

	 Stefan	Wintermeyer

PREFACE

Don’t	let	people	fool	you	into	believing	that	Ruby	on	Rails	is	easy	to	learn.	It	is
not!	 It’s	 probably	 the	 best	 and	 most	 effective	 framework	 to	 develop	 web
applications	but	it	is	hard	to	understand	in	the	beginning.	The	worst	mistake	of
all	is	to	not	learn	Ruby	before	diving	into	Ruby	on	Rails.	To	avoid	it	this	book
starts	with	the	basics	of	Ruby.	You	will	not	become	a	Ruby	guru	after	reading	it
but	you’ll	understand	the	basic	ideas	and	that	is	important.

I	wrote	this	book	for	developers	who	learn	best	by	following	clean	examples.	I
don’t	 like	 the	 idea	of	 coding	one	big	 single	 application	 throughout	 a	book	but
prefer	 smaller	 stand-alone	 code	 examples.	Therefore	 you	 can	 skip	 a	 couple	 of
pages	or	even	complete	chapters	without	losing	context.

Shameless	 plug:	 Please	 contact	 me	 by	 e-mail	 to
stefan.wintermeyer@amooma.de	 if	 you	 need	 Ruby	 on	 Rails	 consulting	 or
training.

Have	fun	with	Ruby	on	Rails!

Stefan	Wintermeyer

PS:	 I	 post	 updates	 about	 this	 book	 and	 Rails	 in	 general	 at
https://twitter.com/wintermeyer

mailto:stefan.wintermeyer@amooma.de
https://twitter.com/wintermeyer

	 Stefan	Wintermeyer

RUBY	BASICS

Introduction
This	book	requires	basic	knowledge	of	HTML,	plus	the	reader	-	you,	in

other	words	-	should	also	have	a	basic	understanding	of	programming.

The	beginning	of	this	chapter	is	going	to	be	a	bit	boring.

Bear	with	me.	It’s	worth	it.

It	 is	 easy	 to	 program	 in	 Ruby,	 but	 Ruby	 is	 not	 a	 simple

language.”

~	Yukihiro	Matsumoto

This	chapter	is	a	tightrope	walk	between	oversimplification	and	a	degree

of	detail	that	is	unnecessary	for	a	Rails	newbie.	After	all,	the

objective	is	not	becoming	a	Ruby	guru,	but	understanding	Ruby	on	Rails.

I	am	going	to	elaborate	on	the	most	important	points.	The	rest	is	then

up	to	you.	If	you	would	like	to	know	more	about	Ruby,	then	I	recommend

the	book	"The	Ruby	Programming	Language"	by	David	Flanagan	and	Yukihiro
Matsumoto.

The	command	ruby	-v	will	print	the	current	running	Ruby	version:

$	ruby	-v

ruby	2.3.0p0	(2015-12-25	revision	53290)	[x86_64-darwin15]

$

https://en.wikipedia.org/wiki/Yukihiro_Matsumoto

Hello	World

Ruby	is	a	scripting	language.	So	it	is	not	compiled	and	then	executed,

but	read	by	an	interpreter	and	then	processed	line	by	line.

A	simple	Ruby	program	hello-world.rb	consist	of	the	following	line:

Listing	1.	hello-world.rb

puts	'Hello	World!'

Use	your	favorite	editor	to	open	a	new	file	with	the	filename

hello-world.rb	and	insert	the	above	line	into	it.	You	can	then	execute	this

Ruby	program	in	the	command	line	as	follows:

$	ruby	hello-world.rb

Hello	World!

$

A	program	line	in	a	Ruby	program	does	not	have	to	end	with	a	semicolon.

The	Ruby	interpreter	is	even	so	intelligent	that	it	recognizes	if	a

program	line	was	split	over	two	or	more	lines	for	the	sake	of

readability.	I	will	spare	you	the	corresponding	examples	and	am	only

mentioning	this	so	you	don’t	say	or	think	later,	"is	it	okay	like	this?"

▪

▪

Indenting	code	is	also	not	necessary.	But	it	does	make	it	much	easier	to

read	for	human	beings!

puts	and	print
If	you	go	looking	for	examples	on	Ruby	on	the	Internet,	you	will	find

two	typical	ways	of	printing	text	on	the	screen:

puts	prints	a	string,	followed	by	a	newline.

print	prints	a	string	(without	newline).

Example	program	(an	extension	of	the	program	hello-world.rb):

Listing	2.	hello-world.rb

puts	'Hello	World!'

puts

puts	'zzz'
print	'Hello	World!'
print

puts	'zzz'

On	the	screen,	you	will	see	this:

$	ruby	hello-world.rb

Hello	World!

	

zzz

Hello	World!zzz

Comments
A	comment	in	a	Ruby	program	starts	with	a	#-sign	and	ends	with	a	newline.	As

an	example,	I	can	add	a	comment	to	the	hello-world.rb

above:

Listing	3.	hello-world.rb

#	Program	for	displaying	"Hello	World!"

#	by	Stefan	Wintermeyer

puts	'Hello	World!'

A	comment	can	also	follow	a	program	line:

Listing	4.	hello-world.rb

#	Program	for	displaying	"Hello	World!"

#	by	Stefan	Wintermeyer

puts	'Hello	World!'		#	output

A	 #-sign	 within	 strings	 in	 inverted	 commas	 is	 not	 treated	 as	 the	 start	 of	 a

comment.	Example	program:

Listing	5.	hello-world.rb

#	Example	program

#	by	Stefan	Wintermeyer

puts	'Hello	World!'
puts	'############'
puts

puts	'1#2#3#4#5#6#'		#	Comment	on	this

Help	via	ri
When	programming,	you	do	not	always	have	a	Ruby	handbook	available.

Fortunately,	the	Ruby	developers	thought	of	this	and	provided	a	built-in

help	feature	in	form	of	the	program	ri	(of	course	only	if	you	have	installed	the

documentation	which	is	the	default).

This	is	a	typical	chicken	and	egg	situation.	How	can	I	explain	the	Ruby

help	feature,	if	we	are	only	just	getting	started	with	Ruby?	So	I	am

going	to	jump	ahead	a	little	and	show	you	how	you	can	search	for

information	on	the	class	String:

$	ri	String

[...]

$

If	we	are	looking	for	information	on	a	specific	method	(chicken-egg!),

then	we	can	also	use	ri.	Let’s	 take	gsub	as	an	example.	This	is	a	method	for

replacing	parts	of	a	String	(that	is	useful	now	and	again).

$	ri	String.size

=	String.size

	

(from	ruby	site)

		str.size					->	integer

Returns	the	character	length	of	str.

The	 program	ri	 always	prints	 the	output	 in	 the	pager	program	defined	by	 the

shell	 (for	 example	less).	You	can	also	use	 the	command	option	-T	 to	output

everything	directly	to	STDOUT.

irb
irb	 stands	 for	Interactive	Ruby	and	 is	a	kind	of	sandbox	where	you	can	play

around	with	Ruby	at	your	leisure.	irb	is	launched	by	entering	irb	on	the	shell

and	ends	if	you	enter	exit.

An	example	is	worth	a	thousand	words:

$	irb

>>	puts	'Hello	World!'

Hello	World!

=>	nil

>>	exit

$

I	 use	IRB.conf[:PROMPT_MODE]	=	:SIMPLE	 in	my	.irbrc	 config	 file	 to	generate

shorter	irb	output.	You	can	do	the	same	by

using	irb	--simple-prompt.

Ruby	is	Object-Oriented

Ruby	only	knows	objects.	Everything	is	an	object	(sounds	almost	like

Zen).	Every	object	is	an	instance	of	a	class.	You	can	find	out	the	class

of	an	object	via	the	method	.class.

An	object	in	Ruby	is	encapsulated	and	can	only	be	reached	from	the

outside	via	the	methods	of	the	corresponding	object.	What	does	this

mean?	I	cannot	change	any	property	of	an	object	directly	from	the

outside.	The	corresponding	object	has	to	offer	a	method	with	which	I	can

do	so.

Please	do	not	panic	if	you	have	no	idea	what	a	class	and	an

object	is.	I	won’t	tell	anyone	and	you	can	still	work	with

it	just	fine	without	worrying	too	much.	This	topic	alone	could

fill	whole	volumes.	Roughly	speaking,	an	object	is	a	container

for	something	and	a	method	changes	something	in	that	container.

Please	go	on	reading	and	have	a	look	at	the	examples.	The	puzzle

will	gradually	get	clearer.

Methods

In	other	programming	languages,	the	terms	you	would	use	for	Ruby	methods

would	be:	functions,	procedures,	subroutines	and	of	course	methods.

Here	we	go	with	the	oversimplification.	We	can	not	compare	non-Object

oriented	programming	languages	with	OO	ones.	Plus	there	are	two	kinds	of

methods	(class	methods	and	instance	methods).	At	this	point,	I	do	not

want	to	make	it	too	complicated	and	am	simply	ignoring	this	"fine"

distinctions	for	now.

At	this	point	you	start	looking	for	a	good	example,	but	all	I	can	think

of	are	silly	ones.	The	problem	is	the	assumption	that	we	are	only

allowed	to	use	knowledge	that	has	already	been	described	previously	in

this	book.

So	let’s	assume	that	we	use	the	following	code	sequence	repeatedly	(for

whatever	reason):

$	irb

>>	puts	'Hello	World!'

Hello	World!

=>	nil

>>	puts	'Hello	World!'

Hello	World!

=>	nil

>>	puts	'Hello	World!'

Hello	World!

=>	nil

>>	exit

$

So	we	want	to	output	the	string	“Hello	World!”	three	times	in	a	row.	As

this	makes	our	daily	work	routine	much	longer,	we	are	now	going	to

define	a	method	(with	the	meaningless	name	three_times),	with	which	this

can	all	be	done	in	one	go.

Names	of	methods	are	always	written	in	lower	case.

$	irb

>>	def	three_times

>>			puts	'Hello	World!'

>>			puts	'Hello	World!'

>>			puts	'Hello	World!'

>>	end

=>	:three_times

>>	three_times

Hello	World!

Hello	World!

Hello	World!

=>	nil

>>

When	defining	a	method,	you	can	define	required	parameters	and	use	them

within	the	method.	This	enables	us	to	create	a	method	to	which	we	pass	a

string	as	parameter	and	we	can	then	output	it	three	times.

>>	def	three_times(value)

>>			puts	value

>>			puts	value

>>			puts	value

>>	end

=>	:three_times

>>	three_times('Hello	World!')

Hello	World!

Hello	World!

Hello	World!

=>	nil

>>

Incidentally,	you	can	omit	the	brackets	when	calling	the	method.

>>	three_times	'Hello	World!'

Hello	World!

Hello	World!

Hello	World!

=>	nil

>>

Ruby	gurus	and	would-be	gurus	are	going	to	turn	up	their	noses	on	the

subject	of	“unnecessary”	brackets	in	your	programs	and	will	probably

pepper	you	with	more	or	less	stupid	comments	with	comparisons	to	Java

and	other	programming	languages.

There	is	one	simple	rule	in	the	Ruby	community:	the	fewer	brackets,	the

cooler	you	are!	;-)

But	you	won’t	get	a	medal	for	using	fewer	brackets.	Decide	for	yourself

what	makes	you	happy.

If	you	do	not	specify	a	parameter	with	the	above	method,	you	will	get

the	error	message:	wrong	number	of	arguments	(0	for	1):

>>	three_times

ArgumentError:	wrong	number	of	arguments	(0	for	1)

				from	(irb):1:in	`three_times'

				from	(irb):6

				from	usrlocal/bin/irb:11:in	`<main>'

>>	exit

$

You	can	give	the	variable	value	a	default	value	and	then	you	can	also	call	the

method	without	parameter:

$	irb

>>	def	three_times(value	=	'blue')

>>			puts	value

>>			puts	value

>>			puts	value

>>	end

=>	:three_times

>>	three_times('Hello	World!')

Hello	World!

Hello	World!

Hello	World!

=>	nil

>>	three_times

blue

blue

blue

=>	nil

>>	exit

Classes
For	now	you	can	think	of	a	class	as	a	collection	of	methods.	The	name	of

a	class	always	starts	with	an	upper	case	letter.	Let’s	assume	that	the

method	belongs	to	the	new	class	This_and_that.	It	would	then	be	defined	as

follows	in	a	Ruby	program:

class	This_and_that

		def	three_times

				puts	'Hello	World!'

				puts	'Hello	World!'

				puts	'Hello	World!'

		end

end

Let’s	play	it	through	in	irb:

$	irb

>>	class	This_and_that

>>			def	three_times

>>					puts	'Hello	World!'

>>					puts	'Hello	World!'

>>					puts	'Hello	World!'

>>			end

>>	end

=>	:three_times

>>

Now	we	try	to	call	the	method	three_times:

>>	This_and_that.three_times

NoMethodError:	undefined	method	`three_times'	for	This_and_that:Class

		from	(irb):8

		from	usrlocal/bin/irb:11:in	`<main>'

>>

This	 results	 in	an	error	message,	because	This_and_that	 is	a	class	and	not

an	instance.	As	we	are	working	with	instance	methods,	it	only

works	if	we	have	first	created	a	new	object	(a	new	instance)	of	the

class	This_and_that	with	the	class	method	new:

>>	abc	=	This_and_that.new

=>	#<This_and_that:0x007fc6f306bd70>

>>	abc.three_times

Hello	World!

Hello	World!

Hello	World!

=>	nil

>>	exit

$

I	will	explain	the	difference	between	instance	and	class	methods	in	more

detail	 in	the	 section	 called	 "Class	 Methods	 and	 Instance	 Methods".	 Another
chicken	and	egg	problem.

Private	Methods

Quite	often	it	makes	sense	to	only	call	a	method	within	its	own	class	or

own	instance.	Such	methods	are	referred	to	as	private	methods	(as

opposed	to	public	methods),	and	they	are	listed	below	the	keyword

private	within	a	class.

irb	example:

$	irb

>>	class	Example

>>			def	a

>>					puts	'a'

>>			end

>>			private

>>			def	b

>>					puts	'b'

>>			end

>>	end

=>	:b

>>	abc	=	Example.new

=>	#<Example:0x007fbb3383b1e8>

>>	abc.a

a

=>	nil

>>	abc.b

NoMethodError:	private	method	`b'	called	for	#<Example:0x007fbb3383b1e8>	from	(irb):13

		from	usrlocal/bin/irb:11:in	`<main>'

>>	exit

$

Method	initialize()

If	a	new	instance	is	created	(by	calling	the	method	new),	the	method

that	is	processed	first	and	automatically	is	the	method	initialize.

The	method	is	automatically	a	private	method,	even	if	it	not	listed

explicitly	under	private.

irb	example:

$	irb

>>	class	Room

>>			def	initialize

>>					puts	'abc'

>>			end

>>	end

=>	:initialize

>>	kitchen	=	Room.new

abc

=>	#<Room:0x007fba8b050350>

>>	exit

$

The	 instance	kitchen	 is	created	with	Room.new	and	the	method	initialize	is

processed	automatically.

The	method	new	accepts	the	parameters	specified	for	the	method

initialize:

$	irb

>>	class	Example

>>			def	initialize(value)

>>					puts	value

>>			end

>>	end

=>	:initialize

>>	abc	=	Example.new('Hello	World!')

Hello	World!

=>	#<Example:0x007f8389040088>

>>	exit

$

return

puts	 is	nice	 to	demonstrate	an	example	 in	 this	book	but	normally	you	need	a

way	 to	 return	 the	 result	 of	 something.	The	return	 statement	can	be	used	 for

that:

$	irb

>>	def	area_of_a_circle(radius)

>>			pi	=	3.14

>>			area	=	pi		radius		radius

>>			return	area

>>	end

=>	:area_of_a_circle

>>	area_of_a_circle(10)

=>	314.0

>>	exit

But	it	wouldn’t	be	Ruby	if	you	couldn’t	do	it	shorter.	You	can	simply

skip	return:

$	irb

>>	def	area_of_a_circle(radius)

>>			pi	=	3.14

>>			area	=	pi		radius		radius

>>			area

>>	end

=>	:area_of_a_circle

>>	area_of_a_circle(10)

=>	314.0

>>	exit

You	can	actually	even	skip	the	last	line	because	Ruby	returns	the	value

of	the	last	expression	as	a	default:

$	irb

>>	def	area_of_a_circle(radius)

>>			pi	=	3.14

>>			area	=	pi		radius		radius

>>	end

=>	:area_of_a_circle

>>	area_of_a_circle(10)

=>	314.0

>>	exit

return	 is	 sometimes	 useful	 to	make	 a	method	 easier	 to	 read.	But	 you	 don’t

have	to	use	it	in	case	you	feel	more	comfortable	with	out.

Inheritance

A	class	can	inherit	from	another	class.	When	defining	the	class,	the

parent	class	must	be	added	with	a	<	(smaller	than)	sign:

class	Example	<	ParentClass

Rails	makes	use	of	this	approach	very	frequently	(otherwise	I	would	not

be	bothering	you	with	it).

In	 the	 following	 example,	 we	 define	 the	 class	Abc	 and	 which	 contains	 the

methods	a,	b	and	c.	Then	we	define	a	class	Abcd	and	let	it	inherit	the	class	Abc

and	 add	 a	 new	method	d.	 The	 new	 instances	example1	 and	example2	 are

created	with	the	Class-Methods	new	and	show	that	example2	has	access	to	the

methods	a,	b,	c	and	d	but	example1	only	to	a,	b	and	c.

$	irb

>>	class	Abc

>>			def	a

>>					'a'

>>			end

>>			def	b

>>					'b'

>>			end

>>			def	c

>>					'c'

>>			end

>>	end

=>	:c

>>	class	Abcd	<	Abc

>>			def	d

>>					'd'

>>			end

>>	end

=>	:d

>>	example1	=	Abc.new

=>	#<Abc:0x007f827b958a30>

>>	example2	=	Abcd.new

=>	#<Abcd:0x007f827b931610>

>>	example2.d

=>	"d"

>>	example2.a

=>	"a"

>>	example1.d

NoMethodError:	undefined	method	`d'	for	#<Abc:0x007fc73a0731c8>

				from	(irb):19

				from	usrlocal/bin/irb:11:in	`<main>'

>>	example1.a

=>	"a"

>>	exit

$

It	is	important	to	read	the	Error-Messages.	They	tell	you	what	happened

and	where	to	search	for	the	problem.	In	this	example	Ruby	said	that

there	 is	 an	undefined	 method	 for	#<Abc:0x007fb463023928>.	 With	 that

information	you	know	that	the	Class	Abc	is	missing	the	method	which	you	were	trying	to	use.

Class	Methods	and	Instance	Methods

There	are	two	important	kinds	of	methods:	class	methods	and	instance

methods.

You	now	already	know	what	a	class	it.	And	an	instance	of	such	a	class	is

created	 via	 the	 class	 method	new.	 A	 class	 method	 can	 only	 be	 called	 in

connection	with	the	class	(for	example,	the	method	new	is	a	class	method).	An

instance	method	is	a	method	that	only	works	with	an

instance.	So	you	cannot	apply	the	method	new	to	an	instance.

Let’s	first	try	to	call	an	instance	method	as	class	method:

$	irb

>>	class	Knowledge

>>			def	pi

>>					3.14

>>			end

>>	end

=>	:pi

>>	Knowledge.pi

NameError:	uninitialized	constant	Knowledge

		from	(irb):6

		from	usrlocal/bin/irb:11:in	`<main>'

So	that	does	not	work.	Well,	then	let’s	create	a	new	instance	of	the

class	and	try	again:

>>	example	=	Knowledge.new

=>	#<Knowledge:0x007fce04039bf0>

>>	example.pi

=>	3.14

>>	exit

$

Now	we	just	need	to	find	out	how	to	define	a	class	method.	Hardcore

Rails	gurus	would	now	whisk	you	away	into	the	depths	of	the	source	code

and	pick	out	examples	from	ActiveRecord.	I	will	spare	you	this	and

show	an	abstract	example:

$	irb

>>	class	Knowledge

>>			def	self.pi

>>					3.14

>>			end

>>	end

=>	:pi

>>	Knowledge.pi

=>	3.14

>>

And	the	proof	to	the	contrary:

>>	example	=	Knowledge.new

=>	#<Knowledge:0x007ffda3050980>

>>	example.pi

NoMethodError:	undefined	method	`pi'	for	#<Knowledge:0x007ffda3050980>

		from	(irb):7

		from	usrlocal/bin/irb:11:in	`<main>'

>>	exit

$

There	are	different	notations	for	defining	class	methods.	The	two	most

common	ones	are	self.xyz	and	class	<<	self:

#	Variant	1

#	with	self.xyz

#

class	Knowledge

		def	self.pi	3.14

		end

end

#	Variant	2

#	with	class	<<	self

#

class	Knowledge

		class	<<	self

				def	pi

						3.14

				end

		end

end

The	result	is	always	the	same.

Of	course	you	can	use	the	same	method	name	for	a	class	and	an	instance

method.	Obviously	that	doesn’t	make	code	easier	to	understand.	Here	is

an	example	with	pi	as	a	class	and	an	instance	method:

$	irb

>>	class	Knowledge

>>			def	pi

>>					3.14

>>			end

>>			def	self.pi

>>					3.14159265359

>>			end

>>	end

=>	:pi

>>	Knowledge.pi

=>	3.14159265359

>>	example	=	Knowledge.new

=>	#<Knowledge:0x007fa5c28890b8>

>>	example.pi

=>	3.14

>>	exit

$

List	of	All	Instance	Methods

You	can	read	out	all	defined	methods	for	a	class	with	the	method

instance_methods.	 We	 try	 it	 out	 with	 the	 class	Knowledge	 (first	 we

create	it	once	again	in	the	irb):

$	irb

>>	class	Knowledge

>>			def	pi

>>					3.14

>>			end

>>	end

=>	:pi

>>	Knowledge.instance_methods

=>	[:pi,	:instance_of?,	:public_send,	:instance_variable_get,	:instance_variable_set,	
:instance_variable_defined?,	:remove_instance_variable,	:private_methods,	:kind_of?,	
:instance_variables,	:tap,	:is_a?,	:extend,	:define_singleton_method,	:to_enum,	:enum_for,	:<=>,	:===,	
:=~,	:!~,	:eql?,	:respond_to?,	:freeze,	:inspect,	:display,	:send,	:object_id,	:to_s,	:method,	
:public_method,	:singleton_method,	:nil?,	:hash,	:class,	:singleton_class,	:clone,	:dup,	:itself,	:taint,	
:tainted?,

:untaint,	:untrust,	:trust,	:untrusted?,	:methods,

:protected_methods,	:frozen?,	:public_methods,	:singleton_methods,

:!,	:==,	:!=,	:send,	:equal?,	:instance_eval,	:instance_exec,

:id]

>>

But	that	is	much	more	than	we	have	defined!	Why?	It’s	because	Ruby	gives

every	new	class	a	basic	set	of	methods	by	default.	If	we	only	want	to

list	the	methods	that	we	have	defined,	then	we	can	do	it	like	this:

>>	Knowledge.instance_methods(false)

=>	[:pi]

>>	exit

$

Variables

You	already	know	that	everything	in	Ruby	is	an	object.	So	a	variable

must	also	be	an	object.

Naming	Conventions
Normal	variables	are	written	in	lower	case.	Constants	start	with	an

upper	case	letter.

A	constant	can	also	be	overwritten	with	a	new	value	in	Ruby	2.3

(but	you	will	get	a	warning	message).	So	please	do	not	rely	on	the

constancy	of	a	constant.

$	irb

>>	Pi	=	3.14

=>	3.14

>>	Pi	=	123

(irb):2:	warning:	already	initialized	constant	Pi

(irb):1:	warning:	previous	definition	of	Pi	was	here

=>	123

>>	puts	Pi

123

=>	nil

>>	exit

You	are	on	the	safe	side	if	you	are	using	only	ASCII	symbols.	But	with

Ruby	2.3	and	the	right	encoding,	you	could	also	use	special	characters

(for	example	German	umlauts)	more	or	less	without	any	problems	in	a

variable	name.	But	if	you	want	to	be	polite	towards	other	programmers

who	probably	do	not	have	those	characters	directly	available	on	their

keyboards,	it	is	better	to	stick	to	pure	ASCII.

Strings
Let’s	experiment	a	little	bit	in	the	irb.	The	method	.class	tells	us	which	class

we	are	dealing	with.

$	irb

>>	a	=	'First	test'

=>	"First	test"

>>	a.class

=>	String

That	was	easy.	As	you	can	see,	Ruby	“automagically”	creates	an	object	of

the	class	String.	We	could	also	do	this	by	explicitly	calling	the	method	new:

>>	b	=	String.new('Second	test')

=>	"Second	test"

>>	b.class

=>	String

If	we	call	String.new	without	a	parameter,	this	also	creates	an	object	of	the

class	String.	But	it	is	an	empty	String:

>>	c	=	String.new

=>	""

>>	c.class

=>	String

>>	exit

$

Single	and	Double	Quotations	Marks

Strings	can	be	defined	either	in	single	quotes	or	double	quotes.

If	we	mention	single	or	double	quotation	marks	in	the

context	of	strings,	we	do	not	mean	typographically	correct

curly	 quotation	 marks	 (see	wikipedia.org/wiki/Quotation_mark),	 but	 the	 ASCII	 symbols
referred	to	as	apostrophe	(')	or	quotation	mark(").

There	is	a	special	feature	for	the	double	quotes:	you	can	integrate

expressions	with	 the	construct	#{}.	The	result	is	then	automatically	inserted	in

the	corresponding	place	in	the	string.

Example:

$	irb

>>	a	=	'blue'

=>	"blue"

>>	b	=	"Color:	#{a}"

=>	"Color:	blue"

http://en.wikipedia.org/wiki/Quotation_mark

>>	b.class

=>	String

>>	exit

$

If	the	result	of	the	expression	is	not	a	string,	Ruby	tries	to	apply	the

method	to_s	in	order	to	convert	the	value	of	the	object	into	a	string.

Integers
Fixnum	and	Bignum

Fixnum	and	Bignum	are	Integer	classes.	A	Fixnum	is	an	Integer

that	can	be	saved	in	a	Word.	If	a	Fixnum	gets	bigger,	it	automatically	becomes

a	Bignum.	Here	is	an	example	where	a	becomes	larger	and	by	that	becomes	a

Bignum.

$	irb

>>	20.class

=>	Fixnum

>>	a	=	20

=>	20

>>	a.class

=>	Fixnum

>>	a	=	a	*	5555555555

=>	111111111100

>>	a.class

=>	Fixnum

>>	a	=	a	*	5555555555

=>	617283950493827160500

>>	a.class

=>	Bignum

>>	exit

$

Floats

Float	 is	 a	 class	 for	 real	 numbers	 (“floating	 point	 numbers”).	 The	 decimal

separator	is	a	point.

$	irb

>>	a	=	20.424

=>	20.424

>>	a.class

=>	Float

>>	42.2.class

=>	Float

>>	exit

$

Simple	Calculations

Adding	two	integers	will	result	in	an	integer.	Adding	an	integer	and	a	float	will
result	in	a	float:

$	irb

>>	a	=	10

=>	10

>>	b	=	23

=>	23

>>	a	+	b

=>	33

>>	(a	+	b).class

=>	Fixnum

>>	(a	+	3.14).class

=>	Float

>>	exit

Boolean	Values	and	nil
For	 boolean	 values	 (true	 and	false)	 and	 for	nil	 (no	 value)	 there	 are

separate	classes:

$	irb

>>	true.class

=>	TrueClass

>>	false.class

=>	FalseClass

>>	nil.class

=>	NilClass

>>	exit

$

nil	(no	value)	is,	by	the	way,	the	contraction	of	the	Latin	word	nihil	(nothing)

or,	if	you	look	at	it	in	terms	of	programming	history,	the	term	derives	from	“not
in	 list”	 from	 the	 legacy	 of	 the	 programming	 language	 Lisp	 (the	 name	 is	 an
acronym	of	List	Processing).

Scope	of	Variables
Variables	have	a	different	scope	(or	“reach”)	within	the	Ruby

application	and	therefore	also	within	a	Ruby	on	Rails	application.

You	need	to	keep	this	scope	in	mind	while	programming.

Otherwise	you	can	end	up	with	odd	effects.

Local	Variables	(aaa	or	_aaa)

Local	variables	either	start	with	a	lower	case	letter	or	an	underscore

(_).	Their	scope	 is	 limited	 to	 the	current	environment	 (for	example	 the	current

method).	The	following	example	defines	two	methods	which	use

the	same	local	variable	radius.	Because	they	are	local	they	don’t

interact	with	each	other:

$	irb

>>	def	area(radius)

>>			3.14		radius		radius

>>	end

=>	:area

>>	def	circumference(radius)

>>			2		3.14		radius

>>	end

=>	:circumference

>>	area(10)

=>	314.0

>>	circumference(1)

=>	6.28

>>	exit

$

Global	Variables	($aaa)

A	global	variable	starts	with	a	$-sign	and	is	accessible	in	the	entire	programm.

Example:

$	irb

>>	$value	=	10

=>	10

>>	puts	$value

10

=>	nil

>>	def	example

>>			$value	=	20

>>	end

=>	:example

>>	puts	$value

10

=>	nil

>>	example

=>	20

>>	puts	$value

20

=>	nil

>>	exit

$

Global	variables	are	used	very	rarely!	You	wouldn’t	harm	yourself	by

forgetting	that	they	exist	right	now.

Instance	Variables	(@aaa)

Instance	 variables	 (“Attributes”,	 hence	 the	@)	 only	 apply	 within	 a	 class,	 but

everywhere	in	it	–	a	mini	version	of	global	variables,	so	to

speak.	Unlike	global	variables,	you	will	find	instance	variables	all

over	the	place	in	a	Rails	application.	Let’s	tackle	them	in	form	of	an

example	program	with	the	name	color.rb:

Listing	6.	color.rb

class	Wall

		def	initialize

				@color	=	'white'
		end

		def	color

				@color

		end

		def	paint_it(value)

				@color	=	value

		end
end

my_wall	=	Wall.new

puts	my_wall.color

	

my_wall.paint_it('red')

puts	my_wall.color

If	you	start	this	program,	the	following	output	will	appear:

$	ruby	color.rb

white

red

$

In	the	method	initialize	we	set	the	instance	variable	@color	to	the	value

“white”.	The	method	paint_it(value)	changes	this	instance	variable.

With	 the	 method	color	 we	 can	 access	 the	 value	 of	@color	 outside	 of	 the

instance.	This	kind	of	method	is	called	a	setter	method.

Methods	Once	Again

In	order	to	keep	the	amount	of	chicken	and	egg	problems	in	this	chapter

at	a	manageable	level,	we	need	to	go	back	to	the	topic	Methods	and

combine	what	we	have	learned	so	far.

Getters	and	Setters
As	instance	variables	(“attributes”)	only	exist

within	the	relevant	instance,	you	always	need	to	write	a	“getter”	method

for	 exporting	 such	 a	 variable.	 If	we	 define	 a	 class	Room	 that	 has	 the	 instance

variables	@doors	and	@windows	(for	the	number	of	doors	and	windows	in	the

room),	 then	we	can	create	 the	getter	methods	doors	 und	windows	 (example

program	room.rb):

Listing	7.	room.rb

class	Room

		def	initialize

				@doors		=	1

				@windows	=	1

		end

		def	doors

				@doors

		end

		def	windows

				@windows

		end
end

kitchen	=	Room.new

	

puts	"D:	#{kitchen.doors}"

puts	"W:	#{kitchen.windows}"

The	execution	of	the	program:

$	ruby	room.rb

D:	1

W:	1

$

As	this	scenario	–	wanting	to	simply	return	a	value	in	identical	form	–

is	so	common,	there	is	already	a	ready-made	getter	method	for	it	with

the	 name	attr_reader,	 which	 you	would	 apply	 as	 follows	 in	 the	 program

room.rb:

Listing	8.	room.rb

class	Room

		def	initialize

				@doors		=	1

				@windows	=	1

		end

		attr_reader	:doors,	:windows
end

kitchen	=	Room.new

	

puts	"D:	#{kitchen.doors}"

puts	"W:	#{kitchen.windows}"

attr_reader	 is	 a	 method	 which	 is	 called	 on	 the	Room	 class.	 That	 is	 the

reason	why	we	use	Symbols	(e.g.	:doors	and	:windows)	instead	of	variables

(e.g.	@doors	and	@windows)	as	parameter.

attr_reader	is	a	good	example	for	meta	programming	in	Ruby.

When	working	with	Rails,	you	will	frequently	come	across	meta

programming	and	be	grateful	for	how	it	works	automagically.

If	you	want	to	change	the	number	of	doors	or	windows	from	the	outside,

you	need	a	“setter”	method.	It	can	be	implemented	as	follows:

Listing	9.	room.rb

class	Room

		def	initialize

				@doors		=	1

				@windows	=	1

		end

		attr_reader	:doors,	:windows	def	doors=(value)

				@doors	=	value

		end

		def	windows=(value)

				@windows	=	value

		end
end

kitchen	=	Room.new

	

kitchen.windows	=	2

	

puts	"D:	#{kitchen.doors}"

puts	"W:	#{kitchen.windows}"

The	corresponding	output	is	this:

$	ruby	room.rb

D:	1

W:	2

$

As	you	can	probably	imagine,	there	is	of	course	also	a	ready-made	and

easier	way	of	doing	this.	Via	the	setter	method	attr_writer	you	can	simplify

the	code	of	room.rb	further:

Listing	10.	room.rb

class	Room

		def	initialize

				@doors		=	1

				@windows	=	1

		end

		attr_reader	:doors,	:windows
		attr_writer	:doors,	:windows
end

kitchen	=	Room.new

	

kitchen.windows	=	2

	

puts	"D:	#{kitchen.doors}"

puts	"W:	#{kitchen.windows}"

And	(who	would	have	thought!)	there	is	even	a	method	attr_accessor

that	combines	getters	and	setters.	The	code	for	room.rb	would	then	look	like

this:

Listing	11.	room.rb

class	Room

		def	initialize

				@doors		=	1

				@windows	=	1

		end

		attr_accessor	:doors,	:windows
end

	

kitchen	=	Room.new

	

kitchen.windows	=	2

	

puts	"D:	#{kitchen.doors}"

puts	"W:	#{kitchen.windows}"

Built-In	Methods	for	String
Most	classes	already	come	with	a	bundle	of	very	useful	methods.	These

methods	are	always	written	after	the	relevant	object,	separated	by	a

point.

Here	are	a	few	examples	for	methods	of	the	class	String.

$	irb

>>	a	=	'A	dog'

=>	"A	dog"

>>	a.class

=>	String

>>	a.size

=>	5

>>	a.downcase

=>	"a	dog"

>>	a.upcase

=>	"A	DOG"

>>	a.reverse

=>	"god	A"

>>	exit

$

With	instance_methods(false)	 you	 can	 get	 a	 list	 of	 the	 build	 in

methods:

$	irb

>>	String.instance_methods(false)

=>	[:<=>,	:==,	:===,	:eql?,	:hash,	:casecmp,	:+,	:*,	:%,	:[],	:[]=,	:insert,	:length,	:size,	:bytesize,	
:empty?,	:=~,	:match,	:succ,	:succ!,	:next,	:next!,	:upto,	:index,	:rindex,	:replace,	:clear,	:chr,	:getbyte,	
:setbyte,	:byteslice,	:scrub,	:scrub!,	:freeze,	:to_i,	:to_f,	:to_s,	:to_str,	:inspect,	:dump,	:upcase,	
:downcase,

:capitalize,	:swapcase,	:upcase!,	:downcase!,	:capitalize!,	:swapcase!,	:hex,	:oct,	:split,	:lines,	:bytes,	
:chars,	:codepoints,	:reverse,	:reverse!,	:concat,	:<<,	:prepend,	:crypt,	:intern,	:to_sym,	:ord,	:include?,	
:start_with?,	:end_with?,	:scan,	:ljust,	:rjust,	:center,	:sub,	:gsub,	:chop,	:chomp,	:strip,	:lstrip,	:rstrip,	
:sub!,	:gsub!,	:chop!,	:chomp!,	:strip!,	:lstrip!,	:rstrip!,	:tr,	:tr_s,	:delete,	:squeeze,	:count,	:tr!,	:tr_s!,	
:delete!,	:squeeze!,	:each_line,	:each_byte,

:each_char,	:each_codepoint,	:sum,	:slice,	:slice!,	:partition,	:rpartition,

:encoding,	:force_encoding,	:b,	:valid_encoding?,	:ascii_only?,	:unpack,	:encode,	:encode!,	:to_r,	:to_c,	
:unicode_normalize,	:unicode_normalize!,	:unicode_normalized?]

>>	exit

$

If	you	are	not	sure	what	one	of	these	methods	does	you	can	use	ri	to	look	it	up:

$	ri	String.size

=	String.size

	

(from	ruby	site)

		str.size					->	integer

Returns	the	character	length	of	str.

Method	Chaining
You	may	not	think	of	it	straight	away,	but	once	you	have	got	used	to

working	with	Ruby,	then	it	makes	perfect	sense	(and	is	perfectly

logical)	to	chain	different	methods.

$	irb

>>	a	=	'A	dog'

=>	"A	dog"

>>	a.upcase.reverse

=>	"GOD	A"

>>	exit

$

Converting	from	One	to	the	Other:	Casting
There	is	a	whole	range	of	useful	instance	methods	for	converting

(“casting”)	objects	from	one	class	to	another.	First,	let’s	use	the

method	.to_s	to	convert	a	Fixnum	to	a	String.

$	irb

>>	a	=	10

=>	10

>>	a.class

=>	Fixnum

>>	b	=	a.to_s

=>	"10"

>>	b.class

=>	String

>>	exit

$

Incidentally,	that	is	exactly	what	puts	does	if	you	use	puts

to	output	a	Fixnum	or	a	Float	(for	non-strings,	it	simply	implicitly	adds	the	method	.to_s

and	outputs	the	result).

Now	we	use	the	method	.to_i	to	change	a	Float	to	a	Fixnum.

$	irb

>>	c	=	10.0

=>	10.0

>>	c.class

=>	Float

>>	d	=	c.to_i

=>	10

>>	d.class

=>	Fixnum

>>	exit

$

Method	to_s	for	Your	Own	Classes
Integrating	 a	to_s	 method	 is	 often	 useful.	 Then	 you	 can	 simply	 output	 a

corresponding	 object	 via	puts	 (puts	 automatically	 outputs	 an	 object	 via	 the

method	to_s).

Here	is	an	example:

$	irb

>>	class	Person

>>			def	initialize(first_name,	last_name)

>>					@first_name	=	first_name

>>					@last_name	=	last_name

>>			end

>>			def	to_s

>>					"#{@first_name}	#{@last_name}"

>>			end

>>	end

=>	:to_s

>>	person1	=	Person.new('Stefan',	'Wintermeyer')

=>	#<Person:0x007ffeaa84af98	@first_name="Stefan",	@last_name="Wintermeyer">	>>	puts	
person1

Stefan	Wintermeyer

=>	nil

>>	exit

$

Is	+	a	Method?
Why	is	there	also	a	plus	symbol	in	the	list	of	methods	for	String?	Let’s

find	out	by	looking	it	up	in	ri:

$	ri	-T	String.+

String.+

	

(from	ruby	site)

		str	+	other_str			->	new_str

Concatenation---Returns	a	new	String	containing	other_str

concatenated	to	str.

	

		"Hello	from	"	+	self.to_s			#=>	"Hello	from	main"

hmmm	…		Let’s	see	what	it	says	for	Fixnum:

$	ri	-T	Fixnum.+

Fixnum.+

	

(from	ruby	site)

		fix	+	numeric		->		numeric_result

Performs	addition:	the	class	of	the	resulting	object	depends	on	the	class	of

numeric	and	on	the	magnitude	of	the	result.

Let’s	have	a	go	and	play	around	with	this	in	irb.	So	we	should	be	able	to	add

the	+	 to	 an	 object,	 just	 as	 any	 other	 method,	 separated	 by	 a	 dot	 and	 add	 the

second	number	in	brackets	as	parameter:

$	irb

>>	10	+	10

=>	20

>>	10+10

=>	20

>>	10.+10

=>	20

>>	10.+(10)

=>	20

>>	exit

$

Aha!	The	plus	symbol	is	indeed	a	method,	and	this	method	takes	the	next

value	as	parameter.	Really	we	should	put	this	value	in	brackets,	but

thanks	to	Ruby’s	well	thought-out	syntax	this	is	not	necessary.

Can	I	Overwrite	the	Method	+?

Yes,	you	can	overwrite	any	method.	Logically,	this	does	not	make	much

sense	for	methods	such	as	+,	unless	you	want	to	drive	your	fellow	programmers

mad.	I	am	going	to	show	you	a	little	demo	in	irb	so	you	will	believe	me.

The	aim	is	overwriting	the	method	+	 for	Fixnum.	We	want	the	result	of	every

addition	to	be	the	number	42.

$	irb

>>	10	+	10

=>	20

>>	class	Fixnum

>>			def	+(name,	*args,	&blk)

>>					42

>>			end

>>	end

=>	:+

>>	10	+	10

=>	42

>>	exit

$

First	we	perform	a	normal	addition.	Than	we	redefine	the	method	+	for	the	class

Fixnum,	and	after	that	we	do	the	calculation	again.	But	this	time,	with	different

results.

if-Condition

An	abstract	if-condition	looks	like	this:

if	expression	program

end

The	 program	 between	 the	 expression	 and	end	 is	 executed	 if	 the	 result	 of	 the

expression	is	not	false	and	not	nil.

You	can	also	use	a	then	after	the	expression:

if	expression	then

		program

end

The	 construct	 for	 a	 simple	if-branch	 in	 a	 Ruby	 program	 looks	 like	 the

following	example	program:

a	=	10

	

if	a	==	10

		puts	'a	is	10'

end

The	==	is	used	to	compare	two	values.

Please	don’t	mix	it	up	with	the	single	=.

You	can	try	an	expression	really	well	in	irb:

$	irb

>>	a	=	10

=>	10

>>	a	==	10

=>	true

>>	exit

$

Shorthand
A	 frequently	 used	 shorthand	 notation	 of	 an	if-condition	 can	 be	 found	 in	 the

following	code:

a	=	10

	

#	long	version
#
if	a	==	10

		puts	'a	is	10'
end

#	short	version

#

puts	'a	is	10'	if	a	==	10

else
You	can	probably	imagine	how	this	works,	but	for	the	sake	of

completeness,	here	is	a	little	example:

a	=	10

	

if	a	==	10

		puts	'a	is	10'

else

		puts	'a	is	not	10'

end

elsif

Again,	most	programmers	will	know	what	this	is	all	about.	Example:

a	=	10

	

if	a	==	10

		puts	'a	is	10'
elsif	a	==	20

		puts	'a	is	20'

end

Loops

There	are	different	ways	of	implementing	loops	in	Ruby.	The	iterator

variation	is	used	particularly	often	in	the	Rails	environment.

while	and	until
An	abstract	while	loop	looks	like	this:

while	expression	do

		program

end

The	do	that	follows	the	expression	is	optional.	Often	you	will	also	see	this:

while	expression	program

end

Here	is	an	irb	example:

$	irb

>>	i	=	0

=>	0

>>	while	i	<	3	do

?>			puts	i

>>			i	=	i	+	1

>>	end

0

1

2

=>	nil

>>	exit

$

Until	loops	are	built	similarly:

until	expression	program

ends

Again,	here	is	the	corresponding	irb	example:

$	irb

>>	i	=	5

=>	5

>>	until	i	==	0

>>			i	=	i	-	1

>>			puts	i

>>	end

4

3

2

1

0

=>	nil

>>	exit

$

Blocks	and	Iterators
“Block”	and	“iterator”	are	some	of	the	favorite	words	of	many	Ruby

programmers.	Now	I	am	going	to	show	you	why.

In	the	loop

5.times	{	|i|	puts	i	}

i	is	the	iterator	and	puts	i	is	the	block.

You	can	also	express	the	whole	thing	in	the	following	syntax:

5.times	do	|i|

		puts	i

end

Iterators

Iterators	are	just	a	specific	type	of	method.	As	you	probably	know,	the

word	“iterate”	means	to	repeat	something.	For	example,	the	class

Fixnum	has	the	iterator	times()	Rubytimes.	Let’s	see	what	help	ri

offers	us:

$	ri	-T	Fixnum.times

Fixnum.times

	

(from	ruby	site)

Implementation	from	Integer

		int.times	{|i|	block	}		->		self

		int.times															->		an_enumerator

Iterates	block	int	times,	passing	in	values	from	zero	to	int	-

1.

	

If	no	block	is	given,	an	enumerator	is	returned	instead.

	

		5.times	do	|i|

				print	i,	"	"

		end

	

produces:

	

		0	1	2	3	4

And	it	also	gives	a	nice	example	that	we	are	going	to	try	out	in	irb:

$	irb

>>	5.times	do	|i|

?>			puts	i

>>	end

0

1

2

3

4

=>	5

>>	exit

$

There	is	also	a	single-line	notation	for	small	blocks:

$	irb

>>	5.times	{	|i|	puts	i	}

0

1

2

3

4

=>	5

>>	exit

$

By	the	way,	an	iterator	does	not	necessarily	have	to	pass	a	variable	to

the	block:

$	irb

>>	5.times	{	puts	'example'	}

example

example

example

example

example

=>	5

>>	exit

$

Blocks

A	block	is	the	code	that	is	triggered	by	an	iterator.	In	the	block,	you

have	access	to	the	local	variable(s)	passed	by	the	iterator.

Method	upto

Apart	 from	times	 there	 is	 also	 the	method	upto,	 for	 easily	 implementing	 a

loop.	ri	offers	a	nice	example	for	this,	too:

$	ri	-T	Fixnum.upto

Fixnum.upto

	

(from	ruby	site)

Implementation	from	Integer

		int.upto(limit)	{|i|	block	}		->		self

		int.upto(limit)															->		an_enumerator

Iterates	block,	passing	in	integer	values	from	int	up	to	and

including	limit.

	

If	no	block	is	given,	an	enumerator	is	returned	instead.

	

		5.upto(10)	{	|i|	print	i,	"	"	}

	

produces:

	

		5	6	7	8	9	10

Arrays	and	Hashes

As	in	many	programming	languages,	arrays	and	hashes	are	popular	structures	in
Ruby	for	storing	data.

Arrays
An	array	is	a	list	of	objects.	Let’s	play	around	in	irb:

$	irb

>>	a	=	[1,2,3,4,5]

=>	[1,	2,	3,	4,	5]

>>	a.class

=>	Array

>>	exit

$

That	is	simple	and	easy	to	understand.

Let’s	see	if	it	also	works	with	strings	in	the	array:

$	irb

>>	a	=	['Test',	'Banana',	'blue']

=>	["Test",	"Banana",	"blue"]

>>	a.class

=>	Array

>>	a[1]

=>	"Banana"

>>	a[1].class

=>	String

>>	exit

$

That	also	works.

So	all	that’s	missing	now	is	an	array	with	a	mixture	of	both.	Obviously

that	will	work,	too,	because	the	array	stores	objects	and	it	does	not

matter	which	kind	of	objects	they	are	(i.e.	String,	Fixnum,	Float,	…).	But
a	little	test	can’t	hurt:

$	irb

>>	a	=	[1,	2.2,	'House',	nil]

=>	[1,	2.2,	"House",	nil]

>>	a.class

=>	Array

>>	a[0]

=>	1

>>	a[0].class

=>	Fixnum

>>	a[2]

=>	"House"

>>	a[2].class

=>	String

>>	exit

$

Arrays	can	also	be	created	via	the	method	new	(like	any	class).	Individual	new

elements	can	then	be	added	at	the	end	of	an

array	via	the	method	<<.	Here	is	the	corresponding	example:

$	irb

>>	a	=	Array.new

=>	[]

>>	a	<<	'first	item'

=>	["first	item"]

>>	a	<<	'second	item'

=>	["first	item",	"second	item"]

>>	exit

$

Iterator	each

You	can	work	your	way	through	an	array	piece	by	piece	via	the	method

each.	Example:

$	irb

>>	cart	=	['eggs',	'butter']

=>	["eggs",	"butter"]

>>	cart.each	do	|item|

?>			puts	item

>>	end

eggs

butter

=>	["eggs",	"butter"]

>>	exit

$

Once	 more,	ri	 provides	 help	 and	 an	 example	 in	 case	 you	 forget	 how	 to	 use

each:

$	ri	-T	Array.each

Array.each

	

(from	ruby	site)

	

		ary.each	{|item|	block	}			->	ary

		ary.each																			->	an_enumerator

	

Calls	block	once	for	each	element	in	self,	passing	that	element

as	a	parameter.

	

If	no	block	is	given,	an	enumerator	is	returned	instead.

	

		a	=	["a",	"b",	"c"]

		a.each	{|x|	print	x,	"	--	"	}

	

produces:

	

		a	--	b	--	c	--

Hashes
A	Hash	is	a	list	of	key/value	pairs.	Here	is	an	example	with	strings	as	keys:

$	irb

>>	prices	=	{	'egg'	=>	0.1,	'butter'	=>	0.99	}

=>	{"egg"=>0.1,	"butter"=>0.99}

>>	prices['egg']

=>	0.1

>>	prices.count

=>	2

>>	exit

$

Of	course,	hashes	can	store	not	just	strings	as	objects	in	the	values,

but	-	as	with	arrays	-	also	classes	that	you	define	yourself	(see

the	section	called	"Arrays").

Symbols

Symbols	are	a	strange	concept	and	difficult	to	explain.	But	they	are	very	useful
and	used	frequently,	amongst	others	with	hashes.	Normally,

variables	always	create	new	objects:

$	irb

>>	a	=	'Example	1'

=>	"Example	1"

>>	a.object_id

=>	70124141350360

>>	a	=	'Example	2'

=>	"Example	2"

>>	a.object_id

=>	70124141316700

>>	exit

$

In	both	cases,	we	have	the	variable	a,	but	object	ID	is	different.	We	could	carry

on	in	this	way	indefinitely.	Each	time,	it	would	generate	a

different	object	ID	and	therefore	a	new	object.	In	principle,	this	is	no

big	deal	and	entirely	logical	in	terms	of	object	orientation.	But	it	is

also	rather	a	waste	of	memory	space.

A	symbol	is	defined	by	a	colon	before	the	name	and	cannot	store	any

values	itself,	but	it	always	has	the	same	object	ID,	so	it	is	very	well

suited	to	be	a	key:

$	irb

>>	:a.class

=>	Symbol

>>	:a.object_id

=>	702428

>>	exit

$

Let’s	do	another	little	experiment	to	make	the	difference	clearer.	We

use	a	string	object	with	the	content	“white”	three	times	in	a	row	and	then	the

symbol	:white	 three	 times	 in	 a	 row.	 For	"white",	 a	 new	object	 is	 created

each	time.	For	the	symbol	:white,	only	the	first	time:

$	irb

>>	'white'.object_id

=>	70342874305700

>>	'white'.object_id

=>	70342874300640

>>	'white'.object_id

=>	70342874271720

>>	:white.object_id

=>	1088668

>>	:white.object_id

=>	1088668

>>	:white.object_id

=>	1088668

>>	exit

$

Using	symbols	as	key	for	hashes	is	much	more	memory	efficient:

$	irb

>>	colors	=	{	black:	'#000000',	white:	'#FFFFFF'	}

=>	{:black=>"#000000",	:white=>"#FFFFFF"}

>>	puts	colors[:white]

#FFFFFF

=>	nil

>>	exit

$

You	will	frequently	see	symbols	in	Rails.	If	you	want	to	find	out	more

about	symbols,	go	to	the	help	page	about	the	class	Symbol	via

ri	Symbol.

Iterator	each

With	 the	method	each	 you	 can	work	your	way	 through	 a	Hash	 step	by	 step.

Example:

$	irb

>>	colors	=	{black:	'000000',	white:	'#FFFFFF'	}

=>	{:black=>"#000000",	:white=>"#FFFFFF"}

>>	colors.each	do	|key,	value|

?>			puts	"{key}	#{value}"

>>	end

black	#000000

white	#FFFFFF

=>	{:black=>"#000000",	:white=>"#FFFFFF"}

>>	exit

$

Again,	ri	 offers	 help	 and	 an	 example,	 in	 case	 you	 cannot	 remember	 one	 day

how	to	use	each:

$	ri	-T	Hash.each

Hash.each

	

(from	ruby	site)

	

		hsh.each						{|	key,	value	|	block	}	->	hsh

		hsh.each_pair	{|	key,	value	|	block	}	->	hsh

		hsh.each																														->	an_enumerator

		hsh.each_pair																									->	an_enumerator

	

Calls	block	once	for	each	key	in	hash,	passing	the	key-value	pair

as	parameters.

	

If	no	block	is	given,	an	enumerator	is	returned	instead.

	

		h	=	{	"a"	=>	100,	"b"	=>	200	}

		h.each	{|key,	value|	puts	"#{key}	is	#{value}"	}

	

produces:

	

		a	is	100

		b	is	200

Range

The	class	Range	represents	an	interval.	The	start	and	end	points	of	the

interval	are	defined	enclosed	in	normal	brackets	and	separated	by	two

dots	in	between	them.	Here	is	an	example	in	which	we	use	a	range	like	an

iterator	with	each:

$	irb

>>	(0..3)

=>	0..3

>>	(0..3).class

=>	Range

>>	(0..3).each	do	|i|

?>			puts	i

>>	end

0

1

2

3

=>	0..3

>>

Via	the	method	to_a	you	can	generate	an	array	from	a	Range:

>>	(0..3).to_a

=>	[0,	1,	2,	3]

>>

A	range	can	be	generated	from	objects	of	any	type.	Important	is	only

that	the	objects	can	be	compared	via	<⇒	and	use	the	method	succ	for	counting
on	to	the	next	value.	So	you	can	also	use	Range	to	represent	letters:

>>	('a'..'h').to_a

=>	["a",	"b",	"c",	"d",	"e",	"f",	"g",	"h"]

>>

As	 alternative	 notation,	 you	 may	 sometimes	 come	 across	Range.new().	 In

this	case,	the	start	and	end	points	are	not	separated	by	two	dots,	but

by	a	comma.	This	is	what	it	looks	like:

>>	(0..3)	==	Range.new(0,3)

=>	true

>>	exit

$

	 Stefan	Wintermeyer

FIRST	STEPS	WITH	RAILS

Now	 that	 you	 have	 painstakingly	 read	 your	way	 through	Ruby	Basics	we	 can
move	on	to	a	more	exciting	bit.	 In	 this	chapter,	we	will	start	our	first	Ruby	on
Rails	project	and	find	our	way	into	the	topic	step	by	step.

Once	more,	there	will	be	minor	chicken	and	egg	problems.

▪

▪

▪

Environment	(Development)

By	default	a	Rails	project	offers	three	different	environments:

Development

Test

Production

In	this	chapter,	we	are	only	working	with	 the	Development	environment.	Once
you	have	gained	a	better	feeling	for	Rails,	we	will	start	using	tests	and	then	we
will	need	the	corresponding	environment	(where,	for	example,	the	Test	database
is	 populated	when	 you	 start	 a	 test	 and	 then	 cleared).	 Later,	 I	 will	 explain	 the
various	scenarios	to	show	how	you	can	roll	out	your	Rails	application	from	the
Development	environment	to	the	Production	environment.

The	Development	 environment	 has	 everything	 you	 need	 for	 developing,	 apart
from	an	editor	and	a	web	browser.	So	you	do	not	need	to	 install	a	special	web
server,	 but	 can	 use	 the	 integrated	 Rails	 web	 server.	 It	 does	 not	 exactly	 have
extremely	high	performance,	but	you	do	not	need	that	for	developing.	Later,	you
can	 switch	 to	 big	web	 servers	 like	Apache	 or	Nginx.	The	 same	 applies	 to	 the
database.

In	order	to	work	in	the	Development	environment,	you	do	not	need	to	make	any
changes	to	start	with	-	all	commands	work	by	default.

SQLite-3	Database

In	 terms	 of	 the	 database,	 the	 main	 focus	 in	 this	 chapter	 is	 once	more	 not	 on
optimum	 performance,	 but	 on	 showing	 you	 a	 simple	 way	 of	 getting	 started.
That’s	why	we	 are	 using	 the	 SQLite-3	 database.	You	 already	 have	 everything
you	need	fully	installed	and	you	don’t	need	to	worry	about	anything.	Later	I	will
explain	how	you	can	use	other	databases	(for	example	MySQL).

Why	Is	It	All	in	English?

If	you	are	not	a	native	English	speaker,	you	should	try	to	accept	and	even	adopt
Rails'	 love	 for	 the	English	 language.	Much	of	 it	will	 then	 be	much	 easier	 and
more	 logical.	Most	of	 the	code	 then	 reads	 just	 like	a	normal	English	 sentence.
For	 example,	many	mechanisms	 automagically	 use	 plural	 or	 singular	 forms	of
normal	English	words.	If	you	get	used	to	naming	database	fields	and	tables	with
English	 terms	(even	 if	you	are	programming	 in	a	different	 language),	 then	you
can	make	use	of	the	whole	power	of	this	magic.	This	mechanism	is	referred	to	as
Inflector	or	Inflections.

If	you	are	programming	in	a	language	other	than	English,	it	still	makes	sense	to
use	 English	 names	 for	 variables,	 classes	 and	 methods.	 You	 can	 write	 the
comments	 in	your	own	 language,	but	 if	you	 take	part	 in	 international	projects,
you	should	obviously	write	the	comments	in	English	as	well.	Yeah,	sure	…		well
written	code	does	not	need	any	comments.	;-)

Static	Content	(HTML	and	Graphics	Files)

If	 you	 are	 reading	 this	 text,	 you	will	 already	 know	 that	 you	 can	 use	 Rails	 to
somehow	output	web	pages.	The	question	is	just	how	it’s	done.	Let’s	first	create
a	new	Rails	project.

Create	Rails	Project
Before	we	even	get	going,	please	check	that	you	are	using	Ruby	version	2.3:

$	ruby	-v

ruby	2.3.0p0	(2015-12-25	revision	53290)	[x86_64-darwin15]

$

Next,	check	if	Rails	5.0	is	also	installed:

$	rails	-v

Rails	5.0.0

$

That’s	 looking	 good.	 If	 you	 have	 an	 older	 version	 of	 Ruby	 or	 Rails	 installed,
please	install	the	5.0	version	before	you	read	any	further.

Now	we	 start	 by	 creating	 a	 new	Rails	 project	with	 the	 name	testproject.

Ruby	 on	 Rails	 is	 a	 framework,	 so	 we	 first	 need	 to	 set	 up	 the	 corresponding
directory	structure	and	basic	configuration,	including	several	scripts.	Easy	as	pie,
just	 use	 the	 command	rails	new	testproject	 to	create	everything	you

need:

$	rails	new	testproject

				create

				create		README.rdoc

				create		Rakefile

				create		config.ru

				[...]

$

Next,	 we	 check	 if	 the	 new	 Rails	 application	 is	 working	 by	 launching	 the
integrated	web	server.

Depending	on	 the	operating	system	(for	example,	Mac	OS	X)	and	on	your	 firewall	settings,
you	may	see	a	popup	window	when	first	starting	a	Rails	application,	asking	you	if	the	firewall
should	permit	the	corresponding	connection.

$	cd	testproject

$	rails	server

=>	Booting	Puma

=>	Rails	5.0.0	application	starting	in	development	on	

http://localhost:3000

=>	Run	rails	server	-h	for	more	startup	options

=>	Ctrl-C	to	shutdown	server

I,	[2016-01-20T12:55:48.556757	#22582]		INFO	--	:	Celluloid	0.17.3	

is	running	in	BACKPORTED	mode.	[http://git.io/vJf3J]

Puma	2.15.3	starting...

	Min	threads:	0,	max	threads:	16

	Environment:	development

*	Listening	on	tcp://localhost:3000

The	start	of	the	Rails	application	is	looking	good.	It	tells	us:

Rails	5.0.0	application	starting	in	development	on	

http://localhost:3000

So	let’s	go	to	the	URL	http://localhost:3000	in	the	web	browser.

http://localhost:3000

Looks	good.	Rails	seems	to	be	working	fine.

With	a	classic	Ctrl+C	you	can	stop	the	web	server.

Static	Pages
There	are	certain	static	pages,	images	and	JavaScript	files	that	are	automatically
output	 by	 Rails.	 Remember	 part	 of	 the	 output	 of	 the	 command	rails	new

testproject:

[...]

create		public

create		public/404.html

create		public/422.html

create		public/500.html

create		public/favicon.ico

create		public/robots.txt

[...]

The	 directory	 name	public	 and	 the	 files	 it	 contains	 already	 look	 very	much

like	 static	 pages.	 Let’s	 have	 a	 go	 and	 create	 the	 file	public/hello-

world.html	with	the	following	content:

Listing	1.	public/hello-world.html

<html>

<head>

		<title>Hello	World!</title>

</head>

<body>

		<h1>Hello	World!</h1>

		<p>An	example	page.</p>

</body>

</html>

Now	start	the	Rails	web	server	with	rails	server

$	rails	server

=>	Booting	Puma

=>	Rails	5.0.0	application	starting	in	development	on	

http://localhost:3000

=>	Run	rails	server	-h	for	more	startup	options

=>	Ctrl-C	to	shutdown	server

I,	[2016-01-20T12:59:00.763428	#22606]		INFO	--	:	Celluloid	0.17.3	

is	running	in	BACKPORTED	mode.	[http://git.io/vJf3J]

Puma	2.15.3	starting...

	Min	threads:	0,	max	threads:	16

	Environment:	development

*	Listening	on	tcp://localhost:3000

We	 can	 have	 a	 look	 at	 this	 web	 page	 at	 the	 URL	http://localhost:3000/hello-
world:

No	output	in	the	log	means:	This	page	was	not	handled	by	the	Rails	framework.
It	was	delivered	directly	from	the	webserver.

We	can	of	course	also	use	 the	URL	http://localhost:3000/hello-world.html.	But	Rails	regards
HTML	and	 therefore	 the	 file	 ending	.html	 as	 standard	 output	format,	 so	you	can	omit	 the

.html	here.

Now	you	know	how	you	can	integrate	fully	static	pages	in	Rails.	This	is	useful
for	 pages	 that	 never	 change	 and	 that	 you	 want	 to	 work	 even	 if	 Rails	 is	 not
currently	 working,	 for	 example	 because	 of	 an	 update.	 In	 a	 production
environment,	 you	 would	 usually	 put	 a	 classic	 web	 server	 such	 as	Apache	 or
Nginx	in	front	of	the	Rails	server.	Which	is	capable	of	autonomously	delivering

http://localhost:3000/hello-world
http://localhost:3000/hello-world.html
http://www.apache.org/
https://www.nginx.com/

static	 files	 from	the	public	directory.	You’ll	learn	how	to	set	up	a	production

webserver	in	"Web	Server	in	Production	Mode".

With	Ctrl+C	you	can	stop	the	Rails	server.

Creating	HTML	Dynamically	with	erb

The	content	of	an	erb	file	will	probably	seem	familiar	to	you.	It	is	a	mixture	of

HTML	and	Ruby	code	(erb	stands	for	embedded	Ruby).	erb	pages	are	rendered

as	Views.	This	is	the	first	time	for	us	to	get	in	touch	with	the	MVC	model.	We
need	a	controller	to	use	a	view.	That	can	be	created	it	via	the	generator	rails

generate	 controller.	 Let’s	 have	 a	 look	 at	 the	 onboard	 help	 of	 this

generator:

$	rails	generate	controller

Running	via	Spring	preloader	in	process	23029

Usage:

		rails	generate	controller	NAME	[action	action]	[options]

[...]

Description:

				Stubs	out	a	new	controller	and	its	views.	Pass	the	controller	

name,	either

				CamelCased	or	under_scored,	and	a	list	of	views	as	arguments.

				To	create	a	controller	within	a	module,	specify	the	controller	

name	as	a

				path	like	'parent_module/controller_name'.

				This	generates	a	controller	class	in	app/controllers	and	invokes	

helper,

				template	engine,	assets,	and	test	framework	generators.

Example:

				rails	generate	controller	CreditCards	open	debit	credit	close

				CreditCards	controller	with	URLs	like	credit_cardsdebit.

								Controller:	app/controllers/credit_cards_controller.rb

								Test:							test/controllers/credit_cards_controller_test.rb

								Views:						app/viewscredit_cardsdebit.html.erb	[...]

								Helper:					app/helpers/credit_cards_helper.rb

Nice!	We	are	kindly	provided	with	an	example	further	down:

rails	generate	controller	CreditCard	open	debit	credit	close

Doesn’t	really	fit	the	bill	for	our	case	but	I	am	feeling	brave	and	suggest	that	we
simply	try	rails	generate	controller	Example	test

$	rails	generate	controller	Example	test

Running	via	Spring	preloader	in	process	23045

						create		app/controllers/example_controller.rb

							route		get	'example/test'

						invoke		erb

						create				app/views/example

						create				app/viewsexampletest.html.erb

						invoke		test_unit

						create				test/controllers/example_controller_test.rb

						invoke		helper

						create				app/helpers/example_helper.rb

						invoke				test_unit

						invoke		assets

						invoke				coffee

						create						app/assets/javascripts/example.coffee

						invoke				css

						create						app/assets/stylesheets/example.css

$

Phew…		 that’s	 a	 lot	 of	 stuff	 being	 created.	 Amongst	 others,	 the	 file
app/viewsexampletest.html.erb.	Let’s	have	a	closer	look	at	it:

Listing	2.	app/viewsexampletest.html.erb

<h1>Example#test</h1>

<p>Find	me	in	app/viewsexampletest.html.erb</p>

It’s	HTML,	but	for	it	to	be	a	valid	HTML	page,	something	is	"missing"	at	the	top
and	 bottom	 (the	missing	HTML	will	 be	 explained	 in	 the	Layouts	 section).	We
launch	the	web	server	to	test	it:

$	rails	server

and	 have	 a	 look	 at	 the	 web	 page	 in	 the	 browser	 at	 the	 URL
http://localhost:3000exampletest:

In	the	log	log/development.log	we	find	the	following	lines:

Started	GET	"exampletest"	for	::1	at	2016-01-20	13:10:01	+0100

Processing	by	ExampleController#test	as	HTML

		Rendered	example/test.html.erb	within	layouts/application	(0.8ms)

Completed	200	OK	in	2226ms	(Views:	2216.6ms	|	ActiveRecord:	0.0ms)

[...]

An	HTTP	GET	request	for	the	URI	“exampletest”.	That	was	then	apparently

rendered	as	HTML	by	the	controller	ExampleController	using	the	method

test.

Now	we	just	need	to	find	the	controller.	Good	thing	you	bought	this	book.	;-)	All
controllers	 are	 in	 the	 directory	app/controllers,	 and	 there	 you	 go,	 we

indeed	 find	 the	 corresponding	 file
app/controllers/example_controller.rb.

$	tree	app/controllers/

app/controllers/

├──	application_controller.rb

├──	concerns

└──	example_controller.rb

Please	open	the	file	app/controllers/example_controller.rb	with

your	favorite	editor:

Listing	3.	app/controllers/example_controller.rb

http://localhost:3000<i>example</i>test

class	ExampleController	<	ApplicationController

		def	test

		end

end

That	is	very	clear.	The	controller	ExampleController	is	a	descendant	of	the

ApplicationController	and	contains	currently	just	one	method	with	the

name	test.	This	method	contains	currently	no	program	logic.

You	 will	 probably	 ask	 yourself	 how	 Rails	 knows	 that	 for	 the	 URL	 path
exampletest	 it	 should	 process	 the	 controller	ExampleController	 and

the	 method	test.	 This	 is	 not	 determined	 by	 some	 magical	 logic,	 but	 by	 a

routing	 configuration.	 The	 current	 routings	 can	 be	 listed	 with	 the	 command
rails	routes

$	rails	routes

						Prefix	Verb	URI	Pattern													Controller#Action

example_test	GET		exampletest(.:format)	example#test

These	 routes	 are	 configured	 in	 the	 file	config/routes.rb	which	has	been

auto-filled	by	the	controller	generator	with	a	route	to	example/test.	The	line

which	is	important	for	us	is	the	second	one:

Listing	4.	config/routes.rb

Rails.application.routes.draw	do

		get	'example/test'

		#	For	details	on	the	DSL	available	within	this	file,	see	

http://guides.rubyonrails.org/routing.html

		#	Serve	websocket	cable	requests	in-process

		#	mount	ActionCable.server	=>	'/cable'

end

In	Routes	we’ll	dive	more	into	routes.

A	 static	 file	 in	 the	 directory	public	 always	 has	 higher	priority	 than	 a	 route	 in	 the

config/routes.rb!	So	if	we	were	to	save	a	static	file	publicexampletest	that	file

will	be	delivered.

Programming	in	an	erb	File
Erb	 pages	 can	 contain	Ruby	 code.	You	 can	 use	 it	 to	 program	 and	 give	 these

page	dynamic	content.

Let’s	start	with	something	very	simple:	adding	1	and	1.	First	we	try	out	the	code
in	irb:

$	irb

>>	1	+	1

=>	2

>>	exit

$

That	was	easy.

If	you	want	to	output	the	result	of	Ruby	code,	enclose	the	code	within	a	<%=	…		%>.

We	fill	the	erb	file	app/viewsexampletest.html.erb	as	follows:

Listing	5.	app/viewsexampletest.html.erb

<h1>First	experiment	with	erb</h1>

<p>Addition:

		<%=	1	+	1	%>

</p>

Then	use	rails	server	to	launch	the	web	server.

