
OVER 2 HOURS
OF VIDEO TUTORIALS

Over 20
incredible
projects

The ultimate guide to coding with Python

Learn to use Python

Python
The

NEW

Welcome to

Python is an incredibly versatile, expansive language which, due to its similarity to

everyday language, is surprisingly easy to learn even for inexperienced programmers. It

has seen a huge increase in popularity since the release and rise of the Raspberry Pi, for

which Python is the officially recognised programming language. In this new edition

of The Python Book, you’ll find plenty of creative projects to help you get to grips with

the combination of your Raspberry Pi and Python’s powerful functionality, plus lots of

tutorials that focus on Python’s effectiveness away from the Raspberry Pi. You’ll learn

all about how to code with Python from a standing start, with our comprehensive

masterclass, then go on to complete tutorials that will consolidate your skills and help

you to become fluent in the language. You’ll learn how to make Python work for you

with tutorials on coding with Django, Flask, Pygame and even more useful third-party

frameworks. Get ready to become a true Python expert with the wealth of information

contained within these pages.

Python
The

Imagine Publishing Ltd

Richmond House

33 Richmond Hill

Bournemouth

Dorset BH2 6EZ

 +44 (0) 1202 586200

Website: www.imagine-publishing.co.uk

Twitter: @Books_Imagine

Facebook: www.facebook.com/ImagineBookazines

Publishing Director
Aaron Asadi

Head of Design
Ross Andrews

Production Editor
Alex Hoskins

Senior Art Editor
Greg Whitaker

Assistant Designer
Steve Dacombe

Printed by
William Gibbons, 26 Planetary Road, Willenhall, West Midlands, WV13 3XT

Distributed in the UK, Eire & the Rest of the World by
Marketforce, 5 Churchill Place, Canary Wharf, London, E14 5HU

Tel 0203 787 9060 www.marketforce.co.uk

Distributed in Australia by
Network Services (a division of Bauer Media Group), Level 21 Civic Tower, 66-68 Goulburn Street,

Sydney, New South Wales 2000, Australia Tel +61 2 8667 5288

Disclaimer
The publisher cannot accept responsibility for any unsolicited material lost or damaged in the

post. All text and layout is the copyright of Imagine Publishing Ltd. Nothing in this bookazine may
be reproduced in whole or part without the written permission of the publisher. All copyrights are

recognised and used specifically for the purpose of criticism and review. Although the bookazine has
endeavoured to ensure all information is correct at time of print, prices and availability may change.

This bookazine is fully independent and not affiliated in any way with the companies mentioned herein.

The Python Book Second Edition © 2016 Imagine Publishing Ltd

ISBN 9781785462382

bookazine series

Part of the

Python
The

Python essentials
 26 Code rock, paper, scissors

Put basic coding into action

32 Program a hangman game
Use Python to make the classic game

38 Play poker dice
Test your luck and your coding

44 Create a graphical interface
Add interface to your projects

50 Bring graphics to games
Add images to simple games

56 Build an app for Android
Make your own app with Kivy

62 Making web apps
Use Python to create online apps

66 50 Python tips
Essential knowledge for Python users

Contents
8 Get started

with Python
Master the basics the right way

Work with Python
74 Python for professionals

Use your coding skills at work

82 Make extensions for XBMC
Enhance XBMC with this tutorial

88 Scienti� c computing
Get to grips with NumPy

92 Instant messaging
Get chatting using Python

98 Replace your shell
Use Python for your primary shell

102 Python for system admins
How Python helps system administration

6 The Python Book

82

16 50 essential
commands
The commands you need to know

92

116

124

Create with Python
108 Build tic-tac-toe with Kivy

Program noughts and crosses

112 Create two-step authentication
Use Twilio for safe authentication

116 Program a Space Invaders clone
Make the basic Pivaders game

120 Add animation and sound
Enhance your Pivaders game

124 Make a visual novel
Program a book-style game

128 Pygame Zero
Turn your ideas into games

Python
The

“Get to grips
with Python, and
master highly
versatile code”

Web development
136 Develop with Python

Why Python is perfect for the web

142 Create dynamic templates
Use Jinja, Flask and more

146 Build your own blog
Begin developing your blog

150 Deliver content to your blog
Add content to your site

154 Enhance your blog
Complete your blog with add-ons

Use Python with Pi
160 Programming in Python on

Raspberry Pi
Learn how to optimise for Pi

164 Turn Raspberry Pi into a

stop-motion studio
Learn how to optimise for Pi

168 Send SMS with Pi
Send text messages for free

170 Build an LED Matrix
Use Pi to control light sequences

50
Python

 tips

66

The Python Book 7

170136

8 The Python Book

Get started with Python

P
ython is a great programming language for
both beginners and experts. It is designed with
code readability in mind, making it an excellent

choice for beginners who are still getting used to
various programming concepts.

The language is popular and has plenty of libraries
available, allowing programmers to get a lot done with

relatively little code.
You can make all kinds of applications in Python:
you could use the Pygame framework to write

simple 2D games, you could use the GTK

libraries to create a windowed application, or you could
try something a little more ambitious like an app such
as creating one using Python’s Bluetooth and Input
libraries to capture the input from a USB keyboard and
relay the input events to an Android phone.

For this guide we’re going to be using Python 2.x since
that is the version that is most likely to be installed on your
Linux distribution.

In the following tutorials, you’ll learn how to create
popular games using Python programming. We’ll also
show you how to add sound and AI to these games.

Always wanted to have a go at
programming? No more excuses,

because Python is the perfect way to get started!

The Python Book 9

Get started with Python

Get started with Python

10 The Python Book

TIP
If you were using a graphical

editor such as gedit, then

you would only have to do

the last step of making the

file executable. You should

only have to mark the file as

executable once. You can

freely edit the file once it

is executable.

Interpreted vs compiled languages

An interpreted language such as Python is one where the source
code is converted to machine code and then executed each time the
program runs. This is dif erent from a compiled language such as C,
where the source code is only converted to machine code once – the
resulting machine code is then executed each time the program runs.

Hello World
Let’s get stuck in, and what better way than with the
programmer’s best friend, the ‘Hello World’ application! Start
by opening a terminal. Its current working directory will be your
home directory. It’s probably a good idea to make a directory for
the fi les we’ll be creating in this tutorial, rather than having them
loose in your home directory. You can create a directory called
Python using the command mkdir Python. You’ll then want to
change into that directory using the command cd Python.

The next step is to create an empty fi le using the command
‘touch’ followed by the fi lename. Our expert used the command
touch hello_world.py. The fi nal and most important part of
setting up the fi le is making it executable. This allows us to run
code inside the hello_world.py fi le. We do this with the command
chmod +x hello_world.py. Now that we have our fi le set up, we
can go ahead and open it up in nano, or any text editor of your
choice. Gedit is a great editor with syntax highlighting support
that should be available on any distribution. You’ll be able to
install it using your package manager if you don’t have it already.

[liam@liam-laptop ~]$ mkdir Python

[liam@liam-laptop ~]$ cd Python/

[liam@liam-laptop Python]$ touch hello_world.py

[liam@liam-laptop Python]$ chmod +x hello_world.py

[liam@liam-laptop Python]$ nano hello_world.py

Our Hello World program is very simple, it only needs two lines.
The fi rst line begins with a ‘shebang’ (the symbol #! – also known
as a hashbang) followed by the path to the Python interpreter.
The program loader uses this line to work out what the rest of the
lines need to be interpreted with. If you’re running this in an IDE
like IDLE, you don’t necessarily need to do this.

The code that is actually read by the Python interpreter is only
a single line. We’re passing the value Hello World to the print
function by placing it in brackets immediately after we’ve called
the print function. Hello World is enclosed in quotation marks to
indicate that it is a literal value and should not be interpreted as
source code. As expected, the print function in Python prints any
value that gets passed to it from the console.

You can save the changes you’ve just made to the fi le in nano
using the key combination Ctrl+O, followed by Enter. Use Ctrl+X
to exit nano.

#!/usr/bin/env python2

print(“Hello World”)

You can run the Hello World program by prefi xing
its fi lename with ./ – in this case you’d type:
 ./hello_world.py.

[liam@liam-laptop Python]$./hello_world.py

Hello World

Variables and data types
A variable is a name in source code that is associated with an
area in memory that you can use to store data, which is then
called upon throughout the code. The data can be one of many
types, including:

Integer Stores whole numbers

Float Stores decimal numbers

Boolean Can have a value of True or False

String Stores a collection of characters. “Hello
World” is a string

As well as these main data types, there are sequence types
(technically, a string is a sequence type but is so commonly used
we’ve classed it as a main data type):

List Contains a collection of data in a specifi c order

Tuple Contains a collection immutable data in a
specifi c order

A tuple would be used for something like a co-ordinate,
containing an x and y value stored as a single variable, whereas
a list is typically used to store larger collections. The data
stored in a tuple is immutable because you aren’t able to
change values of individual elements in a tuple. However, you
can do so in a list.

It will also be useful to know about Python’s dictionary
type. A dictionary is a mapped data type. It stores data in
key-value pairs. This means that you access values stored in
the dictionary using that value’s corresponding key, which is
different to how you would do it with a list. In a list, you would
access an element of the list using that element’s index (a
number representing the element’s position in the list).

Let’s work on a program we can use to demonstrate how to
use variables and different data types. It’s worth noting at
this point that you don’t always have to specify data types
in Python. Feel free to create this fi le in any editor you like.
Everything will work just fi ne as long as you remember to make
the fi le executable. We’re going to call ours variables.py.

“A variable is a name
in source code that is

associated with an area in
memory that you can use to

store data”

Get started with Python

The following line creates an
integer variable called hello_int
with the # value of 21. Notice
how it doesn’t need to go in
quotation marks

You could also create the
same list in the following way

We might as well create a
dictionary while we’re at it.
Notice how we’ve aligned the
colons below to make the
code tidy

The same principal is true of
Boolean values

We create a tuple in the
following way

And a list in this way

#!/usr/bin/env python2

We create a variable by writing the name of the variable we want followed
by an equals sign, which is followed by the value we want to store in the
variable. For example, the following line creates a variable called
hello_str, containing the string Hello World.
hello_str = “Hello World”

hello_int = 21

hello_bool = True

hello_tuple = (21, 32)

hello_list = [“Hello,”, “this”, “is”, “a”, “list”]

This list now contains 5 strings. Notice that there are no spaces
between these strings so if you were to join them up so make a sentence
you’d have to add a space between each element.

hello_list = list()
hello_list.append(“Hello,”)
hello_list.append(“this”)
hello_list.append(“is”)
hello_list.append(“a”)
hello_list.append(“list”)

The i rst line creates an empty list and the following lines use the append
function of the list type to add elements to the list. This way of using a
list isn’t really very useful when working with strings you know of in
advance, but it can be useful when working with dynamic data such as user
input. This list will overwrite the i rst list without any warning as we
are using the same variable name as the previous list.

hello_dict = { “i rst_name” : “Liam”,
 “last_name” : “Fraser”,
 “eye_colour” : “Blue” }

Let’s access some elements inside our collections
We’ll start by changing the value of the last string in our hello_list and
add an exclamation mark to the end. The “list” string is the 5th element
in the list. However, indexes in Python are zero-based, which means the
i rst element has an index of 0.

print(hello_list[4])
hello_list[4] += “!”
The above line is the same as
hello_list[4] = hello_list[4] + “!”
print(hello_list[4])

TIP

At this point, it’s worth

explaining that any text in

a Python fi le that follows

a # character will be

ignored by the interpreter.

This is so you can write

comments in your code.

Notice that there will now be
two exclamation marks when
we print the element

“Any text in a Python file that follows a #
character will be ignored”

12 The Python Book

Get started with Python

Indentation in detail

As previously mentioned, the level of indentation

dictates which statement a block of code belongs

to. Indentation is mandatory in Python, whereas in

other languages, sets of braces are used to organise

code blocks. For this reason, it is essential that you

use a consistent indentation style. Four spaces

are typically used to represent a single level of

indentation in Python. You can use tabs, but tabs are

not well defined, especially if you happen to open a

file in more than one editor.

More about a
Python list

A Python list is similar to an

array in other languages. A

list (or tuple) in Python can

contain data of multiple

types, which is not usually

the case with arrays in other

languages. For this reason,

we recommend that you

only store data of the same

type in a list. This should

almost always be the case

anyway due to the nature of

the way data in a list would

be processed.

print(str(hello_tuple[0]))
We can’t change the value of those elements like we just did with the list
Notice the use of the str function above to explicitly convert the integer
value inside the tuple to a string before printing it.

print(hello_dict[“i rst_name”] + “ “ + hello_dict[“last_name”] + “ has “ +
 hello_dict[“eye_colour”] + “ eyes.”)

print(“{0} {1} has {2} eyes.”.format(hello_dict[“i rst_name”],
 hello_dict[“last_name”],
 hello_dict[“eye_colour”]))

Remember that tuples are
immutable, although we can
access the elements of them
like so

Let’s create a sentence using the
data in our hello_dict

A tidier way of doing this
would be to use Python’s
string formatter

Control structures
In programming, a control structure is any kind of statement that

can change the path that the code execution takes. For example, a

control structure that decided to end the program if a number was

less than 5 would look something like this:

#!/usr/bin/env python2

import sys # Used for the sys.exit function

int_condition = 5

if int_condition < 6:

 sys.exit(“int_condition must be >= 6”)

else:

 print(“int_condition was >= 6 - continuing”)

The path that the code takes will depend on the value of

the integer int_condition. The code in the ‘if’ block will only be

executed if the condition is true. The import statement is used

to load the Python system library; the latter provides the exit

function, allowing you to exit the program, printing an error

message. Notice that indentation (in this case four spaces per

indent) is used to indicate which statement a block of code

belongs to.

‘If’ statements are probably the most commonly used control

structures. Other control structures include:

• For statements, which allow you to iterate over items in

collections, or to repeat a piece of code a certain number

of times;

• While statements, a loop that continues while the condition

is true.

We’re going to write a program that accepts user input from the

user to demonstrate how control structures work. We’re calling it

construct.py.

The ‘for’ loop is using a local copy of the current value, which

means any changes inside the loop won’t make any changes

affecting the list. On the other hand however, the ‘while’ loop is

directly accessing elements in the list, so you could change the list

there should you want to do so. We will talk about variable scope in

some more detail later on. The output from the above program is

as follows:

[liam@liam-laptop Python]$./construct.py

How many integers? acd

You must enter an integer

[liam@liam-laptop Python]$./construct.py

How many integers? 3

Please enter integer 1: t

You must enter an integer

Please enter integer 1: 5

Please enter integer 2: 2

Please enter integer 3: 6

Using a for loop

5

2

6

Using a while loop

5

2

6

“The ‘for‘ loop uses
a local copy, so

changes in the loop
won’t affect the list”

The Python Book 13

The number of integers we
want in the list

A list to store the integers

These are used to keep track
of how many integers we
currently have

If the above succeeds then isint
will be set to true: isint =True

#!/usr/bin/env python2

We’re going to write a program that will ask the user to input an arbitrary

number of integers, store them in a collection, and then demonstrate how the

collection would be used with various control structures.

import sys # Used for the sys.exit function

target_int = raw_input(“How many integers? “)

By now, the variable target_int contains a string representation of

whatever the user typed. We need to try and convert that to an integer but

be ready to # deal with the error if it’s not. Otherwise the program will

crash.

try:

 target_int = int(target_int)

except ValueError:

 sys.exit(“You must enter an integer”)

ints = list()

count = 0

Keep asking for an integer until we have the required number

while count < target_int:

 new_int = raw_input(“Please enter integer {0}: “.format(count + 1))

 isint = False

 try:

 new_int = int(new_int)

 except:

 print(“You must enter an integer”)

 # Only carry on if we have an integer. If not, we’ll loop again

 # Notice below I use ==, which is dif erent from =. The single equals is an

assignment operator whereas the double equals is a comparison operator.

 if isint == True:

 # Add the integer to the collection

 ints.append(new_int)

 # Increment the count by 1

 count += 1

print(“Using a for loop”)

for value in ints:

 print(str(value))

By now, the user has given up or
we have a list i lled with integers.
We can loop through these in a
couple of ways. The i rst is with
a for loop

14 The Python Book

Get started with Python

#!/usr/bin/env python2

Below is a function called modify_string, which accepts a variable

that will be called original in the scope of the function. Anything

indented with 4 spaces under the function definition is in the

scope.

def modify_string(original):

 original += “ that has been modified.”

 # At the moment, only the local copy of this string has been modified

def modify_string_return(original):

 original += “ that has been modified.”

 # However, we can return our local copy to the caller. The function

 # ends as soon as the return statement is used, regardless of where it

 # is in the function.

 return original

test_string = “This is a test string”

modify_string(test_string)

print(test_string)

test_string = modify_string_return(test_string)

print(test_string)

The function’s return value is stored in the variable test string,

overwriting the original and therefore changing the value that is

printed.

We are now outside of
the scope of the modify_
string function, as we
have reduced the level
of indentation

The test string won’t be
changed in this code

However, we can call the
function like this

TIP

You can define defaults

for variables if you want

to be able to call the

function without passing

any variables through at

all. You do this by putting

an equals sign after

the variable name. For

example, you can do:

def modify_string

(original=” Default

String”)

Or with a while loop:

print(“Using a while loop”)

We already have the total above, but knowing the len function is very

useful.

total = len(ints)

count = 0

while count < total:

 print(str(ints[count]))

 count += 1

Functions and variable scope
Functions are used in programming to break processes down into smaller

chunks. This often makes code much easier to read. Functions can also be

reusable if designed in a certain way. Functions can have variables passed

to them. Variables in Python are always passed by value, which means that

a copy of the variable is passed to the function that is only valid in the scope

of the function. Any changes made to the original variable inside the function

will be discarded. However, functions can also return values, so this isn’t

an issue. Functions are defined with the keyword def, followed by the

name of the function. Any variables that can be passed through are put in

brackets following the function’s name. Multiple variables are separated by

commas. The names given to the variables in these brackets are the ones

that they will have in the scope of the function, regardless of what

the variable that’s passed to the function is called. Let’s see this

in action.

The output from the program opposite is as follows:

“Functions are used in
programming to break
processes down in”

Get started with Python

[liam@liam-laptop Python]$./functions_and_scope.py

This is a test string

This is a test string that has been modified.

Scope is an important thing to get the hang of, otherwise it can get you

into some bad habits. Let’s write a quick program to demonstrate this. It’s

going to have a Boolean variable called cont, which will decide if a number

will be assigned to a variable in an if statement. However, the variable

hasn’t been defi ned anywhere apart from in the scope of the if statement.

We’ll fi nish off by trying to print the variable.

#!/usr/bin/env python2

cont = False

if cont:

 var = 1234

print(var)

In the section of code above, Python will convert the integer to a string

before printing it. However, it’s always a good idea to explicitly convert

things to strings – especially when it comes to concatenating strings

together. If you try to use the + operator on a string and an integer, there

will be an error because it’s not explicitly clear what needs to happen.

The + operator would usually add two integers together. Having said that,

Python’s string formatter that we demonstrated earlier is a cleaner way of

doing that. Can you see the problem? Var has only been defi ned in the scope

of the if statement. This means that we get a very nasty error when we try to

access var.

[liam@liam-laptop Python]$./scope.py

Traceback (most recent call last):

 File “./scope.py”, line 8, in <module>

 print var

NameError: name ‘var’ is not defined

If cont is set to True, then the variable will be created and we can access

it just fi ne. However, this is a bad way to do things. The correct way is to

initialise the variable outside of the scope of the if statement.

#!/usr/bin/env python2

cont = False

var = 0

if cont:

 var = 1234

if var != 0:

 print(var)

The variable var is defi ned in a wider scope than the if statement, and

can still be accessed by the if statement. Any changes made to var inside

the if statement are changing the variable defi ned in the larger scope.

This example doesn’t really do anything useful apart from illustrate the

potential problem, but the worst-case scenario has gone from the program

crashing to printing a zero. Even that doesn’t happen because we’ve added

an extra construct to test the value of var before printing it.

Coding style
It’s worth taking a little time to talk about coding style. It’s simple to write

tidy code. The key is consistency. For example, you should always name

your variables in the same manner. It doesn’t matter if you want to use

camelCase or use underscores as we have. One crucial thing is to use

self-documenting identifi ers for variables. You shouldn’t have to guess

what a variable does. The other thing that goes with this is to always

comment your code. This will help anyone else who reads your code,

and yourself in the future. It’s also useful to put a brief summary at

the top of a code fi le describing what the application does, or a part of

the application if it’s made up of multiple fi les.

Summary
This article should have introduced you to the basics of programming

in Python. Hopefully you are getting used to the syntax, indentation

and general look and feel of a Python program. The next step is

to learn how to come up with a problem that you want to solve, and

break it down into small enough steps that you can implement in a

programming language.

Google, or any other search engine, is very helpful. If you are stuck

with anything, or have an error message you can’t work out how to

fi x, stick it into Google and you should be a lot closer to solving your

problem. For example, if we Google ‘play mp3 fi le with python’, the

fi rst link takes us to a Stack Overfl ow thread with a bunch of useful

replies. Don’t be afraid to get stuck in – the real fun of programming is

solving problems one manageable chunk at a time.

Happy programming!

Comparison operators

The common comparison operators available in Python include:

< strictly less than

<= less than or equal

> strictly greater than

>= greater than or equal

== equal

!= not equal

Python has a massive environment of extra modules

that can provide functionality in hundreds of

different disciplines. However, every programming

language has a core set of functionality that everyone

should know in order to get useful work done. Python

is no different in this regard. Here, we will look at

50 commands that we consider to be essential to

programming in Python. Others may pick a slightly

different set, but this list contains the best of the best.

We will cover all of the basic commands, from

importing extra modules at the beginning of a program

to returning values to the calling environment at the

end. We will also be looking at some commands that

are useful in learning about the current session within

Python, like the current list of variables that have been

defined and how memory is being used.

Because the Python environment involves using a lot

of extra modules, we will also look at a few commands

that are strictly outside of Python. We will see how to

install external modules and how to manage multiple

environments for different development projects.

Since this is going to be a list of commands, there is the

assumption that you already know the basics of how

to use loops and conditional structures. This piece is

designed to help you remember commands that you

know you’ve seen before, and hopefully introduce you

to a few that you may not have seen yet.

Although we’ve done our best to pack everything

you could ever need into 50 tips, Python is such an

expansive language that some commands will have

been left out. Make some time to learn about the ones

that we didn’t cover here, once you’ve mastered these.

PYTHON
ESSENTIAL

COMMANDS
Python is known as a very

dense language, with lots of
modules capable of doing

almost anything. Here,
we will look at the core

essentials that everyone
needs to know

16 The Python Book

50 Python commands

Importing modules
The strength of Python is its ability to be

extended through modules. The fi rst step in many

programs is to import those modules that you need.

The simplest import statement is to just call ‘import

modulename’. In this case, those functions and

objects provided are not in the general namespace.

You need to call them using the complete name

(modulename.methodname). You can shorten the

‘modulename’ part with the command ‘import

modulename as mn’. You can skip this issue

completely with the command ‘from modulename

import *’ to import everything from the given module.

Then you can call those provided capabilities directly.

If you only need a few of the provided items, you can

import them selectively by replacing the ‘*’ with the

method or object names.

Evaluating code
Sometimes, you may have chunks of

code that are put together programmatically. If

these pieces of code are put together as a string,

you can execute the result with the command

‘eval(“code_string”)’. Any syntax errors within

the code string are reported as exceptions. By

default, this code is executed within the current

session, using the current globals and locals

dictionaries. The ‘eval’ command can also take

two other optional parameters, where you can

provide a different set of dictionaries for the

globals and locals. If there is only one additional

parameter, then it is assumed to be a globals

dictionary. You can optionally hand in a code

object that is created with the compile command

instead of the code string. The return value of this

command is None.

An enhanced shell
The default interactive shell is provided

through the command ‘python’, but is

rather limited. An enhanced shell is provided by

the command ‘ipython’. It provides a lot of extra

functionality to the code developer. A thorough

history system is available, giving you access to

not only commands from the current session,

but also from previous sessions. There are also

magic commands that provide enhanced ways of

interacting with the current Python session. For

more complex interactions, you can create and use

macros. You can also easily peek into the memory

of the Python session and decompile Python code.

You can even create profi les that allow you to handle

initialisation steps that you may need to do every time

you use iPython.

Installing new modules
While most of the commands we are looking at are Python commands

that are to be executed within a Python session, there are a few essential

commands that need to be executed outside of Python. The first of these is pip.

Installing a module involves downloading the source code, and compiling any included

external code. Luckily, there is a repository of hundreds of Python modules available

at http://pypi.python.org. Instead of doing everything manually, you can install a

new module by using the command ‘pip install modulename’. This command will

also do a dependency check and install any missing modules before installing the

one you requested. You may need administrator rights if you want this new module

installed in the global library for your computer. On a Linux machine, you would

simply run the pip command with sudo. Otherwise, you can install it to your

personal library directory by adding the command line option ‘—user’.

“Every programming language out there has a
core set of functionality that everyone should
know in order to get useful work done. Python is
no different”

01

Executing a script
Importing a module does run the code

within the module fi le, but does it through the

module maintenance code within the Python

engine. This maintenance code also deals with

running initialising code. If you only wish to

take a Python script and execute the raw code

within the current session, you can use the

‘execfi le(“fi lename.py”)’ command, where the

main option is a string containing the Python fi le

to load and execute. By default, any defi nitions

are loaded into the locals and globals of the

current session. You can optionally include

two extra parameters the execfi le command.

These two options are both dictionaries, one

for a different set of locals and a different set of

globals. If you only hand in one dictionary, it is

assumed to be a globals dictionary. The return

value of this command is None.

04

Reloading modules
When a module is fi rst imported, any initialisation functions are run at that time. This may involve

creating data objects, or initiating connections. But, this is only done the fi rst time within a given session.

Importing the same module again won’t re-execute any of the initialisation code. If you want to have this

code re-run, you need to use the reload command. The format is ‘reload(modulename)’. Something to keep

in mind is that the dictionary from the previous import isn’t dumped, but only written over. This means that

any defi nitions that have changed between the import and the reload are updated correctly. But if you

delete a defi nition, the old one will stick around and still be accessible. There may be other side effects, so

always use with caution.

02

0605

03

The Python Book 17

18 The Python Book

Reductions
In many calculations, one of the

computations you need to do is a reduction

operation. This is where you take some list of values

and reduce it down to a single value. In Python, you

can use the command ‘reduce(function, iterable)’ to

apply the reduction function to each pair of elements

in the list. For example, if you apply the summation

reduction operation to the list of the fi rst fi ve

integers, you would get the result ((((1+2)+3)+4)+5).

You can optionally add a third parameter to act as an

initialisation term. It is loaded before any elements

from the iterable, and is returned as a default if the

iterable is actually empty. You can use a lambda

function as the function parameter to reduce to keep

your code as tight as possible. In this case, remember

that it should only take two input parameters.

Virtualenvs
Because of the potential complexity of

the Python environment, it is sometimes best to

set up a clean environment within which to install

only the modules you need for a given project. In

this case, you can use the virtualenv command

to initialise such an environment. If you create

a directory named ‘ENV’, you can create a new

environment with the command ‘virtualenv

ENV’. This will create the subdirectories bin, lib

and include, and populate them with an initial

environment. You can then start using this new

environment by sourcing the script ‘ENV/bin/

activate’, which will change several environment

variables, such as the PATH. When you are done,

you can source the script ‘ENV/bin/deactivate’

to reset your shell’s environment back to its

previous condition. In this way, you can have

environments that only have the modules you

need for a given set of tasks.

Mapping functions
A common task that is done in modern

programs is to map a given computation

to an entire list of elements. Python provides the

command ‘map()’ to do just this. Map returns a list of

the results of the function applied to each element of

an iterable object. Map can actually take more than

one function and more than one iterable object. If it

is given more than one function, then a list of tuples

is returned, with each element of the tuple containing

the results from each function. If there is more than

one iterable handed in, then map assumes that the

functions take more than one input parameter, so

it will take them from the given iterables. This has

the implicit assumption that the iterables are all of

the same size, and that they are all necessary as

parameters for the given function.

Loops
While not strictly commands, everyone needs

to know how to deal with loops. The two main

types of loops are a fixed number of iterations loop (for) and

a conditional loop (while). In a for loop, you iterate over some

sequence of values, pulling them off the list one at a time

and putting them in a temporary variable. You continue until

either you have processed every element or you have hit a

break command. In a while loop, you continue going through

the loop as long as some test expression evaluates to True.

While loops can also be exited early by using the break

command, you can also skip pieces of code within either

loop by using a continue command to selectively stop this

current iteration and move on to the next one.

“While not strictly commands, everyone needs to
know how to deal with loops. The two main types
of loops are a fixed number of iterations loop (for)
and a conditional loop (while)”

12

Asserting values
At some point, we all need to debug

some piece of code we are trying to write. One

of the tools useful in this is the concept of an

assertion. The assert command takes a Python

expression and checks to see if it is true. If so,

then execution continues as normal. If it is not

true, then an AssertionError is raised. This way,

you can check to make sure that invariants

within your code stay invariant. By doing so,

you can check assumptions made within your

code. You can optionally include a second

parameter to the assert command. This second

parameter is Python expression that is executed

if the assertion fails. Usually, this is some type of

detailed error message that gets printed out. Or,

you may want to include cleanup code that tries

to recover from the failed assertion.

07

Filtering
Where the command map returns a result for every element in an iterable, fi lter only returns a

result if the function returns a True value. This means that you can create a new list of elements where

only the elements that satisfy some condition are used. As an example, if your function checked that

the values were numbers between 0 and 10, then it would create a new list with no negative numbers

and no numbers above 10. This could be accomplished with a for loop, but this method is much

cleaner. If the function provided to fi lter is ‘None’, then it is assumed to be the identity function. This

means that only those elements that evaluate to True are returned as part of the new list. There are

iterable versions of fi lter available in the itertools module.

11

09

08

10

The Python Book 19

50 Python commands

Enumerating
Sometimes, we need to label the elements

that reside within an iterable object with their

indices so that they can be processed at some later

point. You could do this by explicitly looping through

each of the elements and building an enumerated

list. The enumerate command does this in one line.

It takes an iterable object and creates a list of tuples

as the result. Each tuple has the 0-based index of

the element, along with the element itself. You can

optionally start the indexing from some other value

by including an optional second parameter. As an

example, you could enumerate a list of names with

the command ‘list(enumerate(names, start=1))’. In

this example, we decided to start the indexing at 1

instead of 0.

Casting
Variables in Python don’t have any type

information, and so can be used to store

any type of object. The actual data, however, is of

one type or another. Many operators, like addition,

assume that the input values are of the same type.

Very often, the operator you are using is smart

enough to make the type of conversion that is

needed. If you have the need to explicitly convert

your data from one type to another, there are a class

of functions that can be used to do this conversion

process. The ones you are most likely to use is ‘abs’,

‘bin’, ‘bool’, ‘chr’, ‘complex’, ‘fl oat’, ‘hex’, ‘int’, ‘long’,

‘oct’, and ‘str’. For the number-based conversion

functions, there is an order of precedence where

some types are a subset of others. For example,

integers are “lower” than fl oats. When converting

up, no changes in the ultimate value should happen.

When converting down, usually some amount of

information is lost. For example, when converting

from fl oat to integer, Python truncates the number

towards zero.

14

15

How true is a list?
In some cases, you may have collected a number of elements within a list that can be evaluated

to True or False. For example, maybe you ran a number of possibilities through your computation and

have created a list of which ones passed. You can use the command ‘any(list)’ to check to see whether

any of the elements within your list are true. If you need to check whether all of the elements are True,

you can use the command ‘all(list)’. Both of these commands return a True if the relevant condition is

satisfi ed, and a False if not. They do behave differently if the iterable object is empty, however. The

command ‘all’ returns a True if the iterable is empty, whereas the command ‘any’ returns a False when

given any empty iterable.

13

What is this?
Everything in Python is an object. You can

check to see what class this object is an instance
of with the command ‘isinstance(object, class)’.
This command returns a Boolean value.

16

Is it a subclass?
The command ‘issubclass(class1, class2)’

checks to see if class1 is a subclass of class2. If
class1 and class2 are the same, this is returned
as True.

17

Global objects
You can get a dictionary of the global

symbol table for the current module with the
command ‘globals()’.

18

Local objects
You can access an updated dictionary

of the current local symbol table by using the
command ‘locals()’.

19

Variables
The command ‘vars(dict)’ returns writeable

elements for an object. If you use ‘vars()’, it
behaves like ‘locals()’.

20

Making a global
A list of names can be interpreted as

globals for the entire code block with the
command ‘global names’.

21

Nonlocals
In Python 3.X, you can access names from

the nearest enclosing scope with the command
‘nonlocal names’ and bind it to the local scope.

22

Raising an exception
When you identify an error condition,

you can use the ‘raise’ command to throw up an
exception. You can include an exception type and
a value.

23

Dealing with an exception
Exceptions can be caught in a try-except

construction. If the code in the try block raises an
exception, the code in the except block gets run.

24

Static methods
You can create a statis method, similar

to that in Java or C++, with the command
‘staticmethod(function_name)’.

25

20 The Python Book

Printing
The most direct way of getting output

to the user is with the print command.

This will send text out to the console window. If you

are using version 2.X of Python, there are a couple

of ways you can use the print command. The most

common way had been simply call it as ‘print

“Some text”’. You can also use print with the same

syntax that you would use for any other function.

So, the above example would look like ‘print(“Some

text”)’. This is the only form available in version 3.X.

If you use the function syntax, you can add extra

parameters that give you fi ner control over this

output. For example, you can give the parameter

‘fi le=myfi le.txt’ and get the output from the print

command being dumped into the given text fi le.

It also will accept any object that has some string

representation available.

With modules
The ‘with’ command provides the ability to

wrap a code block with methods defi ned

by a context manager. This can help clean up code

and make it easier to read what a given piece of

code is supposed to be doing months later. A classic

example of using ‘with’ is when dealing with fi les.

You could use something like ‘with open(“myfi le.

txt”, “r”) as f:’. This will open the fi le and prepare it for

reading. You can then read the fi le in the code block

with ‘data=f.read()’. The best part of doing this is that

the fi le will automatically be closed when the code

block is exited, regardless of the reason. So, even if

the code block throws an exception, you don’t need to

worry about closing the fi le as part of your exception

handler. If you have a more complicated ‘with’

example, you can create a context manager class to

help out.

3231

Memoryview
Sometimes, you need to access the raw data of some object, usually as a buffer of bytes. You

can copy this data and put it into a bytearray, for example. But this means that you will be using extra

memory, and this might not be an option for large objects. The command ‘memoryview(object_name)’

wraps the object handed in to the command and provides an interface to the raw bytes. It gives access

to these bytes an element at a time. In many cases, elements are the size of one byte. But, depending

on the object details, you could end up with elements that are larger than that. You can fi nd out the size

of an element in bytes with the property ‘itemsize’. Once you have your memory view created, you can

access the individual elements as you would get elements from a list (mem_view[1], for example).

33

“A classic example of using ‘with’ is when dealing
with files. The best part of doing this is that the
file will automatically be closed when the code
block is exited, regardless of the reason”

Ranges
You may need a list of numbers, maybe in

a ‘for’ loop. The command ‘range()’ can create an
iterable list of integers. With one parameter, it
goes from 0 to the given number. You can provide
an optional start number, as well as a step size.
Negative numbers count down.

Xranges
One problem with ranges is that all of the

elements need to be calculated up front and
stored in memory. The command ‘xrange()’ takes
the same parameters and provides the same
result, but only calculates the next element as it
is needed.

27

Iterators
Iteration is a very Pythonic way of doing

things. For objects which are not intrinsically
iterable, you can use the command ‘iter(object_
name)’ to essentially wrap your object and provide
an iterable interface for use with other functions
and operators.

28

Sorted lists
You can use the command ‘sorted(list1)’

to sort the elements of a list. You can give it
a custom comparison function, and for more
complex elements you can include a key function
that pulls out a ranking property from each
element for comparison.

29

Summing items
Above, we saw the general reduction

function reduce. A specifi c type of reduction
operation, summation, is common enough to
warrant the inclusion of a special case, the
command ‘sum(iterable_object)’. You can include
a second parameter here that will provide a
starting value.

30

26

The Python Book 21

50 Python commands

Threads
You can do multiple threads of execution

within Python. The ‘thread()’ command can create a

new thread of execution for you. It follows the same

techniques as those for POSIX threads. When you fi rst

create a thread, you need to hand in a function name,

along with whatever parameters said function needs.

One thing to keep in mind is that these threads behave

just like POSIX threads. This means that almost

everything is the responsibility of the programmer. You

need to handle mutex locks (with the methods ‘acquire’

and ‘release’), as well as create the original mutexes

with the method ‘allocate_lock’. When you are done,

you need to ‘exit’ the thread to ensure that it is properly

cleaned up and no resources get left behind. You also

have fi ne-grained control over the threads, being able

to set things like the stack size for new threads.

Shelving data
While pickling allows you save data and

reload it, sometimes you need more structured

object permanence in your Python session. With the

shelve module, you can create an object store where

essentially anything that can be pickled can be stored

there. The backend of the storage on the drive can be

handled by one of several systems, such as dbm or

gdbm. Once you have opened a shelf, you can read and

write to it using key value pairs. When you are done, you

need to be sure to explicitly close the shelf so that it is

synchronised with the fi le storage. Because of the way

the data may be stored in the backing database, it is

best to not open the relevant fi les outside of the shelve

module in Python. You can also open the shelf with

writeback set to True. If so, you can explicitly call the

sync method to write out cached changes.

Pickling data
There are a few different ways of

serialising memory when you need to checkpoint

results to disk. One of these is called pickling.

Pickle is actually a complete module, not just a

single command. To store data on to the hard

drive, you can use the dump method to write

the data out. When you want to reload the same

data at some other point in the future, you can

use the load method to read the data in and

unpickle it. One issue with pickle is its speed, or

lack of it. There is a second module, cPickle, that

provides the same basic functionality. But, since

it is written in C, it can be as much as 1000 times

faster. One thing to be aware of is that pickle does

not store any class information for an object,

but only its instance information. This means

that when you unpickle the object, it may have

different methods and attributes if the class

defi nition has changed in the interim.

Weak references
You sometimes need to have a reference

to an object, but still be able to destroy it if

needed. A weak reference is one which can

be ignored by the garbage collector. If the only

references left to n object are weak references,

then the garbage collector is allowed to destroy

that object and reclaim the space for other

uses. This is useful in cases where you have

caches or mappings of large datasets that

don’t necessarily have to stay in memory. If an

object that is weakly referenced ends up being

destroyed and you try to access it, it will appear

as a None. You can test for this condition and

then reload the data if you decide that this is a

necessary step.

Yielding
In many cases, a function may need to

yield the context of execution to some other

function. This is the case with generators. The preferred

method for a generator is that it will only calculate the

next value when it is requested through the method

‘next()’. The command ‘yield’ saves the current state of

the generator function, and return execution control

to the calling function. In this way, the saved state of

the generator is reloaded and the generator picks up

where it left off in order to calculate the next requested

value. In this way, you only need to have enough memory

available to store the bare minimum to calculate the

next needed value, rather than having to store all of the

possible values in memory all at once.

3938

Files
When dealing with fi les, you need to create a fi le object to interact with it. The fi le command takes

a string with the fi le name and location and creates a fi le object instance. You can then call the fi le object

methods like ‘open’, ‘read’ and ‘close’, to get data out of the fi le. If you are doing fi le processing, you can

also use the ‘readline’ method. When opening a fi le, there is an explicit ‘open()’ command to simplify the

process. It takes a string with the fi le name, and an optional parameter that is a string which defi nes the

mode. The default is to open the fi le as read-only (‘r’). You can also open it for writing (‘w’) and appending

(‘a’). After opening the fi le, a fi le object is returned so that you can further interact with it. You can then read

it, write to it, and fi nally close it.

34

37

36
35

22 The Python Book

50 Python commands

Slices
While not truly a command, slices are

too important a concept not to mention in this

list of essential commands. Indexing elements

in data structures, like lists, is one of the most

common things done in Python. You can select a

single element by giving a single index value. More

interestingly, you can select a range of elements by

giving a start index and an end index, separated by

a colon. This gets returned as a new list that you can

save in a new variable name. You can even change

the step size, allowing you to skip some number of

elements. So, you could grab every odd element from

the list ‘a’ with the slice ‘a[1::2]’. This starts at index 1,

continues until the end, and steps through the index

values 2 at a time. Slices can be given negative index

values. If you do, then they start from the end of the

list and count backwards.

43

Inputting data
Sometimes, you need to collect input

from an end user. The command ‘input()’ can

take a prompt string to display to the user, and

then wait for the user to type a response. Once

the user is done typing and hits the enter key, the

text is returned to your program. If the readline

module was loaded before calling input, then

you will have enhanced line editing and history

functionality. This command passes the text

through eval fi rst, and so may cause uncaught

errors. If you have any doubts, you can use the

command ‘raw_input()’ to skip this problem. This

command simply returns the unchanged string

inputted by the user. Again, you can use the

readline module to get enhanced line editing.

40

Comparing objects
There are several ways to compare objects within Python, with several caveats. The fi rst is that

you can test two things between objects: equality and identity. If you are testing identity, you are testing

to see if two names actually refer to the same instance object. This can be done with the command

‘cmp(obj1, obj2)’. You can also test this condition by using the ‘is’ keyword. For example, ‘obj1 is obj2’. If

you are testing for equality, you are testing to see whether the values in the objects referred to by the

two names are equal. This test is handled by the operator ‘==’, as in ‘obj1 == obj2’. Testing for equality

can become complex for more complicated objects.

42

Internal variables
For people coming from other programming languages, there is a concept of having certain variables

or methods be only available internally within an object. In Python, there is no such concept. All elements of an

object are accessible. There is a style rule, however, that can mimic this type of behaviour. Any names that start

with an underscore are expected to be treated as if they were internal names and to be kept as private to the

object. They are not hidden, however, and there is no explicit protection for these variables or methods. It is up to

the programmer to honour the intention from the author the class and not alter any of these internal names. You

are free to make these types of changes if it becomes necessary, though.

41

The Python Book 23

50 Python commands

“Python is an interpreted language, which means
that the source code that you write needs to be
compiled into a byte code format. This byte code
then gets fed into the actual Python engine”

Lambda expressions
Since objects, and the names that point to them, are truly different things, you can have objects

that have no references to them. One example of this is the lambda expression. With this, you can create

an anonymous function. This allows you use functional programming techniques within Python. The

format is the keyword ‘lambda’, followed by a parameter list, then a colon and the function code. For

example, you could build your own function to square a number with ‘lambda x: x*x’. You can then have a

function that can programmatically create new functions and return them to the calling code. With this

capability, you can create function generators to have self-modifying programs. The only limitation is

that they are limited to a single expression, so you can’t generate very complex functions.

44

__del__ method
When an instance object is about to be

destroyed, the __del__ method is called. This
gives you the chance to do any kind of cleanup
that may be required. This might be closing fi les,
or disconnecting network connections. After this
code is completed, the object is fi nally destroyed
and resources are freed.

47

Return values
Functions may need to return some value

to the calling function. Because essentially no
name has a type, this includes functions. So
functions can use the ‘return’ command to return
any object to the caller.

49

String concatenation
We will fi nish with what most lists start

with – string concatenation. The easiest way to
build up strings is to use the ‘+’ operator. If you
want to include other items, like numbers, you
can use the ‘str()’ casting function to convert it to
a string object.

50

Exiting your program
There are two pseudo-commands

available to exit from the Python interpreter:
‘exit()’ and quit()’. They both take an optional
parameter which sets the exit code for the
process. If you want to exit from a script, you are
better off using the exit function from the sys
module (‘sys.exit(exit_code)’.

48

__init__ method
When you create a new class, you can

include a private initialisation method that
gets called when a new instance of the class is
created. This method is useful when the new
object instance needs some data loaded in the
new object.

46

Compiling
code objects

Python is an interpreted

language, which means that the source

code that you write needs to be compiled

into a byte code format. This byte code

then gets fed into the actual Python engine

to step through the instructions. Within your program, you may

have the need to take control over the process of converting

code to byte code and running the results. Maybe you wish to

build your own REPL. The command ‘compile()’ takes a string

object that contains a collection of Python code, and returns

an object that represents a byte code translation of this code. This

new object can then be handed in to either ‘eval()’ or ‘exec()’ to be actually

run. You can use the parameter ‘mode=’ to tell compile what kind of code is being

compiled. The ‘single’ mode is a single statement, ‘eval’ is a single expression and

‘exec’ is a whole code block.

45

Essentials
Python

26 Code rock, paper, scissors
Put basic coding into action

32 Program a hangman game
Use Python to make the classic game

38 Play poker dice
Test your luck and your coding

44 Create a graphical interface
Add interface to your projects

“Get to grips with
Python and start
building on the
basics with these
expert guides”

56

24 The Python Book

50 Bring graphics to games
Add images to simple games

56 Build an app for Android
Make your own app with Kivy

62 Making web apps
Use Python to create online apps

66 50 Python tips
Essential knowledge for Python users

50

The Python Book 25

44

26 The Python Book

Python essentials

Learn how to do some basic Python coding by following
our breakdown of a simple rock, paper, scissors game

Code a game of
rock, paper, scissors

This tutorial will guide you through making

a rock, paper, scissors game in Python. The

code applies the lessons from the masterclass –

and expands on what was included there – and

doesn’t require any extra Python modules to run,

like Pygame.

Rock, paper, scissors is the perfect game to

show off a little more about what exactly Python

can do. Human input, comparisons, random

selections and a whole host of loops are used in

making a working version of the game. It’s also

easy enough to adapt and expand as you see

fi t, adding rules and results, and even making a

rudimentary AI if you wish.

For this particular tutorial, we also

recommend using IDLE. IDLE is a great Python

IDE that is easily obtainable in most Linux

distributions and is available by default on

Raspbian for Raspberry Pi. It helps you by

highlighting any problems there might be with

your code and allows you to easily run it to make

sure it’s working properly.

Resources
Python 2: www.python.org/download

IDLE: www.python.org/idle

Allow the Python script

to run in a terminal,

and outside the IDE

Human input in the form

of integers is used for

comparing moves and,

ultimately, playing the game

 Use deduction to

determine one of

three outcomes

Loop the code over

again and start

from the beginning

Append to integer

variables to keep track

of scores and more

The Python Book 27

Python essentials

01
This section imports the extra Python

functions we’ll need for the code – they’re

still parts of the standard Python libraries, just

not part of the default environment

02
The initial rules of the game are created

here. The three variables we’re using and

their relationship is defi ned. We also provide a

variable so we can keep score of the games

03
We begin the game code by defi ning the

start of each round. The end of each play

session comes back through here, whether we

want to play again or not

04
The game is actually contained all in

here, asking for the player input, getting

the computer input and passing these on to get

the results. At the end of that, it then asks if you’d

like to play again

05
Player input is done here. We give the

player information on how to play this

particular version of the game and then allow

their choice to be used in the next step. We also

have something in place in case they enter an

invalid option

06
There are a few things going on when we

show the results. First, we’re putting in a

delay to add some tension, appending a variable

to some printed text, and then comparing what

the player and computer did. Through an if

statement, we choose what outcome to print,

and how to update the scores

07
We now ask for text input on whether

or not someone wants to play again.

Depending on their response, we go back to the

start, or end the game and display the results

28 The Python Book

Python essentials

01 We need to start with the path to the

Python interpreter here. This allows

us to run the program inside a terminal or

otherwise outside of a Python-specifi c IDE

like IDLE. Note that we’re also using Python 2

rather than Python 3 for this particular script,

which needs to be specifi ed in the code to

make sure it calls upon the correct version

from the system.

03 We’re setting each move to a specifi c

number so that once a selection is

made by the player during the game, it will be

equated to that specifi c variable. This makes

the code slightly easier later on, as we won’t

need to parse any text for this particular

function. If you so wish, you can add additional

moves, and this will start here.

05 Similar to the way the text names of

the variables are defi ned and used only

when needed, the rules are done in such a way

that when comparing the results, our variables

are momentarily modifi ed. Further down in the

code we’ll explain properly what’s happening,

but basically after determining whether or

not there’s a tie, we’ll see if the computer’s

move would have lost to the player move. If the

computer move equals the losing throw to the

player’s move, you win.

02 We’re importing two extra modules on

top of the standard Python code so

we can use some extra functions throughout

the code. We’ll use the random module to

determine what move the computer will throw,

and the time module to pause the running of

the code at key points. The time module can

also be used to utilise dates and times, either

to display them or otherwise.

04 Here we specify the rules for the game,

and the text representations of each

move for the rest of the code. When called upon,

our script will print the names of any of the three

moves, mainly to tell the player how the computer

moved. These names are only equated to these

variables when they are needed – this way, the

number assigned to each of them is maintained

while it’s needed.

06 Very simply, this creates a variable that

can be used throughout the code to

keep track of scores. We need to start it at zero

now so that it exists, otherwise if we defi ned

it in a function, it would only exist inside that

function. The code adds a point to the computer

or player depending on the outcome of the round,

although we have no scoring for tied games in

this particular version.

The breakdown

There are other modules you can import with

basic Python. Some of the major ones are

shown to the right. There are also many more

that are included as standard with Python.

Python modules
string Perform common string operations

datetime and calendar Other modules related to time

math Advanced mathematical functions

json JSON encoder and decoder

pydoc Documentation generator and online help system

01

02

03

04

05

06

The Python Book 29

Python essentials

07
Here we defi ne the actual beginning of the code, with the function

we’ve called ‘start’. It’s quite simple, printing our greeting to the

player and then starting a while loop that will allow us to keep playing the

game as many times as we wish. The pass statement allows the while loop

to stop once we’ve fi nished, and could be used to perform a number of other

tasks if so wished. If we do stop playing the game, the score function is then

called upon – we’ll go over what that does when we get to it.

09
We start the move function off by putting it into
a while loop. The whole point of move is to obtain

an integer between one and three from the player, so the
while loop allows us to account for the player making an
unsupported entry. Next, we are setting the player variable
to be created from the player’s input with raw_input. We’ve
also printed instruction text to go along with it. The ‘\n’ we’ve
used in the text adds a line break; this way, the instructions
appear as a list.

10
The try statement is used to clean up code and

handle errors or other exceptions. We parse what the

player entered by turning it into an integer using int(). We use

the if statement to check if it is either 1, 2, or 3 – if it is, move

returns this value back up to the game function. If it throws

up a ValueError, we use except to do nothing. It prints an error

message and the while loop starts again. This will happen

until an acceptable move is made.

08
We’ve kept the game function fairly simple so we can break down

each step a bit more easily in the code. This is called upon from the

start function, and fi rst of all determines the player move by calling upon

the move function below. Once that’s sorted, it sets the computer move. It

uses the random module’s randint function to get an integer between one

and three (1, 3). It then passes the player and computer move, stored as

integers, onto the result function which we use to fi nd the outcome.

07

08

09

10

The code in action

30 The Python Book

Python essentials

11
The result function only takes the variables

player and computer for this task, which is

why we set that in result(player, computer). We’re

starting off by having a countdown to the result.

The printed numbers are self-explanatory, but

we’ve also thrown in sleep from the time module

we imported. Sleep pauses the execution of the

look up what the text version of the move is called

from the names we set earlier on, and then to

insert that where {0} is.

13
Here we’re simply calling the scores we

set earlier. Using the global function

allows for the variable to be changed and used

outside of the variable, especially after we’ve

appended a number to one of their scores.

15
If it’s not a tie, we need to keep checking,

as it could still be a win or a loss. Within

the else, we start another if statement. Here,

we use the rules list from earlier to see if the

losing move to the player’s move is the same

as the computer’s. If that’s the case, we print

the message saying so, and add one to the

player_score variable from before.

code by the number of seconds in the brackets.

We’ve put a one-second pause between counts,

then half a second after that to show the results.

12
To print out what the computer threw,

we’re using string.format(). The {0} in the

printed text is where we’re inserting the move,

which we have previously defi ned as numbers.

Using names[computer], we’re telling the code to

14
The way we’re checking the result is

basically through a process of elimination.

Our first check is to see if the move the player

and computer used were the same, which is the

simplest part. We put it in an if statement so that

if it’s true, this particular section of the code ends

here. It then prints our tie message and goes back

to the game function for the next step.

16
If we get to this point, the player has lost.

We print the losing message, give the

computer a point and it immediately ends the

result function, returning to the game function.

11

12

13

14

15

16

The code in action

The Python Book 31

Python essentials

17
The next section of game calls upon

a play_again function. Like the move

function, we have human input, asking the player

if they would like to play again via a text message

with raw_input, with the simple ‘y/n’ suggestion in

an attempt to elicit an expected response.

19
If we don’t get an expected response, we

will assume the player does not want to

play again. We’ll print a goodbye message, and

that will end this function. This will also cause

the game function to move onto the next section

and not restart.

18
Giving users an option of y/n like we have

should expect a response in kind. The

if statement checks to see if any of our defi ned

positive responses have been entered. As Python

doesn’t differentiate between upper or lower

case, we’ve made sure that it accepts both y and

Y. If this is the case, it returns a positive response

to game, which will start it again.

20
Going back to the start function, after

game fi nishes we move onto the results.

This section calls the scores, which are integers,

and then prints them individually after the names

of the players. This is the end of the script, as far

as the player is concerned. Currently, the code

won’t permanently save the scores, but you can

have Python write it to a fi le to keep if you wish.

21
The fi nal part allows for the script to

be used in two ways. Firstly, we can

execute it in the command line and it will work

fi ne. Secondly, we can import this into another

Python script, perhaps if you wanted to add it as

a game to a collection. This way, it won’t execute

the code when being imported.

IF also has the ELIF (else if) operator, which can

be used in place of the second IF statement

we employed. It’s usually used to keep code

clean, but performs the same function.

ELIF

17

18

19

20

21

The code in action

32 The Python Book

Python essentials

This section imports the extra Python

functions we’ll need for the code –

they’re still parts of the standard

Python libraries, just not part of the

default environment

We’re again providing variables so we

can keep score of the games played,

and they’re updated each round

Our very basic graphics involve ASCII

art of the game’s stages, printed out

after every turn

Learn how to do some more Python
coding by following our breakdown of a
simple Hangman game

Program a
game of
Hangman

One of the best ways to get to know Python is

by building lots of simple projects so you can

understand a bit more about the programming

language. This time round, we’re looking at

Hangman, a multi-round game relying on if

and while loops and dealing with strings of text

in multiple ways. We’ll be using some of the

techniques we implemented last time as well, so

we can build upon them.

Hangman still doesn’t require the Pygame

set of modules, but it’s a little more advanced

than rock-paper-scissors. We’re playing

around with a lot more variables this time.

However, we’re still looking at comparisons,

random selections and human input, along

with splitting up a string, editing a list and even

displaying rudimentary graphics.

You should continue to use IDLE for these

tutorials. As we’ve mentioned before, its built-

in debugging tools are simple yet effective and

it can be used on any Linux system, as well as

the Raspberry Pi.

Code listing#!/usr/bin/env python2

from random import *

player_score = 0

computer_score = 0

def hangedman(hangman):

 graphic = [

 “””

 +-------+

 |

 |

 |

 |

 |

 ==============

 “””,

 “””

 +-------+

 | |

 | O

 |

 |

 |

 ===============

 “””,

 “””

 “””,

 “””

 +-------+

 | |

 | O

 | -|-

 | / \

 |

 ===============

 “””]

 print graphic[hangman]

 return

Resources
Python 2: www.python.org/download

IDLE: www.python.org/idle

The Python Book 33

Python essentials

The actual game starts here, with a while loop to

let you continually play the game until you decide

otherwise, then ending the program

The game rules are decided here, as well as the

setup for the word and keeping track of tries and

incorrect answers

Each round of the game is played here, asking for

an input, then telling you if you were correct or not.

It prints out the graphic and changes any variables

that need to be updated, especially incorrect and

correct guesses

After each round, the code checks if you’ve won or

lost yet – the win condition being that you guessed

the word, or losing if you’ve made six guesses

The human input for the game takes the letter

and turns it into something the code can use. It’s

verified in the previous block of code and then

referred back to if you’ve entered an unsupported

or already used character

The same class as last time, which allows you to

select whether or not you wish to play again

Upon quitting the game, scores are given for the

duration of the play session. We also end the script

with the if __name__ code like before

def start():

 print “Let’s play a game of Linux Hangman.”

 while game():

 pass

 scores()

def game():

 dictionary = [“gnu”,”kernel”,”linux”,”mageia”,”penguin”,”ubuntu”]

 word = choice(dictionary)

 word_length = len(word)

 clue = word_length * [“_”]

 tries = 6

 letters_tried = “”

 guesses = 0

 letters_right = 0

 letters_wrong = 0

 global computer_score, player_score

 while (letters_wrong != tries) and (“”.join(clue) != word):

 letter=guess_letter()

 if len(letter)==1 and letter.isalpha():

 if letters_tried.find(letter) != -1:

 print “You’ve already picked”, letter

 else:

 letters_tried = letters_tried + letter

 first_index=word.find(letter)

 if first_index == -1:

 letters_wrong +=1

 print “Sorry,”,letter,”isn’t what we’re looking for.”

 else:

 print”Congratulations,”,letter,”is correct.”

 for i in range(word_length):

 if letter == word[i]:

 clue[i] = letter

 else:

 print “Choose another.”

 hangedman(letters_wrong)

 print “ “.join(clue)

 print “Guesses: “, letters_tried

 if letters_wrong == tries:

 print “Game Over.”

 print “The word was”,word

 computer_score += 1

 break

 if “”.join(clue) == word:

 print “You Win!”

 print “The word was”,word

 player_score += 1

 break

 return play_again()

def guess_letter():

 print

 letter = raw_input(“Take a guess at our mystery word:”)

 letter.strip()

 letter.lower()

 print

 return letter

def play_again():

 answer = raw_input(“Would you like to play again? y/n: “)

 if answer in (“y”, “Y”, “yes”, “Yes”, “Of course!”):

 return answer

 else:

 print “Thank you very much for playing our game. See you next time!”

def scores():

 global player_score, computer_score

 print “HIGH SCORES”

 print “Player: “, player_score

 print “Computer: “, computer_score

 if __name__ == ‘__main__’:

 start()

 Code highlighting
IDLE automatically highlights the code to make

reading your work that bit easier. It also allows

you to change these colours and highlighting in

IDLE’s Preferences, in case you’re colour blind

or are just used to a different colour scheme

in general.

Code listing continued

34 The Python Book

Python essentials

I see ASCII
Here’s a close-up of the seven

stages we’ve used for Hangman’s

graphics. You can change them

yourself, but you need to make

sure the quote marks are all in

the correct place so that the art

is considered a text string to be

printed out.

#!/usr/bin/env python2

from random import *

player_score = 0

computer_score = 0

def hangedman(hangman):

 graphic = [

 “””

 +-------+

 |

 |

 |

 |

 |

 ==============

 “””,

 “””

def start():

 print “Let’s play a game of Linux Hangman.”

 while game():

 pass

 scores()

01

02

03

04

05

01
We begin by using this line to enter the path

to the Python interpreter. This allows us to

run the program inside a terminal or otherwise outside

of a Python-specific IDE like IDLE. Note that we’re

also using Python 2 for this particular script, as it is

installed by default on most Linux systems and will

therefore ensure compatibility.

02
We’re importing the ‘random’ module slightly

differently this time, importing the actual

names of the functions from random rather than just

the module itself. This allows us to use the functions

without having syntax like random.function. The

asterisk imports all the functions from random,

although you can switch that for specific names of

any of random’s functions. We’ll be using the random

function to select a word for the player to guess.

03
Very simply, this creates a variable that can

be used throughout the code to keep track

of scores. We need to start it at zero now so that it

exists; otherwise if we defined it in a function, it would

only exist inside that function. The code adds a point

to the computer or player depending on the outcome

of the round.

04
Our simple graphics consist of a series of

ASCII hanging man stages. We’re storing

these in a function as a list of separate string objects

so we can call upon them by passing on the number of

incorrect guesses to it. There are seven graphics in all,

like in the pen-and-paper version. We also include the

print command with the function, so when it’s called it

will completely handle the selection and display of the

hanging man, with the first one being printed after the

first letter is guessed.

