus is polymorphic
(and thus informative) within the population. Thus we need many more loci when
we do not know population allele frequencies, in order to achieve a low MP.

Microsatellites are the most widely used markers in forensics and genetic management
because: (1) their short length (<300 bp) makes them relatively easy to PCR-amplify from
partially degraded DNA (unlike AFLP markers, for example, which are longer and more
difficult to amplify; see Section 4.3); (2) they are generally highly polymorphic; and 
(3) alleles from the same locus can be easily identified (unlike some AFLPs and the multi-
locus DNA fingerprinting probes first used in human DNA forensic applications; Jeffreys 
et al. 1985; see Section 4.3). For human forensic investigations in the USA and Britain, a
standard set of 13 and 10 microsatellite loci are used, respectively (Watson 2000; Reilly
2001). These marker sets provide a chance of a match (between two random people) that is
between about one in a million and one in a billion. For these marker sets, the genotyping
of one individual sample costs approximately $US100 (Watson 2000). This is similar to the
cost in some wildlife genetics laboratories.

An example of DNA-based individualization for wildlife management is the identifica-
tion of problem animals. For example, when a wolf or bear attacks humans, kills livestock,
or steals a picnic basket, the problem animal will often be removed from the population.
Removing the wrong bear could waste resources and eventually result in the removal 
of several animals before removing the correct one. This could negatively impact on the
population, especially if the individuals removed are reproductive females. Furthermore,
knowing with certainty that the true problem individual was removed would satisfy some
of the public. Thus it is critical to identify the correct individual before removing it. Here,
matching DNA from the scene of the “crime” to an individual can help. For an example,
see the description of DNA matching in the case of the problem family of grizzly bears
from Glacier National Park, Montana (see Guest Box 20).

Another example use of DNA individualization is the identification of logs illegally
removed from forest preserves. DNA typing is used to match stumps in forest preserves to
logs being sold or transported illegally. DNA matching of stumps to illegally trafficked logs
can help stop illegal deforestation. Illegal logging is estimated to cost British Columbia
10–20 million US dollars annually.

Other uses of individual identification in conservation management include genetic
tagging for studying movements and estimating population census size from mark–
recapture methods (see Section 14.1). Individualization also helps identify clonal plants
(genets) and animals (corals, anemone, and fishes). The identification of clones is required
for accurate estimation of patterns and rates of gene flow, geographic distributions of
clones, and inbreeding versus outcrossing rates.
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The statistical power of molecular markers to identify all individuals from their multilo-
cus genotype is estimated as the average probability of identity (PIav). PIav is the probability
of randomly sampling two individuals that have the same genotype (for the loci being
studied). If we use highly polymorphic molecular markers, there is a low probability of
two individuals sharing the same genotype at multiple loci. Thus, if we find two samples
(e.g., blood stains or tissues) with matching genotypes, we can determine with high prob-
ability that they come from the same animal or plant (e.g., found at a crime scene).

PIav is computed using the following expression:

(20.1)

where pi and pj are the frequencies of ith and jth allele at the locus (Waits et al. 2001; Ayres
and Overall 2004). Here, p i

4 is simply the average probability of randomly sampling two
homozygotes (e.g., aa), and (2pi pj)

2 is the average probability of randomly sampling two
heterozygotes (e.g., Aa). This equation assumes Hardy–Weinberg proportions and that 
no substructure exists in the population. The multilocus PIav is computed by using the
product rule (i.e., multiplication rule, see Appendix Section A1), and multiplying together
the single locus probabilities (see Box 20.1). A reasonably low multilocus PIav for forensics
applications (e.g., matching blood from a wildlife crime scene to blood on a suspect’s
clothes) is approximately 1/10,000 to 1/100,000. Achieving this low a PIav would require
approximately 5–20 markers, depending on their polymorphism level (Figure 20.3).

PIav is also often used to quantify the power of molecular markers for studies involving
genetic tagging. A reasonably low PIav for genetic tagging is approximately 1/100 (Waits 
et al. 2001). This is not as low as for forensics, because it is less problematic to misidentify
individuals in genetic tagging than in a law enforcement case (where someone might be
fined or imprisoned). To achieve a reasonably low PIav for genetic tagging, approximately
4–8 highly polymorphic markers are often sufficient (Figure 20.3). For less polymorphic
markers such as allozymes, SNPs, and AFLPs (with heterozygosity typically from 0.20 to
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Figure 20.3 Relationship between probability of identity (PIav) and the number of loci 
(for each of four heterozygosities). PIav was computed using expression 20.1 and allele
frequencies that result in a heterozygosity (He) of 0.20, 0.40, 0.60 or 0.80, in the following
equation: He = 1 − Σ p i

2 (where pi is the frequency of the ith allele). For example, for He = 0.2,
two alleles must have the frequency of 0.885 and 0.115. From Waits et al. (2001).
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0.40), more markers would be required. Power is lower for dominant markers like AFLPs
than for codominant markers like microsatellites and SNPs (see Chapter 4). Interestingly,
the power of a set of markers is better predicted by heterozygosity than allelic richness; loci
with the same heterozygosity but 10 versus three alleles will have nearly the same power
to resolve individuals (Waits et al. 2001).

It is important to note that expression 20.1 used to estimate PIav assumes that indi-
viduals are unrelated (e.g., no siblings), sampled randomly, and that no substructure or
gametic disequilibrium exists. These assumptions are often violated in natural populations.
The violation of assumptions could cause an underestimation of the true PIav. For example, 
in data sets from wolves and bears, PIav was underestimated by up to three orders of 
magnitude (e.g., 1/100,000, which underestimates the true value of 1/100; Waits et al.
2001). To avoid problems with underestimation, other PIav-related statistics such as PIav-
sibs, should also be used to compute the probability of identity. Other PIav statistics (e.g.,
accounting for potential substructure) can be computed with the user-friendly software
api-calc (Ayres and Overall 2004).

The match probability (MP) is a useful statistic related to PIav (i.e., the average probabil-
ity of identity, expression 20.1). While PIav is the average probability of randomly sampling
two individuals consecutively that have the same genotype, the MP is the actual probabil-
ity of sampling one individual identical to the one already “in hand” (i.e., sampled previously).
PIav is for computing the average power of a set of markers (considering all genotypes,
homozygotes, and heterozygotes in a given study), whereas MP gives a probability of 
sampling the individual genotype in question, that was sampled previously (see Box 20.1).
MP requires the same assumptions (no substructure, no gametic disequilibrium, and no
siblings) as does PIav, although more sophisticated MP statistics exist that do not require 
all these assumptions. It is confusing that sometimes the “average probability of identity”
(PIav) is referred to as the “average MP” in the literature.

We have thus far considered only nuclear DNA markers for determining match prob-
abilities and the average probability of identity. However, mtDNA can also be useful 
for individual identification. For example, the mtDNA control region in canids and felids
has tandemly repeated sequences (Fridez et al. 1999; Savolainen et al. 2000). These repeats
are highly polymorphic and heteroplasmic (i.e., multiple clones with different repeat
lengths are found within an individual). Thus, mtDNA analysis will occasionally be useful
for individual differentiation because different individuals often have different mtDNA
repeat profiles. But since mtDNA represents only one “locus”, it will provide much less
certainty than multilocus nuclear DNA methods. An advantage of mtDNA is that it can be
amplified from hair shafts, whereas nuclear DNA is only found in the hair root bulb
(Watson 2000). Animal hairs are often found at poaching crime scenes and on people’s
clothing.

20.3 Parentage testing

Parentage analysis is the determination of the mother (maternity) or father (paternity) 
of an individual. Parentage testing can help wildlife conservation by verifying that an indi-
vidual originates from captive parents, as might be claimed by some pet trade industry
workers. An enormous problem for wildlife conservation is the illegal capture of indi-
viduals from the wild, which occasionally involves killing of the wild parents (e.g., gorillas
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and orangutans). DNA typing captive individuals to analyze potential parents could help
detect the illegal capture of individuals from the wild, and thereby reduce threats to wild
populations. One example of using parentage analysis in wildlife management is given in
the example of the “problem bear family” (see Guest Box 20).

Another example comes from Australia where the owners of an adult female northern
hairy-nosed wombat claimed that their juvenile wombat was the offspring of their adult
female. The owners had a legal permit for the adult, but not for the young wombat. 
The owners claimed that their female must have been impregnated by a wild wombat
somewhere near their backyard. Wildlife law enforcement officials questioned this story
and conducted maternity testing in a genetics laboratory. The laboratory typed nine
microsatellite loci on the mother and offspring and found no incompatibilities, i.e., the
mother had an allele at each locus compatible with the offspring (A. Taylor, personal 
communication). Thus there was no evidence that the offspring was taken from the wild,
and the owners were allowed to keep the young wombat. The statistical certainty of a
maternity (or paternity) assignment can be computed, based on allele frequencies at the
loci (e.g., Slate et al. 2000).

Other applications of parentage analysis include understanding a species’ mating 
system, estimating variance in reproductive success, and detecting multiple paternities.
Such information is helpful for population management. Variance in reproductive success
influences the effective population size and thus the rate of loss of genetic variation,
inbreeding, and efficiency of selection. Knowing that variance in reproductive success is
high, for example, can help biologists predict that the Ne is much smaller than the census
population size (see Section 7.10),

Parentage analysis (e.g., paternity exclusion or assignment) requires more molecular
markers than does individual identification (often twice as many). Low polymorphism
SNP markers or allozymes are often not highly useful (Morin et al. 2004). To quantify the
statistical power of molecular markers for parentage analysis (e.g., paternity exclusion),
researchers often compute the expected paternity exclusion probability (PE) or the prob-
ability of excluding a randomly chosen nonfather (e.g., Double et al. 1997). As an alternative
to paternity exclusion, paternity assignment (using probabilities and likelihood computa-
tion) is widely used to estimate the probability that a given male is the father (Slate et al.
2000; and see the cervus and parente software, listed on this book’s website).

The power of a set of molecular markers for paternity exclusion (PE) is often quantified
by simply plugging allele frequencies into the following expression ( Jamieson and Taylor
1997):

(20.2)

where pi and pj are the frequency of the ith and jth allele, respectively. For one locus, this
expression gives the average probability of excluding (as the father) a randomly sampled
nonfather, when the mother and offspring genotypes are both known. To compute the
multilocus PE, we multiply together the PE for each locus, assuming independence among
loci. Often 10–15 highly variable markers (heterozygosity 0.50–0.60) are required to
achieve a high probability of paternity exclusion (99.9–99.99%). Many more markers are
required if the polymorphism is low (He = 0.20 to 0.40) or if the mother is not known
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(Morin et al. 2004). Other expressions are available for estimating power for parent exclu-
sion when neither parental genotype is known ( Jamieson and Taylor 1997).

20.4 Sex identification

Assessment of an individual’s sex can be difficult in species with little sexual dimorphism
or with internal gonads, as in birds. Nonetheless, information on sex and sex ratios is often
critical for behavioral studies, wildlife management, and captive breeding programs, and
for estimating Ne (see Section 7.2). Fortunately, molecular sexing is possible and becoming
widely used in forensics, conservation, and wildlife management. Sex identification and
sex ratio estimation is even possible using noninvasive samples (e.g., feces, urine, shed hair,
or feathers), which can greatly facilitate wildlife studies. Molecular sexing principles and
techniques are discussed in Section 4.4. Here we give brief examples of the use of molecu-
lar sexing in wildlife forensics and management.

In wildlife forensics, DNA-based sex identification is useful to detect illegal harvesting 
of one sex. For example, in leopards from Tanzania, researchers used molecular sexing
methods to detect violations of hunting regulations that prohibit harvesting females. The
researchers tested for X-specific and Y-specific DNA sequences (ZFX and ZFY) in 77 skins
from animals shot between 1995 and 1998. Despite tags indicating that all the skins were
from males, 29% were actually from females (Spong et al. 2000).

In wildlife management, sexing is used to monitor individual movements and home
range size, which often is different for different sexes. For example, Taberlet et al. (1997)
used noninvasive sampling of feces and shed hairs to assess the movements of individual
male and female brown bears in the Pyrenees Mountains of western France. Y chromo-
some markers (and microsatellites) were used to identify the sex (and individual) of origin
of the feces and hairs collected over a wide geographic area. Individual males were found
to move over a much larger geographic area than females, consistent with other bear
research.

20.5 Population assignment

Genetic markers can help identify the population of origin (i.e., birth) of individuals or
groups of individuals. Determining the population or geographic region of origin of
wildlife products can help identify populations threatened by poaching, and the trade
routes used by traffickers. Such information could help law enforcement officials target
poaching. Recently developed assignment tests, based on multilocus genotypes, can deter-
mine the population of origin of individuals (Waser and Strobeck 1998; Manel et al. 2002).
Assignment tests work by assigning an individual (or tissue) to the population in which its
genotype has the highest expected frequency (see Section 9.8; and Manel et al. 2005).

20.5.1 Assignment of individuals

An excellent example of assigning individuals for wildlife forensics comes from a fishing
competition in Scandinavia. A fisherman claimed to have caught a large salmon in Lake
Saimaa from Finland. However, the organizers of the competition questioned the origin 
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of the salmon because of its unusually large size (5.5 kg). A genetic analysis of seven
microsatellite loci was conducted on the large fish and on 42 fish from the tournament
lake, Saimaa. A statistical analysis was conducted using the exclusion–simulation assign-
ment test (Primmer et al. 2000). The exclusion test suggested that the probability of
finding the large fish’s genotype in Lake Saimaa was less than one in 10,000. Thus the 
competition organizers excluded Lake Saimaa as the origin of the salmon. Subsequently,
the fisherman confessed to having purchased the fish in a bait shop.

Population assignment, in the fishing tournament example, is based on the exclusion
principle and computer simulations to assess statistical confidence. In the exclusion–
simulation approach, we “assign” an individual to one population only if all other popula-
tions can be excluded with high certainty (e.g., P < 0.001). We exclude a population if 
the genotype (in question) is unlikely to occur in the population (P < 0.001), i.e., if the
genotype is observed in less that one per 1,000 randomly simulated genotypes (assuming
Hardy–Weinberg proportions and gametic equilibrium; see Section 9.8).

An advantage of the exclusion–simulation approach is that it is feasible when only 
one population (e.g., the suspected source population) has been sampled. Further, it does
not require the assumption that the true population of origin has been sampled. Other
approaches, e.g., Bayesian (Pritchard et al. 2000) and likelihood ratio tests (Banks and
Eichert 2000), generally require samples from at least two populations, and assume that
the true population has been sampled. If the true population of origin has not been sam-
pled, the assignment probabilities from Bayesian and likelihood ratio approaches could be
misleading. It seems prudent to apply both the exclusion-based and Bayesian assignment
approaches (Manel et al. 2002).

An advantage of the Bayesian approach is that it is generally more powerful than 
exclusion-based methods and other methods (Manel et al. 2002; Maudet et al. 2002). 
User-friendly software exists for all three (and other) approaches (Rannala and Mountain
1997; Banks and Eichert 2000; Pritchard et al. 2000; Piry et al. 2004).

20.5.2 Assignment of groups

Assignment of groups of individuals to a population or region of origin is also increasingly
feasible. For example, the Alaska Department of Fish and Game confiscated a boatload of
red king crab that they suspected was caught in an area closed to harvest near Bristol Bay
in the Bering Sea (Seeb et al. 1989). The captain of the skipper claimed that the crabs were
caught near Adak Island in the Aleutian Islands, over 1,500 km away from the closed area.

Thirteen populations of king crab from Alaskan waters had been previously examined
at 42 allozyme loci (14 polymorphic loci) to describe the genetic population structure of
red king crab (Seeb et al. 1989). Genetic data at eight loci indicated that the confiscated
crabs could not have been caught near Adak Island (in the Aleutian Islands), the only area
open to harvest. Allele frequencies at Adak Island significantly differed from the allele 
frequencies among the confiscated crab, as inferred using a chi-square test (e.g., X2 = 21.6,
P < 0.001, and X2 = 88.5, P < 0.001, for the Pghd and Alp loci, respectively). Discriminate
function analysis was a second statistical approach used to conclude that the confiscated
crabs did not originate from the Adak Island area (see Seeb et al. 1989 for details). The
allele frequencies in the confiscated sample matched the samples from farther north in the
Bering Sea (Figure 20.4). Based upon these results, the vessel owner and captain agreed to
pay the State of Alaska a $US565,000 penalty for fishing violations.
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Figure 20.4 (a) Tree estimating relationships among king crab populations using allele
frequency similarity (modified from Seeb et al. 1989). Note the “unknown” confiscated 
crabs do not cluster with the Adak population where the crab harvest was permitted (in 
the Aleutian Islands, see text). Allele frequency similarity is based on the Cavalli-Sforza and
Edwards chord distance (Cavalli-Sforza and Edwards 1967). Future methods should include
some measure of statistical confidence in clustering (e.g., bootstrap percentages). (b) Map of
locations of populations (Adak and Bering Sea) in Alaska, and five allele frequency pie charts
for five allozyme loci.
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Assigning a group of individuals can be easier (i.e., yield a higher statistical certainty)
than assigning a single individual, because more information is available in a group of
genotypes than in a single individual’s genotype. A user-friendly software program for
assigning groups (as well as individuals) to a population of origin is available in GeneClass
2.0 (Piry et al. 2004).

20.6 Population composition analysis

Many species are harvested in mixed populations, such as mixed stock fisheries (salmon,
marine mammals, and others) and waterfowl. Other species migrate in mixed groups
(neotropical song birds, butterflies, and others). Effective management of mixed stock
fisheries and mixed populations requires that the populations or stocks that compose the
mixture be identified and the extent of their contribution determined (Larkin 1981; Pella
and Milner 1987) (Figure 20.5). Stocks are generally analogous to management units (e.g.,
demographically independent populations) that were discussed in Section 16.5.

The fundamental unit of replacement or recruitment for anadromous salmon is 
the local breeding population because of homing (Rich 1939; Ricker 1972). That is, an 
adequate number of individuals for each local reproductive population are needed to
insure persistence of the many reproductive units that make up a fished stock of salmon.
The homing of salmon to their natal streams produces a branching system of local repro-
ductive populations that are demographically and genetically isolated. The demographic
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Figure 20.5 Outline of the procedure for estimating the population (stock) composition on
the basis of genetic data at a single locus with two alleles (S and F ). The mixture is composed
of three populations. Actual application of this procedure requires multiple loci. From Milner
et al. (1985).
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dynamics of a fish population are determined by the balance between reproductive poten-
tial (i.e., biological and physical limits to production) and losses due to natural death 
and fishing. “Population persistence requires replacement in numbers by the recruitment
process” (Sissenwine 1984), so fishery scientists have focused on setting fishing intensity so
that adequate numbers of individuals “escape” fishing to provide sufficient recruitment to
replace losses.

The distinction between a local breeding population and a fished (harvested) stock 
is critical (Beverton et al. 1984). A local breeding population has a specific meaning: 
a local population in which mating occurs. A stock is essentially arbitrary and can refer 
to any recognizable group of population units that are fished (Larkin 1972). The litera-
ture has often been unclear on this distinction. In practice, it is extremely difficult to 
regulate losses to fishing on the basis of individual local breeding populations. Thousands
of local breeding populations make up the US west coast salmon fishery, and many 
of these are likely to be intermingled in any particular catch. Nevertheless, the result of 
regulating fishing on a stock basis and ignoring the reproductive units that together 
constitute a stock is the disappearance or extirpation of some of the local breeding 
populations (Clark 1984).

The loss of local populations could lead to the crash or eventual extirpation of the 
entire metapopulation or species, with negative consequences for the larger ecosystem
and regional economy (commercial fisheries, sports fisheries or hunting, ecotourism).
The importance of maintaining numerous diverse local populations for insuring 
long-term metapopulation viability is well illustrated in the study of salmon by Hilborn 
et al. (2003) (see Example 15.2).

An important application of mixed population analysis in conservation management 
is illustrated by a study of sockeye salmon in Alaska. Seeb et al. (2000) genotyped 27
allozyme loci in all major spawning populations from the upper Cook Inlet and found 
substantial among-population differentiation (e.g., FST = 0.075 among nursery lakes). The
salmon from these major populations are harvested in a mixed stock aggregation that
forms in the upper Cook Inlet (Figure 20.6). A mixed stock analysis (based on maximum
likelihood, see Manel et al. 2005) allowed estimation of the proportion of genes (and thus
individuals) from each population in the pool of harvested fish. Impressively, the genotyp-
ing and statistical analysis can be conducted within 48 hours after harvest! This is critical
because it allows real-time monitoring of harvest from each major population. It allows
biologists to close the harvest if too many fish are harvested from any one major breeding
population. This is critical to help prevent overfishing, longer term closures of fishing, and
the extinction of a major source population.

Population composition analysis differs from individual-based assignment tests in that
composition analysis estimates the percentage of the gene pool (or alleles) that originates
from each local breeding population. Whereas individual-based assignment methods estim-
ate the actual number and identity of individuals originating from each breeding popula-
tion (Manel et al. 2005). The Bayesian method programmed in the structure computer
program (Pritchard et al. 2000) even computes the percentage of an individual’s genome
that originates from different breeding populations. The relative performance of the differ-
ent assignment and composition analysis approaches depends on the question. More stud-
ies are needed to evaluate the relative performance of these analysis methods under
different scenarios relevant to management and conservation.
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and the Central and Northern Districts. From Seeb et al. (2000).
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Guest Box 20 Microsatellite DNA genotyping identifies problem bear and cubs
Lisette P. Waits

In 1998, a hiker was killed and partially consumed by a bear in Glacier National
Park, Montana. Following park policy, managers needed to find and remove this
bear. Park biologists noted that the killing occurred within the home range of a
radio-collared grizzly bear female (235; Table 20.1) and hypothesized that she
might have killed the hiker. They also were aware that this female had two 2-year-
old cubs that may have been with her at the time of attack. Since grizzly bears are
protected under the ESA, park biologists did not want to kill this grizzly and 
her cubs unless they could obtain conclusive evidence that she had killed and 
consumed the hiker.

To address these questions, park biologists turned to DNA analysis of hair and
fecal samples. Hair samples were taken from female 235 and one (238) of the cubs
and sent to our repository at the Laboratory for Ecological and Conservation
Genetics at the University of Idaho. Park biologists then collected two bear hair and
11 fecal samples from the kill site. My laboratory was asked to evaluate: (1) did the
suspect bear’s genotype match that from the bear hair or feces found at the attack
site; and (2) were there two cubs present at the kill site?

After extracting DNA from the hair and fecal samples in a room dedicated to low
quantity/quality DNA samples, we performed PCR of a section of the mtDNA
control region that is ~148 bp in grizzly bears and 160 bp in black bears (Murphy 
et al. 2000) and verified that all samples from the kill site originated from a grizzly
bear. For individual identification, we attempted to generate data from five highly
variable microsatellite loci (G1A, G10B, G10C, G1D, and G10L; Paetkau et al. 1995)
using the multiple tubes approach of Taberlet et al. (1996). Success rates for indi-
vidual identity genotyping were low overall (31%), but we were able to obtain 
reliable partial genotypes for one hair (H-14) and three fecal samples (S-37, S-34b,

Table 20.1 Genotypes at five microsatellite loci for the female (suspected mother),
and one cub caught with the mother and another cub that was the suspected missing
cub. Bold alleles are those that do not match either allele in the female.

Locus

Sample G1A G10B G10C G1D G10L

Female 235 189/189 155/155 102/110 171/175 153/155
Cub 238 189/193 155/159 104/110 175/180 153/155
Unknown cub 189/193 155/159 104/110 171/180 155/155
H-14 NS 155/159 104/110 175/180 153/155
S-37 189/189 155/155 102/110 NS NS
S-34b 189/189 155/155 102/110 NS 153/155
S-3 NS 155/155 NS 171/175 153/155

NS, not scored.
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and S-3; Table 20.1). Sample H-14 matched the genotype of cub 238 and samples 
S-37, S-34b, S-3 matched the female 235. The probability of identity for the 3–5 loci
that successfully amplified in different samples ranged from approximately one in
2,000 to one in 40,000 (see expression 20.1).

While it would be better to collect data at more loci, the probability of identity
values are convincing considering the fact that there are only 400–700 bears in this
ecosystem. Thus, the park biologists attempted to capture all three bears. Female
235 and cub 238 were captured quickly and removed from the park. But, the second
cub was not captured. A few weeks later a 2-year-old grizzly charged a group of
people and was killed by park biologists in the general home range area of the
female and cubs. Park biologists believed this was the missing cub, so we analyzed
this bear to evaluate this hypothesis. His genotype (“unknown cub”) is shown 
in Table 20.1. This cub shares one allele with female 235 at all loci consistent with
the hypothesis that he is her offspring. Also, relatedness statistics (Queller and
Goodnight 1989) reveal a pairwise relatedness of 0.70 between the mother and cub
providing strong support that this bear was the missing cub.

Problem 20.1

Consider a wildlife forensics case where a suspected poacher possesses a trophy
mountain sheep he claims to have legally harvested from a hunting area. Law
enforcement officials suspect that the horns match those from a missing mountain
sheep often seen by tourists in the national park several hundred miles away.
How could molecular (or other) methods help resolve this wildlife forensics case?
What molecular markers and statistical methods could be useful? What samples
are required? List four factors that will influence the power of molecular marker-
based approaches to help resolve such a forensics case.

Problem 20.2

The sequence below is from mtDNA (control region, “Unknown5”) of whale meat
purchased in a Japanese market in 2002 (from the Surveillance website).