$	rails	server

Visit	that	page	with	the	URL	http://localhost:3000exampletest

You	may	ask	yourself:	how	can	the	result	of	adding	two	Fixnums	be	displayed

as	a	String?	Let’s	first	look	up	in	irb	if	it	really	is	a	Fixnum:

$	irb

>>	1.class

=>	Fixnum

>>	(1	+	1).class

=>	Fixnum

http://localhost:3000<i>example</i>test

▪

▪

Yes,	both	 the	number	1	and	 the	 result	of	1	+	1	 is	a	Fixnum.	What	happened?

Rails	is	so	intelligent	that	it	automatically	calls	all	objects	in	a	view	(that	is	the
file	test.html.erb)	 that	 are	 not	 already	 a	 string	 via	 the	 method	.to_s,

which	always	converts	 the	content	of	 the	object	 to	a	string.	Once	more,	a	brief
trip	to	irb:

>>	(1	+	1).to_s

=>	"2"

>>	(1	+	1).to_s.class

=>	String

>>	exit

You	are	now	going	to	learn	the	finer	points	of	erb	step	by	step.	Don’t	worry,	it’s

neither	magic	nor	rocket	science.

<%	…		%>	vs.	<%=	…		%>

In	a	`.html.erb`file,	there	are	two	kinds	of	Ruby	code	instructions	in	addition	to
the	HTML	elements:

<%	…	%>

Executes	the	Ruby	code	it	contains,	but	does	not	output	anything	(unless	you
explicitly	use	something	like	print	or	puts).

<%=	…	%>

Executes	the	Ruby	code	it	contains	and	outputs	the	result	as	a	String.	If	it’s	not
a	String	the	method	to_s	will	be	called.

The	 output	 of	<%=	 …		 %>`	 is	 automatically	 escaped.	So	 you	 don’t	 need	 to	 worry	 about
"dangerous"	HTML.

Let’s	use	an	example,	 to	make	sure	 it	all	makes	sense.	We	use	each	 to	 iterate

through	 the	 Range	(0..5).	 Edit	 the

app/viewsexampletest.html.erb	as	follows:

Listing	6.	app/viewsexampletest.html.erb

<p>Loop	from	0	to	5:

<%	(0..5).each	do	|i|	%>

<%=	"#{i},	"	%>

<%	end	%>

</p>

Open	this	view	in	the	browser:

Let’s	now	have	a	look	at	the	HTML	source	code	in	the	browser:

<!DOCTYPE	html>

<html>

		<head>

				<title>Testproject</title>

				[...]

		</head>

		<body>

				<p>Loop	from	0	to	5:

0,

1,

2,

3,

4,

5,

</p>

		</body>

</html>

Now	you	have	the	important	tools	to	use	Ruby	code	in	a	view.

Q	&	A

I	don’t	understand	anything.	I	can’t	cope	with	the	Ruby	code.	Could	you	please
explain	it	again?

Is	 it	possible	 that	you	have	not	completely	worked	your	way	 through	Ruby
Basics?	 Please	 do	 take	 your	 time	with	 it	 and	 have	 another	 thorough	 look.
Otherwise,	the	rest	won’t	make	any	sense	here.

I	can	understand	the	Ruby	code	and	the	HTML	output.	But	I	don’t	get	why	some
HTML	code	was	rendered	around	it	if	I	didn’t	even	write	that	HTML	code.
Where	does	it	come	from,	and	can	I	influence	it?

Excellent	question!	We	will	get	to	that	in	the	next	section.

Layouts
The	erb	file	in	the	directory	app/viewsexample	only	forms	the	core	of	the

later	 HTML	 page.	 By	 default,	 an	 automatically	 generated
app/views/layouts/application.html.erb	 is	 always	 rendered

around	it.	Let’s	have	a	closer	look	at	it:

Listing	7.	app/views/layouts/application.html.erb

<!DOCTYPE	html>

<html>

		<head>

				<title>Testproject</title>

				<%=	csrf_meta_tags	%>

				<%=	action_cable_meta_tag	%>

				<%=	stylesheet_link_tag				'application',	media:	'all',	'data-

turbolinks-track'	=>	true	%>

				<%=	javascript_include_tag	'application',	'data-turbolinks-

track'	=>	true	%>

		</head>

		<body>

				<%=	yield	%>

		</body>

</html>

The	interesting	bit	is	the	line

<%=	yield	%>

With	<%=	 yield	 %>	 the	 view	 file	 is	 included	 here.	 The	 lines	 with	 the

stylesheets,	 the	JavaScript	and	the	csrf_meta_tags	can	stay	as	they	are	for

now.	We’ll	have	a	 look	 into	 that	 in	Asset	pipeline.	No	need	to	bother	with	that
right	now.

The	 file	app/views/layouts/application.html.erb	enables	you	to

determine	the	basic	layout	for	the	entire	Rails	application.	If	you	want	to	enter	a
<hr>	for	each	page	and	above	it	a	text,	then	you	can	do	this	between	the	<%=

yield	%>	and	the	<body>	tag:

Listing	8.	app/views/layouts/application.html.erb

<!DOCTYPE	html>

<html>

		<head>

				<title>Testproject</title>

				<%=	csrf_meta_tags	%>

				<%=	action_cable_meta_tag	%>

				<%=	stylesheet_link_tag				'application',	media:	'all',	'data-

turbolinks-track'	=>	true	%>

				<%=	javascript_include_tag	'application',	'data-turbolinks-

track'	=>	true	%>

		</head>

		<body>

				<h1>My	Header</h1>

				<hr>

				<%=	yield	%>

		</body>

</html>

You	can	also	create	other	layouts	in	the	directory	app/views/layouts/	and

apply	 these	 layouts	 depending	 on	 the	 relevant	 situation.	 But	 let’s	 leave	 it	 for
now.	The	important	thing	is	that	you	understand	the	basic	concept.

Passing	Instance	Variables	from	a	Controller	to	a
View
One	of	the	cardinal	sins	in	the	MVC	model	is	to	put	too	much	program	logic	into
the	 view.	 That’s	 more	 or	 less	 what	 used	 to	 be	 done	 frequently	 in	 PHP

programming	 in	 the	 past.	 I’m	 guilty	 of	 having	 done	 it	myself.	But	 one	 of	 the
aims	of	MVC	is	 that	any	HTML	designer	can	create	a	view	without	having	 to
worry	 about	 the	programming.	Yeah,	 yeah,	…		 if	 only	 it	was	 always	 that	 easy.
But	let’s	just	play	it	through	in	our	minds:	if	I	have	a	value	in	the	controller	that	I
want	to	display	in	the	view,	then	I	need	a	mechanism	for	this.	This	is	referred	to
as	instance	variable	 and	always	 starts	with	a	@.	 If	you	are	not	100	%	sure	any

more	 which	 variable	 has	 which	scope,	 then	 please	 have	 another	 quick	 look	 at
“Scope	of	Variables”.

In	the	following	example,	we	insert	an	instance	variable	for	the	current	time	in
the	 controller	 and	 then	 insert	 it	 in	 the	 view.	 We’re	 taking	 programming
intelligence	from	the	view	to	the	controller.

The	 controller	 file	app/controllers/example_controller.rb	 looks

like	this:

Listing	9.	app/controllers/example_controller.rb

class	ExampleController	<	ApplicationController

		def	test

				@current_time	=	Time.now

		end

end

In	 the	 view	 file	app/viewsexampletest.html.erb	we	can	 then	access

this	instance	variable:

Listing	10.	app/viewsexampletest.html.erb

<p>

The	current	time	is

<%=	@current_time	%>

</p>

With	 the	 controller	 and	 the	 view,	 we	 now	 have	 a	 clear	 separation	 of
programming	logic	and	presentation	logic.	Now	we	can	automatically	adjust	the
time	 in	 the	 controller	 in	 accordance	 with	 the	 user’s	 time	 zone,	 without	 the
designer	of	 the	page	having	 to	worry	about	 it.	As	always,	 the	method	to_s	 is

automatically	applied	in	the	view.

I	 am	 well	 aware	 that	 no-one	 will	 now	 jump	 up	 from	 their	 chair	 and	 shout:
“Thank	you	 for	 enlightening	me!	From	now	on,	 I	will	 only	program	neatly	 in
accordance	with	MVC.”	The	 above	 example	 is	 just	 the	 first	 small	 step	 in	 the
right	direction	and	shows	how	we	can	easily	get	values	from	the	controller	to	the
view	with	instance	variables.

Partials
Even	with	 small	web	projects,	 there	 are	often	 elements	 that	 appear	 repeatedly,
for	example	a	footer	on	the	page	with	contact	info	or	a	menu.	Rails	gives	us	the
option	of	encapsulate	this	HTML	code	in	form	of	partials	and	then	integrating	it
within	 a	view.	A	partial	 is	 also	 stored	 in	 the	directory	app/viewsexample.

But	the	file	name	must	start	with	an	underscore	(_).

As	an	example,	we	now	add	a	mini	footer	to	our	page	in	a	separate	partial.	Copy
the	 following	 content	 into	 the	 new	 file
app/viewsexample_footer.html.erb:

Listing	11.	app/viewsexample_footer.html.erb

<hr>

<p>

		Copyright	2009	-	<%=	Date.today.year	%>	the	Easter	Bunny.

</p>

Yes,	 this	 is	 not	 the	MVC	 way	 of	 doing	 it.	Date.today.year	 should	 be	 defined	 in	 the

Controller.	 I’m	glad	 that	 you	caught	 this	mistake.	 I	made	 this	 example	 to	 show	 the	use	of	a
partial.

We	edit	the	file	app/viewsexampletest.html.erb	as	follows	and	insert

the	partial	via	the	command	render:

Listing	12.	app/viewsexampletest.html.erb

<p>Loop	from	0	to	5:

<%	(0..5).each	do	|i|	%>

<%=	"#{i},	"	%>

<%	end	%>

</p>

<%=	render	"footer"	%>

So	now	we	have	the	following	files	in	the	directory	app/views/example:

$	tree	app/viewsexample

app/viewsexample

├──	_footer.html.erb

└──	test.html.erb

The	new	web	page	now	looks	like	this:

The	name	of	a	partial	in	the	code	is	always	specified	without	the	preceding	underscore	(_)	and

without	 the	 file	extension	.erb	 and	.html.	 But	the	actual	file	must	have	the	underscore	at

the	beginning	of	the	file	name	and	end	with	the	file	extension	.erb	and	.html.

Partials	can	also	be	integrated	from	other	areas	of	the	subdirectory	app/views.

For	 example,	 you	 can	 create	 a	 directory	app/views/shared	 for	 recurring

and	 shared	 content	 and	 create	 a	 file	_footer.html.erb	 in	 this	 directory.

You	would	then	integrate	this	file	into	the	erb	code	via	the	line

<%=	render	"shared/footer"	%>

Passing	Variables	to	a	Partial

Partials	 are	 great	 in	 the	 sense	 of	 the	DRY	 (*D*on’t	Repeat	Yourself)	 concept.
But	what	makes	them	really	useful	is	the	option	of	passing	variables.	Let’s	stick

with	 the	copyright	example.	 If	we	want	 to	pass	 the	start	year	as	value,	we	can
integrate	 this	 by	 adding	 the	 following	 in	 the	 file
app/viewsexample_footer.html.erb:

Listing	13.	app/viewsexample_footer.html.erb

<hr>

<p>

Copyright	<%=	start_year	%>	-	<%=	Date.today.year	%>	the	Easter	

Bunny.

</p>

So	let’s	change	the	file	app/viewsexampletest.html.erb	as	follows:

Listing	14.	app/viewsexampletest.html.erb

<p>Loop	from	0	to	5:

<%	(0..5).each	do	|i|	%>

<%=	"#{i},	"	%>

<%	end	%>

</p>

<%=	render	partial:	"footer",	locals:	{start_year:	'2000'}	%>

If	we	now	go	to	the	URL	http://localhost:3000exampletest,	we	see	the	2000:

http://localhost:3000<i>example</i>test

Sometimes	you	need	a	partial	that	partially	uses	a	local	variable	and	somewhere
else	you	may	need	the	same	partial,	but	without	the	local	variable.	We	can	take
care	of	this	in	the	partial	itself	with	an	if	statement:

<hr>

<p>

		Copyright

		<%=	"#{start_year}	-	"	if	defined?	start_year	%>

		<%=	Date.today.year	%>

		the	Easter	Bunny.

</p>

defined?	can	be	used	to	check	if	an	expression	has	been	defined.

Now	 you	 can	 call	 this	 partial	 with	<%=	render	partial:	"footer",

locals:	 {start_year:	 '2000'}	 %>	 and	 with	<%=	 render

'footer'	%>.

Further	Documentation	on	Partials

We	have	really	only	barely	scratched	the	surface	here.	Partials	are	very	powerful
tools.	 You	 can	 find	 the	 official	 Ruby	 on	 Rails	 documentation	 on	 partials	 at:
http://guides.rubyonrails.org/layouts_and_rendering.html#using-partials.

http://guides.rubyonrails.org/layouts_and_rendering.html#using-partials

The	Rails	Console

The	console	in	Rails	is	nothing	more	than	an	irb	(see	section	"irb")	built	around

the	Rails	 environment.	The	console	 is	very	useful	both	 for	developing	and	 for
administration	purposes,	because	the	whole	Rails	environment	is	represented	and
available.

I’ll	show	you	how	to	work	with	irb	in	this	example	application:

$	rails	new	pingpong

						[...]

$	cd	pingpong

$	rails	generate	controller	Game	ping	pong

						[...]

$

Start	the	Rails	console	with	the	command	rails	console:

$	rails	console

Running	via	Spring	preloader	in	process	23637

Loading	development	environment	(Rails	5.0.0)

2.3.0	:001	>

And	you	can	use	exit	to	get	back	out:

2.3.0	:001	>	exit

$

Many	readers	use	this	ebook	on	small	mobile	devises.	For	them	I	try	to	keep	any
code	or	terminal	output	width	to	a	minimum.	To	save	the	real	estate	which	is	by
default	occupied	by	2.3.0	:001	>	we	can	start	rails	console	with	the

parameter	--	--simple-prompt.

$	rails	console	--	--simple-prompt

Running	via	Spring	preloader	in	process	23791

Loading	development	environment	(Rails	5.0.0)

>>	exit

$

Alternatively	you	can	change	the	IRB	configuration	in	the	file	.irbrc	which	is

located	in	your	home	directory.	If	you	want	to	have	the	simple	prompt	you	have
to	add	the	following	line	in	that	file.

IRB.conf[:PROMPT_MODE]	=	:SIMPLE

In	the	console,	you	have	access	to	all	variables	that	are	also	available	later	in	the
proper	application:

$	rails	console

Running	via	Spring	preloader	in	process	23817

Loading	development	environment	(Rails	5.0.0)

>>	Rails.env

=>	"development"

>>	Rails.root

=>	#<Pathname:/Users/xyz/pingpong>

>>	exit

$

In	chapter	"ActiveRecord"	we	are	going	to	be	working	lots	with	the	console	and
will	soon	begin	to	appreciate	the	possibilities	the	irb	offers.

One	of	my	best	buddies	when	developing	Rails	applications	is	the	Tab	key.	Whenever	you	are
looking	for	a	method	for	a	particular	problem,	recreate	it	 in	 the	Rails	console	and	then	press
the	Tab	 key	 twice	 to	 list	 all	 available	methods.	The	names	of	 the	methods	 are	 usually	 self-
exlanatory.

app
app	is	useful	if	you	want	to	analyze	things	to	do	with	routing:

$	rails	console

Running	via	Spring	preloader	in	process	23817

Loading	development	environment	(Rails	5.0.0)

>>	app.url_for(controller:	'game',	action:	'ping')

=>	"http://www.example.comgameping"

>>	app.get	'gameping'

Started	GET	"gameping"	for	127.0.0.1	at	2016-01-20	15:37:03	+0100

Processing	by	GameController#ping	as	HTML

		Rendered	game/ping.html.erb	within	layouts/application	(1.3ms)

Completed	200	OK	in	2136ms	(Views:	2127.0ms	|	ActiveRecord:	0.0ms)

=>	200

>>	exit

$

What	is	a	Generator?

We	 have	 already	 used	 the	 command	rails	 generate	 controller.	 It

starts	the	generator	with	the	name	controller.	There	are	other	generators	as

well.	 You	 can	 use	 the	 command	rails	 generate	 to	 display	 a	 list	 of

available	generators:

$	rails	generate

Running	via	Spring	preloader	in	process	23841

Usage:	rails	generate	GENERATOR	[args]	[options]

[...]

Please	choose	a	generator	below.

Rails:

		assets

		channel

		controller

		generator

		helper

		integration_test

		jbuilder

		job

		mailer

		migration

		model

		resource

		scaffold

		scaffold_controller

		task

Coffee:

		coffee:assets

Js:

		js:assets

TestUnit:

		test_unit:generator

		test_unit:plugin

What	 does	 a	 generator	 do?	A	 generator	 makes	 a	 programmer’s	 job	 easier	 by
doing	 some	 of	 the	mindless	 tasks	 for	 you.	 It	 creates	 files	 and	 fills	 them	with
default	 content,	 depending	 on	 the	 parameters	 passed.	You	 could	 do	 the	 same
manually,	 without	 the	 generator.	 So	 you	 do	 not	 have	 to	 use	 a	 generator.	 It	 is
primarily	 intended	 to	 save	you	work	 and	 avoid	potential	 errors	 that	 can	 easily
arise	from	mindless	repetitive	tasks.

Someday	 you	 might	 want	 to	 create	 your	 own	 generator.	 Have	 a	look	 at
http://guides.rubyonrails.org/generators.html	to	find	a	description	of	how	to	do	that.

http://guides.rubyonrails.org/generators.html

Helper

A	 helper	method	 takes	 care	 of	 recurring	 tasks	 in	 a	 view.	 For	 example,	 if	 you
want	to	display	stars	(*)	for	rating	a	restaurant	and	not	a	number	from	1	to	5,	you
can	 define	 the	 following	 helper	 in	 the	 file
app/helpers/application_helper.rb	:

Listing	15.	app/helpers/application_helper.rb

module	ApplicationHelper

		def	render_stars(value)

				output	=	''

				if	(1..5).include?(value)

						value.times	{	output	+=	'*'}

				end

				output

		end

end

With	this	helper,	we	can	then	apply	the	following	code	in	a	view:

<p>

		Rating:	<%=	render_stars(5)	%>

</p>

You	can	also	try	out	the	helper	in	the	console:

$	rails	console

Running	via	Spring	preloader	in	process	23849

Loading	development	environment	(Rails	5.0.0)

>>	helper.render_stars(5)

=>	"	"

>>	helper.render_stars(3)

=>	"	"

>>	exit**

$

There	are	lots	of	predefined	helpers	in	Rails	and	we	will	use	some	of	them	in	the
next	 chapters.	 But	 you	 can	 also	 define	 your	 own	 custom	 helpers.	Any	 of	 the
helpers	 from	 the	 file	app/helpers/application_helper.rb	 can	 be

used	 in	 any	 view.	Helpers	 that	 you	want	 to	 be	 only	 available	 in	 certain	 views
must	be	defined	for	each	controller.	When	creating	a	controller,	a	file	for	helpers
of	that	controller	is	automatically	created	in	app/helpers.	This	gives	you	the

option	 of	 defining	 helpers	 only	 for	 this	 controller	 or	 for	 the	 views	 of	 this
controller.

All	helpers	are	in	the	directory	app/helpers/.

Debugging

Rails	provides	a	couple	of	debug	tools	to	make	the	developer’s	live	easier.

debug
In	any	view	you	can	use	the	debug	helper	to	render	an	object	with	the	YAML

format	 within	 a	<pre>	 tag.	 To	 display	 the	 value	 of	@foo	 you	 can	 use	 the

following	line	in	your	view:

<%=	debug	@foo	%>

Web	Console
The	web-console	 gem	 provides	 a	 way	 to	 render	 a	 rails	 console	 views.	 So

when	you	browser	to	a	specific	URL	at	the	end	of	that	page	you’ll	get	a	console.

Let	me	show	you	this	by	example	with	this	simple	rails	application:

$	rails	new	testapp

		[...]

$	cd	testapp

$	rails	generate	controller	page	index

In	 the	app/controllers/page_controller.rb	we	 add	 the	 following

code:

Listing	16.	app/controllers/page_controller.rb

class	PageController	<	ApplicationController

		def	index

				@foo	=	'bar'

		end

end

And	 in	 the	 view	app/views/page/index.html.erb	 we’ll	 add	 the

console	command:

Listing	17.	app/views/page/index.html.erb

<h1>Page#index</h1>

<p>Find	me	in	app/views/page/index.html.erb</p>

<%=	console	%>

After	 starting	 the	 rails	 application	with	rails	server	 and	browsing	 to	 the

URL	http://localhost:3000/page/index	 we	 get	 a	 web	 console	 at

the	bottom	of	the	page.	In	it	we	have	access	to	the	instance	variable	@foo.

Other	Debugging	Tools

http://localhost:3000/page/index

There	are	a	couple	of	other	build	in	debugging	tools	which	are	out	of	the	scope
of	 this	 introduction.	 Please	 have	 a	 look	 at
http://guides.rubyonrails.org/debugging_rails_applications.html	 to	 get	 an
overview.

http://guides.rubyonrails.org/debugging_rails_applications.html

Rails	Lingo

Here	you	 find	a	couple	of	words	which	you’ll	often	 find	 in	 the	Ruby	on	Rails
universe.

DRY	-	Don’t	repeat	yourself
Many	Rails	programmers	are	big	 fans	of	DRY.	DRY	means	purely	and	simply
that	you	should	try	to	place	repeated	programming	logic	into	separate	methods.

Refactoring
You	 often	 hear	 the	 word	 refactoring	 in	 the	 context	 of	 DRY.	 This	 involves
functioning	 applications	 that	 are	 further	 improved.	 The	 application	 in	 itself
remains	 unchanged	 in	 its	 interface.	 But	 its	 core	 is	 optimized,	 amongst	 others
through	DRY.

Convention	Over	Configuration
Convention	 over	 configuration	 (also	 known	 as	 coding	 by	 convention,	 see
http://en.wikipedia.org/wiki/Convention_over_configuration)	 is	 an	 important
pillar	 of	 a	 Rails	 application.	 It	 states	 that	 the	 programmer	 does	 not	 need	 to
decide	 in	 favour	 of	 certain	 features	 when	 starting	 a	 project	 and	 set	 these	 via
configuration	parameters.	 It	specifies	an	underlying	basic	consensus	and	this	 is
set	 by	 default.	 But	 if	 you	 want	 to	 work	 outside	 of	 this	 conventional	 basic
consensus,	then	you	will	need	to	change	the	corresponding	parameters.

http://en.wikipedia.org/wiki/Convention_over_configuration

Model	View	Controller	Architecture	(MVC)

You	have	now	already	created	a	simple	Rails	application	and	in	the	next	chapter
you	will	dive	deeply	into	the	topic	ActiveRecord.	So	now	is	a	good	time	to	very
briefly	introduce	a	few	terms	that	often	surface	in	the	world	of	Rails.

According	 to	 Wikipedia	http://en.wikipedia.org/wiki/Model–view–controller,
MVC	 is	 a	 design	 pattern	 that	 separates	 the	 representation	 of	 information	 from
the	user’s	interaction	with	it.

MVC	is	a	structure	for	software	development.	It	was	agreed	that	it	makes	sense
to	have	one	part	of	the	software	in	one	place	and	another	part	of	the	software	in
another	place.	Nothing	more,	nothing	less.

This	agreement	has	the	enormous	advantage	that	once	you	are	used	to	this
concept,	you	know	exactly	where	you	can	find	or	need	to	integrate	a	certain
functionaity	in	a	Rails	project.

Model
"Model"	 in	 this	 case	means	 data	model.	 By	 default,	 Rails	 applications	 are	 an
ActiveRecord	data	model	(see	chapter	"ActiveRecord").

All	models	can	be	found	in	the	directory	app/models/.

View
The	"view"	is	responsible	for	the	presentation	of	the	application.	It	takes	care	of
rendering	the	web	page,	an	XML	or	JSON	file.	A	view	could	also	render	a	PDF
or	an	ASCII	text.	It	depends	entirely	on	your	application.

http://en.wikipedia.org/wiki/Model–view–controller

You	will	find	all	the	views	in	the	directory	app/views/.

Controller
Once	 a	web	 page	 call	 has	 ended	 up	 in	 a	 route	 (see	chapter	 "Routes"),	 it	 goes
from	 there	 to	 the	 controller.	 The	 route	 specifies	 a	 certain	 method	 (action)	 as
target.	This	method	can	 then	fulfil	 the	desired	 tasks	 (such	as	 finding	a	specific
set	 of	 data	 and	 saving	 it	 in	 an	 instance	 variable)	 and	 then	 renders	 the	 desired
view.

All	controllers	can	be	found	in	the	directory	app/controllers/.

▪

▪

▪

Abbreviations

There	 are	 a	 handful	 of	 abbreviations	 that	make	 your	 life	 as	 a	 developer	much
easier.	 In	 the	 rest	 of	 this	 book,	 I	 have	 always	 used	 the	 full	 version	 of	 these
commands,	to	make	it	clearer	for	beginners,	but	in	practice,	you	will	soon	find
that	the	abbreviations	are	easier	to	use.

rails	console

Shorthand	notation:	rails	c

rails	server

Shorthand	notation:	rails	s

rails	generate	scaffold

Shorthand	notation:	rails	g	scaffold

	 Stefan	Wintermeyer

ACTIVERECORD

ActiveRecord	is	a	level	of	abstraction	that	offers	access	to	a	SQL	database.

ActiveRecord	implements	the	architectural	pattern	Active	Record.

This	is	referred	to	as	object-relational-mapping	or	ORM.	I	find	it	rather	dry	and	boring,	but	in
case	 you	 have	 trouble	going	 to	 sleep	 tonight,	 have	 a	 look	 at
http://en.wikipedia.org/wiki/Object_relational_mapping.

One	 of	 the	 recipes	 for	 the	 success	 of	 Rails	 is	 surely	 the	 fact	 that	 is	 uses
ActiveRecord.	The	programming	and	use	 "feels	Ruby	 like"	and	 it	 is	much

less	 susceptible	 to	 errors	 than	 pure	 SQL.	When	 working	 with	 this	 chapter,	 it
helps	if	you	have	some	knowledge	of	SQL,	but	this	is	not	required	and	also	not
essential	for	working	with	ActiveRecord.

This	chapter	is	only	about	ActiveRecord.	So	I	am	not	going	to	integrate	any	tests	to	keep	the
examples	as	simple	as	possible.

http://en.wikipedia.org/wiki/Object_relational_mapping

Creating	Database/“Model”

Model	in	this	context	refers	to	the	data	model	of	Model-View-Controller	(MVC).

As	a	first	example,	let’s	take	a	list	of	countries	in	Europe.	First,	we	create	a	new
Rails	project:

$	rails	new	europe

		[...]

$	cd	europe

$

Next,	let’s	have	a	look	at	the	help	page	for	rails	generate	model:

$	rails	generate	model

Running	via	Spring	preloader	in	process	24219

Usage:

		rails	generate	model	NAME	[field[:type][:index]	field[:type]

[:index]]	[options]

[...]

Description:

				Stubs	out	a	new	model.	Pass	the	model	name,	either	CamelCased	or

				under_scored,	and	an	optional	list	of	attribute	pairs	as	

arguments.

				Attribute	pairs	are	field:type	arguments	specifying	the

				model's	attributes.	Timestamps	are	added	by	default,	so	you	

don't	have	to

				specify	them	by	hand	as	'created_at:datetime	

updated_at:datetime'.

[...]

The	usage	description	rails	generate	model	NAME	[field[:type]

[:index]	 field[:type][:index]]	 [options]	 tells	 us	 that	 after

rails	generate	model	comes	 the	name	of	 the	model	and	 then	 the	 table

fields.	 If	 you	do	not	 put	:type	after	a	 table	 field	name,	 it	 is	assumed	 to	be	a

string.

Let’s	create	the	model	country:

$	rails	generate	model	Country	name	population:integer

Running	via	Spring	preloader	in	process	24227

						invoke		active_record

						create				db/migrate/20151215194714_create_countries.rb

						create				app/models/country.rb

						invoke				test_unit

						create						test/models/country_test.rb

						create						test/fixtures/countries.yml

$

The	 generator	 has	 created	 a	 database	 migration	 file	 with	 the	 name
db/migrate/20151215194714_create_countries.rb.	 It	 provides

the	following	code:

Listing	1.	db/migrate/20151215194714_create_countries.rb

class	CreateCountries	<	ActiveRecord::Migration

		def	change

				create_table	:countries	do	|t|

						t.string	:name

						t.integer	:population

						t.timestamps	null:	false

				end

		end

end

A	 migration	 contains	 database	 changes.	 In	 this	 migration,	 a	 class
CreateCountries	 is	 defined	 as	 a	 child	 of

ActiveRecord::Migration.	 The	 method	change	 is	 used	 to	 define	 a

migration	and	the	associated	rollback.

With	 the	 command	rails	 db:migrate	 we	 can	 apply	 the	 migrations,	 in

other	words,	create	the	corresponding	database	table:

$	rails	db:migrate

==	20151215194714	CreateCountries:	migrating

--	create_table(:countries)

			->	0.0013s

==	20151215194714	CreateCountries:	migrated	(0.0014s)

$

You	will	find	more	details	on	migrations	in	the	section	"Migrations".

Let’s	have	a	look	at	the	file	app/models/country.rb:

Listing	2.	app/models/country.rb

class	Country	<	ApplicationRecord

end

Hmmm	 …		 the	 class	Country	 is	 a	 child	 of	ApplicationRecord	 which
inherits	 from	ActiveRecord::Base.	 Makes	 sense,	 as	 we	 are	 discussing

ActiveRecord	in	this	chapter.	;-)

The	Attributes	id,	created_at	and	updated_at

Even	 if	 you	 cannot	 see	 it	 in	 the	 migration,	 we	 also	 get	 the	 attributes	id,

created_at	 und	updated_at	by	default	 for	each	ActiveRecord	model.	 In

the	Rails	console,	we	can	output	 the	attributes	of	 the	class	Country	by	using

the	class	method	column_names:

$	rails	console

Running	via	Spring	preloader	in	process	24257

Loading	development	environment	(Rails	5.0.0)

>>	Country.column_names

=>	["id",	"name",	"population",	"created_at",	"updated_at"]

>>	exit

The	 attribute	created_at	 stores	 the	 time	 when	 the	 record	 was	 initially

created.	updated_at	stores	the	time	of	the	last	update	for	this	record.

id	 is	 used	 a	 central	 identification	 of	 the	 record	 (primary	 key).	 The	id	 is

automatically	incremented	by	1	for	each	record.

Getters	and	Setters
To	 read	 and	 write	 values	 of	 a	 SQL	 table	 row	 you	 can	 use	 by	ActiveRecord
provided	getters	 and	 setters.	 These	attr_accessors	 are	 automatically

created.	 The	 getter	 of	 the	 field	updated_at	 for	 a	 given	Country	with	 the

name	germany	would	be	germany.updated_at.

Possible	Data	Types	in	ActiveRecord
ActiveRecord	 is	 a	layer	 between	 Ruby	 and	 various	 relational	 databases.
Unfortunately,	 many	 SQL	 databases	 have	 different	 perspectives	 regarding	 the
definition	of	columns	and	their	content.	But	you	do	not	need	to	worry	about	this,
because	ActiveRecord	solves	this	problem	transparently	for	you.

To	generate	a	model,	you	can	use	the	following	field	types:

Table	1.	Field	Types

Name Description

binary This	is	a	BLOB	(Binary	Large	Object)	in	the	classical	sense.	Never	heard	of	it?	Then
you	probably	won’t	need	it.	See	also	http://en.wikipedia.org/wiki/Binary_large_object

boolean This	is	a	BLOB	(Binary	Large	Object)	in	the	classical	sense.	Never	heard	of	it?	Then
you	probably	won’t	need	it.	See	also	http://en.wikipedia.org/wiki/Binary_large_object

date You	can	store	a	date	here.

datetime Here	you	can	store	a	date	including	a	time.

integer For	storing	an	integer.	See	also	http://en.wikipedia.org/wiki/Integer_(computer_science)

decimal For	storing	a	decimal	number.

primary_key This	is	an	integer	that	is	automatically	incremented	by	1	by	the	database	for	each	new
entry.	This	field	type	is	often	used	as	key	for	linking	different	database	tables	or	models.
See	also	http://en.wikipedia.org/wiki/Unique_key

string A	string,	in	other	words	a	sequence	of	any	characters,	up	to	a	maximum	of	2^8	-1	(=
255)	characters.	See	also	http://en.wikipedia.org/wiki/String_(computer_science)

text Also	a	string	-	but	considerably	bigger.	By	default,	up	to	216	(=	1.	characters	can	be
saved	here.

time A	time.

timestamp A	time	with	date,	filled	in	automatically	by	the	database.

http://en.wikipedia.org/wiki/Binary_large_object
http://en.wikipedia.org/wiki/Binary_large_object
http://en.wikipedia.org/wiki/Integer_(computer_science
http://en.wikipedia.org/wiki/Unique_key
http://en.wikipedia.org/wiki/String_(computer_science

You	can	also	define	a	decimal	with	the	model	generator.	But	you	need	to	observe	the	special

syntax	(you	have	to	use	'	if	you	are	using	the	Bash	shell).

Example	for	creating	a	price	with	a	decimal:

$	rails	generate	model	product	name	'price:decimal{7,2}'

		[...]

$

That	would	generate	this	migration:

Listing	3.	db/migrate/20121114110808_create_products.rb

class	CreateProducts	<	ActiveRecord::Migration

		def	change

				create_table	:products	do	|t|

						t.string	:name

						t.decimal	:price,	:precision	=>	7,	:scale	=>	2

						t.timestamps

				end

		end

end

In	 xref:#migrations["Migrations"]	 we	 will	 provide	 more	 information	 on	 the
individual	data	types	and	discuss	available	options.

Naming	Conventions	(Country	vs.	country	vs.
countries)
ActiveRecord	 automatically	 uses	 the	 English	 plural	 forms.	 So	 for	 the	 class
Country,	it’s	countries.	If	you	are	not	sure	about	a	term,	you	can	also	work

with	the	class	and	method	name.

>>	Country.name.tableize

=>	"countries"

>>	Country.name.foreign_key

=>	"country_id"

Database	Configuration
Which	database	is	used	by	default?	Let’s	have	a	quick	look	at	the	configuration
file	for	the	database	(config/database.yml):

Listing	4.	config/database.yml

		#	SQLite	version	3.x

		#			gem	install	sqlite3

		#

		#			Ensure	the	SQLite	3	gem	is	defined	in	your	Gemfile

		#			gem	'sqlite3'

		#

		default:	&default

				adapter:	sqlite3

				pool:	5

				timeout:	5000

		development:

				<<:	*default

				database:	db/development.sqlite3

		#	Warning:	The	database	defined	as	"test"	will	be	erased	and

		#	re-generated	from	your	development	database	when	you	run	"rake".

		#	Do	not	set	this	db	to	the	same	as	development	or	production.

		test:

				<<:	*default

				database:	db/test.sqlite3

		production:

				<<:	*default

				database:	db/production.sqlite3

As	we	are	working	 in	development	mode,	Rails	has	created	a	new	SQLite3

database	db/development.sqlite3	as	a	result	of	rails	db:migrate

and	will	save	all	data	there.

Fans	of	command	line	clients	can	use	sqlite3	for	viewing	this	database:

$	sqlite3	db/development.sqlite3

SQLite	version	3.8.5	2014-08-15	22:37:57

Enter	".help"	for	usage	hints.

sqlite>	.tables

countries										schema_migrations

sqlite>	.schema	countries

CREATE	TABLE	"countries"	("id"	INTEGER	PRIMARY	KEY	

AUTOINCREMENT	NOT	NULL,

"name"	varchar,	"population"	integer,	"created_at"	datetime	

NOT	NULL,

"updated_at"	datetime	NOT	NULL);

sqlite>	.exit

$

Adding	Records

Actually,	I	would	like	to	show	you	first	how	to	view	records,	but	to	show	records
you	have	to	create	them	first.	So	first,	here	is	how	you	can	create	a	new	record
with	ActiveRecord.

create

The	most	frequently	used	method	for	creating	a	new	record	is	create.

Let’s	 try	 creating	 a	 country	 in	 the	 console	 with	 the	 command
Country.create(name:	'Germany',	population:	81831000)

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Country.create(name:	'Germany',	population:	81831000)

			(0.3ms)		begin	transaction	SQL	(1.3ms)		INSERT	INTO	"countries"	

("name",

			"population",	"created_at",	"updated_at")	VALUES	(?,	?,	?,	?)		

[["name",

			"Germany"],	["population",	81831000],	["created_at",	"2015-12-16

			13:32:37.748459"],	["updated_at",	"2015-12-16	13:32:37.748459"]]	

(0.7ms)

			commit	transaction

			=>	#<Country	id:	1,	name:	"Germany",	population:

			81831000,	created_at:	"2015-12-16	13:32:37",	updated_at:	"2015-

12-16

			13:32:37">

>>	exit

ActiveRecord	saves	the	new	record	and	outputs	the	executed	SQL	command	in
the	development	environment.	But	to	make	absolutely	sure	it	works,	let’s	have	a
last	look	with	the	command	line	client	sqlite3:

▪

▪

▪

▪

▪

$	sqlite3	db/development.sqlite3

SQLite	version	3.8.5	2014-08-15	22:37:57

Enter	".help"	for	usage	hints.

sqlite>	SELECT	*	FROM	countries;

1|Germany|81831000|2015-12-16	13:32:37.748459|2015-12-16	

13:32:37.748459

sqlite>	.exit

$

Syntax

The	method	create	can	handle	a	number	of	different	syntax	constructs.	If	you

want	to	create	a	single	record,	you	can	do	this	with	or	without	{}-brackets	within
the	the	()-brackets:

Country.create(name:	 'Germany',	 population:

81831000)

Country.create({name:	 'Germany',	 population:

81831000})

Similarly,	you	can	describe	the	attributes	differently:

Country.create(:name	 ⇒	 'Germany',	 :population	 ⇒
81831000)

Country.create('name'	 ⇒	 'Germany',	 'population'	 ⇒
81831000)

Country.create(name:	 'Germany',	 population:

81831000)

You	can	also	pass	an	array	of	hashes	 to	create	and	use	 this	 approach	 to	create
several	records	at	once:

Country.create([{name:	'Germany'},	{name:	'France'}])

new

In	addition	to	create	there	is	also	new.	But	you	have	to	use	the	save	method

to	 save	 an	 object	 created	 with	new	 (which	 has	 both	 advantages	 and

disadvantages):

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	france	=	Country.new

=>	#<Country	id:	nil,	name:	nil,	population:	nil,	created_at:	nil,	

updated_at:

nil>

>>	france.name	=	'France'

=>	"France"

>>	france.population	=	65447374

=>	65447374

>>	france.save

			(0.2ms)		begin	transaction	SQL	(0.9ms)		INSERT	INTO	"countries"	

("name",

			"population",	"created_at",	"updated_at")	VALUES	(?,	?,	?,	?)		

[["name",

			"France"],	["population",	65447374],	["created_at",	"2015-12-16

			13:40:07.608858"],	["updated_at",	"2015-12-16	13:40:07.608858"]]	

(9.4ms)

			commit	transaction	=>	true

>>	france

=>	#<Country	id:	2,	name:	"France",	population:	65447374,	

created_at:

"2015-12-16	13:40:07",	updated_at:	"2015-12-16	13:40:07">

You	can	also	pass	parameters	for	the	new	record	directly	to	the	method	new,	just

as	with	create:

>>	belgium	=	Country.new(name:	'Belgium',	population:	10839905)

=>	#<Country	id:	nil,	name:	"Belgium",	population:	10839905,	

created_at:	nil,

updated_at:	nil>

>>	belgium.save

			(0.2ms)		begin	transaction	SQL	(0.4ms)		INSERT	INTO	"countries"	

("name",

			"population",	"created_at",	"updated_at")	VALUES	(?,	?,	?,	?)		

[["name",

			"Belgium"],	["population",	10839905],	["created_at",	"2015-12-16

			13:42:04.580377"],	["updated_at",	"2015-12-16	13:42:04.580377"]]	

(9.3ms)

			commit	transaction	=>	true

>>	exit

new_record?

With	 the	method	new_record?	you	can	find	out	if	a	record	has	already	been

saved	or	not.	If	a	new	object	has	been	created	with	new	and	not	yet	been	saved,

then	the	result	of	new_record?	is	true.	After	a	save	it’s	false.

Example:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	netherlands	=	Country.new(name:	'Netherlands')

=>	#<Country	id:	nil,	name:	"Netherlands",	population:	nil,	

created_at:	nil,

updated_at:	nil>

>>	netherlands.new_record?

=>	true

>>	netherlands.save

			(0.2ms)		begin	transaction	SQL	(0.5ms)		INSERT	INTO	"countries"	

("name",

			"created_at",	"updated_at")	VALUES	(?,	?,	?)		[["name",	

"Netherlands"],

			["created_at",	"2015-12-16	13:48:03.114012"],	["updated_at",	

"2015-12-16

			13:48:03.114012"]]	(0.8ms)		commit	transaction	=>	true

>>	netherlands.new_record?

=>	false

>>	exit

For	already	existing	records,	you	can	also	check	for	changes	with	the	method	changed?	(see

"changed?").	You	 can	 even	 use	netherland.population_changed?	 to	 check	 if	 just

the	attribute	popluation	was	changed.

first,	last	and	all

In	certain	cases,	you	may	need	the	first	record,	or	the	last	one,	or	perhaps	even
all	records.	Conveniently,	there	is	a	ready-made	method	for	each	case.	Let’s	start
with	the	easiest	ones:	first	and	last.

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Country.first

		Country	Load	(0.8ms)		SELECT		"countries".*	FROM	"countries"		

ORDER	BY

		"countries"."id"	ASC	LIMIT	1	=>	#<Country	id:	1,	name:	"Germany",

		population:	81831000,	created_at:	"2015-12-16	13:32:37",	

updated_at:

		"2015-12-16	13:32:37">

>>	Country.last

		Country	Load	(0.4ms)		SELECT		"countries".*	FROM	"countries"		

ORDER	BY

		"countries"."id"	DESC	LIMIT	1	=>	#<Country	id:	4,	name:	

"Netherlands",

		population:	nil,	created_at:	"2015-12-16	13:48:03",	updated_at:	

"2015-12-16

		13:48:03">

And	now	all	at	once	with	all:

>>	Country.all

		Country	Load	(0.3ms)		SELECT	"countries".*	FROM	"countries"	=>

		<ActiveRecord::Relation	[<Country	id:	1,	name:	"Germany",	

population:

		81831000,	created_at:	"2015-12-16	13:32:37",	updated_at:	"2015-12-

16

		13:32:37">,	#<Country	id:	2,	name:	"France",	population:	65447374,

		created_at:	"2015-12-16	13:40:07",	updated_at:	"2015-12-16	

13:40:07">,

		#<Country	id:	3,	name:	"Belgium",	population:	10839905,	

created_at:

		"2015-12-16	13:42:04",	updated_at:	"2015-12-16	13:42:04">,	#

<Country	id:	4,

		name:	"Netherlands",	population:	nil,	created_at:	"2015-12-16	

13:48:03",

		updated_at:	"2015-12-16	13:48:03">]>

But	the	objects	created	by	first,	last	and	all	are	different.

>>	Country.first.class

		Country	Load	(0.2ms)		SELECT		"countries".*	FROM	"countries"		

ORDER	BY

		"countries"."id"	ASC	LIMIT	1	=>	Country(id:	integer,	name:	string,

		population:	integer,	created_at:	datetime,	updated_at:	datetime)

>>	Country.all.class

=>	Country::ActiveRecord_Relation

So	Country.first	 is	a	Country	which	makes	sense.	But	Country.all

is	something	we	haven’t	had	yet.	Let’s	use	the	console	to	get	a	better	idea	of	it:

>>	puts	Country.all.to_yaml

		Country	Load	(0.4ms)		SELECT	"countries".*	FROM	"countries"

-	!ruby/object:Country

		attributes:

				id:	1

				name:	Germany

				population:	81831000

				created_at:	2015-12-16	13:32:37.748459	Z

				updated_at:	2015-12-16	13:32:37.748459	Z

-	!ruby/object:Country

		attributes:

				id:	2

				name:	France

				population:	65447374

				created_at:	2015-12-16	13:40:07.608858	Z

				updated_at:	2015-12-16	13:40:07.608858	Z

[...]

=>	nil

hmmm…		by	using	the	to_yaml	method	suddenly	the	database	has	work	to	do.
The	reason	for	this	behavior	is	optimization.	Let’s	assume	that	you	want	to	chain
a	 couple	of	methods.	Than	 it	might	 be	better	 for	ActiveRecord	 to	wait	 till	 the
very	last	second	which	it	does.	It	only	requests	the	data	from	the	SQL	database
when	it	has	to	do	it	(it’s	called	Lazy	Loading).	Until	than	it	stores	the	request	in	a
ActiveRecord::Relation.

The	result	of	Country.all	is	actually	an	Array	of	Country.

If	Country.all	returns	an	array,	then	we	should	also	be	able	to	use	iterators

a n d	each,	 right?	 Yes,	 of	 course!	 That	 is	 the	 beauty	 of	 it.	 Here	 is	 a	 little
experiment	with	each:

>>	Country.all.each	do	|country|

?>			puts	country.name

>>	end

		Country	Load	(0.3ms)		SELECT	"countries".*	FROM	"countries"

Germany

France

Belgium

Netherlands

=>	[#<Country	id:	1,	name:	"Germany",	[...]]

So	 can	 we	 also	 use	.all.first	 as	 an	 alternative	 for	.first?	Yes,	 but	 it

does	not	make	much	sense.	Have	a	look	for	yourself:

>>	Country.first

		Country	Load	(0.3ms)		SELECT		"countries".*	FROM	"countries"		

ORDER	BY

		"countries"."id"	ASC	LIMIT	1	=>	#<Country	id:	1,	name:	"Germany",

		population:	81831000,	created_at:	"2015-12-16	13:32:37",	

updated_at:

		"2015-12-16	13:32:37">

>>	Country.all.first

		Country	Load	(0.2ms)		SELECT		"countries".*	FROM	"countries"		

ORDER	BY

		"countries"."id"	ASC	LIMIT	1	=>	#<Country	id:	1,	name:	"Germany",

		population:	81831000,	created_at:	"2015-12-16	13:32:37",	

updated_at:

		"2015-12-16	13:32:37">

Country.first	 and	Country.all.first	 result	 in	exact	 the	same	SQL

query	because	ActiveRecord	optimizes	it.

Since	 Rails	 4.1	ActiveRecord	 does	 not	 only	 provide	 the	first	method	 but	 also	second,

third,	fourth	and	fifth.	It’s	obvious	what	they	do.

Populating	the	Database	with	seeds.rb

With	 the	 file	db/seeds.rb,	 the	Rails	 gods	 have	 given	 us	 a	way	 of	 feeding

default	values	easily	and	quickly	 to	a	 fresh	 installation.	This	 is	a	normal	Ruby
program	within	 the	Rails	 environment.	You	have	 full	 access	 to	 all	 classes	 and
methods	of	your	application.

With	that	you	don’t	need	to	enter	everything	manually	with	rails	console

t o	create	 all	 initial	 records	 in	 a	 new	 Rails	 application.	 You	 can	 use	 the	 file
db/seeds.rb:

Listing	5.	db/seeds.rb

Country.create(name:	'Germany',	population:	81831000)

Country.create(name:	'France',	population:	65447374)

Country.create(name:	'Belgium',	population:	10839905)

Country.create(name:	'Netherlands',	population:	16680000)

You	 then	populate	 it	with	 data	 via	rails	db:seed.	To	be	on	 the	safe	 side,

you	should	always	set	up	the	database	from	scratch	with	rails	db:setup	in

the	 context	 of	 this	 book	 and	 then	 automatically	 populate	 it	 with	 the	 file
db/seeds.rb.	Here	is	what	is	looks	like:

$	rails	db:setup

db/development.sqlite3	already	exists

db/test.sqlite3	already	exists

--	create_table("countries",	{:force=>:cascade})

			->	0.0148s

--	create_table("products",	{:force=>:cascade})

			->	0.0041s

--	initialize_schema_migrations_table()

			->	0.0203s

--	create_table("countries",	{:force=>:cascade})

			->	0.0036s

--	create_table("products",	{:force=>:cascade})

			->	0.0036s

--	initialize_schema_migrations_table()

			->	0.0008s

$

I	use	the	file	db/seeds.rb	at	this	point	because	it	offers	a	simple	mechanism

for	filling	an	empty	database	with	useful	values.	In	the	course	of	this	book,	this
will	make	it	easier	for	us	to	set	up	quick	example	scenarios.

It’s	all	just	Ruby	code
The	db/seeds.rb	 is	a	Ruby	program.	Correspondingly,	we	can	also	use	 the

following	approach	as	an	alternative:

Listing	6.	db/seeds.rb

country_list	=	[

		["Germany",	81831000],

		["France",	65447374],

		["Belgium",	10839905],

		["Netherlands",	16680000]

]

country_list.each	do	|name,	population|

		Country.create(name:	name,	population:	population)

end

The	result	is	the	same.	I	am	showing	you	this	example	to	make	it	clear	that	you
can	program	normally	within	db/seeds.rb.

Generating	seeds.rb	From	Existing	Data
Sometimes	it	can	be	useful	to	export	the	current	data	pool	of	a	Rails	application
into	 a	db/seeds.rb.	While	writing	 this	book,	 I	encountered	 this	problem	in

almost	every	chapter.	Unfortunately,	there	is	no	standard	approach	for	this.	I	am

showing	 you	 what	 you	 can	 do	 in	 this	 case.	 There	 are	 other,	 more	 complex
scenarios	that	can	be	derived	from	my	approach.

We	 create	 our	 own	 little	 rake	 task	 for	 that.	A	 rake	 task	 is	 a	 Ruby	 programm
which	is	stored	in	the	lib/tasks/	directory	and	which	has	full	access	to	the

Rails	environment.

Listing	7.	lib/tasks/export.rake

namespace	:export	do

		desc	"Prints	Country.all	in	a	seeds.rb	way."

		task	:seeds_format	=>	:environment	do

				Country.order(:id).all.each	do	|country|

						bad_keys	=	['created_at',	'updated_at',	'id']

						serialized	=	country.serializable_hash.

																			delete_if{|key,value|	bad_keys.include?(key)}

						puts	"Country.create(#{serialized})"

				end

		end

end

Then	 you	 can	 call	 the	 corresponding	 rake	 task	 with	 the	 command	rails

export:seeds_format:

$	rails	export:seeds_format

Country.create({"name"=>"Germany",	"population"=>81831000})

Country.create({"name"=>"France",	"population"=>65447374})

Country.create({"name"=>"Belgium",	"population"=>10839905})

Country.create({"name"=>"Netherlands",	"population"=>16680000})

$

You	can	either	expand	this	program	so	that	the	output	is	written	directly	into	the
db/seeds.rb	or	you	can	simply	use	the	shell:

$	rails	export:seeds_format	>	db/seeds.rb

Searching	and	Finding	with	Queries

The	 methods	first	 and	all	 are	 already	quite	 nice,	 but	 usually	you	want	 to

search	for	something	more	specific	with	a	query.

For	describing	queries,	we	create	a	new	Rails	project:

$	rails	new	jukebox

		[...]

$	cd	jukebox

$	rails	generate	model	Album	name	release_year:integer

		[...]

$	rails	db:migrate

		[...]

$

For	the	examples	uses	here,	use	a	db/seeds.rb	with	the	following	content:

Listing	8.	db/seeds.rb

Album.create(name:	"Sgt.	Pepper's	Lonely	Hearts	Club	Band",	

release_year:	1967)

Album.create(name:	"Pet	Sounds",	release_year:	1966)

Album.create(name:	"Revolver",	release_year:	1966)

Album.create(name:	"Highway	61	Revisited",	release_year:	1965)

Album.create(name:	"Rubber	Soul",	release_year:	1965)

Album.create(name:	"What's	Going	On",	release_year:	1971)

Album.create(name:	"Exile	on	Main	St.",	release_year:	1972)

Album.create(name:	"London	Calling",	release_year:	1979)

Album.create(name:	"Blonde	on	Blonde",	release_year:	1966)

Album.create(name:	"The	Beatles",	release_year:	1968)

Then,	set	up	the	new	database	with	rails	db:setup:

$	rails	db:setup

db/development.sqlite3	already	exists

--	create_table("albums",	{:force=>:cascade})

			->	0.0135s

--	initialize_schema_migrations_table()

			->	0.0226s

--	create_table("albums",	{:force=>:cascade})

			->	0.0022s

--	initialize_schema_migrations_table()

			->	0.0037s

$

find
The	simplest	case	is	searching	for	a	record	via	a	primary	key	(by	default,	the	id

field	in	the	database	table).	If	I	know	the	ID	of	an	object,	then	I	can	search	for
the	individual	object	or	several	objects	at	once	via	the	ID:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Album.find(2)

		Album	Load	(0.3ms)		SELECT		"albums".*	FROM	"albums"	WHERE	

"albums"."id"	=	?

		LIMIT	1		[["id",	2]]	=>	<Album	id:	2,	name:	"Pet	Sounds",	

release_year:

		1966,	created_at:	"2015-12-16	17:45:34",	updated_at:	"2015-12-16	

17:45:34">

>>	Album.find([1,3,7])

		Album	Load	(0.4ms)		SELECT	"albums".*	FROM	"albums"	WHERE	

"albums"."id"	IN

		(1,	3,	7)	=>	[<Album	id:	1,	[name:	"Sgt.	Pepper's	Lonely	Hearts	

Club	Band",

		release_year:	1967,	created_at:	"2015-12-16	17:45:34",	updated_at:

		"2015-12-16	17:45:34"]>,	#<Album	id:	3,	name:	"Revolver",	

release_year:	1966,

		created_at:	"2015-12-16	17:45:34",	updated_at:	"2015-12-16	

17:45:34">,

		#<Album	id:	7,	name:	"Exile	on	Main	St.",	release_year:	1972,	

created_at:

		"2015-12-16	17:45:34",	updated_at:	"2015-12-16	17:45:34">]

If	you	always	want	to	have	an	array	as	result,	you	also	always	have	to	pass	an
array	as	parameter:

>>	Album.find(5).class

		Album	Load	(0.2ms)		SELECT		"albums".*	FROM	"albums"	WHERE	

"albums"."id"	=	?

		LIMIT	1		[["id",	5]]	=>	Album(id:	integer,	name:	string,	

release_year:

		integer,	created_at:	datetime,	updated_at:	datetime)

>>	Album.find([5]).class

		Album	Load	(0.2ms)		SELECT		"albums".*	FROM	"albums"	WHERE	

"albums"."id"	=	?

		LIMIT	1		[["id",	5]]	=>	Array

>>	exit

The	 method	find	 generates	 an	 exception	 if	 the	 ID	 you	 are	searching	 for	 does	 not	 have	 a

record	in	the	database.	If	in	doubt,	you	should	use	the	where	method	(see	where).

where
With	 the	 method	where,	 you	 can	 search	 for	 specific	 values	 in	 the	 database.

Let’s	search	for	all	albums	from	the	year	1966:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Album.where(release_year:	1966)

		Album	Load	(0.2ms)		SELECT	"albums".*	FROM	"albums"	WHERE	

"albums"."release_year"	=	?		[["release_year",	1966]]

=>	<ActiveRecord::Relation	[<Album	id:	2,	name:	"Pet	Sounds",	

release_year:

1966,	created_at:	"2015-12-16	17:45:34",	updated_at:	"2015-12-16	

17:45:34">,

#<Album	id:	3,	name:	"Revolver",	release_year:	1966,	created_at:	

"2015-12-16

17:45:34",	updated_at:	"2015-12-16	17:45:34">,	#<Album	id:	9,	name:	

"Blonde	on

Blonde",	release_year:	1966,	created_at:	"2015-12-16	17:45:34",	

updated_at:

"2015-12-16	17:45:34">]>

>>	Album.where(release_year:	1966).count

			(0.3ms)		SELECT	COUNT(*)	FROM	"albums"	WHERE	

"albums"."release_year"	=	?

			[["release_year",	1966]]	=>	3

You	can	also	use	where	to	search	for	ranges:

>>	Album.where(release_year:	1960..1966)

		Album	Load	(0.3ms)		SELECT	"albums".*	FROM	"albums"	WHERE	

("albums"."release_year"	BETWEEN	1960	AND	1966)

=>	<ActiveRecord::Relation	[<Album	id:	2,	name:	"Pet	Sounds",	

release_year:

1966,	created_at:	"2015-12-16	17:45:34",	updated_at:	"2015-12-16	

17:45:34">,

#<Album	id:	3,	name:	"Revolver",	release_year:	1966,	created_at:	

"2015-12-16

17:45:34",	updated_at:	"2015-12-16	17:45:34">,	#<Album	id:	4,	name:	

"Highway

61	Revisited",	release_year:	1965,	created_at:	"2015-12-16	

17:45:34",

updated_at:	"2015-12-16	17:45:34">,	#<Album	id:	5,	name:	"Rubber	

Soul",

release_year:	1965,	created_at:	"2015-12-16	17:45:34",	updated_at:	

"2015-12-16

17:45:34">,	#<Album	id:	9,	name:	"Blonde	on	Blonde",	release_year:	

1966,

created_at:	"2015-12-16	17:45:34",	updated_at:	"2015-12-16	

17:45:34">]>

>>	Album.where(release_year:	1960..1966).count

			(0.2ms)		SELECT	COUNT(*)	FROM	"albums"	WHERE	

("albums"."release_year"	BETWEEN	1960	AND	1966)

=>	5

And	 you	 can	 also	 specify	 several	 search	 factors	 simultaneously,	 separated	 by
commas:

>>	Album.where(release_year:	1960..1966,	id:	1..5)

		Album	Load	(0.3ms)		SELECT	"albums".*	FROM	"albums"	WHERE	

("albums"."release_year"	BETWEEN	1960	AND	1966)	AND	("albums"."id"	

BETWEEN	1	AND	5)

=>	<ActiveRecord::Relation	[<Album	id:	2,	name:	"Pet	Sounds",	

release_year:

1966,	created_at:	"2015-12-16	17:45:34",	updated_at:	"2015-12-16	

17:45:34">,

#<Album	id:	3,	name:	"Revolver",	release_year:	1966,	created_at:	

"2015-12-16

17:45:34",	updated_at:	"2015-12-16	17:45:34">,	#<Album	id:	4,	name:	

"Highway

61	Revisited",	release_year:	1965,	created_at:	"2015-12-16	

17:45:34",

updated_at:	"2015-12-16	17:45:34">,	#<Album	id:	5,	name:	"Rubber	

Soul",

release_year:	1965,	created_at:	"2015-12-16	17:45:34",	updated_at:	

"2015-12-16

17:45:34">]>

Or	an	array	of	parameters:

>>	Album.where(release_year:	[1966,	1968])

		Album	Load	(0.4ms)		SELECT	"albums".*	FROM	"albums"	WHERE	

"albums"."release_year"	IN	(1966,	1968)

=>	<ActiveRecord::Relation	[<Album	id:	2,	name:	"Pet	Sounds",	

release_year:

1966,	created_at:	"2015-12-16	17:45:34",	updated_at:	"2015-12-16	

17:45:34">,

#<Album	id:	3,	name:	"Revolver",	release_year:	1966,	created_at:	

"2015-12-16

17:45:34",	updated_at:	"2015-12-16	17:45:34">,	#<Album	id:	9,	name:	

"Blonde	on

Blonde",	release_year:	1966,	created_at:	"2015-12-16	17:45:34",	

updated_at:

"2015-12-16	17:45:34">,	#<Album	id:	10,	name:	"The	Beatles",	

release_year:

1968,	created_at:	"2015-12-16	17:45:34",	updated_at:	"2015-12-16	

17:45:34">]>

The	result	of	where	is	always	an	array.	Even	if	it	only	contains	one	hit	or	if	no

hit	 is	 returned	(which	will	 result	 in	an	empty	array).	 If	you	are	 looking	for	 the
first	hit,	you	need	to	combine	the	method	where	with	the	method	first:

>>	Album.where(release_year:	[1966,	1968]).first

		Album	Load	(0.4ms)		SELECT		"albums".*	FROM	"albums"	WHERE	

"albums"."release_year"	IN	(1966,	1968)		ORDER	BY	"albums"."id"	ASC	

LIMIT	1

=>	#<Album	id:	2,	name:	"Pet	Sounds",	release_year:	1966,	

created_at:	"2015-12-16	17:45:34",	updated_at:	"2015-12-16	

17:45:34">

>>	Album.where(release_year:	[1966,	1968]).first.class

		Album	Load	(0.4ms)		SELECT		"albums".*	FROM	"albums"	WHERE	

"albums"."release_year"	IN	(1966,	1968)		ORDER	BY	"albums"."id"	ASC	

LIMIT	1

=>	Album(id:	integer,	name:	string,	release_year:	integer,	

created_at:	datetime,	updated_at:	datetime)

>>	exit

not

The	 method	not	 provides	 a	 way	 to	 search	 for	 the	 exact	 oposite	 of	 a	where

query.	Example:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Album.where.not(release_year:	1968)

		Album	Load	(0.2ms)		SELECT	"albums".*	FROM	"albums"	WHERE	

("albums"."release_year"	!=	?)		[["release_year",	1968]]

=>	<ActiveRecord::Relation	[<Album	id:	1,	[...]]>

>>	exit

or

The	method	or	provides	a	way	to	combine	queries	with	a	logical	or.	Example:

>>	Album.where(release_year:	1967).or(Album.where(name:	'The	

Beatles'))

		Album	Load	(0.1ms)		SELECT	"albums".*	FROM	"albums"	WHERE	

("albums"."release_year"	=	?	OR	"albums"."name"	=	?)		

[["release_year",	1967],	["name",	"The	Beatles"]]

=>	<ActiveRecord::Relation	[<Album	id:	1,	name:	"Sgt.	Pepper's	

Lonely	Hearts	Club	Band",	release_year:	1967,	created_at:	"2016-01-

21	10:15:51",	updated_at:	"2016-01-21	10:15:51">,	#<Album	id:	10,	

name:	"The	Beatles",	release_year:	1968,	created_at:	"2016-01-21	

10:15:51",	updated_at:	"2016-01-21	10:15:51">]>

SQL	Queries	with	where

Sometimes	there	 is	no	other	way	and	you	just	have	to	define	and	execute	your
own	 SQL	 query.	 In	ActiveRecord,	 there	 are	 two	 different	ways	 of	 doing	 this.
One	sanitizes	each	query	before	executing	it	and	the	other	passes	the	query	on	to
the	SQL	database	1	to	1	as	it	is.	Normally,	you	should	always	use	the	sanitized
version	because	otherwise	you	can	easily	fall	victim	to	an	SQL	injection	attack
(see	http://en.wikipedia.org/wiki/Sql_injection).

If	you	do	not	know	much	about	SQL,	you	can	safely	skip	 this	section.	The	SQL	commands
used	here	are	not	explained	further.

SANITIZED	QUERIES

In	 this	 variant,	 all	 dynamic	 search	 parts	 are	 replaced	 by	 a	 question	 mark	 as
placeholder	and	only	listed	as	parameters	after	the	SQL	string.

In	 this	 example,	 we	 are	 searching	 for	 all	albums	 whose	name	 contains	 the

string	“on”:

http://en.wikipedia.org/wiki/Sql_injection

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Album.where('name	like	?',	'%on%')

		Album	Load	(1.1ms)		SELECT	"albums".*	FROM	"albums"	WHERE	(name	

like	'%on%')

=>	<ActiveRecord::Relation	[<Album	id:	1,	[...]]>

Now	the	number	of	albums	that	were	published	from	1965	onwards:

>>	Album.where('release_year	>	?',	1964).count

			(0.2ms)		SELECT	COUNT(*)	FROM	"albums"	WHERE	(release_year	>	

1964)

=>	10

The	number	of	albums	that	are	more	recent	than	1970	and	whose	name	contains
the	string	“on”:

>>	Album.where('name	like	?	AND	release_year	>	?',	'%on%',	1970	

).count

			(0.3ms)		SELECT	COUNT(*)	FROM	"albums"	WHERE	(name	like	'%on%'	

AND

			release_year	>	1970)

=>	3

If	the	variable	search_string	contains	the	desired	string,	you	can	search	for

it	as	follows:

>>	search_string	=	'ing'

=>	"ing"

>>	Album.where('name	like	?',	"%#{search_string}%").count

			(0.2ms)		SELECT	COUNT(*)	FROM	"albums"	WHERE	(name	like	'%ing%')

=>	2

>>	exit

Dangerous	SQL	Queries

If	you	really	know	what	you	are	doing,	you	can	of	course	also	define	the	SQL
query	completely	and	forego	the	sanitizing	of	the	query.

Let’s	count	all	albums	whose	name	contain	the	string	“on”:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Album.where("name	like	'%on%'").count

			(0.2ms)		SELECT	COUNT(*)	FROM	"albums"	WHERE	(name	like	'%on%')

=>	5

>>	exit

Please	only	use	this	variation	if	you	know	exactly	what	you	are	doing	and	once
you	 have	 familiarized	 yourself	 with	 the	 topic	 SQL	 injections	 (see
http://en.wikipedia.org/wiki/Sql_injection).

Lazy	Loading

Lazy	 Loading	 is	 a	 mechanism	 that	 only	 carries	 out	 a	 database	 query	 if	 the
program	flow	cannot	be	realised	without	the	result	of	this	query.	Until	then,	the
query	is	saved	as	ActiveRecord::Relation.

Incidentally,	the	opposite	of	lazy	loading	is	referred	to	as	eagerloading.

Does	it	make	sense	 in	principle,	but	you	aren’t	sure	what	 the	point	of	 it	all	 is?
Then	 let’s	 cobble	 together	 a	 query	 where	 we	 nest	 several	 methods.	 In	 the
following	 example,	a	 is	 defined	 more	 and	 more	 closely	 and	 only	 at	 the	 end

(when	calling	the	method	all)	the	database	query	would	really	be	executed	in	a

http://en.wikipedia.org/wiki/Sql_injection

production	 system.	With	 the	method	ActiveRecord	methods	to_sql	 you	 can

display	the	current	SQL	query.

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	a	=	Album.where(release_year:	1965..1968)

		Album	Load	(0.2ms)		SELECT	"albums".*	FROM	"albums"	WHERE

		("albums"."release_year"	BETWEEN	1965	AND	1968)

=>	<ActiveRecord::Relation	[<Album	id:	1,	[...]]>

>>	a.class

=>	Album::ActiveRecord_Relation

>>	a	=	a.order(:release_year)

		Album	Load	(0.3ms)		SELECT	"albums".*	FROM	"albums"	WHERE

		("albums"."release_year"	BETWEEN	1965	AND	1968)		ORDER	BY

		"albums"."release_year"	ASC

=>	<ActiveRecord::Relation	[<Album	id:	4,	[...]]>

>>	a	=	a.limit(3)

		Album	Load	(0.4ms)		SELECT		"albums".*	FROM	"albums"	WHERE

		("albums"."release_year"	BETWEEN	1965	AND	1968)		ORDER	BY

		"albums"."release_year"	ASC	LIMIT	3

=>	<ActiveRecord::Relation	[<Album	id:	4,	[...]]>

>>	exit

The	 console	 can	 be	 a	 bit	 tricky	 about	 this.	 It	 tries	 to	 help	 the	 developer	 by
actually	showing	the	result	but	in	a	non-console	environment	this	would	would
only	happen	at	the	very	last	time.

Automatic	Optimization

One	of	the	great	advantages	of	lazy	loading	is	the	automatic	optimization	of	the
SQL	query	through	ActiveRecord.

Let’s	 take	 the	 sum	of	all	 release	years	of	 the	albums	 that	came	out	 in	 the	70s.
Then	we	sort	the	albums	alphabetically	and	then	calculate	the	sum.

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Album.where(release_year:	1970..1979).sum(:release_year)

			(1.5ms)		SELECT	SUM("albums"."release_year")	FROM	"albums"	WHERE

			("albums"."release_year"	BETWEEN	1970	AND	1979)

=>	5922

>>	Album.where(release_year:	

1970..1979).order(:name).sum(:release_year)

			(0.3ms)		SELECT	SUM("albums"."release_year")	FROM	"albums"	WHERE

			("albums"."release_year"	BETWEEN	1970	AND	1979)

=>	5922

>>	exit

Logically,	the	result	is	the	same	for	both	queries.	But	the	interesting	thing	is	that
ActiveRecord	 uses	 the	 same	 SQL	 code	 for	 both	 queries.	 It	 has	 detected	 that
order	is	completely	irrelevant	for	sum	and	therefore	took	it	out	altogether.

In	 case	 you	 are	 asking	 yourself	 why	 the	 first	 query	 took	 1.5ms	and	 the	 second	 0.3ms:
ActiveRecord	cached	the	results	of	the	first	SQL	request.

order	and	reverse_order
To	sort	a	database	query,	you	can	use	the	method	order.