05
Here we define the actual beginning of the

code, with the function we’ve called ‘start’.

It’s quite simple, printing our greeting to the player

and then starting a while loop that will allow us to keep

playing the game as many times as we wish. The pass

statement allows the while loop to stop once we’ve

finished, and could be used to perform a number

 “””

 +-------+

 |

 |

 |

 |

 |

 ==============

 “””,

 “””

 +-------+

 | |

 | O

 |

 |

 |

 ===============

 “””,

 “””

 +-------+

 | |

 | O

 | |

 |

 |

 ===============

 “””,

 “””

 +-------+

 | O

 | -|

 |

 |

 |

 ===============

 “””,

 “””

 +-------+

 | |

 | O

 | -|-

 |

 |

 ===============

 “””,

 “””

 +-------+

 | |

 | O

 | -|-

 | /

 |

 ===============

 “””,

 “””

 +-------+

 | |

 | O

 | -|-

 | / \

 |

 ===============

 “””]

 The rules

Although we’ve moved some of

the rules to the ‘game’ function

this month, you can always put

them back here and call upon

them using the global variable, as

we would do with the scores. For

the words, you could also create a

separate file and import them like

the random module.

The Python Book 35

Python essentials

of other tasks if so wished. If we do stop playing the

game, the score function is then called upon –we’ll go

over what that does when we get to it.

06
We have put a majority of the game code

in the ‘game’ function this time around, as

there’s not as much that needs to be split up. You can

split it up further if you wish, using the style of code

from last issue, if it would make the code cleaner

for you or help you understand the building blocks a

bit more.

07
The first four lines quickly set up the word

for the player to guess. We’ve got a small

selection of words in a list here. However, these can be

imported via HTML or expanded upon. Choice is used

to select a random element from the list, which comes

from the random module we imported. Finally, we

ascertain how long the string is of the word to guess,

and then create the clue variable with a number of

underscores of that length. This is used to display the

word as you build it up from guesses.

08
We start to set up the rules and the individual

variables to keep track of during the game.

There can only be six incorrect guesses before the

hanging man is fully drawn, or in our case displayed,

so we set the tries variable to six. We’ll keep track of

the letters through letters_tried to make sure that not

only will the player know, but also the code for when

def game():

 dictionary = [“gnu”,”kernel”,”linux”,”mageia”,”penguin”,”ubuntu”]

 word = choice(dictionary)

 word_length = len(word)

 clue = word_length * [“_”]

 tries = 6

 letters_tried = “”

 guesses = 0

 letters_right = 0

 letters_wrong = 0

 global computer_score, player_score

 while (letters_wrong != tries) and (“”.join(clue) != word):

 letter=guess_letter()

 if len(letter)==1 and letter.isalpha():

 if letters_tried.find(letter) != -1:

 print “You’ve already picked”, letter

it’s checking against letters already played. Finally,

we create empty variables for the number of guesses

made, letters correct and letters incorrect, to make

the code slightly easier. We also import the global

scores here.

09
We’re starting a while loop to perform the

player selection and check the status of the

game. This loop continues until the player wins or loses.

It starts by checking if all the tries have been used up

by seeing if letters_wrong is not equal to tries. As each

try will only add one point to wrong, it will never go

above six. It then concatenates ‘clue’ and sees if it’s the

same as the word the computer selected. If both these

statements are true, it goes on to the next turn.

10
We call upon the function we’re using to

input a letter and give it the variable ‘letter’.

We check what it returns by first of all making sure

it’s only a single letter, with len(letter), then by

using isalpha to see if it’s one of the 26 letters of the

alphabet. If these conditions are satisfied, we start

a new if statement to make sure it’s a new guess,

and tell the player if it’s already been chosen so they

can start again. If all this is acceptable, we move on

to the next section of the code to see if it’s a correct

guess or not.

06

08

09

10

07

 Indentations

While IDLE will keep track of the

indents in the code, if you’re using

a text editor to write some Python,

you’ll have to make sure you’re

using them correctly. Python is

very sensitive to whether or not

indents are used correctly, and it

does aid in readability as well.

36 The Python Book

Python essentials

11

12

13

14

16

15

11
If it’s a new letter that we find acceptable,

the first thing we do is add it to the list

of letters tried. This is done simply by adding

the strings together. We then use the find

command to search the word string for the letter

entered, which will then return a number of the

placement of the letter in the string. If it doesn’t

find the letter, it returns a -1 value, which we use

in the next if statement to see if the first_index

variable is -1. If so, it adds one to the number of

letters_wrong and then prints a message to let

the player know that it was an incorrect guess.

12
If we’ve got this far and the letter is not

incorrect, than we can only assume

it is correct. Through this simple process of

elimination, we first print out a message to let

the player know that they’ve been successful and

then make a record of it.

13
We’re going to start a small loop here so

we can update the clue with the correct

letter we’ve added. We use the range function to

tell the code how many times we wish to iterate

over the clue by using the word_length variable.

We then check to see which letter in the word

has been guessed correctly and change that

specific part of the clue to be that letter so it can

be printed out for the player to see, and for us to

check whether or not the game is over.

14
We end the original if statement by telling

the player to choose again if they did not

enter a supported input. Before we go on to the

next round of choices, we print out the hanging

 else:

 letters_tried = letters_tried + letter

 first_index=word.find(letter)

 if first_index == -1:

 letters_wrong +=1

 print “Sorry,”,letter,”isn’t what we’re looking for.”

 else:

 print”Congratulations,”,letter,”is correct.”

 for i in range(word_length):

 if letter == word[i]:

 clue[i] = letter

 else:

 print “Choose another.”

 hangedman(letters_wrong)

 print “ “.join(clue)

 print “Guesses: “, letters_tried

 if letters_wrong == tries:

 print “Game Over.”

 print “The word was”,word

 computer_score += 1

 break

 if “”.join(clue) == word:

 print “You Win!”

 print “The word was”,word

 player_score += 1

 break

 return play_again()

man graphic as it stands, by calling the graphic

in the list that corresponds to the number of

incorrect guesses that have been made. We then

print how the clue currently looks, with a space

in between each character, and then print the

number of guesses that have been made.

15
Here we check to see if the game is

over again, first of all comparing the

letters_wrong to the number of tries. If that’s

true, we print a message that the game has

ended and reveal the mystery of the hidden word.

We increase the computer’s score and break the

loop. The next loop checks to see if the full clue

concatenated is the same as the original word – if

that’s the case, we print the win message, the full

word and add one point to the player score before

breaking the loop again. This can also be done

with ifs and elifs to avoid using breaks.

 Continuation

This code is still part of the

game function we started on the

previous page, so make sure your

indentations are in alignment if

you’re not using an IDE. If you plan

to split this code up, we’d suggest

starting with the word selection

and results.

The Python Book 37

Python essentials

def guess_letter():

 print

 letter = raw_input(“Take a guess at our mystery word:”)

 letter.strip()

 letter.lower()

 print

 return letter

def play_again():

 answer = raw_input(“Would you like to play again? y/n: “)

 if answer in (“y”, “Y”, “yes”, “Yes”, “Of course!”):

 return answer

 else:

 print “Thank you very much for playing our game. See you next time!”

def scores():

 global player_score, computer_score

 print “HIGH SCORES”

 print “Player: “, player_score

 print “Computer: “, computer_score

 if __name__ == ‘__main__’:

 start()

17

18

21

19

20

22

16
We end the entire game function loop by

calling upon return again, which we will

then pass all the way up to the start function once

it’s finished.

17
The human input function first of

all prints out a raw_input message.

Once the player enters the letter, the function

parses it to be used with the rest of the code.

Firstly, strip is used to remove any white space

from the input given, as we’ve not given it any

extra parameters. We then convert it into

lower-case letters, as Python will not be able

to correctly compare an upper-case character

with a lower-case alternative. We then print the

selection for the record and return it up to the

game function.

18
The last part of the game function is to

ask the player if they wish to try again.

The play_again function takes a human input

with a simple message and then analyses the

input so it knows what to send back.

19
Giving users an option of y/n like we

have should expect a response in kind.

The if statement checks to see if any of our

defined positive responses have been entered.

As Python doesn’t differentiate between upper

or lower case, we’ve made sure it accepts both

y and Y. If this is the case, it returns a positive

response to game, which will start it again.

20
If we don’t get an expected response,

we will assume the player does

not want to play again. We’ll print a goodbye

message and that will end this function. This

will also cause the start function to move onto

the next section and not restart.

21
Going all the way back to the start

function, after game finishes we move

onto the results. This section is quite simple – it

calls the scores, which are integers, and then

prints them individually after the names of the

players. This is the end of the script, as far as

the player is concerned. Currently, the code will

not permanently save the scores, but you can

have Python write it to a file to keep if you wish.

22
The final part of the code allows for

the script to be used in two ways.

Firstly, we can execute it in the command line

and it will work fine. Secondly, we can import

this into another Python script, perhaps if

you wanted to add it as a game to a collection.

This way, it will not execute the code when

being imported.

 Homework

Now that you’ve finished with the code, why

not make your own changes? Increase the

word count; create different, selectable word

categories; or even let people guess the full

word. You have all the tools to do this in the

current code and last month’s tutorial.

38 The Python Book

Python essentials

The Start
Here we’re doing some minor setups so we can

get our code to run with some extra modules not

included with the basics

The Rules
We’re setting names for each dice roll so they can

be properly identified to the player – much more

interesting than numbers

The Score
Again we’ve got some basic variables set up so we

can keep score of the games if we want to

The Script
The game is handled here, passing the player onto

the next function to actually play, and handling the

end of the session as well

The Game
We access the full game loop via here, and the

function that allows us to play again if we’re

so inclined

The Throw
The initial hand is dealt, so to speak, at the start of

the throws function. This function handles all the

decision making in the game, while passing off the

dice rolls to another function

The Hand
We’ve also got a special function so we can inform

the player exactly what style of hand they have

The Decision
There are two rounds in this version of poker

dice, and you can select how many dice you wish

to re-roll in this small while loop that makes sure

you’re also using a correct number

#!/usr/bin/env python2

import random

from itertools import groupby

nine = 1

ten = 2

jack = 3

queen = 4

king = 5

ace = 6

names = { nine: “9”, ten: “10”, jack: “J”, queen: “Q”, king: “K”, ace: “A” }

player_score = 0

computer_score = 0

def start():

 print “Let’s play a game of Linux Poker Dice.”

 while game():

 pass

 scores()

def game():

 print “The computer will help you throw your 5 dice”

 throws()

 return play_again()

def throws():

 roll_number = 5

 dice = roll(roll_number)

 dice.sort()

 for i in range(len(dice)):

 print “Dice”,i + 1,”:”,names[dice[i]]

 result = hand(dice)

 print “You currently have”, result

 while True:

 rerolls = input(“How many dice do you want to throw again? “)

 try:

 if rerolls in (1,2,3,4,5):

 break

 except ValueError:

 pass

 print “Oops! I didn’t understand that. Please enter 1, 2, 3, 4 or 5.”

Code listing

Put on your poker face and get ready to gamble as you hone
your programming skill with a bit of poker dice

Play poker dice using Python

So you’ve learnt how to program tic-tac-toe

and guessed your way to victory at hangman.

Now it’s time to head to Las Vegas and play our

cards right. Or in this case, virtual dice, and more

like Reno as we continue with our Python game

tutorials and introduce you to some poker dice.

We’re again using some of the lessons we’ve

already learnt, including random number

generation, list creation and modification,

human input, rule setting, scoring and more.

But we’ll also be adding some new skills in this

tutorial. Namely, we’ll be creating and appending

lists with random numbers, and using functions

multiple times in one block of code to cut down

on bloat.

Again, we recommend using IDLE, and we’re

using Python 2 to ensure compatibility with a

wider variety of distros, including the Raspberry

Pi. So, we hope luck is a lady for you and that the

odds are ever in your favour – just keep those

fingers crossed that you don’t roll a snake eyes

(we are coding in Python, after all)!

Resources
Python 2: www.python.org/download

IDLE: www.python.org/idle

The Python Book 39

Python essentials

The Re-roll
We’re doing the second set of rolls and starting

the end of the game here by calling on the same

function as before, but we’re also aware that

choosing no re-rolls means the end of the game

The Dice
Here we’re finding out which dice the player wants

to re-roll, and also making sure that they enter

a valid number. Just so they know they’re doing

something, we print something after every turn

Second Hand
We change and display the new dice hand to end

the game. Again, we make sure to tell the player

what the actual hand they have is

The Rolls
The function we reuse to roll our virtual six dice

using a simple while loop. This allows us to keep

the codebase smaller

The Analysis
There are eight possible types of hands in poker

dice, and we can use a bit of logic to work out all

but one of them without checking against all 7,776

outcomes – in fact, we only specifically have to

check for two

The Question
Our simple ‘play again’ function that parses player

input so we can restart or end the script

The End
Scores are displayed at the end of the script, and

the very final part allows us to import this into

other Python scripts as a module

EXTRA FUNCTIONS
Splitting up actions into functions

makes it easier to not only perform

them multiple times, but reduce

the amount of code. On larger

projects, this can aid with speed.

 if rerolls == 0:
 print “You finish with”, result
 else:
 roll_number = rerolls
 dice_rerolls = roll(roll_number)
 dice_changes = range(rerolls)
 print “Enter the number of a dice to reroll: “
 iterations = 0
 while iterations < rerolls:
 iterations = iterations + 1
 while True:
 selection = input(“”)
 try:
 if selection in (1,2,3,4,5):
 break
 except ValueError:
 pass
 print “Oops! I didn’t understand that. Please enter 1, 2, 3, 4 or 5.”
 dice_changes[iterations-1] = selection-1
 print “You have changed dice”, selection

 iterations = 0
 while iterations < rerolls:
 iterations = iterations + 1
 replacement = dice_rerolls[iterations-1]
 dice[dice_changes[iterations-1]] = replacement

 dice.sort()
 for i in range(len(dice)):
 print “Dice”,i + 1,”:”,names[dice[i]]

 result = hand(dice)
 print “You finish with”, result

def roll(roll_number):
 numbers = range(1,7)
 dice = range(roll_number)
 iterations = 0
 while iterations < roll_number:
 iterations = iterations + 1
 dice[iterations-1] = random.choice(numbers)
 return dice

def hand(dice):
 dice_hand = [len(list(group)) for key, group in groupby(dice)]
 dice_hand.sort(reverse=True)
 straight1 = [1,2,3,4,5]
 straight2 = [2,3,4,5,6]

 if dice == straight1 or dice == straight2:
 return “a straight!”
 elif dice_hand[0] == 5:
 return “five of a kind!”
 elif dice_hand[0] == 4:
 return “four of a kind!”
 elif dice_hand[0] == 3:
 if dice_hand[1] == 2:
 return “a full house!”
 else:
 return “three of a kind.”
 elif dice_hand[0] == 2:
 if dice_hand[1] == 2:
 return “two pair.”
 else:
 return “one pair.”
 else:
 return “a high card.”

def play_again():
 answer = raw_input(“Would you like to play again? y/n: “)
 if answer in (“y”, “Y”, “yes”, “Yes”, “Of course!”):
 return answer
 else:
 print “Thank you very much for playing our game. See you next time!”

def scores():
 global player_score, computer_score
 print “HIGH SCORES”
 print “Player: “, player_score
 print “Computer: “, computer_score

if __name__ == ‘__main__’:
 start()

Code listing continued

40 The Python Book

Python essentials

it later with a different number that the player

chooses. We get five random numbers in a list

returned from the function, and we order it using

sort to make it a bit more readable for the player

and also later on for the hand function.

08 Dice display
We print out each dice, numbering them

so the player knows which dice is which, and

also giving it the name we set at the start of the

script. We’re doing this with a loop that repeats

itself the number of times as the dice list is

long using the range(len(dice)) argument. The

i is increased each turn, and it prints out that

specific number of the dice list.

09 Current hand
We want to find the type of hand the

player has multiple times during the game, so set

a specific function to find out. We pass the series

of dice we have on to this function, and print.

10 Throw again
Before we can throw the dice for the

second round, we need to know which dice the

#!/usr/bin/env python2

import random

from itertools import groupby

nine = 1

ten = 2

jack = 3

queen = 4

king = 5

ace = 6

names = { nine: “9”, ten: “10”, jack: “J”, queen: “Q”, king: “K”, ace: “A” }

player_score = 0

computer_score = 0

def start():

 print “Let’s play a game of Linux Poker Dice.”

 while game():

 pass

 scores()

def game():

 print “The computer will help you throw your 5 dice”

 throws()

 return play_again()

01

02

03

04

06

05

01 Begin
As before, we use this line to enter the

path to the Python interpreter. This allows us to

run the program inside a terminal or otherwise

outside of a Python-specific IDE like IDLE. Note

that we’re also using Python 2 for this script.

02 Importing
As well as importing the random module

for our dice throws, we need to get the groupby

function so we can order the dice in a way that is

more readable and also easier for analysis when

telling the player what hand they have.

03 Cards
While we’re using random numbers for

the dice rolls, unless we assign the correct cards

to each number, the player won’t know what

they’ve rolled and what constitutes a better

hand. We set each card to a number and then

equate what these should be printed out as.

04 Scores
As usual, we have the empty scores

for the player and computer so we can update

these as we go. While it’s not specifically used

in this version of the code, it’s easy enough

to expand on it and add your own simple

computer roll, or limited AI for both rolls.

05 Start
We’re starting the interactive part of the

code with the ‘start’ function. It prints a greeting

to the player, then starts a while loop that’ll allow

us to replay the game as many times as we wish.

The pass statement allows the while loop to stop

once we’ve finished. If we do stop playing the

game, the score function is then called upon.

06 Game
Like our Rock, Paper, Scissors code,

def game pawns the rest of the game onto other

functions, with its main function allowing us to

keep repeating the game by passing the player

through to the play_again function.

07 Throws
For our first throw, we want to have five

random dice. We’ve set a variable here to pass

on to our throwing function, allowing us to reuse

RECYCLING

There are a few variables that

have duplicates throughout the

code – while we’ve been careful

to make sure they work where

we want them to, it’s not the best

code conduct. The names of the

variables don’t specifically matter

– it’s just best to label them in a

way you understand for bug fixing

and others to read.

The Python Book 41

Python essentials

def throws():

 roll_number = 5

 dice = roll(roll_number)

 dice.sort()

 for i in range(len(dice)):

 print “Dice”,i + 1,”:”,names[dice[i]]

 result = hand(dice)

 print “You currently have”, result

 while True:

 rerolls = input(“How many dice do you want to throw again? “)

 try:

 if rerolls in (1,2,3,4,5):

 break

 except ValueError:

 pass

 print “Oops! I didn’t understand that. Please enter 1, 2, 3, 4 or 5.”

 if rerolls == 0:

 print “You finish with”, result

 else:

 roll_number = rerolls

 dice_rerolls = roll(roll_number)

 dice_changes = range(rerolls)

 print “Enter the number of a dice to reroll: “

 iterations = 0

 while iterations < rerolls:

 iterations = iterations + 1

 while True:

 selection = input(“”)

 try:

 if selection in (1,2,3,4,5):

 break

 except ValueError:

 pass

 print “Oops! I didn’t understand that. Please enter 1, 2, 3, 4 or 5.”

 dice_changes[iterations-1] = selection-1

 print “You have changed dice”, selection

player wants to roll again. We start this by asking

them how many re-rolls they want to do, which

allows us to create a custom while loop to ask

the user which dice to change that iterates the

correct number of times.

We also have to make sure it’s a number

within the scope of the game, which is why

we check using the try function, and print out

a message which tells the user if and how they

are wrong.

11
Stick

One of the things we’ve been trying to do

in these tutorials is point out how logic can cut

down on a lot of coding by simply doing process

07

08

10

11

12

13

09

INDENTATIONS

Watch the indentations again as

we split the else function. The

following page’s code is on the

same level as roll roll_number,

dice_rerolls and dice_changes in

the code.

WHITE SPACE

The big if function at the end of

throws doesn’t have many line

breaks between sections – you

can add these as much as you want

to break up the code into smaller

chunks visually, aiding debugging.

of eliminations or following flow charts. If the

user wants to re-roll zero times, then that means

they’re happy with their hand, and it must be the

end of the game. We print a message to indicate

this and display their hand again.

12
The re-rolls

Here’s where we start the second roll

and the end of the game, using a long else to the

if statement we just started. We first of all make

sure to set our variables – updating roll_number

to pass onto the roll function with the re-roll

number the user set, and creating the list that’s

the exact length of the new set of rolls we wish to

use thanks to range(rerolls).

13
Parse

We ask the player to enter the numbers

of the dice they wish to re-roll. By setting an

iterations variable, we can have the while loop

last the same number of times as we want re-

rolls by comparing it to the reroll variable itself.

We check each input to make sure it’s a number

that can be used, and add the valid choices to the

dice_changes list. We use iterations-1 here as

Python lists begin at 0 rather than 1. We also print

out a short message so the player knows the

selection was successful.

42 The Python Book

Python essentials

14 New dice
We’re resetting and reusing the iterations

variable to perform a similar while loop to update

the rolls we’ve done to the original dice variable.

The main part of this while loop is using the

iterations-1 variable to find the number from

dice_changes list, and using that to change that

specific integer in the dice list with the number

from the replacement list. So if the first item on

the dice_changes list is two, then the second

item on the dices list is changed to the number

we want to replace it with.

15 Sorting
We’re ending the throw function in

basically the same way we ended the first throw.

First of all, we re-sort the dice list so that all the

numbers are in ascending order. Then we print

out the final cards that the dice correspond to,

before again passing it onto the hand function

so that we can fully determine the hand that the

player has. We print out this result and that ends

the function, sending the whole thing back to the

game function to ask if you want to play again.

16 Dice rolling
The roll function is used twice in the

code for both times that we roll the dice. Being

able to use the same code multiple times means

we can cut down on bloat in the rest of the

script, allowing it to run a little faster, as we’ve

explained. It also means in this case that we can

use it again if you want to change the game to

three rounds, or modify it for real poker.

17 Number of rolls
We begin the whole thing by bringing

over the roll_number variable into the function

– this is because while in the original roll it will

always be five, the second roll could between

one and the full five dice. We create a list with

the number of entries we need for each roll, and

again set an iterations variable for the upcoming

while loop.

18 Remember
Much like the while loops in the rest of the

code so far, we’re keeping it going until iterations

is the same as roll_number. Each entry in the

dice list is replaced with a random number using

the random.choice function and keeping it in the

range of the numbers variable, which is one to

six for each side of the dice. After this is done, we

return the dice variable to the throw function that

makes up the majority of the game.

19 Hand analysis
While not technically a hand of cards,

the poker terminology still applies. We start in

this function by setting up a few things. The first

part uses the groupby function we imported –

this is used in this case to count the numbers

that make up the dice variable. If there are three

twos, a four and a five, it will return [3, 1, 1]. We’re

using this to ascertain what kind of hand the

player has. As the output of this groupby won’t

be in any specific order, we use the sort function

again to sort it; however, this time we use the

reverse=TRUE argument to make the analysis

easier again.

20 Straights
Straights and high cards are odd ones

out in poker dice, as they do not rely on being

able to count any repetitions in the cards.

There are, however, only two hands that create

a straight in poker dice, so we have created

two lists here that contain them. We can then

check first to see if the dice make these hands,

and then if all other checks fail, it has to be a

high card.

21 Your hand
While seemingly lengthy, this a fairly

simple if statement. As we stated before, we

check to see if it’s one of the two straight hands.

As there are no flushes or royal straight flushes

in poker dice, we don’t have to worry about those.

We then check to see if the first item in the list

is five, which can only result in five of a kind;

similarly, if the first item is four then the hand

must be four of a kind. If the first number is three,

then it can be either a full house or three of a kind,

 iterations = 0

 while iterations < rerolls:

 iterations = iterations + 1

 replacement = dice_rerolls[iterations-1]

 dice[dice_changes[iterations-1]] = replacement

 dice.sort()

 for i in range(len(dice)):

 print “Dice”,i + 1,”:”,names[dice[i]]

 result = hand(dice)

 print “You finish with”, result

def roll(roll_number):

 numbers = range(1,7)

 dice = range(roll_number)

 iterations = 0

 while iterations < roll_number:

 iterations = iterations + 1

 dice[iterations-1] = random.choice(numbers)

 return dice

14

15

16

18

17

HIGHER OR LOWER

Which hand is best? What are the

odds of getting certain hands in

the game? Some of the answers

are surprising, as the poker

hands they’re based on trump the

differing odds the dice produce.

We’ve ranked hands from highest

to lowest.

Five of a Kind 6/7776

Four of a Kind 150/7776

Full House 300/7776

Straight 240/7776

Three of a Kind 1200/7776

Two Pairs 1800/7776

One Pair 3600/7776

High Card 480/7776

The Python Book 43

Python essentials

def hand(dice):

 dice_hand = [len(list(group)) for key, group in groupby(dice)]

 dice_hand.sort(reverse=True)

 straight1 = [1,2,3,4,5]

 straight2 = [2,3,4,5,6]

 if dice == straight1 or dice == straight2:

 return “a straight!”

 elif dice_hand[0] == 5:

 return “five of a kind!”

 elif dice_hand[0] == 4:

 return “four of a kind!”

 elif dice_hand[0] == 3:

 if dice_hand[1] == 2:

 return “a full house!”

 else:

 return “three of a kind.”

 elif dice_hand[0] == 2:

 if dice_hand[1] == 2:

 return “two pair.”

 else:

 return “one pair.”

 else:

 return “a high card.”

def play_again():

 answer = raw_input(“Would you like to play again? y/n: “)

 if answer in (“y”, “Y”, “yes”, “Yes”, “Of course!”):

 return answer

 else:

 print “Thank you very much for playing our game. See you next time!”

def scores():

 global player_score, computer_score

 print “HIGH SCORES”

 print “Player: “, player_score

 print “Computer: “, computer_score

if __name__ == ‘__main__’:

 start()

19

20

21

22

23

24

HOMEWORK

There is currently no scoring in

place for this version of the game.

Try adding a computer player, or

create a rule set that requires a

certain hand or higher. You could

even make it two-player.

so we nest an if statement. Again, we do this for

pairs, where that could be one or two pairs. If all

else fails then, by a process of elimination, it can

only be a high card. We give each outcome a text

string to send back to the throw function so that it

can be printed.

22 Play again
As before, we ask the player for raw input

with the text offering another game. Instead of

parsing it, we assume the player will choose a

specifi ed yes response based on the text, and if

none of these versions is received, we print out

the message thanking them for playing the game.

This ends the game function.

23 Final scores
Going all the way back to the start

function, after the game fi nishes we move onto

the results. This section is quite simple – it

calls the scores, which are integers, and then

prints them individually after the names of the

players. This is the end of the script, as far as the

player is concerned. Currently, the code will not

permanently save the scores, but you can have

Python write it to a fi le to keep if you wish.

24 Modules
The fi nal part of the code allows for

the script to be used in two ways. Firstly, we

can execute it in the command line and it will

work just fi ne. Secondly, we can import this into

another Python script, perhaps if you wanted to

add it as a game to a collection. This last piece of

code will prevent our script being executed when

imported by another module – it will only do so

when being run directly.

TEXT EDITORS

Instead of the IDE we’ve suggested, you

should also try coding in a text editor. Some

of them are a little more lightweight and

format code similar to the way the IDE does,

separating functions and strings by colours

etc. Some of the ones we’d recommend are

the classic gedit, a popular text editor from

GNOME desktops; Geany, which has a few

IDE-esque features written into it; TEA, a

multifunctioning text editor and project

manager; and Jedit, a text editor that lives

in the command line for minimum resource

usage. These can also be used with multiple

programming languages, so you can get used

to them with Python, then make the switch.

44 The Python Book

Python essentials

The start
Here we’re doing some minor setup, including getting a new
module that helps us create a simple graphical interface

The imports
We’re importing the three games we created in past issues so
we can call upon or use them

The window
Create a graphical window and give it a name so we can add
some functions to it

The frame
Define the dimensions of the window and give a rough guide to
placement of the objects within

The welcome
Print a message in the window and place it in a specific
orientation. This works a little differently to print

The button
The focus of this month’s tutorial is making Rock-Paper-
Scissors work in a graphical interface, so we’re calling a new
function we’re creating

The interface
Creating and formatting buttons to start the other two tutorial
games in the command line or shell

The exit
Here we create a button that quits the window and ends
the script. We’ve also placed it specifically at the bottom of
the window

The loop
The mainloop allows the main window to continue to work and
be updated without exiting the program unless specified

#!/usr/bin/env python2

#Linux User & Developer presents: Mega Microgrames Collection

from Tkinter import *

import rockpaperscissors

import hangman

import pokerdice

root = Tk()

root.title (“Linux User & Developer’s Mega Microgames Collection”)

mainframe = Frame(root, height = 200, width = 500)

mainframe.pack_propagate(0)

mainframe.pack(padx = 5, pady = 5)

intro = Label(mainframe, text = “””Welcome to Linux User & Developers Mega

Microgames Collection.

Please select one of the following games to play:

“””)

intro.pack(side = TOP)

rps_button = Button(mainframe, text = “Rock, Paper, Scissors”, command =

rockpaperscissors.gui)

rps_button.pack()

hm_button = Button(mainframe, text = “Hangman”, command = hangman.start)

hm_button.pack()

pd_button = Button(mainframe, text = “Poker Dice”, command = pokerdice.start)

pd_button.pack()

exit_button = Button(mainframe, text = “Quit”, command = root.destroy)

exit_button.pack(side = BOTTOM)

root.mainloop()

Main Interface Code Listing

Bring everything together with a Python GUI and take the next
step in programming your own software

Create a graphical interface
for Python games

The three basic games we have made in

Python so far have all run in the command line

or via IDLE, a Python IDE. While this allowed us

to show off different ways to use Python code,

we haven’t actually shown you how to present

it yet. In this tutorial, we will take all three

games and put them all into one neatly unified

graphical interface.

To this end, we’ll be making use of the small

line of code we added at the bottom of each

previous tutorial so we can import them as

modules into our main graphical script. We’ll

also modify the existing code to add some

graphical elements. To do all this we’ll be using

Tkinter, a default module available in Python

that allows you to create windows and frames

with fairly simple code.

All you need for this tutorial is an up-to-date

copy of Python, from your distro’s repository

or the website, and the IDLE development

environment. This will also work great on

Raspberry Pi distros, such as Raspbian.

Resources
Python 2: www.python.org/download

IDLE: www.python.org/idle

The Python Book 45

Python essentials

New imports
Import new modules that allow us to create the GUI
part of Rock, Paper, Scissors, as well as removing
the modules we no longer need

New interface
Our new main function allows us to call the
majority of the game script when the rps_button is
pressed. This contains the game components and
the graphical components

New start
We’ve changed the start function so that it no
longer goes to the score function after it’s finished.
We’ve also removed the score function, as we track
that differently so it can be displayed properly

New game
We’ve changed the game function so that it now
takes the input from our graphical interface. We
use a new variable to do this that works with the
GUI, otherwise it works roughly the same as before

New results
The result function remains largely unchanged,
only now it sends the outcome message to a
variable we use for the interface, and generally
uses the new GUI’s variables

New window
We create the game window with a slightly different
method due to already having a ‘mainloop’ root
window. We’re also giving it a name so you can
identify it properly

New variables
Our new variables are set up so they can interact with
both the game code and the interface code properly.
We’ve also made sure to have a default selection for
the player so that the code runs properly

New frame
Determine the size and layout of the window for
the game using a slightly different method than
before. We’ve also allowed for elements to be
anchored in certain positions around the window

New choice
Here we place radio buttons in a specific
configuration in the window, giving the user the
choice of three moves. This is then passed along to
the variable and used by the game code

New move
Here we allow for the computer’s move to be
displayed under the ‘Computer’ label

New button
Pressing the Play button we’ve put here runs the
game script, prints out the scores and finally a
message based on the outcome

New ending
We’ve changed this so that the main script begins
with gui now rather than the start function

#!/usr/bin/env python2

Linux User & Developer presents: Rock, Paper, Scissors: The Video Game: The Module

from Tkinter import *
from ttk import *
import random

def gui():

 rock = 1
 paper = 2
 scissors = 3

 names = { rock: “Rock”, paper: “Paper”, scissors: “Scissors” }
 rules = { rock: scissors, paper: rock, scissors: paper }

 def start():
 while game():
 pass

 def game():
 player = player_choice.get()
 computer = random.randint(1, 3)
 computer_choice.set(names[computer])
 result(player, computer)

 def result(player, computer):
 new_score = 0
 if player == computer:
 result_set.set(“Tie game.”)
 else:
 if rules[player] == computer:
 result_set.set(“Your victory has been assured.”)
 new_score = player_score.get()
 new_score += 1
 player_score.set(new_score)
 else:
 result_set.set(“The computer laughs as you realise you have been defeated.”)
 new_score = computer_score.get()
 new_score += 1
 computer_score.set(new_score)

 rps_window = Toplevel()
 rps_window.title (“Rock, Paper, Scissors”)

 player_choice = IntVar()
 computer_choice = StringVar()
 result_set = StringVar()
 player_choice.set(1)
 player_score = IntVar()
 computer_score = IntVar()

 rps_frame = Frame(rps_window, padding = ‘3 3 12 12’, width = 300)
 rps_frame.grid(column=0, row = 0, sticky=(N,W,E,S))
 rps_frame.columnconfigure(0, weight=1)
 rps_frame.rowconfigure(0,weight=1)

 Label(rps_frame, text=’Player’).grid(column=1, row = 1, sticky = W)
 Radiobutton(rps_frame, text =’Rock’, variable = player_choice, value = 1).grid(column=1,

row=2, sticky=W)
 Radiobutton(rps_frame, text =’Paper’, variable = player_choice, value = 2).grid(column=1,

row=3, sticky=W)
 Radiobutton(rps_frame, text =’Scissors’, variable = player_choice, value =

3).grid(column=1, row=4, sticky=W)

 Label(rps_frame, text=’Computer’).grid(column=3, row = 1, sticky = W)
 Label(rps_frame, textvariable = computer_choice).grid(column=3, row=3, sticky = W)

 Button(rps_frame, text=”Play”, command = start).grid(column = 2, row = 2)

 Label(rps_frame, text = “Score”).grid(column = 1, row = 5, sticky = W)
 Label(rps_frame, textvariable = player_score).grid(column = 1, row = 6, sticky = W)

 Label(rps_frame, text = “Score”).grid(column = 3, row = 5, sticky = W)
 Label(rps_frame, textvariable = computer_score).grid(column = 3, row = 6, sticky = W)

 Label(rps_frame, textvariable = result_set).grid(column = 2, row = 7)

if __name__ == ‘__main__’:
 gui()

Modified RPS Code Listing

46 The Python Book

Python essentials

01

02

03

04

07

08

09

06

05

01 First line
We use this line to enter the path to the

Python interpreter. This lets us run the program

inside a terminal or otherwise outside of a

Python-specific IDE like IDLE. Note that we’re

also using Python 2 for this particular script.

06 Introductions
We create the intro variable as a label

that lives in the main frame. We give it text to

introduce the interface, using the triple quote

marks to have it go across multiple lines and

format better. We then use pack to display it, and

tell Tkinter to put it at the top of the interface.

07 Rock, Paper, Scissors
We create a button for the Rock, Paper,

Scissors game using the Button function. We

attach to it the main frame, give it a label using

02 Import graphics
Tkinter is the graphical interface we’re

using and while it’s a standard Python function,

you’ll need to import the module so you can use it.

We’ve used the ‘from [module] import *’ method

so that we can use the functions from it without

having to add Tkinter at the beginning.

04 Root window
Using the Tk() function creates the

window we’re going to be placing everything

into. We’ve decided to call it root for now;

however, you can call it anything you like, as

long as you’re consistent with it. We’ve also

named it using the title command from Tkinter

and a string of text.

05 Main frame
The first line has us set the variable

mainframe as a Frame in the interface. We’ve

attached it to root, the main window, and given

03 Import games
We’re importing the modules for the

three games. We added the line at the bottom

MAIN WINDOW

The main interface window that

this code creates is fairly basic,

but contains the functions we

require. The window exit button

will do the same job as the Quit

button, and the Hangman and

Poker Dice buttons run the old

scripts in the Python shell.

#!/usr/bin/env python2

#Linux User & Developer presents: Mega Microgrames Collection

from Tkinter import *

import rockpaperscissors

import hangman

import pokerdice

root = Tk()

root.title (“Linux User & Developer’s Mega Microgames Collection”)

mainframe = Frame(root, height = 200, width = 500)

mainframe.pack_propagate(0)

mainframe.pack(padx = 5, pady = 5)

intro = Label(mainframe, text = “””Welcome to Linux User & Developers Mega Microgames Collection.

Please select one of the following games to play:

“””)

intro.pack(side = TOP)

rps_button = Button(mainframe, text = “Rock, Paper, Scissors”, command = rockpaperscissors.gui)

rps_button.pack()

hm_button = Button(mainframe, text = “Hangman”, command = hangman.start)

hm_button.pack()

pd_button = Button(mainframe, text = “Poker Dice”, command = pokerdice.start)

pd_button.pack()

exit_button = Button(mainframe, text = “Quit”, command = root.destroy)

exit_button.pack(side = BOTTOM)

root.mainloop()

it a minimum height and width in pixels. We

use pack_propogate to create the window, and

then make sure it’s the size that we’ve defined.

We’ve then used pack to pad the borders,

allowing the contents of the window to not

touch the sides of it.

of each script so we can do this. To make sure

to differentiate the functions in each game, we

will have to specify [module].[function] so there

are no errors in the code.

The Python Book 47

Python essentials

#!/usr/bin/env python2

Linux User & Developer presents: Rock, Paper, Scissors: The Video Game: The Module

from Tkinter import *

from ttk import *

import random

def gui():

 rock = 1

 paper = 2

 scissors = 3

 names = { rock: “Rock”, paper: “Paper”, scissors: “Scissors” }

 rules = { rock: scissors, paper: rock, scissors: paper }

 def start():

 while game():

 pass

 def game():

 player = player_choice.get()

 computer = random.randint(1, 3)

 computer_choice.set(names[computer])

 result(player, computer)

10

11

12

13

14

09 Break the loop
The exit button works similarly to the

other buttons we’ve created, but instead it uses

the command root.destroy. This ends the loop

that we’ve created with root.mainloop(), which

allows the interface code to continue looping,

allowing us to continually use it. We place the

exit button at the bottom of the window with

‘side = BOTTOM’.

12 Game variables
The variables are staying the same

so that we can do the same comparisons we

made in the original code. We’ve put them into

the function itself so that they don’t affect the

other imported code into the main interface –

and so that when calling just this function, we

don’t need to use global to bring them in.

14 Game function
The game function has had a few

modifications to make sure it works with

the interface. First of all, the player variable

is retried using get() on the special variable

we’ve created to contain the player choice.

We do a similar thing for the computer, using

‘set’ to change the variable in our interface-

friendly computer_choice value. We still use

the name variable to set the text that goes into

computer_choice. This then passes the player

and computer variables along in the same way

we did before.

13 Start function
We’ve removed the part that calls

the score function from the start function,

as we have the interface handle the scoring

now. It still calls upon the game function,

though, putting it into a loop so it can be

used continuously. This function is called by

the interface to begin the game by setting a

computer move and then comparing it to the

player’s choice.

10 Game code
Nothing much has changed in the start of

this code, other than a few import changes. The

code for running it in the command line is still

PYTHON SHELL

Our other code will run in the shell

or via a command line in the same

way as before when the buttons

are pressed.

08 Other games
For the other two games, the code is

mostly the same; however, we call upon the start

function in both of them. In the final interface,

this will cause the games to run in the shell or

command line as they’ve been running before.

11 Game interface
One of the biggest changes we’re making

to this script is having it all contained in one

function, ‘def gui’. The interface code needs to

be put into a function, otherwise it will be run

during import. While we’ve chosen to put the

entirety of the code in a function, you can also

try just having the graphical interface code in

one. All our variables are kept in here so that

they still work properly.

there, and with a few modifications the code will

run independently of the main interface. We’ve

removed the time module, as we no longer need

it, and imported not only the Tkinter module,

but the ttk module. The ttk module allows us to

arrange the GUI in a grid, which will be slightly

easier to use and understand.

text that appears on the button, and then have

it run a command. In this case, we use the

modified rockpapershotgun.py code that has a

gui function, hence rockpapershotgun.py. We

then use pack to place it in the window

48 The Python Book

Python essentials

 def result(player, computer):

 new_score = 0

 if player == computer:

 result_set.set(“Tie game.”)

 else:

 if rules[player] == computer:

 result_set.set(“Your victory has been assured.”)

 new_score = player_score.get()

 new_score += 1

 player_score.set(new_score)

 else:

 result_set.set(“The computer laughs as you realise you have been defeated.”)

 new_score = computer_score.get()

 new_score += 1

 computer_score.set(new_score)

 rps_window = Toplevel()

 rps_window.title (“Rock, Paper, Scissors”)

 player_choice = IntVar()

 computer_choice = StringVar()

 result_set = StringVar()

 player_choice.set(1)

 player_score = IntVar()

 computer_score = IntVar()

15

16

17

19

20

18

GAME WINDOW

In its default state, the game

window will have rock selected

and no message will be displayed.

Once the player makes a move, the

message will be displayed at the

bottom and the computer’s move

will be printed. There’s no quit

button on this menu, but clicking

the window exit will bring you back

to the main interface.

15
Result function

The result function still takes the same

two variables as before, which we set in the

game function. While technically we can use

the variables set up for the interface, these

are not pure integers and can cause an error if

not handled correctly. With that in mind, we’ve

created an empty new_score variable that we

can use to effectively clean the interface value

before adding it back into it.

20
Interface variables

Here is the reason we had to call and

change the variables in a different manner.

For Tkinter, we need to let the interface know

whether or not a variable is an integer or a text

value. IntVar and StringVar allow for these

respectively. We’ve also set the player_choice

variable to be one, which we have already set as

the choice for rock. This means there will at least

be a default choice when the game is started,

and it won’t cause an error.

21
Game frame

We’ve created the frame for our

interface items slightly differently. Instead

of using the pack command in the main

interface, we’re using grid to make sure they’re

orientated in such a way that makes sense

for the user. Padding does just that, setting

up values to make sure the items in the frame

don’t touch the edge of the window. Using the

.grid command, we then create this frame.

The row and column variables allow for rows

and columns to be included in the structure of

16
Tie

The logic for determining the result is

the same as before. We first do the easy check –

whether or not the numeric value for the player

and computer variable is the same. What changes

this time is that, instead of printing the text,

we send the “Tie game” message to our result

variable using the set function from Tkinter.

18
Lose

This part of the overall if statement

works in the same way as before, by assuming

that if it isn’t a tie or a win, it’s a loss. Like the

new version of the win code, it then uses set

to change the message that will be displayed

to the player, and calls upon and changes

the computer score by putting it through the

new_score variable.

19
New window

As the original window is part of the

mainloop, we cannot have the window be

created using Tk() like in the main interface

code. As this window is coming off it, though,

we instead create it using Toplevel(). This

allows the window to run separately and on

top of the main window. We’ve also given

17
Win

The if statement continues by seeing if

the player has won. Like before, we use the rules

we set to make the comparison for the code to

it a name, which will not change the main

window’s name in the process.
make. We set the result_set like we did in the

tie game, with a different message to the user.

Finally, we set the new_score variable to be the

current player score, using the get function to

obtain it, plus one to the score, and then use

set again to put it back into the player_score

variable. We can’t use += with the player_score

variable, as it is not a standard variable.

The Python Book 49

Python essentials

 rps_frame = Frame(rps_window, padding = ‘3 3 12 12’, width = 300)

 rps_frame.grid(column=0, row = 0, sticky=(N,W,E,S))

 rps_frame.columnconfigure(0, weight=1)

 rps_frame.rowconfigure(0,weight=1)

 Label(rps_frame, text=’Player’).grid(column=1, row = 1, sticky = W)

 Radiobutton(rps_frame, text =’Rock’, variable = player_choice, value = 1).grid(column=1, row=2,

sticky=W)

 Radiobutton(rps_frame, text =’Paper’, variable = player_choice, value = 2).grid(column=1, row=3,

sticky=W)

 Radiobutton(rps_frame, text =’Scissors’, variable = player_choice, value = 3).grid(column=1,

row=4, sticky=W)

 Label(rps_frame, text=’Computer’).grid(column=3, row = 1, sticky = W)

 Label(rps_frame, textvariable = computer_choice).grid(column=3, row=3, sticky = W)

 Button(rps_frame, text=”Play”, command = start).grid(column = 2, row = 2)

 Label(rps_frame, text = “Score”).grid(column = 1, row = 5, sticky = W)

 Label(rps_frame, textvariable = player_score).grid(column = 1, row = 6, sticky = W)

 Label(rps_frame, text = “Score”).grid(column = 3, row = 5, sticky = W)

 Label(rps_frame, textvariable = computer_score).grid(column = 3, row = 6, sticky = W)

 Label(rps_frame, textvariable = result_set).grid(column = 2, row = 7)

if __name__ == ‘__main__’:

 gui()

21

22

23

23

24

25

22 Player’s choice
We create a label for the player’s move

and assign it to a grid location, on the first row,

on the first column. We also justify it to the left

using ‘sticky = W’. We then add the radio buttons

for the player’s move, each on the same column

but the following row down. We give each choice

a name, then assign it to the player_choice

variable. We then make each choice have a

numerical value that corresponds to the moves

we’ve determined in the first set of rules.

23 Computer’s move
We display the computer move here.

First of all, we label what this is and then create

24 Press Play
The running of the code all hinges on

the Play button. It’s very simple: we put it in the

row between the Player and Computer move as

part of our three-column system; and it runs the

start function using the command option. Due to

the loop of the interface, we can keep pressing

this without needing to be asked to play again.

Simply exiting the window will go back to the

main interface window as well, meaning we do

not need a specific quit button.

25 Running score
We have two sets of scores to display

– one for the player and the other for the

26 End game
The final part of the code allows for

the script to be used by the main window, and

also allows for it to run on its own when used

in the command line or shell. You’ll need to

perform some modifications to make it run on

its own, such as making it the mainloop and not

a Toplevel window. However, it will run just fine

from both without the need to be launched from

the main interface.

the window, and the sticky allows us to justify

items with specific directions – in this case top,

left, right and bottom justification. Finally, we

then make sure each column and row is treated

equally by giving them the same weighting, and

starting from zero.

a second label to display the actual move. We

do this by adding the textvariable option to

Label, and using the computer_choice variable

we updated earlier in the game function. This

merely prints the text from the names list and

justifies this to the left.

computer. We label these the same way we’ve

done with labelling the Player and Computer

move, having them on a lower row but still in

the relevant columns. Below that, we use the

textvariable option again to get the numerical

score we assigned to the separate score

variable. Finally, we create another label to

display the message for the game’s outcome

50 The Python Book

Python essentials

Complete your trio of games with a graphical interface for the
hangman and poker dice code

Bring graphics to simple
Python games

We have now created a simple selector for the

trio of Python games we made previously. This

interface was able to launch a GUI for our rock,

paper, scissors game, and run the other two in

the terminal. Now, we’re going to convert the

hangman and poker dice codes to work in a

similar way to rock, paper, scissors.

The trick with hangman comes in allowing

for a different type of input, text, and the ability

to have multiple rounds of the game. Tkinter

allows for text entry, and we rely a lot less on

‘while’ loops to play the game in its entirety.

Poker Dice needs to keep the dice analysis

code, and the option to change specific dice

using checkboxes.

We’ll be modifying a large amount of the

original code to fit in with the new graphical

scheme. This mainly involves cutting specific

parts and having the Tkinter-specific code

handle these itself. The code listings on these

pages include the modified code – we’ll discuss

the graphical part on the following pages.

Resources
Python 2: www.python.org/download

IDLE: www.python.org/idle

1 Imported
Here we’re doing the
same minor setup,
including getting
the Tkinter module
that helps us create
a simple graphical
interface

2 Words
We’re keeping
our variables that
determine the word to
guess here so it can
be easily accessed
anywhere in the code

3 Function
Like last time, we’re
putting the majority of
our original code into a
new function, gui

4 Analysis
We select the word
and analyse it before
continuing on with the
rest of the code

5 Graphics
The hangedman
function is largely
unchanged, albeit with
new code to display
our ASCII graphics on
the interface

6 Guesses
We check the number
of mistakes made, and
call the guess_letter
function to check the
letter entered

from Tkinter import *
from ttk import *
from random import *
word = 0
word_length = 0
clue = 0

def gui():
 global word, word_length, clue
 dictionary = [“gnu”,”kernel”,”linux”,”magei
a”,”penguin”,”ubuntu”]
 word = choice(dictionary)
 word_length = len(word)
 clue = word_length * [“_”]
 tries = 6

 def hangedman(hangman):
 graphic = [
 “””
 +-------+
 | |
 | O
 | -|-
 | / \
 |
 ===============
 “””]
 graphic_set = graphic[hangman]
 hm_graphic.set(graphic_set)

 def game():
 letters_wrong = incorrect_guesses.get()
 letter=guess_letter()
 first_index=word.find(letter)
 if first_index == -1:
 letters_wrong +=1
 incorrect_guesses.set(letters_

wrong)
 else:
 for i in range(word_length):

 if letter == word[i]:
 clue[i] = letter
 hangedman(letters_wrong)
 clue_set = “ “.join(clue)
 word_output.set(clue_set)
 if letters_wrong == tries:
 result_text = “Game Over. The word
was “ + word
 result_set.set(result_text)
 new_score = computer_score.get()
 new_score += 1
 computer_score.set(new_score)
 if “”.join(clue) == word:
 result_text = “You Win! The word
was “ + word
 result_set.set(result_text)
 new_score = player_score.get()
 new_score += 1
 player_score.set(new_score)

 def guess_letter():
 letter = letter_guess.get()
 letter.strip()
 letter.lower()
 return letter

 def reset_game():
 global word, word_length, clue
 incorrect_guesses.set(0)
 hangedman(0)
 result_set.set(“”)
 letter_guess.set(“”)
 word = choice(dictionary)
 word_length = len(word)
 clue = word_length * [“_”]
 new_clue = “ “.join(clue)
 word_output.set(new_clue)

if __name__ == ‘__main__’:
 gui()

01

02

03

04

05

06

Hangman Code Listing

The Python Book 51

Python essentials

1 More imports
We’ve added the new imported
modules we need to make Tkinter
work and keep the rest the same

2 Dice list
The list that holds the dice is kept
outside the main function so that it
can be accessed everywhere

3 Rolls
Same goes for the roll function.
It doesn’t specifically need to be
inside the gui function anyway

4 Decisions
The checkboxes in the graphical
code we’re going to create later will
give us numbers we can analyse for
the code. We retrieve these numbers
and check them to find out which
dice the user wishes to re-roll

5 Hands
Finally, our hand analysis function
is the last part of the original code
that is kept outside the gui function.
Both this and the above function
pass the necessary details back
up the chain to then be added into
the new graphical elements of the
new interface

6 No dice
If no dice have been selected to
re-roll, the hand output is changed
to show a final message

7 Re-roll
This part is almost the same as
before – a new set of dice are rolled
and then inserted into the list of dice
like before, then re-sorted to make
the hand analysis easier

8 More functions
The new gui function is the main
change to the Poker Dice code,
and as before includes the Tkinter
elements and other parts of the
original code

9 Game start
A simple function that we can use to
activate the re-rolls of the dice

10 New hand
The new dice are named, analysed,
and everything is then set for the gui
to display the final outcome

11 Reset
Like with the hangman code, we
have a function to reset all the
variables, allowing you to start the
game again

from Tkinter import *

from ttk import *

import random

from itertools import groupby

dice = 0

def roll(roll_number):

 numbers = range(1,7)

 dice = range(roll_number)

 iterations = 0

 while iterations < roll_number:

 iterations = iterations + 1

 dice[iterations-1] = random.

choice(numbers)

 return dice

def hand(dice):

 dice_hand = [len(list(group)) for key,

group in groupby(dice)]

 dice_hand.sort(reverse=True)

 straight1 = [1,2,3,4,5]

 straight2 = [2,3,4,5,6]

 if dice == straight1 or dice ==

straight2:

 return “a straight!”

 elif dice_hand[0] == 5:

 return “five of a kind!”

 elif dice_hand[0] == 4:

 return “four of a kind!”

 elif dice_hand[0] == 3:

 if dice_hand[1] == 2:

 return “a full house!”

 else:

 return “three of a kind.”

 elif dice_hand[0] == 2:

 if dice_hand[1] == 2:

 return “two pair.”

 else:

 return “one pair.”

 else:

 return “a high card.”

def gui():

 global dice

 dice = roll(5)

 dice.sort()

 nine = 1

 ten = 2

 jack = 3

 queen = 4

 king = 5

 ace = 6

 names = { nine: “9”, ten: “10”, jack:

“J”, queen: “Q”, king: “K”, ace: “A” }

 result = “You have “ + hand(dice)

 def game():

 throws()

 def throws():

 global dice

 dice1_check = dice1.get()

 dice2_check = dice2.get()

 dice3_check = dice3.get()

 dice4_check = dice4.get()

 dice5_check = dice5.get()

 dice_rerolls = [dice1_check,

dice2_check, dice3_check, dice4_check,

dice5_check]

 for i in range(len(dice_rerolls)):

 if 0 in dice_rerolls:

 dice_rerolls.remove(0)

 if len(dice_rerolls) == 0:

 result = “You finish with “ +

hand(dice)

 hand_output.set(result)

 else:

 roll_number = len(dice_rerolls)

 number_rerolls = roll(roll_num-

ber)

 dice_changes = range(len(dice_

rerolls))

 iterations = 0

 while iterations < roll_number:

 iterations = iterations + 1

 dice_changes[iterations-1]

= number_rerolls[iterations-1]

 iterations = 0

 while iterations < roll_number:

 iterations = iterations + 1

 replacement = number_

rerolls[iterations-1]

 dice[dice_

changes[iterations-1]] = replacement

 dice.sort()

 new_dice_list = [0,0,0,0,0]

 for i in range(len(dice)):

 new_dice_list[i] =

names[dice[i]]

 final_dice = “ “.join(new_dice_

list)

 dice_output.set(final_dice)

 final_result = “You finish with

“ + hand(dice)

 hand_output.set(final_result)

 def reset_game():

 global dice

 dice = roll(5)

 dice.sort()

 for i in range(len(dice)):

 empty_dice[i] = names[dice[i]]

 first_dice = “ “.join(empty_dice)

 dice_output.set(first_dice)

 result = “You have “ + hand(dice)

 hand_output.set(result)

if __name__ == ‘__main__’:

 gui()

01

02

03

04

05

11

10

09

08

07

06

Poker Dice Code Listing

52 The Python Book

Python essentials

01

02

03

01 First lines
As usual, we start off each program with

the code that lets us run it in the command line,

followed by importing the necessary modules:

random, to determine the word to use; Tkinter,

for the majority of the graphical code; and

06 Games begin
All the analysis of the letter we’ve

entered is done in this function. To that end, we

start by obtaining the incorrect guesses so far

from the variable we’ve set up so the interface

can access it if we want it to. The letter from

the entry field in the interface is then obtained

and cleaned up so it can be used with the rest of

the code.

07 Check the letter
This section of the code is again largely

unchanged – the letter is taken and compared to

the word with find to see if it matches with one

of the letters. The if statement then adds one to

the incorrect guess variable, or updates the clue

variable to add the letter in the right spot.

09 Update scores
Exactly as before, we check to see if the

player has won or lost yet. In the event of either,

a message is displayed to signify this, and the

wins and losses score is updated using set.

02 Global variables
We have kept these three variables

outside of the gui function so they can be

04 Random word
We bring in the three variables with

global so we can modify them throughout

the code, and then set the word. As before, a

random item from the list of words is selected

with choice, the length is ascertained, and the

clue to display is set.

08 Update interface
These three lines set the graphic for this

round, join the current clue together as a string,

and then set it on the variable for the interface

to read.

03 Graphical function
We’re putting all the working code into

the gui function so it can be activated from the

main interface. This means we can import the

Hangman code into the interface without the

game window popping up, and only run it when

we activate the gui function from here.

05 The hanged man
The main difference this time for the

Hangman graphics is that instead of printing

these out, we’re going to display them in the

interface. When the function is called and the

graphic selected, it’s placed in the variable we’ve

set up in the interface code that we’re using to

display the result.

ttk, for the grid code we’ll be using to align the

different elements.

accessed at all points in the code. Python 2 does

not allow you to call upon global variables when

you’re in a nested function, whereas in Python 3

this could have gone into the gui function.

09

08

07

06

05

04

#!/usr/bin/env python2

from Tkinter import *

from ttk import *

from random import *

word = 0

word_length = 0

clue = 0

def gui():

 global word, word_length, clue

 dictionary = [“gnu”,”kernel”,”linux”,”mageia”,”penguin”,”ubuntu”]

 word = choice(dictionary)

 word_length = len(word)

 clue = word_length * [“_”]

 tries = 6

 def hangedman(hangman):

 graphic = [

 “””

 +-------+

 | |

 | O

 | -|-

 | / \

 |

 ===============

 “””]

 graphic_set = graphic[hangman]

 hm_graphic.set(graphic_set)

 def game():

 letters_wrong = incorrect_guesses.get()

 letter=guess_letter()

 first_index=word.find(letter)

 if first_index == -1:

 letters_wrong +=1

 incorrect_guesses.set(letters_wrong)

 else:

 for i in range(word_length):

 if letter == word[i]:

 clue[i] = letter

 hangedman(letters_wrong)

 clue_set = “ “.join(clue)

 word_output.set(clue_set)

 if letters_wrong == tries:

 result_text = “Game Over. The word was “ + word

 result_set.set(result_text)

 new_score = computer_score.get()

 new_score += 1

 computer_score.set(new_score)

 if “”.join(clue) == word:

 result_text = “You Win! The word was “ + word

 result_set.set(result_text)

 new_score = player_score.get()

 new_score += 1

 player_score.set(new_score)

YOU LOSE

When you’ve run out of guesses,

the game stops. From here, you

can also reset the game to play

again if you wish.

The Python Book 53

Python essentials

10

11

15

12

16

13

14

12 Interface variables
Tkinter only works with specific variables

– we’ve created all the ones we need or can use

here. IntVars take integers, while StringVars take

strings. We’ve used get and set throughout the

rest of the code with these to get and set values.

14 Clue to Hangman
These labels are fairly straightforward

– we’re either giving them fixed text, or telling

them to use a specific textvariable so they can

be updated as we play the game.

13 Framed window
The frame is set up the same way as

last time. We pad the frame from the edge of

the window, set a grid, give it sticky points at

compass points, and allow for setting objects

with specific row and column points.

16 Results and reset
The rest of the code is similar to what

we’ve done already: labels to display fixed text

and the scores/result text that change. The

button that activates the reset function is also

put at the bottom here. The final two lines allow

us to import the module into the interface code.

10 Sanitise input
The guess_letter function purely gets

the letter from the player input variable, strips it

of any formatting, makes it lower case, and then

returns it back to the game function. This is so

the letter can be used properly.

11 New window
We use the Toplevel command from

Tkinter like last month to separate the loops of

the main interface and game window. We then

use title to call it Hangman.

15 Text entry
Entry here sets a text box we will add the

letters to. The exportselection option makes it

so selecting the letter won’t immediately copy it

to the clipboard, and the textvariable selection

is where the code stores the letter added. The

button activates the game function, analysing

the letter the player entered.