(a) Identify the species of origin using the “simple” search option on the web-
based tool Surveillance, by cutting and pasting “Unknown5” into the
search window. (The Surveillance website is available via a Google search
or from this book’s home page.) From what species does this sequence
originate?

(b) Conduct an “Advanced” search with 100 bootstrap replicates. Remove
the first two lines of sequence (106 bp) and reconduct the “Advanced”
search with 100 bootstrap replicates. What is the bootstrap value with and
without the 106 bp? What is the effect of using shorter sequences for
species identification?
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(c) Can you identify the species of origin of this sequence by conducting a
“BLAST” search on GenBank?

>Unknown5
ATATTGTACAATAACCACAAGACTACAGTACTATGTCCGTATTAAAAATAATT
TATCTTATTACATACTATTATGTACTCGTGCATGTATGCATGTCCACATAACC
AATAATAACGATGTCCTCCTGTAAATATGTATATGTATACATACTATGTATAA
TTGTGCATTCAATTATCTTCACCACGAGCAGTTGAAGCCCGTATTAAAATTCA
TTAATTTTACATATTACATAATATTCATTGATAGTACATTAGCGCATGTTCTTA
TGCATCCACAAGTTAATTTAGTAAAACTAATTCTTATGGCCGCTCCATTAGAT
CACGAGCTTAGTCAGCATGCCGCGTGAAACCAGCAACCCGCTCGGCAGGGAT
CCCTCTTCTCGCACCGGGCCCATCAATCGTGGGGGTAGCTATTTAATGATCTT
TATAAGACATCTGGTTCTTACTTCAGGACCATATTAACTTAAAATC

GCCCACTCGTTCCCCTTAAAT

Problem 20.3

Imagine that customs officials confiscate an illegal shipment of suspected tiger
bones at one of the London airports (England is a signatory of CITES).
Microsatellite DNA analysis revealed the following two-locus genotype for one
confiscated bone: AaBB. Compute the expected two-locus genotype frequency
for this individual in the candidate source population in India versus China. Allele
frequencies in India are as follows: frequency of A = 0.40, frequency of B = 0.90;
frequencies in China are: A = 0.60, frequency of B = 0.40. (See Box 20.1.)

Problem 20.4

What might be some limitations for using assignment tests in natural populations
for forensics investigations? (Hint: assumptions.) How might you quantify the pos-
sible consequences of violating the assumption on the reliability of the tests (see
Appendix Section A3.2)?

Problem 20.5

What are some practical considerations for sampling populations and the storage
of samples if DNA evidence is to be used in a court of law? How might researchers
insure that their genotyping data (or DNA sequence data) is reliable?

Problem 20.6

In the Yellowstone National Park population of grizzly bears there are approx-
imately 300–500 individuals. Given this number, what would be a reasonably
small probability of identity (PI ) for use in forensic cases in this population? Would
a PI of 1/300 or 1/500 be sufficiently low? Why or why not?
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Problem 20.7

Chimpanzee populations in Africa are rapidly declining due to deforestation, 
mining, and hunting for food or trade on the international pet market. It has been
estimated that in international trade, 10 infant chimpanzees die for every one that
survives to its final destination (Goldberg 1997). Chimpanzees (and other primates)
have often been transported through tortuous routes only to be confiscated by
customs officials and subsequently kept at overcrowded zoos or captive facilities.
How might DNA typing for individual identification and population assignment help
to: (a) reduce the illegal trade of chimpanzees; and (b) reintroduce confiscated
chimpanzees back into the wild?

Problem 20.8

Imagine that a waterfowl species is hunted only around one group of lakes in the
middle of its migratory route (central United States) but that migrants come from
numerous breeding grounds in Canada. What are the special risks of harvesting
from such a mixed population compared to nonmixed populations? How and what
molecular genetic analysis methods might help to monitor harvest (numbers 
of individuals from different breeding populations) in such mixed populations?
Can you list some potential advantages of molecular genetic versus traditional
demographic approaches (banding of birds) for managing the harvest of mixed
populations?

Problem 20.9

Consider a case where we need to determine paternity of offspring, when the
mother is known. Compute the paternity exclusion power of four loci. Use expres-
sion 20.2 and the following biallelic allele frequencies for each of the four loci 
(P1 = 0.50, P2 = 0.45, P3 = 0.35, P4 = 0.30). How could we increase the power
for paternity exclusion?

Problem 20.10

It is important to know if the wolf population in Yellowstone National Park, like any
island population, receives migrants. How might noninvasive sampling of feces
help detect immigrants? What statistical methods might be helpful? How might
you detect “effective” gene flow (reproduction) from an outside population?

Problem 20.11

It would be useful to detect immigration of wolves into Yellowstone from Montana
so that biologists would know if the Yellowstone population is isolated. Small 
isolated populations have increased risks of extinction due to demographic and
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genetic factors. Multilocus genotypes and assignment tests can be used to iden-
tify immigrants into Yellowstone. This requires genetic data (allele frequencies)
from Yellowstone and candidate source populations of immigrants.

Go to this book’s web page and download the microsatellite data set for wolves
from Yellowstone National Park and Northwestern Montana. Use GeneClass 2.0
software (see this book’s web site) to determine the percentage of individuals that
can be assigned back to their population of origin. Is this percentage sufficient to
have >90% probability of detecting an immigrant into Yellowstone from northwest-
ern Montana? How might power (the percentage of individuals correctly assigned)
be increased?
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ABC See approximate Bayesian computation.
acrocentric Chromosomes and chromatids with a centromere near one end.
addition rule See sum rule.
additive genetic variation The portion of total genetic variation that is the average effect of sub-

stituting one allele, responsible for a phenotypic trait, for another. The proportion of genetic 
variation that responds to natural selection.

admixture The formation of novel genetic combinations through hybridization of genetically
distinct groups.

AFLP See amplified fragment length polymorphism.
agamospermy The asexual formation of seeds without fertilization in which mitotic division is

sometimes stimulated by male gametes.
alien species A non-native or nonindigenous species.
allele Alternative form of a gene.
allelic diversity A measure of genetic diversity based on the average number of alleles per locus

present in a population.
allelic richness A measure of the number of alleles per locus; allows comparison between sam-

ples of different sizes by using various statistical techniques (e.g., rarefaction).
allopatric Species or populations that occur in geographically separate areas.
allopolyploid A polyploid originating through the addition of unlike chromosome sets, often in

conjunction with hybridization between two species.
allozygous An individual whose alleles at a locus are descended from different ancestral alleles in

the base population. Allozygotes may be either homozygous or heterozygous in state at this
locus.

allozyme An allelic enzyme detected through protein electrophoresis used in many genetic appli-
cations such as hybrid identification and estimation of genetic variation.

AMOVA See analysis of molecular variation.
amplified fragment length polymorphism (AFLP) A technique that uses PCR to amplify

genomic DNA, cleaved by restriction enzymes, in order to generate DNA fingerprints; it is a
combination of RFLP and arbitrary primer PCR. It does not require prior sequence knowledge.

amplify To use PCR to make many copies of a segment of DNA.
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anagenesis Evolutionary changes that occur within a single lineage through time. See
cladogenesis.

analysis of molecular variation (AMOVA) A statistical approach to partition the total genetic
variation in a species into components within and among populations or groups at different 
levels of hierarchical subdivision. Analogous to ANOVA in statistics.

aneuploid A chromosomal condition resulting from either an excess or deficit of a chromosome
or chromosomes so that the chromosome number is not an exact multiple of the typical haploid
set in the species.

anneal The joining of single strands of DNA because of the pairing of complementary bases. In
PCR, primers anneal to complementary target DNA sequences during cooling of the DNA (after
DNA is made single stranded by heating).

ANOVA Analysis of variance.
apomixis Seed development without fertilization and meiosis. An apomict or apomictic plant

produces seeds that are genetically identical to the parent plant.
approximate Bayesian computation (ABC) A statistical framework using simulation modeling

to approximate the Bayesian posterior distribution of parameters of interest (e.g., Ne, Nm) often
by using multiple summary statistics (He, number of alleles, FST). It is far faster computationally
than fully Bayesian approaches but generally slightly less accurate and precise.

artificial selection Anthropogenic selection of phenotypes, with a heritable genetic basis, to elicit
a desired phenotypic change in succeeding generations.

ascertainment bias Selection of loci for marker development (e.g., SNPs or microsatellites) from
an unrepresentative sample of individuals, or using a particular method, which yields loci that are
not representative of the spectrum of allele frequencies in a population. For example, the choice
of loci with high heterozygosity may bias assessments of allele frequency distributions in future
studies using the loci such that alleles at low frequency (rare alleles) are underrepresented.

assignment tests A statistical method using multilocus genotypes to assign individuals to the
population from which they most likely originated (i.e., in which their expected multilocus geno-
type frequency is highest).

associative overdominance An increase in fitness of heterozygotes at a neutral locus because it is
in gametic disequilibrium at a locus that is under selection. Also known as pseudo-overdominance.
Compare with hitchhiking.

assortative mating Preferential mating between individuals with a similar (or a different) pheno-
type is referred to positive (or negative) assortative mating. See also disassortative mating.

autogamy Self-fertilization in a hermaphroditic species where the two gametes fused in fertiliza-
tion come from the same individual.

autosomal A locus that is located on an autosome (i.e., not on a sex chromosome).
autosomes Chromosomes that do not differ between sexes.
autozygosity A measure of the expected homozygosity where alleles are identical by descent.
autozygous Individuals whose alleles at a locus are identical by descent from the same ancestral

allele.

B chromosome See Supernumerary chromosome.
balancing selection Diversifying selection that maintains polymorphism resulting from such

mechanisms as frequency-dependent selection, spatially heterogeneous selection, or heterozy-
gous advantage.

Barr bodies Inactivated X chromosomes in female mammals that condense to form a darkly 
colored structure in the nuclei of somatic cells.

Bayesian inference A procedure of statistical inference in which observed data are interpreted
not as frequencies or proportions, but rather are used to compute the probability that a hypothe-
sis is true, given what was observed. Bayesian inference also allows for the incorporation of prior
data or information. Bayes’ theorem is named after the Reverend Thomas Bayes.
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binomial proportion A population will be in binomial proportions when it conforms to the bino-
mial distribution so that the occurrence of a given event X, ri times with a probability (pi) of suc-
cess, in a population of n total events, is not significantly different than that which would be
expected based on random chance alone.

biogeography The study of the geographic distribution of species and the principles and factors
influencing these distributions.

biological species concept (BSC) Groups of naturally occurring interbreeding populations that
are reproductively isolated from other such groups or species.

BLAST Basic Local Alignment Search Tool. Software program to search a DNA sequence data base
for sequence similar to the one in hand.

Bonferroni correction A correction used when several statistical tests are being performed
simultaneously (since while a given α-value may be appropriate for each individual comparison,
it is not for the set of all comparisons). In order to avoid a lot of spurious positives, the α-value
needs to be adjusted to account for the number of comparisons being performed. Suppose we are
testing for Hardy–Weinberg proportions at 20 loci. Instead of using the traditional 0.05 α-level,
we would test at α of 0.05/20 = 0.0025 level. This insures that the overall chance of making a
Type I error is still less than 0.05.

bootstrap analysis A nonparametric statistical analysis for computing confidence intervals for a
phylogeny or a point estimate (e.g., of FST). Re-sampling with replacement to estimate the pro-
portion of times an event (such as the positioning of a node on a phylogenetic tree) appears dur-
ing multiple re-sampling of a data set.

bottleneck A special case of strong genetic drift where a population experiences a loss of genetic
variation by temporarily going through a marked reduction in effective population size. In
demography, a severe transient reduction in population size.

branch length Length of branches on a phylogenetic tree. Often proportional to the amount of
genetic divergence between species or groups.

broad sense heritability (HB) The proportion of phenotypic variation within a population that is
due to genetic differences among individuals.

BSC See biological species concept.

cDNA Complementary DNA.
census population size The number of individuals in a population.
centromere An constricted region of a chromosome containing spindle microtubules responsible

for chromosomal movement during mitosis and meiosis.
chi-square test A test of statistical significance based on the chi-squared statistic, which deter-

mines how closely experimental observed values fit theoretical expected values.
chloroplast DNA (cpDNA) A circular DNA molecule located in chloroplasts. Forty to 80 copies

occur per organelle and replication occurs throughout the cell cycle.
chromosome A molecule of DNA in association with proteins (histones and non-histones) con-

stituting a linear array of genes. In prokaryotes, the circular DNA molecule contains the set of
instructions necessary for the cell.

CITES Convention on International Trade in Endangered Species of Wild Fauna and Flora.
clade A species, or group of species that has originated and includes all the descendents from a

common ancestor. A monophyletic group.
cladistics The classification of organisms based on phylogeny.
cladogenesis The splitting of a single evolutionary lineage into multiple lineages.
cladogram A diagram illustrating the relationship between taxa that is built using synapomor-

phies. Also called a phylogeny.
cline A gradual directional change in a character across a geographic or environmental gradient.
coalescent The point at which the ancestry of two alleles converge at a common ancestral

sequence.
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codon A three nucleotide sequence on a strand of mRNA that gets translated into a specific amino
acid forming a protein.

conservation breeding Efforts to manage plant and animal species breeding that do not necessar-
ily involve captivity.

conservation collections Living collections of rare or endangered organisms established for the
purpose of contributing to the survival and recovery of a species.

conspecific A member of the same species.
continuous characters Phenotypic traits that are distributed continuously throughout the popu-

lation (e.g., height or weight).
continuous distribution model of migration Individuals are continuously distributed across the

landscape; neighborhoods of individuals exist that are areas within which panmixia occurs, and
across which genetic differentiation occurs due to isolation by distance.

Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES)
An agreement among 145 countries that bans commercial international trade in an agreed-upon
list of endangered species, and that regulates and monitors trade in others that might become
endangered.

converged The point where a MCMC simulation has become independent of starting parameter
biases, or has been “burnt in”. Typically, thousands of simulation steps are required (and dis-
carded) before the MCMC simulation is used to estimate a parameter (e.g., Ne, Nm, etc.)

countergradient variation Occurs when genetic effects on a trait oppose or compensate for envi-
ronmental effects so that phenotypic differences across an environmental gradient among popu-
lations are minimized.

cpDNA See chloroplast DNA.
CU Conservation unit.
cultivars A human-cultivated plant that was derived through athropogenenic selection.
cytogenetics A discipline of science combining cytology, the study of cells (their structure, func-

tion, and life history), and genetics.
cytoplasmic genes Genes located in cellular organelles such as mitochondria and chloroplasts.

degrees of freedom The total number of items in a data set that are free to vary independently of
each other. In testing for Hardy–Weinberg proportions this is the number of possible genotypes
minus the number of alleles because the frequency of homozygous genotypes are determined by
the frequency of heterozygous genotypes.

deme A local conspecific group of individuals that mate at random.
demographic Topics relating to the structure and dynamics of populations, such as birth, death,

and migration rates.
demographic stochasticity Differences in the dynamics of a population that are the effects of

random events on individuals in the population.
dendrogram A tree diagram that serves as a visual representation of the relationships between

populations within a species.
derived A derived character is one found only in a particular lineage within a larger group. For

example, feathers are derived characters that distinguish birds from their reptile ancestors.
deterministic Events that have no random or probabilistic aspects but rather occur in a com-

pletely predictable fashion.
diagnostic locus A locus that is fixed, or nearly fixed for different alleles allowing differentiation

between parental species, populations, or their hybrids.
dioecious Varieties or species of plants that have separate male and female reproductive organs

on unisexual individuals.
diploid The condition in which a cell or individual has two copies of every chromosome.
directional selection The selective increase in the frequency of an advantageous allele, gene, or

phenotypic trait in a population.
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disassortative mating Preferential mating of individuals with different phenotypes.
discrete generations Generations that can be defined by whole integers and in which all individ-

uals will breed only with individuals in their generation (e.g., pink salmon or annual flowers
without a seed bank).

dispersal In ecological literature dispersal is the movement of individuals from one genetic popu-
lation (or birth place) into another. Dispersal is also known as migration in genetics literature.

distinct population segment (DPS) A level of classification under the ESA that allows for legal
protection of populations that are distinct, relatively reproductively isolated, and represent a sig-
nificant evolutionary lineage to the species.

DNA Deoxyribonucleic acid.
DNA barcoding The use of a short gene sequence from a standardized region of the genome that

can be used to help discover, characterize, and distinguish species, and to assign unidentified indi-
viduals to species.

DNA fingerprinting Individual identification through the use of multilocus genotyping.
Dobzhansky–Muller incompatibilities Genic interactions between alleles at multiple loc in

which alleles that enhance fitness within their parental genetic backgrounds may reduce fitness 
in the novel genetic background produced by hybridization.

dominance genetic variation The proportion of total genetic variation that can be attributed to
the interactions of alleles at a locus in heterozygotes.

dominant An allele (A) whose phenotypic effect is expressed in both homozygotes (AA) and het-
erozygotes (Aa).

DPS See distinct population segment.

ecosystem A community of organisms and its environment.
ecosystem services The products and services humans receive from functioning ecosystems.
ecotone The region that encompasses the shift between two biological communities.
effective number of alleles The number of equally frequent alleles that would create the same

heterozygosity as observed in the population.
effective population size (Ne) The size of the ideal, panmictic population that would experience

the same loss of genetic variation, through genetic drift, as the observed population.
electrophoresis The movement of molecules through a medium across an electric field.

Electrophoresis is used to separate allelic enzymes (allozymes) and DNA molecules of differing
charge, size, or shape.

EM See expectation maximization algorithm.
Endangered Species Act of the United States ESA.
endonuclease An enzyme that cleaves either a single, or both, strands of a DNA molecule.

Bacterial endonucleases are used to split genomic DNA at specific sites for analysis. See restric-
tion enzyme.

Environmental Protection Agency of the United States EPA.
environmental stochasticity Random variation in environmental factors that influence popula-

tion parameters affecting all individuals in that population.
EPA Environmental Protection Agency of the United States.
epidemiology The study of the spread and control of a disease in a population.
epistatic genetic variation The proportion of total genetic variation that can be attributed to the

interaction between loci producing a combined effect different from the sum of the effects of the
individual loci.

ESA Endangered Species Act of the United States.
ESPA Endangered Species Protection Act of Australia.
ESU See evolutionary significant unit.
evolutionary significant unit (ESU) A classification of populations that have substantial repro-

ductive isolation which has led to adaptative differences so that the population represents a 
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significant evolutionary component of the species. Evolutionary significant units have also been
classified as populations that exhibit reciprocal monophyly and no recent gene flow. The original
term used was “evolutionarily” rather than “evolutionary” (Ryder 1986). However, both terms
are currently used in the literature.

ex situ conservation The conservation of important evolutionary lineages of species outside the
species natural habitat.

exact tests An approach to compute the exact P-value for an observed result rather than use an
approximation, such as the chi-square distribution.

exon A coding portion of a gene that produces a functional gene product (e.g., a peptide).
expectation maximization algorithm (EM) A computational tool in statistics for finding maxi-

mum likelihood estimates of parameters in probabilistic models, where the model depends on
unobserved variables. It can provide an estimate of the most likely allele frequencies assuming
the sample is in Hardy–Weinberg proportions. Bayesians also use the EM algorithm to optimize
the a posteriori distribution to compute the maximum a posteriori (MAP) estimate of an unknown
parameter.

extant Currently living; not extinct.
extinction The disappearance of a species or other taxon so that it no longer exists anywhere.
extirpation The loss of a species or subspecies from a particular area, but not from its entire

range.

FCA Frequency correspondence analysis.
fecundity The potential reproductive capacity of an individual or population (e.g., the number of

eggs or young produced by an individual per unit time).
fertility The ability to conceive and have offspring. Sometimes used for fecundity.
Fisher–Wright model See Wright–Fisher model.
fitness The ability of an individual, or genotype to survive and produce viable offspring.

Quantified as the number of offspring contributed to the next generation, or as proportion of the
individual’s genes in all the genes contributed to the next generation.

fitness rebound Following an episode of inbreeding depression, successive generations of breed-
ing may result in a rebound in fitness due to the selective decrease in frequency of deleterious
alleles (purging). If inbreeding depression is due to deleterious recessive alleles (with negative fit-
ness effects in a homozygous state) then successive generations of inbreeding may result in a
rebound in fitness due to the selective decrease in frequency of deleterious alleles.

fixation index The proportional increase of homozygosity through population subdivision. FST is
sometimes referred to as the fixation index.

fluctuating asymmetry (FA) Asymmetry in which deviations from symmetry are randomly dis-
tributed about a mean of zero. FA provides a simple measure of developmental precision or sta-
bility.

forensics The use of scientific methods and techniques, such as genetic fingerprinting, to solve
crimes.

founder effect A loss of genetic variation in a population that was established by a small number
of individuals that carry only a fraction of the original genetic diversity from a larger population.
A special case of genetic drift.

frequency-dependent selection Natural selection in which fitness varies as a function of the fre-
quency of a phenotype.

gametic disequilibrium Nonrandom association of alleles at different loci within a population.
Also known as linkage disequilibrium.

gametic equilibrium Random association of alleles at different loci within a population. Also
known as linkage equilibrium.

gametogenesis The creation of gametes through meiosis.
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gene A segment of DNA whose nucleotide sequence codes for protein or RNA, or regulates other
genes.

gene drop Simulation of the transmission of alleles in a pedigree. Each founder is assigned two
unique alleles, and the alleles are then passed on from parent to offspring, with each offspring
receiving one allele chosen at random from each parent (modeling Mendelian segregation), until
all individuals in the pedigree have an assigned genotype.

gene flow Exchange of genetic information between demes through migration.
gene genealogies The tracing of the inherited history of the genes in an individual. Gene genealo-

gies are most easily constructed using nonrecombining DNA such as mtDNA or the mammalian
Y chromosome.

genet A genetically unique individual.
genetic assimilation A process in which phenotypically plastic characters that were originally

“acquired” become converted into inherited characters by natural selection. This term also has
been applied to the situation in which hybrids are fertile and displace one or both parental taxa
through the production of hybrid swarms (i.e., genomic extinction).

genetic distance matrix A pairwise matrix composed of differentiation between population (or
individual) pairs that is calculated using a measure of genetic divergence such as FST.

genetic divergence The evolutionary change in allele frequencies between reproductively isola-
tion populations.

genetic draft A stochastic process in which selective substitutions at one locus will reduce genetic
diversity at neutral linked loci through hitchhiking.

genetic drift Random changes in allele frequencies in populations between generations due 
to binomial sampling of genes during meiosis. Genetic drift is more pronounced in small 
populations.

genetic engineering A processes in which an organism’s genes are selectively modified, often
through splicing DNA fragments from different chromosomes or species, to achieve a desired
result.

genetic exchange See gene flow.
genetic load The decrease in the average fitness of individuals in a population due to deleterious

genes or heterozygous advantage.
genetic rescue The recovery in the average fitness of individuals through increased gene flow

into small populations, typically following a fitness reduction due to inbreeding depression.
genetic stochasticity Random changes in the genetic characteristics of populations through

genetic drift and binomial sampling of alleles during Mendelian segregation.
genetic swamping The loss of locally adapted alleles or genotypes caused by constant immigra-

tion and gene flow.
genetics The study of how genes are transmitted from one generation to the next and how those

genes affect the phenotypes of the progeny.
genomic extinction The situation in which hybrids are fertile and displace one or both parental

taxa through the production of hybrid swarms so that the parental genomes no longer exist even
though the parental alleles are still present.

genomic ratchet A process where hybridization producing fertile offspring will result in a hybrid
swarm over time, even in the presence of outbreeding depression.

genomics The study of the structure or function of large numbers of genes in a genome.
genotype An organism’s genetic composition.
gynodioecy The occurrence of female and hermaphroditic individuals in a population of plants.

haploid The condition in which a cell or individual has one copy of every chromosome.
haplotype The combination of alleles at loci that are found on a single chromosome or DNA

molecule.
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Hardy–Weinberg principle The principle that allele and genotype frequencies will reach equil-
ibrium, defined by the binomial distribution, in one generation and remain constant in large 
random mating populations that experience no migration, selection, mutation, or nonrandom
mating.

Hardy–Weinberg proportion A state in which a population’s genotypic proportions equal those
expected with the binomial distribution.

hemizygous A term used to denote the presence of only one copy of an allele due a locus being 
in a haploid genome, on a sex chromosome, or only one copy of the locus being present in an 
aneuploid organism.

heritability The proportion of total phenotypic variation within a population that is due to 
individual genetic variation (HB; broad sense heritability). Heritability is more commonly
referred to as the proportion of phenotypic variation within a population that is due to additive
genetic variation (HN; narrow sense heritability).

hermaphrodite An individual that produces both female and male gametes.
heterochromatin Highly folded chromosomal regions that contain few functional genes. When

these traits are characteristic of an entire chromosome, it is a heterochromosome or super-
numerary chromosome.

heterogametic The sex that is determined with different sex chromosomes (e.g., the male in
mammals (XY) and female in birds (ZW) ).

heteroplasmy The presence of more than one mitochondrial DNA haplotype in a cell.
heterosis A case when hybrid progeny have higher fitness than either of the parental organisms.

Also called hybrid vigor.
heterozygosity A measure of genetic variation that accounts for either the observed, or expected

proportion of individuals in a population that are heterozygotes.
heterozygote An organism that has different alleles at a locus (e.g., Aa).
heterozygous advantage A situation where heterozygous genotypes are more fit than 

homozygous genotypes. This fitness advantage can create a stable polymorphism. Also called
overdominance.

heterozygous disadvantage A situation where heterozygous genotypes are less fit than homozy-
gous genotypes. Also called underdominance.