Example:	all	albums	from	the	60s,	sorted	by	name:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Album.where(release_year:	1960..1969).order(:name)

		Album	Load	(0.2ms)		SELECT	"albums".*	FROM	"albums"	WHERE

		("albums"."release_year"	BETWEEN	1960	AND	1969)		ORDER	BY	

"albums"."name"

		ASC

=>	<ActiveRecord::Relation	[<Album	id:	9,	name:	"Blonde	on	Blonde"	

[...]]>

With	 the	 method	reverse_order	 you	 can	 reverse	 an	 order	 previously

defined	via	order:

>>	Album.where(release_year:	1960..1969).order(:name).reverse_order

		Album	Load	(0.3ms)		SELECT	"albums".*	FROM	"albums"	WHERE

		("albums"."release_year"	BETWEEN	1960	AND	1969)		ORDER	BY	

"albums"."name"

		DESC

=>	<ActiveRecord::Relation	[<Album	id:	10,	name:	"The	Beatles"	

[...]]>

limit
The	result	of	any	search	can	be	limited	to	a	certain	range	via	the	method	limit.

The	first	5	albums	from	the	60s:

>>	Album.where(release_year:	1960..1969).limit(5)

		Album	Load	(0.3ms)		SELECT		"albums".*	FROM	"albums"	WHERE

		("albums"."release_year"	BETWEEN	1960	AND	1969)	LIMIT	5

=>	<ActiveRecord::Relation	[<Album	id:	1,	[...]]>

All	albums	sorted	by	name,	then	the	first	5	of	those:

>>	Album.order(:name).limit(5)

		Album	Load	(0.4ms)		SELECT		"albums".*	FROM	"albums"		ORDER	BY

		"albums"."name"	ASC	LIMIT	5

=>	<ActiveRecord::Relation	[<Album	id:	9,	name:	"Blonde	[...]]>

offset

With	 the	 method	offset,	 you	 can	 define	 the	 starting	 position	 of	 the	method

limit.

First,	we	return	the	first	two	records	and	then	the	first	two	records	with	an	offset
of	5:

>>	Album.limit(2)

		Album	Load	(1.0ms)		SELECT		"albums".*	FROM	"albums"	LIMIT	2

=>	<ActiveRecord::Relation	[<Album	id:	1,	[...]>,	<Album	id:	2,	

[...]]>

>>	Album.limit(2).offset(5)

		Album	Load	(0.3ms)		SELECT		"albums".*	FROM	"albums"	LIMIT	2	

OFFSET	5

=>	#<ActiveRecord::Relation	[<Album	id:	6,	[...]>,	#<Album	id:	7,	

[...]>]>

group
With	the	method	group,	you	can	return	the	result	of	a	query	in	grouped	form.

Let’s	return	all	albums,	grouped	by	their	release_year:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Album.group(:release_year)

		Album	Load	(0.3ms)		SELECT	"albums".*	FROM	"albums"	GROUP	BY	

"albums"."release_year"

=>	<ActiveRecord::Relation	[<Album	id:	5,	name:	"Rubber	Soul",	

release_year:

1965,	created_at:	"2015-12-16	17:45:34",	updated_at:	"2015-12-16	

17:45:34">,

#<Album	id:	9,	name:	"Blonde	on	Blonde",	release_year:	1966,	

created_at:

"2015-12-16	17:45:34",	updated_at:	"2015-12-16	17:45:34">,	#<Album	

id:	1,

name:	"Sgt.	Pepper's	Lonely	Hearts	Club	Band",	release_year:	1967,	

created_at:

"2015-12-16	17:45:34",	updated_at:	"2015-12-16	17:45:34">,	#<Album	

id:	10,

name:	"The	Beatles",	release_year:	1968,	created_at:	"2015-12-16	

17:45:34",

updated_at:	"2015-12-16	17:45:34">,	#<Album	id:	6,	name:	"What's	

Going	On",

release_year:	1971,	created_at:	"2015-12-16	17:45:34",	updated_at:	

"2015-12-16

17:45:34">,	#<Album	id:	7,	name:	"Exile	on	Main	St.",	release_year:	

1972,

created_at:	"2015-12-16	17:45:34",	updated_at:	"2015-12-16	

17:45:34">,	#<Album

id:	8,	name:	"London	Calling",	release_year:	1979,	created_at:	

"2015-12-16

17:45:34",	updated_at:	"2015-12-16	17:45:34">]>

>>	exit

$

pluck
Normally,	ActiveRecord	pulls	all	table	columns	from	the	database	and	leaves	it
up	to	the	programmer	to	later	pick	out	the	components	he	is	interested	in.	But	in
case	 of	 large	 amounts	 of	 data,	 it	 can	 be	 useful	 and	 above	 all	much	quicker	 to
define	 a	 specific	 database	 field	 directly	 for	 the	 query.	You	 can	 do	 this	 via	 the
method	pluck.

>>	Album.where(release_year:	1960..1969).pluck(:name)

			(0.1ms)		SELECT	"albums"."name"	FROM	"albums"	WHERE

			("albums"."release_year"	BETWEEN	1960	AND	1969)

=>	["Sgt.	Pepper's	Lonely	Hearts	Club	Band",	"Pet	Sounds",	

"Revolver",

"Highway	61	Revisited",	"Rubber	Soul",	"Blonde	on	Blonde",	"The	

Beatles"]

>>	Album.where(release_year:	1960..1969).pluck(:name,	:release_year)

			(0.3ms)		SELECT	"albums"."name",	"albums"."release_year"	FROM	

"albums"

			WHERE	("albums"."release_year"	BETWEEN	1960	AND	1969)

=>	[["Sgt.	Pepper's	Lonely	Hearts	Club	Band",	1967],	["Pet	Sounds",	

1966],

["Revolver",	1966],	["Highway	61	Revisited",	1965],	["Rubber	Soul",	

1965],

["Blonde	on	Blonde",	1966],	["The	Beatles",	1968]]

As	a	result,	pluck	returns	an	array.

select
select	works	like	pluck	but	returns	an	ActiveRecord::Relation.

>>	Album.where(release_year:	1960..1969).select(:name)

		Album	Load	(0.2ms)		SELECT	"albums"."name"	FROM	"albums"	WHERE	

("albums"."release_year"	BETWEEN	1960	AND	1969)

=>	<ActiveRecord::Relation	[<Album	id:	nil,	name:	"Sgt.	Pepper's	

Lonely	Hearts	Club	Band">,	#<Album	id:	nil,	name:	"Pet	Sounds">,	#

<Album	id:	nil,	name:	"Revolver">,	#<Album	id:	nil,	name:	"Highway	

61	Revisited">,	#<Album	id:	nil,	name:	"Rubber	Soul">,	#<Album	id:	

nil,	name:	"Blonde	on	Blonde">,	#<Album	id:	nil,	name:	"The	

Beatles">]>

first_or_create	and	first_or_initialize
The	 methods	first_or_create	 and	first_or_initialize	 are	 ways

to	search	for	a	specific	entry	in	your	database	or	create	one	if	the	entry	doesn’t
exist	already.	Both	have	to	be	chained	to	a	where	search.

>>	Album.where(name:	'Test')

		Album	Load	(0.2ms)		SELECT	"albums".*	FROM	"albums"	WHERE	

"albums"."name"	=

		?		[["name",	"Test"]]

=>	#<ActiveRecord::Relation	[]>

>>	test	=	Album.where(name:	'Test').first_or_create

		Album	Load	(0.3ms)		SELECT		"albums".*	FROM	"albums"	WHERE	

"albums"."name"	=	?		ORDER	BY	"albums"."id"	ASC	LIMIT	1		[["name",	

"Test"]]

			(0.1ms)		begin	transaction

		SQL	(0.4ms)		INSERT	INTO	"albums"	("name",	"created_at",	

"updated_at")	VALUES	(?,	?,	?)		[["name",	"Test"],	["created_at",	

"2015-12-16	18:34:35.775645"],	["updated_at",	"2015-12-16	

18:34:35.775645"]]

			(9.2ms)		commit	transaction

=>	#<Album	id:	11,	name:	"Test",	release_year:	nil,	created_at:	

"2015-12-16	18:34:35",	updated_at:	"2015-12-16	18:34:35">

Calculations

average
With	 the	 method	average,	 you	 can	 calculate	 the	 average	 of	 the	 values	 in	 a

particular	column	of	the	table.	Our	data	material	is	of	course	not	really	suited	to
this.	But	as	an	example,	let’s	calculate	the	average	release	year	of	all	albums	and
then	the	same	for	albums	from	the	60s:

>>	Album.average(:release_year)

			(0.3ms)		SELECT	AVG("albums"."release_year")	FROM	"albums"

=>	#<BigDecimal:7fd76fd027a0,'0.19685E4',18(36)>

>>	Album.average(:release_year).to_s

			(0.2ms)		SELECT	AVG("albums"."release_year")	FROM	"albums"

=>	"1968.5"

>>	Album.where(:release_year	=>	1960..1969).average(:release_year)

			(0.1ms)		SELECT	AVG("albums"."release_year")	FROM	"albums"	WHERE

			("albums"."release_year"	BETWEEN	1960	AND	1969)

=>	#<BigDecimal:7fd76fc908d0,'0.1966142857	14286E4',27(36)>

>>	Album.where(:release_year	=>	1960..1969	

).average(:release_year).to_s

			(0.3ms)		SELECT	AVG("albums"."release_year")	FROM	"albums"	WHERE

			("albums"."release_year"	BETWEEN	1960	AND	1969)

=>	"1966.14285714286"

count
The	name	says	it	all:	the	method	count	counts	the	number	of	records.

First,	we	return	the	number	of	all	albums	in	the	database	and	then	the	number	of
albums	from	the	60s:

>>	Album.count

			(0.1ms)		SELECT	COUNT(*)	FROM	"albums"

=>	11

maximum
With	 the	 method	maximum,	 you	 can	 output	 the	 item	 with	 the	 highest	 value

within	a	query.

Let’s	look	for	the	highest	release	year:

>>	Album.maximum(:release_year)

			(0.2ms)		SELECT	MAX("albums"."release_year")	FROM	"albums"

=>	1979

minimum
With	 the	 method	minimum,	 you	 can	 output	 the	 item	 with	 the	 lowest	 value

within	a	query.

Let’s	find	the	lowest	release	year:

>>	Album.minimum(:release_year)

			(0.2ms)		SELECT	MIN("albums"."release_year")	FROM	"albums"

=>	1965

sum
With	 the	 method	sum,	 you	 can	 calculate	 the	 sum	 of	 all	 items	 in	 a	 specific

column	of	the	database	query.

Let’s	find	the	sum	of	all	release	years:

>>	Album.sum(:release_year)

			(0.2ms)		SELECT	SUM("albums"."release_year")	FROM	"albums"

=>	19685

SQL	EXPLAIN

Most	SQL	databases	can	provide	detailed	information	on	a	SQL	query	with	the
command	EXPLAIN.	This	does	not	make	much	sense	for	our	mini	application,

but	if	you	are	working	with	a	large	database	one	day,	then	EXPLAIN	is	a	good

debugging	 method,	 for	 example	 to	 find	 out	 where	 to	 place	 an	 index.	 SQL
EXPLAIN	 can	 be	 called	 with	 the	 method	explain	 (it	 will	 be	 displayed	 in

prettier	form	if	you	add	a	puts):

>>	Album.where(release_year:	1960..1969)

		Album	Load	(0.2ms)		SELECT	"albums".*	FROM	"albums"	WHERE

		("albums"."release_year"	BETWEEN	1960	AND	1969)

=>	<ActiveRecord::Relation	[<Album	id:	1,	[...]>]>

>>	Album.where(release_year:	1960..1969).explain

		Album	Load	(0.3ms)		SELECT	"albums".*	FROM	"albums"	WHERE

		("albums"."release_year"	BETWEEN	1960	AND	1969)

=>	EXPLAIN	for:	SELECT	"albums".*	FROM	"albums"	WHERE	

("albums"."release_year"

BETWEEN	1960	AND	1969)

0|0|0|SCAN	TABLE	albums

Batches

ActiveRecord	stores	the	results	of	a	query	in	Memory.	With	very	large	tables	and
results	 that	 can	 become	 a	 performance	 issue.	To	 address	 this	 you	 can	 use	 the
find_each	method	which	splits	up	the	query	into	batches	with	the	default	size

of	 1,000	 (can	 be	 configured	 with	 the	:batch_size	 option).	 Our	 example

Album	table	is	too	small	to	show	the	effect	but	the	method	would	be	used	like

this:

>>	Album.where(release_year:	1960..1969).find_each	do	|album|

?>			puts	album.name.upcase

>>	end

		Album	Load	(0.2ms)		SELECT		"albums".*	FROM	"albums"	WHERE

		("albums"."release_year"	BETWEEN	1960	AND	1969)		ORDER	BY	

"albums"."id"	ASC

		LIMIT	1000

SGT.	PEPPER'S	LONELY	HEARTS	CLUB	BAND

PET	SOUNDS

REVOLVER

HIGHWAY	61	REVISITED

RUBBER	SOUL

BLONDE	ON	BLONDE

THE	BEATLES

=>	nil

▪

▪

▪

Editing	a	Record

Adding	and	searching	data	is	quite	nice,	but	often	you	want	to	edit	a	record.	To
show	how	that’s	done	I	use	the	album	database	from	the	section	"Searching	and

Finding	with	Queries".

Simple	Editing
Simple	editing	of	a	record	takes	place	with	the	following	steps:

Finding	the	record	and	creating	a	corresponding	instance

Changing	the	attribute

Saving	the	record	via	the	method	ActiveRecord	methods	save

We	are	now	searching	for	the	album	“The	Beatles”	and	changing	its	name	to	“A
Test”:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	beatles_album	=	Album.where(name:	'The	Beatles').first

		Album	Load	(0.2ms)		SELECT		"albums".*	FROM	"albums"	WHERE	

"albums"."name"	=	?		ORDER	BY	"albums"."id"	ASC	LIMIT	1		[["name",	

"The	Beatles"]]

=>	#<Album	id:	10,	name:	"The	Beatles",	release_year:	1968,	

created_at:	"2015-12-16	17:45:34",	updated_at:	"2015-12-16	

17:45:34">

>>	beatles_album.name

=>	"The	Beatles"

>>	beatles_album.name	=	'A	Test'

=>	"A	Test"

>>	beatles_album.save

			(0.1ms)		begin	transaction

		SQL	(0.6ms)		UPDATE	"albums"	SET	"name"	=	?,	"updated_at"	=	?	

WHERE	"albums"."id"	=	?		[["name",	"A	Test"],	["updated_at",	"2015-

12-16	18:46:03.851575"],	["id",	10]]

			(9.2ms)		commit	transaction

=>	true

>>	exit

Active	Model	Dirty
ActiveModel::Dirty	 provides	 simple	 mechanisms	 to	 track	 changes	 of	 an
ActiveRecord	Model.

changed?

If	you	are	not	sure	if	a	record	has	been	changed	and	not	yet	saved,	you	can	check
via	the	method	changed?:

>>	beatles_album	=	Album.where(id:	10).first

		Album	Load	(0.4ms)		SELECT		"albums".*	FROM	"albums"	WHERE	

"albums"."id"	=	?

		ORDER	BY	"albums"."id"	ASC	LIMIT	1		[["id",	10]]

=>	#<Album	id:	10,	name:	"A	Test",	release_year:	1968,	created_at:	

"2015-12-16

17:45:34",	updated_at:	"2015-12-16	18:46:03">

>>	beatles_album.changed?

=>	false

>>	beatles_album.name	=	'The	Beatles'

=>	"The	Beatles"

>>	beatles_album.changed?

=>	true

>>	beatles_album.save

			(0.1ms)		begin	transaction	SQL	(0.6ms)		UPDATE	"albums"	SET	

"name"	=	?,

			"updated_at"	=	?	WHERE	"albums"."id"	=	?		[["name",	"The	

Beatles"],

			["updated_at",	"2015-12-16	18:47:26.794527"],	["id",	10]]	(9.2ms)		

commit

			transaction

http://api.rubyonrails.org/classes/ActiveModel/Dirty.html

=>	true

>>	beatles_album.changed?

=>	false

_changed?

An	 attribute	 name	 followed	 by	_changed?	 tracks	 changes	 to	 a	 specific

attribute.

>>	beatles_album	=	Album.where(id:	10).first

		Album	Load	(0.5ms)		SELECT		"albums".*	FROM	"albums"	WHERE	

"albums"."id"	=	?	ORDER	BY	"albums"."id"	ASC	LIMIT	?		[["id",	10],	

["LIMIT",	1]]

=>	#<Album	id:	10,	name:	"The	Beatles",	release_year:	1968,	

created_at:	"2016-01-21	10:15:51",	updated_at:	"2016-01-21	

10:15:51">

>>	beatles_album.release_year_changed?

=>	false

>>	beatles_album.release_year	=	1900

=>	1900

>>	beatles_album.release_year_changed?

=>	true

update
With	the	method	update	you	can	change	several	attributes	of	an	object	in	one

go	and	then	immediately	save	them	automatically.

Let’s	use	this	method	within	the	example	used	in	the	section	"Simple	Editing":

>>	first_album	=	Album.first

		Album	Load	(0.1ms)		SELECT		"albums".*	FROM	"albums"	ORDER	BY	

"albums"."id"	ASC	LIMIT	?		[["LIMIT",	1]]

=>	#<Album	id:	1,	name:	"Sgt.	Pepper's	Lonely	Hearts	Club	Band",	

release_year:	1967,	created_at:	"2016-01-21	10:15:51",	updated_at:	

"2016-01-21	10:15:51">

>>	first_album.changed?

=>	false

>>	first_album.update(name:	'Another	Test')

			(0.1ms)		begin	transaction

		SQL	(0.4ms)		UPDATE	"albums"	SET	"name"	=	?,	"updated_at"	=	?	

WHERE	"albums"."id"	=	?		[["name",	"Another	Test"],	["updated_at",	

2016-01-21	12:11:27	UTC],	["id",	1]]

			(0.9ms)		commit	transaction

=>	true

>>	first_album.changed?

=>	false

>>	first_album

=>	#<Album	id:	1,	name:	"Another	Test",	release_year:	1967,	

created_at:	"2016-01-21	10:15:51",	updated_at:	"2016-01-21	

12:11:27">

Locking
There	are	many	ways	of	 locking	a	database.	By	default,	Rails	uses	“optimistic
locking”	of	records.	To	activate	locking	a	model	needs	to	have	an	attribute	with
the	 name	lock_version	which	has	 to	be	an	 integer.	To	show	how	 it	works

I’ll	create	a	new	Rails	project	with	a	Product	model.	Then	I’ll	 try	 to	change

the	 price	 of	 the	 first	Product	 on	 two	different	 instances.	The	 second	change

will	raise	an	ActiveRecord::StaleObjectError.

Example	setup:

$	rails	new	shop

		[...]

$	cd	shop

$	rails	generate	model	Product	name	'price:decimal{8,2}'	

lock_version:integer

		[...]

$	rails	db:migrate

		[...]

$

Raising	an	ActiveRecord::StaleObjectError:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Product.create(name:	'Orange',	price:	0.5)

			(0.1ms)		begin	transaction	SQL	(0.7ms)		INSERT	INTO	"products"	

("name",

			"price",	"created_at",	"updated_at",	"lock_version")	VALUES	(?,	

?,	?,	?,	?)

			[["name",	"Orange"],	["price",	0.5],	["created_at",	"2015-12-16

			19:02:17.338531"],	["updated_at",	"2015-12-16	19:02:17.338531"],

			["lock_version",	0]]

			(1.0ms)		commit	transaction

=>	#<Product	id:	1,	name:	"Orange",	price:

#<BigDecimal:7feb59231198,'0.5E0',9(27)>,	lock_version:	0,	

created_at:

"2015-12-16	19:02:17",	updated_at:	"2015-12-16	19:02:17">

>>	a	=	Product.first

		Product	Load	(0.4ms)		SELECT		"products".*	FROM	"products"		ORDER	

BY

		"products"."id"	ASC	LIMIT	1

=>	#<Product	id:	1,	name:	"Orange",	price:

#<BigDecimal:7feb5918a870,'0.5E0',9(27)>,	lock_version:	0,	

created_at:

"2015-12-16	19:02:17",	updated_at:	"2015-12-16	19:02:17">

>>	b	=	Product.first

		Product	Load	(0.3ms)		SELECT		"products".*	FROM	"products"		ORDER	

BY

		"products"."id"	ASC	LIMIT	1	=>	#<Product	id:	1,	name:	"Orange",	

price:

		#<BigDecimal:7feb59172d60,'0.5E0',9(27)>,	lock_version:	0,	

created_at:

		"2015-12-16	19:02:17",	updated_at:	"2015-12-16	19:02:17">

>>	a.price	=	0.6

=>	0.6

>>	a.save

			(0.1ms)		begin	transaction

		SQL	(0.4ms)		UPDATE	"products"	SET	"price"	=	0.6,	"updated_at"	=	

'2015-12-16

		19:02:59.514736',	"lock_version"	=	1	WHERE	"products"."id"	=	?	AND

		"products"."lock_version"	=	?		[["id",	1],	["lock_version",	0]]

			(9.1ms)		commit	transaction

=>	true

>>	b.price	=	0.7

=>	0.7

>>	b.save

			(0.1ms)		begin	transaction

		SQL	(0.3ms)		UPDATE	"products"	SET	"price"	=	0.7,	"updated_at"	=	

'2015-12-16

		19:03:08.408511',	"lock_version"	=	1	WHERE	"products"."id"	=	?	AND

		"products"."lock_version"	=	?		[["id",	1],	["lock_version",	0]]

			(0.1ms)		rollback	transaction

ActiveRecord::StaleObjectError:	Attempted	to	update	a	stale	object:	

Product

[...]

>>	exit

You	have	to	deal	with	the	conflict	by	rescuing	the	exception	and	fix	the	conflict
depending	on	your	business	logic.

Please	 make	 sure	 to	 add	 a	lock_version	 hidden	 field	 in	your	 forms	 when	 using	 this

mechanism	with	a	WebGUI.

has_many	–	1:n	Association

In	 order	 to	 explain	has_many,	 let’s	 create	 a	 bookshelf	 application.	 In	 this

database,	there	is	a	model	with	books	and	a	model	with	authors.	As	a	book

can	 have	 multiple	authors,	 we	 need	 a	 1:n	 association	 (one-to-many

association)	to	represent	it.

Associations	are	also	sometimes	referred	to	as	relations	or	relationships.

First,	we	create	a	Rails	application:

$	rails	new	bookshelf

		[...]

$	cd	bookshelf

$

Now	we	create	the	model	for	the	books:

$	rails	generate	model	book	title

		[...]

$

And	 finally,	 we	 create	 the	 database	 table	 for	 the	 authors.	 In	 this,	 we	 need	 an
assignment	field	to	the	books	table.	This	foreign	key	is	always	set	by	default	as
name	of	the	referenced	object	(here:	book)	with	an	attached	_id:

$	rails	generate	model	author	book_id:integer	first_name	last_name

		[...]

$

Then	 execute	 a	rails	db:migrate	 so	 that	 the	database	 tables	are	actually

created:

$	rails	db:migrate

		[...]

$

Let’s	have	a	look	at	this	on	the	console:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Book.column_names

=>	["id",	"title",	"created_at",	"updated_at"]

>>	Author.column_names

=>	["id",	"book_id",	"first_name",	"last_name",	"created_at",	

"updated_at"]

>>	exit

The	 two	 database	 tables	 are	 set	 up	 and	 can	 be	 used	 with	ActiveRecord.	 But
ActiveRecord	does	not	yet	know	anything	of	the	1:n	relation	between	them.	But
this	can	be	done	in	two	small	steps.

First	we	add	the	line	has_many	:authors	in	the	app/models/book.rb

file	to	set	the	1:n	relationship:

Listing	9.	app/models/book.rb

class	Book	<	ApplicationRecord

		has_many	:authors

end

Than	we	add	belongs_to	:book	in	the	app/models/author.rb	file	to

get	the	other	way	around	configured	(this	is	not	always	needed	but	often	comes
in	handy):

Listing	10.	app/models/author.rb

class	Author	<	ApplicationRecord

		belongs_to	:book

end

These	 two	 simple	 definitions	 form	 the	 basis	 for	 a	 good	 deal	 of	ActiveRecord
magic.	It	will	generate	a	bunch	of	cool	new	methods	for	us	to	link	both	models.

references	modifier
Instead	 of	 creating	 a	book_id	 attribute	 you	 can	 also	 use	 the	references

modifier	with	the	model	generator.	By	that	you’ll	save	a	little	bit	of	time	because
it	will	not	only	create	a	book_id	attribute	but	add	the	belongs_to	:book

code	 in	 the	app/models/author.rb	 file	 too.	 It	even	adds	an	 index	 in	 the

migration.

It	does	not	add	the	has_many	code.

The	above	example	could	be	done	with	this	code:

$	rails	new	bookshelf

		[...]

$	cd	bookshelf

$	rails	generate	model	book	title

[...]

$	rails	generate	model	author	book:references	first_name	last_name

[...]

$	rails	db:migrate

[...]

$

Creating	Records
In	 this	example,	we	want	 to	save	a	 record	 for	 the	book	"Homo	faber"	by	Max
Frisch.

Manually

We	drop	the	database	with	rails	db:reset

$	rails	db:reset

		[...]

$

Before	using	the	magic	we’ll	insert	a	book	with	an	author	manually.	For	that	we
have	to	use	the	book’s	id	in	the	book_id	attribute	to	create	the	author.

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	book	=	Book.create(title:	'Homo	faber')

[...]

>>	author	=	Author.create(book_id:	book.id,	first_name:	'Max',	

last_name:

			'Frisch')

[...]

>>	exit

Entering	 the	book_id	manually	in	this	way	is	of	course	not	very	practical	and

prone	to	errors.	The	next	section	describes	a	better	way.

create

We	 can	 use	 the	method	create	 of	authors	 to	 add	 new	authors	 to	 each

Book	object.	These	automatically	get	the	correct	book_id:

$	rails	db:reset

		[...]

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	book	=	Book.create(title:	'Homo	faber')

[...]

>>	author	=	book.authors.create(first_name:	'Max',	last_name:	

'Frisch')

[...]

>>	exit

You	 could	 also	 place	 the	authors.create()	 directly	 behind	 the

Book.create():

$	rails	db:reset

		[...]

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Book.create(title:	'Homo	faber').authors.create(first_name:	

'Max',	last_name:	'Frisch')

[...]

>>	exit

As	create	also	accepts	an	array	of	hashes	as	an	alternative	to	a	single	hash,	you
can	also	create	multiple	authors	for	a	book	in	one	go:

$	rails	db:reset

		[...]

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Book.create(title:	'Example').authors.create([{last_name:	'A'},	

{last_name:	'B'}])

[...]

>>	exit

build

The	method	build	 resembles	create.	But	the	record	is	not	saved.	This	only

happens	after	a	save:

$	rails	db:reset

		[...]

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	book	=	Book.create(title:	'Homo	faber')

[...]

>>	author	=	book.authors.build(first_name:	'Max',	last_name:	

'Frisch')

[...]

>>	author.new_record?

=>	true

>>	author.save

[...]

>>	author.new_record?

=>	false

>>	exit

When	 using	create	 and	build,	 you	 of	 course	 have	 to	 observe	 logical	 dependencies,

otherwise	 there	 will	 be	 an	 error.	 For	 example,	 you	 cannot	 chain	 two	build	 methods.

Example:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Book.build(title:	'Example').authors.build(last_name:	

'A')

NoMethodError:	undefined	method	`build'	for	#

<Class:0x007f9e10059050>

[...]

>>	exit

Accessing	Records
First	we	 need	 example	 data.	 Please	 populate	 the	 file	db/seeds.rb	with	 the

following	content:

Listing	11.	db/seeds.rb

Book.create(title:	'Homo	faber').authors.create(first_name:	'Max',	

last_name:

'Frisch')

Book.create(title:	'Der	Besuch	der	alten	

Dame').authors.create(first_name:

'Friedrich',	last_name:	'Dürrenmatt')

Book.create(title:	'Julius	Shulman:	The	Last	

Decade').authors.create([

		{first_name:	'Thomas',	last_name:	'Schirmbock'},

		{first_name:	'Julius',	last_name:	'Shulman'},

		{first_name:	'Jürgen',	last_name:	'Nogai'}

])

Book.create(title:	'Julius	Shulman:	Palm	Springs').authors.create([

		{first_name:	'Michael',	last_name:	'Stern'},

		{first_name:	'Alan',	last_name:	'Hess'}

])

Book.create(title:	'Photographing	Architecture	and	

Interiors').authors.create([

		{first_name:	'Julius',	last_name:	'Shulman'},

		{first_name:	'Richard',	last_name:	'Neutra'}

])

Book.create(title:	'Der	Zauberberg').authors.create(first_name:	

'Thomas',

last_name:	'Mann')

Book.create(title:	'In	einer	Familie').authors.create(first_name:	

'Heinrich',

last_name:	'Mann')

Now	drop	the	database	and	refill	it	with	the	db/seeds.rb:

$	rails	db:reset

The	convenient	feature	of	the	1:n	assignment	in	ActiveRecord	is	the	particularly
easy	access	to	the	n	instances.	Let’s	look	at	the	first	book	and	it’s	authors:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Book.first

[...]

>>	Book.first.authors

		Book	Load	(0.3ms)		SELECT		"books".*	FROM	"books"		ORDER	BY	

"books"."id"	ASC

		LIMIT	1

		Author	Load	(0.3ms)		SELECT	"authors".*	FROM	"authors"	WHERE

		"authors"."book_id"	=	?		[["book_id",	1]]

=>	<ActiveRecord::Associations::CollectionProxy	[<Author	id:	1,	

book_id:	1,

first_name:	"Max",	last_name:	"Frisch",	created_at:	"2015-12-17	

09:08:49",

updated_at:	"2015-12-17	09:08:49">]>

Isn’t	that	cool?!	You	can	access	the	records	simply	via	the	plural	form	of	the	n
model.	The	 result	 is	 returned	as	array.	Hm,	maybe	 it	also	works	 the	other	way
round?

>>	Author.first.book

		Author	Load	(0.3ms)		SELECT		"authors".*	FROM	"authors"		ORDER	BY

		"authors"."id"	ASC	LIMIT	1

		Book	Load	(0.2ms)		SELECT		"books".*	FROM	"books"	WHERE	

"books"."id"	=	?

		LIMIT	1		[["id",	1]]

=>	#<Book	id:	1,	title:	"Homo	faber",	created_at:	"2015-12-17	

09:08:49",

updated_at:	"2015-12-17	09:08:49">

>>	exit

Bingo!	Accessing	the	associated	Book	class	is	also	very	easy.	And	as	it’s	only	a

single	record	(belongs_to),	the	singular	form	is	used	in	this	case.

If	 there	 was	 no	 author	 for	 this	 book,	 the	 result	 would	 be	 an	 empty	array.	 If	 no	 book	 is
associated	with	an	author,	then	ActiveRecord	outputs	the	value	nil	as	Book.

Searching	For	Records
Before	we	can	start	searching,	we	again	need	defined	example	data.	Please	fill
the	file	db/seeds.rb	with	the	following	content:

Listing	12.	db/seeds.rb

Book.create(title:	'Homo	faber').authors.create(first_name:	'Max',	

last_name:	'Frisch')

Book.create(title:	'Der	Besuch	der	alten	

Dame').authors.create(first_name:	'Friedrich',	last_name:	

'Dürrenmatt')

Book.create(title:	'Julius	Shulman:	The	Last	

Decade').authors.create([

		{first_name:	'Thomas',	last_name:	'Schirmbock'},

		{first_name:	'Julius',	last_name:	'Shulman'},

		{first_name:	'Jürgen',	last_name:	'Nogai'}

])

Book.create(title:	'Julius	Shulman:	Palm	Springs').authors.create([

		{first_name:	'Michael',	last_name:	'Stern'},

		{first_name:	'Alan',	last_name:	'Hess'}

])

Book.create(title:	'Photographing	Architecture	and	

Interiors').authors.create([

		{first_name:	'Julius',	last_name:	'Shulman'},

		{first_name:	'Richard',	last_name:	'Neutra'}

])

Book.create(title:	'Der	Zauberberg').authors.create(first_name:	

'Thomas',	last_name:	'Mann')

Book.create(title:	'In	einer	Familie').authors.create(first_name:	

'Heinrich',	last_name:	'Mann')

Now	drop	the	database	and	refill	it	with	the	db/seeds.rb:

$	rails	db:reset

And	off	we	go.	First	we	check	how	many	books	are	in	the	database:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Book.count

			(0.1ms)		SELECT	COUNT(*)	FROM	"books"

=>	7

And	how	many	authors?

>>	Author.count

			(0.2ms)		SELECT	COUNT(*)	FROM	"authors"

=>	11

>>	exit

joins

To	find	all	books	that	have	at	least	one	author	with	the	surname	'Mann'	we	use	a
join.

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Book.joins(:authors).where(:authors	=>	{last_name:	'Mann'})

		Book	Load	(0.2ms)		SELECT	"books".*	FROM	"books"	INNER	JOIN	

"authors"	ON

		"authors"."book_id"	=	"books"."id"	WHERE	"authors"."last_name"	=	?

		[["last_name",	"Mann"]]

=>	<ActiveRecord::Relation	[<Book	id:	6,	title:	"Der	Zauberberg",

created_at:	"2015-12-17	09:13:31",	updated_at:	"2015-12-17	

09:13:31">,	#<Book

id:	7,	title:	"In	einer	Familie",	created_at:	"2015-12-17	09:13:31",

updated_at:	"2015-12-17	09:13:31">]>

The	database	contains	 two	books	with	 the	author	 'Mann'.	 In	 the	SQL,	you	can
see	that	the	method	joins	executes	an	INNER	JOIN.

Of	course,	we	can	also	do	it	the	other	way	round.	We	could	search	for	the	author
of	the	book	'Homo	faber':

>>	Author.joins(:book).where(:books	=>	{title:	'Homo	faber'})

		Author	Load	(0.3ms)		SELECT	"authors".*	FROM	"authors"	INNER	JOIN	

"books"	ON

		"books"."id"	=	"authors"."book_id"	WHERE	"books"."title"	=	?		

[["title",

		"Homo	faber"]]

=>	<ActiveRecord::Relation	[<Author	id:	1,	book_id:	1,	first_name:	

"Max",

last_name:	"Frisch",	created_at:	"2015-12-17	09:13:31",	updated_at:

"2015-12-17	09:13:31">]>

includes

includes	is	very	similar	to	the	method	joins	(see	joins).	Again,	you	can	use

it	to	search	within	a	1:n	association.	Let’s	once	more	search	for	all	books	with	an
author	whose	surname	is	'Mann':

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Book.includes(:authors).where(:authors	=>	{last_name:	'Mann'})

		SQL	(1.1ms)		SELECT	"books"."id"	AS	t0_r0,	"books"."title"	AS	

t0_r1,

		"books"."created_at"	AS	t0_r2,	"books"."updated_at"	AS	t0_r3,	

"authors"."id"

		AS	t1_r0,	"authors"."book_id"	AS	t1_r1,	"authors"."first_name"	AS	

t1_r2,

		"authors"."last_name"	AS	t1_r3,	"authors"."created_at"	AS	t1_r4,

		"authors"."updated_at"	AS	t1_r5	FROM	"books"	LEFT	OUTER	JOIN	

"authors"	ON

		"authors"."book_id"	=	"books"."id"	WHERE	"authors"."last_name"	=	?

		[["last_name",	"Mann"]]

=>	<ActiveRecord::Relation	[<Book	id:	6,	title:	"Der	Zauberberg",

created_at:	"2015-12-17	09:13:31",	updated_at:	"2015-12-17	

09:13:31">,	#<Book

id:	7,	title:	"In	einer	Familie",	created_at:	"2015-12-17	09:13:31",

updated_at:	"2015-12-17	09:13:31">]>

In	the	console	output,	you	can	see	that	the	SQL	code	is	different	from	the	joins
query.

joins	 only	 reads	 in	 the	Book	 records	 and	includes	 also	 reads	 the

associated	Authors.	As	you	can	see	even	in	our	little	example,	this	obviously

takes	longer	(0.2	ms	vs.	1.1	ms).

joins	vs.	includes

Why	would	you	want	to	use	includes	at	all?	Well,	if	you	already	know	before

the	 query	 that	 you	 will	 later	 need	 all	 author	 data,	 then	 it	 makes	 sense	 to	 use
includes,	because	then	you	only	need	one	database	query.	That	is	a	lot	faster

than	starting	a	seperate	query	for	each	n.

In	 that	 case,	 would	 it	 not	 be	 better	 to	 always	 work	 with	includes?	 No,	 it

depends	on	the	specific	case.	When	you	are	using	includes,	a	lot	more	data	is

transported	 initially.	 This	 has	 to	 be	 cached	 and	 processed	 by	 ActiveRecord,
which	takes	longer	and	requires	more	resources.

delete	and	destroy
With	the	methods	destroy,	destroy_all,	delete	and	delete_all	you

can	delete	records,	as	described	in	"Delete/Destroy	a	Record".	In	the	context	of
has_many,	this	means	that	you	can	delete	the	Author	records	associated	with

a	Book	in	one	go:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	book	=	Book.where(title:	'Julius	Shulman:	The	Last	Decade').first

		Book	Load	(0.2ms)		SELECT		"books".*	FROM	"books"	WHERE	

"books"."title"	=	?

		ORDER	BY	"books"."id"	ASC	LIMIT	1		[["title",	"Julius	Shulman:	The	

Last

		Decade"]]

=>	<Book	id:	3,	title:	"Julius	Shulman:	The	Last	Decade",	

created_at:

"2015-12-17	09:13:31",	updated_at:	"2015-12-17	09:13:31">

>>	book.authors.count

			(0.3ms)		SELECT	COUNT()	FROM	"authors"	WHERE	"authors"."book_id"	

=	?

			[["book_id",	3]]

=>	3

>>	book.authors.destroy_all

		Author	Load	(0.3ms)		SELECT	"authors".	FROM	"authors"	WHERE

		"authors"."book_id"	=	?		[["book_id",	3]]

			(0.1ms)		begin	transaction

		SQL	(0.5ms)		DELETE	FROM	"authors"	WHERE	"authors"."id"	=	?		

[["id",	3]]

		SQL	(0.1ms)		DELETE	FROM	"authors"	WHERE	"authors"."id"	=	?		

[["id",	4]]

		SQL	(0.1ms)		DELETE	FROM	"authors"	WHERE	"authors"."id"	=	?		

[["id",	5]]

			(9.3ms)		commit	transaction

=>	[<Author	id:	3,	book_id:	3,	first_name:	"Thomas",	last_name:	

"Schirmbock",

created_at:	"2015-12-17	09:13:31",	updated_at:	"2015-12-17	

09:13:31">,

#<Author	id:	4,	book_id:	3,	first_name:	"Julius",	last_name:	

"Shulman",

created_at:	"2015-12-17	09:13:31",	updated_at:	"2015-12-17	

09:13:31">,

#<Author	id:	5,	book_id:	3,	first_name:	"Jürgen",	last_name:	

"Nogai",

created_at:	"2015-12-17	09:13:31",	updated_at:	"2015-12-17	

09:13:31">]

>>	book.authors.count

			(0.2ms)		SELECT	COUNT(*)	FROM	"authors"	WHERE	"authors"."book_id"	

=	?

			[["book_id",	3]]

=>	0

Options
I	can’t	comment	on	all	possible	options	at	this	point.	But	I’d	like	to	show	you	the
most	 often	 used	 ones.	 For	 all	 others,	 please	 refer	 to	 the	 Ruby	 on	 Rails
documentation	 that	 you	 can	 find	 on	 the	 Internet	 at
http://rails.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html

belongs_to

The	most	important	option	for	belongs_to	is.

touch:	true

It	 automatically	 sets	 the	 field	updated_at	 of	 the	 entry	 in	 the	 table	Book	 to

the	 current	 time	 when	 an	Author	 is	 edited.	 In	 the

app/models/author.rb,	it	would	look	like	this:

Listing	13.	app/models/author.rb

class	Author	<	ApplicationRecord

		belongs_to	:book,	touch:	true

end

has_many

The	most	important	options	for	has_many	are.

dependent:	:destroy

If	a	book	is	removed,	then	it	usually	makes	sense	to	also	automatically	remove
all	 authors	 dependent	 on	 this	 book.	 This	 can	 be	 done	 via	:dependent	 ⇒

http://rails.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html

:destroy	in	the	app/models/book.rb:

Listing	14.	app/models/book.rb

class	Book	<	ApplicationRecord

		has_many	:authors,	dependent:	:destroy

end

In	 the	 following	 example,	we	 destroy	 the	 first	 book	 in	 the	 database	 table.	All
authors	of	this	book	are	also	automatically	destroyed:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Book.first

		Book	Load	(0.2ms)		SELECT		"books".*	FROM	"books"		ORDER	BY	

"books"."id"	ASC

		LIMIT	1

=>	<Book	id:	1,	title:	"Homo	faber",	created_at:	"2015-12-17	

09:13:31",

updated_at:	"2015-12-17	09:13:31">

>>	Book.first.authors

		Book	Load	(0.2ms)		SELECT		"books".*	FROM	"books"		ORDER	BY	

"books"."id"	ASC

		LIMIT	1

		Author	Load	(0.2ms)		SELECT	"authors".*	FROM	"authors"	WHERE

		"authors"."book_id"	=	?		[["book_id",	1]]

=>	#<ActiveRecord::Associations::CollectionProxy	[<Author	id:	1,	

book_id:	1,

first_name:	"Max",	last_name:	"Frisch",	created_at:	"2015-12-17	

09:13:31",

updated_at:	"2015-12-17	09:13:31">]>

>>	Book.first.destroy

		Book	Load	(0.3ms)		SELECT		"books".*	FROM	"books"		ORDER	BY	

"books"."id"	ASC

		LIMIT	1

			(0.1ms)		begin	transaction

		Author	Load	(0.1ms)		SELECT	"authors".*	FROM	"authors"	WHERE

		"authors"."book_id"	=	?		[["book_id",	1]]

		SQL	(1.6ms)		DELETE	FROM	"authors"	WHERE	"authors"."id"	=	?		

[["id",	1]]

		SQL	(0.1ms)		DELETE	FROM	"books"	WHERE	"books"."id"	=	?		[["id",	

1]]

			(9.1ms)		commit	transaction

=>	#<Book	id:	1,	title:	"Homo	faber",	created_at:	"2015-12-17	

09:13:31",

updated_at:	"2015-12-17	09:13:31">

>>	Author.exists?(1)

>>	exit**

Please	 always	 remember	 the	 difference	 between	 the	methods	destroy	 (see	"destroy")	 and

delete	(see	the	"delete").	This	association	only	works	with	the	method	destroy.

has_many	..,	through:	…	

Here	I	need	to	elaborate	a	bit:	you	will	probably	have	noticed	that	in	our	book-
author	 example	we	have	 sometimes	been	 entering	 authors	 several	 times	 in	 the
authors	table.	Normally,	you	would	of	course	not	do	this.	It	would	be	better	to

enter	each	author	only	once	in	the	authors	table	and	take	care	of	the	association
with	the	books	via	an	intermediary	table.	For	this	purpose,	there	is	has_many

…	,	through:	:…	.

This	 kind	 of	 association	 is	 called	Many-to-Many	 (n:n)	 and	we’ll	 discuss	 it	 in
detail	in	the	section	"Many-to-Many	-	n:n	Association".

Many-to-Many	–	n:n	Association

Up	 to	 now,	 we	 have	 always	 associated	 a	 database	 table	 directly	 with	 another
table.	 For	 many-to-many,	 we	 will	 associate	 two	 tables	 via	 a	 third	 table.	 As
example	for	this	kind	of	relation,	we	use	an	order	in	a	very	basic	online	shop.	In
this	type	of	shop	system,	a	Product	can	appear	in	several	orders	(Order)	and

at	 the	 same	 time	 an	 order	 can	 contain	 several	 products.	This	 is	 referred	 to	 as
many-to-many.	Let’s	recreate	this	scenario	with	code.

Preparation
Create	the	shop	application:

$	rails	new	shop

		[...]

$	cd	shop

A	model	for	products:

$	rails	generate	model	product	name	'price:decimal{7,2}'

		[...]

$

A	model	for	an	order:

$	rails	generate	model	order	delivery_address

		[...]

$

And	a	model	for	individual	items	of	an	order:

$	rails	generate	model	line_item	order:references	product:references

quantity:integer

		[...]

$

Then,	create	the	database:

$	rails	db:migrate

		[...]

$

The	Association
An	order	(Order)	consists	of	one	or	several	items	(LineItem).	This	LineItem

consists	 of	 the	order_id,	 a	product_id	 and	 the	number	of	 items	ordered

(quantity).	 The	 individual	 product	 is	 defined	 in	 the	 product	 database

(Product).

Associating	the	models	happens	as	always	in	the	directory	app/models.	First,

in	the	file	app/models/order.rb:

Listing	15.	app/models/order.rb

class	Order	<	ApplicationRecord

		has_many	:line_items

		has_many	:products,	through:	:line_items

end

Then	in	the	counterpart	in	the	file	app/models/product.rb:

Listing	16.	app/models/product.rb

class	Product	<	ApplicationRecord

		has_many	:line_items

		has_many	:orders,	through:	:line_items

end

The	file	app/models/line_item.rb:	has	been	filled	by	the	generator:

Listing	17.	app/models/line_item.rb

class	LineItem	<	ApplicationRecord

		belongs_to	:order

		belongs_to	:product

end

The	Association	Works	Transparent
As	we	 implement	 the	associations	via	has_many,	most	 things	will	already	be

familiar	 to	 you	 from	 the	 section	"has_many	 -	 1:n	Association".	 I	 am	going	 to
discuss	 a	 few	 examples.	 For	 more	 details,	 see	 the	 section	"has_many	 -	 1:n
Association".

First	we	populate	our	product	database	with	the	following	values:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	milk	=	Product.create(name:	'Milk	(1	liter)',	price:	0.45)

			(0.4ms)		begin	transaction

		SQL	(0.7ms)		INSERT	INTO	"products"	("name",	"price",	

"created_at",

		"updated_at")	VALUES	(?,	?,	?,	?)		[["name",	"Milk	(1	liter)"],	

["price",

		0.45],	["created_at",	"2015-12-17	11:46:22.832375"],	

["updated_at",

		"2015-12-17	11:46:22.832375"]]

			(0.9ms)		commit	transaction

=>	#<Product	id:	1,	name:	"Milk	(1	liter)",	price:

#<BigDecimal:7fa8249f0aa0,'0.45E0',9(27)>,	created_at:	"2015-12-17	

11:46:22",

updated_at:	"2015-12-17	11:46:22">

>>	butter	=	Product.create(name:	'Butter	(250	gr)',	price:	0.75)

			(0.1ms)		begin	transaction

		SQL	(1.3ms)		INSERT	INTO	"products"	("name",	"price",	

"created_at",

		"updated_at")	VALUES	(?,	?,	?,	?)		[["name",	"Butter	(250	gr)"],	

["price",

		0.75],	["created_at",	"2015-12-17	11:46:34.798486"],	

["updated_at",

		"2015-12-17	11:46:34.798486"]]

			(9.1ms)		commit	transaction

=>	#<Product	id:	2,	name:	"Butter	(250	gr)",	price:

#<BigDecimal:7fa823d42fb0,'0.75E0',9(27)>,	created_at:	"2015-12-17	

11:46:34",

updated_at:	"2015-12-17	11:46:34">

>>	flour	=	Product.create(name:	'Flour	(1	kg)',	price:	0.45)

			(0.1ms)		begin	transaction

		SQL	(0.5ms)		INSERT	INTO	"products"	("name",	"price",	

"created_at",

		"updated_at")	VALUES	(?,	?,	?,	?)		[["name",	"Flour	(1	kg)"],	

["price",

		0.45],	["created_at",	"2015-12-17	11:46:42.711399"],	

["updated_at",

		"2015-12-17	11:46:42.711399"]]

			(9.1ms)		commit	transaction

=>	#<Product	id:	3,	name:	"Flour	(1	kg)",	price:

#<BigDecimal:7fa823d200c8,'0.45E0',9(27)>,	created_at:	"2015-12-17	

11:46:42",

updated_at:	"2015-12-17	11:46:42">

Now	we	create	a	new	Order	object	with	the	name	order:

>>	order	=	Order.new(delivery_address:	'123	Acme	Street,	ACME	STATE	

12345')

=>	#<Order	id:	nil,	delivery_address:	"123	Acme	Street,	ACME	STATE	

12345",

created_at:	nil,	updated_at:	nil>

Logically,	this	new	order	does	not	yet	contain	any	products:

>>	order.products.count

=>	0

As	often,	 there	 are	 several	ways	of	 adding	products	 to	 the	order.	The	 simplest
way:	 as	 the	 products	 are	 integrated	 as	 array,	 you	 can	 simply	 insert	 them	 as
elements	of	an	array:

>>	order.products	<<	milk

=>	<ActiveRecord::Associations::CollectionProxy	[<Product	id:	1,	

name:	"Milk

(1	liter)",	price:	#<BigDecimal:7fa8249f0aa0,'0.45E0',9(27)>,	

created_at:

"2015-12-17	11:46:22",	updated_at:	"2015-12-17	11:46:22">]>

But	if	the	customer	wants	to	buy	three	liters	of	milk	instead	of	one	liter,	we	need
to	enter	it	in	the	LineItem	(in	the	linking	element)	table.	ActiveRecord	already

build	an	object	for	us:

>>	order.line_items

=>	<ActiveRecord::Associations::CollectionProxy	[<LineItem	id:	nil,

order_id:	nil,	product_id:	1,	quantity:	nil,	created_at:	nil,	

updated_at:

nil>]>

But	the	object	is	not	yet	saved	in	the	database.	After	we	do	this	via	save,	we	can
change	the	quantity	in	the	LineItem	object:

>>	order.save

			(0.1ms)		begin	transaction

		SQL	(0.6ms)		INSERT	INTO	"orders"	("delivery_address",	

"created_at",

		"updated_at")	VALUES	(?,	?,	?)		[["delivery_address",	"123	Acme	

Street,	ACME

		STATE	12345"],	["created_at",	"2015-12-17	11:49:43.968385"],	

["updated_at",

		"2015-12-17	11:49:43.968385"]]

		SQL	(0.3ms)		INSERT	INTO	"line_items"	("product_id",	"order_id",

		"created_at",	"updated_at")	VALUES	(?,	?,	?,	?)		[["product_id",	

1],

		["order_id",	1],	["created_at",	"2015-12-17	11:49:43.971970"],

		["updated_at",	"2015-12-17	11:49:43.971970"]]

			(9.2ms)		commit	transaction

=>	true

>>	order.line_items.first.update_attributes(quantity:	3)

			(0.1ms)		begin	transaction

		SQL	(0.4ms)		UPDATE	"line_items"	SET	"quantity"	=	?,	"updated_at"	

=	?	WHERE

		"line_items"."id"	=	?		[["quantity",	3],	["updated_at",	"2015-12-

17

		11:49:53.529842"],	["id",	1]]

			(9.2ms)		commit	transaction

=>	true

Alternatively,	we	can	also	buy	butter	twice	directly	by	adding	a	LineItem:

>>	order.line_items.create(product_id:	butter.id,	quantity:	2)

			(0.1ms)		begin	transaction

		SQL	(0.5ms)		INSERT	INTO	"line_items"	("product_id",	"quantity",	

"order_id",

		"created_at",	"updated_at")	VALUES	(?,	?,	?,	?,	?)		

[["product_id",	2],

		["quantity",	2],	["order_id",	1],	["created_at",	"2015-12-17

		11:50:26.181117"],	["updated_at",	"2015-12-17	11:50:26.181117"]]

			(8.3ms)		commit	transaction

=>	#<LineItem	id:	2,	order_id:	1,	product_id:	2,	quantity:	2,	

created_at:

"2015-12-17	11:50:26",	updated_at:	"2015-12-17	11:50:26">

When	 creating	 a	line_item	 we	 bypass	 the	has_many:	 …		 :through	 …		 logic.	 The
database	table	contains	all	the	correct	information	but	order	hasn’t	been	updated:

>>	order.products

=>	<ActiveRecord::Associations::CollectionProxy	[<Product	

id:	1,	name:

"Milk	(1	liter)",	price:	#

<BigDecimal:7fa8249f0aa0,'0.45E0',9(27)>,

created_at:	"2015-12-17	11:46:22",	updated_at:	"2015-12-17	

11:46:22">]>

But	in	the	database	table,	it	is	of	course	correct:

>>	Order.first.products

			Order	Load	(0.4ms)		SELECT		"orders".*	FROM	"orders"		

ORDER	BY

			"orders"."id"	ASC	LIMIT	1

			Product	Load	(0.3ms)		SELECT	"products".*	FROM	

"products"	INNER	JOIN

			"line_items"	ON	"products"."id"	=	

"line_items"."product_id"	WHERE

			"line_items"."order_id"	=	?		[["order_id",	1]]

=>	<ActiveRecord::Associations::CollectionProxy	[<Product	

id:	1,	name:

"Milk	(1	liter)",	price:	#

<BigDecimal:7fa82824a630,'0.45E0',9(27)>,

created_at:	"2015-12-17	11:46:22",	updated_at:	"2015-12-17	

11:46:22">,

#<Product	id:	2,	name:	"Butter	(250	gr)",	price:

#<BigDecimal:7fa8282496e0,'0.75E0',9(27)>,	created_at:	

"2015-12-17

11:46:34",	updated_at:	"2015-12-17	11:46:34">]>

In	 this	 specific	case,	you	would	need	 to	 reload	 the	object	 from	 the	database	via	 the	method
reload:

>>	order.reload

		Order	Load	(0.4ms)		SELECT		"orders".*	FROM	"orders"	

WHERE

		"orders"."id"	=	?	LIMIT	1		[["id",	1]]

=>	<Order	id:	1,	delivery_address:	"123	Acme	Street,	ACME	

STATE	12345",

created_at:	"2015-12-17	11:49:43",	updated_at:	"2015-12-17	

11:49:43">

>>	order.products

		Product	Load	(0.2ms)		SELECT	"products".*	FROM	"products"	

INNER	JOIN

		"line_items"	ON	"products"."id"	=	

"line_items"."product_id"	WHERE

		"line_items"."order_id"	=	?		[["order_id",	1]]

=>	#<ActiveRecord::Associations::CollectionProxy	[<Product	

id:	1,	name:

"Milk	(1	liter)",	price:	#

<BigDecimal:7fa828229ef8,'0.45E0',9(27)>,

created_at:	"2015-12-17	11:46:22",	updated_at:	"2015-12-17	

11:46:22">,

#<Product	id:	2,	name:	"Butter	(250	gr)",	price:

#<BigDecimal:7fa8282289e0,'0.75E0',9(27)>,	created_at:	

"2015-12-17

11:46:34",	updated_at:	"2015-12-17	11:46:34">]>

Let’s	enter	a	second	order	with	all	available	products	into	the	system:

>>	order2	=	Order.create(delivery_address:	'2,	Test	Road')

			(0.2ms)		begin	transaction

		SQL	(0.4ms)		INSERT	INTO	"orders"	("delivery_address",	

"created_at",

		"updated_at")	VALUES	(?,	?,	?)		[["delivery_address",	"2,	Test	

Road"],

		["created_at",	"2015-12-17	11:55:08.141811"],	["updated_at",	

"2015-12-17

		11:55:08.141811"]]

			(9.0ms)		commit	transaction

=>	<Order	id:	2,	delivery_address:	"2,	Test	Road",	created_at:	

"2015-12-17

11:55:08",	updated_at:	"2015-12-17	11:55:08">

>>	order2.products	<<	Product.all

		Product	Load	(0.3ms)		SELECT	"products".*	FROM	"products"

			(0.1ms)		begin	transaction

		SQL	(0.4ms)		INSERT	INTO	"line_items"	("order_id",	"product_id",	

"created_at",

		[...]

		SQL	(0.1ms)		INSERT	INTO	"line_items"	("order_id",	"product_id",	

"created_at",

		[...]

		SQL	(0.1ms)		INSERT	INTO	"line_items"	("order_id",	"product_id",	

"created_at",

		[...]

			(8.4ms)		commit	transaction

		Product	Load	(0.2ms)		SELECT	"products".*	FROM	"products"	INNER	

JOIN

		"line_items"	ON	"products"."id"	=	"line_items"."product_id"	WHERE

		"line_items"."order_id"	=	?		[["order_id",	2]]

=>	#<ActiveRecord::Associations::CollectionProxy	[<Product	id:	1,	

name:	"Milk

(1	liter)",	price:	#<BigDecimal:7fa8289189d0,'0.45E0',9(27)>,	

created_at:

"2015-12-17	11:46:22",	updated_at:	"2015-12-17	11:46:22">,	#<Product	

id:	2,

name:	"Butter	(250	gr)",	price:	#

<BigDecimal:7fa828912030,'0.75E0',9(27)>,

created_at:	"2015-12-17	11:46:34",	updated_at:	"2015-12-17	

11:46:34">,

#<Product	id:	3,	name:	"Flour	(1	kg)",	price:

#<BigDecimal:7fa82890ba78,'0.45E0',9(27)>,	created_at:	"2015-12-17	

11:46:42",

updated_at:	"2015-12-17	11:46:42">]>

>>	order.save

			(0.1ms)		begin	transaction

			(0.1ms)		commit	transaction

=>	true

Now	we	 can	 try	 out	 the	 opposite	 direction	 of	 this	 many-to-many	 association.
Let’s	search	for	all	orders	that	contain	the	first	product:

>>	Product.first.orders

		Product	Load	(0.1ms)		SELECT		"products".*	FROM	"products"		ORDER	

BY

		"products"."id"	ASC	LIMIT	1

		Order	Load	(0.2ms)		SELECT	"orders".*	FROM	"orders"	INNER	JOIN	

"line_items"

		ON	"orders"."id"	=	"line_items"."order_id"	WHERE	

"line_items"."product_id"	=

		?		[["product_id",	1]]

=>	<ActiveRecord::Associations::CollectionProxy	[<Order	id:	1,

delivery_address:	"123	Acme	Street,	ACME	STATE	12345",	created_at:	

"2015-12-17

11:49:43",	updated_at:	"2015-12-17	11:49:43">,	#<Order	id:	2,

delivery_address:	"2,	Test	Road",	created_at:	"2015-12-17	11:55:08",

updated_at:	"2015-12-17	11:55:08">]>

Of	course,	we	can	also	work	with	a	joins	(see	"joins")	and	search	for	all	orders

that	contain	the	product	"Milk	(1	liter)":

>>	Order.joins(:products).where(:products	=>	{name:	'Milk	(1	

liter)'})

		Order	Load	(0.4ms)		SELECT	"orders".*	FROM	"orders"	INNER	JOIN	

"line_items"

		ON	"line_items"."order_id"	=	"orders"."id"	INNER	JOIN	"products"	

ON

		"products"."id"	=	"line_items"."product_id"	WHERE	

"products"."name"	=	?

		[["name",	"Milk	(1	liter)"]]

=>	<ActiveRecord::Relation	[<Order	id:	1,	delivery_address:	"123	

Acme

Street,	ACME	STATE	12345",	created_at:	"2015-12-17	11:49:43",	

updated_at:

"2015-12-17	11:49:43">,	#<Order	id:	2,	delivery_address:	"2,	Test	

Road",

created_at:	"2015-12-17	11:55:08",	updated_at:	"2015-12-17	

11:55:08">]>

has_one	–	1:1	Association

Similar	 to	has_many	 (see	 xref:#has95many-1n-association["has_many	 -	 1:n

Association"]),	the	method	has_one	also	creates	a	logical	relation	between	two

models.	But	 in	contrast	 to	has_many,	one	record	is	only	ever	associated	with

exactly	one	other	record	in	has_one.	In	most	practical	cases	of	application,	it

logically	makes	 sense	 to	put	both	 into	 the	 same	model	 and	 therefore	 the	 same
database	table,	but	for	the	sake	of	completeness	I	also	want	to	discuss	`has_one
here.

You	can	probably	safely	skip	has_one	without	losing	any	sleep.

In	the	examples,	I	assume	that	you	have	already	read	and	understood	the	section
"has_many	 -	1:n	Association".	 I	 am	not	 going	 to	 explain	methods	 like	build

(see	"build")	again	but	assume	that	you	already	know	the	basics.

Preparation
We	 use	 the	 example	 from	 the	 Rails	 documentation	 (see
http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html)
and	create	an	application	containing	employees	and	offices.	Each	employee	has
an	office.	First	the	application:

$	rails	new	office-space

		[...]

$	cd	office-space

$

http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html

And	now	the	two	models:

$	rails	generate	model	employee	last_name

		[...]

$	rails	generate	model	office	location	employee_id:integer

		[...]

$	rails	db:migrate

		[...]

$

Association
The	association	in	the	file	app/models/employee.rb:

Listing	18.	app/models/employee.rb

class	Employee	<	ApplicationRecord

		has_one	:office

end

And	its	counterpart	in	the	file	app/models/office.rb:

Listing	19.	app/models/office.rb

class	Office	<	ApplicationRecord

		belongs_to	:employee

end

Options

The	 options	 of	has_one	 are	 similar	 to	 those	 of	has_many.	 So	 for	 details,

please	 refer	 to	"Options"	 or
http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html#method-
i-has_one.

Console	Examples

http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html#method-i-has_one

Let’s	start	the	console	and	create	two	employees:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Employee.create(last_name:	'Udelhoven')

			(0.1ms)		begin	transaction

		SQL	(0.5ms)		INSERT	INTO	"employees"	("last_name",	"created_at",

		"updated_at")	VALUES	(?,	?,	?)		[["last_name",	"Udelhoven"],	

["created_at",

		"2015-12-17	12:23:35.499672"],	["updated_at",	"2015-12-17	

12:23:35.499672"]]

			(0.9ms)		commit	transaction

=>	#<Employee	id:	1,	last_name:	"Udelhoven",	created_at:	"2015-12-17

12:23:35",	updated_at:	"2015-12-17	12:23:35">

>>	Employee.create(last_name:	'Meier')

			(0.1ms)		begin	transaction

		SQL	(0.5ms)		INSERT	INTO	"employees"	("last_name",	"created_at",

		"updated_at")	VALUES	(?,	?,	?)		[["last_name",	"Meier"],	

["created_at",

		"2015-12-17	12:23:49.983219"],	["updated_at",	"2015-12-17	

12:23:49.983219"]]

			(9.5ms)		commit	transaction

=>	#<Employee	id:	2,	last_name:	"Meier",	created_at:	"2015-12-17	

12:23:49",

updated_at:	"2015-12-17	12:23:49">

Now	the	first	employee	gets	his	own	office:

>>	Office.create(location:	'2nd	floor',	employee_id:	

Employee.first.id)

		Employee	Load	(0.3ms)		SELECT		"employees".*	FROM	"employees"		

ORDER	BY

		"employees"."id"	ASC	LIMIT	1

			(0.1ms)		begin	transaction

		SQL	(0.5ms)		INSERT	INTO	"offices"	("location",	"employee_id",	

"created_at",

		"updated_at")	VALUES	(?,	?,	?,	?)		[["location",	"2nd	floor"],

		["employee_id",	1],	["created_at",	"2015-12-17	12:24:30.575972"],

		["updated_at",	"2015-12-17	12:24:30.575972"]]

			(0.8ms)		commit	transaction

=>	#<Office	id:	1,	location:	"2nd	floor",	employee_id:	1,	

created_at:

"2015-12-17	12:24:30",	updated_at:	"2015-12-17	12:24:30">

Both	directions	can	be	accessed	the	normal	way:

>>	Employee.first.office

		Employee	Load	(0.4ms)		SELECT		"employees".*	FROM	"employees"		

ORDER	BY

		"employees"."id"	ASC	LIMIT	1

		Office	Load	(0.3ms)		SELECT		"offices".*	FROM	"offices"	WHERE

		"offices"."employee_id"	=	?	LIMIT	1		[["employee_id",	1]]

=>	#<Office	id:	1,	location:	"2nd	floor",	employee_id:	1,	

created_at:

"2015-12-17	12:24:30",	updated_at:	"2015-12-17	12:24:30">

>>	Office.first.employee

		Office	Load	(0.3ms)		SELECT		"offices".*	FROM	"offices"		ORDER	BY

		"offices"."id"	ASC	LIMIT	1

		Employee	Load	(0.2ms)		SELECT		"employees".*	FROM	"employees"	

WHERE

		"employees"."id"	=	?	LIMIT	1		[["id",	1]]

=>	#<Employee	id:	1,	last_name:	"Udelhoven",	created_at:	"2015-12-17

12:23:35",	updated_at:	"2015-12-17	12:23:35">

For	 the	 second	 employee,	 we	 use	 the	 automatically	 generated	 method
create_office	(with	has_many,	we	would	use	offices.create	here):

>>	Employee.last.create_office(location:	'1st	floor')

		Employee	Load	(0.3ms)		SELECT		"employees".*	FROM	"employees"		

ORDER	BY

		"employees"."id"	DESC	LIMIT	1

			(0.1ms)		begin	transaction

		SQL	(0.4ms)		INSERT	INTO	"offices"	("location",	"employee_id",	

"created_at",

		"updated_at")	VALUES	(?,	?,	?,	?)		[["location",	"1st	floor"],

		["employee_id",	2],	["created_at",	"2015-12-17	12:26:11.291450"],

		["updated_at",	"2015-12-17	12:26:11.291450"]]

			(8.2ms)		commit	transaction

		Office	Load	(0.2ms)		SELECT		"offices".*	FROM	"offices"	WHERE

		"offices"."employee_id"	=	?	LIMIT	1		[["employee_id",	2]]

=>	#<Office	id:	2,	location:	"1st	floor",	employee_id:	2,	

created_at:

"2015-12-17	12:26:11",	updated_at:	"2015-12-17	12:26:11">

Removing	is	intuitively	done	via	destroy:

>>	Employee.first.office.destroy

		Employee	Load	(0.3ms)		SELECT		"employees".*	FROM	"employees"		

ORDER	BY

		"employees"."id"	ASC	LIMIT	1

		Office	Load	(0.1ms)		SELECT		"offices".*	FROM	"offices"	WHERE

		"offices"."employee_id"	=	?	LIMIT	1		[["employee_id",	1]]

			(0.1ms)		begin	transaction

		SQL	(0.4ms)		DELETE	FROM	"offices"	WHERE	"offices"."id"	=	?		

[["id",	1]]

			(9.1ms)		commit	transaction

=>	#<Office	id:	1,	location:	"2nd	floor",	employee_id:	1,	

created_at:

"2015-12-17	12:24:30",	updated_at:	"2015-12-17	12:24:30">

>>	Employee.first.office

		Employee	Load	(0.3ms)		SELECT		"employees".*	FROM	"employees"		

ORDER	BY

		"employees"."id"	ASC	LIMIT	1

		Office	Load	(0.2ms)		SELECT		"offices".*	FROM	"offices"	WHERE

		"offices"."employee_id"	=	?	LIMIT	1		[["employee_id",	1]]

=>	nil

If	you	create	a	new	Office	 for	 an	Employee	with	an	existing	Office	 then	you	will	not

get	an	error	message:

	>>	Employee.last.create_office(location:	'Basement')

			Employee	Load	(0.2ms)		SELECT		"employees".*	FROM	

"employees"		ORDER

			BY	"employees"."id"	DESC	LIMIT	1

				(0.1ms)		begin	transaction

			SQL	(0.4ms)		INSERT	INTO	"offices"	("location",	

"employee_id",

			"created_at",	"updated_at")	VALUES	(?,	?,	?,	?)		

[["location",

			"Basement"],	["employee_id",	2],	["created_at",	"2015-

12-17

			12:27:56.518229"],	["updated_at",	"2015-12-17	

12:27:56.518229"]]

				(9.2ms)		commit	transaction

			Office	Load	(0.2ms)		SELECT		"offices".*	FROM	"offices"	

WHERE

			"offices"."employee_id"	=	?	LIMIT	1		[["employee_id",	

2]]

				(0.1ms)		begin	transaction

			SQL	(0.4ms)		UPDATE	"offices"	SET	"employee_id"	=	?,	

"updated_at"	=	?

			WHERE	"offices"."id"	=	?		[["employee_id",	nil],	

["updated_at",

			"2015-12-17	12:27:56.531948"],	["id",	2]]

				(0.9ms)		commit	transaction

	=>	#<Office	id:	3,	location:	"Basement",	employee_id:	2,	

created_at:

	"2015-12-17	12:27:56",	updated_at:	"2015-12-17	12:27:56">

	>>	Employee.last.office

			Employee	Load	(0.3ms)		SELECT		"employees".*	FROM	

"employees"		ORDER

			BY	"employees"."id"	DESC	LIMIT	1

			Office	Load	(0.1ms)		SELECT		"offices".*	FROM	"offices"	

WHERE

			"offices"."employee_id"	=	?	LIMIT	1		[["employee_id",	

2]]

	=>	#<Office	id:	3,	location:	"Basement",	employee_id:	2,	

created_at:

	"2015-12-17	12:27:56",	updated_at:	"2015-12-17	12:27:56">

The	 old	Office	 is	 even	 still	 in	 the	 database	 (the	employee_id	was	automatically	 set	 to

nil):

	>>	Office.all

			Office	Load	(0.2ms)		SELECT	"offices".*	FROM	"offices"

	=>	<ActiveRecord::Relation	[<Office	id:	2,	location:	"1st	

floor",

	employee_id:	nil,	created_at:	"2015-12-17	12:26:11",	

updated_at:

	"2015-12-17	12:27:56">,	#<Office	id:	3,	location:	

"Basement",

	employee_id:	2,	created_at:	"2015-12-17	12:27:56",	

updated_at:

	"2015-12-17	12:27:56">]>

	>>	exit

has_one	vs.	belongs_to
Both	has_one	 and	belongs_to	 offer	 the	 option	 of	 representing	 a	 1:1

relationship.	 The	 difference	 in	 practice	 is	 in	 the	 programmer’s	 personal
preference	and	the	location	of	the	foreign	key.	In	general,	has_one	tends	to	be

used	very	rarely	and	depends	on	the	degree	of	normalization	of	the	data	schema.