 The frame is set
up as before

 def guess_letter():

 letter = letter_guess.get()

 letter.strip()

 letter.lower()

 return letter

 def reset_game():

 global word, word_length, clue

 incorrect_guesses.set(0)

 hangedman(0)

 result_set.set(“”)

 letter_guess.set(“”)

 word = choice(dictionary)

 word_length = len(word)

 clue = word_length * [“_”]

 new_clue = “ “.join(clue)

 word_output.set(new_clue)

 hm_window = Toplevel()

 hm_window.title (“Hangman”)

 incorrect_guesses = IntVar()

 incorrect_guesses.set(0)

 player_score = IntVar()

 computer_score = IntVar()

 result_set = StringVar()

 letter_guess = StringVar()

 word_output = StringVar()

 hm_graphic = StringVar()

 hm_frame = Frame(hm_window, padding = ‘3 3 12 12’, width = 300)

 hm_frame.grid(column=0, row = 0, sticky=(N,W,E,S))

 hm_frame.columnconfigure(0, weight=1)

 hm_frame.rowconfigure(0,weight=1)

 Label(hm_frame, textvariable = hm_graphic).grid(column=2, row = 1)

 Label(hm_frame, text=’Word’).grid(column=2, row = 2)

 Label(hm_frame, textvariable = word_output).grid(column=2, row = 3)

 Label(hm_frame, text=’Enter a letter’).grid(column=2, row = 4)

 hm_entry = Entry(hm_frame, exportselection = 0, textvariable = letter_guess).grid(column = 2, row = 5)

 hm_entry_button = Button(hm_frame, text = “Guess”, command = game).grid(column = 2, row = 6)

 Label(hm_frame, text = “Wins”).grid(column = 1, row = 7, sticky = W)

 Label(hm_frame, textvariable = player_score).grid(column = 1, row = 8, sticky = W)

 Label(hm_frame, text = “Losses”).grid(column = 3, row = 7, sticky = W)

 Label(hm_frame, textvariable = computer_score).grid(column = 3, row = 8, sticky = W)

 Label(hm_frame, textvariable = result_set).grid(column = 2, row = 9)

 replay_button = Button(hm_frame, text = “Reset”, command = reset_game).grid(column = 2, row = 10)

if __name__ == ‘__main__’:

 gui()

THE HANGMAN GUI

Press the updated Hangman

button to launch a new window.

Here we have the initial graphic,

word clue and entry for the player

to interact with. The scores

are set to zero, and no result

message is displayed as no

games have been played yet.

ORIGINAL INTERFACE

You’ll also need the interface

code from last issue, which

already works with the modified

Rock, Paper, Scissors code. The

way it was left off means it won’t

work with the new code, so you’ll

have to change the command in

each button from [game].start

to [game].gui.

54 The Python Book

Python essentials

17

19

24

22

20

18

21

23

22 First roll
As the window opens, we immediately

make the first roll. This is then sorted, each

number is attributed to a card, and then the

result is created to be displayed in the main

window. This is similar to how it worked before,

but instead it’s now entered into the StringVars

for the interface towards the end of the script

23 Start game
When we activate the button that starts

game, it immediately sends us to the rest of the

code. This would also work if you had the button

go to the throws function instead; however, you

can add other functions to this part if you wish.

24 Dice selection
The first thing we do is find out what

checkboxes have been ticked by the player. We

then put these in a list so we can change out the

correct dice numbers. We’ve also brought in dice

so we can check against that what the current

dice rolls are.

20 Hand of dice
Like roll, nothing has changed for the

hand function. It’s simply now placed outside

the gui function for the exact same reasons.

It also means that you can easily import this

function into another script if you wish.

21 GUI start
As we’ve mentioned last month and in

the Hangman code, we put all the GUI code into

a function so that we can call on it when we want

to. In this case, pressing the Poker Dice button

on the main interface activates pokerdice.gui,

which is this function.

18 Outside dice
For Poker Dice, there’s only one variable

to show at any one time, the dice. Again, due to

the nested functions, and because we’re using

Python 2, we need to call it with global from here

to make sure the game can be reset properly.

19 Dice rolls
The roll function has been removed from

the gui function so as not to create any code

errors with some of its variables. It can be easily

called within the nested functions. It hasn’t

changed at all from the original code.

17 Start over
The usual array of command-line

compatibility and module importing here. The

groupby function is specifically imported here

for dice analysis.

#!/usr/bin/env python2

from Tkinter import *

from ttk import *

import random

from itertools import groupby

dice = 0

def roll(roll_number):

 numbers = range(1,7)

 dice = range(roll_number)

 iterations = 0

 while iterations < roll_number:

 iterations = iterations + 1

 dice[iterations-1] = random.choice(numbers)

 return dice

def hand(dice):

 dice_hand = [len(list(group)) for key, group in groupby(dice)]

 dice_hand.sort(reverse=True)

 straight1 = [1,2,3,4,5]

 straight2 = [2,3,4,5,6]

 if dice == straight1 or dice == straight2:

 return “a straight!”

 elif dice_hand[0] == 5:

 return “five of a kind!”

 elif dice_hand[0] == 4:

 return “four of a kind!”

 elif dice_hand[0] == 3:

 if dice_hand[1] == 2:

 return “a full house!”

 else:

 return “three of a kind.”

 elif dice_hand[0] == 2:

 if dice_hand[1] == 2:

 return “two pair.”

 else:

 return “one pair.”

 else:

 return “a high card.”

def gui():

 global dice

 dice = roll(5)

 dice.sort()

 nine = 1

 ten = 2

 jack = 3

 queen = 4

 king = 5

 ace = 6

 names = { nine: “9”, ten: “10”, jack: “J”, queen: “Q”, king: “K”,

ace: “A” }

 result = “You have “ + hand(dice)

 def game():

 throws()

 def throws():

 global dice

 dice1_check = dice1.get()

 dice2_check = dice2.get()

 dice3_check = dice3.get()

 dice4_check = dice4.get()

 dice5_check = dice5.get()

 dice_rerolls = [dice1_check, dice2_check, dice3_check, dice4_

check, dice5_check]

THE POKER DICE GUI

Two things are being printed out

on the initial window. The first

set of dice, ordered in the way

we did last time, and the current

hand. The checkboxes activate

a specific number that is used

when re-rolling dice with the

Reroll button.

EXTRA GAME FUNCTIONS

We mentioned that the game function

doesn’t necessarily need to be used right

now. You can either clean up the code and

remove it, or add extra functions, such

as being able to choose a random new

selection of dice, or making it two-player.

Experiment with what you want to do!

The Python Book 55

Python essentials

25
Dice to re-roll
If a checkbox isn’t selected, we have

it set to give a zero value. We want to remove

these from the list so that the correct dice

are changed, so we use the for loop to check

each part of the list, and then use the remove

function when the element does equal zero.

26 Early finish
If no dice have been selected to re-roll,

the list will contain all 0s, which will then be

removed. The length of this list will then also be

zero, meaning we can use that to end the game if

the player hits Reroll without selecting any dice.

27 New dice
This else function works roughly

the same as before. We start by getting the

necessary information for how many dice to roll,

and a list to put the re-rolls. We then roll as many

new dice as we need with the first while loop

28 Game over
We use the same kind of while loop to

replace the new numbers into the original list,

much like last time. Then the dice are re-sorted,

analysed, joined as a string and then set into the

interface’s variable. The final hand message is

also create and set.

29 Graphical variables
As we’re rolling the dice as soon as

we launch the game, but the interface code

doesn’t start until the end, you can see that

after creating the necessary variables, we also

then set them. Of note, the dice have to be made

into a string separately with the for loop before

adding to the variable.

30 Check buttons
The main new addition to this code is

the check buttons with Checkbutton. You can

set an on and off value, with default off being 0.

We’ve made it so that the check buttons return

the same number as the dice they’re changing,

which we explained how we used earlier in the

code. The variable option sets whatever the

outcome is to the specific Tkinter variable.

25

26

27

28

29

30

 The check
buttons are new

 for i in range(len(dice_rerolls)):

 if 0 in dice_rerolls:

 dice_rerolls.remove(0)

 if len(dice_rerolls) == 0:

 result = “You finish with “ + hand(dice)

 hand_output.set(result)

 else:

 roll_number = len(dice_rerolls)

 number_rerolls = roll(roll_number)

 dice_changes = range(len(dice_rerolls))

 iterations = 0

 while iterations < roll_number:

 iterations = iterations + 1

 dice_changes[iterations-1] = number_rerolls[iterations-1]

 iterations = 0

 while iterations < roll_number:

 iterations = iterations + 1

 replacement = number_rerolls[iterations-1]

 dice[dice_changes[iterations-1]] = replacement

 dice.sort()

 new_dice_list = [0,0,0,0,0]

 for i in range(len(dice)):

 new_dice_list[i] = names[dice[i]]

 final_dice = “ “.join(new_dice_list)

 dice_output.set(final_dice)

 final_result = “You finish with “ + hand(dice)

 hand_output.set(final_result)

 def reset_game():

 global dice

 dice = roll(5)

 dice.sort()

 for i in range(len(dice)):

 empty_dice[i] = names[dice[i]]

 first_dice = “ “.join(empty_dice)

 dice_output.set(first_dice)

 result = “You have “ + hand(dice)

 hand_output.set(result)

 pd_window = Toplevel()

 pd_window.title (“Poker Dice”)

 dice_output = StringVar()

 empty_dice = [0,0,0,0,0]

 for i in range(len(dice)):

 empty_dice[i] = names[dice[i]]

 first_dice = “ “.join(empty_dice)

 dice_output.set(first_dice)

 hand_output = StringVar()

 hand_output.set(result)

 dice1 = IntVar()

 dice2 = IntVar()

 dice3 = IntVar()

 dice4 = IntVar()

 dice5 = IntVar()

 result_set = StringVar()

 player_score = IntVar()

 computer_score = IntVar()

 pd_frame = Frame(pd_window, padding = ‘3 3 12 12’, width = 300)

 pd_frame.grid(column=0, row = 0, sticky=(N,W,E,S))

 pd_frame.columnconfigure(0, weight=1)

 pd_frame.rowconfigure(0,weight=1)

 Label(pd_frame, text=’Dice’).grid(column=3, row = 1)

 Label(pd_frame, textvariable = dice_output).grid(column=3, row = 2)

 Label(pd_frame, textvariable = hand_output).grid(column=3, row = 3)

 Label(pd_frame, text=’Dice to Reroll?’).grid(column=3, row = 4)

 reroll1 = Checkbutton(pd_frame, text = “1”, variable = dice1, onvalue = 1, offvalue

= 0).grid(column=1, row = 5)

 reroll2 = Checkbutton(pd_frame, text = “2”, variable = dice2, onvalue = 2, offvalue

= 0).grid(column=2, row = 5)

 reroll3 = Checkbutton(pd_frame, text = “3”, variable = dice3, onvalue = 3, offvalue

= 0).grid(column=3, row = 5)

 reroll4 = Checkbutton(pd_frame, text = “4”, variable = dice4, onvalue = 4, offvalue

= 0).grid(column=4, row = 5)

 reroll5 = Checkbutton(pd_frame, text = “5”, variable = dice5, onvalue = 5, offvalue

= 0).grid(column=5, row = 5)

 pd_reroll_button = Button(pd_frame, text = “Reroll”, command = game).grid(column =

3, row = 6)

 replay_button = Button(pd_frame, text = “Reset”, command = reset_game).grid(column

= 3, row = 7)

if __name__ == ‘__main__’:

 gui()

ONE WINDOW

The way we’ve made these Tkinter

interfaces is to have the games

launch in a separate window. You

can have them all running in one

window, though, by replacing the

labels and buttons of the original

interface by putting them as

different functions or classes.

Make sure to add a quit button to

the games that lets you go back

to the main page.

56 The Python Book

Python essentials

Build an app for
Android with Python
Master Kivy, the excellent cross-platform application
framework to make your fi rst Android app…

The great thing about Kivy is there are loads

of directions we could take it in to do some

pretty fancy things. But, we're going to make

a beeline for one of Kivy's coolest features

- the ability it affords you to easily run your

programs on Android.

We'll approach this by fi rst showing how to

make a new app, this time a dynamic Breakout-

to be drawn anywhere on your screen and on

any widget type.

Before we can do any of this we'll need a class

for each kind of game object, which we’re going

to pre-populate with some of the properties

that we'll need later to control them. Remember

from last time, Kivy properties are special

attributes declared at class level, which (among

other things) can be modifi ed via kv language

and dispatch events when they are modifi ed

(Fig. 02).

The Game class will be one big widget

containing the entire game. We've specifi cally

made it a subclass of FloatLayout because

this special layout is able to position and size

its children in proportion to its own position

and size – so no matter where we run it or

how we resize the window, it will place all the

game objects appropriately.

Next we can use Kivy's graphics instructions

to draw various shapes on our widgets. We'll

just demonstrate simple rectangles to show

their locations, though there are many more

advanced options you might like to investigate.

In a Python fi le we can apply any instruction

by declaring it on the canvas of any widget, an

example of which is shown in Fig. 03.

This would draw a red rectangle with the

same position and size as the player at its

moment of instantiation – but this has a

Before anything else, let's throw together a

basic Kivy app (Fig. 01). We've pre-imported

the widget types we'll be using, which this

time are just three: the basic Widget with

no special behaviour, the ModalView with a

pop-up behaviour as used last time, and the

FloatLayout as we will explaine later. Kivy

has many other pre-built widgets for creating

GUIs, but this time we’re going to focus on

drawing the whole GUI from scratch using

Kivy's graphics instructions. These comprise

either vertex instructions to create shapes

(including rectangles, lines, meshes, and so

on) or contextual graphics changes (such as

translation, rotation, scaling, etc), and are able

Here we've drawn all the simple graphics
for our game… now we just have to make
the shapes actually do something!

style game. We'll then be able to compile this

straight to an Android APK that you can use just

like any other.

Of course, once you have mastered the

basic techniques you aren't limited to using

any particular kind of app, as even on Android

you can make use of all your favourite Python

libraries to make any sort of program you like.

Once you've mastered Kivy, your imagination

is the only limit. If you're pretty new to Kivy,

don't worry, we won't assume that you have

any pre-existing knowledge. As long as you

have mastered some of the Python tutorials

in this book so far, and so have a fairly good

understanding of the language, you shouldn’t

have any problems following along.

The Python Book 57

Python essentials

from kivy.app import App

from kivy.uix.widget import Widget

from kivy.uix.floatlayout import FloatLayout

from kivy.uix.modalview import ModalView

__version__ = '0.1' # Used later during Android compilation

class BreakoutApp(App):

 pass

BreakoutApp().run()

Fig. 01

from kivy.graphics.context_instructions import Color

 from kivy.graphics.vertex_instructions import Rectangle

 class Player(Widget):

 def __init__(self, **kwargs):

 super(Player, self).__init__(**kwargs)

 with self.canvas:

 Color(1, 0, 0, 1) # r, g, b, a -> red

 Rectangle(pos=self.pos, size=self.size)

 # or without the with syntax, self.canvas.add(...)

Fig. 03

from kivy.properties import (ListProperty, NumericProperty,

 ObjectProperty, StringProperty)

 class Game(FloatLayout): # Will contain everything

 blocks = ListProperty([])

 player = ObjectProperty() # The game's Player instance

 ball = ObjectProperty() # The game's Ball instance

 class Player(Widget): # A moving paddle

 position = NumericProperty(0.5)

 direction = StringProperty('none')

 class Ball(Widget): # A bouncing ball

 # pos_hints are for proportional positioning, see below

 pos_hint_x = NumericProperty(0.5)

 pos_hint_y = NumericProperty(0.3)

 proper_size = NumericProperty(0.)

 velocity = ListProperty([0.1, 0.5])

 class Block(Widget): # Each coloured block to destroy

 colour = ListProperty([1, 0, 0])

Fig. 02

problem, unfortunately, as the drawing is

static. When we later move the player widget,

the red rectangle will stay in the same place,

and the widget will be invisible when it is in its

real position.

We could fi x this by keeping references to our

canvas instructions and repeatedly updating

their properties to track the player, but there's

actually an easier way to do all of this - we

can use the Kivy language we introduced last

time. It has a special syntax for drawing on

the widget canvas, which we can use to draw

each of our widget shapes:

<Player>:

 canvas:

 Color:

 rgba: 1, 1, 1, 1

 Rectangle:

 pos: self.pos

 size: self.size

<Ball>:

 canvas:

 Color:

 rgb: 1, 0.55, 0

 Rectangle:

 pos: self.pos

 size: self.size

<Block>:

 canvas:

 Color:

 rgb: self.colour

 # A property we predefined above

 Rectangle:

 pos: self.pos

 size: self.size

 Color:

 rgb: 0.1, 0.1, 0.1

 Line:

 rectangle:

 [self.x, self.y,

 self.width, self.height]

The canvas declaration is special, underneath

it we can write any canvas instructions we

like. Don't get confused, canvas is not a

widget and nor are graphics instructions

like Line. This is just a special syntax that is

unique to the canvas. Instructions all have

different properties that can be set, like the

pos and size of the rectangle, and you can

check the Kivy documentation online for all

the possibilities. The biggest advantage is

that although we still declare simple canvas

instructions, kv language is able to detect

what Kivy properties we have referred to and

automatically track them, so when they are

updated (the widget moves or is resized) the

canvas instructions move to follow!

 Once you have the basic techniques,
you aren’t limited to one app… your
imagination is the only limit

58 The Python Book

Python essentials

You probably noticed we had one of the

Block’s ‘Color’ instructions refer to its colour

property. This means that we can change

the property any time to update the colour

of the block, or in this case to give each block

a random colour (Fig. 04).

Now that each of our widgets has a graphical

representation, let’s now tell our Game where to

place them, so that we can start up the app and

actually see something there.

class Game(FloatLayout):

 def setup_blocks(self):

 for y_jump in range(5):

 for x_jump in range(10):

 block = Block(pos_hint={

 'x': 0.05 + 0.09*x_jump,

 'y': 0.05 + 0.09*y_jump})

 self.blocks.append(block)

 self.add_widget(block)

class BreakoutApp(App):

 def build(self):

 g = Game()

 g.setup_blocks()

 return g

Here we create the widgets we want then use

add_widget to add them to the graphics tree. Our

root widget on the screen is an instance of Game

and every block is added to that to be displayed.

The only new thing is that every Block

has been given a pos_hint. All widgets have

this special property, and it is used by

FloatLayouts like our Game to set their

position proportionate to the layout.

The dictionary is able to handle

various parameters, but in this

case ‘x’and ‘y’ give x and y Block

position as a relative fraction of the

parent width and height.

You can run the app now, and this time

it will add 50 blocks to the Game before

displaying it on the screen. Each should have

one of the three possible random colours

and be positioned in a grid, but you'll now

notice their sizes haven't been manually set

so they all overlap. We can fix this by setting

their size_hint properties – and let's also

take this opportunity to do the same for the

other widgets as well (Fig. 05).

This takes care of keeping all our game

widgets positioned and sized in proportion

to the Game containing them. Notice that

the Player and Ball use references to the

properties we set earlier, so we'll be able to

move them by just setting these properties

and letting kv language automatically update

their positions.

The Ball also uses an extra property to

remain square rather than rectangular, just

because the alternative would likely look a

little bit odd.

We've now almost finished the basic

graphics of our app! All that remains is to add

a Ball and a Player widget to the Game.

<Game>:

 ball: the_ball

 player: the_player

 Ball:

 id: the_ball

 Player:

 id: the_player

You can run the game again now, and should

be able to see all the graphics working

properly. Nothing moves yet, but thanks to

the FloatLayout everything should remain in

proportion if you resize the game/window.

Now we just have to add the game

mechanics. For a game like this you usually

want to run some update function many times

per second, updating the widget positions and

carrying out game logic – in this case collisions

with the ball (Fig. 06).

The Clock can schedule any function at

any time, either once or repeatedly. A function

scheduled at interval automatically receives the

time since its last call (dt here), which we've passed

through to the ball and player via the references

we created in kv language. It's good practice to

scale the update (eg ball distance moved) by this

dt, so things remain stable even if something

interrupts the clock and updates don't meet

the regular 1/60s you want.

At this point we have also added the first steps

toward handling keyboard input, by binding to

the kivy Window to call a method of the Player

every time a key is pressed. We can then finish

off the Player class by adding this key handler along

with touch/mouse input.

class Player(Widget):

 def on_touch_down(self, touch):

 self.direction = (

 'right' if touch.x > self.parent.

center_x else 'left')

 def on_touch_up(self, touch):

 self.direction = 'none'

 def on_key_down(self, keypress,

scancode, *args):

 if scancode == 275:

 self.direction = 'right'

 elif scancode == 276:

 self.direction = 'left'

 else:

 self.direction = 'none'

 def on_key_up(self, *args):

 self.direction = 'none'

 def update(self, dt):

 dir_dict = {'right': 1, 'left': -1,

Running the app shows our coloured blocks on the
screen… but they all overlap! We can fix that easily

The Python Book 59

Python essentials

'none': 0}

 self.position += (0.5 * dt * dir_

dict[self.direction])

These on_touch_ functions are Kivy's general

method for interacting with touch or mouse input,

they are automatically called when the input

is detected and you can do anything you like in

response to the touches you receive. In this case

we set the Player's direction property in response

to either keyboard and touch/mouse input, and

use this direction to move the Player when its

update method is called. We can also add the right

behaviour for the ball (Fig. 07).

This makes the ball bounce off every wall by

forcing its velocity to point back into the Game,

as well as bouncing from the player paddle –

but with an extra kick just to let the ball speed

change. It doesn't yet handle any interaction

with the blocks or any win/lose conditions,

but it does try to call Game.lose() if the

ball hits the bottom of the player's screen,

so let's now add in some game end code to handle

all of this (Fig. 08). And then add the code in Fig. 09

to your 'breakout.kv 'file.

This should fully handle the loss or win,

opening a pop-up with an appropriate message

and providing a button to try again. Finally, we

have to handle destroying blocks when the

ball hits them (Fig. 10).

This fully covers these last conditions, checking

collision via Kivy's built-in collide_widget method

that compares their bounding boxes (pos and

size). The bounce direction will depend on how far

the ball has penetrated, as this will tell us how it

first collided with the Block.

So there we have it, you can run the code to

play your simple Breakout game. Obviously it's

very simple right now, but hopefully you can

see lots of different ways to add whatever extra

behaviour you like – you could add different

types of blocks and power-ups, a lives system,

more sophisticated paddle/ball interaction, or

even build a full game interface with a menu and

settings screen as well.

We’re just going to finish showing one cool thing

that you can already do – compile your game for

Android! Generally speaking you can take any Kivy

app and turn it straight into an Android APK that

will run on any of your Android devices. You can

even access the normal Android API to access

hardware or OS features such as vibration,

sensors or native notifications.

We'll build for Android using the Buildozer tool,

and a Kivy sister project wrapping other build

tools to create packages on different systems.

This takes care of downloading and running the

Android build tools (SDK, NDK, etc) and Kivy's

Python-for-Android tools that create the APK.

import random

 class Block(Widget):

 def __init__(self, **kwargs):

 super(Block, self).__init__(**kwargs)

 self.colour = random.choice([

 (0.78, 0.28, 0),)0.28, 0.63, 0.28),)0.25, 0.28, 0.78)])

Fig. 04

 from kivy.clock import Clock

 from kivy.core.window import Window

 from kivy.utils import platform

 class Game(FloatLayout):

 def update(self, dt):

 self.ball.update(dt) # Not defined yet

 self.player.update(dt) # Not defined yet

 def start(self, *args):

 Clock.schedule_interval(self.update, 1./60.)

 def stop(self):

 Clock.unschedule(self.update)

 def reset(self):

 for block in self.blocks:

 self.remove_widget(block)

 self.blocks = []

 self.setup_blocks()

 self.ball.velocity = [random.random(), 0.5]

 self.player.position = 0.5

 class BreakoutApp(App):

 def build(self):

 g = Game()

 if platform() != 'android':

 Window.bind(on_key_down=g.player.on_key_down)

 Window.bind(on_key_up=g.player.on_key_up)

 g.reset()

 Clock.schedule_once(g.start, 0)

 return g

Fig. 06

<Block>:

 size_hint: 0.09, 0.05

 # ... canvas part

<Player>:

 size_hint: 0.1, 0.025

 pos_hint: {'x': self.position, 'y': 0.1}

 # ... canvas part

<Ball>:

 pos_hint: {'x': self.pos_hint_x, 'y': self.pos_hint_y}

 size_hint: None, None

 proper_size:

 min(0.03*self.parent.height, 0.03*self.parent.width)

 size: self.proper_size, self.proper_size

 # ... canvas part

Fig. 05

60 The Python Book

Python essentials

Here you will be needing some basic

dependencies, which can be installed with

ease just by using your distro's normal

repositories. The main ones to use are

OpenJDK7, zlib, an up-to-date Cython,

and Git. If you are using a 64-bit distro you will also

be in need of 32-bit compatibility libraries for zlib,

libstdc++, as well as libgcc. You can then go on and

download and install Buildozer:

git clone git://github.com/kivy/buildozer

cd buildozer

sudo python2.7 setup.py install

When you’re done with that part you

can then go on and navigate to your

Kivy app, and you’ll have to name the main code file

‘main.py’, this is the access point that the Android

APK will expect. Then:

buildozer init

This creates a ‘buildozer.spec’ file, a settings file

containing all the information that Buildozer needs

to create your APK, from the name and version to

the specific Android build options. We suggest that

you check through the whole file just to see what's

available but most of the default settings will be

fine, the only thing we suggest changing is (Fig. 11).

There are various other options you will often

want to set, but none are really all that vital right

now, so you’re able to immediately tell Buildozer to

build your APK and get going!

buildozer android debug

This will take some time, so be patient and it will

work out fine. When you first run it, it will download

both the Android SDK and NDK, which are large

(at least hundreds of megabytes) but vital to the

build. It will also take time to build these and to

compile the Python components of your APK. A lot

of this only needs to be done once, as future builds

will take a couple of minutes if you change the

buildozer.spec, or just a few seconds if you've only

changed your code.

The APK produced is a debug APK, and you can

install and use it but there are extra steps if you

want to fully digitally sign it so that it can be posted

on the Play store. This isn't hard, and Buildozer

can do some of the work, but you can check the

documentation online for full details.

Assuming everything goes fine (it should!),

your Android APK will be in a newly created 'bin'

directory with the name ‘KivyBreakout-0.1-debug.

apk’. You can send it to your phone any way you

like (eg email), though you may need to enable

application installation from unknown sources in

your Settings before you can install it.

 class Ball(Widget)

 def update(self, dt):

 self.pos_hint_x += self.velocity[0] * dt

 self.pos_hint_y += self.velocity[1] * dt

 if self.right > self.parent.right: # Bounce from right

 self.velocity[0] = -1 * abs(self.velocity[0])

 if self.x < self.parent.x: # Bounce from left

 self.velocity[0] = abs(self.velocity[0])

 if self.top > self.parent.top: # Bounce from top

 self.velocity[1] = -1 * abs(self.velocity[1])

 if self.y < self.parent.y: # Lose at bottom

 self.parent.lose() # Not implemented yet

 self.bounce_from_player(self.parent.player)

 def bounce_from_player(self, player):

 if self.collide_widget(player):

 self.velocity[1] = abs(self.velocity[1])

 self.velocity[0] += (

 0.1 * ((self.center_x - player.center_x) /

 player.width))

Fig. 07

class GameEndPopup(ModalView):

 message = StringProperty()

 game = ObjectProperty()

 class Game(Widget):

 def lose(self):

 self.stop()

 GameEndPopup(message='[color=#ff0000]You lose![/color]',

 game=self).open()

 def win(self): # Not called yet, but we'll need it later

 self.stop()

 GameEndPopup(message='[color=#00ff00]You win![/color]',

 game=self).open()

Fig. 08

 <GameEndPopup>:

 size_hint: 0.8, 0.8

 auto_dismiss: False # Don't close if player clicks outside

 BoxLayout:

 orientation: 'vertical'

 Label:

 text: root.message

 font_size: 60

 markup: True

 halign: 'center'

 Button:

 size_hint_y: None

 height: sp(80)

 text: 'Play again?'

 font_size: 60

 on_release: root.game.start(); root.dismiss()

Fig. 09

 self.parent.do_layout()

 self.parent.destroy_blocks(self)

class Game(FloatLayout):

 def destroy_blocks(self, ball):

 for i, block in enumerate(self.blocks):

 if ball.collide_widget(block):

 y_overlap = (

 ball.top - block.y if ball.velocity[1] > 0

 else block.top - ball.y) / block.size_hint_y

 x_overlap = (

 ball.right - block.x if ball.velocity[0] > 0

 else block.right - ball.x) / block.size_hint_x

 if x_overlap < y_overlap:

 ball.velocity[0] *= -1

 else:

 ball.velocity[1] *= -1

 self.remove_widget(block)

 self.blocks.pop(i)

 if len(self.blocks) == 0:

 self.win()

 return # Only remove at most 1 block per frame

Fig. 10

title = Kivy Breakout # Displayed in your app drawer

package.name = breakout # Just a unique identifying string,

 # along with the package.domain

fullscreen = 0 # This will mean the navbar is not covered

log_level = 2 # Not vital, but this will print a lot more debug

 # information and may be useful if something

 # goes wrong

Fig. 11

Putting your APK
on the Play Store
Find out how to digitally sign a release
APK and upload it to an app store of
your choice

1
Build and sign a release APK

First we have to begin by creating a personal

digital key, then using it to digitally sign a

special release version of the APK. Run these

commands, and follow the instructions they then

give you.

Create your personal digital key

You can choose your own

keystore name, alias, and passwords.

$ keytool -genkey -v -keystore test-

release-key.keystore \

 -alias test-alias -keyalg RSA

-keysize 2048 -validity 10000

Compile your app in release mode

$ buildozer android release

Sign the APK with your new key

$ jarsigner -verbose -sigalg

SHA1withRSA -digestalg SHA1 \

 -keystore ./test-release-key.keystore \

 ./bin/KivyBreakout-0.1-release-

unsigned.apk test-alias

Align the APK zip file

$ ~/.buildozer/android/platform/android-

sdk-21/tools/zipalign -v 4 \

 ./bin/KivyBreakout-0.1-release-

unsigned.apk \

 ./bin/KivyBreakout-0.1-release.apk

3
Upload your app to the store

Click 'Add new application'

to submit your app the store,

including uploading your APK and

adding description text. When

everything is ready, simply click

Publish, and it should take just a few

hours for your app to go live!

2
Sign up as a Google

Play Developer

Visit https://play.google.com/

apps/publish/signup, and follow

the instructions. You'll need to pay a

one-off $25 charge, but then you can

upload as many apps as you like.

Python essentials

Your game should run on any modern Android device… you
can even build a release version and publish to an app store!

62 The Python Book

Python essentials

Python provides quick and easy way to build
applications, including web apps. Read on to find out
how to use it to build a feature-complete web app

Making web apps with Python

02 Configuring the Django project
settings

Before we start working on the application,

let’s configure the Django project as per our

requirements.

Edit ludIssueTracker/settings.py as follows

(only parts requiring modification are shown):

Database Settings: We will be using SQLite3

as our database system.

NOTE: Red text indicates new code or

updated code.

‘default’: {

 ‘ENGINE’: ‘django.

db.backends.sqlite3’,

 ‘NAME’: ‘ludsite.db3,

Path settings
Django requires an absolute path for directory

settings. But we want to be able to pass in the

relative directory references. In order to do that

we will add a helper Python function. Insert the

following code at the top of the settings.py file:

import os

def getabspath(*x):

 return os.path.join(os.path.

abspath(os.path.dirname(__file__)),

*x)

Now you can update the path options:

@code

TEMPLATE_DIRS = (

 getabspath(‘templates’)

)

MEDIA_ROOT = getabspath(‘media’)

Python is known for its simplicity and

capabilities. At this point it is so advanced

that there is nothing you cannot do with

Python, and conquering the web is one of the

possibilities. When you are using Python for web

development you get access to a huge catalogue

of modules and community support – make the

most of them.

Web development in Python can be done

in many different ways, right from using the

plain old CGI modules to utilising fully groomed

web frameworks. Using the latter is the most

popular method of building web applications

with Python, since it allows you to build

applications without worrying about all that

low-level implementation stuff. There are many

web frameworks available for Python, such

as Django, TurboGears and Web2Py. For this

tutorial we will be using our current preferred

option, Django.

01 Creating the Django Project
magazine issue tracker

The django-admin.py file is used to create new

Django projects. Let’s create one for our issue

tracker project…

In Django, a project represents the site and

its settings. An application, on the other hand,

represents a specific feature of the site, like

blogging or tagging. The benefit of this approach

is that your Django application becomes

portable and can be integrated with other

Django sites with very little effort.

$ django-admin.py startproject

ludIssueTracker

A project directory will be created. This will also

act as the root of your development web server

that comes with Django. Under the project

directory you will find the following items…

manage.py: Python script to work with your

project.

ludIssueTracker: A python package (a directory

with __init__.py file) for your project. This

package contains your project’s settings and

configuration data.

ludIssueTracker/settings.py: This file contains

all the configuration options for the project.

ludIssueTracker/urls.py: This file contains

various URL mappings.

wsgi.py: An entry-point for WSGI-compatible

web servers to serve your project. Only useful

when you are deploying your project. For this

tutorial we won’t be needing it.

Resources
Python 2.7:
https://www.python.org/download/releases/2.7/

Django version 1.4:
https://www.djangoproject.com/

The Python Book 63

Python essentials

03 Creating ludissues app
In this step we will create the primary

app for our site, called ludissues. To do that, we

will use the manage.py script:

$ python manage.py startapp

ludissues

We will need to enable this app in the config file

as well:

INSTALLED_APPS = (

 'django.contrib.admin',

 ‘ludissues’,

)

04 Creating the data model
This is the part where we define the

data model for our app. Please see the inline

comments to understand what is happening.

From django.db import models:

We are importing the user

authentication module so that we use

the built

in authentication model in this

app

from django.contrib.auth.models

import User

We would also create an admin

interface for our app

from django.contrib import admin

A Tuple to hold the multi choice

char fields.

First represents the field name

the second one repersents the

display name

ISSUE_STATUS_CHOICES = (

MEDIA_URL = ‘/media/’

Now we will need to enable the admin interface

for our Django site. This is a neat feature of Django

which allows the automatic creation of an admin

interface of the site based on the data model. The

admin interface can be used to add and manage

content for a Django site.

Uncomment the following line:

INSTALLED_APPS = (

 ‘django.contrib.auth’,

 ‘django.contrib.contenttypes’,

 ‘django.contrib.sessions’,

 ‘django.contrib.sites’,

 ‘django.contrib.messages’,

 ‘django.contrib.staticfiles’,

 ‘django.contrib.admin’,

 # ‘django.contrib.admindocs’,

)

 ('new', 'New'),

 ('accepted','Accepted'),

 ('reviewed','Reviewed'),

 ('started','Started'),

 ('closed','Closed'),

)

class Issue(models.Model):

 # owner will be a foreign key

to the User model which is already

built-in Django

 owner = models.ForeignKey(User,n

ull=True,blank=True)

 # multichoice with defaulting to

"new"

 status = models.CharField(max_

length=25,choices=ISSUE_STATUS_

CHOICES,default='new')

 summary = models.TextField()

 # date time field which will be

set to the date time when the record

is created

 opened_on = models.

DateTimeField('date opened', auto_

now_add=True)

 modified_on = models.

DateTimeField('date modified', auto_

now=True)

 def name(self):

 return self.summary.

split('\n',1)[0]

Admin front end for the app. We

are also configuring some of the

built in attributes for the admin

interface on

how to display the list, how it

will be sorted

what are the search fields etc.

class IssueAdmin(admin.ModelAdmin):

 date_hierarchy = 'opened_on'

 list_filter = ('status','owner')

 list_display = ('id','name','sta

tus','owner','modified_on')

 search_fields =

['description','status']

register our site with the Django

admin interface

admin.site.

register(Issue,IssueAdmin)

To have the created data model reflected in the

database, run the following command:

$ python manage.py syncdb

You’ll be also asked to create a superuser for it:

You just installed Django's auth

system, which means you don't have

any superusers defined.

Would you like to create one now?

(yes/no): yes

05 Enabling the admin site
The admin site is already enabled,

but we need to enable it in the urls.py file – this

contains the regex-based URL mapping from

model to view. Update the urls.py file as follows:

from django.conf.urls import

patterns, include, url

from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns(‘’,

 url(r’^admin/’, include(admin.

site.urls)),

)

06 Starting the Django web server
Django includes a built-in web server

which is very handy to debug and test Django

applications. Let’s start it to see how our admin

interface works…

To start the web server:

$ python manage.py runserver

If you do not have any errors in your code, the

server should be available on port 8000. To

launch the admin interface, navigate your

browser to http://localhost:8000/admin.

You will be asked to log in here. Enter the

username and password that you created while

syncing the database.

After logging in, you will notice that all the apps

installed in your project are available here. We are

only interested in the Auth and LudIssues app.

You can click the +Add to add a record. Click

the Add button next to Users and add a few

users to the site.

Once you have the users inside the system,

you can now add a few issues to the system.

 Admin login screen

64 The Python Book

Python essentials

07 Creating the public user interface
for ludissues

At this point, the admin interface is working. But

we need a way to display the data that we have

added using the admin interface. But there is no

public interface. Let’s create it now.

We will have to begin by editing the main

urls.py (ludIssueTracker/urls.py).

urlpatterns = patterns(‘’,

 (r’^’,include(‘ludissues.

urls’)),

 (r’^admin/’, include(admin.site.

urls)),

)

This ensures that all the requests will be

processed by ludissues.urls first.

08 Creating ludissues.url
Create a urls.py file in the app directory

(ludissues/urls.py) with the following content:

from django.conf.urls import

patterns, include, url

use ludissues model

from models import ludissues

dictionary with all the objects in

ludissues

info = {

 ‘queryset’:ludissues.objects.

all(),

}

To save us writing lots of python

code

we are using the list_detail

generic view

#list detail is the name of view we

are using

urlpatterns = patterns(‘django.

views.generic.list_detail’,

#issue-list and issue-detail are the

09 Setting up template and media
directories

In this step we will create the template and

media directories. We have already mentioned

the template directory as

TEMPLATE_DIRS = (

 getabspath(‘templates’)

)

Which translates to ludIssueTracker/

ludIssueTracker/templates/. Since we will be

accessing the templates from the ludissues

app, the complete directory path would be

ludIssueTracker/ludIssueTracker/templates/

ludissues. Create these folders in your

project folder.

Also, create the directory ludIssueTracker/

ludIssueTracker/media/ for holding the CSS

file. Copy the style.css file from the resources

directory of the code folder.

To serve files from this folder we need to make

it available publicly. To do that, open settings.py

and add the following lines in ludIssueTracker/

ludIssueTracker/urls.py:

from django.conf.urls import

patterns, include, url

from django.conf import settings

Uncomment the next two lines to

enable the admin:

from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns(‘’,

 (r’^’,include(‘ludissues.

urls’)),

 (r’^admin/’, include(admin.site.

 Admin homepage

 The ‘Add issue’ menu

 The list view for issues

Click the Add button next to Issues. Here you

will notice that you can enter Owner, Status

and Summary for the issue. But what about

the opened_on and modified_on field that

we defined while modelling the app? They

are not here because they are not supposed

to be entered by the user. opened_on will

automatically set to the date time it is created

and modified_on will automatically set to the

date time on which an issue is modified.

Another cool thing is that the owner field is

automatically populated with all the users inside

the site.

We have defined our list view to show ID,

name, status, owner and ‘modified on’ in the

model. You can get to this view by navigating to

http://localhost:8000/admin/ludissues/issue/.

template names

#which will be looked in the default

template

#directories

 url(r’^$’,’object_

list’,info,name=’issue-list’),

 url(r’^(?P<object_

id>\d+)/$’,’object_

detail’,info,name=’issue-detail’),

)

To display an issue list and details, we are using

a Django feature called generic views. In this

case we are using views called list and details.

This allow us to create an issue list view and

issue detail view. These views are then applied

using the issue_list.html and issue_detail.html

template. In the following steps we will create

the template files.

The Python Book 65

Python essentials

10 Creating the template files
Templates will be loaded from the

ludIssueTracker/ludIssueTracker/templates

directory. In Django, we start with the

ludIssueTracker/ludIssueTracker/templates/

base.html template. Think of it as the master

template which can be inherited by slave ones.

ludIssueTracker/ludIssueTracker/templates/

base.html

<!DOCTYPE html PUBLIC “-//W3C//DTD

XHTML Strict//EN”

“ HYPERLINK “http://www.w3.org/

TR/xhtml1/DTD/xhtml1-strict.dtd”

http://www.w3.org/TR/xhtml1/DTD/

xhtml1-strict.dtd”>

<html>

 <head>

 <title>{% block title %}{%

endblock %}LUD Issues</title>

 <link rel=”stylesheet”

href=”{{ MEDIA_URL }}style.css”

type=”text/css” media=”screen” />

 </head>

 <body>

 <div id=”hd”>

 <h1>LUD Issue

Tracker</h1>

 </div>

 <div id=”mn”>

 <a

href=”{% url issue-list %}”

class=”sel”>View Issues

 Admin Site

 </div>

 <div id=”bd”>

 {% block content %}

{% endblock %}

 </div>

 </body>

</html>

{{ variablename }} represents a Django variable.

(% block title %} represents blocks. Contents

of a block are evaluated by Django and are

displayed. These blocks can be replaced by the

child templates.

 The magazine Issue Tracker in action – list of issues

urls)),

 (r’^media/

(?P<path>.*)$’,’django.views.static.

serve’,

 {‘document_root’:settings.

MEDIA_ROOT})

)

Now we need to create the issue_list.html

template. This template is responsible for

displaying all the issues available in the system.

ludIssueTracker/ludIssueTracker/templates/

ludissues/issue_list.html

{% extends ‘base.html’ %}

{% block title %}View Issues - {%

endblock %}

{% block content %}

<table cellspacing=”0”

class=”column-options”>

<tr>

<th>Issue</th>

<th>Description</th>

<th>Status</th>

<th>Owner</th>

</tr>

{% for issue in object_list %}

<tr>

<td><a href=”{% url issue-

detail issue.id %}”>{{ issue.id }}</

a></td>

<td><a href=”{% url issue-

detail issue.id %}”>{{ issue.name

}}</td>

<td>{{ issue.status }}</td>

<td>{{ issue.owner}}</td>

</tr>

{% endfor %}

</table>

{% endblock %}

Here we are inheriting the base.html file that we

created earlier. {% for issue in object_list %}

runs on the object sent by the urls.py. Then we

are iterating on the object_list for issue.id and

issue.name.

Now we will create issue_detail.html. This

template is responsible for displaying the detail

view of a case.

ludIssueTracker/ludIssueTracker/templates/

ludissues/issue_detail.html

{% extends ‘base.html’ %}

{% block title %}Issue #{{ object.id

}} - {% endblock %}

{% block content %}

<h2>Issue #{{ object.id }} {{

object.status }}</h2>

<div class=”issue”>

 <h2>Information</h2>

 <div class=”date”>

 <p class=”cr”>Opened {{

object.opened_on }} ago</p>

 <p class=”up”>Last modified

{{ object.modified_on }} ago</p>

 </div>

 <div class=”clear”> </div>

 <div class=”block w49 right”>

 <p class=”ass title”>Owner</

p>

 <p class=”ass”>{{ object.

owner }}</p>

 </div>

 <div class=”clear”> </div>

 <div class=”block”>

 <p class=”des

title”>Summary</p>

 <p class=”des”>{{ object.

summary }}</p>

 </div>

</div>

{% endblock %}

And that’s everything! The issue tracker app is

now complete and ready to use. You can now

point your browser at localhost:8000 to start

using the app.

66 The Python Book

Python essentials

Python is a programming language that lets you work more quickly and
integrate your systems more effectively. Today, Python is one of the most
popular programming languages in the open source space. Look around
and you will find it running everywhere, from various configuration tools
to XML parsing. Here is the collection of 50 gems to make your Python
experience worthwhile…

Basics
1. Running Python scripts
On most of the UNIX systems, you can run

Python scripts from the command line.

$ python mypyprog.py

2. Running Python
programs from
Python interpreter

The Python interactive interpreter makes it

easy to try your first steps in programming and

using all Python commands. You just issue each

command at the command prompt (>>>), one by

one, and the answer is immediate.

Python interpreter can be started by issuing

the command:

$ python

kunal@ubuntu:~$ python

Python 2.6.2 (release26-maint, Apr

19 2009, 01:56:41)

[GCC 4.3.3] on linux2

Type “help”, “copyright”, “credits”

or “license” for more information.

>>> <type commands here>

In this article, all the code starting at the

>>> symbol is meant to be given at the

Python prompt.

It is also important to remember that Python

takes tabs very seriously – so if you are

receiving any error that mentions tabs, correct

the tab spacing.

3. Dynamic typing
In Java, C++, and other statically typed

languages, you must specify the data type of

the function return value and each function

argument. On the other hand, Python is

a dynamically typed language. In Python

you never have to explicitly specify the data

type of anything. Based on what value you

assign, Python will keep track of the data

type internally.

50
Pyth

on

tip
s

The Python Book 67

Python essentials

x,y = my_function.minmax(25, 6.3)

9. Module defined names
Example:

The built-in function ‘dir()’ can be used to find

out which names a module defines. It returns a

sorted list of strings.

>>> import time

>>> dir(time)

[‘__doc__’, ‘__file__’, ‘__name__’,

‘__package__’, ‘accept2dyear’,

‘altzone’, ‘asctime’, ‘clock’,

‘ctime’, ‘daylight’, ‘gmtime’,

‘localtime’, ‘mktime’, ‘sleep’,

‘strftime’, ‘strptime’, ‘struct_

time’, ‘time’, ‘timezone’, ‘tzname’,

‘tzset’]

10. Module internal
documentation

You can see the internal documentation (if

available) of a module name by looking at

.__doc__.

Example:

>>> import time

>>> print time.clock.__doc__

clock() -> floating point number

This example returns the CPU time or real time

since the start of the process or since the first

call to clock(). This has as much precision as the

system records.

11. Passing arguments
to a Python script

Python lets you access whatever you have passed

to a script while calling it. The ‘command line’

content is stored in the sys.argv list.

import sys

print sys.argv

12. Loading modules or
commands at startup

You can load predefined modules or

commands at the startup of any Python

script by using the environment variable

$PYTHONSTARTUP. You can set environment

variable $PYTHONSTARTUP to a file which

contains the instructions load necessary

modules or commands .

13. Converting a string
to date object

You can use the function ‘DateTime’ to convert a

string to a date object.

Example:

from DateTime import DateTime

dateobj = DateTime(string)

14. Converting a list
to a string for display

You can convert a list to string in either of the

following ways.

1st method:

>>> mylist = [‘spam’, ‘ham’, ‘eggs’]

>>> print ‘, ‘.join(mylist)

spam, ham, eggs

2nd method:

>>> print ‘\n’.join(mylist)

spam

ham

eggs

15. Tab completion
in Python interpreter

You can achieve auto completion inside Python

interpreter by adding these lines to your .pythonrc

file (or your file for Python to read on startup):

import rlcompleter, readline

readline.parse_and_bind(‘tab: complete’)

This will make Python complete partially typed

function, method and variable names when you

press the Tab key.

16. Python
documentation tool

You can pop up a graphical interface for searching

the Python documentation using the command:

$ pydoc -g

You will need python-tk package for this to work.

17. Python
documentation server

You can start an HTTP server on the given port on

the local machine. This will give you a nice-looking

access to all Python documentation, including

third-party module documentation.

$ pydoc -p <portNumber>

18. Python development
software

There are plenty of tools to help with Python

development. Here are a few important ones:

IDLE: The Python built-in IDE, with

autocompletion, function signature popup help,

and file editing.

IPython: Another enhanced Python shell with

tab-completion and other features.

Eric3: A GUI Python IDE with autocompletion,

class browser, built-in shell and debugger.

WingIDE: Commercial Python IDE with

free licence available to open-source

developers everywhere.

4. Python statements
Python uses carriage returns to separate

statements, and a colon and indentation to

separate code blocks. Most of the compiled

programming languages, such as C and C++, use

semicolons to separate statements and curly

brackets to separate code blocks.

5. == and = operators
Python uses ‘==’ for comparison and ‘=’ for

assignment. Python does not support inline

assignment, so there’s no chance of accidentally

assigning the value when you actually want to

compare it.

6. Concatenating strings
You can use ‘+’ to concatenate strings.

>>> print ‘kun’+’al’

kunal

7. The __init__ method
The __init__ method is run as soon as

an object of a class is instantiated. The

method is useful to do any initialization

you want to do with your object. The

__init__ method is analogous to a constructor in

C++, C# or Java.

Example:

class Person:

 def __init__(self, name):

 self.name = name

 def sayHi(self):

 print ‘Hello, my name is’, self.name

p = Person(‘Kunal’)

p.sayHi()

Output:

[~/src/python $:] python initmethod.py

Hello, my name is Kunal

8. Modules
To keep your programs manageable as they

grow in size, you may want to break them up into

several files. Python allows you to put multiple

function definitions into a file and use them as a

module that can be imported into other scripts and

programs. These files must have a .py extension.

Example:

file my_function.py

def minmax(a,b):

 if a <= b:

 min, max = a, b

 else:

 min, max = b, a

 return min, max

Module Usage

import my_function

68 The Python Book

Python essentials

19. Executing functions
at the time of Python
interpreter termination
You can use ‘atexit’ module to execute functions

at the time of Python interpreter termination.

Example:

def sum():

 print(4+5)

def message():

 print(“Executing Now”)

import atexit

atexit.register(sum)

atexit.register(message)

Output:

Executing Now

9

20. Converting from integer
to binary, hexadecimal
and octal

Python provides easy-to-use functions – bin(),

hex() and oct() – to convert from integer to binary,

decimal and octal format respectively.

Example:

>>> bin(24)

‘0b11000’

>>> hex(24)

‘0x18’

>>> oct(24)

‘030’

21. Converting any
charset to UTF-8

You can use the following function to convert any

charset to UTF-8.

data.decode(“input_charset_here”).

encode(‘utf-8’)

22. Removing
duplicates from lists

If you want to remove duplicates from a list,

just put every element into a dict as a key (for

example with ‘none’ as value) and then check

dict.keys().

from operator import setitem

def distinct(l):

 d = {}

 map(setitem, (d,)*len(l), l, [])

 return d.keys()

23. Do-while loops
Since Python has no do-while or do-until loop

constructs (yet), you can use the following

method to achieve similar results:

while True:

 do_something()

 if condition():

 break

24. Detecting system
platform

To execute platform-specific functions, it is very

useful to detect the platform on which the Python

interpreter is running. You can use ‘sys.platform’

to find out the current platform.

Example:

On Ubuntu Linux

>>> import sys

>>> sys.platform

‘linux2’

On Mac OS X Snow Leopard

>>> import sys

>>> sys.platform

‘darwin’

25. Disabling and enabling
garbage collection

Sometimes you may want to enable or disable

the garbage collector at runtime. You can

use the ‘gc’ module to enable or disable the

garbage collection.

Example:

>>> import gc

>>> gc.enable

<built-in function enable>

>>> gc.disable

<built-in function disable>

26. Using C-based modules
for better performance

Many Python modules ship with counterpart

C modules. Using these C modules will

give a significant performance boost in

complex applications.

Example:

cPickle instead of Pickle, cStringIO

instead of StringIO .

27. Calculating maximum,
minimum and sum
out of any list or iterable

You can use the following built-in functions.

max: Returns the largest element in the list.

min: Returns the smallest element in the list.

sum: This function returns the sum of all

elements in the list. It accepts an optional

second argument: the value to start with when

summing (defaults to 0).

28. Representing
fractional numbers

Fraction instance can be created using the

following constructor:

Fraction([numerator

[,denominator]])

29. Performing
math operations

The ‘math’ module provides a plethora of

mathematical functions. These work on integer

and float numbers, except complex numbers.

For complex numbers, a separate module is

used, called ‘cmath’.

For example:

math.acos(x): Return arc cosine of

x.

math.cos(x): Returns cosine of x.

math.factorial(x) : Returns x

factorial.

30. Working with arrays
The ‘array’ module provides an efficient way to

use arrays in your programs. The ‘array’ module

defines the following type:

array(typecode [, initializer])

Once you have created an array object, say

myarray, you can apply a bunch of methods to it.

Here are a few important ones:

myarray.count(x): Returns the

number of occurrences of x in a.

myarray.extend(x): Appends x at the

end of the array.

myarray.reverse(): Reverse the

order of the array.

31. Sorting items
The ‘bisect’ module makes it very easy to keep

lists in any possible order. You can use the

following functions to order lists.

bisect.insort(list, item [, low [,

high]])

Inserts item into list in sorted order. If item is

already in the list, the new entry is inserted to

the right of any existing entries.

bisect.insort_left(list, item [, low

[, high]])

Inserts item into list in sorted order. If item is

already in the list, the new entry is inserted to

the left of any existing entries.

Built-in
modules

The Python Book 69

Python essentials

32. Using regular
expression-based
search

The ‘re’ module makes it very easy to use regxp-

based searches. You can use the function

‘re.search()’ with a regexp-based expression.

Check out the example below.

Example:

>>> import re

>>> s = “Kunal is a bad boy”

>>> if re.search(“K”, s): print

“Match!” # char literal

...

Match!

>>> if re.search(“[@A-Z]”, s): print

“Match!” # char class

... # match either at-sign or capital

letter

Match!

>>> if re.search(“\d”, s): print

“Match!” # digits class

...

33. Working with bzip2 (.bz2)
compression format

You can use the module ‘bz2’ to read and write

data using the bzip2 compression algorithm.

bz2.compress() : For bz2

compression

bz2.decompress() : For bz2

decompression

Example:

File: bz2-example.py

import bz2

MESSAGE = “Kunal is a bad boy”

compressed_message = bz2.

compress(MESSAGE)

decompressed_message = bz2.

decompress(compressed_message)

print “original:”, repr(MESSAGE)

print “compressed message:”,

repr(compressed_message)

print “decompressed message:”,

repr(decompressed_message)

Output:

[~/src/python $:] python bz2-

example.py

original: ‘Kunal is a bad boy’

compressed message: ‘BZh91AY&SY\xc4\

x0fG\x98\x00\x00\x02\x15\x80@\x00\

x00\x084%\x8a \x00”\x00\x0c\x84\r\

x03C\xa2\xb0\xd6s\xa5\xb3\x19\x00\

xf8\xbb\x92)\xc2\x84\x86 z<\xc0’

decompressed message: ‘Kunal is a

bad boy’

34. Using SQLite database
with Python

SQLite is fast becoming a very popular embedded

database because of its zero configuration

needed, and superior levels of performance. You

can use the module ‘sqlite3’ in order to work with

SQLite databases.

Example:

>>> import sqlite3

>>> connection = sqlite.connect(‘test.

db’)

>>> curs = connection.cursor()

>>> curs.execute(‘’’create table item

... (id integer primary key, itemno

text unique,

... scancode text, descr text, price

real)’’’)

<sqlite3.Cursor object at 0x1004a2b30>

35. Working with zip files
You can use the module ‘zipfile’ to work with

zip files.

zipfile.ZipFile(filename [, mode [,

compression [,allowZip64]]])

Open a zip file, where the file can be either a path

to a file (a string) or a file-like object.

zipfile.close()¶

Close the archive file. You must call ‘close()’ before

exiting your program or essential records will not

be written.

zipfile.extract(member[, path[,

pwd]])

Extract a member from the archive to the current

working directory; ‘member’ must be its full

name (or a zipinfo object). Its file information

is extracted as accurately as possible. ‘path’

specifies a different directory to extract to.

‘member’ can be a filename or a zipinfo object.

‘pwd’ is the password used for encrypted files.

36. Using UNIX-style
wildcards to search
for filenames

You can use the module ‘glob’ to find all the

pathnames matching a pattern according to the

rules used by the UNIX shell. *, ?, and character

ranges expressed with [] will be matched.

Example:

>>> import glob

>>> glob.glob(‘./[0-9].*’)

[‘./1.gif’, ‘./2.txt’]

>>> glob.glob(‘*.gif’)

[‘1.gif’, ‘card.gif’]

>>> glob.glob(‘?.gif’)

[‘1.gif’]

37. Performing basic file
operations (copy, delete
and rename)

You can use the module ‘shutil’ to perform basic

file operation at a high level. This module works

with your regular files and so will not work with

special files like named pipes, block devices, and

so on.

shutil.copy(src,dst)

Copies the file src to the file or directory dst.

shutil.copymode(src,dst)

Copies the file permissions from src to dst.

shutil.move(src,dst)

Moves a file or directory to dst.

shutil.copytree(src, dst, symlinks

[,ignore]])

Recursively copy an entire directory at src.

shutil.rmtree(path [, ignore_errors

[, onerror]])

Deletes an entire directory.

38. Executing UNIX
commands from Python

You can use module commands to execute UNIX

commands. This is not available in Python 3 –

instead you need to use the module ‘subprocess’.

Example:

>>> import commands

>>> commands.getoutput(‘ls’)

‘bz2-example.py\ntest.py’

39. Reading environment
variables

You can use the module ‘os’ to gather operating-

system-specific information:

Example:
>>> import os

>>> os.path <module ‘posixpath’

from ‘/usr/lib/python2.6/posixpath.

pyc’>>>> os.environ {‘LANG’: ‘en_

IN’, ‘TERM’: ‘xterm-color’, ‘SHELL’:

‘/bin/bash’, ‘LESSCLOSE’:

‘/usr/bin/lesspipe %s %s’,

‘XDG_SESSION_COOKIE’:

‘925c4644597c791c704656354adf56d6-

1257673132.347986-1177792325’,

‘SHLVL’: ‘1’, ‘SSH_TTY’: ‘/dev/

pts/2’, ‘PWD’: ‘/home/kunal’,

‘LESSOPEN’: ‘| /usr/bin

lesspipe

......}

>>> os.name

‘posix’

>>> os.linesep

‘\n’

70 The Python Book

Python essentials

40. Sending email
You can use the module ‘smtplib’ to send email

using an SMTP (Simple Mail Transfer Protocol)

client interface.

smtplib.SMTP([host [, port]])

Example (send an email using Google Mail

SMTP server):

import smtplib

Use your own to and from email

address

fromaddr = ‘kunaldeo@gmail.com’

toaddrs = ‘toemail@gmail.com’

msg = ‘I am a Python geek. Here is

the proof.!’

Credentials

Use your own Google Mail

credentials while running the

program

username = ‘kunaldeo@gmail.com’

password = ‘xxxxxxxx’

The actual mail send

server = smtplib.SMTP(‘smtp.gmail.

com:587’)

Google Mail uses secure

connection for SMTP connections

server.starttls()

server.login(username,password)

server.sendmail(fromaddr, toaddrs,

msg)

server.quit()

41. Accessing
FTP server

‘ftplib’ is a fully fledged client FTP module for

Python. To establish an FTP connection, you

can use the following function:

ftplib.FTP([host [, user [, passwd

[, acct [, timeout]]]]])

Example:

host = “ftp.redhat.com”

username = “anonymous”

password = “kunaldeo@gmail.com”

import ftplib

import urllib2

ftp_serv = ftplib.

FTP(host,username,password)

Download the file

u = urllib2.urlopen (“ftp://

ftp.redhat.com/pub/redhat/linux/

README”)

Print the file contents

print (u.read())

Output:

[~/src/python $:] python

ftpclient.py

Older versions of Red Hat Linux have been moved

to the following location: ftp://archive.download.

redhat.com/pub/redhat/linux/

42. Launching a webpage
with the default web
browser

The ‘webbrowser’ module provides a convenient

way to launch webpages using the default

web browser.

Example (launch google.co.uk with system’s

default web browser):

>>> import webbrowser

>>> webbrowser.open(‘http://google.

co.uk’)

True

43. Creating secure hashes
The ‘hashlib’ module supports a plethora of

secure hash algorithms including SHA1, SHA224,

SHA256, SHA384, SHA512 and MD5.