HFC Heterozygosity–fitness correlation.
Hill–Robertson effect An effect where selection at one locus will reduce the effective population

size of linked loci; increasing the chance of genetic drift forming negative genetic associations
that reduce the ability of associating loci to respond to selection. See also genetic draft.

hitchhiking The increase in frequency of a selectively neutral allele through gametic disequilib-
rium with a beneficial allele that selection increases in frequency in a population.

homogametic The sex that possesses the same sex chromosomes (e.g., the female in mammals
(XX) and male in birds (ZZ)).

homoplasmy The presence of a single mitochondrial DNA haplotype within a cell.
homoplasy Independent evolution or origin of similar traits, or gene sequences. At a locus,

homoplasy can result from back mutation or mutation to an existing allelic state.
homozygosity A measure of the proportion of individuals in a population that are homozygous;

it is the reciprocal of heterozygosity.
homozygote An organism that has two or more copies of the same alleles at a locus (e.g., AA).
HW Hardy–Weinberg.
hybrid sink The situation where immigration of locally unfit genotypes produces hybrids with

low fitness that reduces local density and thereby increases the immigration rate.
hybrid swarm A population of individuals that are all hybrids by varying numbers of generations

of backcrossing with parental types and matings among hybrids.
hybrid vigor See heterosis.
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hybrid zone An area of sympatry between two genetically distinct populations where hybrid-
ization occurs without forming a hybrid swarm in either parental population beyond the area of
co-occurrence.

hybridization Mating between individuals of two genetically distinct populations.

identical by descent Alleles that are identical copies of the same allele from a common ancestor.
inbreeding The mating between related individuals that results in an increase of homozygosity in

the progeny because they possess alleles that are identical by descent.
inbreeding coefficient A measure of the level of inbreeding in a population that determines the

probability that an individual possesses two alleles at a locus that are identical by decent. It can
also be used to describe the proportion of loci in an individual that are homozygous.

inbreeding depression The reduction in fitness of progeny from matings between related indi-
viduals compared to progeny from unrelated individuals.

inbreeding effect Inbreeding eventually will occur in panmictic small populations due to the
individuals becoming increasingly related through time.

inbreeding effective number (NeI) The size of the ideal panmictic population that loses heterozy-
gosity at the same rate as the observed population.

introduction The placement, or escape, of a species or individual into a novel habitat. Often intro-
ductions are used in conservation to aid genetic rescue of isolated populations.

introgression The incorporation of genes from one population to another through hybridization
that results in fertile offspring that further hybridize and backcross to parental populations.

intron A portion of a gene that produces a nonfunctional RNA strand that is cleaved prior to
translation; a noncoding region between the exons.

invasive species An introduced alien species that is likely to cause harm to the natural ecosystem,
the economy, or human health.

island model of migration A model of migration in which a population is subdivided into a series
of demes, of size N, that randomly exchange migrants at a given rate, m.

isolation by distance The case where genetic differentiation is greater the further individuals (or
populations) are from each other because gene flow decreases as geographic distance increases.
Originally individuals used in the case where individuals are distributed continuously across large
landscapes (e.g., coniferous tree species across boreal forests) and are not subdivided by sharp
barriers to gene flow.

ISSR Intersimple sequence repeat markers that use similar PCR methods as PINE fragments, but
have primers based on simple sequence repeats of microsatellites.

IUCN World Conservation Union (formerly International Union for Conservation of Nature).

karyotype The composition of the chromosomal complement of a cell, individual, or species.

landscape genetics The study of the interaction between landscape or environmental features
and population genetics, such as gene flow.

LE See lethal equivalent.
lek A specific area where the males of a population that exhibits female sexual selection will con-

gregate and display for females.
lethal equivalent The number of deleterious alleles in an individual whose cumulative effect is

the same as that of a single lethal allele. For example, four alleles each of which would be lethal
25% of the time (or to 25% of their bearers), are equivalent to one lethal allele.

library Collection of DNA fragments from a given organism “stored” in a virus or bacteria.
likelihood statistics An approach for parameter estimation and hypothesis testing that involves

building a model (i.e., a likelihood function) and the use of the raw data (not a summary statistic),
which often provides more precision and accuracy than frequentist statistic approaches (method
of moments). The parameter of interest is estimated as the member of the parameter space that
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maximizes the probability of obtaining your observed data. Likelihood approaches facilitate
comparisons between different models (e.g., via likelihood ratio tests) and thus the testing of
alternate hypotheses (e.g., stable versus declining population size).

lineage sorting A process where different gene lineages within an ancestral taxon are lost by drift
or replaced by unique lineages evolving in different derived taxa.

linkage disequilibrium The nonrandom association of alleles between linked loci. Also called
gametic disequilibrium.

linkage equilibrium Random association of alleles between liked loci. Also called gametic 
equilibrium.

local adaptation Greater fitness of individuals in their local habitats due to natural selection.
local scale The spatial scale at which individuals routinely interact with their environment.
locus The position on a chromosome of a gene or other marker.
LOD See log of odds ratio.
log of odds ratio (LOD) The odds ratio is the odds of an event occurring in one group to the odds

of it occurring in another group. For example, if 80% of the individuals in a population are Aa
and 20% are AA, then the odds of Aa over AA is four; there are four (4.0) times as many Aa as AA
genotypes. The natural log of this ratio is often computed because it is convenient to work with
statistically.

management unit A local population that is managed as a unit due to its demographic 
independence.

marginal overdominance Greater fitness of heterozygous genotypes, which are not the most fit
in any single environment, due to an organism’s interactions with multiple environments that
each favor different alleles.

match probability (MP) The probability of sampling an individual with an identical multilocus
genotype to the one already sampled (“in hand”).

maternal effects The influence of the genotype or phenotype of the mother on the phenotype of
the offspring. Because it has no genetic basis, maternal effects are not heritable.

maximum likelihood A statistical method of determining which of two or more competing alter-
native hypotheses (such as alternative phylogenetic trees) yields the best fit to the data.

maximum likelihood estimate (MLE) A method of parameter estimation that obtains the
parameter value that maximizes the likelihood of the observed data.

MCMC Markov chain Monte Carlo. A tool or algorithm for sampling from probability distri-
butions based on constructing a Markov chain. The state of the chain after many steps is then
used as a sample from the desired distribution. Sometimes called a random walk Monte Carlo
method.

MDS Multidimensional scaling. A statistical graphing technique used to represent genetic dis-
tances between samples in two or three dimensions, and thereby visualizing similarities and 
differences between different groups or samples.

Mendelian segregation The random separation of paired alleles (or chromosomes) into different
gametes.

meristic character A trait of an organism that can be counted using integers (e.g., fin rays or ribs).
metacentric A chromosome in which the centromere is centrally located.
metapopulation A collection of spatially divided subpopulations that experience a certain degree

of gene flow among them.
metapopulation scale The spatial scale at which individuals migrate between local subpopula-

tions, often across habitat that is unsuitable for colonization.
microchromosomes Small chromosomes found in many bird species which, unlike hetero-

chromosomes, carry functional genes.
microsatellite Tandemly repeated DNA consisting of short sequences of one to six nucleotides

repeated between approximately five and 100 times. Also known as VNTRs, SSRs, or STRs.
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migration The movement of individuals from one generically distinct population to another
resulting in gene flow.

minimum viable population (MVP) The minimum population size at which a population is
likely to persist over some defined period of time.

minisatellite A tandemly repeated sequence of approximately 10–100 nucleotides that are 500 to
30,000 base pairs in length.

mitochondrial DNA (mtDNA) A small, circular, haploid DNA molecule found in the mito-
chondria cellular organelle of eukaryotes.

ML See maximum likelihood.
MLE See maximum likelihood estimation.
molecular clock The observation that mutations sometimes accumulate at relatively constant

rates, thereby allowing researchers to estimate the time since two species diverged (TMRCA).
molecular genetics The branch of genetics that studies the molecular structure and function of

genes, or that (more generally) uses molecular markers to test hypotheses.
molecular mutations Changes to the genetic material of a cell, including single nucleotide changes,

deletions, and insertions of nucleotides as well as recombinations and inversions of DNA sequences.
monoecious A plant in which male and female organs are found on the same plant but in differ-

ent flowers (for example maize).
monomorphic The presence of only one allele at a locus, or the presence of common allele at a

high frequency (>95% or 99%) in a population.
monophyletic A group of taxa that include all species, ancestral and derived, from a common

ancestor.
monophyly The presence of a monophyletic group.
monotypic A taxonomic group that encompasses only one taxonomic representative. The reptile

family that contains tuatara (Sphenodontia) is currently monotypic.
morphology The study of the physical structures of an organism, including the evolution and

development of these structures.
MP See match probability.
MRCA Most recent common ancestor. In cladistics, the organism at the base of a clade, from

which that clade arose.
mRNA Messenger ribonucleic acid.
MSD Multiple factor sex determination.
mtDNA See mitochondrial DNA.
MU See management unit.
mutagenesis The natural or intentional formation of mutations in a genome.
mutation An error in the replication, or transmission, of DNA that cause a structural change in a

gene. See also molecular mutations.
mutational meltdown The process by which a small population accumulates deleterious muta-

tions, which leads to loss of fitness and decline of the population size, which leads to further accu-
mulation of deleterious mutations. A population experiencing mutational meltdown is trapped
in a downward spiral and will eventually go extinct.

MVP See minimum viable population.

narrow sense heritability (HN) The amount of individual phenotypic variation that is due to
additive genetic variation.

native species A species that was not introduced and historically, or currently, occurs in a given
ecosystem.

natural catastrophes Natural events causing great damage to populations and that increase their
probability of extinction.

natural selection Differential contribution of genotypes to the next generation due to differences
in survival and reproduction.
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NCA Nested clade analysis. A statistical approach to describe how genetic variation is distributed
spatially within a species’ geographic range. This method uses a haplotype tree to define a nested
series of branches (clades), thereby allowing a nested analysis of the spatial distribution of genetic
variation, often with the goal of resolving between past fragmentation, colonization, or range
expansion events.

nearly exact test A method of using a nearly exact P-value to test if the observed test statistic devi-
ates from the expected value under the null hypothesis, For example, a test of whether popula-
tions are in Hardy–Weinberg proportions by comparing the observed chi-squared value to the
chi-squared values of random computer permutations of genotypes from the population’s allele
frequencies.

neighborhood The area in a continuously distributed population that can be considered panmictic.
neutral allele An allele that is not under selection because it does not affect fitness.
NMFS National Marine Fisheries Service.
NOAA National Oceanic Atmospheric Administration.
node A branching point or end point on a phylogenic tree that represents either an ancestral

taxon (internal node) or an extant taxon (external node).
nonindigenous species Species present in a given ecosystem that were introduced and did not

historically occur in that ecosystem.
nuclear DNA (nDNA) DNA that forms chromosomes in the cell nucleus of eukaryotes.
nuclear gene A gene located on a chromosome in the nucleus of a eukaryotic cell.
nucleotides The building blocks of DNA and RNA made up of a nitrogen-containing purine or

pyrimidine base linked to a sugar (ribose or deoxyribose) and a phosphate group.
null allele An allele that is not detectable either due to a failure to produce a functional product or

a mutation in a primer site that precludes amplification during PCR analysis.

Ocham’s razor The principle that the least complicated explanation (most parsimonious hypoth-
esis) generally should be accepted to explain the data at hand.

offsite conservation See ex situ conservation.
outbreeding depression The relative reduction in the fitness of hybrids compared to parental

types.
outlier loci Loci that may be under selection (or linked to loci under selection) that are detected

because they fall outside the range of expected variation for a given summary statistic (e.g.,
extremely high or low FST compared to most “neutral” loci in a sample).

overdominance See heterozygous advantage.
overlapping generations A breeding system where sexual maturity does not occur at a specific

age, or where individuals breed more than once, causing individuals from different brood years
to interbreed in a given year.

panmictic A population that is randomly mating.
paracentric inversion A chromosomal inversion that does not include the centromere because

both breaks were on the same chromosomal arm.
paraphyletic A clade that does not include all of the descendants from the most recent common

ancestor taxon. For examples, reptiles are paraphyletic because they do not include birds.
parentage analysis The assessment of the maternity and/or paternity of a given individual.
parsimony The principle that the preferred phylogeny of an organism is the one that requires the

fewest evolutionary changes; the simplest explanation.
PAW Partnership for Action against Wildlife Crime.
PCA Principal component analysis.
PCoA Principle coordinates analysis.
PCR See polymerase chain reaction.
pdf Probability density function.
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PE Paternity exclusion (probability of ).
pericentric inversion A chromosomal inversion that includes the centromere because the breaks

were on opposite chromosomal arms.
phenetics Taxonomic classification solely based on overall similarity (usually of phenotypic

traits), regardless of genealogy.
phenogram A branching diagram or tree that is based on estimates of overall similarity between

taxa derived from a suite of characters.
phenotype The observable characteristics of an organism that are the product of the organism’s

genotype and environment.
phenotypic Relating to an aspect of an individual’s phenotype.
phenotypic plasticity Variation in the phenotype of individuals with similar genotypes due to

differences in environmental factors during development. For example, cod in areas with red
algae develop a reddish color.

philopatry A characteristic of reproduction of organisms where individuals faithfully home to
natal sites. Individuals exhibiting philopatry are philopatric.

phylogenetic Evolutionary relationships between taxa or gene lineages. These relationships are
often expressed visually in phylogenetic trees with nodes representing taxa or lineages (ancestral
or derived), and branch lengths often corresponding to the amount of divergence between
groups.

phylogenetic species concept (PSC) States that a species is a discrete lineage or recognizable
monophyletic group.

phylogeny See cladogram.
phylogeography The assessment of the geographic distributions of the taxa of a phylogeny to

understand the evolutionary history (e.g., origin and spread) of a given taxon.
PI See probability of identity.
PINEs Paired interspersed nuclear elements. Use of PCR primes that bind one end of a transpos-

able element (along with a few adjacent single-copy nucleotides), to generate DNA markers for
studies in population genetics (e.g., hybridization or admixture).

pleiotropy The case where one gene affects more than one phenotypic trait.
Poisson distribution A probability distribution, with identical mean and variance, that character-

izes discrete events occurring independently of one another in time, when the mean probability
of that event on any one trial is very small. Earthquake hazards, radioactive decay, and mutation
events follow a Poisson distribution. The Poisson is a good approximation to the binomial distri-
bution when the probability is small and the number of trials is large.

polygenic Affected by more than one gene.
polymerase A molecule that catalyzes the synthesis of DNA or RNA from a single-stranded tem-

plate and free deoxynucleotides (e.g., during PCR).
polymerase chain reaction (PCR) A technique to replicate a desired segment of DNA. PCR 

starts with primers that flank the desired target fragment of DNA. The DNA strands are first 
separated with heat, and then cooled allowing the primers bind to their target sites. Polymerase
then makes each single strand into a double strand, starting from the primer. This cycle is
repeated multiple times creating a 106 increase in the gene product after 20 cycles and a 109

increase over 30 cycles.
polymorphic The presence of more than one allele at a locus. Generally defined as having the

most common allele at a frequency less than 95% or 99%.
polymorphism The presence of more than one allele at a locus. Polymorphism is also used as a

measure of the proportion of loci in a population that are genetically variable or polymorphic (P).
polyphyletic A group of taxa classified together that have descended from different ancestor taxa

(i.e., taxa that do not all share the same recent common ancestor).
polyploid Individuals whose genome consists of more than two sets of chromosomes (e.g.,

tetraploids).
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population viability The probability that enough individuals in a population will survive to
reproductive age to prevent extirpation of the population.

population viability analysis (PVA) The general term for the application of models that account
for multiple threats facing the persistence of a population to access the likelihood of the popula-
tion’s persistence over a given period of time. PVA helps identify the threats faced by a species,
plan research and data collection, prioritize management options, and predict the likely response
of species to management actions (e.g., reintroduction, captive breeding, or prescribed burning).

primer A small oligonucleotide (typically 18–22 base pairs long) that anneals to a specific single-
stranded DNA sequence to serve as a starting point for DNA replication (e.g., extension by poly-
merase during PCR).

private allele An allele present in only one of many populations sampled.
probability The certainty of an event occurring. The observed probability of an event, r, will

approach the true probability as the number of trials, n, approaches infinity.
probability of identity (PI) The probability that two unrelated (randomly sampled) individuals

would have an identical genotype. This probability becomes very small if many highly polymor-
phic loci are considered.

product rule A statistical rule that states that the probability of ni independent events occurring is
equal to the product of the probability of each n independent event.

propagule A dispersal vector. Any disseminative unit or part of an organism capable of indepen-
dent growth (e.g., a seed, spore, mycelial fragment, sclerotium bud, tuber, root, or shoot).

propagule pressure A measure of the introduction of nonindigenous individuals that includes
the number of individuals (or propagules) introduced and the number of introductions.

proportion of admixture The proportion of alleles in a hybrid swarm that come from each of the
parental taxa.

protein A polypeptide molecule.
PSC See phylogenetic species concept.
pseudo-overdominance See associative overdominance.
purging The removal of deleterious recessive alleles from a population through inbreeding

which increases homozygosity which in turn increases the ability of selection to act on recessive
alleles.

PVA See population viability analysis.

QTLs See quantitative trait loci.
quantitative trait loci (QTLs) Genetic loci that affect phenotypic variation (and potentially fit-

ness), which are identified by a statistically significant association between genetic markers and
measurable phenotypes. Quantitative traits are often influenced by multiple loci as well as envi-
ronmental factors.

RAPD Randomly amplified polymorphic DNA. A method of analysis where PCR amplification
using two copies of an arbitrary oligonucleotide primer is used to create a multilocus fingerprint
(i.e., band profile).

reciprocal monophyly A genetic lineage is reciprocally monophyletic when all members of the
lineage share a more recent common ancestor with each other than with any other lineage on a
phylogenetic tree.

recombination The process that generates a haploid product of meiosis with a genotype differing
from both the haploid genotypes that originally combined to form the diploid zygote.

reintroduction The introduction of a species or population into a historical habitat from which it
had previously been extirpated.

relative fitness A measure of fitness that is the ratio of a given genotype’s absolute fitness to the
genotype with the greatest absolute fitness. Relative fitness is used to model genetic change by
natural selection.
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rescue effect When immigration into an isolated deme (either genetically or demographically)
reduces the probability of the extinction of that deme.

restriction enzyme An enzyme (see endonuclease), isolated from bacteria, that cleaves DNA at a
specific four or six nucleotide sequence. Over 400 such enzymes exist that recognize and cut over
100 different DNA sequences; used in RFLP, AFLP, and RAPD analysis and to construct recom-
binant DNA (in genetic engineering).

restriction fragment length polymorphism (RFLP) A method of genetic analysis that examines
polymorphisms based on differences in the number of fragments produced by the digestion 
of DNA with specific endonucleases. The variation in the number of fragments is created by
mutations within restriction sites for a given endonuclease.

reverse mutation rate Back mutation rate. The rate at which a gene’s ability to produce a func-
tional product is restored. This rate is much lower than the forward mutation rate because there
are many more ways to remove the function of a gene than restore it. Also used to describe muta-
tion at microsatellite loci where (under the stepwise mutation model, for example) a back muta-
tion yields an allele of length that already exists (i.e., homoplasy) in the population.

RFLP See restriction fragment length polymorphism.
ribonucleic acid (RNA) A polynucleotide similar to DNA that contains ribose in place of deoxyri-

bose and uracil in place of thymine. RNA is involved in the transfer of information from DNA,
programming protein synthesis, and maintaining ribosome structure.

Robertsonian fission An event where a metacentric chromosome breaks near the centromere to
form two acrocentric chromosomes.

Robertsonian fusion An event where two acrocentric chromosomes fuse to form one metacen-
tric chromosome.

Robertsonian translocation A special type of translocation where the break occurs near the 
centromere or telomere and involves the whole chromosomal arm so balanced gametes are 
usually produced.

SARA See Species at Risk Act of Canada.
selection coefficient The reduction in relative fitness, and therefore genetic contribution to

future generations, of one genotype compared to another.
selection differential The difference the mean value of a quantitative trait found in a population

as a whole compared to the mean value of the trait in the breeding population.
selective sweep The rapid increase in frequency by natural selection of an initially rare allele that

also fixes (or nearly fixes) alleles at closely linked loci thus reduces the genetic variation in a
region of a chromosome.

sensitivity testing A method used in population viability analyses where the effects of parame-
ters on the persistence of populations are determined by testing a range of possible values for
each parameter.

sequential Bonferroni correction A method, similar to the Bonferroni correction, that is used 
to reduce the probability of a Type I statistical error when conducting multiple simultaneous
tests.

sex chromosomes Chromosomes that pair during meiosis but differ in the hererogametic sex.
sex-linked locus A locus that is located on a sex chromosome.
sexual selection Selection due to differential mating success either through competition for

mates or mate choice.
shadow effect A case usually caused by low marker polymorphism in mark–recapture studies in

which a novel capture is labeled as a recapture due to identical genotypes at the loci studied.
SINEs Short interspersed nuclear elements.
single nucleotide polymorphism (SNP) A nucleotide site (base pair) in a DNA sequence that is

polymorphic in a population either due to transitions or transversions and can be used as a
marker to assess genetic variation within and among populations. Usually only two alleles exist
for a SNP in a population.

CATD01  28/05/2007  06:15PM  Page 540



GLOSSARY 541

SMM See stepwise mutation model.
SNP See single nucleotide polymorphism.
species A group of organisms with a high degree of physical and genetic similarity, that naturally

interbreed among themselves and can be differentiated from members of related groups of
organisms.

Species at Risk Act of Canada (SARA) Legislation (passed in 2002) to prevent wildlife species
from becoming extinct and secure the necessary actions for their recovery. It provides for the
legal protection of wildlife species and the conservation of critical habitat.

species concepts The ideas of what constitutes a species, such as reproductive isolation (BSC), or
monophyly of a lineage (PSC).

species scale The spatial scale encompassing an entire species’ distribution.
SSRs Simple sequence repeats. See microsatellite.
stable polymorphism A polymorphism that is maintained at a locus through natural selection.
stabilizing selection Selection for a phenotype with a more intermediate state.
stepping stone model of migration A model of migration in which the probability of migration

between nearby or adjacent populations is higher than the probability of migration between dis-
tant populations.

stepwise mutation model (SMM) A model of mutation in which the microsatellite allele length
has an equal probability of either increasing or decreasing (usually by a single repeat unit, as in the
strict one-step SMM).

stochastic The presence of a random variable in determining the outcome of an event.
stock A term generally used in fisheries management that refers to a population that is demo-

graphically independent and often represents a subunit (e.g., MU) of an ESU.
STR Short tandem repeat. See microsatellite.
subpopulations Groups within a population delineated by reduced levels of gene flow with other

groups.
subspecies A taxonomically defined subdivision within a species that is physically or genetically

distinct, and often geographically separated.
sum rule A statistical rule that states that the probability of ni mutually exclusive, independent

events occurring is equal to the sum of the probabilities of each n event.
supergene Allelic combinations found at closely linked loci that affect related traits and are inher-

ited together. An example of a supergene is the major histocompatibility complex (MHC), which
in humans contains more than 200 genes adjacently located over several megabases of sequence
on chromosome 6.

supernumerary chromosome A chromosome, often present in varying numbers, that is not
needed for normal development, lacks functional genes, and does not segregate during meiosis.
These small chromosomes, which are also called B chromosomes, are present in addition to the
normal complement of functional chromosomes in an organism.

supportive breeding The practice of removing a subset of individuals from a wild population for
captive breeding and releasing the captive-born offspring back into their native habitat to inter-
mix with wild-born individuals and increase population size or persistence.

sympatric Populations or species that occupy the same geographic area.
synapomorphy A shared derived trait between evolutionary lineages. A homology that evolved

in an ancestor common to all species on one branch of a phylogeny, but not common to species
on other branches.

Taq The bacterium Thermus aquaticus from which a heat stable DNA polymerase used in PCR was
isolated.

telomere A tandemly repeated segment of a short DNA sequences, one strand of which is G-rich
and the other strand is C-rich, that form the ends of linear eukaryotic chromosomes.

threshold The point at which environmental (or genetic) changes produce large phenotypic
changes in an organism (or population). For example, there could be a threshold effect of
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inbreeding on fitness such that after a certain level of inbreeding is reached, individual fitness
declines increasingly rapidly.

threshold character A phenotypic character that contains a few discrete states that are controlled
by many genes underlying continuous variation, which affects a character phenotypically only
when a certain physiological threshold is exceeded.

Time since the most recent common ancestor TMRCA.
TMRCA Time since the most recent common ancestor.
TRAFFIC A wildlife trade monitoring network sponsored by the WWF and IUCN.
transgressive segregation Hybridization events that produce progeny that express phenotypic

values outside the range of either parental phenotypic value. These differences are usually due to
the disruption of polygenic traits.

transition The more common single nucleotide mutation (or polymorphism) that results from 
a point mutation in which a purine is substituted with a purine (G↔A) or a pyrimidine is sub-
stituted with a pyrimidine (C↔T).

translocation (1) The movement of individuals from one population (or location) to another that
is usually intended to achieve either genetic or demographic rescue of an isolated population. (2)
A rearrangement occurring when a piece of one chromosome is broken off and joined to another
chromosome.

transposable element Any genetic unit that can insert into a chromosome, exit, and relocate;
includes insertion sequences, transposons, some bacteriophages, and controlling element. A
region of the genome, flanked by inverted repeats, a copy of which can be inserted at another
place; also called a transposon or a jumping gene.

transposon A mobile element of DNA that jumps to new genomic locations through a DNA
intermediate and which usually carries genes other than those that encode for transposase pro-
teins used to catalyze movement.

transversion The replacement of a purine with a pyrimidine (A or G to C or T) or vice versa (C or
T to A or G). Less common than a transition.