Polymorphic	Associations

Already	the	word	"polymorphic"	will	probably	make	you	tense	up.	What	can	it
mean?	 Here	 is	 what	 the	 website
http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html
tells	us:	“Polymorphic	associations	on	models	are	not	restricted	on	what	types	of
models	they	can	be	associated	with.”	Well,	there	you	go	-	as	clear	as	mud!	;-)

I	am	showing	you	an	example	in	which	we	create	a	model	for	cars	(Car)	and	a

model	for	bicycles	(Bike).	To	describe	a	car	or	bike,	we	use	a	model	to	tag	it

(Tag).	A	car	and	a	bike	can	have	any	number	of	tags.	The	application:

$	rails	new	example

		[...]

$	cd	example

$

Now	the	three	required	models:

$	rails	generate	model	Car	name

		[...]

$	rails	generate	model	Bike	name

		[...]

$	rails	generate	model	Tag	name	taggable:references{polymorphic}

		[...]

$	rails	db:migrate

		[...]

$

Car	 and	Bike	 are	 clear.	 For	Tag	 we	 use	 the	 migration	 shortcut

taggable:references{polymorphic}	 to	 generate	 the	 fields

taggable_type	 and	taggable_id,	 to	 give	ActiveRecord	 an	 opportunity

http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html

to	 save	 the	 assignment	 for	 the	 polymorphic	 association.	 We	 have	 to	 enter	 it
accordingly	in	the	model.

The	 model	 generator	 already	 filed	 the	app/models/tag.rb	 file	 with	 the

configuration	for	the	polymorphic	association:

Listing	20.	app/models/tag.rb

class	Tag	<	ApplicationRecord

		belongs_to	:taggable,	polymorphic:	true

end

For	the	other	models	we	have	to	add	the	polymorphic	association	manually:

Listing	21.	app/models/car.rb

class	Car	<	ApplicationRecord

		has_many	:tags,	as:	:taggable

end

Listing	22.	app/models/bike.rb

class	Bike	<	ApplicationRecord

		has_many	:tags,	as:	:taggable

end

For	Car	 and	Bike	 we	 use	 an	 additional	:as:	:taggable	 when	 defining

has_many.	For	Tag	we	use	belongs_to	:taggable,	polymorphic:

true	to	indicate	the	polymorphic	association	to	ActiveRecord.

The	suffix	“able”	in	the	name	“taggable”	 is	commonly	used	in	Rails,	but	not	obligatory.	For
creating	the	association	we	now	not	only	need	the	ID	of	the	entry,	but	also	need	to	know	which
model	it	actually	is.	So	the	term	“taggable_type”	makes	sense.

Let’s	go	into	the	console	and	create	a	car	and	a	bike:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	beetle	=	Car.create(name:	'Beetle')

			(0.1ms)		begin	transaction

		SQL	(0.8ms)		INSERT	INTO	"cars"	("name",	"created_at",	

"updated_at")	VALUES

		(?,	?,	?)		[["name",	"Beetle"],	["created_at",	"2015-12-17

		13:39:54.793336"],	["updated_at",	"2015-12-17	13:39:54.793336"]]

			(0.8ms)		commit	transaction

=>	#<Car	id:	1,	name:	"Beetle",	created_at:	"2015-12-17	13:39:54",	

updated_at:

"2015-12-17	13:39:54">

>>	mountainbike	=	Bike.create(name:	'Mountainbike')

			(0.1ms)		begin	transaction

		SQL	(0.3ms)		INSERT	INTO	"bikes"	("name",	"created_at",	

"updated_at")	VALUES

		(?,	?,	?)		[["name",	"Mountainbike"],	["created_at",	"2015-12-17

		13:39:55.896512"],	["updated_at",	"2015-12-17	13:39:55.896512"]]

			(9.0ms)		commit	transaction

=>	#<Bike	id:	1,	name:	"Mountainbike",	created_at:	"2015-12-17	

13:39:55",

updated_at:	"2015-12-17	13:39:55">

Now	we	define	for	each	a	tag	with	the	color	of	the	corresponding	object:

>>	beetle.tags.create(name:	'blue')

			(0.1ms)		begin	transaction

		SQL	(1.0ms)		INSERT	INTO	"tags"	("name",	"taggable_id",	

"taggable_type",

		"created_at",	"updated_at")	VALUES	(?,	?,	?,	?,	?)		[["name",	

"blue"],

		["taggable_id",	1],	["taggable_type",	"Car"],	["created_at",	

"2015-12-17

		13:41:04.984444"],	["updated_at",	"2015-12-17	13:41:04.984444"]]

			(0.9ms)		commit	transaction

=>	#<Tag	id:	1,	name:	"blue",	taggable_id:	1,	taggable_type:	"Car",

created_at:	"2015-12-17	13:41:04",	updated_at:	"2015-12-17	

13:41:04">

>>	mountainbike.tags.create(name:	'black')

			(0.1ms)		begin	transaction

		SQL	(0.7ms)		INSERT	INTO	"tags"	("name",	"taggable_id",	

"taggable_type",

		"created_at",	"updated_at")	VALUES	(?,	?,	?,	?,	?)		[["name",	

"black"],

		["taggable_id",	1],	["taggable_type",	"Bike"],	["created_at",	

"2015-12-17

		13:41:17.315318"],	["updated_at",	"2015-12-17	13:41:17.315318"]]

			(8.2ms)		commit	transaction

=>	#<Tag	id:	2,	name:	"black",	taggable_id:	1,	taggable_type:	

"Bike",

created_at:	"2015-12-17	13:41:17",	updated_at:	"2015-12-17	

13:41:17">

For	the	beetle,	we	add	another	Tag:

>>	beetle.tags.create(name:	'Automatic')

			(0.1ms)		begin	transaction

		SQL	(0.4ms)		INSERT	INTO	"tags"	("name",	"taggable_id",	

"taggable_type",

		"created_at",	"updated_at")	VALUES	(?,	?,	?,	?,	?)		[["name",	

"Automatic"],

		["taggable_id",	1],	["taggable_type",	"Car"],	["created_at",	

"2015-12-17

		13:41:51.042746"],	["updated_at",	"2015-12-17	13:41:51.042746"]]

			(9.2ms)		commit	transaction

=>	#<Tag	id:	3,	name:	"Automatic",	taggable_id:	1,	taggable_type:	

"Car",

created_at:	"2015-12-17	13:41:51",	updated_at:	"2015-12-17	

13:41:51">

Let’s	have	a	look	at	all	Tag	items:

>>	Tag.all

		Tag	Load	(0.3ms)		SELECT	"tags".*	FROM	"tags"

=>	<ActiveRecord::Relation	[<Tag	id:	1,	name:	"blue",	taggable_id:	

1,

taggable_type:	"Car",	created_at:	"2015-12-17	13:41:04",	updated_at:

"2015-12-17	13:41:04">,	#<Tag	id:	2,	name:	"black",	taggable_id:	1,

taggable_type:	"Bike",	created_at:	"2015-12-17	13:41:17",	

updated_at:

"2015-12-17	13:41:17">,	#<Tag	id:	3,	name:	"Automatic",	taggable_id:	

1,

taggable_type:	"Car",	created_at:	"2015-12-17	13:41:51",	updated_at:

"2015-12-17	13:41:51">]>

And	now	all	tags	of	the	beetle:

>>	beetle.tags

		Tag	Load	(0.3ms)		SELECT	"tags".*	FROM	"tags"	WHERE	

"tags"."taggable_id"	=	?

		AND	"tags"."taggable_type"	=	?		[["taggable_id",	1],	

["taggable_type",

		"Car"]]

=>	<ActiveRecord::Associations::CollectionProxy	[<Tag	id:	1,	name:	

"blue",

taggable_id:	1,	taggable_type:	"Car",	created_at:	"2015-12-17	

13:41:04",

updated_at:	"2015-12-17	13:41:04">,	#<Tag	id:	3,	name:	"Automatic",

taggable_id:	1,	taggable_type:	"Car",	created_at:	"2015-12-17	

13:41:51",

updated_at:	"2015-12-17	13:41:51">]>

Of	course	you	can	also	check	which	object	the	last	Tag	belongs	to:

>>	Tag.last.taggable

		Tag	Load	(0.3ms)		SELECT		"tags".*	FROM	"tags"		ORDER	BY	

"tags"."id"	DESC

		LIMIT	1

		Car	Load	(0.4ms)		SELECT		"cars".*	FROM	"cars"	WHERE	"cars"."id"	=	

?	LIMIT	1

		[["id",	1]]

=>	#<Car	id:	1,	name:	"Beetle",	created_at:	"2015-12-17	13:39:54",	

updated_at:

"2015-12-17	13:39:54">

>>	exit

Polymorphic	 associations	 are	 always	 useful	 if	 you	 want	 to	 normalize	 the
database	 structure.	 In	 this	 example,	 we	 could	 also	 have	 defined	 a	 model
CarTag	 and	BikeTag,	 but	 as	Tag	 is	 the	 same	 for	 both,	 a	 polymorphic

association	makes	more	sense	in	this	case.

Options
Polymorphic	associations	can	be	configured	with	the	same	options	as	a	normal
xref:#has95many-1n-association[has_many	association].

Delete/Destroy	a	Record

To	remove	a	database	record,	you	can	use	the	methods	destroy	and	delete.

It’s	quite	easy	to	confuse	these	two	terms,	but	they	are	different	and	after	a	while
you	get	used	to	it.

As	an	example,	we	use	the	following	Rails	application:

$	rails	new	bookshelf

		[...]

$	cd	bookshelf

$	rails	generate	model	book	title

		[...]

$	rails	generate	model	author	book:references	first_name	last_name

		[...]

$	rails	db:migrate

		[...]

$

Listing	23.	app/models/book.rb

class	Book	<	ApplicationRecord

		has_many	:authors,	dependent:	:destroy

end

Listing	24.	app/models/author.rb

class	Author	<	ApplicationRecord

		belongs_to	:book

end

destroy
With	destroy	you	can	remove	a	record	and	any	existing	dependencies	are	also

taken	 into	 account	 (see	 for	 example	:dependent	 ⇒	 :destroy	 in	 the

section	"options").	Simply	put:	to	be	on	the	safe	side,	it’s	better	to	use	destroy

because	then	the	Rails	system	does	more	for	you.

Let’s	create	a	record	and	then	destroy	it	again:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	book	=	Book.create(title:	'Homo	faber')

			(0.1ms)		begin	transaction

		SQL	(0.7ms)		INSERT	INTO	"books"	("title",	"created_at",	

"updated_at")

		VALUES	(?,	?,	?)		[["title",	"Homo	faber"],	["created_at",	"2015-

12-17

		13:49:58.092997"],	["updated_at",	"2015-12-17	13:49:58.092997"]]

			(9.0ms)		commit	transaction

=>	#<Book	id:	1,	title:	"Homo	faber",	created_at:	"2015-12-17	

13:49:58",

updated_at:	"2015-12-17	13:49:58">

>>	Book.count

			(0.3ms)		SELECT	COUNT()	FROM	"books"

=>	1

>>	book.destroy

			(0.1ms)		begin	transaction

		Author	Load	(0.1ms)		SELECT	"authors".	FROM	"authors"	WHERE

		"authors"."book_id"	=	?		[["book_id",	1]]

		SQL	(0.3ms)		DELETE	FROM	"books"	WHERE	"books"."id"	=	?		[["id",	

1]]

			(9.0ms)		commit	transaction

=>	#<Book	id:	1,	title:	"Homo	faber",	created_at:	"2015-12-17	

13:49:58",

updated_at:	"2015-12-17	13:49:58">

>>	Book.count

			(0.5ms)		SELECT	COUNT(*)	FROM	"books"

=>	0

As	we	are	using	the	option	dependent:	:destroy	in	the	Book	model,	we

can	also	automatically	remove	all	authors:

>>	Book.create(title:	'Homo	faber').authors.create(first_name:	

'Max',

			last_name:	'Frisch')

			(0.1ms)		begin	transaction

		SQL	(0.4ms)		INSERT	INTO	"books"	("title",	"created_at",	

"updated_at")

		VALUES	(?,	?,	?)		[["title",	"Homo	faber"],	["created_at",	"2015-

12-17

		13:50:43.062148"],	["updated_at",	"2015-12-17	13:50:43.062148"]]

			(9.1ms)		commit	transaction

			(0.1ms)		begin	transaction

		SQL	(0.3ms)		INSERT	INTO	"authors"	("first_name",	"last_name",	

"book_id",

		"created_at",	"updated_at")	VALUES	(?,	?,	?,	?,	?)		

[["first_name",	"Max"],

		["last_name",	"Frisch"],	["book_id",	2],	["created_at",	"2015-12-

17

		13:50:43.083211"],	["updated_at",	"2015-12-17	13:50:43.083211"]]

			(0.9ms)		commit	transaction

=>	#<Author	id:	1,	book_id:	2,	first_name:	"Max",	last_name:	

"Frisch",

created_at:	"2015-12-17	13:50:43",	updated_at:	"2015-12-17	

13:50:43">

>>	Author.count

			(0.2ms)		SELECT	COUNT()	FROM	"authors"

=>	1

>>	Book.first.destroy

		Book	Load	(0.3ms)		SELECT		"books".	FROM	"books"		ORDER	BY	

"books"."id"	ASC

		LIMIT	1

			(0.1ms)		begin	transaction

		Author	Load	(0.1ms)		SELECT	"authors".*	FROM	"authors"	WHERE

		"authors"."book_id"	=	?		[["book_id",	2]]

		SQL	(0.3ms)		DELETE	FROM	"authors"	WHERE	"authors"."id"	=	?		

[["id",	1]]

		SQL	(0.1ms)		DELETE	FROM	"books"	WHERE	"books"."id"	=	?		[["id",	

2]]

			(9.1ms)		commit	transaction

=>	#<Book	id:	2,	title:	"Homo	faber",	created_at:	"2015-12-17	

13:50:43",

updated_at:	"2015-12-17	13:50:43">

>>	Author.count

			(0.2ms)		SELECT	COUNT(*)	FROM	"authors"

=>	0

When	 removing	 records,	 please	 always	 consider	 the	 difference	 between	 the
content	of	the	database	table	and	the	value	of	the	currently	removed	object.	The
instance	 is	frozen	 after	 removing	 the	 database	 field.	 So	 it	 is	 no	 longer	 in	 the
database,	but	still	present	in	the	program,	yet	it	can	no	longer	be	modified	there.
It	is	read-only.	To	check,	you	can	use	the	method	frozen?:

>>	book	=	Book.create(title:	'Homo	faber')

			(0.2ms)		begin	transaction

		SQL	(0.5ms)		INSERT	INTO	"books"	("title",	"created_at",	

"updated_at")

		VALUES	(?,	?,	?)		[["title",	"Homo	faber"],	["created_at",	"2015-

12-17

		13:51:41.460050"],	["updated_at",	"2015-12-17	13:51:41.460050"]]

			(8.9ms)		commit	transaction

=>	#<Book	id:	3,	title:	"Homo	faber",	created_at:	"2015-12-17	

13:51:41",

updated_at:	"2015-12-17	13:51:41">

>>	book.destroy

			(0.1ms)		begin	transaction

		Author	Load	(0.2ms)		SELECT	"authors".*	FROM	"authors"	WHERE

		"authors"."book_id"	=	?		[["book_id",	3]]

		SQL	(0.5ms)		DELETE	FROM	"books"	WHERE	"books"."id"	=	?		[["id",	

3]]

			(9.2ms)		commit	transaction

=>	#<Book	id:	3,	title:	"Homo	faber",	created_at:	"2015-12-17	

13:51:41",

updated_at:	"2015-12-17	13:51:41">

>>	Book.count

			(0.2ms)		SELECT	COUNT(*)	FROM	"books"

=>	0

>>	book

=>	#<Book	id:	3,	title:	"Homo	faber",	created_at:	"2015-12-17	

13:51:41",

updated_at:	"2015-12-17	13:51:41">

>>	book.frozen?

=>	true

The	record	has	been	removed	from	the	database,	but	the	object	with	all	its	data	is
still	 present	 in	 the	 running	Ruby	 program.	 So	 could	we	 then	 revive	 the	 entire
record?	The	answer	is	yes,	but	it	will	then	be	a	new	record:

>>	Book.create(title:	book.title)

			(0.1ms)		begin	transaction

		SQL	(0.3ms)		INSERT	INTO	"books"	("title",	"created_at",	

"updated_at")

		VALUES	(?,	?,	?)		[["title",	"Homo	faber"],	["created_at",	"2015-

12-17

		13:52:51.438501"],	["updated_at",	"2015-12-17	13:52:51.438501"]]

			(8.7ms)		commit	transaction

=>	#<Book	id:	4,	title:	"Homo	faber",	created_at:	"2015-12-17	

13:52:51",

updated_at:	"2015-12-17	13:52:51">

>>	exit

delete
With	delete	 you	 can	 remove	 a	 record	 directly	 from	 the	 database.	 Any

dependencies	 to	 other	 records	 in	 the	model	 are	 not	 taken	 into	 account.	 The
method	delete	only	deletes	that	one	row	in	the	database	and	nothing	else.

Let’s	create	a	book	with	one	author	and	then	remove	the	book	with	delete:

$	rails	db:reset

		[...]

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Book.create(title:	'Homo	faber').authors.create(first_name:	

'Max',

			last_name:	'Frisch')

			(0.5ms)		begin	transaction

			[...]

			(0.8ms)		commit	transaction

=>	#<Author	id:	1,	book_id:	1,	first_name:	"Max",	last_name:	

"Frisch",

created_at:	"2015-12-17	13:54:46",	updated_at:	"2015-12-17	

13:54:46">

>>	Author.count

			(0.2ms)		SELECT	COUNT()	FROM	"authors"

=>	1

>>	Book.last.delete

		Book	Load	(0.2ms)		SELECT		"books".	FROM	"books"		ORDER	BY	

"books"."id"

		DESC	LIMIT	1

		SQL	(1.5ms)		DELETE	FROM	"books"	WHERE	"books"."id"	=	?		[["id",	

1]]

=>	#<Book	id:	1,	title:	"Homo	faber",	created_at:	"2015-12-17	

13:54:46",

updated_at:	"2015-12-17	13:54:46">

>>	Author.count

			(0.2ms)		SELECT	COUNT()	FROM	"authors"

=>	1

>>	Book.count

			(0.2ms)		SELECT	COUNT()	FROM	"books"

=>	0

>>	exit

The	 record	 of	 the	 book	 'Homo	 faber'	 is	 deleted,	 but	 the	 author	 is	 still	 in	 the
database.

As	 with	destroy,	 an	 object	 also	 gets	 frozen	 when	 you	 use	delete	 (see

"destroy").	The	record	is	already	removed	from	the	database,	but	the	object	itself
is	still	there.

Transactions

In	 the	 world	 of	 databases,	 the	 term	 transaction	 refers	 to	 a	 block	 of	 SQL
statements	 that	must	be	 executed	 together	 and	without	 interruption.	 If	 an	 error
should	occur	within	the	transaction,	the	database	is	reset	 to	the	state	before	the
start	of	the	transaction.

Now	 and	 again,	 there	 are	 areas	 of	 application	 where	 you	 need	 to	 carry	 out	 a
database	 transaction.	 The	 classic	 example	 is	 transferring	 money	 from	 one
account	to	another.	That	only	makes	sense	if	both	actions	(debiting	one	account
and	crediting	the	recipient’s	account)	are	executed.

A	transaction	follows	this	pattern:

ApplicationRecord.transaction	do

		Book.create(:title	=>	'A')

		Book.create(:title	=>	'B')

		Book.create(:title	=>	'C').authors.create(:last_name	=>	'Z')

end

Transactions	are	a	complex	topic.	If	you	want	to	find	out	more,	you	can	consult
the	 ri	 help	 on	 the	 shell	 via	ri

ActiveRecord::Transactions::ClassMethods.

The	methods	save	and	destroy	are	automatically	executed	within	the	transaction	wrapper.

That	way,	Rails	ensures	that	no	undefined	state	can	arise	for	these	two	methods.

Transactions	are	not	natively	supported	by	all	databases.	In	that	case,	the	code	will	still	work,
but	you	no	longer	have	the	security	of	the	transaction.

Scopes

When	 programming	 Rails	 applications,	 it	 is	 sometimes	 clearer	 and	 simpler	 to
define	frequent	searches	as	separate	methods.	In	Rails	speak,	these	are	referred
to	as	NamedScope.	These	NamedScopes	can	be	chained,	just	like	other	methods.

Preparation
We	build	a	little	online	shop:

$	rails	new	shop

		[...]

$	cd	shop

$	rails	generate	model	product	name	'price:decimal{7,2}'	

weight:integer

		in_stock:boolean	expiration_date:date

		[...]

$	rails	db:migrate

		[...]

$

Please	populate	the	file	db/seeds.rb	with	the	following	content:

Listing	25.	db/seeds.rb

Product.create(name:	'Milk	(1	liter)',	weight:	1000,	in_stock:	true,	

price:

0.45,	expiration_date:	Date.today	+	14.days)

Product.create(name:	'Butter	(250	g)',	weight:	250,	in_stock:	true,	

price:

0.75,	expiration_date:	Date.today	+	14.days)

Product.create(name:	'Flour	(1	kg)',	weight:	1000,	in_stock:	false,	

price:

0.45,	expiration_date:	Date.today	+	100.days)

Product.create(name:	'Jelly	Babies	(6	x	300	g)',	weight:	1500,	

in_stock:	true,

price:	4.96,	expiration_date:	Date.today	+	1.year)

Product.create(name:	'Super-Duper	Cake	Mix',	in_stock:	true,	price:	

11.12,

expiration_date:	Date.today	+	1.year)

Product.create(name:	'Eggs	(12)',	in_stock:	true,	price:	2,	

expiration_date:

Date.today	+	7.days)

Product.create(name:	'Peanuts	(8	x	200	g	bag)',	in_stock:	false,	

weight:	1600,

price:	17.49,	expiration_date:	Date.today	+	1.year)

Now	drop	the	database	and	repopulate	it	with	the	db/seeds.rb:

$	rails	db:reset

		[...]

$

Defining	a	Scope
If	we	want	to	count	products	that	are	in	stock	in	our	online	shop,	then	we	can	use
the	following	query	each	time:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Product.where(in_stock:	true).count

			(0.1ms)		SELECT	COUNT(*)	FROM	"products"	WHERE	

"products"."in_stock"	=	't'

=>	5

>>	exit

But	 we	 could	 also	 define	 a	 NamedScope	available	 in	 the

app/models/product.rb:

Listing	26.	app/models/product.rb

class	Product	<	ApplicationRecord

		scope	:available,	->	{	where(in_stock:	true)	}

end

And	then	use	it:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Product.available.count

			(0.1ms)		SELECT	COUNT(*)	FROM	"products"	WHERE	

"products"."in_stock"	=	't'

=>	5

>>	exit

Let’s	 define	 a	 second	 NamedScope	 for	 this	 example	 in	 the
app/models/product.rb:

Listing	27.	app/models/product.rb

class	Product	<	ApplicationRecord

		scope	:available,	->	{	where(in_stock:	true)	}

		scope	:cheap,	->	{	where(price:	0..1)	}

end

Now	we	can	chain	both	named	 scopes	 to	output	 all	 cheap	products	 that	 are	 in
stock:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Product.cheap.count

			(0.3ms)		SELECT	COUNT()	FROM	"products"	WHERE	("products"."price"	

BETWEEN

			0	AND	1)

=>	3

>>	Product.cheap.available.count

			(0.3ms)		SELECT	COUNT()	FROM	"products"	WHERE	("products"."price"	

BETWEEN

			0	AND	1)	AND	"products"."in_stock"	=	't'

=>	2

>>	exit

Passing	in	Arguments
If	 you	 need	 a	 NamedScope	 that	 can	 also	 process	 parameters,	 then	 that	 is	 no
problem	 either.	The	 following	 example	 outputs	 products	 that	 are	 cheaper	 than
the	specified	value.	The	app/models/product.rb	looks	like	this:

Listing	28.	app/models/product.rb

class	Product	<	ApplicationRecord

		scope	:cheaper_than,	->(price)	{	where("price	<	?",	price)	}

end

Now	we	can	count	all	products	that	cost	less	than	50	cent:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Product.cheaper_than(0.5).count

			(0.2ms)		SELECT	COUNT(*)	FROM	"products"	WHERE	(price	<	0.5)

=>	2

>>	exit

Creating	New	Records	with	Scopes
Let’s	use	the	following	app/models/product.rb:

Listing	29.	app/models/product.rb

class	Product	<	ApplicationRecord

		scope	:available,	->	{	where(in_stock:	true)	}

end

With	 this	NamedScope	we	can	not	only	 find	all	products	 that	are	 in	stock,	but
also	create	new	products	that	contain	the	value	true	in	the	field	in_stock:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	product	=	Product.available.build

=>	#<Product	id:	nil,	name:	nil,	price:	nil,	weight:	nil,	in_stock:	

true,

expiration_date:	nil,	created_at:	nil,	updated_at:	nil>

>>	product.in_stock

=>	true

>>	exit

This	works	with	the	method	build	(see	"build")	and	create	(see	"create").

Validation

Non-valid	 records	 are	 frequently	 a	 source	 of	 errors	 in	 programs.	 With
validates,	Rails	offers	a	quick	and	easy	way	of	validating	 them.	That	way

you	 can	 be	 sure	 that	 only	 meaningful	 records	 will	 find	 their	 way	 into	 your
database.

Preparation
Let’s	create	a	new	application	for	this	chapter:

$	rails	new	shop

		[...]

$	cd	shop

$	rails	generate	model	product	name	'price:decimal{7,2}'	

weight:integer

		in_stock:boolean	expiration_date:date

		[...]

$	rails	db:migrate

		[...]

$

The	Basic	Idea
For	each	model,	there	is	a	matching	model	file	in	the	directory	app/models/.

In	 this	 Ruby	 code,	 we	 can	 not	 only	 define	 database	 dependencies,	 but	 also
implement	 all	 validations.	The	 advantage:	 Every	 programmer	 knows	where	 to
find	it.

Without	 any	 validation,	 we	 can	 create	 an	 empty	 record	 in	 a	 model	 without	 a
problem:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	product	=	Product.create

[...]

=>	#<Product	id:	1,	name:	nil,	price:	nil,	weight:	nil,	in_stock:	

nil,	expiration_date:	nil,	created_at:	"2016-01-21	13:18:31",	

updated_at:	"2016-01-21	13:18:31">

>>	exit

But	in	practice,	this	record	with	no	content	doesn’t	make	any	sense.	A	Product

needs	 to	 have	 a	name	 and	 a	price.	That’s	why	we	can	define	validations	 in

ActiveRecord.	Then	 you	 can	 ensure	 as	 programmer	 that	 only	 records	 that	 are
valid	for	you	are	saved	in	your	database.

To	make	the	mechanism	easier	to	understand,	I	am	going	to	jump	ahead	a	bit	and
use	 the	presence	helper.	Please	fill	your	app/models/product.rb	with

the	following	content:

Listing	30.	app/models/product.rb

class	Product	<	ApplicationRecord

		validates	:name,

												presence:	true

		validates	:price,

												presence:	true

end

Now	we	try	again	to	create	an	empty	record	in	the	console:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	product	=	Product.create

			(0.1ms)		begin	transaction

			(0.1ms)		rollback	transaction

=>	#<Product	id:	nil,	name:	nil,	price:	nil,	weight:	nil,	in_stock:	

nil,

expiration_date:	nil,	created_at:	nil,	updated_at:	nil>

Watch	out	 for	 the	rollback	transaction	part	and	 the	missing	id	of	the

Product	object!	Rails	began	 the	 transaction	of	creating	a	new	record	but	 for

some	reason	it	couldn’t	do	it.	So	it	had	to	rollback	the	transaction.	The	validation
method	 intervened	 before	 the	 record	was	 saved.	 So	 validating	 happens	 before
saving.

Can	 we	 access	 the	 errors?	 Yes,	 via	 the	 method	errors	 or	 with

errors.messages	we	can	look	at	the	errors	that	occurred:

>>	product.errors

=>	<ActiveModel::Errors:0x007ff515a71680	@base=<Product	id:	nil,	

name:	nil,

price:	nil,	weight:	nil,	in_stock:	nil,	expiration_date:	nil,	

created_at:	nil,

updated_at:	nil>,	@messages={:name=>["can't	be	blank"],	:price=>

["can't	be

blank"]}>

>>	product.errors.messages

=>	{:name=>["can't	be	blank"],	:price=>["can't	be	blank"]}

This	error	message	was	defined	for	a	human	and	English-speaking	user.

Only	once	we	assign	a	value	to	the	attributes	name	and	price,	we	can	save	the

object:

>>	product.name	=	'Milk	(1	liter)'

=>	"Milk	(1	liter)"

>>	product.price	=	0.45

=>	0.45

>>	product.save

			(0.1ms)		begin	transaction

		SQL	(0.5ms)		INSERT	INTO	"products"	("name",	"price",	

"created_at",

		"updated_at")	VALUES	(?,	?,	?,	?)		[["name",	"Milk	(1	liter)"],	

["price",

		0.45],	["created_at",	"2015-12-17	17:59:09.293831"],	

["updated_at",

		"2015-12-17	17:59:09.293831"]]

			(9.0ms)		commit	transaction

=>	true

valid?

The	method	valid?	indicates	in	boolean	form	if	an	object	is	valid.	So	you	can

check	the	validity	already	before	you	save:

>>	product	=	Product.new

=>	#<Product	id:	nil,	name:	nil,	price:	nil,	weight:	nil,	in_stock:	

nil,

expiration_date:	nil,	created_at:	nil,	updated_at:	nil>

>>	product.valid?

=>	false

save(validate:	false)

As	 so	 often	 in	 life,	 you	 can	 find	 a	 way	 around	 everything.	 If	 you	 pass	 the
parameter	:validate	 ⇒	 false	 to	 the	 method	save,	 the	 data	 of

Validation	is	saved:

>>	product	=	Product.new

=>	#<Product	id:	nil,	name:	nil,	price:	nil,	weight:	nil,	in_stock:	

nil,

expiration_date:	nil,	created_at:	nil,	updated_at:	nil>

>>	product.valid?

=>	false

>>	product.save

			(0.1ms)		begin	transaction

			(0.1ms)		rollback	transaction

=>	false

>>	product.save(validate:	false)

			(0.1ms)		begin	transaction

		SQL	(0.5ms)		INSERT	INTO	"products"	("created_at",	"updated_at")	

VALUES	(?,

		?)		[["created_at",	"2015-12-17	18:01:46.173590"],	["updated_at",

		"2015-12-17	18:01:46.173590"]]

			(9.1ms)		commit	transaction

=>	true

>>	exit

I	assume	that	you	understand	the	problems	involved	here.	Please	only	use	this	option	if	there	is
a	really	good	reason	to	do	so.

presence
In	our	model	product	there	are	a	few	fields	that	must	be	filled	in	in	any	case.

We	can	achieve	this	via	presence.

Listing	31.	app/models/product.rb

class	Product	<	ApplicationRecord

		validates	:name,

												presence:	true

		validates	:price,

												presence:	true

end

If	 we	 try	 to	 create	 an	 empty	 user	 record	 with	 this,	 we	 get	 lots	 of	 validation
errors:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	product	=	Product.create

			(0.1ms)		begin	transaction

			(0.1ms)		rollback	transaction

=>	#<Product	id:	nil,	name:	nil,	price:	nil,	weight:	nil,	in_stock:	

nil,

expiration_date:	nil,	created_at:	nil,	updated_at:	nil>

>>	product.errors.messages

=>	{:name=>["can't	be	blank"],	:price=>["can't	be	blank"]}

Only	once	we	have	entered	all	the	data,	the	record	can	be	saved:

>>	product.name	=	'Milk	(1	liter)'

=>	"Milk	(1	liter)"

>>	product.price	=	0.45

=>	0.45

>>	product.save

			(0.1ms)		begin	transaction

		SQL	(0.6ms)		INSERT	INTO	"products"	("name",	"price",	

"created_at",

		"updated_at")	VALUES	(?,	?,	?,	?)		[["name",	"Milk	(1	liter)"],	

["price",

		0.45],	["created_at",	"2015-12-17	18:04:26.587946"],	

["updated_at",

		"2015-12-17	18:04:26.587946"]]

			(9.2ms)		commit	transaction

=>	true

>>	exit

length
With	length	 you	 can	 limit	 the	 length	 of	 a	 specific	 attribute.	 It’s	 easiest	 to

explain	using	an	example.	Let	us	 limit	 the	maximum	length	of	 the	name	 to	20
and	the	minimum	to	2.

Listing	32.	app/models/product.rb

class	Product	<	ApplicationRecord

		validates	:name,

												presence:	true,

												length:	{	in:	2..20	}

		validates	:price,

												:presence	=>	true

end

If	we	now	try	to	save	a	Product	with	a	name	that	consists	in	one	letter,	we	get	an
error	message:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	product	=	Product.create(:name	=>	'M',	:price	=>	0.45)

			(0.1ms)		begin	transaction

			(0.1ms)		rollback	transaction

=>	#<Product	id:	nil,	name:	"M",	price:

#<BigDecimal:7ff735513400,'0.45E0',9(27)>,	weight:	nil,	in_stock:	

nil,

expiration_date:	nil,	created_at:	nil,	updated_at:	nil>

>>	product.errors.messages

=>	{:name=>["is	too	short	(minimum	is	2	characters)"]}

Options

length	can	be	called	with	the	following	options.

minimum

The	minimum	length	of	an	attribute.	Example:

validates	:name,

										presence:	true,

										length:	{	minimum:	2	}

too_short

Defines	 the	 error	 message	 of	 :minimum.	 Default:	 "is	 too	 short	 (min	 is	 %d
characters)".	Example:

validates	:name,

										presence:	true,

										length:	{	minimum:	5	,

										too_short:	"must	have	at	least	%{count}	characters"}

maximum

The	maximum	length	of	an	attribute.	Example:

validates	:name,

										presence:	true,

										length:	{	maximum:	20	}

too_long

Defines	the	error	message	of	:maximum.	Default:	"is	too	long	(maximum	is	%d
characters)".	Example:

validates	:name,

										presence:	true,

										length:	{	maximum:	20	,

										too_long:	"must	have	at	most	%{count}	characters"	}

For	all	error	messages,	please	note	the	chapter	Internationalization.

is

Is	exactly	the	specified	number	of	characters	long.	Example:

validates	:name,

										presence:	true,

										length:	{	is:	8	}

:in	or	:within

Defines	a	length	interval.	The	first	number	specifies	the	minimum	number	of	the
range	and	the	second	the	maximum.	Example:

validates	:name,

										presence:	true,

										length:	{	in:	2..20	}

tokenizer

You	can	use	this	to	define	how	the	attribute	should	be	split	for	counting.	Default:
lambda{	 |value|	 value.split(//)	 }	 (individual	 characters	 are

counted).	Example	(for	counting	words):

validates	:content,

										presence:	true,

										length:	{	in:	2..20	},

										tokenizer:	lambda	{|str|	str.scan(/\w+/)}

numericality
With	numericality	you	can	check	if	an	attribute	 is	a	number.	 It’s	easier	 to

explain	if	we	use	an	example.

Listing	33.	app/models/product.rb

class	Product	<	ApplicationRecord

		validates	:name,

												presence:	true,

												length:	{	in:	2..20	}

		validates	:price,

												presence:	true

		validates	:weight,

												numericality:	true

end

If	 we	 now	 use	 a	weight	 that	 consists	 of	 letters	 or	 contains	 letters	 instead	 of

numbers,	we	will	get	an	error	message:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	product	=	Product.create(name:	'Milk	(1	liter)',

			price:	0.45,	weight:	'abc')

			(0.1ms)		begin	transaction

			(0.1ms)		rollback	transaction

=>	#<Product	id:	nQil,	name:	"Milk	(1	liter)",	price:	#

<BigDecimal:7fca1ec90ed8,'0.45E0',9(27)>,	weight:	0,	in_stock:	nil,	

expiration_date:	nil,	created_at:	nil,	updated_at:	nil>

>>	product.errors.messages

=>	{:weight=>["is	not	a	number"]}

>>	exit

You	can	use	numericality	to	define	the	content	as	number	even	if	an	attribute	is	saved	as

string	in	the	database.

Options

numericality	can	be	called	with	the	following	options.

only_integer

The	attribute	can	only	contain	an	integer.	Default:	false.	Example:

validates	:weight,

										numericality:	{	only_integer:	true	}

greater_than

The	 number	 saved	 in	 the	 attribute	 must	 be	 greater	 than	 the	 specified	 value.
Example:

validates	:weight,

										numericality:	{	greater_than:	100	}

greater_than_or_equal_to

The	number	saved	in	the	attribute	must	be	greater	than	or	equal	to	the	specified
value.	Example:

validates	:weight,

										numericality:	{	greater_than_or_equal_to:	100	}

equal_to

Defines	a	specific	value	that	the	attribute	must	have.	Example:

validates	:weight,

										numericality:	{	equal_to:	100	}

less_than

The	 number	 saved	 in	 the	 attribute	 must	 be	 less	 than	 the	 specified	 value.
Example:

validates	:weight,

										numericality:	{	less_than:	100	}

less_than_or_equal_to

The	 number	 saved	 in	 the	 attribute	must	 be	 less	 than	 or	 equal	 to	 the	 specified
value.	Example:

validates	:weight,

										numericality:	{	less_than_or_equal_to:	100	}

odd

The	number	saved	in	the	attribute	must	be	an	odd	number.	Example:

validates	:weight,

										numericality:	{	odd:	true	}

even

The	number	saved	in	the	attribute	must	be	an	even	number.	Example:

validates	:weight,

										numericality:	{	even:	true	}

uniqueness
With	uniqueness	you	can	define	that	the	value	of	this	attribute	must	be	unique	in
the	database.	If	you	want	a	product	in	the	database	to	have	a	unique	name	that
appears	nowhere	else,	then	you	can	use	this	validation:

Listing	34.	app/models/product.rb

class	Product	<	ApplicationRecord

		validates	:name,

												presence:	true,

												uniqueness:	true

end

If	we	now	try	 to	create	a	new	Product	with	 a	name	 that	already	exists,	 then

we	get	an	error	message:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Product.last

		Product	Load	(0.2ms)		SELECT		"products".*	FROM	"products"		ORDER	

BY

		"products"."id"	DESC	LIMIT	1

=>	#<Product	id:	4,	name:	"Milk	(1	liter)",	price:

#<BigDecimal:7fdccb1960b8,'0.45E0',9(27)>,	weight:	nil,	in_stock:	

nil,

expiration_date:	nil,	created_at:	"2015-12-17	18:04:26",	updated_at:

"2015-12-17	18:04:26">

>>	product	=	Product.create(name:	'Milk	(1	liter)')

			(0.1ms)		begin	transaction

		Product	Exists	(0.2ms)		SELECT		1	AS	one	FROM	"products"	WHERE

		"products"."name"	=	'Milk	(1	liter)'	LIMIT	1

			(0.1ms)		rollback	transaction

=>	#<Product	id:	nil,	name:	"Milk	(1	liter)",	price:	nil,	weight:	

nil,

in_stock:	nil,	expiration_date:	nil,	created_at:	nil,	updated_at:	

nil>

>>	product.errors.messages

=>	{:name=>["has	already	been	taken"]}

>>	exit

The	 validation	 via	uniqueness	 is	 no	 absolute	guarantee	 that	the	attribute	 is	unique	 in	 the

database.	A	 race	 condition	could	 occur	 (see	http://en.wikipedia.org/wiki/Race_condition).	A
detailled	discussion	of	this	effect	would	go	beyond	the	scope	of	book	aimed	at	beginners	(this
phenomenon	is	extremely	rare).

Options

uniqueness	can	be	called	with	the	following	options.

http://en.wikipedia.org/wiki/Race_condition

scope

Defines	 a	 scope	 for	 the	 uniqueness.	 If	 we	 had	 a	 differently	 structured	 phone
number	database	(with	just	one	field	for	the	phone	number),	then	we	could	use
this	 option	 to	 specify	 that	 a	 phone	 number	must	 only	 be	 saved	 once	 per	 user.
Here	is	what	it	would	look	like:

validates	:name,

								presence:	true,

								uniqueness:	{	scope:	:user_id	}

case_sensitive

Checks	for	uniqueness	of	upper	and	lower	case	as	well.	Default:	false.	Example:

validates	:name,

										presence:	true,

										uniqueness:	{	case_sensitive:	true	}

inclusion
With	inclusion	you	can	define	from	which	values	the	content	of	this	attribute

can	 be	 created.	 For	 our	 example,	 we	 can	 demonstrate	 it	 using	 the	 attribute
in_stock.

Listing	35.	app/models/product.rb

class	Product	<	ApplicationRecord

		validates	:name,

												presence:	true

		validates	:in_stock,

												inclusion:	{	in:	[true,	false]	}

end

In	our	data	model,	a	Product	must	be	either	true	or	false	 for	in_stock

(there	must	not	be	a	nil).	 If	we	enter	a	different	value	 than	true	 or	false,	a

validation	error	is	returned:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	product	=	Product.create(name:	'Milk	low-fat	(1	liter)')

			(0.1ms)		begin	transaction

			(0.1ms)		rollback	transaction

=>	#<Product	id:	nil,	name:	"Milk	low-fat	(1	liter)",	price:	nil,	

weight:	nil,

in_stock:	nil,	expiration_date:	nil,	created_at:	nil,	updated_at:	

nil>

>>	product.errors.messages

=>	{:in_stock=>["is	not	included	in	the	list"]}

>>	exit

Always	remember	the	power	of	Ruby!	For	example,	you	can	generate	the	enumerable	object
always	live	from	another	database.	In	other	words,	the	validation	is	not	defined	statically.

Options

inclusion	can	be	called	with	the	following	option.

message

For	 outputting	 custom	 error	 messages.	 Default:	 "is	 not	 included	 in	 the	 list".
Example:

validates	:in_stock,

										inclusion:	{	in:	[true,	false],

																										message:	'this	one	is	not	allowed'	}

For	all	error	messages,	please	note	the	chapter	Internationalization.

exclusion
exclusion	is	the	inversion	of	inclusion.	You	can	define	from	which	values	the

content	of	this	attribute	must	not	be	created.

Listing	36.	app/models/product.rb

class	Product	<	ApplicationRecord

		validates	:name,

												presence:	true

		validates	:in_stock,

												exclusion:	{	in:	[nil]	}

end

Always	remember	the	power	of	Ruby!	For	example,	you	can	generate	the	enumerable	object
always	live	from	another	database.	In	other	words,	the	validation	does	not	have	to	be	defined
statically.

Options

exclusion	can	be	called	with	the	following	option.

message

For	outputting	custom	error	messages.	Example:

validates	:in_stock,

										inclusion:	{	in:	[nil],

																							message:	'this	one	is	not	allowed'	}

▪

For	all	error	messages,	please	note	the	chapter	Internationalization.

format
W i t h	format	 you	 can	 define	 via	 a	 regular	 expression	 (see

http://en.wikipedia.org/wiki/Regular_expression)	how	the	content	of	an	attribute
can	be	structured.

With	format	you	can	for	example	carry	out	a	simple	validation	of	the	syntax	of

an	e-mail	address:

validates	:email,

										format:	{	with:	\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]

{2,})\Zi	}

It	should	be	obvious	 that	 the	e-mail	address	validation	shown	here	is	not	complete.	It	 is	 just
meant	 to	be	an	example.	You	can	only	use	 it	 to	check	 the	syntactic	correctness	of	an	e-mail
address.

Options

validates_format_of	can	be	called	with	the	following	options:

:message

For	outputting	a	custom	error	message.	Default:	"is	invalid".	Example:

http://en.wikipedia.org/wiki/Regular_expression

validates	:email,

										format:	{	with:	\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]

{2,})\Zi,

																							message:	'is	not	a	valid	email	address'	}

For	all	error	messages,	please	note	the	chapter	Internationalization.

General	Validation	Options
There	are	some	options	that	can	be	used	for	all	validations.

allow_nil

Allows	the	value	nil.	Example:

validates	:email,

										format:	{	with:	\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]

{2,})\Zi	},

										allow_nil:	true

allow_blank

As	allow_nil,	but	additionally	with	an	empty	string.	Example:

validates	:email,

										format:	{	with:	\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]

{2,})\Zi	},

										allow_blank:	true

ON

With	on,	a	validation	can	be	limited	to	the	events	create,	update	 or	safe.

In	 the	 following	 example,	 the	 validation	 only	 takes	 effect	 when	 the	 record	 is
initially	created	(during	the	create):

validates	:email,

										format:	{	with:	\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]

{2,})\Zi	},

										on:	:create

if	and	unless

if	 or	unless	call	the	specified	method	and	only	execute	the	validation	if	the

result	of	the	method	is	true:

validates	:name,

										presence:	true,

										if:	:today_is_monday?

def	today_is_monday?

		Date.today.monday?

end

proc

:proc	 calls	 a	Proc	 object.	The	 functionality	of	 a	Proc	object	 is	beyond	 the

scope	of	this	book.	I	give	you	an	example	how	to	use	it	without	describing	the
magic	behind.

validates	:name,

										presence:	true,

										if:	Proc.new	{	|a|	a.email	==	'test@test.com'	}

Writing	Custom	Validations
Now	 and	 then,	 you	 want	 to	 do	 a	 validation	 where	 you	 need	 custom	 program
logic.	For	such	cases,	you	can	define	custom	validations.

Defining	Validations	with	Your	Own	Methods

Let’s	assume	you	are	a	big	shot	hotel	mogul	and	need	a	reservation	system.

$	rails	new	my_hotel

		[...]

$	cd	my_hotel

$	rails	generate	model	reservation	start_date:date	end_date:date	

room_type

		[...]

$	rails	db:migrate

		[...]

$

Then	we	 specify	 in	 the	app/models/reservation.rb	 that	 the	 attributes

start_date	 and	end_date	 must	 be	 present	 in	 any	 case,	 plus	 we	 use	 the

method	reservation_dates_must_make_sense	 to	make	 sure	 that	 the

start_date	is	before	the	end_date:

Listing	37.	app/models/reservation.rb

class	Reservation	<	ApplicationRecord

		validates	:start_date,

												presence:	true

		validates	:end_date,

												presence:	true

		validate	:reservation_dates_must_make_sense

		private

		def	reservation_dates_must_make_sense

				if	end_date	<=	start_date

						errors.add(:start_date,	'has	to	be	before	the	end	date')

				end

		end

end

With	errors.add	we	can	add	error	messages	 for	 individual	 attributes.	With

errors.add_to_base	you	can	add	error	messages	for	the	whole	object.

Let’s	test	the	validation	in	the	console:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	reservation	=	Reservation.new(start_date:	Date.today,	end_date:	

Date.today)

=>	#<Reservation	id:	nil,	start_date:	"2015-12-17",	end_date:	"2015-

12-17",

room_type:	nil,	created_at:	nil,	updated_at:	nil>

>>	reservation.valid?

=>	false

>>	reservation.errors.messages

=>	{:start_date=>["has	to	be	before	the	end	date"]}

>>	reservation.end_date	=	Date.today	+	1.day

=>	Sat,	18	Apr	2015

>>	reservation.valid?

=>	true

>>	reservation.save

[...]

=>	true

>>	exit

Further	Documentation
The	topic	validations	is	described	very	well	 in	the	official	Rails	documentation
at	http://guides.rubyonrails.org/active_record_validations.html.

http://guides.rubyonrails.org/active_record_validations.html

Migrations

SQL	database	tables	are	generated	in	Rails	with	migrations	and	they	should	also
be	 changed	 with	migrations.	 If	 you	 create	 a	 model	 with	rails	generate

model,	a	corresponding	migration	file	is	automatically	created	in	the	directory

db/migrate/.	 I	am	going	 to	show	you	 the	principle	using	 the	example	of	a

shop	application.	Let’s	create	one	first:

$	rails	new	shop

		[...]

$	cd	shop

$

Then	we	generate	a	Product	model:

$	rails	generate	model	product	name	'price:decimal{7,2}'	

weight:integer

		in_stock:boolean	expiration_date:date

						invoke		active_record

						create				db/migrate/20151217184823_create_products.rb

						create				app/models/product.rb

						invoke				test_unit

						create						test/models/product_test.rb

						create						test/fixtures/products.yml

$

The	 migrations	 file
db/migrate/20151217184823_create_products.rb	 was	 created.

Let’s	have	a	closer	look	at	it:

Listing	38.	db/migrate/20151217184823_create_products.rb

class	CreateProducts	<	ActiveRecord::Migration

		def	change

				create_table	:products	do	|t|

						t.string	:name

						t.decimal	:price,	precision:	7,	scale:	2

						t.integer	:weight

						t.boolean	:in_stock

						t.date	:expiration_date

						t.timestamps	null:	false

				end

		end

end

The	method	change	creates	and	deletes	the	database	table	in	case	of	a	rollback.

The	migration	 files	 have	 embedded	 the	 current	 time	 in	 the	 file	 name	 and	 are
processed	in	chronological	order	during	a	migration	(in	other	words,	when	you
call	rails	db:migrate).

$	rails	db:migrate

==	20151217184823	CreateProducts:	migrating	

===================================

--	create_table(:products)

			->	0.0015s

==	20151217184823	CreateProducts:	migrated	(0.0016s)	

==========================

$

Only	those	migrations	that	have	not	been	executed	yet	are	processed.	If	we	call
rails	 db:migrate	 again,	 nothing	 happens,	 because	 the	 corresponding

migration	has	already	been	executed:

$	rails	db:migrate

$

But	 if	 we	 manually	 delete	 the	 database	 with	rm	 and	 then	 call	rails

db:migrate	again,	the	migration	is	repeated:

$	rm	db/development.sqlite3

$	rails	db:migrate

==	20151217184823	CreateProducts:	migrating	

===================================

--	create_table(:products)

			->	0.0017s

==	20151217184823	CreateProducts:	migrated	(0.0018s)	

==========================

$

After	 a	 while	 we	 realise	 that	 we	 want	 to	 save	 not	 just	 the	 weight	 for	 some
products,	but	also	the	height.	So	we	need	another	database	field.	There	is	an	easy
to	remember	syntax	for	this,	rails	generate	migration	add_*:

$	rails	generate	migration	addHeightToProduct	height:integer

						invoke		active_record

						create				db/migrate/20151217185307_add_height_to_product.rb

$

In	 the	 migration	 file
db/migrate/20151217185307_add_height_to_product.rb	 we

once	again	find	a	change	method:

Listing	39.	db/migrate/20151217185307_add_height_to_product.rb

class	AddHeightToProduct	<	ActiveRecord::Migration

		def	change

				add_column	:products,	:height,	:integer

		end

end

With	rails	db:migrate	we	can	start	in	the	new	migration:

$	rails	db:migrate

==	20151217185307	AddHeightToProduct:	migrating	

===============================

--	add_column(:products,	:height,	:integer)

			->	0.0086s

==	20151217185307	AddHeightToProduct:	migrated	(0.0089s)	

======================

$

In	 the	console	 we	 can	 look	 at	 the	 new	 field.	 It	 was	 added	 after	 the	 field
updated_at:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	Product.column_names

=>	["id",	"name",	"price",	"weight",	"in_stock",	"expiration_date",

"created_at",	"updated_at",	"height"]

>>	exit

Please	 note	 that	 you	 need	 to	 add	 the	 new	 field	i n	attr_accessible	 in

app/models/product.rb,	otherwise	you	will	not	have	access	to	the	height	attribute.

What	if	you	want	to	look	at	the	previous	state	of	things?	No	problem.	You	can
easily	go	back	to	the	previous	version	with	rails	db:rollback:

$	rails	db:rollback

==	20151217185307	AddHeightToProduct:	reverting	

===============================

--	remove_column(:products,	:height,	:integer)

			->	0.0076s

==	20151217185307	AddHeightToProduct:	reverted	(0.0192s)	

======================

$

Each	migration	has	its	own	version	number.	You	can	find	out	the	version	number
of	the	current	status	via	rails	db:version:

$	rails	db:version

Current	version:	20151217184823

$

Please	note	that	all	version	numbers	and	timestamps	only	apply	to	the	example	printed	here.	If
you	recreate	the	example,	you	will	of	course	get	a	different	timestamp	for	your	own	example.

You	will	find	the	corresponding	version	in	the	directory	db/migrate:

$	ls	db/migrate/

20151217184823_create_products.rb

20151217185307_add_height_to_product.rb

$

You	can	go	to	a	specific	migration	via	rails	db:migrate	VERSION=	and

add	 the	 appropriate	 version	 number	 after	 the	 equals	 sign.	 The	 number	 zero
represents	the	version	zero,	in	other	words	the	start.

Let’s	try	it	out:

$	rails	db:migrate	VERSION=0

==	20151217184823	CreateProducts:	reverting	

===================================

--	drop_table(:products)

			->	0.0007s

==	20151217184823	CreateProducts:	reverted	(0.0032s)	

==========================

$

The	table	was	deleted	with	all	data.	We	are	back	to	square	one.

Which	Database	is	Used?
The	database	 table	 is	 created	 through	 the	migration.	As	you	 can	 see,	 the	 table
names	automatically	get	the	plural	of	the	models	(Person	vs.	people).	But	in

which	database	are	 the	 tables	created?	This	 is	defined	 in	 the	configuration	 file
config/database.yml:

Listing	40.	config/database.yml

#	SQLite	version	3.x

#			gem	install	sqlite3

#

#			Ensure	the	SQLite	3	gem	is	defined	in	your	Gemfile

#			gem	'sqlite3'

#

default:	&default

		adapter:	sqlite3

		pool:	5

		timeout:	5000

development:

		<<:	*default

		database:	db/development.sqlite3

#	Warning:	The	database	defined	as	"test"	will	be	erased	and

#	re-generated	from	your	development	database	when	you	run	"rake".

#	Do	not	set	this	db	to	the	same	as	development	or	production.

test:

		<<:	*default

		database:	db/test.sqlite3

production:

		<<:	*default

		database:	db/production.sqlite3

Three	 different	 databases	 are	 defined	 there	 in	 YAML	 format	 (see
http://www.yaml.org/	 or	http://en.wikipedia.org/wiki/YAML).	 For	 us,	 only	 the
development	 database	 is	 relevant	 for	 now	 (first	 item).	 By	 default,	 Rails

http://www.yaml.org/
http://en.wikipedia.org/wiki/YAML

usesSQLite3	there.	SQLite3	may	not	be	the	correct	choice	for	the	analysis	of	the
weather	 data	 collected	 worldwide,	 but	 for	 a	 quick	 and	 straightforward
development	of	Rails	applications	you	will	quickly	learn	to	appreciate	it.	In	the
production	 environment,	 you	 can	 later	 still	 switch	 to	 "big"	 databases	 such	 as
MySQL	or	PostgreSQL.

To	satisfy	your	curiosity,	we	have	a	quick	look	at	the	database	with	the	command
line	tool	sqlite3:

$	sqlite3	db/development.sqlite3

SQLite	version	3.8.5	2014-08-15	22:37:57

Enter	".help"	for	usage	hints.

sqlite>	.tables

schema_migrations

sqlite>	.quit

$

Nothing	in	it.	Of	course	not,	as	we	have	not	yet	run	the	migration:

$	rails	db:migrate

==	20151217184823	CreateProducts:	migrating	

===================================

--	create_table(:products)

			->	0.0019s

==	20151217184823	CreateProducts:	migrated	(0.0020s)	

==========================

==	20151217185307	AddHeightToProduct:	migrating	

===============================

--	add_column(:products,	:height,	:integer)

			->	0.0007s

==	20151217185307	AddHeightToProduct:	migrated	(0.0008s)	

======================

$	sqlite3	db/development.sqlite3

SQLite	version	3.8.5	2014-08-15	22:37:57

Enter	".help"	for	usage	hints.

sqlite>	.tables

products											schema_migrations

sqlite>	.schema	products

CREATE	TABLE	"products"	("id"	INTEGER	PRIMARY	KEY	AUTOINCREMENT	NOT	

NULL,

"name"	varchar,	"price"	decimal(7,2),	"weight"	integer,	"in_stock"	

boolean,

"expiration_date"	date,	"created_at"	datetime	NOT	NULL,	"updated_at"	

datetime

NOT	NULL,	"height"	integer);

sqlite>	.quit

The	 table	schema_migrations	is	used	for	the	versioning	of	the	migrations.

This	table	is	created	during	the	first	migration	carried	out	by	Rails,	if	it	does	not
yet	exist.

Creating	Index
I	 assume	 that	you	know	what	 a	database	 index	 is.	 If	not,	you	will	 find	a	brief
introduction	 at	http://en.wikipedia.org/wiki/Database_index.	 In	 brief:	 you	 can
use	it	to	quickly	search	for	a	specific	table	column.

In	our	production	database,	we	should	 index	the	field	name	 in	 the	products

table.	We	create	a	new	migration	for	that	purpose:

$	rails	generate	migration	create_index

						invoke		active_record

						create				db/migrate/20151217190442_create_index.rb

$

In	 the	 file	db/migrate/20121120142002_create_index.rb	 we

create	the	index	with	add_index	in	the	method	self.up,	and	in	the	method

self.down	we	delete	it	again	with	remove_index:

Listing	41.	db/migrate/20121120142002_create_index.rb

http://en.wikipedia.org/wiki/Database_index

class	CreateIndex	<	ActiveRecord::Migration

		def	up

				add_index	:products,	:name

		end

		def	down

				remove_index	:products,	:name

		end

end

With	rails	db:migrate	we	create	the	index:

$	rails	db:migrate

==		CreateIndex:	migrating	

==

--	add_index(:products,	:name)

			->	0.0010s

==		CreateIndex:	migrated	(0.0011s)	

===

$

Of	course	we	don’t	have	to	use	the	up	and	down	method.	We	can	use	change

too.	The	migration	for	the	new	index	would	look	like	this:

class	CreateIndex	<	ActiveRecord::Migration

		def	change

				add_index	:products,	:name

		end

end

You	can	also	create	an	index	directly	when	you	generate	the	model.	In	our	case	(an	index	for
the	attribute	name)	the	command	would	look	like	this:

▪

▪

▪

$	rails	generate	model	product	name:string:index

$	cat	db/migrate/20151217191435_create_products.rb

class	CreateProducts	<	ActiveRecord::Migration

		def	change

				create_table	:products	do	|t|

						t.string	:name

						t.timestamps	null:	false

				end

				add_index	:products,	:name

		end

end

$

Automatically	Added	Fields	(id,	created_at	and
updated_at)
Rails	kindly	adds	the	following	fields	automatically	in	the	default	migration:

id:integer

This	is	the	unique	ID	of	the	record.	The	field	is	automatically	incremented	by
the	database.	For	all	SQL	fans:	NOT	NULL	AUTO_INCREMENT

created_at:datetime

The	field	is	filled	automatically	by	ActiveRecord	when	a	record	is	created.

updated_at:datetime

The	field	is	automatically	updated	to	the	current	time	whenever	the	record	is
edited.

So	you	don’t	have	to	enter	these	fields	yourself	when	generating	the	model.

▪

▪

▪

At	first	you	may	ask	yourself:	"Is	 that	 really	necessary?	Does	 it	make	sense?".
But	 after	 a	while	 you	will	 learn	 to	 appreciate	 these	 automatic	 fields.	Omitting
them	would	usually	be	false	economy.

Further	Documentation
The	 following	 webpages	 provide	 excellent	 further	 information	 on	 the	 topic
migration:

http://api.rubyonrails.org/classes/ActiveRecord/Migration.html	 *
http://api.rubyonrails.org/classes/ActiveRecord/ConnectionAdapters/TableDefinition.html

http://railscasts.com/episodes/107-migrations-in-rails-2-1

This	 screencast	 is	 a	 bit	 dated	 (Rails	 version	 2.1),	 but	 still	 good	 if	 you	 are
trying	to	understand	the	basics.

http://www.dizzy.co.uk/ruby_on_rails/cheatsheets/rails-migrations

http://api.rubyonrails.org/classes/ActiveRecord/Migration.html
http://api.rubyonrails.org/classes/ActiveRecord/ConnectionAdapters/TableDefinition.html
http://railscasts.com/episodes/107-migrations-in-rails-2-1
http://www.dizzy.co.uk/ruby_on_rails/cheatsheets/rails-migrations

▪

▪

▪

▪

▪

▪

Callbacks

Callbacks	are	defined	programming	hooks	in	the	life	of	an	ActiveRecord	object.
You	 can	 find	 a	 list	 of	 all	 callbacks	 at
http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html.	 Here	 are	 the
most	frequently	used	callbacks:

before_validation

Executed	before	the	validation.

after_validation

Executed	after	the	validation.

before_save

Executed	before	each	save.

before_create

Executed	before	the	first	save.

after_save

Executed	after	every	save.

after_create

Executed	after	the	first	save.

http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html

A	callback	 is	 always	 executed	 in	 the	model.	Let’s	 assume	you	always	want	 to
save	an	e-mail	address	in	a	User	model	in	lower	case,	but	also	give	the	user	of

the	 web	 interface	 the	 option	 to	 enter	 upper	 case	 letters.	 You	 could	 use	 a
before_save	 callback	 to	 convert	 the	 attribute	email	 to	 lower	case	via	 the

method	downcase.

The	Rails	application:

$	rails	new	shop

		[...]

$	cd	shop

$	rails	generate	model	user	email	login

		[...]

$	rails	db:migrate

		[...]

$

Here	 is	 what	 the	 model	app/models/user.rb	 would	 look	 like.	 The

interesting	stuff	is	the	before_save	part:

Listing	42.	app/models/user.rb

class	User	<	ApplicationRecord

		validates	:login,

												presence:	true

		validates	:email,

												presence:	true,

												format:	{	:with	=>	\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]

{2,})\Zi	}

		before_save	:downcase_email

		private

		def	downcase_email

				self.email	=	self.email.downcase

		end

end

Let’s	see	in	the	console	if	it	really	works	as	we	want	it	to:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	User.create(login:	'smith',	email:	'SMITH@example.com')

			(0.1ms)		begin	transaction

		SQL	(0.5ms)		INSERT	INTO	"users"	("login",	"email",	"created_at",

		"updated_at")	VALUES	(?,	?,	?,	?)		[["login",	"smith"],	["email",

		"smith@example.com"],	["created_at",	"2015-12-17	

19:22:20.928994"],

		["updated_at",	"2015-12-17	19:22:20.928994"]]

			(9.0ms)		commit	transaction

=>	#<User	id:	1,	email:	"smith@example.com",	login:	"smith",	

created_at:

"2015-12-17	19:22:20",	updated_at:	"2015-12-17	19:22:20">

>>	exit

Even	 though	 the	 e-mail	 address	 was	 entered	 partly	 with	 a	 capital	 letters,
ActiveRecord	has	indeed	converted	all	letters	automatically	to	lower	case	via	the
before_save	callback.

In	 the	 chapter	"Action	Mailer"	 you	 will	 find	 an	 example	 for	 the	 same	model
where	we	use	an	after_create	callback	to	automatically	send	an	e-mail	to	a

newly	created	user.	In	the	section	"Default	Values"	you	will	find	an	example	for
defining	 a	 default	 value	 for	 a	 new	 object	 via	 an	after_initialize

callback.

Default	Values

If	 you	need	 specific	default	 values	 for	 an	ActiveRecord	object,	 you	can	 easily
implement	this	with	the	after_initialize	callback.	This	method	is	called

by	ActiveRecord	when	a	new	object	 is	created.	Let’s	assume	we	have	a	model
Order	and	the	minimum	order	quantity	is	always	1,	so	we	can	enter	1	directly

as	default	value	when	creating	a	new	record.

Let’s	set	up	a	quick	example:

$	rails	new	shop

		[...]

$	cd	shop

$	rails	generate	model	order	product_id:integer	quantity:integer

		[...]

$	rails	db:migrate

		[...]

$

We	 write	 an	after_initialize	 callback	 into	 the	 file

app/models/order.rb:

Listing	43.	app/models/order.rb

class	Order	<	ApplicationRecord

		after_initialize	:set_defaults

		private

		def	set_defaults

				self.quantity	||=	1

		end

end

And	now	we	check	in	 the	console	 if	a	new	order	object	automatically	contains
the	quantity	1:

$	rails	console

Running	via	Spring	preloader	in	process	24336

Loading	development	environment	(Rails	5.0.0)

>>	order	=	Order.new

=>	#<Order	id:	nil,	product_id:	nil,	quantity:	1,	created_at:	nil,	

updated_at:

nil>

>>	order.quantity

=>	1

>>	exit

That’s	working	fine.

	 Stefan	Wintermeyer

SCAFFOLDING	AND	REST

Introduction
Scaffolding	means	purely	and	 simply	 that	 a	basic	scaffold	 for	an	application	 is
created	with	 a	 generator.	 This	 scaffold	 not	 only	 contains	 the	model	 but	 also	 a
simple	Web	GUI	(views)	and	of	course	a	controller.	The	programming	paradigm
used	for	this	is	REST	(Representational	State	Transfer).

You	 can	 find	 a	 definition	 of	 REST	 at
wikipedia.org/wiki/Representational_state_transfer.	My	super	 short	version:	 the
inventor	Roy	Fielding	described	in	2000	how	you	can	access	data	with	a	simple
set	of	rules	within	 the	concept	of	CRUD	and	the	specification	of	the	Hypertext
Transfer	 Protocol	 (HTTP).	 CRUD	 is	 the	 abbreviation	 for	 Create	 (SQL:
INSERT),	 Read	 (SQL:	 SELECT),	Update	 (SQL:	UPDATE)	 and	Delete	 (SQL:
Delete).	This	created	URLs	that	are	easy	to	read	for	humans	and	have	a	certain
logic.	In	this	chapter,	you	will	see	examples	showing	the	individual	paths	for	the
different	CRUD	functions.

I	think	the	greatest	frustration	with	Rails	arises	regularly	from	the	fact	that	many
beginners	 use	 scaffolding	 to	 get	 quick	 results	 without	 having	 proper	 basic
knowledge	 of	 Ruby	 and	 without	 knowing	 what	ActiveRecord	 is.	 They	 don’t
know	 what	 to	 do	 next.	 Fortunately,	 you	 have	 worked	 your	 way	 through	 the

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

chapters	"Ruby	 Basics",	 "First	 Steps	 with	 Rails"	 and	"ActiveRecord",	 so	 you
will	be	able	to	understand	and	use	scaffolding	straight	away.

Redirects	and	Flash	Messages

Scaffolding	uses	redirects	and	flash	messages.	So	we	have	to	make	a	little	detour
first	to	understand	scaffolding.

Redirects
The	name	says	it	all,	really:	redirects	are	commands	that	you	can	use	within	the
controller	to	“skip”,	i.e.	redirect,	to	other	web	pages.

A	 redirect	 returns	 to	 the	 browser	 the	 response	302	Moved	 with	 the	 new	 target.	 So	 each

redirect	does	a	roundtrip	to	the	browser	and	back.

Let’s	create	a	new	Rails	project	for	a	suitable	example:

$	rails	new	redirect_example

[...]

$	cd	redirect_example

Before	we	can	redirect,	we	need	a	controller	with	at	least	two	different	methods.
Off	we	go	with	a	ping	pong	example:

$	rails	generate	controller	Game	ping	pong

						create		app/controllers/game_controller.rb

							route		get	'game/pong'

							route		get	'game/ping'

						invoke		erb

						create				app/views/game

						create				app/viewsgameping.html.erb

						create				app/viewsgamepong.html.erb

						invoke		test_unit

						create				test/controllers/game_controller_test.rb

						invoke		helper

						create				app/helpers/game_helper.rb

						invoke				test_unit

						invoke		assets

						invoke				coffee

						create						app/assets/javascripts/game.coffee

						invoke				scss

						create						app/assets/stylesheets/game.scss

The	 controller	app/controllers/game_controller.rb	 has	 the

following	content:

Listing	1.	app/controllers/game_controller.rb

class	GameController	<	ApplicationController

		def	ping

		end

		def	pong

		end

end

Now	for	the	redirect:	how	can	we	achieve	that	we	get	immediately	redirected	to
the	method	pong	when	we	go	 to	http://localhost:3000gameping?	Easy,	you	will
say,	we	 just	change	 the	route	 in	config/routes.rb.	And	you	are	right.	So

we	don’t	necessarily	need	a	redirect.	But	if	we	want	to	process	something	else	in
the	 method	 ping	 before	 redirecting,	 then	 this	 is	 only	 possible	 by	 using	 a
redirect_to	 in	 the	 controller

app/controllers/game_controller.rb:

Listing	2.	app/controllers/game_controller.rb

class	GameController	<	ApplicationController

		def	ping

			logger.info	'+++		Example		+++'

			redirect_to	game_pong_path

		end

http://localhost:3000<i>game</i>ping?

		def	pong

		end

end

But	 what	 is	game_pong_path?	Let’s	have	a	 look	a	 the	 routes	generated	 for

this	Rails	application:

$	rails	routes

			Prefix	Verb	URI	Pattern										Controller#Action

game_ping	GET		gameping(.:format)	game#ping

game_pong	GET		gamepong(.:format)	game#pong

As	you	can	see,	the	route	to	the	action	ping	of	the	controller	GameController	now	gets

the	name	game_ping	(see	beginning	of	the	line).	We	could	also	write	the	redirect	like	this:

redirect_to	:action	=>	'pong'

I	will	 explain	 the	 details	 and	 the	 individual	 options	 of	 the	 redirect	 later	 in	 the
context	 of	 each	 specific	 case.	 For	 now,	 you	 just	 need	 to	 know	 that	 you	 can
redirect	not	just	to	another	method,	but	also	to	another	controller	or	an	entirely
different	web	page.