Example (create hex digest of the given text):

>>> import hashlib

sha1 Digest

>>> hashlib.sha1(“MI6 Classified

Information 007”).hexdigest()

‘e224b1543f229cc0cb935a1eb9593

18ba1b20c85’

sha224 Digest

>>> hashlib.sha224(“MI6 Classified

Information 007”).hexdigest()

‘3d01e2f741000b0224084482f905e9b7b97

7a59b480990ea8355e2c0’

sha256 Digest

>>> hashlib.sha256(“MI6 Classified

Information 007”).hexdigest()

‘2fdde5733f5d47b67 2fcb39725991c89

b2550707cbf4c6403e fdb33b1c19825e’

sha384 Digest

>>> hashlib.sha384(“MI6 Classified

Information 007”).hexdigest()

‘5c4914160f03dfbd19e14d3ec1e74bd8b99

dc192edc138aaf7682800982488daaf540be

9e0e50fc3d3a65c8b6353572d’

sha512 Digest

>>> hashlib.sha512(“MI6 Classified

Information 007”).hexdigest()

‘a704ac3dbef6e8234578482a31d5ad29d25

2c822d1f4973f49b850222edcc0a29bb89077

8aea807a0a48ee4ff8bb18566140667fbaf7

3a1dc1ff192febc713d2’

MD5 Digest

>>> hashlib.md5(“MI6 Classified

Information 007”).hexdigest()

‘8e2f1c52ac146f1a999a670c826f7126’

44. Seeding random
numbers

You can use the module ‘random’ to generate

a wide variety of random numbers. The most

used one is ‘random.seed([x])’. It initialises

the basic random number generator. If x is

omitted or None, current system time is used;

current system time is also used to initialise the

generator when the module is first imported.

45. Working with CSV
(comma-separated
values) files

CSV files are very popular for data exchange over

the web. Using the module ‘csv’, you can read and

write CSV files.

Example:

import csv

write stocks data as comma-

separated values

writer = csv.writer(open(‘stocks.

csv’, ‘wb’, buffering=0))

writer.writerows([

(‘GOOG’, ‘Google, Inc.’, 505.24, 0.47,

0.09),

(‘YHOO’, ‘Yahoo! Inc.’, 27.38, 0.33,

1.22),

(‘CNET’, ‘CNET Networks, Inc.’, 8.62,

-0.13, -1.49)

])

read stocks data, print status

messages

stocks = csv.reader(open(‘stocks.

csv’, ‘rb’))

status_labels = {-1: ‘down’, 0:

‘unchanged’, 1: ‘up’}

for ticker, name, price, change, pct

in stocks:

 status = status_

labels[cmp(float(change), 0.0)]

 print ‘%s is %s (%s%%)’ % (name,

status, pct)

46. Installing third-
party modules using
setuptools

‘setuptools’ is a Python package which lets you

download, build, install, upgrade and uninstall

packages very easily.

To use ‘setuptools’ you will need to install

from your distribution’s package manager.

After installation you can use the command

‘easy_install’ to perform Python package

management tasks.

The Python Book 71

Python essentials

Example (installing simplejson using

setuptools):

kunal@ubuntu:~$ sudo easy_install

simplejson

Searching for simplejson

Reading http://pypi.python.org/simple/

simplejson/

Reading http://undefined.org/

python/#simplejson

Best match: simplejson 2.0.9

Downloading http://pypi.python.

org/packages/source/s/simplejson/

simplejson-2.0.9.tar.gz#md5=af5e67a39c

a3408563411d357e6d5e47

Processing simplejson-2.0.9.tar.gz

Running simplejson-2.0.9/setup.py

-q bdist_egg --dist-dir /tmp/easy_

install-FiyfNL/simplejson-2.0.9/egg-

dist-tmp-3YwsGV

Adding simplejson 2.0.9 to easy-

install.pth file

Installed /usr/local/lib/python2.6/

dist-packages/simplejson-2.0.9-py2.6-

linux-i686.egg

Processing dependencies for simplejson

Finished processing dependencies for

simplejson

47. Logging to system log
You can use the module ‘syslog’ to write to system

log. ‘syslog’ acts as an interface to UNIX syslog

library routines.

Example:

import syslog

syslog.syslog(‘mygeekapp: started

logging’)

for a in [‘a’, ‘b’, ‘c’]:

 b = ‘mygeekapp: I found letter ‘+a

 syslog.syslog(b)

syslog.syslog(‘mygeekapp: the script

goes to sleep now, bye,bye!’)

Output:

$ python mylog.py

$ tail -f /var/log/messages

Nov 8 17:14:34 ubuntu -- MARK --

Nov 8 17:22:34 ubuntu python:

mygeekapp: started logging

Nov 8 17:22:34 ubuntu python:

mygeekapp: I found letter a

Nov 8 17:22:34 ubuntu python:

mygeekapp: I found letter b

Nov 8 17:22:34 ubuntu python:

mygeekapp: I found letter c

Nov 8 17:22:34 ubuntu python:

mygeekapp: the script goes to sleep

now, bye,bye!

48. Generating PDF
documents

‘ReportLab’ is a very popular module for PDF

generation from Python.

Perform the following steps to install ReportLab

$ wget http://www.reportlab.org/ftp/

ReportLab_2_3.tar.gz

$ tar xvfz ReportLab_2_3.tar.gz

$ cd ReportLab_2_3

$ sudo python setup.py install

For a successful installation, you should see a

similar message:

############SUMMARY INFO###########

###################################

#Attempting install of _rl_accel, sgmlop

& pyHnj

#extensions from ‘/home/kunal/python/

ReportLab_2_3/src/rl_addons/rl_accel’

###################################

#Attempting install of _renderPM

#extensions from ‘/home/kunal/python/

ReportLab_2_3/src/rl_addons/renderPM’

installing with freetype version 21

###################################

Example:

>>> from reportlab.pdfgen.canvas import

Canvas

Select the canvas of letter page size

>>> from reportlab.lib.pagesizes import

letter

>>> pdf = Canvas(“bond.pdf”, pagesize =

letter)

import units

>>> from reportlab.lib.units import cm,

mm, inch, pica

>>> pdf.setFont(“Courier”, 60)

>>> pdf.setFillColorRGB(1, 0, 0)

>>> pdf.drawCentredString(letter[0] / 2,

inch * 6, “MI6 CLASSIFIED”)

>>> pdf.setFont(“Courier”, 40)

>>> pdf.drawCentredString(letter[0] / 2,

inch * 5, “For 007’s Eyes Only”)

Close the drawing for current page

>>> pdf.showPage()

Save the pdf page

>>> pdf.save()

Output:

@image:pdf.png

@title: PDF Output

49. Using Twitter API
You can connect to Twitter using the ‘Python-

Twitter’ module.

Perform the following steps to install

Python-Twitter:

$ wget http://python-twitter.

googlecode.com/files/python-twitter-

0.6.tar.gz

$ tar xvfz python-twitter*

$ cd python-twitter*

$ sudo python setup.py install

Example (fetching followers list):

>>> import twitter

Use you own twitter account here

>>> mytwi = twitter.Api(username=’kunald

eo’,password=’xxxxxx’)

>>> friends = mytwi.GetFriends()

>>> print [u.name for u in friends]

[u’Matt Legend Gemmell’, u’jono wells’,

u’The MDN Big Blog’, u’Manish Mandal’,

u’iH8sn0w’, u’IndianVideoGamer.com’,

u’FakeAaron Hillegass’, u’ChaosCode’,

u’nileshp’, u’Frank Jennings’,..’]

50. Doing Yahoo! news
search

You can use the Yahoo! search SDK to access

Yahoo! search APIs from Python.

Perform the following steps to install it:

$wget http://developer.yahoo.com/

download/files/yws-2.12.zip

$ unzip yws*

$ cd yws*/Python/pYsearch*/

$ sudo python setup.py install

Example:

Importing news search API

>>> from yahoo.search.news import

NewsSearch

>>> srch = NewsSearch(‘YahooDemo’,

query=’London’)

Fetch Results

>>> info = srch.parse_results()

>>> info.total_results_available

41640

>>> info.total_results_returned

10

>>> for result in info.results:

... print “’%s’, from %s” %

(result[‘Title’], result[‘NewsSource’])

...

‘Afghan Handover to Be Planned at London

Conference, Brown Says’, from Bloomberg

.................

Third-party modules

72 The Python Book

“With Python, you can tweak
and realise your ideal system set-up”

74 Python for professionals
Put your skills to professional use

82 Extensions for XBMC
Enhance XBMC with this tutorial

88 Scienti� c computing
Get to grips with NumPy

92 Instant messaging
Get chatting using Python

98 Replace your shell
Use Python for your primary shell

102 Python for system admins
How Python helps system administration

92

Python
Work

with

The Python Book 73

82 8874

74 The Python Book

Work with Python

Python is relied upon by web developers, engineers and
academic researchers across the world. Here’s how to put your
Python skills to professional use

PYTHON FOR
PROFESSIONALS

The Python Book 75

Work with Python

System administration

System administration tasks are some of the most

annoying things that you need to deal with when you

have to maintain your own system. Because of this,

system administrators have constantly been trying to fi nd

ways to automate these types of tasks to maximise their

time. They started with basic shell scripts, and then moved

on to various scripting languages. For a long time, Perl had

been the language of choice for developing these types

of maintenance tools. However, Python is now growing in

popularity as the language to use. It has reached the point

where most Linux distributions have a Python interpreter

included in order to run system scripts, so you shouldn’t

have any excuse for not writing your own scripts.

Because you will be doing a lot system level work, you

will have most need of a couple of key Python modules.

The fi rst module is ‘os’. This module provides the bulk of

the interfaces to interacting with the underlying system.

The usual fi rst step is to look at the environment your

script is running in to see what information might exist

there to help guide your script. The following code gives

you a mapping object where you can interact with the

environment variables active right now:

 import os

 os.environ

You can get a list of the available environment variables

with the function “os.environs.keys()”, and then access

individual variables with “os.environs[key]”. These

environment variables are used when you spawn a

subprocess, as well. So you will want to change values,

like the PATH or the current working directory, in order

for you to run these subprocesses correctly. While there

is a “putenv” function that edits these values for you, it

unfortunately does not exist on all systems. So the better

way to do this is to edit the values directly within the

environs mapping.

Another category of tasks you may want to automate

is when working with fi les. For example, you can get the

current working directory with code like

 cwd = os.getcwd()

You can then get a list of the fi les in this directory with

 os.listdir(cwd)

You can move around the fi le system with the function

“os.chdir(new_path)”. Once you’ve found the fi le you are

interested in, you can open it with “os.open()” and open it

for reading, writing and/or appending. You can then read

or write to it with the functions “os.read()” and “os.write()”.

Once done, you can close the fi le with “os.close()”.

Left Python scripts
enable you to instruct
and interact with your
operating system

Get the most out of Python in handling all of the day-to-day
upkeep that keeps your system healthy

Running subprocesses from Python

The underlying philosophy of Unix is to build small, specialised

programs that do one job extremely well. You then chain these

together to build more complex behaviours. There is no reason

why you shouldn’t use the same philosophy within your Python

scripts. There are several utility programs available to use with

very little work on your part. The older way of handling this was

through using functions like “popen()” and “spawnl()” from the

os module, but a better way of running other programs is by

using the subprocess module instead. You can then launch a

program, like ls, by using:

 import subprocess

 subprocess.run([‘ls’, ‘-l’])

This provides you with a long fi le listing for the current

directory. The function “run()” was introduced in Python

3.5 and is the suggested way of handling this. If you have an

older version, or if you require more control than that, then

you can employ the underlying “popen()” function that we

mentioned earlier instead. If you want to get the output, you

can use the following:

 cmd_output = subprocess.run([‘ls’, ‘-l’],

stdout=subprocess.PIPE)

The variable “cmd_output” is a CompletedProcess object that

contains the return code and a string holding the stdout output.

SYSTEM ADMINISTRATION
BASH, PERL, PYTHON

OPERATING SYSTEM

CPU FILES/IO

Once you have your script
all written up, you may want
to schedule them to run
automatically without your
intervention. On Unix systems,
you can have cron run your
script on whatever schedule
is necessary. The utility
“crontab -l” lists the current
contents of your cron fi le, and
“crontab -e” lets you edit the
scheduled jobs that you want
cron to run.

Scheduling
with cron

76 The Python Book

Work with Python

With the content and the bulk of the computing hosted

on a server, a web application can better guarantee

a consistent experience for the end user. The popular

Django framework provides a very complete environment

of plugins and works on the DRY principle (Don’t Repeat

Yourself). Because of this, you should be able to build

your web application very quickly. Since Django is built

on Python, you should be able to install it with “sudo pip

install Django”. Most distributions should have a package

for Django, too. Depending on what you want to do with

your app, you may need to install a database like MySQL or

postgresql to store your application data.

There are Django utilities available to automatically

generate a starting point for your new project’s code:

 django-admin startproject newsite

This command creates a fi le named “manage.py” and

a subdirectory named “newsite”. The fi le “manage.py”

contains several utility functions you can use to administer

your new application. The newly created subdirectory

contains the fi les “__init__.py”, “settings.py”, “urls.py” and

“wsgi.py”. These fi les and the subdirectory they reside in

comprise a Python package that gets loaded when your

web site is started up. The core confi guration for your site

can be found in the fi le “settings.py”. The URL declarations,

basically a table of contents for your site, are stored in the

fi le “urls.py”. The fi le “wsgi.py” contains an entry point for

WSGI-compatible web servers.

Once your application is done, it should be hosted on a

properly confi gured and hardened web server. But, this is

inconvenient if you are in the process of developing your

web application. To help you out, Django has a web server

built into the framework. You can start it up by changing

directory to the “newsite” project directory and running the

following command:

Left Python interpreters work
with your databases to power a
web server

Bottom The Model-View-
Controller architecture is often
used for UIs

 python manage.py runserver

This will start up a server listening to port 8000 on your

local machine. Because this built in server is designed to

be used for development, it automatically reloads your

Python code for each request. This means that you don’t

need to restart the server to see your code changes.

All of these steps get you to a working project. You are

now ready to start developing your applications. Within the

“newsite” subdirectory, you can type:

 python manage.py startapp newapp

This will create a new subdirectory named “newapp”, with

the fi les “models.py”, “tests.py” and “views.py”, among

others. The simplest possible view consists of the code:

from django.http import HttpResponse

def index(request):

 return HttpResponse(“Hello world”)

This isn’t enough to make it available, however. You will

also need to create a URLconf for the view. If the fi le

“urls.py” doesn’t exist yet, create it and then add the code:

from django.conf.urls import url

from . Import views

 urlpatterns = [url(r’̂ $’, views.index,

 name=‘index’),]

The last step is to get the URL registered within your

project. You can do this with the code

from django.conf.urls import include, url

from django.contrib import admin

urlpatterns = [url(r’̂ newapp/’, include(‘newapp.

urls’)),

Web development
Python has several frameworks available for all of your
various web development tasks. We will look at some of the
more popular ones

When you start developing
your own applications, you
may begin a descent into
dependency hell. Several
Python packages depend
on other Python packages.
This is its strength, but also
its weakness. Luckily, you
have virtualenv available
to help tame this jungle.
You can create new virtual
environments for each of your
projects. Thankfully with this,
you can be sure to capture all
of the dependencies for your
own package.

Virtual
environments

USER

WEB SERVER

DATABASE PYTHON
INTERPRETER

MODEL

USER

VIEW CONTROLLER

Manipulates

Sees

Updates

Uses

The Python Book 77

Work with Python

 url(r’̂ admin’, admin.site.urls),]

This needs to be put in the “urls.py” fi le for the main

project. You can now pull up your newly created

application with the URL http://localhost:8000/newapp/.

The last part of many applications is the database

side. The actual connection details to the database, like

the username and password, are contained in the fi le

“settings.py”. This connection information is used for

all of the applications that exist within the same project.

You can create the core database tables for your site with

this command:

 python manage.py migrate

For your own applications, you can defi ne the data model

you need within the fi le “models.py”. Once the data

model is created, you can add your application to the

INSTALLED_APPS section of the “settings.py” so that

django knows to include it in any database activity. You

initialize it with:

 python manage.py makemigrations newapp

Once these migrations have been created, you need to

apply them to the database by using the command:

 python manage.py migrate

Any time you make changes to your model, you will need to

run the makemigrations and migrate steps again.

Once you have your application fi nished, you can make

the move to the fi nal hosting server. Don’t forget to check

the available code within the Django framework before

putting too much work into developing your own code.

Using the PyCharm IDE

THE EDITOR PANE
The main editor pane can be confi gured to match your

own style, or the style of one of the other main editors,

like emacs. It handles syntax highlighting, and even

displays error locations

THE PROJECT PANE
This pane is the central location for your project. All of

your fi les and libraries are located here. Right-clicking

in the pane brings up a drop-down menu where you can

add new fi les or libraries, run unit tests, or even start up

a debugger

THE STATUS BARE
PyCharm does a lot of work behind the scenes.

The status bar helps you keep track of all of these

background processes

Other Python
frameworks

While Django is one of the most popular frameworks around

for doing web development, it is by no means the only one

around. There are several others available that may prove to

be a better fi t for particular problem domains. For example,

if you are looking for a really self-contained framework, you

could look at web2py. Everything you need to be able to have

a complete system, from databases to web servers to a

ticketing system, are included as part of the framework. It is

so self-contained that it can even run from a USB drive

If you need even less of a framework, there are several

mini-frameworks that are available. For example, CherryPy

is a purely Pythonic multi-threaded web server that you

can embed within your own application. This is actually

the server included with TurboGears and web2py. A really

popular microframework is a project called fl ask. It includes

integrated unit testing support, jinja2 templating and RESTful

request dispatching.

One of the oldest frameworks around is zope, now up to

version 3. This latest version was renamed BlueBream. Zope

is fairly low-level, however. You may be more interested in

looking at some of the other frameworks that are built on

top of what is provided by zope. For example, pyramid is a

very fast, easy to use framework that focuses on the most

essential functions required by most web applications. To

this end, it provides templating, the serving of static content,

mapping of URLs to code, among other functions. It handles

this while providing tools for application security.

If you are looking for some ideas, there are several open

source projects that have been built using these frameworks,

from blogs, to forums to ticketing systems. These projects can

provide some best-practices when you go to construct your

own application.

When you are in the middle of
developing your application,
you may need to have several
different terminal windows
open in order to have a code
editor open, a monitor on the
server, and potentially testing
output. If you are doing this on
your own machine, this isn’t an
issue. But, if you are working
remotely, you should look into
using tmux. It can provide a
much more robust terminal
environment for you.

Terminal
development
environments

78 The Python Book

Work with Python

Python has become one of the key languages used in

science. There is a huge number of packages available

to handle almost any task that you may have and,

importantly, Python knows what it isn’t good at. To deal

with this, Python has been designed to easily incorporate

code from C or FORTRAN. This way, you can offl oad any

heavy computations to more effi cient code.

The core package of most of the scientifi c code

available is numpy. One of the problems in Python is that

the object oriented nature of the language is the source

of its ineffi ciencies. With no strict types, Python always

needs to check parameters on every operation. Numpy

provides a new datatype, the array, which helps solve

some of these issues. Arrays can only hold one type of

object, and because Python knows this it can use some

optimisations to speed things up to almost what you can

get from writing your code directly in C or FORTRAN. The

classic example of the difference is the for loop. Lets say

you wanted to scale a vector by some value, something like

a*b. In regular Python, this would look like

for elem in b:

 c.append(a * elem)

In numpy, this would look like:

a*b

Left The numpy package
makes it simple to visualise
your data

So, not only is it faster, it is also written in a shorter, clearer

form. Along with the new datatype, numpy provides

overloaded forms of all of the operators that are of

most use, like multiplication or division. It also provides

optimised versions of several functions, like the trig

functions, to take advantage of this new datatype.

The largest package available, that is built on top of

numpy, is scipy. Scipy provides sub-sections in several

areas of science. Each of these sub-sections need

to be imported individually after importing the main

scipy package. For example, if you are doing work with

Computational science
Python is fast becoming the go-to language for
computational science

Spyder, the IDE for scientists

THE EDITOR PANE
This pane is where you can open and edit your source
fi les. Above this pane are buttons to allow you to simply
run the code, or run it under a debugger. Under the
debugger, you can set breakpoints and step through
each line of code individually

VARIABLE EXPLORER
The variable explorer pane lets you access all of the
data structures within the current Python interpreter.
You need to actually run your code for anything to show
up here

IPYTHON CONSOLE
The console window lets you interact directly with the
underlying interpreter that will be used when you try and
run your code

One of the really powerful
parts of Ipython (or jupyter)
is that it is built with a client/
server model. This means that
it is relatively easy to setup
multiple machines to act as
a server pool. You can then
farm out multiple tasks to
these other machines to get
even more work done. While
this doesn’t run any particular
function in parallel, it does let
you run longer functions in the
background while you work on
something else.

Parallel
Python

The Python Book 79

Work with Python

Above The ability to generate
complex plots is essential

Above Jupyter Notebook is a web application that is used
for creating and sharing documents that contain live code
and equations

differential equations, you can use the “integrate” section

to solve them with code that looks like

import scipy

import scipy.integrate

result = scipy.integrate.quad(lambda x: sin(x), 0,

4.5)

Differential equations crop up in almost every scientifi c

fi eld. You can do statistical analysis with the “stats”

section. If you want to do some signal processing, you can

use the “signal” section and the “fftpack” section. This

package is defi nitely the fi rst stop for anyone wanting to do

any scientifi c processing.

Once you have collected your data, you usually need

to graph it, in order to get a visual impression of patterns

within it. The primary package you can use for this is

matplotlib. If you have ever used the graphics package

in R before, the core design of matplotlib has borrowed

quite a few ideas. There are two categories of functions for

graphing, low-level and high-level. High-level functions try

to take care of as many of the menial tasks, like creating a

plot window, drawing axes, selecting a coordinate system,

as possible. The low-level functions give you control over

almost every part of a plot, from drawing individual pixels

to controlling every aspect of the plot window. It also

borrowed the idea of drawing graphs into a memory based

window. This means that it can draw graphs while running

on a cluster.

If you need to do symbolic math, you may be more used

to using something like Mathematica or Maple. Luckily,

you have sympy that can be used to do many of the same

things. You can use Python to do symbolic calculus, or to

solve algebraic equations. The one weird part of sympy is

that you need to use the “symbols()” function to tell sympy

Interactive science
with jupyter

For a lot of scientifi c problems, you need to play with your

data in an interactive way. The original way you would do

this was to use the Ipython web notebook. This project has

since been renamed Jupyter. For those who have used a

program like Mathematica or Maple, the interface should

seem very familiar. Jupyter starts a server process, by

default on port 8888, and then will open a web browser

where you can open a worksheet. Like most other programs

of this type, the entries run in chronological order, not in

the order that they happen on the worksheet. This can

be a bit confusing at fi rst, but it means that if you go to

edit an earlier entry, all of the following entries need to be

re-executed manually in order to propagate that change

through the rest of the computations.

Jupyter has support for pretty printing math within

the produced web page. You can also mix documentation

blocks and code blocks within the same page. This means

that you can use it to produce very powerful educational

material, where students can read about some technique,

and then actually run it and see it in action. By default,

Jupyter will also embed matplotlib plots within the same

worksheet as a results section, so you can see a graph of

some data along with the code that generated it. This is

huge in the growing need for reproducible science. You can

always go back and see how any analysis was done and be

able to reproduce any result at all.

Sometimes you need as much
speed as your are capable of
pushing on your hardware. In
these cases, you always have
the option of using Cython.
This lets you take C code from
some other project, which
has probably already been
optimised, and use it within
your own Python program. In
scientifi c programming, you
are likely to have access to
code that has been worked
on for decades and is highly
specialised. There is no need
to redo the development
effort that has gone into it.

The need for
speed what variables are valid to be considered in your equations.

You can then start doing manipulations using these

registered variables.

You may have large amounts of data that you need

to work with and analyze. If so, you can use the pandas

package to help deal with that. Pandas has support

for several different fi le formats, like CSV fi les, Excel

spreadsheets or HDF5. You can merge and join datasets,

or do slicing or subsetting. In order to get the best

performance out of the code, the heaviest lifting is done by

Cython code that incorporates functions written in C. Quite

a few ideas on how to manipulate your data was borrowed

from how things are done in R.

You now have no reason not to start using Python for

your scientifi c work. You should be able to use it for almost

any problem that comes up!

80 The Python Book

Work with Python

ROS – Robot Operating System
While you could simply write some code that runs on a

standard computer and a standard Linux distribution, this

is usually not optimal when trying to handle all of the data

processing that a robot needs when dealing with events in

realtime. When you reach this point, you may need to look at

a dedicated operating system – the Robot Operating System

(ROS). ROS is designed to provide the same type of interface

between running code the computer hardware it is running

on, with the lowest possible overhead. One of the really

powerful features of ROS is that it is designed to facilitate

communication between different processes running on the

computer, or potentially over multiple computers connected

over some type of network. Instead of each process being a

silo that is protected from all other processes, ROS is more of

a graph of processes with messages being passed between

them all.

Because ROS is a complete operating system, rather than

a library, it is wrong to think that you can use it in your Python

code. It is better to think that you can write Python code

that can be used in ROS. The fundamental design is to be as

agnostic as possible. This means that interfaces to your code

should be clean and not particularly care where they running

or who is talking to them. Then, it can be used within the graph

of processes running within ROS. There are standard libraries

available that allow you to do coordinate transformations,

useful for fi guring out where sensors or limbs are in space.

There is a library available for creating preemptible tasks for

data processing, and another for creating and managing the

types of messages that can be handed around the various

processes. For extremely time-sensitive tasks, there is a

plugin library that allows you to write a C++ plugin that can be

loaded within ROS packages.

Robotics is the most direct way that your code can

interact with the world around you. It can read actual

sensor information and move real actuators and get real

work done.

The fi rst thing your robot needs is the ability to sense

the world around it. The one sense that we as humans feel

is most useful is sight. With web cameras being so cheap

and easy to connect to hardware, vision is easy to give to

your robot. The real problem is how to interpret this data.

Luckily, you can use the OpenCV project to do just that. It is

a vision package that can provide simple image gathering

and processing, to extremely complex functions like face

recognition and extraction of 3D objects. You can identify

and track objects moving through your fi eld of view. You

can also use OpenCV to give you robot some reasoning

capabilities, too. OpenCV includes a set of functions

for machine learning, where you can do statistical

classifi cation or data clustering, and use it to feed decision

trees or even neural networks.

Another important sense that you may want to use is

sound. The jasper project is one that is developing a

complete voice control system. This project would

give you the structure you need to give your robot

the ability to listen for and respond to your verbal

commands. The project has gotten to the point where

you can give it a command and the voice recognition

software can translate this into text. You then need to

build a mapping of what pieces of text correspond to what

commands to execute.

There are lots of other sensors you could have, but this

begins to leave the realm of store-bought hardware. Most

other sensors, like temperature, pressure, orientation

or location, need specialised hardware that needs to

be interfaced to the computer brain for your robot. This

Robotics and electronics
Robotics is the most direct interface between your code and
the real world around you

While we haven’t discussed
what kind of computer to use
for your robotics project, you
should consider the famous
Raspberry Pi. This tiny
computer should be small
enough to fi t into almost
any robot structure that you
might be building. Since it is
already running Linux and
Python, you should be able
to simply copy your code
development work to the Pi.
It also includes its own IO bus
so that you can have it read
it’s own sensors.

Raspberry Pi

In contrast to the Raspberry
Pi, which runs a full OS from
its SD card, the Arduino
boards are microcontrollers
rather than complete
computers. Instead of
running an OS, the Arduino
platform executes code that
is interpreted by its fi rmware.
It is mainly used to interface
with hardware such as motors
and servos, sensors, and
devices such as LEDs, and
is incredibly capable in this
regard. Arduinos are widely
used in robotics projects
and can be a powerful
complement to the Pi.

Arduino

The Python Book 81

Work with Python

means it is time to get your soldering iron out. As for

reading the data in, this is most often done over a basic

serial connection. You can then use the pySerial module to

connect to the serial port and read data off the connection.

You can use:

import serial

to load the module and start communicating with your

sensor. The problem is that this is a very low-level way to

communicate. You, as the programmer, are responsible for

all of the details. This includes communication speed, byte

size, fl ow control; basically everything. So this will defi nitely

be an area of your code where you should plan on spending

some debugging time.

Now that you have all of this data coming in, what will

you do with it? You need to be able to move actuators out

in the world and have real effects. This could be motors

for wheels or tracks, levers to shift objects, or potentially

complete limbs, like arms or legs. While you could try and

drive these types of electronic devices directly from the

output ports of your computer, there usually isn’t enough

current available to provide the necessary power. So,

you will need to have some off-board brains capable of

handling the supplying of power to these devices. One of

the most popular candidates for this task is the Arduino.

For low-level work, check out Arduinos

THE MAIN EDITOR
You have access to a large number of libraries,

and support for a large number of versions of the

Arduino boards. The code is essentially C, so Python

programmers shouldn’t be too far out of their depths

OUTPUT WINDOW
This pane contains output from various tasks. This

might be compiling the source code, or uploading it to

the Arduino board being used in your project

THE STATUS BAR
The status bar reminds you which type of board your

are currently programming for, as well as which port the

Arduino IDE thinks it is on. Always verify this information

before trying to upload your control program to the

board in question

For robotics work, you may

need to run some code truly

in parallel, on multiple CPUs.

Python currently has the GIL,

which means that there is a

fundamental bottleneck built

into the interpreter. One way

around this is to actually run

multiple Python interpreters,

one for each thread of

execution. The other option

is to move from Cpython to

either Jython or IronPython, as

neither has a GIL.

Bypassing
the GIL

Luckily, the Arduino is designed to connect to the serial

port of your computer, so you can simply use pySerial to

talk to it. You can send commands to code that you have

written and uploaded to the Arduino to handle the actual

manipulations of the various actuators. The Arduino

can talk back, however. This means that you can read

feedback data to see what effect your movements have

had. Did you end up turning your wheels as far as you

wanted to? This means that you could also use the Arduino

as an interface between your sensors and the computer,

thus simplifying your Python code even more. There are

loads of add-on modules available, too, that might be able

to provide the sensing capabilities that you require straight

out of the box. There are also several models of Arduino, so

you may be able to fi nd a specialised model that best fi ts

your needs.

Now that you have all of this data coming in and the

ability to act out in the real world, the last step is giving

your robot some brains. This is where the state of the art

unfortunately does not live up to the fantasy of R2-D2 or

C-3P0. Most of your actual innovative coding work will

likely take place in this section of the robot. The general

term for this is artifi cial intelligence. There are several

projects currently underway that you could use as a

starting point to giving your robot some real reasoning

capability, like SimpleAI or PyBrain.

82 The Python Book

Work with Python

Python is the world’s most popular easy-to-use open source
language. Learn how to use it to build your own features for
XBMC, the world’s favourite FOSS media centre

Make extensions for
XBMC with Python

XBMC is perhaps the most important thing that

has ever happened in the open source media

centre space. It started its life on the original

Xbox videogames console and since then it has

become the de facto software for multimedia

aficionados. It also has been forked into many

other successful media centre applications such

as Boxee and Plex. XBMC has ultimately grown

into a very powerful open source application with

a solid community behind it. It supports almost

all major platforms, including different hardware

architectures. It is available for Linux, Windows,

Mac OS X, Android, iOS and Raspberry Pi.

In these pages we will learn to build extensions

for XBMC. Extensions are a way of adding

features to XBMC without having to learn the

core of XBMC or alter that core in any way. One

additional advantage is that XBMC uses Python

as its scripting language, and this can be also

used to build the extensions. This really helps

new developers get involved in the project since

Python is easy to learn compared to languages

like C/C++ (from which the core of XBMC is made).

XBMC supports various types of extensions (or

Add-ons): Plugins, Programs and Skins. Plugins

add features to XBMC. Depending on the type

of feature, a plug-in will appear in the relevant

media section of XBMC. For example, a YouTube

plug-in would appear in the Videos section.

Scripts/Programs are like mini-applications for

XBMC. They appear in the Programs section.

Skins are important since XBMC is a completely

customisable application – you can change

Resources
XBMC: www.xbmc.org/download

Python 2.7x
Python IDE (optional)
Code on FileSilo

List of
installed
plug-ins

Current media
selection

Rating (only available for
hosted plug-ins)

Configure
launcher

Opens changelog
for the plug-in

Localised
description string

the look and feel of just about every facet of

the package.

Depending upon which category your

extension fits, you will have to create the

extension directory accordingly. For example…

Plug-ins:

 plugin.audio.ludaudi: An audio plug-in

 plugin.video.ludvidi: A video plug-in

 script.xxx.xxx: A program

In this tutorial we will build an XBMC plug-in

called LUD Entertainer. This plug-in will provide a

nice way to watch videos from Reddit from within

XBMC. Our plug-in will show various content such

as trailers and documentaries from Reddit. We’ll

also allow our users to add their own Subreddit.

Each video can then be categorised as Hot, New,

Top, Controversial etc. With this plug-in we will

demonstrate how easy it is hook into XBMC’s

built-in method to achieve a very high-quality

user experience.

Due to space limitations, we aren’t able to print

the full code here. We recommend downloading

the complete code from FileSilo.

The Python Book 83

Work with Python

01 Preparing the directory structure
As we have mentioned previously, each

XBMC extension type follows a certain directory

naming convention. In this case we are building

a video plug-in, so the plug-in directory name

would be plugin.video.ludlent. But that’s just the

root directory name – we will need several other

folders and files as well.

The following describes the directory structure of

LUD Linux Entertainer:

plugin.video.ludent – Root Plugin directory

|-- addon.xml

|-- changelog.txt

|-- default.py

|-- icon.png

|-- LICENSE.txt

|-- README

`-- resources

 |-- lib

 ̀ -- settings.xml

02 Creating addon.xml
An addon.xml file needs to be created in

the root of the extension directory. The addon.xml

file contains the primary metadata from a XBMC

extension. It contains overview, credits, version

information and dependencies information about

the extension.

The root element of addon.xml is the <addon>

element. It is defined as:

<addon id="plugin.video.

ludent" name="LUD HSW Viewer"

version="0.0.1" provider-

name="LUDK">

rest of the content is placed here

</addon>

Here, id is the identifier for the plug-in, so

it should be unique among all the XBMC

extensions, and id is also used for the directory

name; version tells XBMC the extension

version number, which helps in its ability to

deliver automatic updates – XBMC follows the

Major.Minor.Patch versioning convention; name is

the English title of the plug-in.

Note: Steps 3 to 5 cover entries that need to be

added within the addon.xml file.

03 Adding dependency information
Dependency inside an extension is

managed using the <requires> element.

<requires>

<import addon="xbmc.python"

version="2.1.0"/>

<import addon="plugin.video.

youtube" version="3.0.0"/>

<import addon="plugin.video.vimeo"

version="2.3.0"/>

<import addon="plugin.video.

dailymotion_com" version="1.0.0"/>

</requires>

In the above code we have added a dependency

to a library called xbmc.python version

2.1. Currently it is added as a mandatory

dependency. To make the dependency

optional you will need to add optional="true";

eg <import addon="kunal.special"
version="0.1.0" optional="true" />

In the above example we have added core

dependency xbmc.python to 2.1.0 because it’s

the version shipped with XBMC version Frodo

12.0 and 12.1 . If you were to add xbmc.python

to 2.0 then it would only work in XBMC Eden 11.0

and not in the latest version.

For the current version of XBMC 12.1, the

following versions of core XBMC components

are shipped:

xbmc.python 2.1.0

xbmc.gui 4.0.0

xbmc.json 6.0.0

xbmc.metadata 2.1.0

xbmc.addon 12.0.0

In addition to xbmc.python we are also adding

some third-party plug-ins as dependencies,

such as plugin.video.youtube. These plug-ins

will be installed automatically when we install

plugin.video.ludent.

04 Setting up the provider and
entry point

Our extension is supposed to provide the video

content for XBMC. In order to convey that, we

have to set up the following element:

<extension point="xbmc.python.

pluginsource" library="default.

py">

<provides>video</provides>

</extension>

Here, the library attribute sets up the plug-in

entry point. In this example default.py will be

executed when the user activates the plug-in.

The <provides> elements sets up the media

type it provides. This also gets reflected in the

placement of the plug-in. Since ours is a video

plug-in, it will show up in the Videos section

of XBMC.

05 Setting up plug-in metadata
Metadata about the plug-in is provided in

<extension point="xbmc.addon.metadata">. The

following are the important elements…

<platform>: Most of the time, XBMC extensions

are cross-platform compatible. However, if you

depend on the native platform library that is only

available on certain platforms then you will need

to set the supported platforms here. Accepted

values for the platform are: all, linux, osx, osx32,

osx64, ios (Apple iOS) , windx (Windows DirectX),

wingl (Windows OpenGL) and android.

<summary lang="en">: This gives a brief

description of the plug-in. Our example sets the

language attribute as English, but you can use

other languages too.

<description>: A detailed description of the

plug-in.

<website>: Webpage where the plug-in is hosted.

<source>: Source code repository URL. If you are

hosting your plug-in on GitHub, you can mention

the repository URL here.

<forum>: Discussion forum URL for your plug-in.

<email>: Author email. You can directly type email

or use a bot-friendly email address like max at

domain dot com.

06 Setting changelog, icon, fanart
and licence

We need a few additional files in the plug-in

directory…

changelog.txt: You should list the changes made

to your plug-in between releases. The changelog

is visible from the XBMC UI.

An example changelog:

0.0.1

- Initial Release

0.0.2

- Fixed Video Buffering Issue

icon.png: This will represent the plug-in in the

XBMC UI. It needs to be a non-transparent PNG

file of size 256x256.

fanart.jpg (optional): The fanart.jpg is rendered

in the background if a user selects the plug-in

in XBMC. The art needs to be rendered in HDTV

formats, so its size can range from 1280x720

(720p) up to the maximum 1920x1080 (1080p).

84 The Python Book

Work with Python

License.txt: This file contains the licence of

the distributed plug-in. The XBMC project

recommends the use of the Creative Commons

Attribution-ShareAlike 3.0 licence for skins,

and GPL 2.0 for add-ons. However, most of the

copyleft licences can be used.

Note: For the purpose of packaging, extensions/

add-ons/themes/plug-ins are the same.

07 Providing settings for the plug-in
Settings can be provided by the file

resources/settings.xml. These are great for user-

configurable options.

Partial: resources/settings.xml

<settings>

<category label="30109">

<setting id="filter" type="bool"

label="30101" default="false"/>

<setting type="sep" />

<setting id="showAll" type="bool"

label="30106" default="false"/>

<setting id="showUnwatched"

type="bool" label="30107"

default="true"/>

<setting id="showUnfinished"

type="bool" label="30108"

default="false"/>

<setting type="sep" />

<setting id="forceViewMode"

type="bool" label="30102"

default="true"/>

<setting id="viewMode" type="number"

label="30103" default="504"/>

</category>

<category label="30110">

<setting id="cat_hot" type="bool"

label="30002" default="true"/>

<setting id="cat_new" type="bool"

label="30003" default="true"/>

</category>

</settings>

Here, label defines the language id string which

will then be used to display the label. id defines

the name which will be used for programmatic

access. type defines the data type you want

to collect; it also affects the UI which will be

displayed for the element. default defines the

default value for the setting. You should always

use a default value wherever possible to provide a

better user experience.

The following are a few important settings

types that you can use…

text: Used for basic string inputs.

ipaddress: Used to collect internet addresses.

number: Allows you enter a number. XBMC will

also provide an on-screen numeric keyboard for

the input.

slider: This provides an elegant way to collect

integer, float and percentage values. You can get

the slider setting in the following format:

<setting label="21223" type="slider"

id="sideinput" default="10"

range="1,1,10" option="int" />

In the above example we are creating a slider with

min range 1, max range 10 and step as 1. In the

option field we are stating the data type we are

interested in – we can also set option to "float"

or "percent".

bool: Provides bool selection in the form of on

or off.

file: Provides a way to input file paths. XBMC will

provide a file browser to make the selection of file.

If you are looking to make selection for a specific

type of file you can use audio, video, image or

executable instead of file.

folder: Provides a way to browse for a folder…

Example:

<setting label="12001" type="folder"

id="folder" source="auto"

option="writeable"/>

Here, source sets the start location for the

folder, while option sets the write parameter for

the application.

sep & lsep: sep is used to draw a horizontal line

in the setting dialog; lsep is used for drawing

a horizontal line with text. They do not collect

any input but are there for building better user

interface elements…

<setting label="21212" type="lsep"

/>

08 Language support
Language support is provided in

the form of the strings.xml file located in

resources/languages/[language name]. This

approach is very similar to many large software

projects, including Android, where static strings

are never used.

resource/language/english/string.xml

example:

<?xml version="1.0" encoding="utf-8"

standalone="yes"?>

<strings>

<string id="30001">Add subreddit</

string>

<string id="30002">Hot</string>

<string id="30003">New</string>

<string id="30004">Top</string>

<string id="30005">Controversial</

string>

<string id="30006">Hour</string>

<string id="30007">Day</string>

<string id="30008">Week</string>

<string id="30009">Month</string>

<string id="30010">Year</string>

</strings>

As you may have seen in the settings.xml

example, all the labels are referring to string

ids. You can have many other languages as

well. Depending upon the language XBMC is

running in, the correct language file will be

loaded automatically.

Post XBMC Frodo (12.1), strings.xml will be

deprecated. Post Frodo, XBMC will be moved

to a GNU gettext-based translation system;

gettext uses PO files. You can use a tool called

xbmc-xml2po to convert strings.xml into

equivalent PO files.

09 Building default.py
Since our plug-in is small, it will all be

contained inside default.py. If you are developing

a more complex add-on then you can create

supporting files in the same directory. If your

library depends upon third-party libraries, you

have two ways to go about it. You can either place

the third-party libraries into the resources/lib

folder; or bundle the library itself into a plug-in,

then add that plug-in as the dependency in the

addon.xml file.

Our plug-in works with reddit.tv. This is the

website from Reddit which contains trending

videos shared by its readers. Videos posted on

Reddit are actually sourced from YouTube, Vimeo

and Dailymotion.

We will be starting off default.py using the

following imports:

import urllib

import urllib2

…

import xbmcplugin

The Python Book 85

Work with Python

import xbmcgui

import xbmcaddon

Apart from xbmcplugin, xbmcgui and

xbmcaddon, the rest are all standard Python

libraries which are available on PyPI (Python

Package Index) via pip. You will not need to install

any library yourself since the Python runtime for

XBMC has all the components built in.

urllib and urllib2 help in HTTP communication.

socket is used for network I/O; re is used

for regular expression matching; sqlite3 is

the Python module for accessing an SQLite

embedded database; xbmcplugin, xbmcgui and

xbmcaddon contain the XBMC-specific routine.

10 Initialising
During the initialisation process, we will

be reading various settings from settings.xml.

Settings can be read in the following way:

addon = xbmcaddon.Addon()

filterRating = int(addon.

getSetting("filterRating"))

filterVoteThreshold = int(addon.getS

etting("filterVoteThreshold"))

In order to read settings of type bool you will need

to do something like:

filter = addon.getSetting("filter")

== "true"

We are also setting the main URL, plug-in handle

and the user agent for it:

pluginhandle = int(sys.argv[1])

urlMain = "http://www.reddit.com"

userAgent = "Mozilla/5.0 (Windows NT

6.2; WOW64; rv:22.0) Gecko/20100101

Firefox/22.0"

opener = urllib2.build_opener()

opener.addheaders = [(‘User-Agent’,

userAgent)]

11 Reading localised strings
As mentioned, XBMC uses strings.xml to

serve up the text. In order to read those strings,

you will need to use getLocalizedString.

translation = addon.

getLocalizedString

translation(30002)

In this example, translation(30002) will

return the string "Hot" when it is running in an

English environment.

12 Building helper functions
In this step we will look at some of the

important helper functions.

getDbPath(): This returns the location of the

SQLite database file for videos. XBMC stores

library and playback information in SQLite DB

files. There are separate databases for videos

and music, located inside the .xbmc/userdata/

Database folder. We are concerned with the

videos DB. It is prefixed with ‘MyVideos’…

def getDbPath():

 path = xbmc.

translatePath("special://userdata/

Database")

 files = os.listdir(path)

 latest = ""

 for file in files:

 if file[:8] == ‘MyVideos’

and file[-3:] == ‘.db’:

 if file > latest:

 latest = file

 return os.path.join(path,

latest)

getPlayCount(url): Once we have the database

location, we can get the play count using a

simple SQL query. The MyVideo database

contains a table called files, which keeps a

record of all the video files played in XBMC by

filename. In this case it will be URL.

dbPath = getDbPath()

conn = sqlite3.connect(dbPath)

c = conn.cursor()

def getPlayCount(url):

 c.execute(‘SELECT playCount FROM

files WHERE strFilename=?’, [url])

 result = c.fetchone()

 if result:

 result = result[0]

 if result:

 return int(result)

 return 0

 return -1

The above table is an example of a files table.

addSubreddit(): Our plug-in allows users to add

their own Subreddit. This function takes the

Subreddit input from the user, then saves it in

the subreddits file inside the addon data folder.

The following sets the subreddits file location:

subredditsFile = xbmc.

translatePath("special://profile/

addon_data/"+addonID+"/subreddits")

this translates into .xbmc/userdata/

addon_data/plugin.video.ludent/

subreddits

def addSubreddit():

 keyboard = xbmc.Keyboard(‘’,

translation(30001))

 keyboard.doModal()

 if keyboard.isConfirmed() and

keyboard.getText():

 subreddit = keyboard.

getText()

 fh = open(subredditsFile,

‘a’)

 fh.write(subreddit+’\n’)

 fh.close()

This function also demonstrates how to take

a text input from the user. Here we are calling

the Keyboard function with a text title. Once it

detects the keyboard, it writes the input in the

subreddits file with a newline character.

getYoutubeUrl(id): When we locate a YouTube

URL to play, we pass it on to the YouTube plug-in

(plugin.video.youtube) to handle the playback. To

do so, we need to call it in a certain format…

def getYoutubeUrl(id):

 url = "plugin://plugin.

video.youtube/?path=/root/

video&action=play_video&videoid=" +

id

 return url

idFile idPath strFilename playCount lastPlayed dateAdded

1 1 plugin://plugin. 2013-08-06 23:47

2 2 plugin://plugin. 1 2013-08-07 22:42

3 2 plugin://plugin. 1 2013-08-08 00:09

4 2 plugin://plugin. 1 2013-08-08 00:55

5 2 plugin://plugin. 1 2013-08-08 00:58

86 The Python Book

Work with Python

Similarly for Vimeo:

def getVimeoUrl(id):

 url = "plugin://plugin.video.

vimeo/?path=/root/video&action=play_

video&videoid=" + id

 return url

And for Dailymotion:

def getDailyMotionUrl(id):

 url = "plugin://plugin.video.

dailymotion_com/?url=" + id +

"&mode=playVideo"

 return url

Once we have the video URL resolved into the

respective plug-in, playing it is very simple:

def playVideo(url):

 listitem = xbmcgui.

ListItem(path=url)

 xbmcplugin.

setResolvedUrl(pluginhandle, True,

listitem)

13 Populating plug-in content listing
xbmcplugin contains various routines

for handling the content listing inside the

plug-ins UI. The first step is to create directory

entries which can be selected from the XBMC

UI. For this we will use a function called

xbmcplugin.addDirectoryItem.

For our convenience we will be abstracting

addDirectoryItem to suit it to our purpose, so

that we can set name, URL, mode, icon image

and type easily.

def addDir(name, url, mode,

iconimage, type=""):

 u = sys.argv[0]+"?url="+urllib.

quote_plus(url)+"&mode="+str(mode)+"

&type="+str(type)

 ok = True

 liz = xbmcgui.ListItem(name,

iconImage="DefaultFolder.png",

thumbnailImage=iconimage)

 liz.setInfo(type="Video",

infoLabels={"Title": name})

 ok = xbmcplugin.

addDirectoryItem(handle=int(sys.

argv[1]), url=u, listitem=liz,

isFolder=True)

 return ok

On the same lines, we can build a function to

place links as well…

def addLink(name, url, mode,

iconimage, description, date):

 u = sys.argv[0]+"?url="+urllib.

quote_plus(url)+"&mode="+str(mode)

 ok = True

 liz = xbmcgui.ListItem(name,

iconImage="DefaultVideo.png",

thumbnailImage=iconimage)

 liz.setInfo(type="Video",

infoLabels={"Title": name, "Plot":

description, "Aired": date})

 liz.setProperty(‘IsPlayable’,

‘true’)

 ok = xbmcplugin.

addDirectoryItem(handle=int(sys.

argv[1]), url=u, listitem=liz)

 return ok

Based on the abstractions we have just created,

we can create the base functions which will

populate the content. But before we do that,

let’s first understand how Reddit works. Most of

the Reddit content filters are provided through

something called Subreddits. This allows you to

view discussions related to a particular topic. In

our plug-in we are interested in showing videos;

we also want to show trailers, documentaries

etc. We access these using Subreddits. For

example, for trailers it would be reddit.com/r/

trailers. For domains we can use /domain; for

example, to get all the YouTube videos posted

on Reddit, we will call reddit.com/domain/

youtube.com. Now you may ask what is the

guarantee that this Subreddit will only list

videos? The answer is that it may not. For that

reason we scrape the site ourselves to find

videos. More on this in the next step.

The first base function we’ll define is index().

This is called when the user starts the plug-in.

def index():

 defaultEntries = ["videos",

"trailers", "documentaries",

"music"]

 entries = defaultEntries[:]

 if os.path.

exists(subredditsFile):

 fh = open(subredditsFile,

‘r’)

 content = fh.read()

 fh.close()

 spl = content.split(‘\n’)

 for i in range(0, len(spl),

1):

 if spl[i]:

 subreddit = spl[i]

 entries.

append(subreddit)

 entries.sort()

 for entry in entries:

 if entry in defaultEntries:

 addDir(entry.title(),

"r/"+entry, ‘listSorting’, "")

 else:

 addDirR(entry.title(),

"r/"+entry, ‘listSorting’, "")

 addDir("[Vimeo.com]",

"domain/vimeo.com", ‘listSorting’,

"")

 addDir("[Youtu.be]", "domain/

youtu.be", ‘listSorting’, "")

 addDir("[Youtube.com

]", "domain/youtube.com",

‘listSorting’, "")

 addDir("[Dailymotion.com

]", "domain/dailymotion.com",

‘listSorting’, "")

 addDir("[B]-

"+translation(30001)+" -[/B]", "",

‘addSubreddit’, "")

 xbmcplugin.

endOfDirectory(pluginhandle)

Here, the penultimate entry makes a call to

addSubreddit. listSorting takes care of sorting

out the data based on criteria such as Hot,

New etc. It also calls in Reddit’s JSON function,

which returns nice easy-to-parse JSON data.

We have created a settings entry for all the

sorting criteria. Based on what is set, we go

ahead and build out the sorted list.

def listSorting(subreddit):

 if cat_hot:

 addDir(translation(30002),

urlMain+"/"+subreddit+"/hot/.

json?limit=100", ‘listVideos’, "")

 if cat_new:

 addDir(translation(30003),

urlMain+"/"+subreddit+"/new/.

json?limit=100", ‘listVideos’, "")

 if cat_top_d:

addDir(translation(30004)+":

"+translation(30007),

urlMain+"/"+subreddit+"/

top/.json?limit=100&t=day",

‘listVideos’, "")

 xbmcplugin.

endOfDirectory(pluginhandle)

The Python Book 87

Work with Python

In the code listed to the left here, we are

opening the URL, then – based on regular

expression matches – we are discovering

the location title, description, date, ups,

downs and rating. We are also locating

video thumbnails and then passing them on

to XBMC.

Later in the code, we also try to match the

URL to a video provider. With our plug-in we are

supporting YouTube, Vimeo and Dailymotion.

If this is detected successfully, we call the

helper functions to locate the XBMC plug-

in based playback URL. During this whole

parsing process, if any exception is raised, the

whole loop is ignored and the next JSON item

is parsed.

15 Installing & running the add-on
You can install the add-on using one of

the following two methods:

• You can copy the plug-in directory to

.xbmc/addons.

• You can install the plug-in from the zip file. To

do so, compress the add-on folder into a zip file

using the command:

$ zip -r plugin.video.ludent.zip

plugin.video.ludent

To install the plug-in from the zip file, open

XBMC, go to System then Add-ons, then click

‘Install from zip file’. The benefit of installing

from a zip file is that XBMC will automatically

try to install all the dependent plug-ins as well.

Once you have the plug-in installed, you can

run it by going to the Videos Add-ons section of

XBMC, selecting Get More… and then clicking

on LUD Reddit Viewer.

You can access the settings dialog of the

plug-in by right-clicking the LUD Reddit Viewer,

then selecting ‘Add-on settings’.

So, you have seen how robust and powerful

XBMC’s extension system is. In this example,

we were able to leverage the full power of

Python (including those magical regular

expression matches) from within XBMC.

XBMC itself also offers a robust UI framework,

which provides a very professional look for

our add-on.

As powerful as it may seem, we have only

built a video plug-in. XBMC’s extension system

also provides a framework for building fully

fledged programs (called Programs). We will

cover this in a later issue.

14 Populating the episode view (listing videos)
At this point we have the URL in hand, which returns JSON data; now we need to extract the

data out of it which will make sense to us.

By looking at the JSON data, you can see there’s a lot of interesting information present here. For

example, url is set to youtube.com/watch?v=n4rTztvVx8E; title is set to ‘The Counselor – Official

Trailer’. There also many other bits of data that we will use, such as ups, downs, num_comments,

thumbnail_url and so on. In order to filter out the data that we need, we will use regular expressions.

There is one more thing to note: since we are not presenting directories any more but are ready to

place content, we have to set the xbmcplugin.setContent to episodes mode.

def listVideos(url):

 currentUrl = url

 xbmcplugin.setContent(pluginhandle, "episodes")

 content = opener.open(url).read()

 spl = content.split(‘"content"’)

 for i in range(1, len(spl), 1):

 entry = spl[i]

 try:

 match = re.compile(‘"title": "(.+?)"’, re.DOTALL).findall(entry)

 title = match[0].replace("&", "&")

 match = re.compile(‘"description": "(.+?)"’, re.DOTALL).

findall(entry)

 description = match[0]

 match = re.compile(‘"created_utc": (.+?),’, re.DOTALL).findall(entry)

 downs = int(match[0].replace("}", ""))

 rating = int(ups*100/(ups+downs))

 if filter and (ups+downs) > filterVoteThreshold and rating <

filterRating:

 continue

 title = title+" ("+str(rating)+"%)"

 match = re.compile(‘"num_comments": (.+?),’, re.DOTALL).

findall(entry)

 comments = match[0]

 description = dateTime+" | "+str(ups+downs)+" votes:

"+str(rating)+"% Up | "+comments+" comments\n"+description

 match = re.compile(‘"thumbnail_url": "(.+?)"’, re.DOTALL).

findall(entry)

 thumb = match[0]

 matchYoutube = re.compile(‘"url": "http://www.youtube.com/

watch\\?v=(.+?)"’, re.DOTALL).findall(entry)

 matchVimeo = re.compile(‘"url": "http://vimeo.com/(.+?)"’,

re.DOTALL).findall(entry)

 url = ""

 if matchYoutube:

 url = getYoutubeUrl(matchYoutube[0])

 elif matchVimeo:

 url = getVimeoUrl(matchVimeo[0].replace("#", ""))

 if url:

 addLink(title, url, ‘playVideo’, thumb, description, date)

 except:

 pass

 match = re.compile(‘"after": "(.+?)"’, re.DOTALL).findall(entry)

 xbmcplugin.endOfDirectory(pluginhandle)

 if forceViewMode:

 xbmc.executebuiltin(‘Container.SetViewMode(‘+viewMode+’)’)

88 The Python Book

Work with Python

Powerful calculations with
NumPy, SciPy and Matplotlib

Scientific computing
with NumPy

NumPy is the primary Python package for

performing scientific computing. It has a

powerful N-dimensional array object, tools

for integrating C/C++ and Fortran code, linear

algebra, Fourier transform, and random

number capabilities, among other things.

NumPy also supports broadcasting, which is

a clever way for universal functions to deal in

a meaningful way with inputs that do not have

exactly the same form.

Apart from its capabilities, the other

advantage of NumPy is that it can be integrated

into Python programs. In other words, you may

get your data from a database, the output of

another program, an external file or an HTML

page and then process it using NumPy.

This article will show you how to install

NumPy, make calculations, plot data, read and

write external files, and it will introduce you to

some Matplotlib and SciPy packages that work

well with NumPy.

NumPy also works with Pygame, a Python

package for creating games, though explaining

its use is beyond of the scope of this article.

It is considered good practice to try the

various NumPy commands inside the Python

shell before putting them into Python programs.

The examples in this article are using either

Python shell or iPython.

A simple Python

program for

Polynomial Fitting!

A Python script

that uses SciPy to

process an image

Matplotlib

generated output

Finding help

is easy

Resources
NumPy:

www.numpy.org

SciPy:
www.scipy.org

Matplotlib:
www.matplotlib.org

01 Installing NumPy
Most Linux distributions have a

ready-to-install package you can use. After

installation, you can find out the NumPy version

you are using by executing the following:

$ python

Python 2.7.3 (default, Mar 13 2014, 11:03:55)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or

"license" for more information.

>>> numpy.version.version

The Python Book 89

Work with Python

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'numpy' is not defined

>>> import numpy

>>> numpy.version.version

'1.6.2'

>>>

Not only have you found the NumPy version but

you also know that NumPy is properly installed.

02 About NumPy
Despite its simplistic name, NumPy is

a powerful Python package that is mainly for

working with arrays and matrices.

There are many ways to create an array but

the simplest is by using the array() function:

>>> oneD = array([1,2,3,4])

The aforementioned command creates a

one-dimensional array. If you want to create a

two-dimensional array, you can use the array()

function as follows:

>>> twoD = array([[1,2,3],

... [3,3,3],

... [-1,-0.5,4],

... [0,1,0]])

You can also create arrays with more dimensions.

03 Making simple calculations
using NumPy

Given an array named myArray, you can fi nd

the minimum and maximum values in it by

executing the following commands:

>>> myArray.min()

>>> myArray.max()

Should you wish to fi nd the mean value of all

array elements, run the next command:

>>> myArray.mean()

Similarly, you can fi nd the median of the array

by running the following command:

>>> median(myArray)

The median value of a set is an element that

divides the data set into two subsets (left

and right subsets) with the same number of

elements. If the data set has an odd number of

elements, then the median is part of the data

set. On the other side, if the data set has an

even number of elements, then the median is

the mean value of the two centre elements of

the sorted data set.

04 Using arrays with NumPy
NumPy not only embraces the indexing

methods used in typical Python for strings and

lists but also extends them. If you want to select

a given element from an array, you can use the

following notation:

>>> twoD[1,2]

You can also select a part of an array (a slice)

using the following notation:

>>> twoD[:1,1:3]

Finally, you can convert an array into a Python

list using the tolist() function.

05 Reading fi les
Imagine that you have just extracted

information from an Apache log file using AWK and

you want to process the text file using NumPy.

The following AWK code fi nds out the total

number of requests per hour:

$ cat access.log | cut -d[-f2 | cut -d]

-f1 | awk -F: '{print $2}' | sort -n | uniq

-c | awk '{print $2, $1}' > timeN.txt

The format of the text fi le (timeN.txt) with the

data is the following:

00 191

01 225

02 121

03 104

Reading the timeN.txt fi le and assigning it to a

new array variable can be done as follows:

aa = np.loadtxt("timeN.txt")

06 Writing to fi les
Writing variables to a fi le is largely

similar to reading a fi le. If you have an array

variable named aa1, you can easily save its

contents into a fi le called aa1.txt by using the

following command:

In [17]: np.savetxt("aa1.txt", aa1)

As you can easily imagine, you can read

the contents of aa1.txt later by using the

loadtxt() function.

07 Common functions
NumPy supports many numerical and

statistical functions. When you apply a function

to an array, the function is automatically applied

to all array elements.

When working with matrices, you can fi nd the

inverse of a matrix AA by typing “AA.I”. You can

also fi nd its eigenvalues by typing “np.linalg.

eigvals(AA)” and its eigenvector by typing “np.

linalg.eig(BB)”.

08 Working with matrices
A special subtype of a two-dimensional

NumPy array is a matrix. A matrix is like an

array except that matrix multiplication replaces

element-by-element multiplication. Matrices

are generated using the matrix (or mat) function

as follows:

In [2]: AA = np.mat('0 1 1; 1 1 1; 1 1 1')

You can add two matrices named AA and BB by

typing AA + BB. Similarly, you can multiply them

by typing AA * BB.