Type I statistical error The probability of rejecting a true null hypothesis. Usually chosen, by
convention, to be 0.05 or 0.01.

Type II statistical error The probability of accepting a false null hypothesis.

underdominance See heterozygous disadvantage.
UNEP United Nations Environmental Program.
United Nations Environmental Program UNEP.
UPGMA Unweighted pair group method with arithmetic averages.
USFWS United States Fish and Wildlife Service.

variance effective number (NeV) The size of the ideal population that experiences changes in
allele frequency at the same rate as the observed population.

viability The probability of the survival of a given genotype to reproductive maturity (or of a
population to persist through a certain time interval).

VNTRs Variable number of tandem repeats. See microsatellite.

Wahlund principle The deficit of heterozygotes in subdivided populations, compared to
expected Hardy–Weinberg proportions, due to subdivision into small panmictic (random mat-
ing) demes within the large population.

Wright–Fisher model A random mating population model with complete random union of
gametes (including the possibility of selfing).

WWF World Wide Fund For Nature (formerly known as the World Wildlife Fund).
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Probability and Statistics

He has a lot of extremely abstruse, in fact almost esoteric mathematics.
Mathematics, incidentally, of a kind which I certainly do not claim to understand. I
am not a mathematician at all. My way of reading Sewall Wright’s papers, which I
think is perfectly defensible, is to examine the biological assumptions the man is
making, and to read the conclusions he arrives at, and hope to goodness that
what comes in between is correct.

Theodosius Dobzhansky (1962)

Current research in population genetics employs advanced mathematical 
methods that are beyond the reach of most biology students.

James F. Crow (1986)

A1 Probability, 546

A2 Statistical measures and distributions, 548

A3 Frequentist hypothesis testing, statistical errors, and power, 557

A4 Maximum likelihood, 561

A5 Bayesian approaches and MCMC (Markov chain Monte Carlo), 562

A6 Approximate Bayesian computation (ABC), 567

A7 Parameter estimation, accuracy, and precision, 567

A8 Performance testing, 569
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A9 The coalescent and genealogical information, 570

Guest Box A Is mathematics necessary?, 575

The gulf between mathematical population genetics and the understanding of most 
biologists has greatly increased over the last 20 years because of the introduction of a 
variety of new theoretical and computational approaches (see Guest Box A). This can
make it difficult for conservation geneticists to analyze new data sets with recent com-
putational approaches, and to publish their results in peer-reviewed conservation journals
(Example A1).

The purpose of this appendix is to provide biologists with a basic understanding of the
mathematical and statistical approaches used in this book. We have modeled this section
after the appendices that appear in Crow and Kimura (1970) and Crow (1986), with sub-
stantial use of Dytham (2003). We have not tried to provide mathematical rigor, but rather
intend to make clear the general nature and limitations of the mathematical and statistical
approaches used in this book. We aim to provide a conceptual understanding of different
statistical approaches and show how to interpret results, rather than to teach details about
how to actually conduct a certain statistical test or likelihood estimation.

There are three main approaches or paradigms to statistical inference: frequentist, 
likelihood based, and Bayesian approaches. Likelihood methods are sometimes classified
within the frequentist approach (see Section A4). Here, we first give a brief historical 
perspective and explain the major differences between the three approaches. Then, we
present concepts of probability and basic statistics including hypothesis testing. Finally, 
we return to discuss in more detail likelihood and Bayesian approaches, along with the
coalescent and MCMC (Markov chain Monte Carlo), and their importance in conserva-
tion genetics.

Example A1 Problems understanding sophisticated computational approaches

The senior author of this book was an Associate Editor in the initial days of the
journal Conservation Biology. In the early 1990s, he handled a manuscript that
applied some fairly sophisticated mathematical population genetics theory to a
problem in conservation. He received the following review comments from a 
well-known population geneticist: “According to the Instructions to Reviewers for
this journal, manuscripts should be understandable to conservation managers
and government officials. It is not reasonable to expect either of these groups 
to understand stochastic theory of population genetics.” This problem is much
worse now than in the early 1990s because of the increasing sophistication of
computational approaches as presented in this appendix. It is becoming increas-
ingly important to analyze empirical data with complex statistical approaches.
However, it is also becoming increasingly difficult to evaluate the reliability of
these analyses.
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The Bayesian philosophy and statistical approach to data analysis was developed in the
18th century by the Reverend Thomas Bayes. The classic frequentist approach was formal-
ized later, during the early 1900s, by K. Pearson, R. A. Fisher (from England), and J. Neyman
(from Poland); it quickly became dominant in science. Modern likelihood analysis was
developed almost single-handedly by R. A. Fisher between 1912 and 1922. A revival of the
Bayesian approach has occurred during the last 5–10 years, thanks to advances in com-
puter speed and simulation-based algorithms such as MCMC (see Section A5) that allow
the analysis of complex probabilistic models containing multiple interdependent para-
meters such as genotypes, population allele frequencies, population size, migration rates,
and variable mutation rates across loci.

The frequentist approach to statistical inference often involves four steps: stating a
hypothesis, collecting data, computing a summary statistic (e.g., FST = 0.01), and then
inferring how frequently we would observe our statistic (0.01) by chance alone if our 
null hypothesis (H0) is true (e.g., H0: FST = 0.00). If our statistic is so large, e.g., FST = 0.10,
that we expect to observe it very infrequently by chance alone (e.g., only once per 100
independent experiments), we would reject the null hypothesis. The frequentist approach
determines the expected long-term frequency of an observation or a summary statistic, 
if we were to repeat the experiment or observation many times. Frequentist approaches
typically use the moments of the distribution (of a summary statistic) and thus are called
“methods of moments”. The moments are the mean and variance, as well as skewness and
kurtosis. These concepts are discussed in detail below.

Likelihood approaches typically involve four steps: collecting data, developing a 
mathematical model with parameters (e.g., FST), plugging into the model the raw data
(not a summary statistic), and computing the likelihood of the data for each of all possible
parameter values, for example FST = 0.00, 0.01, 0.02, up to 1.00. This requires many com-
putations or iterations. We then identify the parameter value that maximizes the like-
lihood of obtaining our actual data under the model. The main advantage of likelihood 
over frequentist approaches is that likelihood uses the raw data (e.g., allele counts at each
locus separately) and not a summary of it, e.g., FST averaged across loci (see Section A4).
Thus more information is used from the data (e.g., interlocus variation in FST), and 
therefore the estimates of parameters (and inference in general) should be more accurate
and precise.

The Bayesian approach is distinct in that: (1) it can incorporate prior information (e.g.,
data from previous studies) to compute a probability estimate (i.e., a “posterior probabil-
ity”); and (2) it directly yields the probability that the hypothesis of interest is true, e.g.,
HA: FST > 0.00. Thus it more directly tests a hypothesis than frequentist methods that
assess how frequently we expect to observe a summary statistic (e.g., FST = 0.10) if the null
hypothesis is true (recall that the null hypothesis is not the direct hypothesis of interest in
the frequentist approach, but rather is the hypothesis we try to reject, see Section A3).

The Bayesian approach is model based, like likelihood. In fact it combines likelihood
computation with prior information to obtain a modified likelihood estimate called the
posterior probability (see Section A5). Further, Bayesian approaches compute the prob-
ability (posterior probability) of the parameter given the data, whereas likelihood computes
the probability of the data for a given parameter value (to find the maximum value). For
example, when estimating Ne, the Bayesian approach outputs the (posterior) probability for
different Ne values (e.g., for Ne = 0 to 500) given the data (see Section A5), whereas likelihood
finds the parameter values that maximize the probability of the data (see Section A4).
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We will return to Bayesian and likelihood methods again, after considering the important
concepts of probability, statistical distributions, and hypothesis testing. Such concepts will
help in the understanding of the different methods of statistical inference and modeling.

A1 Probability

Probability was defined in 1812 by a French mathematician, Pierre Simon Laplace, as a
number between 0 and 1 that measures our certainty of some event. A probability of 1.0
means the event is 100% certain to occur. An example use of probability in conservation
genetics is in estimating the probability of loss (by genetic drift) of an allele at frequency
0.95. It is simply the frequency of the allele (0.95) in the population, assuming no selection.
For another example see Table 6.1. Probability concepts (including probability distribu-
tions, such as posterior distributions) are important in statistics for using samples from a
population to make inferences about the population, based on the sample characteristics
(see next section below).

Two important probability rules that we often use in genetics are the addition and 
product rule. The addition rule is illustrated in Box 5.1. The addition rule (also known as
the “either/or” probability rule) states that the probability of any of several mutually
exclusive events occurring equals the sum of separate probabilities of each event. In con-
servation genetics, we often study the probability of mutually exclusive events, such as
being male or female, or of originating from population X versus population Y or Z (see
also Box 5.1). The sum of mutually exclusive events adds to one (1.0). For example, using
Bayesian assignment tests (e.g., Section 9.8), the estimated probability of an individual
(multilocus genotype) originating from population X, versus Y or Z, might be 0.00, 0.01,
and 0.99, respectively, all of which sum to a total probability of 1.0.

The product rule says that the probability of two independent events is equal to the
product of the probabilities of the two events. The product rule (also called the “both/
and” rule) is illustrated as follows: the probability a heterozygous parent will transmit
both the A allele at a locus (Aa) and the B allele at another locus (Bb) is (0.50 × 0.50) = 0.25,
assuming independent loci. For an example application, consider a wildlife forensics case
where the four-locus genotype from a blood stain is Aa/Bb/CC/dd. What is the probability
of randomly sampling a second individual with an identical genotype from this popula-
tion, if the genotype frequencies are as follows: Aa = 0.25, Bb = 0.50, CC = 0.10, and 
dd = 0.10? Using the product rule (and assuming four independent loci), P(Aa Bb CC dd) =
(0.25)(0.50)(0.10)(0.10) = 0.00125 (see also Example 20.1).

The probability of an event can be estimated from a large number of observations – e.g.,
flipping a coin hundreds of times and computing the long-term frequency of heads 
versus tails. This is called an empirical probability because it is obtained through empirical
observations. This conceptual framework involving repeated events and their “long-run”
frequency is known as the “frequentist approach” to probability and statistics.

The above concepts of probability are “objective probabilities”. That is, there is no 
subjectivity, best guess, or intuition involved in computing the probability. For example,
we know from Mendel’s laws that each allele at a locus generally has an equal probability
of being transmitted. Furthermore, if we did not know the probability (50 : 50), we could
empirically estimate the probability via repeated observations (e.g., repeated transmissions
of alleles through genealogies or pedigrees).
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A disadvantage of this frequentist approach is that it cannot give probability estimates
for rare or infrequent events. Further, frequentist probability estimates cannot incorpor-
ate common sense or prior knowledge because the estimates are based only on a sample.
For example, if you flip a coin 10 times and obtain only three heads your probability 
estimate will be 0.30. However, prior knowledge that unfair coins are rare would lead us to
suspect that the estimate of 0.30 is too low (and should be close to 0.50). In this case a more
subjective approach to estimating probability could be used to incorporate of all available
information (prior information that unfair coins are rare), and thereby obtain an estimate
closer to 0.50.

“Subjective probability” is an important concept because it facilitates an alternative
approach for describing probabilities. It can take into account previous knowledge or “best
guesses”. For example, when computing the probability of extinction for a certain popu-
lation, we can use input parameters in a population viability model (e.g., vortex, Chap-
ter 14), which include “best guesses” or intuitive predictions. When modeling population 
viability and the cost of inbreeding on population growth, we might use the average cost
measured across mammals in captivity, if no data exist for our particular mammal species.
The average cost of inbreeding is approximately a 30% reduction in juvenile survival of
progeny produced by mating full-sibs (F = 0.25) for mammals in captivity (see Section
13.5). This best guess of the cost is a somewhat “subjective probability” if we do not 
measure the cost in the actual species and population being studied.

Another example of a “subjective probability” (and nonfrequentist approach) is when
estimating the probability of a 1° temperature increase due to global warming. This type
of computation often is conducted using a somewhat subjective model and parameter 
values (e.g., including uncertainties inherent in the feedback processes that must be
included in climate models).

Subjective probabilities are used in the Bayesian statistical approach (described below)
that uses Bayes’ theorem to incorporate prior information. The Bayesian approach uses a
modifiable (or relativist) view of probability by using prior probability estimates (from
prior knowledge) and then updating them with new data (from new observations) to give
an “improved” posterior probability estimate.

A1.1 Joint and conditional probabilities

We often must compute the probability of two events (E ) occurring at the same time. This
leads us to consider joint and conditional probabilities. For an example, in order for
inbreeding to increase the risk of population extinction, it is necessary that inbreeding
reduces individual fitness (E1 = inbreeding depression) and that the reduced individual
fitness also leads to reduced population fitness (E2 = reduced population growth rate).
Here, P(E1 and E2) is the joint probability of E1 and E2. Joint probabilities are important in
the modeling of complex processes (e.g., Bayesian inference of processes) that have mul-
tiple sources of variation; for example, allele frequency changes are influenced by multiple
sources of variation such as drift, selection, and migration (Beaumont and Rannala 2004).

A conditional probability is the probability of an event given that another event has 
happened. Conditional probabilities are used whenever considering events that are not
independent. For example, if the effect of inbreeding on fitness increases with environ-
mental stress, then we could compute the probability of inbreeding depression conditional
upon a certain stress such as temperature change (resulting from global warming or an
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unusually hot summer). A conditional probability, the probability of E2 given E1, i.e., 
conditioned on E2, is defined as follows:

P(E2|E1) = (A1.1)

Note that conditioning on an independent event does not change the probability of the
event, i.e., P(E1|E2) = P(E1).

Bayes’ theorem is used to obtain a posterior probability conditioned on the data avail-
able from a sample. The posterior probability P(E1|E2) uses the prior probability P(E1)
conditioned on the event E2 (the sample of data). Thus, the Bayesian approach computes
revised (updated) estimates of the probability of event E1 by conditioning on new data
(E2), as data become available. A prior probability can be “flat” and thus uninformative;
For example, we could consider that microsatellite mutation rates range from 10−2 to 10−6,
with all values having an equal probability (a flat probability distribution). Alternatively,
we could use a bell-shaped prior probability distribution with a higher probability for
mutation rates between 10−3 and 10− 4, which is consistent with published observations
suggesting that mutation rates are most often near 10−3 or 10−4.

A1.2 Odds ratios and LOD scores

Another probability concept important in conservation genetics is that of “odds”. The
probability of an event can be expressed as the odds of an event. The odds ratio for an event
E is computed as the probability that E will happen divided by the probability that E will
not happen. Thus, for example, the probability 0.01 has the odds of 1 to 99 (or 1/99). Odds
ratios (also called likelihood odds ratios) are used, for example, in paternity analysis to
decide if one candidate father is more likely than another candidate to be the true father
(Marshael et al. 1998).

Odds ratios also are used in assignment tests to decide if population X is more likely
than population Z to be the origin of an individual (Banks and Eichert 2000). For example,
we can compute the probability (expected genotype frequency, e.g., 2pq, for a heterozygote)
of a multilocus genotype originating (occurring) in Pop X versus Pop Z. If the logarithm 
of the ratio of the probabilities is very large (e.g., Log10{P [Pop X]/P [Pop Z]}), we can 
conclude that Pop X is the origin of the individual. For example, we might decide to assign
individuals to Pop X if the log of the odds (LOD) ratio is at least 2.0. In this case, with 
LOD = 2.0, we expect only 1/100 erroneous assignments where an individual assigned 
to Pop X actually originates from Pop Z. If the LOD score is 3.0, we expect only 1 in 1,000
erroneous assignments (e.g., Banks and Eichert 2000).

A2 Statistical measures and distributions

A statistic is any descriptor of some characteristic of a “population” of observations.
Statistics are computed from samples because the entire population of observations 
usually can not be collected. We can divide statistics into five categories based on the ques-
tions they address: descriptive, tests for differences, tests for relationship, multivariate
exploratory methods, and estimators of population parameters (Dytham 2003).
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A2.1 Kinds of statistics

Descriptive statistics are computed to describe and summarize sample data during the 
initial stages of data analysis, without fitting the data to a probability distribution or model
(e.g., the normal distribution or model). Since no probability models are involved, descrip-
tive statistics are not used to test hypotheses or to make testable predictions about the
whole population. Nevertheless, computing descriptive statistics is an important part of
data analysis that can reveal interesting features in the sample data. Examples of descrip-
tive statistics are the mean and variance, which are described below (see Section A2.2).

Tests of difference address questions like “is genetic variation (heterozygosity) different
in population A and B?”. Here, the null hypothesis becomes “A and B are not different”.
Tests for differences can also be used to compare distributions. For example we might ask if
the shape of the distribution of allele frequencies is different in population A and B (e.g., if
the proportion of low frequency alleles is the same in A and B). There are many statistical
tests for differences, including parametric and nonparametric tests described below.

Tests for relationship ask questions like “is fitness related to inbreeding level or het-
erozygosity?”. A null hypothesis might be: “heterozygosity is not associated with juvenile
survival.” Two classes of tests for relationships are correlation and regression. Correlation
assesses the degree of association without implying a cause and effect. Regression fits a
relationship (e.g., linear or curvilinear) between two variables so that one can be predicted
from the other, implying a cause and effect relationship. The effect of inbreeding on fitness
traits can be predicted via regression (lethal equivalents, see Section 13.5.1 and Figure
13.12). We could imagine a scenario where inbreeding is associated with reduced fitness,
but inbreeding is not the direct cause. For example, if individuals from population A are
more inbred, but also have poorer nutrition than individuals from population B, a correla-
tion (between populations) for individual growth rate versus inbreeding could be caused
by the environment, not genetics. A factor complicating the assessment of relationships is
interactions (e.g., genetic by environment interactions). There are many ways to test for
correlations, compute regressions, and account for interactions.

Multivariate exploratory techniques ask questions such as “are there major patterns 
in the data?”, or “can we assign individuals to groups (based on multilocus genotypes)?”, 
or “which variable (e.g., locus) is most useful (i.e., explains most the variance) when
assigning individuals to groups?”. Multivariate exploratory techniques can help identify
hypotheses to test. In large data sets with multiple variables (e.g., many loci, morpholog-
ical, or environmental measurements) we might not initially test a specific hypothesis
because so many potential hypotheses exist. Exploratory techniques are more appropriate
for generating hypotheses than for formally testing them (i.e., they do not yield P-values,
likelihoods, or probability values). A wide range of statistical approaches exist such as 
principal component analysis (PCA), frequency correspondence analysis (FCA), multidi-
mensional scaling (MDS), cluster analysis, analysis of variance (ANOVA), or analysis of
molecular variance (AMOVA) (e.g., Section 9.7).

Statistical estimators infer a population parameter using data that are related to that
parameter. For example, we could infer the effective population size (Ne) from data on the
temporal change in allele frequencies between two generations. Change in allele frequen-
cies is influenced by Ne, but might also be influenced by sample size, population structure,
demographic status (expanding/declining), and selection or mutation rates. There are 
different approaches to statistical estimation (method of moments, maximum likelihood,
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Bayesian, and approximate Bayesian methods based on summary statistics; see below, e.g.,
Sections A3, A4, and A5).

Statistical tests (e.g., for differences or relationships) can be divided into two classes:
parametric and nonparametric. Parametric statistics assume that the data follow a known
distribution (a probability distribution) – usually the normal distribution. Parametric dis-
tributions can be defined completely using very few parameters (e.g., only the mean and
variance, in a function or formula). Parametric statistical tests are generally more power-
ful than nonparametric tests, and thus are preferred (see below). An example parametric
test is the t-test, which assumes a normal distribution; it can be used to compare mean 
heterozygosity from two population samples, if the distribution of heterozygosity among
the loci is similar to the normal distribution (Archie 1985).

Nonparametric statistics require no knowledge (no assumptions) about the distribution
of the data or test statistic. Therefore nonparametric statistics are called “distribution-free”
tests. They are also called “ranking tests” because they often involve ranking observations
to generate an empirical cumulative distribution. These tests are generally less powerful,
but safer than parametric tests if the data might not follow a parametric distribution. An
important example is the Wilcoxon’s signed-ranks test (a nonparametric version of the 
t-test), which often is used to compare mean heterozygosity from each of two population
samples.

A2.2 Measures of location and dispersion

In statistics, the “population” is defined as the totality of the observations of some charac-
teristic we are studying. The sample is a subset of observations. We compute sample statis-
tics to infer the population parametric value of a parameter (e.g., the mean). For any trait
X, the general formula for the sample mean and population mean are as follows:

(A1.2)

(A1.3)

where i is the individual number, the bar over the x is the mean, and N and n are the popu-
lation size and sample size, respectively.

The mean is a statistical measure of “central value” or the central location (of a distribu-
tion). The arithmetic mean is given by expression A1.2. Another kind of mean important
in population genetics is the harmonic mean (see expression 7.8), which gives more
weight to observations with small values. The harmonic mean is used for computing 
the effective population size from successive Nc estimates. An interesting controversy in
conservation genetics results from, in part, confusing the arithmetic and harmonic mean
when computing the ratio of Ne : Nc. The Ne, averaged across generations, is always 
computed as a harmonic mean, whereas Nc averaged across generations is often com-
puted as an arithmetic mean. The harmonic mean is strongly influenced by low values
causing the (harmonic) mean Ne estimates to be lower than (arithmetic) mean Nc. Thus,
the estimates of Ne : Nc ratios (averaged across generations) can be biased low due to the
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statistical artifact of using the harmonic mean of Ne but the arithmetic mean of Nc (see
Chapters 7 and 15).

Other familiar measures of central location are the median and mode. An advantage of
the median is that it is less influenced than is the mean by the skewness of the distribution
of the statistic (i.e., the median is resistant to extreme high or low outlier values). Thus, the
median is said to be a relatively robust (or resistant) measure of central location.

A statistical measure of variability (or “dispersion”) of points around the mean is the
variance. If all points have the same value there is no dispersion and the variance is zero. 
If points have only very high and very low values, the variance would be quite high. 
The variance is the average of the squared deviations from the mean – i.e., the mean is 
subtracted from each observation point, this difference is squared, and the average of 
the squares in computed. The population variance (σ2

x ) and sample variance (s2
x ) are 

computed as follows:

(A1.4)

(A1.5)

where n (and N ) is the number of sample (and population) observations, as above.
The standard deviation is another important measure of dispersion. It is computed as

the square root of the variance (sx = √[V(x)], where sx is the standard deviation). We take
the square root of the variance to avoid having to think in terms of squared measures,
which are less interpretable (for example, it is easier to interpret the “height” of individuals
than the “height squared”). Furthermore, recall that one standard deviation under the 
normal (bell-shaped) distribution encompasses 68% of the central area, while two stand-
ard distributions encompasses 95%, and three standard deviations contain 99% (99% fall
between µ ± 3σ; see Section A2.3). Probability distributions such as the normal distribu-
tion, and their use for describing dispersion, are discussed more in the next section.

The standard error is a measure of the dispersion of a sample statistic (e.g., the sample
mean, X). The standard error of the mean should not be confused with the standard devia-
tion of a variable, which describes the probability distribution of the underlying raw data
or parameter (x). For example, the standard error describes the distribution of the sample
mean heterozygosity, whereas the standard deviation describes the sampling distribution
of the raw parameter heterozygosity (see Section A2.4 and Example A2 below).
Probability distributions are discussed in the next section. Unfortunately, in publications,
standard error and standard deviation are often confused or not well differentiated.

A2.3 Probability distributions

Probability distributions are important to understand because statistical tests and estimators
require the use of a probability distribution. Different types of variables (mean, variance,
FST) have different probability distributions (Figure A1).

A probability distribution for a discrete variable x (e.g., number of subpopulations 
represented in a sample of individuals) gives the probability of all the possible values of s
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(x = 1, 2, 3 . . . ). Probability distributions are generally illustrated graphically as a curve
(or frequency histogram). The total area under a probability curve is 1.0. The probability
of a rare or unusual observation is represented as a small area (e.g., 0.05) in the tail(s) of the
distribution. We can obtain an empirical estimate of a probability distribution by plotting
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Figure A1 Probability distributions important in conservation genetics. (a) The Poisson
distribution with a mean from 1 up to 9 (nine curves). (b) Normal (Gaussian) distributions
with variance (s) from 0.5 to 4, and mean 5. (c) The chi-square distribution (d.f. refers to the
degrees of freedom). Modified from P. Bourke (personal communication).
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the relative frequency (histogram) of occurrence of each observation (for example, height
of each individual) in a sample.

Binomial

An important probability distribution in genetics is the binomial distribution. The bino-
mial is one of several theoretical probability distributions used for modeling (approximat-
ing) the distribution of observed data that occur in discrete classes (e.g., genotypes at a
locus), as opposed to a continuous distribution of observations (e.g., height). The binomial
is useful for modeling the proportion of binary events (male versus female births; trans-
mission of allele A versus a; or survival versus death) that occur in a population sample 
of size n. Note that when more than two events are possible, we can use the multinomial
distribution – a simple extension of the binomial.