When	 we	 try	 to	 go	 to	http://localhost:3000gameping	 we	 are	 automatically
redirected	to	http://localhost:3000gamepong	and	in	the	log	output	we	see	this:

Started	GET	"gameping"	for	127.0.0.1	at	2015-04-15	17:50:04	+0200

Processing	by	GameController#ping	as	HTML

+++		Example		+++

Redirected	to	http://localhost:3000gamepong

Completed	302	Found	in	14ms	(ActiveRecord:	0.0ms)

http://localhost:3000<i>game</i>ping
http://localhost:3000<i>game</i>pong

Started	GET	"gamepong"	for	127.0.0.1	at	2015-04-15	17:50:04	+0200

Processing	by	GameController#pong	as	HTML

		Rendered	game/pong.html.erb	within	layouts/application	(2.1ms)

Completed	200	OK	in	2128ms	(Views:	2127.4ms	|	ActiveRecord:	0.0ms)

redirect_to	:back
If	you	want	to	redirect	the	user	of	your	web	application	to	the	page	he	has	just
been	 you	 can	 use	redirect_to	:back.	 This	 is	 very	 useful	 in	 a	 scenario

where	your	user	first	has	to	login	to	get	access	to	a	specific	page.

Flash	Messages
In	my	eyes,	the	term	“flash	messages”	is	somewhat	misleading.	Almost	anyone
would	associate	the	term	“Flash”	with	more	or	less	colorful	web	pages	that	were
implemented	with	 the	Adobe	Shockwave	Flash	Plug-in.	But	 in	Ruby	on	Rails,
flash	messages	are	something	completely	different.	They	are	messages	 that	are
displayed,	for	example	on	the	new	page	after	a	redirect	(see	section	Redirects).

Flash	messages	are	good	friends	with	redirects.	The	two	often	work	together	in	a
team	 to	 give	 the	 user	 feedback	 on	 an	 action	 he	 just	 carried	 out.	 A	 typical
example	of	a	 flash	message	 is	 the	system	feedback	when	a	user	has	 logged	 in.
Often	the	user	is	redirected	back	to	the	original	page	and	gets	the	message	“You
are	now	logged	in.”

As	 an	 example,	 we	 are	 once	 more	 constructing	 the	 ping	 pong	 scenario	 from
section	"Redirects":

$	rails	new	pingpong

						[...]

$	cd	pingpong

$	rails	generate	controller	Game	ping	pong

						[...]

We	fill	the	app/controllers/game_controller.rb	with	the	following

content:

Listing	3.	app/controllers/game_controller.rb

class	GameController	<	ApplicationController

		def	ping

			redirect_to	game_pong_path,	notice:	'PingPong!'

		end

		def	pong

		end

end

Now	we	start	the	Rails	web	server	with	rails	server	and	use	the	browser	to

go	 to	http://localhost:3000gameping.	We	are	 redirected	 from	ping	 to	pong.	But
the	 flash	message	"PingPong!"	 is	nowhere	 to	be	seen.	We	first	need	 to	expand
app/views/layouts/application.html.erb:

Listing	4.	app/views/layouts/application.html.erb

<!DOCTYPE	html>

<html>

<head>

		<title>Pingpong</title>

		<%=	stylesheet_link_tag				'application',	media:	'all',	'data-

turbolinks-track'	=>	true	%>

		<%=	javascript_include_tag	'application',	'data-turbolinks-track'	

=>	true	%>

		<%=	csrf_meta_tags	%>

</head>

<body>

		<%	flash.each	do	|name,	message|	%>

				<p>

						<i><%=	"#{name}:	#{message}"	%></i>

				</p>

		<%	end	%>

http://localhost:3000<i>game</i>ping

		<%=	yield	%>

</body>

</html>

Now	 we	 see	 the	 flash	 message	 at	 the	 top	 of	 the	 page	 when	 we	 go	 to
http://localhost:3000gameping	in	the	browser:

If	 we	 go	 to	http://localhost:3000gamepong	we	 still	 see	 the	 normal	 Pong	 page.
But	 if	 we	 go	 to	http://localhost:3000gameping	 we	 are	 redirected	 to	 the	 Pong
page	and	then	the	flash	message	is	displayed	at	the	top.

If	you	do	not	see	a	flash	message	that	you	were	expecting,	first	check	in	the	view	to	see	if	the
flash	message	is	output	there.

Different	Types	of	Flash	Message

http://localhost:3000<i>game</i>ping
http://localhost:3000<i>game</i>pong
http://localhost:3000<i>game</i>ping

Flash	messages	are	automagically	passed	to	the	view	in	a	hash.	By	default,	there
are	 three	different	 types:	error,	warning	 and	notice.	You	can	also	invent

your	own	category	and	then	get	it	in	the	view	later.

You	can	set	a	flash	message	by	writing	the	hash	directly	too:

flash[:notice]	=	'PingPong!'

Please	 have	 a	 look	 at	 the	 official	 documentation	 at
http://guides.rubyonrails.org/action_controller_overview.html#the-flash	for	more
information.

Why	Are	There	Flash	Messages	At	All?
You	may	wonder	why	there	are	flash	messages	 in	 the	first	place.	Couldn’t	you
just	build	them	yourself	if	you	need	them?	Yes,	indeed.	But	flash	messages	have
the	 advantage	 that	 they	 offer	 a	 defined	 approach	 that	 is	 the	 same	 for	 any
programmer.	So	you	don’t	need	to	start	from	scratch	every	single	time	you	need
one.

http://guides.rubyonrails.org/action_controller_overview.html#the-flash

Generating	a	Scaffold

Let’s	first	use	scaffolding	to	create	a	list	of	products	for	an	online	shop.	First,	we
need	to	create	a	new	Rails	application:

$	rails	new	shop

		[...]

$	cd	shop

Let’s	look	at	the	scaffolding	options:

$	rails	generate	scaffold

Usage:

		rails	generate	scaffold	NAME	[field[:type][:index]	field[:type]

[:index]]

		[options]

[...]

Examples:

				rails	generate	scaffold	post

				rails	generate	scaffold	post	title	body:text	published:boolean

				rails	generate	scaffold	purchase	amount:decimal	

tracking_id:integer:uniq

				rails	generate	scaffold	user	email:uniq	password:digest

I’ll	 keep	 it	 short:	 for	 our	 current	 state	 of	 knowledge,	 we	 can	 use	rails

generate	scaffold	just	like	rails	generate	model.	Let’s	create	the

scaffold	for	the	products:

$	rails	generate	scaffold	product	name	'price:decimal{7,2}'

						invoke		active_record

						create				db/migrate/20151218150127_create_products.rb

						create				app/models/product.rb

						invoke				test_unit

						create						test/models/product_test.rb

						create						test/fixtures/products.yml

						invoke		resource_route

							route				resources	:products

						invoke		scaffold_controller

						create				app/controllers/products_controller.rb

						invoke				erb

						create						app/views/products

						create						app/viewsproductsindex.html.erb

						create						app/viewsproductsedit.html.erb

						create						app/viewsproductsshow.html.erb

						create						app/viewsproductsnew.html.erb

						create						app/viewsproducts_form.html.erb

						invoke				test_unit

						create						test/controllers/products_controller_test.rb

						invoke				helper

						create						app/helpers/products_helper.rb

						invoke						test_unit

						invoke				jbuilder

						create						app/viewsproductsindex.json.jbuilder

						create						app/viewsproductsshow.json.jbuilder

						invoke		assets

						invoke				coffee

						create						app/assets/javascripts/products.coffee

						invoke				css

						create						app/assets/stylesheets/products.css

						invoke		css

						create				app/assets/stylesheets/scaffold.css

As	 you	 can	 see,	rails	 generate	 scaffold	 has	 already	 created	 the

model.	So	we	can	directly	call	rails	db:migrate:

$	rails	db:migrate

==	20151218150127	CreateProducts:	migrating	

===================================

--	create_table(:products)

			->	0.0023s

==	20151218150127	CreateProducts:	migrated	(0.0024s)	

==========================

Let’s	 create	 the	 first	 six	 products	 in	 the	db/seeds.rb.	 I	 am	 not	 quite	 sure

about	Walter	Scheel,	but	after	all,	this	book	is	all	about	Rails,	not	German	post-
war	history.

Product.create(name:	'Apple',	price:	1)

Product.create(name:	'Orange',	price:	1)

Product.create(name:	'Pineapple',	price:	2.4)

Product.create(name:	'Marble	cake',	price:	3)

Populate	with	the	example	data:

$	rails	db:seed

The	Routes
rails	generate	scaffold	has	created	a	route	(more	on	this	later	in	the

chapter	"Routes"),	a	controller	and	several	views	for	us.

We	 could	 also	 have	 done	 all	 of	 this	 manually.	 Scaffolding	 is	 merely	 an
automatism	 that	 does	 the	work	 for	 us	 for	 some	basic	 things.	This	 is	 assuming
that	you	always	want	to	view,	create	and	delete	records.

Without	diving	too	deeply	into	the	topic	routes,	let’s	just	have	a	quick	look	at	the
available	routes	for	our	example.	You	need	to	run	rails	routes:

$	rails	routes

						Prefix	Verb			URI	Pattern																		Controller#Action

				products	GET				products(.:format)										products#index

													POST			products(.:format)										products#create

	new_product	GET				productsnew(.:format)						products#new

edit_product	GET				products:id/edit(.:format)	products#edit

					product	GET				products:id(.:format)						products#show

													PATCH		products:id(.:format)						products#update

													PUT				products:id(.:format)						products#update

													DELETE	products:id(.:format)						products#destroy

These	 are	 all	 the	 routes	 and	 consequently	 URLs	 available	 in	 this	 Rails
application.	 All	 routes	 invoke	 actions	 (in	 other	 words,	 methods)	 in	 the
ProductsController.

The	Controller
Now	 it’s	 about	 time	 we	 had	 a	 look	 at	 the	 file
app/controllers/products_controller.rb.	Scaffold	automatically

creates	the	methods	index,	show,	new,	create,	update	and	destroy.	These	methods
or	actions	are	called	by	the	routes.

Here	is	the	content	of	app/controllers/products_controller.rb

Listing	5.	app/controllers/products_controller.rb

class	ProductsController	<	ApplicationController

		before_action	:set_product,	only:	[:show,	:edit,	:update,	

:destroy]

		#	GET	/products

		#	GET	/products.json

		def	index

				@products	=	Product.all

		end

		#	GET	products1

		#	GET	products1.json

		def	show

		end

		#	GET	productsnew

		def	new

				@product	=	Product.new

		end

		#	GET	products1/edit

		def	edit

		end

		#	POST	/products

		#	POST	/products.json

		def	create

				@product	=	Product.new(product_params)

				respond_to	do	|format|

						if	@product.save

								format.html	{	redirect_to	@product,	notice:	'Product	was	

successfully	created.'	}

								format.json	{	render	:show,	status:	:created,	location:	

@product	}

						else

								format.html	{	render	:new	}

								format.json	{	render	json:	@product.errors,	status:	

:unprocessable_entity	}

						end

				end

		end

		#	PATCH/PUT	products1

		#	PATCH/PUT	products1.json

		def	update

				respond_to	do	|format|

						if	@product.update(product_params)

								format.html	{	redirect_to	@product,	notice:	'Product	was	

successfully	updated.'	}

								format.json	{	render	:show,	status:	:ok,	location:	@product	

}

						else

								format.html	{	render	:edit	}

								format.json	{	render	json:	@product.errors,	status:	

:unprocessable_entity	}

						end

				end

		end

		#	DELETE	products1

		#	DELETE	products1.json

		def	destroy

				@product.destroy

				respond_to	do	|format|

						format.html	{	redirect_to	products_url,	notice:	'Product	was	

successfully	destroyed.'	}

						format.json	{	head	:no_content	}

				end

		end

		private

				#	Use	callbacks	to	share	common	setup	or	constraints	between	

actions.

				def	set_product

						@product	=	Product.find(params[:id])

				end

				#	Never	trust	parameters	from	the	scary	internet,	only	allow	the	

white	list	through.

				def	product_params

						params.require(:product).permit(:name,	:price)

				end

end

Let	us	take	a	moment	and	go	through	this	controller.

set_product

A	 before_action	 calls	 a	 private	 method	 to	 set	 an	 instance	 variable

@product	 for	 the	actions	 :show,	 :edit,	 :update	and	 :destroy.	That	DRYs	 it	up

nicely:

before_action	:set_product,	only:	[:show,	:edit,	:update,	:destroy]

[...]

private

		#	Use	callbacks	to	share	common	setup	or	constraints	between	

actions.

		def	set_product

				@product	=	Product.find(params[:id])

		end

[...]

index

The	index	 method	 sets	 the	 instance	 variable	@products.	 It	 contains	 the

result	of	Product.all.

#	GET	/products

#	GET	/products.json

def	index

		@products	=	Product.all

end

show

The	show	 method	 doesn’t	 do	 anything.	set_product	 before_action

already	set	the	instance	variable	@product.	So	there	is	not	more	to	do.

#	GET	products1

#	GET	products1.json

def	show

end

NEW

The	new	method	creates	a	new	instance	of	Product	and	saves	it	in	the	instance

variable	@product.

#	GET	productsnew

def	new

		@product	=	Product.new

end

edit

The	edit	method	doesn’t	do	anything.	the	set_product	before_action

already	set	the	instance	variable	@product.	So	there	is	not	more	to	do.

#	GET	products1/edit

def	edit

end

create

The	create	method	uses	Product.new	to	create	a	new	instance	of	Product

and	stores	it	in	@product.	The	private	method	product_params	is	used	to

filter	 the	 trusted	 parameters	 with	 a	 white	 list.	 When	@product	 was

successfully	 saved	 a	redirect	 to	 the	show	 action	 is	 initiated	 for	 html

requests.	If	a	validation	error	occurred	the	new	action	will	be	rendered.

#	POST	/products

#	POST	/products.json

def	create

		@product	=	Product.new(product_params)

		respond_to	do	|format|

				if	@product.save

						format.html	{	redirect_to	@product,	notice:	'Product	was	

successfully

						created.'	}

						format.json	{	render	:show,	status:	:created,	location:	

@product	}

				else

						format.html	{	render	:new	}

						format.json	{	render	json:	@product.errors,	status:

						:unprocessable_entity	}

				end

		end

end

[...]

#	Never	trust	parameters	from	the	scary	internet,	only	allow	the	

white	list

#	through.

def	product_params

		params.require(:product).permit(:name,	:price)

end

update

The	update	 method	 tries	 to	 update	@product	 with	 the	product_params.

The	private	method	product_params	is	used	to	filter	the	trusted	parameters

with	a	white	 list.	When	@product	was	 successfully	updated	a	redirect	 to

the	show	action	 is	 initiated	for	html	requests.	 If	a	validation	error	occured	 the

edit	action	will	be	rendered.

#	PATCH/PUT	products1

#	PATCH/PUT	products1.json

def	update

		respond_to	do	|format|

				if	@product.update(product_params)

						format.html	{	redirect_to	@product,	notice:	'Product	was	

successfully

						updated.'	}

						format.json	{	render	:show,	status:	:ok,	location:	@product	}

				else

						format.html	{	render	:edit	}

						format.json	{	render	json:	@product.errors,	status:

						:unprocessable_entity	}

				end

		end

end

[...]

#	Never	trust	parameters	from	the	scary	internet,	only	allow	the	

white	list

#	through.

def	product_params

		params.require(:product).permit(:name,	:price)

end

destroy

The	destroy	method	destroys	@product	and	redirects	an	html	request	to	the

index	action.

#	DELETE	products1

#	DELETE	products1.json

def	destroy

		@product.destroy

		respond_to	do	|format|

				format.html	{	redirect_to	products_url,	notice:	'Product	was	

successfully

				destroyed.'	}

				format.json	{	head	:no_content	}

		end

end

The	Views
Now	we	start	the	Rails	web	server:

$	rails	server

=>	Booting	Puma

=>	Rails	5.0.0	application	starting	in	development	on	

http://localhost:3000

=>	Run	rails	server	-h	for	more	startup	options

=>	Ctrl-C	to	shutdown	server

I,	[2016-01-21T14:55:01.110254	#46894]		INFO	--	:	Celluloid	0.17.3	

is	running	in	BACKPORTED	mode.	[http://git.io/vJf3J]

Puma	2.15.3	starting...

	Min	threads:	0,	max	threads:	16

	Environment:	development

*	Listening	on	tcp://localhost:3000

Now	a	little	drum	roll	…		dramatic	suspense	…		launch	the	web	browser	and	go
to	 the	 URL	http://localhost:3000/products.	You	 can	 see	 the	 list	 of	 products	 as
simple	web	page.

http://localhost:3000/products

Figure	1.	Products	index

If	 you	 now	 click	 the	 link	New	Product,	 you	will	 see	 an	 input	 form	 for	 a	 new
record:

Figure	2.	Products	new

Use	 your	 browser’s	Back	 button	 to	 go	 back	 and	 click	 on	 the	Show	 link	 in	 the
first	line.	You	will	then	see	the	following	page:

Figure	3.	Products	show

If	you	now	click	Edit,	you	will	see	the	editing	view	for	this	record:

Figure	4.	Products	edit

And	 if	 you	 click	Destroy	 on	 the	 Index	 page,	 you	 can	 delete	 a	 record	 after
confirming	 the	 message	 that	 pops	 up.	 Isn’t	 that	 cool?!	 Within	 less	 than	 10
minutes,	 you	 have	 written	 a	 Web	 application	 that	 allows	 you	 to	 *c*reate,
read/retrieve,	update	 and	delete/destroy	 records	CRUD.	That	 is	 the	scaffolding
magic.	You	can	save	a	lot	of	time.

Where	Are	the	Views?

You	 can	 probably	 guess,	 but	 let’s	 have	 a	 look	 at	 the	 directory
app/views/products	anyway:

$	tree	app/viewsproducts

app/viewsproducts

├──	_form.html.erb

├──	edit.html.erb

├──	index.html.erb

├──	index.json.jbuilder

├──	new.html.erb

├──	show.html.erb

└──	show.json.jbuilder

There	 are	 two	different	 file	 extensions.	The	html.erb	 is	 for	HTML	requests

and	the	json.jbuilder	is	for	JSON	requests.

For	index,	edit,	new	 and	show	 the	corresponding	views	are	 located	 there.

As	new	 and	edit	both	require	a	form	for	editing	the	data,	this	is	stored	in	the

partial	_form.html.erb	 in	accordance	with	 the	principle	of	DRY	(*D*on’t

Repeat	Yourself)	 and	 integrated	 in	new.html.erb	 and	edit.html.erb

with	a	<%=	render	'form'	%>.

Let’s	open	the	file	app/viewsproductsindex.html.erb:

Listing	6.	app/viewsproductsindex.html.erb

<p	id="notice"><%=	notice	%></p>

<h1>Listing	Products</h1>

<table>

		<thead>

				<tr>

						<th>Name</th>

						<th>Price</th>

						<th	colspan="3"></th>

				</tr>

		</thead>

		<tbody>

				<%	@products.each	do	|product|	%>

						<tr>

								<td><%=	product.name	%></td>

								<td><%=	product.price	%></td>

								<td><%=	link_to	'Show',	product	%></td>

								<td><%=	link_to	'Edit',	edit_product_path(product)	%></td>

								<td><%=	link_to	'Destroy',	product,	method:	:delete,	data:	{	

confirm:

								'Are	you	sure?'	}	%></td>

						</tr>

				<%	end	%>

		</tbody>

</table>

<%=	link_to	'New	Product',	new_product_path	%>

You	are	now	an	old	hand	when	it	comes	to	ERB,	so	you’ll	be	able	to	read	and
understand	the	code	without	any	problems.

link_to

In	the	views	generated	by	the	scaffold	generator,	you	first	came	across	the	helper
link_to.	This	creates	<a	hre	…	>	links.	You	can	of	course	also	enter	a	link
manually	 via		 in	 the	erb,	but	 for	 links	within	a	Rails	project,
link_to	 is	more	practical,	because	you	can	use	 the	names	of	 the	 routes	as	a

target.	The	code	becomes	much	easier	 to	read.	In	 the	above	example,	 there	are
the	following	routes:

$	rails	routes

						Prefix	Verb			URI	Pattern																		Controller#Action

				products	GET				products(.:format)										products#index

													POST			products(.:format)										products#create

	new_product	GET				productsnew(.:format)						products#new

edit_product	GET				products:id/edit(.:format)	products#edit

					product	GET				products:id(.:format)						products#show

													PATCH		products:id(.:format)						products#update

													PUT				products:id(.:format)						products#update

													DELETE	products:id(.:format)						products#destroy

The	 first	 part	 of	 this	 route	 is	 the	 name	 of	 the	 route.	With	 a	 new	 call,	 this	 is
new_product.	A	 link	 to	new_product	looks	like	this	in	the	erb	code	(you

can	see	it	at	the	end	of	the	file	app/viewsproductsindex.html.erb):

<%=	link_to	'New	Product',	new_product_path	%>

In	 the	 HTML	 code	 of	 the	 generated	 page	 (http://localhost:3000/products)	 you
can	see	the	result:

<%=	link_to	'New	Product',	new_product_path	%>

With	link_to	 you	 can	 also	 link	 to	 resources	 within	 a	 RESTful	 resource.

Again,	 you	 can	 find	 examples	 for	 this	 in
app/viewsproductsindex.html.erb.	 In	 the	 table,	 a	show,	 an	edit

and	a	destroy	link	is	rendered	for	each	product:

<tbody>

		<%	@products.each	do	|product|	%>

				<tr>

						<td><%=	product.name	%></td>

						<td><%=	product.price	%></td>

						<td><%=	link_to	'Show',	product	%></td>

						<td><%=	link_to	'Edit',	edit_product_path(product)	%></td>

						<td><%=	link_to	'Destroy',	product,	method:	:delete,	data:	{	

confirm:

						'Are	you	sure?'	}	%></td>

				</tr>

		<%	end	%>

</tbody>

From	 the	 resource	 and	 the	 selected	 route,	 Rails	 automatically	 determines	 the
required	URL	and	the	required	HTTP	verb	(in	other	words,	whether	it	is	a	POST,
GET,	 PUT	 or	 DELETE).	 For	 index	 and	 show	 calls,	 you	 need	 to	 observe	 the

http://localhost:3000/products

difference	between	singular	and	plural.	link_to	'Show',	product	 links

to	 a	 single	 record	 and	link_to	'Show',	products_path	 links	 to	 the

index	view.

Whether	 the	 name	 of	 the	 route	 is	 used	 with	 or	 without	 the	 suffix	_path	 in

link_to	 depends	 on	 whether	 Rails	 can	`derive''	the	route	from
the	other	specified	information.	If	only	one	object	is

specified	(in	our	example,	the	variable	`product),	 then

Rails	automatically	assumes	that	it	is	a	show	route.

Examples:

ERD-Code Explanation

link_to	'Show',	Product.first Link	to	the	first	product.

link_to	'New	Product',

new_product_path

Link	to	the	Web	interface	where	a	new	product
can	be	created.

link_to	'Edit',

edit_product_path(Product.first)

Link	to	the	form	where	the	first	product	can	be
edited.

link_to	'Destroy',	Product.first,

method:	:delete

Link	to	deleting	the	first	product.

form_for

In	 the	 partial	 used	 by	new	 and	edit,

app/viewsproducts_form.html.erb,	you	will	find	the	following	code

for	the	product	form:

Listing	7.	app/viewsproducts_form.html.erb

<%=	form_for(@product)	do	|f|	%>

		<%	if	@product.errors.any?	%>

				<div	id="error_explanation">

						<h2><%=	pluralize(@product.errors.count,	"error")	%>	

prohibited	this

						product	from	being	saved:</h2>

						

						<%	@product.errors.full_messages.each	do	|message|	%>

								<%=	message	%>

						<%	end	%>

						

				</div>

		<%	end	%>

		<div	class="field">

				<%=	f.label	:name	%>

				<%=	f.text_field	:name	%>

		</div>

		<div	class="field">

				<%=	f.label	:price	%>

				<%=	f.text_field	:price	%>

		</div>

		<div	class="actions">

				<%=	f.submit	%>

		</div>

<%	end	%>

In	 a	 block,	 the	 helper	form_for	 takes	 care	 of	 creating	 the	HTML	 form	 via

which	 the	 user	 can	 enter	 the	 data	 for	 the	 record	 or	 edit	 it.	 If	 you	 delete	 a
complete	<div	class="field">	element	here,	 this	can	no	longer	be	used

for	input	in	the	web	interface.	I	am	not	going	to	comment	on	all	possible	form
field	 variations	 at	 this	 point.	 The	 most	 frequently	 used	 ones	 will	 appear	 in
examples	later	on	and	be	explained	then	(if	they	are	not	self-explanatory).

You	 can	 find	 an	 overview	 of	 all	 form	 helpers	 at
http://guides.rubyonrails.org/form_helpers.html

When	 using	 validations	 in	 the	 model,	 any	 validation	 errors	 that	 occur	 are
displayed	in	the	following	code	at	the	head	of	the	form:

<%	if	@product.errors.any?	%>

				<div	id="error_explanation">

						<h2><%=	pluralize(@product.errors.count,	"error")	%>	

prohibited	this

						product	from	being	saved:</h2>

						

						<%	@product.errors.full_messages.each	do	|message|	%>

								<%=	message	%>

						<%	end	%>

						

				</div>

		<%	end	%>

Let’s	add	a	small	validation	to	the	app/models/product.rb	model:

Listing	8.	app/models/product.rb

class	Product	<	ActiveRecord::Base

		validates	:name,

												presence:	true

end

When	ever	somebody	wants	to	save	a	product	which	doesn’t	have	a	name	Rails
will	show	this	Flash	Error:

http://guides.rubyonrails.org/form_helpers.html

Figure	5.	Products	error	flash

Access	via	JSON

By	 default,	 Rails’	 scaffolding	 generates	 not	 just	 access	 via	 HTML	 for	 human
users,	but	also	a	direct	interface	for	machines.	The	same	methods	index,	show,

new,	create,	update	and	destroy	can	be	called	via	this	interface,	but	in	a

format	that	is	easier	to	read	for	machines.	As	an	example,	we	will	demonstrate
the	index	action	via	which	all	data	can	be	read	in	one	go.	With	the	same	idea,

data	can	be	removed	(destroy)	or	edited	(update).

JSON	 (see	wikipedia.org/wiki/Json)	 seems	 to	 be	 the	 new	 cool	 kid.	 So	we	 use
JSON.

http://de.wikipedia.org/wiki/JavaScript_Object_Notation

If	 you	 do	 not	 require	machine-readable	 access	 to	 data,	 you	 can	 remove	 these
lines	in	the	file	Gemfile	(followed	by	the	command	bundle).

Listing	9.	Gemfile

#	Build	JSON	APIs	with	ease.	Read	more:	

https://github.com/rails/jbuilder

gem	'jbuilder',	'~>	2.0'

Of	 course	 you	 can	 delete	 the	format.json	 lines	 manually	 too.	 But	 please

don’t	forget	to	delete	the	JSON	view	files	too.

JSON	as	Default

Right	 at	 the	 beginning	 of
app/controllers/products_controller.rb	you	will	 find	 the	entry

for	the	index	action:

Listing	10.	app/controllers/products_controller.rb

#	GET	/products

#	GET	/products.json

def	index

		@products	=	Product.all

end

The	code	 is	straightforward.	 In	 the	 instance	variable	@products,	all	products

are	 saved.	 The	 view	app/viewsproductsindex.json.jbuilder

contains	the	following	code	to	render	the	JSON:

Listing	11.	app/viewsproductsindex.json.jbuilder

json.array!(@products)	do	|product|

		json.extract!	product,	:id,	:name,	:price

		json.url	product_url(product,	format:	:json)

end

You	 can	 use	 your	 browser	 to	 fetch	 the	 JSON	 output.	 Just	 open
http://localhost:3000/products.json	and	view	the	result.	I	 installed	a	JSON	view
extension	in	my	Chrome	browser	to	get	a	nicer	format.

Figure	6.	Products	index	json

If	you	do	not	want	the	JSON	output,	you	need	to	delete	the	json.jbuilder

files.

JSON	and	XML	Together

http://localhost:3000/products.json

If	you	ever	need	a	JSON	and	XML	interface	in	a	Rails	application,	you	just	need
to	specify	both	variants	in	the	controller	in	the	block	respond_to.	Here	is	an

example	with	the	app/controllers/products_controller.rb	in	the

index	action:

Listing	12.	app/controllers/products_controller.rb

#	GET	/products

#	GET	/products.json

#	GET	/products.xml

def	index

		@products	=	product.all

		respond_to	do	|format|

				format.html	#	index.html.erb

				format.json	{	render	json:	@products	}

				format.xml	{	render	xml:	@products	}

		end

end

When	Should	You	Use	Scaffolding?

You	 should	 never	 use	 scaffolding	 just	 for	 the	 sake	 of	 it.	 There	 are	 Rails
developers	who	never	use	 scaffolding	and	always	build	everything	manually.	 I
find	 scaffolding	 quite	 useful	 for	 quickly	 getting	 into	 a	 new	 project.	 But	 it	 is
always	just	the	beginning.

Example	for	a	Minimal	Project
Let’s	assume	we	need	a	web	page	quickly	with	which	we	can	list	products	and
represent	 them	 individually.	 But	 we	 do	 not	 require	 an	 editing	 or	 deleting
function.	 In	 that	 case,	 a	 large	 part	 of	 the	 code	 created	 via	 scaffold	 would	 be
useless	and	have	to	be	deleted.	Let’s	try	it	out	as	follows:

$	rails	new	read-only-shop

		[...]

$	cd	read-only-shop

$	rails	generate	scaffold	product	name	'price:decimal{7,2}'

		[...]

$	rails	db:migrate

		[...]

Now	create	the	db/seeds.rb	with	some	demo	products:

Listing	13.	db/seeds.rb

Product.create(name:	'Apple',	price:	1)

Product.create(name:	'Orange',	price:	1)

Product.create(name:	'Pineapple',	price:	2.4)

Product.create(name:	'Marble	cake',	price:	3)

And	populate	it	with	this	data:

$	rails	db:seed

As	we	only	need	index	and	show,	we	should	delete	the	not	required	views:

$	rm	app/viewsproducts_form.html.erb

$	rm	app/viewsproductsnew.html.erb

$	rm	app/viewsproductsedit.html.erb

The	json.jbuilder	views	are	not	needed	either:

$	rm	app/viewsproducts*.json.jbuilder

The	 file	app/controllers/products_controller.rb	 can	 be

simplified	with	an	editor.	It	should	look	like	this:

Listing	14.	app/controllers/products_controller.rb

class	ProductsController	<	ApplicationController

		#	GET	/products

		def	index

				@products	=	Product.all

		end

		#	GET	products1

		def	show

				@product	=	Product.find(params[:id])

		end

end

We	 only	 need	 the	 routes	 for	index	 and	show.	 Please	 open	 the	 file

config/routes.rb	and	edit	it	as	follows:

Listing	15.	config/routes.rb

Rails.application.routes.draw	do

		resources	:products,	only:	[:index,	:show]

end

A	rails	routes	shows	us	that	really	only	index	and	show	are	routed	now:

$	rails	routes

		Prefix	Verb	URI	Pattern													Controller#Action

products	GET		/products(.:format)					products#index

	product	GET		products:id(.:format)	products#show

If	 we	 now	 start	 the	 server	rails	 server	 and	 go	 to	 the	 URL

http://localhost:3000/products,	we	get	an	error	message.

http://localhost:3000/products

Figure	7.	Products	index	json

The	same	message	will	be	displayed	in	the	log:

$	rails	server

=>	Booting	Puma

=>	Rails	5.0.0	application	starting	in	development	on	

http://localhost:3000

[...]

Started	GET	"/products"	for	::1	at	2015-04-19	17:19:34	+0200

		ActiveRecord::SchemaMigration	Load	(0.1ms)		SELECT	

"schema_migrations".*

		FROM	"schema_migrations"

Processing	by	ProductsController#index	as	HTML

		Product	Load	(0.2ms)		SELECT	"products".*	FROM	"products"

		Rendered	products/index.html.erb	within	layouts/application	

(22.3ms)

Completed	500	Internal	Server	Error	in	55ms	(ActiveRecord:	0.7ms)

ActionView::Template::Error	(undefined	method	`edit_product_path'	

for

<<Class:0x007fa95920b278>:0x007fa959209ea0>):

				17:									<td><%=	product.name	%></td>

				18:									<td><%=	product.price	%></td>

				19:									<td><%=	link_to	'Show',	product	%></td>

				20:									<td><%=	link_to	'Edit',	edit_product_path(product)	

%></td>

				21:									<td><%=	link_to	'Destroy',	product,	method:	:delete,	

data:	{

				confirm:	'Are	you	sure?'	}	%></td>

				22:							</tr>

				23:					<%	end	%>

		app/viewsproductsindex.html.erb:20:in	`block	in

		

appviews_products_index_html_erb3218631573957912904_70182660610380'

		app/viewsproductsindex.html.erb:15:in

		

`appviews_products_index_html_erb3218631573957912904_70182660610380'

[...]

The	 error	 message	 states	 that	 we	 call	 an	 undefined	 method
edit_product_path	 in	 the	 view

app/viewsproductsindex.html.erb.	 As	 we	 only	 route	index	 and

show	now,	 there	are	no	more	edit,	destroy	 or	new	methods	any	more.	So

we	 need	 to	 adapt	 the	 file	app/viewsproductsindex.html.erb	 in	 the

editor	as	follows:

Listing	16.	app/viewsproductsindex.html.erb

<table>

		<thead>

				<tr>

						<th>Name</th>

						<th>Price</th>

						<th></th>

				</tr>

		</thead>

		<tbody>

				<%	@products.each	do	|product|	%>

						<tr>

								<td><%=	product.name	%></td>

								<td><%=	product.price	%></td>

								<td><%=	link_to	'Show',	product	%></td>

						</tr>

				<%	end	%>

		</tbody>

</table>

And	 while	 we	 are	 at	 it,	 we	 also	 edit	 the
app/viewsproductsshow.html.erb	accordingly:

Listing	17.	app/viewsproductsshow.html.erb

<p>

		Name:

		<%=	@product.name	%>

</p>

<p>

		Price:

		<%=	@product.price	%>

</p>

<%=	link_to	'Back',	products_path	%>

Now	 our	 application	 is	 finished.	 Start	 the	 Rails	 server	 with	rails	server

and	open	the	URL	http://localhost:3000/products	in	the	browser.

Figure	8.	ReadOnlyProducts	index

In	 this	example,	 I	am	not	commenting	on	 the	 required	changes	 in	 the	tests,	as	 this	 is	not	an
exercise	 for	 test	 driven	 development	 but	 meant	to	 demonstrate	 a	 way	 of	 working	 with
scaffolding.	TDD	developers	will	quickly	be	able	to	adapt	the	tests.

Conclusion

http://localhost:3000/products

Have	a	go	and	try	it	out.	Try	working	with	scaffolds	one	time	and	without	them
the	 next.	 Then	 you	 will	 soon	 get	 a	 feel	 for	 whether	 it	 fits	 into	 your	 working
method	or	not.	I	find	that	scaffolding	makes	my	work	much	easier	for	standard
applications.

	 Stefan	Wintermeyer

ROUTES

Introduction
In

"Creating	HTML	Dynamically	with	erb"	 and	"Scaffolding	and	REST"	we	came
across	routes.	The	configuration	in	config/routes.rb

defines	what	happens	in	the	Rails	application	when	a	user	of	a	Rails

application	fetches	a	URL.	A	route	can	be	static	and	dynamic	and	pass

any	dynamic	values	with	variables	to	the	controller.	If	several	routes

apply	to	a	URL,	the	one	that	is	listed	at	the	top	of	config/routes.rb

wins.

If	you	do	not	have	much	time,	you	can	skip	this	chapter	for	now

and	get	back	to	it	later	if	you	have	any	specific	questions.

Let’s	first	build	a	test	Rails	application	so	we	can	experiment:

$	rails	new	shop

[...]

$	cd	shop

With	rails	routes	we	can	display	the	routes	of	a	project.	Let’s	try	it	straight

away	in	the	freshly	created	project:

$	rails	routes

You	don't	have	any	routes	defined!

	

Please	add	some	routes	in	config/routes.rb.

	

For	more	information	about	routes,	see	the	Rails	guide:	

http://guides.rubyonrails.org/routing.html.

That’s	what	I	call	a	good	error	message.	It’s	a	new	Rails	project,	there

are	no	routes	yet.

HTTP	GET	Requests	for	Singular	Resources

As	you	might	know	the	HTTP	protocol	uses	different	so	called	verbs	to

access	content	on	the	web	server	(e.g.	GET	to	request	a	page	or	POST	to

send	a	form	to	the	server).	First	we’ll	have	a	look	at	GET	requests.

Create	a	controller	with	three	pages:

$	rails	generate	controller	Home	index	ping	pong

						create		app/controllers/home_controller.rb

							route		get	"home/pong"

							route		get	"home/ping"

							route		get	"home/index"

							[...]

Now	rails	routes	lists	a	route	for	these	three	pages:

$	rails	routes

				Prefix	Verb	URI	Pattern											Controller#Action

home_index	GET		homeindex(.:format)	home#index

▪

▪

▪

	home_ping	GET		homeping(.:format)		home#ping

	home_pong	GET		homepong(.:format)		home#pong

The	pages	can	be	accessed	at	the	following	URLs	after	starting	the	Rails

server	with	rails	server:

http://localhost:3000homeindex

for	home_index	GET	homeindex(.:format)	home#index

http://localhost:3000homeping

for	home_ping	GET	homeping(.:format)	home#ping

http://localhost:3000homepong

for	home_pong	GET	homepong(.:format)	home#pong

http://localhost:3000<i>home</i>index
http://localhost:3000<i>home</i>ping
http://localhost:3000<i>home</i>pong

Figure	1.	Home	ping

With	the	output	home#index,	Rails	tells	us	that	the	route	home/index

goes	into	the	controller	home	and	there	to	the	action/method	index.

These	routes	are	defined	in	the	file	config/routes.rb.

rails	 generate	 controller	 Home	 index	 ping	 pong	 has

automatically	inserted	the	following	lines	there:

Listing	1.	config/routes.rb

get	"home/index"

get	"home/ping"

get	"home/pong"

Naming	a	Route

A	route	should	also	always	have	an	internal	name	which	doesn’t	change.

In	 the	 section	"HTTP	 Get	 Requests	 for	 Singular	 Resources"	 there	 is	 the
following	route:

home_pong	GET	homepong(.:format)		home#pong

This	 route	 has	 the	 automatically	 created	 name	home_pong.	 Generally,	 you

should	always	try	to	work	with	the	name	of	the	route	within	a	Rails

application.	 So	 you	 would	 point	 a	link_to	 to	home_pong	 and	 not	 to

homepong.	This	has	the	big	advantage	that	you	can	later	edit	(in	the

best	case,	optimize)	the	routing	for	visitors	externally	and	do	not	need

to	make	any	changes	internally	in	the	application.	Of	course,	you	need

to	enter	the	old	names	with	:as	in	that	case.

as
If	you	want	to	define	the	name	of	a	route	yourself,	you	can	do	so	with

:as.	For	example,	the	line

get	"home/pong",	as:	'different_name'

results	in	the	route

different_name	GET		homepong(.:format)		home#pong

to

With	to	you	can	define	an	other	destination	for	a	rout.	For	example,	the

line

get	"home/applepie",	to:	"home#ping"

results	in	the	route

home_applepie	GET		homeapplepie(.:format)	home#ping

Parameters
The	routing	engine	can	not	just	assign	fixed	routes	but	also	pass

parameters	which	are	part	of	the	URL.	A	typical	example	would	be	date

specifications	(e.g.	http://example.com201012/	for	all	December	postings).

To	demonstrate	this,	let’s	create	a	mini	blog	application:

$	rails	new	blog

[...]

$	cd	blog

$	rails	generate	scaffold	post	subject	content	published_on:date

[...]

http://example.com<i>2010</i>12/

$	rails	db:migrate

		[...]

As	example	data	in	the	db/seeds.rb	we	take:

Listing	2.	db/seeds.rb

Post.create(subject:	'A	test',	published_on:	'01.10.2011')	

Post.create(subject:	'Another	test',	published_on:	'01.10.2011')	

Post.create(subject:	'And	yet	one	more	test',	published_on:	

'02.10.2011')	Post.create(subject:	'Last	test',	published_on:	

'01.11.2011')	Post.create(subject:	'Very	final	test',	published_on:	

'01.11.2012')

With	rails	db:seed	we	populate	the	database	with	this	data:

$	rails	db:seed

Figure	2.	Posts	index

If	 we	 now	 start	 the	 Rails	 server	 with	rails	server	 and	 go	 to	 the	 page

http://localhost:3000/posts	in	the	browser,	we	will	see	this:	For	this	kind	of	blog
it	would	of	course	be	very	useful	if	you	could

render	all	entries	for	the	year	2010	with	the	URL

http://localhost:30002010	 and	 all	 entries	 for	 October	 1st	 2010	 with
http://localhost:3000201010/01.	We	 can	 do	 this	 by	 using	 optional	 parameters.
Please	enter	the	following	configuration	in	the

config/routes.rb:

Listing	3.	config/routes.rb

Blog::Application.routes.draw	do

		resources	:posts

		get	':year(/:month(/:day))',	to:	'posts#index'

end

The	round	brackets	represent	optional	parameters.	In	this	case,	you	have

to	specify	the	year,	but	not	necessarily	the	month	or	day.	rails	routes

shows	the	new	route	at	the	last	line:

$	rails	routes

			Prefix	Verb			URI	Pattern																						Controller#Action

http://localhost:3000/posts
http://localhost:3000<i>2010</i>
http://localhost:3000<i>2010</i>10/01

				posts	GET				/posts(.:format)																	posts#index

										POST			/posts(.:format)																	posts#create

	new_post	GET				postsnew(.:format)													posts#new

edit_post	GET				posts:id/edit(.:format)								posts#edit

					post	GET				posts:id(.:format)													posts#show

										PATCH		posts:id(.:format)													posts#update

										PUT				posts:id(.:format)													posts#update

										DELETE	posts:id(.:format)													posts#destroy

										GET				:year(:month(/:day))(.:format)	posts#index

If	we	do	not	change	anything	else,	we	still	get	the	same	result	when

calling	http://localhost:3000/2011/	and	http://localhost:3000/2011/10/01

as	we	did	with	http://localhost:3000/posts.	But	have	a	look	at	the	output	of	rails
server	for	the	request	http://localhost:3000/2011

Started	GET	"/2011"	for	127.0.0.1	at	2015-04-24	17:50:30	+0200

		ActiveRecord::SchemaMigration	Load	(0.2ms)		SELECT	"schema_migrations".*	FROM	
"schema_migrations"

http://localhost:3000/2011/
http://localhost:3000/2011/10/01
http://localhost:3000/posts
http://localhost:3000/2011

Processing	by	PostsController#index	as	HTML

		Parameters:	{"year"=>"2011"}

		Post	Load	(0.3ms)		SELECT	"posts".*	FROM	"posts"

		Rendered	posts/index.html.erb	within	layouts/application	(9.7ms)

Completed	200	OK	in	2263ms	(Views:	2243.0ms	|	ActiveRecord:	0.6ms)

The	route	has	been	recognised	and	an	"year"	⇒	"2011"	has	been	assigned
to	 the	 hash	params	 (written	 misleadingly	 as	Parameters	 in	 the	 output).

Going	 to	 the	 URL	http://localhost:3000201012/24	 results	 in	 the	 following
output,	as	expected:

Started	GET	"201012/24"	for	127.0.0.1	at	2015-04-24	17:52:12	+0200

Processing	by	PostsController#index	as	HTML

		Parameters:	{"year"=>"2010",	"month"=>"12",	"day"=>"24"}

		Post	Load	(0.2ms)		SELECT	"posts".*	FROM	"posts"

		Rendered	posts/index.html.erb	within	layouts/application	(2.3ms)

Completed	200	OK	in	33ms	(Views:	31.9ms	|	ActiveRecord:	0.2ms)

In	 case	 of	 the	 URL	http://localhost:3000201012/24,	 the	 following	 values	 have
been	saved	in	the	hash	params:

http://localhost:3000<i>2010</i>12/24
http://localhost:3000<i>2010</i>12/24

"year"⇒"2010",	"month"⇒"12",	"day"⇒"24".

In	 the	controller,	we	can	access	params[]	 to	access	the	values	defined	in	the

URL.	We	simply	need	to	adapt	the	index	method	in

app/controllers/posts_controller.rb	 to	 output	 the	posts

entered	for	the	corresponding	date,	month	or	year:

Listing	4.	app/controllers/posts_controller.rb

#	GET	/posts

#	GET	/posts.json

def	index

		#	Check	if	the	URL	requests	a	date.
		if	Date.valid_date?	params[:year].to_i,	params[:month].to_i,	params[:day].to_i	start_date	=	
Date.parse("#{params[:day]}.#{params[:month]}.#{params[:year]}")	end_date	=	start_date

	

		#	Check	if	the	URL	requests	a	month
		elsif	Date.valid_date?	params[:year].to_i,	params[:month].to_i,	1

				start_date	=	Date.parse("1.#{params[:month]}.#{params[:year]}")	end_date	=	
start_date.end_of_month

	

		#	Check	if	the	URL	requests	a	year
		elsif	params[:year]	&&	Date.valid_date?(params[:year].to_i,	1,	1)	start_date	=	Date.parse("1.1.#
{params[:year]}")	end_date	=	start_date.end_of_year

		end

		if	start_date	&&	end_date

				@posts	=	Post.where(published_on:	start_date..end_date)	else
				@posts	=	Post.all

		end

end

If	 we	 now	 go	 to	http://localhost:3000/2011/10/01	 ,	 we	 can	 see	 all	posts	 of

October	1st	2011.

Figure	3.	Posts	2011-10-01

Constraints
In	the	section	"Parameters"	I	showed	you	how	you	can	read	out	parameters	from
the	URL	and	pass	them	to	the

http://localhost:3000/2011/10/01

controller.	Unfortunately,	the	entry	defined	there	in	the

config/routes.rb

get	':year(/:month(/:day))',	to:	'posts#index'

has	one	important	disadvantage:	it	does	not	verify	the	individual

elements.	For	example,	the	URL	http://localhost:3000justan/example

will	be	matched	just	the	same	and	then	of	course	results	in	an	error:

http://localhost:3000<i>just</i>an/example

Figure	4.	Fehlermeldung

In	the	log	output	in`log/development.log`	we	can	see	the	following

entry:

Started	GET	"justan/example"	for	::1	at	2015-04-24	17:59:30	+0200

Processing	by	PostsController#index	as	HTML

		Parameters:	{"year"=>"just",	"month"=>"an",	"day"=>"example"}

Completed	500	Internal	Server	Error	in	2ms	(ActiveRecord:	0.0ms)

	

ArgumentError	(invalid	date):

		app/controllers/posts_controller.rb:19:in	`parse'

		app/controllers/posts_controller.rb:19:in	`index'

Obviously,	Date.parse("example.an.just")	cannot	work.	A	date	 is

made	up	of	numbers,	not	letters.

Constraints	can	define	the	content	of	the	URL	more	precisely	via	regular

expressions.	In	the	case	of	our	blog,	the	config/routes.rb	with	contraints

would	look	like	this:

Listing	5.	config/routes.rb

Blog::Application.routes.draw	do

		resources	:posts

		get	':year(/:month(/:day))',	to:	'posts#index',	constraints:	{	year:	\d{4},	month:	\d{2},	day:	\d{2}	}

end

Please	note	that	you	cannot	use	regex	anchors	such	as	"^"	in	regular

expressions	in	a	constraint.

If	we	go	to	the	URL	again	with	this	configuration,	Rails	gives	us	an

error	message	"No	route	matches":

Figure	5.	No	route	error

Redirects
Our	current	application	answers	request	in	the	format	YYYY/MM/DD	(4

digits	for	the	year,	2	digits	for	the	month	and	2	digits	for	the	day).

That	is	ok	for	machines	but	maybe	a	human	would	request	a	single	digit

month	(like	January)	and	a	single	digit	day	without	adding	the	extra	0

to	make	it	two	digits.	We	can	fix	that	with	a	couple	of	redirect	rules

which	catch	these	URLs	and	redirect	them	to	the	correct	ones.

Listing	6.	config/routes.rb

Blog::Application.routes.draw	do

		resources	:posts

		get	':year/:month/:day',	to:	redirect("/%{year}/0%{month}/0%{day}"),	constraints:	{	year:	\d{4},	
month:	\d{1},	day:	\d{1}	}

		get	':year/:month/:day',	to:	redirect("/%{year}/0%{month}/%{day}"),	constraints:	{	year:	\d{4},	
month:	\d{1},	day:	\d{2}	}

		get	':year/:month/:day',	to:	redirect("/%{year}/%{month}/0%{day}"),	constraints:	{	year:	\d{4},	
month:	\d{2},	day:	\d{1}	}

		get	':year/:month',	to:	redirect("/%{year}/0%{month}"),	constraints:	{	year:	\d{4},	month:	\d{1}	}

	

		get	':year(/:month(/:day))',	to:	'posts#index',	constraints:	{	year:	\d{4},	month:	\d{2},	day:	\d{2}	}

end

With	this	set	of	redirect	rules,	we	can	ensure	that	a	user	of	the	page

can	also	enter	single-digit	days	and	months	and	still	ends	up	in	the

right	place,	or	is	redirected	to	the	correct	format.

Redirects	 in	 the	config/routes.rb	 are	 by	 default	 http	 redirects	 with	 the	 code	 301

("Moved	Permanently").	So	even	search	engines	will	profit

from	this.

root	:to	⇒	̀ welcome#index'
Lets	switch	back	to	our	previous	created	shop-project.

$	cd	../shop

In	 the	default	config/routes.rb	file	you	will	find	the	following	comment

quite	a	long	way	down:

Listing	7.	config/routes.rb

#	You	can	have	the	root	of	your	site	routed	with	"root"

#	root	'welcome#index'

If	you	comment	out	the	last	line	there,	you	can	define	your

http://localhost:3000/	with	it.	Let’s	put	it	on	`home#index:

Listing	8.	config/routes.rb

Shop::Application.routes.draw	do

		get	"home/index"

		get	"home/ping"

		get	"home/pong"

		root	'home#index'

end

Our	new	routes:

$	rails	routes

				Prefix	Verb	URI	Pattern											Controller#Action

http://localhost:3000/

home_index	GET		homeindex(.:format)	home#index

	home_ping	GET		homeping(.:format)		home#ping

	home_pong	GET		homepong(.:format)		home#pong

						root	GET		/

If	we	go	to	the	root	URL	http://localhost:3000	we	now	see	home#index.

Figure	6.	home	index

http://localhost:3000

resources

resources	provides	routes	for	a	RESTful	resource.	Let’s	try	it	with	the	mini

blog	application:

$	rails	new	blog

[...]

$	cd	blog

$	rails	generate	scaffold	post	subject	content	published_on:date

[...]

$	rails	db:migrate

		[...]

The	 scaffold	 generator	 automatically	 creates	 a	resources	 route	 in	 the

config/routes.rb:

Listing	9.	config/routes.rb

Blog::Application.routes.draw	do

		resources	:posts

end

New	 routes	 are	 always	 added	 at	 the	 beginning	 of	config/routes.rb	 by	rails

generate	scripts.

The	resulting	routes:

$	rails	routes

			Prefix	Verb			URI	Pattern															Controller#Action

				posts	GET				/posts(.:format)										posts#index

										POST			/posts(.:format)										posts#create

	new_post	GET				postsnew(.:format)						posts#new

edit_post	GET				posts:id/edit(.:format)	posts#edit

					post	GET				posts:id(.:format)						posts#show

										PATCH		posts:id(.:format)						posts#update

										PUT				posts:id(.:format)						posts#update

										DELETE	posts:id(.:format)						posts#destroy

You	have	already	encountered	these	RESTful	routes	in	the	chapter

"Scaffolding	and	REST".	They	are	required	for	displaying	and	editing	records.

Selecting	Specific	Routes	with	only:	or	except:
If	you	only	want	to	use	specific	routes	from	the	finished	set	of	RESTful

routes,	you	can	limit	them	with	:only	or	:except.

The	 following	config/routes.rb	 defines	 only	 the	 routes	 for	index	 and

show:

Listing	10.	config/routes.rb

Blog::Application.routes.draw	do

		resources	:posts,	only:	[:index,	:show]

end

With	rails	routes	we	can	check	the	result:

$	rails	routes

Prefix	Verb	URI	Pattern										Controller#Action

	posts	GET		/posts(.:format)					posts#index

		post	GET		posts:id(.:format)	posts#show

except	works	exactly	the	other	way	round:

Listing	11.	config/routes.rb

Blog::Application.routes.draw	do

		resources	:posts,	except:	[:index,	:show]

end

Now	all	routes	except	for	index	and	show	are	possible:

$	rails	routes

			Prefix	Verb			URI	Pattern															Controller#Action

				posts	POST			/posts(.:format)										posts#create

	new_post	GET				postsnew(.:format)						posts#new

edit_post	GET				posts:id/edit(.:format)	posts#edit

					post	PATCH		posts:id(.:format)						posts#update

										PUT				posts:id(.:format)						posts#update

										DELETE	posts:id(.:format)						posts#destroy

When	using	only	and	except,	please	make	sure	you	also	adapt	the	views	generated	by	the

scaffold	generator.	For	example,	there	is	a	link

on	the	index	page	to	the	new	view	with

<%=	link_to	'New	Post',	new_post_path	%>	but	this	view	no	longer	exists	in

the	above	only	example.

Nested	Resources

Nested	resources	refer	to	routes	of	resources	that	work	with	an

association.	These	can	be	addressed	precisely	via

routes.	Let’s	create	a	second	resource,	comment:

$	rails	generate	scaffold	comment	post_id:integer	content

[...]

$	rails	db:migrate

		[...]

Now	we	associate	 the	 two	resources.	 In	 the	 file	app/models/post.rb,	we

add	a	has_many:

Listing	12.	app/models/post.rb

class	Post	<	ActiveRecord::Base	has_many	:comments

end

And	in	the	file	app/models/comment.rb,	its	counterpart	belongs_to:

Listing	13.	app/models/comment.rb

class	Comment	<	ActiveRecord::Base	belongs_to	:post

end

The	routes	generated	by	the	scaffold	generator	look	like	this:

$	rails	routes

						Prefix	Verb			URI	Pattern																		Controller#Action

				comments	GET				/comments(.:format)										comments#index

													POST			/comments(.:format)										comments#create

	new_comment	GET				commentsnew(.:format)						comments#new

edit_comment	GET				comments:id/edit(.:format)	comments#edit

					comment	GET				comments:id(.:format)						comments#show

													PATCH		comments:id(.:format)						comments#update

													PUT				comments:id(.:format)						comments#update

													DELETE	comments:id(.:format)						comments#destroy

							posts	POST			/posts(.:format)													posts#create

				new_post	GET				postsnew(.:format)									posts#new

			edit_post	GET				posts:id/edit(.:format)				posts#edit

								post	PATCH		posts:id(.:format)									posts#update

													PUT				posts:id(.:format)									posts#update

													DELETE	posts:id(.:format)									posts#destroy

So	 we	 can	 get	 the	 first	 post	 with	posts1	 and	 all	 the	 comments	 with

/comments.	 By	 using	 nesting,	 we	 can	 get	 all	 comments	 with	 the	 ID	 1	 via

posts1/	comments.	We	need	to	change	the	config/routes.rb:

Listing	14.	config/routes.rb

Blog::Application.routes.draw	do

		resources	:posts	do

				resources	:comments

		end

end

This	gives	us	the	desired	routes:

$	rails	routes

											Prefix	Verb			URI	Pattern																																	Controller#Action

				post_comments	GET				posts:post_id/comments(.:format)										comments#index

																		POST			posts:post_id/comments(.:format)										comments#create

	new_post_comment	GET				posts:post_idcommentsnew(.:format)						comments#new	
edit_post_comment	GET				posts:post_idcomments:id/edit(.:format)	comments#edit	post_comment	
GET				posts:post_idcomments:id(.:format)						comments#show	PATCH		
posts:post_idcomments:id(.:format)						comments#update	PUT				posts:post_idcomments:id(.:format)						
comments#update	DELETE	posts:post_idcomments:id(.:format)						comments#destroy	posts	GET				
/posts(.:format)																												posts#index

																		POST			/posts(.:format)																												posts#create

									new_post	GET				postsnew(.:format)																								posts#new

								edit_post	GET				posts:id/edit(.:format)																			posts#edit

													post	GET				posts:id(.:format)																								posts#show

																		PATCH		posts:id(.:format)																								posts#update

																		PUT				posts:id(.:format)																								posts#update

																		DELETE	posts:id(.:format)																								

posts#destroy

But	we	still	need	to	make	some	changes	in	the	file

app/controllers/comments_controller.rb.	This	ensures	 that	only

the	Comments	of	the	specified	Post	can	be	displayed	or	changed:

Listing	15.	app/controllers/comments_controller.rb

class	CommentsController	<	ApplicationController	before_action	

:set_post

		before_action	:set_comment,	only:	[:show,	:edit,	:update,	

:destroy]

	

		#	GET	/comments
		#	GET	/comments.json
		def	index

				@comments	=	Comment.all

		end

		#	GET	comments1
		#	GET	comments1.json
		def	show

		end

		#	GET	commentsnew
		def	new

				@comment	=	@post.comments.build

		end

		#	GET	comments1/edit
		def	edit

		end

		#	POST	/comments
		#	POST	/comments.json
		def	create

				@comment	=	@post.comments.build(comment_params)

	

				respond_to	do	|format|

						if	@comment.save

								format.html	{	redirect_to	@comment,	notice:	'Comment	was	successfully
								created.'	}

								format.json	{	render	action:	'show',	status:	:created,	location:	@comment	}

						else
								format.html	{	render	action:	'new'	}

								format.json	{	render	json:	@comment.errors,	status:	:unprocessable_entity	}

						end
				end
		end

		#	PATCH/PUT	comments1
		#	PATCH/PUT	comments1.json
		def	update

				respond_to	do	|format|

						if	@comment.update(comment_params)

								format.html	{	redirect_to	@comment,	notice:	'Comment	was	successfully
								updated.'	}

								format.json	{	head	:no_content	}

						else
								format.html	{	render	action:	'edit'	}

								format.json	{	render	json:	@comment.errors,	status:	:unprocessable_entity	}

						end
				end
		end

		#	DELETE	comments1
		#	DELETE	comments1.json
		def	destroy

				@comment.destroy

				respond_to	do	|format|

						format.html	{	redirect_to	comments_url	}

						format.json	{	head	:no_content	}

				end
		end

		private
				def	set_post

						@post	=	Post.find(params[:post_id])

				end

				#	Use	callbacks	to	share	common	setup	or	constraints	between	actions.
				def	set_comment

						@comment	=	@post.comments.find(params[:id])

				end

				#	Never	trust	parameters	from	the	scary	internet,	only	allow	the	white
				#	list	through.
				def	comment_params

						params.require(:comment).permit(:post_id,	:content)	end

end

Unfortunately,	this	is	only	half	the	story,	because	the	views	still	link

to	the	old	routes.	So	we	need	to	adapt	each	view	in	accordance	with	the

nested	route.

Please	note	that	you	need	to	change	the	form_for	call	to

form_for([@post,	@comment]).

Listing	16.	app/viewscomments_form.html.erb

<%=	form_for([@post,	@comment])	do	|f|	%>

		<%	if	@comment.errors.any?	%>

				<div	id="error_explanation">

						<h2><%=	pluralize(@comment.errors.count,	"error")	%>	prohibited	this
						comment	from	being	saved:</h2>

						
						<%	@comment.errors.full_messages.each	do	|msg|	%>
								<%=	msg	%>
						<%	end	%>

						
				</div>
		<%	end	%>

		<div	class="field">
				<%=	f.label	:content	%>

				<%=	f.text_field	:content	%>
		</div>
		<div	class="actions">

				<%=	f.submit	%>

		</div>

<%	end	%>

Listing	17.	app/viewscommentsedit.html.erb

<h1>Editing	comment</h1>

	

<%=	render	'form'	%>	<%=	link_to	'Show',	[@post,	@comment]	%>	|

<%=	link_to	'Back',	post_comments_path(@post)	%>

Listing	18.	app/viewscommentsindex.html.erb

<h1>Listing	comments</h1>	<table>

		<thead>

				<tr>

						<th>Post</th>

						<th>Content</th>
						<th	colspan="3"></th>

				</tr>
		</thead>

	

		<tbody>

				<%	@comments.each	do	|comment|	%>
						<tr>
								<td><%=	comment.post_id	%></td>
								<td><%=	comment.content	%></td>
								<td><%=	link_to	'Show',	[@post,	comment]	%></td>
								<td><%=	link_to	'Edit',	edit_post_comment_path(@post,	comment)	%></td>
								<td><%=	link_to	'Destroy',	[@post,	comment],	method:	:delete,	data:	{
								confirm:	'Are	you	sure?'	}	%></td>
						</tr>
				<%	end	%>
		</tbody>
</table>

<%=	link_to	'New	Comment',	new_post_comment_path(@post)	%>

Listing	19.	app/viewscommentsnew.html.erb

<h1>New	comment</h1>

	

<%=	render	'form'	%>	<%=	link_to	'Back',	post_comments_path(@post)	

%>

Listing	20.	app/viewscommentsshow.html.erb

<p	id="notice"><%=	notice	%></p>	

<p>

		Post:

		<%=	@comment.post_id	%>
</p>

	

<p>

		Content:

		<%=	@comment.content	%>
</p>

	

<%=	link_to	'Edit',	edit_post_comment_path(@post,	@comment)	%>	|

<%=	link_to	'Back',	post_comments_path(@post)	%>

Please	go	ahead	and	have	a	go	at	experimenting	with	the	URLs	listed

under	rails	routes.	You	can	now	generate	a	new	post	with	postsnew	and	a	new

comment	for	this	post	with	posts:post_idcommentsnew.

If	you	want	to	see	all	comments	of	the	first	post	you	can	access	that

with	the	URL	http://localhost:3000posts1/comments.	It	would	look	like	this:

Figure	7.	listing	comments

Shallow	Nesting

Sometimes	it	is	a	better	option	to	use	shallow	nesting.	For	our	example

the	config/routes.rb	would	contain	the	following	routes:

Listing	21.	config/routes.rb

Blog::Application.routes.draw	do

		resources	:posts	do

				resources	:comments,	only:	[:index,	:new,	:create]

		end

http://localhost:3000<i>posts</i>1/comments

		resources	:comments,	except:	[:index,	:new,	:create]

end

That	would	lead	to	a	less	messy	rails	routes	output:

$	rails	routes

										Prefix	Verb			URI	Pattern																												Controller#Action

			post_comments	GET				posts:post_id/comments(.:format)					comments#index

																	POST			posts:post_id/comments(.:format)					comments#create

new_post_comment	GET				posts:post_idcommentsnew(.:format)	comments#new

											posts	GET				/posts(.:format)																							posts#index

																	POST			/posts(.:format)																							posts#create

								new_post	GET				postsnew(.:format)																			posts#new

							edit_post	GET				posts:id/edit(.:format)														posts#edit

												post	GET				posts:id(.:format)																			posts#show

																	PATCH		posts:id(.:format)																			posts#update

																	PUT				posts:id(.:format)																			posts#update

																	DELETE	posts:id(.:format)																			posts#destroy

				edit_comment	GET				comments:id/edit(.:format)											comments#edit

									comment	GET				comments:id(.:format)																comments#show

																	PATCH		comments:id(.:format)																comments#update

																	PUT				comments:id(.:format)																comments#update

																	DELETE	comments:id(.:format)																

comments#destroy

Shallow	nesting	trys	to	combine	the	best	of	two	worlds.	And	because	it

is	often	used	there	is	a	shortcut.	You	can	use	the	following

config/routes.rb	to	achieve	it:

Listing	22.	config/routes.rb

Blog::Application.routes.draw	do

		resources	:posts	do

				resources	:comments,	shallow:	true

		end

end

Comments	on	Nested	Resources

Generally,	you	should	never	nest	more	deeply	than	one	level	and	nested

resources	should	feel	natural.	After	a	while,	you	will	get	a	feel	for

it.	In	my	opinion,	the	most	important	point	about	RESTful	routes	is	that

they	should	feel	logical.	If	you	phone	a	fellow	Rails	programmer	and	say

"I’ve	got	a	resource	post	and	a	resource	comment	here",	then	both

parties	should	immediately	be	clear	on	how	you	address	these	resources

via	REST	and	how	you	can	nest	them.

Further	Information	on	Routes

The	topic	routes	is	far	more	complex	than	we	can	address	here.	For

example,	you	can	also	involve	other	HTTP	methods/verbs.	The	official

routing	documentation	http://guides.rubyonrails.org/routing.html	will	give	you	a
lot	of	information	an	examples	for	these	features	and	edge

cases.

http://guides.rubyonrails.org/routing.html

	 Stefan	Wintermeyer

BUNDLER	AND	GEMS

Gems	constitute	the	package	management	in	the	world	of	Ruby.

If	you	do	not	have	much	time,	you	can	skip	this	chapter	for	now	and	get	back	to	it	later	if	you
have	any	specific	questions.

If	 a	 Ruby	 developer	 wants	 to	 offer	 a	 specific	 feature	 or	 a	 certain	 program	 or
collection	 of	 programs	 to	 other	Ruby	 developers,	 he	 can	 create	 a	 "gem"	 from
these.	This	gem	can	then	be	installed	via	gem	install.

Have	a	look	at	https://www.ruby-toolbox.com	to	get	an	overview	of	the	existing	gems.

In	a	Rails	project,	different	gems	are	used	and	a	developer	can	also	add	further
gems.	 The	 programm	bundle	 helps	 the	developer	 to	 install	 all	 these	gems	 in

the	right	version	and	to	take	into	account	dependencies.	In	older	Rails	versions,
you	as	developer	had	to	always	call	a	bundle	install	after	a	rails	new.

Now,	this	is	done	automatically	within	rails	new.

https://www.ruby-toolbox.com

The	 file	Gemfile	 generated	 by	rails	new	 indicates	which	gems	are	 to	be

installed	by	Bundler:

Listing	1.	Gemfile

source	'https://rubygems.org'

#	Bundle	edge	Rails	instead:	gem	'rails',	github:	'rails/rails'

gem	'rails',	'>=	5.0.0',	'<	5.1'

#	Use	sqlite3	as	the	database	for	Active	Record

gem	'sqlite3'

#	Use	Uglifier	as	compressor	for	JavaScript	assets

gem	'uglifier',	'>=	1.3.0'

#	Use	CoffeeScript	for	.coffee	assets	and	views

gem	'coffee-rails',	'~>	4.1.0'

#	See	https://github.com/rails/execjs#readme	for	more	supported	

runtimes

#	gem	'therubyracer',	platforms:	:ruby

#	Use	jquery	as	the	JavaScript	library

gem	'jquery-rails'

#	Turbolinks	makes	following	links	in	your	web	application	faster.	

Read	more:	https://github.com/rails/turbolinks

gem	'turbolinks'

#	Build	JSON	APIs	with	ease.	Read	more:	

https://github.com/rails/jbuilder

gem	'jbuilder',	'~>	2.0'

#	Use	Puma	as	the	app	server

gem	'puma'

#	Use	ActiveModel	has_secure_password

#	gem	'bcrypt',	'~>	3.1.7'

#	Use	Capistrano	for	deployment

#	gem	'capistrano-rails',	group:	:development

group	:development,	:test	do

		#	Call	'byebug'	anywhere	in	the	code	to	stop	execution	and	get	a	

debugger	console

		gem	'byebug'

end

group	:development	do

		#	Access	an	IRB	console	on	exception	pages	or	by	using	<%=	console	

%>	in	views

		gem	'web-console',	'~>	3.0'

		#	Spring	speeds	up	development	by	keeping	your	application	running	

in	the	background.	Read	more:	https://github.com/rails/spring

		gem	'spring'

end

#	Windows	does	not	include	zoneinfo	files,	so	bundle	the	tzinfo-data	

gem

gem	'tzinfo-data',	platforms:	[:mingw,	:mswin,	:x64_mingw,	:jruby]

The	format	used	is	easy	to	explain:	the	word	gem	is	followed	by	the	name	of	the

gem	and	then,	if	required,	a	specification	of	the	version	of	the	gem.

For	 example,	 the	 line	gem	'rails',	'5.0.0'	stands	for	"install	 the	gem

with	the	name	rails	in	the	version	5.0.0".

