

PROFESSIONAL
C++

INTRODUCTION. . xlvii

▸▸ PART I	 INTRODUCTION TO PROFESSIONAL C++

CHAPTER 1	 A Crash Course in C++ and the Standard Library 3

CHAPTER 2	 Working with Strings and String Views. . 57

CHAPTER 3	 Coding with Style. . 71

▸▸ PART II	 PROFESSIONAL C++ SOFTWARE DESIGN

CHAPTER 4	 Designing Professional C++ Programs. . 95

CHAPTER 5	 Designing with Objects. . 123

CHAPTER 6	 Designing for Reuse. . 143

▸▸ PART III	 C++ CODING THE PROFESSIONAL WAY

CHAPTER 7	 Memory Management. . 163

CHAPTER 8	 Gaining Proficiency with Classes and Objects. 199

CHAPTER 9	 Mastering Classes and Objects. . 231

CHAPTER 10	 Discovering Inheritance Techniques. . 277

CHAPTER 11	 C++ Quirks, Oddities, and Incidentals. . 333

CHAPTER 12	 Writing Generic Code with Templates . . 373

CHAPTER 13	 Demystifying C++ I/O. . 409

CHAPTER 14	 Handling Errors . . 433

CHAPTER 15	 Overloading C++ Operators. . 473

CHAPTER 16	 Overview of the C++ Standard Library. . 507

CHAPTER 17	 Understanding Containers and Iterators . . 535

CHAPTER 18	 Mastering Standard Library Algorithms. . 607

CHAPTER 19	 String Localization and Regular Expressions 663

CHAPTER 20	 Additional Library Utilities. . 691

Continues

▸▸ PART IV	 MASTERING ADVANCED FEATURES OF C++

CHAPTER 21	 Customizing and Extending the Standard Library. 727

CHAPTER 22	 Advanced Templates. . 775

CHAPTER 23	 Multithreaded Programming with C++. . 813

▸▸ PART V	 C++ SOFTWARE ENGINEERING

CHAPTER 24	 Maximizing Software Engineering Methods. 859

CHAPTER 25	 Writing Efficient C++. . 881

CHAPTER 26	 Becoming Adept at Testing. . 909

CHAPTER 27	 Conquering Debugging. . 933

CHAPTER 28	 Incorporating Design Techniques and Frameworks. 971

CHAPTER 29	 Applying Design Patterns. . 991

CHAPTER 30	 �Developing Cross-Platform and
Cross-Language Applications. . 1017

APPENDIX A	 C++ Interviews. . 1039

APPENDIX B	 Annotated Bibliography . . 1063

APPENDIX C	 Standard Library Header Files. . 1075

APPENDIX D	 Introduction to UML . . 1083

INDEX. . 1087

PROFESSIONAL

C++

PROFESSIONAL

C++

Fourth Edition

Marc Gregoire

Professional C++, Fourth Edition

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-42130-6
ISBN: 978-1-119-42126-9 (ebk)
ISBN: 978-1-119-42122-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017963243

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

Dedicated to my parents and my brother, who are

always there for me. Their support and patience

helped me in finishing this book.

ABOUT THE AUTHOR

MARC GREGOIRE  is a software architect from Belgium. He graduated from the University of Leuven,
Belgium, with a degree in “Burgerlijk ingenieur in de computer wetenschappen” (equivalent to mas-
ter of science in engineering: computer science). The year after, he received an advanced master’s
degree in artificial intelligence, cum laude, at the same university. After his studies, Marc started
working for a software consultancy company called Ordina Belgium. As a consultant, he worked for
Siemens and Nokia Siemens Networks on critical 2G and 3G software running on Solaris for tele-
com operators. This required working with international teams stretching from South America and
the United States to Europe, the Middle East, Africa, and Asia. Now, Marc is a software architect at
Nikon Metrology (www.nikonmetrology.com), a division of Nikon and a leading provider of preci-
sion optical instruments and metrology solutions for 3D geometric inspection.

His main expertise is in C/C++, and specifically Microsoft VC++ and the MFC framework. He has
experience in developing C++ programs running 24/7 on Windows and Linux platforms: for exam-
ple, KNX/EIB home automation software. In addition to C/C++, Marc also likes C# and uses PHP
for creating web pages.

Since April 2007, he has received the annual Microsoft MVP (Most Valuable Professional) award
for his Visual C++ expertise.

Marc is the founder of the Belgian C++ Users Group (www.becpp.org), co-author of C++ Standard
Library Quick Reference (Apress), technical editor for numerous books for several publishers, and
a member on the CodeGuru forum (as Marc G). He maintains a blog at www.nuonsoft.com/blog/,
and is passionate about traveling and gastronomic restaurants.

ABOUT THE TECHNICAL EDITOR

PETER VAN WEERT  is a Belgian software engineer, whose main interests and expertise are in C++,
programming languages, algorithms, and data structures.

He received his master of science in computer science from the University of Leuven, Belgium,
summa cum laude, with congratulations of the Board of Examiners. In 2010, the same university
awarded him a PhD for his research on the efficient compilation of rule-based programming lan-
guages (mainly Java). During his doctoral studies, he was a teaching assistant for courses on object-
oriented analysis and design, Java programming, and declarative programming languages.

After his studies, Peter worked for Nikon Metrology on large-scale, industrial-application software
in the area of 3D laser scanning and point cloud inspection. In 2017, he joined the software R&D
unit of Nobel Biocare, which specializes in digital dentistry software. Throughout his professional
career, Peter has mastered C++ software development, as well as the management, refactoring, and
debugging of very large code bases. He also gained further proficiency in all aspects of the software
development process, including the analysis of functional and technical requirements, and Agile-
and Scrum-based project and team management.

Peter is a regular speaker at, and board member of, the Belgian C++ Users Group. He also co-
authored two books: C++ Standard Library Quick Reference and Beginning C++ (5th edition), both
published by Apress.

PROJECT EDITOR
Adaobi Obi Tulton

TECHNICAL EDITOR
Peter Van Weert

PRODUCTION EDITOR
Athiyappan Lalith Kumar

COPY EDITOR
Marylouise Wiack

MANAGER OF CONTENT DEVELOPMENT
AND ASSEMBLY
Mary Beth Wakefield

PRODUCTION MANAGER
Kathleen Wisor

MARKETING MANAGER
Christie Hilbrich

EXECUTIVE EDITOR
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Nancy Bell

INDEXER
Johnna VanHoose Dinse

COVER DESIGNER
Wiley

COVER IMAGE
© ittipon/Shutterstock

CREDITS

ACKNOWLEDGMENTS

I THANK THE JOHN WILEY & SONS AND WROX  Press editorial and production teams for their sup-
port. Especially, thank you to Jim Minatel, executive editor at Wiley, for giving me a chance to
write this new edition, Adaobi Obi Tulton, project editor, for managing this project, and Marylouise
Wiack, copy editor, for improving readability and consistency and making sure the text is gram-
matically correct.

A very special thank you to my technical editor, Peter Van Weert, for his outstanding technical
review. His many constructive comments and ideas have certainly made this book better.

Of course, the support and patience of my parents and my brother were very important in finishing
this book. I would also like to express my sincere gratitude toward my employer, Nikon Metrology,
for supporting me during this project.

Finally, I thank you, the reader, for trying this approach to professional C++ software development.

CONTENTS

INTRODUCTION	 xlvii

Part I: INTRODUCTION TO PROFESSIONAL C++

Chapter 1: A CRASH COURSE IN C++
AND THE STANDARD LIBRARY	 3

The Basics of C++	 4
The Obligatory Hello, World	 4

Comments	 4
Preprocessor Directives	 5
The main() Function	 6
I/O Streams	 7

Namespaces	 8
Literals	 10
Variables	 10
Operators	 13
Types	 15

Enumerated Types	 15
Structs	 16

Conditional Statements	 17
if/else Statements	 17
switch Statements	 18
The Conditional Operator	 20

Logical Evaluation Operators	 20
Functions	 21

Function Return Type Deduction	 22
Current Function’s Name	 23

C-Style Arrays	 23
std::array	 25
std::vector	 25
Structured Bindings	 26
Loops	 26

The while Loop	 26
The do/while Loop	 27
The for Loop	 27

xviii

CONTENTS

The Range-Based for Loop	 27
Initializer Lists	 28
Those Are the Basics	 28

Diving Deeper into C++	 28
Strings in C++	 29
Pointers and Dynamic Memory	 29

The Stack and the Heap	 29
Working with Pointers	 30
Dynamically Allocated Arrays	 31
Null Pointer Constant	 32
Smart Pointers	 33

The Many Uses of const	 35
const Constants	 35
const to Protect Parameters	 35

References	 35
Pass By Reference	 36
Pass By const Reference	 37

Exceptions	 37
Type Inference	 38

The auto Keyword	 39
The decltype Keyword	 40

C++ as an Object-Oriented Language	 40
Defining Classes	 40
Using Classes	 43

Uniform Initialization	 43
Direct List Initialization versus Copy List Initialization	 45

The Standard Library	 46
Your First Useful C++ Program	 46

An Employee Records System	 46
The Employee Class	 47

Employee.h	 47
Employee.cpp	 48
EmployeeTest.cpp	 50

The Database Class	 50
Database.h	 50
Database.cpp	 51
DatabaseTest.cpp	 52

The User Interface	 53
Evaluating the Program	 55

Summary	 56

xix

CONTENTS

Chapter 2: WORKING WITH STRINGS AND STRING VIEWS	 57

Dynamic Strings	 58
C-Style Strings	 58
String Literals	 60

Raw String Literals	 60
The C++ std::string Class	 62

What Is Wrong with C-Style Strings?	 62
Using the string Class	 62
std::string Literals 	 64
High-Level Numeric Conversions	 64
Low-Level Numeric Conversions	 65

The std::string_view Class	 67
std::string_view Literals	 69

Nonstandard Strings	 69
Summary	 69

Chapter 3: CODING WITH STYLE	 71

The Importance of Looking Good	 71
Thinking Ahead	 72
Elements of Good Style	 72

Documenting Your Code	 72
Reasons to Write Comments	 72

Commenting to Explain Usage	 72
Commenting to Explain Complicated Code	 74
Commenting to Convey Meta-information	 75

Commenting Styles	 77
Commenting Every Line	 77
Prefix Comments	 78
Fixed-Format Comments	 79
Ad Hoc Comments	 80
Self-Documenting Code	 81

Decomposition	 81
Decomposition through Refactoring	 82
Decomposition by Design	 83
Decomposition in This Book	 83

Naming	 83
Choosing a Good Name	 83
Naming Conventions	 84

Counters	 84
Prefixes	 84

xx

CONTENTS

Hungarian Notation	 85
Getters and Setters	 86
Capitalization	 86
Namespaced Constants	 86

Using Language Features with Style	 86
Use Constants	 87
Use References Instead of Pointers	 87
Use Custom Exceptions	 88

Formatting	 88
The Curly Brace Alignment Debate	 88
Coming to Blows over Spaces and Parentheses	 89
Spaces and Tabs	 90

Stylistic Challenges	 90
Summary	 91

Part II: PROFESSIONAL C++ SOFTWARE DESIGN

Chapter 4: DESIGNING PROFESSIONAL C++ PROGRAMS	 95

What Is Programming Design?	 96
The Importance of Programming Design	 97
Designing for C++	 99
Two Rules for C++ Design	 100

Abstraction	 100
Benefiting from Abstraction	 100
Incorporating Abstraction in Your Design	 101

Reuse	 101
Writing Reusable Code	 102
Reusing Designs	 103

Reusing Existing Code	 103
A Note on Terminology	 104
Deciding Whether or Not to Reuse Code	 105

Advantages to Reusing Code	 105
Disadvantages to Reusing Code	 105
Putting It Together to Make a Decision	 106

Strategies for Reusing Code	 107
Understand the Capabilities and Limitations	 107
Understand the Performance	 108
Understand Platform Limitations	 110
Understand Licensing and Support	 110
Know Where to Find Help	 111
Prototype	 111

xxi

CONTENTS

Bundling Third-Party Applications	 112
Open-Source Libraries	 112

The Open-Source Movements	 112
Finding and Using Open-Source Libraries	 113
Guidelines for Using Open-Source Code	 113

The C++ Standard Library	 114
C Standard Library	 114
Deciding Whether or Not to Use the Standard Library	 114

Designing a Chess Program	 114
Requirements	 115
Design Steps	 115

Divide the Program into Subsystems	 115
Choose Threading Models	 117
Specify Class Hierarchies for Each Subsystem	 118
Specify Classes, Data Structures, Algorithms, and Patterns for Each
Subsystem	 118
Specify Error Handling for Each Subsystem	 120

Summary	 121

Chapter 5: DESIGNING WITH OBJECTS	 123

Am I Thinking Procedurally?	 124
The Object-Oriented Philosophy	 124

Classes	 124
Components	 125
Properties	 125
Behaviors	 126
Bringing It All Together	 126

Living in a World of Objects	 127
Over-Objectification	 127
Overly General Objects	 128

Object Relationships	 129
The Has-A Relationship	 129
The Is-A Relationship (Inheritance)	 130

Inheritance Techniques	 130
Polymorphism versus Code Reuse	 131

The Fine Line between Has-A and Is-A	 132
The Not-A Relationship	 135
Hierarchies	 136
Multiple Inheritance	 137
Mixin Classes	 138

xxii

CONTENTS

Abstraction	 138
Interface versus Implementation	 138
Deciding on an Exposed Interface	 139

Consider the Audience	 139
Consider the Purpose	 139
Consider the Future	 141

Designing a Successful Abstraction	 141
Summary	 142

Chapter 6: DESIGNING FOR REUSE	 143

The Reuse Philosophy	 144
How to Design Reusable Code	 144

Use Abstraction	 145
Structure Your Code for Optimal Reuse	 146

Avoid Combining Unrelated or Logically Separate Concepts	 146
Use Templates for Generic Data Structures and Algorithms	 148
Provide Appropriate Checks and Safeguards	 150
Design for Extensibility	 151

Design Usable Interfaces	 153
Design Interfaces That Are Easy to Use	 153
Design General-Purpose Interfaces	 157
Reconciling Generality and Ease of Use	 157

The SOLID Principles	 158
Summary	 159

Part III: C++ CODING THE PROFESSIONAL WAY

Chapter 7: MEMORY MANAGEMENT	 163

Working with Dynamic Memory	 164
How to Picture Memory	 164
Allocation and Deallocation	 166

Using new and delete	 166
What about My Good Friend malloc?	 167
When Memory Allocation Fails	 167

Arrays	 168
Arrays of Basic Types	 168
Arrays of Objects	 170
Deleting Arrays	 171
Multi-dimensional Arrays	 172

Working with Pointers	 175

xxiii

CONTENTS

A Mental Model for Pointers	 175
Casting with Pointers	 176

Array-Pointer Duality	 177
Arrays Are Pointers!	 177
Not All Pointers Are Arrays!	 179

Low-Level Memory Operations	 179
Pointer Arithmetic	 179
Custom Memory Management	 180
Garbage Collection	 181
Object Pools	 182

Smart Pointers	 182
unique_ptr	 183

Creating unique_ptrs	 183
Using unique_ptrs	 185
unique_ptr and C-Style Arrays	 186
Custom Deleters	 186

shared_ptr	 186
Casting a shared_ptr	 187
The Need for Reference Counting	 188
Aliasing	 189

weak_ptr	 189
Move Semantics	 190
enable_shared_from_this	 191
The Old Deprecated/Removed auto_ptr	 192

Common Memory Pitfalls	 192
Underallocating Strings	 192
Accessing Out-of-Bounds Memory	 193
Memory Leaks	 194

Finding and Fixing Memory Leaks in Windows with Visual C++	 195
Finding and Fixing Memory Leaks in Linux with Valgrind	 196

Double-Deleting and Invalid Pointers	 197
Summary	 197

Chapter 8: GAINING PROFICIENCY WITH CLASSES AND OBJECTS	199

Introducing the Spreadsheet Example	 200
Writing Classes	 200

Class Definitions	 200
Class Members	 201
Access Control	 201
Order of Declarations	 203
In-Class Member Initializers	 203

xxiv

CONTENTS

Defining Methods	 203
Accessing Data Members	 204
Calling Other Methods	 204
The this Pointer	 206

Using Objects	 207
Objects on the Stack	 207
Objects on the Heap	 207

Object Life Cycles	 208
Object Creation	 208

Writing Constructors	 209
Using Constructors	 210
Providing Multiple Constructors	 211
Default Constructors	 212
Constructor Initializers	 215
Copy Constructors	 218
Initializer-List Constructors	 220
Delegating Constructors	 222
Summary of Compiler-Generated Constructors	 222

Object Destruction	 224
Assigning to Objects	 225

Declaring an Assignment Operator	 225
Defining an Assignment Operator	 226
Explicitly Defaulted and Deleted Assignment Operator	 227

Compiler-Generated Copy Constructor and Copy Assignment Operator	 228
Distinguishing Copying from Assignment	 228

Objects as Return Values	 228
Copy Constructors and Object Members	 229

Summary	 230

Chapter 9: MASTERING CLASSES AND OBJECTS	 231

Friends	 232
Dynamic Memory Allocation in Objects	 233

The Spreadsheet Class	 233
Freeing Memory with Destructors	 235
Handling Copying and Assignment	 236

The Spreadsheet Copy Constructor	 239
The Spreadsheet Assignment Operator	 240
Disallowing Assignment and Pass-By-Value	 242

Handling Moving with Move Semantics	 243
Rvalue References	 243
Implementing Move Semantics	 245

xxv

CONTENTS

Testing the Spreadsheet Move Operations	 248
Implementing a Swap Function with Move Semantics	 250

Rule of Zero	 250
More about Methods	 251

static Methods	 251
const Methods	 251

mutable Data Members	 253
Method Overloading	 253

Overloading Based on const	 254
Explicitly Deleting Overloads	 255

Inline Methods	 255
Default Arguments	 257

Different Kinds of Data Members	 258
static Data Members	 258

Inline Variables	 259
Accessing static Data Members within Class Methods	 259
Accessing static Data Members Outside Methods	 260

const static Data Members	 260
Reference Data Members	 261
const Reference Data Members	 262

Nested Classes	 263
Enumerated Types inside Classes	 264
Operator Overloading	 265

Example: Implementing Addition for SpreadsheetCells	 265
First Attempt: The add Method	 265
Second Attempt: Overloaded operator+ as a Method	 266
Third Attempt: Global operator+	 268

Overloading Arithmetic Operators	 269
Overloading the Arithmetic Shorthand Operators	 269

Overloading Comparison Operators	 270
Building Types with Operator Overloading	 271

Building Stable Interfaces	 272
Using Interface and Implementation Classes	 272

Summary	 275

Chapter 10: DISCOVERING INHERITANCE TECHNIQUES	 277

Building Classes with Inheritance	 278
Extending Classes	 278

A Client’s View of Inheritance	 279
A Derived Class’s View of Inheritance	 280
Preventing Inheritance	 281

xxvi

CONTENTS

Overriding Methods	 281
How I Learned to Stop Worrying and Make Everything virtual	 281
Syntax for Overriding a Method	 282
A Client’s View of Overridden Methods	 283
The override Keyword	 284
The Truth about virtual	 286
Preventing Overriding	 290

Inheritance for Reuse	 291
The WeatherPrediction Class	 291
Adding Functionality in a Derived Class	 292
Replacing Functionality in a Derived Class	 293

Respect Your Parents	 294
Parent Constructors	 294
Parent Destructors	 296
Referring to Parent Names	 297
Casting Up and Down	 299

Inheritance for Polymorphism	 301
Return of the Spreadsheet	 301
Designing the Polymorphic Spreadsheet Cell	 301
The SpreadsheetCell Base Class	 302

A First Attempt	 302
Pure Virtual Methods and Abstract Base Classes	 303

The Individual Derived Classes	 304
StringSpreadsheetCell Class Definition	 304
StringSpreadsheetCell Implementation	 304
DoubleSpreadsheetCell Class Definition and Implementation	 305

Leveraging Polymorphism	 306
Future Considerations	 306

Multiple Inheritance	 308
Inheriting from Multiple Classes	 308
Naming Collisions and Ambiguous Base Classes	 309

Name Ambiguity	 309
Ambiguous Base Classes	 311
Uses for Multiple Inheritance	 312

Interesting and Obscure Inheritance Issues	 312
Changing the Overridden Method’s Characteristics	 313

Changing the Method Return Type	 313
Changing the Method Parameters	 315

Inherited Constructors	 316
Special Cases in Overriding Methods	 320

xxvii

CONTENTS

The Base Class Method Is static	 320
The Base Class Method Is Overloaded	 321
The Base Class Method Is private or protected	 322
The Base Class Method Has Default Arguments	 324
The Base Class Method Has a Different Access Level	 325

Copy Constructors and Assignment Operators in Derived Classes	 327
Run-Time Type Facilities	 329
Non-public Inheritance	 331
Virtual Base Classes	 331

Summary	 332

Chapter 11: C++ QUIRKS, ODDITIES, AND INCIDENTALS	 333

References	 334
Reference Variables	 334

Modifying References	 335
References to Pointers and Pointers to References	 336

Reference Data Members	 336
Reference Parameters	 336

References from Pointers	 337
Pass-by-Reference versus Pass-by-Value	 337

Reference Return Values	 338
Rvalue References	 338
Deciding between References and Pointers	 339

Keyword Confusion	 343
The const Keyword	 343

const Variables and Parameters	 343
const Methods	 345
The constexpr Keyword	 346

The static Keyword	 347
static Data Members and Methods	 347
static Linkage	 347
static Variables in Functions	 350

Order of Initialization of Nonlocal Variables	 351
Order of Destruction of Nonlocal Variables	 351

Types and Casts	 351
Type Aliases	 352
Type Aliases for Function Pointers	 353
Type Aliases for Pointers to Methods and Data Members	 355
typedefs	 356

xxviii

CONTENTS

Casts	 357
const_cast()	 357
static_cast()	 358
reinterpret_cast()	 359
dynamic_cast()	 360
Summary of Casts	 361

Scope Resolution	 362
Attributes	 363

[[noreturn]]	 363
[[deprecated]]	 364
[[fallthrough]]	 364
[[nodiscard]]	 364
[[maybe_unused]]	 365
Vendor-Specific Attributes	 365

User-Defined Literals	 365
Standard User-Defined Literals 	 367

Header Files	 367
C Utilities	 369

Variable-Length Argument Lists	 369
Accessing the Arguments	 370
Why You Shouldn’t Use C-Style Variable-Length Argument Lists	 371

Preprocessor Macros	 371
Summary	 372

Chapter 12: WRITING GENERIC CODE WITH TEMPLATES	 373

Overview of Templates	 374
Class Templates	 375

Writing a Class Template	 375
Coding without Templates	 375
A Template Grid Class	 378
Using the Grid Template	 382

Angle Brackets	 383
How the Compiler Processes Templates	 383

Selective Instantiation	 384
Template Requirements on Types	 384

Distributing Template Code between Files	 384
Template Definitions in Header Files	 384
Template Definitions in Source Files	 385

Template Parameters	 386
Non-type Template Parameters	 387

xxix

CONTENTS

Default Values for Type Parameters	 389
Template Parameter Deduction for Constructors	 389

Method Templates	 391
Method Templates with Non-type Parameters	 393

Class Template Specialization	 395
Deriving from Class Templates	 397
Inheritance versus Specialization	 399
Alias Templates	 399

Function Templates	 400
Function Template Specialization	 401
Function Template Overloading	 402

Function Template Overloading and Specialization Together	 403
Friend Function Templates of Class Templates	 403
More on Template Parameter Deduction	 404
Return Type of Function Templates	 405

Variable Templates	 407
Summary	 407

Chapter 13: DEMYSTIFYING C++ I/O	 409

Using Streams	 410
What Is a Stream, Anyway?	 410
Stream Sources and Destinations	 411
Output with Streams	 411

Output Basics	 412
Methods of Output Streams	 412
Handling Output Errors	 414
Output Manipulators	 415

Input with Streams	 417
Input Basics	 417
Handling Input Errors 	 418
Input Methods	 419
Input Manipulators	 423

Input and Output with Objects	 423
String Streams	 425
File Streams	 426

Text Mode versus Binary Mode	 427
Jumping around with seek() and tell()	 428
Linking Streams Together	 430

Bidirectional I/O	 431
Summary	 432

xxx

CONTENTS

Chapter 14: HANDLING ERRORS	 433

Errors and Exceptions	 434
What Are Exceptions, Anyway?	 434
Why Exceptions in C++ Are a Good Thing	 434
Recommendation	 436

Exception Mechanics	 436
Throwing and Catching Exceptions	 437
Exception Types	 439
Catching Exception Objects by const Reference	 440
Throwing and Catching Multiple Exceptions	 441

Matching and const	 443
Matching Any Exception	 443

Uncaught Exceptions	 444
noexcept	 445
Throw Lists (Deprecated/Removed)	 446

Exceptions and Polymorphism	 446
The Standard Exception Hierarchy	 446
Catching Exceptions in a Class Hierarchy	 448
Writing Your Own Exception Classes	 449
Nested Exceptions	 452

Rethrowing Exceptions	 454
Stack Unwinding and Cleanup	 456

Use Smart Pointers	 457
Catch, Cleanup, and Rethrow	 458

Common Error-Handling Issues	 459
Memory Allocation Errors	 459

Non-throwing new	 460
Customizing Memory Allocation Failure Behavior	 460

Errors in Constructors	 462
Function-Try-Blocks for Constructors	 464
Errors in Destructors	 467

Putting It All Together	 468
Summary	 472

Chapter 15: OVERLOADING C++ OPERATORS	 473

Overview of Operator Overloading	 474
Why Overload Operators?	 474
Limitations to Operator Overloading	 474
Choices in Operator Overloading	 475

Method or Global Function	 475

xxxi

CONTENTS

Choosing Argument Types	 476
Choosing Return Types	 477
Choosing Behavior	 477

Operators You Shouldn’t Overload	 477
Summary of Overloadable Operators	 478
Rvalue References	 481
Relational Operators	 482

Overloading the Arithmetic Operators	 483
Overloading Unary Minus and Unary Plus	 483
Overloading Increment and Decrement	 483

Overloading the Bitwise and Binary Logical Operators	 484
Overloading the Insertion and Extraction Operators	 485
Overloading the Subscripting Operator	 486

Providing Read-Only Access with operator[]	 489
Non-integral Array Indices	 490

Overloading the Function Call Operator	 491
Overloading the Dereferencing Operators	 492

Implementing operator*	 494
Implementing operator–>	 494
What in the World Are operator.* and operator–>*?	 495

Writing Conversion Operators	 496
Solving Ambiguity Problems with Explicit Conversion Operators	 497
Conversions for Boolean Expressions	 498

Overloading the Memory Allocation and Deallocation Operators	 500
How new and delete Really Work	 500

The New-Expression and operator new	 501
The Delete-Expression and operator delete	 501

Overloading operator new and operator delete	 501
Explicitly Deleting/Defaulting operator new and operator delete	 504
Overloading operator new and operator delete with Extra Parameters	 504
Overloading operator delete with Size of Memory as Parameter	 505

Summary	 506

Chapter 16: OVERVIEW OF THE C++ STANDARD LIBRARY	 507

Coding Principles	 508
Use of Templates	 508
Use of Operator Overloading	 509

Overview of the C++ Standard Library	 509
Strings	 509
Regular Expressions	 510
I/O Streams	 510

xxxii

CONTENTS

Smart Pointers	 510
Exceptions	 510
Mathematical Utilities	 511
Time Utilities	 512
Random Numbers	 512
Initializer Lists	 512
Pair and Tuple	 512
optional, variant, and any	 512
Function Objects	 513
Filesystem	 513
Multithreading	 513
Type Traits	 513
Standard Integer Types	 514
Containers	 514

vector	 514
list	 515
forward_list	 515
deque	 516
array	 516
queue	 516
priority_queue	 516
stack	 517
set and multiset	 517
map and multimap	 518
Unordered Associative Containers/Hash Tables	 518
bitset	 519
Summary of Standard Library Containers	 519

Algorithms	 522
Non-modifying Sequence Algorithms	 523
Modifying Sequence Algorithms	 525
Operational Algorithms	 527
Swap and Exchange Algorithms	 527
Partition Algorithms	 527
Sorting Algorithms	 528
Binary Search Algorithms	 529
Set Algorithms	 529
Heap Algorithms	 529
Minimum/Maximum Algorithms	 530
Numerical Processing Algorithms	 530

xxxiii

CONTENTS

Permutation Algorithms	 532
Choosing an Algorithm	 532

What’s Missing from the Standard Library	 532
Summary	 533

Chapter 17: UNDERSTANDING CONTAINERS AND ITERATORS	 535

Containers Overview	 536
Requirements on Elements	 537
Exceptions and Error Checking	 539
Iterators	 539

Sequential Containers	 542
vector	 542

vector Overview	 542
vector Details	 544
vector Example: A Round-Robin Class	 556

The vector<bool> Specialization	 561
deque	 562
list	 562

Accessing Elements	 562
Iterators	 562
Adding and Removing Elements	 563
list Size	 563
Special list Operations	 563
list Example: Determining Enrollment	 565

forward_list	 566
array	 568

Container Adaptors	 569
queue	 570

queue Operations	 570
queue Example: A Network Packet Buffer	 570

priority_queue	 572
priority_queue Operations	 573
priority_queue Example: An Error Correlator	 573

stack	 575
stack Operations	 575
stack Example: Revised Error Correlator	 575

Ordered Associative Containers	 576
The pair Utility Class	 576

xxxiv

CONTENTS

map	 577
Constructing maps	 577
Inserting Elements	 578
map Iterators	 580
Looking Up Elements	 581
Removing Elements	 582
Nodes	 582
map Example: Bank Account	 583

multimap	 585
multimap Example: Buddy Lists	 586

set	 589
set Example: Access Control List	 589

multiset	 590
Unordered Associative Containers or Hash Tables	 591

Hash Functions	 591
unordered_map	 593

unordered_map Example: Phone Book	 596
unordered_multimap	 597
unordered_set/unordered_multiset	 598

Other Containers	 598
Standard C-Style Arrays	 598
Strings	 599
Streams	 600
bitset	 600

bitset Basics	 600
Bitwise Operators	 601
bitset Example: Representing Cable Channels	 601

Summary	 605

Chapter 18: MASTERING STANDARD LIBRARY ALGORITHMS	 607

Overview of Algorithms	 608
The find and find_if Algorithms	 608
The accumulate Algorithm	 611
Move Semantics with Algorithms	 612

std::function	 612
Lambda Expressions	 614

Syntax	 614
Generic Lambda Expressions	 617
Lambda Capture Expressions	 618
Lambda Expressions as Return Type	 618
Lambda Expressions as Parameters	 619

xxxv

CONTENTS

Examples with Standard Library Algorithms	 619
count_if	 619
generate	 620

Function Objects	 620
Arithmetic Function Objects	 621

Transparent Operator Functors 	 622
Comparison Function Objects	 622
Logical Function Objects	 623
Bitwise Function Objects	 624
Adaptor Function Objects	 624

Binders	 624
Negators	 626
Calling Member Functions	 628

Invokers	 629
Writing Your Own Function Objects	 629

Algorithm Details	 630
Iterators	 631
Non-modifying Sequence Algorithms	 631

Search Algorithms	 631
Specialized Searchers	 633
Comparison Algorithms	 634
Counting Algorithms	 636

Modifying Sequence Algorithms	 636
transform	 637
copy	 638
move	 640
replace	 641
remove	 641
unique	 643
sample	 643
reverse	 644
shuffle	 644

Operational Algorithms	 644
for_each	 644
for_each_n	 646

Swap and Exchange Algorithms	 646
swap	 646
exchange	 647

Partition Algorithms	 647
Sorting Algorithms	 649
Binary Search Algorithms	 649

xxxvi

CONTENTS

Set Algorithms	 650
Minimum/Maximum Algorithms	 653
Parallel Algorithms	 655
Numerical Processing Algorithms	 655

inner_product	 656
iota	 656
gcd and lcm	 656
reduce	 656
transform_reduce	 657
Scan Algorithms	 657

Algorithms Example: Auditing Voter Registrations	 657
The Voter Registration Audit Problem Statement	 658
The auditVoterRolls Function	 658
The getDuplicates Function	 659
Testing the auditVoterRolls Function	 660

Summary	 661

Chapter 19: STRING LOCALIZATION AND
REGULAR EXPRESSIONS	 663

Localization	 663
Localizing String Literals	 664
Wide Characters	 664
Non-Western Character Sets	 665
Conversions	 667
Locales and Facets	 668

Using Locales	 668
Character Classification	 669
Character Conversion	 670
Using Facets	 670

Regular Expressions	 671
ECMAScript Syntax	 672

Anchors	 673
Wildcards	 673
Alternation	 673
Grouping	 673
Repetition	 673
Precedence	 674
Character Set Matches	 674
Word Boundaries	 676
Back References	 677

xxxvii

CONTENTS

Lookahead	 677
Regular Expressions and Raw String Literals	 677

The regex Library	 678
regex_match()	 679

regex_match() Example	 680
regex_search()	 682

regex_search() Example	 683
regex_iterator	 683

regex_iterator Example	 684
regex_token_iterator	 685

regex_token_iterator Examples	 685
regex_replace()	 687

regex_replace() Examples	 688
Summary	 690

Chapter 20: ADDITIONAL LIBRARY UTILITIES	 691

Ratios	 691
The Chrono Library	 694

Duration	 694
Clock	 698
Time Point	 700

Random Number Generation	 702
Random Number Engines	 703
Random Number Engine Adaptors	 705
Predefined Engines and Engine Adaptors	 705
Generating Random Numbers	 706
Random Number Distributions	 708

optional	 711
variant	 712
any	 713
Tuples	 714

Decompose Tuples	 717
Structured Bindings 	 717
tie	 717

Concatenation	 718
Comparisons	 718
make_from_tuple	 719
apply	 719

Filesystem Support Library	 720
Path	 720

xxxviii

CONTENTS

Directory Entry	 721
Helper Functions	 721
Directory Iteration	 722

Summary	 723

Part IV: MASTERING ADVANCED FEATURES OF C++

Chapter 21: CUSTOMIZING AND EXTENDING THE STANDARD
LIBRARY	 727

Allocators	 728
Stream Iterators	 729

Output Stream Iterator	 729
Input Stream Iterator	 730

Iterator Adaptors	 730
Reverse Iterators	 730
Insert Iterators	 731
Move Iterators	 733

Extending the Standard Library	 735
Why Extend the Standard Library?	 735
Writing a Standard Library Algorithm	 735

find_all()	 735
Iterator Traits	 737

Writing a Standard Library Container	 737
A Basic Hash Map	 738
Making hash_map a Standard Library Container	 747
Note on Allocators	 760
Note on Reversible Containers	 760
Making hash_map an Unordered Associative Container	 760
Note on Sequential Containers	 773

Summary	 773

Chapter 22: ADVANCED TEMPLATES	 775

More about Template Parameters	 776
More about Template Type Parameters	 776
Introducing Template Template Parameters	 778
More about Non-type Template Parameters	 780

Class Template Partial Specialization	 782
Emulating Function Partial Specialization with Overloading	 786
Template Recursion	 787

An N-Dimensional Grid: First Attempt	 788
A Real N-Dimensional Grid	 789

xxxix

CONTENTS

Variadic Templates	 792
Type-Safe Variable-Length Argument Lists	 792
Variable Number of Mixin Classes	 795
Folding Expressions	 796

Metaprogramming	 797
Factorial at Compile Time	 798
Loop Unrolling	 799
Printing Tuples	 800

constexpr if	 802
Using a Compile-Time Integer Sequence with Folding	 803

Type Traits	 803
Using Type Categories	 805
Using Type Relations	 807
Using enable_if	 808
Using constexpr if to Simplify enable_if Constructs	 810
Logical Operator Traits	 811

Metaprogramming Conclusion	 811
Summary	 812

Chapter 23: MULTITHREADED PROGRAMMING WITH C++	 813

Introduction	 814
Race Conditions	 815
Tearing	 817
Deadlocks	 817
False-Sharing	 818

Threads	 819
Thread with Function Pointer	 819
Thread with Function Object	 820
Thread with Lambda	 822
Thread with Member Function	 823
Thread Local Storage	 823
Cancelling Threads	 824
Retrieving Results from Threads	 824
Copying and Rethrowing Exceptions	 824

Atomic Operations Library	 827
Atomic Type Example	 828
Atomic Operations	 830

Mutual Exclusion	 831
Mutex Classes	 831

Non-timed Mutex Classes	 832
Timed Mutex Classes	 832

xl

CONTENTS

Locks	 833
lock_guard	 833
unique_lock	 834
shared_lock	 835
Acquiring Multiple Locks at Once	 835
scoped_lock	 835

std::call_once	 836
Examples Using Mutual Exclusion Objects	 837

Thread-Safe Writing to Streams	 837
Using Timed Locks	 838
Double-Checked Locking	 839

Condition Variables	 840
Spurious Wake-Ups	 841
Using Condition Variables	 841

Futures	 843
std::promise and std::future	 843
std::packaged_task	 844
std::async	 845
Exception Handling	 846
std::shared_future	 847

Example: Multithreaded Logger Class	 848
Thread Pools	 853
Threading Design and Best Practices	 853
Summary	 855

Part V: C++ SOFTWARE ENGINEERING

Chapter 24: MAXIMIZING SOFTWARE ENGINEERING METHODS	 859

The Need for Process	 860
Software Life Cycle Models	 861

The Waterfall Model	 861
Benefits of the Waterfall Model	 862
Drawbacks of the Waterfall Model	 862

Sashimi Model	 863
Spiral-Like Models	 863

Benefits of a Spiral-Like Model	 864
Drawbacks of a Spiral-Like Model	 866

Agile	 866
Software Engineering Methodologies	 867

The Unified Process	 867
The Rational Unified Process	 868

xli

CONTENTS

RUP as a Product	 868
RUP as a Process	 869
RUP in Practice	 869

Scrum	 869
Roles	 870
The Process	 870
Benefits of Scrum	 871
Drawbacks of Scrum	 872

Extreme Programming	 872
XP in Theory	 872
XP in Practice	 876

Software Triage	 876
Building Your Own Process and Methodology	 877

Be Open to New Ideas	 877
Bring New Ideas to the Table	 877
Recognize What Works and What Doesn’t Work	 877
Don’t Be a Renegade	 878

Source Code Control	 878
Summary	 880

Chapter 25: WRITING EFFICIENT C++	 881

Overview of Performance and Efficiency	 882
Two Approaches to Efficiency	 882
Two Kinds of Programs	 882
Is C++ an Inefficient Language?	 882

Language-Level Efficiency	 883
Handle Objects Efficiently	 884

Pass-by-Reference	 884
Return-by-Reference	 886
Catch Exceptions by Reference	 886
Use Move Semantics	 886
Avoid Creating Temporary Objects	 886
The Return-Value Optimization	 887

Pre-allocate Memory	 888
Use Inline Methods and Functions	 888

Design-Level Efficiency	 889
Cache Where Necessary	 889
Use Object Pools	 890

An Object Pool Implementation	 891
Using the Object Pool	 893

xlii

CONTENTS

Profiling	 894
Profiling Example with gprof	 895

First Design Attempt	 895
Profiling the First Design Attempt	 898
Second Design Attempt	 900
Profiling the Second Design Attempt	 901

Profiling Example with Visual C++ 2017	 902
Summary	 907

Chapter 26: BECOMING ADEPT AT TESTING	 909

Quality Control	 910
Whose Responsibility Is Testing?	 910
The Life Cycle of a Bug	 910
Bug-Tracking Tools	 912

Unit Testing	 913
Approaches to Unit Testing	 914
The Unit Testing Process	 915

Define the Granularity of Your Tests	 915
Brainstorm the Individual Tests	 917
Create Sample Data and Results	 918
Write the Tests	 918
Run the Tests	 919

Unit Testing in Action	 919
Introducing the Microsoft Visual C++ Testing Framework	 920
Writing the First Test	 921
Building and Running Tests	 922
Negative Tests	 923
Adding the Real Tests	 923
Debugging Tests	 927
Basking in the Glorious Light of Unit Test Results	 927

Higher-Level Testing	 927
Integration Tests	 928

Sample Integration Tests	 928
Methods of Integration Testing	 929

System Tests	 929
Regression Tests	 930

Tips for Successful Testing	 930
Summary	 931

xliii

CONTENTS

Chapter 27: CONQUERING DEBUGGING	 933

The Fundamental Law of Debugging	 934
Bug Taxonomies	 934
Avoiding Bugs	 934
Planning for Bugs	 935

Error Logging	 935
Debug Traces	 937

Debug Mode	 937
Ring Buffers	 942

Assertions	 945
Crash Dumps	 946

Static Assertions	 947
Debugging Techniques	 948

Reproducing Bugs	 948
Debugging Reproducible Bugs	 949
Debugging Nonreproducible Bugs	 950
Debugging Regressions	 951
Debugging Memory Problems	 951

Categories of Memory Errors	 952
Tips for Debugging Memory Errors	 954

Debugging Multithreaded Programs	 956
Debugging Example: Article Citations	 957

Buggy Implementation of an ArticleCitations Class	 957
Testing the ArticleCitations class	 960

Lessons from the ArticleCitations Example	 969
Summary	 969

Chapter 28: INCORPORATING DESIGN TECHNIQUES AND
FRAMEWORKS	 971

“I Can Never Remember How to…”	 972
…Write a Class	 972
…Derive from an Existing Class	 974
…Use the Copy-and-Swap Idiom	 975
…Throw and Catch Exceptions	 976
…Read from a File	 976
…Write to a File	 977
…Write a Template Class	 977

There Must Be a Better Way	 979
Resource Acquisition Is Initialization	 979
Double Dispatch	 981

xliv

CONTENTS

Attempt #1: Brute Force	 982
Attempt #2: Single Polymorphism with Overloading	 983
Attempt #3: Double Dispatch	 984

Mixin Classes	 985
Designing a Mixin Class	 986
Implementing a Mixin Class	 987
Using a Mixin Class	 988

Object-Oriented Frameworks	 988
Working with Frameworks	 988
The Model-View-Controller Paradigm	 989

Summary	 990

Chapter 29: APPLYING DESIGN PATTERNS	 991

The Iterator Pattern	 992
The Singleton Pattern	 993

Example: A Logging Mechanism	 993
Implementation of a Singleton	 994
Using a Singleton	 997

The Abstract Factory Pattern	 997
Example: A Car Factory Simulation	 998
Implementation of a Factory	 999
Using a Factory	 1002
Other Uses of Factories	 1003

The Proxy Pattern	 1004
Example: Hiding Network Connectivity Issues	 1004
Implementation of a Proxy	 1004
Using a Proxy	 1005

The Adaptor Pattern	 1006
Example: Adapting a Logger Class	 1006
Implementation of an Adaptor	 1007
Using an Adaptor	 1008

The Decorator Pattern	 1008
Example: Defining Styles in Web Pages	 1008
Implementation of a Decorator	 1009
Using a Decorator	 1010

The Chain of Responsibility Pattern	 1010
Example: Event Handling	 1011
Implementation of a Chain of Responsibility	 1011
Chain of Responsibility without Hierarchy	 1012

The Observer Pattern	 1014
Implementation of an Observer	 1014

xlv

CONTENTS

Implementation of an Observable	 1015
Using an Observer	 1016

Summary	 1016

Chapter 30: DEVELOPING CROSS-PLATFORM AND CROSS-
LANGUAGE APPLICATIONS	 1017

Cross-Platform Development	 1018
Architecture Issues	 1018

Size of Integers	 1018
Binary Compatibility	 1019
Address Sizes	 1020
Byte Order	 1020

Implementation Issues	 1021
Compiler Quirks and Extensions	 1021
Library Implementations	 1022

Platform-Specific Features	 1022
Cross-Language Development	 1024

Mixing C and C++	 1024
Shifting Paradigms	 1024
Linking with C Code	 1028
Calling C++ Code from C#	 1030
Calling C++ Code from Java with JNI	 1031
Calling Scripts from C++ Code	 1033
Calling C++ Code from Scripts	 1034

A Practical Example: Encrypting Passwords	 1034
Calling Assembly Code from C++	 1036

Summary	 1038

Appendix A: C++ INTERVIEWS	 1039

Appendix B: ANNOTATED BIBLIOGRAPHY	 1063

Appendix C: STANDARD LIBRARY HEADER FILES	 1075

Appendix D: INTRODUCTION TO UML	 1083

INDEX	 1087

INTRODUCTION

For many years, C++ has served as the de facto language for writing fast, powerful, and enterprise-
class object-oriented programs. As popular as C++ has become, the language is surprisingly difficult
to grasp in full. There are simple, but powerful, techniques that professional C++ programmers use
that don’t show up in traditional texts, and there are useful parts of C++ that remain a mystery even
to experienced C++ programmers.

Too often, programming books focus on the syntax of the language instead of its real-world use.
The typical C++ text introduces a major part of the language in each chapter, explaining the syntax
and providing an example. Professional C++ does not follow this pattern. Instead of giving you just
the nuts and bolts of the language with little practical context, this book will teach you how to use
C++ in the real world. It will show you the little-known features that will make your life easier, and
the programming techniques that separate novices from professional programmers.

WHO THIS BOOK IS FOR

Even if you have used the language for years, you might still be unfamiliar with the more-advanced
features of C++, or you might not be using the full capabilities of the language. Perhaps you write
competent C++ code, but would like to learn more about design and good programming style in
C++. Or maybe you’re relatively new to C++, but want to learn the “right” way to program from the
start. This book will meet those needs and bring your C++ skills to the professional level.

Because this book focuses on advancing from basic or intermediate knowledge of C++ to becoming
a professional C++ programmer, it assumes that you have some knowledge of the language. Chapter
1 covers the basics of C++ as a refresher, but it is not a substitute for actual training and use of the
language. If you are just starting with C++, but you have significant experience in another program-
ming language such as C, Java, or C#, you should be able to pick up most of what you need from
Chapter 1.

In any case, you should have a solid foundation in programming fundamentals. You should
know about loops, functions, and variables. You should know how to structure a program, and
you should be familiar with fundamental techniques such as recursion. You should have some
knowledge of common data structures such as queues, and useful algorithms such as sorting and
searching. You don’t need to know about object-oriented programming just yet—that is covered in
Chapter 5.

You will also need to be familiar with the compiler you will be using to develop your code. Two
compilers, Microsoft Visual C++ and GCC, are introduced later in this introduction. For other com-
pilers, refer to the documentation that came with your compiler.

xlviii

INTRODUCTION

WHAT THIS BOOK COVERS

Professional C++ uses an approach to C++ programming that will both increase the quality of your
code and improve your programming efficiency. You will find discussions on new C++17 features
throughout this fourth edition. These features are not just isolated to a few chapters or sections;
instead, examples have been updated to use new features when appropriate.

Professional C++ teaches you more than just the syntax and language features of C++. It also
emphasizes programming methodologies, reusable design patterns, and good programming style.
The Professional C++ methodology incorporates the entire software development process, from
designing and writing code, to debugging, and working in groups. This approach will enable you to
master the C++ language and its idiosyncrasies, as well as take advantage of its powerful capabilities
for large-scale software development.

Imagine users who have learned all of the syntax of C++ without seeing a single example of its use.
They know just enough to be dangerous! Without examples, they might assume that all code should
go in the main() function of the program, or that all variables should be global—practices that are
generally not considered hallmarks of good programming.

Professional C++ programmers understand the correct way to use the language, in addition to the
syntax. They recognize the importance of good design, the theories of object-oriented program-
ming, and the best ways to use existing libraries. They have also developed an arsenal of useful code
and reusable ideas.

By reading and understanding this book, you will become a professional C++ programmer. You will
expand your knowledge of C++ to cover lesser-known and often misunderstood language features.
You will gain an appreciation for object-oriented design, and acquire top-notch debugging skills.
Perhaps most important, you will finish this book armed with a wealth of reusable ideas that you
can actually apply to your daily work.

There are many good reasons to make the effort to be a professional C++ programmer, as opposed
to a programmer who knows C++. Understanding the true workings of the language will improve
the quality of your code. Learning about different programming methodologies and processes will
help you to work better with your team. Discovering reusable libraries and common design patterns
will improve your daily efficiency and help you stop reinventing the wheel. All of these lessons will
make you a better programmer and a more valuable employee. While this book can’t guarantee you
a promotion, it certainly won’t hurt.

HOW THIS BOOK IS STRUCTURED

This book is made up of five parts.

Part I, “Introduction to Professional C++,” begins with a crash course in C++ basics to ensure a
foundation of C++ knowledge. Following the crash course, Part I goes deeper into working with
strings and string views because strings are used extensively in most examples throughout the book.
The last chapter of Part I explores how to write readable C++ code.

xlix

INTRODUCTION

Part II, “Professional C++ Software Design,” discusses C++ design methodologies. You will read
about the importance of design, the object-oriented methodology, and the importance of code reuse.

Part III, “C++ Coding the Professional Way,” provides a technical tour of C++ from the profes-
sional point of view. You will read about the best ways to manage memory in C++, how to create
reusable classes, and how to leverage important language features such as inheritance. You will also
learn about the unusual and quirky parts of the language, techniques for input and output, error
handling, string localization, and how to work with regular expressions. You will read about how
to implement operator overloading, and how to write templates. This part also explains the C++
Standard Library, including containers, iterators, and algorithms. You will also read about some
additional libraries that are available in the standard, such as the libraries to work with time, ran-
dom numbers, and the filesystem.

Part IV, “Mastering Advanced Features of C++,” demonstrates how you can get the most out of
C++. This part of the book exposes the mysteries of C++ and describes how to use some of its more-
advanced features. You will read about how to customize and extend the C++ Standard Library to
your needs, advanced details on template programming, including template metaprogramming, and
how to use multithreading to take advantage of multiprocessor and multicore systems.

Part V, “C++ Software Engineering,” focuses on writing enterprise-quality software. You’ll read
about the engineering practices being used by programming organizations today; how to write effi-
cient C++ code; software testing concepts, such as unit testing and regression testing; techniques
used to debug C++ programs; how to incorporate design techniques, frameworks, and conceptual
object-oriented design patterns into your own code; and solutions for cross-language and cross-
platform code.

The book concludes with a useful chapter-by-chapter guide to succeeding in a C++ technical inter-
view, an annotated bibliography, a summary of the C++ header files available in the standard, and a
brief introduction to the Unified Modeling Language (UML).

This book is not a reference of every single class, method, and function available in C++. The book
C++ Standard Library Quick Reference by Peter Van Weert and Marc Gregoire1 is a condensed
reference to all essential data structures, algorithms, and functions provided by the C++ Standard
Library. Appendix B lists a couple more references. Two excellent online references are:

➤➤ www.cppreference.com

You can use this reference online, or download an offline version for use when you are not
connected to the Internet.

➤➤ www.cplusplus.com/reference/

When I refer to a “Standard Library Reference” in this book, I am referring to one of these detailed
C++ references.

1Apress, 2016. ISBN: 978-1-4842-1875-4.

l

INTRODUCTION

WHAT YOU NEED TO USE THIS BOOK

All you need to use this book is a computer with a C++ compiler. This book focuses only on parts of
C++ that have been standardized, and not on vendor-specific compiler extensions.

Note that this book includes new features introduced with the C++17 standard. At the time of this
writing, some compilers are not yet fully C++17 compliant.

You can use whichever C++ compiler you like. If you don’t have a C++ compiler yet, you can
download one for free. There are a lot of choices. For example, for Windows, you can download
Microsoft Visual Studio 2017 Community Edition, which is free and includes Visual C++. For
Linux, you can use GCC or Clang, which are also free.

The following two sections briefly explain how to use Visual C++ and GCC. Refer to the documen-
tation that came with your compiler for more details.

Microsoft Visual C++
First, you need to create a project. Start Visual C++ and click File ➪ New ➪ Project. In the project
template tree on the left, select Visual C++ ➪ Win32 (or Windows Desktop). Then select the Win32
Console Application (or Windows Console Application) template in the list in the middle of the win-
dow. At the bottom, specify a name for the project and a location where to save it, and click OK.
A wizard opens2. In this wizard, click Next, select Console Application, Empty Project, and click
Finish.

Once your new project is loaded, you can see a list of project files in the Solution Explorer. If this
docking window is not visible, go to View ➪ Solution Explorer. You can add new files or existing
files to a project by right-clicking the project name in the Solution Explorer and then clicking Add ➪
New Item or Add ➪ Existing Item.

Use Build ➪ Build Solution to compile your code. When it compiles without errors, you can run it
with Debug ➪ Start Debugging.

If your program exits before you have a chance to view the output, use Debug ➪ Start without
Debugging. This adds a pause to the end of the program so you can view the output.

At the time of this writing, Visual C++ 2017 does not yet automatically enable C++17 features.
To enable C++17 features, in the Solution Explorer window, right-click your project and click
Properties. In the properties window, go to Configuration Properties ➪ C/C++ ➪ Language, and set
the C++ Language Standard option to “ISO C++17 Standard” or “ISO C++ Latest Draft Standard,”
whichever is available in your version of Visual C++. These options are only accessible if your proj-
ect contains at least one .cpp file.

Visual C++ supports so-called precompiled headers, a topic outside the scope of this book. In gen-
eral, I recommend using precompiled headers if your compiler supports them. However, the source

2Depending on your version of VC++ 2017, you might not see any wizard. Instead, a new project will be
created automatically containing four files: stdafx.h, stdafx.cpp, targetver.h, and <projectname>.cpp. If that
is the case, and you want to compile source code files from the downloadable source archive for this book,
then you have to select those files in the Solution Explorer (View ➪ Solution Explorer) and delete them.

li

INTRODUCTION

code files in the downloadable source code archive do not use precompiled headers, so you have to
disable that feature for them to compile without errors. In the Solution Explorer window, right-click
your project and click Properties. In the properties window, go to Configuration Properties ➪
C/C++ ➪ Precompiled Headers, and set the Precompiled Header option to “Not Using Precompiled
Headers.”

GCC
Create your source code files with any text editor you prefer and save them to a directory. To
compile your code, open a terminal and run the following command, specifying all your .cpp files
that you want to compile:

gcc -lstdc++ -std=c++17 -o <executable_name> <source1.cpp> [source2.cpp ...]

The -std=c++17 option is required to tell GCC to enable C++17 support.

For example, you can compile the AirlineTicket example from Chapter 1 by changing to the
directory containing the code and running the following command:

gcc –lstdc++ -std=c++17 -o AirlineTicket AirlineTicket.cpp AirlineTicketTest.cpp

When it compiles without errors, you can run it as follows:

./AirlineTicket

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, a number of conventions
are used throughout this book.

WARNING  Boxes like this one hold important, not-to-be-forgotten information
that is directly relevant to the surrounding text.

NOTE  Tips, hints, tricks, and asides to the current discussion are placed in
boxes like this one.

As for styles in the text:

Important words are highlighted when they are introduced.

Keyboard strokes are shown like this: Ctrl+A.

Filenames and code within the text are shown like so: monkey.cpp.

lii

INTRODUCTION

URLs are shown like this: www.wrox.com.

Code is presented in three different ways:

// Comments in code are shown like this.
In code examples, new and important code is highlighted like this.
Code that's less important in the present context or that has been shown before is
formatted like this.

Paragraphs or sections that are specific to the C++17 standard have a little C++17 icon on the left,
just as this paragraph does. C++11 and C++14 features are not marked with any icon.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code files that accompany the book. However, I suggest you type in all
the code manually because it greatly benefits the learning process and your memory. All of the
source code used in this book is available for download at www.wiley.com/go/proc++4e.

Alternatively, you can go to the main Wrox code download page at www.wrox.com/dynamic/books/
download.aspx to see the code that is available for this book and all other Wrox books.

NOTE  Because many books have similar titles, you may find it easiest to search
by ISBN; for this book, the ISBN is 978-1-119-42130-6.

Once you’ve downloaded the code, just decompress it with your favorite decompression tool.

ERRATA

At Wrox, we make every effort to ensure that there are no errors in the text or in the code of our
books. However, no one is perfect, and mistakes do occur. If you find an error in one of our books,
such as a spelling mistake or faulty piece of code, we would be very grateful for your feedback. By
sending in errata, you may save another reader hours of frustration, and at the same time you will
be helping us provide even higher-quality information.

To find the errata page for this book, go to www.wrox.com and locate the title by using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this
page you can view all errata that has been submitted for this book and posted by Wrox editors. A
complete book list, including links to each book’s errata, is also available at www.wrox.com/misc-
pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

C++17

PART I
Introduction to Professional C++

▸▸ CHAPTER 1: A Crash Course in C++ and the Standard Library

▸▸ CHAPTER 2: Working with Strings and String Views

▸▸ CHAPTER 3: Coding with Style

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

A Crash Course in C++ and the
Standard Library

WHAT’S IN THIS CHAPTER?

➤➤ A brief overview of the most important parts and syntax of the
C++ language and the Standard Library

➤➤ The basics of smart pointers

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of the chapter’s
code download on this book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

The goal of this chapter is to cover briefly the most important parts of C++ so that you have
a base of knowledge before embarking on the rest of this book. This chapter is not a com-
prehensive lesson in the C++ programming language or the Standard Library. Certain basic
points, such as what a program is and what recursion is, are not covered. Esoteric points, such
as the definition of a union, or the volatile keyword, are also omitted. Certain parts of the
C language that are less relevant in C++ are also left out, as are parts of C++ that get in-depth
coverage in later chapters.

This chapter aims to cover the parts of C++ that programmers encounter every day. For
example, if you’ve been away from C++ for a while and you’ve forgotten the syntax of a for
loop, you’ll find that syntax in this chapter. Also, if you’re fairly new to C++ and don’t under-
stand what a reference variable is, you’ll learn about that kind of variable here, as well. You’ll
also learn the basics on how to use the functionality available in the Standard Library, such as
vector containers, string objects, and smart pointers.

1

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

4  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

If you already have significant experience with C++, skim this chapter to make sure that there
aren’t any fundamental parts of the language on which you need to brush up. If you’re new to C++,
read this chapter carefully and make sure you understand the examples. If you need additional
introductory information, consult the titles listed in Appendix B.

THE BASICS OF C++

The C++ language is often viewed as a “better C” or a “superset of C.” It was mainly designed to
be an object-oriented C, commonly called as “C with classes.” Later on, many of the annoyances
and rough edges of the C language were addressed as well. Because C++ is based on C, much of the
syntax you’ll see in this section will look familiar to you if you are an experienced C programmer.
The two languages certainly have their differences, though. As evidence, The C++ Programming
Language by C++ creator Bjarne Stroustrup (Fourth Edition; Addison-Wesley Professional, 2013)
weighs in at 1,368 pages, while Kernighan and Ritchie’s The C Programming Language (Second
Edition; Prentice Hall, 1988) is a scant 274 pages. So, if you’re a C programmer, be on the lookout
for new or unfamiliar syntax!

The Obligatory Hello, World
In all its glory, the following code is the simplest C++ program you’re likely to encounter:

// helloworld.cpp
#include <iostream>

int main()
{
 std::cout << "Hello, World!" << std::endl;
 return 0;
}

This code, as you might expect, prints the message, “Hello, World!” on the screen. It is a simple
program and unlikely to win any awards, but it does exhibit the following important concepts about
the format of a C++ program:

➤➤ Comments

➤➤ Preprocessor directives

➤➤ The main() function

➤➤ I/O streams

These concepts are briefly explained in the following sections.

Comments
The first line of the program is a comment, a message that exists for the programmer only and is
ignored by the compiler. In C++, there are two ways to delineate a comment. In the preceding and
following examples, two slashes indicate that whatever follows on that line is a comment.

// helloworld.cpp

The Basics of C++  ❘  5

The same behavior (this is to say, none) would be achieved by using a multiline comment. Multiline
comments start with /* and end with */. The following code shows a multiline comment in action
(or, more appropriately, inaction).

/* This is a multiline comment.
 The compiler will ignore it.
 */

Comments are covered in detail in Chapter 3.

Preprocessor Directives
Building a C++ program is a three-step process. First, the code is run through a preprocessor,
which recognizes meta-information about the code. Next, the code is compiled, or translated into
machine-readable object files. Finally, the individual object files are linked together into a single
application.

Directives aimed at the preprocessor start with the # character, as in the line #include <iostream>
in the previous example. In this case, an #include directive tells the preprocessor to take everything
from the <iostream> header file and make it available to the current file. The most common use of
header files is to declare functions that will be defined elsewhere. A function declaration tells the
compiler how a function is called, declaring the number and types of parameters, and the function
return type. A definition contains the actual code for the function. In C++, declarations usually go
into header files, typically with extension .h, while definitions usually go into source files, typically
with extension .cpp. A lot of other programming languages, such as C# and Java, do not separate
declarations and definitions into separate files.

The <iostream> header declares the input and output mechanisms provided by C++. If the program
did not include that header, it would be unable to perform its only task of outputting text.

NOTE  In C, the names of the Standard Library header files usually end in .h,
such as <stdio.h>, and namespaces are not used.

In C++, the .h suffix is omitted for Standard Library headers, such as
<iostream>, and everything is defined in the std namespace or a sub-namespace
of std.

The Standard Library headers from C still exist in C++ but in two versions:

➤➤ The new and recommended versions without a .h suffix but with a c pre-
fix. These versions put everything in the std namespace (for example,
<cstdio>).

➤➤ The old versions with the .h suffix. These versions do not use namespaces
(for example, <stdio.h>).

6  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

The following table shows some of the most common preprocessor directives.

PREPROCESSOR

DIRECTIVE

FUNCTIONALITY COMMON USES

#include [file] The specified file is inserted into
the code at the location of the
directive.

Almost always used to include header
files so that code can make use of
functionality defined elsewhere.

#define [key]
[value]

Every occurrence of the speci-
fied key is replaced with the
specified value.

Often used in C to define a constant
value or a macro. C++ provides better
mechanisms for constants and most
types of macros. Macros can be dan-
gerous, so use them cautiously. See
Chapter 11 for details.

#ifdef [key]
#endif

#ifndef [key]
#endif

Code within the ifdef (“if
defined”) or ifndef (“if not
defined”) blocks are condition-
ally included or omitted based
on whether the specified key
has been defined with #define.

Used most frequently to protect
against circular includes. Each header
file starts with an #ifndef checking
the absence of a key, followed by
a #define directive to define that
key. The header file ends with an
#endif. This prevents the file from
being included multiple times; see the
example after this table.

#pragma [xyz] xyz is compiler dependent. It
often allows the programmer
to display a warning or error if
the directive is reached during
preprocessing.

See the example after this table.

One example of using preprocessor directives is to avoid multiple includes, as shown here:

#ifndef MYHEADER_H
#define MYHEADER_H
// ... the contents of this header file
#endif

If your compiler supports the #pragma once directive, and most modern compilers do, then this can
be rewritten as follows:

#pragma once
// ... the contents of this header file

Chapter 11 discusses this in more details.

The main() Function
main() is, of course, where the program starts. The return type of main() is an int, indicating
the result status of the program. You can omit any explicit return statements in main(), in which

The Basics of C++  ❘  7

case zero is returned automatically. The main() function either takes no parameters, or takes two
parameters as follows:

int main(int argc, char* argv[])

argc gives the number of arguments passed to the program, and argv contains those arguments.
Note that argv[0] can be the program name, but it might as well be an empty string, so do not rely
on it; instead, use platform-specific functionality to retrieve the program name. The important thing
to remember is that the actual parameters start at index 1.

I/O Streams
I/O streams are covered in depth in Chapter 13, but the basics of output and input are very simple.
Think of an output stream as a laundry chute for data. Anything you toss into it will be output
appropriately. std::cout is the chute corresponding to the user console, or standard out. There are
other chutes, including std::cerr, which outputs to the error console. The << operator tosses data
down the chute. In the preceding example, a quoted string of text is sent to standard out. Output
streams allow multiple types of data to be sent down the stream sequentially on a single line of code.
The following code outputs text, followed by a number, followed by more text:

std::cout << "There are " << 219 << " ways I love you." << std::endl;

std::endl represents an end-of-line sequence. When the output stream encounters std::endl, it
will output everything that has been sent down the chute so far and move to the next line. An alter-
nate way of representing the end of a line is by using the \n character. The \n character is an escape
sequence, which refers to a new-line character. Escape sequences can be used within any quoted
string of text. The following table shows the most common ones:

\n new line

\r carriage return

\t tab

\\ backslash character

\" quotation mark

Streams can also be used to accept input from the user. The simplest way to do this is to use the >>
operator with an input stream. The std::cin input stream accepts keyboard input from the user.
Here is an example:

int value;
std::cin >> value;

User input can be tricky because you can never know what kind of data the user will enter. See
Chapter 13 for a full explanation of how to use input streams.

If you’re new to C++ and coming from a C background, you’re probably wondering what has been
done with the trusty old printf() and scanf() functions. While these functions can still be used
in C++, I recommend using the streams library instead, mainly because the printf() and scanf()
family of functions do not provide any type safety.

8  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

Namespaces
Namespaces address the problem of naming conflicts between different pieces of code. For example,
you might be writing some code that has a function called foo(). One day, you decide to start using
a third-party library, which also has a foo() function. The compiler has no way of knowing which
version of foo() you are referring to within your code. You can’t change the library’s function
name, and it would be a big pain to change your own.

Namespaces come to the rescue in such scenarios because you can define the context in which
names are defined. To place code in a namespace, enclose it within a namespace block. For example,
the following could be the contents of a file called namespaces.h:

namespace mycode {
 void foo();
}

The implementation of a method or function can also be handled in a namespace. The foo()
function, for instance, could be implemented in namespaces.cpp as follows:

#include <iostream>
#include "namespaces.h"

void mycode::foo()
{
 std::cout << "foo() called in the mycode namespace" << std::endl;
}

Or alternatively:

#include <iostream>
#include "namespaces.h"

namespace mycode {
 void foo()
 {
 std::cout << "foo() called in the mycode namespace" << std::endl;
 }
}

By placing your version of foo() in the namespace “mycode,” you are isolating it from the foo()
function provided by the third-party library. To call the namespace-enabled version of foo(),
prepend the namespace onto the function name by using ::, also called the scope resolution
operator, as follows:

mycode::foo(); // Calls the "foo" function in the "mycode" namespace

Any code that falls within a “mycode” namespace block can call other code within the same
namespace without explicitly prepending the namespace. This implicit namespace is useful in mak-
ing the code more readable. You can also avoid prepending of namespaces with the using directive.
This directive tells the compiler that the subsequent code is making use of names in the specified
namespace. The namespace is thus implied for the code that follows:

#include "namespaces.h"

using namespace mycode;

The Basics of C++  ❘  9

int main()
{
 foo(); // Implies mycode::foo();
 return 0;
}

A single source file can contain multiple using directives, but beware of overusing this shortcut.
In the extreme case, if you declare that you’re using every namespace known to humanity, you’re
effectively eliminating namespaces entirely! Name conflicts will again result if you are using two
namespaces that contain the same names. It is also important to know in which namespace your
code is operating so that you don’t end up accidentally calling the wrong version of a function.

You’ve seen the namespace syntax before—you used it in the Hello, World program, where cout
and endl are actually names defined in the std namespace. You could have written Hello, World
with the using directive as shown here:

#include <iostream>

using namespace std;

int main()
{
 cout << "Hello, World!" << endl;
 return 0;
}

A using declaration can be used to refer to a particular item within a namespace. For example, if
the only part of the std namespace that you intend to use is cout, you can refer to it as follows:

using std::cout;

Subsequent code can refer to cout without prepending the namespace, but other items in the std
namespace will still need to be explicit:

using std::cout;
cout << "Hello, World!" << std::endl;

C++17 makes it easier to work with nested namespaces. A nested namespace is a namespace inside
another one. Before C++17, you had to use nested namespaces as follows:

namespace MyLibraries {
 namespace Networking {
 namespace FTP {
 /* ... */
 }
 }
}

C++17

WARNING  Never put a using directive or using declaration in a header file;
otherwise, you force it on everyone who is including your header file.

10  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

This can be simplified a lot with C++17:

namespace MyLibraries::Networking::FTP {
 /* ... */
}

A namespace alias can be used to give a new and possibly shorter name to another namespace. For
example: namespace MyFTP = MyLibraries::Networking::FTP;

Literals
Literals are used to write numbers or strings in your code. C++ supports a number of standard liter-
als. Numbers can be specified with the following literals (the examples in the list represent the same
number, 123):

➤➤ Decimal literal, 123

➤➤ Octal literal, 0173

➤➤ Hexadecimal literal, 0x7B

➤➤ Binary literal, 0b1111011

Other examples of literals in C++ include

➤➤ A floating-point value (such as 3.14f)

➤➤ A double floating-point value (such as 3.14)

➤➤ A single character (such as 'a')

➤➤ A zero-terminated array of characters (such as "character array")

It is also possible to define your own type of literals, which is an advanced feature explained in
Chapter 11.

Digits separators can be used in numeric literals. A digits separator is a single quote character. For
example,

➤➤ 23'456'789

➤➤ 0.123'456f

C++17 adds support for hexadecimal floating-point literals—for example, 0x3.ABCp-10, 0Xb.cp12l.

Variables
In C++, variables can be declared just about anywhere in your code and can be used anywhere in
the current block below the line where they are declared. Variables can be declared without being
given a value. These uninitialized variables generally end up with a semi-random value based on
whatever is in memory at that time, and are therefore the source of countless bugs. Variables in C++
can alternatively be assigned an initial value when they are declared. The code that follows shows
both flavors of variable declaration, both using ints, which represent integer values.

int uninitializedInt;
int initializedInt = 7;
cout << uninitializedInt << " is a random value" << endl;
cout << initializedInt << " was assigned an initial value" << endl;

C++17

The Basics of C++  ❘  11

The following table shows the most common types used in C++.

TYPE DESCRIPTION USAGE

(signed) int

signed

Positive and negative inte-
gers; the range depends on
the compiler (usually 4 bytes).

int i = -7;

signed int i = -6;

signed i = -5;

(signed) short (int) Short integer (usually 2 bytes) short s = 13;

short int s = 14;

signed short s = 15;

signed short int s = 16;

(signed) long (int) Long integer (usually 4 bytes) long l = -7L;

(signed) long long (int) Long long integer; the range
depends on the compiler,
but is at least the same as for
long (usually 8 bytes).

long long ll = 14LL;

unsigned (int)

unsigned short (int)

unsigned long (int)

unsigned long long (int)

Limits the preceding types to
values >= 0

unsigned int i = 2U;

unsigned j = 5U;

unsigned short s = 23U;

unsigned long l =

5400UL;

unsigned long long ll =

140ULL;

float Floating-point numbers float f = 7.2f;

double Double precision numbers;
precision is at least the same
as for float.

double d = 7.2;

long double Long double precision num-
bers; precision is at least the
same as for double.

long double d = 16.98L;

char A single character char ch = 'm';

char16_t A single 16-bit character char16_t c16 = u'm';

char32_t A single 32-bit character char32_t c32 = U'm';

NOTE  Most compilers will issue a warning or an error when code is using
uninitialized variables. Some compilers will generate code that will report an
error at run time.

continues

12  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

TYPE DESCRIPTION USAGE

wchar_t A single wide character; the
size depends on the compiler.

wchar_t w = L'm';

bool A Boolean type that can have
one of two values: true or
false

bool b = true;

std::byte1 A single byte. Before C++17,
a char or unsigned char
was used to represent a byte,
but those types make it look
like you are working with
characters. std::byte on the
other hand clearly states your
intention, that is, a single byte
of memory.

std::byte b{42};2

1Requires an include directive for the <cstddef> header file.
2Initialization of an std::byte requires direct list initialization with a single-element list. See the “Direct
List Initialization versus Copy List Initialization” section later in this chapter for the definition of direct list
initialization.

Variables can be converted to other types by casting them. For example, a float can be cast to an int.
C++ provides three ways to explicitly change the type of a variable. The first method is a holdover from
C; it is not recommended but unfortunately still commonly used. The second method is rarely used.
The third method is the most verbose, but is also the cleanest one, and is therefore recommended.

float myFloat = 3.14f;
int i1 = (int)myFloat; // method 1
int i2 = int(myFloat); // method 2
int i3 = static_cast<int>(myFloat); // method 3

The resulting integer will be the value of the floating-point number with the fractional part trun-
cated. Chapter 11 describes the different casting methods in more detail. In some contexts, variables
can be automatically cast, or coerced. For example, a short can be automatically converted into a
long because a long represents the same type of data with at least the same precision.

long someLong = someShort; // no explicit cast needed

When automatically casting variables, you need to be aware of the potential loss of data. For exam-
ple, casting a float to an int throws away information (the fractional part of the number). Most
compilers will issue a warning or even an error if you assign a float to an int without an explicit
cast. If you are certain that the left-hand side type is fully compatible with the right-hand side type,
it’s okay to cast implicitly.

C++17

NOTE  C++ does not provide a basic string type. However, a standard imple-
mentation of a string is provided as part of the Standard Library, as described
later in this chapter and in more detail in Chapter 2.

(continued)

The Basics of C++  ❘  13

Operators
What good is a variable if you don’t have a way to change it? The following table shows the most
common operators used in C++ and sample code that makes use of them. Note that operators in
C++ can be binary (operate on two expressions), unary (operate on a single expression), or even ter-
nary (operate on three expressions). There is only one ternary operator in C++, and it is explained in
the “Conditional Statements” section later in this chapter.

OPERATOR DESCRIPTION USAGE

= Binary operator to assign the value on the right to
the expression on the left

int i;

i = 3;

int j;

j = i;

! Unary operator to complement the true/false
(non-0/0) status of an expression

bool b = !true;

bool b2 = !b;

+ Binary operator for addition int i = 3 + 2;

int j = i + 5;

int k = i + j;

-

*

/

Binary operators for subtraction, multiplication,
and division

int i = 5 - 1;

int j = 5 * 2;

int k = j / i;

% Binary operator for the remainder of a division
operation. This is also referred to as the mod or
modulo operator.

int remainder = 5 % 2;

++ Unary operator to increment an expression by 1. If
the operator occurs after the expression, or post-
increment, the result of the expression is the unin-
cremented value. If the operator occurs before
the expression, or pre-increment, the result of the
expression is the new value.

i++;

++i;

-- Unary operator to decrement an expression by 1 i--;

--i;

+= Shorthand syntax for i = i + j i += j;

-=

*=

/=

%=

Shorthand syntax for

i = i - j;

i = i * j;

i = i / j;

i = i % j;

i -= j;

i *= j;

i /= j;

i %= j;

continues

14  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

OPERATOR DESCRIPTION USAGE

&

&=

Takes the raw bits of one expression and performs
a bitwise “AND” with the other expression

i = j & k;

j &= k;

|

|=

Takes the raw bits of one expression and performs
a bitwise “OR” with the other expression

i = j | k;

j |= k;

<<

>>

<<=

>>=

Takes the raw bits of an expression and “shifts”
each bit left (<<) or right (>>) the specified number
of places

i = i << 1;

i = i >> 4;

i <<= 1;

i >>= 4;

^

^=

Performs a bitwise “exclusive or,” also called
“XOR” operation, on two expressions

i = i ^ j;

i ^= j;

The following program shows the most common variable types and operators in action. If you are
unsure about how variables and operators work, try to figure out what the output of this program
will be, and then run it to confirm your answer.

int someInteger = 256;
short someShort;
long someLong;
float someFloat;
double someDouble;

someInteger++;
someInteger *= 2;
someShort = static_cast<short>(someInteger);
someLong = someShort * 10000;
someFloat = someLong + 0.785f;
someDouble = static_cast<double>(someFloat) / 100000;
cout << someDouble << endl;

The C++ compiler has a recipe for the order in which expressions are evaluated. If you have a com-
plicated line of code with many operators, the order of execution may not be obvious. For that
reason, it’s probably better to break up a complicated expression into several smaller expressions,
or explicitly group sub-expressions by using parentheses. For example, the following line of code is
confusing unless you happen to know the C++ operator precedence table by heart:

int i = 34 + 8 * 2 + 21 / 7 % 2;

Adding parentheses makes it clear which operations are happening first:

int i = 34 + (8 * 2) + ((21 / 7) % 2);

For those of you playing along at home, both approaches are equivalent and end up with i equal to
51. If you assumed that C++ evaluated expressions from left to right, your answer would have been
1. C++ evaluates /, *, and % first (in left-to-right order), followed by addition and subtraction, then
bitwise operators. Parentheses let you explicitly tell the compiler that a certain operation should be
evaluated separately.

(continued)

The Basics of C++  ❘  15

Types
In C++, you can use the basic types (int, bool, and so on) to build more complex types of your own
design. Once you are an experienced C++ programmer, you will rarely use the following techniques,
which are features brought in from C, because classes are far more powerful. Still, it is important to
know about the following ways of building types so that you will recognize the syntax.

Enumerated Types
An integer really represents a value within a sequence—the sequence of numbers. Enumerated types
let you define your own sequences so that you can declare variables with values in that sequence.
For example, in a chess program, you could represent each piece as an int, with constants for the
piece types, as shown in the following code. The integers representing the types are marked const
to indicate that they can never change.

const int PieceTypeKing = 0;
const int PieceTypeQueen = 1;
const int PieceTypeRook = 2;
const int PieceTypePawn = 3;
//etc.
int myPiece = PieceTypeKing;

This representation is fine, but it can become dangerous. Since a piece is just an int, what would
happen if another programmer added code to increment the value of a piece? By adding 1, a king
becomes a queen, which really makes no sense. Worse still, someone could come in and give a piece
a value of -1, which has no corresponding constant.

Enumerated types solve these problems by tightly defining the range of values for a variable. The
following code declares a new type, PieceType, which has four possible values, representing four of
the chess pieces:

enum PieceType { PieceTypeKing, PieceTypeQueen, PieceTypeRook, PieceTypePawn };

Behind the scenes, an enumerated type is just an integer value. The real value of PieceTypeKing
is 0. However, by defining the possible values for variables of type PieceType, your compiler can
give you a warning or an error if you attempt to perform arithmetic on PieceType variables or treat
them as integers. The following code, which declares a PieceType variable, and then attempts to
use it as an integer, results in a warning or an error on most compilers:

PieceType myPiece;
myPiece = 0;

It’s also possible to specify the integer values for members of an enumeration. The syntax is as
follows:

enum PieceType { PieceTypeKing = 1, PieceTypeQueen, PieceTypeRook = 10, PieceTypePawn };

In this example, PieceTypeKing has the integer value 1, PieceTypeQueen has the value 2 assigned
by the compiler, PieceTypeRook has the value 10, and PieceTypePawn has the value 11 assigned
automatically by the compiler.

16  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

If you do not assign a value to an enumeration member, the compiler automatically assigns it a value
that is the previous enumeration member incremented by 1. If you do not assign a value to the first
enumeration member yourself, the compiler assigns it the value 0.

Strongly Typed Enumerations
Enumerations as explained in the previous section are not strongly typed, meaning they are not type
safe. They are always interpreted as integers, and thus you can compare enumeration values from
completely different enumeration types.

The strongly-typed enum class enumerations solve this problem. For example, the following defines
a type-safe version of the earlier-defined PieceType enumeration:

enum class PieceType
{
 King = 1,
 Queen,
 Rook = 10,
 Pawn
};

For an enum class, the enumeration value names are not automatically exported to the enclosing
scope, which means that you always have to use the scope resolution operator:

PieceType piece = PieceType::King;

This also means that you can give shorter names to the enumeration values, for example, King
instead of PieceTypeKing.

Additionally, the enumeration values are not automatically converted to integers, which means the
following is illegal:

if (PieceType::Queen == 2) {...}

By default, the underlying type of an enumeration value is an integer, but this can be changed as
follows:

enum class PieceType : unsigned long
{
 King = 1,
 Queen,
 Rook = 10,
 Pawn
};

Structs
Structs let you encapsulate one or more existing types into a new type. The classic example of
a struct is a database record. If you are building a personnel system to keep track of employee

NOTE  It is recommended to use the strongly-typed enum class enumerations
instead of the type-unsafe enum enumerations.

The Basics of C++  ❘  17

information, you might want to store the first initial, last initial, employee number, and salary for
each employee. A struct that contains all of this information is shown in the employeestruct.h
header file that follows:

struct Employee {
 char firstInitial;
 char lastInitial;
 int employeeNumber;
 int salary;
};

A variable declared with type Employee will have all of these fields built in. The individual fields
of a struct can be accessed by using the “.” operator. The example that follows creates and then
outputs the record for an employee:

#include <iostream>
#include "employeestruct.h"

using namespace std;

int main()
{
 // Create and populate an employee.
 Employee anEmployee;
 anEmployee.firstInitial = 'M';
 anEmployee.lastInitial = 'G';
 anEmployee.employeeNumber = 42;
 anEmployee.salary = 80000;
 // Output the values of an employee.
 cout << "Employee: " << anEmployee.firstInitial <<
 anEmployee.lastInitial << endl;
 cout << "Number: " << anEmployee.employeeNumber << endl;
 cout << "Salary: $" << anEmployee.salary << endl;
 return 0;
}

Conditional Statements
Conditional statements let you execute code based on whether or not something is true. As shown
in the following sections, there are three main types of conditional statements in C++: if/else state-
ments, switch statements, and conditional operators.

if/else Statements
The most common conditional statement is the if statement, which can be accompanied by an
else. If the condition given inside the if statement is true, the line or block of code is executed. If
not, execution continues with the else case if present, or with the code following the conditional
statement. The following code shows a cascading if statement, a fancy way of saying that the if
statement has an else statement that in turn has another if statement, and so on:

if (i > 4) {
 // Do something.
} else if (i > 2) {

18  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

 // Do something else.
} else {
 // Do something else.
}

The expression between the parentheses of an if statement must be a Boolean value or evaluate to
a Boolean value. A value of 0 evaluates to false, while any non-zero value evaluates to true. For
example: if(0) is equivalent to if(false). Logical evaluation operators, described later, provide
ways of evaluating expressions to result in a true or false Boolean value.

Initializers for if Statements
C++17 allows you to include an initializer inside an if statement using the following syntax:

if (<initializer> ; <conditional_expression>) { <body> }

Any variable introduced in the <initializer> is only available in the <conditional_expression>
and in the <body>. Such variables are not available outside the if statement.

It is too early in this book to give a useful example of this feature, but here is what it looks like:

if (Employee employee = GetEmployee() ; employee.salary > 1000) { ... }

In this example, the initializer gets an employee and the condition checks whether the salary of the
retrieved employee exceeds 1000. Only in that case is the body of the if statement executed.

More concrete examples will be given throughout this book.

switch Statements
The switch statement is an alternate syntax for performing actions based on the value of an expres-
sion. In C++, the expression of a switch statement must be of an integral type, a type convertible
to an integral type, an enumerated type, or a strongly typed enumeration, and must be compared
to constants. Each constant value represents a “case.” If the expression matches the case, the subse-
quent lines of code are executed until a break statement is reached. You can also provide a default
case, which is matched if none of the other cases match. The following pseudocode shows a com-
mon use of the switch statement:

switch (menuItem) {
 case OpenMenuItem:
 // Code to open a file
 break;
 case SaveMenuItem:
 // Code to save a file
 break;
 default:
 // Code to give an error message
 break;
}

A switch statement can always be converted into if/else statements. The previous switch state-
ment can be converted as follows:

if (menuItem == OpenMenuItem) {
 // Code to open a file

C++17

The Basics of C++  ❘  19

} else if (menuItem == SaveMenuItem) {
 // Code to save a file
} else {
 // Code to give an error message
}

switch statements are generally used when you want to do something based on more than 1 specific
value of an expression, as opposed to some test on the expression. In such a case, the switch state-
ment avoids cascading if-else statements. If you only need to inspect 1 value, an if or if-else
statement is fine.

Once a case expression matching the switch condition is found, all statements that follow it are
executed until a break statement is reached. This execution continues even if another case expres-
sion is encountered, which is called fallthrough. The following example has a single set of statements
that is executed for several different cases:

switch (backgroundColor) {
 case Color::DarkBlue:
 case Color::Black:
 // Code to execute for both a dark blue or black background color
 break;
 case Color::Red:
 // Code to execute for a red background color
 break;
}

Fallthrough can be a source of bugs, for example if you accidentally forget a break statement.
Because of this, compilers might give a warning if a fallthrough is detected in a switch statement,
unless the case is empty as in the above example. Starting with C++17, you can tell the compiler that
a fallthrough is intentional using the [[fallthrough]] attribute as follows:

switch (backgroundColor) {
 case Color::DarkBlue:
 doSomethingForDarkBlue();
 [[fallthrough]];
 case Color::Black:
 // Code is executed for both a dark blue or black background color
 doSomethingForBlackOrDarkBlue();
 break;
 case Color::Red:
 case Color::Green:
 // Code to execute for a red or green background color
 break;
}

Initializers for switch Statements
Just as for if statements, C++17 adds support for initializers to switch statements. The syntax is as
follows:

switch (<initializer> ; <expression>) { <body> }

Any variables introduced in the <initializer> are only available in the <expression> and in the
<body>. They are not available outside the switch statement.

C++17

C++17

20  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

The Conditional Operator
C++ has one operator that takes three arguments, known as a ternary operator. It is used as a short-
hand conditional expression of the form “if [something] then [perform action], otherwise [perform
some other action].” The conditional operator is represented by a ? and a :. The following code
outputs “yes” if the variable i is greater than 2, and “no” otherwise:

std::cout << ((i > 2) ? "yes" : "no");

The parentheses around i > 2 are optional, so the following is equivalent:

std::cout << (i > 2 ? "yes" : "no");

The advantage of the conditional operator is that it can occur within almost any context. In the
preceding example, the conditional operator is used within code that performs output. A convenient
way to remember how the syntax is used is to treat the question mark as though the statement that
comes before it really is a question. For example, “Is i greater than 2? If so, the result is ‘yes’; if not,
the result is ‘no.’”

Unlike an if statement or a switch statement, the conditional operator doesn’t execute code blocks
based on the result. Instead, it is used within code, as shown in the preceding example. In this way,
it really is an operator (like + and -) as opposed to a true conditional statement, such as if and
switch.

Logical Evaluation Operators
You have already seen a logical evaluation operator without a formal definition. The > operator
compares two values. The result is “true” if the value on the left is greater than the value on the
right. All logical evaluation operators follow this pattern—they all result in a true or false.

The following table shows common logical evaluation operators:

OP DESCRIPTION USAGE

<

<=

>

>=

Determines if the left-hand side
is less than, less than or equal
to, greater than, or greater than
or equal to the right-hand side

if (i < 0) {

 std::cout << "i is negative";

}

== Determines if the left-hand
side equals the right-hand side.
Don’t confuse this with the =
(assignment) operator!

if (i == 3) {

 std::cout << "i is 3";

}

!= Not equals. The result of the
statement is true if the left-hand
side does not equal the right-
hand side.

if (i != 3) {

 std::cout << "i is not 3";

}

The Basics of C++  ❘  21

OP DESCRIPTION USAGE

! Logical NOT.

This complements the true/false
status of a Boolean expression.
This is a unary operator.

if (!someBoolean) {

 std::cout << "someBoolean is false";

}

&& Logical AND. The result is true
if both parts of the expression
are true.

if (someBoolean && someOtherBoolean) {

 std::cout << "both are true";

}

|| Logical OR. The result is true if
either part of the expression is
true.

if (someBoolean || someOtherBoolean) {

 std::cout << "at least one is true";

}

C++ uses short-circuit logic when evaluating logical expressions. That means that once the final
result is certain, the rest of the expression won’t be evaluated. For example, if you are performing
a logical OR operation of several Boolean expressions, as shown in the following code, the result is
known to be true as soon as one of them is found to be true. The rest won’t even be checked.

bool result = bool1 || bool2 || (i > 7) || (27 / 13 % i + 1) < 2;

In this example, if bool1 is found to be true, the entire expression must be true, so the other parts
aren’t evaluated. In this way, the language saves your code from doing unnecessary work. It can,
however, be a source of hard-to-find bugs if the later expressions in some way influence the state of
the program (for example, by calling a separate function). The following code shows a statement
using && that short-circuits after the second term because 0 always evaluates to false:

bool result = bool1 && 0 && (i > 7) && !done;

Short-circuiting can be beneficial for performance. You can put cheaper tests first so that more
expensive tests are not even executed when the logic short-circuits. It is also useful in the context
of pointers to avoid parts of the expression to be executed when a pointer is not valid. Pointers and
short-circuiting with pointers are discussed later in this chapter.

Functions
For programs of any significant size, placing all the code inside of main() is unmanageable.
To make programs easy to understand, you need to break up, or decompose, code into concise
functions.

In C++, you first declare a function to make it available for other code to use. If the function is used
inside only a particular file, you generally declare and define the function in the source file. If the
function is for use by other modules or files, you generally put the declaration in a header file and
the definition in a source file.

22  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

A function declaration is shown in the following code. This example has a return type of void,
indicating that the function does not provide a result to the caller. The caller must provide two
arguments for the function to work with—an integer and a character.

void myFunction(int i, char c);

Without an actual definition to match this function declaration, the link stage of the compila-
tion process will fail because code that makes use of the function will be calling nonexistent code.
The following definition prints the values of the two parameters:

void myFunction(int i, char c)
{
 std::cout << "the value of i is " << i << std::endl;
 std::cout << "the value of c is " << c << std::endl;
}

Elsewhere in the program, you can make calls to myFunction() and pass in arguments for the two
parameters. Some sample function calls are shown here:

myFunction(8, 'a');
myFunction(someInt, 'b');
myFunction(5, someChar);

C++ functions can also return a value to the caller. The following function adds two numbers and
returns the result:

int addNumbers(int number1, int number2)
{
 return number1 + number2;
}

This function can be called as follows:

int sum = addNumbers(5, 3);

Function Return Type Deduction
With C++14, you can ask the compiler to figure out the return type of a function automatically.
To make use of this functionality, you need to specify auto as the return type:

auto addNumbers(int number1, int number2)
{
 return number1 + number2;
}

NOTE  Function declarations are often called function prototypes or function
headers to emphasize that they represent how the function can be accessed, but
not the code behind it. The term function signature is used to denote the combi-
nation of the function name and its parameter list, but without the return type.

NOTE  In C++, unlike C, a function that takes no parameters just has an empty
parameter list. It is not necessary to use void to indicate that no parameters are
taken. However, you must still use void to indicate when no value is returned.

The Basics of C++  ❘  23

The compiler deduces the return type based on the expressions used for the return statements.
There can be multiple return statements in the function, but they should all resolve to the same
type. Such a function can even include recursive calls (calls to itself), but the first return statement
in the function must be a non-recursive call.

Current Function’s Name
Every function has a local predefined variable __func__ containing the name of the current func-
tion. One use of this variable would be for logging purposes:

int addNumbers(int number1, int number2)
{
 std::cout << "Entering function " << __func__ << std::endl;
 return number1 + number2;
}

C-Style Arrays
Arrays hold a series of values, all of the same type, each of which can be accessed by its position in
the array. In C++, you must provide the size of the array when the array is declared. You cannot give
a variable as the size—it must be a constant, or a constant expression (constexpr). Constant expres-
sions are discussed in Chapter 11. The code that follows shows the declaration of an array of three
integers followed by three lines to initialize the elements to 0:

int myArray[3];
myArray[0] = 0;
myArray[1] = 0;
myArray[2] = 0;

The next section discusses loops that you can use to initialize each element. However, instead of
using loops, or using the previous initialization mechanism, you can also accomplish the zero-
initialization with the following one-liner:

int myArray[3] = {0};

You can even drop the 0 as follows:

int myArray[3] = {};

An array can also be initialized with an initializer list, in which case the compiler can deduce the
size of the array automatically. For example,

int myArray[] = {1, 2, 3, 4}; // The compiler creates an array of 4 elements.

If you do specify the size of the array, and the initializer list has less elements than the given size, the
remaining elements are set to 0. For example, the following code only sets the first element in the
array to the value 2, and sets all the other elements to 0:

int myArray[3] = {2};

WARNING  In C++, the first element of an array is always at position 0, not
position 1! The last position of the array is always the size of the array minus 1!

24  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

To get the size of a stack-based C-style array, you can use the C++17 std::size() function
(requires <array>). For example:

unsigned int arraySize = std::size(myArray);

If your compiler is not yet C++17 compliant, the old trick to get the size of a stack-based C-style
array is to use the sizeof operator. The sizeof operator returns the size of its argument in bytes.
To get the number of elements in a stack-based array, you divide the size in bytes of the array by the
size in bytes of the first element. For example:

unsigned int arraySize = sizeof(myArray) / sizeof(myArray[0]);

The preceding examples show a one-dimensional array, which you can think of as a line of inte-
gers, each with its own numbered compartment. C++ allows multi-dimensional arrays. You might
think of a two-dimensional array as a checkerboard, where each location has a position along the
x-axis and a position along the y-axis. Three-dimensional and higher arrays are harder to picture
and are rarely used. The following code shows the syntax for allocating a two-dimensional array of
characters for a Tic-Tac-Toe board and then putting an “o” in the center square:

char ticTacToeBoard[3][3];
ticTacToeBoard[1][1] = 'o';

Figure 1-1 shows a visual representation of this board with the position of each square.

TicTacToeBoard[0][0] TicTacToeBoard[0][1] TicTacToeBoard[0][2]

TicTacToeBoard[1][0] TicTacToeBoard[1][1] TicTacToeBoard[1][2]

TicTacToeBoard[2][0] TicTacToeBoard[2][1] TicTacToeBoard[2][2]

FIGURE 1-1

NOTE  In C++, it’s best to avoid C-style arrays as discussed in this section,
and instead use Standard Library functionality, such as std::array, and
std::vector, as discussed in the next two sections.

The Basics of C++  ❘  25

std::array
The arrays discussed in the previous section come from C, and still work in C++. However, C++
has a special type of fixed-size container called std::array, defined in the <array> header file. It’s
basically a thin wrapper around C-style arrays.

There are a number of advantages to using std::arrays instead of C-style arrays. They always
know their own size, are not automatically cast to a pointer to avoid certain types of bugs, and have
iterators to easily loop over the elements. Iterators are discussed in detail in Chapter 17.

The following example demonstrates how to use the array container. The use of angle brackets
after array, as in array<int, 3>, will become clear during the discussion of templates in Chapter
12. However, for now, just remember that you have to specify two parameters between the angle
brackets. The first parameter represents the type of the elements in the array, and the second one
represents the size of the array.

array<int, 3> arr = {9, 8, 7};
cout << "Array size = " << arr.size() << endl;
cout << "2nd element = " << arr[1] << endl;

If you want an array with a dynamic size, it is recommended to use std::vector, as explained in
the next section. A vector automatically increases in size when you add new elements to it.

std::vector
The C++ Standard Library provides a number of different non-fixed-size containers that can be
used to store information. std::vector, declared in <vector>, is an example of such a container.
The vector replaces the concept of C-style arrays with a much more flexible and safer mechanism.
As a user, you need not worry about memory management, as the vector automatically allocates
enough memory to hold its elements. A vector is dynamic, meaning that elements can be added and
removed at run time. Chapter 17 goes into more detail regarding containers, but the basic use of a
vector is straightforward, which is why it’s introduced in the beginning of this book so that it can
be used in examples. The following code demonstrates the basic functionality of vector.

// Create a vector of integers
vector<int> myVector = { 11, 22 };

// Add some more integers to the vector using push_back()
myVector.push_back(33);
myVector.push_back(44);

// Access elements
cout << "1st element: " << myVector[0] << endl;

NOTE  Both the C-style arrays and the std::arrays have a fixed size, which
must be known at compile time. They cannot grow or shrink at run time.

26  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

myVector is declared as vector<int>. The angle brackets are required to specify the template
parameters, just as with std::array. A vector is a generic container. It can contain almost any
kind of object; that’s why you have to specify the type of object you want in your vector between
the angle brackets. Templates are discussed in detail in Chapters 12 and 22.

To add elements to a vector, you can use the push_back() method. Individual elements can be
accessed using a similar syntax as for arrays, i.e. operator[].

Structured Bindings
C++17 introduces the concept of structured bindings. Structured bindings allow you to declare mul-
tiple variables that are initialized with elements from an array, struct, pair, or tuple.

For example, assume you have the following array:

std::array<int, 3> values = { 11, 22, 33 };

You can declare three variables, x, y, and z, initialized with the three values from the array as
follows. Note that you have to use the auto keyword for structured bindings. You cannot, for
example, specify int instead of auto.

auto [x, y, z] = values;

The number of variables declared with the structured binding has to match the number of values in
the expression on the right.

Structured bindings also work with structures if all non-static members are public. For example,

struct Point { double mX, mY, mZ; };
Point point;
point.mX = 1.0; point.mY = 2.0; point.mZ = 3.0;
auto [x, y, z] = point;

Examples with std::pair and std::tuple are given in chapters 17 and 20 respectively.

Loops
Computers are great for doing the same thing over and over. C++ provides four looping mecha-
nisms: the while loop, do/while loop, for loop, and range-based for loop.

The while Loop
The while loop lets you perform a block of code repeatedly as long as an expression evaluates to
true. For example, the following completely silly code will output “This is silly.” five times:

int i = 0;
while (i < 5) {
 std::cout << "This is silly." << std::endl;
 ++i;
}

C++17

The Basics of C++  ❘  27

The keyword break can be used within a loop to immediately get out of the loop and continue
execution of the program. The keyword continue can be used to return to the top of the loop
and reevaluate the while expression. However, using continue in loops is often considered poor
style because it causes the execution of a program to jump around somewhat haphazardly, so use it
sparingly.

The do/while Loop
C++ also has a variation on the while loop called do/while. It works similarly to the while loop,
except that the code to be executed comes first, and the conditional check for whether or not to con-
tinue happens at the end. In this way, you can use a loop when you want a block of code to always
be executed at least once and possibly additional times based on some condition. The example that
follows outputs the statement, “This is silly.” once, even though the condition ends up being false:

int i = 100;
do {
 std::cout << "This is silly." << std::endl;
 ++i;
} while (i < 5);

The for Loop
The for loop provides another syntax for looping. Any for loop can be converted to a while loop
and vice versa. However, the for loop syntax is often more convenient because it looks at a loop in
terms of a starting expression, an ending condition, and a statement to execute at the end of every
iteration. In the following code, i is initialized to 0; the loop continues as long as i is less than 5;
and at the end of every iteration, i is incremented by 1. This code does the same thing as the while
loop example, but is more readable because the starting value, ending condition, and per-iteration
statement are all visible on one line.

for (int i = 0; i < 5; ++i) {
 std::cout << "This is silly." << std::endl;
}

The Range-Based for Loop
The range-based for loop is the fourth looping mechanism. It allows for easy iteration over elements
of a container. This type of loop works for C-style arrays, initializer lists (discussed later in this
chapter), and any type that has begin() and end() methods returning iterators (see Chapter 17),
such as std::array, std::vector, and all other Standard Library containers discussed in
Chapter 17.

The following example first defines an array of four integers. The range-based for loop then iterates
over a copy of every element in this array and prints each value. To iterate over the elements them-
selves without making copies, use a reference variable, as I discuss later in this chapter.

std::array<int, 4> arr = {1, 2, 3, 4};
for (int i : arr) {
 std::cout << i << std::endl;
}

28  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

Initializer Lists
Initializer lists are defined in the <initializer_list> header file and make it easy to write func-
tions that can accept a variable number of arguments. The initializer_list class is a template
and so it requires you to specify the type of elements in the list between angle brackets, similar to
how you have to specify the type of object stored in a vector. The following example shows how to
use an initializer list:

#include <initializer_list>

using namespace std;

int makeSum(initializer_list<int> lst)
{
 int total = 0;
 for (int value : lst) {
 total += value;
 }
 return total;
}

The function makeSum() accepts an initializer list of integers as argument. The body of the function
uses a range-based for loop to accumulate the total sum. This function can be used as follows:

int a = makeSum({1,2,3});
int b = makeSum({10,20,30,40,50,60});

Initializer lists are type safe and define which type is allowed to be in the list. For the makeSum()
function shown here, all elements of the initializer list must be integers. Trying to call it with a
double results in a compiler error or warning, as shown here:

int c = makeSum({1,2,3.0});

Those Are the Basics
At this point, you have reviewed the basic essentials of C++ programming. If this section was a
breeze, skim the next section to make sure that you are up to speed on the more-advanced material.
If you struggled with this section, you may want to obtain one of the fine introductory C++ books
mentioned in Appendix B before continuing.

DIVING DEEPER INTO C++

Loops, variables, and conditionals are terrific building blocks, but there is much more to learn. The
topics covered next include many features designed to help C++ programmers with their code as well
as a few features that are often more confusing than helpful. If you are a C programmer with little
C++ experience, you should read this section carefully.

Diving Deeper into C++  ❘  29

Strings in C++
There are three ways to work with strings of text in C++: the C-style, which represents strings as
arrays of characters; the C++ style, which wraps that representation in an easier-to-use string type;
and the general class of nonstandard approaches. Chapter 2 provides a detailed discussion.

For now, the only thing you need to know is that the C++ string type is defined in the <string>
header file, and that you can use a C++ string almost like a basic type. Just like I/O streams, the
string type lives in the std namespace. The following example shows that strings can be used just
like character arrays:

string myString = "Hello, World";
cout << "The value of myString is " << myString << endl;
cout << "The second letter is " << myString[1] << endl;

Pointers and Dynamic Memory
Dynamic memory allows you to build programs with data that is not of fixed size at compile time.
Most nontrivial programs make use of dynamic memory in some form.

The Stack and the Heap
Memory in your C++ application is divided into two parts—the stack and the heap. One way to
visualize the stack is as a deck of cards. The current top card represents the current scope of the pro-
gram, usually the function that is currently being executed. All variables declared inside the current
function will take up memory in the top stack frame, the top card of the deck. If the current func-
tion, which I’ll call foo(), calls another function bar(), a new card is put on the deck so that bar()
has its own stack frame to work with. Any parameters passed from
foo() to bar() are copied from the foo() stack frame into the
bar() stack frame. Figure 1-2 shows what the stack might look
like during the execution of a hypothetical function foo() that has
declared two integer values.

Stack frames are nice because they provide an isolated memory
workspace for each function. If a variable is declared inside the
foo() stack frame, calling the bar() function won’t change it
unless you specifically tell it to. Also, when the foo() function is
done running, the stack frame goes away, and all of the variables declared within the function no
longer take up memory. Variables that are stack-allocated do not need to be deallocated (deleted) by
the programmer; it happens automatically.

The heap is an area of memory that is completely independent of the current function or stack
frame. You can put variables on the heap if you want them to exist even when the function in which
they were created has completed. The heap is less structured than the stack. You can think of it
as just a pile of bits. Your program can add new bits to the pile at any time or modify bits that are
already in the pile. You have to make sure that you deallocate (delete) any memory that you allo-
cated on the heap. This does not happen automatically, unless you use smart pointers, which are
discussed in the section “Smart Pointers.”

int i

int j

7

11

foo()

main()

FIGURE 1-2

30  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

Working with Pointers
You can put anything on the heap by explicitly allocating memory for it. For example, to put an
integer on the heap, you need to allocate memory for it, but first you need to declare a pointer:

int* myIntegerPointer;

The * after the int type indicates that the variable you are declaring refers or points to some integer
memory. Think of the pointer as an arrow that points at the dynamically allocated heap memory.
It does not yet point to anything specific because you haven’t assigned it to anything; it is an unini-
tialized variable. Uninitialized variables should be avoided at all times, and especially uninitialized
pointers because they point to some random place in memory. Working with such pointers will most
likely make your program crash. That’s why you should always declare and initialize your pointers
at the same time. You can initialize them to a null pointer (nullptr—for more information, see the
“Null Pointer Constant” section) if you don’t want to allocate memory right away:

int* myIntegerPointer = nullptr;

A null pointer is a special default value that no valid pointer will ever have, and converts to false
when used in a Boolean expression. For example:

if (!myIntegerPointer) { /* myIntegerPointer is a null pointer */ }

You use the new operator to allocate the memory:

myIntegerPointer = new int;

In this case, the pointer points to the address of just a single integer value. To access this value,
you need to dereference the pointer. Think of dereferencing as following the pointer’s arrow to the
actual value on the heap. To set the value of the newly allocated heap integer, you would use code
like the following:

*myIntegerPointer = 8;

Notice that this is not the same as setting myIntegerPointer to the value 8. You are not changing
the pointer; you are changing the memory that it points to. If you were to reassign the pointer value,
it would point to the memory address 8, which is probably random garbage that will eventually
make your program crash.

After you are finished with your dynamically allocated memory, you need to deallocate the memory
using the delete operator. To prevent the pointer from being used after having deallocated the
memory it points to, it’s recommended to set your pointer to nullptr:

delete myIntegerPointer;
myIntegerPointer = nullptr;

WARNING  A pointer must be valid before it is dereferenced. Dereferencing a
null pointer or an uninitialized pointer causes undefined behavior. Your pro-
gram might crash, but it might just as well keep running and start giving strange
results.

Diving Deeper into C++  ❘  31

Pointers don’t always point to heap memory. You can declare a pointer that points to a variable on
the stack, even another pointer. To get a pointer to a variable, you use the & (“address of”) operator:

int i = 8;
int* myIntegerPointer = &i; // Points to the variable with the value 8

C++ has a special syntax for dealing with pointers to structures. Technically, if you have a pointer to
a structure, you can access its fields by first dereferencing it with *, then using the normal. syntax,
as in the code that follows, which assumes the existence of a function called getEmployee().

Employee* anEmployee = getEmployee();
cout << (*anEmployee).salary << endl;

This syntax is a little messy. The -> (arrow) operator lets you perform both the dereference and the
field access in one step. The following code is equivalent to the preceding code, but is easier to read:

Employee* anEmployee = getEmployee();
cout << anEmployee->salary << endl;

Remember the concept of short-circuiting logic, which was discussed earlier in this chapter? This
can be useful in combination with pointers to avoid using an invalid pointer, as in the following
example:

bool isValidSalary = (anEmployee && anEmployee->salary > 0);

Or, a little bit more verbose:

bool isValidSalary = (anEmployee != nullptr && anEmployee->salary > 0);

anEmployee is only dereferenced to get the salary if it is a valid pointer. If it is a null pointer, the
logical operation short-circuits, and the anEmployee pointer is not dereferenced.

Dynamically Allocated Arrays
The heap can also be used to dynamically allocate arrays. You use the new[] operator to allocate
memory for an array.

int arraySize = 8;
int* myVariableSizedArray = new int[arraySize];

This allocates memory for enough integers to satisfy the arraySize variable. Figure 1-3 shows what
the stack and the heap both look like after this code is executed. As you can see, the pointer variable
still resides on the stack, but the array that was dynamically created lives on the heap.

Now that the memory has been allocated, you can work with myVariableSizedArray as though it
were a regular stack-based array.

myVariableSizedArray[3] = 2;

32  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

When your code is done with the array, it should remove the array from the heap so that other vari-
ables can use the memory. In C++, you use the delete[] operator to do this.

delete[] myVariableSizedArray;
myVariableSizedArray = nullptr;

The brackets after delete indicate that you are deleting an array!

Null Pointer Constant
Before C++11, the constant NULL was used for null pointers. NULL is simply defined as the constant
0, and this can cause problems. Take the following example:

void func(char* str) {cout << "char* version" << endl;}
void func(int i) {cout << "int version" << endl;}

int main()
{
 func(NULL);
 return 0;
}

myVariableSizedArray

Stack Heap

myVariableSizedArray[0]

myVariableSizedArray[1]

myVariableSizedArray[2]

myVariableSizedArray[3]

myVariableSizedArray[4]

myVariableSizedArray[5]

myVariableSizedArray[6]

myVariableSizedArray[7]

FIGURE 1-3

NOTE  Avoid using malloc() and free() from C. Instead, use new and delete,
or new[] and delete[].

WARNING  To prevent memory leaks, every call to new should be paired with a
call to delete, and every call to new[] should be paired with a call to delete[].
Not calling delete or delete[], or mismatching calls, results in memory leaks.
Memory leaks are discussed in Chapter 7.

Diving Deeper into C++  ❘  33

The main() function is calling func() with parameter NULL, which is supposed to be a null pointer
constant. In other words, you are expecting the char* version of func() to be called with a null
pointer as argument. However, since NULL is not a pointer, but identical to the integer 0, the integer
version of func() is called.

This problem is solved with the introduction of a real null pointer constant, nullptr. The following
code calls the char* version:

func(nullptr);

Smart Pointers
To avoid common memory problems, you should use smart pointers instead of “raw,” also called
“naked,” C-style pointers. Smart pointers automatically deallocate memory when the smart pointer
object goes out of scope, for example, when the function has finished executing.

The following are the two most important smart pointer types in C++, both defined in <memory>
and in the std namespace:

➤➤ std::unique_ptr

➤➤ std::shared_ptr

unique_ptr is analogous to an ordinary pointer, except that it automatically frees the memory or
resource when the unique_ptr goes out of scope or is deleted. As such, unique_ptr has sole own-
ership of the object pointed to. One advantage of a unique_ptr is that memory and resources are
always freed, even when return statements are executed, or when exceptions (discussed later in this
chapter) are thrown. This, for example, simplifies coding when a function has multiple return state-
ments, because you don’t have to remember to free the resources before each return statement.

To create a unique_ptr, you should use std::make_unique<>(). For example, instead of writing
the following,

Employee* anEmployee = new Employee;
// ...
delete anEmployee;

you should write this:

auto anEmployee = make_unique<Employee>();

Note that you do not call delete anymore; it happens automatically for you. The auto keyword is
discussed in more detail in the “Type Inference” section later in this chapter. For now, it suffices to
know that the auto keyword tells the compiler to automatically deduce the type of a variable, so
that you don’t have to manually specify the full type.

unique_ptr is a generic smart pointer that can point to any kind of memory. That’s why it is a
template. Templates require the angle brackets, < >, to specify the template parameters. Between the
brackets, you have to specify the type of memory you want your unique_ptr to point to. Templates
are discussed in detail in Chapters 12 and 22, but the smart pointers are introduced in Chapter 1 so
that they can be used throughout the book—and as you will see, they are easy to use.

34  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

make_unique() has been available since C++14. If your compiler is not yet C++14 compliant, you
can make your unique_ptr as follows (note that you now have to specify the type, Employee,
twice):

unique_ptr<Employee> anEmployee(new Employee);

You can use the anEmployee smart pointer in the same way as a normal pointer, for example:

if (anEmployee) {
 cout << "Salary: " << anEmployee->salary << endl;
}

A unique_ptr can also be used to store a C-style array. The following example creates an array of
ten Employee instances, stores it in a unique_ptr, and shows how to access an element from the
array:

auto employees = make_unique<Employee[]>(10);
cout << "Salary: " << employees[0].salary << endl;

shared_ptr allows for distributed ownership of the data. Each time a shared_ptr is assigned, a
reference count is incremented indicating there is one more owner of the data. When a shared_ptr
goes out of scope, the reference count is decremented. When the reference count goes to zero, it
means there is no longer any owner of the data, and the object referenced by the pointer is freed.

To create a shared_ptr, you should use std::make_shared<>(), which is similar to
make_unique<>():

auto anEmployee = make_shared<Employee>();
if (anEmployee) {
 cout << "Salary: " << anEmployee->salary << endl;
}

Starting with C++17, you can also store an array in a shared_ptr, whereas older versions of C++
did not allow this. Note however that make_shared<>() of C++17 cannot be used in this case. Here
is an example:

shared_ptr<Employee[]> employees(new Employee[10]);
cout << "Salary: " << employees[0].salary << endl;

Chapter 7 discusses memory management and smart pointers in more details, but because the basic
use of unique_ptr and shared_ptr is straightforward, they are already used in examples through-
out this book.

NOTE  Raw pointers are only allowed if there is no ownership involved.
Otherwise, use unique_ptr by default, and shared_ptr if you need shared
ownership. If you know about auto_ptr, forget it; it was deprecated in
C++11/14, and has been removed from C++17.

Diving Deeper into C++  ❘  35

The Many Uses of const
The keyword const can be used in several different ways in C++. All of its uses are related, but there
are subtle differences. The subtleties of const make for excellent interview questions! Chapter 11
explains in detail all the ways that const can be used. This section outlines two common use-cases.

const Constants
If you assumed that the keyword const has something to do with constants, you have correctly
uncovered one of its uses. In the C language, programmers often use the preprocessor #define
mechanism to declare symbolic names for values that won’t change during the execution of the pro-
gram, such as the version number. In C++, programmers are encouraged to avoid #define in favor
of using const to define constants. Defining a constant with const is just like defining a variable,
except that the compiler guarantees that code cannot change the value.

const int versionNumberMajor = 2;
const int versionNumberMinor = 1;
const std::string productName = "Super Hyper Net Modulator";

const to Protect Parameters
In C++, you can cast a non-const variable to a const variable. Why would you want to do this? It
offers some degree of protection from other code changing the variable. If you are calling a func-
tion that a coworker of yours is writing, and you want to ensure that the function doesn’t change
the value of a parameter you pass in, you can tell your coworker to have the function take a const
parameter. If the function attempts to change the value of the parameter, it will not compile.

In the following code, a string* is automatically cast to a const string* in the call to mys-
teryFunction(). If the author of mysteryFunction() attempts to change the value of the passed
string, the code will not compile. There are ways around this restriction, but using them requires
conscious effort. C++ only protects against accidentally changing const variables.

void mysteryFunction(const std::string* someString)
{
 *someString = "Test"; // Will not compile.
}

int main()
{
 std::string myString = "The string";
 mysteryFunction(&myString);
 return 0;
}

References
A reference in C++ allows you to give another name to an existing variable. For example:

int x = 42;
int& xReference = x;

36  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

Attaching & to a type indicates that the variable is a reference. It is still used as though it was a nor-
mal variable, but behind the scenes, it is really a pointer to the original variable. Both the variable
x and the reference variable xReference point to exactly the same value. If you change the value
through either one of them, the change is visible through the other one as well.

Pass By Reference
Normally, when you pass a variable into a function, you are passing by value. If a function takes an
integer parameter, it is really a copy of the integer that you pass in, so you cannot modify the value
of the original variable. Pointers to stack variables are often used in C to allow functions to modify
variables in other stack frames. By dereferencing the pointer, the function can change the memory
that represents the variable even though that variable isn’t in the current stack frame. The problem
with this approach is that it brings the messiness of pointer syntax into what is really a simple task.

Instead of passing pointers to functions, C++ offers a better mechanism, called pass by reference,
where parameters are references instead of pointers. Following are two implementations of an
addOne() function. The first one has no effect on the variable that is passed in because it is passed
by value and thus the function receives a copy of the value passed to it. The second one uses a refer-
ence and thus changes the original variable.

void addOne(int i)
{
 i++; // Has no real effect because this is a copy of the original
}

void addOne(int& i)
{
 i++; // Actually changes the original variable
}

The syntax for the call to the addOne() function with an integer reference is no different than if the
function just took an integer:

int myInt = 7;
addOne(myInt);

If you have a function that needs to return a big structure or class (discussed later in this chapter)
that is expensive to copy, you’ll often see the function taking a non-const reference to such a struc-
ture or class which the function then modifies, instead of directly returning it. This was the recom-
mended way a long time ago to prevent the performance penalty of creating a copy when you return
the structure or class from the function. Since C++11, this is not necessary anymore. Thanks to

NOTE  There is a subtle difference between the two addOne() implementations.
The version using pass-by-value accepts literals without a problem; for example,
“addOne(3);” is legal. However, doing the same with the pass-by-reference
version of addOne() will result in a compiler error. This can be solved by using
const references, discussed in the next section, or rvalue references, an advanced
C++ feature explained in Chapter 9.

Diving Deeper into C++  ❘  37

move semantics, directly returning structures or classes from functions is efficient without any copy-
ing. Move semantics is discussed in detail in Chapter 9.

Pass By const Reference
You will often find code that uses const reference parameters for functions. At first, that seems
like a contradiction. Reference parameters allow you to change the value of a variable from within
another context. const seems to prevent such changes.

The main value in const reference parameters is efficiency. When you pass a value into a function,
an entire copy is made. When you pass a reference, you are really just passing a pointer to the origi-
nal so the computer doesn’t need to make a copy. By passing a const reference, you get the best of
both worlds: no copy is made but the original variable cannot be changed.

const references become more important when you are dealing with objects because they can be
large and making copies of them can have unwanted side effects. Subtle issues like this are covered
in Chapter 11. The following example shows how to pass an std::string to a function as a const
reference:

void printString(const std::string& myString)
{
 std::cout << myString << std::endl;
}

int main()
{
 std::string someString = "Hello World";
 printString(someString);
 printString("Hello World"); // Passing literals works
 return 0;
}

Exceptions
C++ is a very flexible language, but not a particularly safe one. The compiler will let you write code
that scribbles on random memory addresses or tries to divide by zero (computers don’t deal well
with infinity). One language feature that attempts to add a degree of safety back to the language is
exceptions.

An exception is an unexpected situation. For example, if you are writing a function that retrieves
a web page, several things could go wrong. The Internet host that contains the page might be
down, the page might come back blank, or the connection could be lost. One way you could handle
this situation is by returning a special value from the function, such as nullptr or an error code.
Exceptions provide a much better mechanism for dealing with problems.

NOTE  If you need to pass an object to a function, prefer to pass it by const
reference instead of by value. This prevents unnecessary copying. Pass it by
non-const reference if the function needs to modify the object.

38  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

Exceptions come with some new terminology. When a piece of code detects an exceptional situation,
it throws an exception. Another piece of code catches the exception and takes appropriate action.
The following example shows a function, divideNumbers(), that throws an exception if the caller
passes in a denominator of zero. The use of std::invalid_argument requires <stdexcept>.

double divideNumbers(double numerator, double denominator)
{
 if (denominator == 0) {
 throw invalid_argument("Denominator cannot be 0.");
 }
 return numerator / denominator;
}

When the throw line is executed, the function immediately ends without returning a value. If the
caller surrounds the function call with a try/catch block, as shown in the following code, it
receives the exception and is able to handle it:

try {
 cout << divideNumbers(2.5, 0.5) << endl;
 cout << divideNumbers(2.3, 0) << endl;
 cout << divideNumbers(4.5, 2.5) << endl;
} catch (const invalid_argument& exception) {
 cout << "Exception caught: " << exception.what() << endl;
}

The first call to divideNumbers() executes successfully, and the result is output to the user. The
second call throws an exception. No value is returned, and the only output is the error message that
is printed when the exception is caught. The third call is never executed because the second call
throws an exception, causing the program to jump to the catch block. The output for the preceding
block of code is as follows:

5
An exception was caught: Denominator cannot be 0.

Exceptions can get tricky in C++. To use exceptions properly, you need to understand what happens
to the stack variables when an exception is thrown, and you have to be careful to properly catch
and handle the necessary exceptions. Also, the preceding example uses the built-in std::invalid_
argument type, but it is preferable to write your own exception types that are more specific to the
error being thrown. Lastly, the C++ compiler doesn’t force you to catch every exception that might
occur. If your code never catches any exceptions but an exception is thrown, it will be caught by the
program itself, which will be terminated. These trickier aspects of exceptions are covered in much
more detail in Chapter 14.

Type Inference
Type inference allows the compiler to automatically deduce the type of an expression. There are two
keywords for type inference: auto and decltype.

Diving Deeper into C++  ❘  39

The auto Keyword
The auto keyword has a number of completely different uses:

➤➤ Deducing a function’s return type, as explained earlier in this chapter.

➤➤ Structured bindings, as explained earlier in this chapter.

➤➤ Deducing the type of an expression, as discussed later in this section.

➤➤ Deducing the type of non-type template parameters, see Chapter 12.

➤➤ decltype(auto), see Chapter 12.

➤➤ Alternative function syntax, see Chapter 12.

➤➤ Generic lambda expressions, see Chapter 18.

auto can be used to tell the compiler to automatically deduce the type of a variable at compile time.
The following line shows the simplest use of the auto keyword in that context:

auto x = 123; // x will be of type int

In this example, you don’t win much by typing auto instead of int; however, it becomes useful
for more complicated types. Suppose you have a function called getFoo() that has a complicated
return type. If you want to assign the result of calling getFoo() to a variable, you can spell out the
complicated type, or you can simply use auto and let the compiler figure it out:

auto result = getFoo();

This has the added benefit that you can easily change the function’s return type without having to
update all the places in the code where that function is called.

However, using auto to deduce the type of an expression strips away reference and const qualifiers.
Suppose you have the following function:

#include <string>

const std::string message = "Test";

const std::string& foo()
{
 return message;
}

You can call foo() and store the result in a variable with the type specified as auto, as follows:

auto f1 = foo();

Because auto strips away reference and const qualifiers, f1 is of type string, and thus a copy is
made. If you want a const reference, you can explicitly make it a reference and mark it const, as
follows:

const auto& f2 = foo();

40  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

The decltype Keyword
The decltype keyword takes an expression as argument, and computes the type of that expression,
as shown here:

int x = 123;
decltype(x) y = 456;

In this example, the compiler deduces the type of y to be int because that is the type of x.

The difference between auto and decltype is that decltype does not strip reference and const
qualifiers. Take again the function foo() returning a const reference to a string. Defining f2
using decltype as follows results in f2 being of type const string&, and thus no copy is made.

decltype(foo()) f2 = foo();

On first sight, decltype doesn’t seem to add much value. However, it is pretty powerful in the con-
text of templates, discussed in Chapters 12 and 22.

C++ AS AN OBJECT-ORIENTED LANGUAGE

If you are a C programmer, you may have viewed the features covered so far in this chapter as con-
venient additions to the C language. As the name C++ implies, in many ways the language is just a
“better C.” There is one major point that this view overlooks: unlike C, C++ is an object-oriented
language.

Object-oriented programming (OOP) is a very different, arguably more natural, way to write code.
If you are used to procedural languages such as C or Pascal, don’t worry. Chapter 5 covers all the
background information you need to know to shift your mindset to the object-oriented paradigm.
If you already know the theory of OOP, the rest of this section will get you up to speed (or refresh
your memory) on basic C++ object syntax.

Defining Classes
A class defines the characteristics of an object. In C++, classes are usually defined in a header file
(.h), while their definitions usually are in a corresponding source file (.cpp).

A basic class definition for an airline ticket class is shown in the following example. The class can
calculate the price of the ticket based on the number of miles in the flight and whether or not the
customer is a member of the “Elite Super Rewards Program.” The definition begins by declaring the
class name. Inside a set of curly braces, the data members (properties) of the class and its methods
(behaviors) are declared. Each data member and method is associated with a particular access level:
public, protected, or private. These labels can occur in any order and can be repeated. Members
that are public can be accessed from outside the class, while members that are private cannot be

WARNING  Always keep in mind that auto strips away reference and const
qualifiers, and thus creates a copy! If you do not want a copy, use auto& or
const auto&.

C++ as an Object-Oriented Language  ❘  41

accessed from outside the class. It’s recommended to make all your data members private, and if
needed, to give access to them with public getters and setters. This way, you can easily change the
representation of your data while keeping the public interface the same. The use of protected is
explained in the context of inheritance in Chapters 5 and 10.

#include <string>

class AirlineTicket
{
 public:
 AirlineTicket();
 ~AirlineTicket();

 double calculatePriceInDollars() const;

 const std::string& getPassengerName() const;
 void setPassengerName(const std::string& name);

 int getNumberOfMiles() const;
 void setNumberOfMiles(int miles);

 bool hasEliteSuperRewardsStatus() const;
 void setHasEliteSuperRewardsStatus(bool status);
 private:
 std::string mPassengerName;
 int mNumberOfMiles;
 bool mHasEliteSuperRewardsStatus;
};

This book follows the convention to prefix each data member of a class with a lowercase ‘m’, such as
mPassengerName.

The method that has the same name as the class with no return type is a constructor. It is automati-
cally called when an object of the class is created. The method with a tilde (~) character followed by
the class name is a destructor. It is automatically called when the object is destroyed.

There are two ways of initializing data members with a constructor. The recommended way is
to use a constructor initializer, which follows a colon after the constructor name. Here is the
AirlineTicket constructor with a constructor initializer:

AirlineTicket::AirlineTicket()
 : mPassengerName("Unknown Passenger")
 , mNumberOfMiles(0)
 , mHasEliteSuperRewardsStatus(false)
{
}

NOTE  To follow the const-correctness principle, it’s always a good idea to
declare member functions that do not change any data member of the object as
being const. These member functions are also called “inspectors,” compared to
“mutators” for non-const member functions.

42  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

A second way is to put the initializations in the body of the constructor, as shown here:

AirlineTicket::AirlineTicket()
{
 // Initialize data members
 mPassengerName = "Unknown Passenger";
 mNumberOfMiles = 0;
 mHasEliteSuperRewardsStatus = false;
}

If the constructor is only initializing data members without doing anything else, then there is no real
need for a constructor because data members can be initialized directly inside the class definition.
For example, instead of writing an AirlineTicket constructor, you can modify the definition of the
data members in the class definition as follows:

 private:
 std::string mPassengerName = "Unknown Passenger";
 int mNumberOfMiles = 0;
 bool mHasEliteSuperRewardsStatus = false;

If your class additionally needs to perform some other types of initialization, such as opening a file,
allocating memory, and so on, then you still need to write a constructor to handle those.

Here is the destructor for the AirlineTicket class:

AirlineTicket::~AirlineTicket()
{
 // Nothing much to do in terms of cleanup
}

This destructor doesn’t do anything, and can simply be removed from this class. It is just shown
here so you know the syntax of destructors. Destructors are required if you need to perform some
cleanup, such as closing files, freeing memory, and so on. Chapters 8 and 9 discuss destructors in
more detail.

The definitions of some of the AirlineTicket class methods are shown here:

double AirlineTicket::calculatePriceInDollars() const
{
 if (hasEliteSuperRewardsStatus()) {
 // Elite Super Rewards customers fly for free!
 return 0;
 }
 // The cost of the ticket is the number of miles times 0.1.
 // Real airlines probably have a more complicated formula!
 return getNumberOfMiles() * 0.1;
}

const string& AirlineTicket::getPassengerName() const
{
 return mPassengerName;
}

void AirlineTicket::setPassengerName(const string& name)
{
 mPassengerName = name;
}

Uniform Initialization  ❘  43

// Other get and set methods omitted for brevity.

Using Classes
The following sample program makes use of the AirlineTicket class. This example shows the
creation of a stack-based AirlineTicket object as well as a heap-based one:

AirlineTicket myTicket; // Stack-based AirlineTicket
myTicket.setPassengerName("Sherman T. Socketwrench");
myTicket.setNumberOfMiles(700);
double cost = myTicket.calculatePriceInDollars();
cout << "This ticket will cost $" << cost << endl;

// Heap-based AirlineTicket with smart pointer
auto myTicket2 = make_unique<AirlineTicket>();
myTicket2->setPassengerName("Laudimore M. Hallidue");
myTicket2->setNumberOfMiles(2000);
myTicket2->setHasEliteSuperRewardsStatus(true);
double cost2 = myTicket2->calculatePriceInDollars();
cout << "This other ticket will cost $" << cost2 << endl;
// No need to delete myTicket2, happens automatically

// Heap-based AirlineTicket without smart pointer (not recommended)
AirlineTicket* myTicket3 = new AirlineTicket();
// ... Use ticket 3
delete myTicket3; // delete the heap object!

The preceding example exposes you to the general syntax for creating and using classes. Of course,
there is much more to learn. Chapters 8, 9, and 10 go into more depth about the specific C++ mech-
anisms for defining classes.

UNIFORM INITIALIZATION

Before C++11, initialization of types was not always uniform. For example, take the following defi-
nition of a circle, once as a structure, and once as a class:

struct CircleStruct
{
 int x, y;
 double radius;
};

class CircleClass
{
 public:
 CircleClass(int x, int y, double radius)
 : mX(x), mY(y), mRadius(radius) {}
 private:
 int mX, mY;
 double mRadius;
};

44  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

In pre-C++11, initialization of a variable of type CircleStruct and a variable of type CircleClass
looks different:

CircleStruct myCircle1 = {10, 10, 2.5};
CircleClass myCircle2(10, 10, 2.5);

For the structure version, you can use the {...} syntax. However, for the class version, you need to
call the constructor using function notation (...).

Since C++11, you can more uniformly use the {...} syntax to initialize types, as follows:

CircleStruct myCircle3 = {10, 10, 2.5};
CircleClass myCircle4 = {10, 10, 2.5};

The definition of myCircle4 automatically calls the constructor of CircleClass. Even the use of the
equal sign is optional, so the following is identical:

CircleStruct myCircle5{10, 10, 2.5};
CircleClass myCircle6{10, 10, 2.5};

Uniform initialization is not limited to structures and classes. You can use it to initialize anything in
C++. For example, the following code initializes all four variables with the value 3:

int a = 3;
int b(3);
int c = {3}; // Uniform initialization
int d{3}; // Uniform initialization

Uniform initialization can be used to perform zero-initialization* of variables; you just specify an
empty set of curly braces, as shown here:

int e{}; // Uniform initialization, e will be 0

Using uniform initialization prevents narrowing. C++ implicitly performs narrowing, as shown here:

void func(int i) { /* ... */ }

int main()
{
 int x = 3.14;
 func(3.14);
}

In both cases, C++ automatically truncates 3.14 to 3 before assigning it to x or calling func(). Note
that some compilers might issue a warning about this narrowing, while others won’t. With uniform
initialization, both the assignment to x and the call to func() must generate a compiler error if your
compiler fully conforms to the C++11 standard:

void func(int i) { /* ... */ }

int main()
{
 int x = {3.14}; // Error because narrowing
 func({3.14}); // Error because narrowing
}

*Zero-initialization constructs objects with the default constructor, and initializes primitive integer types
(such as char, int, and so on) to zero, primitive floating-point types to 0.0, and pointer types to nullptr.

Uniform Initialization  ❘  45

Uniform initialization can be used to initialize dynamically allocated arrays, as shown here:

int* pArray = new int[4]{0, 1, 2, 3};

It can also be used in the constructor initializer to initialize arrays that are members of a class.

class MyClass
{
 public:
 MyClass() : mArray{0, 1, 2, 3} {}
 private:
 int mArray[4];
};

Uniform initialization can be used with the Standard Library containers as well—such as the
std::vector, as demonstrated later in this chapter.

Direct List Initialization versus Copy List Initialization
There are two types of initialization that use braced initializer lists:

➤➤ Copy list initialization. T obj = {arg1, arg2, ...};

➤➤ Direct list initialization. T obj {arg1, arg2, ...};

In combination with auto type deduction, there is an important difference between copy- and direct
list initialization introduced with C++17.

Starting with C++17, you have the following results:

// Copy list initialization
auto a = {11}; // initializer_list<int>
auto b = {11, 22}; // initializer_list<int>

// Direct list initialization
auto c {11}; // int
auto d {11, 22}; // Error, too many elements.

Note that for copy list initialization, all the elements in the braced initializer must be of the same
type. For example, the following does not compile:

auto b = {11, 22.33}; // Compilation error

In earlier versions of the standard (C++11/14), both copy- and direct list initialization deduce an
initializer_list<>:

// Copy list initialization
auto a = {11}; // initializer_list<int>
auto b = {11, 22}; // initializer_list<int>

// Direct list initialization
auto c {11}; // initializer_list<int>
auto d {11, 22}; // initializer_list<int>

46  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

THE STANDARD LIBRARY

C++ comes with a Standard Library, which contains a lot of useful classes that can easily be used
in your code. The benefit of using these classes is that you don’t need to reinvent certain classes and
you don’t need to waste time on implementing things that have already been implemented for you.
Another benefit is that the classes available in the Standard Library are heavily tested and verified
for correctness by thousands of users. The Standard Library classes are also tuned for high perfor-
mance, so using them will most likely result in better performance compared to making your own
implementation.

A lot of functionality is available to you in the Standard Library. Chapters 16 to 20 provide more
details; however, when you start working with C++ it is a good idea to understand what the
Standard Library can do for you from the very beginning. This is especially important if you are a C
programmer. As a C programmer, you might try to solve problems in C++ the same way you would
solve them in C. However, in C++ there is probably an easier and safer solution to the problem that
involves using Standard Library classes.

You already saw some Standard Library classes earlier in this chapter—for example, std::string,
std::array, std::vector, std::unique_ptr, and std::shared_ptr. Many more classes are
introduced in Chapters 16 to 20.

YOUR FIRST USEFUL C++ PROGRAM

The following program builds on the employee database example used earlier in the discussion
on structs. This time, you will end up with a fully functional C++ program that uses many of the
features discussed in this chapter. This real-world example includes the use of classes, exceptions,
streams, vectors, namespaces, references, and other language features.

An Employee Records System
A program to manage a company’s employee records needs to be flexible and have useful features.
The feature set for this program includes the following abilities:

➤➤ To add an employee

➤➤ To fire an employee

➤➤ To promote an employee

➤➤ To view all employees, past and present

➤➤ To view all current employees

➤➤ To view all former employees

The design for this program divides the code into three parts. The Employee class encapsulates the
information describing a single employee. The Database class manages all the employees of the
company. A separate UserInterface file provides the interactivity of the program.

Your First Useful C++ Program  ❘  47

The Employee Class
The Employee class maintains all the information about an employee. Its methods provide a way to
query and change that information. Employees also know how to display themselves on the console.
Methods also exist to adjust the employee’s salary and employment status.

Employee.h
The Employee.h file defines the Employee class. The sections of this file are described individually
in the text that follows.

The first line contains a #pragma once to prevent the file from being included multiple times,
followed by the inclusion of the string functionality.

This code also declares that the subsequent code, contained within the curly braces, lives in
the Records namespace. Records is the namespace that is used throughout this program for
application-specific code.

#pragma once
#include <string>
namespace Records {

The following constant, representing the default starting salary for new employees, lives in the
Records namespace. Other code that lives in Records can access this constant as kDefaultStart-
ingSalary. Elsewhere, it must be referenced as Records::kDefaultStartingSalary.

 const int kDefaultStartingSalary = 30000;

Note that this book uses the convention to prefix constants with a lowercase ‘k’, from the German
“Konstant,” meaning “Constant.”

The Employee class is defined, along with its public methods. The promote() and demote() meth-
ods both have integer parameters that are specified with a default value. In this way, other code can
omit the integer parameters and the default will automatically be used.

A number of setters and getters provide mechanisms to change the information about an employee
or to query the current information about an employee.

The Employee class includes an explicitly defaulted constructor, as discussed in Chapter 8. It also
includes a constructor that accepts a first and last name.

 class Employee
 {
 public:
 Employee() = default;
 Employee(const std::string& firstName,
 const std::string& lastName);

 void promote(int raiseAmount = 1000);
 void demote(int demeritAmount = 1000);
 void hire(); // Hires or rehires the employee
 void fire(); // Dismisses the employee
 void display() const;// Outputs employee info to console

48  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

 // Getters and setters
 void setFirstName(const std::string& firstName);
 const std::string& getFirstName() const;

 void setLastName(const std::string& lastName);
 const std::string& getLastName() const;

 void setEmployeeNumber(int employeeNumber);
 int getEmployeeNumber() const;

 void setSalary(int newSalary);
 int getSalary() const;

 bool isHired() const;

Finally, the data members are declared as private so that other parts of the code cannot modify
them directly. The setters and getters provide the only public way of modifying or querying those
values. The data members are also initialized here instead of in a constructor. By default, new
employees have no name, an employee number of -1, the default starting salary, and a status of not
hired.

 private:
 std::string mFirstName;
 std::string mLastName;
 int mEmployeeNumber = -1;
 int mSalary = kDefaultStartingSalary;
 bool mHired = false;
 };
}

Employee.cpp
The constructor accepting a first and last name just sets the corresponding data members:

#include <iostream>
#include "Employee.h"

using namespace std;

namespace Records {
 Employee::Employee(const std::string& firstName,
 const std::string& lastName)
 : mFirstName(firstName), mLastName(lastName)
 {
 }

The promote() and demote() methods simply call the setSalary() method with a new value.
Note that the default values for the integer parameters do not appear in the source file; they are only
allowed in a function declaration, not in a definition.

 void Employee::promote(int raiseAmount)
 {
 setSalary(getSalary() + raiseAmount);
 }

Your First Useful C++ Program  ❘  49

 void Employee::demote(int demeritAmount)
 {
 setSalary(getSalary() - demeritAmount);
 }

The hire() and fire() methods just set the mHired data member appropriately.

 void Employee::hire()
 {
 mHired = true;
 }

 void Employee::fire()
 {
 mHired = false;
 }

The display() method uses the console output stream to display information about the current
employee. Because this code is part of the Employee class, it could access data members, such as
mSalary, directly instead of using getters, such as getSalary(). However, it is considered good
style to make use of getters and setters when they exist, even within the class.

 void Employee::display() const
 {
 cout << "Employee: " << getLastName() << ", " << getFirstName() << endl;
 cout << "-------------------------" << endl;
 cout << (isHired() ? "Current Employee" : "Former Employee") << endl;
 cout << "Employee Number: " << getEmployeeNumber() << endl;
 cout << "Salary: $" << getSalary() << endl;
 cout << endl;
 }

A number of getters and setters perform the task of getting and setting values. Even though these
methods seem trivial, it’s better to have trivial getters and setters than to make your data members
public. For example, in the future, you may want to perform bounds checking in the setSalary()
method. Getters and setters also make debugging easier because you can insert a breakpoint in them
to inspect values when they are retrieved or set. Another reason is that when you decide to change
how you are storing the data in your class, you only need to modify these getters and setters.

 // Getters and setters
 void Employee::setFirstName(const string& firstName)
 {
 mFirstName = firstName;
 }

 const string& Employee::getFirstName() const
 {
 return mFirstName;
 }
 // ... other getters and setters omitted for brevity
}

50  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

EmployeeTest.cpp
As you write individual classes, it is often useful to test them in isolation. The following code
includes a main() function that performs some simple operations using the Employee class. Once
you are confident that the Employee class works, you should remove or comment-out this file so
that you don’t attempt to compile your code with multiple main() functions.

#include <iostream>
#include "Employee.h"

using namespace std;
using namespace Records;

int main()
{
 cout << "Testing the Employee class." << endl;
 Employee emp;
 emp.setFirstName("John");
 emp.setLastName("Doe");
 emp.setEmployeeNumber(71);
 emp.setSalary(50000);
 emp.promote();
 emp.promote(50);
 emp.hire();
 emp.display();
 return 0;
}

Another way of testing individual classes is with unit testing, which is discussed in Chapter 26.

The Database Class
The Database class uses the std::vector class from the Standard Library to store Employee
objects.

Database.h
Because the database will take care of automatically assigning an employee number to a new
employee, a constant defines where the numbering begins.

#pragma once
#include <iostream>
#include <vector>
#include "Employee.h"

namespace Records {
 const int kFirstEmployeeNumber = 1000;

The database provides an easy way to add a new employee by providing a first and last name.
For convenience, this method returns a reference to the new employee. External code can also get
an employee reference by calling the getEmployee() method. Two versions of this method are
declared. One allows retrieval by employee number. The other requires a first and last name.

 class Database
 {
 public:

Your First Useful C++ Program  ❘  51

 Employee& addEmployee(const std::string& firstName,
 const std::string& lastName);
 Employee& getEmployee(int employeeNumber);
 Employee& getEmployee(const std::string& firstName,
 const std::string& lastName);

Because the database is the central repository for all employee records, it has methods that output
all employees, the employees who are currently hired, and the employees who are no longer hired.

 void displayAll() const;
 void displayCurrent() const;
 void displayFormer() const;

mEmployees contains the Employee objects. The mNextEmployeeNumber data member keeps track
of what employee number is assigned to a new employee, and is initialized with the kFirstEm-
ployeeNumber constant.

 private:
 std::vector<Employee> mEmployees;
 int mNextEmployeeNumber = kFirstEmployeeNumber;
 };
}

Database.cpp
The addEmployee() method creates a new Employee object, fills in its information, and adds it to
the vector. The mNextEmployeeNumber data member is incremented after its use so that the next
employee will get a new number.

#include <iostream>
#include <stdexcept>
#include "Database.h"

using namespace std;

namespace Records {
 Employee& Database::addEmployee(const string& firstName,
 const string& lastName)
 {
 Employee theEmployee(firstName, lastName);
 theEmployee.setEmployeeNumber(mNextEmployeeNumber++);
 theEmployee.hire();
 mEmployees.push_back(theEmployee);
 return mEmployees[mEmployees.size() - 1];
 }

Only one version of getEmployee() is shown. Both versions work in similar ways. The meth-
ods loop over all employees in mEmployees using range-based for loops, and check to see if an
Employee is a match for the information passed to the method. An exception is thrown if no match
is found.

 Employee& Database::getEmployee(int employeeNumber)
 {
 for (auto& employee : mEmployees) {
 if (employee.getEmployeeNumber() == employeeNumber) {

52  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

 return employee;
 }
 }
 throw logic_error("No employee found.");
 }

The display methods all use a similar algorithm. They loop through all employees and tell each
employee to display itself to the console if the criterion for display matches. displayFormer() is
similar to displayCurrent().

 void Database::displayAll() const
 {
 for (const auto& employee : mEmployees) {
 employee.display();
 }
 }

 void Database::displayCurrent() const
 {
 for (const auto& employee : mEmployees) {
 if (employee.isHired())
 employee.display();
 }
 }
}

DatabaseTest.cpp
A simple test for the basic functionality of the database is shown here:

#include <iostream>
#include "Database.h"

using namespace std;
using namespace Records;

int main()
{
 Database myDB;
 Employee& emp1 = myDB.addEmployee("Greg", "Wallis");
 emp1.fire();

 Employee& emp2 = myDB.addEmployee("Marc", "White");
 emp2.setSalary(100000);

 Employee& emp3 = myDB.addEmployee("John", "Doe");
 emp3.setSalary(10000);
 emp3.promote();

 cout << "all employees: " << endl << endl;
 myDB.displayAll();

 cout << endl << "current employees: " << endl << endl;
 myDB.displayCurrent();

Your First Useful C++ Program  ❘  53

 cout << endl << "former employees: " << endl << endl;
 myDB.displayFormer();
}

The User Interface
The final part of the program is a menu-based user interface that makes it easy for users to work
with the employee database.