03 Making simple
calculations

90 The Python Book

Work with Python

 SciPy is built on top of NumPy
and is more advanced

09 Plotting with Matplotlib
The fi rst move you should make is to

install Matplotlib. As you can see, Matplotlib has

many dependencies that you should also install.

The fi rst thing you will learn is how to

plot a polynomial function. The necessary

commands for plotting the 3x^2-x+1

polynomial are the following:

import numpy as np

import matplotlib.pyplot as plt

myPoly = np.poly1d(np.array([3, -1, 1]).

astype(float))

x = np.linspace(-5, 5, 100)

y = myPoly(x)

plt.xlabel('x values')

plt.ylabel('f(x) values')

xticks = np.arange(-5, 5, 10)

yticks = np.arange(0, 100, 10)

plt.xticks(xticks)

plt.yticks(yticks)

plt.grid(True)

plt.plot(x,y)

The variable that holds the polynomial

is myPoly. The range of values that will

be plotted for x is defi ned using “x =

np.linspace(-5, 5, 100)”. The other important

variable is y, which calculates and holds the

values of f(x) for each x value.

It is important that you start ipython using

the “ipython --pylab=qt” parameters in order

to see the output on your screen. If you are

interested in plotting polynomial functions,

you should experiment more, as NumPy can

also calculate the derivatives of a function and

plot multiple functions in the same output.

10 About SciPy
SciPy is built on top of NumPy and

is more advanced than NumPy. It supports

numerical integration, optimisations, signal

processing, image and audio processing,

and statistics. The example in Fig. 01 (to the left)

uses a small part of the scipy.stats package that

is about statistics.

The example uses two statistics distributions

and may be diffi cult to understand even if you

know mathematics, but it is presented in order

to give you a better taste of SciPy commands.

11 Using SciPy for image processing
Now we will show you how to process

and transform a PNG image using SciPy.

The most important part of the code is the

following line:

In [36]: from scipy.stats import poisson, lognorm

In [37]: mySh = 10;

In [38]: myMu = 10;

In [39]: ln = lognorm(mySh)

In [40]: p = poisson(myMu)

In [41]: ln.rvs((10,))

Out[41]:

array([9.29393114e-02, 1.15957068e+01, 9.78411983e+01,

 8.26370734e-07, 5.64451441e-03, 4.61744055e-09,

 4.98471222e-06, 1.45947948e+02, 9.25502852e-06,

 5.87353720e-02])

In [42]: p.rvs((10,))

Out[42]: array([12, 11, 9, 9, 9, 10, 9, 4, 13, 8])

In [43]: ln.pdf(3)

Out[43]: 0.013218067177522842

Fig 01

09Plotting with
Matplotlib

The Python Book 91

Work with Python

 Process and transform a PNG
image using SciPy

12 Other useful functions
It is very useful to be able to fi nd out

the data type of the elements in an array; it

can be done using the dtype() function.

Similarly, the ndim() function returns the

number of dimensions of an array.

When reading data from external fi les, you

can save their data columns into separate

variables using the following way:

In [10]: aa1,aa2 = np.loadtxt("timeN.txt",

usecols=(0,1), unpack=True)

The aforementioned command saves column

1 into variable aa1 and column 2 into variable

aa2. The “unpack=True” allows the data to be

assigned to two different variables. Please

note that the numbering of columns starts

with 0.

14 Array broadcasting in NumPy
To close, we will talk more about

array broadcasting because it is a very

useful characteristic. First, you should know

that array broadcasting has a rule: in order

for two arrays to be considered for array

broadcasting, “the size of the trailing axes for

both arrays in an operation must either be the

same size or one of them must be one.”

Put simply, array broadcasting allows

NumPy to “change” the dimensions of an array

by fi lling it with data in order to be able to do

calculations with another array. Nevertheless,

you cannot stretch both dimensions of an

array to do your job.

13 Fitting to polynomials
The NumPy polyfi t() function tries to fi t

a set of data points to a polynomial. The data

was found from the timeN.txt fi le, created

earlier in this article.

The Python script uses a fi fth degree

polynomial, but if you want to use a different

degree instead then you only have to change

the following line:

coefficients = np.polyfit(aa1, aa2, 5)

image = np.array(Image.open('SA.png').

convert('L'))

This line allows you to read a usual PNG

fi le and convert it into a NumPy array for

additional processing. The program will

also separate the output into four parts and

displays a different image for each of these

four parts.

11 Using SciPy for
image processing

13 Fitting to
Polynomials

92 The Python Book

Work with Python

How to program both the client, complete with a GUI, and
server of a simple instant messenger in Python

Instant messaging with Python

He’re we’ll be implementing an instant

messenger in Python with a client-server

architecture. This means each client connects

to the server, which relays any message that

one client sends to all other clients. The server

will also notify the other clients when someone

joins or leaves the server. The instant messenger

can work anywhere a TCP socket can: on the

same computer with the loopback interface,

across various computers on a LAN, or even

over the internet if you were to confi gure your

router correctly. However, our messages aren’t

encrypted, so we wouldn’t recommend that.

Writing an instant messenger is an interesting

technical problem that covers a bunch of

areas that you may not have come across while

programming before:

• We’ll be employing sockets, which are used

to transmit data across networks.

• We’ll also be using threading, which allows a

program to do multiple things at once.

• We’ll cover the basics of writing a simple

graphical user interface with GTK, as well as

how to interact with that from a different thread.

• Finally, we’ll be touching on the use of

regular expressions to easily analyse and extract

data from strings.

Before getting started, you’ll need to have

a Python2.x interpreter installed, as well as

the PyGTK bindings and the Python2 GObject

bindings. The chances are that if you have a

system with a fair amount of software on it,

you will already have these packages, so it may

be easier to wait and see if you’re missing any

libraries when you attempt to import them. All of

the above packages are commonly used, so you

should be able to install them using your distro’s

package manager.

Resources
A computer – running your favourite Linux
distribution

Internet connection – to access
documentation

Python 2.x, PyGTK and GObject –

packages installed

The server notifi es

all clients when a

new client joins

Each message

has a time stamp

prefi xed to it

Similarly, the server

notifi es all clients

when a client leaves

A client can detect

when the server

exits without

crashing or hanging

The Python Book 93

Work with Python

01 The server
The server will do the following jobs:

• Listen for new clients

• Notify all clients when a new client joins

• Notify all clients when a client leaves

• Receive and deliver messages to all clients

We’re going to write the server side of the

instant messenger fi rst, as the client requires

it. There will be two code fi les, so it’s a good

idea to make a folder to keep them inside. You

can create an empty fi le with the command

touch [filename], and mark that fi le as

executable using chmod +x [filename]. This

fi le is now ready to edit in your favourite editor.

[liam@liam-laptop Python]$ mkdir

Python-IM

[liam@liam-laptop Python]$ cd

Python-IM/

[liam@liam-laptop Python-IM]$ touch

IM-Server.py

[liam@liam-laptop Python-IM]$ chmod

+x IM-Server.py

02 Starting off
As usual, we need to start off with the

line that tells the program loader what it needs

to interpret the rest of the fi le with. In your

advisor’s case, that line is:

#!/usr/bin/env python2.

On your system, it may need to be changed to

#!/usr/bin/env/ python2.6 or #!/usr/

bin/env python2.7

After that, we’ve written a short comment about

what the application does, and imported the

required libraries. We’ve already mentioned

what the threading and socket libraries are

for. The re library is used for searching strings

with regular expressions. The signal library is

used for dealing with signals that will kill the

program, such as SIGINT. SIGINT is sent when

Ctrl+C is pressed. We handle these signals so

that the program can tell the clients that it’s

exiting rather than dying unexpectedly. The sys

library is used to exit the program. Finally, the

time library is used to put a sensible limit on how

frequently the body of while loops execute.

#!/usr/bin/env python2

The server side of an instant

messaging application. Written as

part of a Linux User & Developer

tutorial by Liam Fraser in 2013.

import threading

03 The Server class
The Server class is the main class of our

instant messenger server. The initialiser of this

class accepts a port number to start listening

for clients on. It then creates a socket, binds the

socket to the specifi ed port on all interfaces,

and then starts to listen on that port. You can

optionally include an IP address in the tuple that

contains the port. Passing in a blank string like

we have done causes it to listen on all interfaces.

The value of 1 passed to the listen function

specifi es the maximum number of queued

connections we can accept. This shouldn’t be

a problem as we’re not expecting a bunch of

clients to connect at exactly the same time.

Now that we have a socket, we’ll create an

empty array that will be later used to store a

collection of client sockets that we can echo

messages to. The fi nal part is to tell the signal

library to run the self.signal_handler function,

which we have yet to write, when a SIGINT or

SIGTERM is sent to the application so that we

can tidy up nicely.

class Server():

 def __init__(self, port):

Create a socket and bind it to a

port

 self.listener = socket.

socket(socket.AF_INET, socket.SOCK_

STREAM)

 self.listener.bind((‘’,

port))

 self.listener.listen(1)

 print “Listening on port

{0}”.format(port)

Used to store all of the client

sockets we have, for echoing

to them

 self.client_sockets = []

Run the function self.signal_

handler when Ctrl+C is pressed

 signal.signal(signal.SIGINT,

self.signal_handler)

 signal.signal(signal.

SIGTERM, self.signal_handler)

04 The server’s main loop
The server’s main loop essentially

accepts new connections from clients,

adds that client’s socket to the collection of

import socket

import re

import signal

import sys

import time Threading: docs.python.org/2/library/

threading.html

Sockets: docs.python.org/2/library/

socket.html

Regular expressions: docs.python.

org/2/library/re.html

The signal handler: docs.python.org/

2/library/signal.html

PyGTK: www.pygtk.org/

pygtk2reference

GObject: www.pygtk.org/

pygtk2reference/gobject-functions.html

Useful
documentation

sockets and then starts an instance of the

ClientListener class, which we have yet to

write, in a new thread. Sometimes, defi ning

interfaces you are going to call before you’ve

written them is good, because it can give an

overview of how the program will work without

worrying about the details.

Note that we’re printing information as we go

along, to make debugging easier should we need

to do it. Sleeping at the end of the loop is useful

to make sure the while loop can’t run quickly

enough to hang the machine. However, this is

unlikely to happen as the line that accepts new

connections is blocking, which means that the

program waits for a connection before moving

on from that line. For this reason, we need to

enclose the line in a try block, so that we can

catch the socket error and exit when we can no

longer accept connections. This will usually be

when we’ve closed the socket during the process

of quitting the program.

 def run(self):

 while True:

Listen for clients, and create a

ClientThread for each new client

 print “Listening for

more clients”

 try:

 (client_socket,

client_address) = self.listener.

accept()

 except socket.error:

 sys.exit(“Could not

94 The Python Book

Work with Python

09 Tidying up
We need to have a function to tidy up

the thread. We’ll call this either when the client

sends us a blank string (indicating that it’s

stopped listening on the socket) or sends us the

string “QUIT”. When this happens, we’ll echo to

every client that the user has quit.

 def quit(self):

Tidy up and end the thread

 self.listening = False

 self.socket.close()

 self.server.remove_

socket(self.socket)

 self.server.echo("{0} has

quit.\n".format(self.username))

05 The echo function
We need a function that can be called

from a client’s thread to echo a message to each

client. This function is pretty simple. The most

important part is that sending data to sockets is

in a try block, which means that we can handle

the exception if the operation fails, rather than

having the program crash.

 def echo(self, data):

Send a message to each socket in

self.client_socket

 print "echoing: {0}".

format(data)

 for socket in self.client_

sockets:

Try and echo to all clients

 try:

 socket.sendall(data)

 except socket.error:

 print "Unable to send

message"

06 Finishing the Server class
The remainder of the Server class is

taken up with a couple of simple functions;

one to remove a socket from the collection of

sockets, which doesn’t need an explanation,

and the signal_handler function that we talked

about in the initialiser of the class. This function

stops listening for new connections, and

unbinds the socket from the port it was listening

on. Finally, we send a message to each client to

let them know that we are exiting. The signal will

continue to close the program as expected once

the signal_handler function has ended.

 def remove_socket(self, socket):

07 The client thread
The class that is used to deal with each

client inherits the Thread class. This means

that the class can be created, then started with

client_thread.start(). At this point, the

code in the run function of the class will be run in

the background and the main loop of the Server

class will continue to accept new connections.

We have to start by initialising the Thread base

class, using the super keyword. You may have

noticed that when we created a new instance of

the ClientListener class in the server’s main loop,

we passed through the server’s self variable. We

do this because it’s better for each instance of the

ClientListener class to have its own reference to

the server, rather than using the global one that

we’ll create later to actually start the application.

class ClientListener(threading.

Thread):

 def __init__(self, server,

socket, address):

Initialise the Thread base class

 super(ClientListener,

self).__init__()

Store the values that have been

passed to the constructor

 self.server = server

 self.address = address

 self.socket = socket

 self.listening = True

 self.username = "No

Username"

08 The client thread’s loop
The loop that runs in the client thread

is pretty similar to the one in the server. It keeps

listening for data while self.listening is true,

and passes any data it gets to a handle_msg

function that we will write shortly. The value

passed to the socket.recv function is the size of

10 Handling messages
There are three possible messages our

clients can send:

• QUIT

• USERNAME user

• Arbitrary string to be echoed to all clients

The client will also send a bunch of empty

messages if the socket has been closed, so we

will end their thread if that happens. The code

should be pretty self-explanatory apart from

the regular expression part. If someone sends

the USERNAME message, then the server tells

every client that a new user has joined. This is

tested with a regular expression. ̂indicates the

start of the string, $ indicates the end, and the

brackets containing .* extract whatever comes

after “USERNAME ”.

Remove the specified socket from the

client_sockets list

 self.client_sockets.

remove(socket)

 def signal_handler(self, signal,

frame):

Run when Ctrl+C is pressed

 print "Tidying up"

Stop listening for new connections

 self.listener.close()

Let each client know we are quitting

 self.echo("QUIT")

accept any more connections”)

 self.client_sockets.

append(client_socket)

 print “Starting client

thread for {0}”.format(client_

address)

 client_thread =

ClientListener(self, client_socket,

client_address)

 client_thread.start()

 time.sleep(0.1)

the buffer to use while receiving data.

 def run(self):

The thread's loop to receive and

process messages

 while self.listening:

 data = ""

 try:

 data = self.socket.

recv(1024)

 except socket.error:

 "Unable to recieve

data"

 self.handle_msg(data)

 time.sleep(0.1)

The while loop has ended

 print "Ending client thread

for {0}".format(self.address)

Work with Python

11 Starting the server
The code that actually starts the Server

class is as follows. Note that you are probably

best picking a high-numbered port as you need

to be root to open ports <1024.

if __name__ == "__main__":

 # Start a server on port 59091

 server = Server(59091)

 server.run()

13 The client graphical user interface
The user interface of the client isn’t

the main focus of the tutorial, and won’t be

explained in as much detail as the rest of

the code. However, the code should be fairly

straightforward to read and we have provided

links to documentation that will help.

Our MainWindow class inherits the gtk

Window class, so we need to start by initialising

that using the super keyword. Then we create

the controls that will go on the window, connect

any events they have to functions, and fi nally

lay out the controls how we want. The destroy

event is raised when the program is closed, and

the other events should be obvious.

GTK uses a packing layout, in which you use

Vboxes and Hboxes to lay out the controls. V

and H stand for vertical and horizontal. These

controls essentially let you split a window

up almost like a table, and will automatically

decide the size of the controls depending on the

size of the application.

GTK doesn’t come with a control to enter

basic information, such as the server’s IP

address, port and your chosen username, so

we’ve made a function called ask_for_info,

which creates a message box, adds a text

box to it and then retrieves the results. We’ve

done this because it’s simpler and uses less

code than creating a new window to accept

the information.

12 The client
Create a new fi le for the client as we did

for the server and open it in your favourite editor.

The client requires the same imports as the

server, as well as the gtk, gobject and datetime

libraries. One important thing we need to do is to

tell GObject that we’ll be using threading, so we

can call functions from other threads and have

the main window, which is running in the main

GTK thread, update.

class MainWindow(gtk.Window):

 def __init__(self):

Initialise base gtk window class

 super(MainWindow, self).__

init__()

Create controls

 self.set_title("IM Client")

 vbox = gtk.VBox()

 hbox = gtk.HBox()

 self.username_label = gtk.

Label()

 self.text_entry = gtk.

Entry()

 send_button = gtk.

Button("Send")

 self.text_buffer = gtk.

TextBuffer()

 text_view = gtk.

TextView(self.text_buffer)

Connect events

 self.connect("destroy",

self.graceful_quit)

 send_button.

connect("clicked", self.send_

message)

Activate event when user presses

Enter

 self.text_entry.

connect("activate", self.send_

message)

Do layout

 vbox.pack_start(text_view)

 hbox.pack_start(self.

username_label, expand = False)

 We need to tell GObject that we’ll be
using threading

 def handle_msg(self, data):

Print and then process the message

we’ve just recieved

 print "{0} sent: {1}".

format(self.address, data)

Use regular expressions to test for

a message like "USERNAME liam"

 username_result =

re.search('^USERNAME (.*)$', data)

 if username_result:

 self.username =

username_result.group(1)

 self.server.echo("{0}

has joined.\n".format(self.

username))

 elif data == "QUIT":

If the client has sent quit then

close this thread

 self.quit()

 elif data == "":

The socket at the other end is

probably closed

 self.quit()

 else:

It's a normal message so echo it to

everyone

 self.server.echo(data)

#!/usr/bin/env python2

The client side of an instant

messaging application. Written as

part of a Linux User & Developer

tutorial by Liam Fraser in 2013.

import threading

import gtk

import gobject

import socket

import re

import time

import datetime

Tell gobject to expect calls from

multiple threads

gobject.threads_init()

Work with Python

14 Confi guring the client
This code is run after we’ve added the

controls to the main window, and asks the user

for input. Currently, the application will exit if the

user enters an incorrect server address or port;

but this isn’t a production system, so that’s fi ne.

 def configure(self):

Performs the steps to connect to

the server

Show a dialog box asking for server

address followed by a port

 server = self.ask_for_

info("server_address:port")

Regex that crudely matches an IP

address and a port number

 regex = re.search('^(\d+\.\

d+\.\d+\.\d+):(\d+)$', server)

 address = regex.group(1).

strip()

 port = regex.group(2).

strip()

Ask for a username

 self.username = self.ask_

for_info("username")

 self.username_label.set_

text(self.username)

Attempt to connect to the server

and then start listening

 self.network =

Networking(self, self.username,

address, int(port))

 self.network.listen()

 The server is going to echo the
message to each client

15 The remainder of MainWindow
The rest of the MainWindow class has

plenty of comments to explain itself, as follows.

One thing to note is that when a client sends a

message, it doesn’t display it in the text view

straight away. The server is going to echo the

message to each client, so the client simply

displays its own message when the server

echoes it back. This means that you can tell if

the server is not receiving your messages when

you don’t see a message that you send.

 def add_text(self, new_text):

Add text to the text view

 text_with_timestamp = "{0}

{1}".format(datetime.datetime.now(),

new_text)

Get the position of the end of

the text buffer, so we know where to

insert new text

 end_itr = self.text_buffer.

get_end_iter()

Add new text at the end of the buffer

 self.text_buffer.insert(end_

itr, text_with_timestamp)

 def send_message(self, widget):

Clear the text entry and send the

message to the server

We don't need to display it as it

will be echoed back to each client,

including us.

 new_text = self.text_entry.

get_text()

 self.text_entry.set_text("")

 message = "{0} says: {1}\n".

format(self.username, new_text)

 self.network.send(message)

 def graceful_quit(self, widget):

When the application is closed,

tell GTK to quit, then tell the

server we are quitting and tidy up

the network

 gtk.main_quit()

 self.network.send("QUIT")

 self.network.tidy_up()

 hbox.pack_start(self.text_

entry)

 hbox.pack_end(send_button,

expand = False)

 vbox.pack_end(hbox, expand

= False)

Show ourselves

 self.add(vbox)

 self.show_all()

Go through the configuration

process

 self.configure()

 def ask_for_info(self,

question):

Shows a message box with a text

entry and returns the response

 dialog = gtk.

MessageDialog(parent = self, type =

gtk.MESSAGE_QUESTION,

flags = gtk.DIALOG_MODAL |

gtk.DIALOG_DESTROY_WITH_PARENT,

buttons = gtk.BUTTONS_OK_CANCEL,

message_format = question)

 entry = gtk.Entry()

 entry.show()

 dialog.vbox.pack_end(entry)

 response = dialog.run()

 response_text = entry.

get_text()

 dialog.destroy()

 if response == gtk.RESPONSE_

OK:

 return response_text

 else:

 return None

Work with Python

The Python Book 97

17 Running a function as a thread
The listener function above will be run

as a thread. This is trivial to do. Enabling the

daemon option on the thread means that it will

die if the main thread unexpectedly ends.

 def listen(self):

Start the listening thread

 self.listen_thread =

threading.Thread(target=self.

listener)

Stop the child thread from keeping

the application open

 self.listen_thread.daemon =

True

 self.listen_thread.start()

18 Finishing the Networking class
Again, most of this code is similar to

the code in the server’s Networking class. One

19 Starting the client
The main window is started by initialising

an instance of the class. Notice that we don’t

need to store anything that is returned. We then

start the GTK thread by calling gtk.main().

if __name__ == "__main__":

Create an instance of the main

window and start the gtk main loop

 MainWindow()

 gtk.main()

21 That’s it!
So, it’s not perfect and could be a little

more robust in terms of error handling, but we

have a working instant messenger server that

can accept multiple clients and relay messages

between them. More importantly, we have

learned a bunch of new concepts and methods

of working.

20 Trying it out
You’ll want a few terminals: one to

start the server, and some to run clients. Once

you’ve started the server, open an instance of

the client and enter 127.0.0.1:port, where

‘port’ is the port you decided to use. The server

will print the port it’s listening on to make this

easy. Then enter a username and click OK. Here

is an example output from the server with two

clients. You can use the client over a network

by replacing 127.0.0.1 with the IP address of the

server. You may have to let the port through your

computer’s firewall if it’s not working.

[liam@liam-laptop Python]$./IM-

Server.py

Listening on port 59091

Listening for more clients

Starting client thread for

('127.0.0.1', 38726)

('127.0.0.1', 38726) sent: USERNAME

client1

echoing: client1 has joined.

Listening for more clients

Starting client thread for

('127.0.0.1', 38739)

('127.0.0.1', 38739) sent: USERNAME

client2

echoing: client2 has joined.

Listening for more clients

('127.0.0.1', 38739) sent: client2

says: Hi

echoing: client2 says: Hi

('127.0.0.1', 38726) sent: client1

says: Hi

echoing: client1 says: Hi

('127.0.0.1', 38726) sent: QUIT

echoing: client1 has quit.

Ending client thread for

('127.0.0.1', 38726)

^CTidying up

echoing: QUIT

Could not accept any more

connections

('127.0.0.1', 38739) sent:

echoing: client2 has quit.

Ending client thread for

('127.0.0.1', 38739)

difference is that we want to add some things to

the text view of our window. We do this by using

the idle_add function of GObject. This allows

us to call a function that will update the window

running in the main thread when it is not busy.

 def send(self, message):

Send a message to the server

 print "Sending: {0}".

format(message)

 try:

 self.socket.

sendall(message)

 except socket.error:

 print "Unable to send

message"

 def tidy_up(self):

We'll be tidying up if either we are

quitting or the server is quitting

 self.listening = False

 self.socket.close()

We won't see this if it's us

that's quitting as the window will

be gone shortly

 gobject.idle_add(self.

window.add_text, "Server has

quit.\n")

 def handle_msg(self, data):

 if data == "QUIT":

Server is quitting

 self.tidy_up()

 elif data == "":

Server has probably closed

unexpectedly

 self.tidy_up()

 else:

Tell the GTK thread to add some

text when it's ready

 gobject.idle_add(self.

window.add_text, data)

16 The client’s Networking class
Much of the client’s Networking class is

similar to that of the server’s. One difference is

that the class doesn’t inherit the Thread class –

we just start one of its functions as a thread.

class Networking():

 def __init__(self, window,

username, server, port):

Set up the networking class

 self.window = window

 self.socket = socket.

socket(socket.AF_INET, socket.SOCK_

STREAM)

 self.socket.connect((server,

port))

 self.listening = True

 # Tell the server that a new user

has joined

 self.send("USERNAME {0}".

format(username))

 def listener(self):

A function run as a thread that

listens for new messages

 while self.listening:

 data = ""

 try:

 data = self.socket.

recv(1024)

 except socket.error:

 "Unable to recieve

data"

 self.handle_msg(data)

Don't need the while loop to be

ridiculously fast

 time.sleep(0.1)

98 The Python Book

Work with Python

Python is a great programming language, but did you know that
it is even capable of replacing your primary shell (command-line
interface)? Here, we explain all…

We all use shell on a daily basis. For most

of us, shell is the gateway into our Linux

system. For years and even today, Bash has

been the default shell for Linux. But it is getting a

bit long in the tooth.

No need to be offended: we still believe Bash

is the best shell out there when compared to

some other UNIX shells such as Korn Shell

(KSH), C Shell (CSH) or even TCSH.

This tutorial is not about Bash being

incapable, but it is about how to breathe

completely new life into the shell to do old

things conveniently and new things which were

previously not possible, even by a long shot. So,

without further delay, let’s jump in.

While the Python programming language

may require you to write longer commands to

accomplish a task (due to the way Python’s

modules are organised), this is not something

to be particularly concerned about. You can

easily write aliases to the equivalent of the Bash

command that you intend to replace. Most of

the time there will be more than one way to do

a thing, but you will need to decide which way

works best for you.

Python provides support for executing

system commands directly (via the os or

subprocess module), but where possible we will

focus on Python-native implementations, as

this allows us to develop portable code.

Replace your shell
with Python

You will require a version of Python installed on
your system. The good news is you don’t have to
do anything to get it installed. Most of the Linux
distributions already ship with either Python 2.6 or
Python 2.7

Resources

The Python Book 99

Work with Python

 You can easily write aliases to the
equivalent of the Bash command that
you intend to replace

SECTION 1: Completing basic shell
tasks in Python

1. File management
The Python module shutil provides support for

file and directory operations. It provides support

for file attributes, directory copying, archiving

etc. Let’s look at some of its important functions.

shutil module

copy (src,dst): Copy the src file to

the destination directory. In this

mode permissions bits are copied but

metadata is not copied.

copy2 (src,dst): Same as copy() but

also copies the metadata.

copytree(src, dst[, symlinks=False[,

ignore=None]]): This is similar to ‘cp

-r’, it allows you to copy an entire

directory.

ignore_patterns (*patterns): ignore_

patterns is an interesting function

that can be used as a callable for

copytree(), it allows you to ignore

files and directories specified by the

glob-style patterns.

rmtree(path[, ignore_errors[,

onerror]]): rmtree() is used to delete

an entire directory.

move(src,dst): Similar to mv command it

allows you to recessively move a file

or directory to a new location.

Example:

>>>from shutil import copytree, ignore_

patterns

>>>copytree(source, destination,

ignore=ignore_patterns(‘*.pyc’,

‘tmp*’))

make_archive(base_name, format[, root_

dir[, base_dir[, verbose[, dry_run[,

owner[, group[, logger]]]]]]] : Think

of this as a replacement for tar, zip,

bzip etc. make_archive() creates an

archive file in the given format

such as zip, bztar, tar , gztar.

Archive support can be extended via

Python modules.

Example

>>> from shutil import make_archive

>>> import os

>>> archive_name = os.path.

expanduser(os.path.join(‘~’,

‘ludarchive’))

>>> root_dir = os.path.expanduser(os.

path.join(‘~’, ‘.ssh’))

>>> make_archive(archive_name, ‘gztar’,

root_dir)

‘/Users/kunal/ludarchive.tar.gz’

2. Interfacing operating system &
subprocesses
Python provides two modules to interface

with the OS and to manage processes, called

os and subprocess. These modules allow you

to interact with the core operating system

shell and let you work with the environment,

processes, users and file descriptors.

The subprocess module was introduced to

support better management of subprocesses

(part of which already exists in the os

module) in Python and is aimed to replace

os.system, os.spawn*, os.popen, popen2.* and

commands.* modules.

os module

environ: environment represents the OS

environment variables in a string object.

example:

>>> import os

>>> os.environ

{‘VERSIONER_PYTHON_PREFER_32_BIT’:

‘no’, ‘LC_CTYPE’: ‘UTF-8’, ‘TERM_

PROGRAM_VERSION’: ‘297’, ‘LOGNAME’:

‘kunaldeo’, ‘USER’: ‘kunaldeo’, ‘PATH’:

‘/System/Library/Frameworks/Python.

framework/Versions/2.7/bin:/Users/

kunaldeo/narwhal/bin:/opt/local/sbin:/

usr/local/bin:/usr/bin:/bin:/usr/sbin:/

sbin:/usr/local/bin:/usr/X11/bin:/opt/

local/bin:/Applications/MOTODEV_Studio_

For_Android_2.0.0_x86/android_sdk/

tools:/Applications/MOTODEV_Studio_For_

Android_2.0.0_x86/android_sdk/platform-

tools:/Volumes/CyanogenModWorkspace/

bin’, ‘HOME’: ‘/Users/kunaldeo’,

‘PS1’: ‘\\[\\e[0;32m\\]\\u\\[\\e[m\\]

\\[\\e[1;34m\\]\\w\\[\\e[m\\] \\

[\\e[1;32m\\]\\$\\[\\e[m\\] \\

[\\e[1;37m\\]’, ‘NARWHAL_ENGINE’:

‘jsc’, ‘DISPLAY’: ‘/tmp/launch-s2LUfa/

org.x:0’, ‘TERM_PROGRAM’: ‘Apple_

Terminal’, ‘TERM’: ‘xterm-color’,

‘Apple_PubSub_Socket_Render’: ‘/tmp/

launch-kDul5P/Render’, ‘VERSIONER_

PYTHON_VERSION’: ‘2.7’, ‘SHLVL’:

‘1’, ‘SECURITYSESSIONID’: ‘186a5’,

‘ANDROID_SDK’: ‘/Applications/MOTODEV_

Studio_For_Android_2.0.0_x86/android_

sdk’,’_’: ‘/System/Library/Frameworks/

Python.framework/Versions/2.7/bin/

python’, ‘TERM_SESSION_ID’: ‘ACFE2492-

BB5C-418E-8D4F-84E9CF63B506’, ‘SSH_

AUTH_SOCK’: ‘/tmp/launch-dj6Mk4/

Listeners’, ‘SHELL’: ‘/bin/bash’,

‘TMPDIR’: ‘/var/folders/6s/pgknm8b118

737mb8psz8x4z80000gn/T/’, ‘LSCOLORS’:

‘ExFxCxDxBxegedabagacad’, ‘CLICOLOR’:

‘1’, ‘__CF_USER_TEXT_ENCODING’:

‘0x1F5:0:0’, ‘PWD’: ‘/Users/kunaldeo’,

‘COMMAND_MODE’: ‘unix2003’}

You can also find out the value for an

environment value:

>>> os.environ[‘HOME’]

‘/Users/kunaldeo’

putenv(varname,value) : Adds or sets

an environment variable with the given

variable name and value.

getuid() : Return the current process’s

user id.

getlogin() : Returns the username of

currently logged in user

getpid(pid) : Returns the process group

id of given pid. When used without

any parameters it simply returns the

current process id.

getcwd() : Return the path of the

current working directory.

chdir(path) : Change the current

working directory to the given path.

100 The Python Book

Work with Python

listdir(path) : Similar to ls, returns

a list with the content of directories

and file available on the given path.

Example:

>>> os.listdir(“/home/homer”)

[‘.gnome2’, ‘.pulse’, ‘.gconf’,

‘.gconfd’, ‘.beagle’, ‘.gnome2_

private’, ‘.gksu.lock’, ‘Public’,

‘.ICEauthority’, ‘.bash_history’,

‘.compiz’, ‘.gvfs’, ‘.update-

notifier’, ‘.cache’, ‘Desktop’,

‘Videos’, ‘.profile’, ‘.config’,

‘.esd_auth’, ‘.viminfo’, ‘.sudo_

as_admin_successful’, ‘mbox’,

‘.xsession-errors’, ‘.bashrc’, ‘Music’,

‘.dbus’, ‘.local’, ‘.gstreamer-0.10’,

‘Documents’, ‘.gtk-bookmarks’,

‘Downloads’, ‘Pictures’, ‘.pulse-

cookie’, ‘.nautilus’, ‘examples.

desktop’, ‘Templates’, ‘.bash_logout’]

mkdir(path[, mode]) : Creates a

directory with the given path with the

numeric code mode. The default mode is

0777.

makedirs(path[, mode]) : Creates given

path (inclusive of all its directories)

recursively. The default mode is 0777.

:

Example:

>>> import os

>>> path = “/home/kunal/greatdir”

>>> os.makedirs(path, 0755);

rename (old,new) : The file or

directory “old” is renamed to “new”

If “new” is a directory, an error

will be raised. On Unix and Linux, if

“new” exists and is a file, it will

be replaced silently if the user has

permission to do so.

renames (old,new) : Similar to rename

but also creates any directories

recessively if necessary.

rmdir(path) : Remove directory from the

path mentioned. If the path already

has files you will need to use shutil.

rmdtree()

subprocess:

call(*popenargs, **kwargs) : Runs the

command with arguments. On process

completion it returns the returncode

attribute.

Example:

>>> import subprocess

>>> print subprocess.call([“ls”,”-l”])

total 3684688

drwx------+ 5 kunaldeo staff

170 Aug 19 01:37 Desktop

drwx------+ 10 kunaldeo staff

340 Jul 26 08:30 Documents

drwx------+ 50 kunaldeo staff

1700 Aug 19 12:50 Downloads

drwx------@ 127 kunaldeo staff

4318 Aug 19 01:43 Dropbox

drwx------@ 42 kunaldeo staff

1428 Aug 12 15:17 Library

drwx------@ 3 kunaldeo staff

102 Jul 3 23:23 Movies

drwx------+ 4 kunaldeo staff

136 Jul 6 08:32 Music

drwx------+ 5 kunaldeo staff

170 Aug 12 11:26 Pictures

drwxr-xr-x+ 5 kunaldeo staff

170 Jul 3 23:23 Public

-rwxr-xr-x 1 kunaldeo staff

1886555648 Aug 16 21:02 androidsdk.tar

drwxr-xr-x 5 kunaldeo staff

170 Aug 16 21:05 sdk

drwxr-xr-x 19 kunaldeo staff

646 Aug 19 01:47 src

-rw-r--r-- 1 root staff

367 Aug 16 20:36 umbrella0.log

STD_INPUT_HANDLE: The standard input

device. Initially, this is the console input buffer.

STD_OUTPUT_HANDLE: The standard output

device. Initially, this is the active console

screen buffer.

STD_ERROR_HANDLE: The standard error

device. Initially, this is the active console

screen buffer.

SECTION 2: IPython: a ready-made
Python system shell replacement

In section 1 we have introduced you to the

Python modules which allow you to do system

shell-related tasks very easily using vanilla

Python. Using the same features, you can build

a fully featured shell and remove a lot of Python

boilerplate code along the way. However, if

you are kind of person who wants everything

ready-made, you are in luck. IPython provides a

powerful and interactive Python shell which you

can use as your primary shell. IPython supports

Python 2.6 to 2.7 and 3.1 to 3.2 . It supports

two type of Python shells: Terminal based and

Qt based.

Just to reiterate, IPython is purely implemented

in Python and provides a 100% Python-

compliant shell interface, so everything you

have learnt in section 1 can be run inside

IPython without any problems.

IPython is already available in most Linux

distributions. Search your distro’s repositories to

look for it. In case you are not able to find it, you

can also install it using easy_install or PyPI.

IPython provides a lot of interesting features

which makes it a great shell replacement…

Tab completion: Tab completion provides an

excellent way to explore any Python object that

you are working with. It also helps you to avoid

making typos.

Example :

In [3]: import o {hit tab}

objc opcode operator

optparse os os2emxpath

In [3]: import os

In [4]: os.p {hit tab}

os.pardir os.pathconf_names

os.popen os.popen4

os.path os.pathsep

os.popen2 os.putenv

os.pathconf os.pipe

os.popen3

Built In Object Explorer: You can add

‘?’ after any Python object to view

its details such as Type, Base Class,

String Form, Namespace, File and

Docstring.

Example:

In [28]: os.path?

Type: module

Base Class: <type ‘module’>

String Form:<module ‘posixpath’ from

‘/System/Library/Frameworks/Python.

framework/Versions/2.7/lib/python2.7/

posixpath.pyc’>

Namespace: Interactive

File: /System/Library/Frameworks/

The Python Book 101

Work with Python

As you can see, it’s easy to tailor Python

for all your shell environment needs.

Python modules like os, subprocess

and shutil are available at your

disposal to do just about everything

you need using Python. IPython turns

this whole experience into an even

more complete package. You get to do

everything a standard Python shell

does and with much more convenient

features. IPython’s magic functions

really do provide a magical Python shell

experience. So next time you open a

Bash session, think again: why settle for

gold when platinum is a step away?

 IPython also comes with its own
Qt-based console
Python.framework/Versions/2.7/lib/

python2.7/posixpath.py

Docstring:

Common operations on POSIX pathnames.

Instead of importing this module directly, import

os and refer to this module as os.path. The

‘os.path’ name is an alias for this module on

POSIX systems; on other systems (eg Mac,

Windows), os.path provides the same operations

in a manner specific to that platform, and is an

alias to another module (eg macpath, ntpath).

Some of this can actually be useful on non-

POSIX systems too, eg for manipulation of the

pathname component of URLs.

You can also use double question marks (??) to

view the source code for the relevant object.

Magic functions: IPython comes with a set of

predefined ‘magic functions’ that you can call

with a command-line-style syntax. IPython

‘magic’ commands are conventionally prefaced

by %, but if the flag %automagic is set to on,

then you can call magic commands without the

preceding %.

To view a list of available magic functions,

you can use ‘magic function %lsmagic’. Magic

functions include functions that work with code

such as %run, %edit, %macro, %recall etc;

functions that affect shell such as %colors,

%xmode, %autoindent etc; and other functions

such as %reset, %timeit, %paste etc. Most of

the cool features of IPython are powered using

magic functions.

Example:

In [45]: %lsmagic

Available magic functions:

%alias %autocall %autoindent

%automagic %bookmark %cd %colors

%cpaste %debug %dhist %dirs

%doctest_mode %ed %edit %env %gui

%hist %history %install_default_

config %install_profiles %load_ext

%loadpy %logoff %logon %logstart

%logstate %logstop %lsmagic %macro

%magic %page %paste %pastebin %pdb

%pdef %pdoc %pfile %pinfo %pinfo2

%popd %pprint %precision %profile

%prun %psearch %psource %pushd %pwd

%pycat %pylab %quickref %recall

%rehashx %reload_ext %rep %rerun

%reset %reset_selective %run %save

%sc %sx %tb %time %timeit %unalias

%unload_ext %who %who_ls %whos

%xdel %xmode

Automagic is OFF, % prefix IS needed

for magic functions

To view help on any Magic Function, call

‘%somemagic?’ to read its docstring.

Python script execution and runtime code

editing: You can use %run to run any Python

script. You can also control-run the Python

script with pdb debugger using -d, or pdn

profiler using -p. You can also edit a Python

script using the %edit command. %edit will

open the given Python script in the editor

defined by the $EDITOR environment variable.

Shell command support: If you are in the mood

to just run a shell command, you can do it very

easily by prefixing the command with ! .

Example :

In [5]: !ps

 PID TTY TIME CMD

 4508 ttys000 0:00.07 -bash

84275 ttys001 0:00.03 -bash

17958 ttys002 0:00.18 -bash

In [8]: !clang prog.c -o prog

prog.c:2:1: warning: type specifier

missing, defaults to ‘int’ [-Wimplicit-

int]

main()

^~~~

1 warning generated.

Qt console : IPython also comes with its own

Qt-based console. This provides a number of

features that are only available in a GUI, such

as inline figures, multiline editing with syntax

highlighting, and graphical calltips .

You can start the Qt console with:

$ ipython qtconsole

If you get errors related to missing modules,

make sure that you have installed the dependent

packages, such as PyQt, pygments, pyexpect

and ZeroMQ.

 IPython Qt console with GUI capabilities

102 The Python Book

Work with Python

Learn how Python can help in system administration as it dares to
replace the usual shell scripting…

Python for system
administrators

Parsing configuration files
Configuration files provide a way for applications

to store various settings. In order to write a

script that allows you to modify settings of a

particular application, you should be able to

parse the configuration file of the application.

In this section we learn how to parse INI-style

configuration files. Although old, the INI file

format is very popular with much modern open

source software, such as PHP and MySQL.

Excerpt for php.ini configuration file:

[PHP]

engine = On

zend.ze1_compatibility_mode = Off

short_open_tag = On

asp_tags = Off

precision = 14

y2k_compliance = On

output_buffering = 4096

;output_handler =

zlib.output_compression = Off

[MySQL]

; Allow or prevent persistent links.

mysql.allow_persistent = On

mysql.max_persistent = 20

mysql.max_links = -1

mysql.default_port = 3306

mysql.default_socket =

mysql.default_host = localhost

mysql.connect_timeout = 60

mysql.trace_mode = Off

Python provides a built-in module called

ConfigParser (known as configparser in Python

3.0). You can use this module to parse and create

configuration files.

@code: writeconfig.py

@description: The following demonstrates

adding MySQL section to the php.ini file.

@warning: Do not use this script with the

actual php.ini file, as it’s not designed to

handle all aspects of a complete php.ini file.

import ConfigParser

config = ConfigParser.

RawConfigParser()

config.add_section(‘MySQL’)

config.set(‘MySQL’,’mysql.trace_

mode’,’Off’)

config.set(‘MySQL’,’mysql.connect_

timeout’,’60’)

config.set(‘MySQL’,’mysql.default_

host’,’localhost’)

config.set(‘MySQL’,’mysql.default_

port’,’3306’)

config.set(‘MySQL’,’mysql.allow_

persistent’, ‘On’)

config.set(‘MySQL’,’mysql.max_

persistent’,’20’)

with open(‘php.ini’, ‘ap’) as

configfile:

 config.write(configfile)

Output:php.ini

[MySQL]

mysql.max_persistent = 20

mysql.allow_persistent = On

mysql.default_port = 3306

mysql.default_host = localhost

mysql.trace_mode = Off

mysql.connect_timeout = 60

@code: parseconfig.py

@description: Parsing and updating the config

file

import ConfigParser

config = ConfigParser.ConfigParser()

config.read(‘php.ini’)

Print config values

print config.get(‘MySQL’,’mysql.

System administration is an important part of

our computing environment. It does not matter

whether you are managing systems at your work

our home. Linux, being a UNIX-based operating

system, already has everything a system

administrator needs, such as the world-class

shells (not just one but many, including Bash, csh,

zsh etc), handy tools, and many other features

which make the Linux system an administrator’s

dream. So why do we need Python when Linux

already has everything built-in? Being a dynamic

scripting language, Python is very easy to read

and learn. That’s just not us saying that, but

many Linux distributions actually use Python

in core administrative parts. For example, Red

Hat (and Fedora) system setup tool Anaconda

is written in Python (read this line again, got the

snake connection?). Also, tools like GNU Mailman,

CompizConfig Settings Manager (CCSM) and

hundreds of tiny GUI and non-GUI configuration

tools are written using Python. Python does not

limit you on the choice of user interface to follow

– you can build command-line, GUI and web apps

using Python. This way, it has got covered almost

all the possible interfaces.

Here we will look into executing sysadmin-

related tasks using Python.

Python-devel Python development
libraries, required for compiling
third-party Python module

setuptools setuptools allows you to
download, build, install, upgrade,
and uninstall Python packages
with ease

Resources

Note
This is written for the Python 2.X series,
as it is still the most popular and default
Python distribution across all the
platforms (including all Linux distros,
BSDs and Mac OS X).

The Python Book 103

Work with Python

default_host’)

print config.get(‘MySQL’,’mysql.

default_port’)

config.remove_option(‘MySQL’,’mysql.

trace_mode’)

with open(‘php.ini’, ‘wb’) as

configfile:

 config.write(configfile)

Parsing JSON data
JSON (also known as JavaScript Object

Notation) is a lightweight modern data-

interchange format. JSON is an open standard

under ECMA-262. It is a text format and is

completely language-independent. JSON

is also used as the configuration file format

for modern applications such as Mozilla

Firefox and Google Chrome. JSON is also

very popular with modern web services such

as Facebook, Twitter, Amazon EC2 etc. In

this section we will use the Python module

‘simplejson’ to access Yahoo Search (using

the Yahoo Web Services API), which outputs

JSON data.

To use this section, you should have the

following:

1. Python module: simplejson.

Note: You can install Python modules using the

command ‘easy_install <module name>’. This

command assumes that you have a working

internet connection.

2. Yahoo App ID: The Yahoo App ID can be

created from https://developer.apps.yahoo.

com/dashboard/createKey.html. The Yahoo

App ID will be generated on the next page. See

the screenshot below for details.

Generating the Yahoo App ID

simplejson is very easy to use. In the following

example we will use the capability of mapping

JSON data structures directly to Python data

types. This gives us direct access to the JSON

data without developing any XML parsing code.

JSON PYTHON DATA MAPPING

JSON Python

object dict

array list

string unicode

number (int) int, long

number (real) float

TRUE TRUE

FALSE FALSE

null None

For this section we will use the simplejson.

load function, which allows us to deserialise a

JSON object into a Python object.

@code: LUDSearch.py

import simplejson, urllib

APP_ID = ‘xxxxxxxx’ # Change this to

your APP ID

SEARCH_BASE = ‘http://search.

yahooapis.com/WebSearchService/V1/

webSearch’

class YahooSearchError(Exception):

 pass

def search(query, results=20,

start=1, **kwargs):

 kwargs.update({

 ‘appid’: APP_ID,

 ‘query’: query,

 ‘results’: results,

 ‘start’: start,

 ‘output’: ‘json’

 })

 url = SEARCH_BASE + ‘?’ +

urllib.urlencode(kwargs)

 result = simplejson.load(urllib.

urlopen(url))

 if ‘Error’ in result:

 # An error occurred; raise

an exception

 raise YahooSearchError,

result[‘Error’]

 return result[‘ResultSet’]

Let’s use the above code from the Python shell

to see how it works. Change to the directory

where you have saved the LUDYSearch.py and

open a Python shell.

@code: Python Shell Output. Lines starting

with ‘>>>’ indicate input

>>> execfile(“LUDYSearch.py”)

>>> results = search(‘Linux User and

Developer’)

>>> results[‘totalResultsAvailable’]

123000000

>>> results[‘totalResultsReturned’]

20

>>> items = results[‘Result’]

>>> for Result in items:

... print

Result[‘Title’],Result[‘Url’]

...

Linux User http://www.linuxuser.

co.uk/

Linux User and Developer -

Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Linux_

User_and_Developer

Linux User &amp; Developer |

Linux User http://www.linuxuser.

co.uk/tag/linux-user-developer/

Gathering system
information
One of the important jobs of a system

administrator is gathering system information.

In this section we will use the SIGAR (System

Information Gatherer And Reporter) API to

demonstrate how we can gather system

information using Python. SIGAR is a very

complete API and it can provide lot of

information, including the following:

1. System memory, swap, CPU, load average,

uptime, logins.

2. Per-process memory, CPU, credential info,

state, arguments, environment, open files.

3. File system detection and metrics.

4. Network interface detection, configuration

info and metrics.

5. TCP and UDP connection tables.

6. Network route table.

Installing SIGAR
The first step is to build and install SIGAR. SIGAR

is hosted at GitHub, so make sure that you have

Git installed in your system. Then perform

the following steps to install SIGAR and its

Python bindings:

$ git clone git://github.com/

hyperic/sigar.git sigar.git

$ cd sigar.git/bindings/python

$ sudo python setup.py install

 Python doesn’t
limit your choice
of interface

104 The Python Book

Work with Python

At the end you should see a output similar to

the following :

Writing /usr/local/lib/python2.6/

dist-packages/pysigar-0.1.egg-info

SIGAR is a very easy-to-use library and can be

used to get information on almost every aspect of

a system. The next example shows you how.

The following code shows the memory and the

file system information

@code: PySysInfo.py

import os

import sigar

sg = sigar.open()

mem = sg.mem()

swap = sg.swap()

fslist = sg.file_system_list()

print “==========Memory

Information==============”

print “\tTotal\tUsed\tFree”

print “Mem:\t”,\

 (mem.total() / 1024), \

 (mem.used() / 1024), \

 (mem.free() / 1024)

print “Swap:\t”, \

 (swap.total() / 1024), \

 (swap.used() / 1024), \

 (swap.free() / 1024)

print “RAM:\t”, mem.ram(), “MB”

print “==========File System

Information===============”

def format_size(size):

 return sigar.format_size(size *

1024)

print ‘Filesystem\tSize\tUsed\

tAvail\tUse%\tMounted on\tType\n’

for fs in fslist:

 dir_name = fs.dir_name()

 usage = sg.file_system_

usage(dir_name)

 total = usage.total()

 used = total - usage.free()

 avail = usage.avail()

 pct = usage.use_percent() * 100

 if pct == 0.0:

 pct = ‘-’

 print fs.dev_name(), format_

size(total), format_size(used),

format_size(avail),\

 pct, dir_name, fs.sys_type_

name(), ‘/’, fs.type_name()

@Output

==========Memory

Information==============

 Total Used Free

Mem: 8388608 6061884 2326724

Swap: 131072 16048 115024

RAM: 8192 MB

==========File System

Information===============

Filesystem Size Used Avail

Use% Mounted on Type

/dev/disk0s2 300G 175G 124G 59.0 / hfs

/ local

devfs 191K 191K 0 - /dev devfs /

none

Accessing Secure Shell
(SSH) services
SSH (Secure Shell) is a modern replacement for an

old remote shell system called Telnet. It allows data

to be exchanged using a secure channel between

two networked devices. System administrators

frequently use SSH to administrate networked

systems. In addition to providing remote shell, SSH

is also used for secure file transfer (using SSH File

Transfer Protocol, or SFTP) and remote X server

forwarding (allows you to use SSH clients as X

server). In this section we will learn how to use the

SSH protocol from Python using a Python module

called paramiko, which implements the SSH2

protocol for Python.

paramiko can be installed using the following

steps:

$ git clone https://github.com/robey/

paramiko.git

$ cd paramiko

$ sudo python setup.py install

To the core of paramiko is the

SSHClient class. This class

wraps L{Transport}, L{Channel}, and L{SFTPClient}

to handle most of the aspects of SSH. You can use

SSHClient as:

 client = SSHClient()

 client.load_system_host_keys()

 client.connect(‘some.host.com’)

 stdin, stdout, stderr = client.exec_

command(‘dir’)

The following example demonstrates a full SSH

client written using the paramiko module.

@code: PySSHClient.py

import base64, getpass, os, socket, sys,

socket, traceback

import paramiko

import interactive

setup logging

paramiko.util.log_to_file(‘demo_simple.

log’)

get hostname

username = ‘’

if len(sys.argv) > 1:

 hostname = sys.argv[1]

 if hostname.find(‘@’) >= 0:

 username, hostname = hostname.

Note
If you are confused with the tab spacing of
the code, look for the code files on FileSilo.

split(‘@’)

else:

 hostname = raw_input(‘Hostname: ‘)

if len(hostname) == 0:

 print ‘*** Hostname required.’

 sys.exit(1)

port = 22

if hostname.find(‘:’) >= 0:

 hostname, portstr = hostname.

split(‘:’)

 port = int(portstr)

get username

if username == ‘’:

 default_username = getpass.

getuser()

 username = raw_input(‘Username

[%s]: ‘ % default_username)

 if len(username) == 0:

 username = default_username

password = getpass.getpass(‘Password

for %s@%s: ‘ % (username, hostname))

now, connect and use paramiko

Client to negotiate SSH2 across the

connection

try:

 client = paramiko.SSHClient()

 client.load_system_host_keys()

 client.set_missing_host_key_

policy(paramiko.WarningPolicy)

 print ‘*** Connecting...’

 client.connect(hostname, port,

username, password)

 chan = client.invoke_shell()

 print repr(client.get_transport())

 print ‘*** SSH Server Connected!

***’

 print

 interactive.interactive_

shell(chan)

 chan.close()

 client.close()

except Exception, e:

 print ‘*** Caught exception: %s:

%s’ % (e.__class__, e)

 traceback.print_exc()

 try:

 client.close()

 except:

 pass

 sys.exit(1)

To run this code you will also need a custom

Python class interactive.py which implements

The Python Book 105

Work with Python

Administrators are comfortable with running raw
scripts by hand, but end-users are not. So if you
are writing a script that is supposed to be used by
common users, it is a good idea to create a user-
friendly interface on top of the script. This way
end-users can run the scripts just like any other
application. To demonstrate this, we will create
a simple GRUB configuration tool which allows
users to select default boot entry and the timeout.
We will be creating a TUI (text user interface)
application and will use the Python module
‘snack’ to facilitate this (not to be confused with
the Python audio library, tksnack).

This app consists of two files…

grub.py: GRUB Config File (grub.conf) Parser
(available on FileSilo). It implements two main
functions, readBootDB() and writeBootFile(),
which are responsible for reading and writing the
GRUB configuration file.

grub_tui.py: Text user interface file for
manipulating the GRUB configuration file using
the functions available in grub.py.

@code:grub_tui.py

import sys

from snack import *

from grub import (readBootDB,

writeBootFile)

def main(entry_

value=’1’,kernels=[]):

 try:

 (default_value, entry_

value, kernels)=readBootDB()

 except:

 print >> sys.stderr,

(“Error reading /boot/grub/grub.

conf.”)

 sys.exit(10)

 screen=SnackScreen()

 while True:

 g=GridForm(screen, (“Boot

configuration”),1,5)

 if len(kernels)>0 :

li=Listbox(height=len(kernels),

width=20, returnExit=1)

 for i, x in

enumerate(kernels):

 li.append(x,i)

 g.add(li, 0, 0)

li.setCurrent(default_value)

 bb = ButtonBar(screen,

Writing a user interface using Python
Learn how to create a user-friendly interface using Python

(((“Ok”), “ok”), ((“Cancel”),

“cancel”)))

 e=Entry(3, str(entry_

value))

 l=Label((“Timeout (in

seconds):”))

 gg=Grid(2,1)

 gg.setField(l,0,0)

 gg.setField(e,1,0)

 g.add(Label(‘’),0,1)

 g.add(gg,0,2)

 g.add(Label(‘’),0,3)

 g.add(bb,0,4,growx=1)

 result = g.runOnce()

 if

bb.buttonPressed(result) ==

‘cancel’:

 screen.finish()

 sys.exit(0)

 else:

 entry_value =

e.value()

 try :

 c = int(entry_

value)

 break

 except ValueError:

 continue

 writeBootFile(c,

li.current())

 screen.finish()

if __name__== ‘__main__’:

 main()

Start the tool using the sudo

command (as it reads the grub.

conf file)

$ sudo grub_tui.py

the interactive shell for the SSH session. Look

for this file on FileSilo and copy it into the same

folder where you have created PySSHClient.py .

@code_Output

kunal@ubuntu-vm-kdeo:~/src/paramiko/

demos$ python demo_simple.py

Hostname: 192.168.1.2

Username [kunal]: luduser

Password for luduser@192.168.1.2:

*** Connecting...

<paramiko.Transport at 0xb76201acL

(cipher aes128-ctr, 128 bits)

(active; 1 open channel(s))>

*** SSH Server Connected! ***

Last login: Thu Jan 13 02:01:06 2011

from 192.168.1.9

[~ $:]

If the host key for the SSH server is not added

to your $HOME/.ssh/known_hosts file, the

client will throw the following error:

*** Caught exception: <type

‘exceptions.TypeError’>: unbound

method missing_host_key() must be

called with WarningPolicy instance

as first argument (got SSHClient

instance instead)

This means that the client cannot verify the

authenticity of the server you are connected

to. To add the host key to known_hosts, you

can use the ssh command. It is important

to remember that this is not the ideal way to

add the host key; instead you should use ssh-

keygen. But for simplicity’s sake we are using

the ssh client.

kunal@ubuntu-vm-kdeo:~/.ssh$ ssh

luduser@192.168.1.2

The authenticity of host

‘192.168.1.2 (192.168.1.2)’ can’t be

established.

RSA key fingerprint is be:01:76:6a:b

9:bb:69:64:e3:dc:37:00:a4:36:33:d1.

Are you sure you want to continue

connecting (yes/no)? yes

Warning: Permanently added

‘192.168.1.2’ (RSA) to the list of

known hosts.

So now you’ve seen how easy it can be to

carry out the complex sysadmin tasks using

Python’s versatile language.

As is the case with all Python coding, the

code that is presented here can easily be

adopted into your GUI application (with software

such as PyGTK or PyQt) or a web application

(using a framework such as Django or Grok).

106 The Python Book

108 Build tic-tac-toe with Kivy
Program noughts and crosses

112 Create two-step
authentication
Use Twilio for safe authentication

116 Program a Space
Invaders clone
Make the basic Pivaders game

120 Add animation and sound
Enhance your Pivaders game

124 Make a visual novel game
Use Python to make a storytelling game

128 Pygame Zero
Turn your ideas into games

Create

124

108

112

“You’ll be surprised by the
diversity of what you can

make with Python”

Python
with

The Python Book 107

116

108 The Python Book

Create with Python

Ease into the workings of Kivy by creating the pen-and-paper classic
in just over 100 lines of Python...

Build tic-tac-toe with Kivy

Kivy is a highly cross-platform graphical

framework for Python, designed for the

creation of innovative user interfaces like

multitouch apps. Its applications can run not

only on the traditional desktop platforms of Linux,

OS X and Windows, but also Android and iOS, plus

devices like the Raspberry Pi.

That means you can develop cross-platform

apps using Python libraries such as Requests,

SQLAlchemy or even NumPy. You can even

access native mobile APIs straight from Python

using some of Kivy’s sister projects. Another

great feature is the Cython-optimised OpenGL

graphics pipeline, allowing advanced GPU effects

even though the basic Python API is very simple.

Kivy is a set of Python/Cython modules that

can easily be installed via pip, but you’ll need a

few dependencies. It uses Pygame as a rendering

backend (though its API is not exposed), Cython

for compilation of the speedy graphics compiler

internals, and GStreamer for multimedia. These

should all be available through your distro’s

repositories, or via pip where applicable.

With these dependencies satisfied, you

should be able install Kivy with the normal pip

incantation. The current version is 1.8.0, and the

same codebase supports both python2 and

python3. The code in this tutorial is also version-

agnostic, running in python2.7 and python3.3.

pip install kivy

If you have any problems with pip, you can use

easy_instal via easy_install kivy.

There are also packages or repositories available

for several popular distros. You can find more

The classic ‘Hello World!’ in Kivy GUI form,
using the built-in Label widget

information on Kivy’s website. A kivy application is

started by instantiating and running an ‘App’ class.

This is what initialises our pp’s window, interfaces

with the OS, and provides an entry point for the

creation of our GUI. We can start by making the

simplest Kivy app possible:

from kivy.app import App

class TicTacToeApp(App):

 pass

if __name__ == “__main__”:

 TicTacToeApp().run()

You can already run this, your app will start up and

you’ll get a plain black window. Exciting!

We can build our own GUI out of Kivy widgets.

Each is a simple graphics element with some

specific behaviour of its own ranging from

standard GUI functionality (eg the Button, Label

or TextInput), to those that impose positioning on

their child widgets (eg the BoxLayout, FloatLayout

or GridLayout), to those abstracting a more

involved task like interacting with hardware (eg

the FileChooser, Camera or VideoPlayer). Most

importantly, Kivy’s widgets are designed to be

easily combined - rather than including a widget

for every need imaginable, widgets are kept simple

but are easy to join to invent new interfaces. We’ll

see some of that in this tutorial.