With	~>	before	 the	version	number	you	can	determine	 that	 the	newest	version

after	 this	 version	 number	 should	 be	 installed.	 As	 a	 result,	 the	 last	 digit	 is
incremented,	 so	 for	 example	gem	 'rails',	 '~>	 4.0.0'	 would

correspondingly	install	a	Rails	4.0.1,	but	not	a	4.1	(for	the	latter,	you	would	need
to	specify	gem	'rails',	'~>	4.1').

You	 have	 the	 option	 of	 installing	 certain	 gems	 only	 in	 certain	environments.	To	do	 so,	 you
need	to	enclose	the	corresponding	lines	in	a	group	:name	do	loop.

Apart	 from	 the	 file	Gemfile	 there	 is	 also	 the	 file	Gemfile.lock	 and	 the

exact	 versions	 of	 the	 installed	 gems	 are	 listed	 there.	 In	 the	 above	 example,	 it
looks	like	this:

Listing	2.	Gemfile.lock

GEM

		remote:	https://rubygems.org/

		specs:

				actioncable	(5.0.0.1)

						actionpack	(=	5.0.0.1)

						celluloid	(~>	0.17.2)

						coffee-rails	(~>	4.1.0)

						em-hiredis	(~>	0.3.0)

						faye-websocket	(~>	0.10.0)

						redis	(~>	3.0)

						websocket-driver	(~>	0.6.1)

				actionmailer	(5.0.0.1)

						actionpack	(=	5.0.0.1)

						actionview	(=	5.0.0.1)

						activejob	(=	5.0.0.1)

						mail	(~>	2.5,	>=	2.5.4)

						rails-dom-testing	(~>	1.0,	>=	1.0.5)

						[...]

The	 advantage	 of	Gemfile.lock	 is	 that	 it	 makes	 it	 possible	 for	 several

developers	 to	work	 on	 the	 same	Rails	 project	 independently	 from	one	 another
and	to	still	be	sure	that	they	are	all	working	with	the	same	gem	versions.	If	a	file
i s	Gemfile.lock,	 this	 will	 be	 used	 by	 the	 Bundler.	 This	 is	 also	 useful	 for

deploying	the	Rails	project	later	on	a	web	server.

Thanks	 to	 this	mechanism	you	can	use	and	develop	several	Rails	projects	with
different	gem	version	numbers	in	parallel.

bundle	update

With	bundle	update	you	can	update	gems	to	new	versions.	As	an	example,	I

have	a	Rails	project	with	the	Rails	version	4.2.1:

$	rails	-v

Rails	4.2.1

$

In	the	file	Gemfile,	this	version	is	listed:

Listing	3.	Gemfile

source	'https://rubygems.org'

#	Bundle	edge	Rails	instead:	gem	'rails',	github:	'rails/rails'

gem	'rails',	'4.2.1'

[...]

And	also	in	the	Gemfile.lock:

$	grep	'rails'	Gemfile.lock

		[...]

		rails	(=	4.2.1)

		[...]

$

Assumed	we	are	working	with	rails	4.2.0	and	we	want	 to	update	 to	rails	4.2.4.
Then	we	have	to	change	the	Gemfile	from	this:

Listing	4.	Gemfile

[...]

gem	'rails',	'4.2.0'

[...]

to	this:

Listing	5.	Gemfile

[...]

gem	'rails',	'4.2.4'

[...]

After	 this	 change,	 you	 can	 use	bundle	update	rails	 to	 install	 the	 new

Rails	 version	 (required	 dependencies	 are	 automatically	 taken	 into	 account	 by
Bundler):

$	bundle	update	rails

		[...]

$	rails	-v

Rails	4.2.4

$

After	 every	 gem	 update,	 you	 should	 first	 run	rake	test	 to	 make	 sure	 that	 a	 new	 gem

version	does	not	add	any	unwanted	side	effects.

bundle	outdated

If	 you	 want	 to	 know	 which	 of	 the	 gems	 used	 by	 your	 Rails	 project	 are	 now
available	 in	 a	 new	 version,	 you	 can	 do	 this	 via	 the	 command	bundle

outdated.	Example:

$	bundle	outdated

Fetching	gem	metadata	from	https://rubygems.org/...........

Fetching	version	metadata	from	https://rubygems.org/...

Fetching	dependency	metadata	from	https://rubygems.org/..

Resolving	dependencies....

Outdated	gems	included	in	the	bundle:

			hiredis	(newest	0.6.1,	installed	0.5.2)

			mime-types	(newest	3.0,	installed	2.99)

		*	mini_portile2	(newest	2.1.0,	installed	2.0.0)

To	update	them	you’ll	have	to	change	the	version	numbers	in	Gemfile	and	run

a	bundle	update.

bundle	exec

bundle	exec	is	required	whenever	a	program	such	as	rake	is	used	in	a	Rails

project	 and	 is	 present	 in	 a	 different	 version	 than	 the	 rest	 of	 the	 system.	 The
resulting	error	message	is	always	easy	to	implement:

You	have	already	activated	rake	0.10,	but	your	Gemfile	requires	rake	

0.9.2.2.

Using	bundle	exec	may	solve	this.

In	this	case,	it	helps	to	invoke	the	command	with	a	preceding	bundle	exec:

$	bundle	exec	rake	db:migrate

binstubs

In	 some	 environments,	 using	bundle	exec	 is	 too	complicated.	 In	 that	case,

you	can	 install	programs	with	 the	correct	version	via	bundle	install	--

binstubs	in	the	directory	bin:

$	bundle	install	--binstubs

Using	rake	10.4.2

Using	i18n	0.7.0

[...]

Using	web-console	2.1.2

Bundle	complete!	12	Gemfile	dependencies,	54	gems	now	installed.

Use	bundle	show	[gemname]	to	see	where	a	bundled	gem	is	installed.

Afterwards,	you	can	always	use	these	programs.	Example:

$	bin/rake	db:migrate

==		CreateUsers:	migrating	

==

--	create_table(:users)

			->	0.0018s

==		CreateUsers:	migrated	(0.0019s)	

===

▪

▪

Further	Information	on	Bundler

The	topic	Bundler	is	far	more	complex	than	can	be	described	here.	If	you	want
to	find	out	more	on	Bundler,	please	visit	 the	following	websites	 to	find	further
information:

http://railscasts.com/episodes/201-bundler-revised

http://gembundler.com/

http://railscasts.com/episodes/201-bundler-revised
http://gembundler.com/

	 Stefan	Wintermeyer

FORMS

The	Data-Input	Workflow
To	understand	forms	we	take	a	look	at	the	data	workflow.	Understanding	it	better
will	help	to	understand	the	work	of	forms.

Example	application:

$	rails	new	testapp

[...]

$	cd	testapp

$	rails	generate	scaffold	Person	first_name	last_name

[...]

$	rails	db:migrate

[...]

$	rails	server

=>	Booting	Puma

=>	Rails	5.0.0.1	application	starting	in	development	on	

http://localhost:3000

[...]

Most	times	we	create	forms	by	using	the	Scaffold.	Let’s	go	through	the	flow	the
data

Request	the	people#new	form
When	 we	 request	 the	http://localhost:3000peoplenew	 URL	 the	 router	 answers
the	following	route:

http://localhost:3000<i>people</i>new

new_person	GET				peoplenew(.:format)						people#new

The	 controller	app/controllers/people_controller.rb	 runs	 this

code:

Listing	1.	app/controllers/people_controller.rb

#	GET	peoplenew

def	new

		@person	=	Person.new

end

So	 a	 new	 Instance	 of	Person	 is	 created	 and	 stored	 in	 the	 instance	 variable

@person.

Rails	 takes	@person	 and	 starts	 processing	 the	 view	 file
app/viewspeoplenew.html.erb

Listing	2.	app/viewspeoplenew.html.erb

<h1>New	Person</h1>

<%=	render	'form',	person:	@person	%>

<%=	link_to	'Back',	people_path	%>

render	'form'	 renders	 the	 file	app/viewspeople_form.html.erb

and	sets	the	local	variable	person	with	the	content	of	@person.

Listing	3.	app/viewspeople_form.html.erb

<%=	form_for(person)	do	|f|	%>

		<%	if	person.errors.any?	%>

				<div	id="error_explanation">

						<h2><%=	pluralize(person.errors.count,	"error")	%>	prohibited	

this	person	from	being	saved:</h2>

						

						<%	person.errors.full_messages.each	do	|message|	%>

								<%=	message	%>

						<%	end	%>

						

				</div>

		<%	end	%>

		<div	class="field">

				<%=	f.label	:first_name	%>

				<%=	f.text_field	:first_name	%>

		</div>

		<div	class="field">

				<%=	f.label	:last_name	%>

				<%=	f.text_field	:last_name	%>

		</div>

		<div	class="actions">

				<%=	f.submit	%>

		</div>

<%	end	%>

form_for(person)	 embeddeds	 the	 two	text_fields	 :first_name

and	:last_name	plus	a	submit	Button.

The	resulting	HTML:

[...]

<form	class="new_person"	id="new_person"	action="/people"	accept-

charset="UTF-8"	method="post"><input	name="utf8"	type="hidden"	

value="✓"	/><input	type="hidden"	name="authenticity_token"	

value="nMTs[...]vmeBw=="	/>

		<div	class="field">

				<label	for="person_first_name">First	name</label>

				<input	type="text"	name="person[first_name]"	

id="person_first_name"	/>

		</div>

		<div	class="field">

				<label	for="person_last_name">Last	name</label>

				<input	type="text"	name="person[last_name]"	

id="person_last_name"	/>

		</div>

		<div	class="actions">

				<input	type="submit"	name="commit"	value="Create	Person"	data-

disable-with="Create	Person"	/>

		</div>

</form>

[...]

This	form	uses	the	post	method	to	upload	the	data	to	the	server.

Push	the	Data	to	the	Server
We	 enter	 "Stefan"	 in	 the	first_name	 field	 and	 "Wintermeyer"	 in	 the

last_name	 field	 and	 click	 the	 submit	 button.	 The	 browser	 uses	 the	 post

method	to	uploads	the	data	to	the	URL	/people.	The	log	shows:

Started	POST	"/people"	for	::1	at	2016-01-27	18:47:19	+0100

Processing	by	PeopleController#create	as	HTML

		Parameters:	{"utf8"=>"✓",	
"authenticity_token"=>"DtI0HIHVB7lOIu76YuI1f1byUrDhs89B0ti3fkT9oJVRi

ljnAdKPsmDeuvir9DZ+6eCoIkX3Vgza15a8pjX4qw==",	"person"=>

{"first_name"=>"Stefan",	"last_name"=>"Wintermeyer"},	

"commit"=>"Create	Person"}

			(0.1ms)		begin	transaction

		SQL	(0.3ms)		INSERT	INTO	"people"	("first_name",	"last_name",	

"created_at",	"updated_at")	VALUES	(?,	?,	?,	?)		[["first_name",	

"Stefan"],	["last_name",	"Wintermeyer"],	["created_at",	2016-01-27	

19:47:19	UTC],	["updated_at",	2016-01-27	19:47:19	UTC]]

			(0.9ms)		commit	transaction

Redirected	to	http://localhost:3000people1

Completed	302	Found	in	7ms	(ActiveRecord:	1.3ms)

What	happened	in	Rails?

The	router	answers	the	request	with	this	route

POST			/people(.:format)										people#create

The	 controller	app/controllers/people_controller.rb	 runs	 this

code

Listing	4.	app/controllers/people_controller.rb

#	POST	/people

#	POST	/people.json

def	create

		@person	=	Person.new(person_params)

		respond_to	do	|format|

				if	@person.save

						format.html	{	redirect_to	@person,	notice:	'Person	was	

successfully	created.'	}

						format.json	{	render	:show,	status:	:created,	location:	

@person	}

				else

						format.html	{	render	:new	}

						format.json	{	render	json:	@person.errors,	status:	

:unprocessable_entity	}

				end

		end

end

[...]

#	Never	trust	parameters	from	the	scary	internet,	only	allow	the	

white	list	through.

def	person_params

		params.require(:person).permit(:first_name,	:last_name)

end

A	new	instance	variable	@person	is	created.	It	represents	a	new	Person	which

was	 created	 with	 the	 params	 that	 were	 send	 from	 the	 browser	 to	 the	 Rails
application.	The	params	are	checked	in	the	person_params	method	which	is

a	whitelist.	That	 is	done	so	 the	user	can	not	 just	 inject	params	which	we	don’t
want	to	be	injected.

Once	@person	is	saved	a	redirect_to	@person	is	triggered.	That	would

be	http://localhost:3000people1	in	this	example.

Present	the	new	Data
The	redirect	to	http://localhost:3000people1	is	traceable	in	the	log	file

Started	GET	"people1"	for	::1	at	2016-01-27	18:47:19	+0100

Processing	by	PeopleController#show	as	HTML

		Parameters:	{"id"=>"1"}

		Person	Load	(0.2ms)		SELECT		"people".*	FROM	"people"	WHERE	

"people"."id"	=	?	LIMIT	?		[["id",	1],	["LIMIT",	1]]

		Rendered	people/show.html.erb	within	layouts/application	(2.0ms)

Completed	200	OK	in	55ms	(Views:	49.3ms	|	ActiveRecord:	0.2ms)

The	router	answers	to	this	request	with

person	GET				people:id(.:format)						people#show

Which	 gets	 handled	 be	 the	 show	 method	 in
app/controllers/people_controller.rb

http://localhost:3000<i>people</i>1
http://localhost:3000<i>people</i>1

Generic	Forms

A	form	doesn’t	have	to	be	hardwired	to	an	ActiveRecord	object.	You	can	use	the
form_tag	 helper	 to	 create	 a	 form	 by	 yourself.	 I	 use	 the	 example	 of

http://guides.rubyonrails.org/form_helpers.html	(which	is	the	official	Rails	guide
about	 forms)	 to	show	how	to	create	a	search	form	which	 is	not	connected	 to	a
model:

<%=	form_tag("/search",	method:	"get")	do	%>

		<%=	label_tag(:q,	"Search	for:")	%>

		<%=	text_field_tag(:q)	%>

		<%=	submit_tag("Search")	%>

<%	end	%>

It	results	in	this	HTML	code:

<form	accept-charset="UTF-8"	action="/search"	method="get">

		<label	for="q">Search	for:</label>

		<input	id="q"	name="q"	type="text"	/>

		<input	name="commit"	type="submit"	value="Search"	/>

</form>

To	handle	this	you’d	have	to	create	a	new	route	in	config/routes.rb	and

write	a	method	in	a	controller	to	handle	it.

http://guides.rubyonrails.org/form_helpers.html

FormTagHelper

There	 is	 not	 just	 a	 helper	 for	 text	 fields.	 Have	 a	 look	 at	 the	 official	 API
documentation	 for	 all	 FormTagHelpers	 at
http://api.rubyonrails.org/classes/ActionView/Helpers/FormTagHelper.html	 to
get	an	overview.	Because	we	use	Scaffold	 to	create	a	 form	 there	 is	no	need	 to
memorize	 them.	 It	 is	 just	 important	 to	 know	where	 to	 look	 in	 case	 you	 need
something	else.

http://api.rubyonrails.org/classes/ActionView/Helpers/FormTagHelper.html

Alternatives

Many	Rails	developer	use	Simple	Form	as	an	alternative	to	the	standard	way	of
defining	forms.	It	is	worth	a	try	because	you	can	really	safe	time	and	most	of	the
times	 it’s	 just	 easier.	 Simple	 Form	 is	 available	 as	 a	 Gem	 at
https://github.com/plataformatec/simple_form

https://github.com/plataformatec/simple_form

	 Stefan	Wintermeyer

TESTS

Introduction
I	 have	 been	 programming	 for	 35	 years	 and	most	 of	 the	 time	 I	 have	managed
quite	well	without	test-driven	development	(TDD).	I	am	not	going	to	be

mad	at	you	if	you	decide	to	just	skip	this	chapter.	You	can

create	Rails	applications	without	tests	and	are	not	likely	to	get	any

bad	karma	as	a	result	(at	least,	I	hope	not	-	but	you	can	never	be

entirely	sure	with	the	whole	karma	thing).

But	if	you	should	decide	to	go	for	TDD,	then	I	can	promise	you	that	it

is	an	enlightenment.	The	basic	idea	of	TDD	is	that	you	write	a	test	for

each	programming	function	to	check	this	function.	In	the	pure	TDD

teaching,	this	test	is	written	before	the	actual	programming.	Yes,	you

will	have	a	lot	more	to	do	initially.	But	later,	you	can	run	all	the

tests	and	see	that	the	application	works	exactly	as	you	wanted	it	to.

The	read	advantage	only	becomes	apparent	after	a	few	weeks	or	months,

when	you	look	at	the	project	again	and	write	an	extension	or	new

variation.	Then	you	can	safely	change	the	code	and	check	it	still	works

properly	by	running	the	tests.	This	avoids	a	situation	where	you	find

yourself	saying	"oops,	that	went	a	bit	wrong,	I	just	didn’t	think	of

this	particular	problem".

Often,	the	advantage	of	TDD	already	becomes	evident	when	writing	a

program.	Tests	can	reveal	many	careless	mistakes	that	you	would

otherwise	only	have	stumbled	across	much	later	on.

This	chapter	is	a	brief	overview	of	the	topic	test-driven	development

with	Rails.	If	you	have	tasted	blood	and	want	to	find	out	more,	you	can

dive	into	the	official	Rails	documentation	at

http://guides.rubyonrails.org/testing.html.

TDD	is	just	like	driving	a	car.	The	only	way	to	learn	it	is	by	doing	it.

http://guides.rubyonrails.org/testing.html

Example	for	a	User	in	a	Web	Shop

Let’s	start	with	a	user	scaffold	in	an	imaginary	web	shop:

$	rails	new	webshop

[...]

$	cd	webshop

$	rails	generate	scaffold	user	login_name	first_name	last_name	birthday:date

[...]

						invoke				test_unit

						create						test/models/user_test.rb

						create						test/fixtures/users.yml

[...]

						invoke				test_unit

						create						test/controllers/users_controller_test.rb

						invoke				helper

						create						app/helpers/users_helper.rb

						invoke						test_unit

[...]

$	rails	db:migrate

						[...]

You	 already	 know	 all	 about	 scaffolds	 (if	 not,	 please	 go	 and	 read	 the	 chapter
"Scaffolding	 and	REST"	 first)	 so	you	know	what	 the	 application	we	have	 just
created	does.	The	scaffold	created	a	few	tests	(they	are	easy	to	recognise	because
the	word	test

is	in	the	file	name).

The	complete	test	suite	of	a	Rails	project	is	processed	with	the	command	rails

test.	Let’s	have	a	go	and	see	what	a	test	produces	at	this	stage	of	development:

$	rails	test

Running	via	Spring	preloader	in	process	48169

Run	options:	--seed	30780

	

#	Running:

	

.......

	

Finished	in	2.128604s,	3.2885	runs/s,	5.6375	assertions/s.

	

7	runs,	12	assertions,	0	failures,	0	errors,	0	skips

The	output	7	runs,	12	assertions,	0	failures,	0	errors,	0

skips	looks	good.	By	default,	a	test	will	run	correctly	in	a	standard	scaffold.

Let’s	 now	 edit	 the	app/models/user.rb	 and	 insert	 a	 few	 validations	 (if

these	are	not	entirely	clear	to	you,	please	read	the	section

"Validation"):

Listing	1.	app/models/user.rb

class	User	<	ApplicationRecord	validates	:login_name,

												presence:	true,	length:	{	minimum:	10	}

	

		validates	:last_name,

												presence:	true

end

Then	we	execute	rails	test	again:

$	rails	test

Running	via	Spring	preloader	in	process	48284

Run	options:	--seed	61281

	

#	Running:

	

"User.count"	didn't	change	by	1.

Expected:	3

		Actual:	2

	

bin/rails	test	test/controllers/users_controller_test.rb:19

	

.....

	

Finished	in	0.305897s,	22.8835	runs/s,	32.6908	assertions/s.

	

7	runs,	10	assertions,	1	failures,	0	errors,	0	skips

Boom!	 This	 time	 we	 have	1	failures.	 The	 error	 happens	 in	 the	should

create	user	and	the	should	update	user.	The	explanation	for	this	is

in	our	validation.	The	example	data	created	by

the	 scaffold	 generator	 went	 through	 in	 the	 first	rails	 test	 (without

validation).	The	errors	only	occurred	the	second	time	(with	validation).

This	example	data	is	created	as	fixturestests	tests

in	YAML	format	 in	 the	directory	test/fixtures/.	Let’s	have	a	look	at	the

example	data	for	User	in	the	file	test/fixtures/users.yml:

Listing	2.	test/fixtures/users.yml

one:

		login_name:	MyString

		first_name:	MyString

		last_name:	MyString

		birthday:	2015-12-27

	

two:

		login_name:	MyString

		first_name:	MyString

		last_name:	MyString

		birthday:	2015-12-27

There	are	 two	example	records	 there	 that	do	not	fulfill	 the	requirements	of	our
validation.	The	login_name	should	have	a	length	of	at	least	10.

Let’s	 change	 the	login_name	 in	test/fixtures/users.yml

accordingly:

Listing	3.	test/fixtures/users.yml

one:

		login_name:	MyString12

		first_name:	MyString

		last_name:	MyString

		birthday:	2015-12-27

	

two:

		login_name:	MyString12

		first_name:	MyString

		last_name:	MyString

		birthday:	2015-12-27

Now,	a	rails	test	completes	without	any	errors	again:

$	rails	test

Running	via	Spring	preloader	in	process	48169

Run	options:	--seed	3341

	

#	Running:

	

.......

	

Finished	in	0.326051s,	21.4690	runs/s,	39.8711	assertions/s.

	

7	runs,	12	assertions,	0	failures,	0	errors,	0	skips

Now	we	know	that	valid	data	has	to	be	contained	in	the

test/fixtures/users.yml	 so	 that	 the	 standard	 test	 created	via	 scaffold

will	succeed.	But	nothing	more.	Next	step	is	to	change	the

test/fixtures/users.yml	to	a	minimum	(for	example,	we	do	not	need	a

first_name):

Listing	4.	test/fixtures/users.yml

one:

		login_name:	MyString12

		last_name:	Mulder

	

two:

		login_name:	MyString12

		last_name:	Scully

To	be	on	the	safe	side,	 let’s	do	another	rake	test	after	making	our	changes

(you	really	can’t	do	that	often	enough):

$	rails	test

	

#	Running:

	

.......

	

Finished	in	0.336391s,	20.8091	runs/s,	38.6455	assertions/s.

	

7	runs,	12	assertions,	0	failures,	0	errors,	0	skips

All	fixtures	are	loaded	into	the	database	when	a	test	is

started.	You	need	to	keep	this	in	mind	for	your	test,

especially	if	you	use	uniqueness	in	your	validation.

Functional	Tests
Let’s	take	a	closer	look	at	the	point	where	the	original	errors

occurred:

"User.count"	didn't	change	by	1.

Expected:	3

		Actual:	2

	

bin/rails	test	test/controllers/users_controller_test.rb:19

In	the	UsersControllerTest	the	User	could	not	be	created.

The	controller	tests	are	located	in	the	directory	test/functional/.

Let’s	now	take	a	good	look	at	the	file

test/controllers/users_controller_test.rb

Listing	5.	test/controllers/users_controller_test.rb

require	'test_helper'

class	UsersControllerTest	<	ActionDispatch::IntegrationTest	setup	do
				@user	=	users(:one)

		end

		test	"should	get	index"	do
				get	users_url

				assert_response	:success
		end

		test	"should	get	new"	do
				get	new_user_url

				assert_response	:success
		end

		test	"should	create	user"	do
				assert_difference('User.count')	do
						post	users_url,	params:	{	user:	{	birthday:	@user.birthday,	first_name:	@user.first_name,	
last_name:	@user.last_name,	login_name:	@user.login_name	}	}

				end

				assert_redirected_to	user_path(User.last)

		end

[...]

end

At	the	beginning,	we	find	a	setup	instruction:

setup	do

		@user	=	users(:one)

end

These	three	lines	of	code	mean	that	for	the	start	of	each	individual

test,	 an	 instance	@user	 with	 the	 data	 of	 the	 item	one	 from	 the	 file

test/fixtures/users.yml	 is	 created.	setup	 is	 a	 predefined	 callback

that	-	if	present	-	is	started	by	Rails	before	each	test.	The	opposite

of	setup	is	teardown.	A	teardown	-	if	present	-	is	called	automatically	after

each	test.

For	every	test	(in	other	words,	at	each	run	of	rails	test),	a	fresh	and	therefore	empty	test

database	is	created	automatically.	This	is	a	different	database	than	the	one	that	you	access	by
default	 via	rails	console	(that	is	the	development	database).	The	databases	are	defined

in	 the	 configuration	 file	config/database.yml.	 If	you	want	 to	do	debugging,	you	can

access	the	test	database	with

rails	console	test.

This	functional	test	then	tests	various	web	page	functions.	First,

accessing	the	index	page:

test	"should	get	index"	do

		get	users_url

		assert_response	:success

end

The	command	get	users_url	accesses	the	page	/users.

assert_response	:success	means	that	the	page	was	delivered.

Let’s	look	more	closely	at	the	should	create	user	problem	from	earlier.

test	"should	create	user"	do

		assert_difference('User.count')	do

				post	users_url,	params:	{	user:	{	birthday:	@user.birthday,	

first_name:	@user.first_name,	last_name:	@user.last_name,	

login_name:	@user.login_name	}	}

		end

		assert_redirected_to	user_path(User.last)

end

The	block	assert_difference('User.count')	do	…		end	expects	a
change	by	the	code	contained	within	it.	User.count	after	should	result	in	+1.

The	 last	 line	assert_redirected_to	 user_path(User.last)

checks	if	after	the	newly	created	record	the	redirection	to	the	corresponding	view
show	occurs.

Without	describing	each	individual	functional	test	line	by	line,	it’s

becoming	 clear	 what	 these	 tests	 do:	 they	 execute	 real	 queries	 to	 the	 Web
interface	(or	actually	to	the	controllers)	and	so	they	can	be	used	for

testing	the	controllers.

Unit	Tests
For	testing	the	validations	that	we	have	entered	in

app/models/user.rb,	 units	 tests	 are	more	 suitable.	Unlike	 the	 functional

tests,	these	test	only	the	model,	not	the	controller’s	work.

The	unit	tests	are	located	in	the	directory	test/models/.	But	a	look	into	the

file	test/models/user_test.rb	is	rather	sobering:

Listing	6.	test/models/user_test.rb

require	'test_helper'

class	UserTest	<	ActiveSupport::TestCase	#	test	"the	truth"	do

		#			assert	true

		#	end

end

By	default,	scaffold	only	writes	a	commented-out	dummy	test.

A	unit	test	always	consists	of	the	following	structure:

test	"an	assertion"	do

		assert	something_is_true_or_false

end

The	word	assert	already	indicates	that	we	are	dealing	with	an	assertion	in	this

context.	 If	 this	 assertion	 is	true,	 the	 test	will	complete	and	all	 is	well.	 If	 this

assertion	 is	false,	the	test	fails	and	we	have	an	error	in	the	program	(you	can

specify	the	output	of	the

error	as	string	at	the	end	of	the	assert	line).

If	you	have	a	look	at	guides.rubyonrails.org/testing.html

http://guides.rubyonrails.org/testing.html

▪

▪

▪

▪

▪

▪

▪

▪

▪

you’ll	 see	 that	 there	 are	 some	 other	assert	 variations.	 Here	 are	 a	 few

examples:

assert(boolean,	[msg])

assert_equal(obj1,	obj2,	[msg])

assert_not_equal(obj1,	obj2,	[msg])

assert_same(obj1,	obj2,	[msg])

assert_not_same(obj1,	obj2,	[msg])

assert_nil(obj,	[msg])

assert_not_nil(obj,	[msg])

assert_match(regexp,	string	,	[msg])

assert_no_match(regexp,	string	,	[msg])

Let’s	breathe	some	life	into	the	first	test	in	the

test/unit/user_test.rb:

Listing	7.	test/unit/user_test.rb

require	'test_helper'

class	UserTest	<	ActiveSupport::TestCase	test	'a	user	with	no	attributes	is	not	valid'	do
				user	=	User.new

				assert_not	user.save,	'Saved	a	user	with	no	attributes.'

		end

end

This	test	checks	if	a	newly	created	User	that	does	not	contain	any	data

is	valid	(it	shouldn’t	be).

So	a	rails	test	then	completes	immediately:

$	rails	test:units

Running	via	Spring	preloader	in	process	48169

Run	options:	--seed	43319

	

#	Running:

	

.

	

Finished	in	0.043224s,	23.1353	runs/s,	23.1353	assertions/s.

	

8	runs,	13	assertions,	0	failures,	0	errors,	0	skips

Now	we	integrate	two	asserts	in	a	test	to	check	if	the	two	fixture

entries	in	the	test/fixtures/users.yml	are	really	valid:

require	'test_helper'

class	UserTest	<	ActiveSupport::TestCase	test	'an	empty	user	is	not	valid'	do
				assert	!User.new.valid?,	'Saved	an	empty	user.'
		end

		test	"the	two	fixture	users	are	valid"	do

				assert	User.new(last_name:	users(:one).last_name,	login_name:	

users(:one).login_name).valid?,	'First	fixture	is	not	valid.'

				assert	User.new(last_name:	users(:two).last_name,	login_name:	

users(:two).login_name).valid?,	'Second	fixture	is	not	valid.'

		end

end

Then	once	more	a	rails	test:

$	rails	test:units

Running	via	Spring	preloader	in	process	48169

Run	options:	--seed	11674

	

#	Running:

	

.........

	

Finished	in	0.388814s,	23.1473	runs/s,	38.5789	assertions/s.

	

9	runs,	15	assertions,	0	failures,	0	errors,	0	skips

Fixtures

With	fixtures	you	can	generate	example	data	for	tests.	The	default	format	for	this
is	YAML.	The	files	for	this	can	be	found	in	the

directory	test/fixtures/	 and	 are	 automatically	 created	 with	rails

generate	scaffold.	But	of	course	you	can	also	define	your	own	files.	All

fixtures	are	loaded	anew	into	the	test	database	by	default

with	every	test.

Examples	for	alternative	formats	(e.g.	CSV)	can	be	found	at

api.rubyonrails.org/classes/ActiveRecord/Fixtures.html.

Static	Fixtures
The	simplest	variant	for	fixtures	is	static	data.	The	fixture	for	User

used	in	"Example	for	a	User	in	a	Web	Shop"	statically	looks	as	follows:

Listing	8.	test/fixtures/users.yml

one:

		login_name:	fox.mulder

		last_name:	Mulder

	

two:

http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html

		login_name:	dana.scully

		last_name:	Scully

You	simple	write	the	data	in	YAML	format	into	the	corresponding	file.

Fixtures	with	ERB
Static	YAML	fixtures	are	sometimes	too	unintelligent.	In	these	cases,

you	can	work	with	ERB.

If	we	want	to	dynamically	enter	today’s	day	20	years	ago	for	the

birthdays,	then	we	can	simply	do	it	with	ERB	in

test/fixtures/users.yml

Listing	9.	test/fixtures/users.yml

one:

		login_name:	fox.mulder

		last_name:	Mulder

		birthday:	<%=	20.years.ago.to_s(:db)	%>

	

two:

		login_name:	dana.scully

		last_name:	Scully

		birthday:	<%=	20.years.ago.to_s(:db)	%>

Integration	Tests

Integration	tests	are	tests	that	work	like	functional	tests	but	can	go

over	several	controllers	and	additionally	analyze	the	content	of	a

generated	view.	So	you	can	use	them	to	recreate	complex	workflows	within	the
Rails	application.	As	an	example,	we	will	write	an	integration	test

that	tries	to	create	a	new	user	via	the	Web	GUI,	but	omits	the

login_name	and	consequently	gets	corresponding	flash	error	messages.

A	rake	generate	scaffold	 generates	unit	 and	 functional	 tests,	 but	 not

integration	tests.	You	can	either	do	this	manually	in	the	directory

test/integration/	 or	 more	 comfortably	 with	rails	 generate

integration_test.	So	let’s	create	an	integration	test:

$	rails	generate	integration_test	invalid_new_user_workflow

Running	via	Spring	preloader	in	process	48532

						invoke		test_unit

						create				test/integration/invalid_new_user_workflow_test.rb

We	now	populate	this	file

test/integration/invalid_new_user_workflow_test.rb	 with

the	following	test:

Listing	10.	test/integration/invalid_new_user_workflow_test.rb

require	'test_helper'

class	InvalidNewUserWorkflowTest	<	ActionDispatch::IntegrationTest	fixtures	:all

		test	'try	to	create	a	new	user	without	a	login'	do
				@user	=	users(:one)

	

				get	'/users/new'
				assert_response	:success

				post	users_url,	params:	{	user:	{	last_name:	@user.last_name	}	}

				assert_equal	'/users',	path	assert_select	'li',	"Login	name	

can't	be	blank"

				assert_select	'li',	"Login	name	is	too	short	(minimum	is	10	

characters)"

		end

end

Let’s	run	all	tests:

$	rails	test

Running	via	Spring	preloader	in	process	48169

Run	options:	--seed	47618

	

#	Running:

	

..........

	

Finished	in	0.278271s,	3.5936	runs/s,	14.3745	assertions/s.

	

10	runs,	19	assertions,	0	failures,	0	errors,	0	skips

The	example	clearly	shows	that	you	can	program	much	without	manually

using	a	web	browser	to	try	it	out.	Once	you	have	written	a	test	for	the

corresponding	workflow,	you	can	rely	in	future	on	the	fact	that	it	will

run	through	and	you	don’t	have	to	try	it	out	manually	in	the	browser	as

well.

rails	stats

rails	stats	With	rails	stats	you	get	an	overview	of	your	Rails	project.

For	our	example,	it	looks	like	this:

$	rails	stats

+----------------------+--------+--------+---------+---------+-----+-------+

|	Name																	|		Lines	|			LOC		|	Classes	|	Methods	|	M/C	|	LOC/M	|

+----------------------+--------+--------+---------+---------+-----+-------+

|	Controllers										|					79	|					53	|							2	|							9	|			4	|					3	|

|	Helpers														|						4	|						4	|							0	|							0	|			0	|					0	|

|	Jobs																	|						2	|						2	|							1	|							0	|			0	|					0	|

|	Models															|					11	|					10	|							2	|							0	|			0	|					0	|

|	Mailers														|						4	|						4	|							1	|							0	|			0	|					0	|

|	Javascripts										|					30	|						0	|							0	|							0	|			0	|					0	|

|	Libraries												|						0	|						0	|							0	|							0	|			0	|					0	|

|	Tasks																|						0	|						0	|							0	|							0	|			0	|					0	|

|	Controller	tests					|					48	|					38	|							1	|							7	|			7	|					3	|

|	Helper	tests									|						0	|						0	|							0	|							0	|			0	|					0	|

|	Model	tests										|					15	|					13	|							1	|							2	|			2	|					4	|

|	Mailer	tests									|						0	|						0	|							0	|							0	|			0	|					0	|

|	Integration	tests				|					17	|					13	|							1	|							1	|			1	|				11	|

+----------------------+--------+--------+---------+---------+-----+-------+

|	Total																|				210	|				137	|							9	|						19	|			2	|					5	|

+----------------------+--------+--------+---------+---------+-----+-------+

		Code	LOC:	73					Test	LOC:	64					Code	to	Test	Ratio:	1:0.9

In	this	project,	we	have	a	total	of	73	LOC	(Lines	Of	Code)	in	the

controllers,	helpers	and	models.	Plus	we	have	a	total	of	64	LOC	for

tests.	This	gives	us	a	test	relation	of	1:1.0.9.	Logically,	this	does

not	say	anything	about	the	quality	of	tests.

More	on	Testing

The	most	important	link	on	the	topic	testing	is	surely	the	URL

http://guides.rubyonrails.org/testing.html.	There	you	will	also	find	several	good
examples	on	this	topic.

No	other	topic	is	the	subject	of	much	discussion	in	the	Rails	community	as	the
topic	testing.	There	are	very	many	alternative	test	tools.	One

very	popular	one	is	RSpec	(see	http://rspec.info/).	I	am	deliberately	not	going	to
discuss	these	alternatives	here,	because	this	book	is

mainly	about	helping	you	understand	Rails,	not	the	thousands	of	extra

tools	with	which	you	can	build	your	personal	Rails	development

environment.

http://guides.rubyonrails.org/testing.html
http://rspec.info/

	 Stefan	Wintermeyer

COOKIES	AND	SESSIONS

Cookies
With	a	cookie,	you	can	store	information	on	the	web	browser’s	system,	in	form
of	 strings	 as	 key-value	 pairs	 that	 the	 web	 server	 has	 previously	 sent	 to	 this
browser.	The	information	is	later	sent	back	from	the	browser	to	the	server	in	the
HTTP	header.	A	cookie	(if	configured	accordingly)	is	deleted	from	the	browser
system	neither	by	restarting	the	browser	nor	by	restarting	the	whole	system.	Of
course,	the	browser’s	user	can	manually	delete	the	cookie.

A	browser	does	not	have	to	accept	cookies	and	it	does	not	have

to	save

them	either.	But	we	live	in	a	world	where	almost	every	page	uses	cookies.	So	most	users	will
have	enabled	the	cookie	functionality.	For	more	information	on	cookies,	please	visit	Wikipedia
at

http://en.wikipedia.org/wiki/Http_cookie.

A	 cookie	 can	 only	 have	 a	 limited	 size	 (the	 maximum	 is	 4	 kB).	 You	 should
remember	that	the	information	of	the	saved	cookies	is	sent	from	the	browser	to
the	server.	So	you	should	only	use	cookies	for	storing	small	amounts	of	data	(for
example,	a	customer	id)	to	avoid	the	protocol	overhead	becoming	too	big.

http://en.wikipedia.org/wiki/Http_cookie

Rails	provides	a	hash	with	the	name	cookies[]	that	we	can	use	transparently.

Rails	automatically	takes	care	of	the	technological	details	in	the	background.

To	demonstrate	how	cookies	work,	we	are	going	to	build	a	Rails

application	 that	 places	 a	 cookie	 on	 a	 page,	 reads	 it	 out	 on	 another	 page	 and
displays	the	content,	and	the	cookie	is	deleted	on	a	third	page.

$	rails	new	cookie_jar

[...]

$	cd	cookie_jar

$	rails	generate	controller	home	set_cookies	show_cookies	delete_cookies

		[...]

We	 populate	 the	 controller	 file
app/controllers/home_controller.rb	as	follows:

Listing	1.	app/controllers/home_controller.rb

class	HomeController	<	ApplicationController	def	set_cookies

				cookies[:user_name]			=	"Smith"
				cookies[:customer_number]	=	"1234567890"
		end

		def	show_cookies

				@user_name				=	cookies[:user_name]

				@customer_number	=	cookies[:customer_number]

		end

		def	delete_cookies

				cookies.delete	:user_name

				cookies.delete	:customer_number

		end

end

And	 the	 view	 file	app/views/home/show_cookies.html.erb	 as

follows:

Listing	2.	app/views/home/show_cookies.html.erb

<table>

		<tr>

				<td>User	Name:</td>

				<td><%=	@user_name	%></td>	</tr>

		<tr>

				<td>Customer	Number:</td>

				<td><%=	@customer_number	%></td>	</tr>

</table>

Start	the	Rails	server	with	rails	server	and	go	to	the	URL

http://localhost:3000/home/show_cookies	in	your	browser.	You	will	not	see	any
values.

Figure	1.	Show	Cookies	empty

Now	 go	 to	 the	 URL	http://localhost:3000/home/set_cookies	 and	 then	 back	 to
http://localhost:3000/home/show_cookies.	Now	you	will	 see	 the	values	 that	we
have	set	in	the	method	set_cookies.

http://localhost:3000/home/show_cookies
http://localhost:3000/home/set_cookies
http://localhost:3000/home/show_cookies

Figure	2.	Show	Cookies	set

By	requesting	the	page	http://localhost:3000/home/delete_cookies	you	can	delete
the	cookies	again.

The	cookies	you	have	placed	in	this	way	stay	alive	in	the	browser	until	you	close
the	browser	completely.

The	content	of	a	cookie	in	the	browser	is	easy	to	be	read

and	to	be	manipulated	by	a	tech-savvy	user.	It’s	not

encrypted,	so	it	should	not	contain	any	passwords	or	similar	data.	Nor	is	it	advisable	to	save
shopping	 baskets	 in	 an	 unsigned	 cookie,	 otherwise	 the	 user	 could	 change	 the	 prices	 in	 this
shopping	basket	himself.

Permanent	Cookies

http://localhost:3000/home/delete_cookies

Cookies	 are	 normally	 set	 to	 give	 the	 application	 a	 way	 of	 recognizing	 users
when	they	visit	again	later.	Between	these	visits	 to	the	website,	much	time	can
go	by	and	the	user	may	well	close	the	browser	in	the	meantime.	To	store	cookies
for	longer	than	the	current	browser	session,	you	can	use	the	method	permanent.
Our	 above	 example	 can	 be	 expanded	 by	 adding	 this	 method	 in	 the
app/controllers/home_controller.rb:

Listing	3.	app/controllers/home_controller.rb

class	HomeController	<	ApplicationController	def	set_cookies

				cookies.permanent[:user_name]			=	"Smith"
				cookies.permanent[:customer_number]	=	"1234567890"
		end

		def	show_cookies

				@user_name				=	cookies[:user_name]

				@customer_number	=	cookies[:customer_number]

		end

		def	delete_cookies

				cookies.delete	:user_name

				cookies.delete	:customer_number

		end

end

"permanent"	 here	 does	 not	 really	 mean	 permanent.	 You	 cannot	 set	 a	 cookie	 permanently.
When	 you	 set	 a	 cookie,	 it	 always	 needs	 a	 "valid	 until"	 stamp	 that	 the	 browser	 can	 use	 to
automatically	delete	old	cookies.	With	the	method	permanent	this	value	is	set	to	today’s	date
in	20	years.	This	is	practically	the	same	as	permanent.

Signed	Cookies
With	normally	placed	cookies,	you	have	no	option	on	the	application	side	to	find
out	if	the	user	of	the	application	has	changed	the	cookie.	This	can	quickly	lead	to
security	problems,	as	changing	the	content	of	a	cookie	in	the	browser	is	no	great
mystery.	The	solution	is	signing	the	cookies	with	a	key	that	is	only	known	to	us.
This	key	is	automatically	created	via	a	random	generator	with	each	rails	new

and	is	located	in	the	file	config/secrets.yml:

Listing	4.	config/secrets.yml

development:

		secret_key_base:	f4c3[...]095b

	

test:

		secret_key_base:	d6ef[...]052a

	

#	Do	not	keep	production	secrets	in	the	repository,
#	instead	read	values	from	the	environment.

production:

		secret_key_base:	<%=	ENV["SECRET_KEY_BASE"]	%>

As	mentioned	in	the	comment	over	the	production	key	it	is	not	a	good	idea

to	store	the	production	key	in	the	source	code	of	your	project.	It’s	better	to	store
it	as	an	environment	variable	and	let	the	Rails	project	read	it	from	there.

To	sign	cookies,	you	can	use	the	method	signed.	You	have	to	use	it	for	writing

and	 reading	 the	 cookie.	 Our	 above	 example	 can	 be	 expanded	 by	 adding	 this
method	in	the	app/controllers/home_controller.rb:

Listing	5.	app/controllers/home_controller.rb

class	HomeController	<	ApplicationController	def	set_cookies

				cookies.permanent.signed[:user_name]							=	"Smith"
				cookies.permanent.signed[:customer_number]	=	"1234567890"
		end

		def	show_cookies

				@user_name							=	cookies.signed[:user_name]

				@customer_number	=	cookies.signed[:customer_number]

		end

		def	delete_cookies

				cookies.delete	:user_name

				cookies.delete	:customer_number

		end

end

The	content	of	the	cookie	is	now	encrypted	every	time	you

set	the	cookie.	The	name	of	the	cookie	can	still	be	read	by	the	user,	but	not	the
value.

Sessions

As	 HTTP	 is	 a	 stateless	 protocol,	 we	 encounter	 special	 problems	 when
developing	applications.	An	individual	web	page	has	no	connection	to	the	next
web	page	and	they	do	not	know	of	one	another.	But	as	you	want	to	register	only
once	on	many	websites,	 not	over	 and	over	 again	on	each	 individual	page,	 this
can	 pose	 a	 problem.	 The	 solution	 is	 called	 session	 and	 Rails	 offers	 it	 to	 the
programmer	transparently	as	a	session[]

hash.	Rails	automatically	creates	a	new	session	for	each	new	visitor	of	the	web
page.	This	session	is	saved	by	default	as	cookie	and	so	it	is	subject	to	the	4	kB
limit.	But	you	can	also	store	the	sessions	in	the	database	(see	the	section	"Saving
Sessions	 in	 the	 Database").	An	 independent	 and	 unique	 session	 ID	 is	 created
automatically	 and	 the	 cookie	 is	 deleted	 by	 default	 when	 the	 web	 browser	 is
closed.

The	beauty	of	a	Rails	session	 is	 that	we	can	not	 just	save	strings	 there	as	with
cookies,	 but	 any	 object,	 hashes	 and	 arrays.	 So	 you	 can	 for	 example	 use	 it	 to
conveniently	implement	a	shopping	cart	in	an	online	shop.

Breadcrumbs	via	Session
As	an	example,	we	create	an	application	with	a	controller	and	three	views.	When
a	view	is	visited,	the	previously	visited	views	are	displayed	in	a	little	list.

The	basic	application:

$	rails	new	breadcrumbs

[...]

$	cd	breadcrumbs

$	rails	generate	controller	Home	ping	pong	index

		[...]

First	 we	 create	 a	method	with	which	we	 can	 save	 the	 last	 three	 URLs	 in	 the
session	 and	 set	 an	 instance	 variable	@breadcrumbs,	 to	 be	 able	 to	 neatly

retrieve	the	values	in	the	view.	To	that	end,	we	set	up	a	before_filter	in	the

app/controllers/home_controller.rb:

Listing	6.	app/controllers/home_controller.rb

class	HomeController	<	ApplicationController	before_filter	

:set_breadcrumbs	def	ping

		end

		def	pong

		end

		def	index

		end

		private
		def	set_breadcrumbs

				if	session[:breadcrumbs]

						@breadcrumbs	=	session[:breadcrumbs]

				else
						@breadcrumbs	=	Array.new

				end

				@breadcrumbs.push(request.url)

	

				if	@breadcrumbs.count	>	4

						#	shift	removes	the	first	element
						@breadcrumbs.shift

				end

				session[:breadcrumbs]	=	@breadcrumbs	end

end

Now	 we	 use	 the	app/views/layouts/application.html.erb	 to

display	these	last	entries	at	the	top	of	each	page:

Listing	7.	app/views/layouts/application.html.erb

<!DOCTYPE	html>

<html>

		<head>

				<title>Breadcrumbs</title>

				<%=	csrf_meta_tags	%>
				<%=	action_cable_meta_tag	%>	<%=	stylesheet_link_tag				'application',	media:	'all',	'data-
turbolinks-track'	=>	true	%>
				<%=	javascript_include_tag	'application',	'data-turbolinks-track'	=>	true	%>
		</head>

	

		<%	if	@breadcrumbs	&&	@breadcrumbs.any?	%>
				<h3>Surf	History</h3>

				

						<%	@breadcrumbs[0..2].each	do	|breadcrumb|	%>
								<%=	link_to	breadcrumb,	breadcrumb	%>	<%	end	%>
				

		<%	end	%>	<body>

				<%=	yield	%>
		</body>

</html>

Now	 you	 can	 start	 the	 Rails	 server	 with	rails	 server	 and	 go	 to

http://localhost:3000/home/ping,	 http://localhost:3000/home/pong	 or
http://localhost:3000/home/index	 and	 at	 the	 top	 you	 will	 then	 always	 see	 the

http://localhost:3000/home/ping
http://localhost:3000/home/pong
http://localhost:3000/home/index

pages	 that	 you	 have	 visited	 before.	 Of	 course,	 this	 only	works	 on	 the	 second

page,	because	you	do	not	yet	have	a	history	on	the	first	page	you	visit.

Figure	3.	Breadcrumbs	session	example

reset_session
Occasionally,	 there	 are	 situations	 where	 you	 want	 to	 reset	 a	 session	 (in	 other
words,	delete	the	current	session	and	start	again	with	a	new,	fresh	session).	For
example,	 if	you	 log	out	of	a	web	application,	 the	 session	will	be	 reset.	This	 is
easily	done	and	we	can	quickly	integrate	it	into	our	breadcrumb	application.

With	the	switch	"-s"	the	generator	doesn’t	overwrite	existing

files.	In	this	example	that	would	be	the	home_controller.rb

file.

$	rails	generate	controller	Home	reset	-s

Running	via	Spring	preloader	in	process	49668

								skip		app/controllers/home_controller.rb

							route		get	'home/reset'

						invoke		erb

							exist				app/views/home

						create				app/views/home/reset.html.erb

						invoke		test_unit

								skip				test/controllers/home_controller_test.rb

						invoke		helper

			identical				app/helpers/home_helper.rb

						invoke				test_unit

						invoke		assets

						invoke				coffee

			identical						app/assets/javascripts/home.coffee

						invoke				css

			identical						app/assets/stylesheets/home.css

The	correspondingly	expanded	controller

app/controllers/home_controller.rb	then	looks	like	this:

Listing	8.	app/controllers/home_controller.rb

class	HomeController	<	ApplicationController	before_filter	

:set_breadcrumbs	def	ping

		end

		def	pong

		end

		def	index

		end

		def	reset

				reset_session

				@breadcrumbs	=	nil
		end

		private
		def	set_breadcrumbs

				if	session[:breadcrumbs]

						@breadcrumbs	=	session[:breadcrumbs]

				else
						@breadcrumbs	=	Array.new

				end

				@breadcrumbs.push(request.url)

	

				if	@breadcrumbs.count	>	4

						#	shift	removes	the	first	element
						@breadcrumbs.shift

				end

				session[:breadcrumbs]	=	@breadcrumbs	end

end

So	you	can	delete	the	current	session	by	going	to	the	URL

http://localhost:3000/home/reset.

It’s	 not	 just	 important	 to	 invoke	reset_session,	 but	 you	 need	 to	 also	 set	 the	 instance

variable	@breadcrumbs	 to	nil.	Otherwise,	 the	old	breadcrumbs	would	still	appear	 in	 the

view.

Saving	Sessions	in	the	Database
Saving	the	entire	session	data	in	a	cookie	on	the	user’s	browser	is	not	always	the
best	solution.	Amongst	others,	the	limit	of	4	kB	can	pose	a	problem.	But	it’s	no
big	obstacle,	we	 can	 relocate	 the	 storing	of	 the	 session	 from	 the	 cookie	 to	 the
database	 with	 the	 Active	 Record	 Session	 Store	 gem
(https://github.com/rails/activerecord-session_store).	 Then	 the	 session	 ID	 is	 of
course	still	 saved	 in	a	cookie,	but	 the	whole	other	session	data	 is	 stored	 in	 the
database	on	the	server.

To	 install	 the	 gem	 we	 have	 to	 add	 the	 following	 line	 at	 the	 end	 of	 the	 file
Gemfile

Listing	9.	Gemfile

gem	'activerecord-session_store'

After	that	we	have	to	run	bundle	install

$	bundle	install

[...]

http://localhost:3000/home/reset
https://github.com/rails/activerecord-session_store

After	that	we	have	to	run

rails	 generate	 active_record:session_migration	 and
rails	db:migrate

to	create	the	needed	table	in	the	database.

$	rails	generate	active_record:session_migration

						create		db/migrate/20150428183919_add_sessions_table.rb

$	rails	db:migrate

==	20150428183919	AddSessionsTable:	migrating	=================================

--	create_table(:sessions)

			->	0.0019s

--	add_index(:sessions,	:session_id,	{:unique=>true})

			->	0.0008s

--	add_index(:sessions,	:updated_at)

			->	0.0008s

==	20150428183919	AddSessionsTable:	migrated	(0.0037s)	

========================

After	 that	 we’ll	 have	 to	 change	 the	session_store	 in	 the	 file

config/initializers/session_store.rb	 to

:active_record_store.

Listing	10.	config/initializers/session_store.rb

Rails.application.config.session_store	:active_record_store,	:key	=>	

'_my_app_session'

Job	 done.	 Now	 you	 need	 to	 start	 the	 server	 again	with	rails	server	 and

Rails	saves	all	sessions	in	the	database.

	 Stefan	Wintermeyer

ACTIVE	JOB

Sometimes	a	specific	piece	of	code	takes	a	long	time	to	run	but	doesn’t	need	to
run	 right	away.	An	example	 is	 sending	an	e-mail	 after	creating	an	order	at	 the
end	of	a	online	shopping	workflow.	It	can	take	a	couple	of	seconds	to	send	an	e-
mail	 but	 you	 don’t	 want	 your	 user	 to	 wait	 for	 that	 to	 happen	 within	 the
controller.	It	makes	more	sense	to	use	a	queueing	mechanism	for	these	tasks.

Active	 Job	 provides	 such	 a	 queueing	 system.	You	 can	 create	 jobs	 which	 are
being	processed	asynchronous	by	active	job.

Create	a	New	Job

The	quickest	way	to	create	a	new	job	is	the	job	generator.	Lets	create	an	example
job	which	waits	for	10	seconds	and	than	logs	an	info	message:

$	rails	new	shop

		[...]

$	cd	shop

$	rails	generate	job	example

						invoke		test_unit

						create				test/jobs/example_job_test.rb

						create		app/jobs/example_job.rb

$

All	 jobs	 are	 created	 in	 the	app/jobs	 directory.	 Please	 change	 the

app/jobs/example_job.rb	file	accordingly:

Listing	1.	app/jobs/example_job.rb

class	ExampleJob	<	ApplicationJob

		queue_as	:default

		def	perform(*args)

				sleep	10

				logger.info	"Just	waited	10	seconds."

		end

end

You	 can	 test	 the	 job	 in	 your	 console	 with	ExampleJob.perform_later

which	creates	it:

$	rails	console

Loading	development	environment	(Rails	5.0.0)

>>	ExampleJob.perform_later

Performing	ExampleJob	from	Inline(default)

Just	waited	10	seconds.

Performed	ExampleJob	from	Inline(default)	in	10014.5ms

Enqueued	ExampleJob	(Job	ID:	f0b6937d-c2b4-4685-afe3-d571044b57a0)	

to	Inline(default)

=>	#<ExampleJob:0x007ffa99a3f020	@arguments=[],	@job_id="f0b6937d-

c2b4-4685-afe3-d571044b57a0",	@queue_name="default",	@priority=nil>

>>	exit

$

The	file	log/development.log	now	contains	the	logging	output.

A	more	concrete	example	of	using	jobs	you’ll	find	in	the	Action	Mailer	chapter
where	an	e-mail	gets	send.

▪

▪

Set	the	time	for	future	execution

The	set	method	provides	two	arguments	which	can	be	used	to	set	the	execution

of	a	job	in	the	future:

wait

ExampleJob.set(wait:	1.hour).perform_later

wait_until

ExampleJob.set(wait_until:	Date.tomorrow.noon).perform_later

==	Configure	the	Job	Server	Backend

The	 page	http://api.rubyonrails.org/classes/ActiveJob/QueueAdapters.html	 lists
all	available	backends.	To	use	one	of	them	you	have	to	install	the	needed	gem.
Here	is	an	example	for	the	use	of	the	popular	Sidekiq.	To	use	the	gem	you	have
to	add	it	to	Gemfile	and	run	a	bundle	install	afterwards:

Listing	2.	Gemfile

[...]

gem	'sidekiq'

In	config/application.rb	you	can	configure	the	use	of	it:

Listing	3.	config/application.rb

require	File.expand_path('../boot',	__FILE__)

require	'rails/all'

#	Require	the	gems	listed	in	Gemfile,	including	any	gems

#	you've	limited	to	:test,	:development,	or	:production.

Bundler.require(*Rails.groups)

http://api.rubyonrails.org/classes/ActiveJob/QueueAdapters.html
https://github.com/mperham/sidekiq

module	Shop

		class	Application	<	Rails::Application

				#	Settings	in	config/environments/*	take	precedence	over	those	

specified	here.

				#	Application	configuration	should	go	into	files	in	

config/initializers

				#	--	all	.rb	files	in	that	directory	are	automatically	loaded.

				config.active_job.queue_adapter	=	:sidekiq

		end

end

	 Stefan	Wintermeyer

ACTION	MAILER

Even	 if	we	mainly	 use	Ruby	 on	Rails	 to	 generate	web	 pages,	 it	 sometimes	 is
useful	to	be	able	to	send	an	e-mail.

So	let’s	go	and	build	an	example	with	minimal	user	management	for	a	web	shop
that	automatically	sends	an	e-mail	to	the	user	when	a	new	user	is	created:

$	rails	new	webshop

[...]

$	cd	webshop

$	rails	generate	scaffold	User	name	email

[...]

$	rails	db:migrate

		[...]

For	 the	 user	 model	 we	 create	 a	 minimal	 validation	 in	 the
app/models/user.rb,	so	that	we	can	be	sure	that	each	user	has	a	name	and

a	syntactically	correct	e-mail	address.

Listing	1.	app/models/user.rb

class	User	<	ApplicationRecord	validates	:name,	presence:	true	

validates	:email,	presence:	true,	format:	{	with:	\A([^@\s]+)@((?:[-

a-z0-9]+\.)+[a-z]{2,})\Zi	}

end

There	 is	 a	 generator	with	 the	 name	mailer	 that	 creates	 the	 files	 required	 for

mailing.	 First,	 we	 have	 a	 look	 at	 the	 output	 of	 the	rails	 generate

mailer,	without	passing	any	further	arguments:

$	rails	generate	mailer

Usage:

		rails	generate	mailer	NAME	[method	method]	[options]

[...]

Example:

========

				rails	generate	mailer	Notifications	signup	forgot_password	invoice	

				creates	a	Notifications	mailer	class,	views,	and	test:	Mailer:					app/mailers/notifications.rb

								Views:						app/views/notifications/signup.text.erb	[...]

								Test:							test/mailers/notifications_test.rb

That	is	just	what	we	expected.	So	let’s	now	create	the	mailer	notification:

$	rails	generate	mailer	Notification	new_account

						create		app/mailers/notification_mailer.rb

						invoke		erb

						create				app/views/notification_mailer

						create				app/views/notification_mailer/new_account.text.erb	create				
app/views/notification_mailer/new_account.html.erb	invoke		test_unit

						create				test/mailers/notification_mailer_test.rb	create				

test/mailers/previews/notification_mailer_preview.rb

In	 the	 file	app/mailers/notification_mailer.rb	 you	will	 find	 the

controller:

Listing	2.	app/mailers/notification_mailer.rb

class	NotificationMailer	<	ApplicationMailer	

		#	Subject	can	be	set	in	your	I18n	file	at	config/locales/en.yml
		#	with	the	following	lookup:

▪

▪

		#
		#			en.notification_mailer.new_account.subject
		#
		def	new_account	@greeting	=	"Hi"

				mail	to:	"to@example.org"

		en

In	 it,	 we	 change	 the	new_account	 method	 to	 accept	 a	 parameter	 with

new_account(user)`	and	some	code	to	use	that	to	send	the	confirmation	e-

mail.

Listing	3.	app/mailers/notification_mailer.rb

class	NotificationMailer	<	ApplicationMailer	def	new_account(user)	

@user	=	user

				mail(to:	user.email,	subject:	"Account	#{user.name}	is	active")	

end

end

Now	we	create	 the	view	 for	 this	method.	Actually	we	have	 to	breath	 live	 into
two	files:

app/views/notification_mailer/new_account.text.erb

app/views/notification_mailer/new_account.html.erb

In	 case	 you	 want	 to	 send	 an	 non-HTML	 only	 e-mail	 you	 can	 delete	 the	 file
app/views/notification_mailer/new_account.html.erb.

Otherwise	ActionMailer	will	generate	an	e-mail	which	can	be	read	as	a	modern
HTML	or	a	traditional	text	one.

Listing	4.	app/views/notification_mailer/new_account.text.erb

Hello	<%=	@user.name	%>,	

your	new	account	is	active.

	

Have	a	great	day!

		A	Robot

Listing	5.	app/views/notification_mailer/new_account.html.erb

<p>Hello	<%=	@user.name	%>,</p>	<p>your	new	account	is	active.</p>

<p>Have	a	great	day!</br>

		A	Robot</p>

As	we	want	 to	send	 this	e-mail	after	 the	create	of	a	User,	we	still	need	add	an
after_create	callback	which	triggers	the	delivery:

Listing	6.	app/models/user.rb

class	User	<	ApplicationRecord	validates	:name,	presence:	true	

validates	:email,	presence:	true,	format:	{	with:	\A([^@\s]+)@((?:[-

a-z0-9]+\.)+[a-z]{2,})\Zi	}

	

		after_create	:send_welcome_email	private

		def	send_welcome_email	Notification.new_account(self).deliver_later

		end

end

Let’s	create	a	new	User	in	the	console:

$	rails	console

Loading	development	environment	(Rails	5.0.0)

>>	User.create(name:	'Wintermeyer',	email:	'stefan.wintermeyer@amooma.de')	(0.1ms)		begin	
transaction

		SQL	(0.3ms)		INSERT	INTO	"users"	("name",	"email",	"created_at",	"updated_at")	VALUES	(?,	?,	?,	
?)		[["name",	"Wintermeyer"],	["email",	"stefan.wintermeyer@amooma.de"],	["created_at",	2016-01-
25	19:05:40	UTC],	["updated_at",	2016-01-25	19:05:40	UTC]]

		User	Load	(0.1ms)		SELECT		"users".*	FROM	"users"	WHERE	"users"."id"	=	?	LIMIT	?		[["id",	1],	
["LIMIT",	1]]

Performing	ActionMailer::DeliveryJob	from	Inline(mailers)	with	arguments:	"NotificationMailer",	
"new_account",	"deliver_now",	<GlobalID:0x007fb7a4b41528	@uri=<URI::GID	
gid://webshop/User/1>>	Rendered	notification_mailer/new_account.html.erb	within	layouts/mailer	
(0.8ms)	Rendered	notification_mailer/new_account.text.erb	within	layouts/mailer	(0.3ms)	
NotificationMailer#new_account:	processed	outbound	mail	in	116.0ms	Sent	mail	to	
stefan.wintermeyer@amooma.de	(7.9ms)

Date:	Mon,	25	Jan	2016	19:05:40	+0100

From:	from@example.com

To:	stefan.wintermeyer@amooma.de

Message-ID:	<56a639c46679d_e0c63fdbd043fa085071@Millennium-Falcon.local.mail>	Subject:	
Account	Wintermeyer	is	active

Mime-Version:	1.0

Content-Type:	multipart/alternative;

	boundary="--==_mimepart_56a639c4657a7_e0c63fdbd043fa084936";	charset=UTF-8

Content-Transfer-Encoding:	7bit

	

----==_mimepart_56a639c4657a7_e0c63fdbd043fa084936

Content-Type:	text/plain;

	charset=UTF-8

Content-Transfer-Encoding:	7bit

	

Hello	Wintermeyer,

	

your	new	account	is	active.

	

Have	a	great	day!

		A	Robot

	

----==_mimepart_56a639c4657a7_e0c63fdbd043fa084936

Content-Type:	text/html;

	charset=UTF-8

Content-Transfer-Encoding:	7bit

	

<!DOCTYPE	html>

<html>

		<head>

				<meta	http-equiv="Content-Type"	content="text/html;	charset=utf-8"	/>	<style>

						/*	Email	styles	need	to	be	inline	*/

				</style>

		</head>

	

		<body>

				<p>Hello	Wintermeyer,</p>

<p>your	new	account	is	active.</p>

<p>Have	a	great	day!</br>

		A	Robot</p>

	

		</body>

</html>

	

----==_mimepart_56a639c4657a7_e0c63fdbd043fa084936--

	

Performed	ActionMailer::DeliveryJob	from	Inline(mailers)	in	127.08ms	Enqueued	
ActionMailer::DeliveryJob	(Job	ID:	589388e9-0e80-437d-8f1e-b4801d599460)	to	Inline(mailers)	with	
arguments:	"NotificationMailer",	"new_account",	"deliver_now",	<GlobalID:0x007fb7a4c02110	
@uri=<URI::GID	gid://webshop/User/1>>	(1.6ms)		commit	transaction

=>	#<User	id:	1,	name:	"Wintermeyer",	email:	

"stefan.wintermeyer@amooma.de",	created_at:	"2016-01-25	19:05:40",	

updated_at:	"2016-01-25	19:05:40">	>>	exit

That	was	straightforward.	In	the	development	mode	we	see	the	e-mail	in	the	log.
In	production	mode	it	would	be	send	to	the	configured	SMTP

gateway.

Have	a	look	at	the	files	app/views/layouts/mailer.html.erb

and	app/views/layouts/mailer.text.erb	to	set	a	generic	envelope	(e.g.	add	CSS)

for	your	e-mail	content.	It	works	like	app/views/layouts/application.html.erb

for	HTML	views.

Configuring	the	E-Mail	Server

Rails	can	use	a	local	sendmail	or	an	external	SMTP	server	for	delivering	the

e-mails.

Sending	via	Local	Sendmail
If	you	want	to	send	the	e-mails	in	the	traditional	way	via	local	sendmail,	then

you	 need	 to	 insert	 the	 following	 lines	 into	 your	 configuration	 file
config/environments/development.rb	 (for	 the	 development

environment)	 or	config/environments/production.rb	 (for	 your

production	environment):

Listing	7.	config/environments/development.rb

config.action_mailer.delivery_method	=	:sendmail

config.action_mailer.perform_deliveries	=	true

config.action_mailer.raise_delivery_errors	=	true

Sending	via	Direct	SMTP
If	you	want	to	send	the	e-mail	directly	via	a	SMTP	server	(for	example	Google
Mail),	 then	 you	 need	 to	 insert	 the	 following	 lines	 into	 your	 configuration	 file
config/environments/development.rb	 (for	 the	 development

environment)	 or	config/environments/production.rb	 (for	 your

production	environment):

Listing	8.	config/environments/development.rb

config.action_mailer.delivery_method	=	:smtp

config.action_mailer.smtp_settings	=	{

		address:														"smtp.gmail.com",	port:																	587,	

domain:															'example.com',	user_name:												

'<username>',	password:													'<password>',	authentication:							

'plain',	enable_starttls_auto:	true		}

Of	 course	 you	 need	 to	 adapt	 the	 values	 for	:domain,	 :user_name	 and

:password	in	accordance	with	your	configuration.

Custom	X-Header

If	you	feel	the	urge	to	integrate	an	additional	X-header	then	this	is	no	problem.
Here	is	an	example	for	expanding	the	file

app/mailers/notification_mailer.rb:

Listing	9.	app/mailers/notification_mailer.rb

class	NotificationMailer	<	ApplicationMailer	def	new_account(user)	

@user	=	user

				headers["X-Priority"]	=	'3'

				mail(to:	user.email,	subject:	"The	account	#{user.name}	is	

active.")	end

end

This	means	the	sent	e-mail	would	look	like	this:

Sent	mail	to	stefan.wintermeyer@amooma.de	(50ms)	Date:	Wed,	30	May	

2012	17:35:21	+0200

From:	from@example.com

To:	stefan.wintermeyer@amooma.de

Message-ID:	<4fc63e39e356a_aa083fe366028cd8803c7@MacBook.local.mail>	Subject:	The	new	
account	Wintermeyer	is	active.

Mime-Version:	1.0

Content-Type:	text/plain;

	charset=UTF-8

Content-Transfer-Encoding:	7bit

X-Priority:	3

	

Hello	Wintermeyer,

	

your	new	account	is	active.

	

Have	a	great	day!

		A	Robot

Attachments

E-mail	attachments	are	also	defined	in	the	controller.

As	an	example	we	add	in	app/mailers/notification_mailer.rb	the

Rails	image	app/assets/images/rails.png	to	an	e-mail	as	attachment:

Listing	10.	app/mailers/notification_mailer.rb

class	NotificationMailer	<	ApplicationMailer	def	new_account(user)	

@user	=	user

				attachments['rails.png']	=

						File.read("#{Rails.root}/app/assets/images/rails.png")	

mail(to:	user.email,	subject:	"The	account	#{user.name}	is	active.")	

end

end

Inline	Attachments
For	inline	 attachments	 in	 HTML	 e-mails,	 you	 need	 to	 use	 the	 method	 inline
when	 calling	attachments.	 In	 our	 example	 controller

app/mailers/notification_mailer.rb:

Listing	11.	app/mailers/notification_mailer.rb

class	NotificationMailer	<	ApplicationMailer	def	new_account(user)	

@user	=	user

				attachments.inline['rails.png']	=

						File.read("#{Rails.root}/app/assets/images/rails.png")	

mail(to:	user.email,	subject:	"The	account	#{user.name}	is	active.")	

end

end

In	the	HTML	e-mail,	you	can	access	the	hash	attachments[]

v i a	image_tag.	 In	 our	 example	 the
app/views/notification_mailer/new_account.html.erb

would	look	like	this:

Listing	12.	app/views/notification_mailer/new_account.html.erb

<!DOCTYPE	html>	<html>

		<head>

				<meta	content="text/html;	charset=UTF-8"	http-equiv="Content-Type"	/>	</head>

		<body>

				<%=	image_tag	attachments['rails.png'].url,	:alt	=>	'Rails	Logo'	%>
				<p>Hello	<%=	@user.name	%>,</p>	

				<p>your	new	account	is	active.</p>

	

				<p><i>Have	a	great	day!</i></p>	<p>A	Robot</p>

		</body>

</html>

Further	Information

The	Rails	online	documentation	has	a	very	extensive	entry	on	ActionMailer	at
http://guides.rubyonrails.org/action_mailer_basics.html.

http://guides.rubyonrails.org/action_mailer_basics.html

	 Stefan	Wintermeyer

▪

INTERNATIONALIZATION

Introduction
If	you	are	in	the	lucky	situation	of	only	creating	web	pages	in

English	only,	then	you	can	skip	this	chapter	completely.