The main() function is a loop that displays the menu, performs the selected action, then does it all
again. For most actions, separate functions are defined. For simpler actions, like displaying employ-
ees, the actual code is put in the appropriate case.

#include <iostream>
#include <stdexcept>
#include <exception>
#include "Database.h"

using namespace std;
using namespace Records;

int displayMenu();
void doHire(Database& db);
void doFire(Database& db);
void doPromote(Database& db);
void doDemote(Database& db);

int main()
{
 Database employeeDB;
 bool done = false;
 while (!done) {
 int selection = displayMenu();
 switch (selection) {
 case 0:
 done = true;
 break;
 case 1:
 doHire(employeeDB);
 break;
 case 2:
 doFire(employeeDB);
 break;
 case 3:
 doPromote(employeeDB);
 break;
 case 4:
 employeeDB.displayAll();
 break;
 case 5:
 employeeDB.displayCurrent();
 break;
 case 6:
 employeeDB.displayFormer();

54  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

 break;
 default:
 cerr << "Unknown command." << endl;
 break;
 }
 }
 return 0;
}

The displayMenu() function outputs the menu and gets input from the user. One important note is
that this code assumes that the user will “play nice” and type a number when a number is requested.
When you read about I/O in Chapter 13, you will learn how to protect against bad input.

int displayMenu()
{
 int selection;
 cout << endl;
 cout << "Employee Database" << endl;
 cout << "-----------------" << endl;
 cout << "1) Hire a new employee" << endl;
 cout << "2) Fire an employee" << endl;
 cout << "3) Promote an employee" << endl;
 cout << "4) List all employees" << endl;
 cout << "5) List all current employees" << endl;
 cout << "6) List all former employees" << endl;
 cout << "0) Quit" << endl;
 cout << endl;
 cout << "---> ";
 cin >> selection;
 return selection;
}

The doHire() function gets the new employee’s name from the user and tells the database to add
the employee.

void doHire(Database& db)
{
 string firstName;
 string lastName;

 cout << "First name? ";
 cin >> firstName;

 cout << "Last name? ";
 cin >> lastName;

 db.addEmployee(firstName, lastName);
}

Your First Useful C++ Program  ❘  55

doFire() and doPromote() both ask the database for an employee by their employee number and
then use the public methods of the Employee object to make changes.

void doFire(Database& db)
{
 int employeeNumber;

 cout << "Employee number? ";
 cin >> employeeNumber;

 try {
 Employee& emp = db.getEmployee(employeeNumber);
 emp.fire();
 cout << "Employee " << employeeNumber << " terminated." << endl;
 } catch (const std::logic_error& exception) {
 cerr << "Unable to terminate employee: " << exception.what() << endl;
 }
}

void doPromote(Database& db)
{
 int employeeNumber;
 int raiseAmount;

 cout << "Employee number? ";
 cin >> employeeNumber;

 cout << "How much of a raise? ";
 cin >> raiseAmount;

 try {
 Employee& emp = db.getEmployee(employeeNumber);
 emp.promote(raiseAmount);
 } catch (const std::logic_error& exception) {
 cerr << "Unable to promote employee: " << exception.what() << endl;
 }
}

Evaluating the Program
The preceding program covers a number of topics from the very simple to the relatively complex.
There are a number of ways that you could extend this program. For example, the user interface
does not expose all of the functionality of the Database or Employee classes. You could modify the
UI to include those features. You could also change the Database class to remove fired employees
from mEmployees.

If there are parts of this program that don’t make sense, consult the preceding sections to review
those topics. If something is still unclear, the best way to learn is to play with the code and try
things out. For example, if you’re not sure how to use the conditional operator, write a short main()
function that uses it.

56  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

SUMMARY

Now that you know the fundamentals of C++, you are ready to become a professional C++ pro-
grammer. When you start getting deeper into the C++ language later in this book, you can refer to
this chapter to brush up on parts of the language you may need to review. Going back to some of the
sample code in this chapter may be all you need to bring a forgotten concept back to the forefront of
your mind.

The next chapter goes deeper in on how strings are handled in C++, because every program you
write will have to work with strings one way or another.

Working with Strings
and String Views

WHAT’S IN THIS CHAPTER?

➤➤ The differences between C-style strings and C++ strings

➤➤ Details of the C++ std::string class

➤➤ Why you should use std::string_view

➤➤ What raw string literals are

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of the chapter’s
code download on this book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

Every program that you write will use strings of some kind. With the old C language, there
is not much choice but to use a dumb null-terminated character array to represent a string.
Unfortunately, doing so can cause a lot of problems, such as buffer overflows, which can
result in security vulnerabilities. The C++ Standard Library includes a safe and easy-to-use
std::string class that does not have these disadvantages.

Because strings are so important, this chapter discusses them in more detail.

2

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

58  ❘  CHAPTER 2   Working with Strings and String Views

DYNAMIC STRINGS

Strings in languages that have supported them as first-class objects tend to have a number of
attractive features, such as being able to expand to any size, or to have sub-strings extracted or
replaced. In other languages, such as C, strings were almost an afterthought; there was no really
good “string” data type, just fixed arrays of bytes. The “string library” was nothing more than a
collection of rather primitive functions without even bounds checking. C++ provides a string type
as a first-class data type.

C-Style Strings
In the C language, strings are represented as an array of characters. The last character of a string
is a null character (‘\0’) so that code operating on the string can determine where it ends. This null
character is officially known as NUL, spelled with one L, not two. NUL is not the same as the NULL
pointer. Even though C++ provides a better string abstraction, it is important to understand the C
technique for strings because they still arise in C++ programming. One of the most common situa-
tions is where a C++ program has to call a C-based interface in some third-party library or as part
of interfacing to the operating system.

By far, the most common mistake that programmers make with C strings is that they forget to
allocate space for the ‘\0’ character. For example, the string
“hello” appears to be five characters long, but six characters
worth of space are needed in memory to store the value, as
shown in Figure 2-1.

C++ contains several functions from the C language that operate on strings. These functions are
defined in the <cstring> header. As a general rule of thumb, these functions do not handle memory
allocation. For example, the strcpy() function takes two strings as parameters. It copies the second
string onto the first, whether it fits or not. The following code attempts to build a wrapper around
strcpy() that allocates the correct amount of memory and returns the result, instead of taking
in an already allocated string. It uses the strlen() function to obtain the length of the string.
The caller is responsible for freeing the memory allocated by copyString().

char* copyString(const char* str)
{
 char* result = new char[strlen(str)]; // BUG! Off by one!
 strcpy(result, str);
 return result;
}

The copyString() function as written is incorrect. The strlen() function returns the length of
the string, not the amount of memory needed to hold it. For the string “hello”, strlen() returns
5, not 6. The proper way to allocate memory for a string is to add 1 to the amount of space needed
for the actual characters. It seems a bit unnatural to have +1 all over the place. Unfortunately, that’s
how it works, so keep this in mind when you work with C-style strings. The correct implementation
is as follows:

char* copyString(const char* str)
{
 char* result = new char[strlen(str) + 1];

'h' 'e' 'l' 'l' 'o' '\0'myString

FIGURE 2-1

Dynamic Strings  ❘  59

 strcpy(result, str);
 return result;
}

One way to remember that strlen()returns only the number of actual characters in the string is
to consider what would happen if you were allocating space for a string made up of several other
strings. For example, if your function took in three strings and returned a string that was the con-
catenation of all three, how big would it be? To hold exactly enough space, it would be the length of
all three strings, added together, plus one space for the trailing ‘\0’ character. If strlen() included
the ‘\0’ in the length of the string, the allocated memory would be too big. The following code uses
the strcpy() and strcat() functions to perform this operation. The cat in strcat() stands for
concatenate.

char* appendStrings(const char* str1, const char* str2, const char* str3)
{
 char* result = new char[strlen(str1) + strlen(str2) + strlen(str3) + 1];
 strcpy(result, str1);
 strcat(result, str2);
 strcat(result, str3);
 return result;
}

The sizeof() operator in C and C++ can be used to get the size of a certain data type or variable.
For example, sizeof(char) returns 1 because a char has a size of 1 byte. However, in the context
of C-style strings, sizeof() is not the same as strlen(). You should never use sizeof() to try to
get the size of a string. It returns different sizes depending on how the C-style string is stored. If it is
stored as a char[], then sizeof() returns the actual memory used by the string, including the ‘\0’
character, as in this example:

char text1[] = "abcdef";
size_t s1 = sizeof(text1); // is 7
size_t s2 = strlen(text1); // is 6

However, if the C-style string is stored as a char*, then sizeof() returns the size of a pointer!

const char* text2 = "abcdef";
size_t s3 = sizeof(text2); // is platform-dependent
size_t s4 = strlen(text2); // is 6

Here, s3 will be 4 when compiled in 32-bit mode, and 8 when compiled in 64-bit mode because it is
returning the size of a const char*, which is a pointer.

A complete list of C functions to operate on strings can be found in the <cstring> header file.

WARNING  When you use the C-style string functions with Microsoft Visual
Studio, the compiler is likely to give you security-related warnings or even
errors about these functions being deprecated. You can eliminate these warn-
ings by using other C Standard Library functions, such as strcpy_s() or
strcat_s(), which are part of the “secure C library” standard (ISO/IEC TR
24731). However, the best solution is to switch to the C++ Standard Library
std::string class, which we discuss in the section “The C++ std::string Class.”

60  ❘  CHAPTER 2   Working with Strings and String Views

String Literals
You’ve probably seen strings written in a C++ program with quotes around them. For example, the
following code outputs the string hello by including the string itself, not a variable that contains it:

cout << "hello" << endl;

In the preceding line, “hello” is a string literal because it is written as a value, not a variable. String
literals are actually stored in a read-only part of memory. This allows the compiler to optimize
memory usage by reusing references to equivalent string literals. That is, even if your program uses
the string literal “hello” 500 times, the compiler is allowed to create just one instance of hello in
memory. This is called literal pooling.

String literals can be assigned to variables, but because string literals are in a read-only part of
memory and because of the possibility of literal pooling, assigning them to variables can be risky.
The C++ standard officially says that string literals are of type “array of n const char”; however,
for backward compatibility with older non-const-aware code, most compilers do not enforce your
program to assign a string literal to a variable of type const char*. They let you assign a string
literal to a char* without const, and the program will work fine unless you attempt to change the
string. Generally, the behavior of modifying string literals is undefined. It could, for example, cause
a crash, or it could keep working with seemingly inexplicable side effects, or the modification could
silently be ignored, or it could just work; it all depends on your compiler. For example, the following
code exhibits undefined behavior:

char* ptr = "hello"; // Assign the string literal to a variable.
ptr[1] = 'a'; // Undefined behavior!

A much safer way to code is to use a pointer to const characters when referring to string literals.
The following code contains the same bug, but because it assigned the literal to a const char*, the
compiler catches the attempt to write to read-only memory:

const char* ptr = "hello"; // Assign the string literal to a variable.
ptr[1] = 'a'; // Error! Attempts to write to read-only memory

You can also use a string literal as an initial value for a character array (char[]). In this case, the
compiler creates an array that is big enough to hold the string and copies the string to this array.
The compiler does not put the literal in read-only memory and does not do any literal pooling.

char arr[] = "hello"; // Compiler takes care of creating appropriate sized
 // character array arr.
arr[1] = 'a'; // The contents can be modified.

Raw String Literals
Raw string literals are string literals that can span across multiple lines of code, that don’t require
escaping of embedded double quotes, and where escape sequences like \t and \n are processed as
normal text and not as escape sequences. Escape sequences are discussed in Chapter 1. For example,
if you write the following with a normal string literal, you will get a compilation error because the
string contains non-escaped double quotes:

const char* str = "Hello "World"!"; // Error!

Dynamic Strings  ❘  61

Normally you have to escape the double quotes as follows:

const char* str = "Hello \"World\"!";

With a raw string literal, you can avoid the need to escape the quotes. The raw string literal starts
with R"(and ends with)".

const char* str = R"(Hello "World"!)";

If you need a string consisting of multiple lines, without raw string literals you need to embed \n
escape sequences in your string where you want to start a new line. For example:

const char* str = "Line 1\nLine 2";

If you output this string to the console, you get the following:

Line 1
Line 2

With a raw string literal, instead of using \n escape sequences to start new lines, you can simply
press enter to start real physical new lines in your source code as follows. The output is the same as
the previous code snippet using the embedded \n.

const char* str = R"(Line 1
Line 2)";

Escape sequences are ignored in raw string literals. For example, in the following raw string literal,
the \t escape sequence is not replaced with a tab character, but is kept as the sequence of a back
slash followed by the letter t:

const char* str = R"(Is the following a tab character? \t)";

So, if you output this string to the console, you get:

Is the following a tab character? \t

Because a raw string literal ends with)" you cannot embed a)" in your string using this syntax.
For example, the following string is not valid because it contains the)" sequence in the middle of
the string:

const char* str = R"(Embedded)" characters)"; // Error!

If you need embedded)" characters, you need to use the extended raw string literal syntax, which is
as follows:

R"d-char-sequence(r-char-sequence)d-char-sequence"

The r-char-sequence is the actual raw string. The d-char-sequence is an optional delimiter
sequence, which should be the same at the beginning and at the end of the raw string literal. This
delimiter sequence can have at most 16 characters. You should choose this delimiter sequence as a
sequence that will not appear in the middle of your raw string literal.

The previous example can be rewritten using a unique delimiter sequence as follows:

const char* str = R"-(Embedded)" characters)-";

62  ❘  CHAPTER 2   Working with Strings and String Views

Raw string literals make it easier to work with database querying strings, regular expressions, file
paths, and so on. Regular expressions are discussed in Chapter 19.

The C++ std::string Class
C++ provides a much-improved implementation of the concept of a string as part of the Standard
Library. In C++, std::string is a class (actually an instantiation of the basic_string class tem-
plate) that supports many of the same functionalities as the <cstring> functions, but that takes
care of memory allocation for you. The string class is defined in the <string> header in the std
namespace, and has already been introduced in the previous chapter. Now it’s time to take a deeper
look at it.

What Is Wrong with C-Style Strings?
To understand the necessity of the C++ string class, consider the advantages and disadvantages of
C-style strings.

Advantages:

➤➤ They are simple, making use of the underlying basic character type and array structure.

➤➤ They are lightweight, taking up only the memory that they need if used properly.

➤➤ They are low level, so you can easily manipulate and copy them as raw memory.

➤➤ They are well understood by C programmers—why learn something new?

Disadvantages:

➤➤ They require incredible efforts to simulate a first-class string data type.

➤➤ They are unforgiving and susceptible to difficult-to-find memory bugs.

➤➤ They don’t leverage the object-oriented nature of C++.

➤➤ They require knowledge of their underlying representation on the part of the programmer.

The preceding lists were carefully constructed to make you think that perhaps there is a better way.
As you’ll learn, C++ strings solve all the problems of C strings and render most of the arguments
about the advantages of C strings over a first-class data type irrelevant.

Using the string Class
Even though string is a class, you can almost always treat it as if it were a built-in type. In fact, the
more you think of it that way, the better off you are. Through the magic of operator overloading,
C++ strings are much easier to use than C-style strings. For example, the + operator is redefined
for strings to mean “string concatenation.” The following code produces 1234:

string A("12");
string B("34");
string C;
C = A + B; // C is "1234"

Dynamic Strings  ❘  63

The += operator is also overloaded to allow you to easily append a string:

string A("12");
string B("34");
A += B; // A is "1234"

Another problem with C strings is that you cannot use == to compare them. Suppose you have the
following two strings:

char* a = "12";
char b[] = "12";

Writing a comparison as follows always returns false, because it compares the pointer values, not
the contents of the strings:

if (a == b)

Note that C arrays and pointers are related. You can think of C arrays, like the b array in the
example, as pointers to the first element in the array. Chapter 7 goes deeper in on the array-pointer
duality.

To compare C strings, you have to write something as follows:

if (strcmp(a, b) == 0)

Furthermore, there is no way to use <, <=, >=, or > to compare C strings, so strcmp() returns -1,
0, or 1, depending on the lexicographic relationship of the strings. This results in very clumsy and
hard-to-read code, which is also error-prone.

With C++ strings, operator==, operator!=, operator<, and so on are all overloaded to work on
the actual string characters. Individual characters can still be accessed with operator[].

As the following code shows, when string operations require extending the string, the memory
requirements are automatically handled by the string class, so memory overruns are a thing of the
past:

string myString = "hello";
myString += ", there";
string myOtherString = myString;
if (myString == myOtherString) {
 myOtherString[0] = 'H';
}
cout << myString << endl;
cout << myOtherString << endl;

The output of this code is

hello, there
Hello, there

There are several things to note in this example. One point is that there are no memory leaks even
though strings are allocated and resized on a few places. All of these string objects are created as
stack variables. While the string class certainly has a bunch of allocating and resizing to do, the
string destructors clean up this memory when string objects go out of scope.

64  ❘  CHAPTER 2   Working with Strings and String Views

Another point to note is that the operators work the way you want them to. For example, the =
operator copies the strings, which is most likely what you want. If you are used to working with
array-based strings, this will either be refreshingly liberating for you or somewhat confusing. Don’t
worry—once you learn to trust the string class to do the right thing, life gets so much easier.

For compatibility, you can use the c_str() method on a string to get a const character pointer,
representing a C-style string. However, the returned const pointer becomes invalid whenever the
string has to perform any memory reallocation, or when the string object is destroyed. You
should call the method just before using the result so that it accurately reflects the current contents
of the string, and you must never return the result of c_str() called on a stack-based string
object from a function.

There is also a data() method which, up until C++14, always returned a const char* just as c_
str(). Starting with C++17, however, data() returns a char* when called on a non-const string.

Consult a Standard Library Reference, see Appendix B, for a complete list of all supported opera-
tions that you can perform on string objects.

std::string Literals
A string literal in source code is usually interpreted as a const char*. You can use the standard
user-defined literal “s” to interpret a string literal as an std::string instead.

auto string1 = "Hello World"; // string1 is a const char*
auto string2 = "Hello World"s; // string2 is an std::string

The standard user-defined literal “s” requires a using namespace std::string_literals; or
using namespace std;.

High-Level Numeric Conversions
The std namespace includes a number of helper functions that make it easy to convert numeri-
cal values into strings or strings into numerical values. The following functions are available to
convert numerical values into strings. All these functions take care of memory allocations. A new
string object is created and returned from them.

➤➤ string to_string(int val);

➤➤ string to_string(unsigned val);

➤➤ string to_string(long val);

➤➤ string to_string(unsigned long val);

➤➤ string to_string(long long val);

➤➤ string to_string(unsigned long long val);

➤➤ string to_string(float val);

➤➤ string to_string(double val);

➤➤ string to_string(long double val);

Dynamic Strings  ❘  65

These functions are pretty straightforward to use. For example, the following code converts a long
double value into a string:

long double d = 3.14L;
string s = to_string(d);

Converting in the other direction is done by the following set of functions, also defined in the std
namespace. In these prototypes, str is the string that you want to convert, idx is a pointer that
receives the index of the first non-converted character, and base is the mathematical base that
should be used during conversion. The idx pointer can be a null pointer, in which case it will be
ignored. These functions ignore leading whitespace, throw invalid_argument if no conversion
could be performed, and throw out_of_range if the converted value is outside the range of the
return type.

➤➤ int stoi(const string& str, size_t *idx=0, int base=10);

➤➤ long stol(const string& str, size_t *idx=0, int base=10);

➤➤ unsigned long stoul(const string& str, size_t *idx=0, int base=10);

➤➤ long long stoll(const string& str, size_t *idx=0, int base=10);

➤➤ unsigned long long stoull(const string& str, size_t *idx=0, int base=10);

➤➤ float stof(const string& str, size_t *idx=0);

➤➤ double stod(const string& str, size_t *idx=0);

➤➤ long double stold(const string& str, size_t *idx=0);

Here is an example:

const string toParse = " 123USD";
size_t index = 0;
int value = stoi(toParse, &index);
cout << "Parsed value: " << value << endl;
cout << "First non-parsed character: '" << toParse[index] << "'" << endl;

The output is as follows:

Parsed value: 123
First non-parsed character: 'U'

Low-Level Numeric Conversions
The C++17 standard also provides a number of lower-level numerical conversion functions, all
defined in the <charconv> header. These functions do not perform any memory allocations, but
instead use buffers allocated by the caller. Additionally, they are tuned for high performance and
are locale-independent (see Chapter 19 for details on localization). The end result is that these func-
tions can be orders of magnitude faster than other higher-level numerical conversion functions. You
should use these functions if you want high performant, locale-independent conversions, for exam-
ple to serialize/deserialize numerical data to/from human readable formats such as JSON, XML,
and so on.

C++17

66  ❘  CHAPTER 2   Working with Strings and String Views

For converting integers to characters, the following set of functions is available:

to_chars_result to_chars(char* first, char* last, IntegerT value, int base = 10);

Here, IntegerT can be any signed or unsigned integer type or char. The result is of type to_chars_
result, a type defined as follows:

struct to_chars_result {
 char* ptr;
 errc ec;
};

The ptr member is either equal to the one-past-the-end pointer of the written characters if the
conversion was successful, or it is equal to last if the conversion failed (in which case, ec ==
errc::value_too_large).

Here is an example of its use:

std::string out(10, ' ');
auto result = std::to_chars(out.data(), out.data() + out.size(), 12345);
if (result.ec == std::errc()) { /* Conversion successful. */ }

Using C++17 structured bindings introduced in Chapter 1, you can write it as follows:

std::string out(10, ' ');
auto [ptr, ec] = std::to_chars(out.data(), out.data() + out.size(), 12345);
if (ec == std::errc()) { /* Conversion successful. */ }

Similarly, the following set of conversion functions is available for floating point types:

to_chars_result to_chars(char* first, char* last, FloatT value);
to_chars_result to_chars(char* first, char* last, FloatT value,
 chars_format format);
to_chars_result to_chars(char* first, char* last, FloatT value,
 chars_format format, int precision);

Here, FloatT can be float, double, or long double. Formatting can be specified with a combina-
tion of chars_format flags:

enum class chars_format {
 scientific, // Style: (-)d.ddde±dd
 fixed, // Style: (-)ddd.ddd
 hex, // Style: (-)h.hhhp±d (Note: no 0x!)
 general = fixed | scientific // See next paragraph
};

The default format is chars_format::general, which causes to_chars() to convert the floating
point value to a decimal notation in the style of (-)ddd.ddd, or to a decimal exponent notation in the
style of (-)d.ddde±dd, whichever results in the shortest representation with at least one digit before
the decimal point (if present). If a format is specified but no precision, the precision is automatically
determined to result in the shortest possible representation for the given format, with a maximum
precision of 6 digits.

For the opposite conversion—that is, converting character sequences into numerical values—the
following set of functions is available:

from_chars_result from_chars(const char* first, const char* last,
 IntegerT& value, int base = 10);

Dynamic Strings  ❘  67

from_chars_result from_chars(const char* first, const char* last,
 FloatT& value,
 chars_format format = chars_format::general);

Here, from_chars_result is a type defined as follows:

struct from_chars_result {
 const char* ptr;
 errc ec;
};

The ptr member of the result type is a pointer to the first character that was not converted, or it
equals last if all characters were successfully converted. If none of the characters could be con-
verted, ptr equals first, and the value of the error code will be errc::invalid_argument. If the
parsed value is too large to be representable by the given type, the value of the error code will be
errc::result_out_of_range. Note that from_chars() does not skip any leading whitespace.

The std::string_view Class
Before C++17, there was always a dilemma of choosing the parameter type for a function
that accepted a read-only string. Should it be a const char*? In that case, if a client had an
std::string available, they had to call c_str() or data() on it to get a const char*. Even worse,
the function would lose the nice object-oriented aspects of the std::string and all its nice helper
methods. Maybe the parameter could instead be a const std::string&? In that case, you always
needed an std::string. If you passed a string literal, for example, the compiler silently created a
temporary string object that contained a copy of your string literal and passed that object to your
function, so there was a bit of overhead. Sometimes people would write multiple overloads of the
same function—one that accepted a const char*, and another that accepted a const string&—
but that was obviously a less-than-elegant solution.

With C++17, all those problems are solved with the introduction of the std::string_view class,
which is an instantiation of the std::basic_string_view class template, and is defined in the
<string_view> header. A string_view is basically a drop-in replacement for const string&,
but without the overhead. It never copies strings! A string_view supports an interface similar to
std::string. One exception is the absence of c_str(), but data() is available. On the other hand,
string_view does add the methods remove_prefix(size_t) and remove_suffix(size_t), which
shrink the string by advancing the starting pointer by a given offset, or by moving the end pointer
backward by a given offset.

Note that you cannot concatenate a string and a string_view. The following code does not
compile:

string str = "Hello";
string_view sv = " world";
auto result = str + sv;

To make it compile, you need to replace the last line with:

auto result = str + sv.data();

If you know how to use std::string, then using a string_view is very straightforward, as the
following example code demonstrates. The extractExtension() function extracts and returns the

C++17

68  ❘  CHAPTER 2   Working with Strings and String Views

extension of a given filename. Note that string_views are usually passed by value because they are
extremely cheap to copy. They just contain a pointer to, and the length of, a string.

string_view extractExtension(string_view fileName)
{
 return fileName.substr(fileName.rfind('.'));
}

This function can be used with all kinds of different strings:

string fileName = R"(c:\temp\my file.ext)";
cout << "C++ string: " << extractExtension(fileName) << endl;
	
const char* cString = R"(c:\temp\my file.ext)";
cout << "C string: " << extractExtension(cString) << endl;

cout << "Literal: " << extractExtension(R"(c:\temp\my file.ext)") << endl;

There is not a single copy being made in all these calls to extractExtension(). The fileName
parameter of the extractExtension() function is just a pointer and a length, and so is the return
type of the function. This is all very efficient.

There is also a string_view constructor that accepts any raw buffer and a length. This can be used
to construct a string_view out of a string buffer that is not NUL terminated. It is also useful when
you do have a NUL-terminated string buffer, but you already know the length of the string, so the
constructor does not need to count the number of characters again.

const char* raw = /* ... */;
size_t length = /* ... */;
cout << "Raw: " << extractExtension(string_view(raw, length)) << endl;

You cannot implicitly construct a string from a string_view. Either you use an explicit string
constructor, or you use the string_view::data() member. For example, suppose you have the fol-
lowing function that accepts a const string&:

void handleExtension(const string& extension) { /* ... */ }

Calling this function as follows does not work:

handleExtension(extractExtension("my file.ext"));

The following are two possible options you can use:

handleExtension(extractExtension("my file.ext").data()); // data() method
handleExtension(string(extractExtension("my file.ext"))); // explicit ctor

NOTE  Use an std::string_view instead of const std::string& or const
char* whenever a function or method requires a read-only string as one of its
parameters.

Summary  ❘  69

std::string_view Literals
You can use the standard user-defined literal “sv” to interpret a string literal as an std::string_
view. For example:

auto sv = "My string_view"sv;

The standard user-defined literal “sv” requires a using namespace std::string_view_
literals; or using namespace std;.

Nonstandard Strings
There are several reasons why many C++ programmers don’t use C++-style strings. Some program-
mers simply aren’t aware of the string type because it was not always part of the C++ specification.
Others have discovered over the years that the C++ string doesn’t provide the behavior they need,
and so have developed their own string type. Perhaps the most common reason is that development
frameworks and operating systems tend to have their own way of representing strings, such as the
CString class in the Microsoft MFC. Often, this is for backward compatibility or to address legacy
issues. When starting a project in C++, it is very important to decide ahead of time how your group
will represent strings. Some things are for sure:

➤➤ You should not pick the C-style string representation.

➤➤ You can standardize on the string functionality available in the framework you are using,
such as the built-in string features of MFC, QT, …

➤➤ If you use std::string for your strings, then use std::string_view to pass read-only
strings as parameters to functions; otherwise, see if your framework has support for some-
thing similar like string_views.

SUMMARY

This chapter discussed the C++ string and string_view classes and what their benefits are com-
pared to plain old C-style character arrays. It also explained how a number of helper functions
make it easier to convert numerical values into strings and vice versa, and it introduced the concept
of raw string literals.

The next chapter discusses guidelines for good coding style, including code documentation, decom-
position, naming, code formatting, and other tips.

Coding with Style
WHAT’S IN THIS CHAPTER?

➤➤ The importance of documenting your code, and what kind of com-
menting styles you can use

➤➤ What decomposition means and how to use it

➤➤ What naming conventions are

➤➤ What formatting rules are

If you’re going to spend several hours each day in front of a keyboard writing code, you
should take some pride in all that work. Writing code that gets the job done is only part of a
programmer’s work. After all, anybody can learn the fundamentals of coding. It takes a true
master to code with style.

This chapter explores the question of what makes good code. Along the way, you’ll see several
approaches to C++ style. As you will discover, simply changing the style of code can make it
appear very different. For example, C++ code written by Windows programmers often has its
own style, using Windows conventions. It almost looks like a completely different language
than C++ code written by Mac OS programmers. Exposure to several different styles will help
you avoid that sinking feeling you get when opening up a C++ source file that barely resembles
the C++ you thought you knew.

THE IMPORTANCE OF LOOKING GOOD

Writing code that is stylistically “good” takes time. You probably don’t need much time to
whip together a quick-and-dirty program to parse an XML file. Writing the same program
with functional decomposition, adequate comments, and a clean structure would take you
more time. Is it really worth it?

3

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

72  ❘  CHAPTER 3   Coding with Style

Thinking Ahead
How confident would you be in your code if a new programmer had to work with it a year from
now? A friend of mine, faced with a growing mess of web application code, encouraged his team to
think about a hypothetical intern who would be starting in a year. How would this poor intern ever
get up to speed on the code base when there was no documentation and scary multiple-page func-
tions? When you’re writing code, imagine that somebody new or even you will have to maintain
it in the future. Will you even still remember how it works? What if you’re not available to help?
Well-written code avoids these problems because it is easy to read and understand.

Elements of Good Style
It is difficult to enumerate the characteristics of code that make it “stylistically good.” Over time,
you’ll find styles that you like and notice useful techniques in code that others wrote. Perhaps more
important, you’ll encounter horrible code that teaches you what to avoid. However, good code
shares several universal tenets that are explored in this chapter:

➤➤ Documentation

➤➤ Decomposition

➤➤ Naming

➤➤ Use of the language

➤➤ Formatting

DOCUMENTING YOUR CODE

In the programming context, documentation usually refers to comments contained in the source
files. Comments are your opportunity to tell the world what was going through your head when you
wrote the accompanying code. They are a place to say anything that isn’t obvious from looking at
the code itself.

Reasons to Write Comments
It may seem obvious that writing comments is a good idea, but have you ever stopped to think about
why you need to comment your code? Sometimes programmers acknowledge the importance of
commenting without fully understanding why comments are important. There are several reasons,
all of which are explored in this chapter.

Commenting to Explain Usage
One reason to use comments is to explain how clients should interact with the code. Normally, a
developer should be able to understand what a function does simply based on the name of the func-
tion, the type of the return value, and the name and type of its parameters. However, not everything
can be expressed in code. Sometimes a function requires certain pre- or postconditions that you
have to explain in a comment. Exceptions that can be thrown by a function are also something that

Documenting Your Code  ❘  73

should be explained in a comment. In my opinion, you should only add a comment if it really adds
any useful information. So, it’s up to the developer to decide whether a function needs a comment
or not. Experienced programmers will have no problems deciding this, but less experienced develop-
ers might not always make the right decision. That’s why some companies have a rule stating that
each publicly accessible function or method in a header file should have a comment explaining what
it does. Some organizations go even further and formalize these comments by explicitly listing the
purpose of each method, what its arguments are, what values it returns, and possible exceptions it
can throw.

A comment gives you the opportunity to state, in English, anything that you can’t state in code. For
example, there’s really no way in C++ code to indicate that the saveRecord() method of a database
object throws an exception if openDatabase() has not been called yet. A comment, however, can be
the perfect place to note this restriction, as follows:

/*
 * This method throws a "DatabaseNotOpenedException"
 * if the openDatabase() method has not been called yet.
 */
int saveRecord(Record& record);

The C++ language forces you to specify the return type of a method, but it does not provide a way
for you to say what the returned value actually represents. For example, the declaration of the
saveRecord() method may indicate that it returns an int (a bad design decision discussed fur-
ther in this section), but the client reading that declaration wouldn’t know what the int means.
A comment explains the meaning of it:

/*
 * Returns: int
 * An integer representing the ID of the saved record.
 * Throws:
 * DatabaseNotOpenedException if the openDatabase() method has not
 * been called yet.
 */
int saveRecord(Record& record);

As mentioned earlier, some companies require everything about a function to be documented in a
formal way. The following is an example of how such a comment for the saveRecord() method
might look like:

/*
 * saveRecord()
 *
 * Saves the given record to the database.
 *
 * Parameters:
 * Record& record: the record to save to the database.
 * Returns: int
 * An integer representing the ID of the saved record.
 * Throws:
 * DatabaseNotOpenedException if the openDatabase() method has not
 * been called yet.
 */
int saveRecord(Record& record);

74  ❘  CHAPTER 3   Coding with Style

However, I don’t recommend this style of commenting. The first two lines are completely useless,
since the name of the function is self-explanatory. The description of the parameter also does not
add any additional information. Documenting what exactly the return type represents for this ver-
sion of saveRecord() is required since it returns a generic int. However, a much better design
would be to return a RecordID instead of a plain int, which removes the need to add any comments
for the return type. RecordID could simply be a type alias (see Chapter 11) for int, but it conveys
more information. The only comment that should remain is the exception. So, the following is my
recommendation for the saveRecord() method:

/*
 * Throws:
 * DatabaseNotOpenedException if the openDatabase() method has not
 * been called yet.
 */
RecordID saveRecord(Record& record);

NOTE  If your company coding guidelines don’t force you to write formal com-
ments for functions, use common sense when writing comments. Only state
something in a comment that is not obvious based on the name of the function,
the type of the return value, and the name and type of its parameters.

Sometimes, the parameters to, and the return type from, a function are generic and can be used to
pass all kinds of information. In that case you need to clearly document exactly what type is being
passed. For example, message handlers in Windows accept two parameters, LPARAM and WPARAM,
and can return an LRESULT. All three can be used to pass anything you like, but you cannot change
their type. By using type casting, they can, for example, be used to pass a simple integer or to pass a
pointer to some object. Your documentation could look like this:

 * Parameters:
 * WPARAM wParam: (WPARAM)(int): An integer representing...
 * LPARAM lParam: (LPARAM)(string*): A string pointer representing...
 * Returns: (LRESULT)(Record*)
 * nullptr in case of an error, otherwise a pointer to a Record object
 * representing...

Commenting to Explain Complicated Code
Good comments are also important inside the actual source code. In a simple program that pro-
cesses input from the user and writes a result to the console, it is probably easy to read through and
understand all of the code. In the professional world, however, you will often need to write code
that is algorithmically complex or too esoteric to understand simply by inspection.

Consider the code that follows. It is well written, but it may not be immediately apparent what it
is doing. You might recognize the algorithm if you have seen it before, but a newcomer probably
wouldn’t understand the way the code works.

void sort(int inArray[], size_t inSize)
{
 for (size_t i = 1; i < inSize; i++) {
 int element = inArray[i];
 size_t j = i - 1;

Documenting Your Code  ❘  75

 while (j >= 0 && inArray[j] > element) {
 inArray[j+1] = inArray[j];
 j--;
 }
 inArray[j+1] = element;
 }
}

A better approach would be to include comments that describe the algorithm that is being used, and
to document (loop) invariants. Invariants are conditions that have to be true during the execution
of a piece of code, for example, a loop iteration. In the modified function that follows, a thorough
comment at the top explains the algorithm at a high level, and inline comments explain specific lines
that may be confusing:

/*
 * Implements the "insertion sort" algorithm. The algorithm separates the
 * array into two parts--the sorted part and the unsorted part. Each
 * element, starting at position 1, is examined. Everything earlier in the
 * array is in the sorted part, so the algorithm shifts each element over
 * until the correct position is found to insert the current element. When
 * the algorithm finishes with the last element, the entire array is sorted.
 */
void sort(int inArray[], size_t inSize)
{
 // Start at position 1 and examine each element.
 for (size_t i = 1; i < inSize; i++) {
 // Loop invariant:
 // All elements in the range 0 to i-1 (inclusive) are sorted.

 int element = inArray[i];
 // j marks the position in the sorted part after which element
 // will be inserted.
 size_t j = i – 1;
 // As long as the current slot in the sorted array is higher than
 // element, shift values to the right to make room for inserting
 // (hence the name, "insertion sort") element in the right position.
 while (j >= 0 && inArray[j] > element) {
 inArray[j+1] = inArray[j];
 j--;
 }
 // At this point the current position in the sorted array
 // is *not* greater than the element, so this is its new position.
 inArray[j+1] = element;
 }
}

The new code is certainly more verbose, but a reader unfamiliar with sorting algorithms would be
much more likely to understand it with the comments included.

Commenting to Convey Meta-information
Another possible reason to use comments is to provide information at a higher level than the code
itself. This meta-information provides details about the creation of the code without addressing the
specifics of its behavior. For example, your organization may want to keep track of the original author
of each method. You can also use meta-information to cite external documents or refer to other code.

76  ❘  CHAPTER 3   Coding with Style

The following example shows several instances of meta-information, including the author, the
date it was created, and the specific feature it addresses. It also includes inline comments express-
ing metadata, such as the bug number that corresponds to a line of code and a reminder to revisit a
possible problem in the code later.

/*
 * Author: marcg
 * Date: 110412
 * Feature: PRD version 3, Feature 5.10
 */
RecordID saveRecord(Record& record)
{
 if (!mDatabaseOpen) {
 throw DatabaseNotOpenedException();
 }
 RecordID id = getDB()->saveRecord(record);
 if (id == -1) return -1; // Added to address bug #142 – jsmith 110428
 record.setId(id);
 // TODO: What if setId() throws an exception? – akshayr 110501
 return id;
}

A change-log could also be included at the beginning of each file. The following shows a possible
example of such a change-log:

/*
 * Date | Change
 *----------+--
 * 110413 | REQ #005: <marcg> Do not normalize values.
 * 110417 | REQ #006: <marcg> use nullptr instead of NULL.
 */

WARNING  All the meta-information in the previous examples (except for the
“TODO” comment) is discouraged when you use—and you should use—a
source code control solution, as discussed in Chapter 24. Such a solution offers
an annotated change history with revision dates, authors, and, if properly used,
comments accompanying each modification, including references to change
requests and bug reports. You should check in or commit each change request
or bug fix separately with a descriptive comment. With such a system, you don’t
need to manually keep track of meta-information.

Another type of meta-information is a copyright notice. Some companies require such a copyright
notice at the very beginning of every source file.

It’s easy to go overboard with comments. A good approach is to discuss which types of comments
are most useful with your group and to form a policy. For example, if one member of the group
uses a “TODO” comment to indicate code that still needs work, but nobody else knows about this
convention, the code in need of attention could be overlooked.

Documenting Your Code  ❘  77

Commenting Styles
Every organization has a different approach to commenting code. In some environments, a par-
ticular style is mandated to give the code a common standard for documentation. Other times,
the quantity and style of commenting is left up to the programmer. The following examples depict
several approaches to commenting code.

Commenting Every Line
One way to avoid lack of documentation is to force yourself to overdocument by including a com-
ment for every line. Commenting every line of code should ensure that there’s a specific reason for
everything you write. In reality, such heavy commenting on a large scale is unwieldy, messy, and
tedious! For example, consider the following useless comments:

int result; // Declare an integer to hold the result.
result = doodad.getResult(); // Get the doodad's result.
if (result % 2 == 0) { // If the result modulo 2 is 0 ...
 logError(); // then log an error,
} else { // otherwise ...
 logSuccess(); // log success.
} // End if/else
return result; // Return the result

The comments in this code express each line as part of an easily readable English story. This is
entirely useless if you assume that the reader has at least basic C++ skills. These comments don’t add
any additional information to code. Specifically, look at this line:

if (result % 2 == 0) { // If the result modulo 2 is 0 ...

The comment is just an English translation of the code. It doesn’t say why the programmer has used
the modulo operator on the result with the value 2. The following would be a better comment:

if (result % 2 == 0) { // If the result is even ...

The modified comment, while still fairly obvious to most programmers, gives additional information
about the code. The modulo operator with 2 is used because the code needs to check if the result
is even.

Despite its tendency to be verbose and superfluous, heavy commenting can be useful in cases where
the code would otherwise be difficult to comprehend. The following code also comments every line,
but these comments are actually helpful:

// Calculate the doodad. The start, end, and offset values come from the
// table on page 96 of the "Doodad API v1.6".
result = doodad.calculate(kStart, kEnd, kOffset);
// To determine success or failure, we need to bitwise AND the result with
// the processor-specific mask (see "Doodad API v1.6", page 201).
result &= getProcessorMask();
// Set the user field value based on the "Marigold Formula."
// (see "Doodad API v1.6", page 136)
setUserField((result + kMarigoldOffset) / MarigoldConstant + MarigoldConstant);

78  ❘  CHAPTER 3   Coding with Style

This code is taken out of context, but the comments give you a good idea of what each line does.
Without them, the calculations involving & and the mysterious “Marigold Formula” would be
difficult to decipher.

NOTE  Commenting every line of code is usually not warranted, but if the code
is complicated enough to require it, don’t just translate the code to English:
explain what’s really going on.

Prefix Comments
Your group may decide to begin all source files with a standard comment. This is an excellent
opportunity to document important information about the program and specific file. Examples of
information that you might want to document at the top of every file include the following:

➤➤ The last-modified date*

➤➤ The original author*

➤➤ A change-log (as described earlier)*

➤➤ The feature ID addressed by the file

➤➤ Copyright information

➤➤ A brief description of the file/class

➤➤ Incomplete features

➤➤ Known bugs

The items marked with an asterisk are usually automatically handled by your source code control
solution.

Your development environment may allow you to create a template that automatically starts new
files with your prefix comment. Some source control systems such as Subversion (SVN) can even
assist by filling in metadata. For example, if your comment contains the string Id, SVN can
automatically expand the comment to include the author, filename, revision, and date.

An example of a prefix comment is shown here:

/*
 * $Id: Watermelon.cpp,123 2004/03/10 12:52:33 marcg $
 *
 * Implements the basic functionality of a watermelon. All units are expressed
 * in terms of seeds per cubic centimeter. Watermelon theory is based on the
 * white paper "Algorithms for Watermelon Processing."
 *
 * The following code is (c) copyright 2017, FruitSoft, Inc. ALL RIGHTS RESERVED
 */

Documenting Your Code  ❘  79

Fixed-Format Comments
Writing comments in a standard format that can be parsed by external document builders is an
increasingly popular programming practice. In the Java language, programmers can write com-
ments in a standard format that allows a tool called JavaDoc to automatically create hyperlinked
documentation for the project. For C++, a free tool called Doxygen (available at www.doxygen
.org) parses comments to automatically build HTML documentation, class diagrams, UNIX man
pages, and other useful documents. Doxygen even recognizes and parses JavaDoc-style comments
in C++ programs. The code that follows shows JavaDoc-style comments that are recognized by
Doxygen:

/**
 * Implements the basic functionality of a watermelon
 * TODO: Implement updated algorithms!
 */
class Watermelon
{
 public:
 /**
 * @param initialSeeds The starting number of seeds, must be > 0.
 */
 Watermelon(int initialSeeds);

 /**
 * Computes the seed ratio, using the Marigold algorithm.
 * @param slowCalc Whether or not to use long (slow) calculations
 * @return The marigold ratio
 */
 double calcSeedRatio(bool slowCalc);
};

Doxygen recognizes the C++ syntax and special comment directives such as @param and @return to
generate customizable output. An example of a Doxygen-generated HTML class reference is shown
in Figure 3-1.

Note that you should still avoid writing useless comments, including when you use a tool to auto-
matically generate documentation. Take a look at the Watermelon constructor in the previous code.
Its comment omits a description and only describes the parameter. Adding a description, as in the
following example, is redundant:

 /**
 * The Watermelon constructor.
 * @param initialSeeds The starting number of seeds, must be > 0.
 */
 Watermelon(int initialSeeds);

Automatically generated documentation like the file shown in Figure 3-1 can be helpful during
development because it allows developers to browse through a high-level description of classes and
their relationships. Your group can easily customize a tool like Doxygen to work with the style of
comments that you have adopted. Ideally, your group would set up a machine that builds documen-
tation on a daily basis.

80  ❘  CHAPTER 3   Coding with Style

Ad Hoc Comments
Most of the time, you use comments on an as-needed basis. Here are some guidelines for comments
that appear within the body of your code:

➤➤ Avoid offensive or derogatory language. You never know who might look at your code
someday.

➤➤ Liberal use of inside jokes is generally considered okay. Check with your manager.

➤➤ Before adding a comment, first consider whether you can rework the code to make the com-
ment redundant. For example, by renaming variables, functions, and classes, by reordering
steps in the code, by introducing intermediate well-named variables, and so on.

FIGURE 3-1

Decomposition  ❘  81

➤➤ Imagine someone else is reading your code. If there are subtleties that are not immediately
obvious, then you should document those.

➤➤ Don’t put your initials in the code. Source code control solutions will track that kind of
information automatically for you.

➤➤ If you are doing something with an API that isn’t immediately obvious, include a reference to
the documentation of that API where it is explained.

➤➤ Remember to update your comments when you update the code. Nothing is more confusing
than code that is fully documented with incorrect information.

➤➤ If you use comments to separate a function into sections, consider whether the function
might be broken into multiple, smaller functions.

Self-Documenting Code
Well-written code often doesn’t need abundant commenting. The best code is written to be readable.
If you find yourself adding a comment for every line, consider whether the code could be rewritten
to better match what you are saying in the comments. For example, use descriptive names for your
functions, parameters, variables, classes, and so on. Properly make use of const; that is, if a vari-
able is not supposed to be modified, mark it as const. Reorder the steps in a function to make it
clearer what it is doing. Introduce intermediate well-named variables to make an algorithm easier to
understand. Remember that C++ is a language. Its main purpose is to tell the computer what to do,
but the semantics of the language can also be used to explain its meaning to a reader.

Another way of writing self-documenting code is to break up, or decompose, your code into smaller
pieces. Decomposition is covered in detail in the following section.

NOTE  Good code is naturally readable and only requires comments to provide
useful additional information.

DECOMPOSITION

Decomposition is the practice of breaking up code into smaller pieces. There is nothing more daunt-
ing in the world of coding than opening up a file of source code to find 300-line functions and mas-
sive, nested blocks of code. Ideally, each function or method should accomplish a single task. Any
subtasks of significant complexity should be decomposed into separate functions or methods. For
example, if somebody asks you what a method does and you answer, “First it does A, then it does B;
then, if C, it does D; otherwise, it does E,” you should probably have separate helper methods for A,
B, C, D, and E.

Decomposition is not an exact science. Some programmers will say that no function should be lon-
ger than a page of printed code. That may be a good rule of thumb, but you could certainly find a
quarter-page of code that is desperately in need of decomposition. Another rule of thumb is that
if you squint your eyes and look at the format of the code without reading the actual content, it
shouldn’t appear too dense in any one area. For example, Figures 3-2 and 3-3 show code that has

82  ❘  CHAPTER 3   Coding with Style

been purposely blurred so that you don’t focus on the content.
It should be obvious that the code in Figure 3-3 has better
decomposition than the code in Figure 3-2.

Decomposition through Refactoring
Sometimes, when you’ve had a few coffees and you’re really in
the programming zone, you start coding so fast that you end
up with code that does exactly what it’s supposed to do, but
is far from pretty. All programmers do this from time to time.
Short periods of vigorous coding are sometimes the most pro-
ductive times in the course of a project. Dense code also arises
over the course of time as code is modified. As new require-
ments and bug fixes emerge, existing code is amended with
small modifications. The computing term cruft refers to the
gradual accumulation of small amounts of code that eventually
turns a once-elegant piece of code into a mess of patches and
special cases.

Refactoring is the act of restructuring your code. The following
list contains example techniques that you can use to refactor
your code. Consult one of the refactoring books in Appendix B
to get a more comprehensive list.

➤➤ Techniques that allow for more abstraction:

➤➤ Encapsulate Field. Make a field private and give
access to it with getter and setter methods.

➤➤ Generalize Type. Create more general types to
allow for more code sharing.

➤➤ Techniques for breaking code apart into more logical
pieces:

➤➤ Extract Method. Turn part of a larger method into a new method to make it easier to
understand.

➤➤ Extract Class. Move part of the code from an existing class into a new class.

➤➤ Techniques for improving names and the location of code:

➤➤ Move Method or Move Field. Move to a more appropriate class or source file.

➤➤ Rename Method or Rename Field. Change the name to better reveal its purpose.

➤➤ Pull Up. In object-oriented programming, move to a base class.

➤➤ Push Down. In object-oriented programming, move to a derived class.

Whether your code starts its life as a dense block of unreadable cruft or it just evolves that way,
refactoring is necessary to periodically purge the code of accumulated hacks. Through refactoring,
you revisit existing code and rewrite it to make it more readable and maintainable. Refactoring is

FIGURE 3-3

FIGURE 3-2

Naming  ❘  83

an opportunity to revisit the decomposition of code. If the purpose of the code has changed or if it
was never decomposed in the first place, when you refactor the code, squint at it and determine if
it needs to be broken down into smaller parts.

When refactoring code, it is very important to be able to rely on a testing framework that catches
any defects that you might introduce. Unit tests, discussed in Chapter 26, are particularly well
suited for helping you catch mistakes during refactoring.

Decomposition by Design
If you use modular decomposition and approach every module, method, or function by considering
what pieces of it you can put off until later, your programs will generally be less dense and more
organized than if you implement every feature in its entirety as you code.

Of course, you should still design your program before jumping into the code.

Decomposition in This Book
You will see decomposition in many of the examples in this book. In many cases, methods are
referred to for which no implementation is shown because they are not relevant to the example and
would take up too much space.

NAMING

The C++ compiler has a few naming rules:

➤➤ Names cannot start with a number (for example, 9to5).

➤➤ Names that contain a double underscore (such as my__name) are reserved and shall not be
used.

➤➤ Names that begin with an underscore (such as _name or _Name) are reserved and shall not be
used.

Other than those rules, names exist only to help you and your fellow programmers work with the
individual elements of your program. Given this purpose, it is surprising how often programmers
use unspecific or inappropriate names.

Choosing a Good Name
The best name for a variable, method, function, parameter, class, namespace, and so on accurately
describes the purpose of the item. Names can also imply additional information, such as the type or
specific usage. Of course, the real test is whether other programmers understand what you are try-
ing to convey with a particular name.

There are no set-in-stone rules for naming other than the rules that work for your organization.
However, there are some names that are rarely appropriate. The following table shows some names
at both ends of the naming continuum.

84  ❘  CHAPTER 3   Coding with Style

GOOD NAMES BAD NAMES

sourceName, destinationName

Distinguishes two objects

thing1, thing2

Too general

gSettings

Conveys global status

globalUserSpecificSettingsAndPreferences

Too long

mNameCounter

Conveys data member status

mNC

Too obscure, too brief

calculateMarigoldOffset()

Simple, accurate

doAction()

Too general, imprecise

mTypeString

Easy on the eyes

typeSTR256

A name only a computer could love

mIHateLarry

Unacceptable inside joke

errorMessage

Descriptive name

string

Non-descriptive name

sourceFile, destinationFile

No abbreviations

srcFile, dstFile

Abbreviations

Naming Conventions
Selecting a name doesn’t always require a lot of thought and creativity. In many cases, you’ll want
to use standard techniques for naming. Following are some of the types of data for which you can
make use of standard names.

Counters
Early in your programming career, you probably saw code that used the variable “i” as a coun-
ter. It is customary to use i and j as counters and inner-loop counters, respectively. Be careful
with nested loops, however. It’s a common mistake to refer to the “ith” element when you really
mean the “jth” element. When working with 2-D data, it’s probably easier to use row and column
as indices, instead of i and j. Some programmers prefer using counters outerLoopIndex and
innerLoopIndex, and some even frown upon using i and j as loop counters.

Prefixes
Many programmers begin their variable names with a letter that provides some information about
the variable’s type or usage. On the other hand, there are as many programmers, or even more, who
disapprove of using any kind of prefix because this could make evolving code less maintainable in
the future. For example, if a member variable is changed from static to non-static, you have to

Naming  ❘  85

rename all the uses of that name. If you don’t rename them, your names continue to convey seman-
tics, but now they are the wrong semantics.

However, you often don’t have a choice and you need to follow the guidelines of your company. The
following table shows some potential prefixes.

PREFIX EXAMPLE NAME LITERAL PREFIX MEANING USAGE

m

m_

mData

m_data

“member” Data member within a class

s

ms

ms_

sLookupTable

msLookupTable

ms_lookupTable

“static” Static variable or data member

k kMaximumLength “konstant” (German for
“constant”)

A constant value. Some programmers
use all uppercase names without a
prefix to indicate constants.

b

is

bCompleted

isCompleted

“Boolean” Designates a Boolean value

n

mNum

nLines

mNumLines

“number” A data member that is also a counter.
Because an “n” looks similar to an
“m,” some programmers instead use
mNum as a prefix.

Hungarian Notation
Hungarian Notation is a variable and data-member–naming convention that is popular with
Microsoft Windows programmers. The basic idea is that instead of using single-letter prefixes such
as m, you should use more verbose prefixes to indicate additional information. The following line of
code shows the use of Hungarian Notation:

char* pszName; // psz means "pointer to a null-terminated string"

The term Hungarian Notation arose from the fact that its inventor, Charles Simonyi, is Hungarian.
Some also say that it accurately reflects the fact that programs using Hungarian Notation end up
looking as if they were written in a foreign language. For this latter reason, some programmers
tend to dislike Hungarian Notation. In this book, prefixes are used, but not Hungarian Notation.
Adequately named variables don’t need much additional context information besides the prefix.
For example, a data member named mName says it all.

NOTE  Good names convey information about their purpose without making
the code unreadable.

86  ❘  CHAPTER 3   Coding with Style

Getters and Setters
If your class contains a data member, such as mStatus, it is customary to provide access to the mem-
ber via a getter called getStatus() and a setter called setStatus(). To give access to a Boolean
data member, you typically use is as a prefix instead of get, for example isRunning(). The C++
language has no prescribed naming for these methods, but your organization will probably want to
adopt this or a similar naming scheme.

Capitalization
There are many different ways of capitalizing names in your code. As with most elements of cod-
ing style, it is very important that your group adopts a standardized approach and that all members
adopt that approach. One way to get messy code is to have some programmers naming classes in all
lowercase with underscores representing spaces (priority_queue) and others using capitals with
each subsequent word capitalized (PriorityQueue). Variables and data members almost always
start with a lowercase letter and use either underscores (my_queue) or capitals (myQueue) to indicate
word breaks. Functions and methods are traditionally capitalized in C++, but, as you’ve seen, in this
book I have adopted the style of lowercase functions and methods to distinguish them from class
names. A similar style of capitalizing letters is used to indicate word boundaries for class and data
member names.

Namespaced Constants
Imagine that you are writing a program with a graphical user interface. The program has several
menus, including File, Edit, and Help. To represent the ID of each menu, you may decide to use a
constant. A perfectly reasonable name for a constant referring to the Help menu ID is kHelp.

The name kHelp will work fine until you add a Help button to the main window. You also need a
constant to refer to the ID of the button, but kHelp is already taken.

A possible solution for this is to put your constants in different namespaces, which are discussed in
Chapter 1. You create two namespaces: Menu and Button. Each namespace has a kHelp constant
and you use them as Menu::kHelp and Button::kHelp. Another, and more recommended solution
is to use enumerated types, also introduced in Chapter 1.

USING LANGUAGE FEATURES WITH STYLE

The C++ language lets you do all sorts of terribly unreadable things. Take a look at this wacky code:

i++ + ++i;

This is unreadable but more importantly, its behavior is undefined by the C++ standard. The prob-
lem is that i++ uses the value of i but has a side effect of incrementing it. The standard does not say
when this incrementing should be done, only that the side effect (increment) should be visible after
the sequence point “;”, but the compiler can do it at any time during the execution of that line. It’s
impossible to know which value of i will be used for the ++i part. Running this code with different
compilers and platforms can result in different values.

Using Language Features with Style  ❘  87

The following is another example of code which you should avoid, because it exhibits undefined
behavior if your compiler is not C++17 compliant. With C++17, this has well-defined behavior: first
i is incremented, and then used as index in a[i].

a[i] = ++i;

With all the power that the C++ language offers, it is important to consider how the language
features can be used toward stylistic good instead of evil.

Use Constants
Bad code is often littered with “magic numbers.” In some function, the code might be using
2.71828. Why 2.71828? What does that value mean? People with a mathematical background might
find it obvious that this represents an approximation of the transcendental value e, but most people
don’t know this. The language offers constants to give a symbolic name to a value that doesn’t
change, such as 2.71828.

const double kApproximationForE = 2.71828182845904523536;

Use References Instead of Pointers
Traditionally, C++ programmers learned C first. In C, pointers were the only pass-by-reference
mechanism, and they certainly worked just fine for many years. Pointers are still required in some
cases, but in many situations you can switch to references. If you learned C first, you probably think
that references don’t really add any new functionality to the language. You might think that they
merely introduce a new syntax for functionality that pointers could already provide.

There are several advantages to using references rather than pointers. First, references are safer than
pointers because they don’t deal directly with memory addresses and cannot be nullptr. Second,
references are more stylistically pleasing than pointers because they use the same syntax as stack
variables, avoiding symbols such as * and &. They’re also easy to use, so you should have no prob-
lem adopting references into your style palette. Unfortunately, some programmers think that if they
see an & in a function call, they know the called function is going to change the object, and if they
don’t see the & it must be pass-by-value. With references, they say they don’t know if the function is
going to change the object unless they look at the function prototype. This is a wrong way of think-
ing. Passing in a pointer does not automatically mean that the object will be modified, because the
parameter might be const T*. Passing both a pointer and a reference can modify the object, or
it may not, depending on whether the function prototype uses const T*, T*, const T&, or T&.
So, you need to look at the prototype anyway to know if the function might change the object.

Another benefit of references is that they clarify ownership of memory. If you are writing a method
and another programmer passes you a reference to an object, it is clear that you can read and
possibly modify the object, but you have no easy way of freeing its memory. If you are passed a
pointer, this is less clear. Do you need to delete the object to clean up memory? Or will the caller
do that? Note that the preferred way of handling memory is to use smart pointers, introduced in
Chapter 1.

88  ❘  CHAPTER 3   Coding with Style

Use Custom Exceptions
C++ makes it easy to ignore exceptions. Nothing about the language syntax forces you to deal with
exceptions and you could easily write error-tolerant programs with traditional mechanisms such as
returning nullptr or setting an error flag.

Exceptions provide a much richer mechanism for error handling, and custom exceptions allow you
to tailor this mechanism to your needs. For example, a custom exception type for a web browser
could include fields that specify the web page that contained the error, the network state when the
error occurred, and additional context information.

Chapter 14 contains a wealth of information about exceptions in C++.

NOTE  Language features exist to help the programmer. Understand and make
use of features that contribute to good programming style.

FORMATTING

Many programming groups have been torn apart and friendships ruined over code-formatting argu-
ments. In college, a friend of mine got into such a heated debate with a peer over the use of spaces in
an if statement that people were stopping by to make sure that everything was okay.

If your organization has standards in place for code formatting, consider yourself lucky. You may
not like the standards they have in place, but at least you won’t have to argue about them.

If no standards are in place for code formatting, I recommend to introduce them in your organiza-
tion. Standardized coding guidelines make sure that all programmers on your team follow the same
naming conventions, formatting rules, and so on, which makes the code more uniform and easier to
understand.

If everybody on your team is just writing code their own way, try to be as tolerant as you can.
As you’ll see, some practices are just a matter of taste, while others actually make it difficult to
work in teams.

The Curly Brace Alignment Debate
Perhaps the most frequently debated point is where to put the curly braces that demark a block of
code. There are several styles of curly brace use. In this book, the curly brace is put on the same line
as the leading statement, except in the case of a function, class, or method name. This style is shown
in the code that follows (and throughout this book):

void someFunction()
{
 if (condition()) {
 cout << "condition was true" << endl;
 } else {
 cout << "condition was false" << endl;
 }
}

Formatting  ❘  89

This style conserves vertical space while still showing blocks of code by their indentation. Some
programmers would argue that preservation of vertical space isn’t relevant in real-world coding.
A more verbose style is shown here:

void someFunction()
{
 if (condition())
 {
 cout << "condition was true" << endl;
 }
 else
 {
 cout << "condition was false" << endl;
 }
}

Some programmers are even liberal with the use of horizontal space, yielding code like this:

void someFunction()
{
 if (condition())
 {
 cout << "condition was true" << endl;
 }
 else
 {
 cout << "condition was false" << endl;
 }
}�

Another point of debate is whether or not to put braces around single statements, for example:

void someFunction()
{
 if (condition())
 cout << "condition was true" << endl;
 else
 cout << "condition was false" << endl;
}

Of course, I won’t recommend any particular style because I don’t want hate mail.

NOTE  When selecting a style for denoting blocks of code, the important consid-
eration is how well you can see which block falls under which condition simply
by looking at the code.

Coming to Blows over Spaces and Parentheses
The formatting of individual lines of code can also be a source of disagreement. Again,
I won’t advocate a particular approach, but you are likely to encounter a few of the styles
shown here.

90  ❘  CHAPTER 3   Coding with Style

In this book, I use a space after any keyword, a space before and after any operator, a space after
every comma in a parameter list or a call, and parentheses to clarify the order of operations, as
follows:

if (i == 2) {
 j = i + (k / m);
}

An alternative, shown next, treats if stylistically like a function, with no space between the key-
word and the left parenthesis. Also, the parentheses used to clarify the order of operations inside of
the if statement are omitted because they have no semantic relevance.

if(i == 2) {
 j = i + k / m;
}

The difference is subtle, and the determination of which is better is left to the reader, yet I can’t
move on from the issue without pointing out that if is not a function.

Spaces and Tabs
The use of spaces and tabs is not merely a stylistic preference. If your group does not agree on a con-
vention for spaces and tabs, there are going to be major problems when programmers work jointly.
The most obvious problem occurs when Alice uses four-space tabs to indent code and Bob uses
five-space tabs; neither will be able to display code properly when working on the same file. An even
worse problem arises when Bob reformats the code to use tabs at the same time that Alice edits the
same code; many source code control systems won’t be able to merge in Alice’s changes.

Most, but not all, editors have configurable settings for spaces and tabs. Some environments even
adapt to the formatting of the code as it is read in, or always save using spaces even if the Tab key
is used for authoring. If you have a flexible environment, you have a better chance of being able to
work with other people’s code. Just remember that tabs and spaces are different because a tab can
be any length and a space is always a space.

STYLISTIC CHALLENGES

Many programmers begin a new project by pledging that this time, they will do everything right.
Any time a variable or parameter shouldn’t be changed, it’ll be marked const. All variables will
have clear, concise, readable names. Every developer will put the left curly brace on the subsequent
line and will adopt the standard text editor and its conventions for tabs and spaces.

For a number of reasons, it is difficult to sustain this level of stylistic consistency. In the case of
const, sometimes programmers just aren’t educated about how to use it. You will eventually
come across old code or a library function that isn’t const-savvy. A good programmer will use
const_cast() to temporarily suspend the const property of a variable, but an inexperienced pro-
grammer will start to unwind the const property back from the calling function, once again ending
up with a program that never uses const.

Summary  ❘  91

Other times, standardization of style comes up against programmers’ individual tastes and biases.
Perhaps the culture of your team makes it impractical to enforce strict style guidelines. In such situa-
tions, you may have to decide which elements you really need to standardize (such as variable names
and tabs) and which ones are safe to leave up to individuals (perhaps spacing and commenting style).
You can even obtain or write scripts that will automatically correct style “bugs” or flag stylistic
problems along with code errors. Some development environments, such as Microsoft Visual C++
2017, support automatic formatting of code according to rules that you specify. This makes it trivial
to write code that always follows the guidelines that have been configured.

SUMMARY

The C++ language provides a number of stylistic tools without any formal guidelines on how to use
them. Ultimately, any style convention is measured by how widely it is adopted and how much it
benefits the readability of the code. When coding as part of a team, you should raise issues of style
early in the process as part of the discussion of what language and tools to use.

The most important point about style is to appreciate that it is an important aspect of programming.
Teach yourself to check over the style of your code before you make it available to others. Recognize
good style in the code you interact with and adopt the conventions that you and your organization
find useful.

This chapter concludes the first part of this book. The next part discusses software design on a high
level.

PART II
Professional C++
Software Design

▸▸ CHAPTER 4: Designing Professional C++ Programs

▸▸ CHAPTER 5: Designing with Objects

▸▸ CHAPTER 6: Designing for Reuse

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

Designing Professional
C++ Programs

WHAT’S IN THIS CHAPTER?

➤➤ The definition of programming design

➤➤ The importance of programming design

➤➤ The aspects of design that are unique to C++

➤➤ The two fundamental themes for effective C++ design: abstraction
and reuse

➤➤ The different types of code available for reuse

➤➤ The advantages and disadvantages of code reuse

➤➤ General strategies and guidelines for reusing code

➤➤ Open-source libraries

➤➤ The C++ Standard Library

Before writing a single line of code in your application, you should design your program.
What data structures will you use? What classes will you write? This plan is especially impor-
tant when you program in groups. Imagine sitting down to write a program with no idea what
your coworker, who is working on the same program, is planning! In this chapter, you’ll learn
how to use the Professional C++ approach to C++ design.

Despite the importance of design, it is probably the most misunderstood and underused aspect
of the software-engineering process. Too often, programmers jump into applications without
a clear plan: they design as they code. This approach can lead to convoluted and overly com-
plicated designs. It also makes development, debugging, and maintenance tasks more difficult.

4

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

96  ❘  CHAPTER 4   Designing Professional C++ Programs

Although it seems counterintuitive, investing extra time at the beginning of a project to design it
properly actually saves time over the life of the project.

WHAT IS PROGRAMMING DESIGN?

The very first step when starting a new program, or a new feature for an existing program, is to
analyze the requirements. This involves having discussions with your stakeholders. A vital outcome
of this analysis phase is a functional requirements document describing what exactly the new piece of
code has to do, but it does not explain how it has to do it. Requirement analysis can also result in a
non-functional requirements document describing how the final system should be, compared to what
it should do. Examples of non-functional requirements are that the system needs to be secure, exten-
sible, satisfy certain performance criteria, and so on.

Once all requirements have been collected, the design phase of the project can start. Your program
design, or software design, is the specification of the architecture that you will implement to fulfill
all the requirements (functional and non-functional) of the program. Informally, the design is how
you plan to write the program. You should generally write your design in the form of a design docu-
ment. Although every company or project has its own variation of a desired design document for-
mat, most design documents share the same general layout, which includes two main parts:

	 1.	 The gross subdivision of the program into subsystems, including interfaces and dependencies
between the subsystems, data flow between the subsystems, input and output to and from
each subsystem, and a general threading model.

	 2.	 The details of each subsystem, including subdivision into classes, class hierarchies, data struc-
tures, algorithms, a specific threading model, and error-handling specifics.

The design documents usually include diagrams and tables showing subsystem interactions and class
hierarchies. The Unified Modeling Language (UML) is the industry standard for such diagrams, and
is used for diagrams in this and subsequent chapters. (See Appendix D for a brief introduction to the
UML syntax.) With that being said, the exact format of the design document is less important than
the process of thinking about your design.

NOTE  The point of designing is to think about your program before you
write it.

You should generally try to make your design as good as possible before you begin coding. The
design should provide a map of the program that any reasonable programmer could follow in order
to implement the application. Of course, it is inevitable that the design will need to be modified once
you begin coding and you encounter issues that you didn’t think of earlier. Software-engineering
processes have been designed to give you the flexibility to make these changes. Scrum, an agile
software development methodology, is one example of such an iterative process whereby the applica-
tion is developed in cycles, known as sprints. With each sprint, designs can be modified, and new
requirements can be taken into account. Chapter 24 describes various software-engineering process
models in more detail.

The Importance of Programming Design  ❘  97

THE IMPORTANCE OF PROGRAMMING DESIGN

It’s tempting to skip the analysis and design steps, or to perform them only cursorily, in order to
begin programming as soon as possible. There’s nothing like seeing code compiling and running
to give you the impression that you have made progress. It seems like a waste of time to formal-
ize a design, or to write down functional requirements when you already know, more or less, how
you want to structure your program. Besides, writing a design document just isn’t as much fun
as coding. If you wanted to write papers all day, you wouldn’t be a computer programmer! As a
programmer myself, I understand this temptation to begin coding immediately, and have certainly
succumbed to it on occasion. However, it will most likely lead to problems on all but the simplest
projects. Whether or not you succeed without a design prior to the implementation depends on your
experience as a programmer, your proficiency with commonly used design patterns, and how deeply
you understand C++, the problem domain, and the requirements.

If you are working in a team where each team member will work on a different part of the project,
it is paramount that there is a design document for all team members to follow. Design documents
also help newcomers to get up to speed with the designs of a project.

To help you understand the importance of programming design, imagine that you own a plot of
land on which you want to build a house. When the builder shows up, you ask to see the blueprints.
“What blueprints?” he responds. “I know what I’m doing. I don’t need to plan every little detail
ahead of time. Two-story house? No problem. I did a one-story house a few months ago—I’ll just
start with that model and work from there.”

Suppose that you suspend your disbelief and allow the builder to proceed. A few months later,
you notice that the plumbing appears to run outside the house instead of inside the walls. When you
query the builder about this anomaly, he says, “Oh. Well, I forgot to leave space in the walls for the
plumbing. I was so excited about this new drywall technology that it just slipped my mind. But it
works just as well outside, and functionality is the most important thing.” You’re starting to have
your doubts about his approach, but, against your better judgment, you allow him to continue.

When you take your first tour of the completed building, you notice that the kitchen lacks a sink.
The builder excuses himself by saying, “We were already two-thirds done with the kitchen by the
time we realized there wasn’t space for the sink. Instead of starting over, we just added a separate
sink room next door. It works, right?”

Do the builder’s excuses sound familiar if you translate them to the software domain? Have you
ever found yourself implementing an “ugly” solution to a problem like putting plumbing outside
the house? For example, maybe you forgot to include locking in your queue data structure that is
shared between multiple threads. By the time you realize the problem, you decide to just perform the
locking manually on all places where the queue is used. Sure, it’s ugly, but it works, you say. That
is, until someone new joins the project who assumes that the locking is built into the data structure,
fails to ensure mutual exclusion in her access to the shared data, and causes a race condition bug
that takes three weeks to track down. Of course, this locking problem is just given as an example of
an ugly workaround. Obviously, a professional C++ programmer would never decide to perform the
locking manually on each queue access but would instead directly incorporate the locking inside
the queue class, or make the queue class thread-safe in a lock-free manner.

98  ❘  CHAPTER 4   Designing Professional C++ Programs

Formalizing a design before you code helps you determine how everything fits together. Just as blue-
prints for a house show how the rooms relate to each other and work together to fulfill the require-
ments of the house, the design for a program shows how the subsystems of the program relate to
each other and work together to fulfill the software requirements. Without a design plan, you are
likely to miss connections between subsystems, possibilities for reuse or shared information, and the
simplest ways to accomplish tasks. Without the “big picture” that the design gives, you might
become so bogged down in individual implementation details that you lose track of the overarching
architecture and goals. Furthermore, the design provides written documentation to which all mem-
bers of the project can refer. If you use an iterative process like the agile Scrum methodology men-
tioned earlier, you need to make sure to keep the design documentation up-to-date during each cycle
of the process.

If the preceding analogy hasn’t convinced you to design before
you code, here is an example where jumping directly into cod-
ing fails to lead to an optimal design. Suppose that you want to
write a chess program. Instead of designing the entire program
before you begin coding, you decide to jump in with the easiest
parts and move slowly to the more difficult parts. Following the
object-oriented perspective introduced in Chapter 1 and covered
in more detail in Chapter 5, you decide to model your chess pieces
with classes. You figure the pawn is the simplest chess piece, so
you opt to start there. After considering the features and behav-
iors of a pawn, you write a class with the properties and methods shown in the UML class diagram
in Figure 4-1.

In this design, the mColor attribute denotes whether the pawn is black or white. The promote()
method executes upon reaching the opposing side of the board.

Of course, you haven’t actually made this class diagram. You’ve
gone straight to the implementation phase. Happy with that class,
you move on to the next easiest piece: the bishop. After considering
its attributes and functionality, you write a class with the proper-
ties and methods shown in the class diagram in Figure 4-2.

Again, you haven’t generated a class diagram, because you jumped
straight to the coding phase. However, at this point you begin to
suspect that you might be doing something wrong. The bishop and
the pawn look similar. In fact, their properties are identical and
they share many methods. Although the implementations of the move method might differ between
the pawn and the bishop, both pieces need the ability to move. If you had designed your program
before jumping into coding, you would have realized that the various pieces are actually quite simi-
lar, and that you should find some way to write the common functionality only once. Chapter 5
explains the object-oriented design techniques for doing that.

Furthermore, several aspects of the chess pieces depend on other subsystems of your program.
For example, you cannot accurately represent the location on the board in a chess piece class
without knowing how you will model the board. On the other hand, perhaps you will design
your program so that the board manages pieces in a way that doesn’t require them to know their

Pawn

-mLocationOnBoard : Location

+move() : void

-mColor : Color
-mIsCaptured : bool

+isMoveLegal() : bool
+draw() : void
+promote() : void

FIGURE 4-1

FIGURE 4-2

Bishop

-mLocationOnBoard : Location

+move() : void

-mColor : Color
-mIsCaptured : bool

+isMoveLegal() : bool
+draw() : void

Designing for C++  ❘  99

own locations. In either case, encoding the location in the piece classes before designing the
board leads to problems. To take another example, how can you write a draw method for a piece
without first deciding your program’s user interface? Will it be graphical or text-based? What
will the board look like? The problem is that subsystems of a program do not exist in isolation—
they interrelate with other subsystems. Most of the design work determines and defines these
relationships.

DESIGNING FOR C++

There are several aspects of the C++ language that you need to keep in mind when designing
for C++:

➤➤ C++ has an immense feature set. It is almost a complete superset of the C language, plus
classes and objects, operator overloading, exceptions, templates, and many other features.
The sheer size of the language makes design a daunting task.

➤➤ C++ is an object-oriented language. This means that your designs should include class hierar-
chies, class interfaces, and object interactions. This type of design is quite different from “tra-
ditional” design in C or other procedural languages. Chapter 5 focuses on object-oriented
design in C++.

➤➤ C++ has numerous facilities for designing generic and reusable code. In addition to basic
classes and inheritance, you can use other language facilities such as templates and operator
overloading for effective design. Design techniques for reusable code are discussed in more
detail later in this chapter and also in Chapter 6.

➤➤ C++ provides a useful Standard Library, including a string class, I/O facilities, and many
common data structures and algorithms. All of these facilitate coding in C++.

➤➤ C++ is a language that readily accommodates many design patterns, or common ways to
solve problems.

Tackling a design can be overwhelming. I have spent entire days scribbling design ideas on paper,
crossing them out, writing more ideas, crossing those out, and repeating the process. Sometimes
this process is helpful, and, at the end of those days (or weeks), it leads to a clean, efficient design.
Other times it is frustrating and leads nowhere, but it is not a waste of effort. You will most likely
waste more time if you have to re-implement a design that turned out to be broken. It’s important
to remain aware of whether or not you are making real progress. If you find that you are stuck, you
can take one of the following actions:

➤➤ Ask for help. Consult a coworker, mentor, book, newsgroup, or web page.

➤➤ Work on something else for a while. Come back to this design choice later.

➤➤ Make a decision and move on. Even if it’s not an ideal solution, decide on something and try
to work with it. An incorrect choice will soon become apparent. However, it may turn out to
be an acceptable method. Perhaps there is no clean way to accomplish what you want to with
this design. Sometimes you have to accept an “ugly” solution if it’s the only realistic strategy
to fulfill your requirements. Whatever you decide, make sure you document your decision,

100  ❘  CHAPTER 4   Designing Professional C++ Programs

so that you and others in the future know why you made it. This includes documenting
designs that you have rejected and the rationale behind the rejection.

NOTE  Keep in mind that good design is hard, and getting it right takes practice.
Don’t expect to become an expert overnight, and don’t be surprised if you find it
more difficult to master C++ design than C++ coding.

TWO RULES FOR C++ DESIGN

There are two fundamental design rules in C++: abstraction and reuse. These guidelines are so
important that they can be considered themes of this book. They come up repeatedly throughout the
text, and throughout effective C++ program designs in all domains.

Abstraction
The principle of abstraction is easiest to understand through a real-world analogy. A television is a
simple piece of technology found in most homes. You are probably familiar with its features: you
can turn it on and off, change the channel, adjust the volume, and add external components such
as speakers, DVRs, and Blu-ray players. However, can you explain how it works inside the black
box? That is, do you know how it receives signals over the air or through a cable, translates them,
and displays them on the screen? Most people certainly can’t explain how a television works, yet are
quite capable of using it. That is because the television clearly separates its internal implementation
from its external interface. We interact with the television through its interface: the power button,
channel changer, and volume control. We don’t know, nor do we care, how the television works; we
don’t care whether it uses a cathode ray tube or some sort of alien technology to generate the image
on our screen. It doesn’t matter because it doesn’t affect the interface.

Benefiting from Abstraction
The abstraction principle is similar in software. You can use code without knowing the underly-
ing implementation. As a trivial example, your program can make a call to the sqrt() function
declared in the header file <cmath> without knowing what algorithm the function actually uses
to calculate the square root. In fact, the underlying implementation of the square root calculation
could change between releases of the library, and as long as the interface stays the same, your func-
tion call will still work. The principle of abstraction extends to classes as well. As introduced in
Chapter 1, you can use the cout object of class ostream to stream data to standard output like this:

cout << "This call will display this line of text" << endl;

In this line, you use the documented interface of the cout insertion operator (<<) with a character
array. However, you don’t need to understand how cout manages to display that text on the user’s
screen. You only need to know the public interface. The underlying implementation of cout is free
to change as long as the exposed behavior and interface remain the same.

Two Rules for C++ Design  ❘  101

Incorporating Abstraction in Your Design
You should design functions and classes so that you and other programmers can use them without
knowing, or relying on, the underlying implementations. To see the difference between a design that
exposes the implementation and one that hides it behind an interface, consider the chess program
again. You might want to implement the chessboard with a two-dimensional array of pointers to
ChessPiece objects. You could declare and use the board like this:

ChessPiece* chessBoard[8][8];
...
chessBoard[0][0] = new Rook();

However, that approach fails to use the concept of abstraction. Every programmer who uses the
chessboard knows that it is implemented as a two-dimensional array. Changing that implementation
to something else, such as a one-dimensional flattened vector of size 64, would be difficult, because
you would need to change every use of the board in the entire program. Everyone using the chess-
board also has to properly take care of memory management. There is no separation of interface
from implementation.

A better approach is to model the chessboard as a class. You could then expose an interface that
hides the underlying implementation details. Here is an example of the ChessBoard class:

class ChessBoard
{
 public:
 // This example omits constructors, destructor, and assignment operator.
 void setPieceAt(size_t x, size_t y, ChessPiece* piece);
 ChessPiece* getPieceAt(size_t x, size_t y);
 bool isEmpty(size_t x, size_t y) const;
 private:
 // This example omits data members.
};

Note that this interface makes no commitment to any underlying implementation. The ChessBoard
could easily be a two-dimensional array, but the interface does not require it. Changing the imple-
mentation does not require changing the interface. Furthermore, the implementation can provide
additional functionality, such as bounds checking.

Hopefully, this example has convinced you that abstraction is an important technique in C++ pro-
gramming. Chapter 5 covers abstraction and object-oriented design in more detail, and Chapters 8
and 9 provide all the details about writing your own classes.

Reuse
The second fundamental rule of design in C++ is reuse. Again, it is helpful to examine a real-world
analogy to understand this concept. Suppose that you give up your programming career in favor of
working as a baker. On your first day of work, the head baker tells you to bake cookies. In order to
fulfill his orders, you find the recipe for chocolate-chip cookies, mix the ingredients, form cookies
on the cookie sheet, and place the sheet in the oven. The head baker is pleased with the result.

Now, I’m going to point out something so obvious that it will surprise you: you didn’t build your
own oven in which to bake the cookies. Nor did you churn your own butter, mill your own flour,

102  ❘  CHAPTER 4   Designing Professional C++ Programs

or form your own chocolate chips. I can hear you think, “That goes without saying.” That’s true if
you’re a real cook, but what if you’re a programmer writing a baking simulation game? In that case,
you would think nothing of writing every component of the program, from the chocolate chips to
the oven. Or, you could save yourself time by looking around for code to reuse. Perhaps your office-
mate wrote a cooking simulation game and has some nice oven code lying around. Maybe it doesn’t
do everything you need, but you might be able to modify it and add the necessary functionality.

Something else you took for granted is that you followed a recipe for the cookies instead of making
up your own. Again, that goes without saying. However, in C++ programming, it does not go with-
out saying. Although there are standard ways of approaching problems that arise over and over in
C++, many programmers persist in reinventing these strategies in each design.

The idea of using existing code is not new. You’ve been reusing code from the first day you printed
something with cout. You didn’t write the code to actually print your data to the screen. You used
the existing cout implementation to do the work.

Unfortunately, not all programmers take advantage of available code. Your designs should take into
account existing code and reuse it when appropriate.

Writing Reusable Code
The design theme of reuse applies to code you write as well as to code that you use. You should
design your programs so that you can reuse your classes, algorithms, and data structures. You and
your coworkers should be able to use these components in both the current project and future proj-
ects. In general, you should avoid designing overly specific code that is applicable only to the case
at hand.

One language technique for writing general-purpose code in C++ is the template. The following
example shows a templatized data structure. If you’ve never seen this syntax before, don’t worry!
Chapter 12 explains the syntax in depth.

Instead of writing a specific ChessBoard class that stores ChessPieces, as shown earlier, consider
writing a generic GameBoard template that can be used for any type of two-dimensional board game
such as chess or checkers. You would need only to change the class declaration so that it takes the
piece to store as a template parameter instead of hard-coding it in the interface. The template could
look something like this:

template <typename PieceType>
class GameBoard
{
 public:
 // This example omits constructors, destructor, and assignment operator.
 void setPieceAt(size_t x, size_t y, PieceType* piece);
 PieceType* getPieceAt(size_t x, size_t y);
 bool isEmpty(size_t x, size_t y) const;
 private:
 // This example omits data members.
};

With this simple change in the interface, you now have a generic game board class that you can
use for any two-dimensional board game. Although the code change is simple, it is important to

Reusing Existing Code  ❘  103

make these decisions in the design phase, so that you are able to implement the code effectively
and efficiently.

Chapter 6 goes into more detail on how to design your code with reuse in mind.

Reusing Designs
Learning the C++ language and becoming a good C++ programmer are two very different things.
If you sat down and read the C++ standard, memorizing every fact, you would know C++ as well
as anybody else. However, until you gained some experience by looking at code and writing your
own programs, you wouldn’t necessarily be a good programmer. The reason is that the C++ syntax
defines what the language can do in its raw form, but doesn’t say anything about how each feature
should be used.

As the baker example illustrates, it would be ludicrous to reinvent recipes for every dish that you
make. However, programmers often make an equivalent mistake in their designs. Instead of using
existing “recipes,” or patterns, for designing programs, they reinvent these techniques every time
they design a program.

As they become more experienced in using the C++ language, C++ programmers develop their own
individual ways of using the features of the language. The C++ community at large has also built
some standard ways of leveraging the language, some formal and some informal. Throughout this
book, I point out these reusable applications of the language, known as design techniques and
design patterns. Additionally, Chapters 28 and 29 focus almost exclusively on design techniques
and patterns. Some will seem obvious to you because they are simply a formalization of the obvious
solution. Others describe novel solutions to problems you’ve encountered in the past. Some present
entirely new ways of thinking about your program organization.

For example, you might want to design your chess program so that you have a single ErrorLogger
object that serializes all errors from different components to a log file. When you try to design your
ErrorLogger class, you realize that you would like to have only a single instance of the ErrorLogger
class in your program. But, you also want several components in your program to be able to use this
ErrorLogger instance; that is, these components all want to use the same ErrorLogger service.
A standard strategy to implement such a service mechanism is to use dependency injection. With
dependency injection, you create an interface for each service and you inject the interfaces a compo-
nent needs into the component. Thus, a good design at this point would specify that you want to use
the dependency injection pattern.

It is important for you to familiarize yourself with these patterns and techniques so that you can
recognize when a particular design problem calls for one of these solutions. There are many more
techniques and patterns applicable to C++ than those described in this book. Even though a nice
selection is covered here, you may want to consult a book on design patterns for more and different
patterns. See Appendix B for suggestions.

REUSING EXISTING CODE

Experienced C++ programmers never start a project from scratch. They incorporate code from a
wide variety of sources, such as the Standard Library, open-source libraries, proprietary code bases
in their workplace, and their own code from previous projects. You should reuse code liberally in

104  ❘  CHAPTER 4   Designing Professional C++ Programs

your designs. In order to make the most of this rule, you need to understand the types of code that
you can reuse and the tradeoffs involved in code reuse.

NOTE  Reusing code does not mean copying and pasting existing code! In fact,
it means quite the opposite: reusing code without duplicating it.

A Note on Terminology
Before analyzing the advantages and disadvantages of code reuse, it is helpful to specify the termi-
nology involved and to categorize the types of reused code. There are three categories of code avail-
able for reuse:

➤➤ Code you wrote yourself in the past

➤➤ Code written by a coworker

➤➤ Code written by a third party outside your current organization or company

There are also several ways that the code you reuse can be structured:

➤➤ Stand-alone functions or classes. When you reuse your own code or coworkers’ code, you
will generally encounter this variety.

➤➤ Libraries. A library is a collection of code used to accomplish a specific task, such as parsing
XML, or to handle a specific domain, such as cryptography. Other examples of functional-
ity usually found in libraries include threads and synchronization support, networking, and
graphics.

➤➤ Frameworks. A framework is a collection of code around which you design a program. For
example, the Microsoft Foundation Classes (MFC) library provides a framework for creating
graphical user interface applications for Microsoft Windows. Frameworks usually dictate the
structure of your program.

NOTE  A program uses a library but fits into a framework. Libraries provide
specific functionality, while frameworks are fundamental to your program
design and structure.

Another term that arises frequently is application programming interface, or API. An API is an
interface to a library or body of code for a specific purpose. For example, programmers often refer
to the sockets API, meaning the exposed interface to the sockets networking library, instead of the
library itself.

NOTE  Although people use the terms API and library interchangeably, they are
not equivalent. The library refers to the implementation, while the API refers to
the published interface to the library.

Reusing Existing Code  ❘  105

For the sake of brevity, the rest of this chapter uses the term library to refer to any reused code,
whether it is really a library, framework, or random collection of functions from your office-mate.

Deciding Whether or Not to Reuse Code
The rule to reuse code is easy to understand in the abstract. However, it’s somewhat vague when
it comes to the details. How do you know when it’s appropriate to reuse code, and which code to
reuse? There is always a tradeoff, and the decision depends on the specific situation. However, there
are some general advantages and disadvantages to reusing code.

Advantages to Reusing Code
Reusing code can provide tremendous advantages to you and to your project.

➤➤ You may not know how to, or may not be able to justify the time to write the code you need.
Would you really want to write code to handle formatted input and output? Of course not.
That’s why you use the standard C++ I/O streams.

➤➤ Your designs will be simpler because you will not need to design those components of the
application that you reuse.

➤➤ The code that you reuse usually requires no debugging. You can often assume that library
code is bug-free because it has already been tested and used extensively.

➤➤ Libraries handle more error conditions than would your first attempt at the code. You might
forget obscure errors or edge cases at the beginning of the project, and would waste time fixing
these problems later. Library code that you reuse has generally been tested extensively and used
by many programmers before you, so you can assume that it handles most errors properly.

➤➤ Libraries generally are designed to be suspect of bad user inputs. Invalid requests, or requests
not appropriate for the current state, usually result in suitable error notifications. For exam-
ple, a request to seek a nonexistent record in a database, or to read a record from a database
that is not open, would have well-specified behavior from a library.

➤➤ Reusing code written by domain experts is safer than writing your own code for that area.
For example, you should not attempt to write your own security code unless you are a
security expert. If you need security or cryptography in your programs, use a library. Many
seemingly minor details in code of that nature could compromise the security of the entire
program, and possibly the entire system, if you got them wrong.

➤➤ Library code is constantly improving. If you reuse the code, you receive the benefits of these
improvements without doing the work yourself. In fact, if the library writers have properly
separated the interface from the implementation, you can obtain these benefits by upgrad-
ing your library version without changing your interaction with the library. A good upgrade
modifies the underlying implementation without changing the interface.

Disadvantages to Reusing Code
Unfortunately, there are also some disadvantages to reusing code.

➤➤ When you use only code that you wrote yourself, you understand exactly how it works.
When you use libraries that you didn’t write yourself, you must spend time understanding

106  ❘  CHAPTER 4   Designing Professional C++ Programs

the interface and correct usage before you can jump in and use it. This extra time at the
beginning of your project will slow your initial design and coding.

➤➤ When you write your own code, it does exactly what you want. Library code might not pro-
vide the exact functionality that you require.

➤➤ Even if the library code provides the exact functionality you need, it might not give you the
performance that you desire. The performance might be bad in general, poor for your specific
use case, or completely unspecified.

➤➤ Using library code introduces a Pandora’s box of support issues. If you discover a bug in the
library, what do you do? Often you don’t have access to the source code, so you couldn’t fix
it even if you wanted to. If you have already invested significant time in learning the library
interface and using the library, you probably don’t want to give it up, but you might find it
difficult to convince the library developers to fix the bug on your time schedule. Also, if you
are using a third-party library, what do you do if the library authors drop support for the
library before you stop supporting the product that depends on it? Think carefully about this
before you decide to use a library for which you cannot get source code.

➤➤ In addition to support problems, libraries present licensing issues, which cover topics such as
disclosure of your source, redistribution fees (often called binary license fees), credit attribu-
tion, and development licenses. You should carefully inspect the licensing issues before using
any library. For example, some open-source libraries require you to make your own code
open-source.

➤➤ Another consideration with reusing code is cross-platform portability. If you want to write a
cross-platform application, make sure the libraries you use are also cross-platform portable.

➤➤ Reusing code requires a trust factor. You must trust whoever wrote the code by assuming
that they did a good job. Some people like to have control over all aspects of their project,
including every line of source code.

➤➤ Upgrading to a new version of the library can cause problems. The upgrade could introduce
bugs, which could have fatal consequences in your product. A performance-related upgrade
might optimize performance in certain cases but make it worse in your specific use case.

➤➤ Upgrading your compiler to a new version can cause problems when you are using binary-
only libraries. You can only upgrade the compiler when the library vendor provides binaries
compatible with your new version of the compiler.

Putting It Together to Make a Decision
Now that you are familiar with the terminology, advantages, and disadvantages of reusing code, you
are better prepared to make the decision about whether or not to reuse code. Often, the decision is
obvious. For example, if you want to write a graphical user interface (GUI) in C++ for Microsoft
Windows, you should use a framework such as Microsoft Foundation Class (MFC) or Qt. You
probably don’t know how to write the underlying code to create a GUI in Windows, and more
importantly, you don’t want to waste time to learn it. You will save person-years of effort by using a
framework in this case.

Reusing Existing Code  ❘  107

However, other times the choice is less obvious. For example, if you are unfamiliar with a library or
framework, and need only a simple data structure, it might not be worth the time to learn the entire
framework to reuse only one component that you could write in a few days.

Ultimately, you need to make a decision based on your own particular needs. It often comes down
to a tradeoff between the time it would take to write it yourself and the time required to find and
learn how to use a library to solve the problem. Carefully consider how the advantages and disad-
vantages listed previously apply to your specific case, and decide which factors are most important
to you. Finally, remember that you can always change your mind, which might even be relatively
easy if you handled the abstraction correctly.

Strategies for Reusing Code
When you use libraries, frameworks, coworkers’ code, or your own code, there are several guide-
lines you should keep in mind.

Understand the Capabilities and Limitations
Take the time to familiarize yourself with the code. It is important to understand both its capabili-
ties and its limitations. Start with the documentation and the published interfaces or APIs. Ideally,
that will be sufficient to understand how to use the code. However, if the library doesn’t provide a
clear separation between interface and implementation, you may need to explore the source code
itself if it is provided. Also, talk to other programmers who have used the code and who might be
able to explain its intricacies. You should begin by learning the basic functionality. If it’s a library,
what functions does it provide? If it’s a framework, how does your code fit in? What classes should
you derive from? What code do you need to write yourself? You should also consider specific issues
depending on the type of code.

Here are some points to keep in mind:

➤➤ Is the code safe for multithreaded programs?

➤➤ Does the library impose any specific compiler settings on code using it? If so, is that accept-
able in your project?

➤➤ Which initialization and cleanup calls are needed?

➤➤ On what other libraries does the library or framework depend?

➤➤ If you derive from a class, which constructor should you call on it? Which virtual methods
should you override?

➤➤ If a call returns memory pointers, who is responsible for freeing the memory: the caller or
the library? If the library is responsible, when is the memory freed? It’s highly recommended
to find out if you can use smart pointers (see Chapter 1) to manage memory allocated by the
library.

➤➤ What error conditions do library calls check for, and what do they assume? How are errors
handled? How is the client program notified about errors? Avoid using libraries that pop up
message boxes, issue messages to stderr/cerr or stdout/cout, or terminate the program.

108  ❘  CHAPTER 4   Designing Professional C++ Programs

➤➤ What are all the return values (by value or reference) from a call?

➤➤ What are all the possible exceptions thrown?

Understand the Performance
It is important to know the performance guarantees that the library or other code provides. Even if
your particular program is not performance sensitive, you should make sure that the code you use
doesn’t have awful performance for your particular use.

Big-O Notation
Programmers generally discuss and document algorithm and library performance using big-O nota-
tion. This section explains the general concepts of algorithm complexity analysis and big-O notation
without a lot of unnecessary mathematics. If you are already familiar with these concepts, you can
skip this section.

Big-O notation specifies relative, rather than absolute, performance. For example, instead of saying
that an algorithm runs in a specific amount of time, such as 300 milliseconds, big-O notation speci-
fies how an algorithm performs as its input size increases. Examples of input sizes include the num-
ber of items to be sorted by a sorting algorithm, the number of elements in a hash table during a key
lookup, and the size of a file to be copied between disks.

NOTE  Big-O notation applies only to algorithms whose speed depends on their
inputs. It does not apply to algorithms that take no input or whose running time
is random. In practice, you will find that the running times of most algorithms of
interest depend on their input, so this limitation is not significant.

To be more formal: big-O notation speci-
fies an algorithm’s run time as a function of
its input size, also known as the complexity
of the algorithm. It’s not as complicated as
it sounds. For example, an algorithm could
take twice as long to process twice as many
elements. Thus, if it takes 2 seconds to pro-
cess 400 elements, it will take 4 seconds to
process 800 elements. Figure 4-3 shows this
graphically. It is said that the complexity of
such an algorithm is a linear function of its
input size, because, graphically, it is repre-
sented by a straight line.

Big-O notation summarizes the algorithm’s linear performance like this: O(n). The O just means
that you’re using big-O notation, while the n represents the input size. O(n) specifies that the algo-
rithm speed is a direct linear function of the input size.

0

1

2

3

4

5

0 200 400 600 800 1000

E
xe

cu
ti

o
n

Ti
m

e
(s

ec
)

Input Size

FIGURE 4-3

Reusing Existing Code  ❘  109

Of course, not all algorithms have performance that is linear with respect to their input size. The
following table summarizes the common complexities, in order of their performance from best to
worst.

ALGORITHM

COMPLEXITY

BIG-O

NOTATION

EXPLANATION EXAMPLE ALGORITHMS

Constant O(1) The running time is independent of
input size.

Accessing a single ele-
ment in an array

Logarithmic O(log n) The running time is a function of the
logarithm base 2 of the input size.

Finding an element in a
sorted list using binary
search

Linear O(n) The running time is directly propor-
tional to the input size.

Finding an element in
an unsorted list

Linear
Logarithmic

O(n log n) The running time is a function of the
linear times the logarithmic function
of the input size.

Merge sort

Quadratic O(n2) The running time is a function of the
square of the input size.

A slower sorting algo-
rithm like selection sort

Exponential O(2n) The running time is an exponential
function of the input size.

Optimized traveling
salesman problem

There are two advantages to specifying performance as a function of the input size instead of in
absolute numbers:

	 1.	 It is platform independent. Specifying that a piece of code runs in 200 milliseconds on one
computer says nothing about its speed on a second computer. It is also difficult to compare
two different algorithms without running them on the same computer with the exact same
load. On the other hand, performance specified as a function of the input size is applicable to
any platform.

	 2.	 Performance as a function of input size covers all possible inputs to the algorithm with one
specification. The specific time in seconds that an algorithm takes to run covers only one spe-
cific input, and says nothing about any other input.

Tips for Understanding Performance
Now that you are familiar with big-O notation, you are prepared to understand most performance
documentation. The C++ Standard Library in particular describes its algorithm and data structure
performance using big-O notation. However, big-O notation is sometimes insufficient or even mis-
leading. Consider the following issues whenever you think about big-O performance specifications:

➤➤ If an algorithm takes twice as long to work on twice as much data, it doesn’t say anything
about how long it took in the first place! If the algorithm is written badly but scales well, it’s
still not something you want to use. For example, suppose the algorithm makes unnecessary

110  ❘  CHAPTER 4   Designing Professional C++ Programs

disk accesses. That probably wouldn’t affect the big-O time but would be very bad for over-
all performance.

➤➤ Along those lines, it’s difficult to compare two algorithms with the same big-O running time.
For example, if two different sorting algorithms both claim to be O(n log n), it’s hard to tell
which is really faster without running your own tests.

➤➤ The big-O notation describes the time complexity of an algorithm asymptotically, as the
input size grows to infinity. For small inputs, big-O time can be very misleading. An O(n²)
algorithm might actually perform better than an O(log n) algorithm on small input sizes.
Consider your likely input sizes before making a decision.

In addition to considering big-O characteristics, you should look at other facets of the algorithm
performance. Here are some guidelines to keep in mind:

➤➤ You should consider how often you intend to use a particular piece of library code. Some
people find the “90/10” rule helpful: 90 percent of the running time of most programs is
spent in only 10 percent of the code (Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, Fifth Edition, 2011, Morgan Kaufmann). If the library code you
intend to use falls in the oft-exercised 10 percent category of your code, you should make
sure to analyze its performance characteristics carefully. On the other hand, if it falls into
the oft-ignored 90 percent of the code, you should not spend much time analyzing its perfor-
mance because it will not benefit the overall program performance very much. Chapter 25
discusses profilers, tools to help you find performance bottlenecks in your code.

➤➤ Don’t trust the documentation. Always run performance tests to determine if library code
provides acceptable performance characteristics.

Understand Platform Limitations
Before you start using library code, make sure that you understand on which platforms it runs. That
might sound obvious, but even libraries that claim to be cross-platform might contain subtle differ-
ences on different platforms.

Also, platforms include not only different operating systems but different versions of the same oper-
ating system. If you write an application that should run on Solaris 8, Solaris 9, and Solaris 10,
ensure that any libraries you use also support all those releases. You cannot assume either forward
or backward compatibility across operating system versions. That is, just because a library runs on
Solaris 9 doesn’t mean that it will run on Solaris 10 and vice versa.

Understand Licensing and Support
Using third-party libraries often introduces complicated licensing issues. You must sometimes pay
license fees to third-party vendors for the use of their libraries. There may also be other licensing
restrictions, including export restrictions. Additionally, open-source libraries are sometimes distrib-
uted under licenses that require any code that links with them to be open source as well. A number
of licenses commonly used by open-source libraries are discussed later in this chapter.

Using third-party libraries also introduces support issues. Before you use a library, make sure that
you understand the process for submitting bugs, and that you realize how long it will take for bugs

Reusing Existing Code  ❘  111

to be fixed. If possible, determine how long the library will continue to be supported so that you can
plan accordingly.

WARNING  Make sure that you understand the license restrictions of any third-
party libraries you use if you plan to distribute or sell the code you develop.
When in doubt, consult a legal expert.

Interestingly, even using libraries from within your own organization can introduce support issues.
You may find it just as difficult to convince a coworker in another part of your company to fix
a bug in their library as you would to convince a stranger in another company to do the same
thing. In fact, you may even find it harder, because you’re not a paying customer. Make sure that
you understand the politics and organizational issues within your own organization before using
internal libraries.

Know Where to Find Help
Using libraries and frameworks can sometimes be daunting at first. Fortunately, there are
many avenues of support available. First of all, consult the documentation that accompanies
the library. If the library is widely used, such as the Standard Library or the MFC, you should
be able to find a good book on the topic. In fact, for help with the Standard Library, you can
consult Chapters 16 to 21. If you have specific questions not addressed by books and product
documentation, try searching the web. Type your question in your favorite search engine to find
web pages that discuss the library. For example, when you search for the phrase, “introduction
to C++ Standard Library,” you will find several hundred websites about C++ and the Standard
Library. Also, many websites contain their own private newsgroups or forums on specific topics
for which you can register.

WARNING  A note of caution: don’t believe everything you read on the web!
Web pages do not necessarily undergo the same review process as printed books
and documentation, and may contain inaccuracies.

Prototype
When you first sit down with a new library or framework, it is often a good idea to write a quick
prototype. Trying out the code is the best way to familiarize yourself with the library’s capabilities.
You should consider experimenting with the library even before you tackle your program design so
that you are intimately familiar with the library’s capabilities and limitations. This empirical testing
will allow you to determine the performance characteristics of the library as well.

Even if your prototype application looks nothing like your final application, time spent prototyping
is not a waste. Don’t feel compelled to write a prototype of your actual application. Write a dummy
program that just tests the library capabilities you want to use. The point is only to familiarize your-
self with the library.

112  ❘  CHAPTER 4   Designing Professional C++ Programs

WARNING  Due to time constraints, programmers sometimes find their proto-
types morphing into the final product. If you have hacked together a prototype
that is insufficient as the basis for the final product, make sure that it doesn’t get
used that way.

Bundling Third-Party Applications
Your project might include multiple applications. Perhaps you need a web server front end to sup-
port your new e-commerce infrastructure. It is possible to bundle third-party applications, such as
a web server, with your software. This approach takes code reuse to the extreme in that you reuse
entire applications. However, most of the caveats and guidelines for using libraries apply to bundling
third-party applications as well. Specifically, make sure that you understand the legality and licens-
ing ramifications of your decision.

NOTE  Consult a legal expert whose specialty is intellectual property before
bundling third-party applications with your software distributions.

Also, the support issue becomes more complex. If customers encounter a problem with your bundled
web server, should they contact you or the web server vendor? Make sure that you resolve this issue
before you release the software.

Open-Source Libraries
Open-source libraries are an increasingly popular class of reusable code. The general meaning
of open-source is that the source code is available for anyone to look at. There are formal defini-
tions and legal rules about including source code with all your distributions, but the important thing
to remember about open-source software is that anyone (including you) can look at the source code.
Note that open-source applies to more than just libraries. In fact, the most famous open-source
product is probably the Android operating system. Linux is another open-source operating system.
Google Chrome and Mozilla Firefox are two examples of famous open-source web browsers.

The Open-Source Movements
Unfortunately, there is some confusion in terminology in the open-source community. First of all,
there are two competing names for the movement (some would say two separate, but similar, move-
ments). Richard Stallman and the GNU project use the term free software. Note that the term free
does not imply that the finished product must be available without cost. Developers are welcome to
charge as much or as little as they want. Instead, the term free refers to the freedom for people to
examine the source code, modify the source code, and redistribute the software. Think of the free
in free speech rather than the free in free beer. You can read more about Richard Stallman and the
GNU project at www.gnu.org.

The Open Source Initiative uses the term open-source software to describe software in which the
source code must be available. As with free software, open-source software does not require the

Reusing Existing Code  ❘  113

product or library to be available without cost. However, an important difference with free software
is that open-source software is not required to give you the freedom to use, modify, and redistribute
it. You can read more about the Open Source Initiative at www.opensource.org.

There are several licensing options available for open-source projects. One of them is the GNU
Public License (GPL). However, using a library under the GPL requires you to make your own prod-
uct open-source under the GPL as well. On the other hand, an open-source project can use a licens-
ing option like Boost Software License, Berkeley Software Distribution (BSD) license, Code Project
Open License (CPOL), Creative Commons (CC) license, and so on, which allows using the open-
source library in a closed-source product.

Because the name “open-source” is less ambiguous than “free software,” this book uses “open-
source” to refer to products and libraries with which the source code is available. The choice of
name is not intended to imply endorsement of the open-source philosophy over the free software
philosophy: it is only for ease of comprehension.

Finding and Using Open-Source Libraries
Regardless of the terminology, you can gain amazing benefits from using open-source software.
The main benefit is functionality. There is a plethora of open-source C++ libraries available for var-
ied tasks, from XML parsing to cross-platform error logging.

Although open-source libraries are not required to provide free distribution and licensing, many
open-source libraries are available without monetary cost. You will generally be able to save money
in licensing fees by using open-source libraries.

Finally, you are often but not always free to modify open-source libraries to suit your exact needs.

Most open-source libraries are available on the web. For example, searching for “open-source C++
library XML parsing” results in a list of links to XML libraries in C and C++. There are also a few
open-source portals where you can start your search, including the following:

➤➤ www.boost.org

➤➤ www.gnu.org

➤➤ github.com/open-source

➤➤ www.sourceforge.net

Guidelines for Using Open-Source Code
Open-source libraries present several unique issues and require new strategies. First of all, open-
source libraries are usually written by people in their “free” time. The source base is generally avail-
able for any programmer who wants to pitch in and contribute to development or bug fixing. As a
good programming citizen, you should try to contribute to open-source projects if you find yourself
reaping the benefits of open-source libraries. If you work for a company, you may find resistance
to this idea from your management because it does not lead directly to revenue for your company.
However, you might be able to convince management that indirect benefits, such as exposure of
your company name, and perceived support from your company for the open-source movement,
should allow you to pursue this activity.

114  ❘  CHAPTER 4   Designing Professional C++ Programs

Second, because of the distributed nature of their development, and lack of single ownership, open-
source libraries often present support issues. If you desperately need a bug fixed in a library, it is
often more efficient to make the fix yourself than to wait for someone else to do it. If you do fix
bugs, you should make sure to put those fixes back into the public source base for the library. Some
licenses even require you to do so. Even if you don’t fix any bugs, make sure to report problems that
you find so that other programmers don’t waste time encountering the same issues.

The C++ Standard Library
The most important library that you will use as a C++ programmer is the C++ Standard Library.
As its name implies, this library is part of the C++ standard, so any standards-conforming compiler
should include it. The Standard Library is not monolithic: it includes several disparate components,
some of which you have been using already. You may even have assumed they were part of the core
language. Chapters 16 to 21 go into more detail about the Standard Library.

C Standard Library
Because C++ is mostly a superset of C, the C Standard Library is still available. Its functionality
includes mathematical functions such as abs(), sqrt(), and pow(), and error-handling helpers such
as assert() and errno. Additionally, the C Standard Library facilities for manipulating character
arrays as strings, such as strlen() and strcpy(), and the C-style I/O functions, such as printf()
and scanf(), are all available in C++.

NOTE  C++ provides better strings and I/O support than C. Even though the
C-style strings and I/O routines are available in C++, you should avoid them in
favor of C++ strings (Chapter 2) and I/O streams (Chapter 13).

Note that the C header files have different names in C++. These names should be used instead of the
C library names, because they are less likely to result in name conflicts. For details of the C libraries,
consult a Standard Library Reference, see Appendix B.

Deciding Whether or Not to Use the Standard Library
The Standard Library was designed with functionality, performance, and orthogonality as its priori-
ties. The benefits of using it are substantial. Imagine having to track down pointer errors in linked
list or balanced binary tree implementations, or to debug a sorting algorithm that isn’t sorting prop-
erly. If you use the Standard Library correctly, you will rarely, if ever, need to perform that kind of
coding. Chapters 16 to 21 provide in-depth information on the Standard Library functionality.

DESIGNING A CHESS PROGRAM

This section introduces a systematic approach to designing a C++ program in the context of a simple
chess game application. In order to provide a complete example, some of the steps refer to concepts
covered in later chapters. You should read this example now, in order to obtain an overview of the
design process, but you might also consider rereading it after you have finished later chapters.

Designing a Chess Program  ❘  115

Requirements
Before embarking on the design, it is important to possess clear requirements for the program’s
functionality and efficiency. Ideally, these requirements would be documented in the form of a
requirements specification. The requirements for the chess program would contain the following
types of specifications, although in more detail and greater number:

➤➤ The program should support the standard rules of chess.

➤➤ The program should support two human players. The program should not provide an artifi-
cially intelligent computer player.

➤➤ The program should provide a text-based interface:

➤➤ The program should render the game board and pieces in plain text.

➤➤ Players should express their moves by entering numbers representing locations on the
chessboard.

The requirements ensure that you design your program so that it performs as its users expect.

Design Steps
You should take a systematic approach to designing your program, working from the general to
the specific. The following steps do not always apply to all programs, but they provide a general
guideline. Your design should include diagrams and tables as appropriate. UML is an industry
standard for making diagrams. You can refer to Appendix D for a brief introduction, but in short,
UML defines a multitude of standard diagrams you can use for documenting software designs,
for example, class diagrams, sequence diagrams, and so on. I recommend using UML or at least
UML-like diagrams where applicable. However, I don’t advocate strictly adhering to the UML syn-
tax because having a clear, understandable diagram is more important than having a syntactically
correct one.

Divide the Program into Subsystems
Your first step is to divide your program into its general functional subsystems and to specify the
interfaces and interactions between the subsystems. At this point, you should not worry about spe-
cifics of data structures and algorithms, or even classes. You are trying only to obtain a general feel
for the various parts of the program and their interactions. You can list the subsystems in a table
that expresses the high-level behaviors or functionality of the subsystem, the interfaces exported
from the subsystem to other subsystems, and the interfaces consumed, or used, by this subsystem
on other subsystems. The recommended design for this chess game is to have a clear separation
between storing the data and displaying the data by using the Model-View-Controller (MVC) para-
digm. This paradigm models the notion that many applications commonly deal with a set of data,
one or more views on that data, and manipulation of the data. In MVC, a set of data is called the
model, a view is a particular visualization of the model, and the controller is the piece of code that
changes the model in response to some event. The three components of MVC interact in a feedback
loop: actions are handled by the controller, which adjusts the model, resulting in a change to the
view or views. Using this paradigm, you can easily switch between having a text-based interface and
a graphical user interface. A table for the chess game subsystems could look like this.

116  ❘  CHAPTER 4   Designing Professional C++ Programs

SUBSYSTEM NAME INSTANCES FUNCTIONALITY INTERFACES

EXPORTED

INTERFACES CONSUMED

GamePlay   1 Starts game

Controls game
flow

Controls drawing

Declares winner

Ends game

Game Over Take Turn (on Player)

Draw (on
ChessBoardView)

ChessBoard   1 Stores chess
pieces

Checks for ties
and checkmates

Get Piece At

Set Piece At

Game Over (on
GamePlay)

ChessBoardView   1 Draws the associ-
ated ChessBoard

Draw Draw (on
ChessPieceView)

ChessPiece 32 Moves itself

Checks for legal
moves

Move

Check Move

Get Piece At (on
ChessBoard)

Set Piece At (on
ChessBoard)

ChessPieceView 32 Draws the associ-
ated ChessPiece

Draw None

Player   2 Interacts with the
user by prompt-
ing the user for
a move, and
obtaining the
user’s move

Moves pieces

Take Turn Get Piece At (on
ChessBoard)

Move (on ChessPiece)

Check Move (on
ChessPiece)

ErrorLogger   1 Writes error
messages to a
log file

Log Error None

As this table shows, the functional subsystems of this chess game include a GamePlay subsystem,
a ChessBoard and ChessBoardView, 32 ChessPieces and ChessPieceViews, two Players, and one
ErrorLogger. However, that is not the only reasonable approach. In software design, as in pro-
gramming itself, there are often many different ways to accomplish the same goal. Not all solu-
tions are equal; some are certainly better than others. However, there are often several equally
valid methods.

Designing a Chess Program  ❘  117

A good division into subsystems separates the program into its basic functional parts. For example,
a Player is a subsystem distinct from the ChessBoard, ChessPieces, or GamePlay. It wouldn’t make
sense to lump the players into the GamePlay subsystem because they are logically separate subsys-
tems. Other choices might not be as obvious.

In this MVC design, the ChessBoard and ChessPiece subsystems are part of the Model. The
ChessBoardView and ChessPieceView are part of the View, and the Player is part of the Controller.

Because it is often difficult to visualize subsystem relationships from tables, it is usually helpful to
show the subsystems of a program in a diagram where lines represent calls from one subsystem to
another. Figure 4-4 shows the chess game subsystems visualized as a UML use-case diagram.

GameOver

GetPieceAt

SetPieceAt

Draw

ChessBoardView GamePlay Player

ChessPieceView

ErrorLogger

ChessBoard ChessPiece

Draw Move

CheckMove

TakeTurn

LogError

FIGURE 4-4

Choose Threading Models
It’s too early in the design phase to think about how to multithread specific loops in algorithms you
will write. However, in this step, you choose the number of high-level threads in your program and
specify their interactions. Examples of high-level threads are a UI thread, an audio-playing thread, a
network communication thread, and so on. In multithreaded designs, you should try to avoid shared
data as much as possible because it will make your designs simpler and safer. If you cannot avoid
shared data, you should specify locking requirements. If you are unfamiliar with multithreaded
programs, or your platform does not support multithreading, then you should make your programs
single-threaded. However, if your program has several distinct tasks, each of which could work
in parallel, it might be a good candidate for multiple threads. For example, graphical user inter-
face applications often have one thread performing the main application work and another thread
waiting for the user to press buttons or select menu items. Multithreaded programming is covered
in Chapter 23.

The chess program needs only one thread to control the game flow.

118  ❘  CHAPTER 4   Designing Professional C++ Programs

Specify Class Hierarchies for Each Subsystem
In this step, you determine the class hierarchies that you intend to write in your program. The chess
program needs a class hierarchy to represent the chess pieces. This hierarchy could work as shown
in Figure 4-5. The generic ChessPiece class serves as the abstract base class. A similar hierarchy is
required for the ChessPieceView class.

ChessPiece

Rook Bishop Knight King Pawn Queen

FIGURE 4-5

Another class hierarchy can be used for the ChessBoardView class to make it possible to have a text-
based interface or a graphical user interface for the game. Figure 4-6 shows an example hierarchy
that allows the chessboard to be displayed as text on a console, or with a 2D or 3D graphical user
interface. A similar hierarchy is required for the Player controller and for the individual classes of
the ChessPieceView hierarchy.

ChessBoardView

ChessBoardViewConsole ChessBoardViewGUI2D ChessBoardViewGUI3D

FIGURE 4-6

Chapter 5 explains the details of designing classes and class hierarchies.

Specify Classes, Data Structures, Algorithms, and Patterns for Each Subsystem
In this step, you consider a greater level of detail, and specify the particulars of each subsystem,
including the specific classes that you write for each subsystem. It may well turn out that you model
each subsystem itself as a class. This information can again be summarized in a table.

Designing a Chess Program  ❘  119

SUBSYSTEM CLASSES DATA STRUCTURES ALGORITHMS PATTERNS

GamePlay GamePlay class GamePlay object
includes one
ChessBoard
object and two
Player objects.

Gives each
player a turn
to play

None

ChessBoard ChessBoard class ChessBoard
object stores a
two-dimensional
representa-
tion of 32
ChessPieces.

Checks for a
win or tie after
each move

None

ChessBoardView ChessBoardView

abstract base class

Concrete
derived classes
ChessBoardView

Console,
ChessBoardView

GUI2D, and so on

Stores infor-
mation on
how to draw a
chessboard

Draws a
chessboard

Observer

ChessPiece ChessPiece
abstract base class

Rook, Bishop,
Knight, King, Pawn,
and Queen derived
classes

Each piece
stores its loca-
tion on the
chessboard.

Piece checks
for a legal
move by
querying the
chessboard
for pieces
at various
locations.

None

ChessPieceView ChessPieceView

abstract base class

Derived classes
RookView,
BishopView, and
so on, and concrete
derived classes
RookViewConsole,
RookViewGUI2D,
and so on

Stores informa-
tion on how to
draw a chess
piece

Draws a chess
piece

Observer

continues

120  ❘  CHAPTER 4   Designing Professional C++ Programs

SUBSYSTEM CLASSES DATA STRUCTURES ALGORITHMS PATTERNS

Player Player abstract
base class

Concrete
derived classes
PlayerConsole,
PlayerGUI2D, and
so on

None prompts the
user for a
move, checks
if the move
is legal, and
moves the
piece

Mediator

ErrorLogger One ErrorLogger
class

A queue of mes-
sages to log

Buffers mes-
sages and
writes them to
a log file

Dependency
injection

This section of the design document would normally present the actual interfaces for each class, but
this example will forgo that level of detail.

Designing classes and choosing data structures, algorithms, and patterns can be tricky. You should
always keep in mind the rules of abstraction and reuse discussed earlier in this chapter. For abstrac-
tion, the key is to consider the interface and the implementation separately. First, specify the inter-
face from the perspective of the user. Decide what you want the component to do. Then decide how
the component will do it by choosing data structures and algorithms. For reuse, familiarize your-
self with standard data structures, algorithms, and patterns. Also, make sure you are aware of the
Standard Library in C++, as well as any proprietary code available in your workplace.

Specify Error Handling for Each Subsystem
In this design step, you delineate the error handling in each subsystem. The error handling should
include both system errors, such as memory allocation failures, and user errors, such as invalid
entries. You should specify whether each subsystem uses exceptions. You can again summarize this
information in a table.

SUBSYSTEM HANDLING SYSTEM ERRORS HANDLING USER ERRORS

GamePlay Logs an error with the ErrorLogger,
shows a message to the user, and
gracefully shuts down the program
if unable to allocate memory for
ChessBoard or Players

Not applicable (no direct user
interface)

ChessBoard

ChessPiece

Logs an error with the ErrorLogger
and throws an exception if unable to
allocate memory

Not applicable (no direct user
interface)

(continued)

Summary  ❘  121

SUBSYSTEM HANDLING SYSTEM ERRORS HANDLING USER ERRORS

ChessBoardView

ChessPieceView

Logs an error with the ErrorLogger
and throws an exception if some-
thing goes wrong during rendering

Not applicable (no direct user
interface)

Player Logs an error with the ErrorLogger
and throws an exception if unable to
allocate memory

Sanity-checks a user move entry to
ensure that it is not off the board; it
then prompts the user for another
entry. This subsystem checks each
move’s legality before moving the
piece; if illegal, it prompts the user
for another move.

ErrorLogger Attempts to log an error, informs the
user, and gracefully shuts down
the program if unable to allocate
memory

Not applicable (no direct user
interface)

The general rule for error handling is to handle everything. Think hard about all possible error con-
ditions. If you forget one possibility, it will show up as a bug in your program! Don’t treat anything
as an “unexpected” error. Expect all possibilities: memory allocation failures, invalid user entries,
disk failures, and network failures, to name a few. However, as the table for the chess game shows,
you should handle user errors differently from internal errors. For example, a user entering an
invalid move should not cause your chess program to terminate. Chapter 14 discusses error handling
in more depth.

SUMMARY

In this chapter, you learned about the professional C++ approach to design. I hope that it convinced
you that software design is an important first step in any programming project. You also learned
about some of the aspects of C++ that make design difficult, including its object-oriented focus, its
large feature set and Standard Library, and its facilities for writing generic code. With this informa-
tion, you are better prepared to tackle C++ design.

This chapter introduced two design themes. The first theme, the concept of abstraction, or separating
interface from implementation, permeates this book and should be a guideline for all your design work.

The second theme, the notion of reuse, both of code and designs, also arises frequently in real-world
projects, and in this book. You learned that your C++ designs should include both reuse of code,
in the form of libraries and frameworks, and reuse of ideas and designs, in the form of techniques
and patterns. You should write your code to be as reusable as possible. Also remember about the
tradeoffs and about specific guidelines for reusing code, including understanding the capabilities and
limitations, the performance, licensing and support models, the platform limitations, prototyping,
and where to find help. You also learned about performance analysis and big-O notation. Now that
you understand the importance of design and the basic design themes, you are ready for the rest of
Part II. Chapter 5 describes strategies for using the object-oriented aspects of C++ in your design.

Designing with Objects
WHAT’S IN THIS CHAPTER?

➤➤ What object-oriented programming design is

➤➤ How you can define relationships between different objects

➤➤ The importance of abstraction and how to use it in your designs

Now that you have developed an appreciation for good software design from Chapter 4, it’s
time to pair the notion of objects with the concept of good design. The difference between
programmers who use objects in their code and those who truly grasp object-oriented pro-
gramming comes down to the way their objects relate to each other and to the overall design
of the program.

This chapter begins with a very brief description of procedural programming (C-style), fol-
lowed by a detailed discussion of object-oriented programming (OOP). Even if you’ve been
using objects for years, you will want to read this chapter for some new ideas regarding how to
think about objects. I will discuss the different kinds of relationships between objects, includ-
ing pitfalls programmers often succumb to when building an object-oriented program. I will
also describe how the principle of abstraction relates to objects.

When thinking about procedural programming or object-oriented programming, the most
important point to remember is that they just represent different ways of reasoning about
what’s going on in your program. Too often, programmers get bogged down in the syntax and
jargon of OOP before they adequately understand what an object is. This chapter is light on
code and heavy on concepts and ideas. For specifics on C++ object syntax, see Chapters 8, 9,
and 10.

5

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

124  ❘  CHAPTER 5   Designing with Objects

AM I THINKING PROCEDURALLY?

A procedural language, such as C, divides code into small pieces, each of which (ideally) accom-
plishes a single task. Without procedures in C, all your code would be lumped together inside
main(). Your code would be difficult to read, and your coworkers would be annoyed, to say
the least.

The computer doesn’t care if all your code is in main() or if it’s split into bite-sized pieces with
descriptive names and comments. Procedures are an abstraction that exists to help you, the
programmer, as well as those who read and maintain your code. The concept is built around a
fundamental question about your program—What does this program do? By answering that ques-
tion in English, you are thinking procedurally. For example, you might begin designing a stock
selection program by answering as follows: First, the program obtains stock quotes from the
Internet. Then, it sorts this data by specific metrics. Next, it performs analysis on the sorted data.
Finally, it outputs a list of buy and sell recommendations. When you start coding, you might directly
turn this mental model into C functions: retrieveQuotes(), sortQuotes(), analyzeQuotes(),
and outputRecommendations().

NOTE  Even though C refers to procedures as “functions,” C is not a functional
language. The term functional is very different from procedural and refers to
languages like Lisp, which use an entirely different abstraction.

The procedural approach tends to work well when your program follows a specific list of steps.
However, in large, modern applications, there is rarely a linear sequence of events. Often a user is
able to perform any command at any time. Procedural thinking also says nothing about data repre-
sentation. In the previous example, there was no discussion of what a stock quote actually is.

If the procedural mode of thought sounds like the way you approach a program, don’t worry. Once
you realize that OOP is simply an alternative, more flexible way of thinking about software, it’ll
come naturally.

THE OBJECT-ORIENTED PHILOSOPHY

Unlike the procedural approach—which is based on the question, What does this program do?—the
object-oriented approach asks another question: What real-world objects am I modeling? OOP is
based on the notion that you should divide your program not into tasks, but into models of physical
objects. While this seems abstract at first, it becomes clearer when you consider physical objects in
terms of their classes, components, properties, and behaviors.

Classes
A class helps distinguish an object from its definition. Consider the orange. There’s a difference
between talking about oranges in general as tasty fruit that grows on trees, and talking about a
specific orange, such as the one that’s currently dripping juice on my keyboard.

The Object-Oriented Philosophy  ❘  125

When answering the question “What are oranges?” you are talking about the class of things known
as oranges. All oranges are fruit. All oranges grow on trees. All oranges are some shade of orange.
All oranges have some particular flavor. A class is simply the encapsulation of what defines a
classification of objects.

When describing a specific orange, you are talking about an object. All objects belong to a particu-
lar class. Because the object on my desk is an orange, I know that it belongs to the orange class.
Thus, I know that it is a fruit that grows on trees. I can further say that it is a medium shade of
orange and ranks “mighty tasty” in flavor. An object is an instance of a class—a particular item
with characteristics that distinguish it from other instances of the same class.

As a more concrete example, reconsider the stock selection application from earlier. In OOP, “stock
quote” is a class because it defines the abstract notion of what makes up a quote. A specific quote,
such as “current Microsoft stock quote,” would be an object because it is a particular instance of
the class.

From a C background, think of classes and objects as analogous to types and variables. In fact, in
Chapter 8, you’ll see that the syntax for classes is similar to the syntax for C structs.

Components
If you consider a complex real-world object, such as an airplane, it should be fairly easy to see that it
is made up of smaller components. There’s the fuselage, the controls, the landing gear, the engines,
and numerous other parts. The ability to think of objects in terms of their smaller components is
essential to OOP, just as the breaking up of complicated tasks into smaller procedures is fundamen-
tal to procedural programming.

A component is essentially the same thing as a class, just smaller and more specific. A good object-
oriented program might have an Airplane class, but this class would be huge if it fully described an
airplane. Instead, the Airplane class deals with many smaller, more manageable, components. Each
of these components might have further subcomponents. For example, the landing gear is a compo-
nent of an airplane, and the wheel is a component of the landing gear.

Properties
Properties are what distinguish one object from another. Going back to the Orange class, recall that
all oranges are defined as having some shade of orange and a particular flavor. These two character-
istics are properties. All oranges have the same properties, just with different values. My orange has
a “mighty tasty” flavor, but yours may have a “terribly unpleasant” flavor.

You can also think about properties on the class level. As recognized earlier, all oranges are fruit
and grow on trees. These are properties of the fruit class, whereas the specific shade of orange is
determined by the particular fruit object. Class properties are shared by all objects of a class, while
object properties are present in all objects of the class, but with different values.

In the stock selection example, a stock quote has several object properties, including the name of the
company, its ticker symbol, the current price, and other statistics.

Properties are the characteristics that describe an object. They answer the question, “What makes
this object different?”

126  ❘  CHAPTER 5   Designing with Objects

Behaviors
Behaviors answer either of two questions: What does this object do? or What can I do to this
object? In the case of an orange, it doesn’t do a whole lot, but we can do things to it. One behavior
is that it can be eaten. Like properties, you can think of behaviors on the class level or the object
level. All oranges can pretty much be eaten in the same way. However, they might differ in some
other behavior, such as being rolled down an incline, where the behavior of a perfectly round orange
would differ from that of a more oblate one.

The stock selection example provides some more practical behaviors. If you recall, when thinking
procedurally, I determined that my program needed to analyze stock quotes as one of its functions.
Thinking in OOP, you might decide that a stock quote object can analyze itself. Analysis becomes a
behavior of the stock quote object.

In object-oriented programming, the bulk of functional code is moved out of procedures and into
classes. By building classes that have certain behaviors and defining how they interact, OOP offers a
much richer mechanism for attaching code to the data on which it operates. Behaviors for classes are
implemented in so-called class methods.

Bringing It All Together
With these concepts, you could take another look at the stock selection program and redesign it in
an object-oriented manner.

As discussed, “stock quote” would be a fine class to start with. To obtain the list of quotes, the
program needs the notion of a group of stock quotes, which is often called a collection. So, a better
design might be to have a class that represents a “collection of stock quotes,” which is made up of
smaller components that represent a single “stock quote.”

Moving on to properties, the collection class would have at least one property—the actual list of
quotes received. It might also have additional properties, such as the exact date and time of the most
recent retrieval. As for behaviors, the “collection of stock quotes” would be able to talk to a server
to get the quotes and provide a sorted list of quotes. This is the “retrieve quotes” behavior.

The stock quote class would have the properties discussed earlier—name, symbol, current price, and
so on. Also, it would have an analyze behavior. You might consider other behaviors, such as buying
and selling the stock.

It is often useful to create diagrams showing the relationship between components. Figure 5-1 uses
the UML class diagram syntax, see Appendix D, to indicate that a StockQuoteCollection con-
tains zero or more (0..*) StockQuote objects, and that a StockQuote object belongs to a single (1)
StockQuoteCollection.

StockQuoteCollection

-mStockQuotes : vector

+retrieveQuotes() : void
-mTimestamp : DateTime

+sortQuotes() : void

StockQuote

-mCompanyName : string

+analyze() : void

-mTickerSymbol : string
-mCurrentPrice : Currency

+buyShares() : void
+sellShares() : void

mStockQuotes
1 0..*

FIGURE 5-1

Living in a World of Objects  ❘  127

Figure 5-2 shows a possible UML class diagram for
the orange class.

LIVING IN A WORLD OF OBJECTS

Programmers who transition from a procedural
thought process to the object-oriented paradigm
often experience an epiphany about the combina-
tion of properties and behaviors into objects. Some
programmers find themselves revisiting the design
of programs they’re working on and rewriting certain pieces as objects. Others might be tempted to
throw all the code away and restart the project as a fully object-oriented application.

There are two major approaches to developing software with objects. To some people, objects
simply represent a nice encapsulation of data and functionality. These programmers sprinkle
objects throughout their programs to make the code more readable and easier to maintain.
Programmers taking this approach slice out isolated pieces of code and replace them with objects
like a surgeon implanting a pacemaker. There is nothing inherently wrong with this approach.
These people see objects as a tool that is beneficial in many situations. Certain parts of a program
just “feel like an object,” like the stock quote. These are the parts that can be isolated and described
in real-world terms.

Other programmers adopt the OOP paradigm fully and turn everything into an object. In their
minds, some objects correspond to real-world things, such as an orange or a stock quote, while oth-
ers encapsulate more abstract concepts, such as a sorter or an undo object.

The ideal approach is probably somewhere in between these extremes. Your first object-oriented
program might really have been a traditional procedural program with a few objects sprinkled in.
Or perhaps you went whole hog and made everything an object, from a class representing an int to
a class representing the main application. Over time, you will find a happy medium.

Over-Objectification
There is often a fine line between designing a creative object-oriented system and annoying every-
body else on your team by turning every little thing into an object. As Freud used to say, sometimes
a variable is just a variable. Okay, that’s a paraphrase of what he said.

Perhaps you’re designing the next bestselling Tic-Tac-Toe game. You’re going all-out OOP on this
one, so you sit down with a cup of coffee and a notepad to sketch out your classes and objects.
In games like this, there’s often an object that oversees game play and is able to detect the winner.
To represent the game board, you might envision a Grid object that will keep track of the markers
and their locations. In fact, a component of the grid could be the Piece object that represents an X
or an O.

Wait, back up! This design proposes to have a class that represents an X or an O. That is perhaps
object overkill. After all, can’t a char represent an X or an O just as well? Better yet, why can’t the
Grid just use a two-dimensional array of an enumerated type? Does a Piece object just complicate
the code? Take a look at the following table representing the proposed piece class:

Orange

-mSeeds: vector

+eat() : void
+roll() : void

Seed

+toss() : void
+peel() : void
+squeeze() : void

mSeeds

-mColor : Color
-mFlavor : Flavor 1 0..*

FIGURE 5-2

128  ❘  CHAPTER 5   Designing with Objects

CLASS ASSOCIATED COMPONENTS PROPERTIES BEHAVIORS

Piece None X or O None

The table is a bit sparse, strongly hinting that what we have here may be too granular to be a
full-fledged object.

On the other hand, a forward-thinking programmer might argue that while Piece is a pretty
meager class as it currently stands, making it into an object allows future expansion without any
real penalty. Perhaps down the road, this will be a graphical application and it might be useful to
have the Piece class support drawing behavior. Additional properties could be the color of the
Piece or whether the Piece was the most recently moved.

Another solution might be to think about the state of a grid square instead of using pieces. The state
of a square can be Empty, X, or O. To make the design future-proof to support a graphical appli-
cation, you could design an abstract base class State with concrete derived classes StateEmpty,
StateX, and StateO, which know how to render themselves.

Obviously, there is no right answer. The important point is that these are issues that you should
consider when designing your application. Remember that objects exist to help programmers
manage their code. If objects are being used for no reason other than to make the code “more
object-oriented,” something is wrong.

Overly General Objects
Perhaps a worse annoyance than objects that shouldn’t be objects is objects that are too general.
All OOP students start with examples like “orange”—things that are objects, no question about
it. In real-life coding, objects can get pretty abstract. Many OOP programs have an “application
object,” despite the fact that an application isn’t really something you can envision in material
form. Yet it may be useful to represent the application as an object because the application itself has
certain properties and behaviors.

An overly general object is an object that doesn’t represent a particular thing at all. The programmer
may be attempting to make an object that is flexible or reusable, but ends up with one that is confus-
ing. For example, imagine a program that organizes and displays media. It can catalog your photos,
organize your digital music collection, and serve as a personal journal. The overly general approach
is to think of all these things as “media” objects and build a single class that can accommodate all
of the formats. It might have a property called “data” that contains the raw bits of the image, song,
or journal entry, depending on the type of media. It might have a behavior called
“perform” that appropriately draws the image, plays the song, or brings up the
journal entry for editing.

The clues that this class is too general are in the names of the properties and behav-
iors. The word “data” has little meaning by itself—you have to use a general term
here because this class has been overextended to three very different uses. Similarly,
“perform” will do very different things in the three different cases. Finally, this
design is too general because “media” isn’t a particular object, not in the user inter-
face, not in real life, and not even in the programmer’s mind. A major clue that
a class is too general is when many ideas in the programmer’s mind all unite as a
single object, as shown in Figure 5-3.

Media

Music
Text

Images

FIGURE 5-3

Object Relationships  ❘  129

OBJECT RELATIONSHIPS

As a programmer, you will certainly encounter cases where different classes have characteris-
tics in common, or at least seem somehow related to each other. For example, although creat-
ing a “media” object to represent images, music, and text in a digital catalog program is too
general, these objects do share characteristics. You may want all of them to keep track of the
date and time that they were last modified, or you might want them all to support a delete
behavior.

Object-oriented languages provide a number of mechanisms for dealing with such relationships
between objects. The tricky part is to understand what the relationship actually is. There are two
main types of object relationships—a has-a relationship and an is-a relationship.

The Has-A Relationship
Objects engaged in a has-a, or aggregation, relationship follow the pattern A has a B, or A contains
a B. In this type of relationship, you can envision one object as part of another. Components, as
defined earlier, generally represent a has-a relationship because they describe objects that are made
up of other objects.

A real-world example of this might be the relationship between a zoo and a monkey. You could say
that a zoo has a monkey or a zoo contains a monkey. A simulation of a zoo in code would have a
zoo object, which has a monkey component.

Often, thinking about user interface scenarios is helpful in understanding object relationships. This
is so because even though not all UIs are implemented in OOP (though these days, most are), the
visual elements on the screen translate well into objects. One UI analogy for a has-a relationship is
a window that contains a button. The button and the window are clearly two separate objects but
they are obviously related in some way. Because the button is inside the window, you say that the
window has a button.

Figure 5-4 shows a real-world and a user interface has-a relationship.

A window has a button.

An airplane has a wing (hopefully two!).

FIGURE 5-4

130  ❘  CHAPTER 5   Designing with Objects

The Is-A Relationship (Inheritance)
The is-a relationship is such a fundamental concept of object-oriented programming that it has
many names, including deriving, subclassing, extending, and inheriting. Classes model the fact that
the real world contains objects with properties and behaviors. Inheritance models the fact that these
objects tend to be organized in hierarchies. These hierarchies indicate is-a relationships.

Fundamentally, inheritance follows the pattern A is a B or A is really quite a bit like B—it can get
tricky. To stick with the simple case, revisit the zoo, but assume that there are other animals besides
monkeys. That statement alone has already constructed the relationship—a monkey is an animal.
Similarly, a giraffe is an animal, a kangaroo is an animal, and a penguin is an animal. So what?
Well, the magic of inheritance comes when you realize that monkeys, giraffes, kangaroos, and
penguins have certain things in common. These commonalities are characteristics of animals in
general.

What this means for the programmer is that you can define an Animal class that encapsulates all of
the properties (size, location, diet, and so on) and behaviors (move, eat, sleep) that pertain to every
animal. The specific animals, such as monkeys,
become derived classes of Animal because a
monkey contains all the characteristics of an
animal. Remember, a monkey is an animal plus
some additional characteristics that make it dis-
tinct. Figure 5-5 shows an inheritance diagram
for animals. The arrows indicate the direction of
the is-a relationship.

Just as monkeys and giraffes are different types of animals, a user interface often has different types
of buttons. A checkbox, for example, is a button. Assuming that a button is simply a UI element that
can be clicked to perform an action, a Checkbox extends the Button class by adding state—whether
the box is checked or unchecked.

When relating classes in an is-a relationship, one goal is to factor common functionality into the
base class, the class that other classes extend. If you find that all of your derived classes have code
that is similar or exactly the same, consider how you could move some or all of the code into the
base class. That way, any changes that need to be made only happen in one place and future derived
classes get the shared functionality “for free.”

Inheritance Techniques
The preceding examples cover a few of the techniques used in inheritance without formalizing them.
When deriving classes, there are several ways that the programmer can distinguish a class from its
parent class, also called base class or superclass. A derived class may use one or more of these tech-
niques, and they are recognized by completing the sentence, “A is a B that ...”.

Adding Functionality
A derived class can augment its parent by adding additional functionality. For example, a monkey is
an animal that can swing from trees. In addition to having all of the methods of Animal, the Monkey
class also has a swingFromTrees() method, which is specific to only the Monkey class.

Animal

Monkey Giraffe Kangaroo Penguin

FIGURE 5-5

Object Relationships  ❘  131

Replacing Functionality
A derived class can replace or override a method of its parent entirely. For example, most animals
move by walking, so you might give the Animal class a move() method that simulates walking.
If that’s the case, a kangaroo is an animal that moves by hopping instead of walking. All the other
properties and methods of the Animal base class still apply, but the Kangaroo derived class simply
changes the way that the move() method works. Of course, if you find yourself replacing all of the
functionality of your base class, it may be an indication that inheriting was not the correct thing to
do after all, unless the base class is an abstract base class. An abstract base class forces each of the
derived classes to implement all methods that do not have an implementation in the abstract base
class. You cannot create instances of an abstract base class. Abstract base classes are discussed in
Chapter 10.

Adding Properties
A derived class can also add new properties to the ones that were inherited from the base class. For
example, a penguin has all the properties of an animal but also has a beak size property.

Replacing Properties
C++ provides a way of overriding properties similar to the way you can override methods. However,
doing so is rarely appropriate, because it hides the property from the base class; that is, the base
class can have a specific value for a property with a certain name, while the derived class can have
another value for another property but with the same name. Hiding is explained in more detail in
Chapter 10. It’s important not to get the notion of replacing a property confused with the notion of
derived classes having different values for properties. For example, all animals have a diet property
that indicates what they eat. Monkeys eat bananas and penguins eat fish, but neither of these is
replacing the diet property—they simply differ in the value assigned to the property.

Polymorphism versus Code Reuse
Polymorphism is the notion that objects that adhere to a standard set of properties and methods
can be used interchangeably. A class definition is like a contract between objects and the code that
interacts with them. By definition, any monkey object must support the properties and methods of
the monkey class.

This notion extends to base classes as well. Because all monkeys are animals, all Monkey objects
support the properties and methods of the Animal class as well.

Polymorphism is a beautiful part of object-oriented programming because it truly takes advantage
of what inheritance offers. In a zoo simulation, you could programmatically loop through all of the
animals in the zoo and have each animal move once. Because all animals are members of the Animal
class, they all know how to move. Some of the animals have overridden the move method, but that’s
the best part—your code simply tells each animal to move without knowing or caring what type of
animal it is. Each one moves whichever way it knows how.

There is another reason to use inheritance besides polymorphism. Often, it’s just a matter of lever-
aging existing code. For example, if you need a class that plays music with an echo effect, and your
coworker has already written one that plays music without any effects, you might be able to derive a

132  ❘  CHAPTER 5   Designing with Objects

new class from the existing class and add in the new functionality. The is-a relationship still applies
(an echo music player is a music player that adds an echo effect), but you didn’t intend for these
classes to be used interchangeably. What you end up with are two separate classes, used in com-
pletely different parts of the program (or maybe even in different programs entirely) that happen to
be related only to avoid reinventing the wheel.

The Fine Line between Has-A and Is-A
In the real world, it’s pretty easy to classify has-a and is-a relationships between objects. Nobody
would claim that an orange has a fruit—an orange is a fruit. In code, things sometimes aren’t
so clear.

Consider a hypothetical class that represents a hash table. A hash table is a data structure that
efficiently maps a key to a value. For example, an insurance company could use a Hashtable class
to map member IDs to names so that given an ID, it’s easy to find the corresponding member name.
The member ID is the key and the member name is the value.

In a standard hash table implementation, every key has a single value. If the ID 14534 maps to the
member name “Kleper, Scott”, it cannot also map to the member name “Kleper, Marni”. In most
implementations, if you tried to add a second value for a key that already has a value, the first value
would go away. In other words, if the ID 14534 mapped to “Kleper, Scott” and you then assigned
the ID 14534 to “Kleper, Marni”, then Scott would effectively be uninsured. This is demonstrated
in the following sequence, which shows two calls to a hypothetical hash table insert() method and
the resulting contents of the hash table.

hash.insert(14534, "Kleper, Scott");

KEYS VALUES

14534 “Kleper, Scott” [string]

hash.insert(14534, "Kleper, Marni");

KEYS VALUES

14534 “Kleper, Marni” [string]

It’s not difficult to imagine uses for a data structure that’s like a hash table, but allows multiple val-
ues for a given key. In the insurance example, a family might have several names that correspond
to the same ID. Because such a data structure is very similar to a hash table, it would be nice to
leverage that functionality somehow. A hash table can have only a single value as a key, but that
value can be anything. Instead of a string, the value could be a collection (such as an array or a list)
containing the multiple values for the key. Every time you add a new member for an existing ID, you
add the name to the collection. This would work as shown in the following sequence:

Collection collection; // Make a new collection.
collection.insert("Kleper, Scott"); // Add a new element to the collection.
hash.insert(14534, collection); // Insert the collection into the table.