Since ‘Hello World!’ is basically compulsory in

any programming tutorial, let’s get it over with by

using a simple ‘Label’ widget to display the text:

from kivy.uix.label import Label

We’ll display the ‘Label’ by returning it as our app’s

root widget. Every app has a single root widget, the

top level of its widget tree, and it will automatically

be sized to fill the window. We’ll see later how to

construct a full GUI by adding more widgets for this

one, but for now it’s enough to set the root widget

by adding a new method to the ‘App’:

def build(self):

 return Label(text=’Hello World!’,

 font_size=100,

 color=0, 1, 0, 1)) # (r, g, b, a)

The ‘build’ method is called when the ‘App’ is run,

and whatever widget is returned automatically

becomes the root widget of that App’. In our case

that’s a Label, and we’ve set several properties -

the ‘text’, ‘font_size’ and ‘color’. All widgets have

different properties controlling aspects of their

behaviour, which can be dynamically updated to

alter their appearance later, though here we set

them just once upon instantiation.

Note that these properties are not just Python

attributes but instead Kivy properties. These are

accessed like normal attributes but provide extra

functionality by hooking into Kivy’s event system.

We’ll see examples of creating properties shortly,

and you should do the same if you want to use your

variables with Kivy’s event or binding functionality.

That’s all you need to show some simple text,

so run the program again to check that this does

work. You can experiment with the parameters if it’s

unclear what any of them are doing.

Our own widget: tic-tac-toe
Since Kivy doesn’t have a tic-tac-toe widget, we’ll

have to make our own! It’s natural to create a new

widget class to contain this behaviour:

from kivy.uix.gridlayout import GridLayout

class TicTacToeGrid(GridLayout):

 pass

Now this obviously doesn’t do anything yet,

except that it inherits all the behaviour of the

Kivy GridLayout widget - that is, we’ll need to

tell it how many columns to have, but then it will

 You can develop
cross-platform
apps using various
Python libraries

The Python Book 109

Create with Python

A tic-tac-toe grid now accepting input, adding a O or X alternately

the former, creating a rule for the ‘TicTacToeGrid’

widget by declaring that every ‘TicTacToeGrid’

instantiated should have its ‘cols’ property set to 3.

We’ll use some more kv language features later,

but for now let’s go back to Python to create the

buttons that will be the entries in our tic-tac-toe grid.

from kivy.uix.button import Button

from kivy.properties import ListProperty

class GridEntry(Button):

 coords = ListProperty([0, 0])

This inherits from Kivy’s ‘Button’ widget, which

interacts with mouse or touch input, dispatching

events when interactions toggle it. We can hook

into these events to call our own functions when a

user presses the button, and can set the button’s

‘text’ property to display the ‘X’ or ‘O’. We also

created a new Kivy property for our widget, ‘coords’

– we’ll show how this is useful later on. It’s almost

identical to making a normal Python attribute by

writing ‘self.coords = [0, 0]’ in ‘GridEntry.__init__’.

As with the ‘TicTacToeGrid’, we’ll style our new

class with kv language, but this time we get to see

a more interesting feature.

<GridEntry>:

 font_size: self.height

As before, this syntax defines a rule for how a

‘GridEntry’ widget should be constructed, this

time setting the ‘font_size’ property that controls

the size of the text in the button’s label. The extra

magic is that kv language automatically detects

that we’ve referenced the Button’s own height and

will create a binding to update this relationship

– when a ‘GridEntry’ widget’s height changes, its

‘font_size’ will change so the text fits perfectly.

We could have made these bindings straight

from Python (another usage of the ‘bind’ method

used later on), but that’s rarely as convenient as

referencing the property we want to bind to.

Let’s now populate our ‘TicTacToeGrid’ with

‘GridEntry’ widgets (Fig.01). This introduces a

few new concepts: When we instantiated our

‘GridEntry’ widgets, we were able to set their

‘coords’ property by simply passing it in as a

kwarg. This is a minor feature that is automatically

handled by Kivy properties.

We used the ‘bind’ method to call the

grid’s ‘button_pressed’ method whenever

the `GridEntry ̀ widget dispatches an

‘on_release’ event. This is automatically

handled by its ‘Button’ superclass, and

will occur whenever a user presses, then

releases a ‘GridEntry’ button. We could also

bind to ‘on_press’, which is dispatched when the

button is first clicked, or to any Kivy property of

the button, which is dispatched dynamically

whenever the property is modified.

We added each ‘GridEntry’ widget to our ‘Grid’

via the ‘add_widget’ method. That means each

one is a child widget of the ‘TicTacToeGrid’, and

so it will display them and knows it should

automatically arrange them into a grid with the

number of columns we set earlier.

Now all we have to do is replace our root widget

(returned from ‘App.build’) with a ‘TicTacToeGrid’

and we can see what our app looks like.

automatically arrange any child widgets to fit

nicely with as many rows as necessary. Tic-tac-toe

requires three columns and nine children.

Here we introduce the Kivy language (kv), a

special domain-specific language for making

rules describing Kivy widget trees. It’s very simple

but removes a lot of necessary boilerplate for

manipulating the GUI with Python code - as a loose

analogy you might think of it as the HTML/CSS to

Python’s JavaScript. Python gives us the dynamic

power to do anything, but all that power gets in the

way if we just want to declare the basic structure

of our GUI. Note that you never need kv language,

you can always do the same thing in Python alone,

but the rest of the example may show why Kivy

programmers usually like to use kv.

Kivy comes with all the tools needed to use kv

language; the simplest way is to write it in a file with

a name based on our App class. That is, we should

place the following in a file named ‘tictactoe.kv’:

<TicTacToeGrid>:

 cols: 3 # Number of columns

This is the basic syntax of kv language; for each

widget type we may write a rule defining its

behaviour, including setting its properties and

adding child widgets. This example demonstrates

 Kivy comes
with all the tools
needed to use kv
language

110 The Python Book

Create with Python

def build(self):

 return TicTacToeGrid()

 # Replaces the previous label

With this complete you can run your main Python

file again and enjoy your new program. All being

well, the single Label is replaced by a grid of

nine buttons, each of which you can click (it will

automatically change colour) and release (you’ll

see the printed output information from our

binding). We could customise the appearance by

modifying other properties of the Button, but for

now we’ll leave them as they are.

Has anyone won yet?
We’ll want to keep track of the state of the board to

check if anyone has won, which we can do with a

couple more Kivy properties:

from kivy.properties import

(ListProperty, NumericProperty)

class TicTacToeGrid(GridLayout):

 status = ListProperty([0, 0, 0,

 0, 0, 0,

 0, 0, 0])

 current_player = NumericProperty(1)

This adds an internal status list representing who

has played where, and a number to represent the

current player (1 for ‘O’, -1 for ‘X’). By placing these

numbers in our status list, we’ll know if somebody

wins because the sum of a row, column or diagonal

will be +-3. Now we can update our graphical grid

when a move is played (Fig. 02).

You can run your app again to see exactly what

this did, and you’ll find that clicking each button

now places an ‘O’ or ‘X’ as well as a coloured

background depending on whose turn it is to

play. Not only that, but you can only play one

move in each button thanks to our status

array keeping track of existing moves.

This is enough to play the game but there’s one

vital element missing... a big pop-up telling you

when you’ve won! Before we can do that, we need

to add some code to check if the game is over.

Kivy properties have another useful feature

here, whenever they change they automatically

call an ‘on_propertyname’ method if it exists

and dispatch a corresponding event in Kivy’s

event system. That makes it very easy to write

code that will run when a property changes,

both in Python and kv language. In our case

we can use it to check the status list every time

it is updated, doing something special if a player

has filled a column, row or diagonal.

def on_status(self, instance, new_value):

 status = new_value

 # Sum each row, column and diagonal.

 # Could be shorter, but let’s be extra

 # clear what’s going on

 sums = [sum(status[0:3]), # rows

 sum(status[3:6]),

 sum(status[6:9]),

 sum(status[0::3]), # columns

 sum(status[1::3]),

 sum(status[2::3]),

 sum(status[::4]), # diagonals

 sum(status[2:-2:2])]

 # Sums can only be +-3 if one player

 # filled the whole line

 if 3 in sums:

 print(‘Os win!’)

 elif -3 in sums:

 print(‘Xs win!’)

 elif 0 not in self.status: # Grid full

 print(‘Draw!’)

This covers the basic detection of a won or drawn

board, but it only prints the result to stdout. At this

stage we probably want to reset the board so that

the players can try again, along with displaying a

graphical indicator of the result (Fig. 03).

Finally, we can modify the `on_status̀ method

to both reset the board and display the winner

in a ‘ModalView’ widget.

from kivy.uix.modalview import ModalView

This is a pop-up widget that draws itself on top of

everything else rather than as part of the normal

widget tree. It also automatically closes when the

user clicks or taps outside it.

winner = None

if -3 in sums:

 winner = ‘Xs win!’

elif 3 in sums:

 winner = ‘Os win!’

elif 0 not in self.status:

 winner = ‘Draw...nobody wins!’

if winner:

 popup = ModalView(size_hint=0.75, 0.5))

 victory_label = Label(text=winner,

The game with final additions, making the grid square and extending the interface

The Python Book 111

Create with Python

 Try swapping out the different widget
types to see how other widgets behave

 font_size=50)

 popup.add_widget(victory_label)

 popup.bind(on_dismiss=self.reset)

 popup.open()

This mostly uses the same ideas we already

covered, adding the ‘Label’ widget to the

‘ModalView’ then letting the ‘ModalView’ take

care of drawing itself and its children on top of

everything else. We also use another binding; this

time to ‘on_dismiss’, which is an event dispatched

by the ‘ModalView’ when it is closed. Finally, we

made use of the ‘size_hint’ property common

to all widgets, which in this case is used to set

the ‘ModalView’ size proportional to the window

– while a ‘ModalView’ is open you can resize

the window to see it dynamically resize, always

maintaining these proportions. This is another trick

made possible by a binding with the ‘size_hint’ Kivy

property, this time managed internally by Kivy.

That’s it, a finished program! We can now

not only play tic-tac-toe, but our program

automatically tells us when somebody has won,

and resets the board so we can play again. Simply

run your program and enjoy hours of fun!

Time to experiment
This has been a quick tour through some of Kivy’s

features, but hopefully it demonstrates how

to think about building a Kivy application. Our

programs are built from individual Kivy widgets,

interacting by having Python code run when their

properties change (eg our ‘on_status’ method)

or when they dispatch events (eg ‘Button’ ‘on_

release’). We also briefly saw kv language and

experienced how it can automatically create

bindings between properties.

You can find a copy of the full program on

FileSilo, which you can reference to check you’ve

followed everything correctly. We’ve also added

an extra widget, the ‘Interface’, with a structure

coded entirely in kv language that demonstrates

how to add child widgets this way. You can test

it by uncommenting the ‘return Interface()’ line

in ‘TicTacToeGrid.build’. It doesn’t do anything

fundamentally different to what we already

covered, but it does make extensive use of kv

language’s binding ability to automatically update

a label showing the current player, and to resize

the TicTacToeGrid so that it is always square to

fit within its parent. You can play with all these

settings to see exactly how it fits together, or try

things like swapping out the different widget types

to see how other widgets behave.

class TicTacToeGrid(GridLayout):

 def __init__(self, *args, **kwargs):

 super(TicTacToeGrid, self).__init__(*args, **kwargs)

 for row in range(3):

 for column in range(3):

 grid_entry = GridEntry(

 coords=(row, column))

 grid_entry.bind(on_release=self.button_pressed)

 self.add_widget(grid_entry)

 def button_pressed(self, instance):

 # Print output just to see what’s going on

 print(‘{} button clicked!’.format(instance.coords))

Fig 01

Note the *args parameter! It’s important later when we make a binding

to reset, which automatically passes an argument that we don’t care about

def reset(self, *args):

 self.status = [0 for _ in range(9)]

 # self.children is a list containing all child widgets

 for child in self.children:

 child.text = ‘’

 child.background_color = (1, 1, 1, 1)

 self.current_player = 1

Fig 03

def button_pressed(self, button):

 # Create player symbol and colour lookups

 player = {1: ‘O’, -1: ‘X’}

 colours = {1: (1, 0, 0, 1), -1: (0, 1, 0, 1)} # (r, g, b, a)

 row, column = button.coords # The pressed button is automatically

 # passed as an argument

 # Convert 2D grid coordinates to 1D status index

 status_index = 3*row + column

 already_played = self.status[status_index]

 # If nobody has played here yet, make a new move

 if not already_played:

 self.status[status_index] = self.current_player

 button.text = {1: ‘O’, -1: ‘X’}[self.current_player]

 button.background_color = colours[self.current_player]

 self.current_player *= -1 # Switch current player

Fig 02

Code on
FileSilo

112 The Python Book

Create with Python

02 Add credit
Just like a mobile phone operator,

Twilio is not a free service – although it is very

inexpensive. In order to continue, we’ll need

to add a card and some funds to our newly

created Twilio account. On the main page of the

dashboard, you’ll see a big blue dialog asking

to upgrade your trial account; click through

and follow the instructions to add a card and

the amount of credit you would like to use. The

minimum amount of $20 (around £10 GBP) will

be more than plenty for this and other projects.

Once that’s done, you’re almost ready to start

sending text messages – but first head back

over to the Twilio dashboard and copy your

account SID and auth token down somewhere,

you’ll need those a little later.

Increase security in access to your web services
by building a simple two-step authentication
with Twilio’s SMS APIs to help you

Resources
Python 2.7+

Flask 0.10.0:
flask.pocoo.org/

Flask Github:
github.com/mitsuhiko/flask

A Twilio account:
twilio.com

Twilio’s Python REST
API Helper Library:

github.com/twilio/twilio-python/zipball/master

MySQLDB:
mysql-python.sourceforge.net

Create a two-step
authentication with Twilio

01 Get a Twilio account and
phone number

Signing up to Twilio is pretty easy. First, head

over to http://twilio.com and click the ‘Signup’

button. At this point, the sign-up process

doesn’t really differ from any other service,

but after you’ve entered an email address and

password you’ll be asked for a phone number.

Given the nature of Twilio’s API, it makes sense

for them to ask whether we’re human, and

having them text us is a good way to confirm

that. Hey, it’s a two-step authentication, which

is exactly what we’re working towards.

You can enter any number you have access

to, be it a landline or mobile, to confirm who

you are, but at this point we suggest you

authenticate using a phone that can accept

SMS (instead of a landline). Having entered your

number, you’ll receive a text to authenticate

your phone – enter it and you’ll be presented

with a Twilio phone number. This is your Twilio

phone number and you’ll be using it to send and

receive our authentication texts.

Telephony is one of the most versatile

technologies in our households. Despite being

invented over 100 years ago, we still use the

same basic infrastructure that once only carried

the voices of people to deliver a rich multitude of

media content at incredible speeds. As is often

the case with wonderful things, they can often be

complex too – and yet phones are more important

now to our daily lives than ever. So, what can we

do to leverage some of that versatile technology?

Well, for starters we can use an API. Twilio

has created a RESTful API that removes a great

deal of that complexity of telephony so that we

can write apps and services that are able to

deliver and receive both phone calls and SMS

using various endpoints and services. Neat! In

this tutorial, we’re going to look at using Twilio

to help us create the basic flow for a two-step

authentication system for logging into a service.

We’re also going to be using Flask to help us

create our routes and generate our pages, but

little of Flask’s detail will be covered here.

The Twilio interface is kept nice and simple – no unnecessary complications here

The Python Book 113

Create with Python

import MySQLdb

from flask import Flask, redirect, request, session, render_template

from twilio.rest import TwilioRestClient as twilio

import string, random, time

db = MySQLdb.connect(host="127.0.0.1", user="SQLUSER",

passwd="SQLPASS", db="two-step", port=3306)

expirationLength = 300

account_sid = "YOUR ACCOUNT SID"

auth_token = "YOUR ACCOUNT AUTH TOKEN"

client = twilio(account_sid, auth_token)

@app.route('/')

def index():

 return "index page"

@app.route('/login', methods=['GET'])

def login():

 return "login page"

@app.route('/check-user', methods=['POST'])

def checkUser():

 return "check user page"

@app.route('/logout')

def logout():

 return "logout page"

@app.route('/verify', methods=['GET'])

def twoStep():

 return "verify page"

@app.route('/check-code', methods=['POST'])

def checkCode():

 return "check code page"

if __name__ == '__main__':

 app.secret_key = 'R4nDOMCRypt0gr4ph1cK3yf0R5355i0N'

 app.run(host='0.0.0.0', debug=True)

Fig 0103 Install the Twilio Helper Library
and MySQLDB

The Twilio helper library is a fantastic piece of

code that lets you jump straight into sending and

handling text messages in no time at all. There

are a couple of ways to install the library: you can

use either PIP or Easy_Install, like so

$ pip install twilio

$ easy_install twilio

Or you can download the source code for the

helper library and run the ‘setup.py’ file. It

really is as simple as that. Now, for storing the

verification tokens we’re going to use a MySQL

database. To get Python talking to our SQL

server, we’ll use the Python module MySQLDB,

the package for which you can grab like so…

apt-get install python-mysqldb

In the tutorial resources we have included an

SQL dump with the table structure. Import it

into a database of your choosing. Assuming

everything so far has gone swimmingly, you can

create a new project folder/environment and

add a new file ‘server.py’.

04 Server setup
Open the ‘server.py’ file for editing. The

first thing we're going to do is import the libraries

we need for our authentication flow, create the

endpoints for our server and assign some of the

variables needed to run our Flask server. (Fig 01)

You may have noticed the account_sid and

auth_token variable we’ve set after the import

statements. We’ll use these with our Twilio

client so we can interact with Twilio and our

mobile phones. These settings can be found

on the Twilio account dashboard, right below

the header. We’ve also connected to our SQL

database, so make sure your SQL server is

running before you fire up the app, otherwise

you’ll have an error thrown. Save, now if you run

your ‘server.py’ file, you should be able to access

the index page of your server at 127.0.0.1:5000/.

05 Server logic
If you’ve hit all of your server endpoints

already, so far all you will see are the strings we

returned at the end of endpoint declarations.

These are not all that good-looking, so let’s

add some Flask templates to pretty things

up a little. The focus of this tutorial is not on

the intricacies of Flask and as such, included

on the DVD is a folder called ‘templates’ and

another called ‘static’; copy them both to the

root of your current project folder and amend

your endpoints as in Fig 02. If you revisit the

pages again, things might seem a little out of

whack at the moment, but don’t worry about

that for the time being. It’s mostly because

we’ve not put together the server logic to help

the templates figure out what to do.

Let’s deal with the ‘/’ path first. All we’re

doing here is checking the state of our session

cookies and effecting how the index.html

page renders according to that state. If the

user isn’t logged in, we’ll give them a link to the

login page, if the user is logged in but hasn’t

verified, then we’ll give them a link to the

code verification page. Before we deliver the

template we need to check that our session has

its particular variables set, otherwise we’ll end

up getting KeyErrors.

@app.route(‘/’)

def index():

 checkSessionState()

 return render_template(‘index.

html’)

def checkSessionState():

114 The Python Book

Create with Python

 try:

 session[‘verified’] == True

 except KeyError:

 session[‘verified’] = ’’

 try:

 session[‘loggedin’] == True

 except KeyError:

 session[‘loggedin’] = ’’

 try:

 session[‘user’] == True

 except KeyError:

 session[‘user’] = ’’

 result = cur.fetchone()

 returnedPassword = result[2]

 returnedPhoneNumber = result[3]

We can then build an SQL statement using cur.

execute(). Notice the %s; this will be replaced with

the value passed through in the next variable. We

execute the statement with cur.fetchone(), which

will get us the first row that the query returns – if

there is no result we’ll get None and we can then

return the user to the login page with an error

message. Let’s assume we’ve requested a valid

user – we’ll next check that the password assigned

to that user is the same as the one submitted. If so,

we’ll generate the validation code to send to the

user, which we’ll store in the verification table of

our database until it’s used or expires. We’ll need to

create a new cursor to insert the verification code

into our table. After we’ve executed the statement

we need to commit the changes to the database,

we do this with db.commit() – we’ll then add the

results of the query to our session so we can check

against them later. (Fig 03)

that will make up the body of our message,

the number that we want to send it to and the

number that we want to send it from. When

inputting the number that we want to send it

to, it’s best to use the +CountryCode type of

phone number to avoid any ambiguity about

the intended recipient. The number that we’re

sending from is our Twilio number; you can

use any Twilio number you have assigned to

your account, so long as it has credit. As soon

as we execute that code, the message will be

sent and your SMS will go straight through to

the telephone. The SID is the unique identifier

for the message/call sent; receiving it means

the message has been executed successfully.

After that, we can redirect our user to the

verification page with return redirect(‘/

verify’) at the end of /check-user.

06 Logging in
The first step in two-step authentication

is logging in with a traditional username/email

and password. Access your database and create

a new user with the following query:

INSERT INTO users (username, password,

phonenumber) VALUES (‘A USERNAME', ‘A

PASSWORD', ‘+44YOURUSERSPHONENUMBER')

For the purposes of this tutorial, the password

is plain text – but we implore you, when you’re

implementing passwords in a live environment,

make sure that you hash them. Still, for now we’re

going to use a plain text password. Our login.html

template has a form that’s going to POST itself

to check-user; here we'll check the validity of

the credentials and then trigger the verification

if needed. So we’re going to use the MySQLDB

module to get details from our database.

In order to query our database we need to

create a cursor from which to execute our MySQL

statements. We do this with cur = db.cursor():

@app.route(‘/check-user',

methods=[‘POST'])

def checkUser():

 #session.clear()

 if request.method == ‘POST':

 #print request.form['username']

 cur = db.cursor()

 cur.execute("""SELECT * FROM

users WHERE username = %s""",

(request.form[‘username'],))

07 Send the verification code
Now that we believe we’re dealing with

a valid user, it’s time for the second step of our

two-step process. On the line after where we

stored a variable in our session, we make a call

to sendVerificationCode (VERIFICATION

CODE, USER PHONE NUMBER) and pass

through the code we want to send to our user

and the user’s phone number. So what does

that function actually look like? It must be

big, long and complicated because it deals

with the telecommunications network, right?

Wrong. It’s actually incredibly simple to send

an SMS with Twilio. In fact, part of the inherent

beauty of Twilio lies in its simplicity. To send a

text, all we have to do is:

def sendVerificationCode(code,

number):

 text = client.messages.create(

 body=“Your verification code

is:" + code,

 to=number,

 from_=“+YOURTWILIONUMBER"

)

return text.sid

Using the client variable we used to instantiate

the Twilio REST module, we can access the

messages class and execute the create

method. All we need to pass through is the text

08 Check verification code
At this point the user will have received

a text message with something along the lines

of ‘Your verification code is: 12cd56’ and will

be presented with the verification page. If, at

this point, they choose to browse around our

site, they won’t be able to access anything that

we don't want them to. Still, we’ll know that

they’ve logged in, so if they head back to the

verification page, we can just let them input

their code. Once they submit their code, it will

be sent to the /check-code endpoint.

Just like before when we checked for our

user’s validity, we’re going to attempt to retrieve

the verification code and check it. (Fig 04)

First we’re simply going to retrieve the code

and check the user it has assigned to it. If that

user assigned to the code matches the user

in our session, then we can be certain that

the right person is logging in with the right

code – if not we can redirect them accordingly.

Assuming the code is correct, we need to

check it’s still valid. Back in Step 6, we created

an expiration time that was five minutes in the

future from when the code was generated. If it’s

been more than five minutes (or whatever time

you’ve set on it) then we’re going to consider it

invalid, delete the code from our table and then

log out our user so they can start over, like so.

elif time.time() > expirationTime:

 expirySQL = db.cursor()

 expirySQL.execute("""DELETE FROM

verification WHERE code=%s""",

(codeToCheck,))

The Python Book 115

Create with Python

 expirySQL.close()

 session['loggedin'] == False

 return redirect('/logout')

If we manage to pass the tests so far, then

we’ve two-step verified our user – hooray!

Surprisingly easy, eh? Before we give our user

free reign around our service, we still want

to get rid of that token – we don’t need it any

more and we don’t want to risk someone else

using it maliciously in the future.

else:

 delSql = db.cursor()

 delSql.execute("""DELETE FROM

verification WHERE code=%s""",

(codeToCheck,))

 delSql.close()

 db.commit()

 session['verified'] = True

 return redirect('/')

else:

 return redirect('/

verify?error=true')

And that’s it! Now we redirect our user to

wherever we want them to be at the end of the

process. In this instance we’re sending them

back to our index page, which will render a

success message and give the user a link to

log out whenever they like – but they could be

redirected to their user page, and so on.

09
Conclusion

In every web-based service, security

is king. Users entrust more and more personal

data and trends to services every day and it’s

the responsibility of those services to maintain

the privacy of that data as best they can. It’s no

wonder that services such as Amazon, Google

and Facebook have all implemented two-

step verification across their services. With

two-step authentication, a user can tie their

account to one of the most personal things they

own: their phone. With services like Twilio and

some simple code, they contain people’s keys –

or at least a part of them.

@app.route('/')

def index():

 return render_template('index.html')

@app.route('/login', methods=['GET'])

def login():

 return render_template('login.html')

@app.route('/check-user', methods=['POST'])

def checkUser():

 return "check user page"

@app.route('/logout')

def logout():

 return "logout page"

@app.route('/verify', methods=['GET'])

def twoStep():

 return render_template('verify.html')

@app.route('/check-code', methods=['POST'])

def checkCode():

 return "check code page"

Fig 02

verficationCode = generateVerificationCode(size=6)

ins = db.cursor()

expiration = int(time.time() + expirationLength)

sql = "INSERT INTO verification (code, expiration, username) VALUES ('%s',

'%s', '%s')" % (verficationCode, expiration, request.form['username'])

ins.execute(sql)

ins.close()

db.commit()

session['user'] = request.form['username']

session['loggedin'] = True

Fig 03

@app.route('/check-code', methods=['POST'])

def checkCode():

 if request.method == 'POST':

 codeToCheck = request.form['code']

 if not 'user' in session:

 return redirect('/login')

 else:

 cur = db.cursor()

 cur.execute("""SELECT * FROM verification WHERE code = %s""", (codeToCheck,))

 result = cur.fetchone()

 cur.close()

 if result != None:

 returnedUser = result[3]

 expirationTime = int(result[2])

 if returnedUser != session['user']:

 return redirect('/verify?error=true')

Fig 04

116 The Python Book

Create with Python

Write your own RasPi shooter in 300 lines of Python

Part one: Program a
Space Invaders clone

meander their way down the screen

towards you, it’s your job to pick them

off while dodging their random fi re.

When one wave is conquered, another

faster, more aggressive wave appears.

We’ve tried to use many features of

Pygame, which is designed to make

the creation of games and interactive

applications easier. We’ve extensively

used the Sprite class, which saves

dozens of lines of extra code in making

collision detection simple and updating

the screen and its many actors a

single-line command.

We hope you agree that this is an

exciting game to play and a great

tool to learn more about Python and

Pygame, but our sensory system is far

from overloaded here. Don’t worry, as

that will be covered in the next tutorial,

adding animation and sound effects to

our game to give it the spit and polish

any self-respecting Space Invaders-

inspired shooter demands…

01 Setting up dependencies
If you’re looking to get a better understanding of

programming games with Python and Pygame, we strongly

recommend you copy the Pivaders code in this tutorial into your

own program. It’s great practice and gives you a chance to tweak

elements of the game to suit you, be it a different ship image,

changing the diffi culty or the ways the alien waves behave. If you

just want to play the game, that’s easily achieved too, though.

Either way, the game’s only dependency is Pygame, which (if it

isn’t already) can be installed from the terminal by typing:

 sudo apt-get install python-pygame

02 Downloading the project
For Pivaders we’ve used Git, a brilliant form of version

control used to safely store the game fi les and retain historical

versions of your code. Git should already be installed on your Pi; if

not, you can acquire it by typing:

 sudo apt-get install git

As well as acting as caretaker for your code, Git enables you

to clone copies of other people’s projects so you can work on

them, or just use them. To clone Pivaders, go to your home

folder in the terminal (cd ~), make a directory for the project

(mkdir pivaders), enter the directory (cd pivaders) and type:

 git pull https://github.com/russb78/pivaders.git

When you’re learning to program in

a new language or trying to master

a new module, experimenting with a

familiar and relatively simply project

is a very useful exercise to help

expand your understanding of the

tools you’re using. Our Space Invaders

clone is one such example that lends

itself perfectly to Python and the

Pygame module – it’s a simple game

with almost universally understood

rules and logic. While the Invaders

Resources
Raspbian: www.raspberrypi.org/
downloads

Python: www.python.org/doc

Pygame: www.pygame.org/docs

The Python Book 117

Create with Python

#!/usr/bin/env python2

import pygame, random

BLACK = (0, 0, 0)
BLUE = (0, 0, 255)
WHITE = (255, 255, 255)
RED = (255, 0, 0)
ALIEN_SIZE = (30, 40)
ALIEN_SPACER = 20
BARRIER_ROW = 10
BARRIER_COLUMN = 4
BULLET_SIZE = (5, 10)
MISSILE_SIZE = (5, 5)
BLOCK_SIZE = (10, 10)
RES = (800, 600)

class Player(pygame.sprite.Sprite):
 def __init__(self):
 pygame.sprite.Sprite.__init__(self)
 self.size = (60, 55)
 self.rect = self.image.get_rect()
 self.rect.x = (RES[0] / 2) - (self.size[0] / 2)
 self.rect.y = 520
 self.travel = 7
 self.speed = 350
 self.time = pygame.time.get_ticks()

 def update(self):
 self.rect.x += GameState.vector * self.travel
 if self.rect.x < 0:
 self.rect.x = 0
 elif self.rect.x > RES[0] - self.size[0]:
 self.rect.x = RES[0] - self.size[0]

class Alien(pygame.sprite.Sprite):
 def __init__(self):
 pygame.sprite.Sprite.__init__(self)
 self.size = (ALIEN_SIZE)
 self.rect = self.image.get_rect()
 self.has_moved = [0, 0]
 self.vector = [1, 1]
 self.travel = [(ALIEN_SIZE[0] - 7), ALIEN_SPACER]
 self.speed = 700
 self.time = pygame.time.get_ticks()

 def update(self):
 if GameState.alien_time - self.time > self.speed:
 if self.has_moved[0] < 12:
 self.rect.x += self.vector[0] * self.travel[0]
 self.has_moved[0] +=1
 else:
 if not self.has_moved[1]:
 self.rect.y += self.vector[1] * self.travel[1]
 self.vector[0] *= -1
 self.has_moved = [0, 0]
 self.speed -= 20
 if self.speed <= 100:
 self.speed = 100
 self.time = GameState.alien_time

class Ammo(pygame.sprite.Sprite):
 def __init__(self, color, (width, height)):
 pygame.sprite.Sprite.__init__(self)
 self.image = pygame.Surface([width, height])
 self.image.fill(color)
 self.rect = self.image.get_rect()
 self.speed = 0
 self.vector = 0

 def update(self):
 self.rect.y += self.vector * self.speed
 if self.rect.y < 0 or self.rect.y > RES[1]:
 self.kill()

class Block(pygame.sprite.Sprite):
 def __init__(self, color, (width, height)):
 pygame.sprite.Sprite.__init__(self)
 self.image = pygame.Surface([width, height])
 self.image.fill(color)
 self.rect = self.image.get_rect()

class GameState:
 pass

class Game(object):
 def __init__(self):
 pygame.init()
 pygame.font.init()
 self.clock = pygame.time.Clock()
 self.game_font = pygame.font.Font(
 ‘data/Orbitracer.ttf’, 28)
 self.intro_font = pygame.font.Font(
 ‘data/Orbitracer.ttf’, 72)
 self.screen = pygame.display.set_mode([RES[0], RES[1]])
 self.time = pygame.time.get_ticks()
 self.refresh_rate = 20
 self.rounds_won = 0
 self.level_up = 50
 self.score = 0
 self.lives = 2
 self.player_group = pygame.sprite.Group()
 self.alien_group = pygame.sprite.Group()
 self.bullet_group = pygame.sprite.Group()
 self.missile_group = pygame.sprite.Group()
 self.barrier_group = pygame.sprite.Group()
 self.all_sprite_list = pygame.sprite.Group()
 self.intro_screen = pygame.image.load(
 ‘data/start_screen.jpg’).convert()
 self.background = pygame.image.load(
 ‘data/Space-Background.jpg’).convert()
 pygame.display.set_caption(‘Pivaders - ESC to exit’)
 pygame.mouse.set_visible(False)
 Player.image = pygame.image.load(
 ‘data/ship.png’).convert()
 Player.image.set_colorkey(BLACK)
 Alien.image = pygame.image.load(
 ‘data/Spaceship16.png’).convert()
 Alien.image.set_colorkey(WHITE)
 GameState.end_game = False
 GameState.start_screen = True
 GameState.vector = 0
 GameState.shoot_bullet = False

 def control(self):
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 GameState.start_screen = False
 GameState.end_game = True
 if event.type == pygame.KEYDOWN \
 and event.key == pygame.K_ESCAPE:
 if GameState.start_screen:
 GameState.start_screen = False
 GameState.end_game = True
 self.kill_all()
 else:
 GameState.start_screen = True
 self.keys = pygame.key.get_pressed()
 if self.keys[pygame.K_LEFT]:
 GameState.vector = -1
 elif self.keys[pygame.K_RIGHT]:
 GameState.vector = 1
 else:
 GameState.vector = 0
 if self.keys[pygame.K_SPACE]:
 if GameState.start_screen:
 GameState.start_screen = False
 self.lives = 2
 self.score = 0
 self.make_player()
 self.make_defenses()
 self.alien_wave(0)
 else:
 GameState.shoot_bullet = True

 def splash_screen(self):
 while GameState.start_screen:
 self.kill_all()
 self.screen.blit(self.intro_screen, [0, 0])
 self.screen.blit(self.intro_font.render(
 “PIVADERS”, 1, WHITE), (265, 120))
 self.screen.blit(self.game_font.render(
 “PRESS SPACE TO PLAY”, 1, WHITE), (274, 191))

Groups This
long list of groups
we’re creating are
essentially sets.Each
time we create one
of these items, it’s
added to the set so
it can be tested for
collisions and drawn
with ease.

Clean clode
Having all the most
regularly used
global variables
clearly labelled
here makes our
code later on easier
to read. Also, if we
want to change the
size of something,
we only need to do
it here and it will
work everywhere.

Control Taking
care of keyboard
input is the control
method. It checks
for key events and
acts accordingly
depending whether
we’re on the start
screen or playing
the game.

Rain bullets
The Ammo class is
short and sweet.
We only need a few
initialising attributes
and the update
method checks if it’s
still on the screen. If
not, it’s destroyed.

Get
 the code:

bit.ly/
11k5f2x

118 The Python Book

Create with Python

04 Creating your own clone
Once you’ve racked up a good

high score (anything over 2,000 points is

respectable) and got to know our simple

implementation, you’ll get more from

following along with and exploring the

code and our brief explanations of what’s

going on. For those who want to make

their own project, create a new project

folder and use either IDLE or Leafpad (or

perhaps install Geany) to create and save

a .py file of your own.

05 Global variables & tuples
Once we’ve imported the

modules we need for the project,

there’s quite a long list of variables in

block capitals. The capitals denote that

these variables are constants (or global

variables). These are important numbers

that never change – they represent things

referred to regularly in the code, like

colours, block sizes and resolution. You’ll

also notice that colours and sizes hold

multiple numbers in braces – these are

tuples. You could use square brackets (to

make them lists), but we use tuples here

since they’re immutable, which means

06 Classes – part 1
A class is essentially a blueprint

for an object you’d like to make. In the

case of our player, it contains all the

required info, from which you can make

multiple copies (we create a player

instance in the make_player() method

halfway through the project). The great

thing about the classes in Pivaders is

that they inherit lots of capabilities and

shortcuts from Pygame’s Sprite class,

as denoted by the pygame.sprite.Sprite

found within the braces of the first line

of the class. You can read the docs to

learn more about the Sprite class via

www.pygame.org/docs/ref/sprite.html.

07 Classes – part 2
In Pivader’s classes, besides

creating the required attributes – these

are simply variables in classes – for the

object (be it a player, an alien, some

ammo or a block), you’ll also notice all

the classes have an update() method

apart from the Block class (a method is

a function within a class). The update()

method is called in every loop through

the main game (we’ve called ours

main_loop()) and simply asks the

iteration of the class we’ve created to

move. In the case of a bullet from the

Ammo class, we’re asking it to move

down the screen. If it goes off either the

top or bottom of the screen, we destroy

it (since we don’t need it any more).

08 Ammo
What’s most interesting about

classes, though, is that you can use one

class to create lots of different things.

09 The game
Our final class is called Game. This is where all the main

functionality of the game itself comes in, but remember, so far

this is still just a list of ingredients – nothing can actually happen

until a ‘Game’ object is created (right at the bottom of the code).

The Game class is where the central mass of the game resides,

so we initialise Pygame, set the imagery for our protagonist

and extraterrestrial antagonist and create some GameState

attributes that we use to control key aspects of external classes,

like changing the player’s vector (direction) and deciding if we

need to return to the start screen, among other things.

10 The main loop
There are a lot of methods (class functions) in the Game

class, and each is designed to control a particular aspect of

either setting up the game or the gameplay itself. The actual logic

that dictates what happens within any one round of the game is

actually contained in the main_loop() method right at the bottom

of the pivaders.py script and is the key to unlocking exactly what

variables and functions you need for your game. Starting at

the top of main_loop() and working line-by-line down to its last

line, you can see exactly what’s being evaluated 20 times every

second when you’re playing the game.

12 Main loop key logic – part 2
Once collisions have been calculated, we need to see if

the game is still meant to continue. We do so with is_dead() and

defenses_breached() – if either of these methods returns true,

we know we need to return to the start screen. On the other

hand, we also need to check to see if we’ve killed all the aliens,

from within win_round(). Assuming we’re not dead, but the

aliens are, we know we can call the next_round() method, which

creates a fresh batch of aliens and increases their speed around

the screen. Finally, we refresh the screen so everything that’s

been moved, shot or killed can be updated or removed from the

screen. Remember, the main loop happens 20 times a second –

so the fact we don’t call for the screen to update right at the end

of the loop is of no consequence.

11 Main loop key logic – part 1
Firstly the game checks that the end_game attribute is

false – if it’s true, the entire loop in main_loop() is skipped and

we go straight to pygame.quit(), exiting the game. This flag is set

to true only if the player closes the game window or presses the

Esc key when on the start_screen. Assuming end_game and

start_screen are false, the main loop can start proper, with the

control() method, which checks to see if the location of the player

needs to change. Next we attempt to make an enemy missile and

we use the random module to limit the number of missiles that

can be created. Next we call the update() method for each and

every actor on the screen using a simple for loop. This makes

sure everyone’s up to date and moved before we check collisions

in calc_collisions().

03 Testing Pivaders
With Pygame installed and the

project cloned to your machine (you can

also find the .zip on FileSilo – simply

unpack it and copy it to your home

directory to use it), you can take it for a

quick test drive to make sure everything’s

set up properly. All you need to do is type

python pivaders.py from within the

pivaders directory in the terminal to get

started. You can start the game with the

space bar, shoot with the same button

and simply use the left and right arrows

on your keyboard to move your ship left

and right.

you can’t reassign individual items within

them. Perfect for constants, which aren’t

designed to change anyway.

You could, for example, have a pet class. From that class you

could create a cat (that meows) and a dog (that barks). They’re

different in many ways, but they’re both furry and have four

legs, so can be created from the same parent class. We’ve

done exactly that with our Ammo class, using it to create both

the player bullets and the alien missiles. They’re different

colours and they shoot in opposite directions, but they’re

fundamentally one and the same. This saves us creating extra

unnecessary code and ensures consistent behaviour between

objects we create.

We used widely available open source
art and fonts to make the game

The Python Book 119

Create with Python

Dead or alive Probably two of the most
important questions are answered here – is
the player dead or did you win the round?

Start the game The very last thing
we do is create a Game object and call the
main loop. Besides our constants, this is
the only code that sits outside a class.

 pygame.display.flip()
 self.control()

 def make_player(self):
 self.player = Player()
 self.player_group.add(self.player)
 self.all_sprite_list.add(self.player)

 def refresh_screen(self):
 self.all_sprite_list.draw(self.screen)
 self.refresh_scores()
 pygame.display.flip()
 self.screen.blit(self.background, [0, 0])
 self.clock.tick(self.refresh_rate)

 def refresh_scores(self):
 self.screen.blit(self.game_font.render(
 “SCORE “ + str(self.score), 1, WHITE), (10, 8))
 self.screen.blit(self.game_font.render(
 “LIVES “ + str(self.lives + 1), 1, RED), (355, 575))

 def alien_wave(self, speed):
 for column in range(BARRIER_COLUMN):
 for row in range(BARRIER_ROW):
 alien = Alien()
 alien.rect.y = 65 + (column * (
 ALIEN_SIZE[1] + ALIEN_SPACER))
 alien.rect.x = ALIEN_SPACER + (
 row * (ALIEN_SIZE[0] + ALIEN_SPACER))
 self.alien_group.add(alien)
 self.all_sprite_list.add(alien)
 alien.speed -= speed

 def make_bullet(self):
 if GameState.game_time - self.player.time > self.player.speed:
 bullet = Ammo(BLUE, BULLET_SIZE)
 bullet.vector = -1
 bullet.speed = 26
 bullet.rect.x = self.player.rect.x + 28
 bullet.rect.y = self.player.rect.y
 self.bullet_group.add(bullet)
 self.all_sprite_list.add(bullet)
 self.player.time = GameState.game_time
 GameState.shoot_bullet = False

 def make_missile(self):
 if len(self.alien_group):
 shoot = random.random()
 if shoot <= 0.05:
 shooter = random.choice([
 alien for alien in self.alien_group])
 missile = Ammo(RED, MISSILE_SIZE)
 missile.vector = 1
 missile.rect.x = shooter.rect.x + 15
 missile.rect.y = shooter.rect.y + 40
 missile.speed = 10
 self.missile_group.add(missile)
 self.all_sprite_list.add(missile)

 def make_barrier(self, columns, rows, spacer):
 for column in range(columns):
 for row in range(rows):
 barrier = Block(WHITE, (BLOCK_SIZE))
 barrier.rect.x = 55 + (200 * spacer) + (row * 10)
 barrier.rect.y = 450 + (column * 10)
 self.barrier_group.add(barrier)
 self.all_sprite_list.add(barrier)

 def make_defenses(self):
 for spacing, spacing in enumerate(xrange(4)):
 self.make_barrier(3, 9, spacing)

 def kill_all(self):
 for items in [self.bullet_group, self.player_group,
 self.alien_group, self.missile_group, self.barrier_group]:
 for i in items:
 i.kill()

 def is_dead(self):
 if self.lives < 0:
 self.screen.blit(self.game_font.render(
 “The war is lost! You scored: “ + str(
 self.score), 1, RED), (250, 15))
 self.rounds_won = 0
 self.refresh_screen()
 pygame.time.delay(3000)
 return True

 def win_round(self):
 if len(self.alien_group) < 1:
 self.rounds_won += 1
 self.screen.blit(self.game_font.render(
 “You won round “ + str(self.rounds_won) +
 “ but the battle rages on”, 1, RED), (200, 15))
 self.refresh_screen()
 pygame.time.delay(3000)
 return True

 def defenses_breached(self):
 for alien in self.alien_group:
 if alien.rect.y > 410:
 self.screen.blit(self.game_font.render(
 “The aliens have breached Earth defenses!”,
 1, RED), (180, 15))
 self.refresh_screen()
 pygame.time.delay(3000)
 return True

 def calc_collisions(self):
 pygame.sprite.groupcollide(
 self.missile_group, self.barrier_group, True, True)
 pygame.sprite.groupcollide(
 self.bullet_group, self.barrier_group, True, True)
 if pygame.sprite.groupcollide(
 self.bullet_group, self.alien_group, True, True):
 self.score += 10
 if pygame.sprite.groupcollide(
 self.player_group, self.missile_group, False, True):
 self.lives -= 1

 def next_round(self):
 for actor in [self.missile_group,
 self.barrier_group, self.bullet_group]:
 for i in actor:
 i.kill()
 self.alien_wave(self.level_up)
 self.make_defenses()
 self.level_up += 50

 def main_loop(self):
 while not GameState.end_game:
 while not GameState.start_screen:
 GameState.game_time = pygame.time.get_ticks()
 GameState.alien_time = pygame.time.get_ticks()
 self.control()
 self.make_missile()
 for actor in [self.player_group, self.bullet_group,
 self.alien_group, self.missile_group]:
 for i in actor:
 i.update()
 if GameState.shoot_bullet:
 self.make_bullet()
 self.calc_collisions()
 if self.is_dead() or self.defenses_breached():
 GameState.start_screen = True
 if self.win_round():
 self.next_round()
 self.refresh_screen()
 self.splash_screen()
 pygame.quit()

if __name__ == ‘__main__’:
 pv = Game()
 pv.main_loop()

Refreshing
the screen You
need to carefully
consider the way in
which you update
the screen. Blitting
the background
between actor
movements is vital
for clean animation.

Main loop This
is the business end
of our application.
This loop executes
20 times a second. It
needs to be logical
and easy for another
coder to understand.

Guns ’n’ ammo
Bullets and missiles
use the same parent
class. We change a
few key attributes
originally initialised
to create the
behaviour we need;
eg the vector for each
is opposite.

Get
 the code:

bit.ly/
11k5f2x

 A class is essentially a blueprint

120 The Python Book

Create with Python

After writing a Space Invaders clone in just 300 lines of Python,
now we expand it to include animation and sound

Part two: Add animation and
sound to Pivaders

that goal would likely have been overshot at least twofold.

Pygame’s ability to group, manage and detect collisions

thanks to the Sprite class really made a great difference

to our project, not just in terms of length but in simplicity.

If you missed the fi rst part of the project, you can fi nd the

v0.1 code listing on GitHub via git.io/cBVTBg, while you can

fi nd version v0.2, including all the images, music and sound

effects we used, over at git.io/8QsK-w.

Even working within the clearly defi ned framework

Pygame offers, there are still a thousand ways we could

have approached adding animation and sound. We could

have created any one of a dozen classes to create and

manage containers of individual images, or read in a sprite

sheet (a single image full of smaller, separate images)

which we could then draw (or blit) to the screen. For the

sake of simplicity and performance, we integrated a few

animation methods into our Game class and opted to use a

sprite sheet. Not only does it make it very easy to draw to the

screen, but it also keeps the asset count under control and

keeps performance levels up, which is especially important

for the Raspberry Pi.

01 Setting up dependencies
As we recommended with

the last tutorial, you’ll get much more

from the exercise if you download

the code (git.io/8QsK-w) and use it

for reference as you create your own

animations and sound for your Pygame

projects. Regardless of whether you

just want to simply preview and play or

walk-through the code to get a better

understanding of basic game creation,

you’re still going to need to satisfy

some basic dependencies. The two key

requirements here are Pygame and Git,

both of which are installed by default

on up-to-date Raspbian installations.

If you’re unsure if you have them,

though, type the following at the

command line:

 sudo apt-get install python-

pygame git

We had great fun creating our basic

Space Invaders clone, Pivaders,

for the previous tutorial. One of the

key challenges with the project was

keeping it to a manageable size – just

300 lines of Python. Without the use

of Pygame’s strong set of features,

Resources
Raspbian: www.raspberrypi.org

 /downloads

Python: www.python.org/doc

Pygame: www.pygame.org/docs

Art assets: opengameart.org

The Python Book 121

Create with Python

class Game(object):
 def __init__(self):
 pygame.init()
 pygame.font.init()
 self.clock = pygame.time.Clock()
 self.game_font = pygame.font.Font(
 ‘data/Orbitracer.ttf’, 28)
 self.intro_font = pygame.font.Font(
 ‘data/Orbitracer.ttf’, 72)
 self.screen = pygame.display.set_mode([RES[0], RES[1]])
 self.time = pygame.time.get_ticks()
 self.refresh_rate = 20; self.rounds_won = 0
 self.level_up = 50; self.score = 0
 self.lives = 2
 self.player_group = pygame.sprite.Group()
 self.alien_group = pygame.sprite.Group()
 self.bullet_group = pygame.sprite.Group()
 self.missile_group = pygame.sprite.Group()
 self.barrier_group = pygame.sprite.Group()
 self.all_sprite_list = pygame.sprite.Group()
 self.intro_screen = pygame.image.load(
 ‘data/graphics/start_screen.jpg’).convert()
 self.background = pygame.image.load(
 ‘data/graphics/Space-Background.jpg’).convert()
 pygame.display.set_caption(‘Pivaders - ESC to exit’)
 pygame.mouse.set_visible(False)
 Alien.image = pygame.image.load(
 ‘data/graphics/Spaceship16.png’).convert()
 Alien.image.set_colorkey(WHITE)
 self.ani_pos = 5 # 11 images of ship
 self.ship_sheet = pygame.image.load(
 ‘data/graphics/ship_sheet_final.png’).convert_alpha()
 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)
 self.animate_right = False
 self.animate_left = False
 self.explosion_sheet = pygame.image.load(
 ‘data/graphics/explosion_new1.png’).convert_alpha()
 self.explosion_image = self.explosion_sheet.subsurface(0, 0,
79, 96)
 self.alien_explosion_sheet = pygame.image.load(
 ‘data/graphics/alien_explosion.png’)
 self.alien_explode_graphics = self.alien_explosion_sheet.
subsurface(0, 0, 94, 96)
 self.explode = False
 self.explode_pos = 0; self.alien_explode = False
 self.alien_explode_pos = 0
 pygame.mixer.music.load(‘data/sound/10_Arpanauts.ogg’)
 pygame.mixer.music.play(-1)
 pygame.mixer.music.set_volume(0.7)
 self.bullet_fx = pygame.mixer.Sound(
 ‘data/sound/medetix__pc-bitcrushed-lazer-beam.ogg’)
 self.explosion_fx = pygame.mixer.Sound(
 ‘data/sound/timgormly__8-bit-explosion.ogg’)
 self.explosion_fx.set_volume(0.5)
 self.explodey_alien = []
 GameState.end_game = False
 GameState.start_screen = True
 GameState.vector = 0
 GameState.shoot_bullet = False

 def control(self):
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 GameState.start_screen = False
 GameState.end_game = True
 if event.type == pygame.KEYDOWN \
 and event.key == pygame.K_ESCAPE:
 if GameState.start_screen:
 GameState.start_screen = False
 GameState.end_game = True
 self.kill_all()
 else:
 GameState.start_screen = True
 self.keys = pygame.key.get_pressed()
 if self.keys[pygame.K_LEFT]:
 GameState.vector = -1
 self.animate_left = True
 self.animate_right = False
 elif self.keys[pygame.K_RIGHT]:
 GameState.vector = 1

 self.animate_right = True
 self.animate_left = False
 else:
 GameState.vector = 0
 self.animate_right = False
 self.animate_left = False

 if self.keys[pygame.K_SPACE]:
 if GameState.start_screen:
 GameState.start_screen = False
 self.lives = 2
 self.score = 0
 self.make_player()
 self.make_defenses()
 self.alien_wave(0)
 else:
 GameState.shoot_bullet = True
 self.bullet_fx.play()

 def animate_player(self):
 if self.animate_right:
 if self.ani_pos < 10:
 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)
 self.ani_pos += 1
 else:
 if self.ani_pos > 5:
 self.ani_pos -= 1
 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)

 if self.animate_left:
 if self.ani_pos > 0:
 self.ani_pos -= 1
 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)
 else:
 if self.ani_pos < 5:
 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)
 self.ani_pos += 1

 def player_explosion(self):
 if self.explode:
 if self.explode_pos < 8:
 self.explosion_image = self.explosion_sheet.
subsurface(0, self.explode_pos*96, 79, 96)
 self.explode_pos += 1
 self.screen.blit(self.explosion_image, [self.player.
rect.x -10, self.player.rect.y - 30])
 else:
 self.explode = False
 self.explode_pos = 0

 def alien_explosion(self):
 if self.alien_explode:
 if self.alien_explode_pos < 9:
 self.alien_explode_graphics = self.alien_explosion_
sheet.subsurface(0, self.alien_explode_pos*96, 94, 96)
 self.alien_explode_pos += 1
 self.screen.blit(self.alien_explode_graphics,
[int(self. explodey_alien[0]) - 50 , int(self.explodey_alien[1]) - 60])
 else:
 self.alien_explode = False
 self.alien_explode_pos = 0
 self.explodey_alien = []

 def splash_screen(self):
 while GameState.start_screen:
 self.kill_all()
 self.screen.blit(self.intro_screen, [0, 0])
 self.screen.blit(self.intro_font.render(
 “PIVADERS”, 1, WHITE), (265, 120))
 self.screen.blit(self.game_font.render(
 “PRESS SPACE TO PLAY”, 1, WHITE), (274, 191))
 pygame.display.flip()
 self.control()
 self.clock.tick(self.refresh_rate / 2)

 def make_player(self):
 self.player = Player()

Pivaders.py listing from line 86 (continued on next page)

ship_sheet
We set the player
image to be equal to
one small segment
of the sprite sheet by
using the ‘ani_pos’
variable. Change the
variable to change
the picture

Set flags We’ve
added ‘animate_left’
and ‘animate_right’
Boolean fl ags to
the control method.
When they’re true,
the actual animation
code is called via a
separate method

fx.play()
Having already
loaded the sound
effect we want when
we shoot, we now
just need to call it
when we press the
space bar

Get
 the code:

bit.ly/
1xPvY1F

122 The Python Book

Create with Python

Above The Freesound site is a good place to find free and open sound effects for projects

04 Animation & sound
Compared with the game from

last month’s tutorial, you’ll see it’s now

a much more dynamic project. The

protagonist ship now leans into the turns

as you change direction and corrects

itself when you either press the opposite

direction or lift your finger off the button.

When you shoot an alien ship, it explodes

05 Finding images to animate
Before we can program anything,

it’s wise to have assets set up in a way we

can use them. As mentioned, we’ve opted

to use sprite sheets; these can be found

online or created with GIMP with a little

practice. Essentially they’re a mosaic

made up of individual ‘frames’ of equally

sized and spaced images representing

each frame. Find ready-made examples

at opengameart.org, as used here.

06 Tweaking assets
While many of the assets on

sites like opengameart.org can be used

as is, you may want to import them into

an image-editing application like GIMP

to configure them to suit your needs – as

we did with our ship sheet asset to help

us keep the code simple. We started with

the central ship sprite and centred it into a

new window. We set the size and width of

the frame and then copy-pasted the other

frames either side of it. We ended up with

11 frames of exactly the same size and

width in a single document. Pixel-perfect

precision on size and width is key, so we

can just multiply it to find the next frame.

07 Loading the sprite sheet
Since we’re inheriting from the

Sprite class to create our Player class, we

can easily alter how the player looks on

screen by changing Player.image. First,

we need to load our ship sprite sheet with

pygame.image.load(). Since we made our

sheet with a transparent background,

we can append .convert_alpha() to the

08 Animation flags
Down the list in the initialising code for the Game class,

we set two flags for player animation: self.animate_left and

self.animate_right. In the Control method of our Game class,

we use these to ‘flag’ when we want animations to work using

Boolean values. It allows us to ‘automatically’ animate the

player sprite back to its resting state (otherwise the ship will

continue to look as if it’s flying left when it has stopped).

end of the line so the ship frames render correctly (without any

background). We then use subsurface to set the initial Player.

image to the middle ship sprite on the sheet. This is set by self.

ani_pos, which has an initial value of 5. Changing this value will

alter the ship image drawn to the screen: ‘0’ would draw it leaning

fully left, ‘11’ fully to the right.

09 The animation method
These flags pop up again in the core animation code for

the player: animate_player() within the Game class. Here we

use nested if statements to control the animation and physically

set the player image accordingly. Essentially it states that if the

animate_right flag is True and if the current animation position

is different to what we want, we incrementally increase the

ani_pos variable and set the player’s image accordingly. The Else

statement then animates the ship sprite back to its resting state

and the same logic is then applied in the opposite direction.

10 Animating explosions
The player_explosion() and alien_explosion() methods

that come after the player animation block in the Game class are

similar but simpler executions of essentially the same thing. As

we only need to run through the same predefined set of frames

(this time vertically), we only need to see if the self.explode and

self.alien_explode flags are True before we increment the

variables that change the image displayed. As the sprite sheet is

vertical, the variables alien_explode_pos and explosion_image

are set to a different part of subsurface than before.

12 Using sound effects
Loading and using sounds is similar to how we do so for

images in Pygame. First we load the sound effect using a simple

assignment. For the laser beam, the initialisation looks like this:

 self.bullet_fx = pygame.mixer.Sound(

 ‘data/sound/medetix__pc-bitcrushed-lazer-beam.ogg’)

Then we simply trigger the sound effect at the appropriate time.

In the case of the laser, we want it to play whenever we press the

space bar to shoot, so we place it in the Game class’s Control

method, straight after we raise the shoot_bullet flag.

If you’re struggling to find free and open sound effects, we

recommend www.freesound.org.

11 Adding music to your project
Pygame makes it easy to add a musical score to a project.

Just obtain a suitable piece of music in your preferred format (we

found ours via freemusicarchive.org) and load it using the Mixer

Pygame class. As it’s already been initialised via pygame.init(),

we can go ahead and load the music with this code:

 pygame.mixer.music.load(‘data/sound/10_Arpanauts.ogg’)

 pygame.mixer.music.play(-1)

 pygame.mixer.music.set_volume(0.7)

The music.play(-1) requests that the music should start with the

app and continue to loop until it quits. If we replaced -1 with 5, the

music would loop five times before ending. Learn more about the

Mixer class via www.pygame.org/docs/ref/mixer.html.

03 Navigating the project
The project is laid out quite

simply across a few subfolders. Within

pivaders sits a licence, readme and a

second pivaders folder. This contains

the main game file, pivaders.py, which

launches the application. Within the

data folder you’ll find subfolders for both

graphics and sound assets, as well as the

font we’ve used for the title screen and

scores. To take pivaders for a test-drive,

simply enter the pivaders subdirectory

(cd pivaders/pivaders) and type:

 python pivaders.py

Use the arrow keys to steer left and right

and the space bar to shoot. You can quit

to the main screen with the Esc key and

press it again to exit the game completely.

02 Downloading pivaders
Git is a superb version control

solution that helps programmers safely

store their code and associated files.

Not only does it help you retain a full

history of changes, it means you can

‘clone’ entire projects to use and work

on from places like github.com. To clone

the version of the project we created for

this tutorial, go to your home folder from

the command line (cd ~) and type:

 git pull https://github.com/

russb78/pivaders.git

This will create a folder called

pivaders – go inside (cd pivaders) and

take a look around.

with several frames of animation and

should you take fire, a smaller explosion

occurs on your ship. Music, lasers and

explosion sound effects also accompany

the animations as they happen.