The binomial distribution contains information on the number of times, x, an event
with probability π occurs in a fixed number of observations n. The binomial distribution
can be described as:

(A1.6)

The factorials in the fraction (left side) give the number of ways m positive outcomes
(transmission of A) can occur out of n events (offspring). The binomial has a variance of:

V(X ) = nπ (1 − π) (A1.7)

For example, if the probability of transmitting the A allele is π = 0.50, then out of 100 trans-
missions (offspring), we expect a mean of 100 × 0.50 = 50 transmissions of the A allele,
with a variance of 100 × 0.50 × 0.50 = 25 (standard deviation = 5.0). When the number of
observations (n) becomes large, the binomial approaches the normal distribution.

Poisson

The Poisson distribution is another discrete distribution that is widely used in conserva-
tion genetics and ecology (Figure A1). The Poisson assumes an event is rare (relative to the
maximum number of possible events), and that events are independent. Thus, the Poisson
is used to model rare and independent events that occur in a spatial or temporal sample.
For example, in genetics, the Poisson is used to model the probability of mutations
through time (e.g., under the coalescent, see Section A9), because mutations are rare
events that arise randomly (among individuals or lineages). The Poisson also is used to
model variance in family size (reproductive success), as in expression 7.5 (see Figure 7.4).
Ecologists use the Poisson to test if the distribution of organisms over space is uniform 
versus random. For example, if the observed variance in distance between individuals is
less than the mean distance, then the spacing is more uniform than random.

An important property of the Poisson is that the mean equals the variance. For example,
when using the Poisson to model a stable-sized (stationary) population, the mean family
size (number of offspring per mating pair) equals two, as does the variance. This widely
used model is called the “Wright–Fisher model” (see Section 6.1). In such an ideal model,
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the effective population size (Ne; see Section 7.1) equals the census size (Nc). Although the
Poisson is useful here, we know that in natural populations Ne is generally less than Nc
because, for example, the variance in family size is often high (>2.0) (see Figure 7.5). Thus
the Poisson is not always the most appropriate distribution for modeling Ne or variance in
reproductive success in natural populations.

Under the Poisson, the probability of any number x of occurrences is:

(A1.8)

where the mean number of occurrences µ equals N (the population size).

Normal

The normal (Gaussian) distribution is the most widely used continuous distribution – it is
the famous symmetric “bell-shaped” curve (Gauss 1809; see Figure A1b). The binomial
distribution approaches the normal as sample sizes increase. Thus, for example, the shape
of the distribution of the observed heterozygosity (H0) at a locus approaches a smooth bell
shape, when sample size approaches 50–100 individuals.

The normal distribution is useful for modeling many observed variables because of the
central limit theorem, which states that the distribution of the sample mean will approach
the normal distribution as the sample size of observations increases (even if the observed
variable itself is not normally distributed!). A normally distributed random variable is
described by the following function:

(A1.9)

For any continuously distributed variable, the probability distribution is defined as the
probability of a random variable being less than or equal to a particular value P(X ≤ x) =
P(x). Here, P(x) is called the probability distribution function. The derivative of the prob-
ability distribution is called the probability density function (pdf ). The area under any 
segment of a pdf curve is the probability of X being in a certain interval. Note that a pdf is
the output of Bayesian analyses (posterior distribution) and also of maximum likelihood
estimation (likelihood curve) where we are estimating the probability of some parameter
(e.g., Ne, FIS, or mutation rate; see below).

The population probability distribution can be estimated empirically by computing 
the cumulative frequencies of observations in a sample (e.g., by plotting a histogram of
cumulative frequencies of observations having values less than x). The accuracy of the
empirical distribution (as an estimate of the population probability distribution) increases
with large sample sizes.

Chi-square

The chi-square distribution is another continuous distribution widely used in statistics 
and in conservation genetics. It is asymmetric, unlike the normal, and ranges from zero to
infinity. The chi-square distribution is used to model and conduct tests comparing variance
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measures; thus the chi-square probability distribution is used when studying, for example,
the variance in allele frequencies (FST). The chi-square can be used to compute confidence
intervals around FST or around Ne estimates that are based on the temporal variance in
allele frequencies. Chi-square tests (using the chi-square probability distribution) are dis-
cussed extensively in Section 5.3 and Example 5.1.

We remind readers that chi-square tests use numbers (not proportions), and that if the
“expected number” in any class (e.g., genotype class) is less than approximately one (<1.0),
we should consider using an exact multinomial test (based on the multinomial probability
distribution). Exact tests are explained in Example 5.3. Exact tests are performed by deter-
mining the exact probabilities of all possible sample outcomes, and then summing the
probabilities of all equal and less probable sample outcomes, to obtain the exact probabil-
ity of the observed outcome.

A sampling distribution is a probability distribution of a sample statistic (e.g., the mean).
Readers should not confuse probability distributions of sample statistics (e.g., mean 
heterozygosity of a sample) with probability distributions of the underlying parameter
(e.g., heterozygosity at loci). Two important characteristics of sampling distributions are:
(1) they have lower variance than parameter distributions, simply because each sample
includes multiple observations; and (2) they approach the normal distribution for large
sample sizes, no matter what the parameter – a surprising principle of the central limit 
theorem. This interesting phenomenon (and the central limit theorem) explains why we
so often see the normal distribution used in statistical tests and for computing confidence
intervals.

A2.4 Interval estimates: confidence intervals and support limits

Interval estimates are usually more useful than point estimates. In fact, without an 
interval estimate, a point estimate (e.g., mean He, FST, or Ne) is generally of little value.
Two kinds of interval estimates that often are used in conservation genetics are confidence
intervals (for frequentist approaches) and support limits (e.g., in likelihood-based and
Bayesian approaches).

Confidence intervals give the range of values within which the true population para-
meter (e.g., population mean) is likely to occur, with some chosen probability (usually 95 or
99%). Thus, confidence intervals (CIs) are a measure of spread. Publications often report
95% CIs, which should span all but 5% of outcomes from repeated, independent sampling
events. Note that error bars (e.g., on histograms) often report ±1 standard errors (±1 SE,
or standard deviations of the mean), which represent 68% CIs for normal/Gaussian 
distributed statistics (Example A2). Note also that 95% CIs are nearly twice as wide as 68%
CIs, i.e., a 95% CI represent approximately ±2 SE (Figure A3).

To compute a 95% CI, we choose an alpha value of 0.05. Alpha (α) is the critical thresh-
old P-value used for rejecting the null hypothesis (e.g., if P < 0.05). For a sample statistic
t(x), we can compute a [(1 − α)100%] confidence interval as [tα/2, t1−(α/2)], with lower and
upper confidence limits of tα/2 and t1−(α/2), respectively (where tn is the nth quantile of the
sampling distribution of the population parameter T ).

Support limits are used in likelihood and Bayesian approaches instead of CIs. Support
limits can be computed, like confidence limits, such that the estimated sampling distribu-
tion (likelihood or posterior distribution) has cut-off points placing 2.5% of the probability
density area in each tail. For a graphic illustration, see Figure A3b. Support limits are 
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Table A1 Levels of LDE in the cerebrospinal fluid of
administrators and controls (Streiner 1996).

Group Number Mean SD

Administrators 25 25.83 5.72

Controls 25 17.25 4.36
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Figure A2 Computing error bars using standard deviations, standard errors (i.e.,
standard deviations of the mean), and 95% confidence intervals (assuming a normal
distribution). Note that 1.96 SE represents 95% confidence intervals. Because the error
bars do not overlap for the ±1.96 SE, we can conclude with 95% confidence that the
administrators and controls are significantly different. From Streiner (1996).

Example A2 Comparison of different types of error bars

Consider a hypothetical study where you discover a brain protein (language
destroying enzyme, LDE) that causes people to utter strange words (Streiner
1996). You think LDE is in higher concentrations in administrators than in other
people. You sample 25 administrators and 25 other people (as a control group)
and compute the mean and standard deviation (Table A1). You present the data in
a bar graph to make it more visually interpretable (Figure A2, from Streiner 1996).

But how do you compute the error bars to extend above and below each his-
togram bar? In all studies it is important to report the standard deviation because
this shows the dispersion of the actual raw data points. However, the reader gen-
erally also wants to know the sample-to-sample variation. For example, if we
repeat this study 100 times, how much variation between the means of each study
would we expect? Stated another way, how much confidence do we have in the
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generally reported with (or plotted on) a probability curve (likelihood or posterior dis-
tribution) allowing easy visualization of the probability of different outcomes just by 
“eye-balling” the curve (Figure A3b). This makes interpretation of probability estimates
(from probability curves) more straightforward than frequentist CIs.

A3 Frequentist hypothesis testing, statistical errors, and power

Hypothesis testing is widely used across scientific disciplines. It requires a formal state-
ment called the null hypothesis (H0), followed by a statistical test of the null, which deter-
mines the probability of null being true, by computing a P-value or a likelihood
(probability) distribution. The null hypothesis is a negative statement that mirrors the
alternative hypothesis. For example, a null hypothesis might be: “population X is stable or
growing”. The alternative hypothesis is: “population X is declining”.

Errors in rejecting the null hypothesis can arise because we usually have only a small
sample from an entire population and because statistical tests give only a probability that
the hypothesis is true. Two kinds of errors, Type I and Type II, are possible when conducting

estimation of the population mean from our sample mean? For this we must com-
pute a standard error (i.e., a standard deviation of the mean).

Should we report one or two standard errors? We are generally interested in a
range of values in which we are 95% certain. Thus we could report 2 SE, which
should contain approximately 95% of the study means (Figure A2). Furthermore,
2 SE are used to compute exact 95% confidence intervals (assuming a normal
distribution) when testing for statistically significant differences between popula-
tions means.

For example, using our table of the normal distribution, we find that 95% of the
area falls between −1.96 and +1.96 SE (standard deviations of the means, for this
example). We compute 95% CIs as follows:

95% CI = M ± (1.96 × SE)

where M is the mean.
Of course, ±1.96 SD of the mean nearly equals ±2 SD of the mean. Confidence

intervals show the range in which statistically significant differences exist between
means. Showing 95% confidence intervals (or ±2 SE) supports statistical testing
(see Section A3) and allows for an “eyeball test” of significance. Note that this 
eyeball approach does not work accurately when more than two groups are com-
pared because of issues of multiple tests.

How do we interpret the error bar results? If the top of the lower bar (controls)
and the bottom of the upper bar (administrators) do not overlap, then the differ-
ence between the groups is significant at the 5% level (see Section A2.4). We
could then conclude that administrators have higher concentrations of LDE.
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a statistical test; they are, respectively: (I) rejecting the null when it is true; and (II) failing to
reject the null when it if false (Table A2).

The lower the P-value, the more confident you are that the H0 is false. For example, if 
P < 0.001, you expect that in only one in 1,000 independent experiments would you observe
an outcome (statistic) as unusual as the one observed. A P-value of 0.05 is often used in
hypothesis testing as the threshold (α value) for rejecting the null hypothesis. When 
P = 0.05, we have five chances in 100 of rejecting the null when it is true (Type I error). The
use of 0.05 is arbitrary and other α values can be used (0.10, 0.01 or 0.001) depending on
the importance of avoiding a Type I error.

A decrease in the Type I error rate (choosing a low critical α value) will increase the
Type II error rate. Therefore choosing the appropriate α depends on the relative importance
of avoiding a Type I versus Type II error. For example, consider the following null 
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Figure A3 (a) A normal sampling distribution for the statistic t showing the upper and lower
68% and 95% confidence limits [tα/2, t1–(α/2)], where α (critical/threshold P-value) equals 0.32
and 0.05, respectively (see text). (b) Hypothetical probability (likelihood) distribution output
from a likelihood estimation (e.g., of Nm), and 95% support limits identified by placing 2.5% of
the area in each tail of the distribution.

Table A2 Type I and Type II errors that can
result when testing a null hypothesis.

Accept H0 Reject H0

H0 True Correct Type I error
H0 False Type II error Correct
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hypothesis: “Population X is stable or growing”. An important question is, “Would it
more risky to erroneously reject the H0 (wrongly accept that “population X is declining”)
or to erroneously fail to reject the H0 (wrongly conclude that “population X is stable 
or growing”)? If we wrongly conclude the population is stable (a Type II error), and it is
actually declining, it could lead to extinction of the population or species.

In conservation biology it often is more risky to make a Type II error than to make a
Type I error. Type I errors can be the more risky kind of error in other sciences, such as
human medicine, where we must not reject the null when it is true. For example, we
would not want to reject the following null: “H0: medication ‘X’ has no side effects”, unless
we are highly certain (P < 0.001) the null is false and there are no side effects.

A3.1 One-versus two-tailed tests

Two-tailed and one-tailed hypothesis tests exist. In a one-tailed test, the alternative
hypothesis is a deviation in only one direction (Figure A4b). For example, “HA: population
X is declining”. However in a two-tailed test, the alternative hypothesis would be: “HA:
population X is declining or growing” (i.e., changing in size) (Figure A.4a). Thus a two-
tailed test tests for deviations in either of two directions. A one-tailed test is appropriate
when: (1) biological evidence suggests a deviation in one direction (e.g., a population has
declined so we conduct a one-tailed test for reduced allelic diversity); or (2) we only care
about a deviation in one direction. For example, we might use a one-tailed test for reduced
heterozygosity in a population that recently became isolated, if we care only about detect-
ing a reduction of heterozygosity.

One-tailed tests generally have more power than two-tailed tests. Thus it is important to
understand the difference between one- and two-tailed tests, and to use one-tailed tests
when possible and appropriate. A one-tailed test (e.g., t-test) is more powerful, because
more of the “rejection region” (all 5%, not just 2.5%, in Figure A4b) is located in the one
tail that we are interested in, making it easier to reject the null hypothesis.

A3.2 Statistical power

An important consideration when choosing a statistical approach or test is its statistical
power (see also Section A8). Power is the probability of detecting an effect when the effect
or phenomenon occurs. For example, the power of a statistical test for detecting a popula-
tion decline (given that a decline occurs) is obviously important in conservation genetics.

Power is related to the Type II error rate as follows: Power = 1 − β. Thus, the power of a
test depends on the choice of beta (and alpha), such that choosing a small β leads to more
power, but requires a larger α. Other factors that influence power, besides α and β, are the
effect size (strength of the effect, e.g., severity of population decline) and the sample size
(e.g., number of individuals or loci sampled).

Power is also influenced by the chosen statistical test itself. For example, we mentioned
that parametric tests (e.g., t-test for loss of heterozygosity) are expected to be more power-
ful that nonparametric tests. A relevant example for conservation genetics is that the most
powerful test for detecting a decline in heterozygosity is not the standard t-test, but rather
a paired t-test. The paired test is more powerful because it treats each locus individually
and thereby reduces the influence of interlocus variation that often is high. For example,
different loci in a sample might have He ranging from 0.2 to 0.8, but the between-sample
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Figure A4 Illustration of a two-tailed test (a) in contrast to a one-tailed test (b). A two-tailed
test is appropriate when we do not know the direction of deviation expected (e.g., we do not
expect He to be lower (or higher) in a certain population). Panel (b) shows the conventional 
P < 0.05 (alpha = α = 0.05) as a threshold to reject the null hypothesis, whereas panel (c) shows
a more balanced approach of choosing an α value leading to similar risk of Type I versus 
Type II errors. Note that the risk of a Type II error (beta, β) is 0.60 when α is 0.05. However, 
if we choose an α of 0.325, β will also be 0.325. Further, note that the “observed statistic” does
not fall in the tail (right side of vertical dotted line for α = 0.5) in (b) (P > 0.05), so we would not
reject the null hypothesis. However in (c), we would reject the null because the statistic is
smaller than the threshold of rejection, α (P < 0.325). Modified from Taylor and Dizon (1999).
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difference in mean He that we are testing might be only 0.6 versus 0.5 (e.g., in a large versus
small population). For a more thorough explanation, see a statistics textbook. Interestingly,
Wilcoxon’s nonparametric test often is not less powerful than the parametric t-test when
monitoring for loss of heterozygosity using two temporally spaced samples (Luikart et al.
1998).

A statistical power of 0.80 is often considered by statisticians as a “reasonably high”
power for detecting the event of interest (e.g., population decline, migration, fragmenta-
tion, etc.), thus making it worth conducting the study of interest. A problem in science,
and particularly in conservation biology, is the failure of researchers to compute the power
of statistical tests. Fortunately, power analyses are becoming easier to conduct, thanks to
the increasing availability of computer simulation programs that allow simulation of 
various population scenarios (e.g., population declines) and marker numbers and types
(dominant, codominant). See the simulation programs listed on this book’s website.

A3.3 Problems with P-values

A problem with P-values and hypothesis testing via the frequentist approach is that P-
values can be difficult to interpret (compared to Bayesian posterior probabilities, see
below). A P-value should be interpreted as the chance, assuming the null is true, that you
will get a similar or more extreme result if you repeat an experiment thousands of times. A
value of P < 0.05 is sometimes misinterpreted to mean that there is 95% probability that
the alternative hypothesis is true. This is different from the actual definition, given in the
previous sentence. Furthermore, P-values tend to overstate the strength of evidence, com-
pared to Bayesian approaches (Malakoff 1999).

Another problem of P-values often arises when the P-value is low, but not “significant”.
If P = 0.06, researchers might not “reject the null” and subsequently conclude there is no
effect, e.g., no evidence the population is declining. However, as mentioned above the
choice of α = 0.05 is generally arbitrary with no theoretical basis, and in fact, P = 0.06 is
suggestive of an effect (especially if the power of the test is low). Recall that if the effect size
is small, we are unlikely to obtain a significant P-value (e.g., P < 0.05), unless sample sizes
are very large (see Section A3.2).

Another problem with P-values is that “negative results” (P > 0.05) are sometimes
difficult to publish, and can lead to a bias in the scientific literature, and an underrepresen-
tation of studies that find no “significant” effect. For example, there might be more studies
published that find a correlation between heterozygosity and fitness than do not, thereby
leading to a biased proportion of (published) studies finding a correlation. This potential
lack of publication of “negative results” has been called the “file drawer effect”, because
negative results might often end up in a file drawer, unpublished.

A4 Maximum likelihood

Likelihood is the probability of observing the data given some parameter value (e.g., 
Nm = 50), under a certain statistical model (e.g., island model of migration). Maximum
likelihood (ML) methods estimate the parameter value that maximizes the probability of
obtaining the observed data under a given model. For example, we might compute the
likelihood of each of many migration rates (Nm = 10, 11, 12 . . . , up to 500), and then
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choose the best (point) estimate of Nm as the value that has the highest (maximum) like-
lihood (e.g., approximately Nm = 40 in Figure A3).

An advantage of likelihood analysis is that it is model based and thus allows easy 
comparison of different models (even complex models), thereby improving inference
about complex processes (e.g., different dispersal patterns, mutation models, stable versus
declining population size) that might explain the data. Likelihood analysis is often used to
test the fit of two different models by using the ratio of the MLE (maximum likelihood
estimate) for one versus the other model. For example, if one model is far more likely [e.g.,
log10(MLE1/MLE2) > 3], we might reject the second model for MLE2 (see Section A1.2).
The two models might be, for example, a stable versus declining population, or altern-
atively the existence of two versus three subpopulations. Note that when “log10(MLE1/
MLE2) > 3”, the probability of MLE1 is generally 1,000 times more likely that MLE2 (e.g.,
P < 0.001); when >2 the probability of MLE1 is considered to be 100 times more likely that
MLE2 (P < 0.01).

Likelihood methods are sometimes classified as “frequentist”. For example, when we
compute the expected long-run frequency of a likelihood ratio (or a likelihood value), e.g.,
as part of a statistical test, this is a frequentist approach.

The main advantage of maximum likelihood approaches is they use “all the data”, 
in their raw form, and not some summary statistic (e.g., He or FIS). Because likelihood
methods use a maximum of information from the data, they should, in theory, be more
accurate and precise than moments-based methods. For example, likelihood-based 
methods use the raw data (number and genealogical divergence of each allele) to estimate
Ne (or Nm), and not a single summary statistic, e.g., He (or FST), as in classic moments-
based estimators of Ne (or Nm) (see Guest Box 7, or expression 9.12).

Different (raw) data sets can give the same summary statistic, e.g., FST, whereas differ-
ent raw data sets are less likely to yield the same ML estimates. For example, two independ-
ent sets of temporally spaced samples can have the same FST (temporal FST) even though
they have different numbers of alleles. When using the summary statistic FST to estimate
Ne (as in the classic temporal variance method; Waples 1989), we would not be using the
information about the proportion of rare alleles, and thus might not achieve the most
accurate or precise estimate of Ne. In another example, two independent metapopulations
could have the same FST, but have different proportions of rare alleles. Information about
the proportions of rare alleles can help infer if a metapopulation is stable, fragmenting, or
growing in size (e.g., Ciofi et al. 1999).

In actual practice, ML methods often are more accurate and precise than moment-
based methods. For example, estimators of Ne based on likelihood provide tighter
confidence intervals and less biased point estimates (Williamson and Slatkin 1999;
Berthier et al. 2002). However, likelihood-based estimators generally require large sample
sizes and can be biased and less precise than simpler summary statistics (moments-based
methods) if sample sizes are small, e.g., less than 40 or 50 individuals (see, for example,
Lynch and Ritland 1999).

A5 Bayesian approaches and MCMC (Markov chain Monte Carlo)

There are two main ways Bayesian inference differs from classic frequentist statistics. First,
probabilities are defined and interpreted differently. In frequentist statistics, P-values
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(probability values) are interpreted as the long-term average outcome of a repeated 
experiment. P-values are interpreted as the probability of the test statistic being that
extreme (or more extreme) if the null hypothesis is true. A frequentist test might yield 
P = 0.05, meaning there is 5% chance of observing the test statistic simply by chance alone.

Bayesians computations yield a more straightforward and informative probability
answer that is easier to interpret than a P-value. For example, a Bayesian posterior distri-
bution might yield a probability of P = 0.95, meaning there is 95% probability that Ne is less
than 100. Recall that in the more complicated (less direct) frequentist approach, we would
construct a null hypothesis (e.g., H0: Ne is ≥100), and then reject the null if the P-value is
low (e.g., P < 0.05); thereby finding support for the alternative hypothesis of interest “Ne
is less than 100”.

Furthermore, Bayesian posterior probability distributions (and support limits) are easier
to interpret than confidence intervals because probability distributions show visually the
probability as the area under a curve (e.g., in the tails of a probability distribution). We
immediately get a feel for the width and degree of skewness of the probability distribution
by observing the posterior distribution, which we cannot get from reading confidence 
limits. Thus, a probability distribution (posterior probability distribution) carries more
information than a classic confidence interval and it gives a better feel for the relative 
probability of different parameter values (e.g., small versus large Ne, or Nm, or FIS) (Ayres
and Balding 1998).

Second, perhaps the main advantage of the Bayesian approach is the ability to factor in
prior data or information when estimating the posterior probability that a hypothesis is
correct. Bayes’ theorem was developed to allow easy “updating” of an existing estimation
when presented with new data such as observations from a new experiment. Classic 
frequentist statistics generally require each experiment to be totally independent and
without reference to previous experiments. Prior information (previous data or even a
hunch) can be incorporated into the computation of a probability (posterior probability)
by multiplying the likelihood function by the prior information (Figure A5).

An example use of the Bayesian approach to incorporate prior information is estimating
Ne when the population census size is known (e.g., Nc = 250). Here, we can use the prior
knowledge of Nc, and knowledge that Ne cannot be more than twice the census size (Ne ≤ 2Nc;
see Chapter 7). Thus the prior probability of Ne being greater than 500 equals zero (P[Ne >
500] = 0.0; as in Berthier et al. 2002). Further, we know that Ne is often less than 1/2Nc
(Frankham 1995; see Section 7.10). This information can be used to give more “weight” to
Ne estimates near or below 1/2Nc (e.g., using a prior probability distribution, see below).

Another example use of prior information is in models that incorporate mutation
dynamics. Published data suggest that most microsatellites have mutation rates between
10−2 and 10−5. So, we might use a flat prior ranging between 10−2 and 10−5 when modeling
humans or other mammals. We also know that the average mutation rate is near 5 × 10−4.
Thus we might use a more informative prior – e.g., a bell-shaped prior (not flat) with a
high probability peak near 5 × 10−4. For an actual example, Beaumont (1999) used a prior
mutation rate greater than zero for monomorphic loci, thereby allowing the use of
monomorphic loci when testing for population bottlenecks. Other bottleneck inference
tests do not use monomorphic loci (Luikart and Cornuet 1998). See Lewis (2001) for a 
simple example of Bayesian computation.

The Bayesian approach to incorporating prior information can be especially useful in
conservation biology because it facilitates decision making when data are few and we
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want to integrate all available knowledge. In conservation biology, we often must make
decisions based on limited data. For example, wildlife managers often must decide if a 
population’s size is large enough to allow harvest, or alternatively if the population needs
protection, monitoring, or supplementation. Interestingly, the United States National
Academy of Sciences panel recommended that fisheries scientists consider Bayesian 
methods to help estimate fish population status and guide management policies (Malakoff
1999). Harvest quotas could be more appropriate and flexible if the risk of population
decline were calculated directly via Bayesian statistics (incorporating prior information
such as the probability that harvest actions might endanger a stock).