Object Relationships  ❘  133

KEYS VALUES

14534 {“Kleper, Scott”} [collection]

Collection collection = hash.get(14534);// Retrieve the existing collection.
collection.insert("Kleper, Marni"); // Add a new element to the collection.
hash.insert(14534, collection); // Replace the collection with the updated one.

KEYS VALUES

14534 {“Kleper, Scott”, “Kleper, Marni”} [collection]

Messing around with a collection instead of a string is tedious and requires a lot of repetitive code.
It would be preferable to wrap up this multiple-value functionality in a separate class, perhaps called
a MultiHash. The MultiHash class would work just like Hashtable except that behind the scenes,
it would store each value as a collection of strings instead of a single string. Clearly, MultiHash is
somehow related to Hashtable because it is still using a hash table to store the data. What is unclear
is whether that constitutes an is-a or a has-a relationship.

To start with the is-a relationship, imagine that MultiHash is a derived class of Hashtable.
It would have to override the method that adds an entry into the table so that it would either create
a collection and add the new element, or retrieve the existing collection
and add the new element. It would also override the method that retrieves a
value. It could, for example, append all the values for a given key together
into one string. This seems like a perfectly reasonable design. Even though it
overrides all the methods of the base class, it will still make use of the base
class’s methods by using the original methods within the derived class. This
approach is shown in the UML class diagram in Figure 5-6.

Now consider it as a has-a relationship. MultiHash is its own class, but it
contains a Hashtable object. It probably has an interface very similar to
Hashtable, but it need not be the same. Behind the scenes, when a user adds
something to the MultiHash, it is really wrapped in a collection and put in
a Hashtable object. This also seems perfectly
reasonable and is shown in Figure 5-7.

So, which solution is right? There’s no clear
answer, though a friend of mine who has writ-
ten a MultiHash class for production use,
viewed it as a has-a relationship. The main rea-
son was to allow modifications to the exposed
interface without worrying about maintaining hash table functionality. For example, in Figure 5-7,
the get() method was changed to getAll(), making it clear that this would get all the values for
a particular key in a MultiHash. Additionally, with a has-a relationship, you don’t have to worry
about any hash table functionality bleeding through. For example, if the hash table class supported
a method that would get the total number of values, it would report the number of collections unless
MultiHash knew to override it.

Hashtable

MultiHash

+insert(key, value)
+get(key)

modifies insert()
modifies get()

FIGURE 5-6

HashtableMultiHash

+insert(key, value)
+get(key)

1 1
has-a+insert(key, value)

+getAll(key)

FIGURE 5-7

134  ❘  CHAPTER 5   Designing with Objects

That said, one could make a convincing argument that a MultiHash actually is a Hashtable with
some new functionality, and it should have been an is-a relationship. The point is that there is some-
times a fine line between the two relationships, and you will need to consider how the class is going
to be used and whether what you are building just leverages some functionality from another class
or really is that class with modified or new functionality.

The following table represents the arguments for and against taking either approach for the
MultiHash class.

IS-A HAS-A

Reasons
For

Fundamentally, it’s the same abstrac-
tion with different characteristics.

It provides (almost) the same methods
as Hashtable.

MultiHash can have whatever meth-
ods are useful without needing to
worry about what methods Hashtable
has.

The implementation could change to
something other than a Hashtable
without changing the exposed
methods.

Reasons
Against

A hash table by definition has one value
per key. To say MultiHash is a hash
table is blasphemy!

MultiHash overrides both methods of
Hashtable, a strong sign that some-
thing about the design is wrong.

Unknown or inappropriate properties
or methods of Hashtable could “bleed
through” to MultiHash.

In a sense, MultiHash reinvents the
wheel by coming up with new methods.

Some additional properties and meth-
ods of Hashtable might have been
useful.

The reasons against using an is-a relationship in this case are pretty strong. Additionally, the Liskov
substitution principle (LSP) can help you decide between an is-a and a has-a relationship. This prin-
ciple states that you should be able to use a derived class instead of a base class without altering the
behavior. Applied to this example, it states that this should be a has-a relationship, because you can-
not just start using a MultiHash where before you were using a Hashtable. If you would do so, the
behavior would change. For example, the insert() method of Hashtable removes an earlier value
with the same key that is already in the map, while MultiHash does not remove such values.

If you do have a choice between the two types of relationships, I recommend, after years of experi-
ence, opting for a has-a relationship over an is-a relationship.

Note that the Hashtable and MultiHash are used here to demonstrate the difference between
the is-a and has-a relationships. In your own code, it is recommended to use one of the standard
hash table classes instead of writing your own. The C++ Standard Library provides an unordered_
map class, which you should use instead of the Hashtable, and an unordered_multimap class,

Object Relationships  ❘  135

which you should use instead of the MultiHash. Both of these standard classes are discussed in
Chapter 17.

The Not-A Relationship
As you consider what type of relationship classes have, you should consider whether or not they
actually have a relationship at all. Don’t let your zeal for object-oriented design turn into a lot of
needless class/derived-class relationships.

One pitfall occurs when things are obviously related in the real world but have no actual relation-
ship in code. Object-oriented hierarchies need to model functional relationships, not artificial ones.
Figure 5-8 shows relationships that are meaningful as ontologies or hierarchies, but are unlikely to
represent a meaningful relationship in code.

The best way to avoid needless inheritance is to sketch out your design first. For every class and
derived class, write down what properties and methods you’re planning on putting into the class.
You should rethink your design if you find that a class has no particular properties or methods of
its own, or if all of those properties and methods are completely overridden by its derived classes,
except when working with abstract base classes as mentioned earlier.

Music

Rock

Blues Rock Pop Folk Rock

Jazz

Smooth Jazz

CEO

VP of Sales

Sales Associate Pre-sales

VP of Engineering

Project Lead

Engineer

FIGURE 5-8

136  ❘  CHAPTER 5   Designing with Objects

Hierarchies
Just as a class A can be a base class of B, B can
also be a base class of C. Object-oriented hier-
archies can model multilevel relationships like
this. A zoo simulation with more animals might
be designed with every animal as a derived
class of a common Animal class, as shown in
Figure 5-9.

As you code each of these derived classes, you might find that a lot of them are similar. When this
occurs, you should consider putting in a common parent. Realizing that Lion and Panther both
move the same way and have the same diet might indicate a need for a possible BigCat class. You
could further subdivide the Animal class to include WaterAnimal and Marsupial. A more hierar-
chical design that leverages this commonality is shown in Figure 5-10.

A biologist looking at this hierarchy may be disappointed—a penguin isn’t really in the same family
as a dolphin. However, it underlines a good point—in code, you need to balance real-world relation-
ships with shared-functionality relationships. Even though two things might be very closely related
in the real world, they might have a not-a relationship in code because they really don’t share func-
tionality. You could just as easily divide animals into mammals and fish, but that wouldn’t factor
any commonality to the base class.

Another important point is that there could be other ways of organizing the hierarchy. The pre-
ceding design is organized mostly by how the animals move. If it were instead organized by the
animals’ diet or height, the hierarchy could be very different. In the end, what matters is how the
classes will be used. The needs will dictate the design of the object hierarchy.

A good object-oriented hierarchy accomplishes the following:

➤➤ Organizes classes into meaningful functional relationships

➤➤ Supports code reuse by factoring common functionality to base classes

➤➤ Avoids having derived classes that override much of the parent’s functionality, unless the
parent is an abstract class.

Animal

Monkey Giraffe Kangaroo Penguin

FIGURE 5-9

Animal

Monkey Giraffe Marsupial WaterAnimal

Lion Panther

Koala Kangaroo

BigCat

Dolphin Penguin

FIGURE 5-10

Object Relationships  ❘  137

Multiple Inheritance
Every example so far has had a single inheritance chain. In other words, a given class has, at most,
one immediate parent class. This does not have to be the case. Through multiple inheritance, a class
can have more than one base class.

Figure 5-11 shows a multiple inheritance design. There is still a base class called Animal, which
is further divided by size. A separate hierarchy categorizes by diet, and a third takes care of
movement. Each type of animal is then a derived class of all three of these classes, as shown by
different lines.

In a user interface context, imagine an image that the user can click
on. This object seems to be both a button and an image so the imple-
mentation might involve inheriting from both the Image class and the
Button class, as shown in Figure 5-12.

Multiple inheritance can be very useful in certain cases, but it also
has a number of disadvantages that you should always keep in mind.
Many programmers dislike multiple inheritance. C++ has explicit
support for such relationships, though the Java language does away with them altogether, except
for inheriting from multiple interfaces (abstract base classes). There are several reasons to which
multiple inheritance critics point.

First, visualizing multiple inheritance is complicated. As you can see in Figure 5-11, even a simple
class diagram can become very complicated when there are multiple hierarchies and crossing lines.
Class hierarchies are supposed to make it easier for the programmer to understand the relation-
ships between code. With multiple inheritance, a class could have several parents that are in no way
related to each other. With so many classes contributing code to your object, can you really keep
track of what’s going on?

Second, multiple inheritance can destroy otherwise clean hierarchies. In the animal example, switch-
ing to a multiple inheritance approach means that the Animal base class is less meaningful because
the code that describes animals is now separated into three separate hierarchies. While the design
illustrated in Figure 5-11 shows three clean hierarchies, it’s not difficult to imagine how they could
get messy. For example, what if you realize that all Jumpers not only move in the same way, but they
also eat the same things? Because there are separate hierarchies, there is no way to join the concepts
of movement and diet without adding yet another derived class.

Eater Animal

Swimmer

Lion

Walker

KoalaKangaroo

Jumper Carnivore Herbivore Fish Eater Small AnimalBig Animal

Mover

FIGURE 5-11

PictureButton

Button Image

FIGURE 5-12

138  ❘  CHAPTER 5   Designing with Objects

Third, implementation of multiple inheritance is complicated. What if two of your base classes
implement the same method in different ways? Can you have two base classes that are them-
selves a derived class of a common base class? These possibilities complicate the implementa-
tion because structuring such intricate relationships in code is difficult both for the author and
a reader.

The reason that other languages can leave out multiple inheritance is that it is usually avoidable.
By rethinking your hierarchy, you can often avoid introducing multiple inheritance when you have
control over the design of a project.

Mixin Classes
Mixin classes represent another type of relationship between classes. In C++, a mixin class is imple-
mented syntactically just like multiple inheritance, but the semantics are refreshingly different.
A mixin class answers the question, “What else is this class able to do?” and the answer often ends
with “-able.” Mixin classes are a way that you can add functionality to a class without committing
to a full is-a relationship. You can think of it as a shares-with relationship.

Going back to the zoo example, you might want to introduce the notion that some animals are
“pettable.” That is, there are some animals that visitors to the zoo can pet, presumably without
being bitten or mauled. You might want all pettable animals to support the behavior “be pet.”
Because pettable animals don’t have anything else in common and you don’t want to break the
existing hierarchy you’ve designed, Pettable makes a great mixin class.

Mixin classes are used frequently in user interfaces. Instead of saying that a PictureButton class
is both an Image and a Button, you might say that it’s an Image that is Clickable. A folder icon
on your desktop could be an Image that is Draggable and Clickable. Software developers tend to
make up a lot of fun adjectives.

The difference between a mixin class and a base class has more to do with how you think about the
class than any code difference. In general, mixin classes are easier to digest than multiple inheritance
because they are very limited in scope. The Pettable mixin class just adds one behavior to any
existing class. The Clickable mixin class might just add “mouse down” and “mouse up” behaviors.
Also, mixin classes rarely have a large hierarchy so there’s no cross-contamination of functionality.
Chapter 28 goes into more detail on mixin classes.

ABSTRACTION

In Chapter 4, you learned about the concept of abstraction—the notion of separating implemen-
tation from the means used to access it. Abstraction is a good idea for many reasons that were
explored earlier. It’s also a fundamental part of object-oriented design.

Interface versus Implementation
The key to abstraction is effectively separating the interface from the implementation. The imple-
mentation is the code you’re writing to accomplish the task you set out to accomplish. The interface
is the way that other people use your code. In C, the header file that describes the functions in a
library you’ve written is an interface. In object-oriented programming, the interface to a class is

Abstraction  ❘  139

the collection of publicly accessible properties and methods. A good interface contains only public
methods. Properties of a class should never be made public but can be exposed through public
methods, also called getters and setters.

Deciding on an Exposed Interface
The question of how other programmers will interact with your objects comes into play when
designing a class. In C++, a class’s properties and methods can each be public, protected, or pri-
vate. Making a property or method public means that other code can access it; protected means
that other code cannot access the property or method but derived classes can access them; private
is a stricter control, which means that not only are the properties or methods locked for other code,
but even derived classes can’t access them. Note that access specifiers are at the class level, not at
the object level. This means that a method of a class can access, for example, private properties or
private methods of other objects of the same class.

Designing the exposed interface is all about choosing what to make public. When working on a
large project with other programmers, you should view the exposed interface design as a process.

Consider the Audience
The first step in designing an exposed interface is to consider whom you are designing it for. Is your
audience another member of your team? Is this an interface that you will personally be using? Is it
something that a programmer external to your company will use? Perhaps a customer or an offshore
contractor? In addition to determining who will be coming to you for help with the interface, this
should shed some light on some of your design goals.

If the interface is for your own use, you probably have more freedom to iterate on the design. As
you’re making use of the interface, you can change it to suit your own needs. However, you should
keep in mind that roles on an engineering team change and it is quite likely that, some day, others
will be using this interface as well.

Designing an interface for other internal programmers to use is slightly different. In a way, your
interface becomes a contract with them. For example, if you are implementing the data store com-
ponent of a program, others are depending on that interface to support certain operations. You will
need to find out all of the things that the rest of the team wants your class to do. Do they need ver-
sioning? What types of data can they store? As a contract, you should view the interface as slightly
less flexible. If the interface is agreed upon before coding begins, you’ll receive some groans from
other programmers if you decide to change it after code has been written.

If the client is an external customer, you will be designing with a very different set of requirements.
Ideally, the target customer will be involved in specifying what functionality your interface exposes.
You’ll need to consider both the specific features they want as well as what customers might want in
the future. The terminology used in the interface will have to correspond to the terms that the cus-
tomer is familiar with, and the documentation will have to be written with that audience in mind.
Inside jokes, codenames, and programmer slang should be left out of your design.

Consider the Purpose
There are many reasons for writing an interface. Before putting any code on paper or even deciding
on what functionality you’re going to expose, you need to understand the purpose of the interface.

140  ❘  CHAPTER 5   Designing with Objects

Application Programming Interface
An application programming interface (API) is an externally visible mechanism to extend a
product or use its functionality within another context. If an internal interface is a contract, an
API is closer to a set-in-stone law. Once people who don’t even work for your company are using
your API, they don’t want it to change unless you’re adding new features that will help them.
So, care should be given to planning the API and discussing it with customers before making it
available to them.

The main tradeoff in designing an API is usually ease of use versus flexibility. Because the target
audience for the interface is not familiar with the internal working of your product, the learning
curve to use the API should be gradual. After all, your company is exposing this API to customers
because the company wants it to be used. If it’s too difficult to use, the API is a failure. Flexibility
often works against this. Your product may have a lot of different uses, and you want the customer
to be able to leverage all the functionality you have to offer. However, an API that lets the customer
do anything that your product can do may be too complicated.

As a common programming adage goes, “A good API makes the easy case easy and the hard case
possible.” That is, APIs should have a simple learning curve. The things that most programmers will
want to do should be accessible. However, the API should allow for more advanced usage, and it’s
acceptable to trade off complexity of the rare case for simplicity of the common case.

Utility Class or Library
Often, your task is to develop some particular functionality for general use elsewhere in the applica-
tion. It could be a random number library or a logging class. In these cases, the interface is some-
what easier to decide on because you tend to expose most or all of the functionality, ideally without
giving too much away about its implementation. Generality is an important issue to consider.
Because the class or library is general purpose, you’ll need to take the possible set of use cases into
account in your design.

Subsystem Interface
You may be designing the interface between two major subsystems of the application, such as the
mechanism for accessing a database. In these cases, separating the interface from the implementa-
tion is paramount because other programmers are likely to start implementing against your interface
before your implementation is complete. When working on a subsystem, first think about what its
main purpose is. Once you have identified the main task your subsystem is charged with, think
about specific uses and how it should be presented to other parts of the code. Try to put yourself in
their shoes and not get bogged down in implementation details.

Component Interface
Most of the interfaces you define will probably be smaller than a subsystem interface or an API.
These will be classes that you use within other code that you’ve written. In these cases, the main pit-
fall occurs when your interface evolves gradually and becomes unruly. Even though these interfaces
are for your own use, think of them as though they weren’t. As with a subsystem interface, consider
the main purpose of each class and be cautious of exposing functionality that doesn’t contribute to
that purpose.

Abstraction  ❘  141

Consider the Future
As you are designing your interface, keep in mind what the future holds. Is this a design you will be
locked into for years? If so, you might need to leave room for expansion by coming up with a plug-in
architecture. Do you have evidence that people will try to use your interface for purposes other than
what it was designed for? Talk to them and get a better understanding of their use case. The alter-
native is rewriting it later, or worse, attaching new functionality haphazardly and ending up with
a messy interface. Be careful, though! Speculative generality is yet another pitfall. Don’t design the
be-all, end-all logging class if the future uses are unclear, because it might unnecessarily complicate
the design, the implementation, and its public interface.

Designing a Successful Abstraction
Experience and iteration are essential to good abstractions. Truly well-designed interfaces come from
years of writing and using other abstractions. You can also leverage someone else’s years of writing
and using abstractions by reusing existing, well-designed abstractions in the form of standard design
patterns. As you encounter other abstractions, try to remember what worked and what didn’t work.
What did you find lacking in the Windows file system API you used last week? What would you have
done differently if you had written the network wrapper, instead of your coworker? The best inter-
face is rarely the first one you put on paper, so keep iterating. Bring your design to your peers and ask
for feedback. If your company uses code reviews, start the code review by doing a review of the inter-
face specifications before the implementation starts. Don’t be afraid to change the abstraction once
coding has begun, even if it means forcing other programmers to adapt. Hopefully, they’ll realize that
a good abstraction is beneficial to everyone in the long term.

Sometimes you need to evangelize a bit when communicating your design to other program-
mers. Perhaps the rest of the team didn’t see a problem with the previous design or feels that your
approach requires too much work on their part. In those situations, be prepared both to defend your
work and to incorporate their ideas when appropriate.

A good abstraction means that the interface has only public methods. All code should be in the
implementation file and not in the class definition file. This means that the interface files containing
the class definitions are stable and will not change. A specific technique to accomplish this is called the
private implementation idiom, or pimpl idiom, and is discussed in Chapter 9.

Beware of single-class abstractions. If there is significant depth to the code you’re writing, consider
what other companion classes might accompany the main interface. For example, if you’re exposing
an interface to do some data processing, consider also writing a result object that provides an easy
way to view and interpret the results.

Always turn properties into methods. In other words, don’t allow external code to manipulate
the data behind your class directly. You don’t want some careless or nefarious programmer to
set the height of a bunny object to a negative number. Instead, have a “set height” method that does
the necessary bounds checking.

Iteration is worth mentioning again because it is the most important point. Seek and respond to
feedback on your design, change it when necessary, and learn from mistakes.

142  ❘  CHAPTER 5   Designing with Objects

SUMMARY

In this chapter, you’ve gained an appreciation for the design of object-oriented programs without
a lot of code getting in the way. The concepts you’ve learned are applicable to almost any object-
oriented language. Some of it may have been a review to you, or it may be a new way of formalizing
a familiar concept. Perhaps you picked up some new approaches to old problems, or new arguments
in favor of the concepts you’ve been preaching to your team all along. Even if you’ve never used
objects in your code, or have used them only sparingly, you now know more about how to design
object-oriented programs than many experienced C++ programmers.

The relationships between objects are important to study, not just because well-linked objects con-
tribute to code reuse and reduce clutter, but also because you will be working in a team. Objects
that relate in meaningful ways are easier to read and maintain. You may decide to use the “Object
Relationships” section as a reference when you design your programs.

Finally, you learned about creating successful abstractions and the two most important design
considerations—audience and purpose.

The next chapter continues the design theme by explaining how to design your code with reuse
in mind.

Designing for Reuse
WHAT’S IN THIS CHAPTER?

➤➤ The reuse philosophy: Why you should design code for reuse

➤➤ How to design reusable code

➤➤ How to use abstraction

➤➤ Strategies for structuring your code for reuse

➤➤ Six strategies for designing usable interfaces

➤➤ How to reconcile generality with ease of use

➤➤ The SOLID principles

Reusing libraries and other code in your programs is an important design strategy.
However, it is only half of the reuse strategy. The other half is designing and writing the
code that you can reuse in your programs. As you’ve probably discovered, there is a signifi-
cant difference between well-designed and poorly designed libraries. Well-designed libraries
are a pleasure to use, while poorly designed libraries can prod you to give up in disgust and
write the code yourself. Whether you’re writing a library explicitly designed for use by other
programmers or merely deciding on a class hierarchy, you should design your code with
reuse in mind. You never know when you’ll need a similar piece of functionality in a subse-
quent project.

Chapter 4 introduces the design theme of reuse and explains how to apply this theme by incor-
porating libraries and other code in your designs, but it doesn’t explain how to design reusable
code. That is the topic of this chapter. It builds on the object-oriented design principles
described in Chapter 5.

6

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

144  ❘  CHAPTER 6   Designing for Reuse

THE REUSE PHILOSOPHY

You should design code that both you and other programmers can reuse. This rule applies not only
to libraries and frameworks that you specifically intend for other programmers to use, but also to
any class, subsystem, or component that you design for a program. You should always keep in mind
the mottos:

➤➤ “Write once, use often”

➤➤ “Avoid code duplication at any cost”

➤➤ “DRY—Don’t Repeat Yourself”

There are several reasons for this:

➤➤ Code is rarely used in only one program. You can be sure that your code will be used again
somehow, so design it correctly to begin with.

➤➤ Designing for reuse saves time and money. If you design your code in a way that precludes
future use, you ensure that you or your partners will spend time reinventing the wheel later
when you encounter a need for a similar piece of functionality.

➤➤ Other programmers in your group must be able to use the code that you write. You are prob-
ably not working alone on a project. Your coworkers will appreciate your efforts to offer
them well-designed, functionality-packed libraries and pieces of code to use. Designing for
reuse can also be called cooperative coding.

➤➤ Lack of reuse leads to code duplication; code duplication leads to a maintenance nightmare.
If a bug is found in duplicated code, it has to be fixed in all places where it got duplicated.
Whenever you find yourself copy-pasting a piece of code, you have to at least consider mov-
ing it out to a helper function or class.

➤➤ You will be the primary beneficiary of your own work. Experienced programmers never
throw away code. Over time, they build a personal library of evolving tools. You never know
when you will need a similar piece of functionality in the future.

WARNING  When you design or write code as an employee of a company, the
company, not you, generally owns the intellectual property rights. It is often
illegal to retain copies of your designs or code when you terminate your employ-
ment with the company. The same is also true when you are self-employed and
working for clients.

HOW TO DESIGN REUSABLE CODE

Reusable code fulfills two main goals. First, it is general enough to use for slightly different purposes
or in different application domains. Program components with details of a specific application are
difficult to reuse in other programs.

How to Design Reusable Code  ❘  145

Second, reusable code is also easy to use. It doesn’t require significant time to understand its inter-
face or functionality. Programmers must be able to incorporate it readily into their applications.

The means of “delivering” your library to clients is also important. You can deliver it in source
form and clients just incorporate your source into their project. Another option is to deliver a static
library, which they link into their application, or you can deliver a Dynamic Link Library (DLL) for
Windows clients, or a shared object (.so) for Linux clients. Each of these delivery mechanisms can
impose additional constraints on how you code your library.

NOTE  This chapter uses the term “client” to refer to a programmer who uses
your interfaces. Don’t confuse clients with “users” who run your programs. This
chapter also uses the phrase “client code” to refer to code that is written to use
your interfaces.

The most important strategy for designing reusable code is abstraction. Chapter 4 presents the real-
world analogy of a television, which you can use through its interfaces without understanding how
it works inside. Similarly, when you design code, you should clearly separate the interface from the
implementation. This separation makes the code easier to use, primarily because clients do not need
to understand the internal implementation details in order to use the functionality.

Abstraction separates code into interfaces and implementation, so designing reusable code focuses
on these two main areas. First, you must structure the code appropriately. What class hierarchies
will you use? Should you use templates? How should you divide the code into subsystems?

Second, you must design the interfaces, which are the “entries” into your library, or code that pro-
grammers use, to access the functionality you provide.

Use Abstraction
You learned about the principle of abstraction in Chapter 4 and read more about its application to
object-oriented design in Chapter 5. To follow the principle of abstraction, you should provide inter-
faces to your code that hide the underlying implementation details. There should be a clear distinc-
tion between the interface and the implementation.

Using abstraction benefits both you and the clients who use your code. Clients benefit because they
don’t need to worry about the implementation details; they can take advantage of the functionality
you offer without understanding how the code really works. You benefit because you can modify
the underlying code without changing the interface to the code. Thus, you can provide upgrades and
fixes without requiring clients to change their use. With dynamically linked libraries, clients might
not even need to rebuild their executables. Finally, you both benefit because you, as the library
writer, can specify in the interface exactly what interactions you expect and what functionality you
support. Consult Chapter 3 for a discussion on how to write documentation. A clear separation of
interfaces and implementations will prevent clients from using the library in ways that you didn’t
intend, which can otherwise cause unexpected behaviors and bugs.

WARNING  When designing your interface, do not expose implementation
details to your clients.

146  ❘  CHAPTER 6   Designing for Reuse

Sometimes libraries require client code to keep information returned from one interface in order to
pass it to another. This information is sometimes called a handle and is often used to keep track of
specific instances that require state to be remembered between calls. If your library design requires a
handle, don’t expose its internals. Make that handle into an opaque class, in which the programmer
can’t access the internal data members, either directly, or through public getters or setters. Don’t
require the client code to tweak variables inside this handle. An example of a bad design would be
a library that requires you to set a specific member of a structure in a supposedly opaque handle in
order to turn on error logging.

NOTE  Unfortunately, C++ is fundamentally unfriendly to the principle of good
abstraction when writing classes. The syntax requires you to combine your
public interfaces and non-public (private or protected) data members and
methods together in one class definition, thereby exposing some of the internal
implementation details of the class to its clients. Chapter 9 describes some tech-
niques for working around this in order to present clean interfaces.

Abstraction is so important that it should guide your entire design. As part of every decision you
make, ask yourself whether your choice fulfills the principle of abstraction. Put yourself in your cli-
ents’ shoes and determine whether or not you’re requiring knowledge of the internal implementation
in the interface. You should rarely, if ever, make exceptions to this rule.

Structure Your Code for Optimal Reuse
You must consider reuse from the beginning of your design, on all levels, that is, from a single func-
tion, over a class, to entire libraries and frameworks. In the text that follows, all these different lev-
els are called components. The following strategies will help you organize your code properly. Note
that all of these strategies focus on making your code general purpose. The second aspect of design-
ing reusable code, providing ease of use, is more relevant to your interface design and is discussed
later in this chapter.

Avoid Combining Unrelated or Logically Separate Concepts
When you design a component, you should keep it focused on a single task or group of tasks, that is,
you should strive for high cohesion. This is also known as the Single Responsibility Principle (SRP).
Don’t combine unrelated concepts such as a random number generator and an XML parser.

Even when you are not designing code specifically for reuse, keep this strategy in mind. Entire
programs are rarely reused on their own. Instead, pieces or subsystems of the programs are incor-
porated directly into other applications, or are adapted for slightly different uses. Thus, you should
design your programs so that you divide logically separate functionality into distinct compo-
nents that can be reused in different programs. Each such component should have well-defined
responsibilities.

This program strategy models the real-world design principle of discrete, interchangeable parts.
For example, you could write a Car class and put all properties and behaviors of the engine into it.

How to Design Reusable Code  ❘  147

However, engines are separable components that are not tied to other aspects of the car. The engine
could be removed from one car and put into another car. A proper design would include an Engine
class that contains all engine-specific functionality. A Car instance then just contains an instance
of Engine.

Divide Your Programs into Logical Subsystems
You should design your subsystems as discrete components that can be reused independently, that is,
strive for low coupling. For example, if you are designing a networked game, keep the networking
and graphical user interface aspects in separate subsystems. That way, you can reuse either com-
ponent without dragging in the other one. For example, you might want to write a non-networked
game, in which case you could reuse the graphical interface subsystem, but wouldn’t need the net-
working aspect. Similarly, you could design a peer-to-peer file-sharing program, in which case you
could reuse the networking subsystem but not the graphical user interface functionality.

Make sure to follow the principle of abstraction for each subsystem. Think of each subsystem as a
miniature library for which you must provide a coherent and easy-to-use interface. Even if you’re the
only programmer who ever uses these miniature libraries, you will benefit from well-designed inter-
faces and implementations that separate logically distinct functionality.

Use Class Hierarchies to Separate Logical Concepts
In addition to dividing your program into logical subsystems, you should avoid combining unrelated
concepts at the class level. For example, suppose you want to write a class for a self-driving car. You
decide to start with a basic class for a car and incorporate all the self-driving logic directly into it.
However, what if you just want a non-self-driving car in your program? In that
case, all the logic related to self-driving is useless, and might require your pro-
gram to link with libraries that it could otherwise avoid, such as vision libraries,
LIDAR libraries, and so on. A solution is to create a class hierarchy (introduced in
Chapter 5) in which a self-driving car is a derived class of a generic car. That way,
you can use the car base class in programs that do not need self-driving capabilities
without incurring the cost of such algorithms. Figure 6-1 shows this hierarchy.

This strategy works well when there are two logical concepts, such as self-driving and cars. It
becomes more complicated when there are three or more concepts. For example, suppose you want
to provide both a truck and a car, each of which
could be self-driving or not. Logically, both the
truck and the car are a special case of a vehicle,
and so they should be derived classes of a vehicle
class. Similarly, self-driving classes could be
derived classes of non-self-driving classes. You
can’t provide these separations with a linear hier-
archy. One possibility is to make the self-driving
aspect a mixin class as shown in Figure 6-2. The
SelfDriveable mixin class provides all the neces-
sary algorithms for implementing the self-driving
functionality.

Car

SelfDrivingCar

FIGURE 6-1

Car

SelfDrivingCar

Vehicle

SelfDriveable

SelfDrivingTruck

Truck

FIGURE 6-2

148  ❘  CHAPTER 6   Designing for Reuse

This hierarchy requires you to write six different classes, but the clear separation of functionality is
worth the effort.

Similarly, you should avoid combining unrelated concepts, that is, strive for high cohesion, at any
level of your design, not only at the class level. For example, at the level of methods, a single method
should not perform logically unrelated things, mix mutation (set) and inspection (get), and so on.

Use Aggregation to Separate Logical Concepts
Aggregation, discussed in Chapter 5, models the has-a relationship: objects contain other objects
to perform some aspects of their functionality. You can use aggregation to separate unrelated or
related but separate functionality when inheritance is not appropriate.

For example, suppose you want to write a Family class to store the members of a family. Obviously,
a tree data structure would be ideal for storing this information. Instead of integrating the code for
the tree structure in your Family class, you should write a separate Tree class. Your Family class
can then contain and use a Tree instance. To use the object-oriented terminology, the Family has-a
Tree. With this technique, the tree data structure could be reused more easily in another program.

Eliminate User Interface Dependencies
If your library is a data manipulation library, you want to separate data manipulation from the user
interface. This means that for those kinds of libraries you should never assume in which type of
user interface the library will be used. As such, do not use cout, cerr, cin, stdout, stderr, or
stdin, because if the library is used in the context of a graphical user interface, these concepts may
make no sense. For example, a Windows GUI-based application usually will not have any form of
console I/O. If you think your library will only be used in GUI-based applications, you should still
never pop up any kind of message box or other kind of notification to the end user, because that is
the responsibility of the client code. It’s the client code that decides how messages are displayed for
the user. These kinds of dependencies not only result in poor reusability, but they also prevent client
code from properly responding to an error, for example, to handle it silently.

The Model-View-Controller (MVC) paradigm, introduced in Chapter 4, is a well-known design pat-
tern to separate storing data from visualizing that data. With this paradigm, the model can be in the
library, while the client code can provide the view and the controller.

Use Templates for Generic Data Structures and Algorithms
C++ has a concept called templates that allows you to create structures that are generic with respect
to a type or class. For example, you might have written code for an array of integers. If you subse-
quently would like an array of doubles, you need to rewrite and replicate all the code to work with
doubles. The notion of a template is that the type becomes a parameter to the specification, and you
can create a single body of code that can work on any type. Templates allow you to write both data
structures and algorithms that work on any types.

The simplest example of this is the std::vector class, which is part of the C++ Standard Library.
To create a vector of integers, you write std::vector<int>; to create a vector of doubles, you
write std::vector<double>. Template programming is, in general, extremely powerful but can be
very complex. Luckily, it is possible to create rather simple usages of templates that parameterize

How to Design Reusable Code  ❘  149

according to a type. Chapters 12 and 22 explain the techniques to write your own templates, while
this section discusses some of their important design aspects.

Whenever possible, you should use a generic design for data structures and algorithms instead of
encoding specifics of a particular program. Don’t write a balanced binary tree structure that stores
only book objects. Make it generic, so that it can store objects of any type. That way, you could use
it in a bookstore, a music store, an operating system, or anywhere that you need a balanced binary
tree. This strategy underlies the Standard Library, which provides generic data structures and algo-
rithms that work on any types.

Why Templates Are Better Than Other Generic Programming Techniques
Templates are not the only mechanism for writing generic data structures. Another approach to
write generic structures in C and C++ is to store void* pointers instead of pointers of a specific
type. Clients can use this structure to store anything they want by casting it to a void*. However,
the main problem with this approach is that it is not type-safe: the containers are unable to check
or enforce the types of the stored elements. You can cast any type to a void* to store in the struc-
ture, and when you remove the pointers from the data structure, you must cast them back to what
you think they are. Because there are no checks involved, the results can be disastrous. Imagine a
scenario where one programmer stores pointers to int in a data structure by first casting them to
void*, but another programmer thinks they are pointers to Process objects. The second program-
mer will blithely cast the void* pointers to Process* pointers and try to use them as Process*
objects. Needless to say, the program will not work as expected.

Yet another approach is to write the data structure for a specific class. Through polymorphism, any
derived class of that class can be stored in the structure. Java takes this approach to an extreme:
it specifies that every class derives directly or indirectly from the Object class. The containers in
earlier versions of Java store Objects, so they can store objects of any type. However, this approach
is also not type-safe. When you remove an object from the container, you must remember what it
really is and down-cast it to the appropriate type. Down casting means casting it to a more specific
class in a class hierarchy, that is, casting it downward in the hierarchy.

Templates, on the other hand, are type-safe when used correctly. Each instantiation of a template
stores only one type. Your program will not compile if you try to store different types in the same
template instantiation. Newer versions of Java do support the concept of generics that are type-safe
just like C++ templates.

Problems with Templates
Templates are not perfect. First of all, their syntax might be confusing, especially for someone who
has not used them before. Second, templates require homogeneous data structures, in which you
can store only objects of the same type in a single structure. That is, if you write a templatized bal-
anced binary tree, you can create one tree object to store Process objects and another tree object
to store ints. You can’t store both ints and Processes in the same tree. This restriction is a direct
result of the type-safe nature of templates. Starting with C++17, there is a standardized way around
this homogeneity restriction. You can write your data structure to store std::variant or std::any
objects. An std::any object can store a value of any type, while an std::variant object can store
a value of a selection of types. Both any and variant are discussed in detail in Chapter 20.

150  ❘  CHAPTER 6   Designing for Reuse

Templates versus Inheritance
Programmers sometimes find it tricky to decide whether to use templates or inheritance. Following
are some tips to help you make the decision.

Use templates when you want to provide identical functionality for different types. For example, if
you want to write a generic sorting algorithm that works on any type, use templates. If you want
to create a container that can store any type, use templates. The key concept is that the templatized
structure or algorithm treats all types the same. However, if required, templates can be specialized
for specific types to treat those types differently. Template specialization is discussed in Chapter 12.

When you want to provide different behaviors for related types, use inheritance. For example, use
inheritance if you want to provide two different, but similar, containers such as a queue and a prior-
ity queue.

Note that you can combine inheritance and templates. You could write a templatized class that
derives from a templatized base class. Chapter 12 covers the details of the template syntax.

Provide Appropriate Checks and Safeguards
There are two opposite styles for writing safe code. The optimal programming style is probably
using a healthy mix of both of them. The first is called design-by-contract, which means that the
documentation for a function or a class represents a contract with a detailed description of what
the responsibility of the client code is and what the responsibility of your function or class is. There
are three important aspects of design-by-contract: preconditions, postconditions, and invariants.
Preconditions list the conditions that client code must satisfy before calling a function or method.
Postconditions list the conditions that must be satisfied by the function or method when it has fin-
ished executing. Finally, invariants list the conditions that must be satisfied during the whole execu-
tion of the function or method.

Design-by-contract is often used in the Standard Library. For example, std::vector defines a con-
tract for using the array notation to get a certain element from a vector. The contract states that no
bounds checking is performed, but that this is the responsibility of the client code. In other words, a
precondition for using array notation to get elements from a vector is that the given index is valid.
This is done to increase performance for client code that knows their indices are within bounds.
vector also defines an at() method to get a specific element that does perform bounds checking.
So, client code can choose whether it uses the array notation without bounds checking, or the at()
method with bounds checking.

The second style is that you design your functions and classes to be as safe as possible. The most
important aspect of this guideline is to perform error checking in your code. For example, if your
random number generator requires a seed to be in a specific range, don’t just trust the user to pass a
valid seed. Check the value that is passed in, and reject the call if it is invalid. The at() method of
vector as discussed in the previous paragraph is another example of a method that is designed with
safety in mind. If the user provides an invalid index, the method throws an exception.

As an analogy, consider an accountant who prepares income tax returns. When you hire an accoun-
tant, you provide them with all your financial information for the year. The accountant uses this
information to fill out forms from the IRS. However, the accountant does not blindly fill out your

How to Design Reusable Code  ❘  151

information on the form, but instead makes sure the information makes sense. For example, if you
own a house, but forget to specify the property tax you paid, the accountant will remind you to sup-
ply that information. Similarly, if you say that you paid $12,000 in mortgage interest, but made only
$15,000 gross income, the accountant might gently ask you if you provided the correct numbers (or
at least recommend more affordable housing).

You can think of the accountant as a “program” where the input is your financial information and
the output is an income tax return. However, the value added by an accountant is not just that they
fill out the forms. You also choose to employ an accountant because of the checks and safeguards
that they provide. Similarly in programming, you could provide as many checks and safeguards as
possible in your implementations.

There are several techniques and language features that help you to write safe code and to incor-
porate checks and safeguards in your programs. To report errors to client code, you can return an
error code or a distinct value like false or nullptr. Alternatively, you can throw an exception to
notify the client code of any errors. Chapter 14 covers exceptions in detail. To write safe code that
works with dynamically allocated resources such as memory, use smart pointers. Conceptually, a
smart pointer is a pointer to some resource that automatically frees the resource when it goes out of
scope. Smart pointers are introduced in Chapter 1.

Design for Extensibility
You should strive to design your classes in such a way that they can be extended by deriving
another class from them, but they should be closed for modification, that is, the behavior should
be extendable without you having to modify its implementation. This is called the Open/Closed
Principle (OCP).

As an example, suppose you start implementing a drawing application. The first version should only
support squares. Your design contains two classes: Square and Renderer. The former contains
the definition of a square, such as the length of its sides. The latter is responsible for drawing the
squares. You come up with something as follows:

class Square
{
 // Details not important for this example.
};

class Renderer
{
 public:
 void render(const vector<Square>& squares);
};

void Renderer::render(const vector<Square>& squares)
{
 for (auto& square : squares)
 {
 // Render this square object.
 }
}

152  ❘  CHAPTER 6   Designing for Reuse

Next, you add support for circles, so you create a Circle class:

class Circle
{
 // Details not important for this example.
};

To be able to render circles, you have to modify the render() method of the Renderer class. You
decide to change it as follows:

void Renderer::render(const vector<Square>& squares,
 const vector<Circle>& circles)
{
 for (auto& square : squares)
 {
 // Render this square object.
 }
 for (auto& circle : circles)
 {
 // Render this circle object.
 }
}

While doing this, you feel there is something wrong, and you are correct! In order to extend the
functionality to add support for circles, you have to modify the current implementation of the
render() method, so it’s not closed for modifications.

Your design in this case should use inheritance. This example jumps ahead a bit on the syntax for
inheritance. Chapter 10 discusses inheritance; however, the syntactical details are not important to
understand this example. For now, you only need to know that the following syntax specifies that
Square derives from the Shape class:

class Square : public Shape {};

Here is a design using inheritance:

class Shape
{
 public:
 virtual void render() = 0;
};

class Square : public Shape
{
 public:
 virtual void render() override { /* Render square */ }
 // Other members not important for this example.
};

class Circle : public Shape
{
 public:
 virtual void render() override { /* Render circle */ }
 // Other members not important for this example.
};

How to Design Reusable Code  ❘  153

class Renderer
{
 public:
 void render(const vector<shared_ptr<Shape>>& objects);
};

void Renderer::render(const vector<shared_ptr<Shape>>& objects)
{
 for (auto& object : objects)
 {
 object->render();
 }
}

With this design, if you want to add support for a new type of shape, you just need to write a new
class that derives from Shape and that implements the render() method. You don’t need to modify
anything in the Renderer class. So, this design can be extended without having to modify the exist-
ing code, that is, it’s open for extension, and closed for modification.

Design Usable Interfaces
In addition to abstracting and structuring your code appropriately, designing for reuse requires you
to focus on the interface with which programmers interact. Even if you have the most beautiful and
most efficient implementation, your library will not be any good if it has a wretched interface.

Note that every component in your program should have good interfaces, even if you don’t intend
them to be used in multiple programs. First of all, you never know when something will be reused.
Second, a good interface is important even for the first use, especially if you are programming in a
group and other programmers must use the code you design and write.

The main purpose of interfaces is to make the code easy to use, but some interface techniques can
help you follow the principle of generality as well.

Design Interfaces That Are Easy to Use
Your interfaces should be easy to use. That doesn’t mean that they must be trivial, but they should
be as simple and intuitive as the functionality allows. You shouldn’t require consumers of your
library to wade through pages of source code in order to use a simple data structure, or to go
through contortions in their code to obtain the functionality they need. This section provides four
specific strategies for designing interfaces that are easy to use.

Follow Familiar Ways of Doing Things
The best strategy for developing easy-to-use interfaces is to follow standard and familiar ways of
doing things. When people encounter an interface similar to something they have used in the past,
they will understand it better, adopt it more readily, and be less likely to use it improperly.

For example, suppose that you are designing the steering mechanism of a car. There are a number
of possibilities: a joystick, two buttons for moving left or right, a sliding horizontal lever, or a good
old steering wheel. Which interface do you think would be easiest to use? Which interface do you
think would sell the most cars? Consumers are familiar with steering wheels, so the answer to both

154  ❘  CHAPTER 6   Designing for Reuse

questions is, of course, the steering wheel. Even if you developed another mechanism that provided
superior performance and safety, you would have a tough time selling your product, let alone teach-
ing people how to use it. When you have a choice between following standard interface models and
branching out in a new direction, it’s usually better to stick to the interface to which people are
accustomed.

Innovation is important, of course, but you should focus on innovation in the underlying implemen-
tation, not in the interface. For example, consumers are excited about the innovative fully electric
engine in some car models. These cars are selling well in part because the interface to use them is
identical to cars with standard gasoline engines.

Applied to C++, this strategy implies that you should develop interfaces that follow standards to
which C++ programmers are accustomed. For example, C++ programmers expect the constructor
and destructor of a class to initialize and clean up an object, respectively. When you design your
classes, you should follow this standard. If you require programmers to call initialize() and
cleanup() methods for initialization and cleanup instead of placing that functionality in the con-
structor and destructor, you will confuse everyone who tries to use your class. Because your class
behaves differently from other C++ classes, programmers will take longer to learn how to use it and
will be more likely to use it incorrectly by forgetting to call initialize() or cleanup().

NOTE  Always think about your interfaces from the perspective of someone
using them. Do they make sense? Are they what you would expect?

C++ provides a language feature called operator overloading that can help you develop easy-to-use
interfaces for your objects. Operator overloading allows you to write classes such that the standard
operators work on them just as they work on built-in types like int and double. For example, you
can write a Fraction class that allows you to add, subtract, and stream fractions like this:

Fraction f1(3,4);
Fraction f2(1,2);
Fraction sum = f1 + f2;
Fraction diff = f1 – f2;
cout << f1 << " " << f2 << endl;

Contrast that with the same behavior using method calls:

Fraction f1(3,4);
Fraction f2(1,2);
Fraction sum = f1.add(f2);
Fraction diff = f1.subtract(f2);
f1.print(cout);
cout << " ";
f2.print(cout);
cout << endl;

As you can see, operator overloading allows you to provide an easier-to-use interface for your
classes. However, be careful not to abuse operator overloading. It’s possible to overload the
+ operator so that it implements subtraction and the – operator so that it implements multiplication.
Those implementations would be counterintuitive. This does not mean that each operator should

How to Design Reusable Code  ❘  155

always implement exactly the same behavior. For example, the string class implements the + opera-
tor to concatenate strings, which is an intuitive interface for string concatenation. See Chapters 9
and 15 for details on operator overloading.

Don’t Omit Required Functionality
This strategy is twofold. First, include interfaces for all behaviors that clients could need. That
might sound obvious at first. Returning to the car analogy, you would never build a car without a
speedometer for the driver to view their speed! Similarly, you would never design a Fraction class
without a mechanism for client code to access the nominator and denominator values.

However, other possible behaviors might be more obscure. This strategy requires you to anticipate
all the uses to which clients might put your code. If you are thinking about the interface in one par-
ticular way, you might miss functionality that could be needed when clients use it differently. For
example, suppose that you want to design a game board class. You might consider only the typical
games, such as chess and checkers, and decide to support a maximum of one game piece per spot on
the board. However, what if you later decide to write a backgammon game, which allows multiple
pieces in one spot on the board? By precluding that possibility, you have ruled out the use of your
game board as a backgammon board.

Obviously, anticipating every possible use for your library is difficult, if not impossible. Don’t feel
compelled to agonize over potential future uses in order to design the perfect interface. Just give it
some thought and do the best you can.

The second part of this strategy is to include as much functionality in the implementation as pos-
sible. Don’t require client code to specify information that you already know in the implementation,
or could know if you designed it differently. For example, if your library requires a temporary file,
don’t make the clients of your library specify that path. They don’t care what file you use; find some
other way to determine an appropriate temporary file path.

Furthermore, don’t require library users to perform unnecessary work to amalgamate results. If
your random number library uses a random number algorithm that calculates the low-order and
high-order bits of a random number separately, combine the numbers before giving them to the user.

Present Uncluttered Interfaces
In order to avoid omitting functionality in their interfaces, some programmers go to the opposite
extreme: they include every possible piece of functionality imaginable. Programmers who use the
interfaces are never left without the means to accomplish a task. Unfortunately, the interface might
be so cluttered that they never figure out how to do it!

Don’t provide unnecessary functionality in your interfaces; keep them clean and simple. It might
appear at first that this guideline directly contradicts the previous strategy of not omitting necessary
functionality. Although one strategy to avoid omitting functionality would be to include every imag-
inable interface, that is not a sound strategy. You should include necessary functionality and omit
useless or counterproductive interfaces.

Consider cars again. You drive a car by interacting with only a few components: the steering wheel,
the brake and accelerator pedals, the gearshift, the mirrors, the speedometer, and a few other dials
on your dashboard. Now, imagine a car dashboard that looked like an airplane cockpit, with hun-
dreds of dials, levers, monitors, and buttons. It would be unusable! Driving a car is so much easier

156  ❘  CHAPTER 6   Designing for Reuse

than flying an airplane that the interface can be much simpler: You don’t need to view your altitude,
communicate with control towers, or control the myriad components in an airplane such as the
wings, engines, and landing gear.

Additionally, from the library development perspective, smaller libraries are easier to maintain. If
you try to make everyone happy, then you have more room to make mistakes, and if your imple-
mentation is complicated enough so that everything is intertwined, even one mistake can render the
library useless.

Unfortunately, the idea of designing uncluttered interfaces looks good on paper, but is remarkably
hard to put into practice. The rule is ultimately subjective: you decide what’s necessary and what’s
not. Of course, your clients will be sure to tell you when you get it wrong!

Provide Documentation and Comments
Regardless of how easy you make your interfaces to use, you should supply documentation for their
use. You can’t expect programmers to use your library properly unless you tell them how to do it.
Think of your library or code as a product for other programmers to consume. Your product should
have documentation explaining its proper use.

There are two ways to provide documentation for your interfaces: comments in the interfaces them-
selves and external documentation. You should strive to provide both. Most public APIs provide
only external documentation: comments are a scarce commodity in many of the standard Unix and
Windows header files. In Unix, the documentation usually comes in the form of online manuals
called man pages. In Windows, the documentation usually accompanies the integrated development
environment.

Despite the fact that most APIs and libraries omit comments in the interfaces themselves, I actu-
ally consider this form of documentation the most important. You should never give out a “naked”
header file that contains only code. Even if your comments repeat exactly what’s in the external
documentation, it is less intimidating to look at a header file with friendly comments than one with
only code. Even the best programmers still like to see written language every so often!

Some programmers use tools to create documentation automatically from comments. Chapter 3 dis-
cusses this technique in more detail.

Whether you provide comments, external documentation, or both, the documentation should
describe the behavior of the library, not the implementation. The behavior includes the inputs,
outputs, error conditions and handling, intended uses, and performance guarantees. For example,
documentation describing a call to generate a single random number should specify that it takes no
parameters, returns an integer in a previously specified range, and should list all the exceptions that
might be thrown when something goes wrong. This documentation should not explain the details
of the linear congruence algorithm for actually generating the number. Providing too much imple-
mentation detail in interface comments is probably the single most common mistake in interface
development. Many developers have seen perfectly good separations of interface and implementation
ruined by comments in the interface that are more appropriate for library maintainers than clients.

Of course, you should also document your internal implementation; just don’t make it publicly
available as part of your interface. Chapter 3 provides details on the appropriate use of comments in
your code.

How to Design Reusable Code  ❘  157

Design General-Purpose Interfaces
The interfaces should be general purpose enough that they can be adapted to a variety of tasks. If
you encode specifics of one application in a supposedly general interface, it will be unusable for any
other purpose. Here are some guidelines to keep in mind.

Provide Multiple Ways to Perform the Same Functionality
In order to satisfy all your “customers,” it is sometimes helpful to provide multiple ways to perform
the same functionality. Use this technique judiciously, however, because over-application can easily
lead to cluttered interfaces.

Consider cars again. Most new cars these days provide remote keyless entry systems, with which
you can unlock your car by pressing a button on a key fob. However, these cars always provide a
standard key that you can use to physically unlock the car, for example, when the battery in the key
fob is drained. Although these two methods are redundant, most customers appreciate having both
options.

Sometimes there are similar situations in program interface design. For example, std::vector
provides two methods to get access to a single element at a specific index. You can use either the
at() method, which performs bounds checking, or operator[], which does not. If you know your
indices are valid, you can use operator[] and forgo the overhead that at() incurs due to bounds
checking.

Note that this strategy should be considered an exception to the “uncluttered” rule in interface
design. There are a few situations where the exception is appropriate, but you should most often fol-
low the “uncluttered” rule.

Provide Customizability
In order to increase the flexibility of your interfaces, provide customizability. Customizability can be
as simple as allowing a client to turn error logging on or off. The basic premise of customizability is
that it allows you to provide the same basic functionality to every client, but gives clients the ability
to tweak it slightly.

You can allow greater customizability through function pointers and template parameters. For
example, you could allow clients to set their own error-handling routines.

The Standard Library takes this customizability strategy to the extreme and actually allows clients
to specify their own memory allocators for containers. If you want to use this feature, you must
write a memory allocator object that follows the Standard Library guidelines and adheres to the
required interfaces. Each container in the Standard Library takes an allocator as one of its template
parameters. Chapter 21 provides more details.

Reconciling Generality and Ease of Use
The two goals of ease of use and generality sometimes appear to conflict. Often, introducing gener-
ality increases the complexity of the interfaces. For example, suppose that you need a graph struc-
ture in a map program to store cities. In the interest of generality, you might use templates to write a
generic map structure for any type, not just cities. That way, if you need to write a network simula-
tor in your next program, you can employ the same graph structure to store routers in the network.

158  ❘  CHAPTER 6   Designing for Reuse

Unfortunately, by using templates, you make the interface a little clumsier and harder to use, espe-
cially if the potential client is not familiar with templates.

However, generality and ease of use are not mutually exclusive. Although in some cases increased
generality may decrease ease of use, it is possible to design interfaces that are both general purpose
and straightforward to use. Here are two guidelines you can follow.

Supply Multiple Interfaces
In order to reduce complexity in your interfaces while still providing enough functionality, you can
provide multiple separate interfaces. This is called the Interface Segregation Principle (ISP). For
example, you could write a generic networking library with two separate facets: one presents the
networking interfaces useful for games, and the other presents the networking interfaces useful for
the HyperText Transport Protocol (HTTP) for web browsing.

Make Common Functionality Easy to Use
When you provide a general-purpose interface, some functionality will be used more often than
other functionality. You should make the commonly used functionality easy to use, while still pro-
viding the option for the more advanced functionality. Returning to the map program, you might
want to provide an option for clients of the map to specify names of cities in different languages.
English is so predominant that you could make that the default but provide an extra option to
change languages. That way, most clients will not need to worry about setting the language, but
those who want to will be able to do so.

The SOLID Principles
The basic principles of object-oriented design are often abbreviated with the easy-to-remember acro-
nym: SOLID. The following table summarizes the five SOLID principles. Most of the principles are
discussed earlier in this chapter, if not, a reference is given to the chapter where they are discussed.

S Single Responsibility Principle (SRP)

A single component should have a single, well-defined responsibility and should not combine
unrelated functionality.

O Open/Closed Principle (OCP)

A class should be open to extension (by deriving from it), but closed for modification.

L Liskov Substitution Principle (LSP)

You should be able to replace an instance of an object with an instance of a subtype of
that object. Chapter 5 explains this principle in the section “The Fine Line between Has-A
and Is-A” with an example to decide whether the relationship between Hashtable and
MultiHash is a has-a or an is-a relationship.

Summary  ❘  159

I Interface Segregation Principle (ISP)

Keep interfaces clean and simple. It is better to have many smaller, well-defined single-
responsibility interfaces than to have broad, general-purpose interfaces.

D Dependency Inversion Principle (DIP)

Use interfaces to invert dependency relationships. Chapter 4 briefly mentions an example of
an ErrorLogger service. You should define an ErrorLogger interface, and use dependency
injection to inject this interface into each component that wants to use the ErrorLogger
service. Dependency injection is one way to support the dependency inversion principle.

SUMMARY

By reading this chapter, you learned why you should design reusable code and how you should do it.
You read about the philosophy of reuse, summarized as “write once, use often,” and learned that reusable
code should be both general purpose and easy to use. You also discovered that designing reusable code
requires you to use abstraction, to structure your code appropriately, and to design good interfaces.

This chapter presented specific tips for structuring your code: to avoid combining unrelated or
logically separate concepts, to use templates for generic data structures and algorithms, to provide
appropriate checks and safeguards, and to design for extensibility.

This chapter also presented six strategies for designing interfaces: to follow familiar ways of doing
things, to not omit required functionality, to present uncluttered interfaces, to provide documenta-
tion and comments, to provide multiple ways to perform the same functionality, and to provide cus-
tomizability. It concluded with two tips for reconciling the often-conflicting demands of generality
and ease of use: to supply multiple interfaces and to make common functionality easy to use.

The chapter concluded with SOLID, an easy-to-remember acronym that describes the most impor-
tant design principles discussed in this and other chapters.

This is the last chapter of the second part of the book, which focuses on discussing design themes on
a higher level. The next part delves into the implementation phase of the software engineering pro-
cess, with details of C++ coding.

PART III
C++ Coding the Professional Way

▸▸ CHAPTER 7: Memory Management

▸▸ CHAPTER 8: Gaining Proficiency with Classes and Objects

▸▸ CHAPTER 9: Mastering Classes and Objects

▸▸ CHAPTER 10: Discovering Inheritance Techniques

▸▸ CHAPTER 11: C++ Quirks, Oddities, and Incidentals

▸▸ CHAPTER 12: Writing Generic Code with Templates

▸▸ CHAPTER 13: Demystifying C++ I/O

▸▸ CHAPTER 14: Handling Errors

▸▸ CHAPTER 15: Overloading C++ Operators

▸▸ CHAPTER 16: Overview of the C++ Standard Library

▸▸ CHAPTER 17: Understanding Containers and Iterators

▸▸ CHAPTER 18: Mastering Standard Library Algorithms

▸▸ CHAPTER 19: String Localization and Regular Expressions

▸▸ CHAPTER 20: Additional Library Utilities

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

Memory Management
WHAT’S IN THIS CHAPTER?

➤➤ Different ways to use and manage memory

➤➤ The often-perplexing relationship between arrays and pointers

➤➤ A low-level look at working with memory

➤➤ Smart pointers and how to use them

➤➤ Solutions to a few memory-related problems

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

In many ways, programming in C++ is like driving without a road. Sure, you can go anywhere
you want, but there are no lines or traffic lights to keep you from injuring yourself. C++, like
the C language, has a hands-off approach toward its programmers. The language assumes
that you know what you’re doing. It allows you to do things that are likely to cause problems
because C++ is incredibly flexible and sacrifices safety in favor of performance.

Memory allocation and management is a particularly error-prone area of C++ programming.
To write high-quality C++ programs, professional C++ programmers need to understand
how memory works behind the scenes. This first chapter of Part III explores the ins and outs
of memory management. You will learn about the pitfalls of dynamic memory and some tech-
niques for avoiding and eliminating them.

7

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

164  ❘  CHAPTER 7   Memory Management

This chapter discusses low-level memory handling because professional C++ programmers will
encounter such code. However, in modern C++ you should avoid low-level memory operations as
much as possible. For example, instead of dynamically allocated C-style arrays, you should use
Standard Library containers, such as vector, which handle all memory management automatically
for you. Instead of raw pointers, you should use smart pointers, such as unique_ptr and shared_
ptr, which automatically free the underlying resource, such as memory, when it’s not needed any-
more. Basically, you should try to avoid having calls to memory allocation routines such as new/
new[] and delete/delete[] in your code. Of course, it might not always be possible, and in exist-
ing code it will most likely not be the case, so as a professional C++ programmer, you will still need
to know how memory works behind the scenes.

WARNING  In modern C++ you should avoid low-level memory operations as
much as possible in favor of modern constructs such as containers and smart
pointers!

WORKING WITH DYNAMIC MEMORY

Memory is a low-level component of the computer that sometimes unfortunately rears its head even
in a high-level programming language like C++. Many programmers understand only enough about
dynamic memory to get by. They shy away from data structures that use dynamic memory, or get
their programs to work by trial and error. A solid understanding of how dynamic memory really
works in C++ is essential to becoming a professional C++ programmer.

How to Picture Memory
Understanding dynamic memory is much easier if you have a mental model for what objects look
like in memory. In this book, a unit of memory is shown as a box with a label next to it. The label
indicates a variable name that corresponds to the memory. The data inside the box displays the
current value of the memory.

For example, Figure 7-1 shows the state of memory
after the following line is executed. The line should
be in a function, so that i is a local variable:

int i = 7;

i is a so-called automatic variable allocated on the
stack. It is automatically deallocated when the pro-
gram flow leaves the scope in which the variable is
declared.

Stack

i 7

Heap

FIGURE 7-1

Working with Dynamic Memory  ❘  165

When you use the new keyword, memory is allocated on the heap. The following code creates a
variable ptr on the stack initialized with nullptr, and then allocates memory on the heap to which
ptr points:

int* ptr = nullptr;
ptr = new int;

This can also be written as a one-liner:

int* ptr = new int;

Figure 7-2 shows the state of memory after this
code is executed. Notice that the variable ptr is
still on the stack even though it points to memory
on the heap. A pointer is just a variable and can
live on either the stack or the heap, although this
fact is easy to forget. Dynamic memory, however,
is always allocated on the heap.

WARNING  As a rule of thumb, every time you declare a pointer variable, you
should immediately initialize it with either a proper pointer or nullptr. Don’t
leave it uninitialized!

The next example shows that pointers can exist both on the stack and on the heap:

int** handle = nullptr;
handle = new int*;
*handle = new int;

The preceding code first declares a pointer to a pointer to an integer as the variable handle. It then
dynamically allocates enough memory to hold a pointer to an integer, storing the pointer to that
new memory in handle. Next, that memory (*handle) is assigned a pointer to another section of
dynamic memory that is big enough to hold the integer. Figure 7-3 shows the two levels of pointers
with one pointer residing on the stack (handle) and the other residing on the heap (*handle).

Stack

handle *handle

**handle?

Heap

FIGURE 7-3

Stack

ptr *ptr?

Heap

FIGURE 7-2

166  ❘  CHAPTER 7   Memory Management

Allocation and Deallocation
To create space for a variable, you use the new keyword. To release that space for use by other parts
of the program, you use the delete keyword. Of course, it wouldn’t be C++ if simple concepts such
as new and delete didn’t have several variations and intricacies.

Using new and delete
When you want to allocate a block of memory, you call new with the type of variable for which you
need space. new returns a pointer to that memory, although it is up to you to store that pointer in a
variable. If you ignore the return value of new, or if the pointer variable goes out of scope, the mem-
ory becomes orphaned because you no longer have a way to access it. This is also called a memory
leak.

For example, the following code orphans enough memory to hold an int. Figure 7-4 shows the state
of memory after the code is executed. When there are blocks of data on the heap with no access,
direct or indirect, from the stack, the memory is orphaned or leaked.

void leaky()
{
 new int; // BUG! Orphans/leaks memory!
 cout << "I just leaked an int!" << endl;
}

Stack

[leaked integer]?

Heap

FIGURE 7-4

Until they find a way to make computers with an infinite supply of fast memory, you will need to
tell the compiler when the memory associated with an object can be released and reused for another
purpose. To free memory on the heap, you use the delete keyword with a pointer to the memory,
as shown here:

int* ptr = new int;
delete ptr;
ptr = nullptr;

WARNING  As a rule of thumb, every line of code that allocates memory with
new, and that uses a raw pointer instead of storing the pointer in a smart pointer,
should correspond to another line of code that releases the same memory with
delete.

Working with Dynamic Memory  ❘  167

NOTE  It is recommended to set a pointer back to nullptr after having freed its
memory. That way, you do not accidentally use a pointer to memory that has
already been deallocated.

What about My Good Friend malloc?
If you are a C programmer, you may be wondering what is wrong with the malloc() function. In C,
malloc() is used to allocate a given number of bytes of memory. For the most part, using malloc()
is simple and straightforward. The malloc() function still exists in C++, but you should avoid it.
The main advantage of new over malloc() is that new doesn’t just allocate memory, it constructs
objects!

For example, consider the following two lines of code, which use a hypothetical class called Foo:

Foo* myFoo = (Foo*)malloc(sizeof(Foo));
Foo* myOtherFoo = new Foo();

After executing these lines, both myFoo and myOtherFoo will point to areas of memory on the heap
that are big enough for a Foo object. Data members and methods of Foo can be accessed using both
pointers. The difference is that the Foo object pointed to by myFoo isn’t a proper object because it
was never constructed. The malloc() function only sets aside a piece of memory of a certain size. It
doesn’t know about or care about objects. In contrast, the call to new allocates the appropriate size
of memory and also calls an appropriate constructor to construct the object.

A similar difference exists between the free() function and the delete operator. With free(),
the object’s destructor is not called. With delete, the destructor is called and the object is properly
cleaned up.

WARNING  You should never use malloc() and free() in C++. Use only new
and delete.

When Memory Allocation Fails
Many, if not most, programmers write code with the assumption that new will always be success-
ful. The rationale is that if new fails, it means that memory is very low and life is very, very bad. It
is often an unfathomable state to be in because it’s unclear what your program could possibly do in
this situation.

By default, your program will terminate if new fails. In many programs, this behavior is acceptable.
The program exits when new fails because new throws an exception if there is not enough memory
available for the request. Chapter 14 explains possible approaches to recover gracefully from an out-
of-memory situation.

168  ❘  CHAPTER 7   Memory Management

There is also an alternative version of new, which will not throw an exception. Instead, it will return
nullptr, similar to the behavior of malloc() in C. The syntax for using this version is as follows:

int* ptr = new(nothrow) int;

Of course, you still have the same problem as the version that throws an exception—what do you
do when the result is nullptr? The compiler doesn’t require you to check the result, so the nothrow
version of new is more likely to lead to other bugs than the version that throws an exception. For this
reason, it’s suggested that you use the standard version of new. If out-of-memory recovery is impor-
tant to your program, the techniques covered in Chapter 14 give you all the tools you need.

Arrays
Arrays package multiple variables of the same type into a single variable with indices. Working with
arrays quickly becomes natural to a novice programmer because it is easy to think about values in
numbered slots. The in-memory representation of an array is not far off from this mental model.

Arrays of Basic Types
When your program allocates memory for an array, it is allocating contiguous pieces of memory,
where each piece is large enough to hold a single element of the array. For example, a local array of
five ints can be declared on the stack as follows:

int myArray[5];

Figure 7-5 shows the state of memory after the array is created. When creating arrays on the stack,
the size must be a constant value known at compile time.

NOTE  Some compilers allow variable-sized arrays on the stack. This is not a
standard feature of C++, so I recommend cautiously backing away when you
see it.

Stack

myArray[0]

myArray[1]

myArray[2]

myArray[3]

myArray[4]

Heap

FIGURE 7-5

Working with Dynamic Memory  ❘  169

Declaring arrays on the heap is no different, except that you use a pointer to refer to the location of
the array. The following code allocates memory for an array of five ints and stores a pointer to the
memory in a variable called myArrayPtr:

int* myArrayPtr = new int[5];

Stack

myArrayPtr myArrayPtr[0]

myArrayPtr[1]

myArrayPtr[2]

myArrayPtr[3]

myArrayPtr[4]

Heap

FIGURE 7-6

As Figure 7-6 illustrates, the heap-based array is similar to the stack-based array, but in a different
location. The myArrayPtr variable points to the 0th element of the array.

Each call to new[] should be paired with a call to delete[] to clean up the memory. For example,

delete [] myArrayPtr;
myArrayPtr = nullptr;

The advantage of putting an array on the heap is that you can define its size at run time. For exam-
ple, the following code snippet receives a desired number of documents from a hypothetical func-
tion named askUserForNumberOfDocuments() and uses that result to create an array of Document
objects.

Document* createDocArray()
{
 size_t numDocs = askUserForNumberOfDocuments();
 Document* docArray = new Document[numDocs];
 return docArray;
}

Remember that each call to new[] should be paired with a call to delete[], so in this example, it’s
important that the caller of createDocArray() uses delete[] to clean up the returned memory.
Another problem is that C-style arrays don’t know their size; thus callers of createDocArray()
have no idea how many elements there are in the returned array!

In the preceding function, docArray is a dynamically allocated array. Do not get this confused with
a dynamic array. The array itself is not dynamic because its size does not change once it is allocated.
Dynamic memory lets you specify the size of an allocated block at run time, but it does not auto-
matically adjust its size to accommodate the data.

170  ❘  CHAPTER 7   Memory Management

NOTE  There are data structures, such as Standard Library containers, that do
dynamically adjust their size and that do know their actual size. You should use
these containers instead of C-style arrays because they are much safer to use.

There is a function in C++ called realloc(), which is a holdover from the C language. Do not use
it! In C, realloc() is used to effectively change the size of an array by allocating a new block of
memory of the new size, copying all of the old data to the new location, and deleting the original
block. This approach is extremely dangerous in C++ because user-defined objects will not respond
well to bitwise copying.

WARNING  Do not use realloc() in C++! It is not your friend.

Arrays of Objects
Arrays of objects are no different than arrays of simple types. When you use new[N] to allocate
an array of N objects, enough space is allocated for N contiguous blocks where each block is large
enough for a single object. Using new[], the zero-argument (= default) constructor for each of the
objects is automatically called. In this way, allocating an array of objects using new[] returns a
pointer to an array of fully formed and initialized objects.

For example, consider the following class:

class Simple
{
 public:
 Simple() { cout << "Simple constructor called!" << endl; }
 ~Simple() { cout << "Simple destructor called!" << endl; }
};

If you allocate an array of four Simple objects, the Simple constructor is called four times.

Simple* mySimpleArray = new Simple[4];

The memory diagram for this array is shown in Figure 7-7. As you can see, it is no different than an
array of basic types.

Stack

mySimpleArray mySimpleArray[0]

mySimpleArray[1]

mySimpleArray[2]

mySimpleArray[3]

Heap

FIGURE 7-7

Working with Dynamic Memory  ❘  171

Deleting Arrays
As mentioned earlier, when you allocate memory with the array version of new (new[]), you must
release it with the array version of delete (delete[]). This version automatically destructs the
objects in the array in addition to releasing the memory associated with them.

Simple* mySimpleArray = new Simple[4];
// Use mySimpleArray ...
delete [] mySimpleArray;
mySimpleArray = nullptr;

If you do not use the array version of delete, your program may behave in odd ways. With some
compilers, only the destructor for the first element of the array will be called because the compiler
only knows that you are deleting a pointer to an object, and all the other elements of the array will
become orphaned objects. With other compilers, memory corruption may occur because new and
new[] can use completely different memory allocation schemes.

WARNING  Always use delete on anything allocated with new, and always use
delete[] on anything allocated with new[].

Of course, the destructors are only called if the elements of the array are objects. If you have an
array of pointers, you still need to delete each object pointed to individually just as you allocated
each object individually, as shown in the following code:

const size_t size = 4;
Simple** mySimplePtrArray = new Simple*[size];

// Allocate an object for each pointer.
for (size_t i = 0; i < size; i++) { mySimplePtrArray[i] = new Simple(); }

// Use mySimplePtrArray ...

// Delete each allocated object.
for (size_t i = 0; i < size; i++) { delete mySimplePtrArray[i]; }

// Delete the array itself.
delete [] mySimplePtrArray;
mySimplePtrArray = nullptr;

WARNING  In modern C++ you should avoid using raw C-style pointers.
Instead of storing plain-old dumb pointers in C-style arrays, you should store
smart pointers in modern Standard Library containers. Such smart pointers are
discussed later in this chapter, and will automatically deallocate the memory
associated with them at the right time.

172  ❘  CHAPTER 7   Memory Management

Multi-dimensional Arrays
Multi-dimensional arrays extend the notion of indexed values to multiple indices. For example, a
Tic-Tac-Toe game might use a two-dimensional array to represent a three-by-three grid. The follow-
ing example shows such an array declared on the stack, zero-initialized, and accessed with some test
code:

char board[3][3] = {};
// Test code
board[0][0] = 'X'; // X puts marker in position (0,0).
board[2][1] = 'O'; // O puts marker in position (2,1).

You may be wondering whether the first subscript in a two-dimensional array is the x-coordinate or
the y-coordinate. The truth is that it doesn’t really matter, as long as you are consistent. A four-by-
seven grid could be declared as char board[4][7] or char board[7][4]. For most applications, it
is easiest to think of the first subscript as the x-axis and the second as the y-axis.

Multi-dimensional Stack Arrays
In memory, a stack-based two-dimensional array looks like Figure 7-8. Because memory doesn’t
have two axes (addresses are merely sequential), the computer represents a two-dimensional array
just like a one-dimensional array. The difference is in the size of the array and the method used to
access it.

Stack

board[0][0]

board[0]board[0][1]

board[0][2]

board[1][0]

board[1][1]

board[1][2]

board[2][0]

board[2][1]

board[2][2]

Heap

board[1]

board[2]

FIGURE 7-8

The size of a multi-dimensional array is all of its dimensions multiplied together, then multiplied
by the size of a single element in the array. In Figure 7-8, the three-by-three board is 3 3 1 = 9
bytes, assuming that a character is 1 byte. For a four-by-seven board of characters, the array would
be 4 7 1 = 28 bytes.

Working with Dynamic Memory  ❘  173

To access a value in a multi-dimensional array, the computer treats each subscript as if it were
accessing another subarray within the multi-dimensional array. For example, in the three-by-three
grid, the expression board[0] actually refers to the subarray highlighted in Figure 7-9. When you
add a second subscript, such as board[0][2], the computer is able to access the correct element by
looking up the second subscript within the subarray, as shown in Figure 7-10.

Stack

board[0][0]

board[0]board[0][1]

board[0][2]

board[1][0]

board[1][1]

board[1][2]

board[2][0]

board[2][1]

board[2][2]

Heap

board[1]

board[2]

FIGURE 7-9

These techniques are extended to N-dimensional arrays, though dimensions higher than three tend
to be difficult to conceptualize and are rarely used.

Multi-dimensional Heap Arrays
If you need to determine the dimensions of a multi-dimensional array at run time, you can use a
heap-based array. Just as a single-dimensional dynamically allocated array is accessed through a
pointer, a multi-dimensional dynamically allocated array is also accessed through a pointer. The
only difference is that in a two-dimensional array, you need to start with a pointer-to-a-pointer; and
in an N-dimensional array, you need N levels of pointers. At first, it might seem as if the correct way
to declare and allocate a dynamically allocated multi-dimensional array is as follows:

char** board = new char[i][j]; // BUG! Doesn't compile

This code doesn’t compile because heap-based arrays don’t work like stack-based arrays. Their
memory layout isn’t contiguous, so allocating enough memory for a stack-based multi-dimensional
array is incorrect. Instead, you can start by allocating a single contiguous array for the first sub-
script dimension of a heap-based array. Each element of that array is actually a pointer to another
array that stores the elements for the second subscript dimension. This layout for a two-by-two
dynamically allocated board is shown in Figure 7-11.

Stack

board[0][0]

board[0]board[0][1]

board[0][2]

board[1][0]

board[1][1]

board[1][2]

board[2][0]

board[2][1]

board[2][2]

Heap

board[1]

board[2]

FIGURE 7-10

174  ❘  CHAPTER 7   Memory Management

Stack

board board[0]

board[1]

board[0][0]

board[0][1]

board[1][0]

board[1][1]

Heap

FIGURE 7-11

Unfortunately, the compiler doesn’t allocate memory for the subarrays on your behalf. You can
allocate the first-dimension array just like a single-dimensional heap-based array, but the individual
subarrays must be explicitly allocated. The following function properly allocates memory for a
two-dimensional array:

char** allocateCharacterBoard(size_t xDimension, size_t yDimension)
{
 char** myArray = new char*[xDimension]; // Allocate first dimension
 for (size_t i = 0; i < xDimension; i++) {
 myArray[i] = new char[yDimension]; // Allocate ith subarray
 }
 return myArray;
}

Similarly, when you want to release the memory associated with a multi-dimensional heap-based
array, the array delete[] syntax will not clean up the subarrays on your behalf. Your code to
release an array should mirror the code to allocate it, as in the following function:

void releaseCharacterBoard(char** myArray, size_t xDimension)
{
 for (size_t i = 0; i < xDimension; i++) {
 delete [] myArray[i]; // Delete ith subarray
 }
 delete [] myArray; // Delete first dimension
}

Now that you know all the details to work with arrays, it is recommended to avoid these old
C-style arrays as much as possible because they do not provide any memory safety. They are
explained here because you will encounter them in legacy code. In new code, you should use the
C++ Standard Library containers such as std::array, std::vector, and so on (see Chapter 17).
For example, use vector<T> for a one-dimensional dynamic array, use vector<vector<T>> for a
two-dimensional dynamic array, and so on. Of course, working directly with data structures such as
vector<vector<T>> is still tedious, especially for constructing them. If you do need N-dimensional

Working with Dynamic Memory  ❘  175

dynamic arrays in your application, it is recommended to write helper classes that provide an easier
to use interface. For example, to work with two-dimensional data with equally long rows, you
should consider writing (or reusing of course) a Matrix<T> or Table<T> class template which inter-
nally might use a vector<vector<T>> data structure. See Chapter 12 for details on writing class
templates

WARNING  Use C++ Standard Library containers such as std::array,
std::vector, and so on, instead of C-style arrays!

Working with Pointers
Pointers get their bad reputation from the relative ease with which you can abuse them. Because a
pointer is just a memory address, you could theoretically change that address manually, even doing
something as scary as the following line of code:

char* scaryPointer = (char*)7;

This line builds a pointer to the memory address 7, which is likely to be random garbage or memory
used elsewhere in the application. If you start to use areas of memory that weren’t set aside on your
behalf, for example with new or on the stack, eventually you will corrupt the memory associated
with an object, or the memory involved with the management of the heap, and your program will
malfunction. Such a malfunction can manifest itself in several ways. For example, it can reveal itself
as invalid results because the data has been corrupted, or as hardware exceptions being triggered
due to accessing non-existent memory, or attempting to write to protected memory. If you are lucky,
you will get one of the serious errors that usually result in program termination by the operating
system or the C++ runtime library; if you are unlucky, you will just get wrong results.

A Mental Model for Pointers
There are two ways to think about pointers. More mathematically minded readers might view point-
ers as addresses. This view makes pointer arithmetic, covered later in this chapter, a bit easier to
understand. Pointers aren’t mysterious pathways through memory; they are numbers that happen to
correspond to a location in memory. Figure 7-12 illustrates a two-by-two grid in the address-based
view of the world.

NOTE  The addresses in Figure 7-12 are just for illustrative purposes. Addresses
on a real system are highly dependent on your hardware and operating system.

Readers who are more comfortable with spatial representations might derive more benefit from the
“arrow” view of pointers. A pointer is a level of indirection that says to the program, “Hey! Look
over there.” With this view, multiple levels of pointers become individual steps on the path to the
data. Figure 7-11 shows a graphical view of pointers in memory.

When you dereference a pointer, by using the * operator, you are telling the program to look one
level deeper in memory. In the address-based view, think of a dereference as a jump in memory to

176  ❘  CHAPTER 7   Memory Management

the address indicated by the pointer. With the graphical view, every dereference corresponds to
following an arrow from its base to its head.

Stack

board 1000 2000

5000

1000

1001

2000

2001

5000

5001

Heap

FIGURE 7-12

When you take the address of a location, using the & operator, you are adding a level of indirection
in memory. In the address-based view, the program is noting the numerical address of the location,
which can be stored as a pointer. In the graphical view, the & operator creates a new arrow whose
head ends at the location designated by the expression. The base of the arrow can be stored as a
pointer.

Casting with Pointers
Because pointers are just memory addresses (or arrows to somewhere), they are somewhat weakly
typed. A pointer to an XML document is the same size as a pointer to an integer. The compiler will
let you easily cast any pointer type to any other pointer type using a C-style cast:

Document* documentPtr = getDocument();
char* myCharPtr = (char*)documentPtr;

A static cast offers a bit more safety. The compiler refuses to perform a static cast on pointers to
unrelated data types:

Document* documentPtr = getDocument();
char* myCharPtr = static_cast<char*>(documentPtr); // BUG! Won't compile

If the two pointers you are casting are actually pointing to objects that are related through inheri-
tance, the compiler will permit a static cast. However, a dynamic cast is a safer way to accomplish a
cast within an inheritance hierarchy. Chapter 10 discusses inheritance in detail, while the different
C++ style casts are discussed in Chapter 11.

Array-Pointer Duality  ❘  177

ARRAY-POINTER DUALITY

You have already seen some of the overlap between pointers and arrays. Heap-allocated arrays are
referred to by a pointer to their first element. Stack-based arrays are referred to by using the array
syntax ([]) with an otherwise normal variable declaration. As you are about to learn, however, the
overlap doesn’t end there. Pointers and arrays have a complicated relationship.

Arrays Are Pointers!
A heap-based array is not the only place where you can use a pointer to refer to an array. You can
also use the pointer syntax to access elements of a stack-based array. The address of an array is
really the address of the first element (index 0). The compiler knows that when you refer to an array
in its entirety by its variable name, you are really referring to the address of the first element. In this
way, the pointer works just like a heap-based array. The following code creates a zero-initialized
array on the stack, and uses a pointer to access it:

int myIntArray[10] = {};
int* myIntPtr = myIntArray;
// Access the array through the pointer.
myIntPtr[4] = 5;

The ability to refer to a stack-based array through a pointer is useful when passing arrays into func-
tions. The following function accepts an array of integers as a pointer. Note that the caller needs to
explicitly pass in the size of the array because the pointer implies nothing about size. In fact, C++
arrays of any form, pointer or not, have no built-in notion of size. That is another reason why you
should use modern containers such as those provided by the Standard Library.

void doubleInts(int* theArray, size_t size)
{
 for (size_t i = 0; i < size; i++) {
 theArray[i] *= 2;
 }
}

The caller of this function can pass a stack-based or heap-based array. In the case of a heap-based
array, the pointer already exists and is passed by value into the function. In the case of a stack-based
array, the caller can pass the array variable, and the compiler automatically treats the array variable
as a pointer to the array, or you can explicitly pass the address of the first element. All three forms
are shown here:

size_t arrSize = 4;
int* heapArray = new int[arrSize]{ 1, 5, 3, 4 };
doubleInts(heapArray, arrSize);
delete [] heapArray;
heapArray = nullptr;

178  ❘  CHAPTER 7   Memory Management

int stackArray[] = { 5, 7, 9, 11 };
arrSize = std::size(stackArray); // Since C++17, requires <array>
//arrSize = sizeof(stackArray) / sizeof(stackArray[0]); // Pre-C++17, see Ch1
doubleInts(stackArray, arrSize);
doubleInts(&stackArray[0], arrSize);

The parameter-passing semantics of arrays is uncannily similar to that of pointers, because the com-
piler treats an array as a pointer when it is passed to a function. A function that takes an array as
an argument and changes values inside the array is actually changing the original array, not a copy.
Just like a pointer, passing an array effectively mimics pass-by-reference functionality because what
you really pass to the function is the address of the original array, not a copy. The following imple-
mentation of doubleInts() changes the original array even though the parameter is an array, not a
pointer:

void doubleInts(int theArray[], size_t size)
{
 for (size_t i = 0; i < size; i++) {
 theArray[i] *= 2;
 }
}

Any number between the square brackets after theArray in the function prototype is simply
ignored. The following three versions are identical:

void doubleInts(int* theArray, size_t size);
void doubleInts(int theArray[], size_t size);
void doubleInts(int theArray[2], size_t size);

You may be wondering why things work this way. Why doesn’t the compiler just copy the array
when array syntax is used in the function definition? This is done for efficiency—it takes time to
copy the elements of an array, and they potentially take up a lot of memory. By always passing a
pointer, the compiler doesn’t need to include the code to copy the array.

There is a way to pass known-length stack-based arrays “by reference” to a function, although the
syntax is non-obvious. This does not work for heap-based arrays. For example, the following dou-
bleIntsStack() accepts only stack-based arrays of size 4:

void doubleIntsStack(int (&theArray)[4]);

A function template, discussed in detail in Chapter 12, can be used to let the compiler deduce the
size of the stack-based array automatically:

template<size_t N>
void doubleIntsStack(int (&theArray)[N])
{
 for (size_t i = 0; i < N; i++) {
 theArray[i] *= 2;
 }
}

To summarize, arrays declared using array syntax can be accessed through a pointer. When an array
is passed to a function, it is always passed as a pointer.

Low-Level Memory Operations  ❘  179

Not All Pointers Are Arrays!
Because the compiler lets you pass in an array where a pointer is expected, as in the doubleInts()
function in the previous section, you may be led to believe that pointers and arrays are the same. In
fact, there are subtle, but important, differences. Pointers and arrays share many properties and can
sometimes be used interchangeably (as shown earlier), but they are not the same.

A pointer by itself is meaningless. It may point to random memory, a single object, or an array. You
can always use array syntax with a pointer, but doing so is not always appropriate because pointers
aren’t always arrays. For example, consider the following code:

int* ptr = new int;

The pointer ptr is a valid pointer, but it is not an array. You can access the pointed-to value using
array syntax (ptr[0]), but doing so is stylistically questionable and provides no real benefit. In fact,
using array syntax with non-array pointers is an invitation for bugs. The memory at ptr[1] could
be anything!

WARNING  Arrays are automatically referenced as pointers, but not all pointers
are arrays.

LOW-LEVEL MEMORY OPERATIONS

One of the great advantages of C++ over C is that you don’t need to worry quite as much about
memory. If you code using objects, you just need to make sure that each individual class properly
manages its own memory. Through construction and destruction, the compiler helps you manage
memory by telling you when to do it. Hiding the management of memory within classes makes a
huge difference in usability, as demonstrated by the Standard Library classes. However, with some
applications or with legacy code, you may encounter the need to work with memory at a lower level.
Whether for legacy, efficiency, debugging, or curiosity, knowing some techniques for working with
raw bytes can be helpful.

Pointer Arithmetic
The C++ compiler uses the declared types of pointers to allow you to perform pointer arithmetic.
If you declare a pointer to an int and increase it by 1, the pointer moves ahead in memory by the
size of an int, not by a single byte. This type of operation is most useful with arrays, because they
contain homogeneous data that is sequential in memory. For example, assume you declare an array
of ints on the heap:

int* myArray = new int[8];

You are already familiar with the following syntax for setting the value in position 2:

myArray[2] = 33;

180  ❘  CHAPTER 7   Memory Management

With pointer arithmetic, you can equivalently use the following syntax, which obtains a pointer to
the memory that is “2 ints ahead” of myArray and then dereferences it to set the value:

*(myArray + 2) = 33;

As an alternative syntax for accessing individual elements, pointer arithmetic doesn’t seem too
appealing. Its real power lies in the fact that an expression like myArray + 2 is still a pointer to an
int, and thus can represent a smaller int array. Suppose you have the following wide string. Wide
strings are discussed in Chapter 19, but the details are not important at this point. For now, it is
enough to know that wide strings support so-called Unicode characters to represent, for example,
Japanese strings. The wchar_t type is a character type that can accommodate such Unicode charac-
ters, and it is usually bigger than a char (1 byte). To tell the compiler that a string literal is a wide-
string literal, you prefix it with an L:

const wchar_t* myString = L"Hello, World";

Suppose you also have a function that takes in a wide string and returns a new string that contains a
capitalized version of the input:

wchar_t* toCaps(const wchar_t* inString);

You can capitalize myString by passing it into this function. However, if you only want to capital-
ize part of myString, you can use pointer arithmetic to refer to only a latter part of the string. The
following code calls toCaps() on the World part of the wide string by just adding 7 to the pointer,
even though wchar_t is usually more than 1 byte:

toCaps(myString + 7);

Another useful application of pointer arithmetic involves subtraction. Subtracting one pointer from
another of the same type gives you the number of elements of the pointed-to type between the two
pointers, not the absolute number of bytes between them.

Custom Memory Management
For 99 percent of the cases you will encounter (some might say 100 percent of the cases), the built-
in memory allocation facilities in C++ are adequate. Behind the scenes, new and delete do all the
work of handing out memory in properly sized chunks, maintaining a list of available areas of mem-
ory, and releasing chunks of memory back to that list upon deletion.

When resource constraints are extremely tight, or under very special conditions, such as managing
shared memory, implementing custom memory management may be a viable option. Don’t worry—
it’s not as scary as it sounds. Basically, managing memory yourself means that classes allocate a
large chunk of memory and dole out that memory in pieces as it is needed.

How is this approach any better? Managing your own memory can potentially reduce overhead.
When you use new to allocate memory, the program also needs to set aside a small amount of space
to record how much memory was allocated. That way, when you call delete, the proper amount of
memory can be released. For most objects, the overhead is so much smaller than the memory allo-
cated that it makes little difference. However, for small objects or programs with enormous numbers
of objects, the overhead can have an impact.

Low-Level Memory Operations  ❘  181

When you manage memory yourself, you might know the size of each object a priori, so you might
be able to avoid the overhead for each object. The difference can be enormous for large numbers of
small objects. The syntax for performing custom memory management is described in Chapter 15.

Garbage Collection
At the other end of the memory hygiene spectrum lies garbage collection. With environments that
support garbage collection, the programmer rarely, if ever, explicitly frees memory associated with
an object. Instead, objects to which there are no longer any references will be cleaned up automati-
cally at some point by the runtime library.

Garbage collection is not built into the C++ language as it is in C# and Java. In modern C++, you
use smart pointers to manage memory, while in legacy code you will see memory management at
the object level through new and delete. Smart pointers such as shared_ptr (discussed later in this
chapter) provide something very similar to garbage-collected memory, that is, when the last shared_
ptr instance for a certain resource is destroyed, at that point in time the resource is destroyed as
well. It is possible but not easy to implement true garbage collection in C++, but freeing yourself
from the task of releasing memory would probably introduce new headaches.

One approach to garbage collection is called mark and sweep. With this approach, the garbage col-
lector periodically examines every single pointer in your program and annotates the fact that the
referenced memory is still in use. At the end of the cycle, any memory that hasn’t been marked is
deemed to be not in-use and is freed.

A mark-and-sweep algorithm could be implemented in C++ if you were willing to do the following:

	 1.	 Register all pointers with the garbage collector so that it can easily walk through the list of
all pointers.

	 2.	 Derive all objects from a mixin class, perhaps GarbageCollectible, that allows the garbage
collector to mark an object as in-use.

	 3.	 Protect concurrent access to objects by making sure that no changes to pointers can occur
while the garbage collector is running.

As you can see, this approach to garbage collection requires quite a bit of diligence on the part of
the programmer. It may even be more error-prone than using delete! Attempts at a safe and easy
mechanism for garbage collection have been made in C++, but even if a perfect implementation of
garbage collection in C++ came along, it wouldn’t necessarily be appropriate to use for all applica-
tions. Among the downsides of garbage collection are the following:

➤➤ When the garbage collector is actively running, the program might become unresponsive.

➤➤ With garbage collectors, you have so-called non-deterministic destructors. Because an object
is not destroyed until it is garbage-collected, the destructor is not executed immediately when
the object leaves its scope. This means that cleaning up resources (such as closing a file,
releasing a lock, and so on), which is done by the destructor, is not performed until some
indeterminate time in the future.

182  ❘  CHAPTER 7   Memory Management

Writing a garbage collection mechanism is very hard. You will undoubtedly do it wrong, it will be
error prone, and more than likely slow. So, if you do want to use garbage-collected memory in your
application, I highly recommend you to research existing specialized garbage-collection libraries
that you can reuse. See Chapter 4 for a discussion on code reuse.

Object Pools
Garbage collection is like buying plates for a picnic and leaving any used plates out in the yard
where the wind will conveniently blow them into the neighbor’s yard. Surely, there must be a more
ecological approach to memory management.

Object pools are the equivalent of recycling. You buy a reasonable number of plates, and after using
a plate, you clean it so that it can be reused later. Object pools are ideal for situations where you
need to use many objects of the same type over time, and creating each one incurs overhead.

Chapter 25 contains further details on using object pools for performance efficiency.

SMART POINTERS

Memory management in C++ is a perennial source of errors and bugs. Many of these bugs arise
from the use of dynamic memory allocation and pointers. When you extensively use dynamic mem-
ory allocation in your program and pass many pointers between objects, it’s difficult to remember to
call delete on each pointer exactly once and at the right time. The consequences of getting it wrong
are severe: when you free dynamically allocated memory more than once, you can cause memory
corruption or a fatal run-time error, and when you forget to free dynamically allocated memory, you
cause memory leaks.

Smart pointers help you manage your dynamically allocated memory and are the recommended
technique for avoiding memory leaks. Conceptually, a smart pointer can hold a dynamically allo-
cated resource, such as memory. When a smart pointer goes out of scope or is reset, it can auto-
matically free the resource it holds. Smart pointers can be used to manage dynamically allocated
resources in the scope of a function, or as data members in classes. They can also be used to pass
ownership of dynamically allocated resources through function arguments.

C++ provides several language features that make smart pointers attractive. First, you can write
a type-safe smart pointer class for any pointer type using templates, see Chapter 12. Second, you
can provide an interface to the smart pointer objects using operator overloading, see Chapter 15,
that allows code to use the smart pointer objects as if they were dumb pointers. Specifically, you
can overload the * and -> operators such that client code can dereference a smart pointer object the
same way it dereferences a normal pointer.

There are several kinds of smart pointers. The simplest type of smart pointer takes sole/unique
ownership of the resource, and when the smart pointer goes out of scope or is reset, it frees the ref-
erenced resource. The Standard Library provides std::unique_ptr which is a smart pointer with
unique ownership semantics.

Smart Pointers  ❘  183

However, managing pointers presents more problems than just remembering to free them when
they go out of scope. Sometimes several objects or pieces of code contain copies of the same pointer.
This problem is called aliasing. In order to free all resources properly, the last piece of code to
use the resource should free the resource pointed to by the pointer. However, it is sometimes dif-
ficult to know which piece of code uses the resource last. It may even be impossible to determine
the order when you code because it might depend on run-time inputs. Thus, a more sophisticated
type of smart pointer implements reference counting to keep track of its owners. Every time such a
reference-counted smart pointer is copied, a new instance is created pointing to the same resource,
and the reference count is incremented. When such a smart pointer instance goes out of scope or is
reset, the reference count is decremented. When the reference count drops to zero, there are no own-
ers of the resource anymore, so the smart pointer frees the resource. The Standard Library provides
std::shared_ptr which is a smart pointer with shared ownership semantics using reference count-
ing. The standard shared_ptr is thread-safe, but this does not mean that the pointed-to resource is
thread-safe! See Chapter 23 for a discussion on multithreading.

Both standard smart pointers, unique_ptr and shared_ptr, are discussed in detail in the next sec-
tions. Both require you to include the <memory> header file.

NOTE  Your default smart pointer should be unique_ptr. Only use shared_ptr
when you really need to share the resource.

WARNING  Never assign the result of a resource allocation to a dumb pointer.
Whatever resource allocation method you use, always immediately store the
resource pointer in a smart pointer, either unique_ptr or shared_ptr, or use
other RAII classes. RAII stands for Resource Acquisition Is Initialization. An
RAII class takes ownership of a certain resource and handles its deallocation at
the right time. It’s a design technique discussed in Chapter 28.

unique_ptr
As a rule of thumb, always store dynamically allocated resources in instances of unique_ptr.

Creating unique_ptrs
Consider the following function that blatantly leaks memory by allocating a Simple object on the
heap and neglecting to release it:

void leaky()
{
 Simple* mySimplePtr = new Simple(); // BUG! Memory is never released!
 mySimplePtr->go();
}

184  ❘  CHAPTER 7   Memory Management

Sometimes you might think that your code is properly deallocating dynamically allocated memory.
Unfortunately, it most likely is not correct in all situations. Take the following function:

void couldBeLeaky()
{
 Simple* mySimplePtr = new Simple();
 mySimplePtr->go();
 delete mySimplePtr;
}

This function dynamically allocates a Simple object, uses the object, and then properly calls
delete. However, you can still have memory leaks in this example! If the go() method throws an
exception, the call to delete is never executed, causing a memory leak.

In both cases you should use a unique_ptr. The object is not explicitly deleted; but when the
unique_ptr instance goes out of scope (at the end of the function, or because an exception is
thrown), it automatically deallocates the Simple object in its destructor:

void notLeaky()
{
 auto mySimpleSmartPtr = make_unique<Simple>();
 mySimpleSmartPtr->go();
}

This code uses make_unique() from C++14, in combination with the auto keyword, so that you
only have to specify the type of the pointer, Simple in this case, once. If the Simple constructor
requires parameters, you put them in between the parentheses of the make_unique() call.

If your compiler does not yet support make_unique(), you can create your unique_ptr as follows.
Note that Simple must be mentioned twice:

unique_ptr<Simple> mySimpleSmartPtr(new Simple());

Before C++17, you had to use make_unique() not only because you have to specify the type only
once, but also because of safety reasons! Consider the following call to a function called foo():

foo(unique_ptr<Simple>(new Simple()), unique_ptr<Bar>(new Bar(data())));

If the constructor of Simple or Bar, or the data() function, throws an exception, depending on
your compiler optimizations, it was very possible that either a Simple or a Bar object would be
leaked. With make_unique(), nothing would leak:

foo(make_unique<Simple>(), make_unique<Bar>(data()))

With C++17, both calls to foo() are safe, but I still recommend using make_unique() as it results in
code that is easier to read.

NOTE  Always use make_unique() to create a unique_ptr.

Smart Pointers  ❘  185

Using unique_ptrs
One of the greatest characteristics of the standard smart pointers is that they provide enormous ben-
efit without requiring the user to learn a lot of new syntax. Smart pointers can still be dereferenced
(using * or ->) just like standard pointers. For example, in the earlier example, the -> operator is
used to call the go() method:

mySimpleSmartPtr->go();

Just as with standard pointers, you can also write this as follows:

(*mySimpleSmartPtr).go();

The get() method can be used to get direct access to the underlying pointer. This can be useful to
pass the pointer to a function that requires a dumb pointer. For example, suppose you have the fol-
lowing function:

void processData(Simple* simple) { /* Use the simple pointer... */ }

Then you can call it as follows:

auto mySimpleSmartPtr = make_unique<Simple>();
processData(mySimpleSmartPtr.get());

You can free the underlying pointer of a unique_ptr and optionally change it to another pointer
using reset(). For example:

mySimpleSmartPtr.reset(); // Free resource and set to nullptr
mySimpleSmartPtr.reset(new Simple()); // Free resource and set to a new
 // Simple instance

You can disconnect the underlying pointer from a unique_ptr with release(). The release()
method returns the underlying pointer to the resource and then sets the smart pointer to nullptr.
Effectively, the smart pointer loses ownership of the resource, and as such, you become responsible
for freeing the resource when you are done with it. For example:

Simple* simple = mySimpleSmartPtr.release(); // Release ownership
// Use the simple pointer...
delete simple;
simple = nullptr;

Because a unique_ptr represents unique ownership, it cannot be copied! Using the std::move()
utility (discussed in Chapter 9), it is possible to move one unique_ptr to another one using move
semantics. This is used to explicitly move ownership, as in this example:

class Foo
{
 public:
 Foo(unique_ptr<int> data) : mData(move(data)) { }
 private:
 unique_ptr<int> mData;
};

auto myIntSmartPtr = make_unique<int>(42);
Foo f(move(myIntSmartPtr));

186  ❘  CHAPTER 7   Memory Management

unique_ptr and C-Style Arrays
A unique_ptr is suitable to store a dynamically allocated old C-style array. The following example
creates a unique_ptr that holds a dynamically allocated C-style array of ten integers:

auto myVariableSizedArray = make_unique<int[]>(10);

Even though it is possible to use a unique_ptr to store a dynamically allocated C-style array, it’s
recommended to use a Standard Library container instead, such as std::array or std::vector.

Custom Deleters
By default, unique_ptr uses the standard new and delete operators to allocate and deallocate
memory. You can change this behavior as follows:

int* malloc_int(int value)
{
 int* p = (int*)malloc(sizeof(int));
 *p = value;
 return p;
}

int main()
{
 unique_ptr<int, decltype(free)*> myIntSmartPtr(malloc_int(42), free);
 return 0;
}

This code allocates memory for an integer with malloc_int(). The unique_ptr deallocates the
memory by calling the standard free() function. As said before, in C++ you should never use mal-
loc(), but new instead. However, this feature of unique_ptr is available because it is useful to man-
age other resources instead of just memory. For example, it can be used to automatically close a file
or network socket or anything when the unique_ptr goes out of scope.

Unfortunately, the syntax for a custom deleter with unique_ptr is a bit clumsy. You need to specify
the type of your custom deleter as a template type parameter. In this example, decltype(free) is
used which returns the type of free(). The template type parameter should be the type of a pointer
to a function, so an additional * is appended, as in decltype(free)*. Using a custom deleter
with shared_ptr is much easier. The following section on shared_ptr demonstrates how to use a
shared_ptr to automatically close a file when it goes out of scope.

shared_ptr
You use shared_ptr in a similar way to unique_ptr. To create one, you use make_shared(), which
is more efficient than creating a shared_ptr directly. Here’s an example:

auto mySimpleSmartPtr = make_shared<Simple>();

WARNING  Always use make_shared() to create a shared_ptr.

Smart Pointers  ❘  187

Starting with C++17, a shared_ptr can also be used to store a pointer to a dynamically allocated
old C-style array, just as you can do with a unique_ptr. This was not possible before C++17.
However, even though it is now possible in C++17, it is still recommended to use Standard Library
containers instead of C-style arrays.

A shared_ptr also supports the get() and reset() methods, just as a unique_ptr. The only dif-
ference is that when calling reset(), due to reference counting, the underlying resource is only freed
when the last shared_ptr is destroyed or reset. Note that shared_ptr does not support release().
You can use use_count() to retrieve the number of shared_ptr instances that are sharing the same
resource.

Just like unique_ptr, shared_ptr by default uses the standard new and delete operators to allo-
cate and deallocate memory, or new[] and delete[] when storing a C-style array with C++17. You
can change this behavior as follows:

// Implementation of malloc_int() as before.
shared_ptr<int> myIntSmartPtr(malloc_int(42), free);

As you can see, you don’t have to specify the type of the custom deleter as a template type param-
eter, so this makes it much easier than a custom deleter with unique_ptr.

The following example uses a shared_ptr to store a file pointer. When the shared_ptr is
reset (in this case when it goes out of scope), the file pointer is automatically closed with a
call to CloseFile(). Note that C++ has proper object-oriented classes to work with files (see
Chapter 13). Those classes already automatically close their files. This example using the old C
functions fopen() and fclose() is just to give a demonstration of what shared_ptrs can be used
for besides pure memory:

void CloseFile(FILE* filePtr)
{
 if (filePtr == nullptr)
 return;
 fclose(filePtr);
 cout << "File closed." << endl;
}
int main()
{
 FILE* f = fopen("data.txt", "w");
 shared_ptr<FILE> filePtr(f, CloseFile);
 if (filePtr == nullptr) {
 cerr << "Error opening file." << endl;
 } else {
 cout << "File opened." << endl;
 // Use filePtr
 }
 return 0;
}

Casting a shared_ptr
The functions that are available to cast shared_ptrs are const_pointer_cast(), dynamic_
pointer_cast(), and static_pointer_cast(). C++17 adds reinterpret_pointer_cast() to

188  ❘  CHAPTER 7   Memory Management

this list. These behave and work similar to the non-smart pointer casting functions const_cast(),
dynamic_cast(), static_cast(), and reinterpret_cast(), which are discussed in detail in
Chapter 11.

The Need for Reference Counting
As a general concept, reference counting is a technique for keeping track of the number of instances
of a class or particular object in use. A reference-counting smart pointer is one that keeps track of
how many smart pointers have been built to refer to a single real pointer, or single object. This way,
smart pointers can avoid double deletion.

The double deletion problem is easy to provoke. Consider again the Simple class introduced earlier
in this chapter, which simply prints out messages when an object is created and destroyed. If you
were to create two standard shared_ptrs and have them both refer to the same Simple object, as
in the following code, both smart pointers would attempt to delete the same object when they are
destroyed:

void doubleDelete()
{
 Simple* mySimple = new Simple();
 shared_ptr<Simple> smartPtr1(mySimple);
 shared_ptr<Simple> smartPtr2(mySimple);
}

Depending on your compiler, this piece of code might crash! If you do get output, it could be as
follows:

Simple constructor called!
Simple destructor called!
Simple destructor called!

Yikes! One call to the constructor and two calls to the destructor? You get the same problem with
unique_ptr. You might be surprised that even the reference-counted shared_ptr class behaves this
way. However, this is correct behavior according to the C++ standard. You should not use shared_
ptr as in the previous doubleDelete() function to create two shared_ptrs pointing to the same
object. Instead, you should make a copy as follows:

void noDoubleDelete()
{
 auto smartPtr1 = make_shared<Simple>();
 shared_ptr<Simple> smartPtr2(smartPtr1);
}

Here is the output of this code:

Simple constructor called!
Simple destructor called!

Even though there are two shared_ptrs pointing to the same Simple object, the Simple object is
destroyed only once. Remember that unique_ptr is not reference counted. In fact, unique_ptr does
not allow you to use its copy constructor as in the noDoubleDelete() function.

Smart Pointers  ❘  189

If you really need to be able to write code as shown in the previous doubleDelete() function exam-
ple, you will need to implement your own smart pointer to prevent double deletion. But again, it is
recommended to use the standard shared_ptr template for sharing a resource. Simply avoid code
like that in the doubleDelete() function, and use the copy constructor instead.

Aliasing
A shared_ptr support so-called aliasing. This allows a shared_ptr to share ownership over
a pointer (owned pointer) with another shared_ptr, but pointing to a different object (stored
pointer). It can, for example, be used to have a shared_ptr pointing to a member of an object while
owning the object itself. Here’s an example:

class Foo
{
 public:
 Foo(int value) : mData(value) { }
 int mData;
};

auto foo = make_shared<Foo>(42);
auto aliasing = shared_ptr<int>(foo, &foo->mData);

The Foo object is only destroyed when both shared_ptrs (foo and aliasing) are destroyed.

The owned pointer is used for reference counting, while the stored pointer is returned when
you dereference the pointer or when you call get() on it. The stored pointer is used with most
operations, such as the comparison operators. You can use the owner_before() method, or the
std::owner_less class to perform comparisons based on the owned pointer instead. This can be
useful in certain situations, such as storing shared_ptrs in an std::set. Chapter 17 discusses the
set container in detail.

weak_ptr
There is one more class in C++ that is related to shared_ptr, called weak_ptr. A weak_ptr can con-
tain a reference to a resource managed by a shared_ptr. The weak_ptr does not own the resource,
so the shared_ptr is not prevented from deallocating the resource. A weak_ptr does not destroy
the pointed-to resource when the weak_ptr is destroyed (for example when it goes out of scope);
however, it can be used to determine if the resource has been freed by the associated shared_ptr or
not. The constructor of a weak_ptr requires a shared_ptr or another weak_ptr as argument. To
get access to the pointer stored in a weak_ptr, you need to convert it to a shared_ptr. There are
two ways to do this:

➤➤ Use the lock() method on a weak_ptr instance, which returns a shared_ptr. The returned
shared_ptr is nullptr if the shared_ptr associated with the weak_ptr has been deallo-
cated in the meantime.

➤➤ Create a new shared_ptr instance and give a weak_ptr as argument to the shared_ptr
constructor. This throws an std::bad_weak_ptr exception if the shared_ptr associated
with the weak_ptr has been deallocated.

190  ❘  CHAPTER 7   Memory Management

The following example demonstrates the use of weak_ptr:

void useResource(weak_ptr<Simple>& weakSimple)
{
 auto resource = weakSimple.lock();
 if (resource) {
 cout << "Resource still alive." << endl;
 } else {
 cout << "Resource has been freed!" << endl;
 }
}

int main()
{
 auto sharedSimple = make_shared<Simple>();
 weak_ptr<Simple> weakSimple(sharedSimple);

 // Try to use the weak_ptr.
 useResource(weakSimple);

 // Reset the shared_ptr.
 // Since there is only 1 shared_ptr to the Simple resource, this will
 // free the resource, even though there is still a weak_ptr alive.
 sharedSimple.reset();

 // Try to use the weak_ptr a second time.
 useResource(weakSimple);

 return 0;
}

The output of this code is as follows:

Simple constructor called!
Resource still alive.
Simple destructor called!
Resource has been freed!

Starting with C++17, weak_ptr also supports C-style arrays, just as shared_ptr supports C-style
arrays since C++17.

Move Semantics
The standard smart pointers, shared_ptr, unique_ptr, and weak_ptr all support move semantics
to make them efficient. Move semantics is discussed in detail in Chapter 9; however, the details are
not important at this time. What is important is that this means it is very efficient to return such a
smart pointer from a function. For example, you can write the following create() function and use
it as demonstrated in main():

unique_ptr<Simple> create()
{
 auto ptr = make_unique<Simple>();
 // Do something with ptr...
 return ptr;
}

Smart Pointers  ❘  191

int main()
{
 unique_ptr<Simple> mySmartPtr1 = create();
 auto mySmartPtr2 = create();
 return 0;
}

enable_shared_from_this
The std::enable_shared_from_this mixin class allows a method on an object to safely return a
shared_ptr or weak_ptr to itself. Mixin classes are discussed in Chapter 28. Basically, the enable_
shared_from_this mixin class adds the following two methods to a class:

➤➤ shared_from_this(): returns a shared_ptr that shares ownership of the object.

➤➤ weak_from_this(): returns a weak_ptr that tracks ownership of the object.

This is an advanced feature not discussed in detail, but the following code briefly demonstrates
its use:

class Foo : public enable_shared_from_this<Foo>
{
 public:
 shared_ptr<Foo> getPointer() {
 return shared_from_this();
 }
};

int main()
{
 auto ptr1 = make_shared<Foo>();
 auto ptr2 = ptr1->getPointer();
}

Note that you can only use shared_from_this() on an object if its pointer has already been
stored in a shared_ptr. In the example, make_shared() is used in main() to create a shared_ptr
called ptr1 which contains an instance of Foo. After this shared_ptr creation, it is allowed to call
shared_from_this() on that Foo instance.

The following would be a completely wrong implementation of the getPointer() method:

class Foo
{
 public:
 shared_ptr<Foo> getPointer() {
 return shared_ptr<Foo>(this);
 }
};

If you use the same code for main() as shown earlier, this implementation of Foo causes a double
deletion. You have two completely independent shared_ptrs (ptr1 and ptr2) pointing to the same
object, which will both try to delete the object when they go out of scope.

C++17

192  ❘  CHAPTER 7   Memory Management

The Old Deprecated/Removed auto_ptr
The old, pre-C++11 Standard Library included a basic implementation of a smart pointer, called
auto_ptr. Unfortunately, auto_ptr has some serious shortcomings. One of these shortcomings
is that it does not work correctly when used inside Standard Library containers such as vectors.
C++11 and C++14 officially deprecated auto_ptr, and C++17 finally removed it entirely. It has been
replaced with unique_ptr and shared_ptr. auto_ptr is mentioned here to make sure you know
about it and to make sure you never use it.

WARNING  Do not use the old auto_ptr smart pointer anymore. Instead, use
unique_ptr or shared_ptr!

COMMON MEMORY PITFALLS

It is difficult to pinpoint the exact situations that can lead to a memory-related bug. Every memory
leak or bad pointer has its own nuances. There is no magic bullet for resolving memory issues, but
there are several common categories of problems and some tools you can use to detect and resolve
them.

Underallocating Strings
The most common problem with C-style strings is underallocation. In most cases, this arises when
the programmer fails to allocate an extra character for the trailing '\0' sentinel. Underallocation
of strings also occurs when programmers assume a certain fixed maximum size. The basic built-
in C-style string functions do not adhere to a fixed size—they will happily write off the end of the
string into uncharted memory.

The following code demonstrates underallocation. It reads data off a network connection and
puts it in a C-style string. This is done in a loop because the network connection receives only a
small amount of data at a time. On each loop, getMoreData() is called, which returns a pointer to
dynamically allocated memory. When nullptr is returned from getMoreData(), all of the data has
been received. strcat() is a C function that concatenates the C-style string given as a second argu-
ment to the end of the C-style string given as a first argument. It expects the destination buffer to be
big enough.

char buffer[1024] = {0}; // Allocate a whole bunch of memory.
while (true) {
 char* nextChunk = getMoreData();
 if (nextChunk == nullptr) {
 break;
 } else {
 strcat(buffer, nextChunk); // BUG! No guarantees against buffer overrun!
 delete [] nextChunk;
 }
}

Common Memory Pitfalls  ❘  193

There are three ways to resolve the possible underallocation problem. In decreasing order of prefer-
ence, they are as follows:

	 1.	 Use C++-style strings, which handle the memory associated with concatenation on your
behalf.

	 2.	 Instead of allocating a buffer as a global variable or on the stack, allocate it on the heap.
When there is insufficient space left, allocate a new buffer large enough to hold at least the
current contents plus the new chunk, copy the original buffer into the new buffer, append the
new contents, and delete the original buffer.

	 3.	 Create a version of getMoreData() that takes a maximum count (including the '\0' char-
acter) and returns no more characters than that; then track the amount of space left and the
current position in the buffer.

Accessing Out-of-Bounds Memory
Earlier in this chapter, you read that because a pointer is just a memory address, it is possible to
have a pointer that points to a random location in memory. Such a condition is quite easy to fall
into. For example, consider a C-style string that has somehow lost its '\0' termination character.
The following function, which fills the string with all 'm' characters, continues to fill the contents of
memory after the string with 'm's:

void fillWithM(char* inStr)
{
 int i = 0;
 while (inStr[i] != '\0') {
 inStr[i] = 'm';
 i++;
 }
}

If an improperly terminated string is handed to this function, it is only a matter of time before an
essential part of memory is overwritten and the program crashes. Consider what might happen if
the memory associated with the objects in your program is suddenly overwritten with 'm's. It’s not
pretty!

Bugs that result in writing to memory past the end of an array are often called buffer overflow
errors. These bugs have been exploited by several high-profile malware programs such as viruses
and worms. A devious hacker can take advantage of the ability to overwrite portions of memory to
inject code into a running program.

Many memory-checking tools detect buffer overflows. Also, using higher-level constructs like C++
strings and vectors helps prevent numerous bugs associated with writing to C-style strings and
arrays.

WARNING  Avoid using old C-style strings and arrays that offer no protection
whatsoever. Instead, use modern and safe constructs like C++ strings and vec-
tors that manage all their memory for you.

194  ❘  CHAPTER 7   Memory Management

Memory Leaks
Finding and fixing memory leaks can be one of the more frustrating parts of programming in C or
C++. Your program finally works and appears to give the correct results. Then, you start to notice
that your program gobbles up more and more memory as it runs. Your program has a memory leak.
The use of smart pointers to avoid memory leaks is a good first approach to solving the problem.

Memory leaks occur when you allocate memory and neglect to release it. At first, this sounds like
the result of careless programming that could easily be avoided. After all, if every new has a corre-
sponding delete in every class you write, there should be no memory leaks, right? Actually, that’s
not always true. In the following code, the Simple class is properly written to release any memory
that it allocates.

When doSomething() is called, the outSimplePtr pointer is changed to another Simple object
without deleting the old one to demonstrate a memory leak. Once you lose a pointer to an object,
it’s nearly impossible to delete it.

class Simple
{
 public:
 Simple() { mIntPtr = new int(); }
 ~Simple() { delete mIntPtr; }
 void setValue(int value) { *mIntPtr = value; }
 private:
 int* mIntPtr;
};

void doSomething(Simple*& outSimplePtr)
{
 outSimplePtr = new Simple(); // BUG! Doesn't delete the original.
}

int main()
{
 Simple* simplePtr = new Simple(); // Allocate a Simple object.
 doSomething(simplePtr);
 delete simplePtr; // Only cleans up the second object.
 return 0;
}

WARNING  Keep in mind that this code is only for demonstration purposes! In
production-quality code, you should make mIntPtr and simplePtr unique_
ptrs, and make outSimplePtr a reference to a unique_ptr.

In cases like the preceding example, the memory leak probably arose from poor communication
between programmers or poor documentation of code. The caller of doSomething() may not have
realized that the variable was passed by reference and thus had no reason to expect that the pointer
would be reassigned. If they did notice that the parameter was a non-const reference to a pointer,

Common Memory Pitfalls  ❘  195

they may have suspected that something strange was happening, but there is no comment around
doSomething() that explains this behavior.

Finding and Fixing Memory Leaks in Windows with Visual C++
Memory leaks are hard to track down because you can’t easily look at memory and see what objects
are not in use and where they were originally allocated. However, there are programs that can do
this for you. Memory leak detection tools range from expensive professional software packages to
free downloadable tools. If you work with Microsoft Visual C++*, its debug library has built-in sup-
port for memory leak detection. This memory leak detection is not enabled by default, unless you
create an MFC project. To enable it in other projects, you need to start by including the following
three lines at the beginning of your code:

#define _CRTDBG_MAP_ALLOC
#include <cstdlib>
#include <crtdbg.h>

These lines should be in the exact order as shown. Next, you need to redefine the new operator as
follows:

#ifdef _DEBUG
 #ifndef DBG_NEW
 #define DBG_NEW new (_NORMAL_BLOCK , __FILE__ , __LINE__)
 #define new DBG_NEW
 #endif
#endif // _DEBUG

Note that this is within an “#ifdef _DEBUG” statement so the redefinition of new is done only when
compiling a debug version of your application. This is what you normally want. Release builds usu-
ally do not do any memory leak detection.

The last thing you need to do is to add the following line as the first line in your main() function:

_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);

This tells the Visual C++ CRT (C RunTime) library to write all detected memory leaks to the debug
output console when the application exits. For the previous leaky program, the debug console will
contain lines similar to the following:

Detected memory leaks!
Dumping objects ->
c:\leaky\leaky.cpp(15) : {147} normal block at 0x014FABF8, 4 bytes long.
 Data: < > 00 00 00 00
c:\leaky\leaky.cpp(33) : {146} normal block at 0x014F5048, 4 bytes long.
 Data: <Pa > 50 61 20 01
Object dump complete.

The output clearly shows in which file and on which line memory was allocated but never deal-
located. The line number is between parentheses immediately behind the filename. The number
between the curly braces is a counter for the memory allocations. For example, {147} means the
147th allocation in your program since it started. You can use the VC++ _CrtSetBreakAlloc()
function to tell the VC++ debug runtime to break into the debugger when a certain allocation is

*There is a free version of Microsoft Visual C++ available, called the Community Edition.

196  ❘  CHAPTER 7   Memory Management

performed. For example, you can add the following line to the beginning of your main() function to
instruct the debugger to break on the 147th allocation:

_CrtSetBreakAlloc(147);

In this leaky program, there are two leaks: the first Simple object that is never deleted (line 33) and
the heap-based integer that it creates (line 15). In the Visual C++ debugger output window, you can
simply double-click on one of the memory leaks and it will automatically jump to that line in your
code.

Of course, programs like Microsoft Visual C++ (discussed in this section) and Valgrind (discussed
in the next section) can’t actually fix the leak for you—what fun would that be? These tools provide
information that you can use to find the actual problem. Normally, that involves stepping through
the code to find out where the pointer to an object was overwritten without the original object being
released. Most debuggers provide “watch point” functionality that can break execution of the pro-
gram when this occurs.

Finding and Fixing Memory Leaks in Linux with Valgrind
Valgrind is an example of a free open-source tool for Linux that, among other things, pinpoints the
exact line in your code where a leaked object was allocated.

The following output, generated by running Valgrind on the previous leaky program, pinpoints the
exact locations where memory was allocated but never released. Valgrind finds the same two mem-
ory leaks—the first Simple object never deleted and the heap-based integer that it creates:

==15606== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
==15606== malloc/free: in use at exit: 8 bytes in 2 blocks.
==15606== malloc/free: 4 allocs, 2 frees, 16 bytes allocated.
==15606== For counts of detected errors, rerun with: -v
==15606== searching for pointers to 2 not-freed blocks.
==15606== checked 4455600 bytes.
==15606==
==15606== 4 bytes in 1 blocks are still reachable in loss record 1 of 2
==15606== at 0x4002978F: __builtin_new (vg_replace_malloc.c:172)
==15606== by 0x400297E6: operator new(unsigned) (vg_replace_malloc.c:185)
==15606== by 0x804875B: Simple::Simple() (leaky.cpp:4)
==15606== by 0x8048648: main (leaky.cpp:24)
==15606==
==15606==
==15606== 4 bytes in 1 blocks are definitely lost in loss record 2 of 2
==15606== at 0x4002978F: __builtin_new (vg_replace_malloc.c:172)
==15606== by 0x400297E6: operator new(unsigned) (vg_replace_malloc.c:185)
==15606== by 0x8048633: main (leaky.cpp:20)
==15606== by 0x4031FA46: __libc_start_main (in /lib/libc-2.3.2.so)
==15606==
==15606== LEAK SUMMARY:
==15606== definitely lost: 4 bytes in 1 blocks.
==15606== possibly lost: 0 bytes in 0 blocks.
==15606== still reachable: 4 bytes in 1 blocks.
==15606== suppressed: 0 bytes in 0 blocks.

Summary  ❘  197

WARNING  It is strongly recommended to use smart pointers as often as pos-
sible to avoid memory leaks.

Double-Deleting and Invalid Pointers
Once you release memory associated with a pointer using delete, the memory is available for use
by other parts of your program. Nothing stops you, however, from attempting to continue to use
the pointer, which is now a dangling pointer. Double deletion is also a problem. If you use delete
a second time on a pointer, the program could be releasing memory that has since been assigned to
another object.

Double deletion and use of already released memory are both difficult problems to track down
because the symptoms may not show up immediately. If two deletions occur within a relatively short
amount of time, the program potentially could work indefinitely because the associated memory
might not be reused that quickly. Similarly, if a deleted object is used immediately after being
deleted, most likely it will still be intact.

Of course, there is no guarantee that such behavior will work or continue to work. The memory
allocator is under no obligation to preserve any object once it has been deleted. Even if it does work,
it is extremely poor programming style to use objects that have been deleted.

Many memory leak-detection programs, such as Microsoft Visual C++ and Valgrind, are capable of
detecting double deletion and use of released objects.

If you disregard the recommendation for using smart pointers and instead still use dumb pointers,
at least set your pointers to nullptr after deallocating their memory. This prevents you from acci-
dentally deleting the same pointer twice or using an invalid pointer. It’s worth noting that you are
allowed to call delete on a nullptr pointer; it simply will not do anything.

SUMMARY

In this chapter, you learned the ins and outs of dynamic memory. Aside from memory-checking
tools and careful coding, there are two key takeaways to avoid dynamic memory-related problems.
First, you need to understand how pointers work under the hood. After reading about two different
mental models for pointers, you should now know how the compiler doles out memory. Second, you
can avoid all sorts of dynamic memory issues by using objects which automatically manage such
memory, like the C++ string class, the vector container, smart pointers, and so on.

If there is one takeaway from this chapter, it is that you should try to avoid using old C-style
constructs and functions as much as possible, and use the safe C++ alternatives.

Gaining Proficiency with
Classes and Objects

WHAT’S IN THIS CHAPTER?

➤➤ How to write your own classes with methods and data members

➤➤ How to control access to your methods and data members

➤➤ How to use objects on the stack and on the heap

➤➤ What the life cycle of an object is

➤➤ How to write code that is executed when an object is created

➤➤ How to write code to copy or assign objects

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s code
download on the book’s website at www.wrox.com/go/proc++4e on the Download Code tab.

As an object-oriented language, C++ provides facilities for using objects and for writing
object definitions, called classes. You can certainly write programs in C++ without classes and
objects, but by doing so, you do not take advantage of the most fundamental and useful aspect
of the language; writing a C++ program without classes is like traveling to Paris and eating at
McDonald’s. In order to use classes and objects effectively, you must understand their syntax
and capabilities.

Chapter 1 reviewed the basic syntax of class definitions. Chapter 5 introduced the object-
oriented approach to programming in C++ and presented specific design strategies for classes

8

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

200  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

and objects. This chapter describes the fundamental concepts involved in using classes and objects,
including writing class definitions, defining methods, using objects on the stack and the heap, writ-
ing constructors, default constructors, compiler-generated constructors, constructor initializers
(known as ctor-initializers), copy constructors, initializer-list constructors, destructors, and assign-
ment operators. Even if you are already comfortable with classes and objects, you should skim this
chapter because it contains various tidbits of information with which you might not yet be familiar.

INTRODUCING THE SPREADSHEET EXAMPLE

Both this chapter and the next present a runnable example of a simple spreadsheet application.
A spreadsheet is a two-dimensional grid of “cells,” and each cell contains a number or a string.
Professional spreadsheets such as Microsoft Excel provide the ability to perform mathematical oper-
ations, such as calculating the sum of the values of a set of cells. The spreadsheet example in these
chapters does not attempt to challenge Microsoft in the marketplace, but is useful for illustrating the
issues of classes and objects.

The spreadsheet application uses two basic classes: Spreadsheet and SpreadsheetCell. Each
Spreadsheet object contains SpreadsheetCell objects. In addition, a SpreadsheetApplication
class manages a collection of Spreadsheets. This chapter focuses on the SpreadsheetCell.
Chapter 9 develops the Spreadsheet and SpreadsheetApplication classes.

NOTE  This chapter shows several different versions of the SpreadsheetCell
class in order to introduce concepts gradually. Thus, the various attempts at
the class throughout the chapter do not always illustrate the “best” way to do
every aspect of class writing. In particular, the early examples omit important
features that would normally be included, but have not yet been introduced. You
can download the final version of the class as described in the beginning of this
chapter.

WRITING CLASSES

When you write a class, you specify the behaviors, or methods, that will apply to objects of that
class and the properties, or data members, that each object will contain.

There are two components in the process of writing classes: defining the classes themselves and
defining their methods.

Class Definitions
Here is a first attempt at a simple SpreadsheetCell class, in which each cell can store only a
single number:

class SpreadsheetCell
{
 public:

Writing Classes  ❘  201

 void setValue(double inValue);
 double getValue() const;
 private:
 double mValue;
};

As described in Chapter 1, every class definition begins with the keyword class and the name of
the class. A class definition is a statement in C++, so it must end with a semicolon. If you fail to ter-
minate your class definition with a semicolon, your compiler will probably give you several errors,
most of which will appear to be completely unrelated.

Class definitions usually go in a file named after the class. For example, the SpreadsheetCell class
definition can be put in a file called SpreadsheetCell.h. This rule is not enforced and you are free
to name your file whatever you like.

Class Members
A class can have a number of members. A member can be a member function (which in turn is a
method, constructor, or destructor), a member variable, also called a data member, member enu-
merations, type aliases, nested classes, and so on.

The two lines that look like function prototypes declare the methods that this class supports:

void setValue(double inValue);
double getValue() const;

Chapter 1 points out that it is always a good idea to declare member functions that do not change
the object as const.

The line that looks like a variable declaration declares the data member for this class.

double mValue;

A class defines the member functions and data members that apply. They apply only to a specific
instance of the class, which is an object. The only exceptions to this rule are static members, which
are explained in Chapter 9. Classes define concepts; objects contain real bits. So, each object con-
tains its own value for the mValue variable. The implementation of the member functions is shared
across all objects. Classes can contain any number of member functions and data members. You
cannot give a data member the same name as a member function.

Access Control
Every member in a class is subject to one of three access specifiers: public, protected, or private.
An access specifier applies to all member declarations that follow it, until the next access speci-
fier. In the SpreadsheetCell class, the setValue() and getValue() methods have public access,
while the mValue data member has private access.

The default access specifier for classes is private: all member declarations before the first access
specifier have the private access specification. For example, moving the public access specifier
below the setValue() method declaration gives the setValue() method private access instead of
public:

class SpreadsheetCell
{
 void setValue(double inValue); // now has private access

202  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

 public:
 double getValue() const;
 private:
 double mValue;
};

In C++, a struct can have methods just like a class. In fact, the only difference is that the default
access specifier for a struct is public while the default for a class is private. For example, the
SpreadsheetCell class can be rewritten using a struct as follows:

struct SpreadsheetCell
{
 void setValue(double inValue);
 double getValue() const;
 private:
 double mValue;
};

It’s custom to use a struct instead of a class if you only need a collection of publicly accessible
data members and no or very few methods. An example of such a simple struct is a structure to
store point coordinates:

struct Point
{
 double x;
 double y;
};

The following table summarizes the meanings of the three access specifiers:

ACCESS

SPECIFICATION

MEANING WHEN TO USE

public Any code can call a public
member function or access a
public data member of an
object.

Behaviors (methods) that you want clients
to use

Access methods (getters and setters) for
private and protected data members

protected Any member function of the
class can call protected
member functions and access
protected data members.
Member functions of a derived
class can access protected
members of a base class.

“Helper” methods that you do not want cli-
ents to use

private Only member functions of the
class can call private mem-
ber functions and access pri-
vate data members. Member
functions in derived classes
cannot access private mem-
bers from a base class.

Everything should be private by default,
especially data members. You can provide
protected getters and setters if you only
want to allow derived classes to access
them, and provide public getters and set-
ters if you want clients to access them.

Writing Classes  ❘  203

Order of Declarations
You can declare your members and access control specifiers in any order: C++ does not impose
any restrictions, such as member functions before data members or public before private.
Additionally, you can repeat access specifiers. For example, the SpreadsheetCell definition could
look like this:

class SpreadsheetCell
{
 public:
 void setValue(double inValue);
 private:
 double mValue;
 public:
 double getValue() const;
};

However, for clarity it is a good idea to group public, protected, and private declarations, and
to group member functions and data members within those declarations.

In-Class Member Initializers
Member variables can be initialized directly in the class definition. For example, the
SpreadsheetCell class can, by default, initialize mValue to 0 directly in the class definition as
follows:

class SpreadsheetCell
{
 // Remainder of the class definition omitted for brevity
private:
 double mValue = 0;
};

Defining Methods
The preceding definition for the SpreadsheetCell class is enough for you to create objects of the
class. However, if you try to call the setValue() or getValue() methods, your linker will com-
plain that those methods are not defined. That’s because the class definition specifies the prototypes
for the methods, but does not define their implementations. Just as you write both a prototype and
a definition for a stand-alone function, you must write a prototype and a definition for a method.
Note that the class definition must precede the method definitions. Usually the class definition goes
in a header file, and the method definitions go in a source file that #includes that header file. Here
are the definitions for the two methods of the SpreadsheetCell class:

#include "SpreadsheetCell.h"

void SpreadsheetCell::setValue(double inValue)
{
 mValue = inValue;
}

double SpreadsheetCell::getValue() const
{
 return mValue;
}

204  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

Note that the name of the class followed by two colons precedes each method name:

void SpreadsheetCell::setValue(double inValue)

The :: is called the scope resolution operator. In this context, the syntax tells the compiler that the
coming definition of the setValue() method is part of the SpreadsheetCell class. Note also that
you do not repeat the access specification when you define the method.

NOTE  If you are using the Microsoft Visual C++ IDE, you will notice that by
default, all source files start as follows:

#include "stdafx.h"

In a VC++ project, by default, every source file should start with this line, and
your own include files must follow this. If you place your own include files
before stdafx.h, they will appear to have no effect and you will get all kinds of
compilation errors. This situation involves the concept of precompiled header
files, which is outside the scope of this book. Consult the Microsoft documenta-
tion on precompiled header files to learn the details.

Accessing Data Members
Non-static methods of a class, such as setValue() and getValue(), are always executed on behalf
of a specific object of that class. Inside a method body, you have access to all data members of
the class for that object. In the previous definition for setValue(), the following line changes the
mValue variable inside whatever object calls the method:

mValue = inValue;

If setValue() is called for two different objects, the same line of code (executed once for each
object) changes the variable in two different objects.

Calling Other Methods
You can call methods of a class from inside another method. For example, consider an extension to
the SpreadsheetCell class. Real spreadsheet applications allow text data as well as numbers in the
cells. When you try to interpret a text cell as a number, the spreadsheet tries to convert the text to
a number. If the text does not represent a valid number, the cell value is ignored. In this program,
strings that are not numbers will generate a cell value of 0. Here is a first stab at a class definition
for a SpreadsheetCell that supports text data:

#include <string>
#include <string_view>
class SpreadsheetCell
{
 public:
 void setValue(double inValue);
 double getValue() const;

 void setString(std::string_view inString);

Writing Classes  ❘  205

 std::string getString() const;
 private:
 std::string doubleToString(double inValue) const;
 double stringToDouble(std::string_view inString) const;
 double mValue;
};

NOTE  This code uses the C++17 std::string_view class. If your compiler
is not yet C++17 compliant, you can replace std::string_view with const
std::string&.

This version of the class stores the data only as a double. If the client sets the data as a string, it
is converted to a double. If the text is not a valid number, the double value is set to 0.0. The class
definition shows two new methods to set and retrieve the text representation of the cell, and two
new private helper methods to convert a double to a string and vice versa. Here are the implemen-
tations of all the methods:

#include "SpreadsheetCell.h"
using namespace std;

void SpreadsheetCell::setValue(double inValue)
{
 mValue = inValue;
}

double SpreadsheetCell::getValue() const
{
 return mValue;
}

void SpreadsheetCell::setString(string_view inString)
{
 mValue = stringToDouble(inString);
}

string SpreadsheetCell::getString() const
{
 return doubleToString(mValue);
}

string SpreadsheetCell::doubleToString(double inValue) const
{
 return to_string(inValue);
}

double SpreadsheetCell::stringToDouble(string_view inString) const
{
 return strtod(inString.data(), nullptr);
}

206  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

Note that with this implementation of the doubleToString() method, a value of, for example, 6.1
is converted to “6.100000”. However, because it is a private helper method, you are free to modify
the implementation without having to modify any client code.

The this Pointer
Every normal method call passes a pointer to the object for which it is called as a “hidden” param-
eter with the name this. You can use this pointer to access data members or call methods, and you
can pass it to other methods or functions. It is sometimes also useful for disambiguating names. For
example, you could have defined the SpreadsheetCell class with a value data member instead
of mValue and you could have defined the setValue() method to take a parameter named value
instead of inValue. In that case, setValue() would look like this:

void SpreadsheetCell::setValue(double value)
{
 value = value; // Ambiguous!
}

That line is confusing. Which value do you mean: the value that was passed as a parameter, or the
value that is a member of the object?

NOTE  With some compilers or compiler settings, the preceding ambiguous line
compiles without any warnings or errors, but it will not produce the results that
you are expecting.

In order to disambiguate the names, you can use the this pointer:

void SpreadsheetCell::setValue(double value)
{
 this->value = value;
}

However, if you use the naming conventions described in Chapter 3, you will never encounter this
type of name collision.

You can also use the this pointer to call a function or method that takes a pointer to an object
from within a method of that object. For example, suppose you write a printCell() stand-alone
function (not method) like this:

void printCell(const SpreadsheetCell& cell)
{
 cout << cell.getString() << endl;
}

If you want to call printCell() from the setValue() method, you must pass *this as the argu-
ment to give printCell() a reference to the SpreadsheetCell on which setValue() operates:

void SpreadsheetCell::setValue(double value)
{
 this->value = value;
 printCell(*this);
}

Writing Classes  ❘  207

NOTE  Instead of writing a printCell() function, it would be more convenient
to overload the << operator, as explained in Chapter 15. You can then use the
following line to print a SpreadsheetCell:

cout << *this << endl;

Using Objects
The previous class definition says that a SpreadsheetCell consists of one data member, four pub-
lic methods, and two private methods. However, the class definition does not actually create any
SpreadsheetCells; it just specifies their shape and behavior. In that sense, a class is similar to
architectural blueprints. The blueprints specify what a house should look like, but drawing the blue-
prints doesn’t build any houses. Houses must be constructed later based on the blueprints.

Similarly, in C++ you can construct a SpreadsheetCell “object” from the SpreadsheetCell
class definition by declaring a variable of type SpreadsheetCell. Just as a builder can build
more than one house based on a given set of blueprints, a programmer can create more than one
SpreadsheetCell object from a SpreadsheetCell class. There are two ways to create and use
objects: on the stack and on the heap.

Objects on the Stack
Here is some code that creates and uses SpreadsheetCell objects on the stack:

SpreadsheetCell myCell, anotherCell;
myCell.setValue(6);
anotherCell.setString("3.2");
cout << "cell 1: " << myCell.getValue() << endl;
cout << "cell 2: " << anotherCell.getValue() << endl;

You create objects just as you declare simple variables, except that the variable type is the class
name. The . in lines like myCell.setValue(6); is called the “dot” operator; it allows you to call
methods on the object. If there were any public data members in the object, you could access them
with the dot operator as well. Remember that public data members are not recommended.

The output of the program is as follows:

cell 1: 6
cell 2: 3.2

Objects on the Heap
You can also dynamically allocate objects by using new:

SpreadsheetCell* myCellp = new SpreadsheetCell();
myCellp->setValue(3.7);
cout << "cell 1: " << myCellp->getValue() <<
 " " << myCellp->getString() << endl;
delete myCellp;
myCellp = nullptr;

208  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

When you create an object on the heap, you access its members through the “arrow” operator: ->.
The arrow combines dereferencing (*) and member access (.). You could use those two operators
instead, but doing so would be stylistically awkward:

SpreadsheetCell* myCellp = new SpreadsheetCell();
(*myCellp).setValue(3.7);
cout << "cell 1: " << (*myCellp).getValue() <<
 " " << (*myCellp).getString() << endl;
delete myCellp;
myCellp = nullptr;

Just as you must free other memory that you allocate on the heap, you must free the memory for
objects that you allocate on the heap by calling delete on the objects. To guarantee safety and to
avoid memory problems, you should use smart pointers, as in the following example:

auto myCellp = make_unique<SpreadsheetCell>();
// Equivalent to:
// unique_ptr<SpreadsheetCell> myCellp(new SpreadsheetCell());
myCellp->setValue(3.7);
cout << "cell 1: " << myCellp->getValue() <<
 " " << myCellp->getString() << endl;

With smart pointers you don’t need to manually free the memory; it happens automatically.

WARNING  If you allocate an object with new, free it with delete when you are
finished with it, or use smart pointers to manage the memory automatically!

NOTE  If you don’t use smart pointers, it is always a good idea to reset a pointer
to the null pointer after deleting the object to which it pointed. You are not
required to do this, but it will make debugging easier in case the pointer is acci-
dently used after deleting the object.

OBJECT LIFE CYCLES

The object life cycle involves three activities: creation, destruction, and assignment. It is important
to understand how and when objects are created, destroyed, and assigned, and how you can custom-
ize these behaviors.

Object Creation
Objects are created at the point you declare them (if they’re on the stack) or when you explicitly
allocate space for them with new, new[], or a smart pointer. When an object is created, all its
embedded objects are also created. Here is an example:

#include <string>

Object Life Cycles  ❘  209

class MyClass
{
 private:
 std::string mName;
};

int main()
{
 MyClass obj;
 return 0;
}

The embedded string object is created at the point where the MyClass object is created in the
main() function and is destructed when its containing object is destructed.

It is often helpful to give variables initial values as you declare them, as in this example:

int x = 0;

Similarly, you should give initial values to objects. You can provide this functionality by declaring
and writing a special method called a constructor, in which you can perform initialization work for
the object. Whenever an object is created, one of its constructors is executed.

NOTE  C++ programmers sometimes call a constructor a ctor.

Writing Constructors
Syntactically, a constructor is specified by a method name that is the same as the class name. A
constructor never has a return type and may or may not have parameters. A constructor that can be
called without any arguments is called a default constructor. This can be a constructor that does not
have any parameters, or a constructor for which all parameters have default values. There are cer-
tain contexts in which you may have to provide a default constructor and you will get compilation
errors if you have not provided one. Default constructors are discussed later in this chapter.

Here is a first attempt at adding a constructor to the SpreadsheetCell class:

class SpreadsheetCell
{
 public:
 SpreadsheetCell(double initialValue);
 // Remainder of the class definition omitted for brevity
};

Just as you must provide implementations for normal methods, you must provide an implementation
for the constructor:

SpreadsheetCell::SpreadsheetCell(double initialValue)
{
 setValue(initialValue);
}

The SpreadsheetCell constructor is a member of the SpreadsheetCell class, so C++ requires the
normal SpreadsheetCell:: scope resolution before the constructor name. The constructor name

210  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

itself is also SpreadsheetCell, so the code ends up with the funny-looking SpreadsheetCell::Spr
eadsheetCell. The implementation simply makes a call to setValue().

Using Constructors
Using the constructor creates an object and initializes its values. You can use constructors with both
stack-based and heap-based allocation.

Constructors on the Stack
When you allocate a SpreadsheetCell object on the stack, you use the constructor like this:

SpreadsheetCell myCell(5), anotherCell(4);
cout << "cell 1: " << myCell.getValue() << endl;
cout << "cell 2: " << anotherCell.getValue() << endl;

Note that you do not call the SpreadsheetCell constructor explicitly. For example, do not use
something like the following:

SpreadsheetCell myCell.SpreadsheetCell(5); // WILL NOT COMPILE!

Similarly, you cannot call the constructor later. The following is also incorrect:

SpreadsheetCell myCell;
myCell.SpreadsheetCell(5); // WILL NOT COMPILE!

Constructors on the Heap
When you dynamically allocate a SpreadsheetCell object, you use the constructor like this:

auto smartCellp = make_unique<SpreadsheetCell>(4);
// ... do something with the cell, no need to delete the smart pointer

// Or with raw pointers, without smart pointers (not recommended)
SpreadsheetCell* myCellp = new SpreadsheetCell(5);
SpreadsheetCell* anotherCellp = nullptr;
anotherCellp = new SpreadsheetCell(4);
// ... do something with the cells
delete myCellp; myCellp = nullptr;
delete anotherCellp; anotherCellp = nullptr;

Note that you can declare a pointer to a SpreadsheetCell object without calling the construc-
tor immediately, which is different from objects on the stack, where the constructor is called at the
point of declaration.

If you declare a pointer on the stack in a function, or declare a pointer as a data member in a class,
and you don’t immediately initialize the pointer, then it should be initialized to nullptr as in the
previous declaration for anotherCellp. If you don’t assign it to nullptr, the pointer is undefined.
Accidentally using an undefined pointer will cause unexpected and difficult-to-diagnose memory
corruption. If you initialize it to nullptr, using that pointer will cause a memory access error in
most operating environments, instead of producing unexpected results.

Remember to call delete on objects that you dynamically allocate with new, or use smart pointers!