The Python Book 123

Create with Python

 self.player_group.add(self.player)
 self.all_sprite_list.add(self.player)

 def refresh_screen(self):
 self.all_sprite_list.draw(self.screen)
 self.animate_player()
 self.player_explosion()
 self.alien_explosion()
 self.refresh_scores()
 pygame.display.flip()
 self.screen.blit(self.background, [0, 0])
 self.clock.tick(self.refresh_rate)

 def refresh_scores(self):
 self.screen.blit(self.game_font.render(
 “SCORE “ + str(self.score), 1, WHITE), (10, 8))
 self.screen.blit(self.game_font.render(
 “LIVES “ + str(self.lives + 1), 1, RED), (355, 575))

 def alien_wave(self, speed):
 for column in range(BARRIER_COLUMN):
 for row in range(BARRIER_ROW):
 alien = Alien()
 alien.rect.y = 65 + (column * (
 ALIEN_SIZE[1] + ALIEN_SPACER))
 alien.rect.x = ALIEN_SPACER + (
 row * (ALIEN_SIZE[0] + ALIEN_SPACER))
 self.alien_group.add(alien)
 self.all_sprite_list.add(alien)
 alien.speed -= speed

 def make_bullet(self):
 if GameState.game_time - self.player.time > self.player.speed:
 bullet = Ammo(BLUE, BULLET_SIZE)
 bullet.vector = -1
 bullet.speed = 26
 bullet.rect.x = self.player.rect.x + 28
 bullet.rect.y = self.player.rect.y
 self.bullet_group.add(bullet)
 self.all_sprite_list.add(bullet)
 self.player.time = GameState.game_time
 GameState.shoot_bullet = False

 def make_missile(self):
 if len(self.alien_group):
 shoot = random.random()
 if shoot <= 0.05:
 shooter = random.choice([
 alien for alien in self.alien_group])
 missile = Ammo(RED, MISSILE_SIZE)
 missile.vector = 1
 missile.rect.x = shooter.rect.x + 15
 missile.rect.y = shooter.rect.y + 40
 missile.speed = 10
 self.missile_group.add(missile)
 self.all_sprite_list.add(missile)

 def make_barrier(self, columns, rows, spacer):
 for column in range(columns):
 for row in range(rows):
 barrier = Block(WHITE, (BLOCK_SIZE))
 barrier.rect.x = 55 + (200 * spacer) + (row * 10)
 barrier.rect.y = 450 + (column * 10)
 self.barrier_group.add(barrier)
 self.all_sprite_list.add(barrier)

 def make_defenses(self):
 for spacing, spacing in enumerate(xrange(4)):
 self.make_barrier(3, 9, spacing)

 def kill_all(self):
 for items in [self.bullet_group, self.player_group,
 self.alien_group, self.missile_group, self.barrier_group]:
 for i in items:
 i.kill()

 def is_dead(self):
 if self.lives < 0:
 self.screen.blit(self.game_font.render(
 “The war is lost! You scored: “ + str(
 self.score), 1, RED), (250, 15))
 self.rounds_won = 0
 self.refresh_screen()
 self.level_up = 50

 self.explode = False
 self.alien_explode = False
 pygame.time.delay(3000)
 return True

 def defenses_breached(self):
 for alien in self.alien_group:
 if alien.rect.y > 410:
 self.screen.blit(self.game_font.render(
 “The aliens have breached Earth defenses!”,
 1, RED), (180, 15))
 self.refresh_screen()
 self.level_up = 50
 self.explode = False
 self.alien_explode = False
 pygame.time.delay(3000)
 return True

 def win_round(self):
 if len(self.alien_group) < 1:
 self.rounds_won += 1
 self.screen.blit(self.game_font.render(
 “You won round “ + str(self.rounds_won) +
 “ but the battle rages on”, 1, RED), (200, 15))
 self.refresh_screen()
 pygame.time.delay(3000)
 return True

 def next_round(self):
 self.explode = False
 self.alien_explode = False
 for actor in [self.missile_group,
 self.barrier_group, self.bullet_group]:
 for i in actor:
 i.kill()
 self.alien_wave(self.level_up)
 self.make_defenses()
 self.level_up += 50

 def calc_collisions(self):
 pygame.sprite.groupcollide(
 self.missile_group, self.barrier_group, True, True)
 pygame.sprite.groupcollide(
 self.bullet_group, self.barrier_group, True, True)

 for z in pygame.sprite.groupcollide(
 self.bullet_group, self.alien_group, True, True):
 self.alien_explode = True
 self.explodey_alien.append(z.rect.x)
 self.explodey_alien.append(z.rect.y)
 self.score += 10
 self.explosion_fx.play()

 if pygame.sprite.groupcollide(
 self.player_group, self.missile_group, False, True):
 self.lives -= 1
 self.explode = True
 self.explosion_fx.play()

 def main_loop(self):
 while not GameState.end_game:
 while not GameState.start_screen:
 GameState.game_time = pygame.time.get_ticks()
 GameState.alien_time = pygame.time.get_ticks()
 self.control()
 self.make_missile()
 self.calc_collisions()
 self.refresh_screen()
 if self.is_dead() or self.defenses_breached():
 GameState.start_screen = True
 for actor in [self.player_group, self.bullet_group,
 self.alien_group, self.missile_group]:
 for i in actor:
 i.update()
 if GameState.shoot_bullet:
 self.make_bullet()
 if self.win_round():
 self.next_round()
 self.splash_screen()
 pygame.quit()

if __name__ == ‘__main__’:
 pv = Game()
 pv.main_loop()

Get
 the code:

bit.ly/
1xPvY1F

124 The Python Book

Create with Python

Bridge the gap between books and videogames by creating an
interactive novel or choose-your-own-adventure with Python
and Pygame

Resources
Python 2:

www.python.org/

Pygame:
pygame.org/download.shtml

IDLE Python IDE

Game assets

Code from FileSilo (optional)

Make a visual novel
game with Python

Most people look for a compelling story in

modern videogames, and those that don’t

have one are appearing less and less. A great

way to tell a pure story is through the genre

of visual novels, and you can make one fairly

simply in Python. These interactive novels are

an extremely popular form of entertainment in

Japan, and usually work by having the player

click through a story and make decisions as they

go along in order to experience different plot

points and endings.

Change scenes to add more depth to the story, and allow the game to have decisions and routes

In Python, this is a relatively simple project

to create, but with the addition of the Pygame

module we can make it easier still, and even

more expandable for the future. Pygame adds

better support for positioning the images and

text, creating display windows and using mouse

and keyboard inputs, thereby simplifying the

coding process.

We’ll be coding this in standard Python 2, so

make sure to run it in IDLE 2 and not IDLE 3 while

you are writing, testing and coding.

The Python Book 125

Create with Python

02 Get the Pygame code
Next we need to download the code

for Pygame direct from the source. Still in the

terminal, you can do this by typing in:

$ hg clone https://bitbucket.org/pygame/

pygame

Which will download it to the folder ‘pygame’.

Move to that using CD pygame in the terminal so

we can continue building it.

03 Build the Pygame module
To install it, we need to do it in two

steps. First we need to prepare the code to

install using the terminal with:

$ python setup.py build

Once that’s finished you can then actually install

it with:

$ sudo python setup.py install

This won’t take too long.

04 Install in other ways
If the above doesn’t work (or is a bit

daunting) you can check the website for binary

and executable files that will work on other

operating systems and Linux distros. Head to

http://pygame.org/download.shtml to get the

files you need for your specific system, including

Windows and OS X. The rest of the tutorial will

work in any OS.

01 Get Pygame dependencies
The best way to install Pygame for your

system is to compile it. To do this you need to

first install the right dependencies. Open up

the terminal and install the following packages,

which in Ubuntu looks like:

$ sudo apt-get install mercurial

python-dev python-numpy libav-tools

libsdl-image1.2-dev libsdl-mixer1.2-

dev libsdl-ttf2.0-dev libsmpeg-

dev libsdl1.2-dev libportmidi-dev

libswscale-dev libavformat-dev

libavcodec-dev

05 Get the visual novel files
We’ve uploaded the code to FileSilo,

and here we’re going to walk you through what

we’ve done to make it work. Download the files

for the visual novel and unzip them. The two

files we care about for the moment are the

visualnovel.py and script.py python files – this

is where all the important code is.

06 Understand the script file
For the moment the script file is small

and literally just holds the script for the game.

It’s made up of events for the visual novel to

move between, line by line, by splitting it up into

scenes. This includes the location of each line, the

character, the actual line itself and information on

how the game flows. These are matrices with the

information in, and are completely customisable.

126 The Python Book

Create with Python

09 Add variables and assets
We add a mixture of information we

need to run the novel. We define the size of the

display screen to use (1000 pixels wide and 563

high), along with some RGB colours for the code

to use. We’re also telling Pygame what font to

use and how large for certain sections and also

loading images for the game.

10 Start the game
Create a display for the game. Pygame

works by constantly updating the display with

new information. To show how this works, the

menu function adds elements to the display

(which we’ve titled screen), such as filling it

with colour, adding shapes and using blit to add

images or in this case text. Once you’ve created

a buffer of changes to the screen, you update it

with the flip() function.

12 Start the story
Our start_game function is called

when the mouse clicks the right position and

we prepare the game, getting the characters,

locations and progression through the game

script. The rest of this function uses this info to

pull in data from the script to make the game

flow properly.

07 How the script relates
In our game, the code pulls in

elements from the script file as it goes. We'll

explain how that works later, but this also

allows us to implement decisions later on to

change which direction the game might take

you in.

08 Starting the main game
We don’t need many modules for the

current state of the visual novel. Here we’ve

imported the new Pygame module, our script

as a module and the time module for aesthetic

reasons – we’re going to have the code pause in

bits rather than just instantly change scenes to

the next line. We also initialise Pygame with a

simple pygame.init()

13 First screen
The first screen is handled differently,

and acts to get every element up on the

interface before we continue – it makes the

code take a little less time to process as we

11 See the mouse
As we’ve created the button as a

rectangle and now an image on the menu, we

need to recognise when the mouse is hovering

over it to know when the button is clicked. First

we have to use event.get() to see the mouse

in general, then we look for the position with

get_pos(). After that, we wait for it to click, see

where it clicked (using the co-ordinates of the

rectangle) and make a decision after that.

 The code pulls in elements from
the script file as it goes, allowing us to
implement decisions later on

The Python Book 127

Create with Python

15 The starting function
We finish our code bit with a simple

function that starts off the entire game. This is

just to encapsulate the entire code and allows us

to add different ways of turning it off in the future.

IDLE when running the file will load everything

up and then run the game() function at the end

– this is similar to how you can add a __main__

function at the end which will start the code in the

command line.

feel more interactive. This would not require

much more code than the if statements, and

it would also be a good way for you to look into

adding graphical buttons to click and use the

collide function.

17 Move the assets
Currently the code has the script-

specific assets in the main visualnovel file.

These can be moved to the script, allowing

you to make the visualnovel file much more

modular so that can you have multiple scripts

with different assets to load at startup.

14 Add variables and assets
Similarly to the way that our original

startup code works, our next if statement and

iteration checks to see what is different on the

next line, and if it moves to a different scene

function. It will also change anything that is

different without filling up the buffer more

than needed. Where we’ve made no change is

labelled with a 0 in the scripts.

16 Expand your code
The code written is very expandable,

allowing you to add decisions that are logged

to take you to different scenes (or routes in

visual novel terminology) and make your game

begin. The getattr allows us to use the string/

integer associated with our place in the story

and call upon the relevant scene function from

the script file. We then use an if statement

with an iterative function to successively add

screen element to give the illusion that it’s

building up the first screen. We finish it by

advancing the progression value.

 The code here is very expandable,
allowing you to add decisions that take
you to different scenes

128 The Python Book

Create with Python

Games are a great way of understanding a

language: you have a goal to work towards, and

each feature you add brings more fun. However,

games need libraries and modules for graphics

and other essential games features. While the

Pygame library made it relatively easy to make

games in Python, it still brings in boilerplate code

that you need before you get started – barriers to

you or your kids getting started in coding.

Pygame Zero deals with all of this boilerplate

code for you, aiming to get you coding games

instantly. Pg0 (as we’ll abbreviate it) makes

sensible assumptions about what you’ll need for

a game – from the size of the window to importing

the game library – so that you can get straight

down to coding your ideas.

Pg0’s creator, Daniel Pope, told us that the

library “grew out of talking to teachers at Pycon

UK’s education track, and trying to understand

that they need to get immediate results and

break lessons into bite-size fragments, in order

to keep a whole class up to speed.”

To give you an idea of what’s involved here,

we’ll build up a simple game from a Pong-

type bat and ball through to smashing blocks

Breakout-style. The project will illustrate what

can be done with very little effort. Pg0 is in

early development but still offers a great start

– and is now included on the Pi in the Raspbian

Jessie image.

We’ll look at installation on other platforms,

but fi rst let’s see what magic it can perform.

SCORE

0001200

LIVES BREAKOUT

Resources
Pygame Zero:

pygame-zero.readthedocs.org

Pygame:
pygame.org/download.shtml

Pip
pip-installer.org

Python 3.2 or later
www.python.org/

Code from FileSilo (optional)

Pygame Zero
Pygame Zero cuts out the boilerplate to turn your ideas into games
instantly, and we’ll show you how

The Python Book 129

Create with Python

01 Zero effort
Although game writing is not easy, getting started

certainly is. If you’ve got Raspbian Jessie installed on your Pi,

you’re ready to go. Open a terminal and type:

 touch example.py

 pgzrun example.py

And you’ll see an empty game window open (Ctrl+Q will close the

window). Yes, it’s that easy to get started!

04 No Pi?
You don’t even need a Raspberry Pi to install Pygame

Zero – just install the Pygame library, then use pip to install

Pygame Zero. Instructions vary by distro, but a good place to

start is the documentation: bit.ly/1GYznUB.

03 Older Raspbian
If you’re still running Raspbian Wheezy, you’ll need to run

the following steps to install Pygame Zero:

 sudo apt-get update

 sudo apt-get install python3-setuptools python3-pip

 sudo pip-3.2 install pgzero

05 Intro.py
That default black square of 800 by 600 pixels we

saw in Step 1 can now be overridden manually. For example,

we can use the following code to replace it with an oversized

gold brick, in a sly nod to Breakout:

WIDTH = 1000

HEIGHT = 100

def draw():

 screen.fill((205, 130, 0))

That colour tuple takes RGB values, so you can quickly

get colours off a cheatsheet; screen is built into Pg0 for

the window display, with methods available for all sorts of

different sprites…

02 Python 3
If you haven’t got Raspbian Jessie, chances are you’ll

have neither Pg0 nor Pygame installed. The Python’s pip package

installer will take care of grabbing Pg0 for you, but the preceding

steps vary by distro. One thing you will need is Python 3.2 (or

newer). If you’ve been sticking with Python 2.x in your coding

(perhaps because it’s used in a tutorial you’re following), make

Pg0 your chance for a gentle upgrade to Python 3.

Right Breakout is
a classic arcade

game that can
be reimagined in

Pygame Zero

In situations where
Pygame is used
boilerplate and all
with young people,
great results can
also be achieved
(see Bryson
Payne’s book),
but Pygame and
Pg0, despite their
use as powerful
educational tools,
are also good for
creating games for
coders no matter
what stage of
learning they are at.

Great games are all
about the gameplay,
driven by powerful
imaginations
generating images,
animations, sounds
and journeys
through game
worlds. Good
frameworks open
up this creative
activity to people
who are not
traditional learners
of programming,
which is an area
where Python has
long excelled.

Young
and old

Code on
FileSilo

130 The Python Book

Create with Python

09 Mouse move
We want to move the bat, and the mouse is closer to an

arcade paddle than the arrow keys. Add the following:

def on_mouse_move(pos):

 x, y = pos

 bat.center = (x, bat.center[1])

Use pgzrun to test that you have a screen, bat and movement.

08 Batty
You can think of Breakout as essentially being a

moving bat – that is, you’re hitting a moving ball in order to

knock out blocks. The bat is a rectangle, and Pygame’s Rect

objects store and manipulate rectangular areas – we use

Rect((left, top), (width, height)), before which we define the bat

colour and then call upon the draw function to put the bat on

the screen, using the screen function.

W = 800

H = 600

RED = 200, 0, 0

bat = Rect((W/2, 0.96 * H), (150, 15))

def draw():

 screen.clear()

 screen.draw.filled_rect(bat, RED)

07 Breakout via Pong
While the Pi is something of a tribute to 1980s 8-bit

computers, Breakout comes from the 1970s and is a direct

descendant of the early arcade classic Pong. We’ll follow the

route from Pong to Breakout (which historically involved Apple

founders Steve Wozniak and Steve Jobs) in the steps to creating

our code, leaving you with the option of developing the Pong

elements into a proper game, as well as refining the finished

Breakout clone.

06 Sprite
The intro example from the Pg0 docs expands on that

with the Actor class, which will automatically load the named

sprite (Pg0 will hunt around for a .jpg or .png in a subdirectory

called images).

alien = Actor(‘alien’)

alien.pos = 100, 56

WIDTH = 500

HEIGHT = alien.height + 20

def draw():

 screen.clear()

 alien.draw()

You can download the alien from the Pg0 documentation (bit.

ly/1Sm5lM7) and try out the animation shown there, but we’re

taking a different approach in our game.

Right The bat
and ball come

first – they’re the
cornerstones of

Pong and Breakout

David Ames, who
uses Pg0 to teach
younger children
to code at events
across the UK,
told us: “One thing
to avoid when it
comes to teaching
kids is Object
Orientation.” OOP
(object-oriented
programming) is
partly abstracted
away by Pg0, but it
can’t be ignored.

Perhaps the best
approach is using
Pg0 and some
simple code to
start, then dropping
in a piece of OO
when it’s needed to
solve a particular
problem.

With the Code Club
age group – about
eight to eleven –
feeding information
to solve practical
problems works
well. It can work
with adults, too –
but there’s always
someone who’s
read ahead and
has a few tricky
questions.

Program
objects

The Python Book 131

Create with Python

Breakout type game to demonstrate Pygame Zero library

Based originally upon Tim Viner’s London Python Dojo

demonstration

Licensed under MIT License - see file COPYING

from collections import namedtuple

import pygame

import sys

import time

W = 804

H = 600

RED = 200, 0, 0

WHITE = 200,200,200

GOLD = 205,145,0

ball = Rect((W/2, H/2), (30, 30))

Direction = namedtuple(‘Direction’, ‘x y’)

ball_dir = Direction(5, -5)

bat = Rect((W/2, 0.96 * H), (120, 15))

class Block(Rect):

 def __init__(self, colour, rect):

 Rect.__init__(self, rect)

 self.colour = colour

blocks = []

for n_block in range(24):

 block = Block(GOLD, ((((n_block % 8)* 100) + 2, ((n_block //

 8) * 25) + 2), (96, 23)))

 blocks.append(block)

def draw_blocks():

 for block in blocks:

 screen.draw.filled_rect(block, block.colour)

def draw():

 screen.clear()

 screen.draw.filled_rect(ball, WHITE)

 screen.draw.filled_rect(bat, RED)

 draw_blocks()

def on_mouse_move(pos):

 x, y = pos

 bat.center = (x, bat.center[1])

def on_mouse_down():

 global ball_dir

 ball_dir = Direction(ball_dir.x * 1.5, ball_dir.y * 1.5)

Full code listing

 To get the ball to move we need
to define move(ball) for each case
where the ball meets a wall

10 Square ball
In properly retro graphics-style, we define a square

ball too – another rectangle, essentially, with the (30, 30) size

making it that subset of rectangles that we call a square.

We’re doing this because Rect is another built-in in Pg0. If we

wanted a circular ball, we’d have to define a class and then use

Pygame’s draw.filled_circle(pos, radius, (r, g, b)) - but Rect we

can call directly. Simply add:

WHITE = 200,200,200

ball = Rect((W/2, H/2), (30, 30))

… to the initial variable assignments, and:

 screen.draw.filled_rect(ball, WHITE)

… to the def draw() block.

12 def move(ball)
To get the ball to move within the screen we need to

define move(ball) for each case where the ball meets a wall.

For this we use if statements to reverse the ball’s direction at

each of the boundaries. Refer to the full code listing on page 67.

Note the hardcoded value of 781 for the width of screen,

minus the width of ball – it’s okay to hardcode values in

early versions of code, but it’s the kind of thing that will need

changing if your project expands. For example, a resizable

screen would need a value of W - 30.

13 Absolute values
You might expect multiplying y by minus one to work for

reversing the direction of the ball when it hits the bat:

ball_dir = Direction(ball_dir.x, -1 * ball_dir.y)

… but you actually need to use abs, which removes any minus

signs, then minus:

ball_dir = Direction(ball_dir.x, - abs(ball_dir.y))

Try it without in the finished code and see if you get some

strange behaviour. Your homework is to work out why.

11 Action!
Now let’s make the ball move. Download the tutorial

resources in FileSilo.co.uk and then add the code inside the

‘move.py’ file to assign movement and velocity. Change the 5 in

ball_dir = Direction(5, -5) if you want the ball slower or faster,

as your processor (and dexterity) demands – but it’s hard to

tell now because the ball goes straight off the screen! Pg0 will

call the update() function you define once per frame, giving the

illusion of smooth(ish) scrolling if you’re not running much else.

132 The Python Book

Create with Python

19 Drawing blocks
Draw_blocks() is added to def draw() after defining:

def draw_blocks():

 for block in blocks:

 screen.draw.filled_rect(block, block.colour)

20 Block bashing
All that remains with the blocks is to expand def

move(ball) – to destroy a block when the ball hits it.

to_kill = ball.collidelist(blocks)

if to_kill >= 0:

 sounds.block.play()

 ball_dir = Direction(ball_dir.x, abs(ball_dir.y))

 blocks.pop(to_kill)

17 Going for gold
Create a Block class:

class Block(Rect):

 def __init__(self, colour, rect):

 Rect.__init__(self, rect)

 self.colour = colour

… and pick a nice colour for your blocks:

GOLD = 205,145,0

18 Line up the blocks
This builds an array of 24 blocks, three rows of eight:

blocks = []

for n_block in range(24):

 block = Block(GOLD, ((((n_block % 8)* 100) + 2,

 ((n_block // 8) * 25) + 2), (96, 23)))

 blocks.append(block)

16 Building blocks
There are many ways of defining blocks and distributing

them onto the screen. In Tom Viner’s team’s version, from

the London Python Dojo – which was the code that originally

inspired this author to give this a go – the blocks are sized in

relation to number across the screen, thus:

N_BLOCKS = 8

BLOCK_W = W / N_BLOCKS

BLOCK_H = BLOCK_W / 4

BLOCK_COLOURS = RED, GREEN, BLUE

Using multicoloured blocks which are then built into an

array means that blocks can join without needing a border.

With its defining variables in terms of screen width, it’s good

sustainable code, which will be easy to amend for different

screen sizes – see github.com/tomviner/breakout.

However, the array of colour bricks in a single row is not

enough for a full game screen, so we’re going to build our array

from hard-coded values…

15 Blockhead!
If you’re not very familiar with the ancient computer

game Breakout, then:

 apt-get install lbreakout2

… and have a play. Now, we haven’t set our sights on building

something quite so ambitious in just these six pages, but we

do need blocks.

14 Sounds
Also upon bat collision, sounds.blip.play() looks in

the sounds subdirectory for a sound file called blip. You can

download the sounds (and finished code) from FileSilo.co.uk.

Actually, now we think about it, ignore the previous

comment about homework – your real homework is to turn

what we’ve written so far into a proper game of Pong! But first

let’s finish turning it into Breakout!

Right Tom Viner’s
array of blocks

negates the need for
bordered rectangles

There’s a new
version of Pg0 in
development – it
may even be out
as you read this.
Pg0 creator Daniel
Pope tells us “a tone
generation API is in
the works,” and that
at the Pg0 PyConUK
sprint, “we finished
Actor rotation.”

Contributions are
welcome – not only
to the Pg0 code, but
more examples are
needed not just to
show what can be
done, but to give
teachers tools to
enthuse children
about the creative
act of programming.

Pg0 has also
inspired GPIO
Zero, to make
GPIO programming
easier on the
Raspberry Pi, with
rapid development
occurring on this
new library as we go
to press.

Pg0 +1

The Python Book 133

Create with Python

22 Score draw
Taking advantage of some of Pygame Zero’s quickstart

features, we’ve a working game in around 60 lines of code.

From here, there’s more Pg0 to explore, but a look into Pygame

unmediated by the Pg0 wrapper is your next step but one.

First refactor the code; there’s plenty of room for improvement

– see the example ‘breakout-refactored.py’ which is included in

your tutorial resources. Try adding scoring, the most significant

absence in the game. You could try using a global variable and

writing the score to the terminal with print(), or instead use

screen.blit to put it on the game screen. Future versions of Pg0

might do more for easy score keeping.

23 Class of nine lives
For adding lives, more layers, and an easier life-keeping

score, you may be better defining the class GameClass and

enclosing much of the changes you wish to persist within it,

such as self.score and self.level. You’ll find a lot of Pygame code

online doing this, but you can also find Pg0 examples, such as the

excellent pi_lander example by Tim Martin: github.com/timboe/

pi_lander.

21 Game over
Lastly, we need to allow for the possibility of successfully

destroying all blocks.

if not blocks:

 sounds.win.play()

 sounds.win.play()

 print(“Winner!”)

 time.sleep(1)

 sys.exit()

24 Don’t stop here
This piece is aimed at beginners, so don’t expect to

understand everything! Change the code and see what works,

borrow code from elsewhere to add in, and read even more code.

Keep doing that, then try a project of your own – and let us know

how you get on.

def move(ball):

 global ball_dir

 ball.move_ip(ball_dir)

 if ball.x > 781 or ball.x <= 0:

 ball_dir = Direction(-1 * ball_dir.x, ball_dir.y)

 if ball.y <= 0:

 ball_dir = Direction(ball_dir.x, abs(ball_dir.y))

 if ball.colliderect(bat):

 sounds.blip.play()

 ball_dir = Direction(ball_dir.x, - abs(ball_dir.y))

 to_kill = ball.collidelist(blocks)

 if to_kill >= 0:

 sounds.block.play()

 ball_dir = Direction(ball_dir.x, abs(ball_dir.y))

 blocks.pop(to_kill)

 if not blocks:

 sounds.win.play()

 sounds.win.play()

 print(“Winner!”)

 time.sleep(1)

 sys.exit()

 if ball.y > H:

 sounds.die.play()

 print(“Loser!”)

 time.sleep(1)

 sys.exit()

def update():

 move(ball)

Full code listing (cont.)

Left Test your game
once it’s finished
– then test other
people’s Breakout
games to see how
the code differs

development

134 The Python Book

154

Web

136 Develop with Python
Why Python is perfect for the web

142 Creating dynamic templates
Use Flask and Jinja2 to their full potential

146 Build your own blog
Begin developing your blog

150 Deliver content to your blog
Add content to your site

154 Enhance your blog
Complete your blog with add-ons

“Python is a versatile language,
perfect for making websites”

142 136

The Python Book 135

Web development

136 The Python Book

Don’t be fooled into thinking Python is a restrictive language or
incompatible with the modern web. Explore options for building

Python web apps and experience rapid application development

Web development

The Python Book 137

Django djangoproject.com

GOOD FOR: Large database-driven web apps with multiuser support

and sites that need to have heavily customisable admin interfaces

Django contains a lot of impressive features, all in the name of interfaces

and modules. These include autowiring, admin interfaces and database

migration management tools by default for all of your projects and

applications. Django will help to enable rapid application development for

enterprise-level projects, whilst also enabling a clear modular reuseable

approach to code using subapplications.

Werkzeug
werkzeug.pocoo.org

GOOD FOR: API creation, interacting with

databases and following strict URL routes

whilst managing HTTP utilitie

Werkzeug is the underlying framework for

Flask and other Python frameworks. It provides

a unique set of tools that will enable you to

perform URL routing processes as well as

request and response objects, and it also

includes a powerful debugger.

Tornado tornadoweb.org

GOOD FOR: Web socket interaction and long polling due to its

ability to scale to manage vast numbers of connections

Tornado is a networking library that works as a nonblocking web server

and web application framework. It’s known for its high performance and

scalability and was initially developed for friendfeed, which was a real-

time chat system that aggregated several social media sites. It closed

down in April 2015 as its user numbers had declined steadily, but Tornado

remains as active and useful as ever.

Flask fl ask.pocoo.org

GOOD FOR: Creating full-featured RESTful APIs. Its ability to manage

multiple routes and methods is very impressive

Flask’s aim is to provide a set of commonly used components such as

URL routing and templates. Flask will also work on controlling the request

and response objects, all-in-all this means it is lightweight but is still a

powerful microframework.

PyramiD pylonsproject.org

GOOD FOR: Highly extensible and adaptable to any project

requirement. Not a lightweight system either

Heavily focused on documentation, Pyramid brings all the much needed

basic support for most regular tasks. Pyramid is open source and

also provides a great deal of extensibility – it comes with the powerful

Werkzeug Debugger too.

Frameworks

Why?

Let’s take a look at some of the frameworks

available when developing Python web applications

First released in 1991, companies

like Google and NASA have been

using Python for years

Thanks to the introduction of the Web Server

Gateway Interface (WSGI) in 2003, developing

Python web apps for general web servers

became a viable solution as opposed to

restricting them to custom solutions.

Python executables and installers are

widely available from the offi cial Python site at

www.python.org.

Mac OS X users can also benefi t greatly

from using Homebrew to install and manage

their Python versions. Whilst OS X comes

bundled with a version of Python, it has some

potential drawbacks. Updating your OS may

clear out any downloaded packages, and

Apple’s implementation of the library differs

greatly from the offi cial release. Installing

using Homebrew helps you to keep up to date

and also means you get the Python package

manager pip included.

Once Python is installed the fi rst package to

download should be virtualenv using ‘pip install

virtualenv’, which enables you to create project-

specifi c shell environments. You can run

projects on separate versions of Python with

separate project-specifi c packages installed.

Check out the detailed Hitchhiker’s Guide

to Python for more information: docs.python-

guide.org/en/latest.

Web development

138 The Python Book

Create an API Let us explore the Flask microframework and build a
simple yet powerful RESTful API with minimal code

01 Install Flask
Create a new directory inside of

which your project will live. Open a Terminal

window and navigate to be inside your new

directory. Create a new virtual environment

for this project, placed inside a new directory

called ‘venv’, and activate it. Once inside

the new virtual shell, proceed to installing

Flask using the ‘pip install Flask’ command.

virtualenv venv

. venv/bin/activate

pip install Flask

04 Connect to Database
With the database path defi ned,

we need a way to create connection to the

database for the application to obtain data.

Create a new method called ‘connet_db’ to

manage this for us. As a method we can call it

when we set up a prerequest hook shortly. This

will return a new open connection using the

database details set in the confi guration object.

def connect_db():

return sqlite3.connect(app.

config[‘DATABASE’])

07 Populate the Database
To populate the database you

can now run the init_db inside an active

python shell. To do so enter a shell by typing

‘python’ inside your environment, and then

running the command below. Alternatively,

you can use the sqlite3 command and

pipe the schema.sql fi le into the database.

Importing the database using the

init_db method

python

>>> from index import init_db

>>> init_db()

Piping the schema using SQLite3

sqlite3 /tmp/api.db < schema.sql

02 Create Index
Create a new fi le in the root of the

project location called ‘index.py’. The sample API

will use a SQLite database, so we need to import

that module for use in the application. We’ll

also import some core components from the

Flask module to handle request management

and response formatting as well as some other

functions. The minimum import for a Flask

application is Flask itself.

import sqlite3

from flask import Flask, request, g,

redirect, url_for, render_template,

abort, jsonify

05 Database Schema
Our SQLite database will only contain

one table. Create a new fi le called ‘schema.sql’

in the root of the project directory. This fi ll will

contain the SQL commands required to create

the table and populate it with some sample

bootstrapped data.

drop table if exists posts;

create table posts (

 id integer primary key autoincrement,

 title text not null,

 text text not null

);

insert into posts (title, text) values

(‘First Entry’, ‘This is some text’);

insert into posts (title, text) values

(‘Second Entry’, ‘This is some more text’);

insert into posts (title, text) values

(‘Third Entry’, ‘This is some more text

(again)’);

08 Request DB Connection
With the database created and

populated we need to be able to ensure

we have an open connection and close it

accordingly when fi nished. Flask has some

decorator methods to help us achieve this.

The before_request() method will establish

the connection and stores it in the g object

for use throughout the request cycle. We

can then close the connection after the

cycle using the teardown_request() method.

@app.before_request

def before_request():

 g.db = connect_db();

03 Declare Confi g
For a small application we can declare

confi guration options as upper-case name value

pairs inside the main module, which we’ll do now.

Here we can defi ne the path and name of the

SQLite database and also set the Flask debug

output to True for development work. Initialise

the Flask application to a namespace and then

import the confi g values set directly above it.

We then run the application. All routes must be

placed above these last two lines.

Config

DATABASE = ‘/tmp/api.db’

DEBUG = True

app = Flask(__name__)

app.config.from_object(__name__)

Add methods and routes here

if __name__ == ‘__main__’:

app.run()

06 Instantiate the Database
To populate the database with the new

table and any associated data, we will need to

import and apply the schema to the database.

Add a new module import at the top of the

project fi le to obtain the ‘contextlib.closing()’

method. What we will do next is create a method

that will initialise the database by reading the

contents of schema.sql and executing it against

the open database.

from contextlib import closing

def init_db():

 with closing(connect_db()) as db:

 with app.open_resource(‘schema.sql’,

mode=’r’) as f:

 db.cursor().executescript(f.read())

 db.commit()

“World-renowned image sharing service
Instagram and social pin board Pinterest
have also implemented Python as part of
their web stack, opting for Django”

The Python Book 139

Python in
the wild
Interested in Python development?
You’d be in good company with big
names currently using it

10 Template Output
Flask expects templates to be available

within the templates directory in the root of

the project, so make sure that you create that

directory now. Next, add a new fi le called

‘show_posts.html’. The dynamic values are

managed using Jinja2 template syntax, the

default templating engine for Flask applications.

Save this fi le in the templates directory.

<ul class=posts>

 {% for post in posts %}

 <h2>{{ post.title }}</h2>{{ post.

text|safe }}

 {% else %}

 Sorry, no post matches your

request.

 {% endfor %}

13 Run the application
To run your Flask application, navigate

using the active Terminal window into the

root of the project. Ensuring you are in an

active virtual environment Python shell,

enter the command to run the main index

fi le. The built-in server will start and the site

will be accessible in the browser on default

port local address http://127.0.0.1:5000.

python index.py

11 Make an API Response
To create an API response we can

defi ne a new route with a specifi c API endpoint.

Once again, we query the database for all

posts. The data is then returned as JSON,

using the JSONify method to do so. We can

add specifi c values such as post count and

a custom message if you wish, as well as the

actual posts variable, formatted as JSON.

@app.route(‘/api/v1/posts/’,

methods=[‘GET’])

def show_entries():

 cur = g.db.execute(‘select title, text

from posts order by id desc’)

14 API JSON Output
The root of the application will render

the template we previously created. Multiple

routes can be generated to create a rich web

application. Visiting an API-specifi c URL in

the browser will return the requested data as

cleanly formatted JSON. The ability to defi ne

custom routes like a versioned RESTful endpoint

is incredibly powerful.

09 Display Posts
Create your fi rst route so that we can

return and display all available posts. To query

the database we execute a SQL statement

against the stored db connection. The results

are then mapped to values using Python’s

dict method and saved as the posts variable.

To render a template we then call render_

template() and pass in the fi le name and the

variable to display as the second argument.

Multiple variables can be passed through as a

comma-separated list.

@app.route(‘/’)

def get_posts():

 cur = g.db.execute(‘select title, text

from posts order by id desc’)

 posts = [dict(title=row[0], text=row[1])

for row in cur.fetchall()]

 return render_template(‘show_posts.

html’, posts=posts)

12 Get a specifi c Post
CTo obtain a specifi c post from the

API we need to create a new route, which will

accept a dynamic value as part of the URI. We

can also choose to use this route for multiple

request methods, which are in this case GET

and DELETE. We can determine the method

by checking the request.method value and

run it against a conditional if/else statement.

@app.route(‘/api/v1/posts/<int:post_id>’,

methods=[‘GET’, ‘DELETE’])

def single_post(post_id):

 method = request.method

 if method == ‘GET’:

 cur = g.db.execute(‘select title,

text from posts where id =?’, [post_id])

 posts = [dict(title=row[0],

text=row[1]) for row in cur.fetchall()]

 return jsonify({‘count’: len(posts),

‘posts’: posts})

 elif method == ‘DELETE’:

 g.db.execute(‘delete from posts

where id = ?’, [post_id])

 return jsonify({‘status’: ‘Post

deleted’})

@app.teardown_request

def teardown_request(exception):

 db = getattr(g, ‘db’, None)

 if db is not None:

 db.close()

 posts = [dict(title=row[0],

text=row[1]) for row in ur.fetchall()]

 return jsonify({‘count’: len(posts),

‘posts’: posts})

Disqus, the popular social interaction

comment service provider, has

been implementing their production

applications in Python for a very long time.

Python’s benefi t for the development

team was its ability to scale effectively

and cater for a large number of consumers

whilst also providing an effective

underlying API for internal and external

use. The company are now starting to

run some production apps in Go, but the

majority of code still runs on Python.

World-renowned image sharing service

Instagram and social pin board Pinterest

have also implemented Python as part of

their web stack, opting for Django to assist

with the functionality and ability to cater

for the many thousands of content views

and requests made to their services.

Mozilla, Atlassian’s Bitbucket

repository service, and popular satire site

The Onion have all been noted as using

Django for their products.

Web development

140 The Python Book

Django application
development Django is a full Python web-app framework

with impressive command-line tools

01 Create Virtual Environment
Create a new directory for your project

and navigate inside it using a new Terminal

window. Create a new virtual environment for

this project, opting to use the latest Python 3.

Your Python 3 location may vary, so be sure to

set the correct path for the binary package.

virtualenv -p /usr/local/bin/python3 venv

01 Generate the model
Open blog/models.py and create the

fi rst model class, providing the property names

and types for each. You can dig deeper into

fi eld types via the docs here: bit.ly/1yln1kn.

Once complete, open myblog/settings.py and

add the blog app to the list of allowed installed

applications so that the project will load it.

blog/models.py

class Post(models.Model):

 title = models.CharField(max_

length=200)

 text = models.TextField()

myblog/settings.py

INSTALLED_APPS = (‘django.contrib.admin’,

..., ‘django.contrib.staticfiles’, ‘blog’) 04 Initial Migration
Navigate into the project directory via

the Terminal window. Some of the installed

apps included in the project generation require

database tables.

Using the helper. run a migration command to

create all of these automatically. The Terminal

window will keep you informed of all of your

progress and what has been applied from the

migration.

cd myblog

python manage.py migrate 02 Activate and Install
Using your Terminal window,

activate the virtual environment to start the

project-specifi c shell. VirtualEnv has a local

version of the Python package manager

pip installed, so it’s fairly straight forward

to run the command to install Django.

. venv/bin.activate

pip install Django

02 Data Migration
Any creation of models or changes to

data need to be migrated. To do so we need

to make migration fi les from the model data,

which generate sequentially numbered fi les.

Then we run a specifi c migration to generate

the required SQL and the fi nal migrate

command performs the database execution.

python manage.py makemigrations blog

python manage.py sqlmigrate blog 0001

python manage.py migrate

05 Create App
Each Django project is made up of

at least one application or module. Run the

startapp command to create a new blog app

module, which will generate the required

code adjacent to the main project structure.

python manage.py startapp blog

03 Create Core Project
The Django install contains some

incredibly useful command-line tools, which

will help you to run a number of repetitive and

diffi cult tasks. Let’s use one of them to create a

fresh project structure for us. Run the django-

admin.py script with the name of the project that

you want created.

django-admin.py startproject myblog

Installing
Django

Database
models
& migrationThe installation of Django is

relatively easy once you have

python installed. See for yourself

as we build a simple app here
Django’s ability to manage the

migration and maintenance of

database schema and project

models is very impressive

Web development

The Python Book 141

01 Create Admin User
Django makes content administration

incredibly easy and has an admin section

available in a default project as standard

at http://127.0.0.1:8000/admin. To log in you

need to create a superuser account. Run

the associated command and specify user

details as required to then proceed and log in.

python manage.py createsuperuser

04 Create a View
With the admin interface accepting

new submissions for our post class we’ll create

a view page to display them. Open blog/views.

py and import the Post class from the models.

Create a method to obtain all posts from the

database and output them as a string.

from django.http import HttpResponse

from blog.models import Post

def index(request):

 post_list = Post.objects.order_by(‘-id’)

[:5]

 output = ‘
’.join([p.title for p

in post_list])

return HttpResponse(output)

02 Switch on blog management
Having logged in to the administration

interface you will be greeted with features to

manage users and group roles and privileges,

which alone are very powerful and provided for

you by Django. There is not yet, however, any

access to manage our blog posts so let’s turn

that on.

05 Manage the URLs
Create ‘blog/urls.py’ and add the code

to import the views that were just made in the

module and the accompanying URL patterns.

Open myblog/urls.py and add the URL function

call to implement a new URL for the app to

display the view. Visit http://127.0.0.1:5000/

blog in your browser to render the new view.

blog/urls.py

from django.conf.urls import patterns,url

from blog import views

urlpatterns = patterns(‘’,

 url(r’̂ $’, views.index, name=’index’),

)

myblog/urls.py

urlpatterns = patterns(‘’,

 url(r’̂ blog/’, include(‘blog.urls’)),

 url(r’̂ admin/’, include(admin.site.urls)),

)

03 Enable Admin Management
To enable our module and associated

models to be managed through the admin

interface, we need to register them with the

admin module. Open blog/admin.py and then go

on to import and register the models in turn (we

only have one of these currently though). Save

the fi le and refresh the admin site to see the

posts that are now available to manage.

from django.contrib import admin

Register your models here.

Autowiring the
admin interface

Hosting
Python
apps

Admin sections can be
problematic in their own right.
Django provides an extensible
admin interface for you

Admin sections can be
problematic in their own right.
Django provides an extensible
admin interface for you

Heroku heroku.com
This app is perhaps one of the most well-

known cloud hosting providers. Their stack

server environments support a number

of core web app languages including

Python as standard. Their unique Toolbelt

command-line features and integration

with Git repositories, as well as being

incredibly quick and easy to scale and

improve performance, makes them an

obvious choice. A free account will let you

run a Python web app on one dyno instance

without any cost.

Python Anywhere
www.pythonanywhere.com
Another hosted option, and one created

specifi cally for Python applications in

general is Python Anywhere. The free

basic option plan has enough weight and

power behind it to get you up and running

with a Python web app without having to

scale, but as soon as your project gains

traction, you can switch plans and boost

your plans performance.

It offers an incredibly impressive range

of modules as standard, available to import

into your application immediately to get you

started, including Django and Flask should

you need them.

Using the
dev server

Django ships with a very helpful built-in

development server, which will help you

out by autocompiling and reloading

after you have completed all of your fi le

changes. All you have to do to start

the server is to run the ‘python

manage.py runserver’ command from

your Terminal window within

the project directory.

142 The Python Book

Web development

Create a dynamic webpage with Twitter and Flask’s rendering
engine, Jinja2

Creating dynamic templates
with Flask, Jinja2 and Twitter

Python and Flask are a great combination

when you’re looking to handle the Twitter

OAuth process and build requests to obtain

tokens. We’ve used Twitter here because of

the large amount of easily digestible data

available on it. However, since Twitter adheres

to the standards set out by OAuth 1.0, the code

we’ve used to sign and build requests can

be modified to work with any third-party API

using the same standard without a great deal

of work. For years PHP has been a mainstay

of template generation, but now with well-

documented frameworks such as Flask,

Sinatra and Handlebars, the ability to use

powerful scripting languages greatly improves

our ability to make great web services. Here,

we’re going to use Python, Flask and its

templating engine to display tweets. Flask

comes with the super-nifty Jinja2 templating

engine, If you’re familiar with Node.js or front-

end JavaScript, the syntax will look very

similar to the Handlebars rendering engine.

But, before we dive into that, we need to

organise some of the example code that we’re

using for this.

Resources
Python 2.7+

Flask 0.10.0: flask.pocoo.org

Flask GitHub:
github.com/mitsuhiko/flask

A Twitter account

Your favourite text editor

Code downloaded from FileSilo

01 Rearranging our code
Server code can get messy and

unmaintainable quickly, so the first thing we’re

going to do is move our helper functions to

another file and import them into our project,

much like you would a module. This way, it will

be clear which functions are our server logic

and endpoints and which are generic Python

functions. Open the TwitterAuthentication file

downloaded from FileSilo (stored under Twitter

OAuth files) and locate the getParameters,

sign_request and create_oauth_headers

functions. Cut and paste them into a new file

called helpers.py in the root of your project

folder. At the top of this file we want to import

some libraries.

import urllib, collections, hmac,

binascii, time, random, string

from hashlib import sha1

Now we can head back over to server.py and

import the helper functions back into our

project. We do this by simply calling import

02 server.py modules
With a lot of the modules needed in this

project having been moved to helpers.py, we

can now remove most of them from server.py.

If we amend our first import statement to be…

import urllib2, time, random, json

…our project will continue to function as it did

before. Note the addition of the json module:

The template uses a loop to generate a list of Twitter tweets

helpers. Because Python is smart, It will look

in the current directory for a helpers.py file

before it looks for a system module. Now every

function included in helpers.py is accessible

to our project. All we need to do to call them is

prepend our the methods we called before with

helper.function_name and it will execute. For

sign_request, we’ll need to pass our

oauth_secret and consumer_secret for each

request rather than accessing it from the

session. Adjust the function declaration like so:

def sign_request(parameters, method,

baseURL, consumer_secret, oauth_secret):

The Python Book 143

Web development

The BSD-licensed Flask is easy to set up
and use – check out the website for more info

we’ll be using that later as we start handling

Twitter data.

Having Flask use a rendering engine is

super-simple. Flask comes packaged with

the Jinja2 template rendering engine, so we’ve

nothing to install – we just need to import the

package into the project. We can do this by

adding render_template to the end of our from

flask import […] statement.

03 Our fi rst template
Now that we have a rendering engine,

we need to create some templates for it to

use. In the root of our project’s folder, create

a new folder called templates. Whenever

we try to render a template, Flask will look in

this folder for the template specifi ed. To get

to grips with templating, we’ll rewrite some

of our authentication logic to use a template,

rather than manually requesting endpoints. In

templates, create an index.html fi le. You can

treat this HTML fi le like any other – included in

the resources for this tutorial is an index.html

that includes all of the necessary head tags and

<!DOCTYPE> declarations for this fi le.

04 Rendering our template
In server.py, let’s create a route for ‘/’ to

handle the authorisation process.

@app.route(‘/’)

def home():

 if not ‘oauth_token’ in session:

 session.clear()

 session[‘oauth_secret’] = ‘’

 session[‘oauth_token’] = ‘’

 return render_template(‘index.html’)

It’s a simple function: all we want to do is check

whether or not we have an oauth_token already

and create those properties in the Flask session

so we don’t throw an error if we try to access

it erroneously. In order to send our generated

template in response to the request, we return

render_template(‘index.html’).

{% if session[‘oauth_token’] != “” %}

 <h1>Already Authorised</h1>

 <div class=”dialog”>

<p>Hello, You’ve authenticated!
Let’s get some tweets</p>

 </div>

{% else %}

 <h1>Authorisation required</h1>

 <div class=”dialog”>

 <p>We need to authenticate</p>

 </div>

{% endif %}

Fig 01

05 Template variables
We can choose to send variables to our

template with render_template(‘index.htm’,

variableOne=value, variableTwo=Value) but

in this instance we don’t need to as each template

has access to the request and session variables.

Code on
FileSilo

144 The Python Book

Web development

 Now we know how to build templates,
let’s grab some tweets to display

09 Checking our session
and building our request

Before we start grabbing tweets, we want to

run a quick check to make sure we have the

necessary credentials and if not, redirect the

user back the authorisation flow. We can do

this by having Flask respond to the request

with a redirection header, like so:

if session[‘oauth_token’] == “” or

session[‘oauth_secret’] == “”:

 return redirect(rootURL)

Assuming we have all we need, we can start to

build the parameters for our request (Fig 02).

You’ll notice that the nonce value is different

from that in our previous requests. Where the

nonce value in our authenticate and authorise

requests can be any random arrangement of

characters that uniquely identify the request,

for all subsequent requests the nonce needs

to be a 32-character hexadecimal string using

only the characters a-f. If we add the following

function to our helpers.py file, we can quickly

build one for each request.

def nonce(size=32, chars=”abcdef” +

string.digits):

 return ‘’.join(random.choice

(chars) for x in range(size))

10 Signing and sending our request
We’ve built our parameters, So let’s

sign our request and then add the signature to

the parameters (Fig 03).

Before we create the authorisation headers,

we need to remove the count and user_id

values from the tweetRequestParams

dictionary, otherwise the signature we just

created won’t be valid for the request. We can

achieve this with the del keyword. Unlike our

token requests, this request is a GET request,

so instead of including the parameters

in the request body, we define them as

query parameters.

?count=tweetRequestParams[‘count’]

&user_id=tweetRequestParams[‘user_id’]

11 Handling Twitter’s response
Now we’re ready to fire off the request

and we should get a JSON response back

from Twitter. This is where we’ll use the json

module we imported earlier. By using the

json.loads function, we can parse the JSON

into a dictionary that we can access and we’ll

pass through to our tweets.html template.

tweetResponse = json.

loads(httpResponse.read())

return render_template(‘tweets.html’,

data=tweetResponse)

Whereas before, we accessed the session

to get data into our template, this time

we’re explicitly passing a value through to

our template.

12 Displaying our tweets
Let’s create that template now, exactly

the same as index.html but this time, instead of

using a conditional, we’re going to create a loop

to generate a list of tweets we’ve received.

First, we check that we actually received

some data from our request to Twitter. If we’ve

got something to render, we’re ready to work

through it, otherwise we’ll just print that we

didn’t get anything.

Once again, any template logic that we want

to use to generate our page is included between

08 Let’s get some tweets
So now we know how to build templates,

let’s grab some tweets to display. In server.py

define a new route, get-tweets,like so:

@app.route(‘/get-tweets’)

@app.route(‘/get-tweets/<count>’)

def getTweets(count=0):

You’ll notice that unlike our other authentication

endpoints, we’ve made two declarations.

The first is a standard route definition: it will

07 Static files
Pretty much every webpage uses

JavaScript, CSS and images, but where do we

keep them? With Flask we can define a folder

for use with static content. For Flask, we create

a static folder in the root of our project and

access files by calling /static/css/styles.css or

/static/js/core.js. The tutorial resources include a

CSS file for styling this project.

Open index.html. All code executed in a Flask

template is contained within {% %}. As this is our

homepage, we want to direct users accordingly,

So let’s check if we’ve got an access token (Fig 01).

Between the ifs and else of the template is

standard HTML. If we want to include some data

– for example, the access token – we can just add

{{ session[‘oauth_token’] }} in the HTML and it

will be rendered in the page. Previously, in our /

authorised endpoint, we would display the OAuth

token that we received from Twitter; however, now

that we have a template, we can redirect our users

back our root URL and have a page rendered for us

that explains the progress we’ve made.

06 Getting lost
(and then found again)

With every server, some things get misplaced or

people get lost. So how do we handle this? Rather

than defining a route, we can define a handler

that deals with getting lost.

@app.errorhandler(404)

def fourOhFour(error):

 return render_template(‘fourohfour.html’)

If a page or endpoint is requested and triggers a

404, then the fourOhFour function will be fired. In

this case, we’ll generate a template that tells the

user, but we could also redirect to another page or

dump the error message.

intercept and handle the path get-tweets. The

second lets us define a parameter that we can

use as a value in our getTweets function. By

including count=0 in our function declaration,

we ensure that there will always be a default

value when the function is executed; this way we

don’t have to check the value is present before

we access it. If a value is included in the URL, it

will override the value in the function. The string

inside the <variable name> determines the

name of the variable. If you want the variable

passed to the function to have a specific type,

you can include a converter with the variable

name. For example, if we wanted to make sure

that <count> was always an integer instead of a

float or string, we’d define our route like so:

@app.route(‘/get-tweets/<int:count>’)

The Python Book 145

Web development

tweetRequestParams = {

 “oauth_consumer_key” : consumer_key,

 “oauth_nonce” : helpers.nonce(32),

 “oauth_signature_method” : “HMAC-SHA1”,

 “oauth_timestamp” : int(time.time()),

 “oauth_version” : “1.0”,

 “oauth_token” : session[‚Äòoauth_token’],

 “user_id” : session[‘user_id’],

 “count” : str(count)

}

Fig 02

tweetRequest = helpers.sign_request(tweetRequestParams, “GET”,

“https://api.twitter.com/1.1/statuses/user_timeline.json”, consumer_secret,

session[‘oauth_secret’])

tweetRequestParams[“oauth_signature”] = tweetRequest

makeRequest=urllib2.Request(“https://api.twitter.com/1.1/statuses/

user_timeline.json?count=” + tweetRequestParams[‘count’] + “&user_id=”

+ tweetRequestParams[‘user_id’])

del tweetRequestParams[‘user_id’], tweetRequestParams[‘count’]

makeRequest.add_header(“Authorization”, helpers.create_oauth_

headers(tweetRequestParams))

try:

 httpResponse = urllib2.urlopen(makeRequest)

except urllib2.HTTPError, e:

 return e.read()

Fig 03

{% if data %}

 <ul id=”tweets”>

 {% for tweet in data %}

 <div class=”image”>

 <img src=”{{ tweet[‘user’][‘profile_image_url_https’]

}}” alt=”User Profile Picture”>

 </div>

 <div class=”text”>

 <a>{{ tweet[‘text’]|forceescape }}

 </div>

 {% endfor %}

{% else %}

 <p>We didn’t get any tweets :(</p>

{% endif %}

Fig 04

13 Flask filters
Sometimes, when parsing from JSON,

Python can generate erroneous characters

that don’t render particularly well in HTML.

You may notice that after tweet[‘text’] there

is |forceescape, This is an example of a Flask

filter; it allows us to effect the input before we

render – in this case it’s escaping our values

for us. There are many, many different built-

in filters that come included with Flask. Your

advisor recommends a full reading of all the

potential options.

14 Wrapping up
That’s pretty much it for templating

with Flask. As we’ve seen, it’s insanely quick

and easy to build and deploy dynamic sites.

Flask is great tool for any Python developer

looking to run a web service. Although we’ve

used Twitter to demonstrate Flask’s power,

all of the techniques described can be used

with any third-party service or database

resource. Flask can work with other rendering

engines, such as Handlebars (which is

superb), but Jinja2 still needs to be present

to run Flask and conflicts can occur between

the two engines. With such great integration

between Flask and Jinja2, it makes little

sense to use another engine outside of very

specific circumstances.

{% %}. This time we’re creating a loop; inside the

loop we’ll be able to access any property we have

of that object and print it out. In this template

we’re going to create an element for each

tweet we received and display the user’s profile

picture and text of the tweet (Fig 04).

In our template we can access properties

using either dot notation (.) or with square

brackets ([]). They behave largely the same;

the [] notation will check for an attribute on

the dictionary or object defined whereas the

. notation will look for an item with the same

name. If either cannot find the parameter

specified, it will return undefined. If this occurs,

the template will not throw an error, it will simply

print an empty string. Keep this in mind if your

template does not render the expected data:

you’ve probably just mis-defined the property

you’re trying to access.

Unlike traditional Python, we need to

tell the template where the for loop and if/

else statements end, so we do that with

{% endfor %} and {% endif %}.

146 The Python Book

Web development

Django is of course able

to read and write to SQL

databases, but it needs

very little prior knowledge

to succeed in doing so

Django comes with a

lightweight development

server so you can test all

your work locally

Learn how to use this extremely powerful
Python-based web framework to create a
complete blog from scratch in record time

Build your own blog
with Django

Creating your own blog always feels like a

great accomplishment. Sure, you could use the

fantastic WordPress if you need a complete blog

with every feature you’d ever need right now. And

Tumblr exists for people who just want to write

something, or post pictures of corgis in space.

You don’t have full control from start to finish

with a prefabricated blog, though, and neither

of these is written in the fantastic Django.

Django is of course based on Python, the object-

orientated programming language designed to

have clearly readable syntax. Due to its Python

base, it’s an incredibly powerful and simple-to-

use language for web development with a vast

array of applications.

So let’s use it to make a blog. In this first

section of the process we will explore how to set

up Django, writing and reading to a database,

creating a front- and back-end, and some

interactions with HTML.

Resources
Python Source Code
www.python.org/download/releases/2.7.2

Django Source Code
www.djangoproject.com/download

Using HTML and CSS in

conjunction with Django is

clear and straightforward;

it’s much easier to bug-fix

than PHP

Django comes with

a generic back-end

site that is set up in

seconds, and easily

customisable after that

The Python Book 147

Web development

01 Install Python
Django is based on Python, and requires

it to be installed to develop on. Python 2.7 is the

recommended version, and this is installed with

the python package. If you want to check your

version, start the Python shell by typing ‘python’

into the terminal.

02 Install Django
Most operating systems will have a

Django package available in the repository, like

python-django in Debian. The Django website

has a list if you have trouble finding it, or you

could build it from source. Make sure you install

version 1.3.

03 Verify your Django
To make sure Django installed properly,

and that you have the right version, enter the

Python shell by typing ‘python’ and enter

the following:

import django

print django.get_version()

It will return a version number if it has installed

correctly, which should be 1.3.

04 Start a new project
In the terminal, cd to the folder you

want to develop the blog in, and then run the

next command:

django-admin startproject myblog

Here, ‘myblog’ can be replaced by whatever you

wish to name the project, but we’ll use it for the

upcoming examples.

05 Start the development server
Django comes with a lightweight

development server to test out work locally. We

can also use it to check our work, so cd to the

myblog folder and then use:

python manage.py runserver

If all goes well, it should return zero errors. Use

Ctrl+C to exit the server.

06 Configure the database
The database settings are kept in the

settings.py file. Open it up with your favourite

editor and go to the Databases section. Change

ENGINE to:

‘ENGINE’: ‘django.db.backends.sqlite3’,

And in NAME, put the absolute path – for

example:

‘NAME’: ‘/home/user/projects/myblog/

sqlite.db’,

Save and exit.

07 Create the database
The database file will be generated by

using the command:

python manage.py syncdb

During the creation, it will ask you to set up a

superuser, which you can do now.

The SQLite database file will be created in

your myblog folder.

148 The Python Book

Web development

 You don’t have full control from start
to finish with a prefabricated blog – but
you will with Django

08 Create your blog
Now it’s time to create a blog app in your

project. Type:

python manage.py startapp blog

This creates the models file which is where all

your data lives. You can change ‘blog’ to another

name, but we’ll use it in our examples.

09 Start your blog model
We can now take the first steps in

creating our blog model. Open models.py and

change it so it says the following:

from django.db import models

class Post(models.Model):

 post = models.TextField()

This creates the Post class, which has a

subclass that contains your blog text.

10 Customise your blog
Let’s now expand the blog model a bit so

it resembles a more classic blog:

class Post(models.Model):

 post = models.TextField()

 title = models.TextField()

 author = models.CharField(max_

length=50)

 pub_date = models.DateTimeField()

A CharField needs to have a character

limit defined, and DateTimeField holds the

time values.

11 Install your app
Your app needs to be installed to your

project, which is very simple. Open the settings.

py file again, go to the INSTALLED_APPS section

and add:

‘blog’,

Then run the following to create the database

tables:

python manage.py sql blog

And finally:

python manage.py syncdb

12 Set up to post
Now we can create a post and test out

our code. First though, enter the Python shell:

python manage.py shell

Then execute these commands to add all the

necessary fields and data:

from blog.models import Post

import datetime

13 Let’s blog
Create the post. For this example, we

will call it test_post:

test_post = Post()

Now let’s add the blog content:

test_post.post = ‘Hello World!’

test_post.title = ‘First Post’

test_post.author = ‘Me’

test_post.pub_date = datetime.

datetime.now()

And then save it with:

test_post.save()

14 Start the site back-end
To create the admin site, edit urls.py

from the myblog directory, and uncomment or

add the following lines:

from django.contrib import admin

admin.autodiscover()

url(r’^admin/’, include(admin.site.

urls)),

Save and exit, then edit settings.py and

uncomment this line from INSTALLED_APPS:

‘django.contrib.admin’,

The admin site is now at 127.0.0.1:8000/admin/.

The Python Book 149

Web development

24 A functional blog
So there you have it! Navigating to

127.0.0.1:8000/admin/ or 127.0.0.1:8000/myblog/

will show off the fine work you’ve created.

Django is dead easy to use once you know how,

and there are plenty of tweaks you should be

able to make after this tutorial.

15 Setup the admin page
The admin page has a generic, usable

template, but you need to configure it to view,

edit, create and delete posts. First, create a new

file admin.py in the blog directory and enter:

from blog.models import Post

from django.contrib import admin

admin.site.register(Post)

To have the posts display nicely on the site, edit

models.py and add:

class Post (models.Model):

 …

 def __unicode__(self):

 return self.title

Save, and run:

python manage.py syncdb

The admin page is now usable! You should be

able to see the other posts, and it’s now a lot

easier to add more.