The main criticism of Bayesian approaches is that they can be strongly influenced by
prior information, and thus be less objective than classic approaches. For example, two 
different people could use different prior information and obtain different results. A 
counterargument is that we can quantify the effects of different priors (e.g., via sensitivity
analysis using different priors); thus we can (and should) consider the magnitude of
influence of the prior when making management decisions. Often prior information has
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Figure A5 (a) Simplified Bayesian mathematical expression showing how the Bayesian
approach allows us to combine the information from the data with prior information about
the parameters of the model in order to obtain their posterior distribution (to estimate a
parameter). (b) Illustration of how prior information (in the prior probability distribution) is
modified by the multiplication of it by the likelihood function (from the standard likelihood-
based approach) to obtain a posterior probability distribution. Modified from O. Gaggiotti
(personal communication).
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little influence on the posterior, especially if data are extensive (Figure A6). Unfortunately,
such sensitivity analysis is not always conducted. It seems reasonable to use both Bayesian
and classic frequentist approaches in many applications (e.g., estimation of FST, Ne, or Nm,
especially when one or both have been poorly validated).

An important general contribution of Bayesian approaches is they allow for com-
putations using complex models that that could not be achieved using the other statistical
approaches (Beaumont and Rannala 2004). Baysian computation using complex models
has been greatly facilitated by Markov chain Monte Carlo (MCMC) computational methods.

A5.1 Markov chain Monte Carlo (MCMC)

MCMC is a simulation-based methodology to generate probability distributions that 
are difficult or impossible to obtain from analytical equations (including likelihood 
equations). Analytical equations often cannot be developed to describe complex processes
with many variables (e.g., population size, allele frequencies, and mutation rates). MCMC
allows simulation of a special kind of stochastic process known as a Markov chain. A
Markov chain generates a series of random variables whose future state depends only on
the current state at any point in the chain (Beaumont and Rannala 2004).

MCMC allows us to obtain random samples from “sample space”, even when the 
sample space is enormous (e.g., billions of phylogenies or genealogies). MCMC combines:
(1) a Markov chain model – i.e., a model involving a random walk (chain of random steps)
in which the next step is determined by the characteristics of the current or previous 
step; and (2) the “Monte Carlo” process of drawing a random number that is necessary at
each step of the random walk (Monte Carlo is a city famous for gambling, which also uses 
random events like the rolling of die).

MCMC is well illustrated by an analogy of a robot taking a random walk in a square
field (Figure A7). Each step of the robot varies in length and direction, randomly.
Eventually, the robot visits every space within the field. However the robot spends more
time in spaces that are on hill tops at higher elevation (i.e., having higher probability). This
is achieved by using a model with the following two main rules: (1) if a step takes the robot
uphill, the robot will automatically take it; and (2) if a step would take the robot downhill,
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Figure A6 Probability of heads (p) in a coin-flipping experiment illustrating (a) a flat and 
(b) an informative prior distribution. Here, the prior has little effect, as is the case when
extensive data exist and the likelihood function (alone) is relatively informative. From 
Lewis (2001).
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the robot only takes the step with a probability depending on the elevation reduction 
(this probability can be computed several ways, e.g., via “Metropolis” or “Metropolis–
Hastings” methods).

The first few steps (usually thousands of steps) are called the “burn in”, and are discarded
to reduce the influence of the starting point (bias). Once burn in is achieved, the MCMC
simulation has converged (i.e., become independent of the starting point). The remaining
steps (after convergence) give a good approximation of the landscape (probability space).
This simulation of a random walk allows for estimation of the parts of the sample space
with the highest probability (e.g., maximizing the probability of the data, given the model,
as in maximum likelihood estimation; see Section A4). Under the Bayesian approach (see
below), MCMC simulation is often used to sample from the posterior distribution of a
parameter in order to generate the posterior probability estimate of the parameter.

The main problem with MCMC approaches is we sometimes are not sure we have 
conducted a long enough burn in to achieve convergence and thus avoid bias. Also,
MCMC simulation programs are generally difficult to write in computer code, and thus
errors (bugs) are relatively likely to occur and can be difficult to detect.

MCMC is primarily used within Bayesian approaches, but can also be used in maximum
likelihood estimation. For example, some available software programs can use flat priors
(or no priors) and give as output a likelihood (probability) curve or a posterior distribution
if prior information is used.

(d) (e) (f)

(a) (b) (c)

Figure A7 Illustration of the principles behind the Markov chain Monte Carlo (MCMC)
methods using a simple analogy of a “random walk” in a square field by a robot (a–c). The
robot begins its walk in the upper left corner and continues for 100 steps (a), 1,000 steps (b),
and 10,000 steps (c) until nearly every portion of the field has been covered. Now supposing
that two hills are present, represented by concentric circles and smaller concentric ovals (d–f ).
The robot will take steps to points in proportion to their elevation, and thus higher points 
will be visited more often than lower ones. The proportion of time spent in any place
approximates the probability of that location. From Lewis (2001).
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A6 Approximate Bayesian computation (ABC)

Approximate Bayesian computation (ABC) employs a Bayesian framework (e.g., incorpor-
ating prior information) to output an “approximate” posterior probability distribution.
This posterior distribution is only an estimation of the full posterior, because all the raw
data is not used to compute the posterior. Instead, the posterior is approximated by 
summarizing the data using multiple different summary statistics. For example, a full
(exact) Bayesian approach would conduct MCMC simulations to obtain the exact pos-
terior probability of the raw sample (allele number and frequency distribution), using 
each of thousands of simulated data sets (e.g., genealogies) for the population model
under consideration (e.g., a stable, isolated population). Here, for example, we might 
consider population models with Ne = 10, 20, 30, etc., if we were estimating Ne for our
observed data.

Conversely, ABC would: (1) replace (summarize) the raw observed data with multiple
summary statistics of the data (e.g., FST, He, and number of alleles); then (2) compute the
same summary statistics for each of the thousands of simulated population data sets
(under the population model under consideration); and finally (3) match the observed data
summary statistics to those from simulated populations in order to chose the population
parameter estimate that best fits our data. This ABC approach is also called “summary
statistic matching” because we match our observed summary stats to those from simu-
lated population data sets to find the population parameter estimate (e.g., Ne, or Nm) most
similar to that computed from our data.

ABC methods are becoming increasingly popular because they use nearly “all the infor-
mation” from the data (Beaumont et al. 2002), yet they are far less computationally
demanding than fully Bayesian (MCMC) approaches. Thus their performance can be evalu-
ated thoroughly (see Section A8), and they can be used with large data sets with many loci
or when conducting complex analyses with numerous parameters (e.g., population size,
dispersal, and sex ratio). Finally, an experienced modeler can construct an ABC model in
hours or days, whereas it can take weeks to construct a fully Bayesian MCMC model 
(M. Beaumont, personal communication).

A7 Parameter estimation, accuracy, and precision

Here we consider statistical frameworks (moments, likelihood, Bayesian) for inferring
population parameters. To estimate a population parameter (e.g., the mean, µ), we 
usually compute a sample statistic (X) from a sample of individuals. We can estimate a 
population parameter using different sample statistics (arithmetic mean, harmonic mean,
median, or mode). To further complicate things, to compute an estimator, such as the
mode, we can use different approaches, including moment methods, maximum likelihood
estimation, or Bayesian estimation.

The sample moments, e.g., X, X2, and X3, are used to obtain estimates of location, vari-
ance (scale), and shape of the population distribution, respectively. Moment-based estimators
are widely used (e.g., in classic frequentist statistics), but can yield biased estimates when
the underlying population distribution is non-normal, especially when the “higher”
moments (X2, X3) are not considered. An example of such bias is the classic FST-based estim-
ator of Ne, which is often biased because: (1) the underlying probability distribution of 
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FST is often skewed with a long tail (unlike the normal); and (2) the moment estimator
(FST) incorporates information only from the first two moments, which do not contain
information on skewness of the sampling distribution.

Maximum likelihood estimation (MLE) infers a parameter by finding the parameter
value that maximizes the likelihood of obtaining the sample data (assuming some model
such as Mendelian inheritance or a Wright–Fisher equilibrium population). MLE is
increasingly used in population genetics because:

1 It yields probability distributions that are easy to interpret (see Section A4 and Figure
A3), rather than just a point estimate and confidence interval, as in moments methods.

2 MLE can help evaluate and chose the best estimators (including moment-based estim-
ators of the mean or variance, when data are normally distributed).

3 Faster computers and computer programs increasingly allow the computation of MLE
estimates, e.g., see lemark, migrate, msvar, and other computer programs on this
book’s web page.

Which estimator and approach performs best? This is a critical question in conservation
genetics that often is ignored or underappreciated. It is especially important in light of the
many new methods and computer programs published in recent years. The performance
of an estimator (accuracy, precision, and robustness, see Section A8) depends on the ques-
tion, sample size, sample characteristics, and the parameter being estimated. For example,
MLE approaches are generally most efficient (see Section A4) with large samples, but can
be less efficient than moment methods when using small sample sizes (e.g., less than 40
individuals). Efficiency refers to ability to extract information from the data and to achieve
high accuracy and precision in estimating the true population parameter.

Identifying the best estimator generally requires a performance evaluation comparing
estimators. For examples of performance evaluations, see Section A8 and publications
such as Tallmon et al. (2004) and Wang (2002).

Accuracy (bias) and precision are critical concepts related to estimators of central 
tendency and dispersion, respectively. Accuracy of an estimator is its tendency to yield 
estimates near the true population parametric value. For example, if we estimate the 
mean heterozygosity (He) for each of four independent samples, the accuracy is good if
50% of estimates are high and 50% low. Otherwise the estimator is biased. If an estimator
has poor precision, the four estimates will be scattered widely – often far from the true
value. A precise statistical estimator will have relatively narrow confidence intervals, and
the point estimates from independent estimations will cluster tightly together (see below).
An estimator can have low precision but high accuracy, or vice versa (Figure A8).

Several different estimators should often used whenever assessing a given question. 
For example, it is useful to estimate both the mean and median because if they are different
we can infer that the distribution might be skewed. It is also useful to compute both
moment-based and likelihood-based estimators, as we sometimes do not know which is
most reliable or accurate. In general, when estimating parameters, it is prudent to use
multiple methods and software programs, to avoid errors and to increase confidence in
results (e.g., if the same result is obtained from different methods).

Random and representative sampling is critical, and often assumed without testing 
(or discussing) the assumption. If sampling is not random or not representative, the 
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statistical estimate may be biased. For an extreme example, imagine that we sample only
10 individuals (F1 offspring) from within only one family from a population containing 
hundreds of family groups. The sample is clearly not random or representative of the 
population. The allelic richness statistic we compute will often be low compared to the
true population value, simply because the individuals we sampled are closely related com-
pared to individuals from a true population-wide sample (with random representation of
all family groups).

A8 Performance testing

Performance testing is the quantification of the accuracy (bias), precision, power, and
robustness of a statistical estimator or test. This includes quantifying the bias caused by
violating assumptions (random sampling, no selection, etc.); such violations often occur
in real data sets from natural populations.

Performance testing involves four main steps: (1) generate a test data set (simulated 
or real) with a known parameter value for the parameter of interest (Ne, Nm, etc.); 
(2) estimate the parameter (e.g., with a confidence interval); (3) repeat 1,000 times both
steps one and two; and (4) compute the proportion of the 1,000 estimates that give the true
parameter (most accurately and precisely) (Figure A9).

Performance testing is critically important to allow conservation biologists to use statis-
tical methods on real populations with minimal risk of making erroneous management
decisions. Unfortunately, performance testing is rarely conducted thoroughly. Fortunately,
the growing availability of computer simulation programs (e.g., easypop, metasim; see this
book’s website) makes performance testing increasingly feasible, even for undergraduate
students or as part of a PhD degree program, for example.

Without performance evaluations, statistical methods are often used, and later are
found to be biased. For example, some assignment tests and Ne estimators were shown to
produce misleading or erroneous results (e.g., underestimated Ne, erroneous Type I error
rates for assignment tests), long after they were being used in natural populations (see
Paetkau et al. 2004; Waples, in press).

High precision
and accuracy

Low precision
but high accuracy

High precision
but low accuracy

True value

Estimates

Figure A8 Cartoon illustration of the difference between accuracy and precision. Imagine
these are archery targets with the bullseye in the middle (i.e., the true value).
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A9 The coalescent and genealogical information

The coalescent is a powerful modeling approach for analyzing population genetic data. It
involves a different way of thinking about population genetics compared to classic
approaches. Classic approaches for modeling populations typically trace the inheritance of
genes in a “forward direction”. For example, individual parents are randomly mated to
produce offspring; the offspring are eventually mated to produce the next generation (as in
individual-based simulation modeling). On the contrary, the coalescent approach looks
backwards in time and traces gene copies (alleles) back from offspring to parents, to grand-
parents, and eventually to a single most recent common ancestor.

To “coalesce” means to fuse, unite, or come together. This refers to the process of trac-
ing backward through time the joining of (coalescence of ) homologous gene copies from
different individuals into the same parent or ancestor (Figure A10). The word coalescent is
used in several ways in the genetics literature. The “coalescent theory” was developed
(mainly by Kingman 1982) to model a genealogy of gene copies so that allele frequency
patterns and genealogical patterns (e.g., shapes of genealogies; see below) could be used
to infer population parameters and demographic history (e.g., gene flow, population
expansion, and selection).

The most important contribution of the coalescent to population genetics is that it
allows for extraction of genealogical information from DNA data (i.e., information on the
genealogical relationships among alleles at a locus). Many classic (noncoalescent-based)
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Figure A9 Example of power analysis where hundreds of independent populations with
Ne = 20 were simulated, and then Ne (CI 90%) was estimated for each simulation replicate.
Point estimates (crosses) of Ne, with confidence intervals (vertical lines), for each of 
25 independent simulated populations are shown. The box plot graph on the far right
summarizes the accuracy of point estimates by comparing the median of the many point
estimates with the true Ne. The median is biased low. The box plot upper limit is the upper
95th percentile of the upper confidence interval limits (over 200 simulations). Modified from
Berthier et al. (2002).
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statistical estimators (e.g., FST) do not use genealogical information; they use only allele
frequency information. With the advent of DNA sequencing (and restriction enzyme 
analysis, see Chapter 4) most data sets contain information on relationships (i.e., diver-
gence) among alleles. Even microsatellite data contain genealogical information in the
number of repeat unit differences between two alleles (assuming the stepwise mutation
model discussed in Sections 4.2.1 and 12.1.2).

The “coalescent approach” is the modeling of gene transmission between generations
in populations, by modeling a coalescent process (Example A3). The coalescent can be
used in frequentist, maximum likelihood, and Bayesian statistical approaches, for example
to generate the expected distribution of allele frequencies to test hypotheses and estimate
parameters, e.g., Ne, Nm, etc. (Example A4).

T
he

 p
as

t

n = 3n
(sample)

N = 10N

Most recent common ancestor
(MRCA)

T(2)TT

T(3)TT

Figure A10 The coalescent approach for modeling the genealogy of individuals in a
population. The complete genealogy of 10 haploid individuals (clones) is on the left. The 
dark lines trace back through time (from bottom to top) the ancestries of the three sampled
lineages (gene copies). On the right is the “subgenealogy” (sample, n = 3) showing the
coalescence pattern and times (e.g., the two genes on the left coalesce first at time T(3). 
The coalescence time durations are proportional to the branch lengths. The average (and
distribution) of branch lengths provides information about the tree shape, which is used 
to make inferences about demographic history (see Figure 20.7). Modified from Rosenberg
and Nordborg (2002).
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Example A3 Coalescent modeling

Coalescent modeling involves two main steps: first we generate a random genea-
logy of individuals backward through time. Here it helps to envision clonal indi-
viduals (or haploid chromosomes such as mtDNA). We start with a sample of
clones and randomly connect them to parents, grandparents, great grandparents,
etc., until all clones coalesce into a single ancestor (the most recent common
ancestor, MRCA; Figure A10). Going back in time, two lineages will coalesce
whenever two clones are produced by the same parent. Going forward in time, 
lineages branch whenever a parent has two or more offspring, and branches end
when no offspring are produced (i.e., lineage sorting, see Section 7.8).

Second, we randomly place mutations on branches (e.g., using Monte Carlo
simulations and a random number generator while considering the mutation rate).
We start by assigning some allelic state to the MRCA and then “drop” mutations
along branches randomly moving forward. If a mutation is placed on a branch,
then the allelic state (e.g., length for a microsatellite) must be determined by 
following rules of a model. For example, under a stepwise mutation model, a
mutation will cause the allele length to increase or decrease (50 : 50 chances) by
a single repeat unit (see Section 12.1.2).

Coalescent modeling is computationally efficient because we only simulate the
sampled lineages (“subgenealogy” in Figure A10), and not the entire population
as is done for individual-based forward models. Simulating only the subgenealogy
requires less “record keeping” and saves computer time compared with the for-
ward (individual-based) simulation modeling approach that requires record keep-
ing for all individuals including those not sampled.

In coalescent modeling, we often want to separate the two stochastic genealo-
gical processes: (1) random neutral mutation; and (2) random reproduction and
population demography (which cause genetic drift). These two processes deter-
mine the genetic make up of the population of lineages. Separation of the two is
important because we often are interested in the biological phenomena of demo-
graphy and reproduction, but not mutation processes (Rosenberg and Nordborg
2002). For example, we are often interested in testing for population expansion or
population subdivision, not mutation dynamics.

Example A4 The coalescent used in frequentist, likelihood, and Bayesian
approaches

The coalescent can be used for modeling or conducting statistical tests under 
different statistical frameworks including frequentist, likelihood, or Bayesian. For
example, a frequentist coalescent approach might be used to test if Ne is
significantly smaller than 100. For this, we might: (1) use the coalescent to simu-
late 1,000 independent data sets for a population with Ne = 100; (2) compute Ne
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for each simulated population (to obtain a distribution of possible Ne estimates
consistent with a true Ne of 100); and (3) calculate how frequently (out of 1,000
data sets) we obtain a simulation estimate of Ne as small as our Ne estimate from
our study population. If our population’s estimated Ne is so small that it occurs only
once in 1,000 simulated data sets, then we would conclude that that our popula-
tion’s Ne is significantly (P < 0.001) less than 100. This kind of approach was used
in Funk et al. (1999) to test for small Ne in a salamander population.

In a maximum likelihood approach to test if Ne is significantly smaller than 100,
the coalescent could be used to help compute the likelihood of Ne = 1, 2, 3, . . . ,
up to Ne = 200, given our raw data. Here, the coalescent could be used to simulate
thousands of data sets for each Ne, and then compute the likelihood of each Ne

(Ne = 1, 2, 3, etc.) given our real data set. This would yield a probability (likelihood)
distribution of Ne values (with Ne = 1, 2, 3, . . . , up to Ne = 200 on the x-axis). If all
the area under the likelihood (probability) curve was less than 100 (i.e., did not
include Ne = 100), we could conclude that our population’s effective size is less
than 100. The resulting likelihood curve for inferring Ne is similar to that for inferring
Nm in Figure A3b.

In a Bayesian approach, we would conduct the same computations as in the
maximum likelihood approach just described, using the coalescent. However, we
then would modify the resulting likelihood distribution by multiplying it times a prior
distribution to obtain a posterior distribution, as illustrated in Figure A5.

This example illustrates how the coalescent can be used within different statist-
ical frameworks to conduct statistical tests or estimate a population parameter.

Genealogical methods, such as the coalescent, do not estimate evolutionary trees 
(as when “inferring a phylogeny”), but rather they estimate parameters of the random
evolutionary processes that give rise to trees, such as gene flow rates, population size, or
population growth rates. For example, different population demographic histories yield
different-shaped genealogies (Figure A11). Consequently, genealogical shape can be used
to infer a population’s demographic history.

Population growth yields star-like genealogies with many long branches (Figure A11b).
Many long (similar-length) branches are expected to arise during a long-term population
expansion because new alleles (mutations) tend to persist for a long time because drift is
negligible in growing populations. Thus, in a real study, if we detect a star-like gene tree for
each of many independent genes, we can infer that the population has been growing.

Random genealogical processes lead to many possible random genealogies for different
genes under a given demographic history (Figure A12). Therefore, we must study many
genes to obtain accurate and precise estimates of demographic history. We can simulate
thousands of random genealogies for each population history (e.g., a stable versus grow-
ing population) to test if one history best fits our empirical data set. If one history best 
fits our observed field data, then other histories might be rejected (e.g., using likelihood
ratio tests).

Selection can also cause distinctive-shaped genealogies. For example, a selective sweep
will first remove many alleles (like a bottleneck signature) and subsequent mutation can
lead to a star phylogeny (like an expansion signature). If the genealogy of one locus differs
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Start date
of growth

(a)

(b)

(c)

Figure A11 Example gene tree for a population that is (a) at constant size (many variable
branch lengths), (b) growing (mostly long branches originating at the time of population
growth), and (c) declining (fewer alleles and mostly at even frequencies). Each genealogy is
only a single representative of thousands of possible genealogies from each population model
(constant, growing, or declining). The vertical axis is the same for all trees, but the bottom one
has many shallow branches that are invisible. Modified from Harpending et al. (1998).

Figure A12 Two genealogies for the same demographic history (population growth). 
Note that hundreds of similar genealogies are possible for a single demographic history. 
Thus, many independent genes (genealogies) must be studied to infer population history.
Therefore, distributions of genealogies are used to infer (or exclude) different demographic
histories. From Harpending et al. (1998).
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significantly from other loci, we might infer that selection has influenced the locus (see
Section 9.6.3). Selection and “outlier genealogies” make it important to study many inde-
pendent genome segments when inferring demographic history.

Guest Box A Is mathematics necessary?
James F. Crow

Much of our understanding of the application of genetics to problems in conserva-
tion depends upon the field of population genetics. Population genetics used to
consist of two quite different disciplines. One utilized observations of populations
in nature or laboratory studies. These were often descriptive and involved no math-
ematics. This area is epitomized by the early work of Theodosius Dobzhansky,
Ernst Mayr, and G. Ledyard Stebbins. At the same time a mathematical theory was
being developed by J. B. S. Haldane, R. A. Fisher, and Sewall Wright. One of the 
earliest bridges was built in 1941 when Dobzhansky and Wright collaborated in a
joint experimental paper with lots of theory.

Since that time, most work in population genetics has had some mathematical
involvement. Almost every experiment or field observation now utilizes quantit-
ative measurements, and that means statistics. The day is past when one can simply
report results with no test of their statistical reliability. Increasingly, experiments
are performed or observations are made based on some underlying theory. The
person doing the experiments may develop the theory or make use of existing
mathematical theory. Finally, there is the development of ever deeper, more 
general, and more sophisticated theory. Much of this is being done by people with
professional mathematics training.

We cannot all be mathematicians. But we can learn a minimum amount. Every
population geneticist must know some mathematics and some statistics. I have
done both experimental (usually driven by theory) and theoretical work. But my
mathematics is limited and some of the research that I most enjoyed was done in
collaboration with better mathematicians, notably Motoo Kimura.

There are two recent changes in the field. Computers have altered everything,
and it is hardly necessary for me to mention that you need to know how to use
them. It used to be that theoretical work was regularly stymied by insoluble prob-
lems. The computer has greatly broadened the range of problems that can be
solved, not in the mathematical sense but numerically (e.g., MCMC and other 
simulation-based approaches), which is often what is wanted. At the same time, the
mathematical theory itself is advancing as mathematicians enter the field.

The second change is the advent of molecular methods. Population genetics
used to have a theory that was too rich for the data. That is no longer true. DNA
analysis can yield mountains of data that call for improved, computerized analyses.
Even in nonmodel species, data sets are becoming large enough that some sophist-
icated statistical methods can take days to conduct computations, and some ana-
lyses might not be feasible because, for example, computer programs take too long
or do not converge.
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If you are going to be an experimenter or analyze data with modern statistical
tools, you need to know some mathematics and statistics, and be adept at com-
puters. If you are going to develop theory (even if for application to natural popula-
tions and conservation), you usually need to be a real mathematician or collaborate
with one.