Object Life Cycles  ❘  211

Providing Multiple Constructors
You can provide more than one constructor in a class. All constructors have the same name (the
name of the class), but different constructors must take a different number of arguments or differ-
ent argument types. In C++, if you have more than one function with the same name, the compiler
selects the one whose parameter types match the types at the call site. This is called overloading and
is discussed in detail in Chapter 9.

In the SpreadsheetCell class, it is helpful to have two constructors: one to take an initial double
value and one to take an initial string value. Here is the new class definition:

class SpreadsheetCell
{
 public:
 SpreadsheetCell(double initialValue);
 SpreadsheetCell(std::string_view initialValue);
 // Remainder of the class definition omitted for brevity
};

Here is the implementation of the second constructor:

SpreadsheetCell::SpreadsheetCell(string_view initialValue)
{
 setString(initialValue);
}

And here is some code that uses the two different constructors:

SpreadsheetCell aThirdCell("test"); // Uses string-arg ctor
SpreadsheetCell aFourthCell(4.4); // Uses double-arg ctor
auto aFifthCellp = make_unique<SpreadsheetCell>("5.5"); // string-arg ctor
cout << "aThirdCell: " << aThirdCell.getValue() << endl;
cout << "aFourthCell: " << aFourthCell.getValue() << endl;
cout << "aFifthCellp: " << aFifthCellp->getValue() << endl;

When you have multiple constructors, it is tempting to try to implement one constructor in terms of
another. For example, you might want to call the double constructor from the string constructor as
follows:

SpreadsheetCell::SpreadsheetCell(string_view initialValue)
{
 SpreadsheetCell(stringToDouble(initialValue));
}

That seems to make sense. After all, you can call normal class methods from within other meth-
ods. The code will compile, link, and run, but will not do what you expect. The explicit call to
the SpreadsheetCell constructor actually creates a new temporary unnamed object of type
SpreadsheetCell. It does not call the constructor for the object that you are supposed to be
initializing.

However, C++ supports delegating constructors that allow you to call other constructors from the
same class from inside the ctor-initializer. This is discussed later in this chapter.

212  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

Default Constructors
A default constructor is a constructor that requires no arguments. It is also called a 0-argument
constructor. With a default constructor, you can give initial values to data members even though the
client did not specify them.

When You Need a Default Constructor
Consider arrays of objects. The act of creating an array of objects accomplishes two tasks: it allo-
cates contiguous memory space for all the objects and it calls the default constructor on each object.
C++ fails to provide any syntax to tell the array creation code directly to call a different constructor.
For example, if you do not define a default constructor for the SpreadsheetCell class, the follow-
ing code does not compile:

SpreadsheetCell cells[3]; // FAILS compilation without default constructor
SpreadsheetCell* myCellp = new SpreadsheetCell[10]; // Also FAILS

You can circumvent this restriction for stack-based arrays by using initializers like these:

SpreadsheetCell cells[3] = {SpreadsheetCell(0), SpreadsheetCell(23),
 SpreadsheetCell(41)};

However, it is usually easier to ensure that your class has a default constructor if you intend to cre-
ate arrays of objects of that class. If you haven’t defined your own constructors, the compiler auto-
matically creates a default constructor for you. This compiler-generated constructor is discussed in a
later section.

A default constructor is also required for classes that you want to store in Standard Library contain-
ers, such as std::vector.

Default constructors are also useful when you want to create objects of that class inside
other classes, which is shown later in this chapter in the section, “Constructor Initializers.”

How to Write a Default Constructor
Here is part of the SpreadsheetCell class definition with a default constructor:

class SpreadsheetCell
{
 public:
 SpreadsheetCell();
 // Remainder of the class definition omitted for brevity
};

Here is a first crack at an implementation of the default constructor:

SpreadsheetCell::SpreadsheetCell()
{
 mValue = 0;
}

If you use an in-class member initializer for mValue, then the single statement in this default
constructor can be left out:

SpreadsheetCell::SpreadsheetCell()
{
}

Object Life Cycles  ❘  213

You use the default constructor on the stack like this:

SpreadsheetCell myCell;
myCell.setValue(6);
cout << "cell 1: " << myCell.getValue() << endl;

The preceding code creates a new SpreadsheetCell called myCell, sets its value, and prints out its
value. Unlike other constructors for stack-based objects, you do not call the default constructor with
function-call syntax. Based on the syntax for other constructors, you might be tempted to call the
default constructor like this:

SpreadsheetCell myCell(); // WRONG, but will compile.
myCell.setValue(6); // However, this line will not compile.
cout << "cell 1: " << myCell.getValue() << endl;

Unfortunately, the line attempting to call the default constructor compiles. The line following it does
not compile. This problem is commonly known as the most vexing parse, and it means that your
compiler thinks the first line is actually a function declaration for a function with the name myCell
that takes zero arguments and returns a SpreadsheetCell object. When it gets to the second line, it
thinks that you’re trying to use a function name as an object!

WARNING  When creating an object on the stack, omit parentheses for the
default constructor.

For heap-based object allocation, the default constructor can be used as follows:

auto smartCellp = make_unique<SpreadsheetCell>();
// Or with a raw pointer (not recommended)
SpreadsheetCell* myCellp = new SpreadsheetCell();
// Or
// SpreadsheetCell* myCellp = new SpreadsheetCell;
// ... use myCellp
delete myCellp; myCellp = nullptr;

Compiler-Generated Default Constructor
The first SpreadsheetCell class definition in this chapter looked like this:

class SpreadsheetCell
{
 public:
 void setValue(double inValue);
 double getValue() const;
 private:
 double mValue;
};

This definition does not declare a default constructor, but still, the code that follows works fine:

SpreadsheetCell myCell;
myCell.setValue(6);

214  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

The following definition is the same as the preceding definition except that it adds an explicit
constructor, accepting a double. It still does not explicitly declare a default constructor.

class SpreadsheetCell
{
 public:
 SpreadsheetCell(double initialValue); // No default constructor
 // Remainder of the class definition omitted for brevity
};

With this definition, the following code does not compile anymore:

SpreadsheetCell myCell;
myCell.setValue(6);

What’s going on here? The reason it is not compiling is that if you don’t specify any constructors,
the compiler writes one for you that doesn’t take any arguments. This compiler-generated default
constructor calls the default constructor on all object members of the class, but does not initialize
the language primitives such as int and double. Nonetheless, it allows you to create objects of that
class. However, if you declare a default constructor, or any other constructor, the compiler no longer
generates a default constructor for you.

NOTE  A default constructor is the same thing as a 0-argument constructor. The
term default constructor does not refer only to the constructor that is automati-
cally generated if you fail to declare any constructors. It also refers to the con-
structor that is defaulted to if no arguments are required.

Explicitly Defaulted Constructors
In C++03 or older, if your class required a number of explicit constructors accepting arguments
but also a default constructor that did nothing, you still had to explicitly write your empty default
constructor as shown earlier.

To avoid having to write empty default constructors manually, C++ supports the concept of explic-
itly defaulted constructors. This allows you to write the class definition as follows without the need
to implement the default constructor in the implementation file:

class SpreadsheetCell
{
 public:
 SpreadsheetCell() = default;
 SpreadsheetCell(double initialValue);
 SpreadsheetCell(std::string_view initialValue);
 // Remainder of the class definition omitted for brevity
};

SpreadsheetCell defines two custom constructors. However, the compiler still generates a stan-
dard compiler-generated default constructor due to the use of the default keyword.

Object Life Cycles  ❘  215

Explicitly Deleted Constructors
C++ also supports the concept of explicitly deleted constructors. For example, you can define a
class with only static methods (see Chapter 9) for which you do not want to write any constructors
and you also do not want the compiler to generate the default constructor. In that case, you need to
explicitly delete the default constructor:

class MyClass
{
 public:
 MyClass() = delete;
};

Constructor Initializers
Up to now, this chapter initialized data members in the body of a constructor, as in this example:

SpreadsheetCell::SpreadsheetCell(double initialValue)
{
 setValue(initialValue);
}

C++ provides an alternative method for initializing data members in the constructor, called the
constructor initializer, also known as the ctor-initializer or member initializer list. Here is the same
SpreadsheetCell constructor, rewritten to use the ctor-initializer syntax:

SpreadsheetCell::SpreadsheetCell(double initialValue)
 : mValue(initialValue)
{
}

As you can see, the ctor-initializer appears syntactically between the constructor argument list and
the opening brace for the body of the constructor. The list starts with a colon and is separated by
commas. Each element in the list is an initialization of a data member using function notation or
the uniform initialization syntax, a call to a base class constructor (see Chapter 10), or a call to a
delegated constructor, which is discussed later.

Initializing data members with a ctor-initializer provides different behavior than does initializing data
members inside the constructor body itself. When C++ creates an object, it must create all the
data members of the object before calling the constructor. As part of creating these data members, it
must call a constructor on any of them that are themselves objects. By the time you assign a value to
an object inside your constructor body, you are not actually constructing that object. You are only
modifying its value. A ctor-initializer allows you to provide initial values for data members as they
are created, which is more efficient than assigning values to them later.

If your class has as data member an object of a class that has a default constructor, then you
do not have to explicitly initialize the object in the ctor-initializer. For example, if you have an
std::string as data member, its default constructor initializes the string to the empty string, so
initializing it to "" in the ctor-initializer is superfluous.

216  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

On the other hand, if your class has as data member an object of a class without a default constructor,
you have to use the ctor-initializer to properly construct that object. For example, take the following
SpreadsheetCell class:

class SpreadsheetCell
{
 public:
 SpreadsheetCell(double d);
};

This class only has one explicit constructor accepting a double and does not include a default
constructor. You can use this class as a data member of another class as follows:

class SomeClass
{
 public:
 SomeClass();
 private:
 SpreadsheetCell mCell;
};

And you can implement the SomeClass constructor as follows:

SomeClass::SomeClass() { }

However, with this implementation, the code does not compile. The compiler does not know how to
initialize the mCell data member of SomeClass because it does not have a default constructor.

You have to initialize the mCell data member in the ctor-initializer as follows:

SomeClass::SomeClass() : mCell(1.0) { }

NOTE  Ctor-initializers allow initialization of data members at the time of their
creation.

Some programmers prefer to assign initial values in the body of the constructor, even though this
might be less efficient. However, several data types must be initialized in a ctor-initializer or with an
in-class initializer. The following table summarizes them:

DATA TYPE EXPLANATION

const data members You cannot legally assign a value to a const variable after it is
created. Any value must be supplied at the time of creation.

Reference data members References cannot exist without referring to something.

Object data members for which
there is no default constructor

C++ attempts to initialize member objects using a default con-
structor. If no default constructor exists, it cannot initialize the
object.

Base classes without default
constructors

These are covered in Chapter 10.

Object Life Cycles  ❘  217

There is one important caveat with ctor-initializers: they initialize data members in the order that
they appear in the class definition, not their order in the ctor-initializer. Take the following defini-
tion for a class called Foo. Its constructor simply stores a double value and prints out the value to
the console.

class Foo
{
 public:
 Foo(double value);
 private:
 double mValue;
};

Foo::Foo(double value) : mValue(value)
{
 cout << "Foo::mValue = " << mValue << endl;
}

Suppose you have another class, MyClass, that contains a Foo object as one of its data members:

class MyClass
{
 public:
 MyClass(double value);
 private:
 double mValue;
 Foo mFoo;
};

Its constructor could be implemented as follows:

MyClass::MyClass(double value) : mValue(value), mFoo(mValue)
{
 cout << "MyClass::mValue = " << mValue << endl;
}

The ctor-initializer first stores the given value in mValue, and then calls the Foo constructor with
mValue as argument. You can create an instance of MyClass as follows:

MyClass instance(1.2);

Here is the output of the program:

Foo::mValue = 1.2
MyClass::mValue = 1.2

So, everything looks fine. Now make one tiny change to the MyClass definition. You just reverse the
order of the mValue and mFoo data members. Nothing else is changed.

class MyClass
{
 public:
 MyClass(double value);
 private:
 Foo mFoo;
 double mValue;
};

218  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

The output of the program now depends on your system. It could, for example, be as follows:

Foo::mValue = -9.25596e+61
MyClass::mValue = 1.2

This is far from what you would expect. You might assume, based on your ctor-initializer, that
mValue is initialized before using mValue in the call to the Foo constructor. But C++ doesn’t work
that way. The data members are initialized in the order they appear in the definition of the class, not
the order in the ctor-initializer! So, in this case, the Foo constructor is called first with an uninitial-
ized mValue.

Note that some compilers issue a warning when the order in the class definition does not match the
order in the ctor-initializer.

WARNING  Ctor-initializers initialize data members in their declared order in
the class definition, not their order in the ctor-initializer list.

Copy Constructors
There is a special constructor in C++ called a copy constructor that allows you to create an object
that is an exact copy of another object. If you don’t write a copy constructor, C++ generates one
for you that initializes each data member in the new object from its equivalent data member in the
source object. For object data members, this initialization means that their copy constructors are
called.

Here is the declaration for a copy constructor in the SpreadsheetCell class:

class SpreadsheetCell
{
 public:
 SpreadsheetCell(const SpreadsheetCell& src);
 // Remainder of the class definition omitted for brevity
};

The copy constructor takes a const reference to the source object. Like other constructors, it does
not return a value. Inside the constructor, you should copy all the data members from the source
object. Technically, of course, you can do whatever you want in the copy constructor, but it’s gener-
ally a good idea to follow expected behavior and initialize the new object to be a copy of the old
one. Here is a sample implementation of the SpreadsheetCell copy constructor. Note the use of
the ctor-initializer.

SpreadsheetCell::SpreadsheetCell(const SpreadsheetCell& src)
 : mValue(src.mValue)
{
}

Object Life Cycles  ❘  219

NOTE  The SpreadsheetCell copy constructor is only shown for demonstra-
tion purposes. In fact, in this case, the copy constructor can be omitted because
the default compiler-generated one is good enough. However, under certain
conditions, this default copy constructor is not sufficient. These conditions are
covered in Chapter 9.

Given a set of data members, called m1, m2, ... mn, the compiler-generated copy constructor can be
expressed as follows:

classname::classname(const classname& src)
 : m1(src.m1), m2(src.m2), ... mn(src.mn) { }

Therefore, in most circumstances, there is no need for you to specify a copy constructor!

When the Copy Constructor Is Called
The default semantics for passing arguments to functions in C++ is pass-by-value. That means that
the function or method receives a copy of the value or object. Thus, whenever you pass an object to
a function or method, the compiler calls the copy constructor of the new object to initialize it. For
example, suppose you have the following printString() function accepting a string parameter by
value:

void printString(string inString)
{
 cout << inString << endl;
}

Recall that the C++ string is actually a class, not a built-in type. When your code makes a call to
printString() passing a string argument, the string parameter inString is initialized with
a call to its copy constructor. The argument to the copy constructor is the string you passed
to printString(). In the following example, the string copy constructor is executed for the
inString object in printString() with name as its parameter.

string name = "heading one";
printString(name); // Copies name

When the printString() method finishes, inString is destroyed. Because it was only a copy of
name, name remains intact. Of course, you can avoid the overhead of copy constructors by passing
parameters as const references.

When returning objects by value from a function, the copy constructor might also get called. This is
discussed in the section “Objects as Return Values” later in this chapter.

Calling the Copy Constructor Explicitly
You can use the copy constructor explicitly as well. It is often useful to be able to construct
one object as an exact copy of another. For example, you might want to create a copy of a
SpreadsheetCell object like this:

SpreadsheetCell myCell1(4);
SpreadsheetCell myCell2(myCell1); // myCell2 has the same values as myCell1

220  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

Passing Objects by Reference
In order to avoid copying objects when you pass them to functions and methods, you should declare
that the function or method takes a reference to the object. Passing objects by reference is usually
more efficient than passing them by value, because only the address of the object is copied, not the
entire contents of the object. Additionally, pass-by-reference avoids problems with dynamic memory
allocation in objects, which is discussed in Chapter 9.

When you pass an object by reference, the function or method using the object reference could
change the original object. When you are only using pass-by-reference for efficiency, you should
preclude this possibility by declaring the object const as well. This is known as passing objects by
const reference and has been done in examples throughout this book.

NOTE  For performance reasons, it is best to pass objects by const reference
instead of by value.

Note that the SpreadsheetCell class has a number of methods accepting an std::string_view as
parameter. As discussed in Chapter 2, a string_view is basically just a pointer and a length. So, it
is very cheap to copy, and is usually passed by value.

Also primitive types, such as int, double, and so on, should just be passed by value. You don’t gain
anything by passing such types by const reference.

The doubleToString() method of the SpreadsheetCell class always returns a string by value
because the implementation of the method creates a local string object that at the end of the
method is returned to the caller. Returning a reference to this string wouldn’t work because the
string to which it references will be destroyed when the function exits.

Explicitly Defaulted and Deleted Copy Constructor
You can explicitly default or delete a compiler-generated copy constructor as follows:

SpreadsheetCell(const SpreadsheetCell& src) = default;

or

SpreadsheetCell(const SpreadsheetCell& src) = delete;

By deleting the copy constructor, the object cannot be copied anymore. This can be used to disallow
passing the object by value, as discussed in Chapter 9.

Initializer-List Constructors
An initializer-list constructor is a constructor with an std::initializer_list<T> as first para
meter, without any additional parameters or with additional parameters having default values. Before
you can use the std::initializer_list<T> template, you need to include the <initializer_list>
header. The following class demonstrates its use. The class accepts only an initializer_list<T>
with an even number of elements; otherwise, it throws an exception.

Object Life Cycles  ❘  221

class EvenSequence
{
 public:
 EvenSequence(initializer_list<double> args)
 {
 if (args.size() % 2 != 0) {
 throw invalid_argument("initializer_list should "
 "contain even number of elements.");
 }
 mSequence.reserve(args.size());
 for (const auto& value : args) {
 mSequence.push_back(value);
 }
 }

 void dump() const
 {
 for (const auto& value : mSequence) {
 cout << value << ", ";
 }
 cout << endl;
 }
 private:
 vector<double> mSequence;
};

Inside the initializer-list constructor you can access the elements of the initializer-list with a range-
based for loop. You can get the number of elements in the initializer-list with the size() method.

The EvenSequence initializer-list constructor uses a range-based for loop to copy elements from
the given initializer_list<T>. You can also use the assign() method of vector. The different
methods of vector, including assign(), are discussed in detail in Chapter 17. To give you an idea
of the power of a vector, here is the initializer-list constructor using assign():

EvenSequence(initializer_list<double> args)
{
 if (args.size() % 2 != 0) {
 throw invalid_argument("initializer_list should "
 "contain even number of elements.");
 }
 mSequence.assign(args);
}

EvenSequence objects can be constructed as follows:

EvenSequence p1 = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0};
p1.dump();

try {
 EvenSequence p2 = {1.0, 2.0, 3.0};
} catch (const invalid_argument& e) {
 cout << e.what() << endl;
}

222  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

The construction of p2 throws an exception because it has an odd number of elements in the initial-
izer-list. The preceding equal signs are optional and can be left out, as in this example:

EvenSequence p1{1.0, 2.0, 3.0, 4.0, 5.0, 6.0};

The Standard Library has full support for initializer-list constructors. For example, the
std::vector container can be initialized with an initializer-list:

std::vector<std::string> myVec = {"String 1", "String 2", "String 3"};

Without initializer-list constructors, one way to initialize this vector is by using several push_
back() calls:

std::vector<std::string> myVec;
myVec.push_back("String 1");
myVec.push_back("String 2");
myVec.push_back("String 3");

Initializer lists are not limited to constructors and can also be used with normal functions as
explained in Chapter 1.

Delegating Constructors
Delegating constructors allow constructors to call another constructor from the same class.
However, this call cannot be placed in the constructor body; it must be in the ctor-initializer and it
must be the only member-initializer in the list. Following is an example:

SpreadsheetCell::SpreadsheetCell(string_view initialValue)
 : SpreadsheetCell(stringToDouble(initialValue))
{
}

When this string_view constructor (the delegating constructor) is called, it first delegates the call
to the target constructor, which is the double constructor in this example. When the target con-
structor returns, the body of the delegating constructor is executed.

Make sure you avoid constructor recursion while using delegate constructors. Here is an example:

class MyClass
{
 MyClass(char c) : MyClass(1.2) { }
 MyClass(double d) : MyClass('m') { }
};

The first constructor delegates to the second constructor, which delegates back to the first one. The
behavior of such code is undefined by the standard and depends on the compiler.

Summary of Compiler-Generated Constructors
The compiler can automatically generate a default constructor and a copy constructor for every class.
However, the constructors that the compiler automatically generates depend on the constructors
that you define yourself according to the rules in the following table.

Object Life Cycles  ❘  223

IF YOU DEFINE . . . . . . THEN THE COMPILER

GENERATES . . .

. . . AND YOU CAN CREATE AN OBJECT . . .

[no constructors] A default constructor

A copy constructor

With no arguments:

SpreadsheetCell cell;

As a copy of another object:

SpreadsheetCell myCell(cell);

A default constructor
only

A copy constructor With no arguments:

SpreadsheetCell cell;

As a copy of another object:

SpreadsheetCell myCell(cell);

A copy constructor only No constructors Theoretically, as a copy of another
object. Practically, you can’t create any
objects, because there are no non-copy
constructors.

A single-argument or
multi-argument non-
copy constructor only

A copy constructor With arguments:

SpreadsheetCell cell(6);

As a copy of another object:

SpreadsheetCell myCell(cell);

A default constructor
as well as a single-
argument or multi-
argument non-copy
constructor

A copy constructor With no arguments:

SpreadsheetCell cell;

With arguments:

SpreadsheetCell myCell(5);

As a copy of another object:

SpreadsheetCell anotherCell(cell);

Note the lack of symmetry between the default constructor and the copy constructor. As long as you
don’t define a copy constructor explicitly, the compiler creates one for you. On the other hand, as
soon as you define any constructor, the compiler stops generating a default constructor.

As mentioned before in this chapter, the automatic generation of a default constructor and a default
copy constructor can be influenced by defining them as explicitly defaulted or explicitly deleted.

NOTE  A final type of constructor is called a move constructor, which is required
to implement move semantics. Move semantics can be used to increase perfor-
mance in certain situations and is discussed in detail in Chapter 9.

224  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

Object Destruction
When an object is destroyed, two events occur: the object’s destructor method is called, and the
memory it was taking up is freed. The destructor is your chance to perform any cleanup work for
the object, such as freeing dynamically allocated memory or closing file handles. If you don’t declare
a destructor, the compiler writes one for you that does recursive member-wise destruction and
allows the object to be deleted. The section on dynamic memory allocation in Chapter 9 shows you
how to write a destructor.

Objects on the stack are destroyed when they go out of scope, which means whenever the current
function, method, or other execution block ends. In other words, whenever the code encounters an
ending curly brace, any objects created on the stack within those curly braces are destroyed. The
following program shows this behavior:

int main()
{
 SpreadsheetCell myCell(5);
 if (myCell.getValue() == 5) {
 SpreadsheetCell anotherCell(6);
 } // anotherCell is destroyed as this block ends.

 cout << "myCell: " << myCell.getValue() << endl;
 return 0;
} // myCell is destroyed as this block ends.

Objects on the stack are destroyed in the reverse order of their declaration (and construction). For
example, in the following code fragment, myCell2 is created before anotherCell2, so another-
Cell2 is destroyed before myCell2 (note that you can start a new code block at any point in your
program with an opening curly brace):

{
 SpreadsheetCell myCell2(4);
 SpreadsheetCell anotherCell2(5); // myCell2 constructed before anotherCell2
} // anotherCell2 destroyed before myCell2

This ordering also applies to objects that are data members of other objects. Recall that data mem-
bers are initialized in the order of their declaration in the class. Thus, following the rule that objects
are destroyed in the reverse order of their construction, data member objects are destroyed in the
reverse order of their declaration in the class.

Objects allocated on the heap without the help of smart pointers are not destroyed automatically.
You must call delete on the object pointer to call its destructor and free the memory. The following
program shows this behavior:

int main()
{
 SpreadsheetCell* cellPtr1 = new SpreadsheetCell(5);
 SpreadsheetCell* cellPtr2 = new SpreadsheetCell(6);
 cout << "cellPtr1: " << cellPtr1->getValue() << endl;
 delete cellPtr1; // Destroys cellPtr1
 cellPtr1 = nullptr;
 return 0;
} // cellPtr2 is NOT destroyed because delete was not called on it.

Object Life Cycles  ❘  225

WARNING  Do not write programs like the preceding example where cellPtr2
is not deleted. Make sure you always free dynamically allocated memory by call-
ing delete or delete[] depending on whether the memory was allocated using
new or new[]. Or better yet, use smart pointers as discussed earlier!

NOTE  There are tools that are able to detect unfreed objects. These tools are
discussed in Chapter 7.

Assigning to Objects
Just as you can assign the value of one int to another in C++, you can assign the value of one object
to another. For example, the following code assigns the value of myCell to anotherCell:

SpreadsheetCell myCell(5), anotherCell;
anotherCell = myCell;

You might be tempted to say that myCell is “copied” to anotherCell. However, in the world of
C++, “copying” only occurs when an object is being initialized. If an object already has a value
that is being overwritten, the more accurate term is “assigned to.” Note that the facility that C++
provides for copying is the copy constructor. Because it is a constructor, it can only be used for
object creation, not for later assignments to the object.

Therefore, C++ provides another method in every class to perform assignment. This method is
called the assignment operator. Its name is operator= because it is actually an overloading of the
= operator for that class. In the preceding example, the assignment operator for anotherCell is
called, with myCell as the argument.

NOTE  The assignment operator as explained in this section is sometimes called
the copy assignment operator because both the left-hand side and the right-hand
side object stay alive after the assignment. This distinction is made because
there is also a move assignment operator in which the right-hand side object is
destroyed after the assignment for performance reasons. This move assignment
operator is explained in Chapter 9.

As usual, if you don’t write your own assignment operator, C++ writes one for you to allow objects
to be assigned to one another. The default C++ assignment behavior is almost identical to its default
copying behavior: it recursively assigns each data member from the source to the destination object.

Declaring an Assignment Operator
Here is the assignment operator for the SpreadsheetCell class:

226  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

class SpreadsheetCell
{
 public:
 SpreadsheetCell& operator=(const SpreadsheetCell& rhs);
 // Remainder of the class definition omitted for brevity
};

The assignment operator often takes a const reference to the source object, like the copy construc-
tor. In this case, the source object is called rhs, which stands for right-hand side of the equals sign,
but you are free to call it whatever you want. The object on which the assignment operator is called
is the left-hand side of the equals sign.

Unlike a copy constructor, the assignment operator returns a reference to a SpreadsheetCell
object. The reason is that assignments can be chained, as in the following example:

myCell = anotherCell = aThirdCell;

When that line is executed, the first thing that happens is the assignment operator for anotherCell
is called with aThirdCell as its “right-hand side” parameter. Next, the assignment operator for
myCell is called. However, its parameter is not anotherCell. Its right-hand side is the result of
the assignment of aThirdCell to anotherCell. If that assignment fails to return a result, there is
nothing to pass to myCell.

You might be wondering why the assignment operator for myCell can’t just take anotherCell. The
reason is that using the equals sign is actually just shorthand for what is really a method call. When
you look at the line in its full functional syntax, you can see the problem:

myCell.operator=(anotherCell.operator=(aThirdCell));

Now, you can see that the operator= call from anotherCell must return a value, which is passed
to the operator= call for myCell. The correct value to return is anotherCell itself, so it can serve
as the source for the assignment to myCell. However, returning anotherCell directly would be
inefficient, so you can return a reference to anotherCell.

WARNING  You could actually declare the assignment operator to return what-
ever type you wanted, including void. However, you should always return a ref-
erence to the object on which it is called because that’s what clients expect.

Defining an Assignment Operator
The implementation of the assignment operator is similar to that of a copy constructor, with several
important differences. First, a copy constructor is called only for initialization, so the destination
object does not yet have valid values. An assignment operator can overwrite the current values in
an object. This consideration doesn’t really come into play until you have dynamically allocated
memory in your objects. See Chapter 9 for details.

Second, it’s legal in C++ to assign an object to itself. For example, the following code compiles and
runs:

SpreadsheetCell cell(4);
cell = cell; // Self-assignment

Object Life Cycles  ❘  227

Your assignment operator needs to take the possibility of self-assignment into account. In the
SpreadsheetCell class, this is not important, as its only data member is a primitive type, double.
However, when your class has dynamically allocated memory or other resources, it’s paramount to
take self-assignment into account, as is discussed in detail in Chapter 9. To prevent problems in such
cases, assignment operators usually check for self-assignment at the beginning of the method and
return immediately.

Here is the start of the definition of the assignment operator for the SpreadsheetCell class:

SpreadsheetCell& SpreadsheetCell::operator=(const SpreadsheetCell& rhs)
{
 if (this == &rhs) {

This first line checks for self-assignment, but it might be a bit cryptic. Self-assignment occurs when
the left-hand side and the right-hand side of the equals sign are the same. One way to tell if two
objects are the same is if they occupy the same memory location—more explicitly, if pointers to
them are equal. Recall that this is a pointer to an object accessible from any method called on the
object. Thus, this is a pointer to the left-hand side object. Similarly, &rhs is a pointer to the right-
hand side object. If these pointers are equal, the assignment must be self-assignment, but because
the return type is SpreadsheetCell&, a correct value must still be returned. All assignment operators
return *this, and the self-assignment case is no exception:

 return *this;
 }

this is a pointer to the object on which the method executes, so *this is the object itself. The
compiler returns a reference to the object to match the declared return value. Now, if it is not self-
assignment, you have to do an assignment to every member:

 mValue = rhs.mValue;
 return *this;
}

Here the method copies the values, and finally, it returns *this, as explained previously.

NOTE  The SpreadsheetCell assignment operator is only shown for demon-
stration purposes. In fact, in this case, the assignment operator can be omit-
ted because the default compiler-generated one is good enough; it does simple
member-wise assignments of all the data members. However, under certain con-
ditions, this default assignment operator is not sufficient. These conditions are
covered in Chapter 9.

Explicitly Defaulted and Deleted Assignment Operator
You can explicitly default or delete a compiler-generated assignment operator as follows:

SpreadsheetCell& operator=(const SpreadsheetCell& rhs) = default;

or

SpreadsheetCell& operator=(const SpreadsheetCell& rhs) = delete;

228  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

Compiler-Generated Copy Constructor and Copy Assignment
Operator

C++11 has deprecated the generation of a copy constructor if the class has a user-declared copy
assignment operator or destructor. If you still need a compiler-generated copy constructor in such a
case, you can explicitly default one:

MyClass(const MyClass& src) = default;

C++11 has also deprecated the generation of a copy assignment operator if the class has a user-
declared copy constructor or destructor. If you still need a compiler-generated copy assignment
operator in such a case, you can explicitly default one:

MyClass& operator=(const MyClass& rhs) = default;

Distinguishing Copying from Assignment
It is sometimes difficult to tell when objects are initialized with a copy constructor rather than
assigned to with the assignment operator. Essentially, things that look like a declaration are going
to be using copy constructors, and things that look like assignment statements are handled by the
assignment operator. Consider the following code:

SpreadsheetCell myCell(5);
SpreadsheetCell anotherCell(myCell);

AnotherCell is constructed with the copy constructor.

SpreadsheetCell aThirdCell = myCell;

aThirdCell is also constructed with the copy constructor, because this is a declaration. The
operator= is not called for this line! This syntax is just another way to write SpreadsheetCell
aThirdCell(myCell);. However, consider the following code:

anotherCell = myCell; // Calls operator= for anotherCell

Here, anotherCell has already been constructed, so the compiler calls operator=.

Objects as Return Values
When you return objects from functions or methods, it is sometimes difficult to see exactly what
copying and assignment is happening. For example, the implementation of SpreadsheetCell::
getString() looks like this:

string SpreadsheetCell::getString() const
{
 return doubleToString(mValue);
}

Now consider the following code:

SpreadsheetCell myCell2(5);
string s1;
s1 = myCell2.getString();

Object Life Cycles  ❘  229

When getString() returns the string, the compiler actually creates an unnamed temporary string
object by calling a string copy constructor. When you assign this result to s1, the assignment
operator is called for s1 with the temporary string as a parameter. Then, the temporary string
object is destroyed. Thus, the single line of code invokes the copy constructor and the assignment
operator (for two different objects). However, compilers are free and sometimes required to imple-
ment Return Value Optimization (RVO), also known as copy elision, to optimize away costly copy
constructions when returning values.

In case you’re not confused enough, consider this code:

SpreadsheetCell myCell3(5);
string s2 = myCell3.getString();

In this case, getString() still creates a temporary unnamed string object when it returns. But
now, s2 gets its copy constructor called, not its assignment operator.

With move semantics, the compiler can use a move constructor instead of a copy constructor to
return the string from getString(). This is more efficient and is discussed in Chapter 9.

If you ever forget the order in which these things happen or which constructor or operator is called,
you can easily figure it out by temporarily including helpful output in your code or by stepping
through it with a debugger.

Copy Constructors and Object Members
You should also note the difference between assignment and copy constructor calls in constructors.
If an object contains other objects, the compiler-generated copy constructor calls the copy construc-
tors of each of the contained objects recursively. When you write your own copy constructor, you
can provide the same semantics by using a ctor-initializer, as shown previously. If you omit a data
member from the ctor-initializer, the compiler performs default initialization on it (a call to the
default constructor for objects) before executing your code in the body of the constructor. Thus, by
the time the body of the constructor executes, all object data members have already been initialized.

For example, you could write your copy constructor like this:

SpreadsheetCell::SpreadsheetCell(const SpreadsheetCell& src)
{
 mValue = src.mValue;
}

However, when you assign values to data members in the body of the copy constructor, you are
using the assignment operator on them, not the copy constructor, because they have already been
initialized, as described previously.

If you write the copy constructor as follows, then mValue is initialized using the copy constructor:

SpreadsheetCell::SpreadsheetCell(const SpreadsheetCell& src)
 : mValue(src.mValue)
{
}

230  ❘  CHAPTER 8   Gaining Proficiency with Classes and Objects

SUMMARY

This chapter covered the fundamental aspects of C++’s facilities for object-oriented programming:
classes and objects. It first reviewed the basic syntax for writing classes and using objects, includ-
ing access control. Then, it covered object life cycles: when objects are constructed, destructed, and
assigned to, and what methods those actions invoke. The chapter included details of the constructor
syntax, including ctor-initializers and initializer-list constructors, and introduced the notion of copy
assignment operators. It also specified exactly which constructors the compiler writes for you, and
under what circumstances, and explained that default constructors require no arguments.

You may have found this chapter to be mostly review. Or, it may have opened your eyes to the world
of object-oriented programming in C++. In any case, now that you are proficient with objects and
classes, read Chapter 9 to learn more about their tricks and subtleties.

Mastering Classes and Objects
WHAT’S IN THIS CHAPTER?

➤➤ How to use dynamic memory allocation in objects

➤➤ What the copy-and-swap idiom is

➤➤ What rvalues and rvalue references are

➤➤ How move semantics can increase performance

➤➤ What the rule of zero means

➤➤ The different kinds of data members you can have (static, const,
reference)

➤➤ The different kinds of methods you can implement (static, const,
inline)

➤➤ The details of method overloading

➤➤ How to work with default arguments

➤➤ How to use nested classes

➤➤ How to make classes friends of other classes

➤➤ What operator overloading is

➤➤ How to write separate interface and implementation classes

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

9

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

232  ❘  CHAPTER 9   Mastering Classes and Objects

Chapter 8 started the discussion on classes and objects. Now it’s time to master their subtleties
so you can use them to their full potential. By reading this chapter, you will learn how to manipu-
late and exploit some of the most powerful aspects of the C++ language in order to write safe,
effective, and useful classes.

Many of the concepts in this chapter arise in advanced C++ programming, especially in the C++
Standard Library.

FRIENDS

C++ allows classes to declare that other classes, member functions of other classes, or non-member
functions are friends, and can access protected and private data members and methods. For
example, suppose you have two classes called Foo and Bar. You can specify that the Bar class is a
friend of Foo as follows:

class Foo
{
 friend class Bar;
 // ...
};

Now all the methods of Bar can access the private and protected data members and methods of
Foo.

If you only want to make a specific method of Bar a friend, you can do that as well. Suppose the
Bar class has a method processFoo(const Foo& foo). The following syntax is used to make this
method a friend of Foo:

class Foo
{
 friend void Bar::processFoo(const Foo& foo);
 // ...
};

Standalone functions can also be friends of classes. You might, for example, want to write a func-
tion that dumps all data of a Foo object to the console. You might want this function to be outside
the Foo class to model an external audit, but the function should be able to access the internal data
members of the object in order to check it properly. Here is the Foo class definition with a friend
dumpFoo() function:

class Foo
{
 friend void dumpFoo(const Foo& foo);
 // ...
};

The friend declaration in the class serves as the function’s prototype. There’s no need to write the
prototype elsewhere (although it’s harmless to do so).

Here is the function definition:

void dumpFoo(const Foo& foo)
{

Dynamic Memory Allocation in Objects  ❘  233

 // Dump all data of foo to the console, including
 // private and protected data members.
}

You write this function just like any other function, except that you can directly access private and
protected data members of Foo. You don’t repeat the friend keyword in the function definition.

Note that a class needs to know which other classes, methods, or functions want to be its friends; a
class, method, or function cannot declare itself to be a friend of some other class and access the non-
public names of that class.

friend classes and methods are easy to abuse; they allow you to violate the principle of encapsula-
tion by exposing internals of your class to other classes or functions. Thus, you should use them
only in limited circumstances. Some use cases are shown throughout this chapter.

DYNAMIC MEMORY ALLOCATION IN OBJECTS

Sometimes you don’t know how much memory you will need before your program actually runs. As
you read in Chapter 7, the solution is to dynamically allocate as much space as you need during pro-
gram execution. Classes are no exception. Sometimes you don’t know how much memory an object
will need when you write the class. In that case, the object should dynamically allocate memory.
Dynamically allocated memory in objects provides several challenges, including freeing the memory,
handling object copying, and handling object assignment.

The Spreadsheet Class
Chapter 8 introduces the SpreadsheetCell class. This chapter moves on to write the Spreadsheet
class. As with the SpreadsheetCell class, the Spreadsheet class evolves throughout this chapter.
Thus, the various attempts do not always illustrate the best way to do every aspect of class writing.
To start, a Spreadsheet is simply a two-dimensional array of SpreadsheetCells, with methods to
set and retrieve cells at specific locations in the Spreadsheet. Although most spreadsheet applica-
tions use letters in one direction and numbers in the other to refer to cells, this Spreadsheet uses
numbers in both directions. Here is a first attempt at a class definition for a simple Spreadsheet
class:

#include <cstddef>
#include "SpreadsheetCell.h"

class Spreadsheet
{
 public:
 Spreadsheet(size_t width, size_t height);
 void setCellAt(size_t x, size_t y, const SpreadsheetCell& cell);
 SpreadsheetCell& getCellAt(size_t x, size_t y);
 private:
 bool inRange(size_t value, size_t upper) const;
 size_t mWidth = 0;
 size_t mHeight = 0;
 SpreadsheetCell** mCells = nullptr;
};

234  ❘  CHAPTER 9   Mastering Classes and Objects

NOTE  The Spreadsheet class uses normal pointers for the mCells array. This
is done throughout this chapter to show the consequences and to explain how
you should handle dynamic memory in classes. In production code, you should
use one of the standard C++ containers, like std::vector which greatly simpli-
fies the implementation of Spreadsheet, but then you won’t learn how to cor-
rectly handle dynamic memory using raw pointers. In modern C++, you should
never use raw pointers, but you might come across them in existing code, in
which case you need to know how to work with them.

Note that the Spreadsheet class does not contain a standard two-dimensional array of
SpreadsheetCells. Instead, it contains a SpreadsheetCell**. This is because each Spreadsheet
object might have different dimensions, so the constructor of the class must dynamically allocate the
two-dimensional array based on the client-specified height and width. In order to allocate dynami-
cally a two-dimensional array, you need to write the following code. Note that in C++, unlike in
Java, it’s not possible to simply write new SpreadsheetCell[mWidth][mHeight].

Spreadsheet::Spreadsheet(size_t width, size_t height)
 : mWidth(width), mHeight(height)
{
 mCells = new SpreadsheetCell*[mWidth];
 for (size_t i = 0; i < mWidth; i++) {
 mCells[i] = new SpreadsheetCell[mHeight];
 }
}

The resulting memory for a Spreadsheet called s1 on the stack with width 4 and height 3 is shown
in Figure 9-1.

Stack Heap

4 3

mWidth mHeight mCells

Spreadsheet s1

Each element is an
unnamed

SpreadsheetCell*.

Each element is an unnamed
SpreadsheetCell.

FIGURE 9-1

The implementations of the set and retrieval methods are straightforward:

void Spreadsheet::setCellAt(size_t x, size_t y, const SpreadsheetCell& cell)
{
 if (!inRange(x, mWidth) || !inRange(y, mHeight)) {

Dynamic Memory Allocation in Objects  ❘  235

 throw std::out_of_range("");
 }
 mCells[x][y] = cell;
}

SpreadsheetCell& Spreadsheet::getCellAt(size_t x, size_t y)
{
 if (!inRange(x, mWidth) || !inRange(y, mHeight)) {
 throw std::out_of_range("");
 }
 return mCells[x][y];
}

Note that these two methods use a helper method inRange() to check that x and y represent valid
coordinates in the spreadsheet. Attempting to access an array element at an out-of-range index will
cause the program to malfunction. This example uses exceptions, which are mentioned in Chapter 1
and described in detail in Chapter 14.

If you look at the setCellAt() and getCellAt() methods, you see there is some clear code dupli-
cation. Chapter 6 explains that code duplication should be avoided at all costs. So, let’s follow
that guideline. Instead of a helper method called inRange(), the following verifyCoordinate()
method is defined for the class:

void verifyCoordinate(size_t x, size_t y) const;

The implementation checks the given coordinate and throws an exception if the coordinate is
invalid:

void Spreadsheet::verifyCoordinate(size_t x, size_t y) const
{
 if (x >= mWidth || y >= mHeight) {
 throw std::out_of_range("");
 }
}

The setCellAt() and getCellAt() methods can now be simplified:

void Spreadsheet::setCellAt(size_t x, size_t y, const SpreadsheetCell& cell)
{
 verifyCoordinate(x, y);
 mCells[x][y] = cell;
}

SpreadsheetCell& Spreadsheet::getCellAt(size_t x, size_t y)
{
 verifyCoordinate(x, y);
 return mCells[x][y];
}

Freeing Memory with Destructors
Whenever you are finished with dynamically allocated memory, you should free it. If you dynami-
cally allocate memory in an object, the place to free that memory is in the destructor. The compiler

236  ❘  CHAPTER 9   Mastering Classes and Objects

guarantees that the destructor is called when the object is destroyed. Here is the Spreadsheet class
definition with a destructor:

class Spreadsheet
{
 public:
 Spreadsheet(size_t width, size_t height);
 ~Spreadsheet();
 // Code omitted for brevity
};

The destructor has the same name as the name of the class (and of the constructors), preceded by
a tilde (~). The destructor takes no arguments, and there can only be one of them. Destructors are
implicitly marked as noexcept, since they should not throw any exceptions.

NOTE  A function can be marked with the noexcept keyword to specify that it
won’t throw any exceptions. For example:

void myNonThrowingFunction() noexcept { /* ... */ }

Destructors are implicitly noexcept, so you don’t need to add the keyword for
them. If a noexcept function does throw an exception, the program is termi-
nated. More details about noexcept, and why it is important that destructors
don’t throw any exceptions, are discussed in Chapter 14, “Handling Errors.”

Here is the implementation of the Spreadsheet class destructor:

Spreadsheet::~Spreadsheet()
{
 for (size_t i = 0; i < mWidth; i++) {
 delete [] mCells[i];
 }
 delete [] mCells;
 mCells = nullptr;
}

This destructor frees the memory that was allocated in the constructor. However, no rule requires
you to free memory in the destructor. You can write whatever code you want in the destructor, but
it is a good idea to use it only for freeing memory or disposing of other resources.

Handling Copying and Assignment
Recall from Chapter 8 that if you don’t write a copy constructor and an assignment operator your-
self, C++ writes them for you. These compiler-generated methods recursively call the copy construc-
tor or assignment operator on object data members. However, for primitives, such as int, double,
and pointers, they provide shallow or bitwise copying or assignment: they just copy or assign the

Dynamic Memory Allocation in Objects  ❘  237

data members from the source object directly to the destination object. That presents problems
when you dynamically allocate memory in your object. For example, the following code copies the
spreadsheet s1 to initialize s when s1 is passed to the printSpreadsheet() function:

#include "Spreadsheet.h"

void printSpreadsheet(Spreadsheet s)
{
 // Code omitted for brevity.
}

int main()
{
 Spreadsheet s1(4, 3);
 printSpreadsheet(s1);
 return 0;
}

The Spreadsheet contains one pointer variable: mCells. A shallow copy of a spreadsheet gives
the destination object a copy of the mCells pointer, but not a copy of the underlying data. Thus,
you end up with a situation where both s and s1 have a pointer to the same data, as shown in
Figure 9-2.

�

Stack Heap

4 3

mWidth mHeight mCells

Spreadsheet s1

4 3

mWidth mHeight mCells

Spreadsheet s

FIGURE 9-2

If s changes something to which mCells points, that change shows up in s1 too. Even worse, when
the printSpreadsheet() function exits, s’s destructor is called, which frees the memory pointed to
by mCells. That leaves the situation shown in Figure 9-3.

238  ❘  CHAPTER 9   Mastering Classes and Objects

Stack Heap

4 3

mWidth mHeight mCells

Spreadsheet s1

Freed memory

FIGURE 9-3

Now s1 has a pointer that no longer points to valid memory. This is called a dangling pointer.

Unbelievably, the problem is even worse with assignment. Suppose that you have the following code:

Spreadsheet s1(2, 2), s2(4, 3);
s1 = s2;

After the first line, when both objects are constructed, you have the memory layout shown in
Figure 9-4.

Stack Heap

4 3

mWidth mHeight mCells

Spreadsheet s2

2 2

mWidth mHeight mCells

Spreadsheet s1

FIGURE 9-4

After the assignment statement, you have the layout shown in Figure 9-5.

Now, not only do the mCells pointers in s1 and s2 point to the same memory, but you have also
orphaned the memory to which mCells in s1 previously pointed. This is called a memory leak. That
is why in assignment operators you must do a deep copy.

As you can see, relying on C++’s default copy constructor and default assignment operator is not
always a good idea.

Dynamic Memory Allocation in Objects  ❘  239

Stack Heap

4 3

mWidth mHeight mCells

Spreadsheet s2

4 3

mWidth mHeight mCells

Spreadsheet s1

Orphaned
memory!

FIGURE 9-5

WARNING  Whenever you have dynamically allocated memory in a class, you
should write your own copy constructor and assignment operator to provide a
deep copy of the memory.

The Spreadsheet Copy Constructor
Here is a declaration for a copy constructor in the Spreadsheet class:

class Spreadsheet
{
 public:
 Spreadsheet(const Spreadsheet& src);
 // Code omitted for brevity
};

The definition is as follows:

Spreadsheet::Spreadsheet(const Spreadsheet& src)
 : Spreadsheet(src.mWidth, src.mHeight)
{
 for (size_t i = 0; i < mWidth; i++) {
 for (size_t j = 0; j < mHeight; j++) {
 mCells[i][j] = src.mCells[i][j];
 }
 }
}

Note the use of a delegating constructor. The ctor-initializer of this copy constructor delegates
first to the non-copy constructor to allocate the proper amount of memory. The body of the copy

240  ❘  CHAPTER 9   Mastering Classes and Objects

constructor then copies the actual values. Together, this process implements a deep copy of the
mCells dynamically allocated two-dimensional array.

There is no need to delete the existing mCells because this is a copy constructor and therefore there
is not an existing mCells yet in this object.

The Spreadsheet Assignment Operator
The following shows the Spreadsheet class definition with an assignment operator:

class Spreadsheet
{
 public:
 Spreadsheet& operator=(const Spreadsheet& rhs);
 // Code omitted for brevity
};

A naïve implementation could be as follows:

Spreadsheet& Spreadsheet::operator=(const Spreadsheet& rhs)
{
 // Check for self-assignment
 if (this == &rhs) {
 return *this;
 }

 // Free the old memory
 for (size_t i = 0; i < mWidth; i++) {
 delete[] mCells[i];
 }
 delete[] mCells;
 mCells = nullptr;

 // Allocate new memory
 mWidth = rhs.mWidth;
 mHeight = rhs.mHeight;

 mCells = new SpreadsheetCell*[mWidth];
 for (size_t i = 0; i < mWidth; i++) {
 mCells[i] = new SpreadsheetCell[mHeight];
 }

 // Copy the data
 for (size_t i = 0; i < mWidth; i++) {
 for (size_t j = 0; j < mHeight; j++) {
 mCells[i][j] = rhs.mCells[i][j];
 }
 }

 return *this;
}

The code first checks for self-assignment, then frees the current memory of the this object, followed
by allocating new memory, and finally copying the individual elements. There is a lot going on in
this method, and a lot can go wrong! It is possible that the this object gets into an invalid state.

Dynamic Memory Allocation in Objects  ❘  241

For example, suppose that the memory is successfully freed, that mWidth and mHeight are prop-
erly set, but that an exception is thrown in the loop that is allocating the memory. When that hap-
pens, execution of the remainder of the method is skipped, and the method is exited. Now the
Spreadsheet instance is corrupt; its mWidth and mHeight data members state a certain size, but the
mCells data member does not have the right amount of memory. Basically, this code is not exception
safe!

What we need is an all-or-nothing mechanism; either everything succeeds, or the this object
remains untouched. To implement such an exception-safe assignment operator, the copy-and-swap
idiom is recommended. For this, a non-member swap() function is implemented as a friend of the
Spreadsheet class. Instead of a non-member swap() function, you could also add a swap() method
to the class. However, it’s recommended practice to implement swap() as a non-member function,
so that it can also be used by various Standard Library algorithms. Here is the definition of the
Spreadsheet class with an assignment operator and the swap() function:

class Spreadsheet
{
 public:
 Spreadsheet& operator=(const Spreadsheet& rhs);
 friend void swap(Spreadsheet& first, Spreadsheet& second) noexcept;
 // Code omitted for brevity
};

A requirement for implementing the exception-safe copy-and-swap idiom is that the swap() func-
tion never throws any exceptions, so it is marked as noexcept. The implementation of the swap()
function swaps each data member using the std::swap() utility function provided by the Standard
Library in the <utility> header file:

void swap(Spreadsheet& first, Spreadsheet& second) noexcept
{
 using std::swap;

 swap(first.mWidth, second.mWidth);
 swap(first.mHeight, second.mHeight);
 swap(first.mCells, second.mCells);
}

Now that we have this exception-safe swap() function, it can be used to implement the assignment
operator:

Spreadsheet& Spreadsheet::operator=(const Spreadsheet& rhs)
{
 // Check for self-assignment
 if (this == &rhs) {
 return *this;
 }

 Spreadsheet temp(rhs); // Do all the work in a temporary instance
 swap(*this, temp); // Commit the work with only non-throwing operations
 return *this;
}

The implementation uses the copy-and-swap idiom. For efficiency, but sometimes also for
correctness, the first line of code in an assignment operator usually checks for self-assignment.

242  ❘  CHAPTER 9   Mastering Classes and Objects

Next, a copy of the right-hand-side is made, called temp. Then *this is swapped with this copy.
This pattern is the recommended way of implementing your assignment operators because it guar-
antees strong exception safety. This means that if any exception occurs, then the state of the current
Spreadsheet object remains unchanged. This is implemented in three phases:

➤➤ The first phase makes a temporary copy. This does not modify the state of the current
Spreadsheet object, and so there is no problem if an exception is thrown during this phase.

➤➤ The second phase uses the swap() function to swap the created temporary copy with the cur-
rent object. The swap() function shall never throw exceptions.

➤➤ The third phase is the destruction of the temporary object, which now contains the original
object (because of the swap), to clean up any memory.

NOTE  Next to copying, C++ also supports move semantics, which requires a
move constructor and move assignment operator. These can be used to increase
performance in certain situations and are discussed in detail in the section
“Handling Moving with Move Semantics.”

Disallowing Assignment and Pass-By-Value
Sometimes when you dynamically allocate memory in your class, it’s easiest just to prevent anyone
from copying or assigning to your objects. You can do this by explicitly deleting your operator=
and copy constructor. That way, if anyone tries to pass the object by value, return it from a function
or method, or assign to it, the compiler will complain. Here is a Spreadsheet class definition that
prevents assignment and pass-by-value:

class Spreadsheet
{
 public:
 Spreadsheet(size_t width, size_t height);
 Spreadsheet(const Spreadsheet& src) = delete;
 ~Spreadsheet();
 Spreadsheet& operator=(const Spreadsheet& rhs) = delete;
 // Code omitted for brevity
};

You don’t provide implementations for deleted methods. The linker will never look for them
because the compiler won’t allow code to call them. When you write code to copy or assign to a
Spreadsheet object, the compiler will complain with a message like this:

'Spreadsheet &Spreadsheet::operator =(const Spreadsheet &)' : attempting to
reference a deleted function

NOTE  If your compiler doesn’t support explicitly deleting member functions,
then you can disallow copying and assigning by making your copy constructor
and assignment operator private without any implementation.

Dynamic Memory Allocation in Objects  ❘  243

Handling Moving with Move Semantics
Move semantics for objects requires a move constructor and a move assignment operator. These
can be used by the compiler when the source object is a temporary object that will be destroyed
after the operation is finished. Both the move constructor and the move assignment operator move
the data members from the source object to the new object, leaving the source object in some valid
but otherwise indeterminate state. Often, data members of the source object are reset to null val-
ues. This process actually moves ownership of the memory and other resources from one object to
another object. They basically do a shallow copy of the member variables, and switch ownership
of allocated memory and other resources to prevent dangling pointers or resources, and to prevent
memory leaks.

Before you can implement move semantics, you need to learn about rvalues and rvalue references.

Rvalue References
In C++, an lvalue is something of which you can take an address; for example, a named variable.
The name comes from the fact that lvalues can appear on the left-hand side of an assignment. An
rvalue, on the other hand, is anything that is not an lvalue, such as a literal, or a temporary object
or value. Typically, an rvalue is on the right-hand side of an assignment operator. For example, take
the following statement:

int a = 4 * 2;

In this statement, a is an lvalue, it has a name and you can take the address of it with &a. The result
of the expression 4 * 2 on the other hand is an rvalue. It is a temporary value that is destroyed
when the statement finishes execution. In this example, a copy of this temporary value is stored in
the variable with name a.

An rvalue reference is a reference to an rvalue. In particular, it is a concept that is applied when the
rvalue is a temporary object. The purpose of an rvalue reference is to make it possible for a particu-
lar function to be chosen when a temporary object is involved. The consequence of this is that cer-
tain operations that normally involve copying large values can be implemented by copying pointers
to those values, knowing the temporary object will be destroyed.

A function can specify an rvalue reference parameter by using && as part of the parameter specifica-
tion; for example, type&& name. Normally, a temporary object will be seen as a const type&, but
when there is a function overload that uses an rvalue reference, a temporary object can be resolved to
that overload. The following example demonstrates this. The code first defines two handleMessage()
functions, one accepting an lvalue reference and one accepting an rvalue reference:

// lvalue reference parameter
void handleMessage(std::string& message)
{
 cout << "handleMessage with lvalue reference: " << message << endl;
}

// rvalue reference parameter
void handleMessage(std::string&& message)
{
 cout << "handleMessage with rvalue reference: " << message << endl;
}

244  ❘  CHAPTER 9   Mastering Classes and Objects

You can call handleMessage() with a named variable as argument:

std::string a = "Hello ";
std::string b = "World";
handleMessage(a); // Calls handleMessage(string& value)

Because a is a named variable, the handleMessage() function accepting an lvalue reference is
called. Any changes handleMessage() does through its reference parameter will change the value
of a.

You can also call handleMessage() with an expression as argument:

handleMessage(a + b); // Calls handleMessage(string&& value)

The handleMessage() function accepting an lvalue reference cannot be used, because the expres-
sion a + b results in a temporary, which is not an lvalue. In this case the rvalue reference version is
called. Because the argument is a temporary, any changes handleMessage() does through its refer-
ence parameter will be lost after the call returns.

A literal can also be used as argument to handleMessage(). This also triggers a call to the rvalue
reference version because a literal cannot be an lvalue (though a literal can be passed as argument to
a const reference parameter).

handleMessage("Hello World"); // Calls handleMessage(string&& value)

If you remove the handleMessage() function accepting an lvalue reference, calling handleMessage()
with a named variable like handleMessage(b) will result in a compilation error because an rvalue
reference parameter (string&& message) will never be bound to an lvalue (b). You can force the com-
piler to call the rvalue reference version of handleMessage() by using std::move(), which casts an
lvalue into an rvalue as follows:

handleMessage(std::move(b)); // Calls handleMessage(string&& value)

As said before, but it’s worth repeating, a named variable is an lvalue. So, inside the handleMessage()
function, the rvalue reference message parameter itself is an lvalue because it has a name! If you want
to forward this rvalue reference parameter to another function as an rvalue, then you need to use
std::move() to cast the lvalue to an rvalue. For example, suppose you add the following function with
an rvalue reference parameter:

void helper(std::string&& message)
{
}

Calling it as follows does not compile:

void handleMessage(std::string&& message)
{
 helper(message);
}

The helper() function needs an rvalue reference, while handleMessage() passes message, which
has a name, so it’s an lvalue, causing a compilation error. The correct way is to use std::move():

void handleMessage(std::string&& message)
{
 helper(std::move(message));
}

Dynamic Memory Allocation in Objects  ❘  245

WARNING  A named rvalue reference, such as an rvalue reference parameter,
itself is an lvalue because it has a name!

Rvalue references are not limited to parameters of functions. You can declare a variable of an rvalue
reference type, and assign to it, although this usage is uncommon. Consider the following code,
which is illegal in C++:

int& i = 2; // Invalid: reference to a constant
int a = 2, b = 3;
int& j = a + b; // Invalid: reference to a temporary

Using rvalue references, the following is perfectly legal:

int&& i = 2;
int a = 2, b = 3;
int&& j = a + b;

Stand-alone rvalue references, as in the preceding example, are rarely used in this way.

Implementing Move Semantics
Move semantics is implemented by using rvalue references. To add move semantics to a class, you
need to implement a move constructor and a move assignment operator. Move constructors and
move assignment operators should be marked with the noexcept qualifier to tell the compiler that
they don’t throw any exceptions. This is particularly important for compatibility with the Standard
Library, as fully compliant implementations of, for example, the Standard Library containers will
only move stored objects if, having move semantics implemented, they also guarantee not to throw.
Following is the Spreadsheet class definition with a move constructor and move assignment opera-
tor. Two helper methods are introduced as well: cleanup(), which is used from the destructor and
the move assignment operator, and moveFrom(), which moves the member variables from a source
to a destination, and then resets the source object.

class Spreadsheet
{
 public:
 Spreadsheet(Spreadsheet&& src) noexcept; // Move constructor
 Spreadsheet& operator=(Spreadsheet&& rhs) noexcept; // Move assign
 // Remaining code omitted for brevity
 private:
 void cleanup() noexcept;
 void moveFrom(Spreadsheet& src) noexcept;
 // Remaining code omitted for brevity
};

The implementations are as follows:

void Spreadsheet::cleanup() noexcept
{
 for (size_t i = 0; i < mWidth; i++) {
 delete[] mCells[i];
 }

246  ❘  CHAPTER 9   Mastering Classes and Objects

 delete[] mCells;
 mCells = nullptr;
 mWidth = mHeight = 0;
}

void Spreadsheet::moveFrom(Spreadsheet& src) noexcept
{
 // Shallow copy of data
 mWidth = src.mWidth;
 mHeight = src.mHeight;
 mCells = src.mCells;

 // Reset the source object, because ownership has been moved!
 src.mWidth = 0;
 src.mHeight = 0;
 src.mCells = nullptr;
}

// Move constructor
Spreadsheet::Spreadsheet(Spreadsheet&& src) noexcept
{
 moveFrom(src);
}

// Move assignment operator
Spreadsheet& Spreadsheet::operator=(Spreadsheet&& rhs) noexcept
{
 // check for self-assignment
 if (this == &rhs) {
 return *this;
 }

 // free the old memory
 cleanup();

 moveFrom(rhs);

 return *this;
}

Both the move constructor and the move assignment operator are moving ownership of the memory
for mCells from the source object to the new object. They reset the mCells pointer of the source
object to a null pointer to prevent the destructor of the source object from deallocating that memory
because now the new object is the owner of that memory.

Obviously, move semantics is useful only when you know that the source object will be destroyed.

Move constructors and move assignment operators can be explicitly deleted or defaulted, just like
normal constructors and copy assignment operators, as explained in Chapter 8.

The compiler automatically generates a default move constructor for a class if and only if the class
has no user-declared copy constructor, copy assignment operator, move assignment operator, or
destructor. A default move assignment operator is generated for a class if and only if the class has no
user-declared copy constructor, move constructor, copy assignment operator, or destructor.

Dynamic Memory Allocation in Objects  ❘  247

NOTE  If you have dynamically allocated memory in your class, then you typi-
cally should implement a destructor, copy constructor, move constructor, copy
assignment operator, and move assignment operator. This is called the Rule of
Five.

Moving Object Data Members
The moveFrom() method uses direct assignments of the three data members because they are primi-
tive types. If your object has other objects as data members, then you should move these objects
using std::move(). Suppose the Spreadsheet class has an std::string data member called
mName. The moveFrom() method is then implemented as follows:

void Spreadsheet::moveFrom(Spreadsheet& src) noexcept
{
 // Move object data members
 mName = std::move(src.mName);

 // Move primitives:
 // Shallow copy of data
 mWidth = src.mWidth;
 mHeight = src.mHeight;
 mCells = src.mCells;

 // Reset the source object, because ownership has been moved!
 src.mWidth = 0;
 src.mHeight = 0;
 src.mCells = nullptr;
}

Move Constructor and Move Assignment Operator in Terms of Swap
The previous implementation of the move constructor and the move assignment operator both use
the moveFrom() helper method which moves all data members by performing shallow copies. With
this implementation, if you add a new data member to the Spreadsheet class, you have to modify
both the swap() function and the moveFrom() method. If you forget to update one of them, you
introduce a bug. To avoid such bugs, you can write the move constructor and the move assignment
operator in terms of a default constructor and the swap() function.

The first thing to do is to add a default constructor to the Spreadsheet class. It doesn’t make sense
for users of the class to use this default constructor, so it’s marked as private:

class Spreadsheet
{
 private:
 Spreadsheet() = default;
 // Remaining code omitted for brevity
};

248  ❘  CHAPTER 9   Mastering Classes and Objects

Next, we can remove the cleanup() and moveFrom() helper methods. The code from the cleanup()
method is moved to the destructor. The move constructor and move assignment operator can then be
implemented as follows:

Spreadsheet::Spreadsheet(Spreadsheet&& src) noexcept
 : Spreadsheet()
{
 swap(*this, src);
}

Spreadsheet& Spreadsheet::operator=(Spreadsheet&& rhs) noexcept
{
 Spreadsheet temp(std::move(rhs));
 swap(*this, temp);
 return *this;
}

The move constructor delegates first to the default constructor. Then, the default constructed
*this is swapped with the given source object. The move assignment operator first creates a local
Spreadsheet instance that is move-constructed with rhs. Then, *this is swapped with this local
move-constructed Spreadsheet instance.

Implementing the move constructor and move assignment operator in terms of the default construc-
tor and the swap() function might be a tiny bit less efficient compared to the earlier implementation
using moveFrom(). The advantage however is that it requires less code and it is less likely bugs are
introduced when data members are added to the class, because you only have to update your swap()
implementation to include the new data members.

Testing the Spreadsheet Move Operations
The Spreadsheet move constructor and move assignment operator can be tested with the following
code:

Spreadsheet createObject()
{
 return Spreadsheet(3, 2);
}

int main()
{
 vector<Spreadsheet> vec;
 for (int i = 0; i < 2; ++i) {
 cout << "Iteration " << i << endl;
 vec.push_back(Spreadsheet(100, 100));
 cout << endl;
 }

 Spreadsheet s(2,3);
 s = createObject();

 Spreadsheet s2(5,6);
 s2 = s;
 return 0;
}

Dynamic Memory Allocation in Objects  ❘  249

Chapter 1 introduces the vector. A vector grows dynamically in size to accommodate new objects.
This is done by allocating a bigger chunk of memory and then copying or moving the objects from
the old vector to the new and bigger vector. If the compiler finds a move constructor, the objects
are moved instead of copied. Because they are moved, there is no need for any deep copying, making
it much more efficient.

When you add output statements to all constructors and assignment operators of the Spreadsheet
class implemented with the moveFrom() method, the output of the preceding test program can be as
follows. This output and the following discussion are based on the Microsoft Visual C++ 2017 com-
piler. The C++ standard does not specify the initial capacity of a vector or its growth strategy, so
the output can be different on different compilers.

Iteration 0
Normal constructor (1)
Move constructor (2)

Iteration 1
Normal constructor (3)
Move constructor (4)
Move constructor (5)

Normal constructor (6)
Normal constructor (7)
Move assignment operator (8)
Normal constructor (9)
Copy assignment operator (10)
Normal constructor (11)
Copy constructor (12)

On the first iteration of the loop, the vector is still empty. Take the following line of code from the
loop:

vec.push_back(Spreadsheet(100, 100));

With this line, a new Spreadsheet object is created, invoking the normal constructor (1). The
vector resizes itself to make space for the new object being pushed in. The created Spreadsheet
object is then moved into the vector, invoking the move constructor (2).

On the second iteration of the loop, a second Spreadsheet object is created with the normal con-
structor (3). At this point, the vector can hold one element, so it’s again resized to make space for a
second object. Because the vector is resized, the previously added elements need to be moved from
the old vector to the new and bigger vector. This triggers a call to the move constructor for each
previously added element. There is one element in the vector, so the move constructor is called one
time (4). Finally, the new Spreadsheet object is moved into the vector with its move constructor (5).

Next, a Spreadsheet object s is created using the normal constructor (6). The createObject()
function creates a temporary Spreadsheet object with its normal constructor (7), which is then
returned from the function, and assigned to the variable s. Because the temporary object returned
from createObject() ceases to exist after the assignment, the compiler invokes the move assign-
ment operator (8) instead of the normal copy assignment operator. Another Spreadsheet object is
created, s2, using the normal constructor (9). The assignment s2 = s invokes the copy assignment

250  ❘  CHAPTER 9   Mastering Classes and Objects

operator (10) because the right-hand side object is not a temporary object, but a named object. This
copy assignment operator creates a temporary copy, which triggers a call to the copy constructor,
which first delegates to the normal constructor (11 and 12).

If the Spreadsheet class did not implement move semantics, all the calls to the move construc-
tor and move assignment operator would be replaced with calls to the copy constructor and copy
assignment operator. In the previous example, the Spreadsheet objects in the loop have 10,000
(100 x 100) elements. The implementation of the Spreadsheet move constructor and move assign-
ment operator doesn’t require any memory allocation, while the copy constructor and copy assign-
ment operator require 101 allocations each. So, using move semantics can increase performance a
lot in certain situations.

Implementing a Swap Function with Move Semantics
As another example where move semantics increases performance, take a swap() function that
swaps two objects. The following swapCopy() implementation does not use move semantics:

void swapCopy(T& a, T& b)
{
 T temp(a);
 a = b;
 b = temp;
}

First, a is copied to temp, then b is copied to a, and finally temp is copied to b. This implementation
will hurt performance if type T is expensive to copy. With move semantics, the implementation can
avoid all copying:

void swapMove(T& a, T& b)
{
 T temp(std::move(a));
 a = std::move(b);
 b = std::move(temp);
}

This is exactly how std::swap() from the Standard Library is implemented.

Rule of Zero
Earlier in this chapter, the rule of five was introduced. All the discussions so far have been to explain
how you have to write those five special member functions: destructor, copy and move constructors,
and copy and move assignment operators. However, in modern C++, you should adopt the so-called
rule of zero.

The rule of zero states that you should design your classes in such a way that they do not require
any of those five special member functions. How do you do that? Basically, you should avoid hav-
ing any old-style dynamically allocated memory. Instead, use modern constructs such as Standard
Library containers. For example, use a vector<vector<SpreadsheetCell>> instead of the
SpreadsheetCell** data member in the Spreadsheet class. The vector handles memory auto-
matically, so there is no need for any of those five special member functions.

More about Methods  ❘  251

WARNING  In modern C++, adopt the rule of zero!

MORE ABOUT METHODS

C++ also provides myriad choices for methods. This section explains all the tricky details.

static Methods
Methods, like data members, sometimes apply to the class as a whole, not to each object. You can
write static methods as well as data members. As an example, consider the SpreadsheetCell
class from Chapter 8. It has two helper methods: stringToDouble() and doubleToString().
These methods don’t access information about specific objects, so they could be static. Here is the
class definition with these methods static:

class SpreadsheetCell
{
 // Omitted for brevity
 private:
 static std::string doubleToString(double inValue);
 static double stringToDouble(std::string_view inString);
 // Omitted for brevity
};

The implementations of these two methods are identical to the previous implementations. You don’t
repeat the static keyword in front of the method definitions. However, note that static methods
are not called on a specific object, so they have no this pointer, and are not executing for a specific
object with access to its non-static members. In fact, a static method is just like a regular func-
tion. The only difference is that it can access private and protected static members of the class.
It can also access private and protected non-static data members on objects of the same type,
if those objects are made visible to the static method, for example, by passing in a reference or
pointer to such an object.

You call a static method just like a regular function from within any method of the class. Thus,
the implementation of all the methods in SpreadsheetCell can stay the same. Outside of the class,
you need to qualify the method name with the class name using the scope resolution operator.
Access control applies as usual.

You might want to make stringToDouble() and doubleToString() public so that other code
outside the class can make use of them. If so, you can call them from anywhere like this:

string str = SpreadsheetCell::doubleToString(5.0);

const Methods
A const object is an object whose value cannot be changed. If you have a const, reference to
const, or pointer to a const object, the compiler does not let you call any methods on that object

252  ❘  CHAPTER 9   Mastering Classes and Objects

unless those methods guarantee that they won’t change any data members. The way you guarantee
that a method won’t change data members is to mark the method itself with the const keyword.
Here is the SpreadsheetCell class with the methods that don’t change any data members marked
as const:

class SpreadsheetCell
{
 public:
 // Omitted for brevity
 double getValue() const;
 std::string getString() const;
 // Omitted for brevity
};

The const specification is part of the method prototype and must accompany its definition as well:

double SpreadsheetCell::getValue() const
{
 return mValue;
}

std::string SpreadsheetCell::getString() const
{
 return doubleToString(mValue);
}

Marking a method as const signs a contract with client code guaranteeing that you will not change
the internal values of the object within the method. If you try to declare a method const that actu-
ally modifies a data member, the compiler will complain. You also cannot declare a static method,
such as the doubleToString() and stringToDouble() methods from the previous section, const
because it is redundant. Static methods do not have an instance of the class, so it would be impos-
sible for them to change internal values. const works by making it appear inside the method that
you have a const reference to each data member. Thus, if you try to change the data member, the
compiler will flag an error.

You can call const and non-const methods on a non-const object. However, you can only call
const methods on a const object. Here are some examples:

SpreadsheetCell myCell(5);
cout << myCell.getValue() << endl; // OK
myCell.setString("6"); // OK

const SpreadsheetCell& myCellConstRef = myCell;
cout << myCellConstRef.getValue() << endl; // OK
myCellConstRef.setString("6"); // Compilation Error!

You should get into the habit of declaring const all methods that don’t modify the object so that
you can use references to const objects in your program.

Note that const objects can still be destroyed, and their destructor can be called. Nevertheless,
destructors are not allowed to be declared const.

More about Methods  ❘  253

mutable Data Members
Sometimes you write a method that is “logically” const but happens to change a data member
of the object. This modification has no effect on any user-visible data, but is technically a change,
so the compiler won’t let you declare the method const. For example, suppose that you want to
profile your spreadsheet application to obtain information about how often data is being read.
A crude way to do this would be to add a counter to the SpreadsheetCell class that counts each
call to getValue() or getString(). Unfortunately, that makes those methods non-const in the
compiler’s eyes, which is not what you intended. The solution is to make your new counter variable
mutable, which tells the compiler that it’s okay to change it in a const method. Here is the new
SpreadsheetCell class definition:

class SpreadsheetCell
{
 // Omitted for brevity
 private:
 double mValue = 0;
 mutable size_t mNumAccesses = 0;
};

Here are the definitions for getValue() and getString():

double SpreadsheetCell::getValue() const
{
 mNumAccesses++;
 return mValue;
}

std::string SpreadsheetCell::getString() const
{
 mNumAccesses++;
 return doubleToString(mValue);
}

Method Overloading
You’ve already noticed that you can write multiple constructors in a class, all of which have the
same name. These constructors differ only in the number and/or types of their parameters. You can
do the same thing for any method or function in C++. Specifically, you can overload the function or
method name by using it for multiple functions, as long as the number and/or types of the param-
eters differ. For example, in the SpreadsheetCell class you can rename both setString() and
setValue() to set(). The class definition now looks like this:

class SpreadsheetCell
{
 public:
 // Omitted for brevity
 void set(double inValue);
 void set(std::string_view inString);
 // Omitted for brevity
};

254  ❘  CHAPTER 9   Mastering Classes and Objects

The implementations of the set() methods stay the same. When you write code to call set(), the
compiler determines which instance to call based on the parameter you pass: if you pass a string_
view, the compiler calls the string instance; if you pass a double, the compiler calls the double
instance. This is called overload resolution.

You might be tempted to do the same thing for getValue() and getString(): rename each of them
to get(). However, that does not work. C++ does not allow you to overload a method name based
only on the return type of the method because in many cases it would be impossible for the compiler
to determine which instance of the method to call. For example, if the return value of the method is
not captured anywhere, the compiler has no way to tell which instance of the method you are trying
to call.

Overloading Based on const
You can overload a method based on const. That is, you can write two methods with the same
name and same parameters, one of which is declared const and one of which is not. The compiler
calls the const method if you have a const object, and the non-const method if you have a non-
const object.

Often, the implementation of the const version and the non-const version is identical. To pre-
vent code duplication, you can use the Scott Meyer’s const_cast() pattern. For example,
the Spreadsheet class has a method called getCellAt() returning a non-const reference
to a SpreadsheetCell. You can add a const overload that returns a const reference to a
SpreadsheetCell as follows:

class Spreadsheet
{
 public:
 SpreadsheetCell& getCellAt(size_t x, size_t y);
 const SpreadsheetCell& getCellAt(size_t x, size_t y) const;
 // Code omitted for brevity.
};

Scott Meyer’s const_cast() pattern says that you should implement the const version as you nor-
mally would, and implement the non-const version by forwarding the call to the const version with
the appropriate casts. Basically, you cast *this to a const Spreadsheet& using std::as_const()
(defined in <utility>), call the const version of getCellAt(), and then remove the const from the
result by using a const_cast():

const SpreadsheetCell& Spreadsheet::getCellAt(size_t x, size_t y) const
{
 verifyCoordinate(x, y);
 return mCells[x][y];
}

SpreadsheetCell& Spreadsheet::getCellAt(size_t x, size_t y)
{
 return const_cast<SpreadsheetCell&>(std::as_const(*this).getCellAt(x, y));
}

The std::as_const() function is available since C++17. If your compiler doesn’t support it yet, you
can use the following static_cast() instead:

More about Methods  ❘  255

return const_cast<SpreadsheetCell&>(
 static_cast<const Spreadsheet&>(*this).getCellAt(x, y));

With these two getCellAt() overloads, you can now call getCellAt() on const and non-const
Spreadsheet objects:

Spreadsheet sheet1(5, 6);
SpreadsheetCell& cell1 = sheet1.getCellAt(1, 1);

const Spreadsheet sheet2(5, 6);
const SpreadsheetCell& cell2 = sheet2.getCellAt(1, 1);

In this case, the const version of getCellAt() is not doing much, so you don’t win a lot by using
the const_cast() pattern. However, imagine that the const version of getCellAt() is doing more
work, then forwarding the non-const to the const version avoids duplicating that code.

Explicitly Deleting Overloads
Overloaded methods can be explicitly deleted, which enables you to disallow calling a method with
particular arguments. For example, suppose you have the following class:

class MyClass
{
 public:
 void foo(int i);
};

The foo() method can be called as follows:

MyClass c;
c.foo(123);
c.foo(1.23);

For the third line, the compiler converts the double value (1.23) to an integer value (1) and then
calls foo(int i). The compiler might give you a warning, but it will perform this implicit conver-
sion. You can prevent the compiler from performing this conversion by explicitly deleting a double
instance of foo():

class MyClass
{
 public:
 void foo(int i);
 void foo(double d) = delete;
};

With this change, an attempt to call foo() with a double will be flagged as an error by the com-
piler, instead of the compiler performing a conversion to an integer.

Inline Methods
C++ gives you the ability to recommend that a call to a method (or function) should not actually be
implemented in the generated code as a call to a separate block of code. Instead, the compiler should
insert the method’s body directly into the code where the method is called. This process is called

256  ❘  CHAPTER 9   Mastering Classes and Objects

inlining, and methods that want this behavior are called inline methods. Inlining is safer than
using #define macros.

You can specify an inline method by placing the inline keyword in front of its name in
the method definition. For example, you might want to make the accessor methods of the
SpreadsheetCell class inline, in which case you would define them like this:

inline double SpreadsheetCell::getValue() const
{
 mNumAccesses++;
 return mValue;
}

inline std::string SpreadsheetCell::getString() const
{
 mNumAccesses++;
 return doubleToString(mValue);
}

This gives a hint to the compiler to replace calls to getValue() and getString() with the actual
method body instead of generating code to make a function call. Note that the inline keyword is
just a hint for the compiler. The compiler can ignore it if it thinks it would hurt performance.

There is one caveat: definitions of inline methods (and functions) must be available in every source
file in which they are called. That makes sense if you think about it: how can the compiler substitute
the method’s body if it can’t see the method definition? Thus, if you write inline methods, you
should place the definitions in a header file along with their prototypes.

NOTE  Advanced C++ compilers do not require you to put definitions of inline
methods in a header file. For example, Microsoft Visual C++ supports Link-
Time Code Generation (LTCG), which automatically inlines small function bod-
ies, even if they are not declared as inline and even if they are not defined in
a header file. GCC and Clang have similar features. When you use such a com-
piler, make use of it, and don’t put the definitions in the header file. This way,
your interface files stay clean without any visible implementation details.

C++ provides an alternate syntax for declaring inline methods that doesn’t use the inline key-
word at all. Instead, you place the method definition directly in the class definition. Here is a
SpreadsheetCell class definition with this syntax:

class SpreadsheetCell
{
 public:
 // Omitted for brevity
 double getValue() const { mNumAccesses++; return mValue; }

 std::string getString() const
 {

More about Methods  ❘  257

 mNumAccesses++;
 return doubleToString(mValue);
 }
 // Omitted for brevity
};

NOTE  If you single-step with a debugger on a function call that is inlined, some
advanced C++ debuggers will jump to the actual source code of the inline func-
tion, giving you the illusion of a function call when in reality, the code is inlined.

Many C++ programmers discover the inline method syntax and employ it without understanding
the ramifications of marking a method inline. Marking a method or function as inline only gives
a hint to the compiler. Compilers will only inline the simplest methods and functions. If you define
an inline method that the compiler doesn’t want to inline, it will silently ignore the hint. Modern
compilers will take metrics like code bloat into account before deciding to inline a method or func-
tion, and they will not inline anything that is not cost-effective.

Default Arguments
A feature similar to method overloading in C++ is default arguments. You can specify defaults
for function and method parameters in the prototype. If the user specifies those arguments, the
default values are ignored. If the user omits those arguments, the default values are used. There is a
limitation, though: you can only provide defaults for a continuous list of parameters starting from
the rightmost parameter. Otherwise, the compiler will not be able to match missing arguments to
default arguments. Default arguments can be used in functions, methods, and constructors. For
example, you can assign default values to the width and height in your Spreadsheet constructor:

class Spreadsheet
{
 public:
 Spreadsheet(size_t width = 100, size_t height = 100);
 // Omitted for brevity
};

The implementation of the Spreadsheet constructor stays the same. Note that you specify the
default arguments only in the method declaration, but not in the definition.

Now you can call the Spreadsheet constructor with zero, one, or two, arguments even though
there is only one non-copy constructor:

Spreadsheet s1;
Spreadsheet s2(5);
Spreadsheet s3(5, 6);

A constructor with defaults for all its parameters can function as a default constructor. That is,
you can construct an object of that class without specifying any arguments. If you try to declare
both a default constructor and a multi-argument constructor with defaults for all its parameters,
the compiler will complain because it won’t know which constructor to call if you don’t specify any
arguments.

258  ❘  CHAPTER 9   Mastering Classes and Objects

Note that anything you can do with default arguments you can do with method overloading. You
could write three different constructors, each of which takes a different number of parameters.
However, default arguments allow you to write just one constructor that can take three different
number of arguments. You should use the mechanism with which you are most comfortable.

DIFFERENT KINDS OF DATA MEMBERS

C++ gives you many choices for data members. In addition to declaring simple data members in
your classes, you can create static data members that all objects of the class share, const mem-
bers, reference members, const reference members, and more. This section explains the intricacies
of these different kinds of data members.

static Data Members
Sometimes giving each object of a class a copy of a variable is overkill or won’t work. The data
member might be specific to the class, but not appropriate for each object to have its own copy. For
example, you might want to give each spreadsheet a unique numerical identifier. You would need a
counter that starts at 0 from which each new object could obtain its ID. This spreadsheet counter
really belongs to the Spreadsheet class, but it doesn’t make sense for each Spreadsheet object to
have a copy of it because you would have to keep all the counters synchronized somehow. C++ pro-
vides a solution with static data members. A static data member is a data member associated with
a class instead of an object. You can think of static data members as global variables specific to a
class. Here is the Spreadsheet class definition, including the new static counter data member:

class Spreadsheet
{
 // Omitted for brevity
 private:
 static size_t sCounter;
};

In addition to listing static class members in the class definition, you will have to allocate space for
them in a source file, usually the source file in which you place your class method definitions. You
can initialize them at the same time, but note that unlike normal variables and data members, they
are initialized to 0 by default. Static pointers are initialized to nullptr. Here is the code to allocate
space for, and zero-initialize, the sCounter member:

size_t Spreadsheet::sCounter;

Static data members are zero-initialized by default, but if you want, you can explicitly initialize
them to 0 as follows:

size_t Spreadsheet::sCounter = 0;

This code appears outside of any function or method bodies. It’s almost like declaring a global vari-
able, except that the Spreadsheet:: scope resolution specifies that it’s part of the Spreadsheet
class.

Different Kinds of Data Members  ❘  259

Inline Variables
Starting with C++17, you can declare your static data members as inline. The benefit of this is that
you do not have to allocate space for them in a source file. Here’s an example:

class Spreadsheet
{
 // Omitted for brevity
 private:
 static inline size_t sCounter = 0;
};

Note the inline keyword. With this class definition, the following line can be removed from the
source file:

size_t Spreadsheet::sCounter;

Accessing static Data Members within Class Methods
You can use static data members as if they were regular data members from within class methods.
For example, you might want to create an mId data member for the Spreadsheet class and initialize
it from sCounter in the Spreadsheet constructor. Here is the Spreadsheet class definition with an
mId member:

class Spreadsheet
{
 public:
 // Omitted for brevity
 size_t getId() const;
 private:
 // Omitted for brevity
 static size_t sCounter;
 size_t mId = 0;
};

Here is an implementation of the Spreadsheet constructor that assigns the initial ID:

Spreadsheet::Spreadsheet(size_t width, size_t height)
 : mId(sCounter++), mWidth(width), mHeight(height)
{
 mCells = new SpreadsheetCell*[mWidth];
 for (size_t i = 0; i < mWidth; i++) {
 mCells[i] = new SpreadsheetCell[mHeight];
 }
}

As you can see, the constructor can access sCounter as if it were a normal member. The copy con-
structor should also assign a new ID. This is handled automatically because the Spreadsheet copy
constructor delegates to the non-copy constructor, which creates the new ID.

You should not copy the ID in the copy assignment operator. Once an ID is assigned to an object, it
should never change. Thus, it’s recommended to make mId a const data member. const data mem-
bers are discussed later in this chapter.

C++17

260  ❘  CHAPTER 9   Mastering Classes and Objects

Accessing static Data Members Outside Methods
Access control specifiers apply to static data members: sCounter is private, so it cannot be
accessed from outside class methods. If sCounter was public, you could access it from outside class
methods by specifying that the variable is part of the Spreadsheet class with the :: scope resolu-
tion operator:

int c = Spreadsheet::sCounter;

However, it’s not recommended to have public data members (const static members discussed in
the next section are an exception). You should grant access through public get/set methods. If you
want to grant access to a static data member, you need to implement static get/set methods.

const static Data Members
Data members in your class can be declared const, meaning they can’t be changed after they are
created and initialized. You should use static const (or const static) data members in place
of global constants when the constants apply only to the class, also called class constants. static
const data members of integral and enumeration types can be defined and initialized inside the
class definition without making them inline variables. For example, you might want to specify a
maximum height and width for spreadsheets. If the user tries to construct a spreadsheet with a
greater height or width than the maximum, the maximum is used instead. You can make the maxi-
mum height and width static const members of the Spreadsheet class:

class Spreadsheet
{
 public:
 // Omitted for brevity
 static const size_t kMaxHeight = 100;
 static const size_t kMaxWidth = 100;
};

You can use these new constants in your constructor as follows:

Spreadsheet::Spreadsheet(size_t width, size_t height)
 : mId(sCounter++)
 , mWidth(std::min(width, kMaxWidth)) // std::min() requires <algorithm>
 , mHeight(std::min(height, kMaxHeight))
{
 mCells = new SpreadsheetCell*[mWidth];
 for (size_t i = 0; i < mWidth; i++) {
 mCells[i] = new SpreadsheetCell[mHeight];
 }
}

NOTE  Instead of automatically clamping the width and height to their maxi-
mum, you could also decide to throw an exception when the width or height
exceed their maximum. However, the destructor will not be called when you
throw an exception from a constructor, so you need to be careful with this. This
is further explained in Chapter 14.

Different Kinds of Data Members  ❘  261

NOTE  Non-static data members can also be declared const. For example,
the mId data member could be declared as const. Because you cannot assign
to const data members, you need to initialize them with in-class initializers
or with ctor-initializers. Depending on your use case, this might mean that an
assignment operator cannot be provided for your class with non-static const
data members. If that’s the case, the assignment operator is typically marked as
deleted.

kMaxHeight and kMaxWidth are public, so you can access them from anywhere in your program as
if they were global variables, but with slightly different syntax. You must specify that the variable is
part of the Spreadsheet class with the :: scope resolution operator:

cout << "Maximum height is: " << Spreadsheet::kMaxHeight << endl;

These constants can also be used as default values for the constructor parameters. Remember that
you can only give default values for a continuous set of parameters starting with the rightmost
parameter:

class Spreadsheet
{
 public:
 Spreadsheet(size_t width = kMaxWidth, size_t height = kMaxHeight);
 // Omitted for brevity
};

Reference Data Members
Spreadsheets and SpreadsheetCells are great, but they don’t make a very useful application by
themselves. You need code to control the entire spreadsheet program, which you could package into
a SpreadsheetApplication class.

The implementation of this class is unimportant at the moment. For now, consider this architecture
problem: how can spreadsheets communicate with the application? The application stores a list
of spreadsheets, so it can communicate with the spreadsheets. Similarly, each spreadsheet
could store a reference to the application object. The Spreadsheet class must then know about
the SpreadsheetApplication class, and the SpreadsheetApplication class must know about the
Spreadsheet class. This is a circular reference and cannot be solved with normal #includes. The
solution is to use a forward declaration in one of the header files. The following is a new Spreadsheet
class definition that uses a forward declaration to tell the compiler about the SpreadsheetApplication
class. Chapter 11 explains another benefit of forward declarations: they can improve compilation and
linking times.

class SpreadsheetApplication; // forward declaration

class Spreadsheet
{
 public:
 Spreadsheet(size_t width, size_t height,
 SpreadsheetApplication& theApp);

262  ❘  CHAPTER 9   Mastering Classes and Objects

 // Code omitted for brevity.
 private:
 // Code omitted for brevity.
 SpreadsheetApplication& mTheApp;
};

This definition adds a SpreadsheetApplication reference as a data member. It’s recommended
to use a reference in this case instead of a pointer because a Spreadsheet should always refer to a
SpreadsheetApplication. This would not be guaranteed with a pointer.

Note that storing a reference to the application is only done to demonstrate the use of references as
data members. It’s not recommended to couple the Spreadsheet and SpreadsheetApplication
classes together in this way, but instead to use a paradigm such as MVC (Model-View-Controller),
introduced in Chapter 4.

The application reference is given to each Spreadsheet in its constructor. A reference cannot exist
without referring to something, so mTheApp must be given a value in the ctor-initializer of the
constructor:

Spreadsheet::Spreadsheet(size_t width, size_t height,
 SpreadsheetApplication& theApp)
 : mId(sCounter++)
 , mWidth(std::min(width, kMaxWidth))
 , mHeight(std::min(height, kMaxHeight))
 , mTheApp(theApp)
{
 // Code omitted for brevity.
}

You must also initialize the reference member in the copy constructor. This is handled automatically
because the Spreadsheet copy constructor delegates to the non-copy constructor, which initializes
the reference member.

Remember that after you have initialized a reference, you cannot change the object to which it
refers. It’s not possible to assign to references in the assignment operator. Depending on your use
case, this might mean that an assignment operator cannot be provided for your class with reference
data members. If that’s the case, the assignment operator is typically marked as deleted.

const Reference Data Members
Your reference members can refer to const objects just as normal references can refer to const
objects. For example, you might decide that Spreadsheets should only have a const reference to
the application object. You can simply change the class definition to declare mTheApp as a const
reference:

class Spreadsheet
{
 public:
 Spreadsheet(size_t width, size_t height,
 const SpreadsheetApplication& theApp);

Nested Classes  ❘  263

 // Code omitted for brevity.
 private:
 // Code omitted for brevity.
 const SpreadsheetApplication& mTheApp;
};

There is an important difference between using a const reference versus a non-const reference. The
const reference SpreadsheetApplication data member can only be used to call const methods on
the SpreadsheetApplication object. If you try to call a non-const method through a const refer-
ence, you will get a compilation error.

It’s also possible to have a static reference member or a static const reference member, but you
will rarely need something like that.

NESTED CLASSES

Class definitions can contain more than just member functions and data members. You can also
write nested classes and structs, declare type aliases, or create enumerated types. Anything
declared inside a class is in the scope of that class. If it is public, you can access it outside the class
by scoping it with the ClassName:: scope resolution syntax.

You can provide a class definition inside another class definition. For example, you might decide that
the SpreadsheetCell class is really part of the Spreadsheet class. And since it becomes part of the
Spreadsheet class, you might as well rename it to Cell. You could define both of them like this:

class Spreadsheet
{
 public:
 class Cell
 {
 public:
 Cell() = default;
 Cell(double initialValue);
 // Omitted for brevity
 };

 Spreadsheet(size_t width, size_t height,
 const SpreadsheetApplication& theApp);
 // Remainder of Spreadsheet declarations omitted for brevity
};

Now, the Cell class is defined inside the Spreadsheet class, so anywhere you refer to a Cell out-
side of the Spreadsheet class, you must qualify the name with the Spreadsheet:: scope. This
applies even to the method definitions. For example, the double constructor of Cell now looks like
this:

Spreadsheet::Cell::Cell(double initialValue)
 : mValue(initialValue)
{
}

264  ❘  CHAPTER 9   Mastering Classes and Objects

You must even use the syntax for return types (but not parameters) of methods in the Spreadsheet
class itself:

Spreadsheet::Cell& Spreadsheet::getCellAt(size_t x, size_t y)
{
 verifyCoordinate(x, y);
 return mCells[x][y];
}

Fully defining the nested Cell class directly inside the Spreadsheet class makes the definition of the
Spreadsheet class a bit bloated. You can alleviate this by only including a forward declaration for
Cell in the Spreadsheet class, and then defining the Cell class separately, as follows:

class Spreadsheet
{
 public:
 class Cell;

 Spreadsheet(size_t width, size_t height,
 const SpreadsheetApplication& theApp);
 // Remainder of Spreadsheet declarations omitted for brevity
};

class Spreadsheet::Cell
{
 public:
 Cell() = default;
 Cell(double initialValue);
 // Omitted for brevity
};

Normal access control applies to nested class definitions. If you declare a private or protected
nested class, you can only use it inside the outer class. A nested class has access to all protected
and private members of the outer class. The outer class on the other hand can only access public
members of the nested class.

ENUMERATED TYPES INSIDE CLASSES

If you want to define a number of constants inside a class, you should use an enumerated type
instead of a collection of #defines. For example, you can add support for cell coloring to the
SpreadsheetCell class as follows:

class SpreadsheetCell
{
 public:
 // Omitted for brevity
 enum class Color { Red = 1, Green, Blue, Yellow };
 void setColor(Color color);
 Color getColor() const;
 private:
 // Omitted for brevity
 Color mColor = Color::Red;
};

Operator Overloading  ❘  265

The implementation of the setColor() and getColor() methods is straightforward:

void SpreadsheetCell::setColor(Color color) { mColor = color; }

SpreadsheetCell::Color SpreadsheetCell::getColor() const { return mColor; }

The new methods can be used as follows:

SpreadsheetCell myCell(5);
myCell.setColor(SpreadsheetCell::Color::Blue);
auto color = myCell.getColor();

OPERATOR OVERLOADING

You often want to perform operations on objects, such as adding them, comparing them, or stream-
ing them to or from files. For example, spreadsheets are really only useful when you can perform
arithmetic actions on them, such as summing an entire row of cells.

Example: Implementing Addition for SpreadsheetCells
In true object-oriented fashion, SpreadsheetCell objects should be able to add themselves to other
SpreadsheetCell objects. Adding a cell to another cell produces a third cell with the result. It
doesn’t change either of the original cells. The meaning of addition for SpreadsheetCells is the
addition of the values of the cells.

First Attempt: The add Method
You can declare and define an add() method for your SpreadsheetCell class like this:

class SpreadsheetCell
{
 public:
 // Omitted for brevity
 SpreadsheetCell add(const SpreadsheetCell& cell) const;
 // Omitted for brevity
};

This method adds two cells together, returning a new third cell whose value is the sum of the first
two. It is declared const and takes a reference to a const SpreadsheetCell because add() does
not change either of the source cells. Here is the implementation:

SpreadsheetCell SpreadsheetCell::add(const SpreadsheetCell& cell) const
{
 return SpreadsheetCell(getValue() + cell.getValue());
}

You can use the add() method like this:

SpreadsheetCell myCell(4), anotherCell(5);
SpreadsheetCell aThirdCell = myCell.add(anotherCell);

That works, but it’s a bit clumsy. You can do better.

266  ❘  CHAPTER 9   Mastering Classes and Objects

Second Attempt: Overloaded operator+ as a Method
It would be convenient to be able to add two cells with the plus sign the way that you add two ints
or two doubles—something like this:

SpreadsheetCell myCell(4), anotherCell(5);
SpreadsheetCell aThirdCell = myCell + anotherCell;

C++ allows you to write your own version of the plus sign, called the addition operator, to work
correctly with your classes. To do that, you write a method with the name operator+ that looks
like this:

class SpreadsheetCell
{
 public:
 // Omitted for brevity
 SpreadsheetCell operator+(const SpreadsheetCell& cell) const;
 // Omitted for brevity
};

NOTE  You are allowed to write spaces between operator and the plus sign. For
example, instead of writing operator+, you can write operator +. This is true
for all operators. This book adopts the style without spaces.

The definition of the method is identical to the implementation of the add() method:

SpreadsheetCell SpreadsheetCell::operator+(const SpreadsheetCell& cell) const
{
 return SpreadsheetCell(getValue() + cell.getValue());
}

Now you can add two cells together using the plus sign as shown previously.

This syntax takes a bit of getting used to. Try not to worry too much about the strange method
name operator+—it’s just a name like foo or add. In order to understand the rest of the syntax,
it helps to understand what’s really going on. When your C++ compiler parses a program and
encounters an operator, such as +, -, =, or <<, it tries to find a function or method with the name
operator+, operator-, operator=, or operator<<, respectively, that takes the appropriate param-
eters. For example, when the compiler sees the following line, it tries to find either a method in the
SpreadsheetCell class named operator+ that takes another SpreadsheetCell object, or a global
function named operator+ that takes two SpreadsheetCell objects:

SpreadsheetCell aThirdCell = myCell + anotherCell;

If the SpreadsheetCell class contains an operator+ method, then the previous line is translated to
this:

SpreadsheetCell aThirdCell = myCell.operator+(anotherCell);

Note that there’s no requirement that operator+ takes as a parameter an object of the same type as
the class for which it’s written. You could write an operator+ for SpreadsheetCells that takes a

Operator Overloading  ❘  267

Spreadsheet to add to the SpreadsheetCell. That wouldn’t make sense to the programmer, but
the compiler would allow it.

Note also that you can give operator+ any return value you want. Operator overloading is a form
of function overloading, and recall that function overloading does not look at the return type of the
function.

Implicit Conversions
Surprisingly, once you’ve written the operator+ shown earlier, not only can you add two cells
together, but you can also add a cell to a string_view, a double, or an int!

SpreadsheetCell myCell(4), aThirdCell;
string str = "hello";
aThirdCell = myCell + string_view(str);
aThirdCell = myCell + 5.6;
aThirdCell = myCell + 4;

The reason this code works is that the compiler does more to try to find an appropriate operator+
than just look for one with the exact types specified. The compiler also tries to find an appropriate
conversion for the types so that an operator+ can be found. Constructors that take the type in ques-
tion are appropriate converters. In the preceding example, when the compiler sees a SpreadsheetCell
trying to add itself to double, it finds the SpreadsheetCell constructor that takes a double and
constructs a temporary SpreadsheetCell object to pass to operator+. Similarly, when the com-
piler sees the line trying to add a SpreadsheetCell to a string_view, it calls the string_view
SpreadsheetCell constructor to create a temporary SpreadsheetCell to pass to operator+.

This implicit conversion behavior is usually convenient. However, in the preceding example, it
doesn’t really make sense to add a string_view to a SpreadsheetCell. You can prevent the
implicit construction of a SpreadsheetCell from a string_view by marking that constructor with
the explicit keyword:

class SpreadsheetCell
{
 public:
 SpreadsheetCell() = default;
 SpreadsheetCell(double initialValue);
 explicit SpreadsheetCell(std::string_view initialValue);
 // Remainder omitted for brevity
};

The explicit keyword goes only in the class definition, and only makes sense when applied to
constructors that can be called with one argument, such as one-parameter constructors or multi-
parameter constructors with default values for parameters.

The selection of an implicit constructor might be inefficient, because temporary objects must be cre-
ated. To avoid implicit construction for adding a double, you could write a second operator+ as
follows:

SpreadsheetCell SpreadsheetCell::operator+(double rhs) const
{
 return SpreadsheetCell(getValue() + rhs);
}

268  ❘  CHAPTER 9   Mastering Classes and Objects

Third Attempt: Global operator+
Implicit conversions allow you to use an operator+ method to add your SpreadsheetCell objects
to ints and doubles. However, the operator is not commutative, as shown in the following code:

aThirdCell = myCell + 4; // Works fine.
aThirdCell = myCell + 5.6; // Works fine.
aThirdCell = 4 + myCell; // FAILS TO COMPILE!
aThirdCell = 5.6 + myCell; // FAILS TO COMPILE!

The implicit conversion works fine when the SpreadsheetCell object is on the left of the operator,
but it doesn’t work when it’s on the right. Addition is supposed to be commutative, so something
is wrong here. The problem is that the operator+ method must be called on a SpreadsheetCell
object, and that object must be on the left-hand side of the operator+. That’s just the way the C++
language is defined. So, there’s no way you can get this code to work with an operator+ method.

However, you can get it to work if you replace the in-class operator+ method with a global
operator+ function that is not tied to any particular object. The function looks like this:

SpreadsheetCell operator+(const SpreadsheetCell& lhs,
 const SpreadsheetCell& rhs)
{
 return SpreadsheetCell(lhs.getValue() + rhs.getValue());
}

You need to declare the operator in the header file:

class SpreadsheetCell
{
 //Omitted for brevity
};

SpreadsheetCell operator+(const SpreadsheetCell& lhs,
 const SpreadsheetCell& rhs);

Now all four of the addition lines work as you expect:

aThirdCell = myCell + 4; // Works fine.
aThirdCell = myCell + 5.6; // Works fine.
aThirdCell = 4 + myCell; // Works fine.
aThirdCell = 5.6 + myCell; // Works fine.

You might be wondering what happens if you write the following code:

aThirdCell = 4.5 + 5.5;

It compiles and runs, but it’s not calling the operator+ you wrote. It does normal double addition
of 4.5 and 5.5, which results in the following intermediate statement:

aThirdCell = 10;

To make this assignment work, there should be a SpreadsheetCell object on the right-hand side.
The compiler will discover a non-explicit user-defined constructor that takes a double, will use this
constructor to implicitly convert the double value into a temporary SpreadsheetCell object, and
will then call the assignment operator.

Operator Overloading  ❘  269

NOTE  In C++, you cannot change the precedence of operators. For example,
* and / are always evaluated before + and -. The only thing user-defined opera-
tors can do is specify the implementation once the precedence of operations has
been determined. C++ also does not allow you to invent new operator symbols,
or to change the number of arguments for operators.

Overloading Arithmetic Operators
Now that you understand how to write operator+, the rest of the basic arithmetic operators are
straightforward. Here are the declarations of +, -, *, and /, where you have to replace <op> with
+, -, *, and /, resulting in four functions. You can also overload %, but it doesn’t make sense for the
double values stored in SpreadsheetCells.

class SpreadsheetCell
{
 // Omitted for brevity
};

SpreadsheetCell operator<op>(const SpreadsheetCell& lhs,
 const SpreadsheetCell& rhs);

The implementations of operator- and operator* are very similar to the implementation of
operator+, so these are not shown. For operator/, the only tricky aspect is remembering to check
for division by zero. This implementation throws an exception if division by zero is detected:

SpreadsheetCell operator/(const SpreadsheetCell& lhs,
 const SpreadsheetCell& rhs)
{
 if (rhs.getValue() == 0) {
 throw invalid_argument("Divide by zero.");
 }
 return SpreadsheetCell(lhs.getValue() / rhs.getValue());
}

C++ does not require you to actually implement multiplication in operator*, division in operator/,
and so on. You could implement multiplication in operator/, division in operator+, and so forth.
However, that would be extremely confusing, and there is no good reason to do so except as a practi-
cal joke. Whenever possible, stick to the commonly used operator meanings in your implementations.

Overloading the Arithmetic Shorthand Operators
In addition to the basic arithmetic operators, C++ provides shorthand operators such as +=
and -=. You might assume that writing operator+ for your class also provides operator+=. No
such luck. You have to overload the shorthand arithmetic operators explicitly. These operators
differ from the basic arithmetic operators in that they change the object on the left-hand side of
the operator instead of creating a new object. A second, subtler difference is that, like the assign-
ment operator, they generate a result that is a reference to the modified object.

270  ❘  CHAPTER 9   Mastering Classes and Objects

The arithmetic shorthand operators always require an object on the left-hand side, so you should write
them as methods, not as global functions. Here are the declarations for the SpreadsheetCell class:

class SpreadsheetCell
{
 public:
 // Omitted for brevity
 SpreadsheetCell& operator+=(const SpreadsheetCell& rhs);
 SpreadsheetCell& operator-=(const SpreadsheetCell& rhs);
 SpreadsheetCell& operator*=(const SpreadsheetCell& rhs);
 SpreadsheetCell& operator/=(const SpreadsheetCell& rhs);
 // Omitted for brevity
};

Here is the implementation for operator+=. The others are very similar.

SpreadsheetCell& SpreadsheetCell::operator+=(const SpreadsheetCell& rhs)
{
 set(getValue() + rhs.getValue());
 return *this;
}

The shorthand arithmetic operators are combinations of the basic arithmetic and assignment opera-
tors. With the previous definitions, you can now write code like this:

SpreadsheetCell myCell(4), aThirdCell(2);
aThirdCell -= myCell;
aThirdCell += 5.4;

You cannot, however, write code like this (which is a good thing!):

5.4 += aThirdCell;

When you have both a normal and a shorthand version of a certain operator, it’s recommended to
implement the normal one in terms of the shorthand version to avoid code duplication. For example:

SpreadsheetCell operator+(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{
 auto result(lhs); // Local copy
 result += rhs; // Forward to op=() version
 return result;
}

Overloading Comparison Operators
The comparison operators, such as >, <, and ==, are another useful set of operators to define for
your classes. Like the basic arithmetic operators, they should be global functions so that you can use
implicit conversion on both the left-hand side and the right-hand side of the operator. The comparison
operators all return a bool. Of course, you can change the return type, but that’s not recommended.

Here are the declarations, where you have to replace <op> with ==, <, >, !=, <=, and >=, resulting in
six functions:

class SpreadsheetCell
{
 // Omitted for brevity
};

Operator Overloading  ❘  271

bool operator<op>(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs);

Here is the definition of operator==. The others are very similar.

bool operator==(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{
 return (lhs.getValue() == rhs.getValue());
}

NOTE  The preceding overloaded comparison operators are using getValue(),
which returns a double. Most of the time, performing equality or inequality tests
on floating point values is not a good idea. You should use an epsilon test, but
that falls outside the scope of this book.

In classes with more data members, it might be painful to compare each data member. However,
once you’ve implemented == and <, you can write the rest of the comparison operators in terms of
those two. For example, here is a definition of operator>= that uses operator<:

bool operator>=(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{
 return !(lhs < rhs);
}

You can use these operators to compare SpreadsheetCells to other SpreadsheetCells, and also to
doubles and ints:

if (myCell > aThirdCell || myCell < 10) {
 cout << myCell.getValue() << endl;
}

Building Types with Operator Overloading
Many people find the syntax of operator overloading tricky and confusing, at least at first. The irony
is that it’s supposed to make things simpler. As you’ve discovered, that doesn’t mean simpler for the
person writing the class, but simpler for the person using the class. The point is to make your new
classes as similar as possible to built-in types such as int and double: it’s easier to add objects using
+ than to remember whether the method name you should call is add() or sum().

NOTE  Provide operator overloading as a service to clients of your class.

At this point, you might be wondering exactly which operators you can overload. The answer is
almost all of them—even some you’ve never heard of. You have actually just scratched the sur-
face: you’ve seen the assignment operator in the section on object life cycles, the basic arithmetic
operators, the shorthand arithmetic operators, and the comparison operators. Overloading the
stream insertion and extraction operators is also useful. In addition, there are some tricky, but

272  ❘  CHAPTER 9   Mastering Classes and Objects

interesting, things you can do with operator overloading that you might not anticipate at first. The
Standard Library uses operator overloading extensively. Chapter 15 explains how and when to
overload the rest of the operators. Chapters 16 to 20 cover the Standard Library.

BUILDING STABLE INTERFACES

Now that you understand all the gory syntax of writing classes in C++, it helps to revisit the design
principles from Chapters 5 and 6. Classes are the main unit of abstraction in C++. You should apply
the principles of abstraction to your classes to separate the interface from the implementation as
much as possible. Specifically, you should make all data members private and provide getter and set-
ter methods for them. This is how the SpreadsheetCell class is implemented. mValue is private;
set() sets this value, while getValue() and getString() retrieve the value.

Using Interface and Implementation Classes
Even with the preceding measures and the best design principles, the C++ language is fundamen-
tally unfriendly to the principle of abstraction. The syntax requires you to combine your public
interfaces and private (or protected) data members and methods together in one class definition,
thereby exposing some of the internal implementation details of the class to its clients. The downside
of this is that if you have to add new non-public methods or data members to your class, all the
clients of the class have to be recompiled. This can become a burden in bigger projects.

The good news is that you can make your interfaces a lot cleaner and hide all implementation
details, resulting in stable interfaces. The bad news is that it takes a bit of coding. The basic prin-
ciple is to define two classes for every class you want to write: the interface class and the imple-
mentation class. The implementation class is identical to the class you would have written if you
were not taking this approach. The interface class presents public methods identical to those of the
implementation class, but it only has one data member: a pointer to an implementation class object.
This is called the pimpl idiom, private implementation idiom, or bridge pattern. The interface class
method implementations simply call the equivalent methods on the implementation class object.
The result of this is that no matter how the implementation changes, it has no impact on the public
interface class. This reduces the need for recompilation. None of the clients that use the interface
class need to be recompiled if the implementation (and only the implementation) changes. Note that
this idiom only works if the single data member is a pointer to the implementation class. If it were a
by-value data member, the clients would have to be recompiled when the definition of the implemen-
tation class changes.

To use this approach with the Spreadsheet class, define a public interface class, Spreadsheet, that
looks like this:

#include "SpreadsheetCell.h"
#include <memory>

// Forward declarations
class SpreadsheetApplication;

Building Stable Interfaces  ❘  273

class Spreadsheet
{
 public:
 Spreadsheet(const SpreadsheetApplication& theApp,
 size_t width = kMaxWidth, size_t height = kMaxHeight);
 Spreadsheet(const Spreadsheet& src);
 ~Spreadsheet();

 Spreadsheet& operator=(const Spreadsheet& rhs);

 void setCellAt(size_t x, size_t y, const SpreadsheetCell& cell);
 SpreadsheetCell& getCellAt(size_t x, size_t y);

 size_t getId() const;

 static const size_t kMaxHeight = 100;
 static const size_t kMaxWidth = 100;

 friend void swap(Spreadsheet& first, Spreadsheet& second) noexcept;

 private:
 class Impl;
 std::unique_ptr<Impl> mImpl;
};

The implementation class, Impl, is a private nested class, because no one else besides the
Spreadsheet class needs to know about the implementation class. The Spreadsheet class now con-
tains only one data member: a pointer to an Impl instance. The public methods are identical to the
old Spreadsheet.

The nested Spreadsheet::Impl class has almost the same interface as the original Spreadsheet
class. However, because the Impl class is a private nested class of Spreadsheet, you cannot have the
following global friend swap() function that swaps two Spreadsheet::Impl objects:

friend void swap(Spreadsheet::Impl& first, Spreadsheet::Impl& second) noexcept;

Instead, a private swap() method is defined for the Spreadsheet::Impl class as follows:

void swap(Impl& other) noexcept;

The implementation is straightforward, but you need to remember that this is a nested class, so you
need to specify Spreadsheet::Impl::swap() instead of just Impl::swap(). The same holds true
for the other members. For details, see the section on nested classes earlier in this chapter. Here is
the swap() method:

void Spreadsheet::Impl::swap(Impl& other) noexcept
{
 using std::swap;

 swap(mWidth, other.mWidth);
 swap(mHeight, other.mHeight);
 swap(mCells, other.mCells);
}

274  ❘  CHAPTER 9   Mastering Classes and Objects

Now that the Spreadsheet class has a unique_ptr to the implementation class, the Spreadsheet
class needs to have a user-declared destructor. Since we don’t need to do anything in this destructor,
it can be defaulted in the implementation file as follows:

Spreadsheet::~Spreadsheet() = default;

This shows that you can default a special member function not only in the class definition, but also
in the implementation file.

The implementations of the Spreadsheet methods, such as setCellAt() and getCellAt(), just
pass the request on to the underlying Impl object:

void Spreadsheet::setCellAt(size_t x, size_t y, const SpreadsheetCell& cell)
{
 mImpl->setCellAt(x, y, cell);
}

SpreadsheetCell& Spreadsheet::getCellAt(size_t x, size_t y)
{
 return mImpl->getCellAt(x, y);
}

The constructors for the Spreadsheet must construct a new Impl to do its work:

Spreadsheet::Spreadsheet(const SpreadsheetApplication& theApp,
 size_t width, size_t height)
{
 mImpl = std::make_unique<Impl>(theApp, width, height);
}

Spreadsheet::Spreadsheet(const Spreadsheet& src)
{
 mImpl = std::make_unique<Impl>(*src.mImpl);
}

The copy constructor looks a bit strange because it needs to copy the underlying Impl from the
source spreadsheet. The copy constructor takes a reference to an Impl, not a pointer, so you must
dereference the mImpl pointer to get to the object itself so the constructor call can take its reference.

The Spreadsheet assignment operator must similarly pass on the assignment to the underlying
Impl:

Spreadsheet& Spreadsheet::operator=(const Spreadsheet& rhs)
{
 *mImpl = *rhs.mImpl;
 return *this;
}

The first line in the assignment operator looks a little odd. The Spreadsheet assignment operator
needs to forward the call to the Impl assignment operator, which only runs when you copy direct
objects. By dereferencing the mImpl pointers, you force direct object assignment, which causes the
assignment operator of Impl to be called.

The swap() function simply swaps the single data member:

void swap(Spreadsheet& first, Spreadsheet& second) noexcept
{

Summary  ❘  275

 using std::swap;

 swap(first.mImpl, second.mImpl);
}

This technique to truly separate interface from implementation is powerful. Although it is a bit
clumsy at first, once you get used to it, you will find it natural to work with. However, it’s not com-
mon practice in most workplace environments, so you might find some resistance to trying it from
your coworkers. The most compelling argument in favor of it is not the aesthetic one of splitting out
the interface, but the speedup in build time if the implementation of the class changes. When a class
is not using the pimpl idiom, a change to its implementation details might trigger a long build. For
example, adding a new data member to a class definition triggers a rebuild of all other source files
that include this class definition. With the pimpl idiom, you can modify the implementation class
definition as much as you like, as long as the public interface class remains untouched, it won’t trig-
ger a long build.

NOTE  With stable interface classes, build times can be reduced.

An alternative to separating the implementation from the interface is to use an abstract interface—
that is, an interface with only pure virtual methods—and then have an implementation class that
implements that interface. See Chapter 10 for a discussion on abstract interfaces.

SUMMARY

This chapter, along with Chapter 8, provided all the tools you need to write solid, well-designed
classes, and to use objects effectively.

You discovered that dynamic memory allocation in objects presents new challenges: you need to
implement a destructor, copy constructor, copy assignment operator, move constructor, and move
assignment operator, which properly copy, move, and free your memory. You learned how to pre-
vent assignment and pass-by-value by explicitly deleting the copy constructor and assignment opera-
tor. You discovered the copy-and-swap idiom to implement copy assignment operators, and learned
about the rule of zero.

You read more about different kinds of data members, including static, const, const reference,
and mutable members. You also learned about static, inline, and const methods, method over-
loading, and default arguments. This chapter also described nested class definitions, and friend
classes, functions, and methods.

You encountered operator overloading, and learned how to overload the arithmetic and comparison
operators, both as global friend functions and as class methods.

Finally, you learned how to take abstraction to the extreme by providing separate interface and
implementation classes.

Now that you’re fluent in the language of object-oriented programming, it’s time to tackle inheri-
tance, which is covered next in Chapter 10.

Discovering Inheritance
Techniques

WHAT’S IN THIS CHAPTER?

➤➤ How to extend a class through inheritance

➤➤ How to employ inheritance to reuse code

➤➤ How to build interactions between base classes and derived classes

➤➤ How to use inheritance to achieve polymorphism

➤➤ How to work with multiple inheritance

➤➤ How to deal with unusual problems in inheritance

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

Without inheritance, classes would simply be data structures with associated behaviors. That
alone would be a powerful improvement over procedural languages, but inheritance adds
an entirely new dimension. Through inheritance, you can build new classes based on exist-
ing ones. In this way, your classes become reusable and extensible components. This chapter
teaches you the different ways to leverage the power of inheritance. You will learn about
the specific syntax of inheritance as well as sophisticated techniques for making the most of
inheritance.

10

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

278  ❘  CHAPTER 10   Discovering Inheritance Techniques

The portion of this chapter relating to polymorphism draws heavily on the spreadsheet example dis-
cussed in Chapters 8 and 9. This chapter also refers to the object-oriented methodologies described
in Chapter 5. If you have not read that chapter and are unfamiliar with the theories behind inheri-
tance, you should review Chapter 5 before continuing.

BUILDING CLASSES WITH INHERITANCE

In Chapter 5, you learned that an “is-a” relationship recognizes the pattern that real-world objects
tend to exist in hierarchies. In programming, that pattern becomes relevant when you need to write
a class that builds on, or slightly changes, another class. One way to accomplish this aim is to copy
code from one class and paste it into the other. By changing the relevant parts or amending the code,
you can achieve the goal of creating a new class that is slightly different from the original. This
approach, however, leaves an OOP programmer feeling sullen and highly annoyed for the following
reasons:

➤➤ A bug fix to the original class will not be reflected in the new class because the two classes
contain completely separate code.

➤➤ The compiler does not know about any relationship between the two classes, so they are not
polymorphic (see Chapter 5)—they are not just different variations on the same thing.

➤➤ This approach does not build a true is-a relationship. The new class is very similar to the
original because it shares code, not because it really is the same type of object.

➤➤ The original code might not be obtainable. It may exist only in a precompiled binary format,
so copying and pasting the code might be impossible.

Not surprisingly, C++ provides built-in support for defining a true is-a relationship. The characteris-
tics of C++ is-a relationships are described in the following section.

Extending Classes
When you write a class definition in C++, you can tell the compiler that your class is inheriting
from, deriving from, or extending an existing class. By doing so, your class automatically contains
the data members and methods of the original class, which is called the parent class or base class or
superclass. Extending an existing class gives your class (which is now called a derived class or a sub-
class) the ability to describe only the ways in which it is different from the parent class.

To extend a class in C++, you specify the class you are extending when you write the class
definition. To show the syntax for inheritance, two classes are used, called Base and Derived.
Don’t worry—more interesting examples are coming later. To begin, consider the following defini-
tion for the Base class:

class Base
{
 public:
 void someMethod();
 protected:

Building Classes with Inheritance  ❘  279

 int mProtectedInt;
 private:
 int mPrivateInt;
};

If you want to build a new class, called Derived, which inherits from Base, you tell the compiler
that Derived derives from Base with the following syntax:

class Derived : public Base
{
 public:
 void someOtherMethod();
};

Derived is a full-fledged class that just happens to share the characteristics of the
Base class. Don’t worry about the word public for now—its meaning is explained
later in this chapter. Figure 10-1 shows the simple relationship between Derived
and Base. You can declare objects of type Derived just like any other object. You
could even define a third class that inherits from Derived, forming a chain of
classes, as shown in Figure 10-2.

Derived doesn’t have to be the only derived class of Base. Additional classes
can also inherit from Base, effectively becoming siblings to Derived, as
shown in Figure 10-3.

A Client’s View of Inheritance
To a client, or another part of your code, an object of type Derived is also an
object of type Base because Derived inherits from Base. This means that all
the public methods and data members of Base and all the public methods
and data members of Derived are available.

Code that uses the derived class does not need to know which
class in your inheritance chain has defined a method in order to
call it. For example, the following code calls two methods of a
Derived object even though one of the methods is defined by the
Base class:

Derived myDerived;
myDerived.someMethod();
myDerived.someOtherMethod();

It is important to understand that inheritance works in only one direction. The Derived class has a
very clearly defined relationship to the Base class, but the Base class, as written, doesn’t know any-
thing about the Derived class. That means that objects of type Base do not support public meth-
ods and data members of Derived because Base is not a Derived.

The following code does not compile because the Base class does not contain a public method
called someOtherMethod():

Base myBase;
myBase.someOtherMethod(); // Error! Base doesn't have a someOtherMethod().

Base

Derived

FIGURE 10-1

DerivedDerived

Base

Derived

FIGURE 10-2

Base

Derived1 Derived2

FIGURE 10-3

280  ❘  CHAPTER 10   Discovering Inheritance Techniques

NOTE  From the perspective of other code, an object belongs to its defined class
as well as to any base classes.

A pointer or reference to an object can refer to an object of the declared class or any of its derived
classes. This tricky subject is explained in detail later in this chapter. The concept to understand
now is that a pointer to a Base can actually be pointing to a Derived object. The same is true for
a reference. The client can still access only the methods and data members that exist in Base, but
through this mechanism, any code that operates on a Base can also operate on a Derived.

For example, the following code compiles and works just fine, even though it initially appears that
there is a type mismatch:

Base* base = new Derived(); // Create Derived, store it in Base pointer.

However, you cannot call methods from the Derived class through the Base pointer. The following
does not work:

base->someOtherMethod();

This is flagged as an error by the compiler because, although the object is of type Derived and
therefore does have someOtherMethod() defined, the compiler can only think of it as type Base,
which does not have someOtherMethod() defined.

A Derived Class’s View of Inheritance
To the derived class, nothing much has changed in terms of how it is written or how it behaves.
You can still define methods and data members on a derived class just as you would on a regular
class. The previous definition of Derived declares a method called someOtherMethod(). Thus, the
Derived class augments the Base class by adding an additional method.

A derived class can access public and protected methods and data members declared in its base
class as though they were its own, because technically, they are. For example, the implementation
of someOtherMethod() on Derived could make use of the data member mProtectedInt, which
is declared as part of Base. The following code shows this. Accessing a base class data member or
method is no different than if the data member or method were declared as part of the derived class.

void Derived::someOtherMethod()
{
 cout << "I can access base class data member mProtectedInt." << endl;
 cout << "Its value is " << mProtectedInt << endl;
}

When access specifiers (public, private, and protected) were introduced in Chapter 8, the dif-
ference between private and protected may have been confusing. Now that you understand
derived classes, the difference should be clear. If a class declares methods or data members as pro-
tected, derived classes have access to them. If they are declared as private, derived classes do not
have access. The following implementation of someOtherMethod() does not compile because the
derived class attempts to access a private data member from the base class.

void Derived::someOtherMethod()
{
 cout << "I can access base class data member mProtectedInt." << endl;

Building Classes with Inheritance  ❘  281

 cout << "Its value is " << mProtectedInt << endl;
 cout << "The value of mPrivateInt is " << mPrivateInt << endl; // Error!
}

The private access specifier gives you control over how a potential derived class could interact with
your class. I recommend that you make all your data members private by default. You can provide
public getters and setters if you want to allow anyone to access those data members, and you can
provide protected getters and setters if you want only derived classes to access them. The reason to
make data members private by default is that this provides the highest level of encapsulation. This
means that you can change how you represent your data while keeping the public and protected
interfaces unchanged. Without giving direct access to data members, you can also easily add checks
on the input data in your public and protected setters. Methods should also be private by
default. Only make those methods public that are designed to be public, and make methods pro-
tected if you want only derived classes to have access to them.

NOTE  From the perspective of a derived class, all public and protected data
members and methods from the base class are available for use.

Preventing Inheritance
C++ allows you to mark a class as final, which means trying to inherit from it will result in a
compilation error. A class can be marked as final with the final keyword right behind the name
of the class. For example, the following Base class is marked as final:

class Base final
{
 // Omitted for brevity
};

If a class tries to inherit from this Base class, the compiler will complain because Base is marked as
final.

class Derived : public Base
{
 // Omitted for brevity
};

Overriding Methods
The main reasons to inherit from a class are to add or replace functionality. The definition of
Derived adds functionality to its parent class by providing an additional method, someOther-
Method(). The other method, someMethod(), is inherited from Base and behaves in the derived
class exactly as it does in the base class. In many cases, you will want to modify the behavior
of a class by replacing, or overriding, a method.

How I Learned to Stop Worrying and Make Everything virtual
There is one small twist to overriding methods in C++ and it has to do with the keyword vir-
tual. Only methods that are declared as virtual in the base class can be overridden properly by

282  ❘  CHAPTER 10   Discovering Inheritance Techniques

derived classes. The keyword goes at the beginning of a method declaration as shown in the modi-
fied version of Base that follows:

class Base
{
 public:
 virtual void someMethod();
 protected:
 int mProtectedInt;
 private:
 int mPrivateInt;
};

The virtual keyword has a few subtleties. A good rule of thumb is to just make all of your meth-
ods virtual. That way, you won’t have to worry about whether or not overriding the method will
work. The only drawback is a very tiny performance hit. The subtleties of the virtual keyword are
covered in the section “The Truth about virtual.”

The same holds for the Derived class. Its methods should also be marked virtual:

class Derived : public Base
{
 public:
 virtual void someOtherMethod();
};

NOTE  As a rule of thumb, make all your methods virtual (including the
destructor, but not constructors) to avoid problems associated with omission
of the virtual keyword. Note that the compiler-generated destructor is not
virtual!

Syntax for Overriding a Method
To override a method, you redeclare it in the derived class definition exactly as it was declared in
the base class, and you add the override keyword. In the derived class’s implementation file, you
provide the new definition.

For example, the Base class contains a method called someMethod(). The definition of some-
Method() is provided in Base.cpp and is shown here:

void Base::someMethod()
{
 cout << "This is Base's version of someMethod()." << endl;
}

Note that you do not repeat the virtual keyword in front of the method definition.

If you want to provide a new definition for someMethod() in the Derived class, you must first add it
to the class definition for Derived, as follows:

class Derived : public Base
{

Building Classes with Inheritance  ❘  283

 public:
 virtual void someMethod() override; // Overrides Base's someMethod()
 virtual void someOtherMethod();
};

Adding the override keyword is not mandatory, but it is highly recommended, and discussed in
more detail in the section after looking at the client’s view of overridden methods. The new defini-
tion of someMethod() is specified along with the rest of Derived’s methods in Derived.cpp.

void Derived::someMethod()
{
 cout << "This is Derived's version of someMethod()." << endl;
}

Once a method or destructor is marked as virtual, it is virtual for all derived classes even if the
virtual keyword is removed from derived classes. For example, in the following Derived class,
someMethod() is still virtual and can still be overridden by classes inheriting from Derived,
because it was marked as virtual in the Base class.

class Derived : public Base
{
 public:
 void someMethod() override; // Overrides Base's someMethod()
};

A Client’s View of Overridden Methods
With the preceding changes, other code still calls someMethod() the same way it did before. Just as
before, the method could be called on an object of class Base or an object of class Derived. Now,
however, the behavior of someMethod() varies based on the class of the object.

For example, the following code works just as it did before, calling Base’s version of someMethod():

Base myBase;
myBase.someMethod(); // Calls Base's version of someMethod().

The output of this code is as follows:

This is Base's version of someMethod().

If the code declares an object of class Derived, the other version is automatically called:

Derived myDerived;
myDerived.someMethod(); // Calls Derived's version of someMethod()

The output this time is as follows:

This is Derived's version of someMethod().

Everything else about objects of class Derived remains the same. Other methods that might have
been inherited from Base still have the definition provided by Base unless they are explicitly over-
ridden in Derived.

As you learned earlier, a pointer or reference can refer to an object of a class or any of its derived
classes. The object itself “knows” the class of which it is actually a member, so the appropriate
method is called as long as it was declared virtual. For example, if you have a Base reference that

284  ❘  CHAPTER 10   Discovering Inheritance Techniques

refers to an object that is really a Derived, calling someMethod() actually calls the derived class’s
version, as shown next. This aspect of overriding does not work properly if you omit the virtual
keyword in the base class.

Derived myDerived;
Base& ref = myDerived;
ref.someMethod(); // Calls Derived's version of someMethod()

Remember that even though a base class reference or pointer knows that it is actually a derived
class, you cannot access derived class methods or members that are not defined in the base class.
The following code does not compile because a Base reference does not have a method called
someOtherMethod():

Derived myDerived;
Base& ref = myDerived;
myDerived.someOtherMethod(); // This is fine.
ref.someOtherMethod(); // Error

The derived class knowledge characteristic is not true for non-pointer or non-reference objects. You
can cast or assign a Derived to a Base because a Derived is a Base. However, the object loses any
knowledge of the derived class at that point.

Derived myDerived;
Base assignedObject = myDerived; // Assigns a Derived to a Base.
assignedObject.someMethod(); // Calls Base's version of someMethod()

One way to remember this seemingly strange behavior is to imagine what the objects look like in
memory. Picture a Base object as a box taking up a certain amount of memory. A Derived object
is a box that is slightly bigger because it has everything a Base has plus a bit more. When you have
a reference or pointer to a Derived, the box doesn’t change—you just have a new way of accessing
it. However, when you cast a Derived into a Base, you are throwing out all the “uniqueness” of the
Derived class to fit it into a smaller box.

NOTE  Derived classes retain their overridden methods when referred to by base
class pointers or references. They lose their uniqueness when cast to a base class
object. The loss of the derived class’s data members and overridden methods is
called slicing.

The override Keyword
Sometimes, it is possible to accidentally create a new virtual method instead of overriding a
method from the base class. Take the following Base and Derived classes where Derived is prop-
erly overriding someMethod(), but is not using the override keyword:

class Base
{
 public:
 virtual void someMethod(double d);
};

Building Classes with Inheritance  ❘  285

class Derived : public Base
{
 public:
 virtual void someMethod(double d);
};

You can call someMethod() through a reference as follows:

Derived myDerived;
Base& ref = myDerived;
ref.someMethod(1.1); // Calls Derived's version of someMethod()

This correctly calls the overridden someMethod() from the Derived class. Now, suppose you acci-
dentally use an integer parameter instead of a double while overriding someMethod(), as follows:

class Derived : public Base
{
 public:
 virtual void someMethod(int i);
};

This code does not override someMethod() from Base, but instead creates a new virtual method.
If you try to call someMethod() through a reference as in the following code, someMethod() of Base
is called instead of the one from Derived!

Derived myDerived;
Base& ref = myDerived;
ref.someMethod(1.1); // Calls Base's version of someMethod()

This type of problem can happen when you start to modify the Base class but forget to update all
derived classes. For example, maybe your first version of the Base class has a method called some-
Method() accepting an integer. You then write the Derived class overriding this someMethod()
accepting an integer. Later you decide that someMethod() in Base needs a double instead of an
integer, so you update someMethod() in the Base class. It might happen that at that time, you for-
get to update the someMethod() methods in derived classes to also accept a double instead of an
integer. By forgetting this, you are now actually creating a new virtual method instead of properly
overriding the method.

You can prevent this situation by using the override keyword as follows:

class Derived : public Base
{
 public:
 virtual void someMethod(int i) override;
};

This definition of Derived generates a compilation error, because with the override keyword you
are saying that someMethod() is supposed to be overriding a method from a base class, but in the
Base class there is no someMethod() accepting an integer, only one accepting a double.

The problem of accidentally creating a new method instead of properly overriding one can also hap-
pen when you rename a method in the base class, and forget to rename the overriding methods in
derived classes.

286  ❘  CHAPTER 10   Discovering Inheritance Techniques

NOTE  Always use the override keyword on methods that are meant to be over-
riding methods from a base class.

The Truth about virtual
If a method is not virtual, you can still attempt to override it, but it will be wrong in subtle ways.

Hiding Instead of Overriding
The following code shows a base class and a derived class, each with a single method. The derived
class is attempting to override the method in the base class, but it is not declared to be virtual in
the base class:

class Base
{
 public:
 void go() { cout << "go() called on Base" << endl; }
};

class Derived : public Base
{
 public:
 void go() { cout << "go() called on Derived" << endl; }
};

Attempting to call go() on a Derived object initially appears to work:

Derived myDerived;
myDerived.go();

The output of this call is, as expected, “go() called on Derived”. However, because the method is not
virtual, it is not actually overridden. Rather, the Derived class creates a new method, also called
go(), that is completely unrelated to the Base class’s method called go(). To prove this, simply call
the method in the context of a Base pointer or reference:

Derived myDerived;
Base& ref = myDerived;
ref.go();

You would expect the output to be “go() called on Derived”, but in fact, the output is “go() called
on Base”. This is because the ref variable is a Base reference and because the virtual keyword was
omitted. When the go() method is called, it simply executes Base’s go() method. Because it is not
virtual, there is no need to consider whether a derived class has overridden it.

WARNING  Attempting to override a non-virtual method hides the base class
definition, and it will only be used in the context of the derived class.

Building Classes with Inheritance  ❘  287

How virtual Is Implemented
To understand how method hiding is avoided, you need to know a bit more about what the virtual
keyword actually does. When a class is compiled in C++, a binary object is created that contains
all methods for the class. In the non-virtual case, the code to transfer control to the appropriate
method is hard-coded directly where the method is called based on the compile-time type. This is
called static binding, also known as early binding.

If the method is declared virtual, the correct implementation is called through the use of a spe-
cial area of memory called the vtable, or “virtual table.” Each class that has one or more virtual
methods, has a vtable, and every object of such a class contains a pointer to said vtable. This vtable
contains pointers to the implementations of the virtual methods. In this way, when a method is
called on an object, the pointer is followed into the vtable and the appropriate version of the method
is executed based on the actual type of the object at run time. This is called dynamic binding, also
known as late binding.

To better understand how vtables make overriding of methods possible, take the following Base and
Derived classes as an example:

class Base
{
 public:
 virtual void func1() {}
 virtual void func2() {}
 void nonVirtualFunc() {}
};

class Derived : public Base
{
 public:
 virtual void func2() override {}
 void nonVirtualFunc() {}
};

For this example, assume that you have the following two instances:

Base myBase;
Derived myDerived;

Figure 10-4 shows a high-level view of how the vtables for both instances look. The myBase object
contains a pointer to its vtable. This vtable has two entries, one for func1() and one for func2().
Those entries point to the implementations of Base::func1() and Base::func2().

myDerived also contains a pointer to its vtable, which also has two entries, one for func1() and
one for func2(). Its func1() entry points to Base::func1() because Derived does not override
func1(). On the other hand, its func2() entry points to Derived::func2().

Note that both vtables do not contain any entry for the nonVirtualFunc() method because that
method is not virtual.

288  ❘  CHAPTER 10   Discovering Inheritance Techniques

vtable

Base::func1()
Implementationfunc1

func2

myBase

Base::func2()
Implementation

vtable func1
func2

myDerived

Derived::func2()
Implementation

.

.

.

.

.

.

FIGURE 10-4

The Justification for virtual
Because you are advised to make all methods virtual, you might be wondering why the virtual
keyword even exists. Can’t the compiler automatically make all methods virtual? The answer is
yes, it could. Many people think that the language should just make everything virtual. The Java
language effectively does this.

The argument against making everything virtual, and the reason that the keyword was created in
the first place, has to do with the overhead of the vtable. To call a virtual method, the program
needs to perform an extra operation by dereferencing the pointer to the appropriate code to execute.
This is a miniscule performance hit in most cases, but the designers of C++ thought that it was bet-
ter, at least at the time, to let the programmer decide if the performance hit was necessary. If the
method was never going to be overridden, there was no need to make it virtual and take the per-
formance hit. However, with today’s CPUs, the performance hit is measured in fractions of a nano-
second and this will keep getting smaller with future CPUs. In most applications, you will not have
a measurable performance difference between using virtual methods and avoiding them, so you
should still follow the advice of making all methods, especially destructors, virtual.

Still, in certain cases, the performance overhead might be too costly, and you may need to have an
option to avoid the hit. For example, suppose you have a Point class that has a virtual method.
If you have another data structure that stores millions or even billions of Points, calling a virtual
method on each point creates a significant overhead. In that case, it’s probably wise to avoid any
virtual methods in your Point class.

There is also a tiny hit to memory usage for each object. In addition to the implementation of the
method, each object also needs a pointer for its vtable, which takes up a tiny amount of space. This
is not an issue in the majority of cases. However, sometimes it does matter. Take again the Point
class and the container storing billions of Points. In that case, the additional required memory
becomes significant.

The Need for virtual Destructors
Even programmers who don’t adopt the guideline of making all methods virtual still adhere to
the rule when it comes to destructors. This is because making your destructors non-virtual can

Building Classes with Inheritance  ❘  289

easily result in situations in which memory is not freed by object destruction. Only for a class that is
marked as final you could make its destructor non-virtual.

For example, if a derived class uses memory that is dynamically allocated in the constructor and
deleted in the destructor, it will never be freed if the destructor is never called. Similarly, if your
derived class has members that are automatically deleted when an instance of the class is destroyed,
such as std::unique_ptrs, then those members will not get deleted either if the destructor is never
called.

As the following code shows, it is easy to “trick” the compiler into skipping the call to the destructor
if it is non-virtual:

class Base
{
 public:
 Base() {}
 ~Base() {}
};

class Derived : public Base
{
 public:
 Derived()
 {
 mString = new char[30];
 cout << "mString allocated" << endl;
 }

 ~Derived()
 {
 delete[] mString;
 cout << "mString deallocated" << endl;
 }
 private:
 char* mString;
};

int main()
{
 Base* ptr = new Derived(); // mString is allocated here.
 delete ptr; // ~Base is called, but not ~Derived because the destructor
 // is not virtual!
 return 0;
}

As you can see from the output, the destructor of the Derived object is never called:

mString allocated

Actually, the behavior of the delete call in the preceding code is undefined by the standard. A C++
compiler could do whatever it wants in such undefined situations. However, most compilers simply
call the destructor of the base class, and not the destructor of the derived class.

290  ❘  CHAPTER 10   Discovering Inheritance Techniques

NOTE  If you don’t need to do any work in your destructor, but you only want
to make it virtual, you can explicitly default it. For example:

class Base
{
 public:
 virtual ~Base() = default;
};

Note that since C++11, the generation of a copy constructor and copy assignment operator is dep-
recated if the class has a user-declared destructor, as mentioned in Chapter 8. If you still need a
compiler-generated copy constructor or copy assignment operator in such cases, you can explicitly
default them. This is not done in the examples in this chapter in the interest of keeping them concise
and to the point.

WARNING  Unless you have a specific reason not to, or the class is marked as
final, I recommend making all methods, including destructors but not con-
structors, virtual. Constructors cannot and need not be virtual because you
always specify the exact class being constructed when creating an object.

Preventing Overriding
C++ allows you to mark a method as final, which means that the method cannot be overridden in
a derived class. Trying to override a final method results in a compilation error. Take the following
Base class:

class Base
{
 public:
 virtual ~Base() = default;
 virtual void someMethod() final;
};

Trying to override someMethod(), as in the following Derived class, results in a compilation error
because someMethod() is marked as final in the Base class:

class Derived : public Base
{
 public:
 virtual void someMethod() override; // Error
};

Inheritance for Reuse  ❘  291

INHERITANCE FOR REUSE

Now that you are familiar with the basic syntax for inheritance, it’s time to explore one of the main
reasons that inheritance is an important feature of the C++ language. Inheritance is a vehicle that
allows you to leverage existing code. This section presents an example of inheritance for the purpose
of code reuse.

The WeatherPrediction Class
Imagine that you are given the task of writing a program to issue simple weather predictions, work-
ing with both Fahrenheit and Celsius. Weather predictions may be a little bit out of your area of
expertise as a programmer, so you obtain a third-party class library that was written to make
weather predictions based on the current temperature and the current distance between Jupiter and
Mars (hey, it’s plausible). This third-party package is distributed as a compiled library to protect
the intellectual property of the prediction algorithms, but you do get to see the class definition. The
WeatherPrediction class definition is as follows:

// Predicts the weather using proven new-age techniques given the current
// temperature and the distance from Jupiter to Mars. If these values are
// not provided, a guess is still given but it's only 99% accurate.
class WeatherPrediction
{
 public:
 // Virtual destructor
 virtual ~WeatherPrediction();
 // Sets the current temperature in Fahrenheit
 virtual void setCurrentTempFahrenheit(int temp);
 // Sets the current distance between Jupiter and Mars
 virtual void setPositionOfJupiter(int distanceFromMars);
 // Gets the prediction for tomorrow's temperature
 virtual int getTomorrowTempFahrenheit() const;
 // Gets the probability of rain tomorrow. 1 means
 // definite rain. 0 means no chance of rain.
 virtual double getChanceOfRain() const;
 // Displays the result to the user in this format:
 // Result: x.xx chance. Temp. xx
 virtual void showResult() const;
 // Returns a string representation of the temperature
 virtual std::string getTemperature() const;
 private:
 int mCurrentTempFahrenheit;
 int mDistanceFromMars;
};

Note that this class marks all methods as virtual, because the class presumes that its methods
might be overridden in a derived class.

292  ❘  CHAPTER 10   Discovering Inheritance Techniques

This class solves most of the problems for your program. However, as is usually the case, it’s not
exactly right for your needs. First, all the temperatures are given in Fahrenheit. Your program needs
to operate in Celsius as well. Also, the showResult() method might not display the result in a way
you require.

Adding Functionality in a Derived Class
When you learned about inheritance in Chapter 5, adding functionality was the first technique
described. Fundamentally, your program needs something just like the WeatherPrediction class
but with a few extra bells and whistles. Sounds like a good case for inheritance to reuse code. To
begin, define a new class, MyWeatherPrediction, that inherits from WeatherPrediction.

#include "WeatherPrediction.h"

class MyWeatherPrediction : public WeatherPrediction
{
};

The preceding class definition compiles just fine. The MyWeatherPrediction class can already be
used in place of WeatherPrediction. It provides exactly the same functionality, but nothing new
yet. For the first modification, you might want to add knowledge of the Celsius scale to the class.
There is a bit of a quandary here because you don’t know what the class is doing internally. If all of
the internal calculations are made using Fahrenheit, how do you add support for Celsius? One way
is to use the derived class to act as a go-between, interfacing between the user, who can use either
scale, and the base class, which only understands Fahrenheit.

The first step in supporting Celsius is to add new methods that allow clients to set the current tem-
perature in Celsius instead of Fahrenheit and to get tomorrow’s prediction in Celsius instead of
Fahrenheit. You also need private helper methods that convert between Celsius and Fahrenheit in
both directions. These methods can be static because they are the same for all instances of the
class.

#include "WeatherPrediction.h"

class MyWeatherPrediction : public WeatherPrediction
{
 public:
 virtual void setCurrentTempCelsius(int temp);
 virtual int getTomorrowTempCelsius() const;
 private:
 static int convertCelsiusToFahrenheit(int celsius);
 static int convertFahrenheitToCelsius(int fahrenheit);
};

The new methods follow the same naming convention as the parent class. Remember that from the
point of view of other code, a MyWeatherPrediction object has all of the functionality defined in
both MyWeatherPrediction and WeatherPrediction. Adopting the parent class’s naming conven-
tion presents a consistent interface.