16 Activate the front-end
Open up urls.py from the myblog

directory in your editor and add the following to

the urlpatterns section:

url(r’^myblog/’, ‘blog.urls.index’)),

One of the examples in the file can be

uncommented and edited to this as well. It

points to a model we will now create.

17 Create another urls file
You need to create another urls file in the

app directory, in our case blog/urls.py. Create it

and add the following:

from django.template import Context,

loader

from blog.models import Post

from django.http import HttpResponse

def index(request):

 post_list = Post.objects.all()

 t = loader.get_template(‘blog/

index.html’)

 c = Context({

 ‘post_list’: poll_list,

 })

 return HttpResponse(t.render(c))

18 Start the template
The code we’ve just written looks for a

template that currently doesn’t exist. We first

need to tell Django where templates are to be

looked for in settings.py:

TEMPLATE_DIRS = (

 ‘/home/user/projects/templates’,

)

You can put the template directory wherever you

want, as long as it’s referenced here.

19 Write a template
Now to write the site template. In our

example, we’re using index.html:

{% for post in post_list %}

 {{ post.title }}

 {{ post.author }}

 {{ post.pub_date }}

 {{ post.post }}

{% endfor %}

This needs to be located in a folder with

the same name as your app within the

template directory.

20 View your handiwork
Let’s make sure this worked. Start the

developer server with:

python manage.py runserver

And navigate to 127.0.0.1:8000/myblog/.

It’s not pretty, but you should have

successfully called upon your stored data. We’ll

spend the next steps tidying it up a bit.

21 Format the front page
Go back into the template file,

index.html, and add the following html tags:

{% for post in post_list %}

 <h2>{{ post.title }}</h2>

 {{ post.author }} on {{ post.pub_

date }}

 <p>{{ post.post }}</p>

{% endfor %}

This is just an example – the post can be in any

order with any tags.

22 Spruce up the admin list
We’ll do this in the admin.py file in our

blog directory; open it in your editor and make

the following changes:

from blog.models import Post

from django.contrib import admin

class Admin(admin.ModelAdmin):

 list_display = [‘title’, ‘author’,

‘pub_date’]

admin.site.register(Post, Admin)

In this case ‘list_display’ is a fixed variable name.

23 A logical post page
The new post page on the site might

not be in an order you’re comfortable with.

We’ll change that now in admin.py with the

following additions:

class Admin(admin.ModelAdmin):

 list_display = [‘title’, ‘author’,

‘pub_date’]

 fields = [‘title’, ‘pub_date’,

‘author’, ‘post’]

admin.site.register(Post, Admin)

Remember to save!

 Django is an incredibly powerful
and simple-to-use language

150 The Python Book

Web development

We continue building an awesome blog using the powerful
Django framework, and this tutorial is all about the front-end
content delivery

Deliver content to your blog

In the last tutorial we began to build the most

basic of blogs, and learned how to use a bit of

Django in the process. We can now set up a new

project, create a database and write basic code

With minimal extra code,

our template can display

the month archive from

the sidebar

Django has built-in code to

deal with pagination very

cleanly and effectively

Allow your readers to

give you feedback, and

moderate them in the

admin panel

With Django we can make

simple sidebars that list

archives by month

to read and write to the database. All simple

stuff, but of course it’s core to building websites

where Django might be called upon.

Here we will give the front end of the site

an overhaul, making it more of the standard

you would expect from a modern blog. This

will include a sidebar, pages, post pages and

the ability to add and moderate comments.

In the process we will learn some more of

the benefits that come with using Django to

develop websites.

You should keep using Django 1.3 for this

tutorial, as we did before.

Resources
Python base:

http://www.python.org/download/

Django source: https://www.
djangoproject.com/download/

The Python Book 151

Web development

08 Please turn over
Now we need to add the navigation

links to the blog, so open the index template

for editing:

{% if post_list.has_previous %}

 <a href=”?list_page={{ post_list.

previous_page_number }}”>Newer

{% endif %}

{% if post_list.has_next %}

 <a href=”?list_page={{ post_list.

next_page_number }}”> Older

{% endif %}

01 New blog order
We left off last time with the blog

displaying posts in chronological order, which

isn’t very helpful to readers. To correct this,

open up urls.py in the blog folder and edit the

following line:

post_list = Post.objects.all().order_

by(“-pub-date”)

This makes sure that posts are displayed in

reverse order (newest first).

02 A view to a page
You’ll want to be able to link specific

pages, of course, and to do that we first have to

define what goes into these pages in the urls.py

file in the blog folder:

def post_page(request, post_id):

 post_page = Post.objects.

get(pk=post_id)

 return render_to_response(‘blog/

post.html’, {‘post_page’: post_page})

03 Clean up your code
You may notice that we used a different

return command to the index definition – this

is a shortcut that makes writing the code a bit

easier. To get it working, add:

from django.shortcuts import render_to_

response

We recommend that you edit the index code to

match post_page.

04 Edit URLs
In urls.py in myblog we need to make

some additions and modifications for the

website to direct to the post correctly:

url(r’^myblog/$’, ‘blog.urls.index’),

url(r’^myblog/(?P<post_id>\d+)/$’,

‘blog.urls.post_page’),

The post_id is the number of the post, which is

auto-generated. The ‘$’ is important to make the

redirection work.

05 A post template
We told the post_page to point towards

a template we now need to create. In the same

location as index.html, create post.html with the

following formatting to resemble the front page:

<h2>{{ post_page.title }}</h2>

{{ post_page.author }} on {{ post_page.

pub_date }}

<p>{{ post_page.post }}</p>

06 Link to the page
Let’s get these links working from the

main page. Open up the index.html file and make

the following change:

<h2>{{

post.title }}</h2>

This is a very simple addition using an absolute

link, and requires no fiddling with the views

or model.

07 Pagination
To get blog posts split up over pages, we

need to make some additions to urls.py in the

blog folder:

post_list = Post.objects.all().order_

by(“-pub_date”)

paginator = Paginator(post_list, 3)

try: list_page = request.GET.get(“list_

page”, ‘1’)

except ValueError: list_page = 1

post_list = paginator.page(list_page)

return render_to_response(‘blog/index.

html’, {‘post_list’: post_list})

152 The Python Book

Web development

 We need to be able to process the
data and metadata in the forms

09 Wrong page
Let’s add a quick bit of code to return

somebody to the previous page if they get the

URL wrong:

from django.core.paginator import

Paginator, EmptyPage, InvalidPage

try:

 post_list = paginator.page(list_

page)

except (EmptyPage, InvalidPage):

 post_list = paginator.

page(paginator.num_pages)

The last part replaces ‘post_list = paginator.

page(list_page)’.

10 Have your say
Everyone has their opinion on the

internet. You can give your readers the ability to

comment, and we’ll start by editing models.py:

class Comment(models.Model):

 author = models.CharField(max_

length=50)

 text = models.TextField()

 post = models.ForeignKey(Post)

 def __unicode__(self):

 return (self.post, self.text)

We’ve made it so they can put their name with

a comment.

11 Back to the comment
We now need to add a small line to the

urls.py file in myblog so the comment can be

posted then sent back to the original page:

url(r’^myblog/add_comment/(\d+)/$’,

‘blog.urls.add_comment’),

This URL pattern calls the ID of the page that

you’re on.

12 Form a comment
We need to be able to process the

data and metadata in the forms, so let’s add

a class to urls.py in the blog folder with the

following additions:

from django.forms import ModelForm

from blog.models import Post, Comment

class CommentForm(ModelForm):

 class Meta:

 model = Comment

 exclude = [‘post’]

13 In the post
We need to attribute the comments to

the post they’re being made on, so update the

post_page definition:

from django.core.context_processors

import csrf

def post_page(request, post_id):

 post_page = Post.objects.

get(pk=post_id)

 comments = Comment.objects.

filter(post=post_page)

 d = dict(post_page=post_page,

comments=comments, form=CommentForm())

 d.update(csrf(request))

 return render_to_response(‘blog/

post.html’, d)

The CSRF tag is to prevent cross-site

request forgery.

14 Comment template
Let’s get the post page ready for

comments by adding this to post.html:

<p>Comments:</p>

{% for comment in comments %}

 {{ comment.author }}

 <p>{{ comment.text }}</p>

{% endfor %}

Add comment

<form action=”{% url blog.urls.

add_comment post_page.id %}”

method=”POST”>{% csrf_token %}

 Name {{ form.author }}

 <p>{{ form.text }}</p>

 <input type=”submit” value=”Submit”>

</form>

15 Define your comments
The final step is defining the comments

in blog/urls.py, and it’s a big one:

def add_comment(request, comment_id):

 p = request.POST

 if p.has_key(‘text’) and p[‘text’]:

 author = ‘Anonymous’

 if p[‘author’]: author =

p[‘author’]

 comment = Comment(post=Post.

objects.get(pk=comment_id))

 cf = CommentForm(p,

instance=comment)

 cf.fields[‘author’].required =

False

 comment =

cf.save(commit=False)

 comment.author = author

 comment.save()

 return HttpResponseRedirect(reverse

(‘blog.urls.post_page’, args=[comment_

id]))

This ensures text has been entered, and if not

specified author is ‘Anonymous’. Before testing,

run syncdb so comment tables can be created.

The Python Book 153

Web development

16 Administrate
Like the posts, we can get the

Admin page to see comments. Start editing

blogs/admin.py to get this feature added:

from blog.models import Post, Comment

from django.contrib import admin

class PostAdmin(admin.ModelAdmin):

 list_display = [‘title’, ‘author’,

‘pub_date’]

 fields = [‘title’, ‘pub_date’,

‘author’, ‘post’]

admin.site.register(Post, PostAdmin)

17 Comment-specific admin features
Now we can add the comment-specific

admin features without causing any clashes:

class CommentAdmin(admin.ModelAdmin):

 list_display = [‘text’, ‘author’,

‘post’]

admin.site.register(Comment,

CommentAdmin)

This will show the comments on the admin site,

and you can see the comment, the author and

the post it’s connected to.

18 Sidebar beginnings
Django makes it pretty easy to order

posts by years and months, but first we need to

import some new models into blog/urls.py:

import time

from calendar import month_name

We’re going to define two new functions,

month_timeline and month, to make the sidebar.

19 Start to define month_timeline
First we need to get all the information

from the posts:

def month_timeline():

 year, month = time.localtime()[:2]

 begin = Post.objects.order_by(‘pub_

date’)[0]

 month_begin = begin.pub_date.month

 year_begin = begin.pub_date.year

 month_list = []

The ‘[:2]’ makes sure we only get the time

information we need.

20 Finish your definition
Now we will order the posts by month

and year starting from our first month.

for y in range(year, year_begin-1, -1):

 start, end = 12, 0

 if y == year: start = month

 if y == year_begin: end = month_

begin-1

 for m in range(start, end, -1):

 month_list.append((y, m,

month_name[m]))

 return month_list

21 Return to reader
With the list organised, we can now

define month so we can display it on the blog:

def month(request, year, month):

 post_list = Post.objects.

filter(pub_date__year=year, pub_date__

month=month)

 return render_to_response(‘blog/

index.html’, dict(sidebar_list=post_

list, month_list=month_timeline()))

Now we need to link it up to the index template.

22 Finalise your sidebar definition
Edit the return command on the index

function to include the sidebar information:

return render_to_response(‘blog/index.

html’, dict(post_list=post_list,

sidebar_list=post_list.object_list,

month_list=month_timeline()))

Then add this line to urls.py in myblog so a

month page can be rendered:

url(r’^myblog/month/(\d+)/(\d+)/$’,

‘blog.urls.month’),

All we need to do now is display the information

on the site.

24 Sidebar finale
Obviously it’s not at the side right now

– that’s a job for the HTML and CSS. The info is

there, though, and you can manipulate it any

way you want. However, your blog is now a lot

more friendly to your readers.

23 Sidebar on the web
Go to the index template. First of all,

change the first line of the post forloop to:

{% for post in sidebar_list %}

Simple enough. Now we need to add the

sidebar information:

{% for month in month_list %}

 <p><a href=”{% url blog.urls.month

month.0 month.1 %}”>{{ month.2 }}</

p>

{% endfor %}

154 The Python Book

Web development

01 Summarise
On a normal blog we’re going to have

much longer articles. We can generate a

summary of each of these on the index page

template like so:

<p>{{ post.post|truncatewords:3 }}</p>

This automatically takes the first three words

of the post – of course, you can use any number.

To add to the previous tutorials, we’ll
cover some of the more advanced
features you can utilise with the
power of Django

Enhance your blog
with extra features

We’ve been building our Django blog to create

and display posts, allow people to make

comments, and filter posts by month like a

classic blog sidebar. We still have a bit of a

way to go until it looks and behaves more like a

classic blog, though.

In this tutorial, we’re going to add in

summaries, excerpts, categories and finally an

RSS feed. This allows us to look at a few things –

firstly we’ll get a better understanding of cross-

model referencing and how that works in the

admin site. We will also go through how to make

changes to the database, and how Django helps

when creating an SQL query.

Finally, the RSS feed is part of a standard

feed library in Django itself. We will learn how

to import and use it to create a simple list of the

latest entries that click through to the posts. By

the end of the tutorial your Django blog will be

finally finished!

Resources
Python base:

http://www.python.org/download/

Django source: https://www.
djangoproject.com/download/

03 Write an excerpt
To write the excerpt, or append it to the

previous posts, we’ll have to add it to the admin

page. Open up admin.py and edit the fields

section of the AdminPost class to add excerpt:

fields = [‘title’, ‘pub_date’,

‘author’, ‘post’, ‘excerpt’]

02 Manual excerpt
If you don’t want an automatic summary,

we can add an excerpt field to our post model so

you can craft one manually:

excerpt = models.TextField()

To limit the characters in your excerpt, use a

CharField like for our author section.

 We’re going to add summaries,
excerpts and an RSS feed

The Python Book 155

Web development

04 Excerpt or summary
You can replace the post content in the

index template with the excerpt, but we can keep

it as a backup for if the excerpt is empty:

{% if post.excerpt %} <p>{{ post.

excerpt }}</p> {% else %} <p>{{ post.

post|truncatewords:3 }}</p> {% endif %}

05 Database error
If you’ve decided to test the changes,

06 Database query
The output will show you what the SQL

code is to add the models to the database. We

want to add the excerpt field specifically, which

should look something like this:

“excerpt” text NOT NULL

Make a note of it.

07 Alter table
To get into the database shell and add

the field, run: $ python manage.py dbshell

Then we need to use an ALTER TABLE query:

08
Save the changes
We’ve removed NOT NULL as we

already have entries that won’t have an excerpt,

and want to make it so an auto summary can be

made. Save the changes with: COMMIT; and then

exit the shell with: .quit

09
Test it out
Now we can test out the excerpt code –

create a new post or edit an existing one to have

an excerpt. If you’ve followed our steps correctly

it should work; if not, you may need to do a bit of

bug fixing.

Create and

manage parent

and child

categories as a

separate function

of the blog

Learn how to alter

the database to

create posts with

categories, and

add them to

other posts

Have automatic summaries or manually

crafted excerpts for your blog posts

Create custom

RSS feeds using

built-in Django

functions

you’ll have noticed our web server has stopped

working. This is because there is no excerpt

column in our database. Therefore we need to

add the excerpt column. To find out how, run:

$ python manage.py sqlall blog

ALTER TABLE “blog_post”.

And then enter the code we noted down like so:

ADD “excerpt” text;

156 The Python Book

Web development

10 Category model
We can add a model for blog categories:

class Categories(models.Model): name

= models.CharField(unique=True,

max_length=200) slug = models.

SlugField(unique=True, max_length=100)

parent = models.ForeignKey(‘self’,

blank=True, null=True, related_

name=’child’) def __unicode__(self):

return (self.name)

This allows for parent and child categories.

11 Administrate categories
We can add it to the admin site by

creating a Categories section in admin.py:

class CategoriesAdmin(admin.

ModelAdmin): list_display = [‘name’,

‘slug’, ‘parent’] fields = [‘name’,

‘slug’, ‘parent’] admin.site.register

(Categories, CategoriesAdmin)

Before we can make categories, though, we

need to create the database table:

$ python manage.py syncdb

12 Categorise the posts
Similarly to what we did with the

13 Database category
Like before, we’ll find out the SQL needed

to alter the table: $ python manage.py sqlall

blog Which for our example returns a somewhat

different code than before: “category_id”

integer NOT NULL REFERENCES “blog_

categories” (“id”) It’s an ID we’re getting, not

text, from the categories table.

14 Alter table – part 2
Again let’s enter the database shell:

python manage.py dbshell We’ll continue

much like before, but with the new code: ALTER

TABLE “blog_post” ADD “category_id”

integer REFERENCES “blog_categories”

(“id”); And finally, to save: COMMIT;

15 Administrate categories – part 2
Now we can go back to admin.py and add the new category fields to the PostAdmin model:

list_display = [‘title’, ‘author’, ‘pub_date’, ‘category’] fields = [‘title’,

‘pub_date’, ‘author’, ‘post’, ‘excerpt’, ‘category’] Our previous blog posts with no

category have disappeared! To fix this, go back to models.py and make this change to the Post model:

category = models.ForeignKey(Categories, blank=True, null=True) So we can now create

categories separately, assign them to posts, and view posts without a category.

16 Category display
As our urls.py in the blog directory gets

all the post fields, to the index template we just

add: <p>Category: {{ post.category }}</

p> And to the post template: <p>Category: {{

post_list.category }}</p>

17 Category page
First we need to define our category in

blog/urls.py. Import Categories and then add:

def blog_categories(request, category_

id): categories = Categories.objects.

get(pk=category_id) We need the

category_id to call the corresponding posts.

comments, we want to add a ForeignKey to

the Post model so we can attribute a post to a

category. Add this line: category = models.

ForeignKey(Categories)

And move Categories to the top of models.py.
 We can now

create categories
separately

The Python Book 157

Web development

24 RSS URLs
The final step is adding the feed

URL to urls.py: url(r’^myblog/feed/$’,

BlogFeed()), And now your blog is now fully

functional. With a bit more tweaking and

theming, you can get it online and blog away!

23 RSS links
We need to define item_link for the

feed so that the feed items can link to the right

place. We have to give the complete URL and

the post ID for it work: def item_link(self,

post): link = “http://127.0.0.1:8000/

myblog/”+str(post.pk) return link

18 Category definition
Finish the definition by using the parent_

id to filter the correct Posts, then render the

response: category_posts = Post.objects.

filter(category=categories) return

render_to_response(‘blog/categories.

html’, dict(category_posts=category_

posts, categories=categories))

Again we’re calling a new template that we’ll

construct shortly.

19 Category URLs
We’ll create the URL in urls.py as for the

post page, only it’ll give the slug of the category

instead of an ID in the link: url(r’^myblog/

category/(?P<category_id>\d+/$’, ‘blog.

urls.blog_categories’),

20 Category template
We’ll use something similar to the Index

and Post template to create a category page

template: {% for post in category_posts

%} <h2>{{

post.title }}</h2> {{ post.author

}} on {{ post.pub_date }} % if post.

excerpt %} <p>{{ post.excerpt }}</p> {%

else %} <p>{{ post.post|truncatewords:3

}}</p> {% endif %} <p>Category: {{

post.category }}</p> {% endfor %}

21 Category clickthrough
Finally, let’s make the categories click

through to the relevant page by changing the

22 RSS
Django has a built-in RSS framework.

In blog/urls.py add: from django.contrib.

syndication.views import Feed class

BlogFeed(Feed): title = “Blog Feed” link

= “/” def items(self): return Post.

objects.order_by(“-pub_date”) def item_

title(self, post): return post.title

category display to be: <p>Category: <a

href=/myblog/category/{{ categories.pk

}}>{{ post.category }}</p> This can go

on the categories, post and index template.

 Finally, let’s make the categories
click through to the relevant page

Python

158 The Python Book

Use

160 Programming in Python on Raspberry Pi
Learn how to optimise for Pi

164 Turn Ras Pi into a stop motion studio
Create a stop-motion i lm

168 Send an SMS from Raspberry Pi
Combine simple Python code and Twilio

170 Build a complex LED matrix
Build and program this useful light display

with Pi

“The Raspberry Pi takes the
‘Pi’ of its name from Python,
as the o� cial Pi language”

168

The Python Book 159

164 170

160 The Python Book

Use Python with Pi

Learn the basics of programming in Python with the Raspberry
Pi, laying the foundations for all your future projects

Programming in Python
on the Raspberry Pi

This tutorial follows on from the one last

issue: ‘Setting up the Raspberry Pi’, where we

showed you how to prepare your SD card for

use with the Raspberry Pi. The beauty of using

an SD card image is that the operating system is

ready to go and a development environment is

already configured for us.

We’ll be using a lightweight integrated

development environment (IDE) called Geany

to do our Python development. Geany provides

a friendlier interface compared to text-based

editors such as nano and will make it easier to

get into the swing of things.

This tutorial will cover topics such as:

• basic arithmetic

• comparison operators, for example ‘equal to’

and ‘not equal to’

• control structures, for example loops and if

statements

By the end, we’ll have an advanced version of our

‘hello world’ application. Let’s dive straight in…

Resources
A Raspberry Pi with all
necessary peripherals

An SD card containing the
latest Debian image for the
Raspberry Pi
http://www.raspberrypi.org/downloads

It’s important to think about data

types. We convert the number to

decimal to make sure that we

don’t lose any decimal numbers

during arithmetic

The stopping condition for a while loop

has to be satisfied at some point in the

code; otherwise the loop will never end!

It’s good practice to describe

what the program’s purpose is at

the top of the file. This will help

you out when working on larger

projects with multiple files

The print function can only accept string

data types, so we need to convert any

variables with a number data type to a string

before we can print them to the screen

The Python Book 161

Use Python with Pi

01 Staying organised
We don’t want to have messy folders on

our new Pi, so let’s go to the fi le manager and

organise ourselves. Open the fi le manager by

clicking the icon next to the menu icon on the

bottom left of the screen. Create a new folder

by right-clicking and selecting New>Folder, then

type a name and click OK. We created a folder

called Python, and inside that created a folder

called Hello World v2.

02 Starting Geany
Start Geany by going to the LXDE menu

and going to Programs. From here, select Geany.

Once you’re in the Geany interface, create a new

Python fi le from a template by selecting ‘New

(with template)>main.py’. Delete everything in

this template apart from the fi rst line: #!/usr/

bin/env python. This line is important because it

means you can run the code from the command

line and the Bash shell will know to open it with

the Python interpreter.

03 Saving your work
It’s always a good idea to keep saving

your work with Ctrl+S as you program, because

it would be a shame to lose anything you’ve been

working on. To save your fi le for the fi rst time,

either press Ctrl+S or go to the File menu and

select Save. Give the fi le a sensible name and

save it in the tidy folder structure you created

before. It’s a good habit to be well organised

when programming, because it makes things

much easier when your projects become bigger

and more complicated.

04 Setting it up
Having detailed comments in your

code is important because it allows you to note

down things you fi nd confusing and document

complex procedures. If another programmer has

to work with your code in the future, they’ll be

extremely grateful. Start by adding a comment

with a description of what the program will do

and your name. All comment lines start with a

hash (#) and are not interpreted as code by the

Python interpreter. We import the sys library

so we can use the sys.exit function to close the

program later on. We also import everything

from the decimal library because we want to

make use of the decimal type.

05 Variables
A variable is data that is stored in

memory and can be accessed via a name. Our

program is going to start by asking for your

fi rst name, store that in a variable and then

print out a welcome message. We’re going to

add a comment that explains this and create

a variable called fi rstName. Notice how we’ve

capitalised the fi rst letter of the second word to

make it easier to read. We want the fi rstName

variable to hold the value returned by a function

called raw_input, that will ask the user for input.

The question is passed into the print function

within brackets, and because this is a string

it is enclosed within quotation marks. A string

type is basically a collection of characters. Note

the extra space we’ve added after the colon

because the user types their input straight after

this question.

06 Printing a message
Now that we have a value in fi rstName,

we need to output a welcome message to the

screen. We print to the screen in Python using

the print function. The print function is followed

by a pair of brackets which enclose the values

to print. When using the addition operator

with strings, they are joined together. Note

how fi rstName doesn’t need to be enclosed by

quotation marks because it is the name of a

variable. If it was enclosed in quotation marks,

the text fi rstName would be output. We fi nish off

by adding a ‘\n’ character (new line character) to

our output to leave one blank line before we start

our next example.

 When using the addition operator
with strings, they are joined together

162 The Python Book

Use Python with Pi

07 Fixing a small issue
The Debian image that we’re currently

using has a small misconfi guration issue in

Geany. You’ll know if you have this problem by

trying to run your program with either the F5

key or going to the Build menu and selecting

Execute. If the issue is present then nothing

will happen and you’ll see a message saying

‘Could not fi nd terminal: xterm’. Not to worry, it’s

easy to fi x. Go to the Edit menu and then select

Preferences. Go to the Tools tab and change the

value for Terminal from xterm to lxterminal.

08 Testing our program
Now we’ve done that part, why not test

it? It’s worth noting that you have to save before

running the program, or anything you’ve done

since you last saved won’t be interpreted by

Python. Run the program by pressing the F5 key.

Input your name by typing it and then pressing

the Enter key. Once you have done this, you’ll see

a welcome message. If the program exits with

the code 0 then everything was run successfully.

Press Enter to close the terminal.

09 Working with numbers
We’re going to ask the user for a number

by basically repeating the fi rst couple of lines

we did. Once the user gives us a number, we’ll

halve, square and double it. The raw_input

function returns the value that the user input

as a string. A string is a text-based value so

we can’t perform arithmetic on it. The integer

type in Python can only store whole numbers

whereas the decimal type can store numbers

with decimals. We’re going to do something

called a type cast, which basically converts a

10 Performing arithmetic
The main arithmetic operators in Python

are + - / *, the latter two being divide and

multiply respectively. We’ve created three new

variables called numberHalved, numberDoubled

and numberSquared. Notice that we don’t need

to specify that they should be decimal because

Python gives a type to its variables from the

type of their initial value. The number variable

is a decimal type, so all values returned from

performing arithmetic on that number will also

be of a decimal type.

11 Printing our numbers
Now that we have performed our

arithmetic, we need to print the results using

the print function. The print function only

accepts string values passed to it. This means

that we need to convert each decimal value to

a string using the str() function before they can

be printed. We’re using a print statement with

nothing between the quotation marks to print

one blank line. This works because the print

function always adds a new line at the end of

its output unless told otherwise, so printing an

empty string just prints a new line.

value with one type to another type. We’re going

to convert our number string to a decimal value

because it’s likely that decimals will be involved

if we are halving numbers. If the number was of

an integer type, any decimal values would simply

be cut off the end, without any rounding. This is

called truncation.

 Save before running the program,
or anything you’ve done since you last
saved won’t be interpreted

 The print
function only
accepts string
values, so convert
each decimal
value to a string

The Python Book 163

Use Python with Pi

12 Input validation with While loops
and If statements

To demonstrate a while loop and if statements,

we will output a question to the user that

requires a yes or no answer. We’re going to ask

them if they want to continue – and for this we

require either a lower-case ‘yes’, or a lower-

case ‘no’. A while loop is a loop that runs until a

condition is met. In this case, we will create a

variable called yesOrNo and the while loop will

run while yesOrNo is false. The yesOrNo variable

will be a Boolean type that can be either True or

False. The variable will be initialised with a value

of False, or the while loop will not run.

A while loop has the format ‘while [condition]:’

– where any code that is part of the while loop

needs to be indented in the lines below the

colon. Any code that is not indented will not

be part of the while loop. This is the same for

an if statement. The condition is checked with

the comparison operator ‘==’. A single ‘=’ is an

assignment operator whereas a double equals

is a comparison operator. Another common

comparison operator is ‘!=’ – which means ‘not

equal to’.

We create a variable called ‘result’, which

holds the result of the question, do you want to

continue? We then check this result is valid with

an if statement. Notice the ‘or’ operator which

allows two conditions to be tested. If the user

inputs a correct value then we set yesOrNo to

True, which stops the while loop on the next run.

Otherwise, we output an error message and

the while loop will run again. The user can use

the Ctrl+C command at the terminal to exit the

program at any time.

13 Continue or exit?
Next we will deal with the result

that was stored during the while loop with if

statements. If the user typed ‘yes’ then we

will print ‘Continuing’. Otherwise, we will print

‘Exiting’ and then call the sys.exit function. You

don’t have to do anything else for the program

to continue because it will simply carry on if the

sys.exit function wasn’t called. This code also

shows that the newline character \n can be

used anywhere in a string, not just in separate

quotation marks like above.

14 Loops with numbers
We’ll be using a while loop that uses a

number and a <= (less than or equal to) operator

as its stopping condition. The while loop will be

used to increment the number by 1, printing the

change on each loop until the stopping condition

is met. The count variable allows us to know

exactly how many times we have been through

the while loop.

15 Incrementing numbers with a loop
The while loop will run until the count is

6, meaning that it will run for a total of 5 times

because the count begins at 1. On each run, the

while loop increments the number variable and

then prints what is being added to the original

number, followed by the result. Finally, the count

is incremented.

16 Finishing off
The fi nal step is to print that the

program is exiting. This is the last line and we

don’t have to do anything else because Python

simply fi nishes when there are no more lines

to interpret.

17 Admire your work
Now that we’ve fi nished coding, save any

changes you have made and run your program

with the F5 key.

 The count
variable lets us
know exactly how
many times we
have been through
the while loop

Use Python with Pi

Build your own animation studio by using your
Raspberry Pi as a stop-motion camera

Turn your Raspberry Pi
into a stop-motion studio

What have you done with your Raspberry

Pi camera lately? While it gives us plenty of

new ways to use the Pi, unless you’ve got your

computer set up as a security webcam or you’re

particularly a fan of time-lapse photography, the

chances are that you’ve overlooked the Pi camera

module for a while.

If you’re a fan of animation or you simply want

to extend the possibilities of the module, why not

build a stop-motion camera? By using Python

and an external button to capture images,

the Raspberry Pi can be the perfect tool for

animators.

Better still, you can go beyond animating toys

or bits of LEGO and go old school by mounting

the Pi on a rostrum and creating a cartoon. Even

if you can’t buy or build one, you can mount the

stop motion Pi camera with a smartphone mount

for stability.

01 Mount your stop-motion Pi
camera

Before you get started, think about the type of

animation you’re going to be capturing. If you’re

using the traditional top-down method, as used

by classic cartoon animators, then you’ll need a

rostrum to mount the Raspberry Pi.

Alternatively, you may be animating

something on a desk, table or perhaps the

Below Our home-made
antenna may look a little
rough around the edges,
but it works great!

02 Find somewhere to shoot
For your fi rst attempts at shooting

a stop-motion video, you should use a wide

and uncluttered space. This might be a desk,

a kitchen work surface or even the fl oor, but it

should be a hard and fl at area in most cases

(unless you have need for a bumpy carpeted

environment for your video) to aid with the

creation of your stop-motion fi lm.

As time progresses and your skill develops,

other surfaces can prove useful alternatives, but

keep it simple for now and stick with fl at surfaces

while you get to grips with the art form using the

Raspberry Pi stop-motion camera.

03 Connect the Pi camera module
Next you’ll need to connect the Pi

camera module to your Raspberry Pi. All models

have the necessary connector, although where

it is found on the device will depend on the

version of your Raspberry Pi.

fl oor, but you’ll need your Pi camera mounted

in a similar way, looking across rather than

down.

Various options are available, such as

smartphone tripods and dashboard mounts.

Most of these should be suitable for securely

mounting your Raspberry Pi.

Resources
Hard drive

OSMC:
osmc.tv/

Home network

Another Linux computer, less than
eight years old

Use Python with Pi

The Python Book 165

The Model A has the Pi-camera connector next to the Ethernet port, as

does the Model B. On the B+ and the Raspberry Pi 2, the connector is in a

similar position, but it’s a little further from the Ethernet port between the

audio-out and HDMI ports.

Connecting the camera module can be tricky. Begin with taking your Pi

out of its case or remove the top where possible and disconnect all cables.

Take precautions before removing the device from its antistatic bag, as the

camera module is very sensitive to static electricity.

On the Pi, lift the plastic catch on the connector and slot the camera

module fl ex into place with the shiny contacts facing away from the

Ethernet port. Once the fl ex is fully slotted in, push the plastic catch back

into place.

 sudo apt-get install python-picamera python3-

picamera

 sudo idle3

In the Python editor, open File>New Window and enter the code below,

setting the camera.vfl ip and camera.hfl ip as True or False as required.

Save (perhaps as ‘camfl ip.py’), then press F5 to run the script and view the

correctly outputted image.

To save time, however, you might try rotating the position of

your camera or Pi camera module!

import picamera

from time import sleep

with picamera.PiCamera() as camera:

 camera.vflip = True

 camera.hflip = True

 camera.start_preview()

 sleep(3)

 camera.capture(‘/home/pi/image2.jpg’)

 camera.stop_preview()

04 Test your Pi camera module
After connecting the Pi camera, check that it works by booting the

Raspberry Pi (we’re assuming you’re running Raspbian) and entering this in

the command line:

 sudo raspi-config

With the keyboard arrows, move down to option fi ve, ‘Enable Camera’, and

tap Enter. In the following screen, hit Enter again to enable the camera

and exit. If you’re not already signed into the GUI, do so now (if you’re in the

command line interface, enter startx to launch the desktop view). Open

the terminal and enter:

 raspistill -o image1.jpg

You can review the resulting image in your Home directory.

Left Consider the angle
you’ll be shooting from

as you are setting up

Right With the camera
module, ensure the

shiny side faces away
from the Ethernet port

05 Straighten out the image
With the Pi camera up and running, you may notice that it’s

outputting the image with the axes fl ipped. We can fi x this using Python, so

open the terminal and enter:

06 Set up the breadboard and button
We have two ways to add a button to the Raspberry Pi, but before

proceeding, ensure you have switched the computer off and disconnected it

from the mains. You should also disconnect any cables and hardware.

The simplest method of adding a button is to employ a solder-free

breadboard and a single-state pushbutton. Connect the button to the

breadboard with two male-to-female wires running to GPIO pins GND and

17. With a script designed to detect action from the button on the GPIO, each

frame of your animation can be captured with a single button push.

FileSilo.co.uk

166 The Python Book

Use Python with Pi

09 Use an app instead
Don’t fancy using the script? Try this stop-motion

application. Begin by installing the raspicam-extras package

that includes the UB4L drives for the Pi:

 wget http://www.linux-projects.org/listing/uv4l_

repo/lrkey.asc && sudo apt-key add ./lrkey.asc

 sudo sh -c ‘echo “deb http://www.linux-projects.

org/listing/uv4l_repo/raspbian/ wheezy main” >> /

etc/apt/sources.list’

 sudo apt-get update

 sudo apt-get install uv4l uv4l-raspicam uv4l-

raspicam-extras

With that done, enter:

 sudo apt-get install stopmotion

Launch with the stopmotion command to open a GUI with a

live camera for you to line up each shot. This is a more elegant

solution and captured images can be stitched together using the

‘Number of images’ slider and the camera button above it.

08 Stitch together your stop-motion animation
The collected images can be cycled through relatively

quickly using a special picture viewing app, but for a true

animation you will need to compile them into one single fi le. In the

terminal, install ffmpeg:

 sudo apt-get install ffmpeg

After installing, you can then convert your images into a video

clip, as follows:

 ffmpeg -y -f image2 -i /home/pi/Desktop/stop-

motion/frame%03d.jpg -r 24 -vcodec libx264 -profile

high -preset slow /home/pi/Desktop/stop-motion/

animation.mp4

With this fi le created, open with the command:

 omxplayer animation.mp4

The video will then be played in full-screen mode.

Don’t want to build
your own rostrum? Why
bother when a camera
tripod can be positioned
as needed and other
items, like smartphone
suction holders and
grips, can be employed
to hold your Raspberry Pi
case and camera module
in place?

For top-down animation,
suction-pad smartphone
holders (available for
under £10) that use a
sticky gel for a stronger
grip are perfect for
holding your stop-motion
Pi camera and attaching
to a fl at surface above
the animation subject.

Tripods and
suction
holders

07 Code for stop motion
Once satisfi ed with the results of your Pi

camera, it’s time to turn it into a stop-motion camera.

The fi rst step is to type up the code shown below,

which will capture an image of your subject and save

it into a folder called ‘Stop motion’. Each image is

numbered sequentially and they can all be stitched

together once your animation is complete. Save the

code as animation.py:

import picamera

from RPi import GPIO

button = 17

GPIO.setmode(GPIO.BCM)

GPIO.setup(button, GPIO.IN, GPIO.PUD_UP)

with picamera.PiCamera() as camera:

 camera.start_preview()

 frame = 1

 while True:

 GPIO.wait_for_edge(button, GPIO.

FALLING)

 camera.capture(‘/home/pi/animation/

frame%03d.

 jpg’ % frame)

 frame += 1

 camera.stop_preview()

Then, in a new terminal window, enter the following:

 sudo python3 animation.py

Press the button to capture each frame, moving the

subject as needed. When you’re all done, hit Ctrl+C to

terminate the script.

 Don’t want to build your own
rostrum? Why bother when a
camera tripod can be positioned
as needed?

The Python Book 167

Use Python with Pi

10 Put it all together
Now you have the camera set up, a device for keeping it steady

(whether a DIY rostrum or a tripod), and you’ve constructed a button or

plan to capture each frame via SSH. Your stop-motion Raspberry Pi

camera is finally ready!

By now you’re probably aching to get started, so with your stop-motion

Pi camera ready to use (and close to a power supply), it’s time to start

building your film set. While this might simply be an empty table top,

there might equally be a few props you would like to include.

11 Storyboard your shoot
It’s easy to get tied up with the idea of creating a stop-motion camera

and forget all about a subject and how it will act.

You can avoid any problems here by taking the time to carefully plan what

will happen in your film: your story. Remember, each second of the video will

require 26 frames!

The best way to plan at this level is to simply write up an outline, but

beyond this you may prefer to storyboard instead by making pencil sketches

to help you progress the story.

12 Cast your stop-motion shoot
You’ll also need a good idea of what your subject will be; this means

who or what you’re going to be using the stop-motion camera to capture

frames of. Typically, amateur stop-motion films make use of household

objects, toys and child’s play clay.

The beauty of this kind of animation is that you can use almost anything

that you can get your hands on, from a cup and saucer to an Action Man, as

long as you have a way to support the subject(s) in the positions you wish

them to take throughout.

13 Stop-motion with toys
If you cast toys as your stop-motion stars, you will get a much better

result from something that is built to stand up on its own than toys that tend

to sit or fall over.

LEGO sets and Minifigs appear in many stop-motion productions on

YouTube. This is with good reason, as they’re really easy to place in a desired

position. The construction element of the bricks is also a major attraction.

Another popular option is Transformers toys. These are both good places to

start, but you should aim to develop your own approach over time.

14 People in stop-motion films
It isn’t only inanimate objects that you can include in stop-motion

films. People can feature too! Pop videos such as Peter Gabriel’s 1985

hit Sledgehammer have taken advantage of stop motion (that video was

produced by Aardman Animations, the eventual creators of Wallace and

Gromit) and the technique can be used on humans to create surreal effects.

If you want your subject to be moving around a room too, they can appear to

15 Make your own Wallace and Gromit
Known as ‘claymation’, the practice of animating lumps of clay has

been a popular form of animation for years in the UK, but there’s more to

it than just clay. These forms, whether they’re cheese-loving old men or

remarkably clever dogs, have a wire skeleton that is used to keep movement

in the desired position.

This makes it much easier to capture the frames efficiently, but for the

best results you should also have several versions of the same figures

available. This is just in case one gets deformed and damaged during

production!

17 Take your stop-motion studio to the next level
At the risk of encouraging you to become the next Ivor Wood (creator

of The Wombles, Paddington and Postman Pat, among others), it is possible

to use the Raspberry Pi’s camera module for ambitious projects as well as

small ones. After all, this device photographs in high resolution so there is no

reason not to adopt this setup and incorporate it into a working stop-motion

studio with a miniature set.

Sharing your work through YouTube is a great idea too, especially as it will

make it simple to add a soundtrack using YouTube’s browser-based editor.

16 From stop motion to time lapse
Similar to stop motion, time lapse is a technique that automatically

captures images on a preset timer. We can use a Python script to control

this, saving the captures in a directory and using ffmpeg to compile them

into a film.

However, what you may not want for this project is a mains cable trailing

all over, especially if you’re attempting to capture the movement of the stars

at night or nature activity. We suggest employing a Pi-compatible battery

pack to make your time-lapse Pi camera truly mobile, using SSH to run the

script remotely:

import time

import picamera

VIDEO_DAYS = 1

FRAMES_PER_HOUR = 60

FRAMES = FRAMES_PER_HOUR * 24 * VIDEO_DAYS

def capture_frame(frame):

 with picamera.PiCamera() as cam:

 time.sleep(2)

 cam.capture(‘/home/pi/Desktop/frame%03d.jpg’ % frame)

Capture the images

for frame in range(FRAMES):

 # Note the time before the capture

 start = time.time()

 capture_frame(frame)

 # Wait for the next capture. Note that we take into

 # account the length of time it took to capture the

 # image when calculating the delay

 time.sleep(

 int(60 * 60 / FRAMES_PER_HOUR) - (time.time() - start)

)

Above Here’s the stopmotion program in action – it’s a simple enough GUI to get
your head around and gives you a nice preview window

be floating or gliding. The results can be strange, but useful if you know what

you want.

Use Python with Pi

Create a program that combines Twilio and simple Python
code to enable you to send an SMS (text message) from your
Pi to a mobile phone

Send an SMS from your
Raspberry Pi

Text messaging, or SMS (Short Message

Service), has become a staple of everyday

communication. What began life as a 40 pence

message service is now offered by most tariff

providers as an unlimited service. Twilio, a cloud

communications company, enables you to send

SMS messages for free from your Raspberry Pi to a

mobile phone using just six lines of code.

01 Set up your Twilio account
The fi rst step of this project is to register

for a Twilio account and Twilio number. This is free

and will enable you to send an SMS to a registered,

verifi ed phone. Once signed up, you will receive a

verifi cation code via SMS to the registered phone.

When prompted, enter this onto the Twilio site to

authenticate your account and phone. Go to twilio.

com/try-twilio and create your account.

02 Register and verify mobile numbers
Your Twilio account is a trial account (unless

you pay the upgrade fee), which means you can only

send and receive communications from a validated

phone number. Enter the phone number of the

mobile that you want to verify, ensuring that you

select the correct country code. Twilio will text you

a verifi cation code. Enter this code into the website

form and press submit.Left With this method,
you could get your
Pi to drop you a text
when it fi nishes
running a script

Resources
Raspberry Pi

Twilio account

168 The Python Book

Use Python with Pi

05 Twilio authentication
Now you are ready to create the SMS program that

will send the text message to your mobile phone. Open your

Python editor and import the Twilio REST libraries (line one,

below). Next, add your AccountSid and Auth Token, replacing

the X with yours, as you will find on your dashboard:

 from twilio.rest import TwilioRestClient

 account_sid = “XXXXXXXXXXXXXXXXXXXXX”

 # Enter Yours

 auth_token = “XXXXXXXXXXXXXXXXXXXXX”

 # Enter Yours

 client = TwilioRestClient(account_sid, auth_

token)

03 The dashboard
Once registered and logged in, visit the dashboard

page, which will display your AccountSid and your Auth Token.

These are both required to use the Twilio REST. Keep these

secure and private, but be sure to make a note of them as you

will need them for your Python program later.

04 Install the software
Boot up your Raspberry Pi and connect it to the

Internet. Before you install the Twilio software, it is worth

updating and upgrading your Pi. In the LX Terminal, type sudo

apt-get update, then sudo apt-get upgrade. Once complete,

type sudo easy_install twilio or sudo pip install twilio to

install the software. (If you need to install pip, type sudo apt-

get install python-pip python-dev, press Enter, then type

sudo pip install -U pip.)

06 Create your message
You will probably want to be able to change your

text messages rather than send the same one. Create a new

variable in your program called message. This will prompt you

to enter the phrase that you want to send to the mobile phone.

When the program runs, this is the message that will be sent:

 message = raw_input(“Please enter your message”)

REST stands for
Representational
State Transfer. (It
is sometimes spelt
“ReST”.) It relies on
a stateless, client-
server, cacheable
communications
protocol – and in
virtually all cases, the
HTTP protocol is used.
REST is an architecture
style for designing
networked applications.

REST

09 Other API and codes
Twilio provides a wide range of API codes and

reference documents to create other communication

programs, such as making phone calls, recording a call, and

retrieving data including caller IDs and call duration. The

API also complements a wide range of languages, including

Ruby, PHP, Java and Node.js (twilio.com/api).

08 Send the message
Now send your message. The code below is not

required, but useful to indicate your message has been sent.

Add the lines and save your program. Ensure your Raspberry

Pi is connected to the Internet and that your mobile is on,

then run your program. You have just texted from your

Raspberry Pi!

 print message.sid

 print “Your message is being sent”

 print “Check your phone!”

07 Add your numbers
To send the message, you need to add the code line

below and your two phone numbers. The first number is your

mobile phone number, which is registered and validated with

Twilio (Step 2). The second number is your Twilio account

number, which can be retrieved from your dashboard page

under ‘Call the Sandbox number’. Change the Sandbox number

to your country location and remember to add the international

country code.

 message = client.messages.

create(to=“+44YOURMOBNUMBER”,

from_=“+44YOURTWILIONUMBER”, body=message)

Above You will be able to find your AccountSid and your Auth Token on the Twilio dashboard

 Twilio enables you to send
SMS messages for free

The Python Book 169

Code on
FileSilo

170 The Python Book

i

LED Matrix display systems fi nd use everywhere from gaudy
kebab shops to impressive steampunk-styled systems

Build a complex LED matrix

Driving LEDs in an effi cient fashion is a science of its own.

The common availability of single-board computers has put

the necessary technology within reach of everyone.

When dealing with LED displays, two different systems

must be considered. We will focus on traditional matrix-

based systems made up of one or more LEDs. Their

affordable nature makes them ideally suited to classic display

applications: they communicate currency prices, provide

stock-brokers with updates from the trading fl oor and have

even been used as basic displays for primitive oscilloscopes.

Finally, we will also provide you with an overview of

electronic basics. This tutorial is a bit more advanced than the

ones we usually run in this section of the magazine, and it’s

also worth noting that we’re going to be programming with C

rather than Python. Follow along using the code listing annos.

01 Think about LEDs
Standalone LEDs are primitive – they light up once

current fl ows through them. Driving a few LEDs is as easy as

connecting them to GPIO pins along with a resistor. Sadly, this

method becomes wasteful once more than a few of them get

involved – driving 16 diodes ties up 16 pins.

02 Arrange your diodes
Methods were devised to reduce the number of pins

needed. Matrix-based systems are resilient to individual

diode failures, and provide a pin-to-LED ratio of n=(n/2)̂ 2. The

following steps assume a 16x16 LED matrix which is made

up according to Figure A. Since LEDs permit current in only

one direction, you can enable a single LED by bringing the

corresponding pins high and low.

Resources
Breadboard & wires

16x16 LED Matrix

2x 74HC238

2x 74HC244

16x 220 Ohm Resistor

Source code: FileSilo.co.uk

The Python Book 171

Use Python with Pi

04 Separate concerns
Chip two goes by the name of 74HC244, which is

described as an octal buffer with tri-state capability. Tri-State

outputs can physically disconnect themselves from the bus

line. This permits you to tie their outputs together without

fear of short circuits. As long as all but one chip are in tri-state

mode, no current can fl ow between high and low output pins.

03 Harness the MUX
Our LED module has a total of 32 inputs, which

overwhelms older versions of the RPi. The first way to restrict

their number comes in the shape of the 74HC238, a component

described as a 3-to-8 line decoder/demultiplexer. Its function is

described in the Figure B image on the next page.

Above The extended version of this schematic is inside FileSilo.co.uk
– just sign in and download

05 Round them up
Four GPIO pins control the enabled display ‘line’.

Three pins confi gure the address which is to be emitted,

while the signal emitted from the fourth pin is connected to

the activity inputs. This ensures that but one IC is active. The

74HC244 ensures that but one of the two groups is active.

06 Confi gure the pins
We used a library from Hussam Al-Hertani’s

Hertaville blog (hertaville.com/2014/07/07/rpimmapgpio).

The fi rst step involves setting output functions. As the GPIOs

are set to outputs, the tri-state feature might connect the

internal state to the output pins of the IC. This could lead to

internal shorting if the output is not turned off.

#include “€œmmapGpio.h”

#include <unistd.h>

#include <stdio.h>

void (unsigned _which, mmapGpio*

{

 if(_which&

 {

->

 }

 else

 {

->

 }

 if(_which&

 {

->

 }

 else

 {

->

 }

 if(_which&

 {

->

 }

 else

 {

->

 }

 if(_which&

 {

->

 }

 else

 {

->

 }

}

void (unsigned _which, mmapGpio*

{

->

->

 if(_which==

 {

->

 }

 else

 {

Full code listing

Step 07

Step 12

Step 08

Figure A

 Our LED model has a
total of 32 inputs, which
overwhelms older
versions of the RPi

172 The Python Book

Use Python with Pi

08 Select a row

In the 74HC244, we first disable both units and proceed

to turning on the one which is needed. This sequence prevents

ghosting during the switching process.

09 Do the main loop

The outer part of the loop consists of logic that

manages the addressing of the individual rows. Our program

must flash the individual LED groups one after another using

the building blocks described in the next step.

10 Complete the loop

Writing out data is accomplished in a sequence of three

commands. We select the row, configure the column and then

write out the data bits that are to be displayed. A small pause

is observed in order to give the LEDs some time to ‘burn into’

the viewer’s eyes.

 _where->writePinLow(PINCS1);

 }

}

void setData(unsigned char _which, mmapGpio* _where)

{

 if(_which&1)

 {

 _where->writePinHigh(PIND0);

 }

 else

 {

 _where->writePinLow(PIND0);

 }

 if(_which&2)

 {

 _where->writePinHigh(PIND1);

 }

 else

 {

 _where->writePinLow(PIND1);

 }

 if(_which&4)

 {

 _where->writePinHigh(PIND2);

 }

 else

 {

 _where->writePinLow(PIND2);

 }

 if(_which&8)

 {

 _where->writePinHigh(PIND3);

 }

 else

 {

 _where->writePinLow(PIND3);

 }

 if(_which&16)

 {

 _where->writePinHigh(PIND4);

 }

 else

 {

 _where->writePinLow(PIND4);

 }

 if(_which&32)

 {

 _where->writePinHigh(PIND5);

 }

 else

 {

 _where->writePinLow(PIND5);

 }

 if(_which&64)

 {

 _where->writePinHigh(PIND6);

 }

 else

 {

 _where->writePinLow(PIND6);

 }

 if(_which&128)

 {

 _where->writePinHigh(PIND7);

 }

 else

Full code listing

07 Power the MUX

Create a convenience function taking an address

ranging from zero to 15. It is converted into pin outputs for our

3-to-8-demultiplexer. The effect of this is that all but one of

the sixteen rows is to be supplied with energy.

Step 08

Step 11

Figure B

Above Digital LED matrices like this one give you far more control over
each individual ‘pixel’ in the display

Two versions of LED
strips are offered.
‘Primitive’ ones are
based on analogue
technology. In it, an
entire strip of diodes
has the colour set
by the three input
pins. Systems such
as the mega-display
shown in the left-
hand image require
the use of the
digital version. They
are based on the
concept of the shift
register. Your system
inputs individual
colour values which
are then pushed on
along the strip.

LED
stripes

The Python Book 173

Use Python with Pi

11 Energy control
LEDs light up if current fl ows through them. SetData pulls

the pins of the 74HC244 low to ensure that the energy supplied

from the 74HC238 can fl ow through the diode.

12 Avoid GPIO trouble
The Raspberry Pi Foundation has a tendency to change

the layout of the expansion header regularly, a habit which

professional manufacturers of process computers abhor.

It’s recommended to handle the mapping between pins and

functions via a set of defi nes. Our code is optimised for a

Rev2 Raspberry Pi with a ‘short’ header – 40-pin variants will

require readjustments making sure the physical pin numbers

correspond to the logical GPIO numbers.

13 Add example data
Test the code by setting the datastore to a value of your

choice. Setting 64 to all fi elds will disable one row in each part

of the display.

14 Kick it off
Check all connections between the planar and the

single-board computer, and proceed to starting the compiled

app. Don’t forget to use the sudo command – direct memory

access is restricted to root in order to prevent apps from

causing havoc in the physical memory. Users are accustomed

to this, so requiring them to put a sudo in front of the

command doesn’t cause concern.

15 Notice a fl icker
Sharp-eyed readers will notice an occasional fl icker

where one line appears brighter than the others. This is

caused by the stalling of the program – if the kernel does

other work, the switching routine can’t run. We could solve

this problem by using a real-time Linux kernel.

 {

 _where->writePinLow(PIND7);

 }

}

int main(void)

{

 mmapGpio rpiGpio;

 //Set outputs

 rpiGpio.setPinDir(PINA0,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PINA1,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PINA2,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PINA3,mmapGpio::OUTPUT);

 //TURN OFF ASAP!

 rpiGpio.setPinDir(PINCS0,mmapGpio::OUTPUT);

 rpiGpio.writePinHigh(PINCS0);

 //TURN OFF ASAP!

 rpiGpio.setPinDir(PINCS1,mmapGpio::OUTPUT);

 rpiGpio.writePinHigh(PINCS1);

 rpiGpio.setPinDir(PIND0,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PIND1,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PIND2,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PIND3,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PIND4,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PIND5,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PIND6,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PIND7,mmapGpio::OUTPUT);

unsigned char dataStore[2][16];

for(int j=0;j<2;j++)

{

for(int k=0;k<16;k++)

{

 dataStore[j][k]=64;

}

}

 int blockCounter=0;

 int rowCounter=0;

 while(1)

 {

 blockCounter++;

 if(blockCounter==16)

 {

 if(rowCounter==0)

 {

 blockCounter=0;

 rowCounter=1;

 }

 else

 {

 blockCounter=0;

 rowCounter=0;

 }

 }

 safelySetRow(rowCounter, &rpiGpio);

 setAddress(blockCounter, &rpiGpio);

 setData(dataStore[rowCounter][blockCounter], &rpiGpio);

 usleep(50);

 }

 return 0;

}

Full code listing

Step 06

Step 09

Step 13

Step 10

Above This is the full schematic of the LED matrix that we’re working
with here (you can also view it at its full size on FileSIlo)

Full code & schematics
FileSilo.co.uk

Try

3 issues

for just

£5*

* This of er entitles new UK direct debit subscribers to receive their � rst three issues for £5. After these issues, subscribers will then pay £25.15 every
six issues. Subscribers can cancel this subscription at any time. New subscriptions will start from the next available issue. Of er code ZGGZINE must
be quoted to receive this special subscriptions price. Direct debit guarantee available on request. This of er will expire 31 January 2017.

** This is an US subscription of er. The USA issue rate is based on an annual subscription price of £65 for 13 issues which is equivalent to $102 at the
time of writing compared with the newsstand price of $16.99 for 13 issues being $220.87. Your subscription will start from the next available issue.
This of er expires 31 January 2017.

Specia
l

tr
ia

l o
ffe

r

Exclusive offer for new

Enjoyed
this book?

For amazing offers please visit
www.imaginesubs.co.uk/lud
Quote code ZGGZINE

Try 3 issues for £5 in the UK*
or just $7.85 per issue in the USA**
(saving 54% off the newsstand price)

Dedicated to
all things Linux
Written for you
Linux User & Developer is the only

magazine dedicated to advanced users,

developers & IT professionals

In-depth guides & features
Written by grass-roots developers and

industry experts

Free assets every issue
Four of the hottest distros feature every month –

log in to FileSilo, download and test them all!

About
the

mag

Or telephone UK 0844 249 0282+ overseas +44 (0) 1795 418 661
+ Calls will cost 7p per minute plus your telephone company's access charge

 subscribers to…

YOUR FREE RESOURCES
Log in to filesilo.co.uk/bks-864 and download your great resources NOW!

YOUR BONUS
RESOURCES
ON FILESILO WITH THIS
BOOKAZINE, FREE AND
EXCLUSIVE FOR THE PYTHON
BOOK READERS, YOU’LL FIND A
WEALTH OF RESOURCES,
INCLUDING THE FOLLOWING…

• A walkthrough video on writing good-
quality code with Python from the
very beginning

• A series of tutorials on making a PiSnake
game with Raspberry Pi and Python

• A guide to using GUI with GTK

• Everything you need to complete the
tutorials in this book and become a
Python expert

All the tutorial fi les you’ll need

Hours of free video tutorials

Inspirational projects

PACKED WITH BRILLIANT
DIGITAL CONTENT, AVAILABLE
ANY TIME, ON DEMAND

filesilo.co.uk/bks-864

EVERYTHING
YOU NEED

TO BUILD ON
THE AWESOME
SKILLS IN THIS

BOOKAZINE

ENHANCE YOUR PYTHON SKILLS

176 The Python Book

FILESILO – THE HOME OF PRO RESOURCES

A rapidly growing library
Updated continually with cool resources
Lets you keep your downloads organised
Browse and access your content from anywhere
No more torn disc pages to ruin your magazines

No more broken discs
Print subscribers get all the content
Digital magazine owners get all the content too!
Each issue’s content is free with your magazine
Secure online access to your free resources

Discover your free online assets

The most popular downloads are shown in
the carousel here, so check out what your
fellow readers are enjoying

Whether it’s programming tutorials or
video workshops, categories make it easy
to identify the content you’re looking for

Find out more about our online stores, and
useful FAQs, such as our cookie and
privacy policies and contact details

If you’re looking for a particular type of
content, like software or video tutorials,
use the filters here to refine your search

See key details for each resource
including number of views and
downloads, and the community rating

Discover our fantastic sister magazines
and the wealth of content and information
that they provide

The first time you use FileSilo, you’ll need to
register. After that, you can use your email
address and password to log in

This is the new FileSilo site that replaces
your disc. You’ll find it by visiting the link on
the following page

The Python Book 177

HOW TO USE
EVERYTHING YOU NEED TO KNOW ABOUT
ACCESSING YOUR NEW DIGITAL REPOSITORY

Having trouble with any of the techniques in this bookazine’s tutorials? Don’t know
how to make the best use of your free resources? Want to have your work critiqued
by those in the know? Then why not visit the Linux User & Developer and Imagine
Bookazines Facebook pages for all your questions, concerns and qualms. There is a
friendly community of fellow Linux and Open Source enthusiasts waiting to help you
out, as well as regular posts and updates from the team behind Linux User &
Developer magazine. Like us today and start chatting!

facebook.com/ImagineBookazines

NEED HELP WITH
THE TUTORIALS?

To access FileSilo, please visit filesilo.co.uk/bks-864

01 Follow the
on-screen

instructions to create an
account with our secure
FileSilo system, log in and
unlock the bookazine by

answering a
simple question
about it. You can
now access the
content for free
at any time.

02 Once you have
logged in, you are

free to explore the wealth of
content available on
FileSilo, from great video
tutorials and online guides
to superb downloadable
resources. And the more
bookazines you purchase,
the more your instantly
accessible collection of
digital content will grow.

03 You can access
FileSilo on any

desktop, tablet or
smartphone device using
any popular browser (such
as Safari, Firefox or Google
Chrome). However, we
recommend that you use a
desktop to download
content, as you may not be
able to download files to
your phone or tablet.

04 If you have any
problems with

accessing content on
FileSilo, or with the
registration process, take a
look at the FAQs online or
email filesilohelp@
imagine-publishing.co.uk.

facebook.com/LinuxUserUK
178 The Python Book

The ultimate guide to coding with Python

Put Python to work
Supercharge your system and make life

easier with handy coding tutorials

Use Python with Raspberry Pi
Work on any Raspberry Pi model using its

officially recognised language

Get to grips with the basics
Learn Python the right way and complete

basic projects with our simple guides

OVER 2 HOURS
OF VIDEO TUTORIALS

Python
The

250
essential tips

inside

	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10
	Backcover
	Cover
	TOC
	TOC2
	TOC3
	TOC4
	TOC5
	TOC6
	TOC7
	TOC8
	TOC9
	TOC10