But	even	if	you	want	to	create	a	web	page	that	only	uses	one

language	(other	than	English),	you	will	need	to	dive	into

this	chapter.	It	is	not	enough	to	just	translate	the	views.	Because

already	if	you	use	scaffolding,	you

will	need	to	take	care	of	the	English	and	therefore	not	yet

translated	validation	errors.

The	class	I18n	is	responsible	for	anything	to	do	with	translation	in

the	Rails	application.	It	offers	two	important	methods	for	this	purpose:

I18n.translate	or	I18n.t

Takes	care	of	inserting	previously	defined	text	blocks.	These	can

▪

contain	variables.

I18n.localize	or	I18n.l

Takes	care	of	adapting	time	and	date	specifications	to	the	local	format.

With	I18n.locale	you	define	the	language	you	want	to	use	in	the

current	call.	In	the	configuration	file	config/application.rb,	the

entry	config.i18n.default_locale	sets	the	default	value	for

I18n.locale.	If	you	do	not	make	any	changes	there,	this	value	is	set

by	default	to	:en	for	English.

For	special	cases	such	as	displaying	numbers,	currencies	and	times,

there	are	special	helpers	available.	For	example,	if	you	want	to	create

a	German	web	page,	you	can	ensure	that	the	number	1000.23	can	be

correctly	displayed	with	a	decimal	comma	as	"1.000,23"	on	the	German

page	and	with	a	decimal	point	on	an	English	web	page	as	"1,000.23".

Let’s	create	an	example	application	which	includes	the	rails-i18n

gem	by	Sven	Fuchs	(https://github.com/svenfuchs/i18n).	It

provides	a	couple	of	language	files	with	translations	and	format

info.

https://github.com/svenfuchs/i18n

$	rails	new	webshop

[...]

$	cd	webshop

$	echo	"gem	'rails-i18n'"	>>	Gemfile

$	bundle

[...]

$

In	the	console	we	can	see	the	different	output	of	a	number	depending	on

the	language	setting:

$	rails	console

Loading	development	environment	(Rails	5.0.0)

>>	price	=	1000.23

=>	1000.23

>>	helper.number_to_currency(price,	locale:	:de)

=>	"1.000,23	€"

>>	helper.number_to_currency(price,	locale:	:en)

=>	"$1,000.23"

>>	helper.number_to_currency(price,	locale:	:fr)

=>	"1	000,23	€"

>>	exit

$

I18n.t
With	I18n.t	you	can	retrieve	previously	defined	translations.	The

translations	are	saved	by	default	in	YAML	format	in	the	directory

config/locales/.	Technically,	you	do	not	have	to	use	YAML	as	format.

In	config/locales/	you	can	find	an	example	file

config/locales/en.yml	with	the	following	content:

Listing	1.	config/locales/en.yml

en:

		hello:	"Hello	world"

In	the	Rails	console	we	can	try	out	how	I18n.t	works:

$	rails	console

Loading	development	environment	(Rails	5.0.0)

>>	I18n.t	:hello

=>	"Hello	world"

>>	I18n.locale

=>	:en

>>	exit

$

Let’s	first	create	a	config/locales/de.yml	with	the	following	content:

Listing	2.	config/locales/de.yml

de:

		hello:	"Hallo	Welt"

Now	you	have	to	tell	rails	to	load	this	file	by	adding	one	line

in	config/application.rb.

Listing	3.	config/application.rb

config.i18n.load_path	+=	Dir[Rails.root.join('my',	'locales',

'*.{rb,yml}').to_s]

In	the	console	we	can	set	the	system	language	with	I18n.locale	=	:de

to	German.

$	rails	console

Loading	development	environment	(Rails	5.0.0)

>>	I18n.locale

=>	:en

>>	I18n.locale	=	:de

=>	:de

>>	I18n.t	:hello

=>	"Hallo	Welt"

I18n.t	looks	by	default	for	the	entry	in	the	language	defined	in

I18n.locale.	It	does	not	matter	if	you	are	working	with	I18n.t	or

I18n.translate.	Nor	does	it	matter	if	you	are	searching	for	a

symbol	or	a	string:

>>	I18n.locale	=	:en

=>	:en

>>	I18n.t	:hello

=>	"Hello	world"

>>	I18n.t	'hello'

=>	"Hello	world"

>>	I18n.translate	'hello'

=>	"Hello	world"

If	a	translation	does	not	exist,	you	get	an	error	message	that	says

translation	missing:.	This	also	applies	if	a	translation	is	only

missing	in	one	language	(then	all	other	languages	will	work,	but	for

the	missing	translation	you	will	get	the	error	message).	In	that

case,	you	can	define	a	default	with

default:	'any	default	value':

>>	I18n.t	'asdfasdfasdf'

=>	"translation	missing:	de.asdfasdfasdf"

>>	I18n.t	'asdfasdfasdf',	default:	'asdfasdfasdf'

=>	"asdfasdfasdf"

>>	exit

In	the	YAML	structure	you	can	also	specify	several	levels.	Please	amend

the	config/locale/en.yml	as	follows:

Listing	4.	config/locale/en.yml

en:

		hello:	"Hello	world"
		example:

				test:	"A	test"
		aaa:

				bbb:

						test:	"An	other	test"

You	can	display	the	different	levels	within	the	string	with	dots

or	with	a	:scope	for	the	symbols.	You	can	also	mix	both	options.

$	rails	console

Loading	development	environment	(Rails	5.0.0)

>>	I18n.t	'example.test'

=>	"A	test"

>>	I18n.t	'aaa.bbb.test'

=>	"An	other	test"

>>	I18n.t	:test,	scope:	[:aaa,	:bbb]

=>	"An	other	test"

>>	I18n.t	:test,	scope:	'aaa.bbb'

=>	"An	other	test"

>>	exit

$

It’s	up	to	you	which	structure	you	choose	to	save	your	translations	in

the	YAML	files.	But	the	structure	described	in

"A	Rails

Application	in	Only	One	Language:	German"	does	make	some	things	easier

and	that’s	why	we	are	going	to	use	it	for	this	application	as	well.

Using	I18n.t	in	the	View

In	the	view,	you	can	use	I18n.t	as	follows:

<%=	t	:hello-world	%>

<%=	I18n.t	:hello-world	%>

<%=	I18n.translate	:hello-world	%>

<%=	I18n.t	'hello-world'	%>

<%=	I18n.t	'aaa.bbb.test'	%>

<%=	link_to	I18n.t('views.destroy'),	book,	confirm:

I18n.t('views.are_you_sure'),	method:	:delete	%>

Localized	Views
In	Rails,	there	is	a	useful	option	of	saving	several	variations	of	a

view	as	"localized	views",	each	of	which	represents	a	different

language.	This	technique	is	independent	of	the	potential	use	of	I18n.t

in	these	views.	The	file	name	results	from	the	view	name,	the	language

code	(for	example,	de	for	German)	and	html.erb	for	ERB	pages.	Each

of	these	are	separated	by	a	dot.	So	the	German	variation	of	the

index.html.erb	page	would	get	the	file	name	index.de.html.erb.

Your	views	directory	could	then	look	like	this:

|-app

|---views

|-----products

|-------_form.html.erb

|-------_form.de.html.erb

|-------edit.html.erb

|-------edit.de.html.erb

|-------index.html.erb

|-------index.de.html.erb

|-------new.html.erb

|-------new.de.html.erb

|-------show.html.erb

|-------show.de.html.erb

|-----page

|-------index.html.erb

|-------index.de.html.erb

The	 language	 set	 with	config.i18n.default_locale	 is	 used

automatically

if	no	language	was	encoded	in	the	file	name.	In	a	new	and	not	yet

configured	Rails	project,	this	will	be	English.	You	can	configure	it	in

the	file	config/application.rb.

A	Rails	Application	in	Only	One	Language:	German

In	a	Rails	application	aimed	only	at	German	users,	it	is	unfortunately

not	enough	to	just	translate	all	the	views	into	German.	The	approach	is

in	many	respects	similar	to	a	multilingual	Rails	application	(see	the	section

xref:#multilingual-rails-application["Multilingual	Rails

Application"]).	Correspondingly,	there	will	be	a	certain	amount	of

repetition.	I	am	going	to	show	you	the	steps	you	need	to	watch	out	for

by	using	a	simple	application	as	example.

Let’s	go	through	all	the	changes	using	the	example	of	this	bibliography

application:

$	rails	new	bibliography

[...]

$	cd	bibliography

$	rails	generate	scaffold	book	title	number_of_pages:integer

		'price:decimal{7,2}'

[...]

$	rake	db:migrate

[...]

$

To	get	examples	for	validation	errors,	please	insert	the	following

validations	in	the	app/models/book.rb:

Listing	5.	app/models/book.rb

class	Book	<	ActiveRecord::Base

		validates	:title,

												presence:	true,

												uniqueness:	true,

												length:	{	within:	2..255	}

	

		validates	:price,

												presence:	true,

												numericality:	{	greater_than:	0	}

end

Please	search	the	configuration	file	config/application.rb	for	the

value	config.i18n.default_locale	and	set	it	to	:de	for	German.	In

the	same	context,	we	then	also	insert	two	directories	in	the	line	above

for	the	translations	of	the	models	and	the	views.	This	directory

structure	is	not	a	technical	requirement,	but	makes	it	easier	to	keep

track	of	things	if	your	application	becomes	big:

Listing	6.	config/application.rb

config.i18n.load_path	+=	Dir[Rails.root.join('config',	'locales',	

'models',

'*',	'*.yml').to_s]

config.i18n.load_path	+=	Dir[Rails.root.join('config',	'locales',	'views',

'*',	'*.yml').to_s]

config.i18n.default_locale	=	:de

You	then	still	need	to	create	the	corresponding	directories:

$	mkdir	-p	config/locales/models/book

$	mkdir	-p	config/locales/views/book

$

Now	you	need	to	generate	a	language	configuration	file	for	German	or

simply	download	a	ready-made	one	by	Sven	Fuchs	from	his	Github

repository	at	https://github.com/svenfuchs/rails-i18n:

$	cd	config/locales

$	curl	-O

		https://raw.githubusercontent.com/svenfuchs/rails-i18n/master/rails/locale/de.yml

		%	Total				%	Received	%	Xferd		Average	Speed			Time				Time					Time		Current

																																	Dload		Upload			Total			Spent				Left		Speed

100		5027		100		5027				0					0		14877						0	--:--:--	--:--:--	--:--:--	14916

$

If	you	know	how	Bundler	works,	you	can	also	insert	the	line

gem	'rails-i18n'	into	the	file	Gemfile	and	then	execute

bundle	install.	This	gives	you	all	language	files	from	the	repository.

https://github.com/svenfuchs/rails-i18n

In	the	file	config/locales/de.yml,	you	have	all	required	formats	and

generic	wordings	for	German	that	you	need	for	a	normal	Rails	application

(for	example,	days	of	the	week,	currency	symbols,	etc).	Have	a	look	at

it	with	your	favorite	editor	to	get	a	first	impression.

Next,	we	need	to	tell	Rails	that	a	model	book'	is	not	called	`book'
in

German,	but	`Buch'.	The	same	applies	to	all	attributes.	So	we	create	the

file	 `config/locales/models/book/de.yml	 with	 the	 following

structure.

As	side	effect,	we	get	the	methods	Model.model_name.human	and

Model.human_attribute_name(attribute),	 with	 which	 we	 can

insert	the

model	and	attribute	names	in	the	view.

Listing	7.	config/locales/models/book/de.yml

de:

		activerecord:

				models:

						book:	'Buch'
				attributes:

						book:

								title:	'Titel'

								number_of_pages:	'Seitenanzahl'

								price:	'Preis'

In	the	file	config/locales/views/book/de.yml	we	insert	a	few	values

for	the	scaffold	views:

Listing	8.	config/locales/views/book/de.yml

de:

		views:

				show:	Anzeigen

				edit:	Editieren

				destroy:	Löschen

				are_you_sure:	Sind	Sie	sicher?

				back:	Zurück

				edit:	Editieren

				book:

						index:

								title:	Bücherliste

								new:	Neues	Buch

						edit:

								title:	Buch	editieren

						new:

								title:	Neues	Buch

						flash_messages:

								book_was_successfully_created:	'Das	Buch	wurde	angelegt.'

								book_was_successfully_updated:	'Das	Buch	wurde	

aktualisiert.'

Now	we	still	need	to	integrate	a	"few"	changes	into	the	views.	We	use

the	I18n.t	helper	that	can	also	be	abbreviated	with	t	in	the	view.

I18n.t	reads	out	the	corresponding	item	from	the	YAML	file.	In	the	case

of	a	purely	monolingual	German	application,	we	could	also	write	the

German	text	directly	into	the	view,	but	with	this	method	we	can	more

easily	switch	to	multilingual	use	if	required.

Listing	9.	app/viewsbooks_form.html.erb

<%=	form_for(@book)	do	|f|	%>

		<%	if	@book.errors.any?	%>

				<div	id="error_explanation">

						<h2><%=	t	'activerecord.errors.template.header',	:model	=>

						Book.model_name.human,	:count	=>	@book.errors.count	%></h2>

						

						<%	@book.errors.full_messages.each	do	|msg|	%>
								<%=	msg	%>

						<%	end	%>
						

				</div>

		<%	end	%>

		<div	class="field">

				<%=	f.label	:title	%>

				<%=	f.text_field	:title	%>
		</div>

		<div	class="field">

				<%=	f.label	:number_of_pages	%>

				<%=	f.number_field	:number_of_pages	%>
		</div>

		<div	class="field">

				<%=	f.label	:price	%>

				<%=	f.text_field	:price	%>
		</div>

		<div	class="actions">

				<%=	f.submit	%>
		</div>

<%	end	%>

Listing	10.	app/viewsbooksedit.html.erb

<h1><%=	t	'views.book.edit.title'	%></h1>

	

<%=	render	'form'	%>

<%=	link_to	I18n.t('views.show'),	@book	%>	|

<%=	link_to	I18n.t('views.back'),	books_path	%>

Listing	11.	app/viewsbooksindex.html.erb

<h1><%=	t	'views.book.index.title'	%></h1>

	

<table>

		<thead>

				<tr>

						<th><%=	Book.human_attribute_name(:title)	%></th>

						<th><%=	Book.human_attribute_name(:number_of_pages)	%></th>

						<th><%=	Book.human_attribute_name(:price)	%></th>

						<th></th>

						<th></th>

						<th></th>

				</tr>

		</thead>

	

		<tbody>

				<%	@books.each	do	|book|	%>
						<tr>

								<td><%=	book.title	%></td>

								<td><%=	number_with_delimiter(book.number_of_pages)	%></td>

								<td><%=	number_to_currency(book.price)	%></td>

								<td><%=	link_to	I18n.t('views.show'),	book	%></td>

								<td><%=	link_to	I18n.t('views.edit'),	edit_book_path(book)	%></td>

								<td><%=	link_to	I18n.t('views.destroy'),	book,	method:	:delete,	data:

								{	confirm:	I18n.t('views.are_you_sure')}	%></td>

						</tr>

				<%	end	%>
		</tbody>

</table>

	

	

<%=	link_to	I18n.t('views.book.index.new'),	new_book_path	%>

Listing	12.	app/viewsbooksnew.html.erb

<h1><%=	t	'views.book.new.title'	%></h1>

	

<%=	render	'form'	%>

<%=	link_to	I18n.t('views.back'),	books_path	%>

Listing	13.	app/viewsbooksshow.html.erb

<p	id="notice"><%=	notice	%></p>

	

<p>

		<%=	Book.human_attribute_name(:title)	%>:

		<%=	@book.title	%>
</p>

	

<p>

		<%=	Book.human_attribute_name(:number_of_pages)	%>:

		<%=	number_with_delimiter(@book.number_of_pages)	%>
</p>

	

<p>

		<%=	Book.human_attribute_name(:price)	%>:

		<%=	number_to_currency(@book.price)	%>
</p>

	

<%=	link_to	I18n.t('views.edit'),	edit_book_path(@book)	%>	|

<%=	link_to	I18n.t('views.back'),	books_path	%>

In	the	show	and	index	view,	I	integrated	the	helpers

number_with_delimiter	and	number_to_currency	so	the	numbers	are

represented	more	attractively	for	the	user.

Right	at	the	end,	we	still	need	to	adapt	a	few	flash	messages	in	the

controller	app/controllers/books_controller.rb:

Listing	14.	app/controllers/books_controller.rb

class	BooksController	<	ApplicationController

		before_action	:set_book,	only:	[:show,	:edit,	:update,	:destroy]

	

		#	GET	/books
		#	GET	/books.json
		def	index

				@books	=	Book.all

		end

		#	GET	books1
		#	GET	books1.json
		def	show

		end

		#	GET	booksnew
		def	new

				@book	=	Book.new

		end

		#	GET	books1/edit
		def	edit

		end

		#	POST	/books
		#	POST	/books.json
		def	create

				@book	=	Book.new(book_params)

	

				respond_to	do	|format|

						if	@book.save

								format.html	{	redirect_to	@book,	notice:

								I18n.t('views.book.flash_messages.book_was_successfully_created')	}

								format.json	{	render	action:	'show',	status:	:created,	location:	@book	}

						else
								format.html	{	render	action:	'new'	}

								format.json	{	render	json:	@book.errors,	status:	:unprocessable_entity	}

						end
				end
		end

		#	PATCH/PUT	books1
		#	PATCH/PUT	books1.json
		def	update

				respond_to	do	|format|

						if	@book.update(book_params)

								format.html	{	redirect_to	@book,	notice:

								I18n.t('views.book.flash_messages.book_was_successfully_updated')	}

								format.json	{	head	:no_content	}

						else
								format.html	{	render	action:	'edit'	}

								format.json	{	render	json:	@book.errors,	status:	:unprocessable_entity
								}

						end
				end
		end

		#	DELETE	books1
		#	DELETE	books1.json
		def	destroy

				@book.destroy

				respond_to	do	|format|

						format.html	{	redirect_to	books_url	}

						format.json	{	head	:no_content	}

				end
		end

		private
				#	Use	callbacks	to	share	common	setup	or	constraints	between	actions.
				def	set_book

						@book	=	Book.find(params[:id])

				end

				#	Never	trust	parameters	from	the	scary	internet,	only	allow	the	white	list	through.
				def	book_params

						params.require(:book).permit(:title,	:number_of_pages,	:price)

				end

end

Now	you	can	use	the	views	generated	by	the	scaffold	generator	entirely

in	German.	The	structure	of	the	YAML	files	shown	here	can	of	course	be

adapted	to	your	own	preferences.	The	texts	in	the	views	and	the

controller	are	displayed	with	I18n.t.	At	this	point	you	could	of

course	also	integrate	the	German	text	directly	if	the	application	is

purely	in	German.

Paths	in	German
Our	bibliography	is	completely	in	German,	but	the	URLs	are	still	in

English.	If	we	want	to	make	all	books	available	at	the	URL

http://localhost:3000/buecher	instead	of	the	URL

http://localhost:3000/books	then	we	need	to	add	the	following	entry	to

the	config/routes.rb:

Listing	15.	config/routes.rb

Bibliography::Application.routes.draw	do

		resources	:books,	path:	'buecher',	path_names:	{	new:	'neu',	edit:

		'editieren'	}

end

As	a	result,	we	then	have	the	following	new	paths:

$	rake	routes

(in	Usersxyz/rails/project-42/bibliography)

			Prefix	Verb			URI	Pattern																						Controller#Action

				books	GET				/buecher(.:format)															books#index

										POST			/buecher(.:format)															books#create

http://localhost:3000/buecher
http://localhost:3000/books

	new_book	GET				buecherneu(.:format)											books#new

edit_book	GET				buecher:id/editieren(.:format)	books#edit

					book	GET				buecher:id(.:format)											books#show

										PATCH		buecher:id(.:format)											books#update

										PUT				buecher:id(.:format)											books#update

										DELETE	buecher:id(.:format)											books#destroy

$

The	brilliant	thing	with	Rails	routes	is	that	you	do	not	need	to	do

anything	else.	The	rest	is	managed	transparently	by	the	routing	engine.

Multilingual	Rails	Application

The	approach	for	multilingual	Rails	applications	is	very	similar	to	the

monoligual,	all-German	Rails	application	described	in	the	section

"A	Rails

Application	in	Only	One	Language:	German".	But	we	need	to	define	YAML

language	files	for	all	required	languages	and	tell	the	Rails	application

which	language	it	should	currently	use.	We	do	this	via	I18n.locale.

Using	I18n.locale	for	Defining	the	Default	Language
Of	course,	a	Rails	application	has	to	know	in	which	language	a	web	page

should	be	represented.	I18n.locale	saves	the	current	language	and	can

be	read	by	the	application.	I	am	going	to	show	you	this	with	a	mini	web

shop	example:

$	rails	new	webshop

[...]

$	cd	webshop

$

This	web	shop	gets	a	homepage:

$	rails	generate	controller	Page	index

[...]

$

We	still	need	to	enter	it	as	root	page	in	the	config/routes.rb:

Listing	16.	config/routes.rb

Webshop::Application.routes.draw	do

		get	"page/index"

		root	'page#index'

end

We	populate	the	app/views/page/index.html.erb	with	the	following

example:

Listing	17.	app/views/page/index.html.erb

<h1>Example	Webshop</h1>

<p>Welcome	to	this	webshop.</p>

	

<p>

I18n.locale:

<%=	I18n.locale	%>

</p>

If	we	start	the	Rails	server	with	rails	server	and	go	to

http://localhost:3000/	in	the	browser,	then	we	see	the	following	web

page:

Figure	1.	I18n	ganze	seite	page	index

As	you	can	see,	the	default	is	set	to	"en"	for	English.	Stop	the	Rails

server	with	CTRL-C	and	change	the	setting	for	the	default	language	to

http://localhost:3000/

German	in	the	file	config/application.rb:

Listing	18.	config/application.rb

config.i18n.default_locale	=	:de

If	you	then	start	the	Rails	server	and	again	go	to

http://localhost:3000/	in	the	web	browser,	you	will	see	the	following

web	page:

image::screenshots/chapter10/i18n_ganze_seite_page_index_default_locale_de.png[I18n
ganze	seite	page	index	default	locale

de,title="I18n	ganze	seite	page	index	default	locale	de"]

The	web	page	has	not	changed,	but	as	output	of	<%=	I18n.locale	%>	you

now	get	"de’	for	German	(Deutsch),	not	"en’	for	English	as	before.

Please	stop	the	Rails	server	with	CTRL-C	and	change	the	setting	for	the

default	language	to	en	for	English	in	the	file

config/application.rb:

Listing	19.	config/application.rb

#	The	default	locale	is	:en	and	all	translations	from	

config/locales/*.rb,yml

#	are	auto	loaded.

#	config.i18n.load_path	+=	Dir[Rails.root.join('my',	'locales',

#	'*.{rb,yml}').to_s]

config.i18n.default_locale	=	:en

http://localhost:3000/

We	now	know	how	to	set	the	default	for	I18n.locale	in	the	entire

application,	but	that	only	gets	half	the	job	done.	A	user	wants	to	be

able	to	choose	his	own	language.	There	are	various	ways	of	achieving

this.	To	make	things	clearer,	we	need	a	second	page	that	displays	a

German	text.

Please	create	the	file	app/views/page/index.de.html.erb	with	the

following	content:

Listing	20.	app/views/page/index.de.html.erb

<h1>Beispiel	Webshop</h1>

<p>Willkommen	in	diesem	Webshop.</p>

	

<p>

I18n.locale:

<%=	I18n.locale	%>

</p>

Setting	I18n.locale	via	URL	Path	Prefix

The	more	stylish	way	of	setting	the	language	is	to	add	it	as	prefix	to

the	URL.	This	enables	search	engines	to	manage	different	language

versions	better.	We	want	http://localhost:3000/de	to	display	the	German

version	of	our	homepage	and	http://localhost:3000/en	the	English

version.	The	first	step	is	adapting	the	config/routes.rb

Listing	21.	config/routes.rb

Webshop::Application.routes.draw	do

		scope	':locale',	locale:	en|de	do

				get	"page/index"

				get	'/',	to:	'page#index'

		end

		root	'page#index'

end

Next,	we	need	to	set	a	before_action	in	the

app/controllers/application_controller.rb.	This	filter	sets	the

parameter	locale	set	by	the	route	as	I18n.locale:

Listing	22.	app/controllers/application_controller.rb

class	ApplicationController	<	ActionController::Base

		#	Prevent	CSRF	attacks	by	raising	an	exception.
		#	For	APIs,	you	may	want	to	use	:null_session	instead.
		protect_from_forgery	with:	:exception

		before_action	:set_locale

http://localhost:3000/de
http://localhost:3000/en

		private
		def	set_locale

				I18n.locale	=	params[:locale]	||	I18n.default_locale

		end

end

Now	you	have	to	allow	the	new	locales	to	be	loaded.	Add	this	line	to

your	config/application.rb

Listing	23.	config/application.rb

config.i18n.available_locales	=	[:en,	:de]

To	test	it,	start	Rails	with	rails	server	and	go	to	the	URL

http://localhost:3000/de.

http://localhost:3000/de

Figure	2.	I18n	root	de

Of	course	we	can	also	go	to	http://localhost:3000/de/page/index:

http://localhost:3000/de/page/index

Figure	3.	I18n	de	page	index

If	we	go	to	http://localhost:3000/en	and

http://localhost:3000/en/page/index	we	get	the	English	version	of	each

page.

But	now	we	have	a	problem:	by	using	the	prefix,	we	initially	get	to	a

page	with	the	correct	language,	but	what	if	we	want	to	link	from	that

page	to	another	page	in	our	Rails	project?	Then	we	would	need	to

manually	insert	the	prefix	into	the	link.	Who	wants	that?	Obviously

there	is	a	clever	solution	for	this	problem.	We	can	set	global	default

parameters	for	URL	generation	by	defining	a	method	called

default_url_options	in	our	controller.

So	we	just	need	to	add	this	method	in

app/controllers/application_controller.rb:

Listing	24.	app/controllers/application_controller.rb

class	ApplicationController	<	ActionController::Base

		#	Prevent	CSRF	attacks	by	raising	an	exception.
		#	For	APIs,	you	may	want	to	use	:null_session	instead.
		protect_from_forgery	with:	:exception

http://localhost:3000/en
http://localhost:3000/en/page/index

		before_action	:set_locale

		def	default_url_options

				{	locale:	I18n.locale	}

		end

		private
		def	set_locale

				I18n.locale	=	params[:locale]	||	I18n.default_locale

		end

end

As	a	result,	all	links	created	with	link_to	and	url_for	(on	which

link_to	is	based)	are	automatically	expanded	by	the	parameter

locale.	You	do	not	need	to	do	anything	else.	All	links	generated	via

the	scaffold	generator	are	automatically	changed	accordingly.

Navigation	Example

To	give	the	user	the	option	of	switching	easily	between	the	different

language	versions,	it	makes	sense	to	offer	two	links	at	the	top	of	the

web	page.	We	don’t	want	the	current	language	to	be	displayed	as	active

link.	This	can	be	achieved	as	follows	for	all	views	in	the	file

app/views/layouts/application.html.erb:

Listing	25.	app/views/layouts/application.html.erb

<!DOCTYPE	html>

<html>

<head>

		<title>Webshop</title>

		<%=	stylesheet_link_tag				'application',	media:	'all',

		'data-turbolinks-track'	=>	true	%>
		<%=	javascript_include_tag	'application',	'data-turbolinks-track'	=>	true	%>
		<%=	csrf_meta_tags	%>
</head>

<body>

	

<p>

<%=	link_to_unless	I18n.locale	==	:en,	"English",	locale:	:en	%>
|

<%=	link_to_unless	I18n.locale	==	:de,	"Deutsch",	locale:	:de	%>
</p>

	

<%=	yield	%>

</body>

</html>

The	navigation	is	then	displayed	at	the	top	of	the	page.

Figure	4.	I18n	url	prefix

Setting	I18n.locale	via	Accept	Language	HTTP	Header	of
Browser

When	a	user	goes	to	your	web	page	for	the	first	time,	you	ideally	want

to	immediately	display	the	web	page	in	the	correct	language	for	that

user.	To	do	this,	you	can	read	out	the	accept	language	field	in	the	HTTP

header.	In	every	web	browser,	the	user	can	set	his	preferred	language

(see	http://www.w3.org/International/questions/qa-lang-priorities).	The

browser	automatically	informs	the	web	server	and	consequently	Ruby	on

Rails	of	this	value.

Please	 edit	 the	app/controllers/application_controller.rb	 as

follows:

Listing	26.	app/controllers/application_controller.rb

class	ApplicationController	<	ActionController::Base

		#	Prevent	CSRF	attacks	by	raising	an	exception.
		#	For	APIs,	you	may	want	to	use	:null_session	instead.
		protect_from_forgery	with:	:exception

		before_action	:set_locale

		private
		def	extract_locale_from_accept_language_header

				http_accept_language	=

				request.env['HTTP_ACCEPT_LANGUAGE'].scan(/^[a-z]{2}/).first

http://www.w3.org/International/questions/qa-lang-priorities

				if	['de',	'en'].include?	http_accept_language

						http_accept_language

				else
						'en'
				end
		end

		def	set_locale

				I18n.locale	=	extract_locale_from_accept_language_header	||

				I18n.default_locale

		end

end

And	please	do	not	forget	to	clean	the	settings	from	the	section

"I18n.locale	via	URL	Path	Prefix"	out	of	the	config/routes.rb:

Listing	27.	config/routes.rb

Webshop::Application.routes.draw	do

		get	"page/index"

		root	'page#index'

end

Now	you	always	get	the	output	in	the	language	defined	in	the	web

browser.	Please	note	that

request.env['HTTP_ACCEPT_LANGUAGE'].scan(/^[a-z]

{2}/).first	does	not

catch	all	cases.	For	example,	you	should	make	sure	that	you	support	the

specified	language	in	your	Rails	application	in	the	first	place.	There

are	some	ready-made	gems	that	can	easily	do	this	job	for	you.	Have	a

look	at

https://www.ruby-toolbox.com/categories/i18n#http_accept_language	to

find	them.

Saving	I18n.locale	in	a	Session

Often	you	want	to	save	the	value	of	I18n.locale	in	a	session.

The	approach	described	here	for	sessions	will	of	course	work	just	the

same	with	cookies.

To	set	the	value,	let’s	create	a	controller	in	our	web	shop	as	example:

the	controller	SetLanguage	with	the	two	actions	english	and

german:

$	rails	generate	controller	SetLanguage	english	german

https://www.ruby-toolbox.com/categories/i18n#http_accept_language

[...]

$

In	 the	 file	app/controllers/set_language_controller.rb	 we

populate	the

two	actions	as	follows:

Listing	28.	app/controllers/set_language_controller.rb

class	SetLanguageController	<	ApplicationController

		def	english

				I18n.locale	=	:en
				set_session_and_redirect

		end

		def	german

				I18n.locale	=	:de
				set_session_and_redirect

		end

		private
		def	set_session_and_redirect

				session[:locale]	=	I18n.locale

				redirect_to	:back
				rescue	ActionController::RedirectBackError

						redirect_to	:root

		end

end

Finally,	we	also	want	to	adapt	the	set_locale	methods	in	the	file

app/controllers/application_controller.rb:

Listing	29.	app/controllers/application_controller.rb

class	ApplicationController	<	ActionController::Base

		#	Prevent	CSRF	attacks	by	raising	an	exception.
		#	For	APIs,	you	may	want	to	use	:null_session	instead.
		protect_from_forgery	with:	:exception

		before_filter	:set_locale

		private
		def	set_locale

				I18n.locale	=	session[:locale]	||	I18n.default_locale

				session[:locale]	=	I18n.locale

		end

end

After	starting	Rails	with	rails	server,	you	can	now	set	the	language

to	German	by	going	to	the	URL	http://localhost:3000/set_language/german

and	to	English	by	going	to	http://localhost:3000/set_language/english.

Navigation	Example

To	give	the	user	the	option	of	switching	easily	between	the	different

language	versions,	it	makes	sense	to	offer	two	links	at	the	top	of	the

web	page.	We	don’t	want	the	current	language	to	be	displayed	as	active

link.	This	can	be	achieved	as	follows	for	all	views	in	the	file

app/views/layouts/application.html.erb:

Listing	30.	app/views/layouts/application.html.erb

<!DOCTYPE	html>

<html>

<head>

		<title>Webshop</title>

		<%=	stylesheet_link_tag				"application",	media:	"all",

		"data-turbolinks-track"	=>	true	%>
		<%=	javascript_include_tag	"application",	"data-turbolinks-track"	=>	true	%>

http://localhost:3000/set_language/german
http://localhost:3000/set_language/english

		<%=	csrf_meta_tags	%>
</head>

<body>

	

<p>

<%=	link_to_unless	I18n.locale	==	:en,	"English",	set_language_english_path	%>
|

<%=	link_to_unless	I18n.locale	==	:de,	"Deutsch",	set_language_german_path	%>
</p>

	

<%=	yield	%>

</body>

</html>

The	navigation	is	then	displayed	at	the	top	of	the	page.

Figure	5.	I18n	locale	navigation

Setting	I18n.locale	via	Domain	Extension

If	you	have	several	domains	with	the	extensions	typical	for	the

corresponding	languages,	you	can	of	course	also	use	these	extensions	to

set	the	language.	For	example,	if	a	user	visits	the	page

http://www.example.com	he	would	see	the	English	version,	if	he	goes	to

http://www.example.de	then	the	German	version	would	be	displayed.

To	achieve	this,	we	would	need	to	go	into	the

app/controllers/application_controller.rb	 and	 insert	 a
before_action

http://www.example.com
http://www.example.de

that	analyses	the	accessed	domain	and	sets	the	I18n.locale	:

Listing	31.	app/controllers/application_controller.rb

class	ApplicationController	<	ActionController::Base

		#	Prevent	CSRF	attacks	by	raising	an	exception.
		#	For	APIs,	you	may	want	to	use	:null_session	instead.
		protect_from_forgery	with:	:exception

		before_action	:set_locale

		private
		def	set_locale

				case	request.host.split('.').last

				when	'de'
						I18n.locale	=	:de
				when	'com'
						I18n.locale	=	:en
				else
						I18n.locale	=	I18n.default_locale

				end

		end

end

To	test	this	functionality,	you	can	add	the	following	items	on	your

Linux	or	Mac	OS	X	development	system	in	the	file	etchosts:

Listing	32.	etchosts

localhost	www.example.com

localhost	www.example.de

Then	you	can	go	to	the	URL	http://www.example.com:3000	and

http://www.example.de:3000	and	you	will	see	the	corresponding	language

versions.

Which	Approach	is	the	Best?

I	believe	that	a	combination	of	the	approaches	described	above	will	lead

to	the	best	result.	When	I	first	visit	a	web	page	I	am	happy	if	I	find

that	the	accept	language	HTTP	header	of	my	browser	is	read	and

implemented	correctly.	But	it	is	also	nice	to	be	able	to	change	the

language	later	on	in	the	user	configuration	(in	particular	for	badly

translated	pages,	English	language	is	often	better).	And	ultimately	it

has	to	be	said	that	a	page	that	is	easy	to	represent	is	worth	a	lot	for

a	search	engine,	and	this	also	goes	for	the	languages.	Rails	gives	you

the	option	of	easily	using	all	variations	and	even	enables	you	to

combine	them	together.

http://www.example.com:3000
http://www.example.de:3000

Multilingual	Scaffolds
As	an	example,	we	use	a	mini	webshop	in	which	we	translate	a	product

scaffold.	The	aim	is	to	make	the	application	available	in	German	and

English.

The	Rails	application:

$	rails	new	webshop

[...]

$	cd	webshop

$	rails	generate	scaffold	Product	name	description	'price:decimal{7,2}'

[...]

$	rake	db:migrate

[...]

$

We	define	the	product	model	in	the	app/models/product.rb

Listing	33.	app/models/product.rb

class	Product	<	ActiveRecord::Base

		validates	:name,

												presence:	true,

												uniqueness:	true,

												length:	{	within:	2..255	}

	

		validates	:price,

												presence:	true,

												numericality:	{	greater_than:	0	}

end

When	selecting	the	language	for	the	user,	we	use	the	URL	prefix

variation	described	in	the	section	"Setting	I18n.locale	via	URL	Path	Prefix".	We
use	the

following	app/controllers/application_controller.rb

Listing	34.	app/controllers/application_controller.rb

class	ApplicationController	<	ActionController::Base

		#	Prevent	CSRF	attacks	by	raising	an	exception.
		#	For	APIs,	you	may	want	to	use	:null_session	instead.
		protect_from_forgery	with:	:exception

		before_action	:set_locale

		def	default_url_options

				{	locale:	I18n.locale	}

		end

		private
		def	set_locale

				I18n.locale	=	params[:locale]	||	I18n.default_locale

		end

end

This	is	the	config/routes.rb

Listing	35.	config/routes.rb

Webshop::Application.routes.draw	do

		scope	':locale',	locale:	en|de	do

				resources	:products

				get	'/',	to:	'products#index'

		end

		root	'products#index'

end

Then	we	insert	the	links	for	the	navigation	in	the

app/views/layouts/application.html.erb:

Listing	36.	app/views/layouts/application.html.erb

<!DOCTYPE	html>

<html>

<head>

		<title>Webshop</title>

		<%=	stylesheet_link_tag				"application",	media:	"all",

		"data-turbolinks-track"	=>	true	%>
		<%=	javascript_include_tag	"application",	"data-turbolinks-track"	=>	true	%>
		<%=	csrf_meta_tags	%>
</head>

<body>

	

<p>

<%=	link_to_unless	I18n.locale	==	:en,	"English",	locale:	:en	%>
|

<%=	link_to_unless	I18n.locale	==	:de,	"Deutsch",	locale:	:de	%>
</p>

	

<%=	yield	%>

</body>

</html>

Start	the	Rails	server	with	rails	server.

$	rails	server

=>	Rails	4.2.1	application	starting	in	development	on	http://localhost:3000

=>	Run	rails	server	-h	for	more	startup	options

=>	Ctrl-C	to	shutdown	server

[2015-04-30	15:26:06]	INFO		WEBrick	1.3.1

[2015-04-30	15:26:06]	INFO		ruby	2.2.0	(2014-12-25)	[x86_64-darwin14]

[2015-04-30	15:26:06]	INFO		WEBrick::HTTPServer#start:	pid=45201	

port=3000

If	we	go	to	http://localhost:3000	we	see	the	normal	English	page.

http://localhost:3000

Figure	6.	I18n	basis	version

If	we	click	the	option	German,	nothing	changes	on	the	page,	apart	from

the	language	navigation	right	at	the	top.

Figure	7.	I18n	basis	version	de

Now	we	still	need	to	find	a	way	of	translating	the	individual	elements

of	this	page	appropriately	and	as	generically	as	possible.

Text	Blocks	in	YAML	Format

Now	we	need	to	define	the	individual	text	blocks	for	I18n.t.	The

corresponding	directories	still	have	to	be	created	first:

$	mkdir	-p	config/locales/models/product

$	mkdir	-p	config/locales/views/product

$

To	make	sure	that	the	YAML	files	created	there	are	indeed	read	in

automatically,	you	need	to	insert	the	following	lines	in	the	file

config/application.rb:

Listing	37.	config/application.rb

#	The	default	locale	is	:en	and	all	translations	from	

config/locales/*.rb,yml

#	are	auto	loaded.

config.i18n.load_path	+=	Dir[Rails.root.join('config',	'locales',	

'models',

'*',	'*.yml').to_s]

config.i18n.load_path	+=	Dir[Rails.root.join('config',	'locales',	'views',

'*',	'*.yml').to_s]

config.i18n.default_locale	=	:en

GERMAN

Please	create	 the	 file	config/locales/models/product/de.yml	with

the

following	content.

Listing	38.	config/locales/models/product/de.yml

de:

		activerecord:

				models:

						product:	'Produkt'
				attributes:

						product:

								name:	'Name'

								description:	'Beschreibung'

								price:	'Preis'

In	 the	 file	config/locales/views/product/de.yml	 we	 insert	 a	 few

values

for	the	scaffold	views:

Listing	39.	config/locales/views/product/de.yml

de:

		views:

				show:	Anzeigen

				edit:	Editieren

				destroy:	Löschen

				are_you_sure:	Sind	Sie	sicher?

				back:	Zurück

				edit:	Editieren

				product:

						index:

								title:	Liste	aller	Produkte

								new_product:	Neues	Produkt

						edit:

								title:	Produkt	editieren

						new:

								title:	Neues	Produkt

						flash_messages:

								product_was_successfully_created:	'Das	Produkt	wurde	

angelegt.'

								product_was_successfully_updated:	'Das	Produkt	wurde	

aktualisiert.'

Finally,	we	copy	a	ready-made	default	translation	by	Sven	Fuchs	from	his

github	repository	https://github.com/svenfuchs/rails-i18n:

$	cd	config/locales/

https://github.com/svenfuchs/rails-i18n

$	curl	-O	https://raw.githubusercontent.com/svenfuchs/rails-i18n/master/rails/locale/de.yml

		%	Total				%	Received	%	Xferd		Average	Speed			Time				Time					Time		Current

																																	Dload		Upload			Total			Spent				Left		Speed

100		5027		100		5027				0					0		15756						0	--:--:--	--:--:--	--:--:--	15758

$

If	you	know	how	Bundler	works	you	can	also	insert	the	line

gem	'rails-i18n'	into	the	file	Gemfile	and	then	execute

bundle	install.	This	gives	you	all	language	files	from	the	repository.

The	file	config/locales/de.yml	contains	all	required	formats	and

generic	phrases	for	German	that	we	need	for	a	normal	Rails	application

(for	example	days	of	the	week,	currency	symbols,	etc).	Use	your	favorite

editor	to	have	a	look	in	there	to	get	an	impression.

ENGLISH

As	most	things	are	already	present	in	the	system	for	English,	we	just

need	to	insert	a	few	values	for	the	scaffold	views	in	the	file

config/locales/views/product/en.yml:

Listing	40.	config/locales/views/product/en.yml

en:

		views:

				show:	Show

				edit:	Edit

				destroy:	Delete

				are_you_sure:	Are	you	sure?

				back:	Back

				edit:	Edit

				product:

						index:

								title:	List	of	all	products

								new_product:	New	product

						edit:

								title:	Edit	Product

						new:

								title:	New	product

						flash_messages:

								product_was_successfully_created:	'Product	was	created.'

								product_was_successfully_updated:	'Product	was	updated.'

Equipping	Views	with	I18n.t

Please	edit	the	listed	view	files	as	specified.

_FORM.HTML.ERB

In	the	file	app/viewsproducts_form.html.erb	we	need	to	change	the

display	of	the	validation	errors	in	the	top	section	to	I18n.t.	The

names	of	form	errors	are	automatically	read	in	from

activerecord.attributes.product:

Listing	41.	app/viewsproducts_form.html.erb

<%=	form_for(@product)	do	|f|	%>

		<%	if	@product.errors.any?	%>

				<div	id="error_explanation">

						<h2><%=	t	'activerecord.errors.template.header',	model:

						Product.model_name.human,	count:	@product.errors.count	%></h2>

	

						

						<%	@product.errors.full_messages.each	do	|msg|	%>
								<%=	msg	%>

						<%	end	%>
						

				</div>

		<%	end	%>

		<div	class="field">

				<%=	f.label	:name	%>

				<%=	f.text_field	:name	%>
		</div>

		<div	class="field">

				<%=	f.label	:description	%>

				<%=	f.text_field	:description	%>
		</div>

		<div	class="field">

				<%=	f.label	:price	%>

				<%=	f.text_field	:price	%>

		</div>

		<div	class="actions">

				<%=	f.submit	%>
		</div>

<%	end	%>

EDIT.HTML.ERB

In	the	file	app/viewsproductsedit.html.erb	we	need	to	integrate	the

heading	and	the	links	at	the	bottom	of	the	page	with	I18n.t:

Listing	42.	app/viewsproductsedit.html.erb

<h1><%=	t	'views.product.edit.title'	%></h1>

	

<%=	render	'form'	%>

<%=	link_to	I18n.t('views.show'),	@product	%>	|

<%=	link_to	I18n.t('views.back'),	products_path	%>

INDEX.HTML.ERB

In	the	file	app/viewsproductsindex.html.erb	we	need	to	change

practically	every	line.	In	the	table	header	I	use

human_attribute_name(),	but	you	could	also	do	it	directly	with

I18n.t.	The	price	of	the	product	is	specified	with	the	helper

number_to_currency.	In	a	real	application,	we	would	have	to	specify	a

defined	currency	at	this	point	as	well.

Listing	43.	app/viewsproductsindex.html.erb

<h1><%=	t	'views.product.index.listing_products'	%></h1>

	

<table>

		<thead>

				<tr>

						<th><%=	Product.human_attribute_name(:name)	%></th>

						<th><%=	Product.human_attribute_name(:description)	%></th>

						<th><%=	Product.human_attribute_name(:price)	%></th>

						<th></th>

						<th></th>

						<th></th>

				</tr>

		</thead>

	

		<tbody>

				<%	@products.each	do	|product|	%>
						<tr>

								<td><%=	product.name	%></td>

								<td><%=	product.description	%></td>

								<td><%=	number_to_currency(product.price)	%></td>

								<td><%=	link_to	I18n.t('views.show'),	product	%></td>

								<td><%=	link_to	I18n.t('views.edit'),	edit_product_path(product)

								%></td>

								<td><%=	link_to	I18n.t('views.destroy'),	product,	method:	:delete,

								data:	{	confirm:	I18n.t('views.are_you_sure')}	%></td>

						</tr>

				<%	end	%>
		</tbody>

</table>

	

	

<%=	link_to	I18n.t('views.product.index.new_product'),	

new_product_path	%>

NEW.HTML.ERB

In	the	app/viewsproductsnew.html.erb	we	need	to	adapt	the	heading

and	the	link:

Listing	44.	app/viewsproductsnew.html.erb

<h1><%=	t	'views.product.new.title'	%></h1>

	

<%=	render	'form'	%>

<%=	link_to	I18n.t('views.back'),	products_path	%>

SHOW.HTML.ERB

In	the	app/viewsproductsshow.html.erb	we	again	use

human_attribute_name()	for	the	attributes.	Plus	the	links	need	to	be

translated	with	I18n.t.	As	with	the	index	view,	we	again	use

number_to_currency()	to	show	the	price	in	formatted	form:

Listing	45.	app/viewsproductsshow.html.erb

<p	id="notice"><%=	notice	%></p>

	

<p>

		<%=	Product.human_attribute_name(:name)	%>:

		<%=	@product.name	%>
</p>

	

<p>

		<%=	Product.human_attribute_name(:description)	%>:

		<%=	@product.description	%>
</p>

	

<p>

		<%=	Product.human_attribute_name(:price)	%>:

		<%=	number_to_currency(@product.price)	%>
</p>

	

<%=	link_to	I18n.t('views.edit'),	edit_product_path(@product)	%>	|

<%=	link_to	I18n.t('views.back'),	products_path	%>

Translating	Flash	Messages	in	the	Controller

Finally,	we	need	to	translate	the	two	flash	messages	in	the

app/controllers/products_controller.rb	 for	 creating	 (create)

and

updating	(update)	records,	again	via	I18n.t:

Listing	46.	app/controllers/products_controller.rb

class	ProductsController	<	ApplicationController

		before_action	:set_product,	only:	[:show,	:edit,	:update,	:destroy]

	

		#	GET	/products
		#	GET	/products.json
		def	index

				@products	=	Product.all

		end

		#	GET	products1
		#	GET	products1.json
		def	show

		end

		#	GET	productsnew
		def	new

				@product	=	Product.new

		end

		#	GET	products1/edit
		def	edit

		end

		#	POST	/products
		#	POST	/products.json
		def	create

				@product	=	Product.new(product_params)

	

				respond_to	do	|format|

						if	@product.save

								format.html	{	redirect_to	@product,	notice:

								I18n.t('views.product.flash_messages.product_was_successfully_created')

}

								format.json	{	render	action:	'show',	status:	:created,	location:

								@product	}

						else
								format.html	{	render	action:	'new'	}

								format.json	{	render	json:	@product.errors,	status:

								:unprocessable_entity	}

						end
				end
		end

		#	PATCH/PUT	products1
		#	PATCH/PUT	products1.json
		def	update

				respond_to	do	|format|

						if	@product.update(product_params)

								format.html	{	redirect_to	@product,	notice:

								I18n.t('views.product.flash_messages.product_was_successfully_updated')

}

								format.json	{	head	:no_content	}

						else
								format.html	{	render	action:	'edit'	}

								format.json	{	render	json:	@product.errors,	status:

								:unprocessable_entity	}

						end
				end
		end

		#	DELETE	products1
		#	DELETE	products1.json
		def	destroy

				@product.destroy

				respond_to	do	|format|

						format.html	{	redirect_to	products_url	}

						format.json	{	head	:no_content	}

				end
		end

		private
				#	Use	callbacks	to	share	common	setup	or	constraints	between	actions.
				def	set_product

						@product	=	Product.find(params[:id])

				end

				#	Never	trust	parameters	from	the	scary	internet,	only	allow	the	white
				#	list	through.
				def	product_params

						params.require(:product).permit(:name,	:description,	:price)

				end

end

The	Result

Now	you	can	use	the	scaffold	products	both	in	German	and	in	English.	You

can	switch	the	language	via	the	link	at	the	top	of	the	page.

Further	Information

The	best	source	of	information	on	this	topic	can	be	found	in	the	Rails

documentation	at	http://guides.rubyonrails.org/i18n.html.	This	also

shows	how	you	can	operate	other	backends	for	defining	the	translations.

As	so	often,	Railscasts.com	offers	a	whole	range	of	Railscasts	on	the

topic	I18n:	http://railscasts.com/episodes?utf8=%E2%9C%93&search=i18n

http://guides.rubyonrails.org/i18n.html
http://railscasts.com/episodes?utf8=%E2%9C%93&search=i18n

	 Stefan	Wintermeyer

ASSET	PIPELINE

The	asset	pipeline	offers	the	Rails	developer	the	opportunity	of	delivering	CSS,
JavaScript	and	image	files	to	the	browser	more	optimally	-	in	other	words,	in	a
more	 compressed	 form	 and	 therefore	 more	 quickly.	 Different	 CSS	 files	 are
combined	into	one	big	file	and	delivered	to	the	browser	with	a	fingerprint	in	the
file	name.	This	fingerprinting	enables	the	browser	and	any	proxy	in	between	to
optimally	cache	the	data,	so	the	browser	can	load	these	files	more	quickly.

In	case	you	are	running	on	HTTP/2	is	might	be	a	good	idea	to	break	up	this	flow	into	smaller
chunks	 to	 maximize	 caching.	I	will	 detail	 this	 in	 future	 versions	 of	 this	 book	 because	most
systems	are	still	running	on	HTTP/1.1.

Within	 the	 asset	 pipeline,	 you	 can	 program	 CSS,	 SASS,	 JavaScript	 and
CoffeeScript	 extensively	 and	 clearly,	 in	 order	 to	 let	 them	be	 delivered	 later	 as
automatically	compressed	CSS	and	JavaScript	files.

As	an	example	we	use	once	more	our	web	shop	with	a	product	scaffold:

$	rails	new	webshop

		[...]

$	cd	webshop

$	rails	generate	scaffold	product	name	'price:decimal{7,2}'

		[...]

$	rake	db:migrate

		[...]

$

In	the	directory	app/assets	you	will	then	find	the	following	files:

app/assets/

├──	config

│			└──	manifest.js

├──	images

├──	javascripts

│			├──	application.js

│			├──	cable.coffee

│			└──	channels

└──	stylesheets

				└──	application.css

The	 files	app/assets/javascripts/application.js	 and

app/assets/stylesheets/application.css	 are	what	 is	 referred	 to

as	 manifest	 files.	 They	 automatically	 include	 the	 other	 files	 in	 the	 relevant
directory.

application.js

The	 file	app/assets/javascripts/application.js	 has	 the

following	content:

Listing	1.	app/assets/javascripts/application.js

//	[...]

//=	require	jquery

//=	require	jquery_ujs

//=	require	turbolinks

//=	require_tree	.

In	 the	application.js,	 the	 jQuery	 files	 defined	 in	 the	jquery	 gem	 are

automatically	 integrated	 (for	 further	 information	 on	 jQuery,	 please	 visit
http://jquery.com/).	 Plus	 all	 other	 files	 in	 this	 directory	 are	 integrated	 via
require_tree	.	as	shown	above.

The	not	yet	optimized	result	can	be	viewed	in	the	development	environment	at
the	URL	http://localhost:3000/assets/application.js.

http://jquery.com/
http://localhost:3000/assets/application.js

application.css

The	 file	app/assets/stylesheets/application.css	 has	 the

following	content:

Listing	2.	app/assets/stylesheets/application.css

/*

	*	[...]

	*=	require_tree	.

	*=	require_self

	*/

With	 the	 command	require_tree	 .	 all	 files	 in	 this	 directory	 are

automatically	integrated.

rails	assets:precompile

When	 using	 the	 asset	 pipeline,	 you	 need	 to	 remember	 that	 you	 have	 to
precompile	 the	 assets	 before	 starting	 the	 Rails	 server	 in	 the	 production
environment.	 This	 happens	 via	 the	 command	rails
assets:precompile:

$	rails	assets:precompile

I,	[2015-12-01T12:08:50.495102	#54978]		INFO	--	:	Writing

Usersxyz/webshop/public/assets/application-de26[...]fb6c.js

I,	[2015-12-01T12:08:50.555494	#54978]		INFO	--	:	Writing

Usersxyz/webshop/public/assets/application-2ce5[...]f443.css

If	you	forget	to	do	this,	you	will	find	the	following	error	message	in	the	log:

ActionView::Template::Error	(application.css	isn't	precompiled)

The	 files	 created	 by	rails	assets:precompile	 appear	 in	 the	 directory
public/assets

public/assets

├──	application-12b3c7dd74e9de7cbb1efa76a6d.css

├──	application-12b3c7dd74e9de7cbb1efa76a6d.css.gz

├──	application-723d1be6cc74abb1cec24276d681.js

├──	application-723d1be6cc74abb1cec24276d681.js.gz

└──	manifest-720d2116dee3d83d194ffd9d0957c21c.json

Go	ahead	and	use	your	favorite	editor	to	have	a	look	at	the	created	css	and	js

files.	You	will	find	minimized	and	optimized	code.	If	the	web	server	supports	it,
the	zipped	gz	files	are	delivered	directly,	which	speeds	things	up	a	bit	more.

The	 difference	 in	 file	 size	 is	 enormous.	 The	 file	application.js	 created	 in	 the

development	 environment	 has	 a	 file	 size	 of	 296	 KB.	 The	 file	js.gz	 created	 by	rails

assets:precompile	is	only	88	KB.	Users	of	cellphones	in	particular	will	be	grateful	for

smaller	file	sizes.

The	speed	advantage	incidentally	lies	not	just	in	the	file	size,	but	also	in	the	fact	that	only	one
file	is	downloaded,	not	several.	The	HTTP/1.1	overhead	for	loading	a	file	is	time-consuming.
Things	 are	 changing	with	HTTP/2.	 I’ll	 update	 this	 chapter	 accordingly	 in	 future	 editions	 of
this	book.

The	Fingerprint

The	 fingerprint	 in	 the	 file	 name	 consists	 of	 a	 hash	 sum	 generated	 from	 the
content	 of	 the	 relevant	 file.	 This	 fingerprint	 ensures	 optimal	 caching	 and
prevents	 an	 old	 cache	 being	 used	 if	 any	 changes	 are	 made	 to	 the	 content.	A
simple	but	very	effective	method.

Coding	Links	to	an	Asset

All	files	below	the	directory	app/assets	are	delivered	in	normal	form	by	the

Rails	 server.	 For	 example,	 you	 can	 go	 to	 the	 URL
http://localhost:3000/assets/rails.png	 to	 view	 the	 Rails	 logo	 saved	 under
app/assets/images/rails.png	 and	 to

http://localhost:3000/assets/application.js	 to	 view	 the	 content	 of
app/assets/javascripts/application.js.	 The	 Rails	 image

rails.png	is	delivered	1:1	and	the	file	application.js	is	first	created	by

the	asset	pipeline.

But	you	should	never	enter	these	files	as	hard-wired	in	a	view.	To	make	the	most
of	the	asset	pipeline,	you	must	use	the	helpers	described	here.

http://localhost:3000/assets/rails.png
http://localhost:3000/assets/application.js

Coding	Link	to	an	Image

You	 can	 retrieve	 an	 image	 via	 the	 helper	image_tag.	This	 is	what	 it	would

look	like	in	the	view	for	the	file	app/assets/images/rails.png:

<%=	image_tag	"rails.png"	%>

In	development	mode,	the	following	HTML	code	results	from	this:

In	 production	mode,	 you	 get	 an	HTML	 code	 that	 points	 to	 a	 precompiled	 file
with	fingerprint:

<img	alt="Rails"	src="/assets/rails-

be8732dac73d845ac5b142c8fb5f9fb0.png"	/>

Coding	Link	to	a	JavaScript	File

You	can	use	the	helper	javascript_include_tag	to	retrieve	a	JavaScript

file	compiled	by	the	asset	pipeline.	This	 is	what	 it	would	look	like	 in	 the	view
for	the	file	app/assets/javascripts/application.js:

<%=	javascript_include_tag	"application"	%>

In	development	mode,	the	following	HTML	code	results	from	this:

<link	href="/assets/application.css?body=1"	media="all"	

rel="stylesheet"

type="text/css"	>

<link	href="assets/products.css?body=1"	media="all"	rel="stylesheet"

type="text/css"	>

<link	href="assets/scaffolds.css?body=1"	media="all"	

rel="stylesheet"

type="text/css"	/>

In	 production	mode,	 you	 get	 an	HTML	 code	 that	 points	 to	 a	 precompiled	 file
with	fingerprint:

<link	href="/assets/application-

0149f820dbdd285aa65e241569d8c256.css"

media="all"	rel="stylesheet"	type="text/css"	/>

Coding	Link	to	a	CSS	File

A	 stylesheet	 compiled	 by	 the	 asset	 pipeline	 can	 be	 retrieved	 via	 the	 helper
stylesheet_link_tag.	 In	 the	 view,	 it	 would	 look	 like	 this	 for	 the	 file

app/assets/stylesheets/application.css:

<%=	stylesheet_link_tag	"application"	%>

In	development	mode,	the	following	HTML	code	results	from	this:

<script	src="/assets/jquery.js?body=1"	type="text/javascript">

</script>

<script	src="/assets/jquery_ujs.js?body=1"	type="text/javascript">

</script>

<script	src="/assets/products.js?body=1"	type="text/javascript">

</script>

<script	src="/assets/application.js?body=1"	type="text/javascript">

</script>

In	 production	mode,	 you	 get	 an	HTML	 code	 that	 points	 to	 a	 precompiled	 file
with	fingerprint:

<script	src="/assets/application-

f8ca698e63b86d217c88772a65d2d20e.js"

type="text/javascript"></script>

Defaults	in	the	application.html.erb

Incidentally,	 the	 file	app/views/layouts/application.html.erb

that	 the	 scaffold	generator	 creates	by	default	 already	 contains	 the	 coding	 links
for	these	JavaScript	and	stylesheet	files:

Listing	3.	app/views/layouts/application.html.erb

<!DOCTYPE	html>

<html>

		<head>

				<title>Webshop</title>

				<%=	csrf_meta_tags	%>

				<%=	action_cable_meta_tag	%>

				<%=	stylesheet_link_tag				'application',	media:	'all',	'data-

turbolinks-track'	=>	true	%>

				<%=	javascript_include_tag	'application',	'data-turbolinks-

track'	=>	true	%>

		</head>

		<body>

				<%=	yield	%>

		</body>

</html>

	 Stefan	Wintermeyer

JAVASCRIPT

The	focus	of	this	chapter	is	not	on	explaining	JavaScript.	The	aim	is

to	show	you	as	a	Rails	programmer	how	you	can	integrate	JavaScript	in	a

Rails	 application.	 Correspondingly,	 the	 chapters	 do	 not	 explain

JavaScript	 in	 detail.	 I	 am	 assuming	 that	 you	 can	 read	 and	 understand

JavaScript.	If	not,	 it	may	be	better	to	skip	this	chapter.	You	can	happily

get	by	without	JavaScript.

jQuery

By	default,	Rails	5	uses	the	jQuery	Javascript	library	(http://jquery.com/).	If	you
do	 not	 require	 this	 library,	 you	 should	 delete	 the	 following	 lines	 from	 the	 file
app/assets/javascripts/application.js	within	the	asset	pipeline

(see	the	section	"Asset	Pipeline"):

//=	require	jquery

//=	require	jquery_ujs

With	jQuery,	you	can	implement	animations	and	Ajax	interactions	on	your	web
page	relatively	easily.

You	will	 find	a	good	 introduction	 to	 this	 topic	 in	 the	 jQuery	documentation	at
http://learn.jquery.com/

http://jquery.com/
http://learn.jquery.com/

CoffeeScript

For	 many	 Rails	 developers,	 CoffeeScript	 is	 the	 best	 thing	 invented	 since	 the
introduction	of	sliced	bread.	CoffeeScript	is	a	simple	programming	language	that
is	converted	to	JavaScript	via	the	asset	pipeline.	I	am	going	to	use	JavaScript	and
CoffeeScript	in	this	chapter.	If	you	would	like	to	know	more	about	CoffeeScript,
please	 look	 at	 the	CoffeeScript	 documentation	 at	http://coffeescript.org/	 and	as
so	 often	 there	 is	 also	 an	 excellent	 Railscast	 on	 CoffeeScript	 available	 at
http://railscasts.com/episodes/267-coffeescript-basics.

http://coffeescript.org/
http://railscasts.com/episodes/267-coffeescript-basics

JavaScript	Helpers

For	using	JavaScript	in	the	view,	there	are	some	useful	helpers	available.

javascript_tag
The	 easiest	 way	 of	 using	 JavaScript	 one-liners	 in	 a	 view	 is	 via
javascript_tag.

With	 the	following	 line	 in	 the	view,	you	can	execute	an	alert	when	 the	page	 is
accessed:

<%=	javascript_tag	"alert('Just	an	example.')"	%>

The	HTML	code	generated	is	this:

<script	type="text/javascript">

//<![CDATA[

alert('Just	an	example.')

//]]>

</script>

link_to_function
The	 helper	link_to_function	 creates	 a	 link	 whose	onclick	 handler

executes	a	JavaScript.

Again,	here	is	a	example	for	an	alert.	The	ERB	code	in	the	view	looks	like	this:

<%=	link_to_function	"trigger	alert",	"alert('Just	an	example.')"	%>

The	generated	HTML	code:

<a	href="#"	onclick="alert('Just	an	example.');	return	

false;">trigger

alert

button_to_function
The	helper	button_to_function	creates	a	button	whose	onclick	handler

executes	a	JavaScript.

Once	more	the	example	with	the	alert.	The	ERB	code	in	the	view	looks	like	this:

<%=	button_to_function	"trigger	alert",	"alert('Just	an	example.')"	

%>

The	generated	HTML	code:

<input	onclick="alert('Just	an	example.');"	type="button"	

value="trigger

alert"	/>

Example

The	easiest	way	of	explaining	how	you	go	about	programming	with	JavaScript
and	the	asset	pipeline	in	a	Rails	project	is	by	using	a	little	example.	As	always,
the	main	focus	is	not	on	creating	an	amazingly	meaningful	application.	;-)

Changing	Form	Depending	on	Input
Let’s	 build	 a	 room	 reservation	 system	where	 you	 can	 book	 a	 single	 or	 double
room	and	then	have	to	enter	either	one	or	two	guest	names	in	the	same	form.	The
basic	structure:

$	rails	new	hotel

		[...]

$	cd	hotel

$	rails	generate	scaffold	reservation	start:date	end:date

		room_type:string	guest_name1	guest_name2

		[...]

$	rails	db:migrate

		[...]

$	rails	server

		[...]

With	 this	 setup	 we	 get	 a	 very	 spartanic	 and	 totally	 unnormalized
http://localhost:3000/reservations/new

http://localhost:3000/reservations/new

Figure	1.	Hotel	basic	form

That	is	not	userfriendly.	The	aim	is	to	display	the	following	page	when	you	go	to
http://localhost:3000/reservations/new:

http://localhost:3000/reservations/new

Figure	2.	Hotel	single	room	form

As	soon	as	the	user	selects	a	double	room	instead	of	a	single,	we	want	a	second
name	field	to	appear:

▪

Figure	3.	Hotel	double	room	form

So	 I	 am	 changing	 two	 things	 in	 the
app/views/reservations/_form.html.erb:

Set	the	room_type	via	a	dropdown	box.

Listing	1.	app/views/reservations/_form.html.erb

[...]

<div	class="field">

		<%=	f.select	:room_type,	options_for_select(['single	room',	

'double	room'])	%>

</div>

[...]

▪ In	the	div	element	around	the	second	name,	I	set	an	ID	`second_name'.

Listing	2.	app/views/reservations/_form.html.erb

[...]

<div	class="field"	id='second_name'>

		<%=	f.label	:guest_name2	%>

		<%=	f.text_field	:guest_name2	%>

</div>

[...]

In	 the	 file	app/assets/javascripts/reservations.js.coffee	 I

define	 the	 CoffeeScript	 code	 that	 toggles	 the	 element	 with	 the	 ID
second_name	between	visible	(show)	or	 invisible	(hide)	depending	on	 the

content	of	reservation_room_type:

Listing	3.	app/assets/javascripts/reservations.js.coffee

ready	=	->

		$('#second_name').hide()

		$('#reservation_room_type').change	->

				room_type	=	$('#reservation_room_type	:selected').text()

				if	room_type	==	'single	room'

						$('#second_name').hide()

				else

						$('#second_name').show()

$(document).ready(ready)

$(document).on('page:load',	ready)

In	the	real	world,	you	would	surely	integrate	the	guest	names	in	a	1:n	has_many	association,

but	in	this	example	we	just	want	to	demonstrate	how	you	can	change	the	content	of	a	form	via
JavaScript.

	 Stefan	Wintermeyer

▪

▪

CACHING

Where	caching	of	web	applications	is	concerned,	most	people	tend	to	wait	until
they	encounter	performance	problems.	Then	the	admin	first	looks	at	the	database
and	adds	an	index	here	and	there.	If	that	does	not	help,	he	has	a	look	at	the	views
and	adds	 fragment	caching.	But	 this	 is	not	 the	best	approach	 for	working	with
caches.	The	aim	of	this	chapter	is	to	help	you	understand	how	key	based	cache
expiration	 works.	 You	 can	 then	 use	 this	 approach	 to	 plan	 new	 applications
already	 on	 the	 database	 structure	 level	 in	 such	 a	 way	 that	 you	 can	 cache
optimally	during	development.

There	are	two	main	arguments	for	using	caching:

The	 application	 becomes	 faster	 for	 the	 user.	 A	 faster	 web	 page	 results	 in
happier	users	which	results	in	a	better	conversion	rate.

You	need	less	hardware	for	the	web	server,	because	you	require	less	resources
for	 processing	 the	 queries.	 On	 average,	 a	 well	 cached	 system	 only	 needs	 a
fifth	of	 the	processing	power	of	 a	non-cached	 system.	Quite	often,	 it’s	 even
less.

If	these	two	arguments	are	irrelevant	for	you,	then	you	don’t	need	to	read	this	chapter.

▪

▪

▪

We	are	going	to	look	at	three	different	caching	methods:

HTTP	caching

This	 is	 the	 sledge	 hammer	 among	 the	 caching	 methods	 and	 the	 ultimate
performance	 weapon.	 In	 particular,	 web	 pages	 that	 are	 intended	 for	 mobile
devices	(for	example	iPhone)	should	try	to	make	the	most	of	HTTP	caching.	If
you	use	a	combination	of	key	based	cache	expiration	and	HTTP	caching,	you
save	a	huge	amount	of	processing	time	on	the	server	and	also	bandwidth.

Page	caching

This	 is	 the	 screwdriver	 among	 the	 caching	 methods.	 You	 can	 get	 a	 lot	 of
performance	out	of	the	system,	but	it	is	not	as	good	as	HTTP	caching.

Fragment	caching
The	tweezers	among	the	caching	methods,	so	to	speak.	But	don’t
underestimate	it.

The	aim	is	to	optimally	combine	all	three	methods.

A	Simple	Example	Application

To	try	out	the	caching	methods,	we	need	an	example	application.	We	are	going
to	use	a	simple	phone	book	with	a	model	for	the	company	and	a	model	for	the

employees	of	the	company.

Please	 consider:	 if	 the	 processing	 power	 you	 save	 (shown	 later)	is	 already	 so	 significant	 in
such	a	simple	application,	it	will	be	even	more	significant	in	a	more	complex	application	with
more	complex	views.

We	create	the	new	Rails	app:

$	rails	new	phone_book

		[...]

$	cd	phone_book

$	rails	generate	scaffold	company	name

		[...]