Inheritance for Reuse  ❘  293

The implementation of the Celsius/Fahrenheit conversion methods is left as an exercise for the
reader—and a fun one at that! The other two methods are more interesting. To set the current
temperature in Celsius, you need to convert the temperature first and then present it to the parent
class in units that it understands.

void MyWeatherPrediction::setCurrentTempCelsius(int temp)
{
 int fahrenheitTemp = convertCelsiusToFahrenheit(temp);
 setCurrentTempFahrenheit(fahrenheitTemp);
}

As you can see, once the temperature is converted, the method calls the existing functionality from
the base class. Similarly, the implementation of getTomorrowTempCelsius() uses the parent’s exist-
ing functionality to get the temperature in Fahrenheit, but converts the result before returning it.

int MyWeatherPrediction::getTomorrowTempCelsius() const
{
 int fahrenheitTemp = getTomorrowTempFahrenheit();
 return convertFahrenheitToCelsius(fahrenheitTemp);
}

The two new methods effectively reuse the parent class because they “wrap” the existing functional-
ity in a way that provides a new interface for using it.

You can also add new functionality completely unrelated to existing functionality of the parent
class. For example, you could add a method that retrieves alternative forecasts from the Internet or a
method that suggests an activity based on the predicted weather.

Replacing Functionality in a Derived Class
The other major technique for inheritance is replacing existing functionality. The showResult()
method in the WeatherPrediction class is in dire need of a facelift. MyWeatherPrediction can
override this method to replace the behavior with its own implementation.

The new class definition for MyWeatherPrediction is as follows:

class MyWeatherPrediction : public WeatherPrediction
{
 public:
 virtual void setCurrentTempCelsius(int temp);
 virtual int getTomorrowTempCelsius() const;
 virtual void showResult() const override;
 private:
 static int convertCelsiusToFahrenheit(int celsius);
 static int convertFahrenheitToCelsius(int fahrenheit);
};

Here is a possible new user-friendly implementation:

void MyWeatherPrediction::showResult() const
{
 cout << "Tomorrow's temperature will be " <<
 getTomorrowTempCelsius() << " degrees Celsius (" <<

294  ❘  CHAPTER 10   Discovering Inheritance Techniques

 getTomorrowTempFahrenheit() << " degrees Fahrenheit)" << endl;
 cout << "Chance of rain is " << (getChanceOfRain() * 100) << " percent"
 << endl;
 if (getChanceOfRain() > 0.5) {
 cout << "Bring an umbrella!" << endl;
 }
}

To clients using this class, it’s as if the old version of showResult() never existed. As long as the
object is a MyWeatherPrediction object, the new version is called.

As a result of these changes, MyWeatherPrediction has emerged as a new class with new function-
ality tailored to a more specific purpose. Yet, it did not require much code because it leveraged its
base class’s existing functionality.

RESPECT YOUR PARENTS

When you write a derived class, you need to be aware of the interaction between parent classes and
child classes. Issues such as order of creation, constructor chaining, and casting are all potential
sources of bugs.

Parent Constructors
Objects don’t spring to life all at once; they must be constructed along with their parents and any
objects that are contained within them. C++ defines the creation order as follows:

	 1.	 If the class has a base class, the default constructor of the base class is executed, unless there
is a call to a base class constructor in the ctor-initializer, in which case that constructor is
called instead of the default constructor.

	 2.	 Non-static data members of the class are constructed in the order in which they are
declared.

	 3.	 The body of the class’s constructor is executed.

These rules can apply recursively. If the class has a grandparent, the grandparent is initialized before
the parent, and so on. The following code shows this creation order. As a reminder, I generally
advise against implementing methods directly in a class definition, as is done in the code that fol-
lows. In the interest of readable and concise examples, I have broken my own rule. The proper exe-
cution of this code outputs 123.

class Something
{
 public:
 Something() { cout << "2"; }
};

class Base
{
 public:
 Base() { cout << "1"; }

Respect Your Parents  ❘  295

};

class Derived : public Base
{
 public:
 Derived() { cout << "3"; }
 private:
 Something mDataMember;
};

int main()
{
 Derived myDerived;
 return 0;
}

When the myDerived object is created, the constructor for Base is called first, outputting the
string "1". Next, mDataMember is initialized, calling the Something constructor, which outputs
the string "2". Finally, the Derived constructor is called, which outputs "3".

Note that the Base constructor was called automatically. C++ automatically calls the default con-
structor for the parent class if one exists. If no default constructor exists in the parent class, or if one
does exist but you want to use an alternate constructor, you can chain the constructor just as when
initializing data members in the constructor initializer. For example, the following code shows a
version of Base that lacks a default constructor. The associated version of Derived must explicitly
tell the compiler how to call the Base constructor or the code will not compile.

class Base
{
 public:
 Base(int i);
};

class Derived : public Base
{
 public:
 Derived();
};

Derived::Derived() : Base(7)
{
 // Do Derived's other initialization here.
}

The Derived constructor passes a fixed value (7) to the Base constructor. Derived could also pass a
variable if its constructor required an argument:

Derived::Derived(int i) : Base(i) {}

Passing constructor arguments from the derived class to the base class is perfectly fine and quite nor-
mal. Passing data members, however, will not work. The code will compile, but remember that data
members are not initialized until after the base class is constructed. If you pass a data member as an
argument to the parent constructor, it will be uninitialized.

296  ❘  CHAPTER 10   Discovering Inheritance Techniques

WARNING  Virtual methods behave differently in constructors. If your derived
class has overridden a virtual method from the base class, calling that method
from a base class constructor calls the base class implementation of that virtual
method and not your overridden version in the derived class!

Parent Destructors
Because destructors cannot take arguments, the language can always automatically call the
destructor for parent classes. The order of destruction is conveniently the reverse of the order of
construction:

	 1.	 The body of the class’s destructor is called.

	 2.	 Any data members of the class are destroyed in the reverse order of their construction.

	 3.	 The parent class, if any, is destructed.

Again, these rules apply recursively. The lowest member of the chain is always destructed first. The
following code adds destructors to the previous example. The destructors are all declared virtual!
If executed, this code outputs "123321".

class Something
{
 public:
 Something() { cout << "2"; }
 virtual ~Something() { cout << "2"; }
};

class Base
{
 public:
 Base() { cout << "1"; }
 virtual ~Base() { cout << "1"; }
};

class Derived : public Base
{
 public:
 Derived() { cout << "3"; }
 virtual ~Derived() { cout << "3"; }
 private:
 Something mDataMember;
};

If the preceding destructors were not declared virtual, the code would continue to work fine.
However, if code ever called delete on a base class pointer that was really pointing to a derived
class, the destruction chain would begin in the wrong place. For example, if you remove the vir-
tual keyword from all destructors in the previous code, then a problem arises when a Derived
object is accessed as a pointer to a Base and deleted, as shown here:

Base* ptr = new Derived();
delete ptr;

Respect Your Parents  ❘  297

The output of this code is a shockingly terse "1231". When the ptr variable is deleted, only the
Base destructor is called because the destructor was not declared virtual. As a result, the Derived
destructor is not called and the destructors for its data members are not called!

Technically, you could fix the preceding problem by marking only the Base destructor virtual.
The “virtualness” is automatically used by any children. However, I advocate explicitly making all
destructors virtual so that you never have to worry about it.

WARNING  Always make your destructors virtual! The compiler-generated
default destructor is not virtual, so you should define (or explicitly default) a
virtual destructor, at least for your parent classes.

WARNING  Just as with constructors, virtual methods behave differently when
called from a destructor. If your derived class has overridden a virtual method
from the base class, calling that method from the base class destructor calls the
base class implementation of that virtual method and not your overridden ver-
sion in the derived class.

Referring to Parent Names
When you override a method in a derived class, you are effectively replacing the original as far as
other code is concerned. However, that parent version of the method still exists and you may want
to make use of it. For example, an overridden method would like to keep doing what the base class
implementation does, plus something else. Take a look at the getTemperature() method in the
WeatherPrediction class that returns a string representation of the current temperature:

class WeatherPrediction
{
 public:
 virtual std::string getTemperature() const;
 // Omitted for brevity
};

You can override this method in the MyWeatherPrediction class as follows:

class MyWeatherPrediction : public WeatherPrediction
{
 public:
 virtual std::string getTemperature() const override;
 // Omitted for brevity
};

Suppose the derived class wants to add °F to the string by first calling the base class getTempera-
ture() method and then adding °F to the string. You might write this as follows:

string MyWeatherPrediction::getTemperature() const
{

298  ❘  CHAPTER 10   Discovering Inheritance Techniques

 // Note: \u00B0 is the ISO/IEC 10646 representation of the degree symbol.
 return getTemperature() + "\u00B0F"; // BUG
}

However, this does not work because, under the rules of name resolution for C++, it first
resolves against the local scope, then the class scope, and as a consequence ends up calling
MyWeatherPrediction::getTemperature(). This results in an infinite recursion until you
run out of stack space (some compilers detect this error and report it at compile time).

To make this work, you need to use the scope resolution operator as follows:

string MyWeatherPrediction::getTemperature() const
{
 // Note: \u00B0 is the ISO/IEC 10646 representation of the degree symbol.
 return WeatherPrediction::getTemperature() + "\u00B0F";
}

NOTE  Microsoft Visual C++ supports the __super keyword (with two under-
scores). This allows you to write the following:

return __super::getTemperature() + "\u00B0F";

Calling the parent version of the current method is a commonly
used pattern in C++. If you have a chain of derived classes, each
might want to perform the operation already defined by the base
class but add their own additional functionality as well.

As another example, imagine a class hierarchy of book types.
A diagram showing such a hierarchy is shown in Figure 10-5.

Because each lower class in the hierarchy further specifies the type
of book, a method that gets the description of a book really needs
to take all levels of the hierarchy into consideration. This can
be accomplished by chaining to the parent method. The following
code illustrates this pattern:

class Book
{
 public:
 virtual ~Book() = default;
 virtual string getDescription() const { return "Book"; }
 virtual int getHeight() const { return 120; }
};

class Paperback : public Book
{
 public:
 virtual string getDescription() const override {
 return "Paperback " + Book::getDescription();
 }
};

Book

Paperback Technical

Romance

FIGURE 10-5

Respect Your Parents  ❘  299

class Romance : public Paperback
{
 public:
 virtual string getDescription() const override {
 return "Romance " + Paperback::getDescription();
 }
 virtual int getHeight() const override {
 return Paperback::getHeight() / 2; }
};

class Technical : public Book
{
 public:
 virtual string getDescription() const override {
 return "Technical " + Book::getDescription();
 }
};

int main()
{
 Romance novel;
 Book book;
 cout << novel.getDescription() << endl; // Outputs "Romance Paperback Book"
 cout << book.getDescription() << endl; // Outputs "Book"
 cout << novel.getHeight() << endl; // Outputs "60"
 cout << book.getHeight() << endl; // Outputs "120"
 return 0;
}

The Book base class has two virtual methods: getDescription() and getHeight(). All derived
classes override getDescription(), but only the Romance class overrides getHeight() by call-
ing getHeight() on its parent class (Paperback) and dividing the result by two. Paperback does
not override getHeight(), but C++ walks up the class hierarchy to find a class that implements
getHeight(). In this example, Paperback::getHeight() resolves to Book::getHeight().

Casting Up and Down
As you have already seen, an object can be cast or assigned to its parent class. If the cast or assign-
ment is performed on a plain old object, this results in slicing:

Base myBase = myDerived; // Slicing!

Slicing occurs in situations like this because the end result is a Base object, and Base objects lack
the additional functionality defined in the Derived class. However, slicing does not occur if a
derived class is assigned to a pointer or reference to its base class:

Base& myBase = myDerived; // No slicing!

This is generally the correct way to refer to a derived class in terms of its base class, also called
upcasting. This is why it’s always a good idea to make your methods and functions take references
to classes instead of directly using objects of those classes. By using references, derived classes can be
passed in without slicing.

300  ❘  CHAPTER 10   Discovering Inheritance Techniques

WARNING  When upcasting, use a pointer or reference to the base class to avoid
slicing.

Casting from a base class to one of its derived classes, also called downcasting, is often frowned
upon by professional C++ programmers because there is no guarantee that the object really belongs
to that derived class, and because downcasting is a sign of bad design. For example, consider the
following code:

void presumptuous(Base* base)
{
 Derived* myDerived = static_cast<Derived*>(base);
 // Proceed to access Derived methods on myDerived.
}

If the author of presumptuous() also writes code that calls presumptuous(), everything will
probably be okay because the author knows that the function expects the argument to be of type
Derived*. However, if other programmers call presumptuous(), they might pass in a Base*. There
are no compile-time checks that can be done to enforce the type of the argument, and the function
blindly assumes that base is actually a pointer to a Derived.

Downcasting is sometimes necessary, and you can use it effectively in controlled circumstances.
However, if you are going to downcast, you should use a dynamic_cast(), which uses the object’s
built-in knowledge of its type to refuse a cast that doesn’t make sense. This built-in knowledge typi-
cally resides in the vtable, which means that dynamic_cast() works only for objects with a vtable,
that is, objects with at least one virtual member. If a dynamic_cast() fails on a pointer, the point-
er’s value will be nullptr instead of pointing to nonsensical data. If a dynamic_cast() fails on an
object reference, an std::bad_cast exception will be thrown. Chapter 11 discusses the different
options for casting in more detail.

The previous example could have been written as follows:

void lessPresumptuous(Base* base)
{
 Derived* myDerived = dynamic_cast<Derived*>(base);
 if (myDerived != nullptr) {
 // Proceed to access Derived methods on myDerived.
 }
}

The use of downcasting is often a sign of a bad design. You should rethink and modify your design
so that downcasting can be avoided. For example, the lessPresumptuous() function only really
works with Derived objects, so instead of accepting a Base pointer, it should simply accept a
Derived pointer. This eliminates the need for any downcasting. If the function should work with
different derived classes, all inheriting from Base, then look for a solution that uses polymorphism,
which is discussed next.

WARNING  Use downcasting only when really necessary, and be sure to use a
dynamic_cast().

Inheritance for Polymorphism  ❘  301

INHERITANCE FOR POLYMORPHISM

Now that you understand the relationship between a derived class and its parent, you can use inheri-
tance in its most powerful scenario—polymorphism. Chapter 5 discusses how polymorphism allows
you to use objects with a common parent class interchangeably, and to use objects in place of their
parents.

Return of the Spreadsheet
Chapters 8 and 9 use a spreadsheet program as an example of an application that lends itself to an
object-oriented design. A SpreadsheetCell represents a single element of data. Up to now, that
element always stored a single double value. A simplified class definition for SpreadsheetCell fol-
lows. Note that a cell can be set either as a double or a string, but it is always stored as a double.
The current value of the cell, however, is always returned as a string for this example.

class SpreadsheetCell
{
 public:
 virtual void set(double inDouble);
 virtual void set(std::string_view inString);
 virtual std::string getString() const;
 private:
 static std::string doubleToString(double inValue);
 static double stringToDouble(std::string_view inString);
 double mValue;
};

In a real spreadsheet application, cells can store different things. A cell could store a double, but it
might just as well store a piece of text. There could also be a need for additional types of cells, such
as a formula cell, or a date cell. How can you support this?

Designing the Polymorphic Spreadsheet Cell
The SpreadsheetCell class is screaming out for a hierarchical makeover. A reasonable
approach would be to narrow the scope of the SpreadsheetCell to cover only strings, per-
haps renaming it StringSpreadsheetCell in the process. To handle doubles, a second class,
DoubleSpreadsheetCell, would inherit from the StringSpreadsheetCell and provide function-
ality specific to its own format. Figure 10-6 illustrates such a design. This approach models inheri-
tance for reuse because the DoubleSpreadsheetCell would only be
deriving from StringSpreadsheetCell to make use of some of its
built-in functionality.

If you were to implement the design shown in Figure 10-6, you might
discover that the derived class would override most, if not all, of the
functionality of the base class. Because doubles are treated differently
from strings in almost all cases, the relationship may not be quite as it
was originally understood. Yet, there clearly is a relationship between a
cell containing strings and a cell containing doubles. Rather than using the model in Figure 10-6,
which implies that somehow a DoubleSpreadsheetCell “is-a” StringSpreadsheetCell, a better

StringSpreadsheetCell

DoubleSpreadsheetCell

FIGURE 10-6

302  ❘  CHAPTER 10   Discovering Inheritance Techniques

design would make these classes peers with a common parent, SpreadsheetCell. Such a design is
shown in Figure 10-7.

SpreadsheetCell

DoubleSpreadsheetCell StringSpreadsheetCell

FIGURE 10-7

The design in Figure 10-7 shows a polymorphic approach to the SpreadsheetCell hierarchy.
Because DoubleSpreadsheetCell and StringSpreadsheetCell both inherit from a common par-
ent, SpreadsheetCell, they are interchangeable in the view of other code. In practical terms, that
means the following:

➤➤ Both derived classes support the same interface (set of methods) defined by the base class.

➤➤ Code that makes use of SpreadsheetCell objects can call any method in the inter-
face without even knowing whether the cell is a DoubleSpreadsheetCell or a
StringSpreadsheetCell.

➤➤ Through the magic of virtual methods, the appropriate instance of every method in the
interface is called depending on the class of the object.

➤➤ Other data structures, such as the Spreadsheet class described in Chapter 9, can contain a
collection of multi-typed cells by referring to the parent type.

The SpreadsheetCell Base Class
Because all spreadsheet cells are deriving from the SpreadsheetCell base class, it is probably
a good idea to write that class first. When designing a base class, you need to consider how the
derived classes relate to each other. From this information, you can derive the commonality that will
go inside the parent class. For example, string cells and double cells are similar in that they both
contain a single piece of data. Because the data is coming from the user and will be displayed back
to the user, the value is set as a string and retrieved as a string. These behaviors are the shared
functionality that will make up the base class.

A First Attempt
The SpreadsheetCell base class is responsible for defining the behaviors that all
SpreadsheetCell-derived classes will support. In this example, all cells need to be able to set their
value as a string. All cells also need to be able to return their current value as a string. The base
class definition declares these methods, as well as an explicitly defaulted virtual destructor, but
note that it has no data members:

class SpreadsheetCell
{
 public:

Inheritance for Polymorphism  ❘  303

 virtual ~SpreadsheetCell() = default;
 virtual void set(std::string_view inString);
 virtual std::string getString() const;
};

When you start writing the .cpp file for this class, you very quickly run into a problem. Considering
that the base class of the spreadsheet cell contains neither a double nor a string data member,
how can you implement it? More generally, how do you write a parent class that declares the behav-
iors that are supported by derived classes without actually defining the implementation of those
behaviors?

One possible approach is to implement “do nothing” functionality for those behaviors. For example,
calling the set() method on the SpreadsheetCell base class will have no effect because the base
class has nothing to set. This approach still doesn’t feel right, however. Ideally, there should never
be an object that is an instance of the base class. Calling set() should always have an effect because
it should always be called on either a DoubleSpreadsheetCell or a StringSpreadsheetCell.
A good solution enforces this constraint.

Pure Virtual Methods and Abstract Base Classes
Pure virtual methods are methods that are explicitly undefined in the class definition. By making a
method pure virtual, you are telling the compiler that no definition for the method exists in the cur-
rent class. A class with at least one pure virtual method is said to be an abstract class because no
other code will be able to instantiate it. The compiler enforces the fact that if a class contains one or
more pure virtual methods, it can never be used to construct an object of that type.

There is a special syntax for designating a pure virtual method. The method declaration is followed
by =0. No implementation needs to be written.

class SpreadsheetCell
{
 public:
 virtual ~SpreadsheetCell() = default;
 virtual void set(std::string_view inString) = 0;
 virtual std::string getString() const = 0;
};

Now that the base class is an abstract class, it is impossible to create a SpreadsheetCell object.
The following code does not compile, and returns an error such as “error C2259: ‘SpreadsheetCell’:
cannot instantiate abstract class”:

SpreadsheetCell cell; // Error! Attempts creating abstract class instance

However, once the StringSpreadsheetCell class has been implemented, the following code will
compile fine because it instantiates a derived class of the abstract base class:

std::unique_ptr<SpreadsheetCell> cell(new StringSpreadsheetCell());

NOTE  An abstract class provides a way to prevent other code from instantiating
an object directly, as opposed to one of its derived classes.

304  ❘  CHAPTER 10   Discovering Inheritance Techniques

Note that you don’t need a SpreadsheetCell.cpp source file, because there is nothing to imple-
ment. Most methods are pure virtual, and the destructor is explicitly defaulted in the class
definition.

The Individual Derived Classes
Writing the StringSpreadsheetCell and DoubleSpreadsheetCell classes is just a matter of
implementing the functionality that is defined in the parent. Because you want clients to be able
to instantiate and work with string cells and double cells, the cells can’t be abstract—they must
implement all of the pure virtual methods inherited from their parent. If a derived class does not
implement all pure virtual methods from the base class, then the derived class is abstract as well,
and clients will not be able to instantiate objects of the derived class.

StringSpreadsheetCell Class Definition
The first step in writing the class definition of StringSpreadsheetCell is to inherit from
SpreadsheetCell.

Next, the inherited pure virtual methods are overridden, this time without being set to zero.

Finally, the string cell adds a private data member, mValue, which stores the actual cell data. This
data member is an std::optional, which is defined since C++17 in the <optional> header file. The
optional type is a class template, so you have to specify the actual type that you need between angled
brackets, as in optional<string>. Class templates are discussed in detail in Chapter 12. By using
an optional, it is possible to distinguish whether a value for a cell has been set or not. The optional
type is discussed in detail in Chapter 20, but its basic use is rather easy, as the next section shows.

class StringSpreadsheetCell : public SpreadsheetCell
{
 public:
 virtual void set(std::string_view inString) override;
 virtual std::string getString() const override;

 private:
 std::optional<std::string> mValue;
};

StringSpreadsheetCell Implementation
The source file for StringSpreadsheetCell contains the implementation of the methods. The
set() method is straightforward because the internal representation is already a string. The get-
String() method has to keep into account that mValue is of type optional, and that it might not
have a value. When mValue doesn’t have a value, getString() should return the empty string. This
is made easy with the value_or() method of std::optional. By using mValue.value_or(""), the
real value is returned if mValue contains an actual value, otherwise the empty string is returned.

void StringSpreadsheetCell::set(string_view inString)
{
 mValue = inString;
}

Inheritance for Polymorphism  ❘  305

string StringSpreadsheetCell::getString() const
{
 return mValue.value_or("");
}

DoubleSpreadsheetCell Class Definition and Implementation
The double version follows a similar pattern, but with different logic. In addition to the set()
method from the base class that takes a string_view, it also provides a new set() method that
allows a client to set the value with a double. Two new private static methods are used to con-
vert between a string and a double, and vice versa. As in StringSpreadsheetCell, it has a data
member called mValue, this time of type optional<double>.

class DoubleSpreadsheetCell : public SpreadsheetCell
{
 public:
 virtual void set(double inDouble);
 virtual void set(std::string_view inString) override;
 virtual std::string getString() const override;

 private:
 static std::string doubleToString(double inValue);
 static double stringToDouble(std::string_view inValue);

 std::optional<double> mValue;
};

The set() method that takes a double is straightforward. The string_view version uses the pri-
vate static method stringToDouble(). The getString() method returns the stored double
value as a string, or returns an empty string if no value has been stored. It uses the has_value()
method of std::optional to query whether the optional has an actual value or not. If it has a
value, the value() method is used to get it.

void DoubleSpreadsheetCell::set(double inDouble)
{
 mValue = inDouble;
}

void DoubleSpreadsheetCell::set(string_view inString)
{
 mValue = stringToDouble(inString);
}

string DoubleSpreadsheetCell::getString() const
{
 return (mValue.has_value() ? doubleToString(mValue.value()) : "");
}

You may already see one major advantage of implementing spreadsheet cells in a hierarchy—the
code is much simpler. Each object can be self-centered and only deal with its own functionality.

Note that the implementations of doubleToString() and stringToDouble() are omitted because
they are the same as in Chapter 8.

306  ❘  CHAPTER 10   Discovering Inheritance Techniques

Leveraging Polymorphism
Now that the SpreadsheetCell hierarchy is polymorphic, client code can take advantage of the
many benefits that polymorphism has to offer. The following test program explores many of these
features.

To demonstrate polymorphism, the test program declares a vector of three SpreadsheetCell
pointers. Remember that because SpreadsheetCell is an abstract class, you can’t create objects
of that type. However, you can still have a pointer or reference to a SpreadsheetCell because it
would actually be pointing to one of the derived classes. This vector, because it is a vector of the
parent type SpreadsheetCell, allows you to store a heterogeneous mixture of the two derived
classes. This means that elements of the vector could be either a StringSpreadsheetCell or a
DoubleSpreadsheetCell.

vector<unique_ptr<SpreadsheetCell>> cellArray;

The first two elements of the vector are set to point to a new StringSpreadsheetCell, while the
third is a new DoubleSpreadsheetCell.

cellArray.push_back(make_unique<StringSpreadsheetCell>());
cellArray.push_back(make_unique<StringSpreadsheetCell>());
cellArray.push_back(make_unique<DoubleSpreadsheetCell>());

Now that the vector contains multi-typed data, any of the methods declared by the base class can
be applied to the objects in the vector. The code just uses SpreadsheetCell pointers—the com-
piler has no idea at compile time what types the objects actually are. However, because they are
inheriting from SpreadsheetCell, they must support the methods of SpreadsheetCell:

 cellArray[0]->set("hello");
 cellArray[1]->set("10");
 cellArray[2]->set("18");

When the getString() method is called, each object properly returns a string representation of
their value. The important, and somewhat amazing, thing to realize is that the different objects do
this in different ways. A StringSpreadsheetCell returns its stored value, or an empty string. A
DoubleSpreadsheetCell first performs a conversion if it contains a value, otherwise it returns an
empty string. As the programmer, you don’t need to know how the object does it—you just need to
know that because the object is a SpreadsheetCell, it can perform this behavior.

 cout << "Vector values are [" << cellArray[0]->getString() << "," <<
 cellArray[1]->getString() << "," <<
 cellArray[2]->getString() << "]" <<
 endl;

Future Considerations
The new implementation of the SpreadsheetCell hierarchy is certainly an improvement from an
object-oriented design point of view. Yet, it would probably not suffice as an actual class hierarchy
for a real-world spreadsheet program for several reasons.

First, despite the improved design, one feature is still missing: the ability to convert from one cell
type to another. By dividing them into two classes, the cell objects become more loosely integrated.

Inheritance for Polymorphism  ❘  307

To provide the ability to convert from a DoubleSpreadsheetCell to a StringSpreadsheetCell,
you could add a converting constructor, also known as a typed constructor. It has a similar appear-
ance as a copy constructor, but instead of a reference to an object of the same class, it takes a refer-
ence to an object of a sibling class. Note also that you now have to declare a default constructor,
which can be explicitly defaulted, because the compiler stops generating one as soon as you declare
any constructor yourself:

class StringSpreadsheetCell : public SpreadsheetCell
{
 public:
 StringSpreadsheetCell() = default;
 StringSpreadsheetCell(const DoubleSpreadsheetCell& inDoubleCell);
 // Omitted for brevity
};

This converting constructor can be implemented as follows:

StringSpreadsheetCell::StringSpreadsheetCell(
 const DoubleSpreadsheetCell& inDoubleCell)
{
 mValue = inDoubleCell.getString();
}

With a converting constructor, you can easily create a StringSpreadsheetCell given a
DoubleSpreadsheetCell. Don’t confuse this with casting pointers or references, however. Casting
from one sibling pointer or reference to another does not work, unless you overload the cast opera-
tor as described in Chapter 15.

WARNING  You can always cast up the hierarchy, and you can sometimes
cast down the hierarchy. Casting across the hierarchy is possible by changing
the behavior of the cast operator, or by using reinterpret_cast(), neither of
which is recommended.

Second, the question of how to implement overloaded operators for cells is an interesting one, and
there are several possible solutions. One approach is to implement a version of each operator for
every combination of cells. With only two derived classes, this is manageable. There would be an
operator+ function to add two double cells, to add two string cells, and to add a double cell to a
string cell. Another approach is to decide on a common representation. The preceding implemen-
tation already standardizes on a string as a common representation of sorts. A single operator+
function could cover all the cases by taking advantage of this common representation. One pos-
sible implementation, which assumes that the result of adding two cells is always a string cell, is
as follows:

StringSpreadsheetCell operator+(const StringSpreadsheetCell& lhs,
 const StringSpreadsheetCell& rhs)
{
 StringSpreadsheetCell newCell;
 newCell.set(lhs.getString() + rhs.getString());
 return newCell;
}

308  ❘  CHAPTER 10   Discovering Inheritance Techniques

As long as the compiler has a way to turn a particular cell into a StringSpreadsheetCell, the
operator will work. Given the previous example of having a StringSpreadsheetCell constructor
that takes a DoubleSpreadsheetCell as an argument, the compiler will automatically perform the
conversion if it is the only way to get the operator+ to work. That means the following code works,
even though operator+ was explicitly written to work on StringSpreadsheetCells:

DoubleSpreadsheetCell myDbl;
myDbl.set(8.4);
StringSpreadsheetCell result = myDbl + myDbl;

Of course, the result of this addition doesn’t really add the numbers together. It converts the double
cells into string cells and concatenates the strings, resulting in a StringSpreadsheetCell with a
value of 8.4000008.400000.

If you are still feeling a little unsure about polymorphism, start with the code for this example and
try things out. The main() function in the preceding example is a great starting point for experi-
mental code that simply exercises various aspects of the class.

MULTIPLE INHERITANCE

As you read in Chapter 5, multiple inheritance is often perceived as a complicated and unnecessary
part of object-oriented programming. I’ll leave the decision of whether or not it is useful up to you
and your coworkers. This section explains the mechanics of multiple inheritance in C++.

Inheriting from Multiple Classes
Defining a class to have multiple parent classes is very simple from a syntactic point of view. All you
need to do is list the base classes individually when declaring the class name.

class Baz : public Foo, public Bar
{
 // Etc.
};

By listing multiple parents, the Baz object has the following characteristics:

➤➤ A Baz object supports the public methods, and contains the data members of both Foo
and Bar.

➤➤ The methods of the Baz class have access to protected data and methods in both Foo
and Bar.

➤➤ A Baz object can be upcast to either a Foo or a Bar.

➤➤ Creating a new Baz object automatically calls the Foo and Bar default constructors, in the
order that the classes are listed in the class definition.

➤➤ Deleting a Baz object automatically calls the destructors for the Foo and Bar classes, in the
reverse order that the classes are listed in the class definition.

Multiple Inheritance  ❘  309

The following example shows a class, DogBird, that has two par-
ent classes—a Dog class and a Bird class, as shown in Figure 10-8.
The fact that a dog-bird is a ridiculous example should not be
viewed as a statement that multiple inheritance itself is ridiculous.
Honestly, I leave that judgment up to you.

class Dog
{
 public:
 virtual void bark() { cout << "Woof!" << endl; }
};

class Bird
{
 public:
 virtual void chirp() { cout << "Chirp!" << endl; }
};

class DogBird : public Dog, public Bird
{
};

Using objects of classes with multiple parents is no different from using objects without multiple
parents. In fact, the client code doesn’t even have to know that the class has two parents. All that
really matters are the properties and behaviors supported by the class. In this case, a DogBird object
supports all of the public methods of Dog and Bird.

DogBird myConfusedAnimal;
myConfusedAnimal.bark();
myConfusedAnimal.chirp();

The output of this program is as follows:

Woof!
Chirp!

Naming Collisions and Ambiguous Base Classes
It’s not difficult to construct a scenario where multiple inheritance would seem to break down. The
following examples show some of the edge cases that must be considered.

Name Ambiguity
What if the Dog class and the Bird class both had a method called eat()? Because Dog and Bird are
not related in any way, one version of the method does not override the other—they both continue
to exist in the DogBird-derived class.

As long as client code never attempts to call the eat() method, that is not a problem. The DogBird
class compiles correctly despite having two versions of eat(). However, if client code attempts to
call the eat() method on a DogBird, the compiler gives an error indicating that the call to eat()

DogBird

Dog Bird

FIGURE 10-8

310  ❘  CHAPTER 10   Discovering Inheritance Techniques

is ambiguous. The compiler does not know which version to call. The following code provokes this
ambiguity error:

class Dog
{
 public:
 virtual void bark() { cout << "Woof!" << endl; }
 virtual void eat() { cout << "The dog ate." << endl; }
};

class Bird
{
 public:
 virtual void chirp() { cout << "Chirp!" << endl; }
 virtual void eat() { cout << "The bird ate." << endl; }
};

class DogBird : public Dog, public Bird
{
};

int main()
{
 DogBird myConfusedAnimal;
 myConfusedAnimal.eat(); // Error! Ambiguous call to method eat()
 return 0;
}

The solution to the ambiguity is to either explicitly upcast the object using a dynamic_cast(),
essentially hiding the undesired version of the method from the compiler, or to use a disambiguation
syntax. For example, the following code shows two ways to invoke the Dog version of eat():

dynamic_cast<Dog&>(myConfusedAnimal).eat(); // Calls Dog::eat()
myConfusedAnimal.Dog::eat(); // Calls Dog::eat()

Methods of the derived class itself can also explicitly disambiguate between different methods of the
same name by using the same syntax used to access parent methods, that is, the :: scope resolution
operator. For example, the DogBird class could prevent ambiguity errors in other code by defining
its own eat() method. Inside this method, it would determine which parent version to call:

class DogBird : public Dog, public Bird
{
 public:
 void eat() override;
};

void DogBird::eat()
{
 Dog::eat(); // Explicitly call Dog's version of eat()
}

Yet another way to prevent the ambiguity error is to use a using statement to explicitly state which
version of eat() should be inherited in DogBird. This is done in the following DogBird definition:

class DogBird : public Dog, public Bird
{

Multiple Inheritance  ❘  311

 public:
 using Dog::eat; // Explicitly inherit Dog's version of eat()
};

Ambiguous Base Classes
Another way to provoke ambiguity is to inherit from the same class twice. For example, if the
Bird class inherits from Dog for some reason, the code for DogBird does not compile because Dog
becomes an ambiguous base class:

class Dog {};
class Bird : public Dog {};
class DogBird : public Bird, public Dog {}; // Error!

Most occurrences of ambiguous base classes are either contrived “what-if”
examples, as in the preceding one, or arise from untidy class hierarchies.
Figure 10-9 shows a class diagram for the preceding example, indicating
the ambiguity.

Ambiguity can also occur with data members. If Dog and Bird both had a
data member with the same name, an ambiguity error would occur when
client code attempted to access that member.

A more likely scenario is that multiple parents themselves have common
parents. For example, perhaps both Bird and Dog are inheriting from an
Animal class, as shown in Figure 10-10.

This type of class hierarchy is permitted in C++, though name
ambiguity can still occur. For example, if the Animal class has a
public method called sleep(), that method cannot be called on
a DogBird object because the compiler does not know whether to
call the version inherited by Dog or by Bird.

The best way to use these “diamond-shaped” class hierarchies is
to make the topmost class an abstract base class with all methods
declared as pure virtual. Because the class only declares methods
without providing definitions, there are no methods in the base
class to call and thus there are no ambiguities at that level.

The following example implements a diamond-shaped class hier-
archy in which the Animal abstract base class has a pure virtual eat() method that must be defined
by each derived class. The DogBird class still needs to be explicit about which parent’s eat()
method it uses, but any ambiguity is caused by Dog and Bird having the same method, not because
they inherit from the same class.

class Animal
{
 public:
 virtual void eat() = 0;
};

DogBird

Dog

Bird

FIGURE 10-9

Animal

DogBird

Dog Bird

FIGURE 10-10

312  ❘  CHAPTER 10   Discovering Inheritance Techniques

class Dog : public Animal
{
 public:
 virtual void bark() { cout << "Woof!" << endl; }
 virtual void eat() override { cout << "The dog ate." << endl; }
};

class Bird : public Animal
{
 public:
 virtual void chirp() { cout << "Chirp!" << endl; }
 virtual void eat() override { cout << "The bird ate." << endl; }
};

class DogBird : public Dog, public Bird
{
 public:
 using Dog::eat;
};

A more refined mechanism for dealing with the top class in a diamond-shaped hierarchy, virtual
base classes, is explained at the end of this chapter.

Uses for Multiple Inheritance
At this point, you’re probably wondering why programmers would want to tackle multiple inheri-
tance in their code. The most straightforward use case for multiple inheritance is to define a class
of objects that is-a something and also is-a something else. As was said in Chapter 5, any real-world
objects you find that follow this pattern are unlikely to translate well into code.

One of the most compelling and simple uses of multiple inheritance is for the implementation of
mixin classes. Mixin classes are explained in Chapter 5.

Another reason that people sometimes use multiple inheritance is to model a component-based class.
Chapter 5 gives the example of an airplane simulator. The Airplane class has an engine, a fuselage,
controls, and other components. While the typical implementation of an Airplane class would
make each of these components a separate data member, you could use multiple inheritance. The
airplane class would inherit from engine, fuselage, and controls, in effect getting the behaviors and
properties of all of its components. I recommend you to stay away from this type of code because it
confuses a clear has-a relationship with inheritance, which should be used for is-a relationships. The
recommended solution is to have an Airplane class that contains data members of type Engine,
Fuselage, and Controls.

INTERESTING AND OBSCURE INHERITANCE ISSUES

Extending a class opens up a variety of issues. What characteristics of the class can and cannot be
changed? What is non-public inheritance? What are virtual base classes? These questions, and more,
are answered in the following sections.

Interesting and Obscure Inheritance Issues  ❘  313

Changing the Overridden Method’s Characteristics
For the most part, the reason you override a method is to change its implementation. Sometimes,
however, you may want to change other characteristics of the method.

Changing the Method Return Type
A good rule of thumb is to override a method with the exact method declaration, or method proto-
type, that the base class uses. The implementation can change, but the prototype stays the same.

That does not have to be the case, however. In C++, an overriding method can change the return type
as long as the original return type is a pointer or reference to a class, and the new return type is a
pointer or reference to a descendent class. Such types are called covariant return types. This feature
sometimes comes in handy when the base class and derived class work with objects in a parallel 
hierarchy—that is, another group of classes that is tangential, but related, to the first class hierarchy.

For example, consider a hypothetical cherry orchard simula-
tor. You might have two hierarchies of classes that model dif-
ferent real-world objects but are obviously related. The first is
the Cherry chain. The base class, Cherry, has a derived class
called BingCherry. Similarly, there is another chain of classes
with a base class called CherryTree and a derived class called
BingCherryTree. Figure 10-11 shows the two class chains.

Now assume that the CherryTree class has a virtual method
called pick() that retrieves a single cherry from the tree:

Cherry* CherryTree::pick()
{
 return new Cherry();
}

NOTE  To demonstrate changing the return type, this example does not return
smart pointers, but raw pointers. The reason is explained at the end of this sec-
tion. Of course, the caller should store the result immediately in a smart pointer
instead of keeping the raw pointer around.

In the BingCherryTree-derived class, you may want to override this method. Perhaps bing cher-
ries need to be polished when they are picked (bear with me on this one). Because a BingCherry
is a Cherry, you could leave the method prototype as is and override the method as in the follow-
ing example. The BingCherry pointer is automatically cast to a Cherry pointer. Note that this
implementation uses a unique_ptr to make sure no memory is leaked when polish() throws an
exception.

Cherry* BingCherryTree::pick()
{
 auto theCherry = std::make_unique<BingCherry>();

Cherry

BingCherry

CherryTree

BingCherryTree

FIGURE 10-11

314  ❘  CHAPTER 10   Discovering Inheritance Techniques

 theCherry->polish();
 return theCherry.release();
}

This implementation is perfectly fine and is probably the way that I would write it. However,
because you know that the BingCherryTree will always return BingCherry objects, you could indi-
cate this fact to potential users of this class by changing the return type, as shown here:

BingCherry* BingCherryTree::pick()
{
 auto theCherry = std::make_unique<BingCherry>();
 theCherry->polish();
 return theCherry.release();
}

Here is how you can use the BingCherryTree::pick() method:

BingCherryTree theTree;
std::unique_ptr<Cherry> theCherry(theTree.pick());
theCherry->printType();

A good way to figure out whether you can change the return type of an overridden method is to con-
sider whether existing code would still work; this is called the Liskov substitution principle (LSP).
In the preceding example, changing the return type was fine because any code that assumed that
the pick() method would always return a Cherry* would still compile and work correctly. Because
a BingCherry is a Cherry, any methods that were called on the result of CherryTree’s version of
pick() could still be called on the result of BingCherryTree’s version of pick().

You could not, for example, change the return type to something completely unrelated, such as
void*. The following code does not compile:

void* BingCherryTree::pick() // Error!
{
 auto theCherry = std::make_unique<BingCherry>();
 theCherry->polish();
 return theCherry.release();
}

This generates a compilation error, something like this:

'BingCherryTree::pick': overriding virtual function return type differs and is not
covariant from 'CherryTree::pick'.

As mentioned before, this example is using raw pointers instead of smart pointers. It does not work
for example when using std::unique_ptr as return type. Suppose the CherryTree::pick()
method returns a unique_ptr<Cherry> as follows:

std::unique_ptr<Cherry> CherryTree::pick()
{
 return std::make_unique<Cherry>();
}

Interesting and Obscure Inheritance Issues  ❘  315

Now, you cannot change the return type for the BingCherryTree::pick() method to unique_
ptr<BingCherry>. That is, the following does not compile:

class BingCherryTree : public CherryTree
{
 public:
 virtual std::unique_ptr<BingCherry> pick() override;
};

The reason is that std::unique_ptr is a class template. Class templates are discussed in detail in
Chapter 12. Two instantiations of the unique_ptr class template are created, unique_ptr<Cherry>
and unique_ptr<BingCherry>. Both these instantiations are completely different types and are in
no way related to each other. You cannot change the return type of an overridden method to return
a completely different type.

Changing the Method Parameters
If you use the name of a virtual method from the parent class in the definition of a derived class,
but it uses different parameters than the method with that name uses in the parent class, it is not
overriding the method of the parent class—it is creating a new method. Returning to the Base
and Derived example from earlier in this chapter, you could attempt to override someMethod() in
Derived with a new argument list as follows:

class Base
{
 public:
 virtual void someMethod();
};

class Derived : public Base
{
 public:
 virtual void someMethod(int i); // Compiles, but doesn't override
 virtual void someOtherMethod();
};

The implementation of this method could be as follows:

void Derived::someMethod(int i)
{
 cout << "This is Derived's version of someMethod with argument " << i
 << "." << endl;
}

The preceding class definition compiles, but you have not overridden someMethod(). Because the
arguments are different, you have created a new method that exists only in Derived. If you want
a method called someMethod() that takes an int, and you want it to work only on objects of class
Derived, the preceding code is correct.

316  ❘  CHAPTER 10   Discovering Inheritance Techniques

The C++ standard says that the original method is now hidden as far as Derived is concerned. The
following sample code does not compile because there is no longer a no-argument version of
someMethod().

Derived myDerived;
myDerived.someMethod(); // Error! Won't compile because original
 // method is hidden.

If your intention is to override someMethod() from Base, then you should use the override key-
word as recommended before. The compiler then gives an error if you make a mistake in overriding
the method.

There is a somewhat obscure technique you can use to have your cake and eat it too. That is, you
can use this technique to effectively “override” a method in the derived class with a new prototype
but continue to inherit the base class version. This technique uses the using keyword to explicitly
include the base class definition of the method within the derived class, as follows:

class Base
{
 public:
 virtual void someMethod();
};

class Derived : public Base
{
 public:
 using Base::someMethod; // Explicitly "inherits" the Base version
 virtual void someMethod(int i); // Adds a new version of someMethod
 virtual void someOtherMethod();
};

NOTE  It is rare to find a method in a derived class with the same name as a
method in the base class but using a different parameter list.

Inherited Constructors
In the previous section, you saw the use of the using keyword to explicitly include the base class
definition of a method within a derived class. This works perfectly fine for normal class methods,
but it also works for constructors, allowing you to inherit constructors from your base classes. Take
a look at the following definition for the Base and Derived classes:

class Base
{
 public:
 virtual ~Base() = default;
 Base() = default;
 Base(std::string_view str);
};

Interesting and Obscure Inheritance Issues  ❘  317

class Derived : public Base
{
 public:
 Derived(int i);
};

You can construct a Base object only with the provided Base constructors, either the default con-
structor or the constructor with a string_view parameter. On the other hand, constructing a
Derived object can happen only with the provided Derived constructor, which requires a single
integer as argument. You cannot construct Derived objects using the constructor accepting a
string_view defined in the Base class. Here is an example:

Base base("Hello"); // OK, calls string_view Base ctor
Derived derived1(1); // OK, calls integer Derived ctor
Derived derived2("Hello"); // Error, Derived does not inherit string_view ctor

If you would like the ability to construct Derived objects using the string_view-based Base con-
structor, you can explicitly inherit the Base constructors in the Derived class as follows:

class Derived : public Base
{
 public:
 using Base::Base;
 Derived(int i);
};

The using statement inherits all constructors from the parent class except the default constructor,
so now you can construct Derived objects in the following two ways:

Derived derived1(1); // OK, calls integer Derived ctor
Derived derived2("Hello"); // OK, calls inherited string_view Base ctor

The Derived class can define a constructor with the same parameter list as one of the inherited
constructors in the Base class. In this case, as with any override, the constructor of the Derived
class takes precedence over the inherited constructor. In the following example, the Derived class
inherits all constructors, except the default constructor, from the Base class with the using state-
ment. However, because the Derived class defines its own constructor with a single parameter of
type float, the inherited constructor from the Base class with a single parameter of type float is
overridden.

class Base
{
 public:
 virtual ~Base() = default;
 Base() = default;
 Base(std::string_view str);
 Base(float f);
};

class Derived : public Base
{
 public:
 using Base::Base;
 Derived(float f); // Overrides inherited float Base ctor
};

318  ❘  CHAPTER 10   Discovering Inheritance Techniques

With this definition, objects of Derived can be created as follows:

Derived derived1("Hello"); // OK, calls inherited string_view Base ctor
Derived derived2(1.23f); // OK, calls float Derived ctor

A few restrictions apply to inheriting constructors from a base class with the using clause. When
you inherit a constructor from a base class, you inherit all of them, except the default constructor.
It is not possible to inherit only a subset of the constructors of a base class. A second restriction is
related to multiple inheritance. It’s not possible to inherit constructors from one of the base classes
if another base class has a constructor with the same parameter list, because this leads to ambiguity.
To resolve this, the Derived class needs to explicitly define the conflicting constructors. For exam-
ple, the following Derived class tries to inherit all constructors from both Base1 and Base2, which
results in a compilation error due to ambiguity of the float-based constructors.

class Base1
{
 public:
 virtual ~Base1() = default;
 Base1() = default;
 Base1(float f);
};

class Base2
{
 public:
 virtual ~Base2() = default;
 Base2() = default;
 Base2(std::string_view str);
 Base2(float f);
};

class Derived : public Base1, public Base2
{
 public:
 using Base1::Base1;
 using Base2::Base2;
 Derived(char c);
};

The first using clause in Derived inherits all constructors from Base1. This means that Derived
gets the following constructor:

Derived(float f); // Inherited from Base1

With the second using clause in Derived, you are trying to inherit all constructors from
Base2. However, this causes a compilation error because this means that Derived gets a second
Derived(float f) constructor. The problem is solved by explicitly declaring conflicting construc-
tors in the Derived class as follows:

class Derived : public Base1, public Base2
{
 public:
 using Base1::Base1;
 using Base2::Base2;
 Derived(char c);
 Derived(float f);
};

Interesting and Obscure Inheritance Issues  ❘  319

The Derived class now explicitly declares a constructor with a single parameter of type float, solv-
ing the ambiguity. If you want, this explicitly declared constructor in the Derived class accepting
a float parameter can still forward the call to both the Base1 and Base2 constructors in its ctor-
initializer as follows:

Derived::Derived(float f) : Base1(f), Base2(f) {}

When using inherited constructors, make sure that all member variables are properly initialized. For
example, take the following new definitions for Base and Derived. This example does not properly
initialize the mInt data member in all cases, which is a serious error.

class Base
{
 public:
 virtual ~Base() = default;
 Base(std::string_view str) : mStr(str) {}
 private:
 std::string mStr;
};

class Derived : public Base
{
 public:
 using Base::Base;
 Derived(int i) : Base(""), mInt(i) {}
 private:
 int mInt;
};

You can create a Derived object as follows:

Derived s1(2);

This calls the Derived(int i) constructor, which initializes the mInt data member of the Derived
class and calls the Base constructor with an empty string to initialize the mStr data member.

Because the Base constructor is inherited in the Derived class, you can also construct a Derived
object as follows:

Derived s2("Hello World");

This calls the inherited Base constructor in the Derived class. However, this inherited Base con-
structor only initializes mStr of the Base class, and does not initialize mInt of the Derived class,
leaving it in an uninitialized state. This is not recommended!

The solution in this case is to use in-class member initializers, which are discussed in Chapter 8. The
following code uses an in-class member initializer to initialize mInt to 0. The Derived(int i) con-
structor can still change this and initialize mInt to the constructor parameter i.

class Derived : public Base
{
 public:
 using Base::Base;
 Derived(int i) : Base(""), mInt(i) {}
 private:
 int mInt = 0;
};

320  ❘  CHAPTER 10   Discovering Inheritance Techniques

Special Cases in Overriding Methods
Several special cases require attention when overriding a method. This section outlines the cases
that you are likely to encounter.

The Base Class Method Is static
In C++, you cannot override a static method. For the most part, that’s all you need to know. There
are, however, a few corollaries that you need to understand.

First of all, a method cannot be both static and virtual. This is the first clue that attempting to
override a static method will not do what you intend it to do. If you have a static method in
your derived class with the same name as a static method in your base class, you actually have two
separate methods.

The following code shows two classes that both happen to have static methods called
beStatic(). These two methods are in no way related.

class BaseStatic
{
 public:
 static void beStatic() {
 cout << "BaseStatic being static." << endl; }
};

class DerivedStatic : public BaseStatic
{
 public:
 static void beStatic() {
 cout << "DerivedStatic keepin' it static." << endl; }
};

Because a static method belongs to its class, calling the identically named methods on the two dif-
ferent classes calls their respective methods:

BaseStatic::beStatic();
DerivedStatic::beStatic();

This outputs the following:

BaseStatic being static.
DerivedStatic keepin' it static.

Everything makes perfect sense as long as the methods are accessed by their class name. The behav-
ior is less clear when objects are involved. In C++, you can call a static method using an object,
but because the method is static, it has no this pointer and no access to the object itself, so it is
equivalent to calling it by classname::method(). Referring to the previous example classes, you
can write code as follows, but the results may be surprising.

DerivedStatic myDerivedStatic;
BaseStatic& ref = myDerivedStatic;
myDerivedStatic.beStatic();
ref.beStatic();

Interesting and Obscure Inheritance Issues  ❘  321

The first call to beStatic() obviously calls the DerivedStatic version because it is explicitly called
on an object declared as a DerivedStatic. The second call might not work as you expect. The
object is a BaseStatic reference, but it refers to a DerivedStatic object. In this case, BaseStatic’s
version of beStatic() is called. The reason is that C++ doesn’t care what the object actually is
when calling a static method. It only cares about the compile-time type. In this case, the type is a
reference to a BaseStatic.

The output of the previous example is as follows:

DerivedStatic keepin' it static.
BaseStatic being static.

NOTE  static methods are scoped by the name of the class in which they are
defined, but they are not methods that apply to a specific object. When you call
a static method, the version determined by normal name resolution is called.
When the method is called syntactically by using an object, the object is not
actually involved in the call, except to determine the type at compile time.

The Base Class Method Is Overloaded
When you override a method by specifying a name and a set of parameters, the compiler implicitly
hides all other instances of the name in the base class. The idea is that if you have overridden one
method of a given name, you might have intended to override all the methods of that name, but
simply forgot, and therefore this should be treated as an error. It makes sense if you think about 
it—why would you want to change some versions of a method and not others? Consider the follow-
ing Derived class, which overrides a method without overriding its associated overloaded siblings:

class Base
{
 public:
 virtual ~Base() = default;
 virtual void overload() { cout << "Base's overload()" << endl; }
 virtual void overload(int i) {
 cout << "Base's overload(int i)" << endl; }
};

class Derived : public Base
{
 public:
 virtual void overload() override {
 cout << "Derived's overload()" << endl; }
};

If you attempt to call the version of overload() that takes an int parameter on a Derived object,
your code will not compile because it was not explicitly overridden.

Derived myDerived;
myDerived.overload(2); // Error! No matching method for overload(int).

322  ❘  CHAPTER 10   Discovering Inheritance Techniques

It is possible, however, to access this version of the method from a Derived object. All you need is a
pointer or a reference to a Base object:

Derived myDerived;
Base& ref = myDerived;
ref.overload(7);

The hiding of unimplemented overloaded methods is only skin deep in C++. Objects that are explic-
itly declared as instances of the derived class do not make the methods available, but a simple cast to
the base class brings them right back.

The using keyword can be employed to save you the trouble of overloading all the versions when
you really only want to change one. In the following code, the Derived class definition uses one ver-
sion of overload() from Base and explicitly overloads the other:

class Base
{
 public:
 virtual ~Base() = default;
 virtual void overload() { cout << "Base's overload()" << endl; }
 virtual void overload(int i) {
 cout << "Base's overload(int i)" << endl; }
};

class Derived : public Base
{
 public:
 using Base::overload;
 virtual void overload() override {
 cout << "Derived's overload()" << endl; }
};

The using clause has certain risks. Suppose a third overload() method is added to Base, which
should have been overridden in Derived. This will now not be detected as an error, because, due to
the using clause, the designer of the Derived class has explicitly said, “I am willing to accept all
other overloads of this method from the parent class.”

WARNING  To avoid obscure bugs, you should override all versions of an over-
loaded method, either explicitly or with the using keyword, but keep the risks of
the using clause in mind.

The Base Class Method Is private or protected
There’s absolutely nothing wrong with overriding a private or protected method. Remember that
the access specifier for a method determines who is able to call the method. Just because a derived
class can’t call its parent’s private methods doesn’t mean it can’t override them. In fact, overriding
a private or protected method is a common pattern in C++. It allows derived classes to define
their own “uniqueness” that is referenced in the base class. Note that, for example, Java and C#
only allow overriding public and protected methods, not private methods.

Interesting and Obscure Inheritance Issues  ❘  323

For example, the following class is part of a car simulator that estimates the number of miles the car
can travel based on its gas mileage and the amount of fuel left:

class MilesEstimator
{
 public:
 virtual ~MilesEstimator() = default;

 virtual int getMilesLeft() const;

 virtual void setGallonsLeft(int gallons);
 virtual int getGallonsLeft() const;

 private:
 int mGallonsLeft;
 virtual int getMilesPerGallon() const;
};

The implementations of the methods are as follows:

int MilesEstimator::getMilesLeft() const
{
 return getMilesPerGallon() * getGallonsLeft();
}

void MilesEstimator::setGallonsLeft(int gallons)
{
 mGallonsLeft = gallons;
}

int MilesEstimator::getGallonsLeft() const
{
 return mGallonsLeft;
}

int MilesEstimator::getMilesPerGallon() const
{
 return 20;
}

The getMilesLeft() method performs a calculation based on the results of two of its own meth-
ods. The following code uses the MilesEstimator to calculate how many miles can be traveled with
two gallons of gas:

MilesEstimator myMilesEstimator;
myMilesEstimator.setGallonsLeft(2);
cout << "Normal estimator can go " << myMilesEstimator.getMilesLeft()
 << " more miles." << endl;

The output of this code is as follows:

Normal estimator can go 40 more miles.

To make the simulator more interesting, you may want to introduce different types of vehicles,
perhaps a more efficient car. The existing MilesEstimator assumes that all cars get 20 miles per

324  ❘  CHAPTER 10   Discovering Inheritance Techniques

gallon, but this value is returned from a separate method specifically so that a derived class can
override it. Such a derived class is shown here:

class EfficientCarMilesEstimator : public MilesEstimator
{
 private:
 virtual int getMilesPerGallon() const override;
};

The implementation is as follows:

int EfficientCarMilesEstimator::getMilesPerGallon() const
{
 return 35;
}

By overriding this one private method, the new class completely changes the behavior of existing,
unmodified, public methods. The getMilesLeft() method in the base class automatically calls the
overridden version of the private getMilesPerGallon() method. An example using the new class
is shown here:

EfficientCarMilesEstimator myEstimator;
myEstimator.setGallonsLeft(2);
cout << "Efficient estimator can go " << myEstimator.getMilesLeft()
 << " more miles." << endl;

This time, the output reflects the overridden functionality:

Efficient estimator can go 70 more miles.

NOTE  Overriding private and protected methods is a good way to change
certain features of a class without a major overhaul.

The Base Class Method Has Default Arguments
Derived classes and base classes can each have different default arguments, but the arguments that
are used depend on the declared type of the variable, not the underlying object. Following is a sim-
ple example of a derived class that provides a different default argument in an overridden method:

class Base
{
 public:
 virtual ~Base() = default;
 virtual void go(int i = 2) {
 cout << "Base's go with i=" << i << endl; }
};

class Derived : public Base
{
 public:
 virtual void go(int i = 7) override {
 cout << "Derived's go with i=" << i << endl; }
};

Interesting and Obscure Inheritance Issues  ❘  325

If go() is called on a Derived object, Derived’s version of go() is executed with the default
argument of 7. If go() is called on a Base object, Base’s version of go() is called with the
default argument of 2. However (and this is the weird part), if go() is called on a Base pointer or
Base reference that really points to a Derived object, Derived’s version of go() is called but with
Base’s default argument of 2. This behavior is shown in the following example:

Base myBase;
Derived myDerived;
Base& myBaseReferenceToDerived = myDerived;
myBase.go();
myDerived.go();
myBaseReferenceToDerived.go();

The output of this code is as follows:

Base's go with i=2
Derived's go with i=7
Derived's go with i=2

The reason for this behavior is that C++ uses the compile-time type of the expression to bind default
arguments, not the run-time type. Default arguments are not “inherited” in C++. If the Derived
class in this example failed to provide a default argument as its parent did, it would be overloading
the go() method with a new non-zero-argument version.

NOTE  When overriding a method that has a default argument, you should
provide a default argument as well, and it should probably be the same value. It
is recommended to use a symbolic constant for default values so that the same
symbolic constant can be used in derived classes.

The Base Class Method Has a Different Access Level
There are two ways you may want to change the access level of a method: you could try to make it
more restrictive or less restrictive. Neither case makes much sense in C++, but there are a few legiti-
mate reasons for attempting to do so.

To enforce tighter restrictions on a method (or on a data member for that matter), there are two
approaches you can take. One way is to change the access specifier for the entire base class. This
approach is described later in this chapter. The other approach is simply to redefine the access in the
derived class, as illustrated in the Shy class that follows:

class Gregarious
{
 public:
 virtual void talk() {
 cout << "Gregarious says hi!" << endl; }
};

class Shy : public Gregarious
{
 protected:
 virtual void talk() override {
 cout << "Shy reluctantly says hello." << endl; }
};

326  ❘  CHAPTER 10   Discovering Inheritance Techniques

The protected version of talk() in the Shy class properly overrides the Gregarious::talk()
method. Any client code that attempts to call talk() on a Shy object gets a compilation error:

Shy myShy;
myShy.talk(); // Error! Attempt to access protected method.

However, the method is not fully protected. One only has to obtain a Gregarious reference or
pointer to access the method that you thought was protected:

Shy myShy;
Gregarious& ref = myShy;
ref.talk();

The output of this code is as follows:

Shy reluctantly says hello.

This proves that making the method protected in the derived class actually overrode the method
(because the derived class version is correctly called), but it also proves that the protected access
can’t be fully enforced if the base class makes it public.

NOTE  There is no reasonable way (or good reason) to restrict access to a pub-
lic base class method.

NOTE  The previous example redefined the method in the derived class because
it wants to display a different message. If you don’t want to change the imple-
mentation, but instead only want to change the access level of a method, the pre-
ferred way is to simply add a using statement in the derived class definition with
the desired access level.

It is much easier (and makes more sense) to lessen access restrictions in derived classes. The simplest
way is to provide a public method that calls a protected method from the base class, as shown
here:

class Secret
{
 protected:
 virtual void dontTell() { cout << "I'll never tell." << endl; }
};

class Blabber : public Secret
{
 public:
 virtual void tell() { dontTell(); }
};

A client calling the public tell() method of a Blabber object effectively accesses the protected
method of the Secret class. Of course, this doesn’t really change the access level of dontTell(), it
just provides a public way of accessing it.

Interesting and Obscure Inheritance Issues  ❘  327

You can also override dontTell() explicitly in Blabber and give it new behavior with public
access. This makes a lot more sense than reducing the level of access because it is entirely clear what
happens with a reference or pointer to the base class. For example, suppose that Blabber actually
makes the dontTell() method public:

class Blabber : public Secret
{
 public:
 virtual void dontTell() override { cout << "I'll tell all!" << endl; }
};

Now you can call dontTell() on a Blabber object:

myBlabber.dontTell(); // Outputs "I'll tell all!"

If you don’t want to change the implementation of the overridden method, but only change the
access level, then you can use a using clause. For example:

class Blabber : public Secret
{
 public:
 using Secret::dontTell;
};

This also allows you to call dontTell() on a Blabber object, but this time the output will be “I’ll
never tell.”:

myBlabber.dontTell(); // Outputs "I'll never tell."

In both previous cases, however, the protected method in the base class stays protected because
any attempts to call Secret’s dontTell() method through a Secret pointer or reference will not
compile.

Blabber myBlabber;
Secret& ref = myBlabber;
Secret* ptr = &myBlabber;
ref.dontTell(); // Error! Attempt to access protected method.
ptr->dontTell(); // Error! Attempt to access protected method.

NOTE  The only truly useful way to change a method’s access level is by provid-
ing a less restrictive accessor to a protected method.

Copy Constructors and Assignment Operators in Derived
Classes

Chapter 9 says that providing a copy constructor and assignment operator is considered a good
programming practice when you have dynamically allocated memory in a class. When defining a
derived class, you need to be careful about copy constructors and operator=.

If your derived class does not have any special data (pointers, usually) that require a nondefault copy
constructor or operator=, you don’t need to have one, regardless of whether or not the base class

328  ❘  CHAPTER 10   Discovering Inheritance Techniques

has one. If your derived class omits the copy constructor or operator=, a default copy constructor
or operator= will be provided for the data members specified in the derived class, and the base class
copy constructor or operator= will be used for the data members specified in the base class.

On the other hand, if you do specify a copy constructor in the derived class, you need to explicitly
chain to the parent copy constructor, as shown in the following code. If you do not do this, the
default constructor (not the copy constructor!) will be used for the parent portion of the object.

class Base
{
 public:
 virtual ~Base() = default;
 Base() = default;
 Base(const Base& src);
};

Base::Base(const Base& src)
{
}

class Derived : public Base
{
 public:
 Derived() = default;
 Derived(const Derived& src);
};

Derived::Derived(const Derived& src) : Base(src)
{
}

Similarly, if the derived class overrides operator=, it is almost always necessary to call the parent’s
version of operator= as well. The only case where you wouldn’t do this would be if there was some
bizarre reason why you only wanted part of the object assigned when an assignment took place. The
following code shows how to call the parent’s assignment operator from the derived class:

Derived& Derived::operator=(const Derived& rhs)
{
 if (&rhs == this) {
 return *this;
 }
 Base::operator=(rhs); // Calls parent's operator=.
 // Do necessary assignments for derived class.
 return *this;
}

WARNING  If your derived class does not specify its own copy constructor
or operator=, the base class functionality continues to work. However, if the
derived class does provide its own copy constructor or operator=, it needs to
explicitly call the base class versions.

Interesting and Obscure Inheritance Issues  ❘  329

NOTE  When you need copy functionality in an inheritance hierarchy, the com-
mon idiom employed by professional C++ developers is to implement a poly-
morphic clone() method, because relying on the standard copy constructor and
copy assignment operators is not sufficient. The polymorphic clone() idiom is
discussed in Chapter 12.

Run-Time Type Facilities
Relative to other object-oriented languages, C++ is very compile-time oriented. As you learned ear-
lier, overriding methods works because of a level of indirection between a method and its implemen-
tation, not because the object has built-in knowledge of its own class.

There are, however, features in C++ that provide a run-time view of an object. These features are
commonly grouped together under a feature set called run-time type information, or RTTI. RTTI
provides a number of useful features for working with information about an object’s class member-
ship. One such feature is dynamic_cast(), which allows you to safely convert between types within
an object-oriented hierarchy; this was discussed earlier in this chapter. Using dynamic_cast() on a
class without a vtable, that is, without any virtual methods, causes a compilation error.

A second RTTI feature is the typeid operator, which lets you query an object at run time to find
out its type. For the most part, you shouldn’t ever need to use typeid because any code that is con-
ditionally run based on the type of the object would be better handled with virtual methods.

The following code uses typeid to print a message based on the type of the object:

#include <typeinfo>

class Animal { public: virtual ~Animal() = default; };
class Dog : public Animal {};
class Bird : public Animal {};

void speak(const Animal& animal)
{
 if (typeid(animal) == typeid(Dog)) {
 cout << "Woof!" << endl;
 } else if (typeid(animal) == typeid(Bird)) {
 cout << "Chirp!" << endl;
 }
}

Whenever you see code like this, you should immediately consider reimplementing the functionality
as a virtual method. In this case, a better implementation would be to declare a virtual method
called speak() in the Animal class. Dog would override the method to print "Woof!" and Bird
would override the method to print "Chirp!". This approach better fits object-oriented program-
ming, where functionality related to objects is given to those objects.

330  ❘  CHAPTER 10   Discovering Inheritance Techniques

WARNING  The typeid operator only works correctly if the class has at least
one virtual method, that is, when the class has a vtable. The typeid operator
also strips reference and const qualifiers from its argument.

One of the primary values of the typeid operator is for logging and debugging purposes. The fol-
lowing code makes use of typeid for logging. The logObject() function takes a “loggable” object
as a parameter. The design is such that any object that can be logged inherits from the Loggable
class and supports a method called getLogMessage().

class Loggable
{
 public:
 virtual ~Loggable() = default;
 virtual std::string getLogMessage() const = 0;
};

class Foo : public Loggable
{
 public:
 std::string getLogMessage() const override;
};

std::string Foo::getLogMessage() const
{
 return "Hello logger.";
}

void logObject(const Loggable& loggableObject)
{
 cout << typeid(loggableObject).name() << ": ";
 cout << loggableObject.getLogMessage() << endl;
}

The logObject() function first writes the name of the object’s class to the output stream, followed
by its log message. This way, when you read the log later, you can see which object was responsible
for every written line. Here is the output generated by Microsoft Visual C++ 2017 when the logOb-
ject() function is called with an instance of Foo:

class Foo: Hello logger.

As you can see, the name returned by the typeid operator is “class Foo”. However, this name
depends on your compiler. For example, if you compile the same code with GCC, the output is as
follows:

3Foo: Hello logger.

NOTE  If you are using typeid for purposes other than logging and debugging,
consider reimplementing it using virtual methods.

Interesting and Obscure Inheritance Issues  ❘  331

Non-public Inheritance
In all previous examples, parent classes were always listed using the public keyword. You may be
wondering if a parent can be private or protected. In fact, it can, though neither is as common as
public. If you don’t specify any access specifier for the parent, then it is private inheritance for a
class, and public inheritance for a struct.

Declaring the relationship with the parent to be protected means that all public methods and data
members from the base class become protected in the context of the derived class. Similarly, speci-
fying private inheritance means that all public and protected methods and data members of the
base class become private in the derived class.

There are a handful of reasons why you might want to uniformly degrade the access level of the
parent in this way, but most reasons imply flaws in the design of the hierarchy. Some programmers
abuse this language feature, often in combination with multiple inheritance, to implement “compo-
nents” of a class. Instead of making an Airplane class that contains an engine data member and a
fuselage data member, they make an Airplane class that is a protected engine and a protected
fuselage. In this way, the Airplane doesn’t look like an engine or a fuselage to client code (because
everything is protected), but it is able to use all of that functionality internally.

NOTE  Non-public inheritance is rare and I recommend using it cautiously, if
for no other reason than because most programmers are not familiar with it.

Virtual Base Classes
Earlier in this chapter, you learned about ambiguous base classes,
a situation that arises when multiple parents each have a parent in
common, as shown again in Figure 10-12. The solution that I rec-
ommended was to make sure that the shared parent doesn’t have
any functionality of its own. That way, its methods can never be
called and there is no ambiguity problem.

C++ has another mechanism, called virtual base classes, for
addressing this problem if you do want the shared parent to
have its own functionality. If the shared parent is a virtual base
class, there will not be any ambiguity. The following code adds
a sleep() method to the Animal base class and modifies the Dog and Bird classes to inherit from
Animal as a virtual base class. Without the virtual keyword, a call to sleep() on a DogBird
object would be ambiguous and would generate a compiler error because DogBird would have
two subobjects of class Animal, one coming from Dog and one coming from Bird. However, when
Animal is inherited virtually, DogBird has only one subobject of class Animal, so there will be no
ambiguity with calling sleep().

class Animal
{
 public:

Animal

DogBird

Dog Bird

FIGURE 10-12

332  ❘  CHAPTER 10   Discovering Inheritance Techniques

 virtual void eat() = 0;
 virtual void sleep() { cout << "zzzzz...." << endl; }
};

class Dog : public virtual Animal
{
 public:
 virtual void bark() { cout << "Woof!" << endl; }
 virtual void eat() override { cout << "The dog ate." << endl; }
};

class Bird : public virtual Animal
{
 public:
 virtual void chirp() { cout << "Chirp!" << endl; }
 virtual void eat() override { cout << "The bird ate." << endl; }
};

class DogBird : public Dog, public Bird
{
 public:
 virtual void eat() override { Dog::eat(); }
};

int main()
{
 DogBird myConfusedAnimal;
 myConfusedAnimal.sleep(); // Not ambiguous because of virtual base class
 return 0;
}

NOTE  Virtual base classes are a great way to avoid ambiguity in class hierar-
chies. The only drawback is that many C++ programmers are unfamiliar with the
concept.

SUMMARY

This chapter covered numerous details about inheritance. You learned about its many applications,
including code reuse and polymorphism. You also learned about its many abuses, including poorly
designed multiple-inheritance schemes. Along the way, you uncovered some cases that require
special attention.

Inheritance is a powerful language feature that takes some time to get used to. After you
have worked with the examples in this chapter and experimented on your own, I hope that inheri-
tance will become your tool of choice for object-oriented design.

C++ Quirks, Oddities, and
Incidentals

WHAT’S IN THIS CHAPTER?

➤➤ What the different use-cases are for references

➤➤ Keyword confusion

➤➤ How to use type aliases and typedefs

➤➤ The different casts that you can use

➤➤ What scope resolution is

➤➤ What you can do with C++ attributes

➤➤ How you can define your own user-defined literals

➤➤ The standard user-defined literals that are available

➤➤ C-style variable-length argument lists and preprocessor macros

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

Many parts of the C++ language have tricky syntax or quirky semantics. As a C++ program-
mer, you grow accustomed to most of this idiosyncratic behavior; it starts to feel natural.
However, some aspects of C++ are a source of perennial confusion. Either books never explain
them thoroughly enough, or you forget how they work and continually look them up, or both.

11

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

334  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

This chapter addresses this gap by providing clear explanations for some of C++’s most niggling
quirks and oddities.

Many language idiosyncrasies are covered in various chapters throughout this book. This chapter
tries not to repeat those topics by limiting itself to subjects that are not covered in detail elsewhere in
the book. There is a bit of redundancy with other chapters, but the material is “sliced” in a different
way in order to provide you with a new perspective.

The topics of this chapter include references, const, constexpr, static, extern, type aliases,
typedefs, casts, scope resolution, attributes, user-defined literals, header files, variable-length argu-
ment lists, and preprocessor macros. Although this list might appear to be a hodgepodge of topics, it
is a carefully selected collection of features and confusing aspects of the language.

REFERENCES

Professional C++ code, including much of the code in this book, uses references extensively. It is
helpful to step back and think about what exactly references are, and how they behave.

A reference in C++ is an alias for another variable. All modifications to the reference change the
value of the variable to which it refers. You can think of references as implicit pointers that save you
the trouble of taking the address of variables and dereferencing the pointer. Alternatively, you can
think of references as just another name for the original variable. You can create stand-alone refer-
ence variables, use reference data members in classes, accept references as parameters to functions
and methods, and return references from functions and methods.

Reference Variables
Reference variables must be initialized as soon as they are created, like this:

int x = 3;
int& xRef = x;

Subsequent to this assignment, xRef is another name for x. Any use of xRef uses the current value
of x. Any assignment to xRef changes the value of x. For example, the following code sets x to 10
through xRef:

xRef = 10;

You cannot declare a reference variable outside of a class without initializing it:

int& emptyRef; // DOES NOT COMPILE!

WARNING  You must always initialize a reference when it is created. Usually,
references are created when they are declared, but reference data members need
to be initialized in the constructor initializer for the containing class.

You cannot create a reference to an unnamed value, such as an integer literal, unless the refer-
ence is to a const value. In the following example, unnamedRef1 does not compile because it is a

References  ❘  335

non-const reference to a constant. That would mean you could change the value of the constant,
5, which doesn’t make sense. unnamedRef2 works because it’s a const reference, so you cannot for
example write “unnamedRef2 = 7”.

int& unnamedRef1 = 5; // DOES NOT COMPILE
const int& unnamedRef2 = 5; // Works as expected

The same holds for temporary objects. You cannot have a non-const reference to a temporary
object, but a const reference is fine. For example, suppose you have the following function return-
ing an std::string object:

std::string getString() { return "Hello world!"; }

You can have a const reference to the result of calling getString(), and that const reference keeps
the std::string object alive until the reference goes out of scope:

std::string& string1 = getString(); // DOES NOT COMPILE
const std::string& string2 = getString(); // Works as expected

Modifying References
A reference always refers to the same variable to which it is initialized; references cannot be changed
once they are created. This rule leads to some confusing syntax. If you “assign” a variable to a refer-
ence when the reference is declared, the reference refers to that variable. However, if you assign a
variable to a reference after that, the variable to which the reference refers is changed to the value
of the variable being assigned. The reference is not updated to refer to that variable. Here is a code
example:

int x = 3, y = 4;
int& xRef = x;
xRef = y; // Changes value of x to 4. Doesn't make xRef refer to y.

You might try to circumvent this restriction by taking the address of y when you assign it:

xRef = &y; // DOES NOT COMPILE!

This code does not compile. The address of y is a pointer, but xRef is declared as a reference to an
int, not a reference to a pointer.

Some programmers go even further in their attempts to circumvent the intended semantics of refer-
ences. What if you assign a reference to a reference? Won’t that make the first reference refer to the
variable to which the second reference refers? You might be tempted to try this code:

int x = 3, z = 5;
int& xRef = x;
int& zRef = z;
zRef = xRef; // Assigns values, not references

The final line does not change zRef. Instead, it sets the value of z to 3, because xRef refers to x,
which is 3.

WARNING  You cannot change the variable to which a reference refers after it is
initialized; you can change only the value of that variable.

336  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

References to Pointers and Pointers to References
You can create references to any type, including pointer types. Here is an example of a reference to a
pointer to int:

int* intP;
int*& ptrRef = intP;
ptrRef = new int;
*ptrRef = 5;

The syntax is a little strange: you might not be accustomed to seeing * and & right next to each
other. However, the semantics are straightforward: ptrRef is a reference to intP, which is a pointer
to int. Modifying ptrRef changes intP. References to pointers are rare, but can occasionally be
useful, as discussed in the “Reference Parameters” section later in this chapter.

Note that taking the address of a reference gives the same result as taking the address of the variable
to which the reference refers. Here is an example:

int x = 3;
int& xRef = x;
int* xPtr = &xRef; // Address of a reference is pointer to value
*xPtr = 100;

This code sets xPtr to point to x by taking the address of a reference to x. Assigning 100 to *xPtr
changes the value of x to 100. Writing a comparison “xPtr == xRef” will not compile because of
a type mismatch; xPtr is a pointer to an int while xRef is a reference to an int. The comparisons
“xPtr == &xRef” and “xPtr == &x” both compile without errors and are both true.

Finally, note that you cannot declare a reference to a reference, or a pointer to a reference. For
example, neither “int& &” nor “int&*” is allowed.

Reference Data Members
As Chapter 9 explains, data members of classes can be references. A reference cannot exist without
referring to some other variable. Thus, you must initialize reference data members in the constructor
initializer, not in the body of the constructor. The following is a quick example:

class MyClass
{
 public:
 MyClass(int& ref) : mRef(ref) {}
 private:
 int& mRef;
};

Consult Chapter 9 for details.

Reference Parameters
C++ programmers do not often use stand-alone reference variables or reference data members. The
most common use of references is for parameters to functions and methods. Recall that the default

References  ❘  337

parameter-passing semantics are pass-by-value: functions receive copies of their arguments. When
those parameters are modified, the original arguments remain unchanged. References allow you to
specify pass-by-reference semantics for arguments passed to the function. When you use reference
parameters, the function receives references to the function arguments. If those references are modi-
fied, the changes are reflected in the original argument variables. For example, here is a simple swap
function to swap the values of two ints:

void swap(int& first, int& second)
{
 int temp = first;
 first = second;
 second = temp;
}

You can call it like this:

int x = 5, y = 6;
swap(x, y);

When swap() is called with the arguments x and y, the first parameter is initialized to refer to x,
and the second parameter is initialized to refer to y. When swap() modifies first and second,
x and y are actually changed.

Just as you can’t initialize normal reference variables with constants, you can’t pass constants as
arguments to functions that employ pass-by-non-const-reference:

swap(3, 4); // DOES NOT COMPILE

NOTE  It is possible to pass constants as arguments to functions if you use pass-
by-const-reference (discussed later in this chapter) or pass-by-rvalue-reference.
Rvalue references are discussed in detail in Chapter 9.

References from Pointers
A common quandary arises when you have a pointer to something that you need to pass to a func-
tion or method that takes a reference. You can “convert” a pointer to a reference in this case by
dereferencing the pointer. This action gives you the value to which the pointer points, which the
compiler then uses to initialize the reference parameter. For example, you can call swap() like this:

int x = 5, y = 6;
int *xp = &x, *yp = &y;
swap(*xp, *yp);

Pass-by-Reference versus Pass-by-Value
Pass-by-reference is required when you want to modify the parameter and see those changes
reflected in the variable passed to the function or method. However, you should not limit your use

338  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

of pass-by-reference to only those cases. Pass-by-reference avoids copying the arguments to the func-
tion, providing two additional benefits in some cases:

	 1.	 Efficiency. Large objects and structs could take a long time to copy. Pass-by-reference
passes only a reference to the object or struct into the function.

	 2.	 Correctness. Not all objects allow pass-by-value. Even those that do allow it might not
support deep copying correctly. As Chapter 9 explains, objects with dynamically allocated
memory must provide a custom copy constructor and copy assignment operator in order to
support deep copying.

If you want to leverage these benefits, but do not want to allow the original objects to be modified,
you should mark the parameters const, giving you pass-by-const-reference. This topic is covered in
detail later in this chapter.

These benefits to pass-by-reference imply that you should use pass-by-value only for simple built-in
types like int and double for which you don’t need to modify the arguments. Use pass-by-const-
reference or pass-by-reference in all other cases.

Reference Return Values
You can also return a reference from a function or method. The main reason to do so is efficiency.
Instead of returning a whole object, return a reference to the object to avoid copying it unnecessar-
ily. Of course, you can only use this technique if the object in question continues to exist following
the function termination.

WARNING  From a function or method, never return a reference to a variable
that is locally scoped to that function or method, such as an automatically allo-
cated variable on the stack that will be destroyed when the function ends.

Note that if the type you want to return from your function supports move semantics, discussed in
Chapter 9, then returning it by value is almost as efficient as returning a reference.

A second reason to return a reference is if you want to be able to assign to the return value directly
as an lvalue (the left-hand side of an assignment statement). Several overloaded operators commonly
return references. Chapter 9 shows some examples, and you can read about more applications of
this technique in Chapter 15.

Rvalue References
An rvalue is anything that is not an lvalue, such as a constant value, or a temporary object or value.
Typically, an rvalue is on the right-hand side of an assignment operator. Rvalue references are dis-
cussed in detail in Chapter 9, but here is a quick reminder:

// lvalue reference parameter
void handleMessage(std::string& message)
{
 cout << "handleMessage with lvalue reference: " << message << endl;
}

References  ❘  339

With only this version of handleMessage(), you cannot call it as follows:

handleMessage("Hello World"); // A literal is not an lvalue.

std::string a = "Hello ";
std::string b = "World";
handleMessage(a + b); // A temporary is not an lvalue.

To allow these kinds of calls, you need a version that accepts an rvalue reference:

// rvalue reference parameter
void handleMessage(std::string&& message)
{
 cout << "handleMessage with rvalue reference: " << message << endl;
}

See Chapter 9 for more details.

Deciding between References and Pointers
References in C++ could be considered redundant: everything you can do with references, you can
accomplish with pointers. For example, you could write the earlier shown swap() function like this:

void swap(int* first, int* second)
{
 int temp = *first;
 *first = *second;
 *second = temp;
}

However, this code is more cluttered than the version with references. References make your pro-
grams cleaner and easier to understand. They are also safer than pointers: it’s impossible to have
a null reference, and you don’t explicitly dereference references, so you can’t encounter any of the
dereferencing errors associated with pointers. These arguments, saying that references are safer, are
only valid in the absence of any pointers. For example, take the following function that accepts a
reference to an int:

void refcall(int& t) { ++t; }

You could declare a pointer and initialize it to point to some random place in memory. Then you
could dereference this pointer and pass it as the reference argument to refcall(), as in the follow-
ing code. This code compiles fine, but it is undefined what will happen when executed. It could for
example cause a crash.

int* ptr = (int*)8;
refcall(*ptr);

Most of the time, you can use references instead of pointers. References to objects even support
polymorphism in the same way as pointers to objects. However, there are some use-cases in which
you need to use a pointer. One example is when you need to change the location to which it points.
Recall that you cannot change the variable to which references refer. For example, when you dynam-
ically allocate memory, you need to store a pointer to the result in a pointer rather than a reference.
A second use-case in which you need to use a pointer is when the pointer is optional, that is, when it
can be nullptr. Yet another use-case is if you want to store polymorphic types in a container.

340  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

A way to distinguish between appropriate use of pointers and references in parameters and return
types is to consider who owns the memory. If the code receiving the variable becomes the owner
and thus becomes responsible for releasing the memory associated with an object, it must receive a
pointer to the object. Better yet, it should receive a smart pointer, which is the recommended way to
transfer ownership. If the code receiving the variable should not free the memory, it should receive a
reference.

NOTE  Prefer references over pointers, that is, only use a pointer if a reference is
not possible.

Consider a function that splits an array of ints into two arrays: one of even numbers and one of
odd numbers. The function doesn’t know how many numbers in the source array will be even or
odd, so it should dynamically allocate the memory for the destination arrays after examining the
source array. It should also return the sizes of the two new arrays. Altogether, there are four items to
return: pointers to the two new arrays and the sizes of the two new arrays. Obviously, you must use
pass-by-reference. The canonical C way to write the function looks like this:

void separateOddsAndEvens(const int arr[], size_t size, int** odds,
 size_t* numOdds, int** evens, size_t* numEvens)
{
 // Count the number of odds and evens
 *numOdds = *numEvens = 0;
 for (size_t i = 0; i < size; ++i) {
 if (arr[i] % 2 == 1) {
 ++(*numOdds);
 } else {
 ++(*numEvens);
 }
 }

 // Allocate two new arrays of the appropriate size.
 *odds = new int[*numOdds];
 *evens = new int[*numEvens];

 // Copy the odds and evens to the new arrays
 size_t oddsPos = 0, evensPos = 0;
 for (size_t i = 0; i < size; ++i) {
 if (arr[i] % 2 == 1) {
 (*odds)[oddsPos++] = arr[i];
 } else {
 (*evens)[evensPos++] = arr[i];
 }
 }
}

The final four parameters to the function are the “reference” parameters. In order to change the
values to which they refer, separateOddsAndEvens() must dereference them, leading to some ugly
syntax in the function body. Additionally, when you want to call separateOddsAndEvens(), you
must pass the address of two pointers so that the function can change the actual pointers, and the

References  ❘  341

address of two ints so that the function can change the actual ints. Note also that the caller is
responsible for deleting the two arrays created by separateOddsAndEvens()!

int unSplit[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int* oddNums = nullptr;
int* evenNums = nullptr;
size_t numOdds = 0, numEvens = 0;

separateOddsAndEvens(unSplit, std::size(unSplit),
 &oddNums, &numOdds, &evenNums, &numEvens);

// Use the arrays...

delete[] oddNums; oddNums = nullptr;
delete[] evenNums; evenNums = nullptr;

If this syntax annoys you (which it should), you can write the same function by using references to
obtain true pass-by-reference semantics:

void separateOddsAndEvens(const int arr[], size_t size, int*& odds,
 size_t& numOdds, int*& evens, size_t& numEvens)
{
 numOdds = numEvens = 0;
 for (size_t i = 0; i < size; ++i) {
 if (arr[i] % 2 == 1) {
 ++numOdds;
 } else {
 ++numEvens;
 }
 }

 odds = new int[numOdds];
 evens = new int[numEvens];

 size_t oddsPos = 0, evensPos = 0;
 for (size_t i = 0; i < size; ++i) {
 if (arr[i] % 2 == 1) {
 odds[oddsPos++] = arr[i];
 } else {
 evens[evensPos++] = arr[i];
 }
 }
}

In this case, the odds and evens parameters are references to int*s. separateOddsAndEvens() can
modify the int*s that are used as arguments to the function (through the reference), without any
explicit dereferencing. The same logic applies to numOdds and numEvens, which are references to
ints. With this version of the function, you no longer need to pass the addresses of the pointers
or ints. The reference parameters handle it for you automatically:

separateOddsAndEvens(unSplit, std::size(unSplit),
 oddNums, numOdds, evenNums, numEvens);

Even though using reference parameters is already much cleaner than using pointers, it is recom-
mended that you avoid dynamically allocated arrays as much as possible. For example, by using the

342  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

Standard Library vector container, the previous separateOddsAndEvens() function can be rewrit-
ten to be much safer, more elegant, and much more readable, because all memory allocation and
deallocation happens automatically:

void separateOddsAndEvens(const vector<int>& arr,
 vector<int>& odds, vector<int>& evens)
{
 for (int i : arr) {
 if (i % 2 == 1) {
 odds.push_back(i);
 } else {
 evens.push_back(i);
 }
 }
}

This version can be used as follows:

vector<int> vecUnSplit = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
vector<int> odds, evens;
separateOddsAndEvens(vecUnSplit, odds, evens);

Note that you don’t need to deallocate the odds and evens containers; the vector class takes
care of this. This version is much easier to use than the versions using pointers or references. The
Standard Library vector container is discussed in detail in Chapter 17.

The version using vectors is already much better than the versions using pointers or references,
but it’s usually recommended to avoid output parameters as much as possible. If a function needs
to return something, you should just return it, instead of using output parameters. Especially since
C++11 introduced move semantics, returning something by value from a function is efficient. And
now that C++17 has introduced structured bindings, see Chapter 1, it is really convenient to return
multiple values from a function.

So, for the separateOddsAndEvens() function, instead of accepting two output vectors, it should
simply return a pair of vectors. The std::pair utility class, defined in <utility>, is discussed in
detail in Chapter 17, but its use is rather straightforward. Basically, a pair can store two values of
two different or equal types. It’s a class template, and it requires two types between the angle brack-
ets to specify the type of both values. A pair can be created using std::make_pair(). Here is the
separateOddsAndEvens() function returning a pair of vectors:

pair<vector<int>, vector<int>> separateOddsAndEvens(const vector<int>& arr)
{
 vector<int> odds, evens;
 for (int i : arr) {
 if (i % 2 == 1) {
 odds.push_back(i);
 } else {
 evens.push_back(i);
 }
 }
 return make_pair(odds, evens);
}

C++17

Keyword Confusion  ❘  343

By using a structured binding, the code to call separateOddsAndEvens() becomes very compact,
yet very easy to read and understand:

vector<int> vecUnSplit = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
auto[odds, evens] = separateOddsAndEvens(vecUnSplit);

KEYWORD CONFUSION

Two keywords in C++ appear to cause more confusion than any others: const and static. Both of
these keywords have several different meanings, and each of their uses presents subtleties that are
important to understand.

The const Keyword
The keyword const is short for “constant” and specifies that something remains unchanged. The
compiler enforces this requirement by marking any attempt to change it as an error. Furthermore,
when optimizations are enabled, the compiler can take advantage of this knowledge to produce bet-
ter code. The keyword has two related roles. It can mark variables or parameters, and it can mark
methods. This section provides a definitive discussion of these two meanings.

const Variables and Parameters
You can use const to “protect” variables by specifying that they cannot be modified. One impor-
tant use is as a replacement for #define to define constants. This use of const is its most straight-
forward application. For example, you could declare the constant PI like this:

const double PI = 3.141592653589793238462;

You can mark any variable const, including global variables and class data members.

You can also use const to specify that parameters to functions or methods should remain
unchanged. For example, the following function accepts a const parameter. In the body of the func-
tion, you cannot modify the param integer. If you do try to modify it, the compiler will generate an
error.

void func(const int param)
{
 // Not allowed to change param...
}

The following subsections discuss two special kinds of const variables or parameters in more detail:
const pointers and const references.

const Pointers
When a variable contains one or more levels of indirection via a pointer, applying const becomes
trickier. Consider the following lines of code:

int* ip;
ip = new int[10];
ip[4] = 5;

344  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

Suppose that you decide to apply const to ip. Set aside your doubts about the usefulness of doing so
for a moment, and consider what it means. Do you want to prevent the ip variable itself from being
changed, or do you want to prevent the values to which it points from being changed? That is, do
you want to prevent the second line or the third line?

In order to prevent the pointed-to values from being modified (as in the third line), you can add the
keyword const to the declaration of ip like this:

const int* ip;
ip = new int[10];
ip[4] = 5; // DOES NOT COMPILE!

Now you cannot change the values to which ip points.

An alternative but semantically equivalent way to write this is as follows:

int const* ip;
ip = new int[10];
ip[4] = 5; // DOES NOT COMPILE!

Putting the const before or after the int makes no difference in its functionality.

If you instead want to mark ip itself const (not the values to which it points), you need to write
this:

int* const ip = nullptr;
ip = new int[10]; // DOES NOT COMPILE!
ip[4] = 5; // Error: dereferencing a null pointer

Now that ip itself cannot be changed, the compiler requires you to initialize it when you declare it,
either with nullptr as in the preceding code or with newly allocated memory as follows:

int* const ip = new int[10];
ip[4] = 5;

You can also mark both the pointer and the values to which it points const like this:

int const* const ip = nullptr;

Here is an alternative but equivalent syntax:

const int* const ip = nullptr;

Although this syntax might seem confusing, there is actually a very simple rule: the const keyword
applies to whatever is directly to its left. Consider this line again:

int const* const ip = nullptr;

From left to right, the first const is directly to the right of the word int. Thus, it applies to the int
to which ip points. Therefore, it specifies that you cannot change the values to which ip points. The
second const is directly to the right of the *. Thus, it applies to the pointer to the int, which is the
ip variable. Therefore, it specifies that you cannot change ip (the pointer) itself.

The reason this rule becomes confusing is an exception. That is, the first const can go before the
variable like this:

const int* const ip = nullptr;

Keyword Confusion  ❘  345

This “exceptional” syntax is used much more commonly than the other syntax.

You can extend this rule to any number of levels of indirection, as in this example:

const int * const * const * const ip = nullptr;

NOTE  Another easy-to-remember rule to figure out complicated variable dec-
larations: read from right to left. Take, for example, “int* const ip.” Reading
this from right to left gives you “ip is a const pointer to an int.” On the other
hand, “int const* ip” reads as “ip is a pointer to a const int.”

const References
const applied to references is usually simpler than const applied to pointers for two reasons. First,
references are const by default, in that you can’t change to what they refer. So, there is no need to
mark them const explicitly. Second, you can’t create a reference to a reference, so there is usually
only one level of indirection with references. The only way to get multiple levels of indirection is to
create a reference to a pointer.

Thus, when C++ programmers refer to a “const reference,” they mean something like this:

int z;
const int& zRef = z;
zRef = 4; // DOES NOT COMPILE

By applying const to the int&, you prevent assignment to zRef, as shown. Similar to pointers,
const int& zRef is equivalent to int const& zRef. Note, however, that marking zRef const
has no effect on z. You can still modify the value of z by changing it directly instead of through
the reference.

const references are used most commonly as parameters, where they are quite useful. If you want to
pass something by reference for efficiency, but don’t want it to be modifiable, make it a const refer-
ence, as in this example:

void doSomething(const BigClass& arg)
{
 // Implementation here
}

WARNING  Your default choice for passing objects as parameters should be
const reference. You should only omit the const if you explicitly need to change
the object.

const Methods
Chapter 9 explains that you can mark a class method const, which prevents the method from mod-
ifying any non-mutable data members of the class. Consult Chapter 9 for an example.

346  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

The constexpr Keyword
C++ always had the notion of constant expressions, and in some circumstances constant expres-
sions are required. For example, when defining an array, the size of the array needs to be a constant
expression. Because of this restriction, the following piece of code is not valid in C++:

const int getArraySize() { return 32; }

int main()
{
 int myArray[getArraySize()]; // Invalid in C++
 return 0;
}

Using the constexpr keyword, the getArraySize() function can be redefined to make it a constant
expression. Constant expressions are evaluated at compile time!

constexpr int getArraySize() { return 32; }

int main()
{
 int myArray[getArraySize()]; // OK
 return 0;
}

You can even do something like this:

int myArray[getArraySize() + 1]; // OK

Declaring a function as constexpr imposes quite a lot of restrictions on what the function can do
because the compiler has to be able to evaluate the function at compile time, and the function is not
allowed to have any side effects. Here are a couple of restrictions, although this is not an exhaustive
list:

➤➤ The function body shall not contain any goto statements, try catch blocks, uninitialized vari-
ables, or variable definitions that are not literal types,1 and shall not throw any exceptions. It
is allowed to call other constexpr functions.

➤➤ The return type of the function shall be a literal type.

➤➤ If the constexpr function is a member of a class, the function cannot be virtual.

➤➤ All the function parameters shall be literal types.

➤➤ A constexpr function cannot be called until it’s defined in the translation unit because the
compiler needs to know the complete definition.

➤➤ dynamic_cast() and reinterpret_cast() are not allowed.

➤➤ new and delete expressions are not allowed.

1A literal type is the type of constexpr variables. They can be returned from constexpr functions.
A literal type can be a void (possibly const/volatile qualified), a scalar type (integral and floating
point types, enumeration types, pointer types, pointer to member types, and const/volatile qualified
versions of these types), a reference type, an array of literal type, or a class type (possibly const/volatile
qualified) that has a trivial (that is, not user-provided) destructor, has at least one constexpr constructor,
and all of its non-static data members and base classes are literal types.

Keyword Confusion  ❘  347

By defining a constexpr constructor, you can create constant expression variables of user-defined
types. A constexpr constructor also has a lot of restrictions. Here are some of them:

➤➤ The class cannot have any virtual base classes.

➤➤ All the constructor parameters shall be literal types.

➤➤ The constructor body cannot be a function-try-block (see Chapter 14).

➤➤ The constructor body either shall be explicitly defaulted, or shall satisfy the same require-
ments as the body of a constexpr function.

➤➤ All data members shall be initialized with constant expressions.

For example, the following Rect class defines a constexpr constructor satisfying the previous
requirements. It also defines a constexpr getArea() method that is performing some calculation.

class Rect
{
 public:
 constexpr Rect(size_t width, size_t height)
 : mWidth(width), mHeight(height) {}

 constexpr size_t getArea() const { return mWidth * mHeight; }
 private:
 size_t mWidth, mHeight;
};

Using this class to declare a constexpr object is straightforward:

constexpr Rect r(8, 2);
int myArray[r.getArea()]; // OK

The static Keyword
There are several uses of the keyword static in C++, all seemingly unrelated. Part of the motiva-
tion for “overloading” the keyword was attempting to avoid having to introduce new keywords into
the language.

static Data Members and Methods
You can declare static data members and methods of classes. static data members, unlike non-
static data members, are not part of each object. Instead, there is only one copy of the data mem-
ber, which exists outside any objects of that class.

static methods are similarly at the class level instead of the object level. A static method does not
execute in the context of a specific object.

Chapter 9 provides examples of both static data members and methods.

static Linkage
Before covering the use of the static keyword for linkage, you need to understand the concept of
linkage in C++. C++ source files are each compiled independently, and the resulting object files are

348  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

linked together. Each name in a C++ source file, including functions and global variables, has a link-
age that is either external or internal. External linkage means that the name is available from other
source files. Internal linkage (also called static linkage) means that it is not. By default, functions
and global variables have external linkage. However, you can specify internal (or static) linkage by
prefixing the declaration with the keyword static. For example, suppose you have two source files:
FirstFile.cpp and AnotherFile.cpp. Here is FirstFile.cpp:

void f();

int main()
{
 f();
 return 0;
}

Note that this file provides a prototype for f(), but doesn’t show the definition. Here is
AnotherFile.cpp:

#include <iostream>

void f();

void f()
{
 std::cout << "f\n";
}

This file provides both a prototype and a definition for f(). Note that it is legal to write prototypes
for the same function in two different files. That’s precisely what the preprocessor does for you if
you put the prototype in a header file that you #include in each of the source files. The reason to
use header files is that it’s easier to maintain (and keep synchronized) one copy of the prototype.
However, for this example, I don’t use a header file.

Each of these source files compiles without error, and the program links fine: because f() has exter-
nal linkage, main() can call it from a different file.

However, suppose you apply static to the f() prototype in AnotherFile.cpp. Note that you don’t
need to repeat the static keyword in front of the definition of f(). As long as it precedes the first
instance of the function name, there is no need to repeat it:

#include <iostream>

static void f();

void f()
{
 std::cout << "f\n";
}

Now each of the source files compiles without error, but the linker step fails because f() has inter-
nal (static) linkage, making it unavailable from FirstFile.cpp. Some compilers issue a warning
when static methods are defined but not used in that source file (implying that they shouldn’t be
static, because they’re probably used elsewhere).

Keyword Confusion  ❘  349

An alternative to using static for internal linkage is to employ anonymous namespaces. Instead of
marking a variable or function static, wrap it in an unnamed namespace like this:

#include <iostream>

namespace {
 void f();

 void f()
 {
 std::cout << "f\n";
 }
}

Entities in an anonymous namespace can be accessed anywhere following their declaration in the
same source file, but cannot be accessed from other source files. These semantics are the same as
those obtained with the static keyword.

WARNING  The recommended method to get internal linkage is to use anony-
mous namespaces, instead of the static keyword.

The extern Keyword
A related keyword, extern, seems like it should be the opposite of static, specifying external
linkage for the names it precedes. It can be used that way in certain cases. For example, consts
and typedefs have internal linkage by default. You can use extern to give them external linkage.
However, extern has some complications. When you specify a name as extern, the compiler treats
it as a declaration, not a definition. For variables, this means the compiler doesn’t allocate space for
the variable. You must provide a separate definition line for the variable without the extern key-
word. For example, here is the content of AnotherFile.cpp:

extern int x;
int x = 3;

Alternatively, you can initialize x in the extern line, which then serves as the declaration and
definition:

extern int x = 3;

The extern in this case is not very useful, because x has external linkage by default anyway. The
real use of extern is when you want to use x from another source file, FirstFile.cpp:

#include <iostream>

extern int x;

int main()
{
 std::cout << x << std::endl;
}

350  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

Here, FirstFile.cpp uses an extern declaration so that it can use x. The compiler needs a declara-
tion of x in order to use it in main(). If you declared x without the extern keyword, the compiler
would think it’s a definition and would allocate space for x, causing the linkage step to fail (because
there are now two x variables in the global scope). With extern, you can make variables globally
accessible from multiple source files.

WARNING  It is not recommended to use global variables at all. They are con-
fusing and error-prone, especially in large programs. Use them judiciously!

static Variables in Functions
The final use of the static keyword in C++ is to create local variables that retain their values
between exits and entrances to their scope. A static variable inside a function is like a global vari-
able that is only accessible from that function. One common use of static variables is to “remem-
ber” whether a particular initialization has been performed for a certain function. For example,
code that employs this technique might look something like this:

void performTask()
{
 static bool initialized = false;
 if (!initialized) {
 cout << "initializing" << endl;
 // Perform initialization.
 initialized = true;
 }
 // Perform the desired task.
}

However, static variables are confusing, and there are usually better ways to structure your code
so that you can avoid them. In this case, you might want to write a class in which the constructor
performs the required initialization.

NOTE  Avoid using stand-alone static variables. Maintain state within an
object instead.

Sometimes, however, they are quite useful. One example is for implementing the Meyer’s singleton
design pattern, as explained in Chapter 29.

NOTE  The implementation of performTask() is not thread-safe; it contains
a race condition. In a multithreaded environment, you need to use atomics or
other mechanisms for synchronization of multiple threads. Multithreading is dis-
cussed in detail in Chapter 23.

Types and Casts  ❘  351

Order of Initialization of Nonlocal Variables
Before leaving the topic of static data members and global variables, consider the order of ini-
tialization of these variables. All global variables and static class data members in a program are
initialized before main() begins. The variables in a given source file are initialized in the order they
appear in the source file. For example, in the following file, Demo::x is guaranteed to be initialized
before y:

class Demo
{
 public:
 static int x;
};
int Demo::x = 3;
int y = 4;

However, C++ provides no specifications or guarantees about the initialization ordering of nonlo-
cal variables in different source files. If you have a global variable x in one source file and a global
variable y in another, you have no way of knowing which will be initialized first. Normally, this
lack of specification isn’t cause for concern. However, it can be problematic if one global or static
variable depends on another. Recall that initialization of objects implies running their constructors.
The constructor of one global object might access another global object, assuming that it is already
constructed. If these two global objects are declared in two different source files, you cannot count
on one being constructed before the other, and you cannot control the order of initialization. This
order might not be the same for different compilers or even different versions of the same compiler,
and the order might even change when you simply add another file to your project.

WARNING  Initialization order of nonlocal variables in different source files is
undefined.

Order of Destruction of Nonlocal Variables
Nonlocal variables are destroyed in the reverse order they were initialized. Nonlocal variables in
different source files are initialized in an undefined order, which means that the order of destruction
is also undefined.

TYPES AND CASTS

The basic types in C++ are reviewed in Chapter 1, while Chapter 8 shows you how to write your
own types with classes. This section explores some of the trickier aspects of types: type aliases, type
aliases for function pointers, type aliases for pointers to methods and data members, typedefs, and
casts.

352  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

Type Aliases
A type alias provides a new name for an existing type declaration. You can think of a type alias as
syntax for introducing a synonym for an existing type declaration without creating a new type. The
following gives a new name, IntPtr, to the int* type declaration:

using IntPtr = int*;

You can use the new type name and the definition it aliases interchangeably. For example, the fol-
lowing two lines are valid:

int* p1;
IntPtr p2;

Variables created with the new type name are completely compatible with those created with the
original type declaration. So, it is perfectly valid, given these definitions, to write the following,
because they are not just “compatible” types, they are the same type:

p1 = p2;
p2 = p1;

The most common use for type aliases is to provide manageable names when the real type declara-
tions become too unwieldy. This situation commonly arises with templates. For example, Chapter 1
introduces the std::vector from the Standard Library. To declare a vector of strings, you need
to declare it as std::vector<std::string>. It’s a templated class, and thus requires you to specify
the template parameters any time you want to refer to the type of this vector. Templates are dis-
cussed in detail in Chapter 12. For declaring variables, specifying function parameters, and so on,
you would have to write std::vector<std::string>:

void processVector(const std::vector<std::string>& vec) { /* omitted */ }

int main()
{
 std::vector<std::string> myVector;
 processVector(myVector);
 return 0;
}

With a type alias, you can create a shorter, more meaningful name:

using StringVector = std::vector<std::string>;

void processVector(const StringVector& vec) { /* omitted */ }

int main()
{
 StringVector myVector;
 processVector(myVector);
 return 0;
}

Type aliases can include the scope qualifiers. The preceding example shows this by including the
scope std for StringVector.

Types and Casts  ❘  353

The Standard Library uses type aliases extensively to provide shorter names for types. For example,
std::string is actually a type alias that looks like this:

using string = basic_string<char>;

Type Aliases for Function Pointers
You don’t normally think about the location of functions in memory, but each function actually
lives at a particular address. In C++, you can use functions as data. In other words, you can take the
address of a function and use it like you use a variable.

Function pointers are typed according to the parameter types and return type of compatible func-
tions. One way to work with function pointers is to use a type alias. A type alias allows you to
assign a type name to the family of functions that have the given characteristics. For example, the
following line defines a type called MatchFunction that represents a pointer to any function that
has two int parameters and returns a bool:

using MatchFunction = bool(*)(int, int);

Now that this new type exists, you can write a function that takes a MatchFunction as a param-
eter. For example, the following function accepts two int arrays and their size, as well as a
MatchFunction. It iterates through the arrays in parallel and calls the MatchFunction on cor-
responding elements of both arrays, printing a message if the call returns true. Notice that even
though the MatchFunction is passed in as a variable, it can be called just like a regular function:

void findMatches(int values1[], int values2[], size_t numValues,
 MatchFunction matcher)
{
 for (size_t i = 0; i < numValues; i++) {
 if (matcher(values1[i], values2[i])) {
 cout << "Match found at position " << i <<
 " (" << values1[i] << ", " << values2[i] << ")" << endl;
 }
 }
}

Note that this implementation requires that both arrays have at least numValues elements.
To call the findMatches() function, all you need is any function that adheres to the defined
MatchFunction type—that is, any type that takes in two ints and returns a bool. For example,
consider the following function, which returns true if the two parameters are equal:

bool intEqual(int item1, int item2)
{
 return item1 == item2;
}

Because the intEqual() function matches the MatchFunction type, it can be passed as the final
argument to findMatches(), as follows:

int arr1[] = { 2, 5, 6, 9, 10, 1, 1 };
int arr2[] = { 4, 4, 2, 9, 0, 3, 4 };

354  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

size_t arrSize = std::size(arr1); // Pre-C++17: sizeof(arr1)/sizeof(arr1[0]);
cout << "Calling findMatches() using intEqual():" << endl;
findMatches(arr1, arr2, arrSize, &intEqual);

The intEqual() function is passed into the findMatches() function by taking its address.
Technically, the & character is optional—if you omit it and only put the function name, the compiler
will know that you mean to take its address. The output is as follows:

Calling findMatches() using intEqual():
Match found at position 3 (9, 9)

The benefit of function pointers lies in the fact that findMatches() is a generic function that com-
pares parallel values in two arrays. As it is used here, it compares based on equality. However,
because it takes a function pointer, it could compare based on other criteria. For example, the fol-
lowing function also adheres to the definition of MatchFunction:

bool bothOdd(int item1, int item2)
{
 return item1 % 2 == 1 && item2 % 2 == 1;
}

The following code calls findMatches() using bothOdd:

cout << "Calling findMatches() using bothOdd():" << endl;
findMatches(arr1, arr2, arrSize, &bothOdd);

The output is as follows:

Calling findMatches() using bothOdd():
Match found at position 3 (9, 9)
Match found at position 5 (1, 3)

By using function pointers, a single function, findMatches(), is customized to different uses based
on a parameter, matcher.

NOTE  Instead of using these old-style function pointers, you can also use
std::function, which is explained in Chapter 18.

While function pointers in C++ are uncommon, you may need to obtain function pointers in cer-
tain cases. Perhaps the most common example of this is when obtaining a pointer to a function
in a dynamic link library. The following example obtains a pointer to a function in a Microsoft
Windows Dynamic Link Library (DLL). Details of Windows DLLs are outside the scope of this
book on platform-independent C++, but it is so important to Windows programmers that it is worth
discussing, and it is a good example to explain the details of function pointers in general.

Consider a DLL, hardware.dll, that has a function called Connect(). You would like to load
this library only if you need to call Connect(). Loading the library at run-time is done with the
Windows LoadLibrary() kernel function:

HMODULE lib = ::LoadLibrary("hardware.dll");

Types and Casts  ❘  355

The result of this call is what is called a “library handle” and will be NULL if there is an error.
Before you can load the function from the library, you need to know the prototype for the function.
Suppose the following is the prototype for Connect(), which returns an integer and accepts three
parameters: a Boolean, an integer, and a C-style string.

int __stdcall Connect(bool b, int n, const char* p);

The __stdcall is a Microsoft-specific directive to specify how parameters are passed to the func-
tion and how they are cleaned up.

You can now use a type alias to define a name (ConnectFunction) for a pointer to a function with
the preceding prototype:

using ConnectFunction = int(__stdcall*)(bool, int, const char*);

Having successfully loaded the library and defined a name for the function pointer, you can get a
pointer to the function in the library as follows:

ConnectFunction connect = (ConnectFunction)::GetProcAddress(lib, "Connect");

If this fails, connect will be nullptr. If it succeeds, you can call the loaded function:

connect(true, 3, "Hello world");

A C programmer might think that you need to dereference the function pointer before calling it as
follows:

(*connect)(true, 3, "Hello world");

This was true decades ago, but now, every C and C++ compiler is smart enough to know how to
automatically dereference a function pointer before calling it.

Type Aliases for Pointers to Methods and Data Members
You can create and use pointers to both variables and functions. Now, consider pointers to class
data members and methods. It’s perfectly legitimate in C++ to take the addresses of class data mem-
bers and methods in order to obtain pointers to them. However, you can’t access a non-static data
member or call a non-static method without an object. The whole point of class data members and
methods is that they exist on a per-object basis. Thus, when you want to call the method or access
the data member via the pointer, you must dereference the pointer in the context of an object. Here
is an example using the Employee class introduced in Chapter 1:

Employee employee;
int (Employee::*methodPtr) () const = &Employee::getSalary;
cout << (employee.*methodPtr)() << endl;

Don’t panic at the syntax. The second line declares a variable called methodPtr of type pointer to a
non-static const method of Employee that takes no arguments and returns an int. At the same
time, it initializes this variable to point to the getSalary() method of the Employee class. This
syntax is quite similar to declaring a simple function pointer, except for the addition of Employee::
before the *methodPtr. Note also that the & is required in this case.

356  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

The third line calls the getSalary() method (via the methodPtr pointer) on the employee object.
Note the use of parentheses surrounding employee.*methodPtr. They are needed because () has
higher precedence than *.

The second line can be made easier to read with a type alias:

Employee employee;
using PtrToGet = int (Employee::*) () const;
PtrToGet methodPtr = &Employee::getSalary;
cout << (employee.*methodPtr)() << endl;

Using auto, it can be simplified even further:

Employee employee;
auto methodPtr = &Employee::getSalary;
cout << (employee.*methodPtr)() << endl;

NOTE  You can get rid of the (.*) syntax by using std::mem_fn(). This is
explained in the context of function objects in Chapter 18.

Pointers to methods and data members usually won’t come up in your programs. However, it’s
important to keep in mind that you can’t dereference a pointer to a non-static method or data
member without an object. Every so often, you may want to try something like passing a pointer to
a non-static method to a function such as qsort() that requires a function pointer, which simply
won’t work.

NOTE  C++ does permit you to dereference a pointer to a static data member
or static method without an object.

typedefs
Type aliases were introduced in C++11. Before C++11, you had to use typedefs to accomplish some-
thing similar but in a more convoluted way.

Just as a type alias, a typedef provides a new name for an existing type declaration. For example,
take the following type alias:

using IntPtr = int*;

Without type aliases, you had to use a typedef which looked as follows:

typedef int* IntPtr;

As you can see, it’s much less readable! The order is reversed, which causes a lot of confusion, even
for professional C++ developers. Other than being more convoluted, a typedef behaves almost the
same as a type alias. For example, the typedef can be used as follows:

IntPtr p;

Types and Casts  ❘  357

Before type aliases were introduced, you also had to use typedefs for function pointers, which is
even more convoluted. For example, take the following type alias:

using FunctionType = int (*)(char, double);

Defining the same FunctionType with a typedef looks as follows:

typedef int (*FunctionType)(char, double);

This is more convoluted because the name FunctionType is somewhere in the middle of it.

Type aliases and typedefs are not entirely equivalent. Compared to typedefs, type aliases are more
powerful when used with templates, but that is covered in Chapter 12 because it requires more
details about templates.

WARNING  Always prefer type aliases over typedefs.

Casts
C++ provides four specific casts: const_cast(), static_cast(), reinterpret_cast(), and
dynamic_cast().

The old C-style casts with () still work in C++, and are still used extensively in existing code bases.
C-style casts cover all four C++ casts, so they are more error-prone because it’s not always obvious
what you are trying to achieve, and you might end up with unexpected results. I strongly recom-
mend you only use the C++ style casts in new code because they are safer and stand out better syn-
tactically in your code.

This section describes the purposes of each C++ cast and specifies when you would use each of
them.

const_cast()
const_cast() is the most straightforward of the different casts available. You can use it to add
const-ness to a variable, or cast away const-ness of a variable. It is the only cast of the four that is
allowed to cast away const-ness. Theoretically, of course, there should be no need for a const cast.
If a variable is const, it should stay const. In practice, however, you sometimes find yourself in a
situation where a function is specified to take a const variable, which it must then pass to a func-
tion that takes a non-const variable. The “correct” solution would be to make const consistent in
the program, but that is not always an option, especially if you are using third-party libraries. Thus,
you sometimes need to cast away the const-ness of a variable, but you should only do this when you
are sure the function you are calling will not modify the object; otherwise, there is no other option
than to restructure your program. Here is an example:

extern void ThirdPartyLibraryMethod(char* str);

void f(const char* str)
{
 ThirdPartyLibraryMethod(const_cast<char*>(str));
}

358  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

Starting with C++17, there is a helper method called std::as_const(), defined in <utility>, that
returns a const reference version of its reference parameter. Basically, as_const(obj) is equivalent
to const_cast<const T&>(obj), where T is the type of obj. As you can see, using as_const() is
shorter than using const_cast(). Here is an example:

std::string str = "C++";
const std::string& constStr = std::as_const(str);

Watch out when using as_const() in combination with auto. Remember from Chapter 1 that auto
strips away reference and const qualifiers! So, the following result variable has type std::string,
not const std::string&:

auto result = std::as_const(str);

static_cast()
You can use static_cast() to perform explicit conversions that are supported directly by the lan-
guage. For example, if you write an arithmetic expression in which you need to convert an int to a
double in order to avoid integer division, use a static_cast(). In this example, it’s enough to only
use static_cast() with i, because that makes one of the two operands a double, making sure
C++ performs floating point division.

int i = 3;
int j = 4;
double result = static_cast<double>(i) / j;

You can also use static_cast() to perform explicit conversions that are allowed because of user-
defined constructors or conversion routines. For example, if class A has a constructor that takes an
object of class B, you can convert a B object to an A object with static_cast(). In most situations
where you want this behavior, however, the compiler performs the conversion automatically.

Another use for static_cast() is to perform downcasts in an inheritance hierarchy, as in this
example:

class Base
{
 public:
 virtual ~Base() = default;
};

class Derived : public Base
{
 public:
 virtual ~Derived() = default;
};

int main()
{
 Base* b;
 Derived* d = new Derived();
 b = d; // Don't need a cast to go up the inheritance hierarchy
 d = static_cast<Derived*>(b); // Need a cast to go down the hierarchy

 Base base;

C++17

Types and Casts  ❘  359

 Derived derived;
 Base& br = derived;
 Derived& dr = static_cast<Derived&>(br);
 return 0;
}

These casts work with both pointers and references. They do not work with objects themselves.

Note that these casts using static_cast() do not perform run-time type checking. They allow you
to convert any Base pointer to a Derived pointer, or Base reference to a Derived reference, even if
the Base really isn’t a Derived at run time. For example, the following code compiles and executes,
but using the pointer d can result in potentially catastrophic failure, including memory overwrites
outside the bounds of the object.

Base* b = new Base();
Derived* d = static_cast<Derived*>(b);

To perform the cast safely with run-time type checking, use dynamic_cast(), which is explained a
little later in this chapter.

static_cast() is not all-powerful. You can’t static_cast() pointers of one type to pointers of
another unrelated type. You can’t directly static_cast() objects of one type to objects of another
type if there is no converting constructor available. You can’t static_cast() a const type to a
non-const type. You can’t static_cast() pointers to ints. Basically, you can’t do anything that
doesn’t make sense according to the type rules of C++.

reinterpret_cast()
reinterpret_cast() is a bit more powerful, and concomitantly less safe, than static_cast().
You can use it to perform some casts that are not technically allowed by the C++ type rules, but
which might make sense to the programmer in some circumstances. For example, you can cast a
reference to one type to a reference to another type, even if the types are unrelated. Similarly, you
can cast a pointer type to any other pointer type, even if they are unrelated by an inheritance hierar-
chy. This is commonly used to cast a pointer to a void*. This can be done implicitly, so no explicit
cast is required. However, casting a void* back to a correctly-typed pointer requires reinter-
pret_cast(). A void* pointer is just a pointer to some location in memory. No type information is
associated with a void* pointer. Here are some examples:

class X {};
class Y {};

int main()
{
 X x;
 Y y;
 X* xp = &x;
 Y* yp = &y;
 // Need reinterpret cast for pointer conversion from unrelated classes
 // static_cast doesn't work.
 xp = reinterpret_cast<X*>(yp);
 // No cast required for conversion from pointer to void*
 void* p = xp;
 // Need reinterpret cast for pointer conversion from void*

360  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

 xp = reinterpret_cast<X*>(p);
 // Need reinterpret cast for reference conversion from unrelated classes
 // static_cast doesn't work.
 X& xr = x;
 Y& yr = reinterpret_cast<Y&>(x);
 return 0;
}

One use-case for reinterpret_cast() is with binary I/O of trivially copyable types.2 For exam-
ple, you can write the individual bytes of such types to a file. When you read the file back into
memory, you can use reinterpret_cast() to correctly interpret the bytes read from the file.

However, in general, you should be very careful with reinterpret_cast() because it allows you to
do conversions without performing any type checking.

WARNING  You can also use reinterpret_cast() to cast pointers to integral
types and back. However, you can only cast a pointer to an integral type that is
large enough to hold it. For example, trying to use reinterpret_cast() to cast
a 64-bit pointer to a 32-bit integer results in a compilation error.

dynamic_cast()
dynamic_cast() provides a run-time check on casts within an inheritance hierarchy. You can use it
to cast pointers or references. dynamic_cast() checks the run-time type information of the underly-
ing object at run time. If the cast doesn’t make sense, dynamic_cast() returns a null pointer (for
the pointer version), or throws an std::bad_cast exception (for the reference version).

For example, suppose you have the following class hierarchy:

class Base
{
 public:
 virtual ~Base() = default;
};

class Derived : public Base
{
 public:
 virtual ~Derived() = default;
};

The following example shows a correct use of dynamic_cast():

Base* b;
Derived* d = new Derived();
b = d;
d = dynamic_cast<Derived*>(b);

2A trivially copyable type is a type of which the underlying bytes making up the object can be copied into an
array of, for example, char. If the data of that array is then copied back into the object, the object shall keep
its original value.

Types and Casts  ❘  361

The following dynamic_cast() on a reference will cause an exception to be thrown:

Base base;
Derived derived;
Base& br = base;
try {
 Derived& dr = dynamic_cast<Derived&>(br);
} catch (const bad_cast&) {
 cout << "Bad cast!" << endl;
}

Note that you can perform the same casts down the inheritance hierarchy with a static_cast() or
reinterpret_cast(). The difference with dynamic_cast() is that it performs run-time (dynamic)
type checking, while static_cast() and reinterpret_cast() perform the casting even if they
are erroneous.

As Chapter 10 discusses, the run-time type information is stored in the vtable of an object.
Therefore, in order to use dynamic_cast(), your classes must have at least one virtual method.
If your classes don’t have a vtable, trying to use dynamic_cast() will result in a compilation error.
Microsoft VC++, for example, gives the following error:

error C2683: 'dynamic_cast' : 'MyClass' is not a polymorphic type.

Summary of Casts
The following table summarizes the casts you should use for different situations.

SITUATION CAST

Remove const-ness const_cast()

Explicit cast supported by the language (for example, int to
double, int to bool)

static_cast()

Explicit cast supported by user-defined constructors or
conversions

static_cast()

Object of one class to object of another (unrelated) class Can’t be done

Pointer-to-object of one class to pointer-to-object of another
class in the same inheritance hierarchy

dynamic_cast() recom-
mended, or static_cast()

Reference-to-object of one class to reference-to-object of
another class in the same inheritance hierarchy

dynamic_cast() recom-
mended, or static_cast()

Pointer-to-type to unrelated pointer-to-type reinterpret_cast()

Reference-to-type to unrelated reference-to-type reinterpret_cast()

Pointer-to-function to pointer-to-function reinterpret_cast()

362  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

SCOPE RESOLUTION

As a C++ programmer, you need to familiarize yourself with the concept of a scope. Every name
in your program, including variable, function, and class names, is in a certain scope. You create
scopes with namespaces, function definitions, blocks delimited by curly braces, and class definitions.
Variables that are initialized in the initialization statement of for loops are scoped to that for loop
and are not visible outside that for loop. Similarly, C++17 introduced initializers for if and switch
statements; see Chapter 1. Variables initialized in such initializers are scoped to the if or switch
statement and are not visible outside that statement. When you try to access a variable, function, or
class, the name is first looked up in the nearest enclosing scope, then the next scope, and so forth,
up to the global scope. Any name not in a namespace, function, block delimited by curly braces,
or class is assumed to be in the global scope. If it is not found in the global scope, at that point the
compiler generates an undefined symbol error.

Sometimes names in scopes hide identical names in other scopes. Other times, the scope you
want is not part of the default scope resolution from that particular line in the program. If you
don’t want the default scope resolution for a name, you can qualify the name with a specific scope
using the scope resolution operator ::. For example, to access a static method of a class, one
way is to prefix the method name with the name of the class (its scope) and the scope resolution
operator. A second way is to access the static method through an object of that class. The fol-
lowing example demonstrates these options. The example defines a class Demo with a static get()
method, a get() function that is globally scoped, and a get() function that is in the NS namespace.

class Demo
{
 public:
 static int get() { return 5; }
};

int get() { return 10; }

namespace NS
{
 int get() { return 20; }
}

The global scope is unnamed, but you can access it specifically by using the scope resolution opera-
tor by itself (with no name prefix). The different get() functions can be called as follows. In this
example, the code itself is in the main() function, which is always in the global scope:

int main()
{
 auto pd = std::make_unique<Demo>();
 Demo d;
 std::cout << pd->get() << std::endl; // prints 5
 std::cout << d.get() << std::endl; // prints 5
 std::cout << NS::get() << std::endl; // prints 20
 std::cout << Demo::get() << std::endl; // prints 5
 std::cout << ::get() << std::endl; // prints 10
 std::cout << get() << std::endl; // prints 10
 return 0;
}

Attributes  ❘  363

Note that if the namespace called NS is given as an unnamed namespace, then the following line
will give an error about ambiguous name resolution, because you would have a get() defined in the
global scope, and another get() defined in the unnamed namespace.

std::cout << get() << std::endl;

The same error occurs if you add the following using clause right before the main() function:

using namespace NS;

ATTRIBUTES

Attributes are a mechanism to add optional and/or vendor-specific information into source code.
Before attributes were standardized in C++, vendors decided how to specify such information.
Examples are __attribute__, __declspec, and so on. Since C++11, there is standardized support
for attributes by using the double square brackets syntax [[attribute]].

The C++ standard defines only six standard attributes. One of them, [[carries_dependency]],
is a rather exotic attribute and is not discussed further. The others are discussed in the following
sections.

[[noreturn]]
[[noreturn]]means that a function never returns control to the call site. Typically, the function
either causes some kind of termination (process termination or thread termination), or throws an
exception. With this attribute, the compiler can avoid giving certain warnings or errors because it
now knows more about the intent of the function. Here is an example:

[[noreturn]] void forceProgramTermination()
{
 std::exit(1);
}

bool isDongleAvailable()
{
 bool isAvailable = false;
 // Check whether a licensing dongle is available...
 return isAvailable;
}

bool isFeatureLicensed(int featureId)
{
 if (!isDongleAvailable()) {
 // No licensing dongle found, abort program execution!
 forceProgramTermination();
 } else {
 bool isLicensed = false;
 // Dongle available, perform license check of the given feature...
 return isLicensed;
 }
}

364  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

int main()
{
 bool isLicensed = isFeatureLicensed(42);
}

This code snippet compiles fine without any warnings or errors. However, if you remove the
[[noreturn]] attribute, the compiler generates the following warning (output from Visual C++):

warning C4715: 'isFeatureLicensed': not all control paths return a value

[[deprecated]]
[[deprecated]] can be used to mark something as deprecated, which means you can still use it,
but its use is discouraged. This attribute accepts an optional argument that can be used to explain
the reason of the deprecation, as in this example:

[[deprecated("Unsafe method, please use xyz")]] void func();

If you use this deprecated function, you’ll get a compilation error or warning. For example, GCC
gives the following warning:

warning: 'void func()' is deprecated: Unsafe method, please use xyz

[[fallthrough]]
Starting with C++17, you can tell the compiler that a fallthrough in a switch statement is inten-
tional using the [[fallthrough]] attribute. If you don’t specify this attribute for intentional
fallthroughs, the compiler might give you a warning. You don’t need to specify the attribute for
empty cases. For example:

switch (backgroundColor) {
 case Color::DarkBlue:
 doSomethingForDarkBlue();
 [[fallthrough]];
 case Color::Black:
 // Code is executed for both a dark blue or black background color
 doSomethingForBlackOrDarkBlue();
 break;
 case Color::Red:
 case Color::Green:
 // Code to execute for a red or green background color
 break;
}

[[nodiscard]]
The [[nodiscard]] attribute can be used on a function returning a value to let the compiler issue
a warning when that function is used without doing something with the returned value. Here is an
example:

[[nodiscard]] int func()
{
 return 42;
}

C++17

C++17

User-Defined Literals  ❘  365

int main()
{
 func();
 return 0;
}

The compiler issues a warning similar to the following:

warning C4834: discarding return value of function with 'nodiscard' attribute

This feature can, for example, be used for functions that return error codes. By adding the
[[nodiscard]] attribute to such functions, the error codes cannot be ignored.

[[maybe_unused]]
The [[maybe_unused]] attribute can be used to suppress the compiler from issuing a warning when
something is unused, as in this example:

int func(int param1, int param2)
{
 return 42;
}

If your compiler warning level is set high enough, this function definition might result in two com-
piler warnings. For example, Microsoft VC++ gives these warnings:

warning C4100: 'param2': unreferenced formal parameter
warning C4100: 'param1': unreferenced formal parameter

By using the [[maybe_unused]] attribute, you can suppress such warnings:

int func(int param1, [[maybe_unused]] int param2)
{
 return 42;
}

In this case, the second parameter is marked with the attribute suppressing its warning. The com-
piler now only issues a warning for param1:

warning C4100: 'param1': unreferenced formal parameter

Vendor-Specific Attributes
Most attributes will be vendor-specific extensions. Vendors are advised not to use attributes to
change the meaning of the program, but to use them to help the compiler to optimize code or detect
errors in code. Because attributes of different vendors could clash, vendors are recommended to
qualify them. Here is an example:

[[clang::noduplicate]]

USER-DEFINED LITERALS

C++ has a number of standard literals that you can use in your code. Here are some examples:

➤➤ 'a': character

➤➤ "character array": zero-terminated array of characters, C-style string

C++17

366  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

➤➤ 3.14f: float floating point value

➤➤ 0xabc: hexadecimal value

However, C++ also allows you to define your own literals. User-defined literals should start with an
underscore. The first character following the underscore must be a lowercase letter. Some examples
are: _i, _s, _km, _miles, and so on. User-defined literals are implemented by writing literal opera-
tors. A literal operator can work in raw or cooked mode. In raw mode, your literal operator receives
a sequence of characters, while in cooked mode your literal operator receives a specific interpreted
type. For example, take the C++ literal 123. A raw literal operator receives this as a sequence of
characters '1', '2', '3'. A cooked literal operator receives this as the integer 123. As another
example, take the C++ literal 0x23. A raw operator receives the characters '0', 'x', '2', '3',
while a cooked operator receives the integer 35. One last example, take the C++ literal 3.14. A raw
operator receives this as '3', '.', '1', '4', while a cooked operator receives the floating point
value 3.14.

A cooked-mode literal operator should have either of the following:

➤➤ one parameter of type unsigned long long, long double, char, wchar_t, char16_t, or
char32_t to process numeric values, or

➤➤ two parameters where the first is a character array and the second is the length of the charac-
ter array, to process strings (for example, const char* str, size_t len).

As an example, the following implements a cooked literal operator for the user-defined literal _i to
define a complex number literal:

std::complex<long double> operator"" _i(long double d)
{
 return std::complex<long double>(0, d);
}

This _i literal can be used as follows:

std::complex<long double> c1 = 9.634_i;
auto c2 = 1.23_i; // c2 has as type std::complex<long double>

A second example implements a cooked literal operator for a user-defined literal _s to define
std::string literals:

std::string operator"" _s(const char* str, size_t len)
{
 return std::string(str, len);
}

This literal can be used as follows:

std::string str1 = "Hello World"_s;
auto str2 = "Hello World"_s; // str2 has as type std::string

Without the _s literal, the auto type deduction would be const char*:

auto str3 = "Hello World"; // str3 has as type const char*

Header Files  ❘  367

A raw-mode literal operator requires one parameter of type const char*, a zero-terminated C-style
string. The following example defines the literal _i, but using a raw literal operator:

std::complex<long double> operator"" _i(const char* p)
{
 // Implementation omitted; it requires parsing the C-style
 // string and converting it to a complex number.
}

Using this raw-mode literal operator is exactly the same as using the cooked version.

Standard User-Defined Literals
C++ defines the following standard user-defined literals. Note that these standard user-defined liter-
als do not start with an underscore.

➤➤ “s” for creating std::strings
For example: auto myString = "Hello World"s;
Requires a using namespace std::string_literals;

➤➤ “sv” for creating std::string_views
For example: auto myStringView = "Hello World"sv;
Requires a using namespace std::string_view_literals;

➤➤ “h”, “min”, “s”, “ms”, “us”, “ns”, for creating std::chrono::duration time intervals,
discussed in Chapter 20
For example: auto myDuration = 42min;
Requires a using namespace std::chrono_literals;

➤➤ “i”, “il”, “if” for creating complex numbers, complex<double>, complex<long double>,
and complex<float>, respectively
For example: auto myComplexNumber = 1.3i;
Requires a using namespace std::complex_literals;

A using namespace std; also makes these standard user-defined literals available.

HEADER FILES

Header files are a mechanism for providing an abstract interface to a subsystem or piece of code.
One of the trickier parts of using headers is avoiding multiple includes of the same header file and
circular references.

For example, suppose A.h includes Logger.h, defining a Logger class, and B.h also includes Logger.h.
If you have a source file called App.cpp, which includes both A.h and B.h, you end up with duplicate
definitions of the Logger class because the Logger.h header is included through A.h and B.h.

This problem of duplicate definitions can be avoided with a mechanism known as include guards.
The following code snippet shows the Logger.h header with include guards. At the beginning of
each header file, the #ifndef directive checks to see if a certain key has not been defined. If the
key has been defined, the compiler skips to the matching #endif, which is usually placed at the end

C++17

368  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

of the file. If the key has not been defined, the file proceeds to define the key so that a subsequent
include of the same file will be skipped.

#ifndef LOGGER_H
#define LOGGER_H

class Logger
{
 // ...
};

#endif // LOGGER_H

Nearly all compilers these days support the #pragma once directive which replaces include guards.
For example:

#pragma once

class Logger
{
 // ...
};

Another tool for avoiding problems with header files is forward declarations. If you need to refer to
a class but you cannot include its header file (for example, because it relies heavily on the class you
are writing), you can tell the compiler that such a class exists without providing a formal definition
through the #include mechanism. Of course, you cannot actually use the class in the code because
the compiler knows nothing about it, except that the named class will exist after everything is linked
together. However, you can still make use of pointers or references to forward-declared classes in
your code. You can also declare functions that return such forward-declared classes by value, or
that have such forward-declared classes as pass-by-value function parameters. Of course, both the
code defining the function and any code calling the function will need to include the right header
files that properly defines the forward-declared classes.

For example, assume that the Logger class uses another class called Preferences, that keeps track
of user settings. The Preferences class may in turn use the Logger class, so you have a circular
dependency which cannot be resolved with include guards. You need to make use of forward dec-
larations in such cases. In the following code, the Logger.h header file uses a forward declaration
for the Preferences class, and subsequently refers to the Preferences class without including its
header file.

#pragma once

#include <string_view>

class Preferences; // forward declaration

class Logger
{
 public:
 static void setPreferences(const Preferences& prefs);
 static void logError(std::string_view error);
};

C Utilities  ❘  369

It’s recommended to use forward declarations as much as possible in your header files instead of
including other headers. This can reduce your compilation and recompilation times, because it
breaks dependencies of your header file on other headers. Of course, your implementation file needs
to include the correct headers for types that you’ve forward-declared; otherwise, it won’t compile.

To query whether a certain header file exists, C++17 adds the __has_include("filename") and
__has_include(<filename>) preprocessor constants. These constants evaluate to 1 if the header
file exists, 0 if it doesn’t exist. For example, before the <optional> header file was fully approved
for C++17, a preliminary version existed in <experimental/optional>. You could use __has_
include() to check which of the two header files is available on your system:

#if __has_include(<optional>)
 #include <optional>
#elif __has_include(<experimental/optional>)
 #include <experimental/optional>
#endif

C UTILITIES

There are a few obscure C features that are also available in C++ and which can occasionally be
useful. This section examines two of these features: variable-length argument lists and preprocessor
macros.

Variable-Length Argument Lists
This section explains the old C-style variable-length argument lists. You need to know how these
work because you might find them in legacy code. However, in new code you should use variadic
templates for type-safe variable-length argument lists, which are described in Chapter 22.

Consider the C function printf() from <cstdio>. You can call it with any number of arguments:

printf("int %d\n", 5);
printf("String %s and int %d\n", "hello", 5);
printf("Many ints: %d, %d, %d, %d, %d\n", 1, 2, 3, 4, 5);

C/C++ provides the syntax and some utility macros for writing your own functions with a variable
number of arguments. These functions usually look a lot like printf(). Although you shouldn’t
need this feature very often, occasionally you will run into situations in which it’s quite useful. For
example, suppose you want to write a quick-and-dirty debug function that prints strings to stderr
if a debug flag is set, but does nothing if the debug flag is not set. Just like printf(), this function
should be able to print strings with an arbitrary number of arguments and arbitrary types of argu-
ments. A simple implementation looks like this:

#include <cstdio>
#include <cstdarg>

bool debug = false;

void debugOut(const char* str, ...)
{

C++17

370  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

 va_list ap;
 if (debug) {
 va_start(ap, str);
 vfprintf(stderr, str, ap);
 va_end(ap);
 }
}

First, note that the prototype for debugOut() contains one typed and named parameter str, fol-
lowed by ... (ellipses). They stand for any number and type of arguments. In order to access these
arguments, you must use macros defined in <cstdarg>. You declare a variable of type va_list,
and initialize it with a call to va_start. The second parameter to va_start() must be the right-
most named variable in the parameter list. All functions with variable-length argument lists require
at least one named parameter. The debugOut() function simply passes this list to vfprintf() (a
standard function in <cstdio>). After the call to vfprintf() returns, debugOut() calls va_end()
to terminate the access of the variable argument list. You must always call va_end() after calling
va_start() to ensure that the function ends with the stack in a consistent state.

You can use the function in the following way:

debug = true;
debugOut("int %d\n", 5);
debugOut("String %s and int %d\n", "hello", 5);
debugOut("Many ints: %d, %d, %d, %d, %d\n", 1, 2, 3, 4, 5);

Accessing the Arguments
If you want to access the actual arguments yourself, you can use va_arg() to do so. It accepts a
va_list as first argument, and the type of the argument to interpret. Unfortunately, there is no
way to know what the end of the argument list is unless you provide an explicit way of doing so.
For example, you can make the first parameter a count of the number of parameters. Or, in the case
where you have a set of pointers, you may require the last pointer to be nullptr. There are many
ways, but they are all burdensome to the programmer.

The following example demonstrates the technique where the caller specifies in the first named
parameter how many arguments are provided. The function accepts any number of ints and prints
them out:

void printInts(size_t num, ...)
{
 int temp;
 va_list ap;
 va_start(ap, num);
 for (size_t i = 0; i < num; ++i) {
 temp = va_arg(ap, int);
 cout << temp << " ";
 }
 va_end(ap);
 cout << endl;
}

C Utilities  ❘  371

You can call printInts() as follows. Note that the first parameter specifies how many integers
will follow:

printInts(5, 5, 4, 3, 2, 1);

Why You Shouldn’t Use C-Style Variable-Length Argument Lists
Accessing C-style variable-length argument lists is not very safe. There are several risks, as you can
see from the printInts() function:

➤➤ You don’t know the number of parameters. In the case of printInts(), you must trust the
caller to pass the right number of arguments as the first argument. In the case of debugOut(),
you must trust the caller to pass the same number of arguments after the character array as
there are formatting codes in the character array.

➤➤ You don’t know the types of the arguments. va_arg() takes a type, which it uses to interpret
the value in its current spot. However, you can tell va_arg() to interpret the value as any
type. There is no way for it to verify the correct type.

WARNING  Avoid using C-style variable-length argument lists. It is preferable
to pass in an std::array or vector of values, to use initializer lists described in
Chapter 1, or to use variadic templates for type-safe variable-length argument
lists, as described in Chapter 22.

Preprocessor Macros
You can use the C++ preprocessor to write macros, which are like little functions. Here is
an example:

#define SQUARE(x) ((x) * (x)) // No semicolon after the macro definition!

int main()
{
 cout << SQUARE(5) << endl;
 return 0;
}

Macros are a remnant from C that are quite similar to inline functions, except that they are not
type-checked, and the preprocessor dumbly replaces any calls to them with their expansions. The
preprocessor does not apply true function-call semantics. This behavior can cause unexpected
results. For example, consider what would happen if you called the SQUARE macro with 2 + 3 instead
of 5, like this:

cout << SQUARE(2 + 3) << endl;

You expect SQUARE to calculate 25, which it does. However, what if you left off some parentheses on
the macro definition, so that it looks like this?

#define SQUARE(x) (x * x)

372  ❘  CHAPTER 11   C++ Quirks, Oddities, and Incidentals

Now, the call to SQUARE(2 + 3) generates 11, not 25! Remember that the macro is dumbly expanded
without regard to function-call semantics. This means that any x in the macro body is replaced by
2 + 3, leading to this expansion:

cout << (2 + 3 * 2 + 3) << endl;

Following proper order of operations, this line performs the multiplication first, followed by the
additions, generating 11 instead of 25!

Macros can also have a performance impact. Suppose you call the SQUARE macro as follows:

cout << SQUARE(veryExpensiveFunctionCallToComputeNumber()) << endl;

The preprocessor replaces this with the following:

cout << ((veryExpensiveFunctionCallToComputeNumber()) *
 (veryExpensiveFunctionCallToComputeNumber())) << endl;

Now you are calling the expensive function twice—another reason to avoid macros.

Macros also cause problems for debugging because the code you write is not the code that the com-
piler sees, or that shows up in your debugger (because of the search-and-replace behavior of the
preprocessor). For these reasons, you should avoid macros entirely in favor of inline functions. The
details are shown here only because quite a bit of C++ code out there still employs macros. You need
to understand them in order to read and maintain that code.

NOTE  Most compilers can output the preprocessed source to a file or to stan-
dard output. You can use that to see how the preprocessor is preprocessing your
file. For example, with Microsoft VC++ you need to use the /P switch. With
GCC you can use the -E switch.

SUMMARY

This chapter explained some of the aspects of C++ that generate confusion. By reading this chapter,
you learned a plethora of syntax details about C++. Some of the information, such as the details
of references, const, scope resolution, the specifics of the C++-style casts, and the techniques for
header files, you should use often in your programs. Other information, such as the uses of static
and extern, how to write C-style variable-length argument lists, and how to write preprocessor
macros, is important to understand, but not information that you should put into use in your pro-
grams on a day-to-day basis.

The next chapter starts a discussion on templates allowing you to write generic code.

Writing Generic Code with
Templates

WHAT’S IN THIS CHAPTER?

➤➤ How to write class templates

➤➤ How the compiler processes templates

➤➤ How to organize template source code

➤➤ How to use non-type template parameters

➤➤ How to write templates of individual class methods

➤➤ How to write customizations of your class templates for specific
types

➤➤ How to combine templates and inheritance

➤➤ How to write function templates

➤➤ How to make function templates friends of class templates

➤➤ How to write alias templates

➤➤ How to use variable templates

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

12

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

374  ❘  CHAPTER 12   Writing Generic Code with Templates

C++ provides language support not only for object-oriented programming, but also for generic pro-
gramming. As discussed in Chapter 6, the goal of generic programming is to write reusable code.
The fundamental tools for generic programming in C++ are templates. Although not strictly an
object-oriented feature, templates can be combined with object-oriented programming for power-
ful results. Many programmers consider templates to be the most difficult part of C++ and, for that
reason, tend to avoid them. However, as a professional C++ programmer, you need to know about
them.