Most readers of this book are primarily interested in understanding, but not con-
tributing to, the primary literature in population and conservation genetics. Much
of the current literature in population genetics employs advanced mathematical
methods that are beyond the reach of most biology students. Dobzhansky’s
method of reading and understanding the papers of Sewall Wright is one possible
approach (see quote at the beginning of this appendix). Examining the biological
assumptions being made is crucial, but not sufficient. However, a healthy amount
of skepticism is probably a good thing. There was only one Sewall Wright!
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abalone, white (Haliotis sorenseni ), 450
ABC, 567
aconitate dehydrogenase, 50
adaptation

and evolutionary significant units, 409
rapid, 192–4
and success of invasive species, 485–7
to captivity, 464–6, 467, 469–70
to inbreeding, 316

adder, European (Pera berus), 341, 372–3
addition rule, 546

see also sum rule
AFLPs, 76
African wild dog (Lycaon pictus), 507
agricultural genetics, 4
AI, 458
alien species, 482

see also invasive species
allele frequencies

effect of changes on fitness, 138–9
estimation, 105–8
and genetic drift, 118–22, 274
and heritability, 265–8
in heterozygous advantage, 176–8
in heterozygous disadvantage, 178–9
in isolated populations, 204
and natural selection, 174–5
selection acting on multiple alleles, 

179–82

alleles
effective number, 111
effects of bottleneck on, 127–9
loss of diversity, 126–9, 139, 165
null, 107–8, 203, 462–3
private, 222–3
recessive, 105–6, 106–7, 276

deleterious, 317, 323, 325–7, 430–1, 462–3
total number, 111

allelic richness as measure of genetic variation,
111

alligator, American (Alligator mississippiensis), 52,
508

allozygosity, 308–9
allozyme electrophoresis, 34–5, 47–50, 435

strengths and limitations, 54–5
allozyme loci mutations, 288, 292–3
AMOVA, 219, 220
anagenesis, 8, 385
analysis of molecular variance (AMOVA), 219, 220
Andricus quercusalicis, 489
anemone, Waratah (Actina tenebrosa), 62
api-calc, 513
approximate Bayesian computation (ABC), 567
Arabidopsis thaliana, 286, 287
Arabis petraea, 326
Arctic skua (Stercorarius parasiticus), 114–15
Argentine ant (Linepithema humile), 488
Argyranthemum spp., 447

Index

Page numbers in italic refer to figures and/or tables, those in bold refer to guest boxes
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arithmetic mean, 550–1
artificial insemination (AI), 458
artificial selection, 264–5, 266
ascertainment bias, 73–4
assignment tests, 224–6
associative overdominance, 242–3, 244–5, 326
Aster furactus, 190, 354
autosomes, 37
autozygosity, 124, 308–9
average probability of identity (PIav), 512–13
axolotl, Mexican (Ambystoma mexicanum), 273, 274

bacteriophage, 66
banana slug (Ariolimax columbianus), 24, 25
Banksia, 428
barley (Hordeum vulgare), domestication, 4
Barr body, 39
bass, largemouth (Micropterus salmoides), 31,

433–4
Bayesian statistical approach, 544, 545, 562–5, 

567
beans, domestication, 4
behavioral genetics, 23–6
beluga sturgeon (Huso huso), 509
binomial distribution, 553
biodiversity

conservation of, 10–11
levels, 382–3, 384
temporal components, 383–4

biological species concept (BSC), 404
birds

chromosomal polymorphisms, 45–6
cladogram, 389–90
classification, 385, 386, 407
evolution, 385
geographic variations in, 26–7
hatching failure, 479–80
hybridization, 424
introduced species in New Zealand, 479–80,

490
microchromosomes, 35–6
phenogram, 389–90
phylogeny, 386
sex chromosomes, 37, 78
see also particular species

bison (Bison bison), 169, 453
black bear (Ursus americanus), 19, 32, 115, 509
black-footed ferret (Mustella nigripes), 450, 458
blackbird

European (Turdus merula), 355, 479
red-winged (Agelaius phoeniceus), 16, 26, 133, 134

blackcap (Sylvia atricapilla), 23–4, 25
blood groups, 107–8

blue whale (Balaenoptera musculus), 507
bobcat (Lynx rufus), 435–7, 509
Bonferroni correction, 104–5
bootstrap analysis, 396
bottlenecks, 124–5, 127–9, 158, 165

effect on fitness, 138–9
evolutionary potential following, 355
and genetic variation, 129–35, 160–2, 343
and heritability, 274–6, 278
human population, 240
and inbreeding depression, 323, 325–7
and introduced species, 479–80
in invasive species, 485, 488–9
population growth rate following, 132–3
recovery from, 297–9
red pine, 280–1
survival, 341–2

Bounded Hybrid Superiority Model, 426
bowhead whale (Balaena mysticetus), 507
breeders’ equation, 265
brown anole (Anolis sagrei), 486
brown bear (Ursus arctos), 82, 110, 114, 128, 144,

198, 392, 509, 515
brown tree snake (Boiga irregularis), 474
brush-tailed possum (Trichosurus vulpecula), 172
Bryde’s whale (Balaenoptera edeni), 507
BSC, 404
butterfly

African satyrne (Bicyclus anynana), 274, 431
Glanville fritillary (Melitaea cinxia), 340
mimicry, 41
neotropical skipper (Astraptes fulgerator), 405

button wrinklewort (Rutidosis leptorrhynchoides),
55–7

Caesalpinia echinata, 71
candidate loci, 274
captive breeding, 12, 23, 188, 450, 452

as appropriate tool, 453–4
effective population size, 155
founding populations, 459–61
and genetic drift, 461–4, 466
genetic management of programs, 466–70
hybridization in, 35
and inbreeding depression, 140
kakapo, 450–1
and MHC allelic diversity, 190
and natural selection, 462, 464–6, 467
potential dangers, 455–6
priorities, 454–5
and quantitative genetics, 258
retention of heterozygosity, 350
role of, 452–7
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capture-mark-recapture methods, 337–8
cardinal (Cardinalis cardinalis), 36, 45–6
cat (Felis catus), 441–3, 473
cattle (Bos taurus), 507, 508

shorthorn, 332
Caulerpa taxifolia, 490
caviar, 509
cDNA libraries, 79
census population size (NC), 148

and effective population size, 166–7
estimation, 336–8, 360–1

centromere, 37
cetaceans

chromosome numbers, 39
DNA Surveillance program, 506–7
see also particular species

chaffinch (Fringilla coelebs), 490
char, 426

Arctic (Salvelinus alpinus), 426
cheetah (Acinonyx jubatus), 19, 70, 458
chestnut, American (Castanea dentata), 5
chi-square distribution, 552, 554–5
chi-square test, 99–101, 102, 394, 555

and sample size, 102–3
chimpanzee (Pan troglodytes), 524

chromosomes, 38
phylogeny, 387

Chinese tallow tree (Sapium sebiferum), 486–7
chloroplasts

DNA, 65, 67, 159, 504
microsatellites, 65, 71

chord distance, 219
chowchilla (Orthonyx spaldingii), 403
chromatids, sister, 37
chromosomes

acrocentric, 37
heterochromatic, 41
inversions, 41–6

paracentric, 41, 43
pericentric, 41, 42, 44

metacentric, 37
mutations, 287–8
numbers, 39–40
replication, 37
Robertsonian fusion/fission, 39, 46–7, 48
sex, 37–9, 77–8

in demes, 213–14
differences in allele frequency between,

203–4
genotype frequencies, 108–10

size, 41
staining, 37, 38, 43–4
supernumerary (B), 35, 36, 41

translocations, 46–7, 48
variability in populations, 35–47

cichlid fishes, 405, 422, 428
cirl bunting (Emberiza cirlus), 479
CITES, 503
cladistics, 385
cladogenesis, 8, 385
cladograms, 385
Clarkia pulchella, 340
classification, 385–6
clines, 26
cloning, 458, 459
clustering algorithms, 385, 394–5
co-adaptation, 431
coalescent theory/approach, 163, 223, 570–5
coefficient of gametic disequilibrium (D), 235–8

between nuclear and cytoplasmic genes, 239
estimation, 250–2

coelacanth (Latimeria chalumnae), 7
color

pattern, 18–20
polymorphism, 105–6, 106–7

color blindness, red-green, 109
Colorado pikeminnow (Ptychocheilus lucius), 468
common-garden experiments, 26, 27
comparative genomics, 78–9
condor (Gymnogyps californianus), 453, 462
confidence intervals, 555, 556–7
Conservation Biology, 12
conservation breeding, 452

as appropriate tool, 453–4
founding populations, 459–61
and genetic drift, 461–4, 466
genetic management of programs, 466–70
and natural selection, 462, 464–6, 467
potential dangers, 455–6
priorities, 454–5
role of, 452–7
see also captive breeding

conservation collections, 455
conservation value, 7
continuous characters, 259
continuous distribution model, 209–10, 211
Convention on International Trade in

Endangered Species (CITES), 503
corals, 427
cordgrass

California (Spartina foliosa), 447
common (Spartina anglica), 493–4
small (Spartina maritima), 494
smooth (Spartina alternifolia), 447, 494

corn (Zea mays), 430
domestication, 4
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corn snake (Elaphe guttata), 458
correlation, 549
cottonwood (Populus deltoides), 9
countergradient variation, 28–9, 29–30
coyote (Canis latrans), 198, 337, 392, 509
cpDNA see DNA, chloroplast
crocodile (Crocodylus), 508

cladogram, 389–90
phenogram, 389–90
phylogeny, 386

crops, loss of primitive varieties, 12, 13
cryopreservation, 458
cultivars, use in restoration programs, 476, 478, 479

D ′ coefficient, 239
dace

finescale (Phoxinus neogaeus), 427
northern redbelly (Phoxinus eos), 427

dalmatian, 139
Daphnia, 277
Darwin, Charles, 16, 139, 171, 305, 334
Darwin’s finches, 156–7, 264, 425
deer, 11, 140

fallow (Cervus dama), 334
muntjac (Muntiacus spp.), 40
red (Cervus elaphus), 275

degrees of freedom, 100–1
demes, 197–232

complete isolation, 204–5
and conservation, 226–7
cytoplasmic genes, 211–13
differentiation for quantitative traits, 276–8,

281–2
F-statistics, 199–204
gametic disequilibrium, 245–6
gene flow among, 205–10, 214–18
genetic drift, 206–10
genetic variation between, 52–4, 81–2, 198, 201,

218–20, 276–8, 281–2
and hierarchical population structure, 219–20
mutations, 294–5
natural selection, 214–18
sex-linked markers, 213–14

demographic rescue, 220
demographic stochasticity, 10, 342
demographic swamping, 428
demography

criteria, 349–50
and extinction, 10, 334–62

dendrograms, 394–8
desert spider, 424, 425
developmental noise, 23
diagnostic loci, 435, 437

dik-dik (Madoqua spp.), 35
dinosaurs, 385
dioecy, 149
diploidy, 39
directional selection, 175–6, 186–7

differential, 217
divergent, 216

disassortative mating, 46
disease resistance, 355
dispersal

definition, 199
estimates of, 224

distinct population segment (DPS), 226, 381, 407,
408

DNA
arrays, 80–1
“barcoding”, 504
chloroplast, 65, 67, 159, 504
chromosomal, 36–7
deletion, 288
“fingerprinting”, 75–6, 505, 509–13
insertion, 288
inversion, 288
markers, 504–5
mitochondrial, 64–5, 67

effect of bottlenecks, 160–2
in genetic identification, 504, 513
genetic variation, 159–62
introgression, 426
lineage sorting, 162–3
mutations, 288, 355–7
nonrandom associations with nuclear loci,

239
variation between demes, 211–13

multilocus techniques, 74–7
mutations, 288–90
recombination, 288
sequencing, 78, 80
single locus techniques, 69–74
substitution, 288
variations in populations, 63–90

DNA Surveillance program, 505, 506–7
Dobzhansky, Theodosius, 35, 543
Dobzhansky-Muller incompatibilities, 432
dog (Canis familiaris), 4, 139
dolphin

Hector’s (Cephalorhynchus hectori), 227–9
Maui’s (Cephalorhynchus hectori maui), 229

domestication of animals, 4
dominance, 176
donkey (Equus asinus), 40, 429
Douglas fir (Pseudotsuga menziesii), 320, 321
DPS, 226, 381, 407, 408
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Drosophila
adaptation to ethanol, 300
behavioral genetics, 23
captive breeding experiments, 466, 468–9
chromosomal inversions, 41
chromosomal variation, 35
D. melanogaster

DNA sequencing, 78
gametic disequilibrium, 237, 238
underdominance, 178–9

D. pseudoobscura
multiple alleles, 182
outbreeding depression, 431

D. subobscura, 484–5
DDT resistance, 270–1
effective population size, 358
extinction experiments, 355, 356
generation interval, 5
genetic variation, 274
Hill-Robertson effect, 243
inbreeding, 322–3
loss of molecular and quantitative genetic

variation, 279, 280
mutations, 286, 290
population genetics, 17, 34
purging selection, 326
quantitative genetics, 277
response to selection, 279
sex chromosomes, 109
transposable elements, 291

duck
black (Anas rubripes), 392, 393
mallard (Anas platyrynchos), 392, 393

dunnock (Prunella modularis), 479

eastern reef egret (Egretta sacra), 61
ecological species concept, 405
EcoRI, 66
ecosystem services, 9
ecosystems

conservation, 9–10
diversity, 6

effective population size (Ne), 148–51
50/500 rule, 359–60
and allelic diversity loss, 165
and conservation breeding, 452
estimation, 167–9, 294, 295
and evolutionary potential, 357–9
and fluctuating population size, 157–8
and generation interval, 165–6
inbreeding, 150, 151, 159
limitations, 163–6
metapopulations, 366–71

in natural populations, 166–7
and nonrandom progeny numbers, 153–7
overlapping generations, 158
and unequal sex ratio, 151–3
variance, 150, 159

egret, eastern reef (Egretta sacra), 61
elder-flowered orchid (Dactylorhiza sambucina),

185–6
elephant, 48

African (Oxodonta africana), 37, 405–7
Asian (Elephas maximus), 406–7

elm
American (Ulmus americana), 5
European (Ulmus), 5

EM algorithm, 250–1
emu (Dromaius novaehollandiae), 89–90
endangered species, 4

genetic engineering/cloning, 13
tuatara, 6–7

Endangered Species Act (USA) (ESA), 6, 9, 226,
381, 381–2, 407, 423, 444, 450

Endangered Species Protection Act (Australia)
(ESPA), 382

endogenous selection, 429, 431–2, 433, 445
environmental interaction with genotype, 17, 18,

21–2, 29, 264
environmental stochasticity, 10, 342
epistasis, 432
eradication of invasive species, 495–6
ESA, 6, 9, 226, 381, 381–2, 407, 423, 444, 450
ESPA, 382
ESTs, 79–80
ESUs, 407–12
evening primrose

Organ mountains (Oenothera organensis), 185
yellow (Oenothera flava), 52

evolution, 8
and hybridization, 422–3

Evolution, 34
evolutionary classification, 385
evolutionary legacy, 409
evolutionary potential

and effective population size, 357–9
loss of, 355

evolutionary significant units (ESUs), 407–12
evolutionary species concept, 405
exact tests, 103, 555
exchangeability and evolutionary significant units,

412
exogenous selection, 429, 432–4, 445
exons, 71–3
expectation maximization algorithm, 250–1
expressed sequence tags (ESTs), 79–80
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extinction
and conservation, 8
and demography, 10, 334–62
deterministic threats, 10
factors leading to increased probability, 339
genetic factors, 10–11
genomic, 429, 446, 447
and hybridization, 428
and inbreeding depression, 306, 338–42
rates

populations, 9
species, 4

stochastic threats, 10, 342
vortices, 339, 343

F-statistics, 52, 54, 198, 199–204
hierarchical, 219
limitations, 218–20

false bottleneck signature, 73
ferret, black-footed (Mustella nigripes), 450, 458
fertility, 174

and chromosomal inversions, 41
and mtDNA mutations, 355–7

field cricket
fall (Gryllus pennsylvanicus), 248–9, 256
sand (Gryllus firmus), 248–9, 256

fifty (50)/500 rule, 359–60
fin whale (Balaenoptera physalus), 294, 507
finch

cactus (Geospiza scandens), 156–7, 264, 425
Gouldian (Chloebia gouldiae), 115–16
large cactus (Geospiza conirostris), 264
Laysan (Telespiza cantans), 134–6
medium ground (Geospiza fortis), 156–7, 264, 425

fish
hatcheries, 456–7, 464–5
sex chromosomes, 38

Fisher–Wright model, 118, 553–4
fitness, 173–4

absolute, 174
effects of genetic drift, 138–41
and hybridization, 429–34
and inbreeding, 319
and mutations, 287
population average, 174, 180
relative, 174

fitness rebound, 325
fixation index, 124, 201

see also genetic variation, between local
populations, FST

Florida panther (Felis concolor coryi ), 444, 445
fluctuating asymmetry, 22–3
fluoroacetate, 172

fluridone, 497–8
forensic investigation in conservation, 502–24
founder effect, 129–35, 462
founding populations

conservation breeding, 459–61, 480
invasive species, 492

fox (Vulpes vulpes), 473
Frankel, Sir Otto, 5,117
frequentist statistical approach, 544, 545
frog

color and pattern polymorphisms, 19
gray tree

diploid (Hyla chrysoscelis), 39
tetraploid (Hyla versicolor), 39

green (Rana clamitans), 28
leopard (Rana pipiens), 110

fruit fly see Drosophila
functional genomics, 78
Furbish lousewort (Pedicularis furbishiae), 48

gamete frequencies and gametic disequilibrium,
234–5, 236

gametic disequilibrium, 234–9, 268
composite measure, 246
estimation, 250–2
and hybridization, 246–50, 252–4, 441
and natural selection, 240–6
and population subdivision, 245–6
in small populations, 239–40

Gammarus insensibilis, 177
garter snake, 223

northwestern (Thamnophis ordinoides), 432–3
western terrestrial (Thamnophis elegans), 24, 25

Gastrolobium, 172
gazelle, 35, 458

Speke’s (Gazella spekei), 326
gecko

common (Hoplodactylus maculates), 166
Duvaucel’s (Hoplodactylus duvauceli), 166

GenBank, 505
gene-counting, 108
gene diversity, 110, 159–60, 199
gene drop analysis, 310–11, 312, 313, 314
gene expression studies, 80
gene flow

between demes, 205–10, 214–18
estimation, 220–6
and genetic drift, 206–10
and intraspecific hybridization, 424
and mutations, 297

genealogies, 162–3, 573–5
generation interval, 165–6
generations, overlapping, 158
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genetic assimilation, 429
genetic correlations, 268–9
genetic distance (D), 219, 394, 398

matrix, 394
genetic draft, 243
genetic drift, 11, 118–22

and allele frequencies, 118–22, 274
in captive populations, 461–4, 466
computer simulations, 121–2
fitness effects, 138–41
and gametic disequilibrium, 239–40
and gene flow, 206–10
and heterozygous advantage, 187–8
and heterozygous disadvantage, 187
interdemic, 370
and mtDNA, 159–62
and mutations, 297
and natural selection, 186–8
and quantitative genetics, 274–6
and sex ratio, 151
in small populations, 123–6
sources of, 155
and supportive breeding, 470–2

genetic engineering, 5, 65
genetic hitchhiking, 241–2
genetic identification, 503–4

grizzly bear, 511, 521–2
individuals, 509–13
parentage analysis, 513–15
population assignment, 515–18
population composition analysis, 518–20
sex identification, 515
species, 504–9

genetic load, 323, 325–7
genetic rescue, 220, 372–4, 377–8, 444
genetic similarity index, 398
genetic stochasticity, 10, 342
genetic swamping, 424
genetic tagging, 511
genetic variation, 33–5

between local populations
FST, 52–4, 81–2, 198, 201, 218–20, 276–8,

281–2
QST, 276–8, 281–2

and bottlenecks, 129–35, 343
chromosomal, 35–47, 48
cytoplasmic gene systems, 159–62
DNA, 63–90
estimation, 110–11, 112–13
in invasive species, 485, 486, 488–90
loss

and allelic diversity, 126–9
and heterozygosity, 123–6, 126–7

in metapopulations, 365–9
protein, 47–55
in rare species, 53
relationship between molecular and

quantitative, 279–81
study methods, 34–5
within local populations, 51–2, 81–2, 198, 

291–4
genetics

application to conservation, 4–5, 11–13, 13–14
definition, 15

genetree, 223
genets, 81
genome banking, 457–8
genomic extinction, 429, 446, 447
genomics, 78–9
genotype frequencies, 95, 97–8, 99–101

and gametic disequilibrium, 236
in isolated populations, 204–5
sex chromosomes, 108–10

genotypes
interaction with environment, 17, 18, 21–2, 29,

264
multilocus, 233–56

germplasm collections, 451–2
giant panda (Ailuropoda melanoleuca), 60, 459
Gilia, 52, 172, 173, 264
gill rakers, fluctuating asymmetry, 22, 23
glucose-6-phosphate dehydrogenase, 242
glucosephosphate isomerase, 177
goat (Capra hircus)

cloning, 459
domestication, 4

golden lion tamarin (Leontopithecus rosalia), 270
golden rain tree (Koelreuteria elegans), 192
goldenrod (Solidago), 485
gorilla (Gorilla gorilla)

chromosomes, 38
illegal capture, 513–14
phylogeny, 387

graceful tarplant (Holocarpha virgata), 36
grassland daisy see button wrinklewort
gray whale (Eschrichitus robustus), 507
grayling, 426

Arctic (Thymallus arcticus), 26
great reed warbler (Acrocephalus arundinaceus),

233–5, 243
great tit (Parus major), 312, 313
greater prairie chicken (Tympamuchus cupido), 340,

341
Grevillea

G. barklyana, 200
G. scapigera, 473
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grizzly bear (Ursus arctos), 5, 170, 523
effective population size, 150, 167–9
estimation of numbers, 336
genetic identification, 511, 521–2
population viability analysis, 342, 343–8
translocation, 474, 476
see also brown bear

Guam rail (Rallus owstoni), 450, 474–5
guinea pig (Cavia porcellus), 261
guppy (Poecilia reticulata), 5, 131, 132, 133, 136, 204,

230–1

Haleakala greensword (Argyroxiphium virescens),
447, 448

haploidy, 39
Hardy–Weinberg equilibrium, 95, 118
Hardy–Weinberg principle, 94–5, 97
Hardy–Weinberg proportions, 97–8

exact tests, 103
measure of departure from (FIS), 199, 200,

202–4
multiple simultaneous tests, 104–5
and natural selection, 179
nearly exact tests, 104
in small populations, 136–8
testing for, 99–105

hare, brown (Lepus europaeus), 102
harmonic mean, 550–1
Harris’ hawk (Parabuteo unicinctus), 110
hau kuahiwi (Hibiscadelphus giffardianus), 448
Hawai’ian honeycreepers (Drepanididae), 134–6
heat stress, 291
hemoglobin, β-chain locus, 181–2
herbicide-resistance, 496, 497–8
heritability, 258–60

and allele frequencies, 265–8
broad sense, 260–1
effect of bottlenecks, 274–6, 278
estimation, 262–4
narrow sense, 261–2, 265
realized, 264–5
statistical problems associated, 278

heteroplasmy, 65
heterosis, 224, 326, 372, 429, 430–1, 493–4
heterozygosity, 51, 308

deficits, 112–13, 203
effect of bottlenecks, 127, 133
excess, 136, 203–4
and fluctuating population size, 157–8
in ideal populations, 148–9
and inbreeding depression, 315–17
loss of, 123–6, 126–7, 128
as measure of genetic variation, 110–11, 126–7

protein, 51–4
in small populations, 136–8

heterozygosity-fitness correlations, 243, 244–5
heterozygous advantage, 176–8, 276, 315

associative, 242–3, 244–5
in demes, 215
and genetic drift, 187–8
marginal, 243
and multiple alleles, 182–3

heterozygous disadvantage, 178–9
and genetic drift, 187

hexaploidy, 39
HFCs, 243, 244–5
Hill-Robertson effect, 243
HIV, 326
hog peanut (Amphicarpa bracteata), 432, 433
homoplasmy, 292
homozygosity, 308

excess, 112–13, 203
and genetic drift, 123–4
and inbreeding depression, 315–17

honey bee (Apis mellifera), 350, 352, 353
horse (Equus caballus), 35, 39, 40, 429
house fly (Musca domestica), 275
human immunodeficiency virus (HIV), 326
humans (Homo sapiens)

chromosomes, 38, 39
color blindness, 109
genome sequencing, 35
mtDNA

inheritance, 64–5
sequencing, 67

numbers of progeny, 157
phylogeny, 387
population bottleneck, 240
population growth, 4
protein heterozygosity, 51, 52
single nucleotide polymorphisms, 73

humpback whale (Megaptera novaeangliae), 294,
338, 361, 414, 507

Hybrid Policy, 444
hybrid swarms, 429, 434–5, 437–9
hybrid taxa, 426–7
hybrid vigor/superiority, 224, 326, 372, 429,

430–1, 493–4
hybrid zones, 426, 427
hybridization, 421–3

anthropogenic, 428–9
in captive breeding programs, 35
categorization, 422
and conservation, 443–6, 446–7
definition, 423
detection and description, 434–43
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hybridization (cont’d )
and evolution, 422–3
and extinction, 428
fitness consequences, 429–34
and gametic disequilibrium, 246–50, 252–4,

441
intentional, 444–5
interspecific, 424–6
intraspecific, 424, 425
and invasiveness, 492–4
natural, 423–7
in plants, 446–7
with introgression, 429, 446
without introgression, 429, 445

hybrids
protection of, 444
terminology, 423

Hydrilla verticillata, 497–8
hypothesis testing, 557–9

IAM, 292, 294–5
IBD, 308, 310
identical by descent (IBD), 308, 310
inanga (Galaxias maculates), 224, 225
inbreeding, 306

adaptation to, 316
in captive populations, 463–4
controversies, 335
definition, 199, 306, 307
pedigree, 307–15, 316, 317
in small populations, 10–11, 13, 123–6, 141–2

inbreeding coefficients, 123, 124, 140, 199, 306
pedigree (F ), 307–10, 311–13

estimation from molecular markers, 313,
315, 316, 317

and reduction in fitness, 319
inbreeding depression, 139–41, 220, 430

in captive animals, 319, 320–2
causes, 315–17
definition, 306
estimation, 319–23
and extinction, 306, 338–42
indications of, 335
invasive species, 485
measurement, 317–23
monkeyflower, 306–7
in Peromyscus mice, 327–9
in population viability analysis, 346–8
and purging selection, 323, 325–7
and quantitative genetics, 278
and stress, 322–3, 324

inbreeding effect, small populations, 10–11, 13,
123–6, 141–2, 306

infinite allele model (IAM), 292, 294–5
insecticides, 496
intercross, 423
Intercross Policy, 444
intercross progeny, 423
International Plant Protection Convention, 495,