$	rails	generate	scaffold	employee	company:references

		last_name	first_name	phone_number

		[...]

$	rails	db:migrate

		[...]

Models
We	insert	a	few	rudimentary	rules	in	the	two	models:

Listing	1.	app/models/company.rb

class	Company	<	ApplicationRecord

		validates	:name,

												presence:	true,

												uniqueness:	true

		has_many	:employees,	dependent:	:destroy

		def	to_s

				name

		end

end

Listing	2.	app/models/employee.rb

class	Employee	<	ApplicationRecord

		belongs_to	:company,	touch:	true

		validates	:first_name,

												presence:	true

		validates	:last_name,

												presence:	true

		validates	:company,

												presence:	true

		def	to_s

				"#{first_name}	#{last_name}"

		end

end

Views
We	change	the	following	two	company	views	to	list	the	number	of	employees	in
the	Index	view	and	all	the	employees	in	the	Show	view.

Listing	3.	app/viewscompaniesindex.html.erb

[...]

<table>

		<thead>

				<tr>

						<th>Name</th>

						<th>Number	of	employees</th>

						<th	colspan="3"></th>

				</tr>

		</thead>

		<tbody>

				<%	@companies.each	do	|company|	%>

						<tr>

								<td><%=	company.name	%></td>

								<td><%=	company.employees.count	%></td>

								[...]

						</tr>

				<%	end	%>

		</tbody>

</table>

[...]

Listing	4.	app/viewscompaniesshow.html.erb

<p	id="notice"><%=	notice	%></p>

<p>

		Name:

		<%=	@company.name	%>

</p>

<%	if	@company.employees.any?	%>

<h1>Employees</h1>

<table>

		<thead>

				<tr>

						<th>Last	name</th>

						<th>First	name</th>

						<th>Phone	number</th>

				</tr>

		</thead>

		<tbody>

				<%	@company.employees.each	do	|employee|	%>

						<tr>

								<td><%=	employee.last_name	%></td>

								<td><%=	employee.first_name	%></td>

								<td><%=	employee.phone_number	%></td>

						</tr>

				<%	end	%>

		</tbody>

</table>

<%	end	%>

Example	Data
To	 easily	 populate	 the	 database,	 we	 use	 the	 Faker	 gem	 (see
http://faker.rubyforge.org/).	 With	 Faker,	 you	 can	 generate	 random	 names	 and
phone	numbers.	Please	add	the	following	line	in	the	Gemfile:

Listing	5.	Gemfile

gem	'faker'

Then	start	a	bundle	install:

$	bundle	install

[...]

With	 the	db/seeds.rb	 we	 create	 30	 companies	 with	 a	 random	 number	 of

employees	in	each	case:

Listing	6.	db/seeds.rb

30.times	do

		company	=	Company.new(:name	=>	Faker::Company.name)

		if	company.save

				SecureRandom.random_number(100).times	do

						company.employees.create(

								first_name:			Faker::Name.first_name,

								last_name:				Faker::Name.last_name,

								phone_number:	Faker::PhoneNumber.phone_number

)

				end

		end

end

http://faker.rubyforge.org/

We	populate	it	via	rails	db:seed

$	rails	db:seed

You	 can	 start	 the	 application	 with	rails	server	 and	 retrieve	 the	 example

data	with	a	web	browser	by	going	to	the	URLs	http://localhost:3000/companies
and	http://localhost:3000companies1.

Normal	Speed	of	the	Pages	to	Optimize
In	this	chapter,	we	optimize	the	following	web	pages.	Start	the	Rails	application
in	 development	mode	with	rails	server.	The	 relevant	numbers	of	 course

depend	on	the	hardware	you	are	using.

$	rails	server

=>	Booting	Puma

=>	Rails	5.0.0.1	application	starting	in	development	on	

http://localhost:3000

[...]

To	 access	 the	 web	 pages,	 we	 use	 the	 command	 line	 tool	 curl
(http://curl.haxx.se/).	Of	 course	 you	 can	 also	 access	 the	web	 pages	with	 other
web	browsers.	We	look	at	the	time	shown	in	the	Rails	log	for	creating	the	page.
In	 reality,	you	need	 to	add	 the	 time	 it	 takes	 for	 the	page	 to	be	delivered	 to	 the
web	browser.

List	of	All	Companies	(Index	View)

At	 the	URL	http://localhost:3000/companies	 the	user	can	see	a	 list	of	all	saved
companies	with	the	relevant	number	of	employees.

Generating	the	page	takes	89ms.

http://localhost:3000/companies
http://localhost:3000<i>companies</i>1
http://curl.haxx.se/
http://localhost:3000/companies

Completed	200	OK	in	89ms	(Views:	79.0ms	|	ActiveRecord:	9.6ms)

Detailed	View	of	a	Single	Company	(Show	View)

At	 the	URL	http://localhost:3000companies1	 the	user	can	see	 the	details	of	 the
first	company	with	all	employees.

Generating	the	page	takes	51ms.

Completed	200	OK	in	51ms	(Views:	48.9ms	|	ActiveRecord:	0.9ms)

http://localhost:3000<i>companies</i>1

HTTP	Caching

HTTP	caching	attempts	to	reuse	already	loaded	web	pages	or	files.	For	example,
if	 you	 visit	 a	 web	 page	 such	 as	http://www.nytimes.com	 or
http://www.wired.com	several	 times	 a	day	 to	 read	 the	 latest	 news,	 then	certain
elements	of	 that	page	(for	example,	 the	logo	image	at	 the	top	of	 the	page)	will
not	be	loaded	again	on	your	second	visit.	Your	browser	already	has	these	files	in
the	local	cache,	which	saves	loading	time	and	bandwidth.

Within	 the	 Rails	 framework,	 our	 aim	 is	 answering	 the	 question	 "Has	 a	 page
changed?"	already	in	the	controller.	Because	normally,	most	of	the	time	is	spent
on	 rendering	 the	 page	 in	 the	 view.	 I’d	 like	 to	 repeat	 that:	Most	 of	 the	 time	 is
spent	on	rendering	the	page	in	the	view!

Last-Modified
The	web	browser	knows	when	 it	has	downloaded	a	 resource	 (e.g.	a	web	page)
and	then	placed	it	into	it’s	cache.	At	a	second	request	it	can	pass	this	information
to	 the	web	 server	 in	 an	If-Modified-Since:	header.	The	web	server	can

then	 compare	 this	 information	 to	 the	 corresponding	 file	 and	 either	 deliver	 a
newer	version	or	return	an	HTTP	304	Not	Modified	code	as	response.	In

case	of	a	304,	the	web	browser	delivers	the	cached	version.	Now	you	are	going
to	 say,	 "That’s	 all	 very	 well	 for	 images,	 but	 it	 won’t	 help	 me	 at	 all	 for
dynamically	generated	web	pages	such	as	the	Index	view	of	the	companies."	But
you	are	underestimating	the	power	of	Rails.

Please	modify	the	times	used	in	the	examples	in	accordance	with	your	own	circumstances.

http://www.nytimes.com
http://www.wired.com

Please	 edit	 the	show	 method	 in	 the	 controller	 file

app/controllers/companies_controller.rb	as	follows	:

Listing	7.	app/controllers/companies_controller.rb

#	GET	companies1

#	GET	companies1.json

def	show

		fresh_when	last_modified:	@company.updated_at

end

After	 restarting	 the	 Rails	 application,	 we	 have	 a	 look	 at	 the	 HTTP	 header	 of
http://localhost:3000companies1:

$	curl	-I	http://localhost:3000companies1

HTTP/1.1	200	OK

X-Frame-Options:	SAMEORIGIN

X-XSS-Protection:	1;	mode=block

X-Content-Type-Options:	nosniff

Last-Modified:	Sun,	03	May	2015	18:38:05	GMT

[...]

T h e	Last-Modified	 entry	 in	 the	 HTTP	 header	 was	 generated	 by

fresh_when	in	the	controller.	If	we	later	go	to	the	same	web	page	and	specify

this	 time	 as	 well,	 then	 we	 do	 not	 get	 the	 web	 page	 back,	 but	 a	304	 Not

Modified	message:

$	curl	-I	http://localhost:3000companies1	--header	'If-Modified-

Since:	Sun,

03	May	2015	18:38:05	GMT'

HTTP/1.1	304	Not	Modified

	[...]

In	the	Rails	log,	we	find	this:

http://localhost:3000<i>companies</i>1

Started	HEAD	"companies1"	for	127.0.0.1	at	2015-05-03	20:51:02	+0200

Processing	by	CompaniesController#show	as	/

		Parameters:	{"id"=>"1"}

		Company	Load	(0.1ms)		SELECT		"companies".*	FROM	"companies"	WHERE

		"companies"."id"	=	?	LIMIT	1		[["id",	1]]

Completed	304	Not	Modified	in	2ms	(ActiveRecord:	0.1ms)

Rails	 took	 2ms	 to	 answer	 this	 request,	 compared	 to	 the	 51ms	 of	 the	 standard
variation.	This	 is	much	 faster!	 So	 you	 have	 used	 less	 resources	 on	 the	 server.
And	saved	a	massive	amount	of	bandwidth.	The	user	will	be	able	to	see	the	page
much	more	quickly.

Etag
Sometimes	 the	update_at	field	of	a	particular	object	is	not	meaningful	on	its

own.	For	example,	if	you	have	a	web	page	where	users	can	log	in	and	this	page
then	generates	web	page	contents	based	on	a	role	model,	it	can	happen	that	user
A	as	admin	is	able	to	see	an	Edit	link	that	is	not	displayed	to	user	B	as	normal
user.	 In	 such	 a	 scenario,	 the	 Last-Modified	 header	 explained	 in	 section	"Last
Modified"	does	not	help.

In	 these	 cases,	we	 can	 use	 the	 etag	 header.	The	 etag	 is	 generated	 by	 the	web
server	and	delivered	when	the	web	page	is	first	visited.	If	the	user	visits	the	same
URL	 again,	 the	 browser	 can	 then	 check	 if	 the	 corresponding	 web	 page	 has
changed	by	sending	a	If-None-Match:	query	to	the	web	server.

Please	 edit	 the	index	 and	show	 methods	 in	 the	 controller	 file

app/controllers/companies_controller.rb	as	follows:

Listing	8.	app/controllers/companies_controller.rb

#	GET	/companies

#	GET	/companies.json

def	index

		@companies	=	Company.all

		fresh_when	etag:	@companies

end

#	GET	companies1

#	GET	companies1.json

def	show

		fresh_when	etag:	@company

end

A	special	Rails	 feature	comes	 into	play	 for	 the	etag:	Rails	automatically	sets	a
new	CSRF	 token	 for	 each	 new	 visitor	 of	 the	website.	This	 prevents	 cross-site
request	forgery	attacks	(see	wikipedia.org/wiki/Cross_site_request_forgery).	But
it	 also	means	 that	 each	 new	user	 of	 a	web	page	 gets	 a	 new	 etag	 for	 the	 same
page.	To	 ensure	 that	 the	 same	 users	 also	 get	 identical	CSRF	 tokens,	 these	 are
stored	 in	 a	 cookie	by	 the	web	browser	 and	consequently	 sent	back	 to	 the	web
server	every	time	the	web	page	is	visited.	The	curl	we	used	for	developing	does
not	do	this	by	default.	But	we	can	tell	curl	that	we	want	to	save	all	cookies	in	a
file	and	transmit	these	cookies	later	if	a	request	is	received.

For	saving,	we	use	the	-c	cookies.txt	parameter.

$	curl	-I	http://localhost:3000/companies	-c	cookies.txt

HTTP/1.1	200	OK

X-Frame-Options:	SAMEORIGIN

X-Xss-Protection:	1;	mode=block

X-Content-Type-Options:	nosniff

Etag:	"a8a30e6dcdb4380f169dd18911cd6a51"

		[...]

http://en.wikipedia.org/wiki/Cross_site_request_forgery

With	 the	 parameter	-b	cookies.txt,	 curl	 sends	 these	 cookies	 to	 the	web

server	when	 a	 request	 arrives.	Now	we	 get	 the	 same	 etag	 for	 two	 subsequent
requests:

$	curl	-I	http://localhost:3000/companies	-b	cookies.txt

HTTP/1.1	200	OK

X-Frame-Options:	SAMEORIGIN

X-Xss-Protection:	1;	mode=block

X-Content-Type-Options:	nosniff

Etag:	"a8a30e6dcdb4380f169dd18911cd6a51"

[...]

$	curl	-I	http://localhost:3000/companies	-b	cookies.txt

HTTP/1.1	200	OK

X-Frame-Options:	SAMEORIGIN

X-Xss-Protection:	1;	mode=block

X-Content-Type-Options:	nosniff

Etag:	"a8a30e6dcdb4380f169dd18911cd6a51"

[...]

We	now	use	 this	 etag	 to	 find	out	 in	 the	 request	with	If-None-Match	 if	 the

version	we	have	cached	is	still	up	to	date:

$	curl	-I	http://localhost:3000/companies	-b	cookies.txt	--header

'If-None-Match:	"a8a30e6dcdb4380f169dd18911cd6a51"'

HTTP/1.1	304	Not	Modified

X-Frame-Options:	SAMEORIGIN

X-Xss-Protection:	1;	mode=block

X-Content-Type-Options:	nosniff

Etag:	"a8a30e6dcdb4380f169dd18911cd6a51"

[...]

We	get	a	304	Not	Modified	in	response.	Let’s	look	at	the	Rails	log:

Started	HEAD	"/companies"	for	127.0.0.1	at	2015-05-03	21:00:01	+0200

Processing	by	CompaniesController#index	as	/

		Cache	digest	for	app/viewscompaniesindex.html.erb:

		5365a42330adb48b855f7488b0d25b29

		Company	Load	(0.2ms)		SELECT	"companies".*	FROM	"companies"

Completed	304	Not	Modified	in	5ms	(ActiveRecord:	0.2ms)

Rails	 only	 took	 5ms	 to	 process	 the	 request.	 Almost	 10	 times	 as	 fast	 as	 the
variation	without	cache!	Plus	we	have	saved	bandwidth	again.	The	user	will	be
happy	with	the	speedy	web	application.

current_user	and	Other	Potential	Parameters

As	basis	for	generating	an	etag,	we	can	not	just	pass	an	object,	but	also	an	array
of	 objects.	This	way,	we	 can	 solve	 the	 problem	with	 the	 logged-in	 user.	 Let’s
assume	that	a	logged-in	user	is	output	with	the	method	current_user.

We	 only	 have	 to	 add	etag	 {	 current_user.try	 :id	 }	 in	 the

app/controllers/application_controller.rb	 to	 make	 sure	 that

all	 etags	 in	 the	 application	 include	 the	current_user.id	 which	 is	nil	 in

case	nobody	is	logged	in.

Listing	9.	app/controllers/application_controller.rb

class	ApplicationController	<	ActionController::Base

		#	Prevent	CSRF	attacks	by	raising	an	exception.

		#	For	APIs,	you	may	want	to	use	:null_session	instead.

		protect_from_forgery	with:	:exception

		etag	{	current_user.try	:id	}

end

You	 can	 chain	 other	 objects	 in	 this	 array	 too	 and	 use	 this	 approach	 to	 define
when	a	page	has	not	changed.

The	Magic	of	touch

What	 happens	 if	 an	 Employee	 is	 edited	 or	 deleted?	 Then	 the	 show	 view	 and
potentially	also	the	index	view	would	have	to	change	as	well.	That	is	the	reason
for	the	line

belongs_to	:company,	touch:	true

in	the	employee	model.	Every	time	an	object	of	the	class	Employee	is	saved

in	 edited	 form,	 and	 if	touch:	 true	 is	 used,	 ActiveRecord	 updates	 the

superordinate	Company	element	in	the	database.	The	updated_at	field	is	set

to	the	current	time.	It	is	"touched".

This	approach	ensures	that	a	correct	content	is	delivered.

stale?
Up	to	now,	we	have	always	assumed	that	only	HTML	pages	are	delivered.	So	we
were	 able	 to	 use	fresh_when	 and	 then	 do	 without	 the	respond_to	 do

|format|	block.	But	HTTP	caching	is	not	limited	to	HTML	pages.	Yet	if	we

render	JSON	(for	example)	as	well	and	want	to	deliver	it	via	HTTP	caching,	we
need	 to	 use	 the	 method	 stale?.	 Using	 stale?	 resembles	 using	 the	 method
fresh_when.	Example:

def	show

		if	stale?	@company

				respond_to	do	|format|

						format.html

						format.json	{	render	json:	@company	}

				end

		end

end

Using	Proxies	(public)

Up	to	now,	we	always	assumed	that	we	are	using	a	cache	on	the	web	browser.
But	on	the	Internet,	there	are	many	proxies	that	are	often	closer	to	the	user	and
can	 therefore	 useful	 for	 caching	 in	 case	 of	 non-personalized	 pages.	 If	 our
example	was	a	publicly	accessible	phone	book,	 then	we	could	activate	 the	free
services	of	 the	proxies	with	 the	parameter	public:	true	 in	fresh_when

or	stale?.

Example:

#	GET	companies1

#	GET	companies1.json

def	show

		fresh_when	@company,	public:	true

end

We	go	to	the	web	page	and	get	the	output:

$	curl	-I	http://localhost:3000companies1

HTTP/1.1	200	OK

X-Frame-Options:	SAMEORIGIN

X-Xss-Protection:	1;	mode=block

X-Content-Type-Options:	nosniff

Etag:	"915880f20b5c0c57aa6d0c955910b009"

Last-Modified:	Sun,	03	May	2015	18:38:05	GMT

Content-Type:	text/html;	charset=utf-8

Cache-Control:	public

[...]

The	 header	Cache-Control:	public	 tells	 all	 proxies	 that	 they	 can	 also

cache	this	web	page.

Using	proxies	always	has	to	be	done	with	great	caution.	On	the	one	hand,	they	are	brilliantly
suited	for	delivering	your	own	web	page	quickly	to	more	users,	but	on	the	other,	you	have	to

be	 absolutely	 sure	 that	 no	 personalized	 pages	 are	 cached	 on	 public	 proxies.	 For	 example,
CSRF	 tags	 and	Flash	messages	 should	never	 end	up	 in	 a	 public	 proxy.	To	be	 sure	with	 the
CSRF	 tags,	 it	 is	 a	 good	 idea	 to	 make	 the	 output	 of	csrf_meta_tag	 in	 the	 default

app/views/layouts/application.html.erb	 layout	 dependent	 on	 the	 question

whether	the	page	may	be	cached	publicly	or	not:

<%=	csrf_meta_tag	unless	response.cache_control[:public]	%>

Cache-Control	With	Time	Limit
When	 using	Etag	 and	Last-Modified	 we	 assume	 that	 the	 web	 browser

definitely	checks	once	more	with	the	web	server	if	the	cached	version	of	a	web
page	is	still	current.	This	is	a	very	safe	approach.

But	you	can	take	the	optimization	one	step	further	by	predicting	the	future:	if	I
am	already	sure	when	delivering	the	web	page	that	this	web	page	is	not	going	to
change	in	the	next	two	minutes,	hours	or	days,	 then	I	can	tell	 the	web	browser
this	 directly.	 It	 then	 does	 not	 need	 to	 check	 back	 again	 within	 this	 specified
period	of	time.	This	overhead	saving	has	advantages,	especially	with	mobile	web
browsers	with	relatively	high	latency.	Plus	you	also	save	server	load	on	the	web
server.

In	 the	 output	 of	 the	 HTTP	 header,	 you	 may	 already	 have	 noticed	 the
corresponding	line	in	the	Etag	and	Last-Modified	examples:

Cache-Control:	max-age=0,	private,	must-revalidate

The	 item	must-revalidate	 tells	 the	web	 browser	 that	 it	 should	 definitely

check	 back	 with	 the	 web	 server	 to	 see	 if	 a	 web	 page	 has	 changed	 in	 the
meantime.	The	second	parameter	private	means	that	only	the	web	browser	is

allowed	to	cache	this	page.	Any	proxies	on	the	way	are	not	permitted	to	cache
this	page.

If	we	decide	for	our	phone	book	that	the	web	page	is	going	to	stay	unchanged	for
at	least	2	minutes,	then	we	can	expand	the	code	example	by	adding	the	method
expires_in.	 The	 controller	app/controllers/companies.rb	would

then	contain	the	following	code	for	the	method	show:

#	GET	companies1

#	GET	companies1.json

def	show

		expires_in	2.minutes

		fresh_when	@company,	public:	true

end

Now	we	get	a	different	cache	control	information	in	response	to	a	request:

$	curl	-I	http://localhost:3000companies1

HTTP/1.1	200	OK

X-Frame-Options:	SAMEORIGIN

X-Xss-Protection:	1;	mode=block

X-Content-Type-Options:	nosniff

Date:	Sun,	03	May	2015	19:13:20	GMT

Etag:	"915880f20b5c0c57aa6d0c955910b009"

Last-Modified:	Sun,	03	May	2015	18:38:05	GMT

Content-Type:	text/html;	charset=utf-8

Cache-Control:	max-age=120,	public

[...]

The	 two	minutes	 are	 specified	 in	 seconds	 (max-age=120)	 and	we	no	 longer

need	must-revalidate.	So	in	the	next	120	seconds,	 the	web	browser	does

not	need	to	check	back	with	the	web	server	to	see	if	the	content	of	this	page	has
changed.

This	 mechanism	 is	 also	 used	 by	 the	 asset	 pipeline.	Assets	 created	 there	 in	 the	 production
environment	can	be	identified	clearly	by	the	checksum	in	the	file	name	and	can	be	cached	for
a	 very	 long	 time	 both	 in	 the	 web	 browser	 and	 in	 public	 proxies.	 That’s	 why	 we	 have	 the
following	section	in	the	nginx	configuration	file:

location	^~	assets	{

		gzip_static	on;

		expires	max;

		add_header	Cache-Control	public;

}

Fragment	Caching

With	fragment	caching	you	can	cache	individual	parts	of	a	view.	You	can	safely
use	 it	 in	 combination	 with	HTTP-Caching	 and	Page	Caching.	The	 advantages
once	again	are	a	reduction	of	server	load	and	faster	web	page	generation,	which
means	increased	usability.

Please	install	a	new	example	application	(see	"A	Simple	Example	Application").

Enabling	Fragment	Caching	in	Development	Mode
First,	 we	 need	 to	 go	 to	 the	 file
config/environments/development.rb	 and	 set	 the	 item

config.action_controller.perform_caching	to	true:

Listing	10.	config/environments/development.rb

config.action_controller.perform_caching	=	true

Otherwise,	 we	 cannot	 try	 out	 the	 fragment	 caching	 in	 development	 mode.	 In
production	mode,	fragment	caching	is	enabled	by	default.

Caching	Table	of	Index	View
On	 the	 page	http://localhost:3000/companies,	 a	 very	 computationally	 intensive
table	with	all	companies	is	rendered.	We	can	cache	this	table	as	a	whole.	To	do
so,	we	need	 to	enclose	 the	 table	 in	a	<%	cache('name_of_cache')	do

%>	…		<%	end	%>	block:

<%	cache('name_of_cache')	do	%>

[...]

http://localhost:3000/companies

<%	end	%>

Please	edit	the	file	app/viewscompaniesindex.html.erb	as	follows:

Listing	11.	app/viewscompaniesindex.html.erb

<h1>Listing	companies</h1>

<%	cache('table_of_all_companies')	do	%>

<table>

		<thead>

				<tr>

						<th>Name</th>

						<th>Number	of	employees</th>

						<th	colspan="3"></th>

				</tr>

		</thead>

		<tbody>

				<%	@companies.each	do	|company|	%>

						<tr>

								<td><%=	company.name	%></td>

								<td><%=	company.employees.count	%></td>

								<td><%=	link_to	'Show',	company	%></td>

								<td><%=	link_to	'Edit',	edit_company_path(company)	%></td>

								<td><%=	link_to	'Destroy',	company,	method:	:delete,	data:	{	

confirm:

								'Are	you	sure?'	}	%></td>

						</tr>

				<%	end	%>

		</tbody>

</table>

<%	end	%>

<%=	link_to	'New	Company',	new_company_path	%>

Then	you	can	 start	 the	Rails	 server	with	rails	server	and	go	 to	 the	URL

http://localhost:3000/companies.	 In	 the	 development	 log,	 you	will	 now	 see	 the
following	entry:

Write	fragment	

views/table_of_all_companies/f29cc422be54f7b98dfb461505742e7b

(16.9ms)

		Rendered	companies/index.html.erb	within	layouts/application	

(89.6ms)

Completed	200	OK	in	291ms	(Views:	261.7ms	|	ActiveRecord:	10.7ms)

Writing	the	cache	took	16.9	ms.	In	total,	rendering	the	page	took	291	ms.

If	you	repeatedly	go	to	the	same	page,	you	will	get	a	different	result	in	the	log:

Read	fragment	

views/table_of_all_companies/f29cc422be54f7b98dfb461505742e7b

(0.2ms)

		Rendered	companies/index.html.erb	within	layouts/application	

(1.7ms)

Completed	200	OK	in	36ms	(Views:	35.6ms	|	ActiveRecord:	0.0ms)

Reading	the	cache	took	0.2	ms	and	rendering	the	page	in	total	36ms.	Only	a	fifth
of	the	processing	time!

Deleting	Fragment	Cache
With	 the	method	expire_fragment	you	can	clear	specific	fragment	caches.

Basically,	we	can	build	this	idea	into	the	model	in	the	same	way	as	shown	in	the
section	"Deleting	Page	Caches	Automatically".

The	model	file	app/models/company.rb	would	then	look	like	this:

Listing	12.	app/models/company.rb

http://localhost:3000/companies

class	Company	<	ActiveRecord::Base

		validates	:name,

												presence:	true,

												uniqueness:	true

		has_many	:employees,	dependent:	:destroy

		after_create			:expire_cache

		after_update			:expire_cache

		before_destroy	:expire_cache

		def	to_s

				name

		end

		def	expire_cache

				

ActionController::Base.new.expire_fragment('table_of_all_companies')

		end

end

As	the	number	of	employees	also	has	an	effect	on	this	table,	we	would	also	have
to	expand	the	file	app/models/employees.rb	accordingly:

Listing	13.	app/models/employees.rb

class	Employee	<	ActiveRecord::Base

		belongs_to	:company,	touch:	true

		validates	:first_name,

												presence:	true

		validates	:last_name,

												presence:	true

		validates	:company,

												presence:	true

		after_create			:expire_cache

		after_update			:expire_cache

		before_destroy	:expire_cache

		def	to_s

				"#{first_name}	#{last_name}"

		end

		def	expire_cache

				

ActionController::Base.new.expire_fragment('table_of_all_companies')

		end

end

Deleting	 specific	 fragment	 caches	 often	 involves	 a	 lot	 of	 effort	 in	 terms	 of
programming.	One,	you	often	miss	things	and	two,	in	big	projects	it’s	not	easy	to
keep	 track	 of	 all	 the	 different	 cache	 names.	Often	 it	 is	 easier	 to	 automatically
create	 names	 via	 the	method	cache_key.	These	 then	expire	automatically	 in

the	cache.

Auto-Expiring	Caches
Managing	fragment	caching	is	rather	complex	with	the	naming	convention	used
in	the	section	"Caching	Table	of	Index	View".	On	the	one	hand,	you	can	be	sure
that	 the	 cache	 does	 not	 have	 any	 superfluous	 ballast	 if	 you	 have	 programmed
neatly,	but	on	the	other,	it	does	not	really	matter.	A	cache	is	structured	in	such	a
way	that	it	deletes	old	and	no	longer	required	elements	on	its	own.	If	we	use	a
mechanism	that	gives	a	fragment	cache	a	unique	name,	as	in	the	asset	pipeline,
then	we	would	not	need	to	go	to	all	the	trouble	of	deleting	fragment	caches.

That	is	precisely	what	the	method	cache_key	is	for.	cache_key	gives	you	a

unique	name	for	an	element.	Let’s	try	it	in	the	console.	First,	we	get	the	always
identical	cache_key	 of	 the	 first	 company	 item	 two	 times	 in	 a	 row

("companies/1-20150503192915968370000"),	 then	we	 touch	 the	 item	 (a	 touch

sets	 the	 attribute	updated_at	 to	 the	 current	 time)	 and	 finally	we	output	 the

new	cache_key	("companies/1-20150503192915968370000"):

$	rails	console

Loading	development	environment	(Rails	4.2.1)

>>	Company.first.cache_key

		Company	Load	(0.2ms)		SELECT		"companies".*	FROM	"companies"		

ORDER	BY

		"companies"."id"	ASC	LIMIT	1

=>	"companies/1-20150503192915968370000"

>>	Company.first.cache_key

		Company	Load	(0.3ms)		SELECT		"companies".*	FROM	"companies"		

ORDER	BY

		"companies"."id"	ASC	LIMIT	1

=>	"companies/1-20150503192915968370000"

>>	Company.first.touch

		Company	Load	(0.2ms)		SELECT		"companies".*	FROM	"companies"		

ORDER	BY

		"companies"."id"	ASC	LIMIT	1

			(0.2ms)		begin	transaction

		SQL	(0.7ms)		UPDATE	"companies"	SET	"updated_at"	=	'2015-05-03

		19:51:56.619048'	WHERE	"companies"."id"	=	?		[["id",	1]]

			(1.1ms)		commit	transaction

=>	true

>>	Company.first.cache_key

		Company	Load	(0.3ms)		SELECT		"companies".*	FROM	"companies"		

ORDER	BY

		"companies"."id"	ASC	LIMIT	1

=>	"companies/1-20150503195156619048000"

>>	exit

Let’s	 use	 this	 knowledge	 to	 edit	 the	 index	 view	 in	 the	 file
app/viewscompaniesindex.html.erb:

Listing	14.	app/viewscompaniesindex.html.erb

<h1>Listing	companies</h1>

<%	cache(@companies)	do	%>

<table>

		<thead>

				<tr>

						<th>Name</th>

						<th>Number	of	employees</th>

						<th	colspan="3"></th>

				</tr>

		</thead>

		<tbody>

				<%	@companies.each	do	|company|	%>

						<tr>

								<td><%=	company.name	%></td>

								<td><%=	company.employees.count	%></td>

								<td><%=	link_to	'Show',	company	%></td>

								<td><%=	link_to	'Edit',	edit_company_path(company)	%></td>

								<td><%=	link_to	'Destroy',	company,	method:	:delete,	data:	{	

confirm:

								'Are	you	sure?'	}	%></td>

						</tr>

				<%	end	%>

		</tbody>

</table>

<%	end	%>

<%=	link_to	'New	Company',	new_company_path	%>

Here,	we	not	only	use	a	fragment	cache	for	the	whole	table,	but	also	one	for	each
line.	 So	 the	 initial	 call	 will	 take	 longer	 than	 before.	 But	 if	 any	 individual
companies	change,	only	one	line	has	to	be	re-rendered	in	each	case.

There	 is	 no	 general	 answer	 to	 the	 question	 in	 how	 much	 detail	 you	 should	use	 fragment
caching.	Just	go	ahead	and	experiment	with	it,	then	look	in	the	log	to	see	how	long	things	take.

Change	Code	in	the	View	results	in	an	expired	Cache

Rails	 tracks	 an	MD5	sum	of	 the	view	you	use.	So	 if	 you	 change	 the	 file	 (e.g.
app/viewscompaniesindex.html.erb)	 the	 MD5	 changes	 and	 all	 old

caches	will	expire.

Cache	Store
The	 cache	 store	 manages	 the	 stored	 fragment	 caches.	 If	 not	 configured
otherwise,	 this	 is	 the	 Rails	 MemoryStore.	 This	 cache	 store	 is	 good	 for
developing,	 but	 less	 suitable	 for	 a	 production	 system	 because	 it	 acts
independently	for	each	Ruby	on	Rails	process.	So	if	you	have	several	Ruby	on
Rails	processes	running	in	parallel	in	the	production	system,	each	process	holds
its	own	MemoryStore.

MemCacheStore

Most	 production	 systems	 use	 memcached	 (http://memcached.org/)	 as	 cache
store.	To	enable	memcached	as	cache	store	in	the	production	system,	you	need	to
add	 the	 following	 line	 in	 the	 file
config/environments/production.rb:

Listing	15.	config/environments/production.rb

config.cache_store	=	:mem_cache_store

The	combination	of	appropriately	used	auto-expiring	caches	and	memcached	is
an	excellent	recipe	for	a	successful	web	page.

For	a	description	of	how	to	install	a	Rails	production	system	with	memcached,
please	read	the	chapter	"Web	Server	in	Production	Mode".

Other	Cache	Stores

http://memcached.org/

In	 the	official	Rails	documentation	you	will	 find	a	 list	of	other	cache	stores	at
http://guides.rubyonrails.org/caching_with_rails.html#cachestores.

http://guides.rubyonrails.org/caching_with_rails.html#cache-stores

Page	Caching

Page	Caching	 is	extrem	and	was	 removed	 from	 the	core	of	Rails	4.0.	But	 it	 is
still	available	as	a	gem.

To	do	this	you	need	a	bit	of	knowledge	to	configure	your	Webserver	(e.g.	Nginx	or	Apache).

With	page	caching,	it’s	all	about	placing	a	complete	HTML	page	(in	other	words,
the	render	result	of	a	view)	into	a	subdirectory	of	the	public	directory	and	to

have	 it	 delivered	 directly	 from	 there	 by	 the	 web	 server	 (for	 example	 Nginx)
whenever	 the	 web	 page	 is	 visited	 next.	 Additionally,	 you	 can	 also	 save	 a
compressed	gz	version	of	 the	HTML	page	 there.	A	production	web	server	will
automatically	 deliver	 files	 below	public	 itself	and	can	also	be	configured	so

that	any	gz	files	present	are	delivered	directly.

In	complex	views	that	may	take	500ms	or	even	more	for	rendering,	the	amount
of	time	you	save	is	of	course	considerable.	As	web	page	operator,	you	once	more
save	 valuable	 server	 resources	 and	 can	 service	 more	 visitors	 with	 the	 same
hardware.	The	web	page	user	profits	from	a	faster	delivery	of	the	web	page.

When	programming	your	Rails	application,	please	ensure	that	you	also	update	this	page	itself,
or	delete	it!	You	will	find	a	description	in	the	section	"Deleting	Page	Caches	Automatically".
Otherwise,	you	end	up	with	an	outdated	cache	later.

Please	also	ensure	 that	page	caching	 rejects	 all	URL	parameters	by	default.	For	 example,	 if
you	 try	 to	 go	 to	http://localhost:3000/companies?search=abc	 this	 automatically	 becomes
http://localhost:3000/companies.	But	that	can	easily	be	fixed	with	a	better	route	logic.

http://localhost:3000/companies?search=abc
http://localhost:3000/companies

Please	 install	 a	 fresh	 example	 application	 (see	 section	"A	 Simple	 Example
Application")	and	add	the	gem	with	the	following	line	in	Gemfile.

gem	'actionpack-page_caching'

Now	install	it	with	the	command	bundle	install.

$	bundle	install

[...]

Lastly	 you	 have	 to	 tell	 Rails	 where	 to	 store	 the	 cache	 files.	 Please	 add	 the
following	line	in	your	config/application.rb	file:

Listing	16.	config/application.rb

config.action_controller.page_cache_directory	=

"#{Rails.root.to_s}publicdeploy"

Activating	Page	Caching	in	Development	Mode
First	we	need	to	go	to	the	file	config/environments/development.rb

and	 set	 the	 item	config.action_controller.perform_caching	 to

true:

Listing	17.	config/environments/development.rb

config.action_controller.perform_caching	=	true

Otherwise,	we	cannot	try	the	page	caching	in	development	mode.	In	production
mode,	page	caching	is	enabled	by	default.

Configure	our	Webserver

Know	 you	 have	 to	 tell	 your	 webserver	 (e.g.	 Nginx	 or	Apache)	 that	 it	 should
check	 the	publicdeploy	 directory	 first	 before	 hitting	 the	Rails	 application.

You	have	to	configure	too,	that	it	will	deliver	a	gz	file	if	one	is	available.

There	is	no	one	perfect	way	of	doing	it.	You	have	to	find	the	best	way	of	doing	it
in	your	environment	by	youself.

As	a	quick	 and	dirty	hack	 for	development	you	can	 set	 the	page_cache_directory	 to

public.	Than	your	development	system	will	deliver	the	cached	page.

config.action_controller.page_cache_directory	=

"#{Rails.root.to_s}/public"

Caching	Company	Index	and	Show	View
Enabling	page	caching	happens	in	the	controller.	If	we	want	to	cache	the	show
view	 for	 Company,	 we	 need	 to	 go	 to	 the	 controller
app/controllers/companies_controller.rb	 and	 enter	 the

command	caches_page	:show	at	the	top:

Listing	18.	app/controllers/companies_controller.rb

class	CompaniesController	<	ApplicationController

		caches_page	:show

[...]

Before	starting	the	application,	the	public	directory	looks	like	this:

public/

├──	404.html

├──	422.html

├──	500.html

├──	favicon.ico

└──	robots.txt

After	 starting	 the	 appliation	 with	rails	 server	 and	 going	 to	 the	 URLs

http://localhost:3000/companies	 and	http://localhost:3000companies1	via	 a	web
browser,	it	looks	like	this:

public

├──	404.html

├──	422.html

├──	500.html

├──	deploy

│			└──	companies

│							└──	1.html

├──	favicon.ico

└──	robots.txt

The	 file	public/deploycompanies1.html	 has	 been	 created	 by	 page

caching.

From	now	on,	the	web	server	will	only	deliver	the	cached	versions	when	these
pages	are	accessed.

gz	Versions

If	you	use	page	cache,	you	should	also	cache	directly	zipped	gz	files.	You	can	do
this	via	the	option	:gzip	⇒	true	or	use	a	specific	compression	parameter	as
symbol	instead	of	true	(for	example	:best_compression).

The	 controller	app/controllers/companies_controller.rb	would

then	look	like	this	at	the	beginning:

Listing	19.	app/controllers/companies_controller.rb

http://localhost:3000/companies
http://localhost:3000<i>companies</i>1

class	CompaniesController	<	ApplicationController

		caches_page	:show,	gzip:	true

[...]

This	 automatically	 saves	 a	 compressed	 and	 an	 uncompressed	 version	 of	 each
page	cache:

public

├──	404.html

├──	422.html

├──	500.html

├──	deploy

│			└──	companies

│							├──	1.html

│							└──	1.html.gz

├──	favicon.ico

└──	robots.txt

The	File	Extension	.html

Rails	 saves	 the	 page	 accessed	 at	http://localhost:3000/companies	under	 the	 file
name	companies.html.	So	the	upstream	web	server	will	find	and	deliver	this

file	if	you	go	to	http://localhost:3000/companies.html,	but	not	if	you	try	to	go	to
http://localhost:3000/companies,	because	the	extension	.html	at	the	end	of	the

URI	is	missing.

If	 you	 are	 using	 the	 Nginx	 server	 as	 described	 in	 the	 chapter	"Web	 Server	 in
Production	Mode",	 the	 easiest	way	 is	 adapting	 the	try_files	 instruction	 in

the	Nginx	configuration	file	as	follows:

try_files	$uri/index.html	$uri	$uri.html	@unicorn;

http://localhost:3000/companies
http://localhost:3000/companies.html
http://localhost:3000/companies

Nginx	then	checks	if	a	file	with	the	extension	.html	of	the	currently	accessed

URI	exists.

Deleting	Page	Caches	Automatically
As	soon	as	the	data	used	in	the	view	changes,	 the	saved	cache	files	have	to	be
deleted.	Otherwise,	the	cache	would	no	longer	be	up	to	date.

According	 to	 the	official	Rails	 documentation,	 the	 solution	 for	 this	 problem	 is
the	 class	ActionController::Caching::Sweeper.	 But	 this	 approach,	 described	 at
http://guides.rubyonrails.org/caching_with_rails.html#sweepers,	 has	 a	 big
disadvantage:	 it	 is	 limited	 to	actions	 that	happen	within	 the	controller.	So	 if	an
action	is	triggered	via	URL	by	the	web	browser,	the	corresponding	cache	is	also
changed	or	deleted.	But	 if	an	object	 is	deleted	 in	 the	console,	 for	example,	 the
sweeper	 would	 not	 realize	 this.	 For	 that	 reason,	 I	 am	 going	 to	 show	 you	 an
approach	 that	 does	 not	 use	 a	 sweeper,	 but	 works	 directly	 in	 the	 model	 with
ActiveRecord	callbacks.

In	 our	 phone	 book	 application,	 we	 always	 need	 to	 delete	 the	 cache	 for
http://localhost:3000/companies	 and	http://localhost:3000companiescompany_id
when	editing	a	company.	When	editing	an	employee,	we	also	have	to	delete	the
corresponding	cache	for	the	relevant	employee.

Models

Now	we	still	need	to	fix	the	models	so	that	the	corresponding	caches	are	deleted
automatically	as	soon	as	an	object	is	created,	edited	or	deleted.

Listing	20.	app/models/company.rb

class	Company	<	ActiveRecord::Base

		validates	:name,

												presence:	true,

http://guides.rubyonrails.org/caching_with_rails.html#sweepers
http://localhost:3000/companies
http://localhost:3000<i>companies</i>company_id

												uniqueness:	true

		has_many	:employees,	dependent:	:destroy

		after_create			:expire_cache

		after_update			:expire_cache

		before_destroy	:expire_cache

		def	to_s

				name

		end

		def	expire_cache

				

ActionController::Base.expire_page(Rails.application.routes.url_help

ers.company_path(self))

				

ActionController::Base.expire_page(Rails.application.routes.url_help

ers.companies_path)

		end

end

Listing	21.	app/models/employee.rb

class	Employee	<	ActiveRecord::Base

		belongs_to	:company,	touch:	true

		validates	:first_name,

												presence:	true

		validates	:last_name,

												presence:	true

		validates	:company,

												presence:	true

		after_create			:expire_cache

		after_update			:expire_cache

		before_destroy	:expire_cache

		def	to_s

				"#{first_name}	#{last_name}"

		end

		def	expire_cache

				

ActionController::Base.expire_page(Rails.application.routes.url_help

ers.employee_path(self))

				

ActionController::Base.expire_page(Rails.application.routes.url_help

ers.employees_path)

				self.company.expire_cache

		end

end

Preheating

Now	that	you	have	read	your	way	through	the	caching	chapter,	here	is	a	final	tip:
preheat	your	cache!

For	example,	if	you	have	a	web	application	in	a	company	and	you	know	that	at	9
o’clock	 in	 the	morning,	 all	 employees	are	going	 to	 log	 in	and	 then	access	 this
web	application,	then	it’s	a	good	idea	to	let	your	web	server	go	through	all	those
views	a	 few	hours	 in	advance	with	cron-job.	At	night,	your	 server	 is	probably
bored	anyway.

Check	out	the	behavior	patterns	of	your	users.	With	public	web	pages,	this	can
be	done	 for	 example	via	Google	Analytics	 (http://www.google.com/analytics/).
You	will	find	that	at	certain	times	of	the	day,	there	is	a	lot	more	traffic	going	in.
If	you	have	a	quiet	phase	prior	to	this,	you	can	use	it	to	warm	up	your	cache.

The	purpose	of	preheating	is	once	more	saving	server	ressources	and	achieving
better	quality	for	the	user,	as	the	web	page	is	displayed	more	quickly.

http://www.google.com/analytics/

	 Stefan	Wintermeyer

ACTION	CABLE

Modern	 webpages	 are	 not	 just	 static.	 They	 often	 get	 updates	 from	 the	 server
without	 interaction	 from	 the	 user.	 Your	 Twitter	 or	 GMail	 browser	 client	 will
display	 new	 Tweets	 or	 E-Mails	 without	 you	 reloading	 the	 page.	 The	 server
pushes	 the	 information.	Action	Cable	provides	 the	 tools	you	need	 to	use	 these
mechanisms	without	diving	deep	into	the	technical	aspects	of	websockets.

The	standard	Rails	scaffold	example	used	to	be	the	"Blog	in	15	Minutes"

screencast	 by	@dhh.	Now	 there	 is	 a	 new	 standard	 example	 to	 show	how	easy
Action	Cable	can	be	used:	A	chat	application.

I	 find	 that	a	bit	 too	complex	for	 the	first	step	so	we	begin	with	a	much	 lighter
setup	to	get	a	feeling	how	Action	Cable	works.

https://twitter.com/dhh

Minimal	Current	Time	Update	Example

This	 app	 will	 display	 the	 current	 time	 and	 updates	 the	 same	 time	 to	 all	 old
visitors	of	the	page	which	are	still	online.	So	the	first	user	gets	the	current	time
until	 the	next	user	opens	 the	 same	page.	At	 that	 time	 the	 second	user	gets	 the
current	 time	 and	 the	 first	 user	 gets	 the	 new	 time	 in	 addition	 to	 the	 already
existing	one.

We	 start	 with	 a	 fresh	 Rails	 application	 and	 a	 basic	page	 controller	 which

provides	an	index	action:

$	rails	new	clock

[...]

$	cd	clock

$	rails	generate	controller	page	index

[...]

$

To	 display	 the	 time	 we	 create	 a	@current_time	 variable	 in	 the	index

action.

Listing	1.	app/controllers/page_controller.rb

class	PageController	<	ApplicationController	def	index

				@current_time	=	Time.now

		end

end

The	view	displays	that	@current_time	with	this	code:

Listing	2.	app/views/page/index.html.erb

<div	id="messages">	<p><%=	@current_time	%></p>	</div>

Lastly	we	update	the	routes	so	that	everything	happens	on

the	index	page:

Listing	3.	config/routes.rb

Rails.application.routes.draw	do

		get	'page/index'

		root	'page#index'

end

Start	the	Rails	server:

$	rails	server

=>	Booting	Puma

=>	Rails	5.0.0	application	starting	in	development	on	http://localhost:3000

[...]

Now	 you	 can	 visit	http://localhost:3000	with	your	 browser	 and	get	 the	 current
time	displayed.	Reloading	the	page	will	result	in	an	update	on	the	same	page.

To	 use	 Action	 Cable	 we	 need	 to	 add	 some	 more	 code.	 Action	 Cable	 uses
channels	which	can	be	subscribed	be	the	web	browser	and	which	will	be	used	to
send	updates	to	the	page.	So	we	need	to	create	a	clock	channel	which	can	be

done	with	a	generator:

$	rails	generate	channel	clock

Running	via	Spring	preloader	in	process	1844

						create		app/channels/clock_channel.rb

						create		app/assets/javascripts/channels/clock.coffee

$

The	JavaScript	part	of	Action	Cable	has	to	be	activated.

The	code	is	already	there.	You	just	have	to	remove	the	`#`s.

Listing	4.	app/assets/javascripts/cable.coffee

#=	require	action_cable	#=	require_self	#=	require_tree	./channels	

#

@App	||=	{}

App.cable	=	ActionCable.createConsumer()

http://localhost:3000

In	 the	page.coffee	 file	 we	 add	 code	 to	 handle	 the	 subscription	 to	 the

ClockChannel	 and	 which	 processes	 updates	 which	 are	 pushed	 by	 Action

Cable.	Those	updates	will	be	appended	the	the	<div>	with	the	messages	id.

Listing	5.	app/assets/javascripts/page.coffee

App.room	=	App.cable.subscriptions.create	"ClockChannel",	received:	

(data)	->

				$('#messages').append	data['message']

The	ClockChannel	need	some	basic	configuration	to	work:

Listing	6.	app/channels/clock_channel.rb

class	ClockChannel	<	ApplicationCable::Channel	def	subscribed

				stream_from	"clock_channel"
		end

		def	unsubscribed

				#	Any	cleanup	needed	when	channel	is	unsubscribed

		end

end

The	update	will	get	broadcast	by	the	following	code	in	the	show

action:

Listing	7.	app/controllers/page_controller.rb

class	PageController	<	ApplicationController	def	index

				@current_time	=	Time.now.to_s

	

				ActionCable.server.broadcast	'clock_channel',	message:	

'<p>'+Time.now.to_s+'</p>'

		end

end

Lastly	we	have	to	mount	a	websocket	server	in	the	routes.rb:

Listing	8.	config/routes.rb

Rails.application.routes.draw	do

		get	'page/index'

		root	'page#index'

		mount	ActionCable.server	=>	'/cable'

end

After	restarting	the	Rails	web	server	you	can	play	with	the

application.	Open	a	couple	of	browser	windows	and	visit

http://localhost:3000/

You’ll	see	the	new	time	update	in	every	open	window	below

the	former	time	updates.

http://localhost:3000/

The	Chat	Application

Now	it’s	time	to	tackle	the	chat	application.	I’m	not	going	to	walk	you	through
that	step	by	step	but	add	some	information.

We	create	a	new	application	with	a	message	scaffold	where	 the	model	stores

the	messages.

$	rails	new	chatroom

[...]

$	cd	chatroom

$	rails	generate	controller	page	index

[...]

$	rails	generate	scaffold	message	content

[...]

$	rails	db:migrate

[...]

$	rails	generate	channel	room	speak

[...]

$	rails	generate	job	MessageBroadcast

Listing	9.	config/routes.rb

Rails.application.routes.draw	do

		get	'page/index'

		root	'page#index'

		mount	ActionCable.server	=>	'/cable'

end

Listing	10.	app/views/page/index.html.erb

<h1>Chat</h1>	

<div	id="messages">

		<%=	render	@messages	%>
</div>

	

<form>

		<label>Say:</label>

		<input	type="text"	data-behavior="room_speaker">	</form>

Listing	11.	app/views/messages/_message.html.erb

<div	class="message">	<p>

				<%=	l	Time.now,	format:	:short	%>:	<%=	message.content	%>
		</p>

</div>

We	display	the	last	5	messages	on	the	index	page:

Listing	12.	app/controllers/page_controller.rb

class	PageController	<	ApplicationController	def	index

				@messages	=	Message.order(:created_at).

																								reverse_order.

																								limit(5).

																								reverse

		end

end

Listing	13.	app/assets/javascripts/cable.coffee

#=	require	action_cable	#=	require_self	#=	require_tree	./channels	

#

@App	||=	{}

App.cable	=	ActionCable.createConsumer()

Listing	14.	app/channels/room_channel.rb

class	RoomChannel	<	ApplicationCable::Channel	def	subscribed

				stream_from	"room_channel"
		end

		def	unsubscribed

		end

		def	speak(data)

				Message.create!	content:	data['message']

		end

end

Listing	15.	app/assets/javascripts/page.coffee

App.room	=	App.cable.subscriptions.create	"RoomChannel",	connected:	

->

				#	Called	when	the	subscription	is	ready	for	use	on	the	server	

		disconnected:	->

				#	Called	when	the	subscription	has	been	terminated	by	the	server	

		received:	(data)	->

				$('#messages').append	data['message']

	

		speak:	(message)	->

				@perform	'speak',	message:	message	

$(document).on	'keypress',	'[data-behavior~=room_speaker]',	(event)	->	if	event.keyCode	is	13	#	
return	=	send	App.room.speak	event.target.value

				event.target.value	=	""

				event.preventDefault()

Using	a	job	is	more	secure	and	performant	than	doing	it

in	the	controller.	Active	Job	will	take	care	of	the	work.

Listing	16.	app/jobs/message_broadcast_job.rb

class	MessageBroadcastJob	<	ApplicationJob	queue_as	:default

		def	perform(message)	ActionCable.server.broadcast	'room_channel',	message:	
render_message(message)	end

		private

		def	render_message(message)	

ApplicationController.renderer.render(partial:	'messages/message',	

locals:	{	message:	message	})	end

end

After	a	new	message	was	created	in	the	database	the	job	will	be	triggered.

Listing	17.	app/models/message.rb

class	Message	<	ApplicationRecord	after_create_commit	{	

MessageBroadcastJob.perform_later	self	}

end

Now	open	 a	 couple	 of	 browsers	 at	http://localhost:3000	and	 try	 this	basic	chat
application.

http://localhost:3000

	 Stefan	Wintermeyer

TEMPLATES

Once	you	have	been	working	with	Rails	for	a	while,	you	will	always	make	the
same	 changes	 after	 calling	rails	 generate	 scaffold	 or	rails

generate	model.	You	are	going	to	adapt	the	scaffold	to	your	requirements.

Fortunately,	 you	 can	 replace	 the	 Rails	 templates	 for	 creating	 the	 controller	 or
model	files	with	your	own	custom	templates.

This	saves	a	lot	of	time.

I	 am	going	 to	 show	you	 the	basic	 principle	 by	using	 the	 controller	 and	model
template	as	an	example.

15	minutes	spent	optimizing	a	 template	 in	accordance	with	your	 requirements	will	 save	you
many	hours	if	not	days	of	work	later	in	every	Rails	project!

Scaffold	Controller	Template

Let’s	assume	you	want	to	create	a	scaffold	User:

$	rails	generate	scaffold	User	first_name	last_name	login

[...]

						invoke		scaffold_controller

						create				app/controllers/users_controller.rb	[...]

$

The	controller	app/controllers/users_controller.rb	generated	by

default	then	looks	like	this	in	Rails	5.0:

Listing	1.	app/controllers/users_controller.rb

class	UsersController	<	ApplicationController	before_action	

:set_user,	only:	[:show,	:edit,	:update,	:destroy]

	

		#	GET	/users
		#	GET	/users.json
		def	index	@users	=	User.all

		end

		#	GET	users1
		#	GET	users1.json
		def	show	end

		#	GET	usersnew
		def	new	@user	=	User.new

		end

		#	GET	users1/edit
		def	edit	end

		#	POST	/users
		#	POST	/users.json
		def	create	@user	=	User.new(user_params)

	

				respond_to	do	|format|

						if	@user.save	format.html	{	redirect_to	@user,	notice:	'User	was	successfully	created.'	}

								format.json	{	render	:show,	status:	:created,	location:	@user	}

						else
								format.html	{	render	:new	}

								format.json	{	render	json:	@user.errors,	status:	:unprocessable_entity	}

						end
				end
		end

		#	PATCH/PUT	users1
		#	PATCH/PUT	users1.json
		def	update	respond_to	do	|format|

						if	@user.update(user_params)	format.html	{	redirect_to	@user,	notice:	'User	was	successfully	
updated.'	}

								format.json	{	render	:show,	status:	:ok,	location:	@user	}

						else
								format.html	{	render	:edit	}

								format.json	{	render	json:	@user.errors,	status:	:unprocessable_entity	}

						end
				end
		end

		#	DELETE	users1
		#	DELETE	users1.json
		def	destroy	@user.destroy

				respond_to	do	|format|

						format.html	{	redirect_to	users_url,	notice:	'User	was	successfully	destroyed.'	}

						format.json	{	head	:no_content	}

				end
		end

		private

				#	Use	callbacks	to	share	common	setup	or	constraints	between	

actions.

				def	set_user	@user	=	User.find(params[:id])	end	#	Never	trust	

parameters	from	the	scary	internet,	only	allow	the	white	list	

through.

				def	user_params	params.require(:user).permit(:login)	end

end

But	if	we	only	need	HTML,	no	JSON	and	no	comments	then	the	file	could	also
look	like	this:

Listing	2.	app/controllers/users_controller.rb

class	UsersController	<	ApplicationController	before_action	

:set_user,	only:	[:show,	:edit,	:update,	:destroy]

	

		def	index	@users	=	User.all

		end

		def	show	end

		def	new	@user	=	User.new

		end

		def	edit	end

		def	create	@user	=	User.new(user_params)

	

				if	@user.save	redirect_to	@user,	notice:	'User	was	successfully	created.'
				else
						render	:new
				end
		end

		def	update	if	@user.update(user_params)	redirect_to	@user,	notice:	'User	was	successfully	updated.'
				else
						render	:edit
				end
		end

		def	destroy	@user.destroy

				redirect_to	users_url,	notice:	'User	was	successfully	destroyed.'
		end

		private

				def	set_user	@user	=	User.find(params[:id])	end	def	user_params	

params.require(:user).permit(:login)	end

end

The	original	 template	used	by	rails	generate	scaffold	for	generating

the	 controller	 can	 be	 found	 in	 the	 Rails	 Github	 repository	 at
https://github.com/rails/rails/blob/5-0-
stable/railties/lib/rails/generators/rails/scaffold_controller/templates/controller.rb

It	 is	 a	 normal	 ERB	 file	 that	 you	 can	 download	 and	 then	 save	 as	 new	 file
lib/templates/rails/scaffold_controller/controller.rb

https://github.com/rails/rails/blob/5-0-stable/railties/lib/rails/generators/rails/scaffold_controller/templates/controller.rb

(you	 may	 need	 to	 create	 the	 corresponding	 directories	 manually).	 To	 get	 the
above	desired	result,	you	need	to	change	the	template	as	follows:

Listing	3.	lib/templates/rails/scaffold_controller/controller.rb

<%	if	namespaced?	-%>

require_dependency	"<%=	namespaced_file_path	

%>/application_controller"

	

<%	end	-%>
<%	module_namespacing	do	-%>
class	<%=	controller_class_name	%>Controller	<	ApplicationController	before_action	:set_<%=	
singular_table_name	%>,	only:	[:show,	:edit,	:update,	:destroy]

	

		def	index

				@<%=	plural_table_name	%>	=	<%=	orm_class.all(class_name)	%>
		end

	

		def	show

		end

	

		def	new

				@<%=	singular_table_name	%>	=	<%=	orm_class.build(class_name)	%>
		end

	

		def	edit

		end

	

		def	create

				@<%=	singular_table_name	%>	=	<%=	orm_class.build(class_name,	"#
{singular_table_name}_params")	%>	if	@<%=	orm_instance.save	%>
						redirect_to	@<%=	singular_table_name	%>,	notice:	<%=	"'#{human_name}	was	successfully	
created.'"	%>
				else

						render	action:	'new'

				end

		end

	

		def	update

				if	@<%=	orm_instance.update("#{singular_table_name}_params")	%>
						redirect_to	@<%=	singular_table_name	%>,	notice:	<%=	"'#{human_name}	was	successfully	
updated.'"	%>
				else

						render	action:	'edit'

				end

		end

	

		def	destroy

				@<%=	orm_instance.destroy	%>
				redirect_to	<%=	index_helper	%>_url,	notice:	<%=	"'#{human_name}	was	successfully	
destroyed.'"	%>
		end

	

		private

				def	set_<%=	singular_table_name	%>
						@<%=	singular_table_name	%>	=	<%=	orm_class.find(class_name,	"params[:id]")	%>
				end

	

				def	<%=	"#{singular_table_name}_params"	%>
						<%-	if	attributes_names.empty?	-%>
						params[<%=	":#{singular_table_name}"	%>]

						<%-	else	-%>
						params.require(<%=	":#{singular_table_name}"	%>).permit(<%=	attributes_names.map	{	|name|	

":#{name}"	}.join(',	')	%>)	<%-	end	-%>

				end

end

<%	end	-%>

Each	time	you	now	use	rails	generate	scaffold,	you	get	the	controller

in	the	variation	you	want.

Model	Template

The	basic	idea	is	the	same	as	with	the	controller	in	section	"Scaffold	Controller
Template":	 it’s	 all	 about	 adapting	 the	model	 created	 by	 the	Rails	 generator	 to
your	own	needs.

The	model	template	used	by	rails	generate	model	and	therefore	also	by

rails	generate	scaffold	can	be	found	in	the	Rails	Github	repository	at

https://github.com/rails/rails/blob/5-0-
stable/activerecord/lib/rails/generators/active_record/model/templates/model.rb

Save	 this	 file	 in	 your	 Rails	 project	 under
lib/templates/active_record/model/model.rb.	 If	 you	 want	 to

edit	the	method	to_s	per	default,	your	model.rb	could	for	example	look	like

this:

Listing	4.	lib/templates/active_record/model/model.rb

<%	module_namespacing	do	-%>

class	<%=	class_name	%>	<	<%=	parent_class_name.classify	%>

<%	attributes.select(&:reference?).each	do	|attribute|	-%>

		belongs_to	:<%=	attribute.name	%><%=	',	polymorphic:	true'	if	

attribute.polymorphic?	%>

<%	end	-%>

<%	if	attributes.any?(&:password_digest?)	-%>

		has_secure_password

<%	end	-%>
end

	

https://github.com/rails/rails/blob/5-0-stable/activerecord/lib/rails/generators/active_record/model/templates/model.rb

		def	to_s

				<%-	if	attributes.map{	|a|	a.name	}.include?('name')	-%>
				name

				<%-	else	-%>
				"<%=	class_name	%>	#{id}"

				<%-	end	-%>
		end

	

<%	end	-%>

If	you	now	create	a	new	model	with

rails	 generate	 model	 Book	 name

number_of_pages:integer,	 the	 file	app/models/book.rb	will	 look

like	this:

Listing	5.	app/models/book.rb

class	Book	<	ActiveRecord::Base	def	to_s	name

		end

end

	 Stefan	Wintermeyer

RUBY	ON	RAILS	INSTALL	HOW-
TO

Development	System
This	 chapter’s	 installation	 methods	 described	 are	 intended	 for	 development
systems.	 If	 you	 are	 looking	 for	 instructions	 on	 installing	 a	 web	 server	 in	 the
production	 system,	please	have	 a	 look	 at	 the	 chapter	which	handles	 the	 server
setup.

Both	types	of	installation	are	very	different.

▪

▪

Ruby	on	Rails	5.0	on	Debian	8.3	(Jessie)

There	 are	 two	main	 reasons	 for	 installing	 a	Ruby	 on	Rails	 system	with	RVM
(Ruby	Version	Manager):

You	simply	do	not	have	any	root	rights	on	the	system.	In	that	case,	you	have
no	other	option.

You	want	to	run	several	Rails	systems	that	are	separated	cleanly,	and	perhaps
also	separate	Ruby	versions.	This	can	be	easily	done	with	RVM.	You	can	run
Ruby	1.9.3	with	Rails	3.2	and	in	parallel	Ruby	2.3.0	with	Rails	5.0.

Detailed	information	on	RVM	can	be	found	on	the	RVM	homepage	at	https://rvm.io

This	description	 assumes	 that	 you	have	 a	 freshly	 installed	Debian	GNU/Linux
8.3	 ("Jessie").	 You	 will	 find	 an	 ISO	 image	 for	 the	 installation	 at
http://www.debian.org.	I	recommend	the	approximately	250	MB	net	installation
CD	image.	For	 instructions	on	how	to	 install	Debian-GNU/Linux,	please	go	 to
http://www.debian.org/distrib/netinst.

Preparations
If	 you	 have	 root	 rights	 on	 the	 target	 system,	 you	 can	 use	 the	 following
commands	 to	 ensure	 that	 all	 required	 programs	 for	 a	 successful	 installation	 of
RVM	are	available.	If	you	do	not	have	root	rights,	you	have	to	either	hope	that
your	admin	has	already	installed	everything	you	need,	or	send	them	a	quick	e-
mail	with	the	corresponding	lines.

https://rvm.io
http://www.debian.org
http://www.debian.org/distrib/netinst

Login	as	root	and	update	the	package	lists:

root@debian:~#	apt-get	update

[...]

root@debian:~#

Of	 course,	 you	 can	 optionally	 install	 a	 SSH	 server	 on	 the	 system,	 so	 you	 can	work	 on	 the
system	via	SSH	instead	of	on	the	console:

root@debian:~#	apt-get	-y	install	openssh-server

And	now	the	installation	of	the	packages	required	for	the	RVM	installation:

root@debian:~#	apt-get	-y	install	curl	patch	bzip2	\

gawk	g++	gcc	make	libc6-dev	patch	libreadline6-dev	\

zlib1g-dev	libssl-dev	libyaml-dev	libsqlite3-dev	\

sqlite3	autoconf	libgdbm-dev	libncurses5-dev	\

automake	libtool	bison	pkg-config	libffi-dev

[...]

root@debian:~#

Now	is	a	good	time	to	log	out	as	root:

root@debian:~#	exit

logout

xyz@debian:~$

Installing	Ruby	2.3	and	Ruby	on	Rails	5.0	with	RVM
Log	in	with	your	normal	user	account	(in	our	case,	it’s	the	user	xyz).

RVM,	Ruby,	and	Ruby	on	Rails	can	be	installed	in	various	ways.	I	recommend
using	 the	 following	 commands	 and	 get	 at	 least	 one	 cup	 of	 tea/coffee/favorite
drink:

xyz@debian:~$	gpg	--keyserver	hkp://keys.gnupg.net	\

--recv-keys	409B6B1796C275462A1703113804BB82D39DC0E3

[...]

xyz@debian:~$	curl	-sSL	https://get.rvm.io	|	bash

[...]

xyz@debian:~$	source	homexyz/.rvm/scripts/rvm

xyz@debian:~$	rvm	install	2.3	--autolibs=read-only

[...]

xyz@debian:~$	gem	install

[...]

xyz@debian:~$

gem	install	rails	installs	the	current	stable	Rails	version.	You	can	use	the	format	gem

install	rails	-v	5.0.0	to	install	a	specific	version	and	gem	install	rails	-

-pre	to	install	a	current	beta	version.

RVM,	 Ruby	 2.3	 and	 Rails	 5.0	 are	 now	 installed.	 You	 can	 check	 it	 with	 the
following	commands.

xyz@debian:~$	ruby	-v

ruby	2.3.0p0	(2015-12-25	revision	53290)	[x86_64-linux]

xyz@debian:~$	rails	-v

Rails	5.0.0

xyz@debian:~$

Ruby	on	Rails	5.0	on	Windows

At	http://railsinstaller.org/	there	is	a	simple,	all-inclusive	Ruby	on	Rails	installer
for	Windows	for	Ruby	and	Rails.

http://railsinstaller.org/

Ruby	on	Rails	5.0	on	Mac	OS	X	10.11	(El	Capitan)

Mac	OS	10.11	 includes	Ruby	by	default.	Not	 interesting	 for	our	purposes.	We
want	Ruby	2.3	 and	Rails	 5.0.	To	 avoid	 interfering	with	 the	 existing	Ruby	 and
Rails	installation	and	therefore	the	packet	management	of	Mac	OS	X,	we	install
Ruby	2.3	and	Rails	5.0	with	RVM	(Ruby	Version	Manager).

With	RVM,	you	can	install	and	run	any	number	of	Ruby	and	Rails	versions	as
normal	user	(without	root	rights	and	in	your	home	directory).	So	you	can	work
in	parallel	on	old	projects	that	may	still	use	Ruby	1.9.3	and	new	projects	that	use
Ruby	2.3.

Detailed	information	on	RVM	can	be	found	at	the	RVM	homepage	at	https://rvm.io/

Xcode	Installation	or	Upgrade
Before	 you	 start	 installing	 Ruby	 on	 Rails,	 you	 must	 install	 the	latest	 Apple
Xcode	tools	on	your	system.	The	easiest	way	is	via	the	Mac	App	Store	(search
for	"xcode")	or	via	the	website	https://developer.apple.com/xcode/

Please	take	care	to	install	all	the	command	line	tools!

Installing	Ruby	2.3	and	Ruby	on	Rails	5.0	with	RVM
RVM	can	be	installed	in	various	ways.	I	recommend	using	the	following	monster
command	(please	copy	it	exactly)	 that	 installs	 the	 latest	RVM,	Ruby	and	Ruby
on	Rails	in	your	home	directory:

https://rvm.io/
https://developer.apple.com/xcode/

$	gpg	--keyserver	hkp://keys.gnupg.net	\

--recv-keys	409B6B1796C275462A1703113804BB82D39DC0E3

[...]

$	curl	-sSL	https://get.rvm.io	|	bash

[...]

$

Now	exit	the	current	shell/terminal	and	open	a	new	one	for	the	next	commands.

$	rvm	install	2.3

[...]

$	gem	install	rails

[...]

$

gem	install	rails	installs	the	current	stable	Rails	version.	You	can	use	the	format	gem

install	rails	-v	5.0.0	to	install	a	specific	version	and	gem	install	rails	-

-pre	to	install	a	current	beta	version.

RVM,	Ruby	2.3	and	Rails	5.0	are	now	fully	installed.	You	can	check	it	with	the
following	commands.

$	ruby	-v

ruby	2.3.0p0	(2015-12-25	revision	53290)	[x86_64-linux]

$	rails	-v

Rails	5.0.0

$

	 Stefan	Wintermeyer

FURTHER	RAILS
DOCUMENTATION

Here	is	a	list	of	important	websites	on	the	topic	Ruby	on	Rails:

http://guides.rubyonrails.org

A	couple	of	very	good	official	guides.

http://rubyonrails.org/

The	 project	 page	 of	 Ruby	 on	 Rails	 offers	 many	 links	 for	 further
documentation.	 Please	 note:	 some	 parts	 of	 the	 documentation	 are	 now
obsolete.	Please	check	if	what	you	are	reading	is	related	specifically	to	Rails
3.2	or	to	older	Rails	versions.

http://railscasts.com/

Ryan	 Bates	 used	 to	 publish	 a	 new	 screencast	 every	 Monday	 on	 a	 topic
associated	 with	 Rails.	 Unfortunately	 he	 hasn’t	 published	 screencasts	 for
some	time	now	but	the	page	still	has	valuable	old	ones

http://guides.rubyonrails.org
http://rubyonrails.org/
http://railscasts.com/

	Preface
	Ruby Basics
	First Steps with Rails
	ActiveRecord
	Scaffolding and REST
	Routes
	Bundler and Gems
	Forms
	Tests
	Cookies and Sessions
	Active Job
	Action Mailer
	Internationalization
	Asset Pipeline
	JavaScript
	Caching
	Action Cable
	Templates
	Ruby on Rails Install How-to
	Further Rails Documentation