This chapter provides the code details for fulfilling the design principle of generality discussed in
Chapter 6, while Chapter 22 delves into some of the more advanced template features, including the
following:

➤➤ The three kinds of template parameters and their subtleties

➤➤ Partial specialization

➤➤ How to exploit template recursion

➤➤ Variadic templates

➤➤ Metaprogramming

OVERVIEW OF TEMPLATES

The main programming unit in the procedural paradigm is the procedure or function. Functions are
useful primarily because they allow you to write algorithms that are independent of specific values
and can thus be reused for many different values. For example, the sqrt() function in C++ calcu-
lates the square root of a value supplied by the caller. A square root function that calculates only the
square root of one number, such as four, would not be particularly useful! The sqrt() function is
written in terms of a parameter, which is a stand-in for whatever value the caller passes. Computer
scientists say that functions parameterize values.

The object-oriented programming paradigm adds the concept of objects, which group related data
and behaviors, but it does not change the way functions and methods parameterize values.

Templates take the concept of parameterization a step further to allow you to parameterize on types
as well as values. Types in C++ include primitives such as int and double, as well as user-defined
classes such as SpreadsheetCell and CherryTree. With templates, you can write code that is inde-
pendent not only of the values it will be given, but also of the types of those values. For example,
instead of writing separate stack classes to store ints, Cars, and SpreadsheetCells, you can write
one stack class definition that can be used for any of those types.

Although templates are an amazing language feature, templates in C++ are syntactically confusing,
and many programmers avoid writing templates themselves. However, every programmer needs to
know at least how to use templates, because they are widely used by libraries. For example, the C++
Standard Library uses templates extensively.

This chapter teaches you about template support in C++ with an emphasis on the aspects that
arise in the Standard Library. Along the way, you will learn about some nifty features that you can
employ in your programs aside from using the Standard Library.

Class Templates  ❘  375

CLASS TEMPLATES

Class templates define a class where the types of some of the variables, return types of methods,
and/or parameters to the methods are specified as parameters. Class templates are useful primarily
for containers, or data structures, that store objects. This section uses a running example of a Grid
container. In order to keep the examples reasonable in length and simple enough to illustrate specific
points, different sections of the chapter add features to the Grid container that are not used in sub-
sequent sections.

Writing a Class Template
Suppose that you want a generic game board class that you can use as a chessboard, checkers board,
tic-tac-toe board, or any other two-dimensional game board. In order to make it general-purpose,
you should be able to store chess pieces, checkers pieces, tic-tac-toe pieces, or any type of game
piece.

Coding without Templates
Without templates, the best approach to build a generic game board is to employ polymorphism
to store generic GamePiece objects. Then, you could let the pieces for each game inherit from
the GamePiece class. For example, in a chess game, ChessPiece would be a derived class of
GamePiece. Through polymorphism, the GameBoard, written to store GamePieces, could also store
ChessPieces. Because it should be possible to copy a GameBoard, the GameBoard needs to be able to
copy GamePieces. This implementation employs polymorphism, so one solution is to add a pure vir-
tual clone() method to the GamePiece base class. Here is the basic GamePiece interface:

class GamePiece
{
 public:
 virtual std::unique_ptr<GamePiece> clone() const = 0;
};

GamePiece is an abstract base class. Concrete classes, such as ChessPiece, derive from it and imple-
ment the clone() method:

class ChessPiece : public GamePiece
{
 public:
 virtual std::unique_ptr<GamePiece> clone() const override;
};

std::unique_ptr<GamePiece> ChessPiece::clone() const
{
 // Call the copy constructor to copy this instance
 return std::make_unique<ChessPiece>(*this);
}

The implementation of GameBoard uses a vector of vectors of unique_ptrs to store the
GamePieces.

class GameBoard
{
 public:

376  ❘  CHAPTER 12   Writing Generic Code with Templates

 explicit GameBoard(size_t width = kDefaultWidth,
 size_t height = kDefaultHeight);
 GameBoard(const GameBoard& src); // copy constructor
 virtual ~GameBoard() = default; // virtual defaulted destructor
 GameBoard& operator=(const GameBoard& rhs); // assignment operator

 // Explicitly default a move constructor and assignment operator.
 GameBoard(GameBoard&& src) = default;
 GameBoard& operator=(GameBoard&& src) = default;

 std::unique_ptr<GamePiece>& at(size_t x, size_t y);
 const std::unique_ptr<GamePiece>& at(size_t x, size_t y) const;

 size_t getHeight() const { return mHeight; }
 size_t getWidth() const { return mWidth; }

 static const size_t kDefaultWidth = 10;
 static const size_t kDefaultHeight = 10;

 friend void swap(GameBoard& first, GameBoard& second) noexcept;

 private:
 void verifyCoordinate(size_t x, size_t y) const;

 std::vector<std::vector<std::unique_ptr<GamePiece>>> mCells;
 size_t mWidth, mHeight;
};

In this implementation, at() returns a reference to the piece at a specified spot instead of a copy of the
piece. The GameBoard serves as an abstraction of a two-dimensional array, so it should provide array
access semantics by giving the actual object at an index, not a copy of the object. Client code should
not store this reference for future use because it might become invalid. Instead, client code should call
at() right before using the returned reference. This follows the design philosophy of the Standard
Library std::vector class.

NOTE  This implementation of the class provides two versions of at(), one of
which returns a reference and one of which returns a const reference.

Here are the method definitions. Note that this implementation uses the copy-and-swap idiom for
the assignment operator, and Scott Meyer’s const_cast() pattern to avoid code duplication, both
of which are discussed in Chapter 9.

GameBoard::GameBoard(size_t width, size_t height)
 : mWidth(width), mHeight(height)
{
 mCells.resize(mWidth);
 for (auto& column : mCells) {
 column.resize(mHeight);
 }
}

Class Templates  ❘  377

GameBoard::GameBoard(const GameBoard& src)
 : GameBoard(src.mWidth, src.mHeight)
{
 // The ctor-initializer of this constructor delegates first to the
 // non-copy constructor to allocate the proper amount of memory.

 // The next step is to copy the data.
 for (size_t i = 0; i < mWidth; i++) {
 for (size_t j = 0; j < mHeight; j++) {
 if (src.mCells[i][j])
 mCells[i][j] = src.mCells[i][j]->clone();
 }
 }
}

void GameBoard::verifyCoordinate(size_t x, size_t y) const
{
 if (x >= mWidth || y >= mHeight) {
 throw std::out_of_range("");
 }
}

void swap(GameBoard& first, GameBoard& second) noexcept
{
 using std::swap;

 swap(first.mWidth, second.mWidth);
 swap(first.mHeight, second.mHeight);
 swap(first.mCells, second.mCells);
}

GameBoard& GameBoard::operator=(const GameBoard& rhs)
{
 // Check for self-assignment
 if (this == &rhs) {
 return *this;
 }

 // Copy-and-swap idiom
 GameBoard temp(rhs); // Do all the work in a temporary instance
 swap(*this, temp); // Commit the work with only non-throwing operations
 return *this;
}

const unique_ptr<GamePiece>& GameBoard::at(size_t x, size_t y) const
{
 verifyCoordinate(x, y);
 return mCells[x][y];
}

unique_ptr<GamePiece>& GameBoard::at(size_t x, size_t y)
{
 return const_cast<unique_ptr<GamePiece>&>(as_const(*this).at(x, y));
}

378  ❘  CHAPTER 12   Writing Generic Code with Templates

This GameBoard class works pretty well:

GameBoard chessBoard(8, 8);
auto pawn = std::make_unique<ChessPiece>();
chessBoard.at(0, 0) = std::move(pawn);
chessBoard.at(0, 1) = std::make_unique<ChessPiece>();
chessBoard.at(0, 1) = nullptr;

A Template Grid Class
The GameBoard class in the previous section is nice, but insufficient. A first problem is that you can-
not use GameBoard to store elements by value; it always stores pointers. Another, more serious issue
is related to type safety. Each cell in a GameBoard stores a unique_ptr<GamePiece>. Even if you
are storing ChessPieces, when you use at() to request a certain cell, you will get back a unique_
ptr<GamePiece>. This means you have to downcast the retrieved GamePiece to a ChessPiece to be
able to make use of ChessPiece’s specific functionality. Another shortcoming of GameBoard is that
it cannot be used to store primitive types, such as int or double, because the type stored in a cell
has to derive from GamePiece.

So, it would be nice if you could write a generic Grid class that you could use for storing
ChessPieces, SpreadsheetCells, ints, doubles, and so on. In C++, you can do this by writing a
class template, which allows you to write a class without specifying one or more types. Clients then
instantiate the template by specifying the types they want to use. This is called generic program-
ming. The biggest advantage of generic programming is type safety. The types used in the class and
its methods are concrete types, and not abstract base class types, as is the case with the polymorphic
solution from the previous section. For example, suppose there is not only a ChessPiece but also a
TicTacToePiece:

class TicTacToePiece : public GamePiece
{
 public:
 virtual std::unique_ptr<GamePiece> clone() const override;
};

std::unique_ptr<GamePiece> TicTacToePiece::clone() const
{
 // Call the copy constructor to copy this instance
 return std::make_unique<TicTacToePiece>(*this);
}

With the polymorphic solution from the previous section, nothing stops you from storing tic-tac-toe
pieces and chess pieces on the same chess board:

GameBoard chessBoard(8, 8);
chessBoard.at(0, 0) = std::make_unique<ChessPiece>();
chessBoard.at(0, 1) = std::make_unique<TicTacToePiece>();

The big problem with this is that you somehow need to remember what a cell is storing, so that you
can perform the correct downcast when you call at().

Class Templates  ❘  379

The Grid Class Definition
In order to understand class templates, it is helpful to examine the syntax. The following example
shows how you can modify the GameBoard class to make a templatized Grid class. The syntax is
explained in detail following the code. Note that the class name has changed from GameBoard to
Grid. The Grid should also be usable with primitive types such as int and double. That’s why I
opted to implement this solution using value semantics without polymorphism, compared to the
polymorphic pointer semantics used in the GameBoard implementation. A downside of using value
semantics compared to pointer semantics is that you cannot have a true empty cell, that is, a cell
must always contain some value. With pointer semantics, an empty cell stores nullptr. Luckily,
C++17’s std::optional, defined in <optional>, comes to the rescue here. It allows you to use
value semantics, while still having a way to represent empty cells.

template <typename T>
class Grid
{
 public:
 explicit Grid(size_t width = kDefaultWidth,
 size_t height = kDefaultHeight);
 virtual ~Grid() = default;

 // Explicitly default a copy constructor and assignment operator.
 Grid(const Grid& src) = default;
 Grid<T>& operator=(const Grid& rhs) = default;

 // Explicitly default a move constructor and assignment operator.
 Grid(Grid&& src) = default;
 Grid<T>& operator=(Grid&& rhs) = default;

 std::optional<T>& at(size_t x, size_t y);
 const std::optional<T>& at(size_t x, size_t y) const;

 size_t getHeight() const { return mHeight; }
 size_t getWidth() const { return mWidth; }

 static const size_t kDefaultWidth = 10;
 static const size_t kDefaultHeight = 10;

 private:
 void verifyCoordinate(size_t x, size_t y) const;

 std::vector<std::vector<std::optional<T>>> mCells;
 size_t mWidth, mHeight;
};

Now that you’ve seen the full class definition, take another look at it, one line at a time:

template <typename T>

This first line says that the following class definition is a template on one type. Both template and
typename are keywords in C++. As discussed earlier, templates “parameterize” types in the same

380  ❘  CHAPTER 12   Writing Generic Code with Templates

way that functions “parameterize” values. Just as you use parameter names in functions to represent
the arguments that the caller will pass, you use template parameter names (such as T) in templates
to represent the types that the caller will specify. There’s nothing special about the name T—you can
use whatever name you want. Traditionally, when a single type is used, it is called T, but that’s just
a historical convention, like calling the integer that indexes an array i or j. The template specifier
holds for the entire statement, which in this case is the class definition.

NOTE  For historical reasons, you can use the keyword class instead of type-
name to specify template type parameters. Thus, many books and existing pro-
grams use syntax like this: template <class T>. However, the use of the word
“class” in this context is confusing because it implies that the type must be a
class, which is not true. The type can be a class, a struct, a union, a primitive
type of the language like int or double, and so on.

In the earlier GameBoard class, the mCells data member is a vector of vectors of pointers, which
requires special code for copying—thus the need for a copy constructor and copy assignment opera-
tor. In the Grid class, mCells is a vector of vectors of optional values, so the compiler-generated
copy constructor and assignment operator are fine. However, as explained in Chapter 8, once
you have a user-declared destructor, it’s deprecated for the compiler to implicitly generate a copy
constructor or copy assignment operator, so the Grid class template explicitly defaults them. It
also explicitly defaults the move constructor and move assignment operator. Here is the explicitly
defaulted copy assignment operator:

Grid<T>& operator=(const Grid& rhs) = default;

As you can see, the type of the rhs parameter is no longer a const GameBoard&, but a const Grid&.
You can also specify it as a const Grid<T>&. Within a class definition, the compiler interprets Grid
as Grid<T> where needed. However, outside a class definition you need to use Grid<T>. When you
write a class template, what you used to think of as the class name (Grid) is actually the template
name. When you want to talk about actual Grid classes or types, you discuss them as Grid<T>,
instantiations of the Grid class template for a certain type, such as int, SpreadsheetCell, or
ChessPiece.

Because mCells is not storing pointers anymore, but optional values, the at() methods now return
optional<T>& or const optional<T>& instead of unique_ptrs:

std::optional<T>& at(size_t x, size_t y);
const std::optional<T>& at(size_t x, size_t y) const;

The Grid Class Method Definitions
The template <typename T> specifier must precede each method definition for the Grid template.
The constructor looks like this:

template <typename T>
Grid<T>::Grid(size_t width, size_t height)
 : mWidth(width), mHeight(height)

Class Templates  ❘  381

{
 mCells.resize(mWidth);
 for (auto& column : mCells) {
 // Equivalent to:
 //for (std::vector<std::optional<T>>& column : mCells) {
 column.resize(mHeight);
 }
}

NOTE  Templates require you to put the implementation of the methods in the
header file itself, because the compiler needs to know the complete definition,
including the definition of methods, before it can create an instance of the tem-
plate. Some ways around this restriction are discussed later in this chapter.

Note that the class name before the :: is Grid<T>, not Grid. You must specify Grid<T> as the class
name in all your methods and static data member definitions. The body of the constructor is iden-
tical to the GameBoard constructor.

The rest of the method definitions are also similar to their equivalents in the GameBoard class with
the exception of the appropriate template and Grid<T> syntax changes:

template <typename T>
void Grid<T>::verifyCoordinate(size_t x, size_t y) const
{
 if (x >= mWidth || y >= mHeight) {
 throw std::out_of_range("");
 }
}

template <typename T>
const std::optional<T>& Grid<T>::at(size_t x, size_t y) const
{
 verifyCoordinate(x, y);
 return mCells[x][y];
}

template <typename T>
std::optional<T>& Grid<T>::at(size_t x, size_t y)
{
 return const_cast<std::optional<T>&>(std::as_const(*this).at(x, y));
}

NOTE  If an implementation of a class template method needs a default value
for a certain template type parameter, for example T, then you can use the T()
syntax. T() calls the default constructor for the object if T is a class type, or gen-
erates zero if T is a simple type. This syntax is called the zero-initialization syn-
tax. It’s a good way to provide a reasonable default value for a variable whose
type you don’t know yet.

382  ❘  CHAPTER 12   Writing Generic Code with Templates

Using the Grid Template
When you want to create grid objects, you cannot use Grid alone as a type; you must specify the
type that will be stored in that Grid. Creating an object of a class template for a specific type is
called instantiating the template. Here is an example:

Grid<int> myIntGrid; // declares a grid that stores ints,
 // using default arguments for the constructor
Grid<double> myDoubleGrid(11, 11); // declares an 11x11 Grid of doubles

myIntGrid.at(0, 0) = 10;
int x = myIntGrid.at(0, 0).value_or(0);

Grid<int> grid2(myIntGrid); // Copy constructor
Grid<int> anotherIntGrid;
anotherIntGrid = grid2; // Assignment operator

Note that the type of myIntGrid, grid2, and anotherIntGrid is Grid<int>. You cannot store
SpreadsheetCells or ChessPieces in these grids; the compiler will generate an error if you try to
do so.

Note also the use of value_or(). The at() method returns an std::optional reference. This
optional can contain a value or not. The value_or() method returns the value inside the optional
if there is a value; otherwise it returns the argument given to value_or().

The type specification is important; neither of the following two lines compiles:

Grid test; // WILL NOT COMPILE
Grid<> test; // WILL NOT COMPILE

The first line causes your compiler to complain with something like, “use of class template requires
template argument list.” The second line causes it to say something like, “too few template
arguments.”

If you want to declare a function or method that takes a Grid object, you must specify the type
stored in that grid as part of the Grid type:

void processIntGrid(Grid<int>& grid)
{
 // Body omitted for brevity
}

Alternatively, you can use function templates, discussed later in this chapter, to write a function
templatized on the type of the elements in the grid.

NOTE  Instead of writing the full Grid type every time—for example,
Grid<int>—you can use a type alias to give it an easier name:

using IntGrid = Grid<int>;

Now you can write code as follows:

void processIntGrid(IntGrid& grid) { }

Class Templates  ❘  383

The Grid template can store more than just ints. For example, you can instantiate a Grid that
stores SpreadsheetCells:

Grid<SpreadsheetCell> mySpreadsheet;
SpreadsheetCell myCell(1.234);
mySpreadsheet.at(3, 4) = myCell;

You can store pointer types as well:

Grid<const char*> myStringGrid;
myStringGrid.at(2, 2) = "hello";

The type specified can even be another template type:

Grid<vector<int>> gridOfVectors;
vector<int> myVector{ 1, 2, 3, 4 };
gridOfVectors.at(5, 6) = myVector;

You can also dynamically allocate Grid template instantiations on the heap:

auto myGridOnHeap = make_unique<Grid<int>>(2, 2); // 2x2 Grid on the heap
myGridOnHeap->at(0, 0) = 10;
int x = myGridOnHeap->at(0, 0).value_or(0);

Angle Brackets
Some of the examples in this book use templates with double angle brackets, as in this example:

std::vector<std::vector<T>> mCells;

This works perfectly fine since C++11. However, before C++11, the double angle brackets >> could
mean only one thing: the >> operator. Depending on the types involved, this >> operator could be
a right bit-shift operation, or a stream extraction operator. This was annoying with template code,
because you were forced to put a space between double angle brackets. The previous declaration had
to be written as follows:

std::vector<std::vector<T> > mCells;

This book uses the modern style without the spaces.

How the Compiler Processes Templates
In order to understand the intricacies of templates, you need to learn how the compiler processes
template code. When the compiler encounters template method definitions, it performs syntax
checking, but doesn’t actually compile the templates. It can’t compile template definitions because it
doesn’t know for which types they will be used. It’s impossible for a compiler to generate code for
something like x = y without knowing the types of x and y.

When the compiler encounters an instantiation of the template, such as Grid<int> myIntGrid,
it writes code for an int version of the Grid template by replacing each T in the class template
definition with int. When the compiler encounters a different instantiation of the template, such
as Grid<SpreadsheetCell> mySpreadsheet, it writes another version of the Grid class for
SpreadsheetCells. The compiler just writes the code that you would write if you didn’t have tem-
plate support in the language and had to write separate classes for each element type. There’s no

384  ❘  CHAPTER 12   Writing Generic Code with Templates

magic here; templates just automate an annoying process. If you don’t instantiate a class template
for any types in your program, then the class method definitions are never compiled.

This instantiation process explains why you need to use the Grid<T> syntax in various places in
your definition. When the compiler instantiates the template for a particular type, such as int, it
replaces T with int, so that Grid<int> is the type.

Selective Instantiation
The compiler always generates code for all virtual methods of a generic class. However, for non-
virtual methods, the compiler generates code only for those non-virtual methods that you actually
call for a particular type. For example, given the preceding Grid class template, suppose that you
write this code (and only this code) in main():

Grid<int> myIntGrid;
myIntGrid.at(0, 0) = 10;

The compiler generates only the zero-argument constructor, the destructor, and the non-const at()
method for an int version of the Grid. It does not generate other methods like the copy constructor,
the assignment operator, or getHeight().

Template Requirements on Types
When you write code that is independent of types, you must assume certain things about those
types. For example, in the Grid template, you assume that the element type (represented by T) is
destructible. The Grid template implementation doesn’t assume much. However, other templates
could assume that their template type parameters support, for example, an assignment operator.

If you attempt to instantiate a template with a type that does not support all the operations used
by the template in your particular program, the code will not compile, and the error messages will
almost always be quite obscure. However, even if the type you want to use doesn’t support the oper-
ations required by all the template code, you can exploit selective instantiation to use some methods
but not others.

Distributing Template Code between Files
Normally you put class definitions in a header file and method definitions in a source file. Code
that creates or uses objects of the class #includes the header file and obtains access to the method
code via the linker. Templates don’t work that way. Because they are “templates” for the compiler to
generate the actual methods for the instantiated types, both class template definitions and method
definitions must be available to the compiler in any source file that uses them. There are several
mechanisms to obtain this inclusion.

Template Definitions in Header Files
You can place the method definitions directly in the same header file where you define the class
itself. When you #include this file in a source file where you use the template, the compiler will
have access to all the code it needs. This mechanism is used for the previous Grid implementation.

Class Templates  ❘  385

Alternatively, you can place the template method definitions in a separate header file that you
#include in the header file with the class definitions. Make sure the #include for the method defi-
nitions follows the class definition; otherwise, the code won’t compile. For example:

template <typename T>
class Grid
{
 // Class definition omitted for brevity
};

#include "GridDefinitions.h"

Any client that wants to use the Grid template needs only to include the Grid.h header file. This
division helps to keep the distinction between class definitions and method definitions.

Template Definitions in Source Files
Method implementations look strange in header files. If that syntax annoys you, there is a way that
you can place the method definitions in a source file. However, you still need to make the definitions
available to the code that uses the template, which you can do by #includeing the method imple-
mentation source file in the class template definition header file. That sounds odd if you’ve never
seen it before, but it’s legal in C++. The header file looks like this:

template <typename T>
class Grid
{
 // Class definition omitted for brevity
};

#include "Grid.cpp"

When using this technique, make sure you don’t add the Grid.cpp file to your project, because it
is not supposed to be, and cannot be, compiled separately; it should be #included only in a header
file!

You can actually call your file with method implementations anything you want. Some program-
mers like to give source files that are included an .inl extension, for example, Grid.inl.

Limit Class Template Instantiations
If you want your class templates to be used only with certain known types, you can use the follow-
ing technique.

Suppose you want the Grid class to be instantiated only for int, double, and vector<int>. The
header file should look like this:

template <typename T>
class Grid
{
 // Class definition omitted for brevity
};

386  ❘  CHAPTER 12   Writing Generic Code with Templates

Note that there are no method definitions in this header file and that there is no #include at
the end!

In this case, you need a real .cpp file added to your project, which contains the method definitions
and looks like this:

#include "Grid.h"
#include <utility>

template <typename T>
Grid<T>::Grid(size_t width, size_t height)
 : mWidth(width), mHeight(height)
{
 mCells.resize(mWidth);
 for (auto& column : mCells) {
 column.resize(mHeight);
 }
}
// Other method definitions omitted for brevity...

For this method to work, you need to explicitly instantiate the template for those types that you
want to allow clients to use. At the end of the .cpp file you can do this as follows:

// Explicit instantiations for the types you want to allow.
template class Grid<int>;
template class Grid<double>;
template class Grid<std::vector<int>>;

With these explicit instantiations, you disallow client code from using the Grid class template with
other types, such as SpreadsheetCell.

NOTE  With explicit class template instantiations, the compiler generates code
for all methods of the class template, irrespective of whether the methods will be
called or not.

Template Parameters
In the Grid example, the Grid template has one template parameter: the type that is stored in the
grid. When you write the class template, you specify the parameter list inside the angle brackets,
like this:

template <typename T>

This parameter list is similar to the parameter list in a function or method. As in functions and
methods, you can write a class with as many template parameters as you want. Additionally, these
parameters don’t have to be types, and they can have default values.

Class Templates  ❘  387

Non-type Template Parameters
Non-type parameters are “normal” parameters such as ints and pointers: the kind of parameters
with which you’re familiar from functions and methods. However, non-type template parameters
can only be integral types (char, int, long, and so on), enumeration types, pointers, references, and
std::nullptr_t. Starting with C++17, you can also specify auto, auto&, auto*, and so on, as the
type of a non-type template parameter. In that case, the compiler deduces the type automatically.

In the Grid class template, you could use non-type template parameters to specify the height
and width of the grid instead of specifying them in the constructor. The principle advantage to
specifying non-type parameters in the template list instead of in the constructor is that the values
are known before the code is compiled. Recall that the compiler generates code for templatized
methods by substituting the template parameters before compiling. Thus, you can use a normal
two-dimensional array in your implementation instead of a vector of vectors that is dynamically
resized. Here is the new class definition:

template <typename T, size_t WIDTH, size_t HEIGHT>
class Grid
{
 public:
 Grid() = default;
 virtual ~Grid() = default;

 // Explicitly default a copy constructor and assignment operator.
 Grid(const Grid& src) = default;
 Grid<T, WIDTH, HEIGHT>& operator=(const Grid& rhs) = default;

 std::optional<T>& at(size_t x, size_t y);
 const std::optional<T>& at(size_t x, size_t y) const;

 size_t getHeight() const { return HEIGHT; }
 size_t getWidth() const { return WIDTH; }

 private:
 void verifyCoordinate(size_t x, size_t y) const;

 std::optional<T> mCells[WIDTH][HEIGHT];
};

This class does not explicitly default the move constructor and move assignment operator, because
C-style arrays do not support move semantics anyways.

Note that the template parameter list requires three parameters: the type of objects stored in
the grid, and the width and height of the grid. The width and height are used to create a two-
dimensional array to store the objects. Here are the class method definitions:

template <typename T, size_t WIDTH, size_t HEIGHT>
void Grid<T, WIDTH, HEIGHT>::verifyCoordinate(size_t x, size_t y) const
{
 if (x >= WIDTH || y >= HEIGHT) {

388  ❘  CHAPTER 12   Writing Generic Code with Templates

 throw std::out_of_range("");
 }
}

template <typename T, size_t WIDTH, size_t HEIGHT>
const std::optional<T>& Grid<T, WIDTH, HEIGHT>::at(size_t x, size_t y) const
{
 verifyCoordinate(x, y);
 return mCells[x][y];
}

template <typename T, size_t WIDTH, size_t HEIGHT>
std::optional<T>& Grid<T, WIDTH, HEIGHT>::at(size_t x, size_t y)
{
 return const_cast<std::optional<T>&>(std::as_const(*this).at(x, y));
}

Note that wherever you previously specified Grid<T> you must now specify Grid<T, WIDTH,
HEIGHT> to represent the three template parameters.

You can instantiate this template and use it like this:

Grid<int, 10, 10> myGrid;
Grid<int, 10, 10> anotherGrid;
myGrid.at(2, 3) = 42;
anotherGrid = myGrid;
cout << anotherGrid.at(2, 3).value_or(0);

This code seems great, but unfortunately, there are more restrictions than you might initially expect.
First, you can’t use a non-constant integer to specify the height or width. The following code doesn’t
compile:

size_t height = 10;
Grid<int, 10, height> testGrid; // DOES NOT COMPILE

However, if you define height as a constant, it compiles:

const size_t height = 10;
Grid<int, 10, height> testGrid; // Compiles and works

constexpr functions with the correct return type also work. For example, if you have a constexpr
function that returns a size_t, you can use it to initialize the height template parameter:

constexpr size_t getHeight() { return 10; }
...
Grid<double, 2, getHeight()> myDoubleGrid;

A second restriction might be more significant. Now that the width and height are template param-
eters, they are part of the type of each grid. That means that Grid<int, 10, 10> and Grid<int,
10, 11> are two different types. You can’t assign an object of one type to an object of the other, and
variables of one type can’t be passed to functions or methods that expect variables of another type.

NOTE  Non-type template parameters become part of the type specification of
instantiated objects.

Class Templates  ❘  389

Default Values for Type Parameters
If you continue the approach of making height and width template parameters, you might want to
provide defaults for the height and width non-type template parameters just as you did previously
in the constructor of the Grid<T> class. C++ allows you to provide defaults for template parameters
with a similar syntax. While you are at it, you could also provide a default for the T type parameter.
Here is the class definition:

template <typename T = int, size_t WIDTH = 10, size_t HEIGHT = 10>
class Grid
{
 // Remainder is identical to the previous version
};

You need not specify the default values for T, WIDTH, and HEIGHT in the template specification for the
method definitions. For example, here is the implementation of at():

template <typename T, size_t WIDTH, size_t HEIGHT>
const std::optional<T>& Grid<T, WIDTH, HEIGHT>::at(size_t x, size_t y) const
{
 verifyCoordinate(x, y);
 return mCells[x][y];
}

Now, you can instantiate a Grid without any template parameters, with only the element type, the
element type and the width, or the element type, width, and height:

Grid<> myIntGrid;
Grid<int> myGrid;
Grid<int, 5> anotherGrid;
Grid<int, 5, 5> aFourthGrid;

Note that if you don’t specify any class template parameters, you still need to specify an empty set of
angle brackets. For example, the following does not compile!

Grid myIntGrid;

The rules for default arguments in class template parameter lists are the same as for functions or
methods; that is, you can provide defaults for parameters in order starting from the right.

Template Parameter Deduction for Constructors
C++17 adds support to automatically deduce the template parameters from the arguments passed to
a class template constructor. Before C++17, you always had to specify all the template parameters
for a class template explicitly.

For example, the Standard Library has a class template called std::pair, defined in <utility>,
and discussed in Chapter 17 in detail. For now, it suffices to know that a pair stores exactly two
values of two possibly different types, which you have to specify as the template parameters:

std::pair<int, double> pair1(1, 2.3);

To avoid the need of having to write the template parameters, a helper function template called
std::make_pair() is available. Details of function templates are discussed later in this chapter.
Function templates have always supported the automatic deduction of template parameters based on

C++17

390  ❘  CHAPTER 12   Writing Generic Code with Templates

the arguments passed to the function template. So, make_pair() is capable of automatically deduc-
ing the template type parameters based on the values passed to it. For example, the compiler deduces
pair<int, double> for the following call:

auto pair2 = std::make_pair(1, 2.3);

With C++17, such helper function templates are not necessary anymore. The compiler now automat-
ically deduces the template type parameters based on the arguments passed to the constructor. For
the pair class template, you can simply write the following code:

std::pair pair3(1, 2.3);

Of course, this only works when all template parameters of a class template either have a default
value, or are used as parameters in the constructor so they can be deduced.

NOTE  This type deduction is disabled for std::unique_ptr and shared_ptr.
You pass a T* to their constructors, which means that the compiler would have
to choose between deducing <T> or <T[]>, a dangerous choice to get wrong. So,
just remember that for unique_ptr and shared_ptr, you need to keep using
make_unique() and make_shared().

User-Defined Deduction Guides
You can also write your own user-defined deduction guides. These allow you to write rules for how
the template parameters have to be deduced. This is an advanced topic, so it is not discussed in
detail, although one example will demonstrate their power.

Suppose you have the following SpreadsheetCell class template:

template<typename T>
class SpreadsheetCell
{
 public:
 SpreadsheetCell(const T& t) : mContent(t) { }

 const T& getContent() const { return mContent; }

 private:
 T mContent;
};

With automatic template parameter deduction, you can create a SpreadsheetCell with an
std::string type:

std::string myString = "Hello World!";
SpreadsheetCell cell(myString);

However, if you pass a const char* to the SpreadsheetCell constructor, then the type T is
deduced as const char*, which is not what you want. You can create the following user-defined
deduction guide to cause it to deduce T as std::string when passing a const char* as argument to
the constructor:

SpreadsheetCell(const char*) -> SpreadsheetCell<std::string>;

Class Templates  ❘  391

This guide has to be defined outside the class definition but inside the same namespace as the
SpreadsheetCell class.

The general syntax is as follows. The explicit keyword is optional. It behaves the same as
explicit for single-parameter constructors, so it only makes sense for deduction rules with one
parameter.

explicit TemplateName(Parameters) -> DeducedTemplate;

Method Templates
C++ allows you to templatize individual methods of a class. These methods can be inside a class
template or in a non-templatized class. When you write a templatized class method, you are actually
writing many different versions of that method for many different types. Method templates come in
useful for assignment operators and copy constructors in class templates.

WARNING  Virtual methods and destructors cannot be method templates.

Consider the original Grid template with only one template parameter: the element type. You can
instantiate grids of many different types, such as ints and doubles:

Grid<int> myIntGrid;
Grid<double> myDoubleGrid;

However, Grid<int> and Grid<double> are two different types. If you write a function that takes
an object of type Grid<double>, you cannot pass a Grid<int>. Even though you know that the ele-
ments of an int grid could be copied to the elements of a double grid, because the ints could be
coerced into doubles, you cannot assign an object of type Grid<int> to one of type Grid<double>
or construct a Grid<double> from a Grid<int>. Neither of the following two lines compiles:

myDoubleGrid = myIntGrid; // DOES NOT COMPILE
Grid<double> newDoubleGrid(myIntGrid); // DOES NOT COMPILE

The problem is that the copy constructor and assignment operator for the Grid template are as
follows,

Grid(const Grid& src);
Grid<T>& operator=(const Grid& rhs);

which are equivalent to

Grid(const Grid<T>& src);
Grid<T>& operator=(const Grid<T>& rhs);

The Grid copy constructor and operator= both take a reference to a const Grid<T>. When you
instantiate a Grid<double> and try to call the copy constructor and operator=, the compiler gener-
ates methods with these prototypes:

Grid(const Grid<double>& src);
Grid<double>& operator=(const Grid<double>& rhs);

392  ❘  CHAPTER 12   Writing Generic Code with Templates

Note that there are no constructors or operator= that take a Grid<int> within the generated
Grid<double> class.

Luckily, you can rectify this oversight by adding templatized versions of the copy constructor and
assignment operator to the Grid class to generate methods that will convert from one grid type to
another. Here is the new Grid class definition:

template <typename T>
class Grid
{
 public:
 // Omitted for brevity

 template <typename E>
 Grid(const Grid<E>& src);

 template <typename E>
 Grid<T>& operator=(const Grid<E>& rhs);

 void swap(Grid& other) noexcept;

 // Omitted for brevity
};

Examine the new templatized copy constructor first:

template <typename E>
Grid(const Grid<E>& src);

You can see that there is another template declaration with a different typename, E (short for “ele-
ment”). The class is templatized on one type, T, and the new copy constructor is also templatized
on a different type, E. This twofold templatization allows you to copy grids of one type to another.
Here is the definition of the new copy constructor:

template <typename T>
template <typename E>
Grid<T>::Grid(const Grid<E>& src)
 : Grid(src.getWidth(), src.getHeight())
{
 // The ctor-initializer of this constructor delegates first to the
 // non-copy constructor to allocate the proper amount of memory.

 // The next step is to copy the data.
 for (size_t i = 0; i < mWidth; i++) {
 for (size_t j = 0; j < mHeight; j++) {
 mCells[i][j] = src.at(i, j);
 }
 }
}

As you can see, you must declare the class template line (with the T parameter) before the member
template line (with the E parameter). You can’t combine them like this:

template <typename T, typename E> // Wrong for nested template constructor!
Grid<T>::Grid(const Grid<E>& src)

Class Templates  ❘  393

In addition to the extra template parameter line before the constructor definition, note that you
must use the public accessor methods getWidth(), getHeight(), and at() to access the elements
of src. That’s because the object you’re copying to is of type Grid<T>, and the object you’re copying
from is of type Grid<E>. They are not the same type, so you must use public methods.

The templatized assignment operator takes a const Grid<E>& but returns a Grid<T>&:

template <typename T>
template <typename E>
Grid<T>& Grid<T>::operator=(const Grid<E>& rhs)
{
 // no need to check for self-assignment because this version of
 // assignment is never called when T and E are the same

 // Copy-and-swap idiom
 Grid<T> temp(rhs); // Do all the work in a temporary instance
 swap(temp); // Commit the work with only non-throwing operations
 return *this;
}

You need not check for self-assignment in the templatized assignment operator, because assignment
of the same types still happens in the old, non-templatized, version of operator=, so there’s no way
you can get self-assignment here.

The implementation of this assignment operator uses the copy-and-swap idiom introduced in Chapter 9.
However, instead of using a friend swap() function, the Grid template uses a swap() method because
function templates are only discussed later in this chapter. Note that this swap() method can only swap
Grids of the same type, but that’s okay because the templatized assignment operator first converts the
given Grid<E> to a Grid<T> called temp using the templatized copy constructor. Afterward, it uses
the swap() method to swap this temporary Grid<T> with this, which is also of type Grid<T>. Here
is the definition of the swap() method:

template <typename T>
void Grid<T>::swap(Grid<T>& other) noexcept
{
 using std::swap;

 swap(mWidth, other.mWidth);
 swap(mHeight, other.mHeight);
 swap(mCells, other.mCells);
}

Method Templates with Non-type Parameters
Looking at the earlier example with integer template parameters for HEIGHT and WIDTH, you see that
a major problem is that the height and width become part of the types. This restriction prevents
you from assigning a grid with one height and width to a grid with a different height and width. In
some cases, however, it’s desirable to assign or copy a grid of one size to a grid of a different size.
Instead of making the destination object a perfect clone of the source object, you would copy only
those elements from the source array that fit in the destination array, padding the destination array
with default values if the source array is smaller in either dimension. With method templates for the

394  ❘  CHAPTER 12   Writing Generic Code with Templates

assignment operator and copy constructor, you can do exactly that, thus allowing assignment and
copying of different-sized grids. Here is the class definition:

template <typename T, size_t WIDTH = 10, size_t HEIGHT = 10>
class Grid
{
 public:
 Grid() = default;
 virtual ~Grid() = default;

 // Explicitly default a copy constructor and assignment operator.
 Grid(const Grid& src) = default;
 Grid<T, WIDTH, HEIGHT>& operator=(const Grid& rhs) = default;

 template <typename E, size_t WIDTH2, size_t HEIGHT2>
 Grid(const Grid<E, WIDTH2, HEIGHT2>& src);

 template <typename E, size_t WIDTH2, size_t HEIGHT2>
 Grid<T, WIDTH, HEIGHT>& operator=(const Grid<E, WIDTH2, HEIGHT2>& rhs);

 void swap(Grid& other) noexcept;

 std::optional<T>& at(size_t x, size_t y);
 const std::optional<T>& at(size_t x, size_t y) const;

 size_t getHeight() const { return HEIGHT; }
 size_t getWidth() const { return WIDTH; }

 private:
 void verifyCoordinate(size_t x, size_t y) const;

 std::optional<T> mCells[WIDTH][HEIGHT];
};

This new definition includes method templates for the copy constructor and assignment operator,
plus a helper method swap(). Note that the non-templatized copy constructor and assignment oper-
ator are explicitly defaulted (because of the user-declared destructor). They simply copy or assign
mCells from the source to the destination, which is exactly the semantics you want for two grids of
the same size.

Here is the templatized copy constructor:

template <typename T, size_t WIDTH, size_t HEIGHT>
template <typename E, size_t WIDTH2, size_t HEIGHT2>
Grid<T, WIDTH, HEIGHT>::Grid(const Grid<E, WIDTH2, HEIGHT2>& src)
{
 for (size_t i = 0; i < WIDTH; i++) {
 for (size_t j = 0; j < HEIGHT; j++) {
 if (i < WIDTH2 && j < HEIGHT2) {
 mCells[i][j] = src.at(i, j);
 } else {
 mCells[i][j].reset();
 }
 }
 }
}

Class Templates  ❘  395

Note that this copy constructor copies only WIDTH and HEIGHT elements in the x and y dimensions,
respectively, from src, even if src is bigger than that. If src is smaller in either dimension, the
std::optional objects in the extra spots are reset using the reset() method.

Here are the implementations of swap() and operator=:

template <typename T, size_t WIDTH, size_t HEIGHT>
void Grid<T, WIDTH, HEIGHT>::swap(Grid<T, WIDTH, HEIGHT>& other) noexcept
{
 using std::swap;

 swap(mCells, other.mCells);
}

template <typename T, size_t WIDTH, size_t HEIGHT>
template <typename E, size_t WIDTH2, size_t HEIGHT2>
Grid<T, WIDTH, HEIGHT>& Grid<T, WIDTH, HEIGHT>::operator=(
 const Grid<E, WIDTH2, HEIGHT2>& rhs)
{
 // no need to check for self-assignment because this version of
 // assignment is never called when T and E are the same

 // Copy-and-swap idiom
 Grid<T, WIDTH, HEIGHT> temp(rhs); // Do all the work in a temp instance
 swap(temp); // Commit the work with only non-throwing operations
 return *this;
}

Class Template Specialization
You can provide alternate implementations of class templates for specific types. For example, you
might decide that the Grid behavior for const char*s (C-style strings) doesn’t make sense. A
Grid<const char*> will store its elements in a vector<vector<optional<const char*>>>. The
copy constructor and assignment operator will perform shallow copies of this const char* pointer
type. For const char*s, it might make sense to do a deep copy of the string. The easiest solution for
this is to write an alternative implementation specifically for const char*s, which stores the strings
in a vector<vector<optional<string>>> and converts C-style strings into C++ strings so that
their memory is automatically handled.

Alternate implementations of templates are called template specializations. You might find the syn-
tax to be a little weird. When you write a class template specialization, you must specify that it’s a
template, and that you are writing the version of the template for that particular type. Here is the
syntax for specializing the original version of the Grid for const char*s:

// When the template specialization is used, the original template must be
// visible too. Including it here ensures that it will always be visible
// when this specialization is visible.
#include "Grid.h"

template <>
class Grid<const char*>
{
 public:
 explicit Grid(size_t width = kDefaultWidth,

396  ❘  CHAPTER 12   Writing Generic Code with Templates

 size_t height = kDefaultHeight);
 virtual ~Grid() = default;

 // Explicitly default a copy constructor and assignment operator.
 Grid(const Grid& src) = default;
 Grid<const char*>& operator=(const Grid& rhs) = default;

 // Explicitly default a move constructor and assignment operator.
 Grid(Grid&& src) = default;
 Grid<const char*>& operator=(Grid&& rhs) = default;

 std::optional<std::string>& at(size_t x, size_t y);
 const std::optional<std::string>& at(size_t x, size_t y) const;

 size_t getHeight() const { return mHeight; }
 size_t getWidth() const { return mWidth; }

 static const size_t kDefaultWidth = 10;
 static const size_t kDefaultHeight = 10;

 private:
 void verifyCoordinate(size_t x, size_t y) const;

 std::vector<std::vector<std::optional<std::string>>> mCells;
 size_t mWidth, mHeight;
};

Note that you don’t refer to any type variable, such as T, in the specialization: you work directly
with const char*s. One obvious question at this point is why this class is still a template. That is,
what good is the following syntax?

template <>
class Grid<const char*>

This syntax tells the compiler that this class is a const char* specialization of the Grid class.
Suppose that you didn’t use that syntax and just tried to write this:

class Grid

The compiler wouldn’t let you do that because there is already a class named Grid (the original class
template). Only by specializing it can you reuse the name. The main benefit of specializations is that
they can be invisible to the user. When a user creates a Grid of ints or SpreadsheetCells, the com-
piler generates code from the original Grid template. When the user creates a Grid of const char*s,
the compiler uses the const char* specialization. This can all be “behind the scenes.”

Grid<int> myIntGrid; // Uses original Grid template
Grid<const char*> stringGrid1(2, 2); // Uses const char* specialization

const char* dummy = "dummy";
stringGrid1.at(0, 0) = "hello";
stringGrid1.at(0, 1) = dummy;
stringGrid1.at(1, 0) = dummy;
stringGrid1.at(1, 1) = "there";

Grid<const char*> stringGrid2(stringGrid1);

Class Templates  ❘  397

When you specialize a template, you don’t “inherit” any code: Specializations are not like deriva-
tions. You must rewrite the entire implementation of the class. There is no requirement that you
provide methods with the same names or behavior. As an example, the const char* specialization
of Grid implements the at() methods by returning an std::optional<std::string>, not an
std::optional<const char*>. As a matter of fact, you could write a completely different class
with no relation to the original. Of course, that would abuse the template specialization ability, and
you shouldn’t do it without good reason. Here are the implementations for the methods of the const
char* specialization. Unlike in the template definitions, you do not repeat the template<> syntax
before each method definition.

Grid<const char*>::Grid(size_t width, size_t height)
 : mWidth(width), mHeight(height)
{
 mCells.resize(mWidth);
 for (auto& column : mCells) {
 column.resize(mHeight);
 }
}

void Grid<const char*>::verifyCoordinate(size_t x, size_t y) const
{
 if (x >= mWidth || y >= mHeight) {
 throw std::out_of_range("");
 }
}

const std::optional<std::string>& Grid<const char*>::at(
 size_t x, size_t y) const
{
 verifyCoordinate(x, y);
 return mCells[x][y];
}

std::optional<std::string>& Grid<const char*>::at(size_t x, size_t y)
{
 return const_cast<std::optional<std::string>&>(
 std::as_const(*this).at(x, y));
}

This section discussed how to use class template specialization. Template specialization allows you
to write a special implementation for a template, with the template types replaced by specific types.
Chapter 22 continues the discussion of specialization with a more advanced feature called partial
specialization.

Deriving from Class Templates
You can inherit from class templates. If the derived class inherits from the template itself, it must be
a template as well. Alternatively, you can derive from a specific instantiation of the class template, in
which case your derived class does not need to be a template. As an example of the former, suppose
you decide that the generic Grid class doesn’t provide enough functionality to use as a game board.

398  ❘  CHAPTER 12   Writing Generic Code with Templates

Specifically, you would like to add a move() method to the game board that moves a piece from one
location on the board to another. Here is the class definition for the GameBoard template:

#include "Grid.h"

template <typename T>
class GameBoard : public Grid<T>
{
 public:
 explicit GameBoard(size_t width = Grid<T>::kDefaultWidth,
 size_t height = Grid<T>::kDefaultHeight);
 void move(size_t xSrc, size_t ySrc, size_t xDest, size_t yDest);
};

This GameBoard template derives from the Grid template, and thereby inherits all its functionality.
You don’t need to rewrite at(), getHeight(), or any of the other methods. You also don’t need to
add a copy constructor, operator=, or destructor, because you don’t have any dynamically allocated
memory in the GameBoard.

The inheritance syntax looks normal, except that the base class is Grid<T>, not Grid. The reason
for this syntax is that the GameBoard template doesn’t really derive from the generic Grid template.
Rather, each instantiation of the GameBoard template for a specific type derives from the Grid
instantiation for that type. For example, if you instantiate a GameBoard with a ChessPiece type,
then the compiler generates code for a Grid<ChessPiece> as well. The “: public Grid<T>” syntax
says that this class inherits from whatever Grid instantiation makes sense for the T type parameter.
Note that the C++ name lookup rules for template inheritance require you to specify that kDefault-
Width and kDefaultHeight are declared in, and thus dependent on, the Grid<T> base class.

Here are the implementations of the constructor and the move() method. Note the use of Grid<T>
in the call to the base class constructor. Additionally, although many compilers don’t enforce it, the
name lookup rules require you to use the this pointer or Grid<T>:: to refer to data members and
methods in the base class template.

template <typename T>
GameBoard<T>::GameBoard(size_t width, size_t height)
 : Grid<T>(width, height)
{
}

template <typename T>
void GameBoard<T>::move(size_t xSrc, size_t ySrc, size_t xDest, size_t yDest)
{
 Grid<T>::at(xDest, yDest) = std::move(Grid<T>::at(xSrc, ySrc));
 Grid<T>::at(xSrc, ySrc).reset(); // Reset source cell
 // Or:
 // this->at(xDest, yDest) = std::move(this->at(xSrc, ySrc));
 // this->at(xSrc, ySrc).reset();
}

You can use the GameBoard template as follows:

GameBoard<ChessPiece> chessboard(8, 8);
ChessPiece pawn;
chessBoard.at(0, 0) = pawn;
chessBoard.move(0, 0, 0, 1);

Class Templates  ❘  399

Inheritance versus Specialization
Some programmers find the distinction between template inheritance and template specialization
confusing. The following table summarizes the differences.

INHERITANCE SPECIALIZATION

Reuses code? Yes: Derived classes contain all base
class data members and methods.

No: you must rewrite all required
code in the specialization.

Reuses name? No: the derived class name must be
different from the base class name.

Yes: the specialization must have
the same name as the original.

Supports
polymorphism?

Yes: objects of the derived class
can stand in for objects of the base
class.

No: each instantiation of a template
for a type is a different type.

NOTE  Use inheritance for extending implementations and for polymorphism.
Use specialization for customizing implementations for particular types.

Alias Templates
Chapter 11 introduces the concept of type aliases and typedefs. They allow you to give other names
to specific types. To refresh your memory, you could, for example, write the following type alias to
give a second name to type int:

using MyInt = int;

Similarly, you can use a type alias to give another name to a templatized class. Suppose you have the
following class template:

template<typename T1, typename T2>
class MyTemplateClass { /* ... */ };

You can define the following type alias in which you specify both class template type parameters:

using OtherName = MyTemplateClass<int, double>;

A typedef can also be used instead of such a type alias.

It’s also possible to only specify some of the types, and keep the other types as template type param-
eters. This is called an alias template. For example:

template<typename T1>
using OtherName = MyTemplateClass<T1, double>;

This is something you cannot do with a typedef.

400  ❘  CHAPTER 12   Writing Generic Code with Templates

FUNCTION TEMPLATES

You can also write templates for stand-alone functions. For example, you could write a generic func-
tion to find a value in an array and return its index:

static const size_t NOT_FOUND = static_cast<size_t>(-1);

template <typename T>
size_t Find(const T& value, const T* arr, size_t size)
{
 for (size_t i = 0; i < size; i++) {
 if (arr[i] == value) {
 return i; // Found it; return the index
 }
 }
 return NOT_FOUND; // Failed to find it; return NOT_FOUND
}

NOTE  Of course, instead of returning some kind of sentinel value when an ele-
ment is not found, such as NOT_FOUND, you could rewrite this code to return an
std::optional<size_t> instead of a size_t. This would be an interesting exer-
cise to practice using std::optional.

The Find() function template can work on arrays of any type. For example, you could use it to find
the index of an int in an array of ints, or a SpreadsheetCell in an array of SpreadsheetCells.

You can call the function in two ways: explicitly specifying the type parameter with angle brackets,
or omitting the type and letting the compiler deduce the type parameter from the arguments. Here
are some examples:

int myInt = 3, intArray[] = {1, 2, 3, 4};
const size_t sizeIntArray = std::size(intArray);

size_t res;
res = Find(myInt, intArray, sizeIntArray); // calls Find<int> by deduction
res = Find<int>(myInt, intArray, sizeIntArray); // calls Find<int> explicitly
if (res != NOT_FOUND)
 cout << res << endl;
else
 cout << "Not found" << endl;

double myDouble = 5.6, doubleArray[] = {1.2, 3.4, 5.7, 7.5};
const size_t sizeDoubleArray = std::size(doubleArray);

// calls Find<double> by deduction
res = Find(myDouble, doubleArray, sizeDoubleArray);
// calls Find<double> explicitly
res = Find<double>(myDouble, doubleArray, sizeDoubleArray);
if (res != NOT_FOUND)
 cout << res << endl;
else

Function Templates  ❘  401

 cout << "Not found" << endl;

//res = Find(myInt, doubleArray, sizeDoubleArray); // DOES NOT COMPILE!
 // Arguments are different types.
// calls Find<double> explicitly, even with myInt
res = Find<double>(myInt, doubleArray, sizeDoubleArray);

SpreadsheetCell cell1(10), cellArray[] =
 {SpreadsheetCell(4), SpreadsheetCell(10)};
const size_t sizeCellArray = std::size(cellArray);

res = Find(cell1, cellArray, sizeCellArray);
res = Find<SpreadsheetCell>(cell1, cellArray, sizeCellArray);

The previous implementation of the Find() function requires the size of the array as one of the
parameters. Sometimes the compiler knows the exact size of an array, for example, for stack-based
arrays. It would be nice to be able to call Find() with such arrays without the need to pass it the
size of the array. This can be accomplished by adding the following function template. The imple-
mentation just forwards the call to the previous Find() function template. This also demonstrates
that function templates can take non-type parameters, just like class templates.

template <typename T, size_t N>
size_t Find(const T& value, const T(&arr)[N])
{
 return Find(value, arr, N);
}

The syntax of this version of Find() looks a bit strange, but its use is straightforward, as in this
example:

int myInt = 3, intArray[] = {1, 2, 3, 4};
size_t res = Find(myInt, intArray);

Like class template method definitions, function template definitions (not just the prototypes) must
be available to all source files that use them. Thus, you should put the definitions in header files if
more than one source file uses them, or use explicit instantiations as discussed earlier in this chapter.

Template parameters of function templates can have defaults, just like class templates.

NOTE  The C++ Standard Library provides a templatized std::find() func-
tion that is more powerful than the Find() function template shown here. See
Chapter 18 for details.

Function Template Specialization
Just as you can specialize class templates, you can specialize function templates. For example, you
might want to write a Find() function for const char* C-style strings that compares them with
strcmp() instead of operator==. Here is a specialization of the Find() function to do this:

template<>
size_t Find<const char*>(const char* const& value,
 const char* const* arr, size_t size)

402  ❘  CHAPTER 12   Writing Generic Code with Templates

{
 for (size_t i = 0; i < size; i++) {
 if (strcmp(arr[i], value) == 0) {
 return i; // Found it; return the index
 }
 }
 return NOT_FOUND; // Failed to find it; return NOT_FOUND
}

You can omit the <const char*> in the function name when the parameter type can be deduced
from the arguments, making your prototype look like this:

template<>
size_t Find(const char* const& value, const char* const* arr, size_t size)

However, the deduction rules are tricky when you involve overloading as well (see the next section),
so, in order to avoid mistakes, it’s better to note the type explicitly.

Although the specialized find() function could take just const char* instead of const char*
const& as its first parameter, it’s best to keep the arguments parallel to the non-specialized version
of the function for the deduction rules to function properly.

You can use this specialization as follows:

const char* word = "two";
const char* words[] = {"one", "two", "three", "four"};
const size_t sizeWords = std::size(words);
size_t res;
// Calls const char* specialization
res = Find<const char*>(word, words, sizeWords);
// Calls const char* specialization
res = Find(word, words, sizeWords);

Function Template Overloading
You can also overload function templates with non-template functions. For example, instead of
writing a Find() template specialization for const char*, you could write a non-template Find()
function that works on const char*s:

size_t Find(const char* const& value, const char* const* arr, size_t size)
{
 for (size_t i = 0; i < size; i++) {
 if (strcmp(arr[i], value) == 0) {
 return i; // Found it; return the index
 }
 }
 return NOT_FOUND; // Failed to find it; return NOT_FOUND
}

This function is identical in behavior to the specialized version in the previous section. However, the
rules for when it is called are different:

const char* word = "two";
const char* words[] = {"one", "two", "three", "four"};
const size_t sizeWords = std::size(words);
size_t res;

Function Templates  ❘  403

// Calls template with T=const char*
res = Find<const char*>(word, words, sizeWords);
res = Find(word, words, sizeWords); // Calls non-template function!

Thus, if you want your function to work both when const char* is explicitly specified and via
deduction when it is not, you should write a specialized template version instead of a non-template,
overloaded version.

Function Template Overloading and Specialization Together
It’s possible to write both a specialized Find() template for const char*s and a stand-alone Find()
function for const char*s. The compiler always prefers the non-template function to a templatized
version. However, if you specify the template instantiation explicitly, the compiler will be forced to
use the template version:

const char* word = "two";
const char* words[] = {"one", "two", "three", "four"};
const size_t sizeWords = std::size(words);
size_t res;
// Calls const char* specialization of the template
res = Find<const char*>(word, words, sizeWords);
res = Find(word, words, sizeWords); // Calls the Find non-template function

Friend Function Templates of Class Templates
Function templates are useful when you want to overload operators in a class template. For example,
you might want to overload the addition operator (operator+) for the Grid class template to be
able to add two grids together. The result will be a Grid with the same size as the smallest Grid of
the two operands. Corresponding cells are only added together if both cells contain an actual value.
Suppose you want to make your operator+ a stand-alone function template. The definition, which
should go directly in Grid.h, looks as follows:

template <typename T>
Grid<T> operator+(const Grid<T>& lhs, const Grid<T>& rhs)
{
 size_t minWidth = std::min(lhs.getWidth(), rhs.getWidth());
 size_t minHeight = std::min(lhs.getHeight(), rhs.getHeight());

 Grid<T> result(minWidth, minHeight);
 for (size_t y = 0; y < minHeight; ++y) {
 for (size_t x = 0; x < minWidth; ++x) {
 const auto& leftElement = lhs.mCells[x][y];
 const auto& rightElement = rhs.mCells[x][y];
 if (leftElement.has_value() && rightElement.has_value())
 result.at(x, y) = leftElement.value() + rightElement.value();
 }
 }
 return result;
}

To query whether an std::optional contains an actual value, you use the has_value() method,
while value() is used to retrieve this value.

404  ❘  CHAPTER 12   Writing Generic Code with Templates

This function template works on any Grid, as long as there is an addition operator for the type of
elements stored in the grid. The only problem with this implementation is that it accesses private
member mCells of the Grid class. The obvious solution is to use the public at() method, but let’s
see how you can make a function template a friend of a class template. For this example, you can
make the operator a friend of the Grid class. However, both the Grid class and the operator+ are
templates. What you really want is for each instantiation of operator+ for a particular type T to be
a friend of the Grid template instantiation for that type. The syntax looks like this:

// Forward declare Grid template.
template <typename T> class Grid;

// Prototype for templatized operator+.
template<typename T>
Grid<T> operator+(const Grid<T>& lhs, const Grid<T>& rhs);

template <typename T>
class Grid
{
 public:
 // Omitted for brevity
 friend Grid<T> operator+ <T>(const Grid<T>& lhs, const Grid<T>& rhs);
 // Omitted for brevity
};

This friend declaration is tricky: you’re saying that, for an instance of the template with type T, the
T instantiation of operator+ is a friend. In other words, there is a one-to-one mapping of friends
between the class instantiations and the function instantiations. Note particularly the explicit tem-
plate specification <T> on operator+ (the space after operator+ is optional). This syntax tells the
compiler that operator+ is itself a template.

More on Template Parameter Deduction
The compiler deduces the type of the template parameters based on the arguments passed to the
function template. Template parameters that cannot be deduced have to be specified explicitly.

For example, the following add() function template requires three template parameters: the type of
the return value, and the types of the two operands:

template<typename RetType, typename T1, typename T2>
RetType add(const T1& t1, const T2& t2) { return t1 + t2; }

You can call this function template specifying all three parameters as follows:

auto result = add<long long, int, int>(1, 2);

However, because the template parameters T1 and T2 are parameters to the function, the compiler
can deduce those two parameters, so you can call add() by only specifying the type for the return
value:

auto result = add<long long>(1, 2);

Function Templates  ❘  405

Of course, this only works when the parameters to deduce are last in the list of parameters. Suppose
the function template is defined as follows:

template<typename T1, typename RetType, typename T2>
RetType add(const T1& t1, const T2& t2) { return t1 + t2; }

You have to specify RetType, because the compiler cannot deduce that type. However, because
RetType is the second parameter, you have to explicitly specify T1 as well:

auto result = add<int, long long>(1, 2);

You can also provide a default value for the return type template parameter so that you can call
add() without specifying any types:

template<typename RetType = long long, typename T1, typename T2>
RetType add(const T1& t1, const T2& t2) { return t1 + t2; }
...
auto result = add(1, 2);

Return Type of Function Templates
Continuing the example of the add() function template, wouldn’t it be nice to let the compiler
deduce the type of the return value? It would; however, the return type depends on the template
type parameters, so how can you do this? For example, take the following templatized function:

template<typename T1, typename T2>
RetType add(const T1& t1, const T2& t2) { return t1 + t2; }

In this example, RetType should be the type of the expression t1+t2, but you don’t know this
because you don’t know what T1 and T2 are.

As discussed in Chapter 1, since C++14 you can ask the compiler to automatically deduce the func-
tion return type. So, you can simply write add() as follows:

template<typename T1, typename T2>
auto add(const T1& t1, const T2& t2)
{
 return t1 + t2;
}

However, using auto to deduce the type of an expression strips away reference and const qualifiers;
decltype does not strip those. Before continuing with the add() function template, let’s look at
the differences between auto and decltype using a non-template example. Suppose you have the
following function:

const std::string message = "Test";

const std::string& getString()
{
 return message;
}

406  ❘  CHAPTER 12   Writing Generic Code with Templates

You can call getString() and store the result in a variable with the type specified as auto as
follows:

auto s1 = getString();

Because auto strips reference and const qualifiers, s1 is of type string, and thus a copy is made. If
you want a const reference, you can explicitly make it a reference and mark it const as follows:

const auto& s2 = getString();

An alternative solution is to use decltype, which does not strip anything:

decltype(getString()) s3 = getString();

In this case, s3 is of type const string&; however, there is code duplication because you need to
specify getString() twice, which can be cumbersome when getString() is a more complicated
expression.

This is solved with decltype(auto):

decltype(auto) s4 = getString();

s4 is also of type const string&.

So, with this knowledge, we can write our add() function template using decltype(auto) to avoid
stripping any const and reference qualifiers:

template<typename T1, typename T2>
decltype(auto) add(const T1& t1, const T2& t2)
{
 return t1 + t2;
}

Before C++14—that is, before function return type deduction and decltype(auto) were sup-
ported—the problem was solved using decltype(expression),  introduced with C++11. For example,
you would think you could write the following:

template<typename T1, typename T2>
decltype(t1+t2) add(const T1& t1, const T2& t2) { return t1 + t2; }

However, this is wrong. You are using t1 and t2 in the beginning of the prototype line, but these
are not yet known. t1 and t2 become known once the semantic analyzer reaches the end of the
parameter list.

This problem used to be solved with the alternative function syntax. Note that in this syntax, the
return type is specified after the parameter list (trailing return type); thus, the names of the param-
eters (and their types, and consequently, the type t1+t2) are known:

template<typename T1, typename T2>
auto add(const T1& t1, const T2& t2) -> decltype(t1+t2)
{
 return t1 + t2;
}

However, now that C++ supports auto return type deduction and decltype(auto), it is recom-
mended to use one of these mechanisms, instead of the alternative function syntax.

Summary  ❘  407

VARIABLE TEMPLATES

In addition to class templates, class method templates, and function templates, C++14 adds the
ability to write variable templates. The syntax is as follows:

template <typename T>
constexpr T pi = T(3.141592653589793238462643383279502884);

This is a variable template for the value of pi. To get pi in a certain type, you use the following
syntax:

float piFloat = pi<float>;
long double piLongDouble = pi<long double>;

You will always get the closest value of pi representable in the requested type. Just like other types
of templates, variable templates can also be specialized.

SUMMARY

This chapter started a discussion on using templates for generic programming. You saw the syntax
on how to write templates and examples where templates are really useful. It explained how to write
class templates, how to organize your code in different files, how to use template parameters, and
how to templatize methods of a class. It further discussed how to use class template specialization to
write special implementations of a template where the template parameters are replaced with specific
arguments. The chapter finished with an explanation of function templates and variable templates.

Chapter 22 continues the discussion on templates with some more advanced features such as
variadic templates and metaprogramming.

Demystifying C++ I/O
WHAT’S IN THIS CHAPTER?

➤➤ What streams are

➤➤ How to use streams for input and output of data

➤➤ What the available standard streams are in the Standard Library

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

A program’s fundamental job is to accept input and produce output. A program that produces
no output of any sort would not be very useful. All languages provide some mechanism for
I/O, either as a built-in part of the language or through an OS-specific API. A good I/O sys-
tem is both flexible and easy to use. Flexible I/O systems support input and output through a
variety of devices, such as files and the user console. They also support reading and writing of
different types of data. I/O is error-prone because data coming from a user can be incorrect or
the underlying file system or other data source can be inaccessible. Thus, a good I/O system is
also capable of handling error conditions.

If you are familiar with the C language, you have undoubtedly used printf() and scanf().
As I/O mechanisms, printf() and scanf() are certainly flexible. Through escape codes and
variable placeholders, they can be customized to read in specially formatted data, or output
any value that the formatting codes permit, which is currently limited to integer/character val-
ues, floating point values, and strings. However, printf() and scanf() falter on other mea-
sures of good I/O systems. They do not handle errors particularly well, they are not flexible
enough to handle custom data types, and in an object-oriented language like C++, they are not
at all object oriented.

13

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

410  ❘  CHAPTER 13   Demystifying C++ I/O

C++ provides a more refined method of input and output through a mechanism known as streams.
Streams are a flexible and object-oriented approach to I/O. In this chapter, you will learn how to
use streams for data output and input. You will also learn how to use the stream mechanism to
read from various sources and write to various destinations, such as the user console, files, and even
strings. This chapter covers the most commonly used I/O features.

USING STREAMS

The stream metaphor takes a bit of getting used to. At first, streams may seem more complex than
traditional C-style I/O, such as printf(). In reality, they seem complicated initially only because
there is a deeper metaphor behind streams than there is behind printf(). Don’t worry, though;
after a few examples, you’ll never look back.

What Is a Stream, Anyway?
Chapter 1 compares the cout stream to a laundry chute for data. You throw some variables
down the stream, and they are written to the user’s screen, or console. More generally, all streams
can be viewed as data chutes. Streams vary in their direction and their associated source or destina-
tion. For example, the cout stream that you are already familiar with is an output stream, so its
direction is “out.” It writes data to the console so its associated destination is “console.” The c in
cout does not stand for “console” as you might expect, but stands for “character” as it’s a char-
acter-based stream. There is another standard stream called cin that accepts input from the user.
Its direction is “in,” and its associated source is “console.” As with cout, the c in cin stands for
“character.” Both cout and cin are predefined instances of streams that are defined within the std
namespace in C++. The following table gives a brief description of all predefined streams.

The difference between buffered and unbuffered streams is that a buffered stream does not imme-
diately send the data to the destination, but instead, it buffers incoming data and then sends it in
blocks. An unbuffered stream, on the other hand, immediately sends the data to the destination.
Buffering is usually done to improve performance, as certain destinations, such as files, perform bet-
ter when writing bigger blocks at once. Note that you can always force a buffered stream to send all
its currently buffered data to the destination by flushing its buffer using the flush() method.

STREAM DESCRIPTION

cin An input stream, reads data from the “input console.”

cout A buffered output stream, writes data to the “output console.”

cerr An unbuffered output stream, writes data to the “error console,” which is often the
same as the “output console.”

clog A buffered version of cerr.

There are also wide-character versions available of these streams: wcin, wcout, wcerr, and wclog.
Wide characters are discussed in Chapter 19.

Using Streams  ❘  411

Note that graphical user interface applications normally do not have a console; that is, if you write
something to cout, the user will not see it. If you are writing a library, you should never assume the
existence of cout, cin, cerr, or clog because you never know whether your library will be used in
a console or in a GUI application.

NOTE  Every input stream has an associated source. Every output stream has an
associated destination.

Another important aspect of streams is that they include data but also have a so-called current posi-
tion. The current position is the position in the stream where the next read or write operation will
take place.

Stream Sources and Destinations
Streams as a concept can be applied to any object that accepts data or emits data. You could write a
stream-based network class or stream-based access to a MIDI-based instrument. In C++, there are
three common sources and destinations for streams: console, file, and string.

You have already read many examples of user, or console, streams. Console input streams make
programs interactive by allowing input from the user at run time. Console output streams provide
feedback to the user and output results.

File streams, as the name implies, read data from and write data to a file system. File input streams
are useful for reading configuration data and saved files, or for batch processing file-based data. File
output streams are useful for saving state and providing output. File streams subsume the function-
ality of the C functions fprintf(), fwrite(), and fputs() for output, and fscanf(), fread(),
and fgets() for input.

String streams are an application of the stream metaphor to the string type. With a string stream,
you can treat character data just as you would treat any other stream. For the most part, this is
merely a handy syntax for functionality that could be handled through methods on the string
class. However, using stream syntax provides opportunities for optimization and can be far more
convenient and more efficient than direct use of the string class. String streams subsume the func-
tionality of sprintf(), sprintf_s(), sscanf(), and other forms of C string-formatting functions.

The rest of this section deals with console streams (cin and cout). Examples of file and string
streams are provided later in this chapter. Other types of streams, such as printer output or network
I/O, are often platform dependent, so they are not covered in this book.

Output with Streams
Output using streams is introduced in Chapter 1 and is used in almost every chapter in this book.
This section briefly revisits some of the basics and introduces material that is more advanced.

412  ❘  CHAPTER 13   Demystifying C++ I/O

Output Basics
Output streams are defined in the <ostream> header file. Most programmers include <iostream> in
their programs, which in turn includes the headers for both input streams and output streams. The
<iostream> header also declares all predefined stream instances: cout, cin, cerr, clog, and the
wide versions.

The << operator is the simplest way to use output streams. C++ basic types, such as ints, pointers,
doubles, and characters, can be output using <<. In addition, the C++ string class is compatible
with <<, and C-style strings are properly output as well. Following are some examples of using <<:

int i = 7;
cout << i << endl;

char ch = 'a';
cout << ch << endl;

string myString = "Hello World.";
cout << myString << endl;

The output is as follows:

7
a
Hello World.

The cout stream is the built-in stream for writing to the console, or standard output. You can
“chain” uses of << together to output multiple pieces of data. This is because the << operator returns
a reference to the stream as its result so you can immediately use << again on the same stream. Here
is an example:

int j = 11;
cout << "The value of j is " << j << "!" << endl;

The output is as follows:

The value of j is 11!

C++ streams correctly parse C-style escape sequences, such as strings that contain \n. You can also
use std::endl to start a new line. The difference between using \n and endl is that \n just starts
a new line while endl also flushes the buffer. Watch out with endl because too many flushes might
hurt performance. The following example uses endl to output and flush several lines of text with
just one line of code:

cout << "Line 1" << endl << "Line 2" << endl << "Line 3" << endl;

The output is as follows:

Line 1
Line 2
Line 3

Methods of Output Streams
The << operator is, without a doubt, the most useful part of output streams. However, there is addi-
tional functionality to be explored. If you look at the <ostream> header file, you’ll see many lines

Using Streams  ❘  413

of overloaded definitions of the << operator to support outputting all kinds of different data types.
You’ll also find some useful public methods.

put() and write()
put() and write() are raw output methods. Instead of taking an object or variable that has some
defined behavior for output, put() accepts a single character, while write() accepts a character
array. The data passed to these methods is output as is, without any special formatting or process-
ing. For example, the following code snippet shows how to output a C-style string to the console
without using the << operator:

const char* test = "hello there\n";
cout.write(test, strlen(test));

The next snippet shows how to write a single character to the console by using the put() method:

cout.put('a');

flush()
When you write to an output stream, the stream does not necessarily write the data to its destina-
tion right away. Most output streams buffer, or accumulate data instead of writing it out as soon as
it comes in. This is usually done to improve performance. Certain stream destinations, such as files,
are much more performant if data is written in larger blocks, instead of for example character-by-
character. The stream flushes, or writes out the accumulated data, when one of the following condi-
tions occurs:

➤➤ A sentinel, such as the endl marker, is reached.

➤➤ The stream goes out of scope and is destructed.

➤➤ Input is requested from a corresponding input stream (that is, when you make use of cin for
input, cout will flush). In the section, “File Streams,” you will learn how to establish this
type of link.

➤➤ The stream buffer is full.

➤➤ You explicitly tell the stream to flush its buffer.

One way to explicitly tell a stream to flush is to call its flush() method, as in the following code:

cout << "abc";
cout.flush(); // abc is written to the console.
cout << "def";
cout << endl; // def is written to the console.

NOTE  Not all output streams are buffered. The cerr stream, for example, does
not buffer its output.

414  ❘  CHAPTER 13   Demystifying C++ I/O

Handling Output Errors
Output errors can arise in a variety of situations. Perhaps you are trying to open a non-existing file.
Maybe a disk error has prevented a write operation from succeeding, for example, because the disk
is full. None of the streams’ code you have read up until this point has considered these possibilities,
mainly for brevity. However, it is vital that you address any error conditions that occur.

When a stream is in its normal usable state, it is said to be “good.” The good() method can be
called directly on a stream to determine whether or not the stream is currently good.

if (cout.good()) {
 cout << "All good" << endl;
}

The good() method provides an easy way to obtain basic information about the validity of the
stream, but it does not tell you why the stream is unusable. There is a method called bad() that
provides a bit more information. If bad() returns true, it means that a fatal error has occurred
(as opposed to any nonfatal condition like end-of-file, eof()). Another method, fail(), returns
true if the most recent operation has failed; however, it doesn’t say anything about the next opera-
tion, which can either succeed or fail as well. For example, after calling flush() on an output
stream, you could call fail() to make sure the flush was successful.

cout.flush();
if (cout.fail()) {
 cerr << "Unable to flush to standard out" << endl;
}

Streams have a conversion operator to convert to type bool. This conversion operator returns the
same as calling !fail(). So, the previous code snippet can be rewritten as follows:

cout.flush();
if (!cout) {
 cerr << "Unable to flush to standard out" << endl;
}

Important to know is that both good() and fail() return false if the end-of-file is reached. The
relation is as follows: good() == (!fail() && !eof()).

You can also tell the streams to throw exceptions when a failure occurs. You then write a catch
handler to catch ios_base::failure exceptions, on which you can use the what() method to get a
description of the error, and the code() method to get the error code. However, whether or not you
get useful information depends on the Standard Library implementation that you use.

cout.exceptions(ios::failbit | ios::badbit | ios::eofbit);
try {
 cout << "Hello World." << endl;
} catch (const ios_base::failure& ex) {
 cerr << "Caught exception: " << ex.what()
 << ", error code = " << ex.code() << endl;
}

To reset the error state of a stream, use the clear() method:

cout.clear();

Using Streams  ❘  415

Error checking is performed less frequently for console output streams than for file output or input
streams. The methods discussed here apply for other types of streams as well and are revisited later
as each type is discussed.

Output Manipulators
One of the unusual features of streams is that you can throw more than just data down the chute.
C++ streams also recognize manipulators, objects that make a change to the behavior of the stream
instead of, or in addition to, providing data for the stream to work with.

You have already seen one manipulator: endl. The endl manipulator encapsulates data and behav-
ior. It tells the stream to output an end-of-line sequence and to flush its buffer. Following are some
other useful manipulators, many of which are defined in the <ios> and <iomanip> standard header
files. The example after this list shows how to use them.

➤➤ boolalpha and noboolalpha: Tells the stream to output bool values as true and false (bool-
alpha) or 1 and 0 (noboolalpha). The default is noboolalpha.

➤➤ hex, oct, and dec: Outputs numbers in hexadecimal, octal, and base 10, respectively.

➤➤ setprecision: Sets the number of decimal places that are output for fractional numbers. This is
a parameterized manipulator (meaning that it takes an argument).

➤➤ setw: Sets the field width for outputting numerical data. This is a parameterized manipulator.

➤➤ setfill: Specifies the character that is used to pad numbers that are smaller than the specified
width. This is a parameterized manipulator.

➤➤ showpoint and noshowpoint: Forces the stream to always or never show the decimal point
for floating point numbers with no fractional part.

➤➤ put_money: A parameterized manipulator that writes a formatted monetary value to a
stream.

➤➤ put_time: A parameterized manipulator that writes a formatted time to a stream.

➤➤ quoted: A parameterized manipulator that encloses a given string with quotes and escapes
embedded quotes.

All of these manipulators stay in effect for subsequent output to the stream until they are reset,
except setw, which is only active for the next single output. The following example uses several of
these manipulators to customize its output:

// Boolean values
bool myBool = true;
cout << "This is the default: " << myBool << endl;
cout << "This should be true: " << boolalpha << myBool << endl;
cout << "This should be 1: " << noboolalpha << myBool << endl;

// Simulate "%6d" with streams
int i = 123;
printf("This should be ' 123': %6d\n", i);
cout << "This should be ' 123': " << setw(6) << i << endl;

416  ❘  CHAPTER 13   Demystifying C++ I/O

// Simulate "%06d" with streams
printf("This should be '000123': %06d\n", i);
cout << "This should be '000123': " << setfill('0') << setw(6) << i << endl;

// Fill with *
cout << "This should be '***123': " << setfill('*') << setw(6) << i << endl;
// Reset fill character
cout << setfill(' ');

// Floating point values
double dbl = 1.452;
double dbl2 = 5;
cout << "This should be ' 5': " << setw(2) << noshowpoint << dbl2 << endl;
cout << "This should be @@1.452: " << setw(7) << setfill('@') << dbl << endl;
// Reset fill character
cout << setfill(' ');

// Instructs cout to start formatting numbers according to your location.
// Chapter 19 explains the details of the imbue call and the locale object.
cout.imbue(locale(""));

// Format numbers according to your location
cout << "This is 1234567 formatted according to your location: " << 1234567
 << endl;

// Monetary value. What exactly a monetary value means depends on your
// location. For example, in the USA, a monetary value of 120000 means 120000
// dollar cents, which is 1200.00 dollars.
cout << "This should be a monetary value of 120000, "
 << "formatted according to your location: "
 << put_money("120000") << endl;

// Date and time
time_t t_t = time(nullptr); // Get current system time
tm* t = localtime(&t_t); // Convert to local time
cout << "This should be the current date and time "
 << "formatted according to your location: "
 << put_time(t, "%c") << endl;

// Quoted string
cout << "This should be: \"Quoted string with \\\"embedded quotes\\\".\": "
 << quoted("Quoted string with \"embedded quotes\".") << endl;

NOTE  This example might give you a security-related error or warning on the
call to localtime(). With Microsoft Visual C++ you can use the safe version,
called localtime_s(). On Linux you can use localtime_r().

If you don’t care for the concept of manipulators, you can usually get by without them. Streams pro-
vide much of the same functionality through equivalent methods like precision(). For example,
take the following line:

cout << "This should be '1.2346': " << setprecision(5) << 1.23456789 << endl;

Using Streams  ❘  417

This can be converted to use a method call as follows. The advantage of the method calls is that
they return the previous value, allowing you to restore it, if needed.

cout.precision(5);
cout << "This should be '1.2346': " << 1.23456789 << endl;

For a detailed description of all stream methods and manipulators, consult a Standard Library
Reference, for example, the book C++ Standard Library Quick Reference, or online references
http://www.cppreference.com/ or http://www.cplusplus.com/reference/.

Input with Streams
Input streams provide a simple way to read in structured or unstructured data. In this section, the
techniques for input are discussed within the context of cin, the console input stream.

Input Basics
There are two easy ways to read data by using an input stream. The first is an analog of the <<
operator that outputs data to an output stream. The corresponding operator for reading data is >>.
When you use >> to read data from an input stream, the variable you provide is the storage for the
received value. For example, the following program reads one word from the user and puts it into a
string. Then the string is output back to the console.

string userInput;
cin >> userInput;
cout << "User input was " << userInput << endl;

By default, the >> operator tokenizes values according to white space. For example, if a user runs the
previous program and enters hello there as input, only the characters up to the first white space
character (the space character in this instance) are captured into the userInput variable. The output
would be as follows:

User input was hello

One solution to include white space in the input is to use get(), which is discussed later in this
chapter.

The >> operator works with different variable types, just like the << operator. For example, to read
an integer, the code differs only in the type of the variable:

int userInput;
cin >> userInput;
cout << "User input was " << userInput << endl;

You can use input streams to read in multiple values, mixing and matching types as necessary. For
example, the following function, an excerpt from a restaurant reservation system, asks the user for a
last name and the number of people in their party:

void getReservationData()
{
 string guestName;
 int partySize;
 cout << "Name and number of guests: ";
 cin >> guestName >> partySize;
 cout << "Thank you, " << guestName << "." << endl;

418  ❘  CHAPTER 13   Demystifying C++ I/O

 if (partySize > 10) {
 cout << "An extra gratuity will apply." << endl;
 }
}

Remember that the >> operator tokenizes values according to white space, so the getReservation-
Data() function does not allow you to enter a name with white space. A solution using unget() is
discussed later in this chapter. Note also that even though the use of cout does not explicitly flush
the buffer using endl or flush(), the text will still be written to the console because the use of cin
immediately flushes the cout buffer; they are linked together in this way.

NOTE  If you get confused between << and >>, just think of the angles as point-
ing toward their destination. In an output stream, << points toward the stream
itself because data is being sent to the stream. In an input stream, >> points
toward the variables because data is being stored.

Handling Input Errors
Input streams have a number of methods to detect unusual circumstances. Most of the error condi-
tions related to input streams occur when there is no data available to read. For example, the end of
stream (referred to as end-of-file, even for non-file streams) may have been reached. The most com-
mon way of querying the state of an input stream is to access it within a conditional. For example,
the following loop keeps looping as long as cin remains in a good state:

while (cin) { ... }

You can input data at the same time:

while (cin >> ch) { ... }

The good(), bad(), and fail() methods can be called on input streams, just as on output streams.
There is also an eof() method that returns true if the stream has reached its end. Similar as for
output streams, both good() and fail() return false if the end-of-file is reached. The relation is
again as follows: good() == (!fail() && !eof()).

You should get into the habit of checking the stream state after reading data so that you can recover
from bad input.

The following program shows the common pattern for reading data from a stream and handling
errors. The program reads numbers from standard input and displays their sum once end-of-file is
reached. Note that in command-line environments, the end-of-file is indicated by the user typing a
particular character. In Unix and Linux, it is Control+D; in Windows it is Control+Z. The exact
character is operating-system dependent, so you will need to know what your operating system
requires:

cout << "Enter numbers on separate lines to add. "
 << "Use Control+D to finish (Control+Z in Windows)." << endl;
int sum = 0;

Using Streams  ❘  419

if (!cin.good()) {
 cerr << "Standard input is in a bad state!" << endl;
 return 1;
}

int number;
while (!cin.bad()) {
 cin >> number;
 if (cin.good()) {
 sum += number;
 } else if (cin.eof()) {
 break; // Reached end of file
 } else if (cin.fail()) {
 // Failure!
 cin.clear(); // Clear the failure state.
 string badToken;
 cin >> badToken; // Consume the bad input.
 cerr << "WARNING: Bad input encountered: " << badToken << endl;
 }
}
cout << "The sum is " << sum << endl;

Here is some example output of this program:

Enter numbers on separate lines to add. Use Control+D to finish (Control+Z in
Windows).
1
2
test
WARNING: Bad input encountered: test
3
^Z
The sum is 6

Input Methods
Just like output streams, input streams have several methods that allow a lower level of access than
the functionality provided by the more common >> operator.

get()
The get() method allows raw input of data from a stream. The simplest version of get() returns
the next character in the stream, though other versions exist that read multiple characters at once.
get() is most commonly used to avoid the automatic tokenization that occurs with the >> operator.
For example, the following function reads a name, which can be made up of several words, from an
input stream until the end of the stream is reached:

string readName(istream& stream)
{
 string name;
 while (stream) { // Or: while (!stream.fail()) {
 int next = stream.get();
 if (!stream || next == std::char_traits<char>::eof())
 break;

420  ❘  CHAPTER 13   Demystifying C++ I/O

 name += static_cast<char>(next);// Append character.
 }
 return name;
}

There are several interesting observations to make about this readName() function:

➤➤ Its parameter is a non-const reference to an istream, not a const reference. The methods
that read in data from a stream will change the actual stream (most notably, its position), so
they are not const methods. Thus, you cannot call them on a const reference.

➤➤ The return value of get() is stored in an int, not in a char, because get() can return spe-
cial non-character values such as std::char_traits<char>::eof() (end-of-file).

readName() is a bit strange because there are two ways to get out of the loop: either the stream can
get into a failed state, or the end of the stream is reached. A more common pattern for reading from
a stream uses a different version of get() that takes a reference to a character and returns a refer-
ence to the stream. This pattern takes advantage of the fact that evaluating an input stream within a
conditional context results in true only if the stream is not in any error state. Encountering an error
causes the stream to evaluate to false. The underlying details of the conversion operations required
to implement this feature are explained in Chapter 15. The following version of the same function is
a bit more concise:

string readName(istream& stream)
{
 string name;
 char next;
 while (stream.get(next)) {
 name += next;
 }
 return name;
}

unget()
For most purposes, the correct way to think of an input stream is as a one-way chute. Data falls
down the chute and into variables. The unget() method breaks this model in a way by allowing you
to push data back up the chute.

A call to unget() causes the stream to back up by one position, essentially putting the previous
character read back on the stream. You can use the fail() method to see if unget() was successful
or not. For example, unget() can fail if the current position is at the beginning of the stream.

The getReservationData() function seen earlier in this chapter did not allow you to enter a name
with white space. The following code uses unget() to allow white space in the name. The code
reads character by character and checks whether the character is a digit or not. If the character is
not a digit, it is added to guestName. If it is a digit, the character is put back into the stream using
unget(), the loop is stopped, and the >> operator is used to input an integer, partySize. The
noskipws input manipulator tells the stream not to skip white space, that is, white space is read like
any other characters.

void getReservationData()
{

Using Streams  ❘  421

 string guestName;
 int partySize = 0;
 // Read characters until we find a digit
 char ch;
 cin >> noskipws;
 while (cin >> ch) {
 if (isdigit(ch)) {
 cin.unget();
 if (cin.fail())
 cout << "unget() failed" << endl;
 break;
 }
 guestName += ch;
 }
 // Read partysize, if the stream is not in error state
 if (cin)
 cin >> partySize;
 if (!cin) {
 cerr << "Error getting party size." << endl;
 return;
 }

 cout << "Thank you '" << guestName
 << "', party of " << partySize << endl;
 if (partySize > 10) {
 cout << "An extra gratuity will apply." << endl;
 }
}

putback()
The putback() method, like unget(), lets you move backward by one character in an input
stream. The difference is that the putback() method takes the character being placed back on
the stream as a parameter:

char ch1;
cin >> ch1;
cin.putback('e');
// 'e' will be the next character read off the stream.

peek ()
The peek() method allows you to preview the next value that would be returned if you were to
call get(). To take the chute metaphor perhaps a bit too far, you could think of it as looking up the
chute without a value actually falling down it.

peek() is ideal for any situation where you need to look ahead before reading a value. For example,
the following code implements the getReservationData() function that allows white space in the
name, but uses peek() instead of unget():

void getReservationData()
{
 string guestName;
 int partySize = 0;
 // Read characters until we find a digit

422  ❘  CHAPTER 13   Demystifying C++ I/O

 char ch;
 cin >> noskipws;
 while (true) {
 // 'peek' at next character
 ch = static_cast<char>(cin.peek());
 if (!cin)
 break;
 if (isdigit(ch)) {
 // next character will be a digit, so stop the loop
 break;
 }
 // next character will be a non-digit, so read it
 cin >> ch;
 if (!cin)
 break;
 guestName += ch;
 }
 // Read partysize, if the stream is not in error state
 if (cin)
 cin >> partySize;
 if (!cin) {
 cerr << "Error getting party size." << endl;
 return;
 }

 cout << "Thank you '" << guestName
 << "', party of " << partySize << endl;
 if (partySize > 10) {
 cout << "An extra gratuity will apply." << endl;
 }
}

getline()
Obtaining a single line of data from an input stream is so common that a method exists to do it for
you. The getline() method fills a character buffer with a line of data up to the specified size. The
specified size includes the \0 character. Thus, the following code reads a maximum of kBuffer-
Size-1 characters from cin, or until an end-of-line sequence is read:

char buffer[kBufferSize] = { 0 };
cin.getline(buffer, kBufferSize);

When getline() is called, it reads a line from the input stream, up to and including the end-of-line
sequence. However, the end-of-line character or characters do not appear in the string. Note that the
end-of-line sequence is platform dependent. For example, it can be \r\n, or \n, or \n\r.

There is a form of get() that performs the same operation as getline(), except that it leaves the
newline sequence in the input stream.

There is also a function called std::getline() that can be used with C++ strings. It is defined in
the <string> header file and is in the std namespace. It takes a stream reference, a string refer-
ence, and an optional delimiter as parameters. The advantage of using this version of getline() is
that it doesn’t require you to specify the size of the buffer.

string myString;
std::getline(cin, myString);

Using Streams  ❘  423

Input Manipulators
The built-in input manipulators, described in the list that follows, can be sent to an input stream to
customize the way that data is read.

➤➤ boolalpha and noboolalpha: If boolalpha is used, the string false will be interpreted as the
Boolean value false; anything else will be treated as the Boolean value true. If nobool-
alpha is set, zero will be interpreted as false, anything else as true. The default is
noboolalpha.

➤➤ hex, oct, and dec: Reads numbers in hexadecimal, octal, and base 10, respectively.

➤➤ skipws and noskipws: Tells the stream to either skip white space when tokenizing, or to read
in white space as its own token. The default is skipws.

➤➤ ws: A handy manipulator that simply skips over the current series of white space at the cur-
rent position in the stream.

➤➤ get_money: A parameterized manipulator that reads a monetary value from a stream.

➤➤ get_time: A parameterized manipulator that reads a formatted time from a stream.

➤➤ quoted: A parameterized manipulator that reads a string enclosed with quotes and in which
embedded quotes are escaped.

Input is locale aware. For example, the following code enables your system locale for cin. Locales
are discussed in Chapter 19:

cin.imbue(locale(""));
int i;
cin >> i;

If your system locale is U.S. English, you can enter 1,000 and it will be parsed as 1000. If you
would enter 1.000, it will be parsed as 1. On the other hand, if your system locale is Dutch Belgium,
you can enter 1.000 to get the value of 1000, but entering 1,000 will result in 1. In both cases, you
can also just enter 1000 without any digit separators to get the value 1000.

Input and Output with Objects
You can use the << operator to output a C++ string even though it is not a basic type. In C++,
objects are able to prescribe how they are output and input. This is accomplished by overloading the
<< and >> operators to understand a new type or class.

Why would you want to overload these operators? If you are familiar with the printf() function
in C, you know that it is not flexible in this area. printf() knows about several types of data,
but there really isn’t a way to give it additional knowledge. For example, consider the following
simple class:

class Muffin
{
 public:
 virtual ~Muffin() = default;

 string_view getDescription() const;
 void setDescription(string_view description);

424  ❘  CHAPTER 13   Demystifying C++ I/O

 int getSize() const;
 void setSize(int size);

 bool hasChocolateChips() const;
 void setHasChocolateChips(bool hasChips);
 private:
 string mDescription;
 int mSize = 0;
 bool mHasChocolateChips = false;
};

string_view Muffin::getDescription() const { return mDescription; }

void Muffin::setDescription(string_view description)
{
 mDescription = description;
}

int Muffin::getSize() const { return mSize; }
void Muffin::setSize(int size) { mSize = size; }

bool Muffin::hasChocolateChips() const { return mHasChocolateChips; }

void Muffin::setHasChocolateChips(bool hasChips)
{
 mHasChocolateChips = hasChips;
}

To output an object of class Muffin by using printf(), it would be nice if you could specify it as an
argument, perhaps using %m as a placeholder:

printf("Muffin: %m\n", myMuffin); // BUG! printf doesn't understand Muffin.

Unfortunately, the printf() function knows nothing about the Muffin type and is unable to out-
put an object of type Muffin. Worse still, because of the way the printf() function is declared,
this will result in a run-time error, not a compile-time error (though a good compiler will give you a
warning).

The best you can do with printf() is to add a new output() method to the Muffin class:

class Muffin
{
 public:
 // Omitted for brevity
 void output() const;
 // Omitted for brevity
};

// Other method implementations omitted for brevity

void Muffin::output() const
{
 printf("%s, Size is %d, %s\n", getDescription().data(), getSize(),
 (hasChocolateChips() ? "has chips" : "no chips"));
}

String Streams  ❘  425

Using such a mechanism is cumbersome, however. To output a Muffin in the middle of another line
of text, you’d need to split the line into two calls with a call to Muffin::output() in between, as
shown here:

printf("The muffin is ");
myMuffin.output();
printf(" -- yummy!\n");

Overloading the << operator lets you output a Muffin just like you output a string—by providing
it as an argument to <<. Chapter 15 covers the details of overloading the << and >> operators.

STRING STREAMS

String streams provide a way to use stream semantics with strings. In this way, you can have an
in-memory stream that represents textual data. For example, in a GUI application you might want
to use streams to build up textual data, but instead of outputting the text to the console or a file,
you might want to display the result in a GUI element like a message box or an edit control. Another
example could be that you want to pass a string stream around to different functions, while retain-
ing the current read position, so that each function can process the next part of the stream. String
streams are also useful for parsing text, because streams have built-in tokenizing functionality.

The std::ostringstream class is used to write data to a string, while the std::istringstream
class is used to read data from a string. They are both defined in the <sstream> header file.
Because ostringstream and istringstream inherit the same behavior as ostream and istream,
working with them is pleasantly similar.

The following program requests words from the user and outputs them to a single ostringstream,
separated by the tab character. At the end of the program, the whole stream is turned into a string
object using the str() method and is written to the console. Input of tokens can be stopped by
entering the token “done” or by closing the input stream with Control+D (Unix) or Control+Z
(Windows).

cout << "Enter tokens. Control+D (Unix) or Control+Z (Windows) to end" << endl;
ostringstream outStream;
while (cin) {
 string nextToken;
 cout << "Next token: ";
 cin >> nextToken;
 if (!cin || nextToken == "done")
 break;
 outStream << nextToken << "\t";
}
cout << "The end result is: " << outStream.str();

Reading data from a string stream is similarly familiar. The following function creates and popu-
lates a Muffin object (see the earlier example) from a string input stream. The stream data is in a
fixed format so that the function can easily turn its values into calls to the Muffin setters.

Muffin createMuffin(istringstream& stream)
{
 Muffin muffin;
 // Assume data is properly formatted:

426  ❘  CHAPTER 13   Demystifying C++ I/O

 // Description size chips

 string description;
 int size;
 bool hasChips;

 // Read all three values. Note that chips is represented
 // by the strings "true" and "false"
 stream >> description >> size >> boolalpha >> hasChips;
 if (stream) { // Reading was successful.
 muffin.setSize(size);
 muffin.setDescription(description);
 muffin.setHasChocolateChips(hasChips);
 }
 return muffin;
}

NOTE  Turning an object into a “flattened” type, like a string, is often called
marshalling. Marshalling is useful for saving objects to disk or sending them
across a network.

An advantage of string streams over standard C++ strings is that, in addition to data, they know
where the next read or write operation will take place, also called the current position. Another
advantage is that string streams support manipulators and locales to enable more powerful format-
ting compared to strings.

FILE STREAMS

Files lend themselves very well to the stream abstraction because reading and writing files always
involves a position in addition to the data. In C++, the std::ofstream and std::ifstream classes
provide output and input functionality for files. They are defined in the <fstream> header file.

When dealing with the file system, it is especially important to detect and handle error cases. The
file you are working with could be on a network file store that just went offline, or you may be try-
ing to write to a file that is located on a disk that is full. Maybe you are trying to open a file for
which the current user does not have permissions. Error conditions can be detected by using the
standard error handling mechanisms described earlier.

The only major difference between output file streams and other output streams is that the file
stream constructor can take the name of the file and the mode in which you would like to open it.
The default mode is write, ios_base::out, which starts writing to a file at the beginning, overwrit-
ing any existing data. You can also open an output file stream in append mode by specifying the
constant ios_base::app as second argument to the file stream constructor. The following table lists
the different constants that are available.

File Streams  ❘  427

CONSTANT DESCRIPTION

ios_base::app Open, and go to the end before each write operation.

ios_base::ate Open, and go to the end once immediately after opening.

ios_base::binary Perform input and output in binary mode as opposed to text mode.
See the next section.

ios_base::in Open for input, start reading at the beginning.

ios_base::out Open for output, start writing at the beginning, overwriting existing
data.

ios_base::trunc Open for output, and delete all existing data (truncate).

Note that modes can be combined. For example, if you want to open a file for output in binary
mode, while truncating existing data, you would specify the open mode as follows:

ios_base::out | ios_base::binary | ios_base::trunc

An ifstream automatically includes the ios_base::in mode, while an ofstream automatically
includes the ios_base::out mode, even if you don’t explicitly specify in or out as the mode.

The following program opens the file test.txt and outputs the arguments to the program. The
ifstream and ofstream destructors automatically close the underlying file, so there is no need to
explicitly call close().

int main(int argc, char* argv[])
{
 ofstream outFile("test.txt", ios_base::trunc);
 if (!outFile.good()) {
 cerr << "Error while opening output file!" << endl;
 return -1;
 }
 outFile << "There were " << argc << " arguments to this program." << endl;
 outFile << "They are: " << endl;
 for (int i = 0; i < argc; i++) {
 outFile << argv[i] << endl;
 }
 return 0;
}

Text Mode versus Binary Mode
By default, a file stream is opened in text mode. If you specify the ios_base::binary flag, then the
file is opened in binary mode.

In binary mode, the exact bytes you ask the stream to write are written to the file. When reading,
the bytes are returned to you exactly as they are in the file.

428  ❘  CHAPTER 13   Demystifying C++ I/O

In text mode, there is some hidden conversion happening: each line you write to, or read from a file
ends with a \n. However, it is operating-system dependent how the end of a line is encoded in a file.
For example, on Windows, a line ends with \r\n instead of with a single \n character. Therefore,
when a file is opened in text mode and you write a line ending with \n to it, the underlying imple-
mentation automatically converts the \n to \r\n before writing it to the file. Similarly, when reading
a line from the file, the \r\n that is read from the file is automatically converted back to \n before
being returned to you.

Jumping around with seek() and tell()
The seek() and tell() methods are present on all input and output streams.

The seek() methods let you move to an arbitrary position within an input or output stream. There
are several forms of seek(). The methods of seek() within an input stream are actually called
seekg() (the g is for get), and the versions of seek() in an output stream are called seekp() (the p
is for put). You might wonder why there is both a seekg() and a seekp() method, instead of one
seek() method. The reason is that you can have streams that are both input and output, for exam-
ple, file streams. In that case, the stream needs to remember both a read position and a separate
write position. This is also called bidirectional I/O and is covered later in this chapter.

There are two overloads of seekg() and two of seekp(). One overload accepts a single argument,
an absolute position, and seeks to this absolute position. The second overload accepts an offset and
a position, and seeks an offset relative to the given position. Positions are of type std::streampos,
while offsets are of type std::streamoff; both are measured in bytes. There are three predefined
positions available, as shown here.

POSITION DESCRIPTION

ios_base::beg The beginning of the stream

ios_base::end The end of the stream

ios_base::cur The current position in the stream

For example, to seek to an absolute position in an output stream, you can use the one-parameter
version of seekp(), as in the following case, which uses the constant ios_base::beg to move to the
beginning of the stream:

outStream.seekp(ios_base::beg);

Seeking within an input stream is exactly the same, except that the seekg() method is used:

inStream.seekg(ios_base::beg);

The two-argument versions move to a relative position in the stream. The first argument prescribes
how many positions to move, and the second argument provides the starting point. To move relative
to the beginning of the file, the constant ios_base::beg is used. To move relative to the end of the
file, ios_base::end is used. And to move relative to the current position, ios_base::cur is used.
For example, the following line moves to the second byte from the beginning of the stream. Note
that integers are implicitly converted to type streampos and streamoff.

outStream.seekp(2, ios_base::beg);

File Streams  ❘  429

The next example moves to the third-to-last byte of an input stream:

inStream.seekg(-3, ios_base::end);

You can also query a stream’s current location using the tell() method, which returns a stream-
pos that indicates the current position. You can use this result to remember the current marker posi-
tion before doing a seek() or to query whether you are in a particular location. As with seek(),
there are separate versions of tell() for input streams and output streams. Input streams use
tellg(), and output streams use tellp().

The following code checks the position of an input stream to determine if it is at the beginning:

std::streampos curPos = inStream.tellg();
if (ios_base::beg == curPos) {
 cout << "We're at the beginning." << endl;
}

Following is a sample program that brings it all together. This program writes into a file called
test.out and performs the following tests:

	 1.	 Outputs the string 12345 to the file.

	 2.	 Verifies that the marker is at position 5 in the stream.

	 3.	 Moves to position 2 in the output stream.

	 4.	 Outputs a 0 in position 2 and closes the output stream.

	 5.	 Opens an input stream on the test.out file.

	 6.	 Reads the first token as an integer.

	 7.	 Confirms that the value is 12045.

ofstream fout("test.out");
if (!fout) {
 cerr << "Error opening test.out for writing" << endl;
 return 1;
}

// 1. Output the string "12345".
fout << "12345";

// 2. Verify that the marker is at position 5.
streampos curPos = fout.tellp();
if (5 == curPos) {
 cout << "Test passed: Currently at position 5" << endl;
} else {
 cout << "Test failed: Not at position 5" << endl;
}

// 3. Move to position 2 in the stream.
fout.seekp(2, ios_base::beg);

// 4. Output a 0 in position 2 and close the stream.
fout << 0;

430  ❘  CHAPTER 13   Demystifying C++ I/O

fout.close();

// 5. Open an input stream on test.out.
ifstream fin("test.out");
if (!fin) {
 cerr << "Error opening test.out for reading" << endl;
 return 1;
}

// 6. Read the first token as an integer.
int testVal;
fin >> testVal;
if (!fin) {
 cerr << "Error reading from file" << endl;
 return 1;
}

// 7. Confirm that the value is 12045.
const int expected = 12045;
if (testVal == expected) {
 cout << "Test passed: Value is " << expected << endl;
} else {
 cout << "Test failed: Value is not " << expected
 << " (it was " << testVal << ")" << endl;
}

Linking Streams Together
A link can be established between any input and output streams to give them flush-on-access behav-
ior. In other words, when data is requested from an input stream, its linked output stream is auto-
matically flushed. This behavior is available to all streams, but is particularly useful for file streams
that may be dependent upon each other.

Stream linking is accomplished with the tie() method. To tie an output stream to an input stream,
call tie() on the input stream, and pass the address of the output stream. To break the link, pass
nullptr.

The following program ties the input stream of one file to the output stream of an entirely different
file. You could also tie it to an output stream on the same file, but bidirectional I/O (covered in the
next section) is perhaps a more elegant way to read and write the same file simultaneously.

ifstream inFile("input.txt"); // Note: input.txt must exist.
ofstream outFile("output.txt");
// Set up a link between inFile and outFile.
inFile.tie(&outFile);
// Output some text to outFile. Normally, this would
// not flush because std::endl is not sent.
outFile << "Hello there!";
// outFile has NOT been flushed.
// Read some text from inFile. This will trigger flush()
// on outFile.
string nextToken;
inFile >> nextToken;
// outFile HAS been flushed.

Bidirectional I/O  ❘  431

The flush() method is defined on the ostream base class, so you can also link an output stream to
another output stream:

outFile.tie(&anotherOutputFile);

Such a relationship means that every time you write to one file, the buffered data that has been sent
to the other file is flushed. You can use this mechanism to keep two related files synchronized.

One example of this stream linking is the link between cout and cin. Whenever you try to input
data from cin, cout is automatically flushed. There is also a link between cerr and cout, meaning
that any output to cerr causes cout to flush. The clog stream on the other hand is not linked to
cout. The wide versions of these streams have similar links.

BIDIRECTIONAL I/O

So far, this chapter has discussed input and output streams as two separate but related classes. In
fact, there is such a thing as a stream that performs both input and output. A bidirectional stream
operates as both an input stream and an output stream.

Bidirectional streams derive from iostream, which in turn derives from both istream and
ostream, thus serving as an example of useful multiple inheritance. As you would expect,
bidirectional streams support both the >> operator and the << operator, as well as the methods
of both input streams and output streams.

The fstream class provides a bidirectional file stream. fstream is ideal for applications that need to
replace data within a file because you can read until you find the correct position, then immediately
switch to writing. For example, imagine a program that stores a list of mappings between ID num-
bers and phone numbers. It might use a data file with the following format:

123 408-555-0394
124 415-555-3422
263 585-555-3490
100 650-555-3434

A reasonable approach to such a program would be to read in the entire data file when the program
opens and rewrite the file, with any modifications, when the program closes. If the data set is huge,
however, you might not be able to keep everything in memory. With iostreams, you don’t have to.
You can easily scan through the file to find a record, and you can add new records by opening the
file for output in append mode. To modify an existing record, you could use a bidirectional stream,
as in the following function that changes the phone number for a given ID:

bool changeNumberForID(string_view filename, int id, string_view newNumber)
{
 fstream ioData(filename.data());
 if (!ioData) {
 cerr << "Error while opening file " << filename << endl;
 return false;
 }

 // Loop until the end of file
 while (ioData) {

432  ❘  CHAPTER 13   Demystifying C++ I/O

 int idRead;
 string number;

 // Read the next ID.
 ioData >> idRead;
 if (!ioData)
 break;

 // Check to see if the current record is the one being changed.
 if (idRead == id) {
 // Seek the write position to the current read position
 ioData.seekp(ioData.tellg());
 // Output a space, then the new number.
 ioData << " " << newNumber;
 break;
 }

 // Read the current number to advance the stream.
 ioData >> number;
 }
 return true;
}

Of course, an approach like this only works properly if the data is of a fixed size. When the preced-
ing program switched from reading to writing, the output data overwrote other data in the file.
To preserve the format of the file, and to avoid writing over the next record, the data had to be the
exact same size.

String streams can also be accessed in a bidirectional manner through the stringstream class.

NOTE  Bidirectional streams have separate pointers for the read position and the
write position. When switching between reading and writing, you need to seek to
the appropriate position.

SUMMARY

Streams provide a flexible and object-oriented way to perform input and output. The most impor-
tant message in this chapter, even more important than the use of streams, is the concept of a
stream. Some operating systems may have their own file access and I/O facilities, but knowledge
of how streams and stream-like libraries work is essential to working with any type of modern I/O
system.

Handling Errors
WHAT’S IN THIS CHAPTER?

➤➤ How to handle errors in C++, including pros and cons of
exceptions

➤➤ The syntax of exceptions

➤➤ Exception class hierarchies and polymorphism

➤➤ Stack unwinding and cleanup

➤➤ Common error-handling situations

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

Inevitably, your C++ programs will encounter errors. The program might be unable to open
a file, the network connection might go down, or the user might enter an incorrect value, to
name a few possibilities. The C++ language provides a feature called exceptions to handle
these exceptional but not unexpected situations.

The code examples in this book so far have generally ignored error conditions for brevity.
This chapter rectifies that simplification by teaching you how to incorporate error handling
into your programs from their beginnings. It focuses on C++ exceptions, including the details
of their syntax, and describes how to employ them effectively to create well-designed error-
handling programs.

14

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

434  ❘  CHAPTER 14   Handling Errors

ERRORS AND EXCEPTIONS

No program exists in isolation; they all depend on external facilities such as interfaces with the
operating system, networks and file systems, external code such as third-party libraries, and user
input. Each of these areas can introduce situations that require you to respond to problems you may
encounter. These potential problems can be referred to with the general term exceptional situations.
Even perfectly written programs encounter errors and exceptional situations. Thus, anyone who
writes a computer program must include error-handling capabilities. Some languages, such as C, do
not include many specific language facilities for error handling. Programmers using these languages
generally rely on return values from functions and other ad hoc approaches. Other languages, such
as Java, enforce the use of a language feature called exceptions as an error-handling mechanism.
C++ lies between these extremes. It provides language support for exceptions, but does not require
their use. However, you can’t ignore exceptions entirely in C++ because a few basic facilities, such as
memory allocation routines, use them.

What Are Exceptions, Anyway?
Exceptions are a mechanism for a piece of code to notify another
piece of code of an “exceptional” situation or error condition without
progressing through the normal code paths. The code that encounters
the error throws the exception, and the code that handles the excep-
tion catches it. Exceptions do not follow the fundamental rule of step-
by-step execution to which you are accustomed. When a piece of code
throws an exception, the program control immediately stops execut-
ing code step by step and transitions to the exception handler, which
could be anywhere from the next line in the same function to several
function calls up the stack. If you like sports analogies, you can think
of the code that throws an exception as an outfielder throwing a base-
ball back to the infield, where the nearest infielder (closest exception
handler) catches it. Figure 14-1 shows a hypothetical stack of three
function calls. Function A() has the exception handler. It calls function B(),
which calls function C(), which throws the exception.

Figure 14-2 shows the handler catching the exception. The stack frames for
C() and B() have been removed, leaving only A().

Most modern programming languages, such as C# and Java, have support
for exceptions, so it’s no surprise that C++ has full-fledged support for them
as well. However, if you are coming from C, then exceptions are something new; but once you get
used to them, you probably won’t want to go back.

Why Exceptions in C++ Are a Good Thing
As mentioned earlier, run-time errors in programs are inevitable. Despite that fact, error handling
in most C and C++ programs is messy and ad hoc. The de facto C error-handling standard, which

A() stack
frame

B() stack frame

C() stack frame

FIGURE 14-1

A() stack
frame

FIGURE 14-2

Errors and Exceptions  ❘  435

was carried over into many C++ programs, uses integer function return codes, and the errno macro
to signify errors. Each thread has its own errno value. errno acts as a thread-local integer variable
that functions can use to communicate errors back to calling functions.

Unfortunately, the integer return codes and errno are used inconsistently. Some functions might
choose to return 0 for success and -1 for an error. If they return -1, they also set errno to an error
code. Other functions return 0 for success and nonzero for an error, with the actual return value
specifying the error code. These functions do not use errno. Still others return 0 for failure instead
of for success, presumably because 0 always evaluates to false in C and C++.

These inconsistencies can cause problems because programmers encountering a new function often
assume that its return codes are the same as other similar functions. That is not always true. For
example, on Solaris 9, there are two different libraries of synchronization objects: the POSIX ver-
sion and the Solaris version. The function to initialize a semaphore in the POSIX version is called
sem_init(), and the function to initialize a semaphore in the Solaris version is called sema_init().
As if that weren’t confusing enough, the two functions handle error codes differently! sem_init()
returns -1 and sets errno on error, while sema_init() returns the error code directly as a positive
integer, and does not set errno.

Another problem is that the return type of functions in C++ can only be of one type, so if you need
to return both an error and a value, you must find an alternative mechanism. One solution is to
return an std::pair or std::tuple, an object that you can use to store two or more types. These
classes are discussed in the upcoming chapters that cover the Standard Library. Another choice is to
define your own struct or class that contains several values, and return an instance of that struct
or class from your function. Yet another option is to return the value or error through a refer-
ence parameter or to make the error code one possible value of the return type, such as a nullptr
pointer. In all these solutions, the caller is responsible to explicitly check for any errors returned
from the function and if it doesn’t handle the error itself, it should propagate the error to its caller.
Unfortunately, this often results in the loss of critical details about the error.

C programmers may be familiar with a mechanism known as setjmp()/longjmp(). This mecha-
nism cannot be used correctly in C++, because it bypasses scoped destructors on the stack. You
should avoid it at all costs, even in C programs; therefore, this book does not explain the details of
how to use it.

Exceptions provide an easier, more consistent, and safer mechanism for error handling. There are
several specific advantages of exceptions over the ad hoc approaches in C and C++.

➤➤ When return codes are used as an error reporting mechanism, you might forget to check the
return code and properly handle it either locally or by propagating it upward. The C++17
[[nodiscard]] attribute, introduced in Chapter 11, offers a possible solution to prevent
return codes from being ignored, but it’s not foolproof either. Exceptions cannot be forgotten
or ignored: if your program fails to catch an exception, it terminates.

➤➤ When integer return codes are used, they generally do not contain sufficient information.
You can use exceptions to pass as much information as you want from the code that finds

436  ❘  CHAPTER 14   Handling Errors

the error to the code that handles it. Exceptions can also be used to communicate informa-
tion other than errors, though many programmers consider that an abuse of the exception
mechanism.

➤➤ Exception handling can skip levels of the call stack. That is, a function can handle an error
that occurred several function calls down the stack, without error-handling code in the inter-
mediate functions. Return codes require each level of the call stack to clean up explicitly after
the previous level.

In some compilers (fewer and fewer these days), exception handling added a tiny amount of over-
head to any function that had an exception handler. For most modern compilers there is a trade-off
in that there is almost no overhead in the non-throwing case, and only some slight overhead when
you actually throw something. This trade-off is not a bad thing because throwing an exception
should be exceptional.

Exception handling is not enforced in C++. For example, in Java a function that does not specify a
list of possible exceptions that it can throw is not allowed to throw any exceptions. In C++, it is just
the opposite: a function can throw any exception it wants, unless it specifies that it will not throw
any exceptions (using the noexcept keyword)!

Recommendation
I recommend exceptions as a useful mechanism for error handling. I feel that the structure and
error-handling formalization that exceptions provide outweigh the less desirable aspects. Thus, the
remainder of this chapter focuses on exceptions. Also, many popular libraries, such as the Standard
Library and Boost, use exceptions, so you need to be prepared to handle them.

EXCEPTION MECHANICS

Exceptional situations arise frequently in file input and output. The following is a function to open
a file, read a list of integers from the file, and return the integers in an std::vector data structure.
The lack of error handling should jump out at you.

vector<int> readIntegerFile(string_view fileName)
{
 ifstream inputStream(fileName.data());
 // Read the integers one-by-one and add them to a vector.
 vector<int> integers;
 int temp;
 while (inputStream >> temp) {
 integers.push_back(temp);
 }
 return integers;
}

The following line keeps reading values from the ifstream until the end of the file is reached or
until an error occurs:

while (inputStream >> temp) {

Exception Mechanics  ❘  437

If the >> operator encounters an error, it sets the fail bit of the ifstream object. In that case, the
bool() conversion operator returns false and the while loop terminates. Streams are discussed in
more detail in Chapter 13.

You might use readIntegerFile() like this:

const string fileName = "IntegerFile.txt";
vector<int> myInts = readIntegerFile(fileName);
for (const auto& element : myInts) {
 cout << element << " ";
}
cout << endl;

The rest of this section shows you how to add error handling with exceptions, but first, we need to
delve a bit deeper into how you throw and catch exceptions.

Throwing and Catching Exceptions
Using exceptions consists of providing two parts in your program: a try/catch construct to handle
an exception, and a throw statement that throws an exception. Both must be present in some form
to make exceptions work. However, in many cases, the throw happens deep inside some library
(including the C++ runtime) and the programmer never sees it, but still has to react to it using a
try/catch construct.

The try/catch construct looks like this:

try {
 // ... code which may result in an exception being thrown
} catch (exception-type1 exception-name) {
 // ... code which responds to the exception of type 1
} catch (exception-type2 exception-name) {
 // ... code which responds to the exception of type 2
}
// ... remaining code

The code that may result in an exception being thrown might contain a throw directly. It might also
be calling a function that either directly throws an exception or calls—by some unknown number of
layers of calls—a function that throws an exception.

If no exception is thrown, the code in the catch blocks is not executed, and the “remaining code”
that follows will follow the last statement executed in the try block.

If an exception is thrown, any code following the throw or following the call that resulted in the
throw, is not executed; instead, control immediately goes to the right catch block, depending on the
type of the exception that is thrown.

If the catch block does not do a control transfer—for example, by returning a value, throwing a
new exception, or rethrowing the exception—then the “remaining code” is executed after the last
statement of that catch block.

438  ❘  CHAPTER 14   Handling Errors

The simplest example to demonstrate exception handling is avoiding division-by-zero. This example
throws an exception of type std::invalid_argument, which requires the <stdexcept> header:

double SafeDivide(double num, double den)
{
 if (den == 0)
 throw invalid_argument("Divide by zero");
 return num / den;
}

int main()
{
 try {
 cout << SafeDivide(5, 2) << endl;
 cout << SafeDivide(10, 0) << endl;
 cout << SafeDivide(3, 3) << endl;
 } catch (const invalid_argument& e) {
 cout << "Caught exception: " << e.what() << endl;
 }
 return 0;
}

The output is as follows:

2.5
Caught exception: Divide by zero

throw is a keyword in C++, and is the only way to throw an exception. The invalid_argument()
part of the throw line means that you are constructing a new object of type invalid_argument
to throw. It is one of the standard exceptions provided by the C++ Standard Library. All Standard
Library exceptions form a hierarchy, which is discussed later in this chapter. Each class in the hier-
archy supports a what() method that returns a const char* string describing the exception1. This is
the string you provide in the constructor of the exception.

Let’s go back to the readIntegerFile() function. The most likely problem to occur is for the file
open to fail. That’s a perfect situation for throwing an exception. This code throws an exception of
type std::exception, which requires the <exception> header. The syntax looks like this:

vector<int> readIntegerFile(string_view fileName)
{
 ifstream inputStream(fileName.data());
 if (inputStream.fail()) {
 // We failed to open the file: throw an exception
 throw exception();
 }

 // Read the integers one-by-one and add them to a vector
 vector<int> integers;
 int temp;
 while (inputStream >> temp) {
 integers.push_back(temp);
 }
 return integers;
}

1Even though the return type of what() is const char*, exceptions can support Unicode strings if you
encode them using UTF-8. See Chapter 19 for details on Unicode strings.

Exception Mechanics  ❘  439

NOTE  Always document the possible exceptions a function can throw in its
code documentation, because users of your function need to know which excep-
tions might get thrown so they can properly handle them.

If the function fails to open the file and executes the throw exception(); line, the rest of the func-
tion is skipped, and control transitions to the nearest exception handler.

Throwing exceptions in your code is most useful when you also write code that handles them.
Exception handling is a way to “try” a block of code, with another block of code designated to react
to any problems that might occur. In the following main() function, the catch statement reacts to
any exception of type exception that was thrown within the try block by printing an error mes-
sage. If the try block finishes without throwing an exception, the catch block is skipped. You can
think of try/catch blocks as glorified if statements. If an exception is thrown in the try block,
execute the catch block. Otherwise, skip it.

int main()
{
 const string fileName = "IntegerFile.txt";
 vector<int> myInts;
 try {
 myInts = readIntegerFile(fileName);
 } catch (const exception& e) {
 cerr << "Unable to open file " << fileName << endl;
 return 1;
 }
 for (const auto& element : myInts) {
 cout << element << " ";
 }
 cout << endl;
 return 0;
}

NOTE  Although by default, streams do not throw exceptions, you can tell the
streams to throw exceptions for error conditions by calling their exceptions()
method. However, most compilers give useless information in the stream
exceptions they throw. For such compilers, it might be better to deal with the
stream state directly instead of using exceptions. This book does not use stream
exceptions.

Exception Types
You can throw an exception of any type. The preceding example throws an object of type
std::exception, but exceptions do not need to be objects. You could throw a simple int like this:

vector<int> readIntegerFile(string_view fileName)
{
 ifstream inputStream(fileName.data());

440  ❘  CHAPTER 14   Handling Errors

 if (inputStream.fail()) {
 // We failed to open the file: throw an exception
 throw 5;
 }
 // Omitted for brevity
}

You would then need to change the catch statement as well:

try {
 myInts = readIntegerFile(fileName);
} catch (int e) {
 cerr << "Unable to open file " << fileName << " (" << e << ")" << endl;
 return 1;
}

Alternatively, you could throw a const char* C-style string. This technique is sometimes useful
because the string can contain information about the exception.

vector<int> readIntegerFile(string_view fileName)
{
 ifstream inputStream(fileName.data());
 if (inputStream.fail()) {
 // We failed to open the file: throw an exception
 throw "Unable to open file";
 }
 // Omitted for brevity
}

When you catch the const char* exception, you can print the result:

try {
 myInts = readIntegerFile(fileName);
} catch (const char* e) {
 cerr << e << endl;
 return 1;
}

Despite the previous examples, you should generally throw objects as exceptions for two reasons:

➤➤ Objects convey information by their class name.

➤➤ Objects can store information, including strings that describe the exceptions.

The C++ Standard Library defines a number of predefined exception classes, and you can write your
own exception classes, as you’ll learn later in this chapter.

Catching Exception Objects by const Reference
In the preceding example in which readIntegerFile() throws an object of type exception, the
catch line looks like this:

} catch (const exception& e) {

Exception Mechanics  ❘  441

However, there is no requirement to catch objects by const reference. You could catch the object by
value like this:

} catch (exception e) {

Alternatively, you could catch the object by non-const reference:

} catch (exception& e) {

Also, as you saw in the const char* example, you can catch pointers to exceptions, as long as
pointers to exceptions are thrown.

NOTE  Always catch exception objects by const reference! This avoids object
slicing, which could happen when you catch exception objects by value.

Throwing and Catching Multiple Exceptions
Failure to open the file is not the only problem readIntegerFile() could encounter. Reading
the data from the file can cause an error if it is formatted incorrectly. Here is an implementation
of readIntegerFile() that throws an exception if it cannot either open the file or read the data
correctly. This time, it uses a runtime_error, derived from exception, and which allows you
to specify a descriptive string in its constructor. The runtime_error exception class is defined in
<stdexcept>.

vector<int> readIntegerFile(string_view fileName)
{
 ifstream inputStream(fileName.data());
 if (inputStream.fail()) {
 // We failed to open the file: throw an exception
 throw runtime_error("Unable to open the file.");
 }

 // Read the integers one-by-one and add them to a vector
 vector<int> integers;
 int temp;
 while (inputStream >> temp) {
 integers.push_back(temp);
 }

 if (!inputStream.eof()) {
 // We did not reach the end-of-file.
 // This means that some error occurred while reading the file.
 // Throw an exception.
 throw runtime_error("Error reading the file.");
 }

 return integers;
}

442  ❘  CHAPTER 14   Handling Errors

Your code in main() does not need to change because it already catches an exception of type
exception, from which runtime_error derives. However, that exception could now be thrown in
two different situations.

try {
 myInts = readIntegerFile(fileName);
} catch (const exception& e) {
 cerr << e.what() << endl;
 return 1;
}

Alternatively, you could throw two different types of exceptions from readIntegerFile(). Here is
an implementation of readIntegerFile() that throws an exception object of class invalid_argu-
ment if the file cannot be opened, and an object of class runtime_error if the integers cannot be
read. Both invalid_argument and runtime_error are classes defined in the header file <stdex-
cept> as part of the C++ Standard Library.

vector<int> readIntegerFile(string_view fileName)
{
 ifstream inputStream(fileName.data());
 if (inputStream.fail()) {
 // We failed to open the file: throw an exception
 throw invalid_argument("Unable to open the file.");
 }

 // Read the integers one-by-one and add them to a vector
 vector<int> integers;
 int temp;
 while (inputStream >> temp) {
 integers.push_back(temp);
 }

 if (!inputStream.eof()) {
 // We did not reach the end-of-file.
 // This means that some error occurred while reading the file.
 // Throw an exception.
 throw runtime_error("Error reading the file.");
 }

 return integers;
}

There are no public default constructors for invalid_argument and runtime_error, only string
constructors.

Now main() can catch both invalid_argument and runtime_error with two catch statements:

try {
 myInts = readIntegerFile(fileName);
} catch (const invalid_argument& e) {
 cerr << e.what() << endl;
 return 1;
} catch (const runtime_error& e) {
 cerr << e.what() << endl;
 return 2;
}

Exception Mechanics  ❘  443

If an exception is thrown inside the try block, the compiler matches the type of the exception to the
proper catch handler. So, if readIntegerFile() is unable to open the file and throws an invalid_
argument object, it is caught by the first catch statement. If readIntegerFile() is unable to
read the file properly and throws a runtime_error, then the second catch statement catches the
exception.

Matching and const
The const-ness specified in the type of the exception you want to catch makes no difference for
matching purposes. That is, this line matches any exception of type runtime_error:

} catch (const runtime_error& e) {

The following line also matches any exception of type runtime_error:

} catch (runtime_error& e) {

Matching Any Exception
You can write a catch line that matches any possible exception with the special syntax shown in the
following example:

try {
 myInts = readIntegerFile(fileName);
} catch (...) {
 cerr << "Error reading or opening file " << fileName << endl;
 return 1;
}

The three dots are not a typo. They are a wildcard that matches any exception type. When you are
calling poorly documented code, this technique can be useful to ensure that you catch all possible
exceptions. However, in situations where you have complete information about the set of thrown
exceptions, this technique is not recommended because it handles every exception type identically.
It’s better to match exception types explicitly and take appropriate, targeted actions.

A possible use of a catch block matching any exception is as a default catch handler. When an
exception is thrown, a catch handler is looked up in the order that it appears in the code. The fol-
lowing example shows how you can write catch handlers that explicitly handle invalid_argu-
ment and runtime_error exceptions, and how to include a default catch handler for all other
exceptions:

try {
 // Code that can throw exceptions
} catch (const invalid_argument& e) {
 // Handle invalid_argument exception
} catch (const runtime_error& e) {
 // Handle runtime_error exception
} catch (...) {
 // Handle all other exceptions
}

444  ❘  CHAPTER 14   Handling Errors

Uncaught Exceptions
If your program throws an exception that is not caught anywhere, the program terminates.
Basically, there is a try/catch construct around the call to your main() function, which catches all
unhandled exceptions, similar to the following:

try {
 main(argc, argv);
} catch (...) {
 // issue error message and terminate program
}

However, this behavior is not usually what you want. The point of exceptions is to give your pro-
gram a chance to handle and correct undesirable or unexpected situations.

WARNING  You should catch and handle all possible exceptions thrown in your
programs.

It is also possible to change the behavior of your program if there is an uncaught exception. When
the program encounters an uncaught exception, it calls the built-in terminate() function, which
calls abort() from <cstdlib> to kill the program. You can set your own terminate_handler
by calling set_terminate() with a pointer to a callback function that takes no arguments and
returns no value. terminate(), set_terminate(), and terminate_handler are all declared in the
<exception> header. The following code shows a high-level overview of how it works:

try {
 main(argc, argv);
} catch (...) {
 if (terminate_handler != nullptr) {
 terminate_handler();
 } else {
 terminate();
 }
}
// normal termination code

Before you get too excited about this feature, you should know that your callback function must still
terminate the program. It can’t just ignore the error. However, you can use it to print a helpful error
message before exiting. Here is an example of a main() function that doesn’t catch the exceptions
thrown by readIntegerFile(). Instead, it sets the terminate_handler to a custom callback. This
callback prints an error message and terminates the process by calling exit(). The exit() function
accepts an integer which is returned back to the operating system, and which can be used to deter-
mine how a process exited.

void myTerminate()
{
 cout << "Uncaught exception!" << endl;

Exception Mechanics  ❘  445

 exit(1);
}

int main()
{
 set_terminate(myTerminate);

 const string fileName = "IntegerFile.txt";
 vector<int> myInts = readIntegerFile(fileName);

 for (const auto& element : myInts) {
 cout << element << " ";
 }
 cout << endl;
 return 0;
}

Although not shown in this example, set_terminate() returns the old terminate_handler when
it sets the new one. The terminate_handler applies program-wide, so it’s considered good style to
reset the old terminate_handler when you have completed the code that needed the new termi-
nate_handler. In this case, the entire program needs the new terminate_handler, so there’s no
point in resetting it.

While it’s important to know about set_terminate(), it’s not a very effective exception-handling
approach. It’s recommended to try to catch and handle each exception individually in order to
provide more precise error handling.

NOTE  In professionally written software, a terminate_handler is usually set
up that creates a crash dump before terminating the process. This crash dump
can then be loaded into a debugger to allow you to figure out what the uncaught
exception was, and what caused it. However, how to write crash dumps is plat-
form dependent, and therefore not further discussed in this book.

noexcept
A function is allowed to throw any exception it likes. However, it is possible to mark a function
with the noexcept keyword to state that it will not throw any exceptions. For example, here is the
readIntegerFile() function from earlier, but this time marked as noexcept, so it is not allowed to
throw any exceptions:

vector<int> readIntegerFile(string_view fileName) noexcept;

NOTE  A function marked with noexcept should not throw any exceptions.

When a function marked as noexcept throws an exception anyway, C++ calls terminate() to
terminate the application.

446  ❘  CHAPTER 14   Handling Errors

When you override a virtual method in a derived class, you are allowed to mark the overrid-
den method as noexcept, even if the version in the base class is not noexcept. The opposite is not
allowed.

Throw Lists (Deprecated/Removed)
Older versions of C++ allowed you to specify the exceptions a function or method intended to
throw. This specification was called the throw list or the exception specification.

WARNING  C++11 has deprecated, and C++17 has removed support for, excep-
tion specifications, except for noexcept and throw() which is equivalent to
noexcept.

Because C++17 has officially removed support for exception specifications, this book does not
use them, and does not explain them in detail. Even while exception specifications were still sup-
ported, they were used rarely. Still, this section briefly mentions them, so you will at least get an
idea of what the syntax looked like in the unlikely event you encounter them in legacy code. Here is
a simple example of the syntax, the readIntegerFile() function from earlier, with an exception
specification:

vector<int> readIntegerFile(string_view fileName)
 throw(invalid_argument, runtime_error)
{
 // Remainder of the function is the same as before
}

If a function threw an exception that was not in its exception specification, the C++ runtime called
std::unexpected() which by default called std::terminate() to terminate the application.

EXCEPTIONS AND POLYMORPHISM

As described earlier, you can actually throw any type of exception. However, classes are the most
useful types of exceptions. In fact, exception classes are usually written in a hierarchy, so that you
can employ polymorphism when you catch the exceptions.

The Standard Exception Hierarchy
You’ve already seen several exceptions from the C++ standard exception hierarchy: exception,
runtime_error, and invalid_argument. Figure 14-3 shows the full hierarchy. For completeness,
all standard exceptions are shown, including those thrown by parts of the Standard Library, which
are discussed in later chapters.

Exceptions and Polymorphism  ❘  447

exception

bad_alloc

bad_array_new_length

logic_error

domain_error

future_error

out_of_range

invalid_argument

length_error

ios_base::failure

bad_cast

runtime_error

bad_exception

bad_typeid

over�ow_error

range_error

under�ow_error

system_error

bad_weak_ptr

bad_function_call
regex_error

<stdexcept>

<future>

<stdexcept>

<regex>

<system_error>

<ios>

<typeinfo>

<memory>

<functional>

<exception>

<new>
bad_optional_access

<optional>

�lesystem::�lesystem_error
<�lesystem>

<any>

bad_variant_access
<variant>

<exception>

bad_any_cast

FIGURE 14-3

All of the exceptions thrown by the C++ Standard Library are objects of classes in this hierarchy.
Each class in the hierarchy supports a what() method that returns a const char* string describing
the exception. You can use this string in an error message.

Most of the exception classes (a notable exception is the base exception class) require you to set in
the constructor the string that is returned by what(). That’s why you have to specify a string in the
constructors for runtime_error and invalid_argument. This has already been done in examples
throughout this chapter. Here is another version of readIntegerFile() that includes the file-
name in the error message. Note also the use of the standard user-defined literal “s”, introduced in
Chapter 2, to interpret a string literal as an std::string.

vector<int> readIntegerFile(string_view fileName)
{
 ifstream inputStream(fileName.data());
 if (inputStream.fail()) {
 // We failed to open the file: throw an exception
 const string error = "Unable to open file "s + fileName.data();
 throw invalid_argument(error);
 }

 // Read the integers one-by-one and add them to a vector
 vector<int> integers;
 int temp;
 while (inputStream >> temp) {

448  ❘  CHAPTER 14   Handling Errors

 integers.push_back(temp);
 }

 if (!inputStream.eof()) {
 // We did not reach the end-of-file.
 // This means that some error occurred while reading the file.
 // Throw an exception.
 const string error = "Unable to read file "s + fileName.data();
 throw runtime_error(error);
 }

 return integers;
}

int main()
{
 // Code omitted
 try {
 myInts = readIntegerFile(fileName);
 } catch (const invalid_argument& e) {
 cerr << e.what() << endl;
 return 1;
 } catch (const runtime_error& e) {
 cerr << e.what() << endl;
 return 2;
 }
 // Code omitted
}

Catching Exceptions in a Class Hierarchy
A feature of exception hierarchies is that you can catch exceptions polymorphically. For example,
if you look at the two catch statements in main() following the call to readIntegerFile(),
you can see that they are identical except for the exception class that they handle. Conveniently,
invalid_argument and runtime_error are both derived classes of exception, so you can replace
the two catch statements with a single catch statement for class exception:

try {
 myInts = readIntegerFile(fileName);
} catch (const exception& e) {
 cerr << e.what() << endl;
 return 2;
}

The catch statement for an exception reference matches any derived classes of exception, includ-
ing both invalid_argument and runtime_error. Note that the higher in the exception hierarchy
you catch exceptions, the less specific your error handling can be. You should generally catch excep-
tions at as specific a level as possible.

Exceptions and Polymorphism  ❘  449

WARNING  When you catch exceptions polymorphically, make sure to catch
them by reference! If you catch exceptions by value, you can encounter slicing,
in which case you lose information from the object. See Chapter 10 for details
on slicing.

When more than one catch clause is used, the catch clauses are matched in syntactic order as they
appear in your code; the first one that matches, wins. If one catch is more inclusive than a later
one, it will match first, and the more restrictive one, which comes later, will not be executed at all.
Therefore, you should place your catch clauses from most restrictive to least restrictive in order. For
example, suppose that you want to catch invalid_argument from readIntegerFile() explicitly,
but you also want to leave the generic exception match for any other exceptions. The correct way
to do so is like this:

try {
 myInts = readIntegerFile(fileName);
} catch (const invalid_argument& e) { // List the derived class first.
 // Take some special action for invalid filenames.
} catch (const exception& e) { // Now list exception
 cerr << e.what() << endl;
 return 1;
}

The first catch statement catches invalid_argument exceptions, and the second catches any other
exceptions of type exception. However, if you reverse the order of the catch statements, you don’t
get the same result:

try {
 myInts = readIntegerFile(fileName);
} catch (const exception& e) { // BUG: catching base class first!
 cerr << e.what() << endl;
 return 1;
} catch (const invalid_argument& e) {
 // Take some special action for invalid filenames.
}

With this order, any exception of a class that derives from exception is caught by the first catch
statement; the second will never be reached. Some compilers issue a warning in this case, but you
shouldn’t count on it.

Writing Your Own Exception Classes
There are two advantages to writing your own exception classes.

	 1.	 The number of exceptions in the C++ Standard Library is limited. Instead of using an excep-
tion class with a generic name, such as runtime_error, you can create classes with names
that are more meaningful for the particular errors in your program.

	 2.	 You can add your own information to these exceptions. The exceptions in the standard hier-
archy allow you to set only an error string. You might want to pass different information in
the exception.

450  ❘  CHAPTER 14   Handling Errors

It’s recommended that all the exception classes that you write inherit directly or indirectly from the
standard exception class. If everyone on your project follows that rule, you know that every excep-
tion in the program will be derived from exception (assuming that you aren’t using third-party
libraries that break this rule). This guideline makes exception handling via polymorphism signifi-
cantly easier.

For example, invalid_argument and runtime_error don’t do a very good job of capturing the file
opening and reading errors in readIntegerFile(). You can define your own error hierarchy for file
errors, starting with a generic FileError class:

class FileError : public exception
{
 public:
 FileError(string_view fileName) : mFileName(fileName) {}

 virtual const char* what() const noexcept override {
 return mMessage.c_str();
 }

 string_view getFileName() const noexcept { return mFileName; }

 protected:
 void setMessage(string_view message) { mMessage = message; }

 private:
 string mFileName;
 string mMessage;
};

As a good programming citizen, you should make FileError a part of the standard exception hier-
archy. It seems appropriate to integrate it as a child of exception. When you derive from excep-
tion, you can override the what() method, which has the prototype shown and which must return
a const char* string that is valid until the object is destroyed. In the case of FileError, this string
comes from the mMessage data member. Derived classes of FileError can set the message using
the protected setMessage() method. The generic FileError class also contains a filename, and a
public accessor for that filename.

The first exceptional situation in readIntegerFile() occurs if the file cannot be opened. Thus, you
might want to write a FileOpenError exception derived from FileError:

class FileOpenError : public FileError
{
 public:
 FileOpenError(string_view fileName) : FileError(fileName)
 {
 setMessage("Unable to open "s + fileName.data());
 }
};

The FileOpenError exception changes the mMessage string to represent the file-opening error.

The second exceptional situation in readIntegerFile() occurs if the file cannot be read properly.
It might be useful for this exception to contain the line number of the error in the file, as well as

Exceptions and Polymorphism  ❘  451

the filename in the error message string returned from what(). Here is a FileReadError exception
derived from FileError:

class FileReadError : public FileError
{
 public:
 FileReadError(string_view fileName, size_t lineNumber)
 : FileError(fileName), mLineNumber(lineNumber)
 {
 ostringstream ostr;
 ostr << "Error reading " << fileName << " at line "
 << lineNumber;
 setMessage(ostr.str());
 }

 size_t getLineNumber() const noexcept { return mLineNumber; }

 private:
 size_t mLineNumber;
};

Of course, in order to set the line number properly, you need to modify your readIntegerFile()
function to track the number of lines read instead of just reading integers directly. Here is a new
readIntegerFile() function that uses the new exceptions:

vector<int> readIntegerFile(string_view fileName)
{
 ifstream inputStream(fileName.data());
 if (inputStream.fail()) {
 // We failed to open the file: throw an exception
 throw FileOpenError(fileName);
 }

 vector<int> integers;
 size_t lineNumber = 0;
 while (!inputStream.eof()) {
 // Read one line from the file
 string line;
 getline(inputStream, line);
 ++lineNumber;

 // Create a string stream out of the line
 istringstream lineStream(line);

 // Read the integers one-by-one and add them to a vector
 int temp;
 while (lineStream >> temp) {
 integers.push_back(temp);
 }

 if (!lineStream.eof()) {
 // We did not reach the end of the string stream.
 // This means that some error occurred while reading this line.
 // Throw an exception.

452  ❘  CHAPTER 14   Handling Errors

 throw FileReadError(fileName, lineNumber);
 }
 }

 return integers;
}

Now, code that calls readIntegerFile() can use polymorphism to catch exceptions of type
FileError like this:

try {
 myInts = readIntegerFile(fileName);
} catch (const FileError& e) {
 cerr << e.what() << endl;
 return 1;
}

There is one trick to writing classes whose objects will be used as exceptions. When a piece of code
throws an exception, the object or value thrown is moved or copied, using either the move construc-
tor or copy constructor. Thus, if you write a class whose objects will be thrown as exceptions, you
must make sure those objects are copyable and/or moveable. This means that if you have dynami-
cally allocated memory, your class must have a destructor, but also a copy constructor and copy
assignment operator, and/or a move constructor and move assignment operator, see Chapter 9.

WARNING  Objects thrown as exceptions are always moved or copied at least
once.

It is possible for exceptions to be copied more than once, but only if you catch the exception by
value instead of by reference.

NOTE  Catch exception objects by reference (preferably const reference) to
avoid unnecessary copying.

Nested Exceptions
It could happen that during handling of a first exception, a second exceptional situation is triggered
which requires a second exception to be thrown. Unfortunately, when you throw the second excep-
tion, all information about the first exception that you are currently trying to handle will be lost.
The solution provided by C++ for this problem is called nested exceptions, which allow you to nest
a caught exception in the context of a new exception. This can also be useful if you call a function
in a third-party library that throws an exception of a certain type, A, but you only want exceptions
of another type, B, in your code. In such a case, you catch all exceptions from the library, and nest
them in an exception of type B.

Exceptions and Polymorphism  ❘  453

You use std::throw_with_nested() to throw an exception with another exception nested inside
it. A catch handler for the second exception can use a dynamic_cast() to get access to the nested_
exception representing the first exception. The following example demonstrates the use of nested
exceptions. This example defines a MyException class, which derives from exception and accepts a
string in its constructor.

class MyException : public std::exception
{
 public:
 MyException(string_view message) : mMessage(message) {}
 virtual const char* what() const noexcept override {
 return mMessage.c_str();
 }
 private:
 string mMessage;
};

When you are handling a first exception and you need to throw a second exception with the first
one nested inside it, you need to use the std::throw_with_nested() function. The following
doSomething() function throws a runtime_error that is immediately caught in the catch handler.
The catch handler writes a message and then uses the throw_with_nested() function to throw
a second exception that has the first one nested inside it. Note that nesting the exception happens
automatically. The predefined __func__ variable is discussed in Chapter 1.

void doSomething()
{
 try {
 throw runtime_error("Throwing a runtime_error exception");
 } catch (const runtime_error& e) {
 cout << __func__ << " caught a runtime_error" << endl;
 cout << __func__ << " throwing MyException" << endl;
 throw_with_nested(
 MyException("MyException with nested runtime_error"));
 }
}

The following main() function demonstrates how to handle the exception with a nested excep-
tion. The code calls the doSomething() function and has one catch handler for exceptions of type
MyException. When it catches such an exception, it writes a message, and then uses a dynamic_
cast() to get access to the nested exception. If there is no nested exception inside, the result will be
a null pointer. If there is a nested exception inside, the rethrow_nested() method on the nested_
exception is called. This will cause the nested exception to be rethrown, which you can then catch
in another try/catch block.

int main()
{
 try {
 doSomething();
 } catch (const MyException& e) {
 cout << __func__ << " caught MyException: " << e.what() << endl;

454  ❘  CHAPTER 14   Handling Errors

 const auto* pNested = dynamic_cast<const nested_exception*>(&e);
 if (pNested) {
 try {
 pNested->rethrow_nested();
 } catch (const runtime_error& e) {
 // Handle nested exception
 cout << " Nested exception: " << e.what() << endl;
 }
 }
 }
 return 0;
}

The output should be as follows:

doSomething caught a runtime_error
doSomething throwing MyException
main caught MyException: MyException with nested runtime_error
 Nested exception: Throwing a runtime_error exception

The preceding main() function uses a dynamic_cast() to check for the nested exception. Because
you often have to perform this dynamic_cast() if you want to check for a nested exception, the
standard provides a small helper function called std::rethrow_if_nested() that does it for you.
This helper function can be used as follows:

int main()
{
 try {
 doSomething();
 } catch (const MyException& e) {
 cout << __func__ << " caught MyException: " << e.what() << endl;
 try {
 rethrow_if_nested(e);
 } catch (const runtime_error& e) {
 // Handle nested exception
 cout << " Nested exception: " << e.what() << endl;
 }
 }
 return 0;
}

RETHROWING EXCEPTIONS

The throw keyword can also be used to rethrow the current exception, as in the following example:

void g() { throw invalid_argument("Some exception"); }

void f()
{
 try {
 g();
 } catch (const invalid_argument& e) {
 cout << "caught in f: " << e.what() << endl;
 throw; // rethrow

Rethrowing Exceptions  ❘  455

 }
}

int main()
{
 try {
 f();
 } catch (const invalid_argument& e) {
 cout << "caught in main: " << e.what() << endl;
 }
 return 0;
}

This example produces the following output:

caught in f: Some exception
caught in main: Some exception

You might think you could also rethrow an exception using something like a “throw e;” statement;
however, that’s wrong, because it can cause slicing of your exception object. For example, suppose
f() is modified to catch std::exceptions, and main() is modified to catch both exception and
invalid_argument exceptions:

void g() { throw invalid_argument("Some exception"); }

void f()
{
 try {
 g();
 } catch (const exception& e) {
 cout << "caught in f: " << e.what() << endl;
 throw; // rethrow
 }
}

int main()
{
 try {
 f();
 } catch (const invalid_argument& e) {
 cout << "invalid_argument caught in main: " << e.what() << endl;
 } catch (const exception& e) {
 cout << "exception caught in main: " << e.what() << endl;
 }
 return 0;
}

Remember that invalid_argument derives from exception. The output of this code is as you
would expect:

caught in f: Some exception
invalid_argument caught in main: Some exception

However, try replacing the “throw;” line in f() with:

throw e;

456  ❘  CHAPTER 14   Handling Errors

The output then is as follows:

caught in f: Some exception
exception caught in main: Some exception

Now main() seems to be catching an exception object, instead of an invalid_argument object.
That’s because the “throw e;” statement causes slicing, reducing the invalid_argument to an
exception.