501
inter-simple sequence repeats (ISSRs), 77
interval estimates, 555–7
introduced species, 479–80, 490

see also invasive species
introgression, 392, 421, 424–5

and hybridization, 429, 446
mtDNA, 426

introns, 71–3
invasive species, 12, 482–4

admixture model, 489–90
establishment and spread, 491–2
genetic analysis, 487–91
genetic variation in, 485, 486, 488–90
hybridization, 492–4
lag times, 491, 492
management/control/eradication, 494–8
population bottlenecks, 485, 488–9
quantitative genetic variation, 491
reasons for success, 484–7
St John’s wort, 499–500
stages of invasion, 483, 484

island model of migration, 206–9, 210, 211–12,
214–18, 221–2, 294, 424

isolation by distance, 198, 209
ISSRs, 77
IUCN, 503

Red List, 342, 470
risk categories, 348, 349–50, 349

johnsongrass (Sorghum halpense), 491

kakapo (Strigops habroptilus), 75, 450–1, 452,
479–80, 481

karyotypes, 35–7
Kermode bear, 19, 32
kestrel (Falco punctatus), 115, 124–5
killer whale (Orcinus orca), 458
koala (Phascolarctos cinereus), 414, 458
kokanee (Oncorhynchus nerka), 29–30, 375, 377
Kokia cookei, 451
kulan (Equus hemionus), 40

lactate dehydrogenase (LDH), 48, 50, 99, 101, 463
lag times, 491, 492
lakeside daisy (Hymenoxys acaulis var. glabra), 354
land races, 13
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landscape genetics, 400
largemouth bass (Micropterus salmoides), 31, 

433–4
LDH, 48, 50, 99, 101, 463
leopard (Panthera), 19, 515

snow (P. uncial), 84–7
Leopold, Aldo, 4
Lepidopterans, sex chromosomes, 38
LEs, 317–19, 347–8
lethal equivalents (LEs), 317–19, 347–8
life history, variation in, 352–4
likelihood analysis, 544, 545, 561–2
likelihood odds ratios, 547
Lincoln-Peterson index, 337
lineage sorting, 162–3, 391
linkage disequilibrium, 234
Liolaemus monticola, 47
livebearing topminnow (Poeciliopsis monacha),

377–8
living fossils, 7, 383
lizards

cladogram, 389–90
Liolaemus monticola, 47
phenogram, 389–90
phylogeny, 386

locus-specific effects, 217
LOD score, 547
logging, illegal, 511
long-footed potoroo (Potorous longipes), 509
lynx, Canada (Lynx canadensis), 198, 435–7, 509

mahogany
Catalina Island (Cercocarpus traskiae), 446
mountain (Cercocarpus betuloides), 446

maize see corn (Zea mays)
major histocompatibility complex (MHC), 133,

134, 139, 183, 190, 326, 355
mammals

phylogeny, 386
population extirpation, 9

man see humans
management units (MUs), 413–15
marginal overdominance, 243
Markov chain Monte Carlo (MCMC), 565–6
match probability (MP), 510–11, 513
mathematics, necessity of, 575–6
mating

disassortative, 46
nonrandom, 203
random, 95, 198, 247

mating types, 354
Mauna Kea silversword (Argyroxiphium

sandwicense), 477–8

maximum likelihood methods, 107, 223, 561–2,
568

Mc1r, 20, 189, 300
MCMC, 565–6
median, 551
meiosis, 37
Mekong giant catfish (Pangasianodon gigas), 470
melanism in rock pocket mice, 189–90, 299–300
melanocortin–1 receptor, 20, 189, 300
Melanoides tuberulata, 487–8
Mendel, Gregor, 16–17, 18–19
Mendelian segregation and genetic drift, 155
meristic characters, 259, 260, 263
metapopulations, 364–5, 366

effective population size, 366–71
and genetic divergence among populations,

371, 372
genetic variation in, 365–9
long-term viability, 374–7

methods of moments, 545, 567–8
MHC, 133, 134, 139, 183, 190, 326, 355
microchromosomes, 35–6
microsatellites, 69–71

chloroplast, 65, 71
in estimation of inbreeding coefficient, 313, 315,

316, 317
in genetic identification, 504, 511
loci, 104, 111
mutations, 288, 289, 290, 292, 293

mid-parent value, 31, 262
migrate, 223
migration

definition, 199
direct estimates of, 224–6
and genetic rescue, 372–4
indirect estimates of, 221–4
island model, 206–9, 210, 211–12, 214–18,

221–2, 294, 424
stepping-stone model, 209, 210
and theoretical models, 95

migratory behavior, 23–4, 25
mimicry in butterflies, 41
minimum viable population (MVP), 348–9
minisatellites, 75–6
mink

American (Mustela vison), 445
European (Mustela lutreola), 445

minke whale, 505
Antarctic (Balaenoptera bonaerensis), 507
dwarf (Balaenoptera acutorostrata), 507
North Atlantic (Balaenoptera acutorostrata), 294,

507
North Pacific (Balaenoptera scammoni), 34, 507
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mitochondria, paternal leakage, 64–5
mitosis, 37
mode, 551
models, 94

spatial scales, 365–6
species, 5
in study of mutation, 286

molecular clock, 387
Molecular Ecology Notes, 71
molecular genetic markers, 79–80

in forensic investigation, 504
and marine turtle behavior, 82–4

molecular leakage, 425–6
monkey

blackhanded spider monkey (Ateles geoffroyi),
57–8

callimico monkey (Callimico goeldii), 317, 318,
319

owl monkey (Aotus trivirgatus), 431
monkeyflower (Mimulus guttatus), 306–7, 326, 330
monoamine oxidase A, 17
monoecy, 148
Monte Carlo simulations, 121, 565–6
moose (Alces alces), 52
morning glory (Ipomoea purpurea), 20, 290
morphological variation in populations, 20–3
Mosaic Model, 426
mosquito (Culex spp.), 493
mosquitofish (Gambusia), 141–2, 339
mouse

beach mouse (Peromyscus polionotus), 327–9
coat color mutation rate, 287
deer mouse (Peromyscus maniculatus), 5
house mouse (Mus musculus/Mus domesticus),

46–7, 48, 321–2, 431, 433, 434
mtDNA, 64
old-field mouse (Peromyscus polionotus), 327–9
rock pocket mouse (Chaetodipus intermedius),

189–90, 196, 299–300
white-footed mouse (Peromyscus leucopus),

327–9
MSD, 354
mtDNA see DNA, mitochondrial
mule (Equus asinus × Equus caballus), 35, 39, 429
multiple factor sex determination (MSD), 354
multiple loci, 233–56

DNA analysis techniques, 74–7
multivariate statistical techniques, 396, 549
muntjac

Chinese (Muntiacus reevesi), 40
Indian (Muntiacus muntjak), 40

MUs, 413–15
muskrat (Ondatra zibethica), 105–6

mustard (Brassica campestris), 5, 373–4
mutational meltdown, 187, 357, 463
mutations, 95, 219, 285–6

advantageous, 297
chromosomal, 287–8
clusters, 290
harmful, 296–7
molecular, 288–90
and population viability, 358–9
process of, 286–91
quantitative traits, 290
and recovery from bottlenecks, 297–9
selectively neutral, 291–5
stepwise model, 288, 289
and transposable elements, 290–1

MVP, 348–9

National Center for Biotechnology Information,
71

natural catastrophes, 342
natural selection, 172–3

additive model, 241
in captive populations, 462, 464–6, 467
and conservation, 188–92
directional see directional selection
and fitness, 173–4
frequency-dependent, 184–5, 186, 190
and gametic disequilibrium, 240–6
and gene flow among demes, 214–18
and genetic drift, 186–8
and Hardy–Weinberg proportions, 179
multiple alleles, 179–83
multiple loci, 240–6
multiplicative model, 241
and phenotypic variation, 16
and phylogeny, 391–2
purging, 294, 316, 323, 325–7
single locus with two alleles, 174–9
in small populations, 186–8
and supportive breeding, 472
and theoretical models, 95
in wild populations, 278–9

NCA, 403–4
neighbor-joining, 395–6
neighborhood, definition, 209–10
nested clade analysis (NCA), 403–4
New Zealand, introduced bird species, 479–80
New Zealand snapper (Chrysophrys auratus), 164–5
nonindigenous species, 482

see also invasive species
nonparametric statistics, 550
normal (Gaussian) distribution, 552, 554
null hypothesis, 557–9
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Occam’s razor, 94
odds ratios, 548
one-tailed tests, 559, 560
orangutan (Pongo pygmaeus), 113

Bornean (P.p. pygmaeus), 44–5
captive breeding, 35, 461
chromosomal inversion, 42, 44–5
illegal capture, 513–14
karyotype, 38
Sumatran (P.p. abelii), 44–5

orchid, elder-flowered (Dactylorhiza sambucina),
185–6

outbreeding depression, 220, 372, 429, 430
extrinsic, 429, 432–4, 445
intrinsic, 429, 431–2, 433, 445

outlier loci, 217–18
overdominance see heterozygous advantage
owl

eastern screech (Otus asio), 19–20, 27, 106–7
spotted (Strix occidentalis), 89

Oxylobium, 172

paedomorphosis, 273, 274
paired interspersed nuclear elements (PINEs), 77
panda, giant (Ailuropoda melanoleuca), 60, 459
panmixia, 371
panther (mountain lion/puma) (Puma concolor),

445
panther, Florida (Felis concolor coryi), 444, 445
parameter estimation, 567–9
parametric statistics, 550
parentage analysis, 513–15
parsimony, 389–90
Partnership for Action against Wildlife Crime

(PAW), 503
paternity exclusion (PE ), 514–15
path analysis, 309
PAW, 503
PCR see polymerase chain reaction
pdf, 554
pedigree analysis, 307–10, 311–13, 467–8

gene drop, 310–11, 312, 313, 314
pedigreed populations in conservation breeding,

467–8
pentaploidy, 39
performance testing, 569, 570
pesticide resistance, 496, 497–8
phenetics, 385
phenograms, 385, 388
phenotypic variation

interactions between environment and
genotype, 17, 18, 21–2, 29

loss of, 350, 352–4

and natural selection, 16
in populations, 15–32

phi-st (ΦST) 219
phylogenetic species concept (PSC), 404–5
phylogeny/phylogenetic trees, 6–9, 65, 385,

387–91
difference from population trees, 392–3
gene trees and species trees, 391–2

phylogeography, 401–4
philopatry, 401
pied flycatcher (Ficedula hypoleuca), 262–3
pine

loblolly (Pinus taeda), 317
Norfolk Island (Araucaria heterophylla), 81
ponderosa (Pinus ponderosa), 52, 153, 280
red (Pinus resinosa), 52, 53, 280–1
whitebark (Pinus albicaulis), 5
Wollemi (Wollemia nobilis), 81, 284

PINEs, 77
pinniped penises, trade in, 505–7
plants

hybridization, 446–7
offsite breeding, 454–5
restoration of communities, 476–9
self-incompatibility locus, 184–5, 354

pleiotropy, 268
Pleurodeles waltlii, 110
poaching, 503
pocket gopher (Geomys), 64, 401–2
Poisson distribution, 154, 552, 553–4
polar bear (Ursus maritimus), 52, 70, 392
polymerase chain reaction (PCR), 55, 67, 68–9,

435
multilocus techniques, 76–7
multiplex, 80
protein coding loci, 71–3
sexing techniques, 78
in species identification, 505

polymorphic loci, proportion of, 111
polymorphism, 51

color, 18–20
discrete, 19
stable, 176

polyploidy, 39, 426
management implications, 55–7

polytomy, 387
population genetics, experimental methods, 17
population genomics, 79
population mean, 550
population trees, 392–3, 410, 412
population variance, 551
population viability analysis (PVA), 342–50, 

351–2
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populations
assignment of groups to, 516–18
assignment of individuals to, 515–16
base, 307
composition analysis, 518–20
conservation, 9–11, 383
dendrograms, 394–8
description of genetic relationships among,

392–404
divergence and fragmentation, 371, 372
extinction rate, 9
genetic variation within, 51–2, 81–2, 198, 291–4
and heterosis, 431
hierarchical structure, 219–20
hybrid, 252–4
ideal, 148–9
importance of genetics in persistence of, 11–13
minimum viable, 348–9
panmictic, 198
parameter estimation, 564–6
phenotypic differences between, 26–9
phenotypic variation in, 15–32
size

fluctuations, 157–8
and theoretical models, 95
see also effective population size

small
evolutionary potential, 355
founder effect, 129–35
gametic disequilibrium, 239–40
genotypic proportions in, 136–8
inbreeding effect, 10–11, 13, 123–6, 141–2, 306
natural selection in, 186–8

spatial scales, 365–6
subdivision, 197–232

and gametic disequilibrium, 245–6
and mutation, 294–5

viability, 335, 342–50, 351–2
long-term, 357–9, 374–7
and loss of phenotypic variation, 350–4
and mtDNA mutations, 355–7

power, statistical, 559, 561
primrose (Primula spp.), flower structure, 41
probability, 96, 391, 546–8

conditional, 547–8
empirical, 546
joint, 547
posterior, 548, 563, 564, 567
subjective, 547
values (P-values), 561, 562–3

probability density function, 554
probability distributions, 551–5
product rule, 96, 391, 546

progeny, numbers, 153–7
propagule pressure, 491–2
protein electrophoresis, 34–5, 47–50, 435

strengths and limitations, 54–5
protein heterozygosity in populations, 51–4
Przewalski’s horse (Equus przewalski), 40
PSC, 404–5
Pseudocrenilabrus philander, 371
pseudo-overdominance, 242–3
purebred, terminology, 423
purging selection, 294, 316, 323, 325–7
PVA, 342–50, 351–2

QTLs see quantitative trait loci
quantitative genetics, 257–84
quantitative trait loci (QTLs), 258, 269–71

invasive species, 491
mapping, 272–3
mutations, 290

random mating, 95, 198, 247
random sampling, 568–9
randomly amplified polymorphic DNA (RAPDs),

76
ranking tests, 547
RAPDs, 76
rare species, genetic variation, 53
rarefaction methods, 337
rat, brown (Rattus norvegicus), 495–6
reciprocal monophyly and evolutionary

significant units, 409–12
recombination

and mtDNA, 65
within inversions, 41

red king crab (Paralithodes camtschaticus), 516, 517
refuge populations, 192–3
regression (selection), 264–5
regression (statistics), 549
reintroductions, 472–9
reproductive isolation

and evolutionary significant units, 409
and hybridization, 423

reproductive technologies, 457–8, 459
rescue effect, 365
restoration ecology, 476–9
restriction enzymes/endonucleases, 64, 65–7
restriction fragment length polymorphism

(RFLP), 66–7
RFLP, 66–7
rhinoceros

black (Diceros bicornis), 383, 473
one-horned (Rhinoceros unicornis), 99, 101
white (Ceratotherium simum), 383, 473
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right whale
North Atlantic (Eubalaena glacialis), 507
North Pacific (Eubalaena japonica), 507
pygmy (Caperea marginata), 507
southern (Eubaleana australis), 507

risk categories, 348, 349
robin, grey-headed (Poecilodryas albispecularis), 403
rough periwinkle (Littorina saxatilis), 217–18
roundworm (Ascaris lumbricoides), 52
RST, 219
ruffed grouse (Bonasa umbellus), 27–8
ryegrass (Lolium multiforum), 231–2

St John’s wort (Hypericum perforatum), 499–500
salamander

long-toed (Ambystoma macrodactylum), 230
Pacific giant (Dicamptodon tenebrosus), 41
tiger (Ambystoma tigrinum), 273, 274

salmon, 24, 26, 426
assignment of individuals to populations,

515–16
Atlantic (Salmo salar), 434
Chinook (Oncorhynchus tschawytscha), 10, 50, 73,

74, 192, 352–3
coho (Oncorhynchus kisutch), 72, 417
hatcheries, 456–7
null alleles, 462–3
pink (Oncorhynchus gorbuscha), 116

genetic correlation between meristic traits,
268–9

gill rakers, 259, 260
life history, 353
microsatellite loci, 104
mutations at microsatellite loci, 289
reduction in size, 20–1, 189, 258, 259, 279

polymorphisms, 72–3
population composition analysis, 518–20
sockeye (Oncorhynchus nerka), 212, 217, 520

compass orientation behavior, 26
countergradient variation in secondary

sexual color, 29–30
population composition analysis, 519, 520
population structure, 375–7

steelhead (Oncorhynchus mykiss), 417–18, 456–7
see also trout, rainbow

salsify (Tragopogon), 52
sample mean, 550
sample size

estimation, 391
and Hardy–Weinberg proportions, 102–3

sample variance, 551
sampling distribution, 555
sampling error, 391

SARA, 382
sea otter (Enhydra lutris), 58–60
seal

grey (Halichoerus grypus), 222
southern elephant (Mirounga leonina), 169

seed banks, 458
sei whale (Balaenoptera borealis), 507
selective sweep, 242, 391
self-fertilization, 432, 433
self-incompatibility locus, flowering plants, 184–5,

354
selfing, 200, 203
sensitivity testing, 350
sequential Bonferroni correction, 104–5
sequoia (Sequoiadendron giganteum), 48
Sewall Wright effect, 118
sex determination, 109, 354

multiple factor, 354
sex identification, molecular, 515
sex-linked markers of genetic variation, 77–8
sex ratio, unequal, 151–3
sexing techniques, molecular, 78
sexual selection, 30
shadow effect, 338
shark, velvet belly (Etompterus spinax), 21–2, 263,

284
sheep

bighorn (Ovis canadensis), 192, 198, 282–3, 373
domestic (Ovis aries), 4
mouflon (Ovis musimon), 458
Soay (Ovis aries), 323, 324, 355

shrew, common (Sorex araneus), 214, 218
Silene vulgaris, 65
silver-eye (Zosterops lateralis), 411
simple sequence repeats see microsatellites
SINEs, 505
single nucleotide polymorphisms (SNPs), 73–4, 80

in species identification, 505
sister chromatids, 37
skink

common (Leiolopisma zelandica), 166
grand (Oligosoma grande), 400, 401
prickly (Gnypetoscincus queenslandiae), 403
spotted (Oligosoma lineoocellatum), 166

slate-colored junco ( Junco hyemalis), 46
snails

Partula, 425, 432
shell coiling, 431–2
shell color and pattern, 41
Theba pisana, 130–1, 145–6, 488

snakes
brown tree snake (Boiga irregularis), 474
corn snake (Elaphe guttata), 458
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snakes (cont’d )
garter snakes (Thamnophis spp.), 24, 25, 432–3
phylogeny, 386

snow goose, lesser (Chen caerulescens caerulescens),
31

SNPs, 73–4, 80
in species identification, 505

soapberry bug (Jadera haematoloma), 192
Sonoran pronghorn (Antilocapra americana

sonoriensis), 351–2
sparrow

song (Melospiza melodia), 331
white-throated (Zonotrichia albicollis), 46

speciation
by polyploidy, 39
and hybridization, 423

species
conservation, 9–10
cryptic, 36, 55
definitions, 404–5
description of genetic relationships within,

392–404
diversity, 6
extinction rates, 4
genetic identification, 504–9
hybridization between, 424–6
hybridization within, 424, 425
integration model, 424
units of conservation, 404–7

Species at Risk Act (Canada) (SARA), 382
sperm whale (Physeter catodon), 507
Sphenodontidae, 7
spider, desert, 424, 425
“spirit” bear, 19
spruce

Sitka (Picea sitchensis), 427
white (Picea glauca), 427

Squamata, 7
squash (Cucurbita pepo), domestication, 4
SSRs see microsatellites
standard deviation, 551
standard error, 551
starling (Sturnus vulgaris), 479
statistical estimators, 549–50
statistical tests, 550
statistics, 543–76

descriptive, 549
types of, 549–50

stepping-stone model of migration, 209, 210
stepwise mutation model, 288, 289
sterile insect technique, 496
stickleback (Gasterosteus aculeatus), 422

stochastic processes, 10, 118, 342
stress

and inbreeding depression, 322–3, 324
and transposable elements, 291

structural genomics, 78
subpopulations see demes
sum rule, 96
summary statistic matching, 567
sunflower (Helianthus annuus), 427, 431, 447
supergenes, 41
support limits, 555, 557
supportive breeding, 11, 335–6, 470–2
swallow

barn (Hirundo rustica), 283
cliff (Petrochelidon pyrrhonota), 190–2

swamp eel (Monopterus spp.), 487
synapomorphies, 388, 390
systematic selection, 464–5
systematics, 385–6

t-test, 550, 559, 561
Taita thrush (Turdis helleri), 398–9
taxonomic distinctiveness, 6, 7
taxonomy, 385–6
Tension Zone Model, 426
tests for differences, 549
tests for relationship, 549
tetraploidy, 39
Thermus aquaticus, 69
threshold characters, 260
tiger (Panthera tigrus), 19, 407, 459, 460, 523
Tigriopus californicus, 432
TMRCA (the most recent common ancestor),

392–3
toad

American (Bufo americanus), 52
cane (Bufo marinus), 483
color and pattern polymorphisms, 19

Tofieldia racemosa, 395
tortoise (Testudo spp.), phylogeny, 386
TRAFFIC, 503
trafficking, 503
transgressive segregation, 427
translocation (animals/plants), 198, 300, 421,

472–9
translocation (chromosomal), 46–7, 48
transplantation experiments, 26
transposable elements, 290–1
transposons, 20
Triplaris americana, 152
triploidy, 39
trophy hunting, response of bighorn sheep, 282–3
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trout, 11, 24, 26, 426
Apache (Oncorhynchus apache), 52, 466
brook (Salvelinus fontinalis), 486

heterozygote deficit, 112–13
hydridization with bull trout, 77, 439–40, 

445
mtDNA, 426

brown (Salmo trutta), 201, 202, 490
bull (Salvelinus confluentus)

genetic divergence, 198
heterozygote excess, 101, 136–7
hydridization with brook trout, 77, 439–40,

445
cutthroat (Oncorhynchus clarki)

coastal (O.c. clarki), 438
Lahontan (O.c. henshawi), 438
westslope (O.c. lewisi), 67, 249–50, 252–4,

256, 437–9, 460, 461
Yellowstone (O.c. bouvieri), 67, 249–50,

252–4, 256, 437–9
null alleles, 462–3
rainbow (Oncorhynchus mykiss), 31–2, 87–9

gill rakers, 23
hybridization with cutthroat trout, 437–9
lactate dehydrogenase, 48, 50, 463
mtDNA, 90
outbreeding depression, 433
sex chromosomes, 110
see also salmon, steelhead

spotted mountain (Galaxias truttaceus), 160–2
tuatara (Sphenodon spp.), 6–7, 7, 166, 170, 350,

396–8
tule elk (Cervus elaphus nannodes), 342
turkey, 465
turtle

alligator snapping (Macroclemys temmincki), 
508

black (Chelonia spp), 407, 416
common snapping (Chelydra serpentina), 508
false map (Graptemys pseudogeographica), 508
Florida softshell (Apalone ferox), 508
genetic markers of behavior, 82–4
green (Chelonia mydas), 83–4, 212, 407, 414, 

416
illegal meat trade, 508
phylogeny, 386
red-eared slider (Chrysemys scripta elegans), 

508
spiny softshell (Apalone spinifera), 508

two-tailed tests, 559, 560
type I errors, 104, 558–9
type II errors, 104, 558–9

underdominance see heterozygous disadvantage
units of conservation

and ESA, 381–2
evolutionary significant units, 407–12
integration of information, 415–16
management units, 413–15
Pacific salmon, 417–18
species, 404–7

units of eradication, 495–6
unstable equilibrium, 178
UPGMA, 394–5

variable number of tandem repeats see
microsatellites

variance, 551
variance effective number, 150
velvet belly shark (Etompterus spinax), 21–2, 263,

284
viability, 174
VNTRs see microsatellites
vortex simulation model, 343–8

Wahlund effect, 105, 112, 201, 202, 203
multiple loci, 245

Wallace, Alfred Russel, 15, 16, 171
walnut, California black ( Juglans hindsii), 447
walnut husk fly (Rhagoletis completa), 204
Waratah anemone (Actina tenebrosa), 62
wheat (Triticum), domestication, 4
white campion (Silene alba), 213
White Sands pupfish (Cyprinodon tularosa), 

193
whitefish, 426

mountain (Prosopium williamsoni), 113
whooping crane (Grus americana), 468
Wilcoxon’s signed-ranks test, 550
WildAid, 503
wildcat (Felis silvestris), 441–3
Wilson, Allan C., 64
wolf, 198, 362, 392, 462, 463, 524–5

gray (Canis lupus), 313, 315, 316, 317
red (Canis rufus), 444, 509

wombat, hairy-nosed (Lasiorhinus spp.), 69, 70, 87,
360–1, 514

woodpecker, ivory-billed (Campephilus principalis),
14

World Conservation Union see IUCN
World Wide Fund for Nature (WWF), 503
wren, house (Troglodytes aedon), 61
Wright, Sewall, 147, 363, 543, 575
Wright–Fisher model, 118, 553–4
WWF, 503
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xanthine dehydrogenase, 182

yarrow (Achillea), 26, 27, 264
yellow star thistle (Centaurea solstitialis), 495
yellow white-eye (Zosterops lutea), 411

zebra
Burchell’s (Equus burchelli), 40
Grevy’s (Equus grevyi), 40
mountain (Equus zebra), 40

zoos, 453
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