WARNING  Always use “throw;” to rethrow an exception. Never do something
like “throw e;” to rethrow e!

STACK UNWINDING AND CLEANUP

When a piece of code throws an exception, it searches for a catch handler on the stack. This catch
handler could be zero or more function calls up the stack of execution. When one is found, the stack
is stripped back to the stack level that defines the catch handler by unwinding all intermediate stack
frames. Stack unwinding means that the destructors for all locally scoped names are called, and all
code remaining in each function past the current point of execution is skipped.

However, in stack unwinding, pointer variables are not freed, and other cleanup is not performed.
This behavior can present problems, as the following code demonstrates:

void funcOne();
void funcTwo();

int main()
{
 try {
 funcOne();
 } catch (const exception& e) {
 cerr << "Exception caught!" << endl;
 return 1;
 }
 return 0;
}

void funcOne()
{
 string str1;
 string* str2 = new string();
 funcTwo();
 delete str2;
}

void funcTwo()
{
 ifstream fileStream;

Stack Unwinding and Cleanup  ❘  457

 fileStream.open("filename");
 throw exception();
 fileStream.close();
}

When funcTwo() throws an exception, the closest exception handler is in main(). Control then
jumps immediately from this line in funcTwo(),

throw exception();

to this line in main():

cerr << "Exception caught!" << endl;

In funcTwo(), control remains at the line that threw the exception, so this subsequent line never
gets a chance to run:

fileStream.close();

However, luckily for you, the ifstream destructor is called because fileStream is a local variable
on the stack. The ifstream destructor closes the file for you, so there is no resource leak here. If you
had dynamically allocated fileStream, it would not be destroyed, and the file would not be closed.

In funcOne(), control is at the call to funcTwo(), so this subsequent line never gets a chance to run:

delete str2;

In this case, there really is a memory leak. Stack unwinding does not automatically call delete on
str2 for you. However, str1 is destroyed properly because it is a local variable on the stack. Stack
unwinding destroys all local variables correctly.

WARNING  Careless exception handling can lead to memory and resource leaks.

This is one reason why you should never mix older C models of allocation (even if you are calling
new so it looks like C++) with modern programming methodologies like exceptions. In C++, this
situation should be handled by using stack-based allocations, or if that is not possible, by one of the
techniques discussed in the following two sections.

Use Smart Pointers
If stack-based allocation is not possible, then use smart pointers. They allow you to write code
that automatically prevents memory or resource leaks with exception handling. Whenever a smart
pointer object is destroyed, it frees the underlying resource. Here is an example of the previous
funcOne() function but using the unique_ptr smart pointer, defined in <memory>, and introduced
in Chapter 1:

void funcOne()
{
 string str1;
 auto str2 = make_unique<string>("hello");
 funcTwo();
}

458  ❘  CHAPTER 14   Handling Errors

The str2 pointer will automatically be deleted when you return from funcOne() or when an excep-
tion is thrown.

Of course, you should only allocate something dynamically if you have a good reason to do so. For
example, in the previous funcOne() function, there is no good reason to make str2 a dynamically
allocated string. It should just be a stack-based string variable. It’s merely shown here as a compact
example of the consequences of throwing exceptions.

NOTE  With smart pointers, or other RAII objects (see Chapter 28), you never
have to remember to free the underlying resource: the destructor of the RAII
object does it for you, whether you leave the function via an exception or leave
the function normally.

Catch, Cleanup, and Rethrow
Another technique for avoiding memory and resource leaks is for each function to catch any possible
exceptions, perform necessary cleanup work, and rethrow the exception for the function higher up
the stack to handle. Here is a revised funcOne() with this technique:

void funcOne()
{
 string str1;
 string* str2 = new string();
 try {
 funcTwo();
 } catch (...) {
 delete str2;
 throw; // Rethrow the exception.
 }
 delete str2;
}

This function wraps the call to funcTwo() with an exception handler that performs the cleanup
(calls delete on str2) and then rethrows the exception. The keyword throw by itself rethrows
whatever exception was caught most recently. Note that the catch statement uses the ... syntax to
catch any exception.

This method works fine, but is messy. In particular, note that there are now two identical lines that
call delete on str2: one to handle the exception and one if the function exits normally.

WARNING  The preferred solution is to use smart pointers or other RAII classes
instead of the catch, cleanup, and rethrow technique.

Common Error-Handling Issues  ❘  459

COMMON ERROR-HANDLING ISSUES

Whether or not you use exceptions in your programs is up to you and your colleagues. However,
you are strongly encouraged to formalize an error-handling plan for your programs, regardless of
your use of exceptions. If you use exceptions, it is generally easier to come up with a unified error-
handling scheme, but it is not impossible without exceptions. The most important aspect of a good
plan is uniformity of error handling throughout all the modules of the program. Make sure that
every programmer on the project understands and follows the error-handling rules.

This section discusses the most common error-handling issues in the context of exceptions, but the
issues are also relevant to programs that do not use exceptions.

Memory Allocation Errors
Despite the fact that all the examples so far in this book have ignored the possibility, memory allo-
cation can fail. On current 64-bit platforms, this will almost never happen, but on mobile or legacy
systems, memory allocation can fail. On such systems, you must account for memory allocation fail-
ures. C++ provides several different ways to handle memory errors.

The default behaviors of new and new[] are to throw an exception of type bad_alloc, defined in
the <new> header file, if they cannot allocate memory. Your code could catch these exceptions and
handle them appropriately.

It’s not realistic to wrap all your calls to new and new[] with a try/catch, but at least you should
do so when you are trying to allocate a big block of memory. The following example demonstrates
how to catch memory allocation exceptions:

int* ptr = nullptr;
size_t integerCount = numeric_limits<size_t>::max();
try {
 ptr = new int[integerCount];
} catch (const bad_alloc& e) {
 cerr << __FILE__ << "(" << __LINE__
 << "): Unable to allocate memory: " << e.what() << endl;
 // Handle memory allocation failure.
 return;
}
// Proceed with function that assumes memory has been allocated.

Note that this code uses the predefined preprocessor symbols __FILE__ and __LINE__, which are
replaced with the name of the file and the current line number. This makes debugging easier.

NOTE  This example prints an error message to cerr. This assumes your pro-
gram is running with a console. In GUI applications, you usually don’t have a
console, in which case you need to show the error in a GUI-specific way to the
user.

460  ❘  CHAPTER 14   Handling Errors

You could, of course, bulk handle many possible new failures with a single try/catch block at a
higher point in the program, if that works for your program.

Another point to consider is that logging an error might try to allocate memory. If new fails, there
might not be enough memory left even to log the error message.

Non-throwing new
If you don’t like exceptions, you can revert to the old C model in which memory allocation routines
return a null pointer if they cannot allocate memory. C++ provides nothrow versions of new and
new[], which return nullptr instead of throwing an exception if they fail to allocate memory. This
is done by using the syntax new(nothrow) instead of new, as shown in the following example:

int* ptr = new(nothrow) int[integerCount];
if (ptr == nullptr) {
 cerr << __FILE__ << "(" << __LINE__
 << "): Unable to allocate memory!" << endl;
 // Handle memory allocation failure.
 return;
}
// Proceed with function that assumes memory has been allocated.

The syntax is a little strange: you really do write “nothrow” as if it’s an argument to new (which
it is).

Customizing Memory Allocation Failure Behavior
C++ allows you to specify a new handler callback function. By default, there is no new handler, so
new and new[] just throw bad_alloc exceptions. However, if there is a new handler, the memory
allocation routine calls the new handler upon memory allocation failure instead of throwing an
exception. If the new handler returns, the memory allocation routines attempt to allocate memory
again, calling the new handler again if they fail. This cycle could become an infinite loop unless
your new handler changes the situation with one of three alternatives. Practically speaking, some of
the options are better than others. Here is the list with commentary:

➤➤ Make more memory available. One trick to expose space is to allocate a large chunk of
memory at program start-up, and then to free it in the new handler. A practical example is
when you hit an allocation error and you need to save the user state so no work gets lost.
The key is to allocate a block of memory at program start-up large enough to allow a com-
plete document save operation. When the new handler is triggered, you free this block, save
the document, restart the application, and let it reload the saved document.

➤➤ Throw an exception. The C++ standard mandates that if you throw an exception from your
new handler, it must be a bad_alloc exception, or an exception derived from bad_alloc.
For example:

➤➤ You could write and throw a document_recovery_alloc exception, inheriting from
bad_alloc. This exception can be caught somewhere in your application to trigger
the document save operation and restart of the application.

Common Error-Handling Issues  ❘  461

➤➤ You could write and throw a please_terminate_me exception, deriving from bad_
alloc. In your top-level function—for example, main()—you catch this exception
and handle it by returning from the top-level function. It’s recommended to terminate
a program by returning from the top-level function, instead of by calling exit().

➤➤ Set a different new handler. Theoretically, you could have a series of new handlers, each of
which tries to create memory and sets a different new handler if it fails. However, such a sce-
nario is usually more complicated than useful.

If you don’t do one of these three things in your new handler, any memory allocation failure will
cause an infinite loop.

If there are some memory allocations that can fail but you don’t want the new handler to be called,
you can simply set the new handler back to its default of nullptr temporarily before calling new in
those cases.

You set the new handler with a call to set_new_handler(), declared in the <new> header file. Here
is an example of a new handler that logs an error message and throws an exception:

class please_terminate_me : public bad_alloc { };

void myNewHandler()
{
 cerr << "Unable to allocate memory." << endl;
 throw please_terminate_me();
}

The new handler must take no arguments and return no value. This new handler throws a please_
terminate_me exception, as suggested in the second bullet in the preceding list.

You can set this new handler like this:

int main()
{
 try {
 // Set the new new_handler and save the old one.
 new_handler oldHandler = set_new_handler(myNewHandler);

 // Generate allocation error
 size_t numInts = numeric_limits<size_t>::max();
 int* ptr = new int[numInts];

 // Reset the old new_handler
 set_new_handler(oldHandler);
 } catch (const please_terminate_me&) {
 cerr << __FILE__ << "(" << __LINE__
 << "): Terminating program." << endl;
 return 1;
 }
 return 0;
}

Note that new_handler is a typedef for the type of function pointer that set_new_handler()
takes.

462  ❘  CHAPTER 14   Handling Errors

Errors in Constructors
Before C++ programmers discover exceptions, they are often stymied by error handling and con-
structors. What if a constructor fails to construct the object properly? Constructors don’t have a
return value, so the standard pre-exception error-handling mechanism doesn’t work. Without excep-
tions, the best you can do is to set a flag in the object specifying that it is not constructed properly.
You can provide a method, with a name like checkConstructionStatus(), which returns the value
of that flag, and hope that clients remember to call this method on the object after constructing it.

Exceptions provide a much better solution. You can throw an exception from a constructor, even
though you can’t return a value. With exceptions, you can easily tell clients whether or not con-
struction of an object succeeded. However, there is one major problem: if an exception leaves a
constructor, the destructor for that object will never be called! Thus, you must be careful to clean
up any resources and free any allocated memory in constructors before allowing exceptions to leave
the constructor. This problem is the same as in any other function, but it is subtler in construc-
tors because you’re accustomed to letting the destructors take care of the memory deallocation and
resource freeing.

This section describes a Matrix class template as an example in which the constructor correctly
handles exceptions. Note that this example is using a raw pointer called mMatrix to demonstrate the
problems. In production-quality code, you should avoid using raw pointers, for example, by using a
Standard Library container! The definition of the Matrix class template looks like this:

template <typename T>
class Matrix
{
 public:
 Matrix(size_t width, size_t height);
 virtual ~Matrix();
 private:
 void cleanup();

 size_t mWidth = 0;
 size_t mHeight = 0;
 T** mMatrix = nullptr;
};

The implementation of the Matrix class is as follows. Note that the first call to new is not protected
with a try/catch block. It doesn’t matter if the first new throws an exception because the construc-
tor hasn’t allocated anything else yet that needs freeing. If any of the subsequent new calls throws an
exception, though, the constructor must clean up all of the memory already allocated. However, it
doesn’t know what exceptions the T constructors themselves might throw, so it catches any excep-
tions via ... and then nests the caught exception inside a bad_alloc exception. Note that the array
allocated with the first call to new is zero-initialized using the {} syntax, that is, each element will
be nullptr. This makes the cleanup() method easier, because it is allowed to call delete on a
nullptr.

template <typename T>
Matrix<T>::Matrix(size_t width, size_t height)
{
 mMatrix = new T*[width] {}; // Array is zero-initialized!

Common Error-Handling Issues  ❘  463

 // Don't initialize the mWidth and mHeight members in the ctor-
 // initializer. These should only be initialized when the above
 // mMatrix allocation succeeds!
 mWidth = width;
 mHeight = height;

 try {
 for (size_t i = 0; i < width; ++i) {
 mMatrix[i] = new T[height];
 }
 } catch (...) {
 std::cerr << "Exception caught in constructor, cleaning up..."
 << std::endl;
 cleanup();
 // Nest any caught exception inside a bad_alloc exception.
 std::throw_with_nested(std::bad_alloc());
 }
}

template <typename T>
Matrix<T>::~Matrix()
{
 cleanup();
}

template <typename T>
void Matrix<T>::cleanup()
{
 for (size_t i = 0; i < mWidth; ++i)
 delete[] mMatrix[i];
 delete[] mMatrix;
 mMatrix = nullptr;
 mWidth = mHeight = 0;
}

WARNING  Remember, if an exception leaves a constructor, the destructor for
that object will never be called!

The Matrix class template can be tested as follows:

class Element
{
 // Kept to a bare minimum, but in practice, this Element class
 // could throw exceptions in its constructor.
 private:
 int mValue;
};

int main()
{
 Matrix<Element> m(10, 10);
 return 0;
}

464  ❘  CHAPTER 14   Handling Errors

You might be wondering what happens when you add inheritance into the mix. Base class construc-
tors run before derived class constructors. If a derived class constructor throws an exception, C++
will execute the destructor of the fully constructed base class.

NOTE  C++ guarantees that it will run the destructor for any fully constructed
“subobjects.” Therefore, any constructor that completes without an exception
will cause the corresponding destructor to be run.

Function-Try-Blocks for Constructors
The exception mechanism, as discussed up to now in this chapter, is perfect for handling exceptions
within functions. But how should you handle exceptions thrown from inside a ctor-initializer of a
constructor? This section explains a feature called function-try-blocks, which are capable of catch-
ing those exceptions. Function-try-blocks work for normal functions as well as for constructors.
This section focuses on the use with constructors. Most C++ programmers, even experienced C++
programmers, don’t know of the existence of this feature, even though it was introduced a long
time ago.

The following piece of pseudo-code shows the basic syntax for a function-try-block for a
constructor:

MyClass::MyClass()
try
 : <ctor-initializer>
{
 /* ... constructor body ... */
}
catch (const exception& e)
{
 /* ... */
}

As you can see, the try keyword should be right before the start of the ctor-initializer. The catch
statements should be after the closing brace for the constructor, actually putting them outside the
constructor body. There are a number of restrictions and guidelines that you should keep in mind
when using function-try-blocks with constructors:

➤➤ The catch statements catch any exception thrown either directly or indirectly by the ctor-
initializer or by the constructor body.

➤➤ The catch statements have to rethrow the current exception or throw a new exception. If a
catch statement doesn’t do this, the runtime automatically rethrows the current exception.

➤➤ The catch statements can access arguments passed to the constructor.

➤➤ When a catch statement catches an exception in a function-try-block, all fully constructed
base classes and members of the object are destroyed before execution of the catch statement
starts.

Common Error-Handling Issues  ❘  465

➤➤ Inside catch statements you should not access member variables that are objects because
these are destroyed prior to executing the catch statements (see the previous bullet).
However, if your object contains non-class data members—for example, raw pointers—you
can access them if they have been initialized before the exception was thrown. If you have
such naked resources, you have to take care of them by freeing them in the catch statements,
as the following example demonstrates.

➤➤ The catch statements in a function-try-block cannot use the return keyword to return a
value from the function enclosed by it. This is not relevant for constructors because they do
not return anything.

Based on this list of limitations, function-try-blocks for constructors are useful only in a limited
number of situations:

➤➤ To convert an exception thrown by the ctor-initializer to another exception.

➤➤ To log a message to a log file.

➤➤ To free naked resources that have been allocated in the ctor-initializer prior to the exception
being thrown.

The following example demonstrates how to use function-try-blocks. The code defines a class called
SubObject. It has only one constructor, which throws an exception of type runtime_error.

class SubObject
{
 public:
 SubObject(int i);
};

SubObject::SubObject(int i)
{
 throw std::runtime_error("Exception by SubObject ctor");
}

The MyClass class has a member variable of type int* and another one of type SubObject:

class MyClass
{
 public:
 MyClass();
 private:
 int* mData = nullptr;
 SubObject mSubObject;
};

The SubObject class does not have a default constructor. This means that you need to initialize
mSubObject in the MyClass ctor-initializer. The constructor of MyClass uses a function-try-block to
catch exceptions thrown in its ctor-initializer:

MyClass::MyClass()
try
 : mData(new int[42]{ 1, 2, 3 }), mSubObject(42)

466  ❘  CHAPTER 14   Handling Errors

{
 /* ... constructor body ... */
}
catch (const std::exception& e)
{
 // Cleanup memory.
 delete[] mData;
 mData = nullptr;
 cout << "function-try-block caught: '" << e.what() << "'" << endl;
}

Remember that catch statements in a function-try-block for a constructor have to either rethrow
the current exception, or throw a new exception. The preceding catch statement does not throw
anything, so the C++ runtime automatically rethrows the current exception. Following is a simple
function that uses the preceding class:

int main()
{
 try {
 MyClass m;
 } catch (const std::exception& e) {
 cout << "main() caught: '" << e.what() << "'" << endl;
 }
 return 0;
}

The output of the preceding example is as follows:

function-try-block caught: 'Exception by SubObject ctor'
main() caught: 'Exception by SubObject ctor'

Note that the code in the example can be dangerous. Depending on the order of initialization, it
could be that mData contains garbage when entering the catch statement. Deleting such a garbage
pointer causes undefined behavior. The solution in this example’s case is to use a smart pointer
for the mData member, for example std::unique_ptr, and to remove the function-try-block.
Therefore:

WARNING  Avoid using function-try-blocks!

Function-try-blocks are usually only necessary when you have naked resources
as data members. Naked resources should be avoided by using RAII classes
such as std::unique_ptr. RAII classes are discussed in Chapter 28.

Function-try-blocks are not limited to constructors. They can be used with ordinary functions as
well. However, for normal functions, there is no useful reason to use function-try-blocks because
they can just as easily be converted to a simple try/catch block inside the function body. One
notable difference when using a function-try-block on a normal function compared to a constructor

Common Error-Handling Issues  ❘  467

is that rethrowing the current exception or throwing a new exception in the catch statements is not
required and the C++ runtime will not automatically rethrow the exception.

Errors in Destructors
You should handle all error conditions that arise in destructors in the destructors themselves. You
should not let any exceptions be thrown from destructors, for a couple of reasons:

	 1.	 Destructors are implicitly marked as noexcept, unless they are marked with
noexcept(false)2 or the class has any subobjects whose destructor is noexcept(false).
If you throw an exception from a noexcept destructor, the C++ runtime calls
std::terminate() to terminate the application.

	 2.	 Destructors can run while there is another pending exception, in the process of stack unwind-
ing. If you throw an exception from the destructor in the middle of stack unwinding, the C++
runtime calls std::terminate() to terminate the application. For the brave and curious,
C++ does provide the ability to determine, in a destructor, whether you are executing as a
result of a normal function exit or delete call, or because of stack unwinding. The function
uncaught_exceptions(), declared in the <exception> header file, returns the number of
uncaught exceptions, that is, exceptions that have been thrown but that have not reached a
matching catch yet. If the result of uncaught_exceptions() is greater than zero, then you
are in the middle of stack unwinding. However, correct use of this function is complicated,
messy, and should be avoided. Note that before C++17, the function was called uncaught_
exception() (singular), and returned a bool that was true if you were in the middle of
stack unwinding.

	 3.	 What action would clients take? Clients don’t call destructors explicitly: they call delete,
which calls the destructor. If you throw an exception from the destructor, what is a client
supposed to do? It can’t call delete on the object again, and it shouldn’t call the destructor
explicitly. There is no reasonable action the client can take, so there is no reason to burden
that code with exception handling.

	 4.	 The destructor is your one chance to free memory and resources used in the object. If you
waste your chance by exiting the function early due to an exception, you will never be able to
go back and free the memory or resources.

WARNING  Be careful to catch in a destructor any exceptions that can be
thrown by calls you make from the destructor.

2The noexcept(expression) specifier is not discussed in detail in this book. Suffice to know that noexcept
equals noexcept(true), and that noexcept(false) is the opposite of noexcept(true); that is, a method
marked with noexcept(false) can throw any exception it wants.

468  ❘  CHAPTER 14   Handling Errors

PUTTING IT ALL TOGETHER

Now that you’ve learned about error handling and exceptions, let’s see it all coming together in a
bigger example, a GameBoard class. This GameBoard class is based on the GameBoard class from
Chapter 12. The implementation in Chapter 12 using a vector of vectors is the recommended
implementation because even when an exception is thrown, the code is not leaking any memory due
to the use of Standard Library containers. To be able to demonstrate handling memory allocation
errors, the following version is adapted to use a raw pointer, GamePiece** mCells. First, here is the
definition of the class without any exceptions:

class GamePiece {};

class GameBoard
{
 public:
 // general-purpose GameBoard allows user to specify its dimensions
 explicit GameBoard(size_t width = kDefaultWidth,
 size_t height = kDefaultHeight);
 GameBoard(const GameBoard& src); // Copy constructor
 virtual ~GameBoard();
 GameBoard& operator=(const GameBoard& rhs); // Assignment operator

 GamePiece& at(size_t x, size_t y);
 const GamePiece& at(size_t x, size_t y) const;

 size_t getHeight() const { return mHeight; }
 size_t getWidth() const { return mWidth; }

 static const size_t kDefaultWidth = 100;
 static const size_t kDefaultHeight = 100;

 friend void swap(GameBoard& first, GameBoard& second) noexcept;
 private:
 // Objects dynamically allocate space for the game pieces.
 GamePiece** mCells = nullptr;
 size_t mWidth = 0, mHeight = 0;
};

Note that you could also add move semantics to this GameBoard class. That would require adding a
move constructor and move assignment operator, which both have to be noexcept. See Chapter 9
for details on move semantics.

Here are the implementations without any exceptions:

GameBoard::GameBoard(size_t width, size_t height)
 : mWidth(width), mHeight(height)
{
 mCells = new GamePiece*[mWidth];
 for (size_t i = 0; i < mWidth; i++) {
 mCells[i] = new GamePiece[mHeight];
 }
}

Putting It All Together  ❘  469

GameBoard::GameBoard(const GameBoard& src)
 : GameBoard(src.mWidth, src.mHeight)
{
 // The ctor-initializer of this constructor delegates first to the
 // non-copy constructor to allocate the proper amount of memory.

 // The next step is to copy the data.
 for (size_t i = 0; i < mWidth; i++) {
 for (size_t j = 0; j < mHeight; j++) {
 mCells[i][j] = src.mCells[i][j];
 }
 }
}

GameBoard::~GameBoard()
{
 for (size_t i = 0; i < mWidth; i++) {
 delete[] mCells[i];
 }
 delete[] mCells;
 mCells = nullptr;
 mWidth = mHeight = 0;
}

void swap(GameBoard& first, GameBoard& second) noexcept
{
 using std::swap;

 swap(first.mWidth, second.mWidth);
 swap(first.mHeight, second.mHeight);
 swap(first.mCells, second.mCells);
}

GameBoard& GameBoard::operator=(const GameBoard& rhs)
{
 // Check for self-assignment
 if (this == &rhs) {
 return *this;
 }

 // Copy-and-swap idiom
 GameBoard temp(rhs); // Do all the work in a temporary instance
 swap(*this, temp); // Commit the work with only non-throwing operations
 return *this;
}

const GamePiece& GameBoard::at(size_t x, size_t y) const
{
 return mCells[x][y];
}

GamePiece& GameBoard::at(size_t x, size_t y)
{
 return const_cast<GamePiece&>(std::as_const(*this).at(x, y));
}

470  ❘  CHAPTER 14   Handling Errors

Now, let’s retrofit the preceding class to include error handling and exceptions. The constructors
and operator= can all throw bad_alloc because they perform memory allocation directly or indi-
rectly. The destructor, cleanup(), getHeight(), getWidth(), and swap() throw no exceptions.
The verifyCoordinate() and at() methods throw out_of_range if the caller supplies an invalid
coordinate. Here is the retrofitted class definition:

class GamePiece {};

class GameBoard
{
 public:
 explicit GameBoard(size_t width = kDefaultWidth,
 size_t height = kDefaultHeight);
 GameBoard(const GameBoard& src);
 virtual ~GameBoard() noexcept;
 GameBoard& operator=(const GameBoard& rhs); // Assignment operator

 GamePiece& at(size_t x, size_t y);
 const GamePiece& at(size_t x, size_t y) const;

 size_t getHeight() const noexcept { return mHeight; }
 size_t getWidth() const noexcept { return mWidth; }

 static const size_t kDefaultWidth = 100;
 static const size_t kDefaultHeight = 100;

 friend void swap(GameBoard& first, GameBoard& second) noexcept;
 private:
 void cleanup() noexcept;
 void verifyCoordinate(size_t x, size_t y) const;

 GamePiece** mCells = nullptr;
 size_t mWidth = 0, mHeight = 0;
};

Here are the implementations with exception handling:

GameBoard::GameBoard(size_t width, size_t height)
{
 mCells = new GamePiece*[width] {}; // Array is zero-initialized!

 // Don't initialize the mWidth and mHeight members in the ctor-
 // initializer. These should only be initialized when the above
 // mCells allocation succeeds!
 mWidth = width;
 mHeight = height;

 try {
 for (size_t i = 0; i < mWidth; i++) {
 mCells[i] = new GamePiece[mHeight];
 }
 } catch (...) {
 cleanup();

Putting It All Together  ❘  471

 // Nest any caught exception inside a bad_alloc exception.
 std::throw_with_nested(std::bad_alloc());
 }
}

GameBoard::GameBoard(const GameBoard& src)
 : GameBoard(src.mWidth, src.mHeight)
{
 // The ctor-initializer of this constructor delegates first to the
 // non-copy constructor to allocate the proper amount of memory.

 // The next step is to copy the data.
 for (size_t i = 0; i < mWidth; i++) {
 for (size_t j = 0; j < mHeight; j++) {
 mCells[i][j] = src.mCells[i][j];
 }
 }
}

GameBoard::~GameBoard() noexcept
{
 cleanup();
}

void GameBoard::cleanup() noexcept
{
 for (size_t i = 0; i < mWidth; i++)
 delete[] mCells[i];
 delete[] mCells;
 mCells = nullptr;
 mWidth = mHeight = 0;
}

void GameBoard::verifyCoordinate(size_t x, size_t y) const
{
 if (x >= mWidth)
 throw out_of_range("x-coordinate beyond width");
 if (y >= mHeight)
 throw out_of_range("y-coordinate beyond height");
}

void swap(GameBoard& first, GameBoard& second) noexcept
{
 using std::swap;

 swap(first.mWidth, second.mWidth);
 swap(first.mHeight, second.mHeight);
 swap(first.mCells, second.mCells);
}

GameBoard& GameBoard::operator=(const GameBoard& rhs)
{
 // Check for self-assignment

472  ❘  CHAPTER 14   Handling Errors

 if (this == &rhs) {
 return *this;
 }

 // Copy-and-swap idiom
 GameBoard temp(rhs); // Do all the work in a temporary instance
 swap(*this, temp); // Commit the work with only non-throwing operations
 return *this;
}

const GamePiece& GameBoard::at(size_t x, size_t y) const
{
 verifyCoordinate(x, y);
 return mCells[x][y];
}

GamePiece& GameBoard::at(size_t x, size_t y)
{
 return const_cast<GamePiece&>(std::as_const(*this).at(x, y));
}

SUMMARY

This chapter described the issues related to error handling in C++ programs, and emphasized that
you must design and code your programs with an error-handling plan. By reading this chapter, you
learned the details of C++ exceptions syntax and behavior. The chapter also covered some of the
areas in which error handling plays a large role, including I/O streams, memory allocation, con-
structors, and destructors. Finally, you saw an example of error handling in a GameBoard class.

Overloading C++ Operators
WHAT’S IN THIS CHAPTER?

➤➤ Explaining operator overloading

➤➤ Rationale for overloading operators

➤➤ Limitations, caveats, and choices in operator overloading

➤➤ Summary of operators you can, cannot, and should not
overload

➤➤ How to overload unary plus, unary minus, increment, and
decrement

➤➤ How to overload the I/O stream operators (operator<< and
operator>>)

➤➤ How to overload the subscripting (array index) operator

➤➤ How to overload the function call operator

➤➤ How to overload the dereferencing operators (* and ->)

➤➤ How to write conversion operators

➤➤ How to overload the memory allocation and deallocation operators

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

15

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

474  ❘  CHAPTER 15   Overloading C++ Operators

C++ allows you to redefine the meanings of operators, such as +, -, and =, for your classes. Many
object-oriented languages do not provide this capability, so you might be tempted to disregard its
usefulness in C++. However, it can be beneficial for making your classes behave similarly to built-in
types such as ints and doubles. It is even possible to write classes that look like arrays, functions,
or pointers.

Chapters 5 and 6 introduce object-oriented design and operator overloading, respectively. Chapters
8 and 9 present the syntax details for objects and for basic operator overloading. This chapter picks
up operator overloading where Chapter 9 left off.

OVERVIEW OF OPERATOR OVERLOADING

As Chapter 1 explains, operators in C++ are symbols such as +, <, *, and <<. They work on built-in
types such as int and double to allow you to perform arithmetic, logical, and other operations.
There are also operators such as -> and * that allow you to dereference pointers. The concept of
operators in C++ is broad, and even includes [] (array index), () (function call), casting, and the
memory allocation and deallocation operators. Operator overloading allows you to change the
behavior of language operators for your classes. However, this capability comes with rules, limita-
tions, and choices.

Why Overload Operators?
Before learning how to overload operators, you probably want to know why you would ever want to
do so. The reasons vary for the different operators, but the general guiding principle is to make your
classes behave like built-in types. The closer your classes are to built-in types, the easier they will be
for clients to use. For example, if you want to write a class to represent fractions, it’s quite helpful to
have the ability to define what +, -, *, and / mean when applied to objects of that class.

Another reason to overload operators is to gain greater control over the behavior in your program.
For example, you can overload memory allocation and deallocation operators for your classes to
specify exactly how memory should be distributed and reclaimed for each new object.

It’s important to emphasize that operator overloading doesn’t necessarily make things easier for you
as the class developer; its main purpose is to make things easier for users of the class.

Limitations to Operator Overloading
Here is a list of things you cannot do when you overload operators:

➤➤ You cannot add new operator symbols. You can only redefine the meanings of operators
already in the language. The table in the section, “Summary of Overloadable Operators,”
lists all of the operators that you can overload.

➤➤ There are a few operators that you cannot overload, such as . (member access in an object),
:: (scope resolution operator), sizeof, ?: (the conditional operator), and a few others. The
table lists all the operators that you can overload. The operators that you can’t overload are

Overview of Operator Overloading  ❘  475

usually not those you would care to overload anyway, so you shouldn’t find this restriction
limiting.

➤➤ The arity describes the number of arguments, or operands, associated with the operator. You
can only change the arity for the function call, new, and delete operators. For all other opera-
tors, you cannot change the arity. Unary operators, such as ++, work on only one operand.
Binary operators, such as /, work on two operands. The main situation where this limita-
tion might affect you is when overloading [] (array index), which is discussed later in this
chapter.

➤➤ You cannot change the precedence or associativity of the operator. These rules determine
in which order operators are evaluated in a statement. Again, this constraint shouldn’t be
cause for concern in most programs because there are rarely benefits to changing the order of
evaluation.

➤➤ You cannot redefine operators for built-in types. The operator must be a method in a class,
or at least one of the arguments to a global overloaded operator function must be a user-
defined type (for example, a class). This means that you can’t do something ridiculous, such
as redefine + for ints to mean subtraction (though you could do so for your classes). The one
exception to this rule is the memory allocation and deallocation operators; you can replace
the global operators for all memory allocations in your program.

Some of the operators already mean two different things. For example, the – operator can be used
as a binary operator (as in x = y - z;) or as a unary operator (as in x = -y;). The * operator can be
used for multiplication or for dereferencing a pointer. The << operator is the stream insertion opera-
tor or the left-shift operator, depending on the context. You can overload both meanings of opera-
tors with dual meanings.

Choices in Operator Overloading
When you overload an operator, you write a function or method with the name operatorX, where X
is the symbol for some operator, and with optional white space between operator and X. For exam-
ple, Chapter 9 declares operator+ for SpreadsheetCell objects like this:

SpreadsheetCell operator+(const SpreadsheetCell& lhs,
 const SpreadsheetCell& rhs);

The following sections describe several choices involved in each overloaded operator function or
method you write.

Method or Global Function
First, you must decide whether your operator should be a method of your class or a global function
(sometimes a friend of the class). How do you choose? First, you need to understand the difference
between these two choices. When the operator is a method of a class, the left-hand side of the opera-
tor expression must always be an object of that class. If you write a global function, the left-hand
side can be an object of a different type.

476  ❘  CHAPTER 15   Overloading C++ Operators

There are three different types of operators:

➤➤ Operators that must be methods. The C++ language requires some operators to be methods
of a class because they don’t make sense outside of a class. For example, operator= is tied
so closely to the class that it can’t exist anywhere else. The table in the section, “Summary of
Overloadable Operators,” lists those operators that must be methods. Most operators do not
impose this requirement.

➤➤ Operators that must be global functions. Whenever you need to allow the left-hand side of
the operator to be a variable of a different type than your class, you must make the operator
a global function. This rule applies specifically to operator<< and operator>>, where the
left-hand side is an iostream object, not an object of your class. Additionally, commutative
operators like binary + and – should allow variables that are not objects of your class on the
left-hand side. Chapter 9 discusses this problem.

➤➤ Operators that can be either methods or global functions. There is some disagreement in the
C++ community on whether it’s better to write methods or global functions to overload oper-
ators. However, I recommend the following rule: make every operator a method unless you
must make it a global function, as described previously. One major advantage to this rule is
that methods can be virtual, while global functions obviously cannot. Therefore, when you
plan to write overloaded operators in an inheritance tree, you should make them methods if
possible.

When you write an overloaded operator as a method, you should mark it const if it doesn’t change
the object. That way, it can be called on const objects.

Choosing Argument Types
You are somewhat limited in your choice of argument types because, as stated earlier, for most
operators you cannot change the number of arguments. For example, operator/ must always have
two arguments if it is a global function, and one argument if it’s a method. The compiler issues an
error if it differs from this standard. In this sense, the operator functions are different from normal
functions, which you can overload with any number of parameters. Additionally, although you can
write the operator for whichever types you want, the choice is usually constrained by the class for
which you are writing the operator. For example, if you want to implement addition for class T, you
don’t write an operator+ that takes two strings! The real choice arises when you try to determine
whether to take parameters by value or by reference, and whether or not to make them const.

The choice of value versus reference is easy: you should take every non-primitive parameter type by
reference. As Chapters 9 and 11 explain, you should never pass objects by value if you can pass-by-
reference instead.

The const decision is also trivial: mark every parameter const unless you actually modify it. The
table in the section, “Summary of Overloadable Operators,” shows sample prototypes for each oper-
ator, with the arguments marked const and reference as appropriate.

Overview of Operator Overloading  ❘  477

Choosing Return Types
C++ doesn’t determine overload resolution based on return type. Thus, you can specify any return
type you want when you write overloaded operators. However, just because you can do something
doesn’t mean you should do it. This flexibility implies that you could write confusing code in
which comparison operators return pointers, and arithmetic operators return bools. However, you
shouldn’t do that. Instead, you should write your overloaded operators such that they return the
same types as the operators do for the built-in types. If you write a comparison operator, return a
bool. If you write an arithmetic operator, return an object representing the result. Sometimes the
return type is not obvious at first. For example, as Chapter 8 mentions, operator= should return
a reference to the object on which it’s called in order to support nested assignments. Other opera-
tors have similarly tricky return types, all of which are summarized in the table in the section,
“Summary of Overloadable Operators.”

The same choices of reference and const apply to return types as well. However, for return val-
ues, the choices are more difficult. The general rule for value or reference is to return a reference
if you can; otherwise, return a value. How do you know when you can return a reference? This
choice applies only to operators that return objects: the choice is moot for the comparison opera-
tors that return bool, the conversion operators that have no return type, and the function call
operator, which may return any type you want. If your operator constructs a new object, then you
must return that new object by value. If it does not construct a new object, you can return a refer-
ence to the object on which the operator is called, or one of its arguments. The table in the section,
“Summary of Overloadable Operators,” shows examples.

A return value that can be modified as an lvalue (the left-hand side of an assignment expression)
must be non-const. Otherwise, it should be const. More operators than you might expect require
that you return lvalues, including all of the assignment operators (operator=, operator+=, opera-
tor-=, and so on).

Choosing Behavior
You can provide whichever implementation you want in an overloaded operator. For example, you
could write an operator+ that launches a game of Scrabble. However, as Chapter 6 describes, you
should generally constrain your implementations to provide behaviors that clients expect. Write
operator+ so that it performs addition, or something like addition, such as string concatenation.
This chapter explains how you should implement your overloaded operators. In exceptional circum-
stances, you might want to differ from these recommendations; but, in general, you should follow
the standard patterns.

Operators You Shouldn’t Overload
Some operators should not be overloaded, even though it is permitted. Specifically, the address-of
operator (operator&) is not particularly useful to overload, and leads to confusion if you do because
you are changing fundamental language behavior (taking addresses of variables) in potentially unex-
pected ways. The entire Standard Library, which uses operator overloading extensively, never over-
loads the address-of operator.

478  ❘  CHAPTER 15   Overloading C++ Operators

Additionally, you should avoid overloading the binary Boolean operators operator&& and opera-
tor|| because you lose C++’s short-circuit evaluation rules.

Finally, you should not overload the comma operator (operator,). Yes, you read that correctly:
there really is a comma operator in C++. It’s also called the sequencing operator, and is used to sep-
arate two expressions in a single statement, while guaranteeing that they are evaluated left to right.
There is rarely a good reason to overload this operator.

Summary of Overloadable Operators
The following table lists the operators that you can overload, specifies whether they should be meth-
ods of the class or global functions, summarizes when you should (or should not) overload them,
and provides sample prototypes showing the proper return values.

This table is a useful reference for the future when you want to write an overloaded operator. You’re
bound to forget which return type you should use, and whether or not the function should be a
method.

In this table, T is the name of the class for which the overloaded operator is written, and E is a
different type. Note that the sample prototypes given are not exhaustive; often there are other
combinations of T and E possible for a given operator.

OPERATOR NAME OR

CATEGORY

METHOD

OR GLOBAL

FUNCTION

WHEN TO OVERLOAD SAMPLE PROTOTYPE

operator+

operator-

operator*

operator/

operator%

Binary
arithmetic

Global
function
recom-
mended

Whenever you
want to provide
these operations
for your class

T operator+(const

T&, const T&);

T operator+(const

T&, const E&);

operator-

operator+

operator~

Unary arith-
metic and
bitwise
operators

Method
recom-
mended

Whenever you
want to provide
these operations
for your class

T operator-() const;

operator++

operator--

Pre-increment
and
pre-decrement

Method
recom-
mended

Whenever you
overload += and
-= taking an arith-
metic argument
(int, long, …)

T& operator++();

operator++

operator--

Post-
increment
and post-
decrement

Method
recom-
mended

Whenever you
overload += and -=
taking an arithme-
tic argument (int,
long, …)

T operator++(int);

Overview of Operator Overloading  ❘  479

OPERATOR NAME OR

CATEGORY

METHOD

OR GLOBAL

FUNCTION

WHEN TO OVERLOAD SAMPLE PROTOTYPE

operator= Assignment
operator

Method
required

Whenever your
class has dynami-
cally allocated
memory or
resources, or
members that are
references

T& operator=(const

T&);

operator+=

operator-=

operator*=

operator/=

operator%=

Shorthand
arithmetic
operator
assignments

Method
recom-
mended

Whenever you
overload the binary
arithmetic opera-
tors and your class
is not designed to
be immutable

T& operator+=(const

T&);

T& operator+=(const

E&);

operator<<

operator>>

operator&

operator|

operator^

Binary bitwise
operators

Global
function
recom-
mended

Whenever you
want to provide
these operations

T operator<<(

const T&, const T&);

T operator<<(

const T&, const E&);

operator<<=

operator>>=

operator&=

operator|=

operator^=

Shorthand bit-
wise operator
assignments

Method
recom-
mended

Whenever you
overload the binary
bitwise operators
and your class is
not designed to be
immutable

T& operator<<=(

const T&);

T& operator<<=(

const E&);

operator<

operator>

operator<=

operator>=

operator==

operator!=

Binary
comparison
operators

Global
function
recom-
mended

Whenever you
want to provide
these operations

bool operator<(const

T&, const T&);

bool operator<(const

T&, const E&);

operator<<

operator>>

I/O stream
operators
(insertion and
extraction)

Global
function
required

Whenever you
want to provide
these operations

ostream&

operator<<(ostream&,

const T&);

istream&

operator>>(istream&,

T&);

continues

480  ❘  CHAPTER 15   Overloading C++ Operators

OPERATOR NAME OR

CATEGORY

METHOD

OR GLOBAL

FUNCTION

WHEN TO OVERLOAD SAMPLE PROTOTYPE

operator! Boolean nega-
tion operator

Member
function
recom-
mended

Rarely; use bool or
void* conversion
instead.

bool operator!()

const;

operator&&

operator||

Binary
Boolean
operators

Global
function
recom-
mended

Rarely, if ever,
because you lose
short-circuiting; it’s
better to overload
& and | instead,
as these never
short-circuit.

bool

operator&&(const T&,

const T&);

operator[] Subscripting
(array index)
operator

Method
required

When you want
to support
subscripting

E& operator[]

(size_t);

const E& operator[]

(size_t) const;

operator() Function call
operator

Method
required

When you want
objects to behave
like function point-
ers, or for multi-
dimensional array
access, since []
can only have one
index

Return type and parame-
ters can vary; see further
examples in this chapter.

operator

type()
Conversion,
or cast, opera-
tors (separate
operator for
each type)

Method
required

When you want to
provide conver-
sions from your
class to other types

operator double()

const;

operator

new

operator

new[]

Memory
allocation
routines

Method
recom-
mended

When you want to
control memory
allocation for your
classes (rarely)

void* operator

new(size_t size);

void* operator new[]

(size_t size);

operator

delete

operator

delete[]

Memory
deallocation
routines

Method
recom-
mended

Whenever you
overload the
memory allocation
routines (rarely)

void operator

delete(void* ptr)

noexcept;

void operator

delete[](void* ptr)

noexcept;

TABLE  (continued)

Overview of Operator Overloading  ❘  481

OPERATOR NAME OR

CATEGORY

METHOD

OR GLOBAL

FUNCTION

WHEN TO OVERLOAD SAMPLE PROTOTYPE

operator*

operator->

Dereferencing
operators

Method
recom-
mended
for oper-
ator*

Method
required
for
opera-

tor->

Useful for smart
pointers

E& operator*()

const;

E* operator->()

const;

operator& Address-of
operator

N/A Never N/A

operator->* Dereference
pointer-to-
member

N/A Never N/A

operator, Comma
operator

N/A Never N/A

Rvalue References
Chapter 9 discusses rvalue references, written as && instead of the normal lvalue references, &. They
are demonstrated in Chapter 9 by defining move assignment operators, which are used by the com-
piler in cases where the second object is a temporary object that will be destroyed after the assign-
ment. The normal assignment operator from the preceding table has the following prototype:

T& operator=(const T&);

The move assignment operator has almost the same prototype, but uses an rvalue reference. It modi-
fies the argument so it cannot be passed as const. See Chapter 9 for details.

T& operator=(T&&);

The preceding table does not include sample prototypes with rvalue reference semantics. However,
for most operators it can make sense to write both a version using normal lvalue references and a
version using rvalue references. Whether it makes sense depends on implementation details of your
class. The operator= is one example from Chapter 9. Another example is operator+ to prevent
unnecessary memory allocations. The std::string class from the Standard Library, for example,
implements an operator+ using rvalue references as follows (simplified):

string operator+(string&& lhs, string&& rhs);

482  ❘  CHAPTER 15   Overloading C++ Operators

The implementation of this operator reuses memory of one of the arguments because they are being
passed as rvalue references, meaning both are temporary objects that will be destroyed when this
operator+ is finished. The implementation of the preceding operator+ has the following effect
depending on the size and the capacity of both operands:

return std::move(lhs.append(rhs));

or

return std::move(rhs.insert(0, lhs));

In fact, std::string defines several overloaded operator+ operators with different combinations
of lvalue references and rvalue references. The following is a list of all operator+ operators for
std::string accepting two strings as arguments (simplified):

string operator+(const string& lhs, const string& rhs);
string operator+(string&& lhs, const string& rhs);
string operator+(const string& lhs, string&& rhs);
string operator+(string&& lhs, string&& rhs);

Reusing memory of one of the rvalue reference arguments is implemented in the same way as it is
explained for move assignment operators in Chapter 9.

Relational Operators
There is a handy <utility> header file included with the C++ Standard Library. It contains quite
a few helper functions and classes. It also contains the following set of function templates for rela-
tional operators in the std::rel_ops namespace:

template<class T> bool operator!=(const T& a, const T& b);// Needs operator==
template<class T> bool operator>(const T& a, const T& b); // Needs operator<
template<class T> bool operator<=(const T& a, const T& b);// Needs operator<
template<class T> bool operator>=(const T& a, const T& b);// Needs operator<

These function templates define the operators !=, >, <=, and >= in terms of the == and < operators
for any class. If you implement operator== and operator< in your class, you get the other rela-
tional operators for free with these templates. You can make these available for your class by simply
adding a #include <utility> and adding the following using statement:

using namespace std::rel_ops;

However, one problem with this technique is that now those operators might be created for all
classes that you use in relational operations, not only for your own class.

A second problem with this technique is that utility templates such as std::greater<T> (discussed
in Chapter 18) do not work with those automatically generated relational operators.

Yet another problem with these is that implicit conversions will not work. Therefore:

NOTE  I recommend that you just implement all relational operators for a class
yourself instead of relying on std::rel_ops.

Overloading the Arithmetic Operators  ❘  483

OVERLOADING THE ARITHMETIC OPERATORS

Chapter 9 shows how to write the binary arithmetic operators and the shorthand arithmetic assign-
ment operators, but it does not cover how to overload the other arithmetic operators.

Overloading Unary Minus and Unary Plus
C++ has several unary arithmetic operators. Two of these are unary minus and unary plus. Here is
an example of these operators using ints:

int i, j = 4;
i = -j; // Unary minus
i = +i; // Unary plus
j = +(-i); // Apply unary plus to the result of applying unary minus to i.
j = -(-i); // Apply unary minus to the result of applying unary minus to i.

Unary minus negates the operand, while unary plus returns the operand directly. Note that you can
apply unary plus or unary minus to the result of unary plus or unary minus. These operators don’t
change the object on which they are called so you should make them const.

Here is an example of a unary operator- as a member function for a SpreadsheetCell class.
Unary plus is usually an identity operation, so this class doesn’t overload it:

SpreadsheetCell SpreadsheetCell::operator-() const
{
 return SpreadsheetCell(-getValue());
}

operator- doesn’t change the operand, so this method must construct a new SpreadsheetCell
with the negated value, and return it. Thus, it can’t return a reference. You can use this operator as
follows:

SpreadsheetCell c1(4);
SpreadsheetCell c3 = -c1;

Overloading Increment and Decrement
There are four ways to add 1 to a variable:

i = i + 1;
i += 1;
++i;
i++;

The last two forms are called the increment operators. The first form is prefix increment, which
adds 1 to the variable, then returns the newly incremented value for use in the rest of the expression.
The second form is postfix increment, which returns the old (non-incremented) value for use in the
rest of the expression. The decrement operators work similarly.

The two possible meanings for operator++ and operator-- (prefix and postfix) present a problem
when you want to overload them. When you write an overloaded operator++, for example, how do
you specify whether you are overloading the prefix or the postfix version? C++ introduced a hack

484  ❘  CHAPTER 15   Overloading C++ Operators

to allow you to make this distinction: the prefix versions of operator++ and operator-- take no
arguments, while the postfix versions take one unused argument of type int.

The prototypes of these overloaded operators for the SpreadsheetCell class look like this:

SpreadsheetCell& operator++(); // Prefix
SpreadsheetCell operator++(int); // Postfix
SpreadsheetCell& operator--(); // Prefix
SpreadsheetCell operator--(int); // Postfix

The return value in the prefix forms is the same as the end value of the operand, so prefix increment
and decrement can return a reference to the object on which they are called. The postfix versions of
increment and decrement, however, return values that are different from the end values of the oper-
ands, so they cannot return references.

Here are the implementations for operator++:

SpreadsheetCell& SpreadsheetCell::operator++()
{
 set(getValue() + 1);
 return *this;
}

SpreadsheetCell SpreadsheetCell::operator++(int)
{
 auto oldCell(*this); // Save current value
 ++(*this); // Increment using prefix ++
 return oldCell; // Return the old value
}

The implementations for operator-- are almost identical. Now you can increment and decrement
SpreadsheetCell objects to your heart’s content:

SpreadsheetCell c1(4);
SpreadsheetCell c2(4);
c1++;
++c2;

Increment and decrement also work on pointers. When you write classes that are smart pointers
or iterators, you can overload operator++ and operator-- to provide pointer incrementing and
decrementing.

OVERLOADING THE BITWISE AND BINARY LOGICAL
OPERATORS

The bitwise operators are similar to the arithmetic operators, and the bitwise shorthand assign-
ment operators are similar to the arithmetic shorthand assignment operators. However, they are
significantly less common, so no examples are shown here. The table in the section “Summary of
Overloadable Operators” shows sample prototypes, so you should be able to implement them easily
if the need ever arises.

Overloading the Insertion and Extraction Operators  ❘  485

The logical operators are trickier. It’s not recommended to overload && and ||. These operators
don’t really apply to individual types: they aggregate results of Boolean expressions. Additionally,
you lose the short-circuit evaluation, because both the left-hand side and the right-hand side have
to be evaluated before they can be bound to the parameters of your overloaded operator && and ||.
Thus, it rarely, if ever, makes sense to overload them for specific types.

OVERLOADING THE INSERTION AND EXTRACTION OPERATORS

In C++, you use operators not only for arithmetic operations, but also for reading from, and
writing to, streams. For example, when you write ints and strings to cout, you use the insertion
operator <<:

int number = 10;
cout << "The number is " << number << endl;

When you read from streams, you use the extraction operator >>:

int number;
string str;
cin >> number >> str;

You can write insertion and extraction operators that work on your classes as well, so that you can
read and write them like this:

SpreadsheetCell myCell, anotherCell, aThirdCell;
cin >> myCell >> anotherCell >> aThirdCell;
cout << myCell << " " << anotherCell << " " << aThirdCell << endl;

Before you write the insertion and extraction operators, you need to decide how you want to stream
your class out and how you want to read it in. In this example, the SpreadsheetCells simply read
and write double values.

The object on the left of an extraction or insertion operator is an istream or ostream (such as
cin or cout), not a SpreadsheetCell object. Because you can’t add a method to the istream or
ostream classes, you must write the extraction and insertion operators as global functions. The
declaration of these functions looks like this:

class SpreadsheetCell
{
 // Omitted for brevity
};
std::ostream& operator<<(std::ostream& ostr, const SpreadsheetCell& cell);
std::istream& operator>>(std::istream& istr, SpreadsheetCell& cell);

By making the insertion operator take a reference to an ostream as its first parameter, you allow it
to be used for file output streams, string output streams, cout, cerr, and clog. See Chapter 13 for
details on streams. Similarly, by making the extraction operator take a reference to an istream, you
make it work on file input streams, string input streams, and cin.

The second parameter to operator<< and operator>> is a reference to the SpreadsheetCell
object that you want to write or read. The insertion operator doesn’t change the SpreadsheetCell

486  ❘  CHAPTER 15   Overloading C++ Operators

it writes, so that reference can be const. The extraction operator, however, modifies the
SpreadsheetCell object, requiring the argument to be a non-const reference.

Both operators return a reference to the stream they were given as their first argument so that calls
to the operator can be nested. Remember that the operator syntax is shorthand for calling the global
operator>> or operator<< functions explicitly. Consider this line:

cin >> myCell >> anotherCell >> aThirdCell;

It’s actually shorthand for this line:

operator>>(operator>>(operator>>(cin, myCell), anotherCell), aThirdCell);

As you can see, the return value of the first call to operator>> is used as input to the next call.
Thus, you must return the stream reference so that it can be used in the next nested call. Otherwise,
the nesting won’t compile.

Here are the implementations for operator<< and operator>> for the SpreadsheetCell class:

ostream& operator<<(ostream& ostr, const SpreadsheetCell& cell)
{
 ostr << cell.getValue();
 return ostr;
}

istream& operator>>(istream& istr, SpreadsheetCell& cell)
{
 double value;
 istr >> value;
 cell.set(value);
 return istr;
}

OVERLOADING THE SUBSCRIPTING OPERATOR

Pretend for a few minutes that you have never heard of the vector or array class templates in the
Standard Library, and so you have decided to write your own dynamically allocated array class.
This class would allow you to set and retrieve elements at specified indices, and would take care of
all memory allocation “behind the scenes.” A first stab at the class definition for a dynamically allo-
cated array might look like this:

template <typename T>
class Array
{
 public:
 // Creates an array with a default size that will grow as needed.
 Array();
 virtual ~Array();

 // Disallow assignment and pass-by-value
 Array<T>& operator=(const Array<T>& rhs) = delete;
 Array(const Array<T>& src) = delete;

 // Returns the value at index x. Throws an exception of type

Overloading the Subscripting Operator  ❘  487

 // out_of_range if index x does not exist in the array.
 const T& getElementAt(size_t x) const;

 // Sets the value at index x. If index x is out of range,
 // allocates more space to make it in range.
 void setElementAt(size_t x, const T& value);

 size_t getSize() const;
 private:
 static const size_t kAllocSize = 4;
 void resize(size_t newSize);
 T* mElements = nullptr;
 size_t mSize = 0;
};

The interface supports setting and accessing elements. It provides random-access guarantees: a
client could create an array and set elements 1, 100, and 1000 without worrying about memory
management.

Here are the implementations of the methods:

template <typename T> Array<T>::Array()
{
 mSize = kAllocSize;
 mElements = new T[mSize] {}; // Elements are zero-initialized!
}

template <typename T> Array<T>::~Array()
{
 delete [] mElements;
 mElements = nullptr;
}

template <typename T> void Array<T>::resize(size_t newSize)
{
 // Create new bigger array with zero-initialized elements.
 auto newArray = std::make_unique<T[]>(newSize);

 // The new size is always bigger than the old size (mSize)
 for (size_t i = 0; i < mSize; i++) {
 // Copy the elements from the old array to the new one
 newArray[i] = mElements[i];
 }

 // Delete the old array, and set the new array
 delete[] mElements;
 mSize = newSize;
 mElements = newArray.release();
}

template <typename T> const T& Array<T>::getElementAt(size_t x) const
{
 if (x >= mSize) {
 throw std::out_of_range("");
 }
 return mElements[x];
}

488  ❘  CHAPTER 15   Overloading C++ Operators

template <typename T> void Array<T>::setElementAt(size_t x, const T& val)
{
 if (x >= mSize) {
 // Allocate kAllocSize past the element the client wants
 resize(x + kAllocSize);
 }
 mElements[x] = val;
}

template <typename T> size_t Array<T>::getSize() const
{
 return mSize;
}

Pay some attention to the exception-safe implementation of the resize() method. First, it creates
a new array of appropriate size, and stores it in a unique_ptr. Then, all elements are copied from
the old array to the new array. If anything goes wrong while copying the values, the unique_ptr
cleans up the memory automatically. Finally, when both the allocation of the new array and copying
all the elements was successful, that is, no exceptions have been thrown, only then we delete the old
mElements array and assign the new array to it. The last line has to use release() to release the
ownership of the new array from the unique_ptr, otherwise the array will get destroyed when the
destructor for the unique_ptr is called.

Here is a small example of how you could use this class:

Array<int> myArray;
for (size_t i = 0; i < 10; i++) {
 myArray.setElementAt(i, 100);
}
for (size_t i = 0; i < 10; i++) {
 cout << myArray.getElementAt(i) << " ";
}

As you can see, you never have to tell the array how much space you need. It allocates as much space
as it requires to store the elements you give it. However, it’s inconvenient to always have to use the
setElementAt() and getElementAt() methods. It would be nice to be able to use conventional
array index notation like this:

Array<int> myArray;
for (size_t i = 0; i < 10; i++) {
 myArray[i] = 100;
}
for (size_t i = 0; i < 10; i++) {
 cout << myArray[i] << " ";
}

This is where the overloaded subscripting operator comes in. You can add an operator[] to the
class with the following implementation:

template <typename T> T& Array<T>::operator[](size_t x)
{
 if (x >= mSize) {
 // Allocate kAllocSize past the element the client wants.
 resize(x + kAllocSize);

Overloading the Subscripting Operator  ❘  489

 }
 return mElements[x];
}

The example code using array index notation now compiles. The operator[] can be used to both
set and get elements because it returns a reference to the element at location x. This reference can
be used to assign to that element. When operator[] is used on the left-hand side of an assignment
statement, the assignment actually changes the value at location x in the mElements array.

Providing Read-Only Access with operator[]
Although it’s sometimes convenient for operator[] to return an element that can serve as an lvalue,
you don’t always want that behavior. It would be nice to be able to provide read-only access to the
elements of the array as well, by returning a const reference. To provide for this, you need two
operator[]s: one returns a reference and one returns a const reference:

T& operator[](size_t x);
const T& operator[](size_t x) const;

Remember that you can’t overload a method or operator based only on the return type, so the sec-
ond overload returns a const reference and is marked as const.

Here is the implementation of the const operator[]. It throws an exception if the index is out
of range instead of trying to allocate new space. It doesn’t make sense to allocate new space when
you’re only trying to read the element value.

template <typename T> const T& Array<T>::operator[](size_t x) const
{
 if (x >= mSize) {
 throw std::out_of_range("");
 }
 return mElements[x];
}

The following code demonstrates these two forms of operator[]:

void printArray(const Array<int>& arr)
{
 for (size_t i = 0; i < arr.getSize(); i++) {
 cout << arr[i] << " "; // Calls the const operator[] because arr is
 // a const object.
 }
 cout << endl;
}

int main()
{
 Array<int> myArray;
 for (size_t i = 0; i < 10; i++) {
 myArray[i] = 100; // Calls the non-const operator[] because
 // myArray is a non-const object.
 }
 printArray(myArray);
 return 0;
}

490  ❘  CHAPTER 15   Overloading C++ Operators

Note that the const operator[] is called in printArray() only because arr is const. If arr
were not const, the non-const operator[] would be called, despite the fact that the result is not
modified.

The const operator[] is called for const objects, so it cannot grow the size of the array. The
current implementation throws an exception when the given index is out of bounds. An alternative
would be to return a zero-initialized element instead of throwing. This can be done as follows:

template <typename T> const T& Array<T>::operator[](size_t x) const
{
 if (x >= mSize) {
 static T nullValue = T();
 return nullValue;
 }
 return mElements[x];
}

The nullValue static variable is initialized using the zero-initialization1 syntax T(). It’s up to you
and your specific use case whether you opt for the throwing version or the version returning a null
value.

Non-integral Array Indices
It is a natural extension of the paradigm of “indexing” into a collection to provide a key of some
sort; a vector (or in general, any linear array) is a special case where the “key” is just a position in
the array. Think of the argument of operator[] as providing a mapping between two domains: the
domain of keys and the domain of values. Thus, you can write an operator[] that uses any type as
its index. This type does not need to be an integer type. This is done for the Standard Library asso-
ciative containers, like std::map, which are discussed in Chapter 17.

For example, you could create an associative array in which you use string keys instead of integers.
Here is the definition for such an associative array class:

template <typename T>
class AssociativeArray
{
 public:
 virtual ~AssociativeArray() = default;

 T& operator[](std::string_view key);
 const T& operator[](std::string_view key) const;
 private:
 // Implementation details omitted
};

Implementing this class would be a good exercise for you. You can also find an implementation of
this class in the downloadable source code for this book at www.wrox.com/go/proc++4e.

1Zero-initialization constructs objects with the default constructor, and initializes primitive integer types
(such as char, int, and so on) to zero, primitive floating-point types to 0.0, and pointer types to nullptr.

Overloading the Function Call Operator  ❘  491

NOTE  You cannot overload the subscripting operator to take more than one
parameter. If you want to provide subscripting on more than one index, you can
use the function call operator explained in the next section.

OVERLOADING THE FUNCTION CALL OPERATOR

C++ allows you to overload the function call operator, written as operator(). If you write an
operator() for your class, you can use objects of that class as if they were function pointers. An
object of a class with a function call operator is called a function object, or functor, for short. You
can overload this operator only as a non-static method in a class. Here is an example of a simple
class with an overloaded operator() and a class method with the same behavior:

class FunctionObject
{
 public:
 int operator() (int param); // Function call operator
 int doSquare(int param); // Normal method
};

// Implementation of overloaded function call operator
int FunctionObject::operator() (int param)
{
 return doSquare(param);
}

// Implementation of normal method
int FunctionObject::doSquare(int param)
{
 return param * param;
}

Here is an example of code that uses the function call operator, contrasted with the call to a normal
method of the class:

int x = 3, xSquared, xSquaredAgain;
FunctionObject square;
xSquared = square(x); // Call the function call operator
xSquaredAgain = square.doSquare(x); // Call the normal method

At first, the function call operator probably seems a little strange. Why would you want to write a
special method for a class to make objects of the class look like function pointers? Why wouldn’t
you just write a function or a standard method of a class? The advantage of function objects over
standard methods of objects is simple: these objects can sometimes masquerade as function pointers,
that is, you can pass function objects as callback functions to other functions. This is discussed in
more detail in Chapter 18.

492  ❘  CHAPTER 15   Overloading C++ Operators

The advantages of function objects over global functions are more intricate. There are two main
benefits:

➤➤ Objects can retain information in their data members between repeated calls to their function
call operators. For example, a function object might be used to keep a running sum of num-
bers collected from each call to the function call operator.

➤➤ You can customize the behavior of a function object by setting data members. For example,
you could write a function object to compare an argument to the function call operator
against a data member. This data member could be configurable so that the object could be
customized for whatever comparison you want.

Of course, you could implement either of the preceding benefits with global or static variables.
However, function objects provide a cleaner way to do it, and using global or static variables
might cause problems in a multithreaded application. The true benefits of function objects are dem-
onstrated with the Standard Library in Chapter 18.

By following the normal method overloading rules, you can write as many operator()s for your
classes as you want. For example, you could add an operator() to the FunctionObject class that
takes an std::string_view:

int operator() (int param);
void operator() (std::string_view str);

The function call operator can also be used to provide subscripting for multi-dimensional arrays.
Simply write an operator() that behaves like operator[] but allows for more than one index. The
only minor annoyance with this technique is that you have to use () to index instead of [], as in
myArray(3, 4) = 6;.

OVERLOADING THE DEREFERENCING OPERATORS

You can overload three dereferencing operators: *, ->, and ->*. Ignoring ->* for the moment (I’ll
come back to it later), consider the built-in meanings of * and ->. The * operator dereferences a
pointer to give you direct access to its value, while -> is shorthand for a * dereference followed by a
. member selection. The following code shows the equivalences:

SpreadsheetCell* cell = new SpreadsheetCell;
(*cell).set(5); // Dereference plus member selection
cell->set(5); // Shorthand arrow dereference and member selection together

You can overload the dereferencing operators for your classes in order to make objects of the classes
behave like pointers. The main use of this capability is for implementing smart pointers, introduced
in Chapter 1. It is also useful for iterators, which the Standard Library uses extensively. Iterators are
discussed in Chapter 17. This chapter teaches you the basic mechanics for overloading the relevant
operators in the context of a simple smart pointer class template.

Overloading the Dereferencing Operators  ❘  493

WARNING  C++ has two standard smart pointers called std::unique_ptr and
std::shared_ptr. It is highly recommended to use these standard smart pointer
classes instead of writing your own. The example here is given only to demon-
strate how to write dereferencing operators.

Here is the example smart pointer class template definition, without the dereferencing operators
filled in yet:

template <typename T> class Pointer
{
 public:
 Pointer(T* ptr);
 virtual ~Pointer();

 // Prevent assignment and pass by value.
 Pointer(const Pointer<T>& src) = delete;
 Pointer<T>& operator=(const Pointer<T>& rhs) = delete;

 // Dereferencing operators will go here.
 private:
 T* mPtr = nullptr;
};

This smart pointer is about as simple as you can get. All it does is store a dumb raw pointer, and the
storage pointed to by the pointer is deleted when the smart pointer is destroyed. The implementation
is equally simple: the constructor takes a raw pointer, which is stored as the only data member in the
class. The destructor frees the storage referenced by the pointer.

template <typename T> Pointer<T>::Pointer(T* ptr) : mPtr(ptr)
{
}

template <typename T> Pointer<T>::~Pointer()
{
 delete mPtr;
 mPtr = nullptr;
}

You want to be able to use the smart pointer class template like this:

Pointer<int> smartInt(new int);
*smartInt = 5; // Dereference the smart pointer.
cout << *smartInt << endl;

Pointer<SpreadsheetCell> smartCell(new SpreadsheetCell);
smartCell->set(5); // Dereference and member select the set method.
cout << smartCell->getValue() << endl;

494  ❘  CHAPTER 15   Overloading C++ Operators

As you can see from this example, you have to provide implementations of operator* and opera-
tor-> for this class. These are implemented in the next two sections.

WARNING  You should rarely, if ever, write an implementation of just one of
operator* and operator->. You should almost always write both operators
together. It would confuse the users of your class if you failed to provide both.

Implementing operator*
When you dereference a pointer, you expect to be able to access the memory to which the pointer
points. If that memory contains a simple type such as an int, you should be able to change its value
directly. If the memory contains a more complicated type, such as an object, you should be able to
access its data members or methods with the . operator.

To provide these semantics, you should return a reference from operator*. In the Pointer class,
the declaration and definition are as follows:

template <typename T> class Pointer
{
 public:
 // Omitted for brevity
 T& operator*();
 const T& operator*() const;
 // Omitted for brevity
};

template <typename T> T& Pointer<T>::operator*()
{
 return *mPtr;
}

template <typename T> const T& Pointer<T>::operator*() const
{
 return *mPtr;
}

As you can see, operator* returns a reference to the object or variable to which the underlying raw
pointer points. As with overloading the subscripting operators, it’s useful to provide both const
and non-const versions of the method, which return a const reference and a non-const reference,
respectively.

Implementing operator–>
The arrow operator is a bit trickier. The result of applying the arrow operator should be a member
or method of an object. However, in order to implement it like that, you would have to be able to
implement the equivalent of operator* followed by operator.; C++ doesn’t allow you to overload
operator. for good reason: it’s impossible to write a single prototype that allows you to capture

Overloading the Dereferencing Operators  ❘  495

any possible member or method selection. Therefore, C++ treats operator-> as a special case.
Consider this line:

smartCell->set(5);

C++ translates this to

(smartCell.operator->())->set(5);

As you can see, C++ applies another operator-> to whatever you return from your overloaded
operator->. Therefore, you must return a pointer, like this:

template <typename T> class Pointer
{
 public:
 // Omitted for brevity
 T* operator->();
 const T* operator->() const;
 // Omitted for brevity
};

template <typename T> T* Pointer<T>::operator->()
{
 return mPtr;
}

template <typename T> const T* Pointer<T>::operator->() const
{
 return mPtr;
}

You may find it confusing that operator* and operator-> are asymmetric, but once you see them a
few times, you’ll get used to it.

What in the World Are operator.* and operator–>*?
It’s perfectly legitimate in C++ to take the addresses of class data members and methods in order to
obtain pointers to them. However, you can’t access a non-static data member or call a non-static
method without an object. The whole point of class data members and methods is that they exist
on a per-object basis. Thus, when you want to call the method or access the data member via the
pointer, you must dereference the pointer in the context of an object. The following example dem-
onstrates this. Chapter 11 discusses the syntactical details in the section “Pointers to Methods and
Data Members.”

SpreadsheetCell myCell;
double (SpreadsheetCell::*methodPtr) () const = &SpreadsheetCell::getValue;
cout << (myCell.*methodPtr)() << endl;

Note the use of the .* operator to dereference the method pointer and call the method. There is also
an equivalent operator->* for calling methods via pointers when you have a pointer to an object
instead of the object itself. The operator looks like this:

SpreadsheetCell* myCell = new SpreadsheetCell();
double (SpreadsheetCell::*methodPtr) () const = &SpreadsheetCell::getValue;
cout << (myCell->*methodPtr)() << endl;

496  ❘  CHAPTER 15   Overloading C++ Operators

C++ does not allow you to overload operator.* (just as you can’t overload operator.), but you
could overload operator->*. However, it is very tricky, and, given that most C++ programmers
don’t even know that you can access methods and data members through pointers, it’s probably not
worth the trouble. The std::shared_ptr template in the Standard Library, for example, does not
overload operator->*.

WRITING CONVERSION OPERATORS

Going back to the SpreadsheetCell example, consider these two lines of code:

SpreadsheetCell cell(1.23);
double d1 = cell; // DOES NOT COMPILE!

A SpreadsheetCell contains a double representation, so it seems logical that you could assign it
to a double variable. Well, you can’t. The compiler tells you that it doesn’t know how to convert a
SpreadsheetCell to a double. You might be tempted to try forcing the compiler to do what you
want, like this:

double d1 = (double)cell; // STILL DOES NOT COMPILE!

First, the preceding code still doesn’t compile because the compiler still doesn’t know how to convert
the SpreadsheetCell to a double. It already knew from the first line what you wanted it to do, and
it would do it if it could. Second, it’s a bad idea in general to add gratuitous casts to your program.

If you want to allow this kind of assignment, you must tell the compiler how to perform it.
Specifically, you can write a conversion operator to convert SpreadsheetCells to doubles. The
prototype looks like this:

operator double() const;

The name of the function is operator double. It has no return type because the return type is
specified by the name of the operator: double. It is const because it doesn’t change the object on
which it is called. The implementation looks like this:

SpreadsheetCell::operator double() const
{
 return getValue();
}

That’s all you need to do to write a conversion operator from SpreadsheetCell to double. Now
the compiler accepts the following lines and does the right thing at run time:

SpreadsheetCell cell(1.23);
double d1 = cell; // Works as expected

You can write conversion operators for any type with this same syntax. For example, here is an
std::string conversion operator for SpreadsheetCell:

SpreadsheetCell::operator std::string() const
{
 return doubleToString(getValue());
}

Writing Conversion Operators  ❘  497

Now you can write code like the following:

SpreadsheetCell cell(1.23);
string str = cell;

Solving Ambiguity Problems with Explicit Conversion
Operators

Note that writing the double conversion operator for the SpreadsheetCell object introduces an
ambiguity problem. Consider this line:

SpreadsheetCell cell(1.23);
double d2 = cell + 3.3; // DOES NOT COMPILE IF YOU DEFINE operator double()

This line now fails to compile. It worked before you wrote operator double(), so what’s the
problem now? The issue is that the compiler doesn’t know if it should convert cell to a double
with operator double() and perform double addition, or convert 3.3 to a SpreadsheetCell
with the double constructor and perform SpreadsheetCell addition. Before you wrote operator
double(), the compiler had only one choice: convert 3.3 to a SpreadsheetCell with the double
constructor and perform SpreadsheetCell addition. However, now the compiler could do either. It
doesn’t want to make a choice you might not like, so it refuses to make any choice at all.

The usual pre-C++11 solution to this conundrum is to make the constructor in question explicit,
so that the automatic conversion using that constructor is prevented (see Chapter 9). However, you
don’t want that constructor to be explicit because you generally like the automatic conversion of
doubles to SpreadsheetCells. Since C++11, you can solve this problem by making the double con-
version operator explicit instead of the constructor:

explicit operator double() const;

The following code demonstrates its use:

SpreadsheetCell cell = 6.6; // [1]
string str = cell; // [2]
double d1 = static_cast<double>(cell); // [3]
double d2 = static_cast<double>(cell + 3.3); // [4]

Here is what each line of code means:

➤➤ [1] Uses the implicit conversion from a double to a SpreadsheetCell. Because this is in the
declaration, this is done by calling the constructor that accepts a double.

➤➤ [2] Uses the operator string() conversion operator.

➤➤ [3] Uses the operator double() conversion operator. Note that because this conversion
operator is now declared explicit, the cast is required.

➤➤ [4] Uses the implicit conversion of 3.3 to a SpreadsheetCell, followed by operator+ on
two SpreadsheetCells, followed by a required explicit cast to invoke operator double().

498  ❘  CHAPTER 15   Overloading C++ Operators

Conversions for Boolean Expressions
Sometimes it is useful to be able to use objects in Boolean expressions. For example, programmers
often use pointers in conditional statements like this:

if (ptr != nullptr) { /* Perform some dereferencing action. */ }

Sometimes they write shorthand conditions such as this:

if (ptr) { /* Perform some dereferencing action. */ }

Other times, you see code as follows:

if (!ptr) { /* Do something. */ }

Currently, none of the preceding expressions compile with the Pointer smart pointer class template
defined earlier. However, you can add a conversion operator to the class to convert it to a pointer
type. Then, the comparisons to nullptr, as well as the object alone in an if statement, will trig-
ger the conversion to the pointer type. The usual pointer type for the conversion operator is void*
because that’s a pointer type with which you cannot do much except test it in Boolean expressions.
Here is the implementation:

template <typename T> Pointer<T>::operator void*() const
{
 return mPtr;
}

Now the following code compiles and does what you expect:

void process(Pointer<SpreadsheetCell>& p)
{
 if (p != nullptr) { cout << "not nullptr" << endl; }
 if (p != NULL) { cout << "not NULL" << endl; }
 if (p) { cout << "not nullptr" << endl; }
 if (!p) { cout << "nullptr" << endl; }
}

int main()
{
 Pointer<SpreadsheetCell> smartCell(nullptr);
 process(smartCell);
 cout << endl;

 Pointer<SpreadsheetCell> anotherSmartCell(new SpreadsheetCell(5.0));
 process(anotherSmartCell);
}

The output is as follows:

nullptr

not nullptr
not NULL
not nullptr

Writing Conversion Operators  ❘  499

Another alternative is to overload operator bool() as follows instead of operator void*(). After
all, you’re using the object in a Boolean expression; why not convert it directly to a bool?

template <typename T> Pointer<T>::operator bool() const
{
 return mPtr != nullptr;
}

The following comparisons still work:

if (p != NULL) { cout << "not NULL" << endl; }
if (p) { cout << "not nullptr" << endl; }
if (!p) { cout << "nullptr" << endl; }

However, with operator bool(), the following comparison with nullptr results in a compilation
error:

if (p != nullptr) { cout << "not nullptr" << endl; } // Error

This is correct behavior because nullptr has its own type called nullptr_t, which is not auto-
matically converted to the integer 0 (false). The compiler cannot find an operator!= that takes a
Pointer object and a nullptr_t object. You could implement such an operator!= as a friend of
the Pointer class:

template <typename T>
class Pointer
{
 public:
 // Omitted for brevity
 template <typename T>
 friend bool operator!=(const Pointer<T>& lhs, std::nullptr_t rhs);
 // Omitted for brevity
};

template <typename T>
bool operator!=(const Pointer<T>& lhs, std::nullptr_t rhs)
{
 return lhs.mPtr != rhs;
}

However, after implementing this operator!=, the following comparison stops working, because
the compiler no longer knows which operator!= to use.

if (p != NULL) { cout << "not NULL" << endl; }

From this example, you might conclude that the operator bool() technique only seems appropri-
ate for objects that don’t represent pointers and for which conversion to a pointer type really doesn’t
make sense. Unfortunately, adding a conversion operator to bool presents some other unanticipated
consequences. C++ applies “promotion” rules to silently convert bool to int whenever the opportu-
nity arises. Therefore, with the operator bool(), the following code compiles and runs:

Pointer<SpreadsheetCell> anotherSmartCell(new SpreadsheetCell(5.0));
int i = anotherSmartCell; // Converts Pointer to bool to int.

500  ❘  CHAPTER 15   Overloading C++ Operators

That’s usually not behavior that you expect or desire. To prevent such assignments, you could
explicitly delete the conversion operators to int, long, long long, and so on. However, this is
getting messy. So, many programmers prefer operator void*() instead of operator bool().

As you can see, there is a design element to overloading operators. Your decisions about which
operators to overload directly influence the ways in which clients can use your classes.

OVERLOADING THE MEMORY ALLOCATION AND
DEALLOCATION OPERATORS

C++ gives you the ability to redefine the way memory allocation and deallocation work in your
programs. You can provide this customization both on the global level and the class level. This
capability is most useful when you are worried about memory fragmentation, which can occur if
you allocate and deallocate a lot of small objects. For example, instead of going to the default C++
memory allocation each time you need memory, you could write a memory pool allocator that
reuses fixed-size chunks of memory. This section explains the subtleties of the memory allocation
and deallocation routines and shows you how to customize them. With these tools, you should be
able to write your own allocator if the need ever arises.

WARNING  Unless you know a lot about memory allocation strategies, attempts
to overload the memory allocation routines are rarely worth the trouble. Don’t
overload them just because it sounds like a neat idea. Only do so if you have a
genuine requirement and the necessary knowledge.

How new and delete Really Work
One of the trickiest aspects of C++ is the details of new and delete. Consider this line of code:

SpreadsheetCell* cell = new SpreadsheetCell();

The part “new SpreadsheetCell()” is called the new-expression. It does two things. First, it
allocates space for the SpreadsheetCell object by making a call to operator new. Second, it calls
the constructor for the object. Only after the constructor has completed does it return the pointer
to you.

delete works analogously. Consider this line of code:

delete cell;

This line is called the delete-expression. It first calls the destructor for cell, and then calls opera-
tor delete to free the memory.

You can overload operator new and operator delete to control memory allocation and dealloca-
tion, but you cannot overload the new-expression or the delete-expression. Thus, you can customize
the actual memory allocation and deallocation, but not the calls to the constructor and destructor.

Overloading the Memory Allocation and Deallocation Operators  ❘  501

The New-Expression and operator new
There are six different forms of the new-expression, each of which has a corresponding operator
new. Earlier chapters in this book already show four new-expressions: new, new[], new(nothrow),
and new(nothrow)[]. The following list shows the corresponding four operator new forms from
the <new> header file:

void* operator new(size_t size);
void* operator new[](size_t size);
void* operator new(size_t size, const std::nothrow_t&) noexcept;
void* operator new[](size_t size, const std::nothrow_t&) noexcept;

There are two special new-expressions that do no allocation, but invoke the constructor on an exist-
ing piece of storage. These are called placement new operators (including both single and array
forms). They allow you to construct an object in preexisting memory like this:

void* ptr = allocateMemorySomehow();
SpreadsheetCell* cell = new (ptr) SpreadsheetCell();

This feature is a bit obscure, but it’s important to realize that it exists. It can come in handy if you
want to implement memory pools such that you reuse memory without freeing it in between. The
corresponding operator new forms look as follows; however, the C++ standard forbids you from
overloading them.

void* operator new(size_t size, void* p) noexcept;
void* operator new[](size_t size, void* p) noexcept;

The Delete-Expression and operator delete
There are only two different forms of the delete-expression that you can call: delete, and
delete[]; there are no nothrow or placement forms. However, there are all six forms of operator
delete. Why the asymmetry? The two nothrow and two placement forms are used only if an excep-
tion is thrown from a constructor. In that case, the operator delete is called that matches the
operator new that was used to allocate the memory prior to the constructor call. However, if you
delete a pointer normally, delete will call either operator delete or operator delete[] (never
the nothrow or placement forms). Practically, this doesn’t really matter because the C++ standard
says that throwing an exception from delete results in undefined behavior. This means delete
should never throw an exception anyway, so the nothrow version of operator delete is superflu-
ous. Also, placement delete should be a no-op, because the memory wasn’t allocated in placement
new, so there’s nothing to free. Here are the prototypes for the operator delete forms:

void operator delete(void* ptr) noexcept;
void operator delete[](void* ptr) noexcept;
void operator delete(void* ptr, const std::nothrow_t&) noexcept;
void operator delete[](void* ptr, const std::nothrow_t&) noexcept;
void operator delete(void* p, void*) noexcept;
void operator delete[](void* p, void*) noexcept;

Overloading operator new and operator delete
You can actually replace the global operator new and operator delete routines if you want. These
functions are called for every new-expression and delete-expression in the program, unless there are

502  ❘  CHAPTER 15   Overloading C++ Operators

more specific routines in individual classes. However, to quote Bjarne Stroustrup, “. . . replacing the
global operator new and operator delete is not for the fainthearted.” (The C++ Programming
Language, third edition, Addison-Wesley, 1997). I don’t recommend it either!

WARNING  If you fail to heed my advice and decide to replace the global opera-
tor new, keep in mind that you cannot put any code in the operator that makes a
call to new because this will cause an infinite recursion. For example, you cannot
write a message to the console with cout.

A more useful technique is to overload operator new and operator delete for specific classes.
These overloaded operators will be called only when you allocate and deallocate objects of that
particular class. Here is an example of a class that overloads the four non-placement forms of
operator new and operator delete:

#include <cstddef>
#include <new>

class MemoryDemo
{
 public:
 virtual ~MemoryDemo() = default;

 void* operator new(size_t size);
 void operator delete(void* ptr) noexcept;

 void* operator new[](size_t size);
 void operator delete[](void* ptr) noexcept;

 void* operator new(size_t size, const std::nothrow_t&) noexcept;
 void operator delete(void* ptr, const std::nothrow_t&) noexcept;

 void* operator new[](size_t size, const std::nothrow_t&) noexcept;
 void operator delete[](void* ptr, const std::nothrow_t&) noexcept;
};

Here are implementations of these operators that simply pass the arguments through to calls to the
global versions of the operators. Note that nothrow is actually a variable of type nothrow_t:

void* MemoryDemo::operator new(size_t size)
{
 cout << "operator new" << endl;
 return ::operator new(size);
}
void MemoryDemo::operator delete(void* ptr) noexcept
{
 cout << "operator delete" << endl;
 ::operator delete(ptr);
}
void* MemoryDemo::operator new[](size_t size)
{

Overloading the Memory Allocation and Deallocation Operators  ❘  503

 cout << "operator new[]" << endl;
 return ::operator new[](size);
}
void MemoryDemo::operator delete[](void* ptr) noexcept
{
 cout << "operator delete[]" << endl;
 ::operator delete[](ptr);
}
void* MemoryDemo::operator new(size_t size, const nothrow_t&) noexcept
{
 cout << "operator new nothrow" << endl;
 return ::operator new(size, nothrow);
}
void MemoryDemo::operator delete(void* ptr, const nothrow_t&) noexcept
{
 cout << "operator delete nothrow" << endl;
 ::operator delete(ptr, nothrow);
}
void* MemoryDemo::operator new[](size_t size, const nothrow_t&) noexcept
{
 cout << "operator new[] nothrow" << endl;
 return ::operator new[](size, nothrow);
}
void MemoryDemo::operator delete[](void* ptr, const nothrow_t&) noexcept
{
 cout << "operator delete[] nothrow" << endl;
 ::operator delete[](ptr, nothrow);
}

Here is some code that allocates and frees objects of this class in several ways:

MemoryDemo* mem = new MemoryDemo();
delete mem;
mem = new MemoryDemo[10];
delete [] mem;
mem = new (nothrow) MemoryDemo();
delete mem;
mem = new (nothrow) MemoryDemo[10];
delete [] mem;

Here is the output from running the program:

operator new
operator delete
operator new[]
operator delete[]
operator new nothrow
operator delete
operator new[] nothrow
operator delete[]

These implementations of operator new and operator delete are obviously trivial and not
particularly useful. They are intended only to give you an idea of the syntax in case you ever want
to implement nontrivial versions of them.

504  ❘  CHAPTER 15   Overloading C++ Operators

WARNING  Whenever you overload operator new, overload the corresponding
form of operator delete. Otherwise, memory will be allocated as you specify
but freed according to the built-in semantics, which may not be compatible.

It might seem overkill to overload all of the various forms of operator new. However, it’s generally
a good idea to do so in order to prevent inconsistencies in the memory allocations. If you don’t
want to provide implementations for certain forms, you can explicitly delete these using =delete in
order to prevent anyone from using them. See the next section for more information.

WARNING  Overload all forms of operator new, or explicitly delete forms that
you don’t want to get used, to prevent inconsistencies in the memory allocations.

Explicitly Deleting/Defaulting operator new and operator
delete

Chapter 8 shows how you can explicitly delete or default a constructor or assignment operator.
Explicitly deleting or defaulting is not limited to constructors and assignment operators. For exam-
ple, the following class deletes the operator new and new[], which means that this class cannot be
dynamically created using new or new[]:

class MyClass
{
 public:
 void* operator new(size_t size) = delete;
 void* operator new[](size_t size) = delete;
};

Using this class in the following ways results in compilation errors:

int main()
{
 MyClass* p1 = new MyClass;
 MyClass* pArray = new MyClass[2];
 return 0;
}

Overloading operator new and operator delete with Extra
Parameters

In addition to overloading the standard forms of operator new, you can write your own versions
with extra parameters. These extra parameters can be useful for passing various flags or counters
to your memory allocation routines. For instance, some runtime libraries use this in debug mode to

Overloading the Memory Allocation and Deallocation Operators  ❘  505

provide the filename and line number where an object is allocated, so when there is a memory leak,
the offending line that did the allocation can be identified.

As an example, here are the prototypes for an additional operator new and operator delete with
an extra integer parameter for the MemoryDemo class:

void* operator new(size_t size, int extra);
void operator delete(void* ptr, int extra) noexcept;

The implementation is as follows:

void* MemoryDemo::operator new(size_t size, int extra)
{
 cout << "operator new with extra int: " << extra << endl;
 return ::operator new(size);
}
void MemoryDemo::operator delete(void* ptr, int extra) noexcept
{
 cout << "operator delete with extra int: " << extra << endl;
 return ::operator delete(ptr);
}

When you write an overloaded operator new with extra parameters, the compiler automatically
allows the corresponding new-expression. The extra arguments to new are passed with function call
syntax (as with nothrow versions). So, you can now write code like this:

MemoryDemo* memp = new(5) MemoryDemo();
delete memp;

The output is as follows:

operator new with extra int: 5
operator delete

When you define an operator new with extra parameters, you should also define the correspond-
ing operator delete with the same extra parameters. You cannot call this operator delete with
extra parameters yourself, but it will be called only when you use your operator new with extra
parameters and the constructor of your object throws an exception.

Overloading operator delete with Size of Memory as
Parameter

An alternate form of operator delete gives you the size of the memory that should be freed as well
as the pointer. Simply declare the prototype for operator delete with an extra size parameter.

WARNING  If your class declares two identical versions of operator delete
except that one takes the size parameter and the other doesn’t, the version with-
out the size parameter will always get called. If you want the version with the
size parameter to be used, write only that version.

506  ❘  CHAPTER 15   Overloading C++ Operators

You can replace operator delete with the version that takes a size for any of the versions of
operator delete independently. Here is the MemoryDemo class definition with the first operator
delete modified to take the size of the memory to be deleted:

class MemoryDemo
{
 public:
 // Omitted for brevity
 void* operator new(size_t size);
 void operator delete(void* ptr, size_t size) noexcept;
 // Omitted for brevity
};

The implementation of this operator delete calls the global operator delete without the size
parameter because there is no global operator delete that takes the size:

void MemoryDemo::operator delete(void* ptr, size_t size) noexcept
{
 cout << "operator delete with size " << size << endl;
 ::operator delete(ptr);
}

This capability is useful only if you are writing a complicated memory allocation and deallocation
scheme for your classes.

SUMMARY

This chapter summarized the rationale for operator overloading and provided examples and expla-
nations for overloading the various categories of operators. Hopefully, this chapter taught you to
appreciate the power that it gives you. Throughout this book, operator overloading is used to
provide abstractions and easy-to-use class interfaces.

Now it’s time to start delving into the C++ Standard Library. The next chapter starts with an
overview of the functionality provided by the C++ Standard Library, followed by chapters that go
deeper into specific features of the library.

Overview of the C++ Standard
Library

WHAT’S IN THIS CHAPTER?

➤➤ The coding principles used throughout the Standard Library

➤➤ The kind of functionality the Standard Library provides

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

The most important library that you will use as a C++ programmer is the C++ Standard
Library. As its name implies, this library is part of the C++ standard, so any standards-
conforming compiler should include it. The Standard Library is not monolithic: it includes
several disparate components, some of which you have been using already. You may even have
assumed they were part of the core language. All Standard Library classes and functions are
declared in the std namespace, or a sub-namespace of std.

The heart of the C++ Standard Library is its generic containers and algorithms. Some people
still call this subset of the library the Standard Template Library, or STL for short, because
originally it was based on a third-party library called the Standard Template Library which
used templates abundantly. However, STL is not a term defined by the C++ standard itself, so
this book does not use it. The power of the Standard Library is that it provides generic con-
tainers and generic algorithms in such a way that most of the algorithms work on most of the
containers, no matter what type of data the containers store. Performance is a very important
aspect of the Standard Library. The goal is to make the Standard Library containers and algo-
rithms as fast as, or faster than hand-written code.

16

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

508  ❘  CHAPTER 16   Overview of the C++ Standard Library

The C++17 Standard Library also includes most of the C headers that are part of the C11 standard,
but with new names.1 For example, you can access the functionality from the C <stdio.h> header
by including <cstdio>, which also puts everything in the std namespace. C++17 has deprecated
the use of the C headers <complex.h>, <ccomplex>, <tgmath.h>, and <ctgmath>. These headers
don’t contain any C functionality, and simply include equivalent functionality from other C++ head-
ers (<complex> and <cmath>). The C headers <iso646.h>, <stdalign.h>, <stdbool.h>, and their
<cxyz> equivalents are useless in C++ as these define macros that are keywords in C++.

NOTE  The use of any functionality provided by C headers is discouraged in
favor of true C++ functionality.

A C++ programmer who wishes to claim language expertise is expected to be familiar with the
Standard Library. You can save yourself immeasurable time and energy by incorporating Standard
Library containers and algorithms into your programs instead of writing and debugging your own
versions. Now is the time to master this Standard Library.

This first chapter on the Standard Library provides a general overview of the available functionality.
The next few chapters go into more detail on several aspects of the Standard Library, including con-
tainers, iterators, generic algorithms, predefined function object classes, regular expressions, filesys-
tem support, random number generation, and much more. I also discuss customizing and extending
the library.

Despite the depth of material found in this and the following chapters, the Standard Library is too
large for this book to cover exhaustively. You should read these chapters to learn about the Standard
Library, but keep in mind that they don’t mention every method and data member that the various
classes provide, or show you the prototypes of every algorithm. Appendix C provides a summary of
all the header files in the Standard Library. Consult a Standard Library Reference, such as the “C++
Standard Library Quick Reference” book, or the online resources http://www.cppreference.com/
or http://www.cplusplus.com/reference/, for a complete reference of all provided functionality.

CODING PRINCIPLES

The Standard Library makes heavy use of the C++ features called templates and operator
overloading.

Use of Templates
Templates are used to allow generic programming. They make it possible to write code that can
work with all kinds of objects, even objects unknown to the programmer when writing the code.
The obligation of the programmer writing the template code is to specify the requirements of the
classes that define these objects; for example, that they have an operator for comparison, or a copy
constructor, or whatever is deemed appropriate, and then making sure the code that is written uses
only those required capabilities. The obligation of the programmer creating the objects is to supply
those operators and methods that the template writer requires.

1The C11 headers <stdatomic.h>, <stdnoreturn.h>, <threads.h>, and their <cxyz> equivalents are not
included in the C++ standard.

Overview of the C++ Standard Library  ❘  509

Unfortunately, many programmers consider templates to be the most difficult part of C++ and,
for that reason, tend to avoid them. However, even if you never write your own templates, you need
to understand their syntax and capabilities in order to use the Standard Library. Templates are
described in detail in Chapter 12. If you skipped that chapter and are not familiar with templates,
I suggest you first read Chapter 12, and then come back to learn more about the Standard Library.

Use of Operator Overloading
Operator overloading is another feature used extensively by the C++ Standard Library. Chapter 9
has a whole section devoted to operator overloading. Make sure you read that section and under-
stand it before tackling this and subsequent chapters. In addition, Chapter 15 presents much more
detail on the subject of operator overloading, but those details are not required to understand the
following chapters.

OVERVIEW OF THE C++ STANDARD LIBRARY

This section introduces the various components of the Standard Library from a design perspective.
You will learn what facilities are available for you to use, but you will not learn the coding details.
Those details are covered in other chapters.

Strings
C++ provides a built-in string class, defined in the <string> header. Although you may still use
C-style strings of character arrays, the C++ string class is superior in almost every way. It handles
the memory management; provides some bounds checking, assignment semantics, and comparisons;
and supports manipulations such as concatenation, substring extraction, and substring or character
replacement.

NOTE  Technically, std::string is a type alias for a char instantiation of
the std::basic_string template. However, you need not worry about these
details; you can use string as if it were a bona fide non-template class.

The Standard Library also provides a string_view class, defined in <string_view>. It is a read-
only view of all kind of string representations, and can be used as a drop-in replacement for const
string&, but without the overhead. It never copies strings!

C++ provides support for Unicode and localization. These features allow you to write programs that
work with different languages, for example, Chinese. Locales, defined in <locale>, allow you to
format data such as numbers and dates according to the rules of a certain country or region.

In case you missed it, Chapter 2 provides all the details of the string and string_view classes,
while Chapter 19 discusses Unicode and localization.

510  ❘  CHAPTER 16   Overview of the C++ Standard Library

Regular Expressions
Regular expressions are available through the <regex> header file. They make it easy to perform
so-called pattern-matching, often used in text processing. Pattern-matching allows you to search
special patterns in strings and optionally to replace them with a new pattern. Regular expressions
are discussed in Chapter 19.

I/O Streams
C++ includes a model for input and output called streams. The C++ library provides routines for
reading and writing built-in types from and to files, console/keyboard, and strings. C++ also pro-
vides the facilities for coding your own routines for reading and writing your own objects. The
I/O functionality is defined in several header files: <fstream>, <iomanip>, <ios>, <iosfwd>,
<iostream>, <istream>, <ostream>, <sstream>, <streambuf>, and <strstream>. Chapter 1
reviews the basics of I/O streams, and Chapter 13 discusses streams in detail.

Smart Pointers
One of the problems faced in robust programming is knowing when to delete an object. There are
several failures that can happen. A first problem is not deleting the object at all (failing to free the
storage). These are known as memory leaks, where objects accumulate and take up space but are
not used. Another problem is where a piece of code deletes the storage while another piece of code
is still pointing to that storage, resulting in pointers to storage that either is no longer in use or has
been reallocated for another purpose. These are known as dangling pointers. One more problem
is when one piece of code frees the storage, and another piece of code attempts to free the same
storage. This is known as double-freeing. All of these problems tend to result in program failures
of some sort. Some failures are readily detected; others cause the program to produce erroneous
results. Most of these errors are difficult to discover and repair.

C++ addresses these problems with smart pointers: unique_ptr, shared_ptr, and weak_ptr.
shared_ptr and weak_ptr are thread-safe. They are all defined in the <memory> header. These
smart pointers are introduced in Chapter 1 and discussed in more detail in Chapter 7.

Before C++11, the functionality of unique_ptr was handled by a type called auto_ptr, which has
been removed from C++17 and should not be used anymore. There was no equivalent to shared_
ptr in the earlier Standard Library, although many third-party libraries (for example, Boost) did
provide this capability.

Exceptions
The C++ language supports exceptions, which allow functions or methods to pass errors of various
types up to calling functions or methods. The C++ Standard Library provides a class hierarchy of
exceptions that you can use in your code as is, or that you can derive from to create your own excep-
tion types. Exception support is defined in a couple of header files: <exception>, <stdexcept>, and
<system_error>. Chapter 14 covers the details of exceptions and the standard exception classes.

Overview of the C++ Standard Library  ❘  511

Mathematical Utilities
The C++ Standard Library provides a collection of mathematical utility classes and functions.

A whole range of common mathematical functions is available, such as abs(), remainder(), fma(),
exp(), log(), pow(), sqrt(), sin(), atan2(), sinh(), erf(), tgamma(), ceil(), floor(), and
more. C++17 adds a number of special mathematical functions to work with Legendre polynomials,
beta functions, elliptic integrals, Bessel functions, cylindrical Neumann functions, and so on.

There is a complex number class called complex, defined in <complex>, which provides an abstrac-
tion for working with numbers that contain both real and imaginary components.

The compile-time rational arithmetic library provides a ratio class template, defined in the <ratio>
header file. This ratio class template can exactly represent any finite rational number defined by a
numerator and denominator. This library is discussed in Chapter 20.

The Standard Library also contains a class called valarray, defined in <valarray>, which is simi-
lar to the vector class but is more optimized for high-performance numerical applications. The
library provides several related classes to represent the concept of vector slices. From these building
blocks, it is possible to build classes to perform matrix mathematics. There is no built-in matrix
class; however, there are third-party libraries like Boost that include matrix support. The valarray
class is not further discussed in this book.

C++ also provides a standard way to obtain information about numeric limits, such as the maxi-
mum possible value for an integer on the current platform. In C, you could access #defines, such as
INT_MAX. While those are still available in C++, it’s recommended to use the numeric_limits class
template defined in the <limits> header file. Its use is straightforward, as shown in the following
code:

cout << "int:" << endl;
cout << "Max int value: " << numeric_limits<int>::max() << endl;
cout << "Min int value: " << numeric_limits<int>::min() << endl;
cout << "Lowest int value: " << numeric_limits<int>::lowest() << endl;

cout << endl << "double:" << endl;
cout << "Max double value: " << numeric_limits<double>::max() << endl;
cout << "Min double value: " << numeric_limits<double>::min() << endl;
cout << "Lowest double value: " << numeric_limits<double>::lowest() << endl;

The output of this code snippet on my system is as follows:

int:
Max int value: 2147483647
Min int value: -2147483648
Lowest int value: -2147483648

double:
Max double value: 1.79769e+308
Min double value: 2.22507e-308
Lowest double value: -1.79769e+308

512  ❘  CHAPTER 16   Overview of the C++ Standard Library

Note the differences between min() and lowest(). For an integer, the minimum value equals the
lowest value. However, for floating-point types, the minimum value is the smallest positive value
that can be represented, while the lowest value is the most negative value representable, which
equals -max().

Time Utilities
C++ includes the chrono library, defined in the <chrono> header file. This library makes it easy to
work with time; for example, to time certain durations, or to perform actions based on timing. The
chrono library is discussed in detail in Chapter 20. Other time and date utilities are provided in the
<ctime> header.

Random Numbers
C++ already has support for generating pseudo-random numbers for a long time with the srand()
and rand() functions. However, those functions provide only very basic random numbers. For
example, you cannot change the distribution of the generated random numbers.

Since C++11, a random number library has been added to the standard, which is much more power-
ful. The new library is defined in <random>, and comes with random number engines, random num-
ber engine adaptors, and random number distributions. All of these can be used to give you random
numbers more suited to your problem domain, such as normal distributions, negative exponential
distributions, and so on.

Consult Chapter 20 for details on this library.

Initializer Lists
Initializer lists are defined in the <initializer_list> header file. They make it easy to write func-
tions that can accept a variable number of arguments and are discussed in Chapter 1.

Pair and Tuple
The <utility> header defines the pair template, which can store two elements with two different
types. This is known as storing heterogeneous elements. All Standard Library containers discussed
further in this chapter store homogeneous elements, meaning that all the elements in the container
must have the same type. A pair allows you to store exactly two elements of completely unrelated
types in one object. The pair class template is discussed in more detail in Chapter 17.

tuple, defined in <tuple>, is a generalization of pair. It is a sequence with a fixed size that can
have heterogeneous elements. The number and type of elements for a tuple instantiation is fixed at
compile time. Tuples are discussed in Chapter 20.

optional, variant, and any
C++17 introduces the following new classes:

➤➤ optional, defined in <optional>, holds a value of a specific type, or nothing. It can be used
for parameters or return types of a function if you want to allow for values to be optional.

C++17

Overview of the C++ Standard Library  ❘  513

➤➤ variant, defined in <variant>, can hold a single value of one of a given set of types, or
nothing.

➤➤ any, defined in <any>, is a class that can contain a single value of any type.

These three types are discussed in Chapter 20.

Function Objects
A class that implements a function call operator is called a function object. Function objects can, for
example, be used as predicates for certain Standard Library algorithms. The <functional> header
file defines a number of predefined function objects and supports creating new function objects
based on existing ones.

Function objects are discussed in detail in Chapter 18 together with the Standard Library
algorithms.

Filesystem
C++17 introduces a filesystem support library. Everything is defined in the <filesystem> header,
and lives in the std::filesystem namespace. It allows you to write portable code to work with a
filesystem. You can use it for querying whether something is a directory or a file, iterating over the
contents of a directory, manipulating paths, and retrieving information about files such as their size,
extension, creation time, and so on. This filesystem support library is discussed in Chapter 20.

Multithreading
All major CPU vendors are selling processors with multiple cores. They are being used for every-
thing from servers to consumer computers and even smartphones. If you want your software to take
advantage of all these cores, then you need to write multithreaded code. The Standard Library pro-
vides a couple of basic building blocks for writing such code. Individual threads can be created using
the thread class from the <thread> header.

In multithreaded code you need to take care that several threads are not reading and writing to the
same piece of data at the same time. To prevent this, you can use atomics, defined in <atomic>,
which give you thread-safe atomic access to a piece of data. Other thread synchronization mecha-
nisms are provided by <condition_variable> and <mutex>.

If you just need to calculate something, possibly on a different thread, and get the result back with
proper exception handling, you can use async and future. These are defined in the <future>
header, and are easier to use than directly using the thread class.

Writing multithreaded code is discussed in detail in Chapter 23.

Type Traits
Type traits are defined in the <type_traits> header file and provide information about types at
compile time. They are useful when writing advanced templates and are discussed in Chapter 22.

C++17

514  ❘  CHAPTER 16   Overview of the C++ Standard Library

Standard Integer Types
The <cstdint> header file defines a number of standard integer types such as int8_t, int64_t and
so on. It also includes macros specifying minimum and maximum values of those types. These integer
types are discussed in the context of writing cross-platform code in Chapter 30.

Containers
The Standard Library provides implementations of commonly used data structures such as linked
lists and queues. When you use C++, you should not need to write such data structures again. The
data structures are implemented using a concept called containers, which store information called
elements, in a way that implements the data structure (linked list, queue, and so on) appropriately.
Different data structures have different insertion, deletion, and access behavior and performance
characteristics. It is important to be familiar with the available data structures so that you can
choose the most appropriate one for any given task.

All the containers in the Standard Library are class templates, so you can use them to store any
type, from built-in types such as int and double to your own classes. Each container instance
stores objects of only one type; that is, they are homogeneous collections. If you need non-fixed-
sized heterogeneous collections, you can wrap each element in an std::any instance and store those
any instances in a container. Alternatively, you can store std::variant instances in a container. A
variant can be used if the number of different required types is limited and known at compile time.
Both any and variant are introduced with C++17, and are discussed in Chapter 20. If you needed
heterogeneous collections before C++17, you could create a class that had multiple derived classes,
and each derived class could wrap an object of your required type.

NOTE  The C++ Standard Library containers are homogeneous: they allow
elements of only one type in each container.

Note that the C++ standard specifies the interface, but not the implementation, of each container
and algorithm. Thus, different vendors are free to provide different implementations. However, the
standard also specifies performance requirements as part of the interface, which the implementa-
tions must meet.

This section provides an overview of the various containers available in the Standard Library.

vector
The <vector> header file defines vector, which stores a sequence of elements and provides random
access to these elements. You can think of a vector as an array of elements that grows dynamically
as you insert elements, and additionally provides some bounds checking. Like an array, the elements
of a vector are stored in contiguous memory.

NOTE  A vector in C++ is a synonym for a dynamic array: an array that grows
and shrinks automatically in response to the number of elements it stores.

Overview of the C++ Standard Library  ❘  515

vectors provide fast element insertion and deletion (amortized constant time) at the end of the vec-
tor. Amortized constant time insertion means that most of the time insertions are done in constant
time O(1) (Chapter 4 explains big-O notation). However, sometimes the vector needs to grow in
size to accommodate new elements, which has a complexity of O(N). On average, this results in
O(1) complexity or amortized constant time. Details are explained in Chapter 17. A vector has
slower (linear time) insertion and deletion anywhere else, because the operation must move all the
elements “up” or “down” by one to make room for the new element or to fill the space left by the
deleted element. Like arrays, vectors provide fast (constant time) access to any of their elements.

Even though inserting and removing elements in the middle of a vector requires moving other ele-
ments up or down, a vector should be your default container! Often, a vector will be faster than,
for example, a linked list, even for inserting and removing elements in the middle. The reason is
that a vector is stored contiguously in memory, while a linked list is scattered around in memory.
Computers are extremely efficient to work with contiguous data, which makes vector operations
fast. You should only use something like a linked list if a performance profiler (discussed in Chapter
25) tells you that it performs better than a vector.

NOTE  The vector container should be your default container.

There is a template specialization available for vector<bool> to store Boolean values in a vector.
This specialization optimizes space allocation for the Boolean elements; however, the standard does
not specify how an implementation of vector<bool> should optimize space. The difference between
the vector<bool> specialization and the bitset discussed further in this chapter is that the bitset
container is of fixed size.

list
A Standard Library list is a doubly linked list structure and is defined in <list>. Like an array
or vector, it stores a sequence of elements. However, unlike an array or vector, the elements of a
list are not necessarily contiguous in memory. Instead, each element in the list specifies where to
find the next and previous elements in the list (usually via pointers), hence the name doubly linked
list.

The performance characteristics of a list are the exact opposite of a vector. They provide slow
(linear time) element lookup and access, but quick (constant time) insertion and deletion of elements
once the relevant position has been found. Still, as discussed in the previous section, a vector is
usually faster than a list. Use a profiler to be sure.

forward_list
The forward_list, defined in <forward_list>, is a singly linked list, compared to the list con-
tainer, which is doubly linked. forward_list supports forward iteration only, and requires less
memory than a list. Like lists, forward_lists allow constant time insertion and deletion any-
where once the relevant position has been found, and there is no fast random access to elements.

516  ❘  CHAPTER 16   Overview of the C++ Standard Library

deque
The name deque is an abbreviation for a double-ended queue. A deque, defined in <deque>, pro-
vides quick (constant time) element access. It also provides fast (constant time) insertion and dele-
tion at both ends of the sequence, but it provides slow (linear time) insertion and deletion in the
middle of the sequence. The elements of a deque are not stored contiguously in memory, and thus a
deque might be slower than a vector.

You could use a deque instead of a vector when you need to insert or remove elements from either
end of the sequence but still need fast access to all elements. However, this requirement does not
apply to many programming problems; in most cases, a vector is recommended.

array
The <array> header defines array, which is a replacement for standard C-style arrays. Sometimes
you know the exact number of elements in your container up front and you don’t need the flexibil-
ity of a vector or a list, which are able to grow dynamically to accommodate new elements. An
array is perfect for such fixed-sized collections, and it has a bit less overhead compared to a vector;
it’s basically a thin wrapper around standard C-style arrays. There are a number of advantages in
using arrays instead of standard C-style arrays: they always know their own size, and do not auto-
matically get cast to a pointer to avoid certain types of bugs. Also, arrays do not provide insertion
or deletion; they have a fixed size. The advantage of having a fixed size is that this allows an array
to be allocated on the stack, rather than always demanding heap access as vector does. Access to
elements is very fast (constant time), just as with vectors.

NOTE  The vector, list, forward_list, deque, and array containers are
called sequential containers because they store a sequence of elements.

queue
The name queue comes directly from the definition of the English word queue, which means a line
of people or objects. The queue container is defined in <queue> and provides standard first in, first
out (or FIFO) semantics. A queue is a container in which you insert elements at one end and take
them out at the other end. Both insertion (amortized constant time) and removal (constant time) of
elements are quick.

You should use a queue structure when you want to model real-life “first-come, first-served”
semantics. For example, consider a bank. As customers arrive at the bank, they get in line. As tell-
ers become available, they serve the next customer in line, thus providing “first-come, first-served”
behavior. You could implement a bank simulation by storing customer objects in a queue. As cus-
tomers arrive at the bank, they are added to the end of the queue. As tellers serve customers, they
start with customers at the front of the queue.

priority_queue
A priority_queue, also defined in <queue>, provides queue functionality in which each element
has a priority. Elements are removed from the queue in priority order. In the case of priority ties, the

Overview of the C++ Standard Library  ❘  517

order in which elements are removed is undefined. priority_queue insertion and deletion are gen-
erally slower than simple queue insertion and deletion, because the elements must be reordered to
support the priority ordering.

You can use priority_queues to model “queues with exceptions.” For example, in the preceding
bank simulation, suppose that customers with business accounts take priority over regular custom-
ers. Many real-life banks implement this behavior with two separate lines: one for business custom-
ers and one for everyone else. Any customers in the business queue are taken before customers in
the other line. However, banks could also provide this behavior with a single line in which business
customers move to the front of the line ahead of any non-business customers. In your program, you
could use a priority_queue in which customers have one of two priorities: business or regular. All
business customers would be serviced before all regular customers.

stack
The <stack> header defines the stack class, which provides standard first-in, last-out (FILO)
semantics, also known as last-in, first-out (LIFO). Like a queue, elements are inserted and removed
from the container. However, in a stack, the most recent element inserted is the first one removed.
The name stack derives from a visualization of this structure as a stack of objects in which only the
top object is visible. When you add an object to the stack, you hide all the objects underneath it.

The stack container provides fast (constant time) insertion and removal of elements. You should use
the stack structure when you want FILO semantics. For example, an error-processing tool might
want to store errors on a stack so that the most recent error is the first one available for a human
administrator to read. Processing errors in a FILO order is often useful because newer errors some-
times obviate older ones.

NOTE  Technically, the queue, priority_queue, and stack containers are con-
tainer adaptors. They are simple interfaces built on top of one of the standard
sequential containers vector, list, or deque.

set and multiset
The set class template is defined in the <set> header file, and, as the name suggests, it is a set of
elements, loosely analogous to the notion of a mathematical set: each element is unique, and there
is at most one instance of the element in the set. One difference between the mathematical concept
of set, and set as implemented in the Standard Library, is that in the Standard Library the elements
are kept in an order. The reason for the order is that when the client enumerates the elements, they
come out in the ordering imposed by the type’s operator< or a user-defined comparator. The set
provides logarithmic insertion, deletion, and lookup. This means that, in theory, insertions and dele-
tions are faster than for a vector but slower than for a list; while lookups are faster than for a
list, but slower than for a vector. As always, use a profiler to make sure which container is faster
for your use case.

You could use a set when you need the elements to be in an order, to have equal amounts of inser-
tion/deletion and lookups, and you want to optimize performance for both as much as possible.

518  ❘  CHAPTER 16   Overview of the C++ Standard Library

For example, an inventory-tracking program in a busy bookstore might want to use a set to store
the books. The list of books in stock must be updated whenever books arrive or are sold, so inser-
tion and deletion should be quick. Customers also need the ability to look for a specific book, so the
program should provide fast lookup as well.

NOTE  A set could be an option instead of a vector or list if you need order
and want equal performance for insertion, deletion, and lookup. It could also be
an option if you want to enforce that there are no duplicate elements.

Note that a set does not allow duplicate elements. That is, each element in a set must be unique.
If you want to store duplicate elements, you must use a multiset, also defined in the <set>
header file.

map and multimap
The <map> header defines the map class template, which is an associative array. You can use it as an
array in which the index can be any type; for example, a string. A map stores key/value pairs, and
keeps its elements in sorted order, based on the keys, not the values. It also provides an operator[],
which a set does not provide. In most other respects, it is identical to a set. You could use a map
when you want to associate keys and values. For example, in the preceding bookstore example, you
might want to store the books in a map where the key is the ISBN number of the book and the value
is a Book object containing detailed information for that specific book.

A multimap, also defined in <map>, has the same relation to a map as a multiset does to a set.
Specifically, a multimap is a map that allows duplicate keys.

NOTE  The set and map containers are called associative containers because they
associate keys and values. This term is confusing when applied to sets, because
in sets the keys are themselves the values. Both containers sort their
elements, so they are called sorted or ordered associative containers.

Unordered Associative Containers / Hash Tables
The Standard Library supports hash tables, also called unordered associative containers. There are
four unordered associative containers:

➤➤ unordered_map

➤➤ unordered_multimap

➤➤ unordered_set

➤➤ unordered_multiset

Overview of the C++ Standard Library  ❘  519

The first two containers are defined in <unordered_map>, and the other two containers in <unor-
dered_set>. Better names would have been hash_map, hash_set, and so on. Unfortunately, hash
tables were not part of the C++ Standard Library before C++11, which means a lot of third-party
libraries implemented hash tables themselves by using names with “hash” as a prefix, like hash_map.
Because of this, the C++ standard committee decided to use the prefix “unordered” instead of
“hash” to avoid name clashes.

These unordered associative containers behave similar to their ordered counterparts. An unor-
dered_map is similar to a standard map except that the standard map sorts its elements while the
unordered_map doesn’t sort its elements.

Insertion, deletion, and lookup with these unordered associative containers can be done on average
in constant time. In a worst-case scenario, it will be in linear time. Lookup of elements in an unor-
dered container can be much faster than with a normal map or set, especially when there are a lot of
elements in the container.

Chapter 17 explains how these unordered associative containers work and why they are also called
hash tables.

bitset
C and C++ programmers commonly store a set of flags in a single int or long, using one bit for
each flag. They set and access these bits with the bitwise operators: &, |, ^, ~, <<, and >>. The C++
Standard Library provides a bitset class that abstracts this bit field manipulation, so you shouldn’t
need to use the bit manipulation operators anymore.

The <bitset> header file defines the bitset container, but this is not a container in the nor-
mal sense, in that it does not implement a specific data structure in which you insert and remove
elements. A bitset has a fixed size and does not support iterators. You can think of them as a
sequence of Boolean values that you can read and write. However, unlike the C-style way of han-
dling bits, the bitset is not limited to the size of an int or other elementary data types. Thus, you
can have a 40-bit bitset, or a 213-bit bitset. The implementation will use as much storage as it
needs to implement N bits when you declare your bitset with bitset<N>.

Summary of Standard Library Containers
The following table summarizes the containers provided by the Standard Library. It uses the big-O
notation introduced in Chapter 4 to present the performance characteristics on a container of N ele-
ments. An N/A entry in the table means that the operation is not part of the container semantics.

CONTAINER

CLASS NAME

CONTAINER

TYPE

INSERT PERFORMANCE DELETE PERFORMANCE LOOKUP

PERFORMANCE

vector Sequential Amortized O(1) at the
end; O(N) otherwise.

O(1) at the end; O(N)
otherwise.

O(1)

When to Use: This should be your default container. Only use another container
after using a profiler to confirm it is faster than a vector.

continues

520  ❘  CHAPTER 16   Overview of the C++ Standard Library

CONTAINER

CLASS NAME

CONTAINER

TYPE

INSERT PERFORMANCE DELETE PERFORMANCE LOOKUP

PERFORMANCE

list Sequential O(1) at the beginning
and the end, and once
you are at the position
where you want to
insert the element.

O(1) at the beginning
and the end, and
once you are at the
position where you
want to delete the
element.

O(1) to access
the first or
last ele-
ment; O(N)
otherwise.

When to Use: Rarely. You should use a vector, unless a profiler tells you a list
is faster for your use case.

forward_

list
Sequential O(1) at the beginning,

and once you are at
the position where
you want to insert the
element.

O(1) at the beginning,
and once you are at
the position where
you want to delete
the element.

O(1) to access
the first ele-
ment; O(N)
otherwise.

When to Use: Rarely. You should use a vector, unless a profiler tells you a
forward_list is faster for your use case.

deque Sequential O(1) at the begin-
ning or end; O(N)
otherwise.

O(1) at the begin-
ning or end; O(N)
otherwise.

O(1)

When to Use: Not usually needed; use a vector instead.

array Sequential N/A N/A O(1)

When to Use: When you need a fixed-size array to replace a standard C-style
array.

queue Container
adaptor

Depends on the
underlying container;
O(1) for list and
deque.

Depends on the
underlying container;
O(1) for list and
deque.

N/A

When to Use: When you want a FIFO structure.

priority_

queue
Container
adaptor

Depends on the
underlying container;
amortized O(log(N))
for vector,
O(log(N)) for deque.

Depends on the
underlying container;
O(log(N)) for vector
and deque.

N/A

When to Use: When you want a queue with priority.

TABLE  (continued)

Overview of the C++ Standard Library  ❘  521

CONTAINER

CLASS NAME

CONTAINER

TYPE

INSERT PERFORMANCE DELETE PERFORMANCE LOOKUP

PERFORMANCE

stack Container
adaptor

Depends on the
underlying container;
O(1) for list and
deque, amortized O(1)
for vector.

Depends on the
underlying container;
O(1) for list, vec-
tor, and deque.

N/A

When to Use: When you want a FILO/LIFO structure.

set

multiset

Sorted
associative

O(log(N)) O(log(N)) O(log(N))

When to Use: When you want a sorted collection of elements with equal lookup,
insertion, and deletion times. Use a set when you want a collection of elements
without duplicates.

map

multimap

Sorted
associative

O(log(N)) O(log(N)) O(log(N))

When to Use: When you want a sorted collection to associate keys with values,
that is, an associative array, with equal lookup, insertion, and deletion times.

unordered_

map

unordered_

multimap

Unordered
associa-
tive / hash
table

Average case O(1);
worst case O(N).

Average case O(1);
worst case O(N).

Average case
O(1); worst
case O(N).

When to Use: When you want to associate keys with values with equal lookup,
insertion, and deletion times, and you don’t require the elements to be sorted.
Performance can be better than with a normal map, but that depends on the
elements.

unordered_

set

unordered_

multiset

Unordered
associa-
tive/hash
table

Average case O(1);
worst case O(N).

Average case O(1);
worst case O(N).

Average case
O(1); worst
case O(N).

When to Use: When you want a collection of elements with equal lookup, inser-
tion, and deletion times, and you don’t require the elements to be sorted.
Performance can be better than with a normal set, but that depends on the
elements.

bitset Special N/A N/A O(1)

When to Use: When you want a collection of flags.

522  ❘  CHAPTER 16   Overview of the C++ Standard Library

Note that strings are technically containers as well. They can be thought of as vectors of charac-
ters. Thus, some of the algorithms described in the material that follows also work on strings.

NOTE  vector should be your default container! In practice, insertion and
deletion in a vector are often faster than in a list or forward_list. This is
because of how memory and caches work on modern CPUs, and because of the
fact that for a list or forward_list, you first need to iterate to the position
where you want to insert or delete an element. Memory for a list or forward_
list might be fragmented, so iteration is slower than for a vector.

Algorithms
In addition to containers, the Standard Library provides implementations of many generic algo-
rithms. An algorithm is a strategy for performing a particular task, such as sorting or searching.
These algorithms are implemented as function templates, so they work on most of the different con-
tainer types. Note that the algorithms are not generally part of the containers. The Standard Library
takes the approach of separating the data (containers) from the functionality (algorithms). Although
this approach seems counter to the spirit of object-oriented programming, it is necessary in order to
support generic programming in the Standard Library. The guiding principle of orthogonality main-
tains that algorithms and containers are independent, with (almost) any algorithm working with
(almost) any container.

NOTE  Although the algorithms and containers are theoretically independent,
some containers provide certain algorithms in the form of class methods because
the generic algorithms do not perform well on those particular containers. For
example, sets provide their own find() algorithm that is faster than the generic
find() algorithm. You should use the container-specific method form of the
algorithm, if provided, because it is generally more efficient or appropriate for
the container at hand.

Note that the generic algorithms do not work directly on the containers. They use an intermediary
called an iterator. Each container in the Standard Library provides an iterator that supports travers-
ing the elements in the container in a sequence. The different iterators for the various containers
adhere to standard interfaces, so algorithms can perform their work by using iterators without wor-
rying about the underlying container implementation. The <iterator> header defines the following
helper functions that return specific iterators for containers.

Overview of the C++ Standard Library  ❘  523

FUNCTION NAME FUNCTION SYNOPSIS

begin()

end()

Returns a non-const iterator to the first, and one past the last, element in a
sequence.

cbegin()

cend()

Returns a const iterator to the first, and one past the last, element in a
sequence.

rbegin()

rend()

Returns a non-const reverse iterator to the last, and one before the first,
element in a sequence.

crbegin()

crend()

Returns a const reverse iterator to the last, and one before the first, ele-
ment in a sequence.

NOTE  Iterators mediate between algorithms and containers. They provide a
standard interface to traverse the elements of a container in sequence, so that
any algorithm can work on any container.

This section gives an overview of what kinds of algorithms are available in the Standard Library
without going into detail. Chapter 17 goes deeper into iterators, and Chapter 18 discusses a selection
of algorithms with coding examples. For the exact prototypes of all the available algorithms, consult
a Standard Library Reference.

There are approximately 100 algorithms in the Standard Library, depending on how you count
them. The following sections divide these algorithms into different categories. The algorithms are
defined in the <algorithm> header file unless otherwise noted. Note that whenever the following
algorithms are specified as working on a “sequence” of elements, that sequence is presented to the
algorithm via iterators.

NOTE  When examining the list of algorithms, remember that the Standard
Library is designed with generality in mind, so it adds generality that might
never be used, but which, if required, would be essential. You may not need
every algorithm, or need to worry about the more obscure parameters that are
there for anticipated generality. It is important only to be aware of what’s avail-
able in case you ever find it useful.

Non-modifying Sequence Algorithms
The non-modifying algorithms are those that look at a sequence of elements and return some
information about the elements. As “non-modifying” algorithms, they cannot change the values of

524  ❘  CHAPTER 16   Overview of the C++ Standard Library

elements or the order of elements within the sequence. This category contains three types of algo-
rithms. The following tables list and provide brief summaries of the various non-modifying algo-
rithms. With these algorithms, you should rarely need to write a for loop to iterate over a sequence
of values.

Search Algorithms
These algorithms do not require the sequence to be sorted. N is the size of the sequence to search in,
and M is the size of the pattern to find.

ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

adjacent_find() Finds the first instance of two consecutive elements that
are equal to each other or are equivalent to each other
as specified by a predicate.

O(N)

find()

find_if()

Finds the first element that matches a value or causes a
predicate to return true.

O(N)

find_first_of() Like find, but searches for one of several elements at
the same time.

O(NM)

find_if_not() Finds the first element that causes a predicate to return
false.

O(N)

find_end() Finds the last subsequence in a sequence that matches
another sequence or whose elements are equivalent, as
specified by a predicate.

O(M*(N-M))

search() Finds the first subsequence in a sequence that matches
another sequence or whose elements are equivalent, as
specified by a predicate.*

O(NM)*

search_n() Finds the first instance of n consecutive elements that
are equal to a given value or relate to that value accord-
ing to a predicate.

O(N)

*Since C++17, search() accepts an optional extra parameter to specify the searching algorithm to use
(default_searcher, boyer_moore_searcher, or boyer_moore_horspool_searcher). With the Boyer-
Moore searchers, the worst-case complexity is O(N+M) when the pattern is not found, and O(NM) when the
pattern is found.

Comparison Algorithms
The following comparison algorithms are provided. None of them require the source sequences to
be ordered. All of them have a linear worst-case complexity.

Overview of the C++ Standard Library  ❘  525

ALGORITHM NAME ALGORITHM SYNOPSIS

equal() Determines if two sequences are equal by checking if parallel
elements are equal or match a predicate.

mismatch() Returns the first element in each sequence that does not
match the element in the same location in the other sequence.

lexicographical_compare() Compares two sequences to determine their “lexicographical”
ordering. This algorithm compares each element of the first
sequence with its equivalent element in the second. If one ele-
ment is less than the other, that sequence is lexicographically
first. If the elements are equal, it compares the next elements
in order.

Counting Algorithms

ALGORITHM NAME ALGORITHM SYNOPSIS

all_of() Returns true if the predicate returns true for all the elements in the
sequence or if the sequence is empty; false otherwise.

any_of() Returns true if the predicate returns true for at least one element in the
sequence; false otherwise.

none_of() Returns true if the predicate returns false for all the elements in the
sequence or if the sequence is empty; false otherwise.

count()

count_if()

Counts the number of elements matching a value or that cause a predicate
to return true.

Modifying Sequence Algorithms
The modifying algorithms modify some or all of the elements in a sequence. Some of them modify
elements in place, so that the original sequence changes. Others copy the results to a different
sequence, so that the original sequence remains unchanged. All of them have a linear worst-case
complexity. The following table summarizes the modifying algorithms.

ALGORITHM NAME ALGORITHM SYNOPSIS

copy()

copy_backward()

Copies elements from one sequence to another.

copy_if() Copies elements for which a predicate returns true from one sequence
to another.

copy_n() Copies n elements from one sequence to another.

continues

526  ❘  CHAPTER 16   Overview of the C++ Standard Library

ALGORITHM NAME ALGORITHM SYNOPSIS

fill() Sets all elements in the sequence to a new value.

fill_n() Sets the first n elements in the sequence to a new value.

generate() Calls a specified function to generate a new value for each element in the
sequence.

generate_n() Calls a specified function to generate a new value for the first n elements
in the sequence.

move()

move_backward()

Moves elements from one sequence to another. This uses efficient move
semantics (see Chapter 9).

remove()

remove_if()

remove_copy()

remove_copy_if()

Removes elements that match a given value or that cause a predicate
to return true, either in place or by copying the results to a different
sequence.

replace()

replace_if()

replace_copy()

replace_copy_if()

Replaces all elements matching a value or that cause a predicate to return
true with a new element, either in place or by copying the results to a
different sequence.

reverse()

reverse_copy()

Reverses the order of the elements in the sequence, either in place or by
copying the results to a different sequence.

rotate()

rotate_copy()

Swaps the first and second “halves” of the sequence, either in place or by
copying the results to a different sequence. The two subsequences to be
swapped need not be equal in size.

sample() Selects n random elements from the sequence.

shuffle()

random_shuffle()

Shuffles the sequence by randomly reordering the elements. It is possible
to specify the properties of the random number generator used for shuf-
fling. random_shuffle() is deprecated since C++14, and is removed
from C++17.

transform() Calls a unary function on each element of a sequence or a binary function
on parallel elements of two sequences. This is an in-place transformation.

unique()

unique_copy()

Removes consecutive duplicates from the sequence, either in place or by
copying results to a different sequence.

C++17

TABLE  (continued)

Overview of the C++ Standard Library  ❘  527

Operational Algorithms
Operational algorithms execute a function on individual elements of a sequence. There are two
operational algorithms provided. Both have a linear complexity and do not require the source
sequence to be ordered.

ALGORITHM NAME ALGORITHM SYNOPSIS

for_each() Executes a function on each element in the sequence. The sequence is
specified with a begin and end iterator.

for_each_n() Similar to for_each() but only processes the first n elements in the
sequence. The sequence is specified by a begin iterator and a number of
elements (n).

Swap and Exchange Algorithms
The C++ Standard Library provides the following swap and exchange algorithms.

ALGORITHM NAME ALGORITHM SYNOPSIS

iter_swap()

swap_ranges()

Swaps two elements or sequences of elements.

swap() Swaps two values, defined in the <utility> header.

exchange() Replaces a given value with a new value and returns the old value. Defined
in the <utility> header.

Partition Algorithms
A sequence is partitioned on a certain predicate, if all elements for which the predicate returns true
are before all elements for which it returns false. The first element in the sequence that does not
satisfy the predicate is called the partition point. The Standard Library provides the following parti-
tion algorithms.

ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

is_partitioned() Returns true if all elements for which a predicate
returns true are before all elements for which
it returns false.

Linear

partition() Sorts the sequence such that all elements for which
a predicate returns true are before all elements for
which it returns false, without preserving the origi-
nal order of the elements within each partition.

Linear

C++17

C++17

continues

528  ❘  CHAPTER 16   Overview of the C++ Standard Library

ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

stable_partition() Sorts the sequence such that all elements for which
a predicate returns true are before all elements for
which it returns false, while preserving the original
order of the elements within each partition.

Linear
logarithmic

partition_copy() Copies elements from one sequence to two dif-
ferent sequences. The target sequence is selected
based on the result of a predicate, either true or
false.

Linear

partition_point() Returns an iterator such that all elements before this
iterator return true for a predicate and all elements
after this iterator return false for that predicate.

Logarithmic

Sorting Algorithms
The Standard Library provides several different sorting algorithms with varying performance
guarantees.

ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

is_sorted()

is_sorted_until()

Checks if a sequence is sorted or which subse-
quence is sorted.

Linear

nth_element() Relocates the nth element of the sequence such
that the element in the position pointed to by nth
is the element that would be in that position if the
whole range were sorted, and it rearranges all ele-
ments such that all elements preceding the nth
element are less than the new nth element, and
the ones following it are greater than the new nth
element.

Linear

partial_sort()

partial_sort_copy()

Partially sorts the sequence: the first n elements
(specified by iterators) are sorted; the rest are not.
They are sorted either in place or by copying them
to a new sequence.

Linear
logarithmic

sort()

stable_sort()

Sorts elements in place, either preserving the order
of duplicate elements or not.

Linear
logarithmic

TABLE  (continued)

Overview of the C++ Standard Library  ❘  529

Binary Search Algorithms
The following binary search algorithms are normally used on sorted sequences. Technically, they
only require the sequence to be at least partitioned on the element that is searched for. This could,
for example, be achieved by applying std::partition(). A sorted sequence also meets this require-
ment. All these algorithms have logarithmic complexity.

ALGORITHM NAME ALGORITHM SYNOPSIS

lower_bound() Finds the first element in a sequence not less than (that is greater or equal
to) a given value.

upper_bound() Finds the first element in a sequence greater than a given value.

equal_range() Returns a pair containing the result of both lower_bound() and
upper_bound().

binary_search() Returns true if a given value is found in a sequence; false otherwise.

Set Algorithms
Set algorithms are special modifying algorithms that perform set operations on sequences. They
are most appropriate on sequences from set containers, but work on sorted sequences from most
containers.

ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

inplace_merge() Merges two sorted sequences in place. Linear
logarithmic

merge() Merges two sorted sequences by copying
them to a new sequence.

Linear

includes() Determines if every element from one
sorted sequence is in another sorted
sequence.

Linear

set_union()

set_intersection()

set_difference()

set_symmetric_difference()

Performs the specified set operation on
two sorted sequences, copying results to a
third sorted sequence.

Linear

Heap Algorithms
A heap is a standard data structure in which the elements of an array or sequence are ordered in a
semi-sorted fashion, so that finding the “top” element is quick. For example, a heap data structure is
typically used to implement a priority_queue. Six algorithms allow you to work with heaps.

530  ❘  CHAPTER 16   Overview of the C++ Standard Library

ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

is_heap() Checks if a range of elements is a heap. Linear

is_heap_until() Finds the largest subrange in the given range of ele-
ments that is a heap.

Linear

make_heap() Creates a heap from a range of elements. Linear

push_heap()

pop_heap()

Adds an element to, or removes an element from a
heap.

Logarithmic

sort_heap() Converts a heap into a range of ascending sorted
elements.

Linear logarithmic

Minimum/Maximum Algorithms

ALGORITHM NAME ALGORITHM SYNOPSIS

clamp() Makes sure a value (v) is between a given minimum (lo) and maxi-
mum (hi). Returns a reference to lo if v < lo; returns a reference to
hi if v > hi; otherwise returns a reference to v.

min()

max()

Returns the minimum or maximum of two or more values.

minmax() Returns the minimum and maximum of two or more values as a
pair.

min_element()

max_element()

Returns the minimum or maximum element in a sequence.

minmax_element() Returns the minimum and maximum element in a sequence as a
pair.

Numerical Processing Algorithms
The <numeric> header provides the following numerical processing algorithms. None of them
require the source sequences to be ordered. All of them have a linear complexity.

ALGORITHM NAME ALGORITHM SYNOPSIS

iota() Fills a sequence with successively incrementing values start-
ing with a given value.

gcd() Returns the greatest common divisor of two integer types.

C++17

C++17

Overview of the C++ Standard Library  ❘  531

ALGORITHM NAME ALGORITHM SYNOPSIS

lcm() Returns the least common multiple of two integer types.

adjacent_difference() Generates a new sequence in which each element is the
difference (or other binary operation) of the second and first
of each adjacent pair of elements in the source sequence.

partial_sum() Generates a new sequence in which each element is the sum
(or other binary operation) of an element and all its preced-
ing elements in the source sequence.

exclusive_scan()

inclusive_scan()

These are similar to partial_sum(). An inclusive scan is
identical to a partial sum if the given summation operation
is associative. However, inclusive_scan() sums in a non-
deterministic order, while partial_sum() left to right, so
for non-associative summation operations the result of the
former is non-deterministic. The exclusive_scan() algo-
rithm also sums in a non-deterministic order.

For inclusive_scan(), the ith element is included in
the ith sum, just as for partial_sum(). For exclusive_
scan(), the ith element is not included in the ith sum.

transform_exclusive_scan()

transform_inclusive_scan()

Applies a transformation to each element in a sequence,
then performs an exclusive/inclusive scan.

accumulate() “Accumulates” the values of all the elements in a sequence.
The default behavior is to sum the elements, but the caller
can supply a different binary function instead.

inner_product() Similar to accumulate(), but works on two sequences. This
algorithm calls a binary function (multiplication by default) on
parallel elements in the sequences, accumulating the result
using another binary function (addition by default). If the
sequences represent mathematical vectors, the algorithm
calculates the dot product of the vectors.

reduce() Similar to accumulate(), but supports parallel execution.
The order of evaluation for reduce() is non-deterministic,
while it’s from left to right for accumulate(). This means
that the behavior of the former is non-deterministic if the
given binary operation is not associative or not commutative.

transform_reduce() Applies a transformation to each element in a sequence,
then performs a reduce().

C++17

C++17

C++17

C++17

C++17

532  ❘  CHAPTER 16   Overview of the C++ Standard Library

Permutation Algorithms
A permutation of a sequence contains the same elements but in a different order. The following
algorithms are provided to work with permutations.

ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

is_permutation() Returns true if the elements in one range are a per-
mutation of the elements in another range.

Quadratic

next_permutation()

prev_permutation()

Modifies the sequence by transforming it into its
“next” or “previous” lexicographical permutation.
Successive calls to one or the other will permute the
sequence into all possible permutations of its ele-
ments, if you start with a properly sorted sequence.
This algorithm returns false if no more permuta-
tions exist.

Linear

Choosing an Algorithm
The number and capabilities of the algorithms might overwhelm you at first. It can also be difficult
to see how to apply them in the beginning. However, now that you have an idea of the available
options, you are better able to tackle your program designs. The following chapters cover the details
of how to use these algorithms in your code.

What’s Missing from the Standard Library
The Standard Library is powerful, but it’s not perfect. Here are two examples of missing
functionality:

➤➤ The Standard Library does not guarantee any thread safety for accessing containers simulta-
neously from multiple threads.

➤➤ The Standard Library does not provide any generic tree or graph structures. Although maps
and sets are generally implemented as balanced binary trees, the Standard Library does not
expose this implementation in the interface. If you need a tree or graph structure for some-
thing like writing a parser, you need to implement your own or find an implementation in
another library.

It is important to keep in mind that the Standard Library is extensible. You can write your own con-
tainers or algorithms that work with existing algorithms or containers. So, if the Standard Library
doesn’t provide exactly what you need, consider writing your desired code such that it works with
the Standard Library. Chapter 21 covers the topic of customizing and extending the Standard
Library.

Summary  ❘  533

SUMMARY

This chapter provided an overview of the C++ Standard Library, which is the most important
library that you will use in your code. It subsumes the C library, and includes additional facilities for
strings, I/O, error handling, and other tasks. It also includes generic containers and algorithms. The
following chapters describe the Standard Library in more detail.

Understanding Containers and
Iterators

WHAT’S IN THIS CHAPTER?

➤➤ Details on iterators

➤➤ Containers overview: Requirements on elements, general error
handling, and iterators

➤➤ Sequential containers: vector, deque, list, forward_list, and
array

➤➤ Container adaptors: queue, priority_queue, and stack

➤➤ Associative containers: The pair utility, map, multimap, set, and
multiset

➤➤ Unordered associative containers or hash tables: unordered_map,
unordered_multimap, unordered_set, and unordered_multiset

➤➤ Other containers: Standard C-style arrays, strings, streams, and
bitset

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

Chapter 16 introduces the Standard Library, describes its basic philosophy, and provides
an overview of the provided functionality. This chapter begins a more-in-depth tour of the
Standard Library by covering the available containers. It is not the goal of this book to include

17

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

536  ❘  CHAPTER 17   Understanding Containers and Iterators

and explain every available class or class method. For a detailed list of available classes and meth-
ods, consult a Standard Library Reference, see the annotated bibliography in Appendix B.

The following chapters go deeper into topics such as algorithms, regular expressions, and how you
can customize and extend the Standard Library.

CONTAINERS OVERVIEW

Containers in the Standard Library are generic data structures that are useful for storing collections
of data. You should rarely need to use a standard C-style array, write a linked list, or design a stack
when you use the Standard Library. The containers are implemented as class templates, so you can
instantiate them for any type that meets certain basic conditions outlined in the next section. Most
of the Standard Library containers, except for array and bitset, are flexible in size and automati-
cally grow or shrink to accommodate more or fewer elements. This is a huge benefit compared to
the old, standard C-style arrays, which had a fixed size. Because of the fixed-size nature of standard
C-style arrays, they are more vulnerable to overruns, which in the simplest cases merely cause the
program to crash because data has been corrupted, but in the worst cases allow certain kinds of
security attacks. By using Standard Library containers, you ensure that your programs will be less
vulnerable to these kinds of problems.

The Standard Library provides 16 containers, divided into four categories.

➤	Sequential containers

➤	 vector (dynamic array)

➤	 deque

➤	 list

➤	 forward _ list

➤	 array

➤	Associative containers

➤	 map

➤	 multimap

➤	 set

➤	 multiset

➤	Unordered associative containers or hash tables

➤	 unordered _ map

➤	 unordered _ multimap

➤	 unordered _ set

➤	 unordered _ multiset

➤	Container adaptors

➤	 queue

➤	 priority _ queue

➤	 stack

Additionally, C++ strings and streams can also be used as Standard Library containers to a certain
degree, and bitset can be used to store a fixed number of bits.

Everything in the Standard Library is in the std namespace. The examples in this book usually use
the blanket using namespace std; statement in source files (never use this in header files!), but you
can be more selective in your own programs about which symbols from std to use.

Containers Overview  ❘  537

Requirements on Elements
Standard Library containers use value semantics on elements. That is, they store a copy of elements
that they are given, assign to elements with the assignment operator, and destroy elements with the
destructor. Thus, when you write classes that you intend to use with the Standard Library, you need
to make sure they are copyable. When requesting an element from the container, a reference to the
stored copy is returned.

If you prefer reference semantics, you can store pointers to elements instead of the elements themselves.
When the containers copy a pointer, the result still refers to the same element. An alternative is to store
std::reference_wrappers in the container. A reference_wrapper can be created using std::ref()
or std::cref(), and basically exist to make references copyable. The reference_wrapper class
template, and the ref() and cref() function templates are defined in the <functional> header. An
example of this is given in the section “Storing references in a vector.”

It is possible to store move-only types, that is non-copyable types, in a container, but when doing
so, some operations on the container might not compile. An example of a move-only type is
std::unique_ptr.

WARNING  If you want to store pointers in containers, use unique_ptr if the
container becomes owner of the pointed-to object, or shared_ptr if the con-
tainer shares ownership with other owners. Do not use the old, deprecated
(removed in C++17) auto_ptr class in containers because it does not implement
copying correctly (as far as the Standard Library is concerned).

One of the template type parameters for Standard Library containers is a so-called allocator. The
container can use this allocator to allocate and deallocate memory for elements. The allocator type
parameter has a default value, so you can almost always just ignore it.

Some containers, such as a map, also accept a comparator as one of the template type parameters. This
comparator is used to order elements. It has a default value, so you don’t always have to specify it.

The specific requirements on elements in containers using the default allocator and comparator are
shown in the following table.

METHOD DESCRIPTION NOTES

Copy Constructor Creates a new element
that is “equal” to the
old one, but that can
safely be destructed
without affecting the
old one.

Used every time you insert an element, except
when using an emplace method (discussed
later).

continues

538  ❘  CHAPTER 17   Understanding Containers and Iterators

METHOD DESCRIPTION NOTES

Move Constructor Creates a new element
by moving all content
from a source element
to the new element.

Used when the source element is an rvalue,
and will be destroyed after the construction
of the new element; also used when a vector
grows in size. The move constructor should be
noexcept, otherwise it won’t be used!

Assignment
Operator

Replaces the contents
of an element with
a copy of the source
element.

Used every time you modify an element.

Move Assignment
Operator

Replaces the contents
of an element by mov-
ing all content from a
source element.

Used when the source element is an rvalue,
and will be destroyed after the assignment
operation. The move assignment operator
should be noexcept, otherwise it won’t be
used!

Destructor Cleans up an element. Used every time you remove an element, or
when a vector grows in size and the elements
are not noexcept movable.

Default
Constructor

Constructs an element
without any arguments.

Required only for certain operations, such
as the vector::resize() method with one
argument, and the map::operator[] access.

operator== Compares two elements
for equality.

Required for keys in unordered associative
containers, and for certain operations, such as
operator== on two containers.

operator< Determines if one
element is less than
another.

Required for keys in ordered associative con-
tainers, and for certain operations, such as
operator< on two containers.

Chapter 9 shows you how to write these methods, and discusses move semantics. For move seman-
tics to work properly with Standard Library containers, the move constructor and the move assign-
ment operator must be marked as noexcept!

WARNING  The Standard Library containers often call the copy constructor
and copy assignment operator for elements, so make those operations efficient.
You can also increase performance by implementing move semantics for your
elements, as described in Chapter 9.

  (continued)

Containers Overview  ❘  539

Exceptions and Error Checking
The Standard Library containers provide limited error checking. Clients are expected to ensure that
their uses are valid. However, some container methods and functions throw exceptions in certain
conditions, such as out-of-bounds indexing. Of course, it is impossible to list exhaustively the excep-
tions that can be thrown from these methods because they perform operations on user-specified
types with unknown exception characteristics. This chapter mentions exceptions where appropriate.
Consult a Standard Library Reference for a list of possible exceptions thrown from each method.

Iterators
The Standard Library uses the iterator pattern to provide a generic abstraction for accessing the
elements of a container. Each container provides a container-specific iterator, which is a glorified
smart pointer that knows how to iterate over the elements of that specific container. The iterators
for all the different containers adhere to a specific interface defined by the C++ standard. Thus, even
though the containers provide different functionality, the iterators present a common interface to
code that wishes to work with elements of the containers.

You can think of an iterator as a pointer to a specific element of the container. Like pointers to
elements in an array, iterators can move to the next element with operator++. Similarly, you can
usually use operator* and operator-> on the iterator to access the actual element or field of
the element. Some iterators allow comparison with operator== and operator!=, and support
operator-- for moving to previous elements.

All iterators must be copy constructible, copy assignable, and destructible. Lvalues of iterators must
be swappable. Different containers provide iterators with slightly different additional capabilities.
The standard defines five categories of iterators, as summarized in the following table.

ITERATOR CATEGORY OPERATIONS REQUIRED COMMENTS

Input (also known
as Read)

operator++

operator*

operator->

copy constructor

operator=

operator==

operator!=

Provides read-only access, forward only (no
operator-- to move backward).

Iterators can be assigned, copied, and com-
pared for equality.

Output (also known
as Write)

operator++

operator*

copy constructor

operator=

Provides write-only access, forward only.

Iterators can be assigned, but cannot be com-
pared for equality.

Specific to output iterators is that you can do
*iter = value.

Note the absence of operator->.

Provides both prefix and postfix operator++.

continues

540  ❘  CHAPTER 17   Understanding Containers and Iterators

ITERATOR CATEGORY OPERATIONS REQUIRED COMMENTS

Forward Capabilities of input
iterators, plus default
constructor

Provides read access, forward only.

Iterators can be assigned, copied, and com-
pared for equality.

Bidirectional Capabilities of forward
iterators, plus

operator--

Provides everything a forward iterator
provides.

Iterators can also move backward to a previous
element.

Provides both prefix and postfix operator--.

Random Access Bidirectional capability,
plus the following:

operator+

operator-

operator+=

operator-=

operator<

operator>

operator<=

operator>=

operator[]

Equivalent to raw pointers: support pointer
arithmetic, array index syntax, and all forms of
comparison.

Additionally, iterators that satisfy the requirements for output iterators are called mutable iterators,
otherwise they are called constant iterators.

You can use std::distance() to compute the distance between two iterators of a container.

Iterators are implemented similarly to smart pointer classes in that they overload the specific desired
operators. Consult Chapter 15 for details on operator overloading.

The basic iterator operations are similar to those supported by raw pointers, so a raw pointer can be
a legitimate iterator for certain containers. In fact, the vector iterator could technically be imple-
mented as a simple raw pointer. However, as a client of the containers, you need not worry about
the implementation details; you can simply use the iterator abstraction.

NOTE  Iterators might, or might not, be implemented internally as pointers, so
this text uses the term “refers to” instead of “points to” when discussing the ele-
ments accessible via an iterator.

This chapter shows you the basics of using the iterators for each container. Chapter 18 delves into
more detail about iterators and the Standard Library algorithms that use them.

  (continued)

Containers Overview  ❘  541

NOTE  Only the sequential containers, ordered associative containers, and unor-
dered associative containers provide iterators. The container adaptors and bit-
set class do not support iteration over their elements.

Every container class in the Standard Library that supports iterators provides public type aliases
for its iterator types, called iterator and const_iterator. For example, a const iterator for a
vector of ints has as type std::vector<int>::const_iterator. Containers that allow you to
iterate over their elements in reverse order also provide public type aliases called reverse_iterator
and const_reverse_iterator. This way, clients can use the container iterators without worrying
about the actual types.

NOTE  const_iterators and const_reverse_iterators provide read-only
access to elements of the container.

The containers also provide a method begin() that returns an iterator referring to the first element
in the container. The end() method returns an iterator to the “past-the-end” value of the sequence
of elements. That is, end() returns an iterator that is equal to the result of applying operator++
to an iterator referring to the last element in the sequence. Together, begin() and end() provide a
half-open range that includes the first element but not the last. The reason for this apparent compli-
cation is to support empty ranges (containers without any elements), in which case begin() is equal
to end(). The half-open range bounded by iterators begin() and end() is often written mathemati-
cally like this: [begin, end).

NOTE  The half-open range concept also applies to iterator ranges that are
passed to container methods such as insert() and erase(). See the specific
container discussions later in this chapter for details.

Similarly, there are

➤➤ cbegin() and cend() methods that return const iterators.

➤➤ rbegin() and rend() methods that return reverse iterators.

➤➤ crbegin() and crend() methods that return const reverse iterators.

NOTE  The Standard Library also provides global non-member functions called
std::begin(), end(), cbegin(), cend(), rbegin(), rend(), crbegin(), and
crend(). It’s recommended to use these non-member functions instead of the
member versions.

Examples of using iterators are given throughout the remainder of this chapter, and in subsequent
chapters.

542  ❘  CHAPTER 17   Understanding Containers and Iterators

SEQUENTIAL CONTAINERS

vector, deque, list, forward_list, and array are called sequential containers. The best way
to learn about sequential containers is to jump in with an example of the vector container, which
should be your default container. The next section describes the vector container in detail, followed
by briefer descriptions of deque, list, forward_list, and array. Once you become familiar with
the sequential containers, it’s trivial to switch between them.

vector
The Standard Library vector container is similar to a standard C-style array: the elements are
stored in contiguous memory, each in its own “slot.” You can index into a vector, as well as add
new elements to the back or insert them anywhere else. Inserting and deleting elements into and
from a vector generally takes linear time, though these operations actually run in amortized con-
stant time at the end of a vector, as explained in the section “The vector Memory Allocation
Scheme,” later in this chapter. Random access of individual elements has a constant complexity.

vector Overview
vector is defined in the <vector> header file as a class template with two type parameters: the ele-
ment type to store and an allocator type.

template <class T, class Allocator = allocator<T>> class vector;

The Allocator parameter specifies the type for a memory allocator object that the client can set in
order to use custom memory allocation. This template parameter has a default value.

NOTE  The default value for the Allocator type parameter is sufficient for most
applications. This chapter assumes that you always use the default allocator.
Chapter 21 provides more details in case you are interested.

Fixed-Length vectors
The simplest way to use a vector is as a fixed-length array. vector provides a constructor that
allows you to specify the number of elements, and provides an overloaded operator[] in order to
access and modify those elements. The C++ standard states that the result of operator[] is unde-
fined when used to access an element outside the vector bounds. This means that any compiler can
decide how to behave in that case. For example, the default behavior of Microsoft Visual C++ is to
give a run-time error message when your program is compiled in debug mode, and to disable any
bounds checking in release mode for performance reasons. You can change these default behaviors.

WARNING  Like “real” array indexing, the operator[] on a vector does not
provide bounds checking.

Sequential Containers  ❘  543

In addition to using operator[], you can access vector elements via at(), front(), and back().
The at() method is identical to operator[], except that it performs bounds checking, and throws
an out_of_range exception if the index is out of bounds. front() and back() return references to
the first and last elements of a vector, respectively. Calling front() or back() on an empty con-
tainer causes undefined behavior.

NOTE  All vector element accesses run with constant complexity.

Here is a small example program to “normalize” test scores so that the highest score is set to 100,
and all other scores are adjusted accordingly. The program creates a vector of ten doubles, reads
in ten values from the user, divides each value by the max score (times 100), and prints out the new
values. For the sake of brevity, the program forsakes error checking.

vector<double> doubleVector(10); // Create a vector of 10 doubles.

// Initialize max to smallest number
double max = -numeric_limits<double>::infinity();

for (size_t i = 0; i < doubleVector.size(); i++) {
 cout << "Enter score " << i + 1 << ": ";
 cin >> doubleVector[i];
 if (doubleVector[i] > max) {
 max = doubleVector[i];
 }
}

max /= 100.0;
for (auto& element : doubleVector) {
 element /= max;
 cout << element << " ";
}

As you can see from this example, you can use a vector just as you would use a standard C-style
array. Note that the first for loop uses the size() method to determine the number of elements in
the container. This example also demonstrates the use of a range-based for loop with a vector.
Here, the range-based for loop uses auto& and not auto because a reference is required so that the
element can be modified in each iteration.

NOTE  The operator[] on a vector normally returns a reference to the ele-
ment, which can be used on the left-hand side of assignment statements. If
operator[] is called on a const vector object, it returns a reference to a const
element, which cannot be used as the target of an assignment. See Chapter 15
for details on how this trick is implemented.

544  ❘  CHAPTER 17   Understanding Containers and Iterators

Dynamic-Length vectors
The real power of a vector lies in its ability to grow dynamically. For example, consider the test
score normalization program from the previous section with the additional requirement that it
should handle any number of test scores. Here is the new version:

vector<double> doubleVector; // Create a vector with zero elements.

// Initialize max to smallest number
double max = -numeric_limits<double>::infinity();

for (size_t i = 1; true; i++) {
 double temp;
 cout << "Enter score " << i << " (-1 to stop): ";
 cin >> temp;
 if (temp == -1) {
 break;
 }
 doubleVector.push_back(temp);
 if (temp > max) {
 max = temp;
 }
}

max /= 100.0;
for (auto& element : doubleVector) {
 element /= max;
 cout << element << " ";
}

This version of the program uses the default constructor to create a vector with zero elements. As
each score is read, it’s added to the vector with the push_back() method, which takes care of allo-
cating space for the new element. The range-based for loop doesn’t require any changes.

vector Details
Now that you’ve had a taste of vectors, it’s time to delve into their details.

Constructors and Destructors
The default constructor creates a vector with zero elements.

vector<int> intVector; // Creates a vector of ints with zero elements

You can specify a number of elements and, optionally, a value for those elements, like this:

vector<int> intVector(10, 100); // Creates vector of 10 ints with value 100

If you omit the default value, the new objects are zero-initialized. Zero-initialization constructs
objects with the default constructor, and initializes primitive integer types (such as char, int, and
so on) to zero, primitive floating-point types to 0.0, and pointer types to nullptr.

Sequential Containers  ❘  545

You can create vectors of built-in classes like this:

vector<string> stringVector(10, "hello");

User-defined classes can also be used as vector elements:

class Element
{
 public:
 Element() {}
 virtual ~Element() = default;
};
...
vector<Element> elementVector;

A vector can be constructed with an initializer_list containing the initial elements:

vector<int> intVector({ 1, 2, 3, 4, 5, 6 });

initializer_lists can also be used for so-called uniform initialization, as discussed in Chapter 1.
Uniform initialization works on most Standard Library containers. Here is an example:

vector<int> intVector1 = { 1, 2, 3, 4, 5, 6 };
vector<int> intVector2{ 1, 2, 3, 4, 5, 6 };

You can allocate vectors on the heap as well.

auto elementVector = make_unique<vector<Element>>(10);

Copying and Assigning vectors
A vector stores copies of the objects, and its destructor calls the destructor for each of the objects.
The copy constructor and assignment operator of the vector class perform deep copies of all the
elements in the vector. Thus, for efficiency, you should pass vectors by reference or const refer-
ence to functions and methods. Consult Chapter 12 for details on writing functions that take tem-
plate instantiations as parameters.

In addition to normal copying and assignment, vectors provide an assign() method that removes
all the current elements and adds any number of new elements. This method is useful if you want to
reuse a vector. Here is a trivial example. intVector is created with ten elements having the default
value zero. Then assign() is used to remove all ten elements and replace them with five elements
with value 100.

vector<int> intVector(10);
// Other code . . .
intVector.assign(5, 100);

assign() can also accept an initializer_list as follows. intVector now has four elements with
the given values.

intVector.assign({ 1, 2, 3, 4 });

546  ❘  CHAPTER 17   Understanding Containers and Iterators

vectors also provide a swap() method that allows you to swap the contents of two vectors in con-
stant time. Here is a simple example:

vector<int> vectorOne(10);
vector<int> vectorTwo(5, 100);
vectorOne.swap(vectorTwo);
// vectorOne now has 5 elements with the value 100.
// vectorTwo now has 10 elements with the value 0.

Comparing vectors
The Standard Library provides the usual six overloaded comparison operators for vectors: ==,
!=, <, >, <=, >=. Two vectors are equal if they have the same number of elements and all the cor-
responding elements in the two vectors are equal to each other. Two vectors are compared lexi-
cographically, that is, one vector is “less than” another if all elements 0 through i–1 in the first
vector are equal to elements 0 through i-1 in the second vector, but element i in the first is
less than element i in the second, where i must be in the range 0...n and n must be less than the
size() of the smallest of the two vectors.

NOTE  Comparing two vectors with operator== or operator!= requires
the individual elements to be comparable with operator==. Comparing two
vectors with operator<, operator>, operator<=, or operator>= requires the
individual elements to be comparable with operator<. If you intend to store
objects of a custom class in a vector, make sure to write those operators.

Here is an example of a simple program that compares vectors of ints:

vector<int> vectorOne(10);
vector<int> vectorTwo(10);

if (vectorOne == vectorTwo) {
 cout << "equal!" << endl;
} else {
 cout << "not equal!" << endl;
}

vectorOne[3] = 50;

if (vectorOne < vectorTwo) {
 cout << "vectorOne is less than vectorTwo" << endl;
} else {
 cout << "vectorOne is not less than vectorTwo" << endl;
}

The output of the program is as follows:

equal!
vectorOne is not less than vectorTwo

Sequential Containers  ❘  547

vector Iterators
The section on “Iterators” at the beginning of this chapter explains the concepts of container itera-
tors. The discussion can get a bit abstract, so it’s helpful to jump in and look at a code example.
Here is the last for loop of the test score normalization program from earlier using iterators instead
of a range-based for loop:

for (vector<double>::iterator iter = begin(doubleVector);
 iter != end(doubleVector); ++iter) {
 *iter /= max;
 cout << *iter << " ";
}

First, take a look at the for loop initialization statement:

vector<double>::iterator iter = begin(doubleVector);

Recall that every container defines a type named iterator to represent iterators for that type of
container. begin() returns an iterator of that type referring to the first element in the container.
Thus, the initialization statement obtains in the variable iter an iterator referring to the first ele-
ment of doubleVector. Next, look at the for loop comparison:

iter != end(doubleVector);

This statement simply checks if the iterator is past the end of the sequence of elements in the vector.
When it reaches that point, the loop terminates. The increment statement, ++iter, increments the
iterator to refer to the next element in the vector.

NOTE  Use pre-increment instead of post-increment when possible because pre-
increment is at least as efficient, and usually more efficient. iter++ must return
a new iterator object, while ++iter can simply return a reference to iter. See
Chapter 15 for details on implementing both versions of operator++.

The for loop body contains these two lines:

*iter /= max;
cout << *iter << " ";

As you can see, your code can both access and modify the elements over which it iterates. The first
line uses * to dereference iter to obtain the element to which it refers, and assigns to that element.
The second line dereferences iter again, but this time only to stream the element to cout.

The preceding for loop using iterators can be simplified by using the auto keyword:

for (auto iter = begin(doubleVector);
 iter != end(doubleVector); ++iter) {
 *iter /= max;
 cout << *iter << " ";
}

548  ❘  CHAPTER 17   Understanding Containers and Iterators

With auto, the compiler automatically deduces the type of the variable iter based on the right-
hand side of the initializer, which in this case is the result of the call to begin().

Accessing Fields of Object Elements

If the elements of your container are objects, you can use the -> operator on iterators to call meth-
ods or access data members of those objects. For example, the following program creates a vector
of ten strings, then iterates over all of them appending a new string to each one:

vector<string> stringVector(10, "hello");
for (auto it = begin(stringVector); it != end(stringVector); ++it) {
 it->append(" there");
}

Often, using a range-based for loop results in more elegant code, as in this example:

vector<string> stringVector(10, "hello");
for (auto& str : stringVector) {
 str.append(" there");
}

const_iterator

The normal iterator is read/write. However, if you call begin() or end() on a const object,
or you call cbegin() or cend(), you receive a const_iterator. The const_iterator is read-only;
you cannot modify the element it refers to. An iterator can always be converted to a const_
iterator, so it’s always safe to write something like this:

vector<type>::const_iterator it = begin(myVector);

However, a const_iterator cannot be converted to an iterator. If myVector is const, the fol-
lowing line doesn’t compile:

vector<type>::iterator it = begin(myVector);

NOTE  If you do not need to modify the elements of a vector, you should use
a const_iterator. This rule makes it easier to guarantee correctness of your
code, and helps the compiler to perform better optimizations.

When using the auto keyword, using const_iterators looks a bit different. Suppose you write the
following code:

vector<string> stringVector(10, "hello");
for (auto iter = begin(stringVector); iter != end(stringVector); ++iter) {
 cout << *iter << endl;
}

Because of the auto keyword, the compiler deduces the type of the iter variable automatically
and makes it a normal iterator because stringVector is not const. If you want a read-only

Sequential Containers  ❘  549

const_iterator in combination with using auto, then you need to use cbegin() and cend()
instead of begin() and end() as follows:

vector<string> stringVector(10, "hello");
for (auto iter = cbegin(stringVector); iter != cend(stringVector); ++iter) {
 cout << *iter << endl;
}

Now the compiler uses const_iterator as type for the variable iter because that’s what cbegin()
returns.

A range-based for loop can also be forced to use const iterators as follows:

vector<string> stringVector(10, "hello");
for (const auto& element : stringVector) {
 cout << element << endl;
}

Iterator Safety

Generally, iterators are about as safe as pointers—that is, extremely unsafe. For example, you can
write code like this:

vector<int> intVector;
auto iter = end(intVector);
*iter = 10; // BUG! iter doesn't refer to a valid element.

Recall that the iterator returned by end() is one element past the end of a vector, not an iterator
referring to the last element! Trying to dereference it results in undefined behavior. Iterators are not
required to perform any verification.

Another problem can occur if you use mismatched iterators. For example, the following for loop
initializes an iterator from vectorTwo, and tries to compare it to the end iterator of vectorOne.
Needless to say, this loop will not do what you intended, and may never terminate. Dereferencing
the iterator in the loop will likely produce undefined results.

vector<int> vectorOne(10);
vector<int> vectorTwo(10);

// Fill in the vectors.

// BUG! Possible infinite loop
for (auto iter = begin(vectorTwo); iter != end(vectorOne); ++iter) {
 // Loop body
}

NOTE  Microsoft Visual C++, by default, gives an assertion error at run time for
both of the preceding problems when running a debug build of your program.
By default, no verification of iterators is performed for release builds. You can
enable it for release builds as well, but it has a performance penalty.

550  ❘  CHAPTER 17   Understanding Containers and Iterators

Other Iterator Operations

The vector iterator is random access, which means that you can move it backward or forward, or
jump around. For example, the following code eventually changes the fifth element (index 4) to the
value 4:

vector<int> intVector(10);
auto it = begin(intVector);
it += 5;
--it;
*it = 4;

Iterators versus Indexing

Given that you can write a for loop that uses a simple index variable and the size() method to
iterate over the elements of the vector, why should you bother using iterators? That’s a valid ques-
tion, for which there are three main answers:

➤➤ Iterators allow you to insert and delete elements and sequences of elements at any point in
the container. See the section “Adding and Removing Elements.”

➤➤ Iterators allow you to use the Standard Library algorithms, which are discussed in
Chapter 18.

➤➤ Using an iterator to access each element sequentially is often more efficient than indexing the
container to retrieve each element individually. This generalization is not true for vectors,
but applies to lists, maps, and sets.

Storing references in a vector
As mentioned in the beginning of this chapter, it is possible to store references in a container, such as
a vector. To do this, you store std::reference_wrappers in the container. The std::ref() and
cref() function templates are used to create non-const and const reference_wrapper instances.
You need to include the <functional> header file. Here is an example:

string str1 = "Hello";
string str2 = "World";

// Create a vector of references to strings.
vector<reference_wrapper<string>> vec{ ref(str1) };
vec.push_back(ref(str2)); // push_back() works as well.

// Modify the string referred to by the second reference in the vector.
vec[1].get() += "!";

// The end result is that str2 is actually modified.
cout << str1 << " " << str2 << endl;

Adding and Removing Elements
As you have already read, you can append an element to a vector with the push_back() method.
The vector provides a parallel remove method called pop_back().

Sequential Containers  ❘  551

WARNING  pop_back() does not return the element that it removed. If you
want that element, you must first retrieve it with back().

You can also insert elements at any point in the vector with the insert() method, which adds
one or more elements to a position specified by an iterator, shifting all subsequent elements down
to make room for the new ones. There are five different overloaded forms of insert() that do the
following:

➤	 Insert a single element.

➤➤ Insert n copies of a single element.

➤➤ Insert elements from an iterator range. Recall that the iterator range is half-open, such that it
includes the element referred to by the starting iterator but not the one referred to by the end-
ing iterator.

➤➤ Insert a single element by moving the given element to a vector using move semantics.

➤➤ Insert a list of elements into a vector where the list of elements is given as an
initializer_list.

NOTE  There are versions of push_back() and insert() that take an lvalue or
an rvalue as a parameter. Both versions allocate memory as needed to store the
new elements. The lvalue versions store copies of the given elements, while the
rvalue versions use move semantics to move ownership of the given elements to
the vector instead of copying them.

You can remove elements from any point in a vector with erase(), and you can remove all ele-
ments with clear(). There are two forms of erase(): one accepting a single iterator to remove a
single element, and one accepting two iterators specifying a range of elements to remove.

If you want to remove a number of elements that satisfy a certain condition, one solution would be
to write a loop iterating over all the elements and erasing every element that matches the condition.
However, this solution has quadratic complexity, which is very bad for performance. In this case,
the quadratic complexity can be avoided by using the remove-erase-idiom, which has a linear com-
plexity. The remove-erase-idiom is discussed in Chapter 18.

Here is a small program that demonstrates the methods for adding and removing elements. It uses
a helper function template printVector() to print the contents of a vector to cout as follows. See
Chapter 12 for details on writing function templates.

template<typename T>
void printVector(const vector<T>& v)
{
 for (auto& element : v) { cout << element << " "; }
 cout << endl;
}

552  ❘  CHAPTER 17   Understanding Containers and Iterators

The example includes demonstrations of the two-argument version of erase() and the following
versions of insert():

➤➤ insert(const_iterator pos, const T& x): the value x is inserted at position pos.

➤➤ insert(const_iterator pos, size_type n, const T& x): the value x is inserted n
times at position pos.

➤➤ insert(const_iterator pos, InputIterator first, InputIterator last): the
elements in the range [first, last) are inserted at position pos.

The code for the example is as follows:

vector<int> vectorOne = { 1, 2, 3, 5 };
vector<int> vectorTwo;

// Oops, we forgot to add 4. Insert it in the correct place
vectorOne.insert(cbegin(vectorOne) + 3, 4);

// Add elements 6 through 10 to vectorTwo
for (int i = 6; i <= 10; i++) {
 vectorTwo.push_back(i);
}
printVector(vectorOne);
printVector(vectorTwo);

// Add all the elements from vectorTwo to the end of vectorOne
vectorOne.insert(cend(vectorOne), cbegin(vectorTwo), cend(vectorTwo));
printVector(vectorOne);

// Now erase the numbers 2 through 5 in vectorOne
vectorOne.erase(cbegin(vectorOne) + 1, cbegin(vectorOne) + 5);
printVector(vectorOne);

// Clear vectorTwo entirely
vectorTwo.clear();

// And add 10 copies of the value 100
vectorTwo.insert(cbegin(vectorTwo), 10, 100);

// Decide we only want 9 elements
vectorTwo.pop_back();
printVector(vectorTwo);

The output of the program is as follows:

1 2 3 4 5
6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
1 6 7 8 9 10
100 100 100 100 100 100 100 100 100

Recall that iterator pairs represent half-open ranges, and insert() adds elements before the element
referred to by a given iterator position. Thus, you can insert the entire contents of vectorTwo into
the end of vectorOne, like this:

vectorOne.insert(cend(vectorOne), cbegin(vectorTwo), cend(vectorTwo));

Sequential Containers  ❘  553

WARNING  Methods such as insert() and erase() that take a vector range
as arguments assume that the beginning and ending iterators refer to elements in
the same container, and that the end iterator refers to an element at or past the
begin iterator. The methods will not work correctly if these preconditions are not
met!

Move Semantics

All Standard Library containers implement move semantics by including a move constructor and
move assignment operator. See Chapter 9 for details on move semantics. A big benefit of this is that
you can easily return a Standard Library container from a function by value without performance
penalty. Take a look at the following function:

vector<int> createVectorOfSize(size_t size)
{
 vector<int> vec(size);
 int contents = 0;
 for (auto& i : vec) {
 i = contents++;
 }
 return vec;
}
...
vector<int> myVector;
myVector = createVectorOfSize(123);

Without move semantics, assigning the result of createVectorOfSize() to myVector calls the copy
assignment operator. With the move semantics support in the Standard Library containers, copying
of the vector is avoided. Instead, the assignment to myVector triggers a call to the move assignment
operator.

Similarly, push operations can also make use of move semantics to improve performance in certain
situations. For example, suppose you have a vector of strings:

vector<string> vec;

You can add an element to this vector as follows:

string myElement(5, 'a'); // Constructs the string "aaaaa"
vec.push_back(myElement);

However, because myElement is not a temporary object, push_back() makes a copy of myElement
and puts it in the vector.

The vector class also defines a push_back(T&& val), which is the move equivalent of push_
back(const T& val). So, copying can be avoided if you call the push_back() method as follows:

vec.push_back(move(myElement));

Now you are explicitly saying that myElement should be moved into the vector. Note that after
this call, myElement is in a valid but otherwise indeterminate state. You should not use myElement

554  ❘  CHAPTER 17   Understanding Containers and Iterators

anymore, unless you first bring it back to a determinate state, for example by calling clear() on it!
You can also call push_back() as follows:

vec.push_back(string(5, 'a'));

The preceding call to push_back() triggers a call to the move version because the call to the string
constructor results in a temporary object. The push_back() method moves this temporary string
object into the vector, avoiding any copying.

Emplace Operations

C++ supports emplace operations on most Standard Library containers, including vector. Emplace
means “to put into place.” An example is emplace_back() on a vector object, which does not copy
or move anything. Instead, it makes space in the container and constructs the object in place, as in
this example:

vec.emplace_back(5, 'a');

The emplace methods take a variable number of arguments as a variadic template. Variadic tem-
plates are discussed in Chapter 22, but those details are not required to understand how to use
emplace_back(). The difference in performance between emplace_back() and push_back() using
move semantics depends on how your specific compiler implements these operations. In most situa-
tions, you can pick the one based on the syntax that you prefer.

vec.push_back(string(5, 'a'));
// Or
vec.emplace_back(5, 'a');

Since C++17, the emplace_back() method returns a reference to the inserted element. Before C++17,
the return type of emplace_back() was void.

There is also an emplace() method that constructs an object in place at a specific position in the
vector, and returns an iterator to the inserted element.

Algorithmic Complexity and Iterator Invalidation

Inserting or erasing elements in a vector causes all subsequent elements to shift up or down to
make room for, or fill in the holes left by, the affected elements. Thus, these operations take linear
complexity. Furthermore, all iterators referring to the insertion or removal point or subsequent posi-
tions are invalid following the action. The iterators are not “magically” moved to keep up with the
elements that are shifted up or down in the vector—that’s up to you.

Also keep in mind that an internal vector reallocation can cause invalidation of all iterators refer-
ring to elements in the vector, not just those referring to elements past the point of insertion or
deletion. See the next section for details.

The vector Memory Allocation Scheme
A vector allocates memory automatically to store the elements that you insert. Recall that the
vector requirements dictate that the elements must be in contiguous memory, like in standard
C-style arrays. Because it’s impossible to request to add memory to the end of a current chunk
of memory, every time a vector allocates more memory, it must allocate a new, larger chunk in
a separate memory location and copy/move all the elements to the new chunk. This process is

Sequential Containers  ❘  555

time-consuming, so vector implementations attempt to avoid it by allocating more space than
needed when they have to perform a reallocation. That way, they can avoid reallocating memory
every time you insert an element.

One obvious question at this point is why you, as a client of vector, care how it manages its mem-
ory internally. You might think that the principle of abstraction should allow you to disregard the
internals of the vector memory allocation scheme. Unfortunately, there are two reasons why you
need to understand how it works:

	 1.	 Efficiency. The vector allocation scheme can guarantee that an element insertion runs in
amortized constant time: most of the time the operation is constant, but once in a while (if it
requires a reallocation), it’s linear. If you are worried about efficiency, you can control when
a vector performs reallocations.

	 2.	 Iterator invalidations. A reallocation invalidates all iterators referring to elements in a
vector.

Thus, the vector interface allows you to query and control the vector reallocations. If you don’t
control the reallocations explicitly, you should assume that all insertions cause a reallocation and
thus invalidate all iterators.

Size and Capacity

vector provides two methods for obtaining information about its size: size() and capacity().
The size() method returns the number of elements in a vector, while capacity() returns the
number of elements that it can hold without a reallocation. Thus, the number of elements that you
can insert without causing a reallocation is capacity() – size().

NOTE  You can query whether a vector is empty with the empty() method.
A vector can be empty but have nonzero capacity.

C++17 introduces non-member std::size() and std::empty() global functions. These are similar
to the non-member functions that are available to get iterators (std::begin(), std::end(), and
so on). The non-member size() and empty() functions can be used with all containers. They can
also be used with statically allocated C-style arrays not accessed through pointers, and with
initializer_lists. Here is an example of using them with a vector:

vector<int> vec{ 1,2,3 };
cout << size(vec) << endl;
cout << empty(vec) << endl;

Reserving Capacity

If you don’t care about efficiency or iterator invalidations, there is never a need to control the vec-
tor memory allocation explicitly. However, if you want to make your program as efficient as pos-
sible, or you want to guarantee that iterators will not be invalidated, you can force a vector to
preallocate enough space to hold all of its elements. Of course, you need to know how many ele-
ments it will hold, which is sometimes impossible to predict.

C++17

556  ❘  CHAPTER 17   Understanding Containers and Iterators

One way to preallocate space is to call reserve(), which allocates enough memory to hold the spec-
ified number of elements. The next section shows an example of the reserve() method in action.

WARNING  Reserving space for elements changes the capacity, but not the size.
That is, it doesn’t actually create elements. Don’t access elements past a vec-
tor’s size.

Another way to preallocate space is to specify, in the constructor, or with the resize() or assign()
method, how many elements you want a vector to store. This method actually creates a vector of
that size (and probably of that capacity).

Directly Accessing the Data

A vector stores its data contiguously in memory. You can get a pointer to this block of memory
with the data() method.

C++17 introduces a non-member std::data() global function that can be used to get a pointer to
the data. It works for the array and vector containers, strings, statically allocated C-style arrays
not accessed through pointers, and initializer_lists. Here is an example for a vector:

vector<int> vec{ 1,2,3 };
int* data1 = vec.data();
int* data2 = data(vec);

vector Example: A Round-Robin Class
A common problem in computer science is distributing requests among a finite list of resources. For
example, a simple operating system could keep a list of processes and assign a time slice (such as
100ms) to each process to let the process perform some of its work. After the time slice is finished,
the OS suspends the process and the next process in the list is given a time slice to perform some of
its work. One of the simplest algorithmic solutions to this problem is round-robin scheduling. When
the time slice of the last process is finished, the scheduler starts over again with the first process. For
example, in the case of three processes, the first time slice would go to the first process, the second
slice to the second process, the third slice to the third process, and the fourth slice back to the first
process. The cycle would continue in this way indefinitely.

Suppose that you decide to write a generic round-robin scheduling class that can be used with any
type of resource. The class should support adding and removing resources, and should support
cycling through the resources in order to obtain the next one. You could use a vector directly, but
it’s often helpful to write a wrapper class that provides more directly the functionality you need for
your specific application. The following example shows a RoundRobin class template with comments
explaining the code. First, here is the class definition:

// Class template RoundRobin
// Provides simple round-robin semantics for a list of elements.
template <typename T>
class RoundRobin
{
 public:

C++17

Sequential Containers  ❘  557

 // Client can give a hint as to the number of expected elements for
 // increased efficiency.
 RoundRobin(size_t numExpected = 0);
 virtual ~RoundRobin() = default;

 // Prevent assignment and pass-by-value
 RoundRobin(const RoundRobin& src) = delete;
 RoundRobin& operator=(const RoundRobin& rhs) = delete;

 // Explicitly default a move constructor and move assignment operator
 RoundRobin(RoundRobin&& src) = default;
 RoundRobin& operator=(RoundRobin&& rhs) = default;

 // Appends element to the end of the list. May be called
 // between calls to getNext().
 void add(const T& element);

 // Removes the first (and only the first) element
 // in the list that is equal (with operator==) to element.
 // May be called between calls to getNext().
 void remove(const T& element);

 // Returns the next element in the list, starting with the first,
 // and cycling back to the first when the end of the list is
 // reached, taking into account elements that are added or removed.
 T& getNext();
 private:
 std::vector<T> mElements;
 typename std::vector<T>::iterator mCurrentElement;
};

As you can see, the public interface is straightforward: only three methods plus the constructor and
destructor. The resources are stored in the vector called mElements. The iterator mCurrentElement
always refers to the element that will be returned with the next call to getNext(). If getNext() hasn’t
been called yet, mCurrentElement is equal to begin(mElements). Note the use of the typename
keyword in front of the line declaring mCurrentElement. So far, you’ve only seen that keyword used
to specify template parameters, but there is another use for it. You must specify typename explicitly
whenever you access a type based on one or more template parameters. In this case, the template
parameter T is used to access the iterator type. Thus, you must specify typename. This is another
example of arcane C++ syntax.

The class also prevents assignment and pass-by-value because of the mCurrentElement data mem-
ber. To make assignment and pass-by-value work, you would have to implement an assignment
operator and copy constructor and make sure mCurrentElement is valid in the destination object.

The implementation of the RoundRobin class follows with comments explaining the code. Note the
use of reserve() in the constructor, and the extensive use of iterators in add(), remove(), and
getNext(). The trickiest aspect is handling mCurrentElement in the add() and remove() methods.

template <typename T> RoundRobin<T>::RoundRobin(size_t numExpected)
{
 // If the client gave a guideline, reserve that much space.
 mElements.reserve(numExpected);

558  ❘  CHAPTER 17   Understanding Containers and Iterators

 // Initialize mCurrentElement even though it isn't used until
 // there's at least one element.
 mCurrentElement = begin(mElements);
}

// Always add the new element at the end
template <typename T> void RoundRobin<T>::add(const T& element)
{
 // Even though we add the element at the end, the vector could
 // reallocate and invalidate the mCurrentElement iterator with
 // the push_back() call. Take advantage of the random-access
 // iterator features to save our spot.
 int pos = mCurrentElement - begin(mElements);

 // Add the element.
 mElements.push_back(element);

 // Reset our iterator to make sure it is valid.
 mCurrentElement = begin(mElements) + pos;
}

template <typename T> void RoundRobin<T>::remove(const T& element)
{
 for (auto it = begin(mElements); it != end(mElements); ++it) {
 if (*it == element) {
 // Removing an element invalidates the mCurrentElement iterator
 // if it refers to an element past the point of the removal.
 // Take advantage of the random-access features of the iterator
 // to track the position of the current element after removal.
 int newPos;

 if (mCurrentElement == end(mElements) - 1 &&
 mCurrentElement == it) {
 // mCurrentElement refers to the last element in the list,
 // and we are removing that last element, so wrap back to
 // the beginning.
 newPos = 0;
 } else if (mCurrentElement <= it) {
 // Otherwise, if mCurrentElement is before or at the one
 // we're removing, the new position is the same as before.
 newPos = mCurrentElement - begin(mElements);
 } else {
 // Otherwise, it's one less than before.
 newPos = mCurrentElement - begin(mElements) - 1;
 }

 // Erase the element (and ignore the return value).
 mElements.erase(it);

 // Now reset our iterator to make sure it is valid.
 mCurrentElement = begin(mElements) + newPos;

 return;
 }
 }
}

Sequential Containers  ❘  559

template <typename T> T& RoundRobin<T>::getNext()
{
 // First, make sure there are elements.
 if (mElements.empty()) {
 throw std::out_of_range("No elements in the list");
 }

 // Store the current element which we need to return.
 auto& toReturn = *mCurrentElement;

 // Increment the iterator modulo the number of elements.
 ++mCurrentElement;
 if (mCurrentElement == end(mElements)) {
 mCurrentElement = begin(mElements);
 }

 // Return a reference to the element.
 return toReturn;
}

Here’s a simple implementation of a scheduler that uses the RoundRobin class template, with
comments explaining the code:

// Simple Process class.
class Process final
{
 public:
 // Constructor accepting the name of the process.
 Process(string_view name) : mName(name) {}

 // Implementation of doWorkDuringTimeSlice() would let the process
 // perform its work for the duration of a time slice.
 // Actual implementation omitted.
 void doWorkDuringTimeSlice() {
 cout << "Process " << mName
 << " performing work during time slice." << endl;
 }

 // Needed for the RoundRobin::remove() method to work.
 bool operator==(const Process& rhs) {
 return mName == rhs.mName;
 }
 private:
 string mName;
};

// Simple round-robin based process scheduler.
class Scheduler final
{
 public:
 // Constructor takes a vector of processes.
 Scheduler(const vector<Process>& processes);

 // Selects the next process using a round-robin scheduling
 // algorithm and allows it to perform some work during

560  ❘  CHAPTER 17   Understanding Containers and Iterators

 // this time slice.
 void scheduleTimeSlice();

 // Removes the given process from the list of processes.
 void removeProcess(const Process& process);
 private:
 RoundRobin<Process> mProcesses;
};

Scheduler::Scheduler(const vector<Process>& processes)
{
 // Add the processes
 for (auto& process : processes) {
 mProcesses.add(process);
 }
}

void Scheduler::scheduleTimeSlice()
{
 try {
 mProcesses.getNext().doWorkDuringTimeSlice();
 } catch (const out_of_range&) {
 cerr << "No more processes to schedule." << endl;
 }
}

void Scheduler::removeProcess(const Process& process)
{
 mProcesses.remove(process);
}

int main()
{
 vector<Process> processes = { Process("1"), Process("2"), Process("3") };

 Scheduler scheduler(processes);
 for (int i = 0; i < 4; ++i)
 scheduler.scheduleTimeSlice();

 scheduler.removeProcess(processes[1]);
 cout << "Removed second process" << endl;

 for (int i = 0; i < 4; ++i)
 scheduler.scheduleTimeSlice();

 return 0;
}

The output should be as follows:

Process 1 performing work during time slice.
Process 2 performing work during time slice.
Process 3 performing work during time slice.

Sequential Containers  ❘  561

Process 1 performing work during time slice.
Removed second process
Process 3 performing work during time slice.
Process 1 performing work during time slice.
Process 3 performing work during time slice.
Process 1 performing work during time slice.

The vector<bool> Specialization
The C++ standard requires a partial specialization of vector for bools, with the intention that it
optimizes space allocation by “packing” the Boolean values. Recall that a bool is either true or
false, and thus could be represented by a single bit, which can take on exactly two values. C++
does not have a native type that stores exactly one bit. Some compilers represent a Boolean value
with a type the same size as a char, other compilers use an int. The vector<bool> specialization is
supposed to store the “array of bools” in single bits, thus saving space.

NOTE  You can think of the vector<bool> as a bit-field instead of a vector.
The bitset container described later in this chapter provides a more full-
featured bit-field implementation than does vector<bool>. However, the benefit
of vector<bool> is that it can change size dynamically.

In a half-hearted attempt to provide some bit-field routines for vector<bool>, there is one addi-
tional method: flip(). This method can be called either on the container—in which case it comple-
ments all the elements in the container—or on a single reference returned from operator[] or a
similar method, in which case it complements that single element.

At this point, you should be wondering how you can call a method on a reference to bool. The
answer is that you can’t. The vector<bool> specialization actually defines a class called reference
that serves as a proxy for the underlying bool (or bit). When you call operator[], at(), or a simi-
lar method, then vector<bool> returns a reference object, which is a proxy for the real bool.

WARNING  The fact that references returned from vector<bool> are really
proxies means that you can’t take their addresses to obtain pointers to the actual
elements in the container.

In practice, the little amount of space saved by packing bools hardly seems worth the extra effort.
Even worse, accessing and modifying elements in a vector<bool> is much slower than, for exam-
ple, in a vector<int>. Many C++ experts recommend avoiding vector<bool> in favor of the
bitset. If you do need a dynamically sized bit field, then it’s recommended to use something like
vector<std::int_fast8_t> or vector<unsigned char>. The std::int_fast8_t type is defined in
<cstdint>. It is a signed integer type for which the compiler has to use the fastest integer type it has
that is at least 8 bits.

562  ❘  CHAPTER 17   Understanding Containers and Iterators

deque
deque (the abbreviation for double-ended queue) is almost identical to vector, but is used far less
frequently. It is defined in the <deque> header file. The principle differences are as follows:

➤➤ Elements are not stored contiguously in memory.

➤➤ A deque supports true constant-time insertion and removal of elements at both the front and
the back (a vector supports amortized constant time at just the back).

➤➤ A deque provides push_front(), pop_front(), and emplace_front(), which the vector
omits. Since C++17, emplace_front() returns a reference to the inserted element, instead of
void.

➤➤ A deque does not invalidate iterators when inserting elements at the front or at the back.

➤➤ A deque does not expose its memory management scheme via reserve() or capacity().

deques are rarely used, as opposed to vectors, so they are not further discussed. Consult a
Standard Library Reference for a detailed list of all supported methods.

list
The Standard Library list class template, defined in the <list> header file, is a standard doubly
linked list. It supports constant-time insertion and deletion of elements at any point in the list,
but provides slow (linear) time access to individual elements. In fact, the list does not even pro-
vide random-access operations like operator[]. Only through iterators can you access individual
elements.

Most of the list operations are identical to those of vector, including the constructors, destruc-
tor, copying operations, assignment operations, and comparison operations. This section focuses on
those methods that differ from those of vector.

Accessing Elements
The only methods provided by a list to access elements are front() and back(), both of which
run in constant time. These methods return a reference to the first and last elements in a list. All
other element access must be performed through iterators.

A list supports begin(), returning an iterator referring to the first element in the list, and end(),
returning an iterator referring to one past the last element in the list. It also supports cbegin(),
cend(), rbegin(), rend(), crbegin(), and crend(), similar to a vector.

WARNING  Lists do not provide random access to elements.

Iterators
A list iterator is bidirectional, not random access like a vector iterator. That means that you can-
not add and subtract list iterators from each other, or perform other pointer arithmetic on them.

Sequential Containers  ❘  563

For example, if p is a list iterator, you can traverse through the elements of the list by doing ++p
or --p, but you cannot use the addition or subtraction operator; p+n and p-n do not work.

Adding and Removing Elements
A list supports the same add element and remove element methods as a vector, including push_
back(), pop_back(), emplace(), emplace_back(), the five forms of insert(), the two forms of
erase(), and clear(). Like a deque, it also provides push_front(), emplace_front(), and pop_
front(). All these methods (except for clear()) run in constant time, once you’ve found the cor-
rect position. Thus, a list could be appropriate for applications that perform many insertions and
deletions from the data structure, but do not need quick index-based element access. And even then,
a vector might still be faster. Use a performance profiler to make sure.

list Size
Like deques, and unlike vectors, lists do not expose their underlying memory model.
Consequently, they support size(), empty(), and resize(), but not reserve() or capacity().
Note that the size() method on a list has constant complexity, which is not the case for the
size() method on a forward_list (discussed later).

Special list Operations
A list provides several special operations that exploit its quick element insertion and deletion. This
section provides an overview and examples. Consult a Standard Library Reference for a thorough
reference of all the methods.

Splicing
The linked-list characteristics of a list allow it to splice, or insert, an entire list at any position in
another list in constant time. The simplest version of this method works as follows:

// Store the a words in the main dictionary.
list<string> dictionary{ "aardvark", "ambulance" };
// Store the b words.
list<string> bWords{ "bathos", "balderdash" };
// Add the c words to the main dictionary.
dictionary.push_back("canticle");
dictionary.push_back("consumerism");
// Splice the b words into the main dictionary.
if (!bWords.empty()) {
 // Get an iterator to the last b word.
 auto iterLastB = --(cend(bWords));
 // Iterate up to the spot where we want to insert b words.
 auto it = cbegin(dictionary);
 for (; it != cend(dictionary); ++it) {
 if (*it > *iterLastB)
 break;
 }
 // Add in the b words. This action removes the elements from bWords.
 dictionary.splice(it, bWords);
}

564  ❘  CHAPTER 17   Understanding Containers and Iterators

// Print out the dictionary.
for (const auto& word : dictionary) {
 cout << word << endl;
}

The result from running this program looks like this:

aardvark
ambulance
bathos
balderdash
canticle
consumerism

There are also two other forms of splice(): one that inserts a single element from another list,
and one that inserts a range from another list. Additionally, all forms of splice() are available
with either a normal reference or an rvalue reference to the source list.

WARNING  Splicing is destructive to the list passed as an argument: it removes
the spliced elements from one list in order to insert them into the other.

More Efficient Versions of Algorithms
In addition to splice(), a list provides special implementations of several of the generic Standard
Library algorithms. The generic forms are covered in Chapter 18. Here, only the specific versions
provided by list are discussed.

NOTE  When you have a choice, use the list-specific methods rather
than the generic Standard Library algorithms because the former are more
efficient. Sometimes you don’t have a choice and you must use the list-
specific methods; for example, the generic std::sort() algorithm requires
RandomAccessIterators, which a list does not provide.

The following table summarizes the algorithms for which list provides special implementations as
methods. See Chapter 18 for more details on the algorithms.

METHOD DESCRIPTION

remove()

remove_if()

Removes certain elements from a list.

unique() Removes duplicate consecutive elements from a list, based on
operator== or a user-supplied binary predicate.

merge() Merges two lists. Both lists must be sorted to start, according to
operator< or a user-defined comparator. Like splice(), merge() is
destructive to the list passed as an argument.

Sequential Containers  ❘  565

METHOD DESCRIPTION

sort() Performs a stable sort on elements in a list.

reverse() Reverses the order of the elements in a list.

list Example: Determining Enrollment
Suppose that you are writing a computer registration system for a university. One feature you might
provide is the ability to generate a complete list of enrolled students in the university from lists of the
students in each class. For the sake of this example, assume that you must write only a single func-
tion that takes a vector of lists of student names (as strings), plus a list of students that have
been dropped from their courses because they failed to pay tuition. This method should generate a
complete list of all the students in all the courses, without any duplicates, and without those stu-
dents who have been dropped. Note that students might be in more than one course.

Here is the code for this method, with comments explaining the code. With the power of Standard
Library lists, the method is practically shorter than its written description! Note that the
Standard Library allows you to “nest” containers: in this case, you can use a vector of lists.

// courseStudents is a vector of lists, one for each course. The lists
// contain the students enrolled in those courses. They are not sorted.
//
// droppedStudents is a list of students who failed to pay their
// tuition and so were dropped from their courses.
//
// The function returns a list of every enrolled (non-dropped) student in
// all the courses.
list<string> getTotalEnrollment(const vector<list<string>>& courseStudents,
 const list<string>& droppedStudents)
{
 list<string> allStudents;

 // Concatenate all the course lists onto the master list
 for (auto& lst : courseStudents) {
 allStudents.insert(cend(allStudents), cbegin(lst), cend(lst));
 }

 // Sort the master list
 allStudents.sort();

 // Remove duplicate student names (those who are in multiple courses).
 allStudents.unique();

 // Remove students who are on the dropped list.
 // Iterate through the dropped list, calling remove on the
 // master list for each student in the dropped list.
 for (auto& str : droppedStudents) {
 allStudents.remove(str);
 }

 // done!
 return allStudents;
}

566  ❘  CHAPTER 17   Understanding Containers and Iterators

NOTE  This example demonstrates the use of the list-specific algorithms. As
stated several times before, often a vector is faster than a list. So, the recom-
mended solution to the student enrollment problem would be to only use
vectors, and to combine these with generic Standard Library algorithms, but
those are discussed in the next chapter.

forward_list
A forward_list, defined in the <forward_list> header file, is similar to a list except that it is
a singly linked list, while a list is a doubly linked list. This means that forward_list supports
only forward iteration and, because of this, ranges need to be specified differently compared to
a list. If you want to modify any list, you need access to the element before the first element of
interest. Because a forward_list does not have an iterator that supports going backward, there
is no easy way to get to the preceding element. For this reason, ranges that will be modified—for
example, ranges supplied to erase() and splice()—must be open at the beginning. The begin()
function that was discussed earlier returns an iterator to the first element, and thus can only be
used to construct a range that is closed at the beginning. The forward_list class therefore defines
a before_begin() method, which returns an iterator that points to an imaginary element before
the beginning of the list. You cannot dereference this iterator as it points to invalid data. However,
incrementing this iterator by one makes it the same as the iterator returned by begin(); as a result,
it can be used to make a range that is open at the beginning. The following table sums up the dif-
ferences between a list and a forward_list. A filled box (◼) means the container supports that
operation, while an empty box (◻) means the operation is not supported.

OPERATION LIST FORWARD_LIST

assign() ◼ ◼

back() ◼ ◻

before_begin() ◻ ◼

begin() ◼ ◼

cbefore_begin() ◻ ◼

cbegin() ◼ ◼

cend() ◼ ◼

clear() ◼ ◼

crbegin() ◼ ◻

crend() ◼ ◻

emplace() ◼ ◻

emplace_after() ◻ ◼

Sequential Containers  ❘  567

OPERATION LIST FORWARD_LIST

emplace_back() ◼ ◻

emplace_front() ◼ ◼

empty() ◼ ◼

end() ◼ ◼

erase() ◼ ◻

erase_after() ◻ ◼

front() ◼ ◼

insert() ◼ ◻

insert_after() ◻ ◼

iterator / const_iterator ◼ ◼

max_size() ◼ ◼

merge() ◼ ◼

pop_back() ◼ ◻

pop_front() ◼ ◼

push_back() ◼ ◻

push_front() ◼ ◼

rbegin() ◼ ◻

remove() ◼ ◼

remove_if() ◼ ◼

rend() ◼ ◻

resize() ◼ ◼

reverse() ◼ ◼

reverse_iterator / const_reverse_iterator ◼ ◻

size() ◼ ◻

sort() ◼ ◼

splice() ◼ ◻

splice_after() ◻ ◼

swap() ◼ ◼

unique() ◼ ◼

568  ❘  CHAPTER 17   Understanding Containers and Iterators

Constructors and assignment operators are similar between a list and a forward_list. The C++
standard states that forward_lists should try to use minimal space. That’s the reason why there is
no size() method, because by not providing it, there is no need to store the size of the list. The fol-
lowing example demonstrates the use of forward_lists:

// Create 3 forward lists using an initializer_list
// to initialize their elements (uniform initialization).
forward_list<int> list1 = { 5, 6 };
forward_list<int> list2 = { 1, 2, 3, 4 };
forward_list<int> list3 = { 7, 8, 9 };

// Insert list2 at the front of list1 using splice.
list1.splice_after(list1.before_begin(), list2);

// Add number 0 at the beginning of the list1.
list1.push_front(0);

// Insert list3 at the end of list1.
// For this, we first need an iterator to the last element.
auto iter = list1.before_begin();
auto iterTemp = iter;
while (++iterTemp != end(list1)) {
 ++iter;
}
list1.insert_after(iter, cbegin(list3), cend(list3));

// Output the contents of list1.
for (auto& i : list1) {
 cout << i << ' ';
}

To insert list3, you need an iterator to the last element in the list. However, because this is a
forward_list, you cannot use --end(list1), so you need to iterate over the list from the
beginning and stop at the last element. The output of this example is as follows:

0 1 2 3 4 5 6 7 8 9

array
An array, defined in the <array> header file, is similar to a vector except that it is of a fixed size;
it cannot grow or shrink in size. The purpose of a fixed size is to allow an array to be allocated on
the stack, rather than always demanding heap access as vector does. Just like vectors, arrays sup-
port random-access iterators, and elements are stored in contiguous memory. An array has support
for front(), back(), at(), and operator[]. It also supports a fill() method to fill the array
with a specific element. Because it is fixed in size, it does not support push_back(), pop_back(),
insert(), erase(), clear(), resize(), reserve(), or capacity(). A disadvantage compared
to a vector is that the swap() method of an array runs in linear time, while it has constant com-
plexity for a vector. An array can also not be moved in constant time, while a vector can. An
array has a size() method, which is a clear advantage over C-style arrays. The following example
demonstrates how to use the array class. Note that the array declaration requires two template

Container Adaptors  ❘  569

parameters: the first specifies the type of the elements, and the second specifies the fixed number of
elements in the array.

// Create an array of 3 integers and initialize them
// with the given initializer_list using uniform initialization.
array<int, 3> arr = { 9, 8, 7 };
// Output the size of the array.
cout << "Array size = " << arr.size() << endl; // or std::size(arr);
// Output the contents using a range-based for loop.
for (const auto& i : arr) {
 cout << i << endl;
}

cout << "Performing arr.fill(3)..." << endl;
// Use the fill method to change the contents of the array.
arr.fill(3);
// Output the contents of the array using iterators.
for (auto iter = cbegin(arr); iter != cend(arr); ++iter) {
 cout << *iter << endl;
}

The output of the preceding code is as follows:

Array size = 3
9
8
7

Performing arr.fill(3)...
3
3
3

You can use the std::get<n>() function template to retrieve an element from an std::array at the
given index n. The index has to be a constant expression, so it cannot, for example, be a loop vari-
able. The benefit of using std::get<n>() is that the compiler checks at compile time that the given
index is valid; otherwise, it results in a compilation error, as in this example:

array<int, 3> myArray{ 11, 22, 33 };
cout << std::get<1>(myArray) << endl;
cout << std::get<10>(myArray) << endl; // Compilation error!

CONTAINER ADAPTORS

In addition to the standard sequential containers, the Standard Library provides three container
adaptors: queue, priority_queue, and stack. Each of these adaptors is a wrapper around one
of the sequential containers. They allow you to swap the underlying container without having to
change the rest of the code. The intent of the adaptors is to simplify the interface and to provide only
those features that are appropriate for the stack or queue abstraction. For example, the adaptors
don’t provide iterators or the capability to insert or erase multiple elements simultaneously.

570  ❘  CHAPTER 17   Understanding Containers and Iterators

queue
The queue container adaptor, defined in the header file <queue>, provides standard “first-in, first-
out” (FIFO) semantics. As usual, it’s written as a class template, which looks like this:

template <class T, class Container = deque<T>> class queue;

The T template parameter specifies the type that you intend to store in the queue. The second tem-
plate parameter allows you to stipulate the underlying container that the queue adapts. However,
the queue requires the sequential container to support both push_back() and pop_front(), so
you have only two built-in choices: deque and list. For most purposes, you can just stick with the
default deque.

queue Operations
The queue interface is extremely simple: there are only eight methods plus the constructor and the
normal comparison operators. The push()and emplace() methods add a new element to the tail of
the queue, while pop() removes the element at the head of the queue. You can retrieve references to,
without removing, the first and last elements with front() and back(), respectively. As usual, when
called on const objects, front() and back() return const references; and when called on non-
const objects, they return non-const (read/write) references.

WARNING  pop() does not return the element popped. If you want to retain a
copy, you must first retrieve it with front().

The queue also supports size(), empty(), and swap().

queue Example: A Network Packet Buffer
When two computers communicate over a network, they send information to each other divided up
into discrete chunks called packets. The networking layer of the computer’s operating system must
pick up the packets and store them as they arrive. However, the computer might not have enough
bandwidth to process all of them at once. Thus, the networking layer usually buffers, or stores, the
packets until the higher layers have a chance to attend to them. The packets should be processed
in the order they arrive, so this problem is perfect for a queue structure. The following is a small
PacketBuffer class, with comments explaining the code, which stores incoming packets in a queue
until they are processed. It’s a class template so that different layers of the networking layer can use
it for different kinds of packets, such as IP packets or TCP packets. It allows the client to specify a
maximum size because operating systems usually limit the number of packets that can be stored, so
as not to use too much memory. When the buffer is full, subsequently arriving packets are ignored.

template <typename T>
class PacketBuffer
{
 public:
 // If maxSize is 0, the size is unlimited, because creating
 // a buffer of size 0 makes little sense. Otherwise only
 // maxSize packets are allowed in the buffer at any one time.

Container Adaptors  ❘  571

 PacketBuffer(size_t maxSize = 0);

 virtual ~PacketBuffer() = default;

 // Stores a packet in the buffer.
 // Returns false if the packet has been discarded because
 // there is no more space in the buffer, true otherwise.
 bool bufferPacket(const T& packet);

 // Returns the next packet. Throws out_of_range
 // if the buffer is empty.
 T getNextPacket();
 private:
 std::queue<T> mPackets;
 size_t mMaxSize;
};

template <typename T> PacketBuffer<T>::PacketBuffer(size_t maxSize/*= 0*/)
 : mMaxSize(maxSize)
{
}

template <typename T> bool PacketBuffer<T>::bufferPacket(const T& packet)
{
 if (mMaxSize > 0 && mPackets.size() == mMaxSize) {
 // No more space. Drop the packet.
 return false;
 }
 mPackets.push(packet);
 return true;
}

template <typename T> T PacketBuffer<T>::getNextPacket()
{
 if (mPackets.empty()) {
 throw std::out_of_range("Buffer is empty");
 }
 // Retrieve the head element
 T temp = mPackets.front();
 // Pop the head element
 mPackets.pop();
 // Return the head element
 return temp;
}

A practical application of this class would require multiple threads. C++ provides synchronization
classes to allow thread-safe access to shared objects. Without explicit synchronization, no Standard
Library object can be used safely from multiple threads when at least one of the threads modifies the
object. Synchronization is discussed in Chapter 23. The focus in this example is on the queue class,
so here is a single-threaded example of using the PacketBuffer:

class IPPacket final
{
 public:
 IPPacket(int id) : mID(id) {}
 int getID() const { return mID; }

572  ❘  CHAPTER 17   Understanding Containers and Iterators

 private:
 int mID;
};

int main()
{
 PacketBuffer<IPPacket> ipPackets(3);

 // Add 4 packets
 for (int i = 1; i <= 4; ++i) {
 if (!ipPackets.bufferPacket(IPPacket(i))) {
 cout << "Packet " << i << " dropped (queue is full)." << endl;
 }
 }

 while (true) {
 try {
 IPPacket packet = ipPackets.getNextPacket();
 cout << "Processing packet " << packet.getID() << endl;
 } catch (const out_of_range&) {
 cout << "Queue is empty." << endl;
 break;
 }
 }
 return 0;
}

The output of this program is as follows:

Packet 4 dropped (queue is full).
Processing packet 1
Processing packet 2
Processing packet 3
Queue is empty.

priority_queue
A priority queue is a queue that keeps its elements in sorted order. Instead of a strict FIFO ordering,
the element at the head of the queue at any given time is the one with the highest priority. This ele-
ment could be the oldest on the queue or the most recent. If two elements have equal priority, their
relative order in the queue is undefined.

The priority_queue container adaptor is also defined in <queue>. Its template definition looks
something like this (slightly simplified):

template <class T, class Container = vector<T>,
 class Compare = less<T>>;

It’s not as complicated as it looks. You’ve seen the first two parameters before: T is the element type
stored in the priority_queue and Container is the underlying container on which the prior-
ity_queue is adapted. The priority_queue uses vector as the default, but deque works as well.
list does not work because the priority_queue requires random access to its elements. The third
parameter, Compare, is trickier. As you’ll learn more about in Chapter 18, less is a class template
that supports comparison of two objects of type T with operator<. What this means for you is

Container Adaptors  ❘  573

that the priority of elements in a priority_queue is determined according to operator<. You can
customize the comparison used, but that’s a topic for Chapter 18. For now, just make sure that you
define operator< appropriately for the types stored in a priority_queue.

NOTE  The head element of a priority_queue is the one with the “highest”
priority; by default, this is determined according to operator< such that ele-
ments that are “less” than other elements have lower priority.

priority_queue Operations
A priority_queue provides even fewer operations than does a queue. The push() and emplace()
methods allow you to insert elements, pop() allows you to remove elements, and top() returns a
const reference to the head element.

WARNING  top() returns a const reference even when called on a non-const
object, because modifying the element might change its order, which is not
allowed. A priority_queue provides no mechanism to obtain the tail element.

WARNING  pop() does not return the element popped. If you want to retain a
copy, you must first retrieve it with top().

Like a queue, a priority_queue supports size(), empty(), and swap(). However, it does not
provide any comparison operators.

priority_queue Example: An Error Correlator
Single failures on a system can often cause multiple errors to be generated from different compo-
nents. A good error-handling system uses error correlation to process the most important errors
first. You can use a priority_queue to write a very simple error correlator. Assume all error events
encode their own priority. The error correlator simply sorts error events according to their priority,
so that the highest-priority errors are always processed first. Here is the class definition:

// Sample Error class with just a priority and a string error description.
class Error final
{
 public:
 Error(int priority, std::string_view errorString)
 : mPriority(priority), mErrorString(errorString) {}

 int getPriority() const { return mPriority; }
 std::string_view getErrorString() const { return mErrorString; }

574  ❘  CHAPTER 17   Understanding Containers and Iterators

 private:
 int mPriority;
 std::string mErrorString;
};

bool operator<(const Error& lhs, const Error& rhs);
std::ostream& operator<<(std::ostream& os, const Error& err);

// Simple ErrorCorrelator class that returns highest priority errors first.
class ErrorCorrelator final
{
 public:
 // Add an error to be correlated.
 void addError(const Error& error);
 // Retrieve the next error to be processed.
 Error getError();
 private:
 std::priority_queue<Error> mErrors;
};

Here are the definitions of the functions and methods:

bool operator<(const Error& lhs, const Error& rhs)
{
 return (lhs.getPriority() < rhs.getPriority());
}

ostream& operator<<(ostream& os, const Error& err)
{
 os << err.getErrorString() << " (priority " << err.getPriority() << ")";
 return os;
}

void ErrorCorrelator::addError(const Error& error)
{
 mErrors.push(error);
}

Error ErrorCorrelator::getError()
{
 // If there are no more errors, throw an exception.
 if (mErrors.empty()) {
 throw out_of_range("No more errors.");
 }
 // Save the top element.
 Error top = mErrors.top();
 // Remove the top element.
 mErrors.pop();
 // Return the saved element.
 return top;
}

Here is a simple unit test showing how to use the ErrorCorrelator. Realistic use would require mul-
tiple threads so that one thread adds errors, while another processes them. As mentioned earlier with
the queue example, this requires explicit synchronization, which is only discussed in Chapter 23.

Container Adaptors  ❘  575

ErrorCorrelator ec;
ec.addError(Error(3, "Unable to read file"));
ec.addError(Error(1, "Incorrect entry from user"));
ec.addError(Error(10, "Unable to allocate memory!"));

while (true) {
 try {
 Error e = ec.getError();
 cout << e << endl;
 } catch (const out_of_range&) {
 cout << "Finished processing errors" << endl;
 break;
 }
}

The output of this program is as follows:

Unable to allocate memory! (priority 10)
Unable to read file (priority 3)
Incorrect entry from user (priority 1)
Finished processing errors

stack
A stack is almost identical to a queue, except that it provides first-in, last-out (FILO) semantics,
also known as last-in, first-out (LIFO), instead of FIFO. It is defined in the <stack> header file. The
template definition looks like this:

template <class T, class Container = deque<T>> class stack;

You can use vector, list, or deque as the underlying container for the stack.

stack Operations
Like the queue, the stack provides push(), emplace(), and pop(). The difference is that push()
adds a new element to the top of the stack, “pushing down” all elements inserted earlier, and pop()
removes the element from the top of the stack, which is the most recently inserted element. The
top() method returns a const reference to the top element if called on a const object, and a
non-const reference if called on a non-const object.

WARNING  pop() does not return the element popped. If you want to retain a
copy, you must first retrieve it with top().

The stack supports empty(), size(), swap(), and the standard comparison operators.

stack Example: Revised Error Correlator
You can rewrite the previous ErrorCorrelator class so that it gives out the most recent error
instead of the one with the highest priority. The only change required is to change mErrors from
a priority_queue to a stack. With this change, the errors are distributed in LIFO order instead

576  ❘  CHAPTER 17   Understanding Containers and Iterators

of priority order. Nothing in the method definitions needs to change because the push(), pop(),
top(), and empty() methods exist on both a priority_queue and a stack.

ORDERED ASSOCIATIVE CONTAINERS

Unlike the sequential containers, the ordered associative containers do not store elements in a linear
configuration. Instead, they provide a mapping of keys to values. They generally offer insertion,
deletion, and lookup times that are equivalent to each other.

There are four ordered associative containers provided by the Standard Library: map, multimap,
set, and multiset. Each of these containers stores its elements in a sorted, tree-like data structure.
There are also four unordered associative containers: unordered_map, unordered_multimap,
unordered_set, and unordered_multiset. These are discussed later in this chapter.

The pair Utility Class
Before learning about the ordered associative containers, you must become familiar with the pair
class, which is defined in the <utility> header file. pair is a class template that groups together
two values of possibly different types. The values are accessible through the first and second pub-
lic data members. operator== and operator< are defined for pairs to compare both the first and
second elements. Here are some examples:

// Two-argument constructor and default constructor
pair<string, int> myPair("hello", 5);
pair<string, int> myOtherPair;

// Can assign directly to first and second
myOtherPair.first = "hello";
myOtherPair.second = 6;

// Copy constructor
pair<string, int> myThirdPair(myOtherPair);

// operator<
if (myPair < myOtherPair) {
 cout << "myPair is less than myOtherPair" << endl;
} else {
 cout << "myPair is greater than or equal to myOtherPair" << endl;
}

// operator==
if (myOtherPair == myThirdPair) {
 cout << "myOtherPair is equal to myThirdPair" << endl;
} else {
 cout << "myOtherPair is not equal to myThirdPair" << endl;
}

The output is as follows:

myPair is less than myOtherPair
myOtherPair is equal to myThirdPair

Ordered Associative Containers  ❘  577

The library also provides a utility function template, make_pair(), that constructs a pair from two
values, as in this example:

pair<int, double> aPair = make_pair(5, 10.10);

Of course, in this case you could have just used the two-argument constructor. However, make_
pair() is more useful when you want to pass a pair to a function, or assign it to a pre-existing
variable. Unlike class templates, function templates can infer types from parameters, so you can use
make_pair() to construct a pair without explicitly specifying the types. You can also use make_
pair() in combination with the auto keyword as follows:

auto aSecondPair = make_pair(5, 10.10);

C++17 introduces template parameter deduction for constructors, as discussed in Chapter 12. This
allows you to forget about make_pair(), and simply write the following:

auto aThirdPair = pair(5, 10.10);

Structured bindings is another C++17 feature introduced in Chapter 1. It can be used to decompose
the elements of a pair into separate variables. Here’s an example:

pair<string, int> myPair("hello", 5);
auto[theString, theInt] = myPair; // Decompose using structured bindings
cout << "theString: " << theString << endl;
cout << "theInt: " << theInt << endl;

map
A map, defined in the <map> header file, stores key/value pairs instead of just single values. Insertion,
lookup, and deletion are all based on the key; the value is just “along for the ride.” The term map
comes from the conceptual understanding that the container “maps” keys to values.

A map keeps elements in sorted order, based on the keys, so that insertion, deletion, and lookup all
take logarithmic time. Because of the order, when you enumerate the elements, they come out in the
ordering imposed by the type’s operator< or a user-defined comparator. It is usually implemented
as some form of balanced tree, such as a red-black tree. However, the tree structure is not exposed
to the client.

You should use a map whenever you need to store and retrieve elements based on a “key” and you
would like to have them in a certain order.

Constructing maps
The map class template takes four types: the key type, the value type, the comparison type, and the
allocator type. As always, the allocator is ignored in this chapter. The comparison type is similar
to the comparison type for a priority_queue described earlier. It allows you to specify a different
comparison class than the default. In this chapter, only the default less comparison is used. When
using the default, make sure that your keys all respond to operator< appropriately. If you’re inter-
ested in further detail, Chapter 18 explains how to write your own comparison classes.

If you ignore the comparison and allocator parameters, constructing a map is just like construct-
ing a vector or a list, except that you specify the key and value types separately in the template

C++17

C++17

578  ❘  CHAPTER 17   Understanding Containers and Iterators

instantiation. For example, the following code constructs a map that uses ints as the key and stores
objects of the Data class:

class Data final
{
 public:
 explicit Data(int value = 0) : mValue(value) { }
 int getValue() const { return mValue; }
 void setValue(int value) { mValue = value; }

 private:
 int mValue;
};
...
map<int, Data> dataMap;

A map also supports uniform initialization:

map<string, int> m = {
 { "Marc G.", 123 },
 { "Warren B.", 456 },
 { "Peter V.W.", 789 }
};

Inserting Elements
Inserting an element into sequential containers such as vector and list always requires you to
specify the position at which the element is to be added. A map, along with the other ordered asso-
ciative containers, is different. The map’s internal implementation determines the position in which
to store the new element; you need only to supply the key and the value.

NOTE  map and the other ordered associative containers do provide a version of
insert() that takes an iterator position. However, that position is only a “hint”
to the container as to the correct position. The container is not required to insert
the element at that position.

When inserting elements, it is important to keep in mind that maps require unique keys: every ele-
ment in the map must have a different key. If you want to support multiple elements with the same
key, you have two options: you can either use a map and store another container such as a vector or
an array as the value for a key, or you can use multimaps, described later.

The insert() Method
The insert() method can be used to add elements to a map, and has the advantage of allowing
you to detect if a key already exists. You must specify the key/value pair as a pair object or as an
initializer_list. The return type of the basic form of insert() is a pair of an iterator and
a bool. The reason for the complicated return type is that insert() does not overwrite an element
value if one already exists with the specified key. The bool element of the returned pair specifies

Ordered Associative Containers  ❘  579

whether or not the insert() actually inserted the new key/value pair. The iterator refers to the
element in the map with the specified key (with a new or old value, depending on whether the insert
succeeded or failed). map iterators are discussed in more detail in the next section. Continuing the
map example from the previous section, you can use insert() as follows:

map<int, Data> dataMap;

auto ret = dataMap.insert({ 1, Data(4) }); // Using an initializer_list
if (ret.second) {
 cout << "Insert succeeded!" << endl;
} else {
 cout << "Insert failed!" << endl;
}

ret = dataMap.insert(make_pair(1, Data(6))); // Using a pair object
if (ret.second) {
 cout << "Insert succeeded!" << endl;
} else {
 cout << "Insert failed!" << endl;
}

The type of the ret variable is a pair as follows:

pair<map<int, Data>::iterator, bool> ret;

The first element of the pair is a map iterator for a map with keys of type int and values of type
Data. The second element of the pair is a Boolean value.

The output of the program is as follows:

Insert succeeded!
Insert failed!

With initializers for if statements (C++17), inserting the data into the map and checking the result
can be done with a single statement as follows:

if (auto result = dataMap.insert({ 1, Data(4) }); result.second) {
 cout << "Insert succeeded!" << endl;
} else {
 cout << "Insert failed!" << endl;
}

This can even be combined with C++17 structured bindings:

if (auto [iter, success] = dataMap.insert({ 1, Data(4) }); success) {
 cout << "Insert succeeded!" << endl;
} else {
 cout << "Insert failed!" << endl;
}

The insert_or_assign() Method
insert_or_assign() has a similar return type as insert(). However, if an element with the
given key already exists, insert_or_assign() overwrites the old value with the new value, while

C++17

C++17

580  ❘  CHAPTER 17   Understanding Containers and Iterators

insert() does not overwrite the old value in that case. Another difference with insert() is that
insert_or_assign() has two separate parameters: the key and the value. Here is an example:

ret = dataMap.insert_or_assign(1, Data(7));
if (ret.second) {
 cout << "Inserted." << endl;
} else {
 cout << "Overwritten." << endl;
}

operator[]
Another method to insert elements into a map is through the overloaded operator[]. The difference
is mainly in the syntax: you specify the key and value separately. Additionally, operator[] always
succeeds. If no element value with the given key exists, it creates a new element with that key and
value. If an element with the key already exists, operator[] replaces the element value with the
newly specified value. Here is part of the previous example using operator[] instead of insert():

map<int, Data> dataMap;
dataMap[1] = Data(4);
dataMap[1] = Data(6); // Replaces the element with key 1

There is, however, one major caveat to operator[]: it always constructs a new value object, even if
it doesn’t need to use it. Thus, it requires a default constructor for your element values, and can be
less efficient than insert().

The fact that operator[] creates a new element in a map if the requested element does not already
exist means that this operator is not marked as const. This sounds obvious, but might sometimes
look counterintuitive. For example, suppose you have the following function:

void func(const map<int, int>& m)
{
 cout << m[1] << endl; // Error
}

This fails to compile, even though you appear to be just reading the value m[1]. It fails because
the variable m is a const reference to a map, and operator[] is not marked as const. Instead, you
should use the find() method described in the section “Looking Up Elements.”

Emplace Methods
A map supports emplace() and emplace_hint() to construct elements in-place, similar to the
emplace methods of a vector. C++17 adds a try_emplace() method that inserts an element
in-place if the given key does not exist yet, or does nothing if the key already exists in the map.

map Iterators
map iterators work similarly to the iterators on the sequential containers. The major difference is that
the iterators refer to key/value pairs instead of just the values. In order to access the value, you must
retrieve the second field of the pair object. map iterators are bidirectional, meaning you can traverse
them in both directions. Here is how you can iterate through the map from the previous example:

for (auto iter = cbegin(dataMap); iter != cend(dataMap); ++iter) {
 cout << iter->second.getValue() << endl;
}

Ordered Associative Containers  ❘  581

Take another look at the expression used to access the value:

iter->second.getValue()

iter refers to a key/value pair, so you can use the -> operator to access the second field of that
pair, which is a Data object. You can then call the getValue() method on that Data object.

Note that the following code is functionally equivalent:

(*iter).second.getValue()

Using a range-based for loop, the loop can be written more readable as follows:

for (const auto& p : dataMap) {
 cout << p.second.getValue() << endl;
}

It can be implemented even more elegantly using a combination of a range-based for loop and
C++17 structured bindings:

for (const auto& [key, data] : dataMap) {
 cout << data.getValue() << endl;
}

WARNING  You can modify element values through non-const iterators, but
the compiler will generate an error if you try to modify the key of an element,
even through a non-const iterator, because it would destroy the sorted order of
the elements in the map.

Looking Up Elements
A map provides logarithmic lookup of elements based on a supplied key. If you already know that an
element with a given key is in a map, the simplest way to look it up is through operator[] as long
as you call it on a non-const map or a non-const reference to a map. The nice thing about opera-
tor[] is that it returns a reference to the element that you can use and modify directly, without wor-
rying about pulling the value out of a pair object. Here is an extension to the preceding example to
call the setValue() method on the Data object value at key 1:

map<int, Data> dataMap;
dataMap[1] = Data(4);
dataMap[1] = Data(6);
dataMap[1].setValue(100);

However, if you don’t know whether the element exists, you may not want to use operator[],
because it will insert a new element with that key if it doesn’t find one already. As an alternative,
map provides a find() method that returns an iterator referring to the element with the specified
key, if it exists, or the end() iterator if it’s not in the map. Here is an example using find() to per-
form the same modification to the Data object with key 1:

auto it = dataMap.find(1);
if (it != end(dataMap)) {
 it->second.setValue(100);
}

As you can see, using find() is a bit clumsier, but it’s sometimes necessary.

582  ❘  CHAPTER 17   Understanding Containers and Iterators

If you only want to know whether or not an element with a certain key is in a map, you can use the
count() method. It returns the number of elements in a map with a given key. For maps, the result
will always be 0 or 1 because there can be no elements with duplicate keys.

Removing Elements
A map allows you to remove an element at a specific iterator position or to remove all elements in a
given iterator range, in amortized constant and logarithmic time, respectively. From the client per-
spective, these two erase() methods are equivalent to those in the sequential containers. A great
feature of a map, however, is that it also provides a version of erase() to remove an element match-
ing a key. Here is an example:

map<int, Data> dataMap;
dataMap[1] = Data(4);
cout << "There are " << dataMap.count(1) << " elements with key 1" << endl;
dataMap.erase(1);
cout << "There are " << dataMap.count(1) << " elements with key 1" << endl;

The output is as follows:

There are 1 elements with key 1
There are 0 elements with key 1

Nodes
All the ordered and unordered associative containers are so-called node-based data structures.
Starting with C++17, the Standard Library provides direct access to nodes in the form of node
handles. The exact type is unspecified, but each container has a type alias called node_type that
specifies the type of a node handle for that container. A node handle can only be moved, and is the
owner of the element stored in a node. It provides read/write access to both the key and the value.

Nodes can be extracted from an associative container as a node handle using the extract()
method, based either on a given iterator position or on a given key. Extracting a node from a con-
tainer removes it from the container, because the returned node handle is the sole owner of the
extracted element.

New insert() overloads are provided that allow you to insert a node handle into a container.

Using extract() to extract node handles, and insert() to insert node handles, you can effec-
tively transfer data from one associative container to another one without any copying or moving
involved. You can even move nodes from a map to a multimap, and from a set to a multiset.
Continuing with the example from the previous section, the following code snippet transfers the
node with key 1 to a second map:

map<int, Data> dataMap2;
auto extractedNode = dataMap.extract(1);
dataMap2.insert(std::move(extractedNode));

The last two lines can be combined into one:

dataMap2.insert(dataMap.extract(1));

C++17

Ordered Associative Containers  ❘  583

One additional operation is available to move all nodes from one associative container to another
one: merge(). Nodes that cannot be moved because they would cause, for example, duplicates in a
target container that does not allow duplicates, are left in the source container. Here is an example:

map<int, int> src = { {1, 11}, {2, 22} };
map<int, int> dst = { {2, 22}, {3, 33}, {4, 44}, {5, 55} };
dst.merge(src);

After the merge operation, src still contains one element, {2, 22}, because the destination already
contains such an element, so it cannot be moved. dst contains {1, 11}, {2, 22}, {3, 33}, {4, 44}, and
{5, 55} after the operation.

map Example: Bank Account
You can implement a simple bank account database using a map. A common pattern is for the key to
be one field of a class or struct that is stored in a map. In this case, the key is the account number.
Here are simple BankAccount and BankDB classes:

class BankAccount final
{
 public:
 BankAccount(int acctNum, std::string_view name)
 : mAcctNum(acctNum), mClientName(name) {}

 void setAcctNum(int acctNum) { mAcctNum = acctNum; }
 int getAcctNum() const { return mAcctNum; }

 void setClientName(std::string_view name) { mClientName = name; }
 std::string_view getClientName() const { return mClientName; }
 private:
 int mAcctNum;
 std::string mClientName;
};

class BankDB final
{
 public:
 // Adds account to the bank database. If an account exists already
 // with that number, the new account is not added. Returns true
 // if the account is added, false if it's not.
 bool addAccount(const BankAccount& account);

 // Removes the account acctNum from the database.
 void deleteAccount(int acctNum);

 // Returns a reference to the account represented
 // by its number or the client name.
 // Throws out_of_range if the account is not found.
 BankAccount& findAccount(int acctNum);
 BankAccount& findAccount(std::string_view name);

584  ❘  CHAPTER 17   Understanding Containers and Iterators

 // Adds all the accounts from db to this database.
 // Deletes all the accounts from db.
 void mergeDatabase(BankDB& db);
 private:
 std::map<int, BankAccount> mAccounts;
};

Here are the implementations of the BankDB methods, with comments explaining the code:

bool BankDB::addAccount(const BankAccount& acct)
{
 // Do the actual insert, using the account number as the key
 auto res = mAccounts.emplace(acct.getAcctNum(), acct);
 // or: auto res = mAccounts.insert(make_pair(acct.getAcctNum(), acct));

 // Return the bool field of the pair specifying success or failure
 return res.second;
}

void BankDB::deleteAccount(int acctNum)
{
 mAccounts.erase(acctNum);
}

BankAccount& BankDB::findAccount(int acctNum)
{
 // Finding an element via its key can be done with find()
 auto it = mAccounts.find(acctNum);
 if (it == end(mAccounts)) {
 throw out_of_range("No account with that number.");
 }
 // Remember that iterators into maps refer to pairs of key/value
 return it->second;
}

BankAccount& BankDB::findAccount(string_view name)
{
 // Finding an element by a non-key attribute requires a linear
 // search through the elements. Uses C++17 structured bindings.
 for (auto& [acctNum, account] : mAccounts) {
 if (account.getClientName() == name) {
 return account; // found it!
 }
 }
 // If your compiler doesn't support the above C++17 structured
 // bindings yet, you can use the following implementation
 //for (auto& p : mAccounts) {
 // if (p.second.getClientName() == name) { return p.second; }
 //}

 throw out_of_range("No account with that name.");
}

Ordered Associative Containers  ❘  585

void BankDB::mergeDatabase(BankDB& db)
{
 // Use C++17 merge().
 mAccounts.merge(db.mAccounts);
 // Or: mAccounts.insert(begin(db.mAccounts), end(db.mAccounts));

 // Now clear the source database.
 db.mAccounts.clear();
}

You can test the BankDB class with the following code:

BankDB db;
db.addAccount(BankAccount(100, "Nicholas Solter"));
db.addAccount(BankAccount(200, "Scott Kleper"));

try {
 auto& acct = db.findAccount(100);
 cout << "Found account 100" << endl;
 acct.setClientName("Nicholas A Solter");

 auto& acct2 = db.findAccount("Scott Kleper");
 cout << "Found account of Scott Kleper" << endl;

 auto& acct3 = db.findAccount(1000);
} catch (const out_of_range& caughtException) {
 cout << "Unable to find account: " << caughtException.what() << endl;
}

The output is as follows:

Found account 100
Found account of Scott Kleper
Unable to find account: No account with that number.

multimap
A multimap is a map that allows multiple elements with the same key. Like maps, multimaps sup-
port uniform initialization. The interface is almost identical to the map interface, with the following
differences:

➤➤ multimaps do not provide operator[] and at(). The semantics of these do not make sense
if there can be multiple elements with a single key.

➤➤ Inserts on multimaps always succeed. Thus, the multimap::insert() method that adds a
single element returns just an iterator instead of a pair.

➤➤ The insert_or_assign() and try_emplace() methods supported by map are not sup-
ported by a multimap.

NOTE  multimaps allow you to insert identical key/value pairs. If you want to
avoid this redundancy, you must check explicitly before inserting a new element.

586  ❘  CHAPTER 17   Understanding Containers and Iterators

The trickiest aspect of multimaps is looking up elements. You can’t use operator[], because it is
not provided. find() isn’t very useful because it returns an iterator referring to any one of the
elements with a given key (not necessarily the first element with that key).

However, multimaps store all elements with the same key together and provide methods to obtain
iterators for this subrange of elements with the same key in the container. The lower_bound()
and upper_bound() methods each return a single iterator referring to the first and one-past-
the-last elements matching a given key. If there are no elements matching that key, the iterators
returned by lower_bound() and upper_bound() will be equal to each other.

If you need to obtain both iterators bounding the elements with a given key, it’s more efficient
to use equal_range() instead of calling lower_bound() followed by calling upper_bound(). The
equal_range() method returns a pair of the two iterators that would be returned by lower_
bound() and upper_bound().

NOTE  The lower_bound(), upper_bound(), and equal_range() methods exist
for maps as well, but their usefulness is limited because a map cannot have mul-
tiple elements with the same key.

multimap Example: Buddy Lists
Most of the numerous online chat programs allow users to have a “buddy list” or list of friends.
The chat program confers special privileges on users in the buddy list, such as allowing them to send
unsolicited messages to the user.

One way to implement the buddy lists for an online chat program is to store the information in a
multimap. One multimap could store the buddy lists for every user. Each entry in the container
stores one buddy for a user. The key is the user and the value is the buddy. For example, if Harry
Potter and Ron Weasley had each other on their individual buddy lists, there would be two entries
of the form “Harry Potter” maps to “Ron Weasley” and “Ron Weasley” maps to “Harry Potter.”
A multimap allows multiple values for the same key, so the same user is allowed multiple buddies.
Here is the BuddyList class definition:

class BuddyList final
{
 public:
 // Adds buddy as a friend of name.
 void addBuddy(const std::string& name, const std::string& buddy);
 // Removes buddy as a friend of name
 void removeBuddy(const std::string& name, const std::string& buddy);
 // Returns true if buddy is a friend of name, false otherwise.
 bool isBuddy(const std::string& name, const std::string& buddy) const;
 // Retrieves a list of all the friends of name.
 std::vector<std::string> getBuddies(const std::string& name) const;
 private:
 std::multimap<std::string, std::string> mBuddies;
};

Ordered Associative Containers  ❘  587

Here is the implementation, with comments explaining the code. It demonstrates the use of lower_
bound(), upper_bound(), and equal_range():

void BuddyList::addBuddy(const string& name, const string& buddy)
{
 // Make sure this buddy isn't already there. We don't want
 // to insert an identical copy of the key/value pair.
 if (!isBuddy(name, buddy)) {
 mBuddies.insert({ name, buddy }); // Using initializer_list
 }
}

void BuddyList::removeBuddy(const string& name, const string& buddy)
{
 // Obtain the beginning and end of the range of elements with
 // key 'name'. Use both lower_bound() and upper_bound() to demonstrate
 // their use. Otherwise, it's more efficient to call equal_range().
 auto begin = mBuddies.lower_bound(name); // Start of the range
 auto end = mBuddies.upper_bound(name); // End of the range

 // Iterate through the elements with key 'name' looking
 // for a value 'buddy'. If there are no elements with key 'name',
 // begin equals end, so the loop body doesn't execute.
 for (auto iter = begin; iter != end; ++iter) {
 if (iter->second == buddy) {
 // We found a match! Remove it from the map.
 mBuddies.erase(iter);
 break;
 }
 }
}

bool BuddyList::isBuddy(const string& name, const string& buddy) const
{
 // Obtain the beginning and end of the range of elements with
 // key 'name' using equal_range(), and C++17 structured bindings.
 auto [begin, end] = mBuddies.equal_range(name);

 // Iterate through the elements with key 'name' looking
 // for a value 'buddy'.
 for (auto iter = begin; iter != end; ++iter) {
 if (iter->second == buddy) {
 // We found a match!
 return true;
 }
 }
 // No matches
 return false;
}

vector<string> BuddyList::getBuddies(const string& name) const
{
 // Obtain the beginning and end of the range of elements with
 // key 'name' using equal_range(), and C++17 structured bindings.

588  ❘  CHAPTER 17   Understanding Containers and Iterators

 auto [begin, end] = mBuddies.equal_range(name);

 // Create a vector with all names in the range (all buddies of name).
 vector<string> buddies;
 for (auto iter = begin; iter != end; ++iter) {
 buddies.push_back(iter->second);
 }
 return buddies;
}

This implementation uses C++17 structured bindings, as in this example:

auto [begin, end] = mBuddies.equal_range(name);

If your compiler doesn’t support structured bindings yet, then you can write the following:

auto range = mBuddies.equal_range(name);
auto begin = range.first; // Start of the range
auto end = range.second; // End of the range

Note that removeBuddy() can’t simply use the version of erase() that erases all elements with a
given key, because it should erase only one element with the key, not all of them. Note also that
getBuddies() can’t use insert() on the vector to insert the elements in the range returned by
equal_range(), because the elements referred to by the multimap iterators are key/value pairs,
not strings. The getBuddies() method must iterate explicitly through the range extracting the
string from each key/value pair and pushing it onto the new vector to be returned.

Here is a test of the BuddyList:

BuddyList buddies;
buddies.addBuddy("Harry Potter", "Ron Weasley");
buddies.addBuddy("Harry Potter", "Hermione Granger");
buddies.addBuddy("Harry Potter", "Hagrid");
buddies.addBuddy("Harry Potter", "Draco Malfoy");
// That's not right! Remove Draco.
buddies.removeBuddy("Harry Potter", "Draco Malfoy");
buddies.addBuddy("Hagrid", "Harry Potter");
buddies.addBuddy("Hagrid", "Ron Weasley");
buddies.addBuddy("Hagrid", "Hermione Granger");

auto harrysFriends = buddies.getBuddies("Harry Potter");

cout << "Harry's friends: " << endl;
for (const auto& name : harrysFriends) {
 cout << "\t" << name << endl;
}

The output is as follows:

Harry's friends:
 Ron Weasley
 Hermione Granger
 Hagrid

Ordered Associative Containers  ❘  589

set
A set, defined in <set>, is very similar to a map. The difference is that instead of storing key/
value pairs, in sets the key is the value. sets are useful for storing information in which there is no
explicit key, but which you want to have in sorted order without any duplicates, with quick inser-
tion, lookup, and deletion.

The interface supplied by set is almost identical to that of map. The main difference is that set
doesn’t provide operator[], insert_or_assign(), and try_emplace().

You cannot change the key/value of elements in a set because modifying elements of a set while
they are in the container would destroy the order.

set Example: Access Control List
One way to implement basic security on a computer system is through access control lists. Each
entity on the system, such as a file or a device, has a list of users with permissions to access that
entity. Users can generally be added to and removed from the permissions list for an entity only by
users with special privileges. Internally, a set provides a nice way to represent the access control list.
You could use one set for each entity, containing all the usernames who are allowed to access the
entity. Here is a class definition for a simple access control list:

class AccessList final
{
 public:
 // Default constructor
 AccessList() = default;
 // Constructor to support uniform initialization.
 AccessList(std::initializer_list<std::string_view> initlist);
 // Adds the user to the permissions list.
 void addUser(std::string_view user);
 // Removes the user from the permissions list.
 void removeUser(std::string_view user);
 // Returns true if the user is in the permissions list.
 bool isAllowed(std::string_view user) const;
 // Returns a vector of all the users who have permissions.
 std::vector<std::string> getAllUsers() const;
 private:
 std::set<std::string> mAllowed;
};

Here are the method definitions:

AccessList::AccessList(initializer_list<string_view> initlist)
{
 mAllowed.insert(begin(initlist), end(initlist));
}

void AccessList::addUser(string_view user)
{
 mAllowed.emplace(user);
}

590  ❘  CHAPTER 17   Understanding Containers and Iterators

void AccessList::removeUser(string_view user)
{
 mAllowed.erase(string(user));
}

bool AccessList::isAllowed(string_view user) const
{
 return (mAllowed.count(string(user)) != 0);
}

vector<string> AccessList::getAllUsers() const
{
 return { begin(mAllowed), end(mAllowed) };
}

Take a look at the interesting one-line implementation of getAllUsers(). That one line constructs
a vector<string> to return, by passing a begin and end iterator of mAllowed to the vector
constructor. If you want, you can split this over two lines:

vector<string> users(begin(mAllowed), end(mAllowed));
return users;

Finally, here is a simple test program:

AccessList fileX = { "pvw", "mgregoire", "baduser" };
fileX.removeUser("baduser");

if (fileX.isAllowed("mgregoire")) {
 cout << "mgregoire has permissions" << endl;
}

if (fileX.isAllowed("baduser")) {
 cout << "baduser has permissions" << endl;
}

auto users = fileX.getAllUsers();
for (const auto& user : users) {
 cout << user << " ";
}

One of the constructors for AccessList uses an initializer_list as a parameter, so that you can
use the uniform initialization syntax, as demonstrated in the test program for initializing fileX.

The output of this program is as follows:

mgregoire has permissions
mgregoire pvw

multiset
A multiset is to a set what a multimap is to a map. A multiset supports all the operations of a
set, but it allows multiple elements that are equal to each other to be stored in the container simul-
taneously. An example of a multiset is not shown because it’s so similar to set and multimap.

Unordered Associative Containers or Hash Tables  ❘  591

UNORDERED ASSOCIATIVE CONTAINERS OR HASH TABLES

The Standard Library has support for unordered associative containers or hash tables. There are
four of them: unordered_map, unordered_multimap, unordered_set, and unordered_multiset.
The map, multimap, set, and multiset containers discussed earlier sort their elements, while these
unordered variants do not sort their elements.

Hash Functions
The unordered associative containers are also called hash tables. That is because the implementation
makes use of so-called hash functions. The implementation usually consists of some kind of array
where each element in the array is called a bucket. Each bucket has a specific numerical index like
0, 1, 2, up until the last bucket. A hash function transforms a key into a hash value, which is then
transformed into a bucket index. The value associated with that key is then stored in that bucket.

The result of a hash function is not always unique. The situation in which two or more keys hash
to the same bucket index is called a collision. A collision can occur when different keys result in
the same hash value, or when different hash values transform to the same bucket index. There are
many approaches to handling collisions, including quadratic re-hashing and linear chaining, among
others. If you are interested, you can consult one of the references in the Algorithms and Data
Structures section in Appendix B. The Standard Library does not specify which collision-handling
algorithm is required, but most current implementations have chosen to resolve collisions by linear
chaining. With linear chaining, buckets do not directly contain the data values associated with the
keys, but contain a pointer to a linked list. This linked list contains all the data values for that
specific bucket. Figure 17-1 shows how this works.

...
...

002 x

127 x

128

129

254 x

255 x

Hash
FunctionKeys Buckets

Marc G.

Nicholas S.

Scott K.

John D.

Johan G.

001 Nicholas S.x <Data>

Scott K. <Data>

253 x

Johan G.x <Data>

Marc G. <Data>

John D.x <Data>

000 x

Hash Value to
Bucket Index

H
as

h
V

al
ue

s

FIGURE 17-1

592  ❘  CHAPTER 17   Understanding Containers and Iterators

In Figure 17-1, there are two collisions. The first collision is because applying the hash function to
the keys “Marc G.” and “John D.” results in the same hash value which maps to bucket index 128.
This bucket then points to a linked list containing the keys “Marc G.” and “John D.” together with
their associated data values. The second collision is caused by the hash values for “Scott K.” and
“Johan G.” mapping to the same bucket index 129.

From Figure 17-1, it is also clear how lookups based on keys work and what the complexity is.
A lookup involves a single hash function call to calculate the hash value. This hash value is then
transformed to a bucket index. Once the bucket index is known, one or more equality operations
are required to find the right key in the linked list. This shows that lookups can be much faster com-
pared to lookups with normal maps, but it all depends on how many collisions there are.

The choice of the hash function is very important. A hash function that creates no collisions is
known as a “perfect hash.” A perfect hash has a lookup time that is constant; a regular hash has a
lookup time that is, on average, close to 1, independent of the number of elements. As the number of
collisions increases, the lookup time increases, reducing performance. Collisions can be reduced by
increasing the basic hash table size, but you need to take cache sizes into account.

The C++ standard provides hash functions for pointers and all primitive data types such as bool,
char, int, float, double, and so on. Hash functions are also provided for error_code, error_
condition, optional, variant, bitset, unique_ptr, shared_ptr, type_index, string, string_
view, vector<bool>, and thread::id. If there is no standard hash function available for the type
of keys you want to use, then you have to implement your own hash function. Creating a perfect
hash is a nontrivial exercise, even when the set of keys is fixed and known. It requires deep math-
ematical analysis. However, even creating a non-perfect one, but one which is good enough and has
decent performance, is still challenging. It’s outside the scope of this book to explain the mathemat-
ics behind hash functions in detail. Instead, only an example of a very simple hash function is given.

The following code demonstrates how to write a custom hash function. This implementation sim-
ply forwards the request to one of the available standard hash functions. The code defines a class
IntWrapper that just wraps a single integer. An operator== is provided because that’s a require-
ment for keys used in unordered associative containers.

class IntWrapper
{
 public:
 IntWrapper(int i) : mWrappedInt(i) {}
 int getValue() const { return mWrappedInt; }
 private:
 int mWrappedInt;
};

bool operator==(const IntWrapper& lhs, const IntWrapper& rhs)
{
 return lhs.getValue() == rhs.getValue();
}

To write a hash function for IntWrapper, you write a specialization of the std::hash template
for IntWrapper. The std::hash template is defined in <functional>. This specialization needs
an implementation of the function call operator that calculates and returns the hash of a given

Unordered Associative Containers or Hash Tables  ❘  593

IntWrapper instance. For this example, the request is simply forwarded to the standard hash func-
tion for integers:

namespace std
{
 template<> struct hash<IntWrapper>
 {
 using argument_type = IntWrapper;
 using result_type = size_t;

 result_type operator()(const argument_type& f) const {
 return std::hash<int>()(f.getValue());
 }
 };
}

Note that you normally are not allowed to put anything in the std namespace; however, std class
template specializations are an exception to this rule. The two type definitions are required by the
hash class template. The implementation of the function call operator is just one line. It creates an
instance of the standard hash function for integers—std::hash<int>()—and then calls the func-
tion call operator on it with, as argument, f.getValue(). Note that this forwarding works in this
example because IntWrapper contains just one data member, an integer. If the class contained mul-
tiple data members, then a hash value would need to be calculated taking all these data members
into account; however, those details fall outside the scope of this book.

unordered_map
The unordered_map container is defined in <unordered_map> as a class template:

template <class Key,
 class T,
 class Hash = hash<Key>,
 class Pred = std::equal_to<Key>,
 class Alloc = std::allocator<std::pair<const Key, T>>>
 class unordered_map;

There are five template parameters: the key type, the value type, the hash type, the equal compari-
son type, and the allocator type. With the last three parameters you can specify your own hash
function, equal comparison function, and allocator function, respectively. These parameters can
usually be ignored because they have default values. I recommend you keep those default values
when possible. The most important parameters are the first two. As with maps, uniform initializa-
tion can be used to initialize an unordered_map, as shown in the following example:

unordered_map<int, string> m = {
 {1, "Item 1"},
 {2, "Item 2"},
 {3, "Item 3"},
 {4, "Item 4"}
};

594  ❘  CHAPTER 17   Understanding Containers and Iterators

// Using C++17 structured bindings.
for (const auto&[key, value] : m) {
 cout << key << " = " << value << endl;
}

// Without structured bindings.
for (const auto& p : m) {
 cout << p.first << " = " << p.second << endl;
}

The following table summarizes the differences between a map and an unordered_map. A filled box
(◼) means the container supports that operation, while an empty box (◻) means the operation is not
supported.

OPERATION map unordered_map

at() ◼ ◼

begin() ◼ ◼

begin(n) ◻ ◼

bucket() ◻ ◼

bucket_count() ◻ ◼

bucket_size() ◻ ◼

cbegin() ◼ ◼

cbegin(n) ◻ ◼

cend() ◼ ◼

cend(n) ◻ ◼

clear() ◼ ◼

count() ◼ ◼

crbegin() ◼ ◻

crend() ◼ ◻

emplace() ◼ ◼

emplace_hint() ◼ ◼

empty() ◼ ◼

end() ◼ ◼

Unordered Associative Containers or Hash Tables  ❘  595

end(n) ◻ ◼

equal_range() ◼ ◼

erase() ◼ ◼

extract() ◼ ◼

find() ◼ ◼

insert() ◼ ◼

insert_or_assign() ◼ ◼

iterator / const_iterator ◼ ◼

load_factor() ◻ ◼

local_iterator / const_local_iterator ◻ ◼

lower_bound() ◼ ◻

max_bucket_count() ◻ ◼

max_load_factor() ◻ ◼

max_size() ◼ ◼

merge() ◼ ◼

operator[] ◼ ◼

rbegin() ◼ ◻

rehash() ◻ ◼

rend() ◼ ◻

reserve() ◻ ◼

reverse_iterator / const_reverse_iterator ◼ ◻

size() ◼ ◼

swap() ◼ ◼

try_emplace() ◼ ◼

upper_bound() ◼ ◻

C++17

C++17

C++17

C++17

596  ❘  CHAPTER 17   Understanding Containers and Iterators

As with a normal map, all keys in an unordered_map should be unique. The preceding table includes
a number of hash-specific methods. For example, load_factor() returns the average number of
elements per bucket to give you an indication of the number of collisions. The bucket_count()
method returns the number of buckets in the container. It also provides a local_iterator and
const_local_iterator, allowing you to iterate over the elements in a single bucket; however, these
may not be used to iterate across buckets. The bucket(key) method returns the index of the bucket
that contains the given key; begin(n) returns a local_iterator referring to the first element in the
bucket with index n, and end(n) returns a local_iterator referring to one-past-the-last element in
the bucket with index n. The example in the next section demonstrates how to use these methods.

unordered_map Example: Phone Book
The following example uses an unordered_map to represent a phone book. The name of a person is
the key, while the phone number is the value associated with that key.

template<class T>
void printMap(const T& m)
{
 for (auto& [key, value] : m) {
 cout << key << " (Phone: " << value << ")" << endl;
 }
 cout << "-------" << endl;
}

int main()
{
 // Create a hash table.
 unordered_map<string, string> phoneBook = {
 { "Marc G.", "123-456789" },
 { "Scott K.", "654-987321" } };
 printMap(phoneBook);

 // Add/remove some phone numbers.
 phoneBook.insert(make_pair("John D.", "321-987654"));
 phoneBook["Johan G."] = "963-258147";
 phoneBook["Freddy K."] = "999-256256";
 phoneBook.erase("Freddy K.");
 printMap(phoneBook);

 // Find the bucket index for a specific key.
 const size_t bucket = phoneBook.bucket("Marc G.");
 cout << "Marc G. is in bucket " << bucket
 << " which contains the following "
 << phoneBook.bucket_size(bucket) << " elements:" << endl;
 // Get begin and end iterators for the elements in this bucket.
 // 'auto' is used here. The compiler deduces the type of
 // both as unordered_map<string, string>::const_local_iterator
 auto localBegin = phoneBook.cbegin(bucket);
 auto localEnd = phoneBook.cend(bucket);
 for (auto iter = localBegin; iter != localEnd; ++iter) {
 cout << "\t" << iter->first << " (Phone: "
 << iter->second << ")" << endl;
 }

Unordered Associative Containers or Hash Tables  ❘  597

 cout << "-------" << endl;

 // Print some statistics about the hash table
 cout << "There are " << phoneBook.bucket_count() << " buckets." << endl;
 cout << "Average number of elements in a bucket is "
 << phoneBook.load_factor() << endl;
 return 0;
}

A possible output is as follows. Note that the output can be different on a different system, because
it depends on the implementation of both the hash function and the unordered_map itself being
used.

Scott K. (Phone: 654-987321)
Marc G. (Phone: 123-456789)

Scott K. (Phone: 654-987321)
Marc G. (Phone: 123-456789)
Johan G. (Phone: 963-258147)
John D. (Phone: 321-987654)

Marc G. is in bucket 1 which contains the following 2 elements:
 Scott K. (Phone: 654-987321)
 Marc G. (Phone: 123-456789)

There are 8 buckets.
Average number of elements in a bucket is 0.5

unordered_multimap
An unordered_multimap is an unordered_map that allows multiple elements with the same key.
Their interfaces are almost identical, with the following differences:

➤➤ unordered_multimaps do not provide operator[] and at(). The semantics of these do not
make sense if there can be multiple elements with a single key.

➤➤ Inserts on unordered_multimaps always succeed. Thus, the unordered_
multimap::insert() method that adds a single element returns just an iterator instead of
a pair.

➤➤ The insert_or_assign() and try_emplace() methods supported by unordered_map are
not supported by an unordered_multimap.

NOTE  unordered_multimaps allow you to insert identical key/value pairs. If
you want to avoid this redundancy, you must check explicitly before inserting a
new element.

As discussed earlier with multimaps, looking up elements in unordered_multimaps cannot be done
using operator[] because it is not provided. You can use find() but it returns an iterator referring
to any one of the elements with a given key (not necessarily the first element with that key). Instead,

598  ❘  CHAPTER 17   Understanding Containers and Iterators

it’s best to use the equal_range() method, which returns a pair of iterators: one referring to the
first element matching a given key, and one referring to one-past-the-last element matching that key.
The use of equal_range() is exactly the same as discussed for multimaps, so you can look at the
example given for multimaps to see how it works.

unordered_set/unordered_multiset
The <unordered_set> header file defines unordered_set and unordered_multiset, which are
very similar to set and multiset, respectively, except that they do not sort their keys but they use a
hash function. The differences between unordered_set and unordered_map are similar to the dif-
ferences between set and map as discussed earlier in this chapter, so they are not discussed in
detail here. Consult a Standard Library Reference for a thorough summary of unordered_set and
unordered_multiset operations.

OTHER CONTAINERS

There are several other parts of the C++ language that work with the Standard Library to varying
degrees, including standard C-style arrays, strings, streams, and bitset.

Standard C-Style Arrays
Recall that “dumb”/raw pointers are bona fide iterators because they support the required opera-
tions. This point is more than just a piece of trivia. It means that you can treat standard C-style
arrays as Standard Library containers by using pointers to their elements as iterators. Standard
C-style arrays, of course, don’t provide methods like size(), empty(), insert(), and erase(),
so they aren’t true Standard Library containers. Nevertheless, because they do support iterators
through pointers, you can use them in the algorithms described in Chapter 18 and in some of the
methods described in this chapter.

For example, you could copy all the elements of a standard C-style array into a vector using the
insert() method of a vector that takes an iterator range from any container. This insert()
method’s prototype looks like this:

template <class InputIterator> iterator insert(const_iterator position,
 InputIterator first, InputIterator last);

If you want to use a standard C-style int array as the source, then the templatized type of
InputIterator becomes int*. Here is a full example:

const size_t count = 10;
int arr[count]; // standard C-style array
// Initialize each element of the array to the value of its index.
for (int i = 0; i < count; i++) {
 arr[i] = i;
}

Other Containers  ❘  599

// Insert the contents of the array at the end of a vector.
vector<int> vec;
vec.insert(end(vec), arr, arr + count);

// Print the contents of the vector.
for (const auto& i : vec) {
 cout << i << " ";
}

Note that the iterator referring to the first element of the array is the address of the first element,
which is arr in this case. The name of an array alone is interpreted as the address of the first ele-
ment. The iterator referring to the end must be one-past-the-last element, so it’s the address of the
first element plus count, or arr+count.

It’s easier to use std::begin() or std::cbegin() to get an iterator to the first element of a stati-
cally allocated C-style array not accessed through pointers, and std::end() or std::cend() to get
an iterator to one-past-the-last element of such an array. For example, the call to insert() in the
previous example can be written as follows:

vec.insert(end(vec), cbegin(arr), cend(arr));

WARNING  Functions such as std::begin() and std::end() only work on
statically allocated C-style arrays not accessed through pointers. They do not
work if pointers are involved, or with dynamically allocated C-style arrays.

Strings
You can think of a string as a sequential container of characters. Thus, it shouldn’t be surprising to
learn that a C++ string is a full-fledged sequential container. It contains begin() and end() meth-
ods that return iterators into the string, insert(), push_back(), and erase() methods, size(),
empty(), and all the rest of the sequential container basics. It resembles a vector quite closely, even
providing the methods reserve() and capacity().

You can use string as a Standard Library container just as you would use vector. Here is an
example:

string myString;
myString.insert(cend(myString), 'h');
myString.insert(cend(myString), 'e');
myString.push_back('l');
myString.push_back('l');
myString.push_back('o');

for (const auto& letter : myString) {
 cout << letter;
}

600  ❘  CHAPTER 17   Understanding Containers and Iterators

cout << endl;

for (auto it = cbegin(myString); it != cend(myString); ++it) {
 cout << *it;
}
cout << endl;

In addition to the Standard Library sequential container methods, strings provide a host of useful
methods and friend functions. The string interface is actually quite a good example of a cluttered
interface, one of the design pitfalls discussed in Chapter 6. The string class is discussed in detail in
Chapter 2.

Streams
Input and output streams are not containers in the traditional sense because they do not store ele-
ments. However, they can be considered sequences of elements, and as such share some character-
istics with Standard Library containers. C++ streams do not provide any Standard Library–related
methods directly, but the Standard Library supplies special iterators called istream_iterator
and ostream_iterator that allow you to “iterate” through input and output streams. Chapter 21
explains how to use them.

bitset
A bitset is a fixed-length abstraction of a sequence of bits. A bit can represent only two values, 1
and 0, which can be referred to as on/off, true/false, and so on. A bitset also uses the terminology
set and unset. You can toggle or flip a bit from one value to the other.

A bitset is not a true Standard Library container: it’s of fixed size, it’s not templatized on an ele-
ment type, and it doesn’t support iteration. However, it’s a useful utility class, which is often lumped
with the containers, so a brief introduction is provided here. Consult a Standard Library Reference
for a thorough summary of the bitset operations.

bitset Basics
A bitset, defined in <bitset>, is templatized on the number of bits it stores. The default construc-
tor initializes all fields of a bitset to 0. An alternative constructor creates a bitset from a string
of 0 and 1 characters.

You can adjust the values of individual bits with the set(), reset(), and flip() methods, and
you can access and set individual fields with an overloaded operator[]. Note that operator[] on
a non-const object returns a proxy object to which you can assign a Boolean value, call flip(),
or complement with operator~. You can also access individual fields with the test() method.
Additionally, you can stream bitsets with the normal insertion and extraction operators. A bitset
is streamed as a string of 0 and 1 characters.

Here is a small example:

bitset<10> myBitset;

myBitset.set(3);
myBitset.set(6);

Other Containers  ❘  601

myBitset[8] = true;
myBitset[9] = myBitset[3];

if (myBitset.test(3)) {
 cout << "Bit 3 is set!"<< endl;
}
cout << myBitset << endl;

The output is as follows:

Bit 3 is set!
1101001000

Note that the leftmost character in the output string is the highest numbered bit. This corresponds
to our intuitions about binary number representations, where the low-order bit representing 20 = 1 is
the rightmost bit in the printed representation.

Bitwise Operators
In addition to the basic bit manipulation routines, a bitset provides implementations of all the
bitwise operators: &, |, ^, ~, <<, >>, &=, |=, ^=, <<=, and >>=. They behave just as they would on a
“real” sequence of bits. Here is an example:

auto str1 = "0011001100";
auto str2 = "0000111100";
bitset<10> bitsOne(str1);
bitset<10> bitsTwo(str2);

auto bitsThree = bitsOne & bitsTwo;
cout << bitsThree << endl;
bitsThree <<= 4;
cout << bitsThree << endl;

The output of the program is as follows:

0000001100
0011000000

bitset Example: Representing Cable Channels
One possible use of bitsets is tracking channels of cable subscribers. Each subscriber could have
a bitset of channels associated with their subscription, with set bits representing the channels to
which they actually subscribe. This system could also support “packages” of channels, also repre-
sented as bitsets, which represent commonly subscribed combinations of channels.

The following CableCompany class is a simple example of this model. It uses two maps, each of
string/bitset. One stores the cable packages, while the other stores subscriber information.

const size_t kNumChannels = 10;

class CableCompany final
{
 public:
 // Adds the package with the specified channels to the database.
 void addPackage(std::string_view packageName,

602  ❘  CHAPTER 17   Understanding Containers and Iterators

 const std::bitset<kNumChannels>& channels);
 // Removes the specified package from the database.
 void removePackage(std::string_view packageName);
 // Retrieves the channels of a given package.
 // Throws out_of_range if the package name is invalid.
 const std::bitset<kNumChannels>& getPackage(
 std::string_view packageName) const;
 // Adds customer to database with initial channels found in package.
 // Throws out_of_range if the package name is invalid.
 // Throws invalid_argument if the customer is already known.
 void newCustomer(std::string_view name, std::string_view package);
 // Adds customer to database with given initial channels.
 // Throws invalid_argument if the customer is already known.
 void newCustomer(std::string_view name,
 const std::bitset<kNumChannels>& channels);
 // Adds the channel to the customers profile.
 // Throws invalid_argument if the customer is unknown.
 void addChannel(std::string_view name, int channel);
 // Removes the channel from the customers profile.
 // Throws invalid_argument if the customer is unknown.
 void removeChannel(std::string_view name, int channel);
 // Adds the specified package to the customers profile.
 // Throws out_of_range if the package name is invalid.
 // Throws invalid_argument if the customer is unknown.
 void addPackageToCustomer(std::string_view name,
 std::string_view package);
 // Removes the specified customer from the database.
 void deleteCustomer(std::string_view name);
 // Retrieves the channels to which a customer subscribes.
 // Throws invalid_argument if the customer is unknown.
 const std::bitset<kNumChannels>& getCustomerChannels(
 std::string_view name) const;
 private:
 // Retrieves the channels for a customer. (non-const)
 // Throws invalid_argument if the customer is unknown.
 std::bitset<kNumChannels>& getCustomerChannelsHelper(
 std::string_view name);

 using MapType = std::map<std::string, std::bitset<kNumChannels>>;
 MapType mPackages, mCustomers;
};

Here are the implementations of all methods, with comments explaining the code:

void CableCompany::addPackage(string_view packageName,
 const bitset<kNumChannels>& channels)
{
 mPackages.emplace(packageName, channels);
}

Other Containers  ❘  603

void CableCompany::removePackage(string_view packageName)
{
 mPackages.erase(packageName.data());
}

const bitset<kNumChannels>& CableCompany::getPackage(
 string_view packageName) const
{
 // Get a reference to the specified package.
 auto it = mPackages.find(packageName.data());
 if (it == end(mPackages)) {
 // That package doesn't exist. Throw an exception.
 throw out_of_range("Invalid package");
 }
 return it->second;
}

void CableCompany::newCustomer(string_view name, string_view package)
{
 // Get the channels for the given package.
 auto& packageChannels = getPackage(package);
 // Create the account with the bitset representing that package.
 newCustomer(name, packageChannels);
}

void CableCompany::newCustomer(string_view name,
 const bitset<kNumChannels>& channels)
{
 // Add customer to the customers map.
 auto result = mCustomers.emplace(name, channels);
 if (!result.second) {
 // Customer was already in the database. Nothing changed.
 throw invalid_argument("Duplicate customer");
 }
}

void CableCompany::addChannel(string_view name, int channel)
{
 // Get the current channels for the customer.
 auto& customerChannels = getCustomerChannelsHelper(name);
 // We found the customer; set the channel.
 customerChannels.set(channel);
}

void CableCompany::removeChannel(string_view name, int channel)
{
 // Get the current channels for the customer.
 auto& customerChannels = getCustomerChannelsHelper(name);
 // We found this customer; remove the channel.
 customerChannels.reset(channel);
}

604  ❘  CHAPTER 17   Understanding Containers and Iterators

void CableCompany::addPackageToCustomer(string_view name, string_view package)
{
 // Get the channels for the given package.
 auto& packageChannels = getPackage(package);
 // Get the current channels for the customer.
 auto& customerChannels = getCustomerChannelsHelper(name);
 // Or-in the package to the customer's existing channels.
 customerChannels |= packageChannels;
}

void CableCompany::deleteCustomer(string_view name)
{
 mCustomers.erase(name.data());
}

const bitset<kNumChannels>& CableCompany::getCustomerChannels(
 string_view name) const
{
 // Use const_cast() to forward to getCustomerChannelsHelper()
 // to avoid code duplication.
 return const_cast<CableCompany*>(this)->getCustomerChannelsHelper(name);
}

bitset<kNumChannels>& CableCompany::getCustomerChannelsHelper(
 string_view name)
{
 // Find a reference to the customer.
 auto it = mCustomers.find(name.data());
 if (it == end(mCustomers)) {
 throw invalid_argument("Unknown customer");
 }
 // Found it.
 // Note that 'it' is a reference to a name/bitset pair.
 // The bitset is the second field.
 return it->second;
}

Finally, here is a simple program demonstrating how to use the CableCompany class:

CableCompany myCC;
auto basic_pkg = "1111000000";
auto premium_pkg = "1111111111";
auto sports_pkg = "0000100111";

myCC.addPackage("basic", bitset<kNumChannels>(basic_pkg));
myCC.addPackage("premium", bitset<kNumChannels>(premium_pkg));
myCC.addPackage("sports", bitset<kNumChannels>(sports_pkg));

myCC.newCustomer("Marc G.", "basic");
myCC.addPackageToCustomer("Marc G.", "sports");
cout << myCC.getCustomerChannels("Marc G.") << endl;

The output is as follows:

1111100111

Summary  ❘  605

SUMMARY

This chapter introduced the Standard Library containers. It also presented sample code illustrating
a variety of uses for these containers. Hopefully, you appreciate the power of vector, deque,
list, forward_list, array, stack, queue, priority_queue, map, multimap, set, multiset,
unordered_map, unordered_multimap, unordered_set, unordered_multiset, string, and
bitset. Even if you don’t incorporate them into your programs immediately, you should keep
them in the back of your mind for future projects.

Now that you are familiar with the containers, the next chapter illustrates the true power of the
Standard Library with a discussion of generic algorithms.

Mastering Standard Library
Algorithms

WHAT’S IN THIS CHAPTER?

➤➤ Algorithms explained

➤➤ Lambda expressions explained

➤➤ Function objects explained

➤➤ The details of the Standard Library algorithms

➤➤ A larger example: Auditing voter registrations

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

As Chapter 17 shows, the Standard Library provides an impressive collection of generic data
structures. Most libraries stop there. The Standard Library, however, contains an additional
assortment of generic algorithms that can, with some exceptions, be applied to elements from
any container. Using these algorithms, you can find, sort, and process elements in containers,
and perform a host of other operations. The beauty of the algorithms is that they are indepen-
dent not only of the types of the underlying elements, but also of the types of the containers on
which they operate. Algorithms perform their work using only the iterator interfaces.

Many of the algorithms accept a callback, which can be a function pointer or something that
behaves like a function pointer, such as an object with an overloaded operator(), or an inline
lambda expression. A class that overloads operator() is called a function object, or functor.

18

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

608  ❘  CHAPTER 18   Mastering Standard Library Algorithms

Conveniently, the Standard Library provides a set of classes that can be used to create callback
objects for the algorithms.

OVERVIEW OF ALGORITHMS

The “magic” behind the algorithms is that they work on iterator intermediaries instead of on the
containers themselves. In that way, they are not tied to specific container implementations. All
the Standard Library algorithms are implemented as function templates, where the template type
parameters are usually iterator types. The iterators themselves are specified as arguments to the
function. Templatized functions can usually deduce the template types from the function arguments,
so you can generally call the algorithms as if they were normal functions, not templates.

The iterator arguments are usually iterator ranges. As Chapter 17 explains, iterator ranges are half-
open for most containers such that they include the first element in the range, but exclude the last.
The end iterator is really a “past-the-end” marker.

Algorithms pose certain requirements on iterators passed to them. For instance, copy_backward()
is an example of an algorithm that requires a bidirectional iterator, and stable_sort() is an
example of an algorithm requiring random access iterators. This means that such algorithms can-
not work on containers that do not provide the necessary iterators. forward_list is an example
of a container supporting only forward iterators, no bidirectional or random access iterators; thus,
copy_backward() and stable_sort() cannot work on forward_list.

Most algorithms are defined in the <algorithm> header file, while some numerical algorithms are
defined in <numeric>. All of them are in the std namespace.

The best way to understand the algorithms is to look at some examples first. After you’ve seen how
a few of them work, it’s easy to pick up the others. This section describes the find(), find_if(),
and accumulate() algorithms in detail. The following sections present the lambda expressions and
function objects, and discuss each of the classes of algorithms with representative samples.

The find and find_if Algorithms
find() looks for a specific element in an iterator range. You can use it on elements in any container
type. It returns an iterator referring to the element found, or the end iterator of the range in case the
element is not found. Note that the range specified in the call to find() need not be the entire range
of elements in a container; it could be a subset.

WARNING  If find() fails to find an element, it returns an iterator equal to the
end iterator specified in the function call, not the end iterator of the underlying
container.

Overview of Algorithms  ❘  609

Here is an example using std::find(). Note that this example assumes that the user plays nice and
enters valid numbers; it does not perform any error checking on the user input. Performing error
checking on stream input is discussed in Chapter 13.

#include <algorithm>
#include <vector>
#include <iostream>
using namespace std;

int main()
{
 int num;
 vector<int> myVector;
 while (true) {
 cout << "Enter a number to add (0 to stop): ";
 cin >> num;
 if (num == 0) {
 break;
 }
 myVector.push_back(num);
 }

 while (true) {
 cout << "Enter a number to lookup (0 to stop): ";
 cin >> num;
 if (num == 0) {
 break;
 }
 auto endIt = cend(myVector);
 auto it = find(cbegin(myVector), endIt, num);
 if (it == endIt) {
 cout << "Could not find " << num << endl;
 } else {
 cout << "Found " << *it << endl;
 }
 }
 return 0;
}

The call to find() is made with cbegin(myVector) and endIt as arguments, where endIt is
defined as cend(myVector) in order to search all the elements of the vector. If you want to search
in a subrange, you can change these two iterators.

Here is a sample run of the program:

Enter a number to add (0 to stop): 3
Enter a number to add (0 to stop): 4
Enter a number to add (0 to stop): 5
Enter a number to add (0 to stop): 6
Enter a number to add (0 to stop): 0
Enter a number to lookup (0 to stop): 5

610  ❘  CHAPTER 18   Mastering Standard Library Algorithms

Found 5
Enter a number to lookup (0 to stop): 8
Could not find 8
Enter a number to lookup (0 to stop): 0

With initializers for if statements (C++17), the call to find() and checking the result can be done
with one statement as follows:

if (auto it = find(cbegin(myVector), endIt, num); it == endIt) {
 cout << "Could not find " << num << endl;
} else {
 cout << "Found " << *it << endl;
}

Some containers, such as map and set, provide their own versions of find() as class methods.

WARNING  If a container provides a method with the same functionality as a
generic algorithm, you should use the method instead, because it’s faster. For
example, the generic find() algorithm runs in linear time, even on a map, while
the find() method on a map runs in logarithmic time.

find_if() is similar to find(), except that it accepts a predicate function callback instead of a
simple element to match. A predicate returns true or false. The find_if() algorithm calls the
predicate on each element in the range until the predicate returns true, in which case find_if()
returns an iterator referring to that element. The following program reads test scores from the user,
then checks if any of the scores are “perfect.” A perfect score is a score of 100 or higher. The pro-
gram is similar to the previous example. Only the major differences are in bold.

bool perfectScore(int num)
{
 return (num >= 100);
}

int main()
{
 int num;
 vector<int> myVector;
 while (true) {
 cout << "Enter a test score to add (0 to stop): ";
 cin >> num;
 if (num == 0) {
 break;
 }
 myVector.push_back(num);
 }

 auto endIt = cend(myVector);
 auto it = find_if(cbegin(myVector), endIt, perfectScore);
 if (it == endIt) {
 cout << "No perfect scores" << endl;

Overview of Algorithms  ❘  611

 } else {
 cout << "Found a \"perfect\" score of " << *it << endl;
 }
 return 0;
}

This program passes a pointer to the perfectScore() function to find_if(), which the algorithm
then calls on each element until it returns true.

The following is the same call to find_if(), but using a lambda expression. It gives you an initial
idea about the power of lambda expressions. Don’t worry about their syntax yet; they are explained
in detail later in this chapter. Note the absence of the perfectScore() function.

auto it = find_if(cbegin(myVector), endIt, [](int i){ return i >= 100; });

The accumulate Algorithm
It’s often useful to calculate the sum, or some other arithmetic quantity, of elements in a container.
The accumulate() function—defined in <numeric>, not in <algorithm>—does just that. In its
most basic form, it calculates the sum of the elements in a specified range. For example, the follow-
ing function calculates the arithmetic mean of a sequence of integers in a vector. The arithmetic
mean is simply the sum of all the elements divided by the number of elements.

double arithmeticMean(const vector<int>& nums)
{
 double sum = accumulate(cbegin(nums), cend(nums), 0);
 return sum / nums.size();
}

The accumulate() algorithm takes as its third parameter an initial value for the sum, which in this
case should be 0 (the identity for addition) to start a fresh sum.

The second form of accumulate() allows the caller to specify an operation to perform instead of
the default addition. This operation takes the form of a binary callback. Suppose that you want to
calculate the geometric mean, which is the product of all the numbers in the sequence to the power
of the inverse of the size. In that case, you would want to use accumulate() to calculate the product
instead of the sum. You could write it like this:

int product(int num1, int num2)
{
 return num1 * num2;
}

double geometricMean(const vector<int>& nums)
{
 double mult = accumulate(cbegin(nums), cend(nums), 1, product);
 return pow(mult, 1.0 / nums.size()); // pow() needs <cmath>
}

Note that the product() function is passed as a callback to accumulate() and that the initial value
for the accumulation is 1 (the identity for multiplication) instead of 0.

612  ❘  CHAPTER 18   Mastering Standard Library Algorithms

To give you a second teaser about the power of lambda expressions, the geometricMean() function
could be written as follows, without using the product() function:

double geometricMeanLambda(const vector<int>& nums)
{
 double mult = accumulate(cbegin(nums), cend(nums), 1,
 [](int num1, int num2){ return num1 * num2; });
 return pow(mult, 1.0 / nums.size());
}

However, later in this chapter you will learn how to use accumulate() in the geometricMean()
function without writing a function callback or lambda expression.

Move Semantics with Algorithms
Just like Standard Library containers, Standard Library algorithms are also optimized to use
move semantics at appropriate times. This can greatly speed up certain algorithms, for example,
remove(), discussed in detail later in this chapter. For this reason, it is highly recommended that
you implement move semantics in your custom element classes that you want to store in containers.
Move semantics can be added to any class by implementing a move constructor and a move assign-
ment operator. Both should be marked as noexcept, because they should not throw exceptions.
Consult the “Move Semantics” section in Chapter 9 for details on how to add move semantics to
your classes.

STD::FUNCTION

std::function, defined in the <functional> header file, can be used to create a type that can
point to a function, a function object, or a lambda expression—basically anything that is callable.
std::function is called a polymorphic function wrapper. It can be used as a function pointer, or as
a parameter for a function to implement callbacks. The template parameters for the std::function
template look a bit different than most template parameters. Its syntax is as follows:

std::function<R(ArgTypes...)>

R is the return type of the function, and ArgTypes is a comma-separated list of parameter types for
the function.

The following example demonstrates how to use std::function to implement a function pointer.
It creates a function pointer f1 to point to the function func(). Once f1 is defined, you can call
func() by using the name func or f1:

void func(int num, const string& str)
{
 cout << "func(" << num << ", " << str << ")" << endl;
}

int main()
{
 function<void(int, const string&)> f1 = func;
 f1(1, "test");
 return 0;
}

std::function  ❘  613

Of course, in the preceding example, it is possible to use the auto keyword, which removes the need
to specify the exact type of f1. The following definition for f1 works exactly the same and is much
shorter, but the compiler-deduced type of f1 is a function pointer, that is, void (*f1)(int, const
string&) instead of an std::function.

auto f1 = func;

Because std::function types behave as function pointers, they can be passed to Standard Library
algorithms as shown in the following example using the find_if() algorithm:

bool isEven(int num)
{
 return num % 2 == 0;
}

int main()
{
 vector<int> vec{ 1,2,3,4,5,6,7,8,9 };

 function<bool(int)> fcn = isEven;
 auto result = find_if(cbegin(vec), cend(vec), fcn);
 if (result != cend(vec)) {
 cout << "First even number: " << *result << endl;
 } else {
 cout << "No even number found." << endl;
 }
 return 0;
}

After the preceding examples, you might think that std::function is not really useful; however,
std::function really shines when you need to store a callback as a member variable of a class. You
can also use std::function when you need to accept a function pointer as parameter to your own
function. The following example defines a function called process(), which accepts a reference
to a vector and an std::function. The process() function iterates over all the elements in the
given vector, and calls the given function f for each element. You can think of the parameter f as a
callback.

The print() function prints a given value to the console. The main() function first creates a
vector of integers. It then calls the process() function with a function pointer to print(). The
result is that each element in the vector is printed.

The last part of the main() function demonstrates that you can also pass a lambda expression (dis-
cussed in detail in the next section) for the std::function parameter of the process() function;
that’s the power of std::function. You cannot get this same functionality by using a raw function
pointer.

void process(const vector<int>& vec, function<void(int)> f)
{
 for (auto& i : vec) {
 f(i);
 }
}

614  ❘  CHAPTER 18   Mastering Standard Library Algorithms

void print(int num)
{
 cout << num << " ";
}

int main()
{
 vector<int> vec{ 0,1,2,3,4,5,6,7,8,9 };

 process(vec, print);
 cout << endl;

 int sum = 0;
 process(vec, [&sum](int num){sum += num;});
 cout << "sum = " << sum << endl;
 return 0;
}

The output of this example is as follows:

0 1 2 3 4 5 6 7 8 9
sum = 45

Instead of using std::function to accept callback parameters, you can also write a function tem-
plate as follows:

template <typename F>
void processTemplate(const vector<int>& vec, F f)
{
 for (auto& i : vec) {
 f(i);
 }
}

This function template can be used in the same way as the non-template process() function, that
is, processTemplate() can accept both raw function pointers and lambda expressions.

LAMBDA EXPRESSIONS

Lambda expressions allow you to write anonymous functions inline, removing the need to write
a separate function or a function object. Lambda expressions can make code easier to read and
understand.

Syntax
Let’s start with a very simple lambda expression. The following example defines a lambda expres-
sion that just writes a string to the console. A lambda expression starts with square brackets [],
called the lambda introducer, followed by curly braces {}, which contain the body of the lambda
expression. The lambda expression is assigned to the basicLambda auto-typed variable. The second
line executes the lambda expression using normal function-call syntax.

auto basicLambda = []{ cout << "Hello from Lambda" << endl; };
basicLambda();

Lambda Expressions  ❘  615

The output is as follows:

Hello from Lambda

A lambda expression can accept parameters. Parameters are specified between parentheses and sep-
arated by commas, just as with normal functions. Here is an example using one parameter:

auto parametersLambda =
 [](int value){ cout << "The value is " << value << endl; };
parametersLambda(42);

If a lambda expression does not accept any parameters, you can either specify empty parentheses or
simply omit them.

A lambda expression can return a value. The return type is specified following an arrow, called a
trailing return type. The following example defines a lambda expression accepting two parameters
and returning their sum:

auto returningLambda = [](int a, int b) -> int { return a + b; };
int sum = returningLambda(11, 22);

The return type can be omitted, in which case the compiler deduces the return type of the lambda
expression according to the same rules as for function return type deduction (see Chapter 1). In the
previous example, the return type can be omitted as follows:

auto returningLambda = [](int a, int b){ return a + b; };
int sum = returningLambda(11, 22);

A lambda expression can capture variables from its enclosing scope. For example, the following
lambda expression captures the variable data so that it can be used in its body:

double data = 1.23;
auto capturingLambda = [data]{ cout << "Data = " << data << endl; };

The square brackets part is called the lambda capture block. Capturing a variable means that the
variable becomes available inside the body of the lambda expression. Specifying an empty capture
block, [], means that no variables from the enclosing scope are captured. When you just write the
name of a variable in the capture block as in the preceding example, then you are capturing that
variable by value.

The compiler transforms any lambda expression into some kind of unnamed functor (= function
object). The captured variables become data members of this functor. Variables captured by value
are copied into data members of the functor. These data members have the same constness as the
captured variables. In the preceding capturingLambda example, the functor gets a non-const data
member called data, because the captured variable, data, is non-const. However, in the following
example, the functor gets a const data member called data, because the captured variable is const:

const double data = 1.23;
auto capturingLambda = [data]{ cout << "Data = " << data << endl; };

A functor always has an implementation of the function call operator, operator(). For a lambda
expression, this function call operator is marked as const by default. That means that even if you
capture a non-const variable by value in a lambda expression, the lambda expression is not able to

616  ❘  CHAPTER 18   Mastering Standard Library Algorithms

modify this copy. You can mark the function call operator as non-const by specifying the lambda
expression as mutable, as follows:

double data = 1.23;
auto capturingLambda =
 [data] () mutable { data *= 2; cout << "Data = " << data << endl; };

In this example, the non-const variable data is captured by value; thus, the functor gets a non-
const data member that is a copy of data. Because of the mutable keyword, the function call
operator is marked as non-const, and so the body of the lambda expression can modify its copy of
data. Note that if you specify mutable, then you have to specify the parentheses for the parameters
even if they are empty.

You can prefix the name of a variable with & to capture it by reference. The following example
captures the variable data by reference so that the lambda expression can directly change data in
the enclosing scope:

double data = 1.23;
auto capturingLambda = [&data]{ data *= 2; };

When you capture a variable by reference, you have to make sure that the reference is still valid at
the time the lambda expression is executed.

There are two ways to capture all variables from the enclosing scope:

➤➤ [=] captures all variables by value

➤➤ [&] captures all variables by reference

It is also possible to selectively decide which variables to capture and how, by specifying a capture
list with an optional capture default. Variables prefixed with & are captured by reference. Variables
without a prefix are captured by value. If present, the capture default should be the first element in
the capture list, and be either & or =. Here are some capture block examples:

➤➤ [&x] captures only x by reference and nothing else.

➤➤ [x] captures only x by value and nothing else.

➤➤ [=, &x, &y] captures by value by default, except variables x and y, which are captured by
reference.

➤➤ [&, x] captures by reference by default, except variable x, which is captured by value.

➤➤ [&x, &x] is illegal because identifiers cannot be repeated.

➤➤ [this] captures the current object. In the body of the lambda expression you can access this
object, even without using this->.

➤➤ [*this] captures a copy of the current object. This can be useful in cases where the object
will no longer be alive when the lambda expression is executed.

NOTE  When using a capture default, only those variables that are really used in
the body of the lambda expression are captured, either by value (=) or by refer-
ence (&). Unused variables are not captured.

C++17

Lambda Expressions  ❘  617

WARNING  It is not recommended to use a capture default, even though a cap-
ture default only captures those variables that are really used in the body of the
lambda expression. By using a = capture default, you might accidentally cause an
expensive copy. By using an & capture default, you might accidentally modify a
variable in the enclosing scope. I recommend to explicitly specify which variables
you want to capture.

The complete syntax of a lambda expression is as follows:

[capture_block](parameters) mutable constexpr
 noexcept_specifier attributes
 -> return_type {body}

A lambda expression contains the following parts:

➤➤ Capture block. This specifies how variables from the enclosing scope are captured and made
available in the body of the lambda.

➤➤ Parameters (optional). This is a list of parameters for the lambda expression. You can omit
this list only if you do not need any parameters and you do not specify mutable, constexpr,
a noexcept specifier, attributes, or a return type. The parameter list is similar to the param-
eter list for normal functions.

➤➤ mutable (optional). This marks the lambda expression as mutable; see earlier examples.

➤➤ constexpr (optional). This marks the lambda expression as constexpr, so it can be evalu-
ated at compile time. Even if omitted, a lambda expression can be constexpr implicitly if it
satisfies certain restrictions, not further discussed in this text.

➤➤ noexcept specifier (optional). This can be used to specify noexcept clauses, similar to noex-
cept clauses for normal functions.

➤➤ Attributes (optional). This can be used to specify attributes for the lambda expression.
Attributes are explained in Chapter 11.

➤➤ Return type (optional). This is the type of the returned value. If this is omitted, the compiler
deduces the return type according to the same rules as for function return type deduction; see
Chapter 1.

Generic Lambda Expressions
It is possible to use auto type deduction for parameters of lambda expressions instead of explicitly
specifying concrete types for them. To specify auto type deduction for a parameter, the type is sim-
ply specified as auto. The type deduction rules are the same as for template argument deduction.

The following example defines a generic lambda expression called isGreaterThan100. This single
lambda expression is used with the find_if() algorithm, once for a vector of integers and once for
a vector of doubles.

// Define a generic lambda to find values > 100.
auto isGreaterThan100 = [](auto i){ return i > 100; };

C++17

618  ❘  CHAPTER 18   Mastering Standard Library Algorithms

// Use the generic lambda with a vector of integers.
vector<int> ints{ 11, 55, 101, 200 };
auto it1 = find_if(cbegin(ints), cend(ints), isGreaterThan100);
if (it1 != cend(ints)) {
 cout << "Found a value > 100: " << *it1 << endl;
}

// Use exactly the same generic lambda with a vector of doubles.
vector<double> doubles{ 11.1, 55.5, 200.2 };
auto it2 = find_if(cbegin(doubles), cend(doubles), isGreaterThan100);
if (it2 != cend(doubles)) {
 cout << "Found a value > 100: " << *it2 << endl;
}

Lambda Capture Expressions
Lambda capture expressions allow you to initialize capture variables with any kind of expression. It
can be used to introduce variables in the lambda expression that are not captured from the enclos-
ing scope. For example, the following code creates a lambda expression. Inside this lambda expres-
sion there are two variables available: one called myCapture, initialized to the string “Pi:” using a
lambda capture expression; and one called pi, which is captured by value from the enclosing scope.
Note that non-reference capture variables such as myCapture that are initialized with a capture
initializer are copy constructed, which means that const qualifiers are stripped.

double pi = 3.1415;
auto myLambda = [myCapture = "Pi: ", pi]{ cout << myCapture << pi; };

A lambda capture variable can be initialized with any kind of expression, thus also with
std::move(). This is important for objects that cannot be copied, only moved, such as unique_ptr.
By default, capturing by value uses copy semantics, so it’s impossible to capture a unique_ptr by
value in a lambda expression. Using a lambda capture expression, it is possible to capture it by
moving, as in this example:

auto myPtr = std::make_unique<double>(3.1415);
auto myLambda = [p = std::move(myPtr)]{ cout << *p; };

It is allowed, though not recommended, to have the same name for the capture variable as the name
in the enclosing scope. The previous example can be written as follows:

auto myPtr = std::make_unique<double>(3.1415);
auto myLambda = [myPtr = std::move(myPtr)]{ cout << *myPtr; };

Lambda Expressions as Return Type
By using std::function, discussed earlier in this chapter, lambda expressions can be returned from
functions. Take a look at the following definition:

function<int(void)> multiplyBy2Lambda(int x)
{
 return [x]{ return 2 * x; };
}

The body of this function creates a lambda expression that captures the variable x from
the enclosing scope by value, and returns an integer that is two times the value passed

Lambda Expressions  ❘  619

to multiplyBy2Lambda(). The return type of the multiplyBy2Lambda() function is
function<int(void)>, which is a function accepting no arguments and returning an integer. The
lambda expression defined in the body of the function exactly matches this prototype. The variable
x is captured by value, and thus a copy of the value of x is bound to the x in the lambda expression
before the lambda is returned from the function. The function can be called as follows:

function<int(void)> fn = multiplyBy2Lambda(5);
cout << fn() << endl;

You can use the auto keyword to make this easier:

auto fn = multiplyBy2Lambda(5);
cout << fn() << endl;

The output will be 10.

Function return type deduction (see Chapter 1) allows you to write the multiplyBy2Lambda()
function more elegantly, as follows:

auto multiplyBy2Lambda(int x)
{
 return [x]{ return 2 * x; };
}

The multiplyBy2Lambda() function captures the variable x by value, [x]. Suppose the
function is rewritten to capture the variable by reference, [&x], as follows. This will not work
because the lambda expression will be executed later in the program, no longer in the scope of the
multiplyBy2Lambda() function, at which point the reference to x is not valid anymore.

auto multiplyBy2Lambda(int x)
{
 return [&x]{ return 2 * x; }; // BUG!
}

Lambda Expressions as Parameters
The “std::function” section earlier in this chapter discusses that a function parameter of type
std::function can accept a lambda expression argument. An example in that section shows a
process() function accepting a lambda expression as callback. The section also explains an alter-
native to std::function, that is, function templates. The processTemplate() function template
example is also capable of accepting a lambda expression argument.

Examples with Standard Library Algorithms
This section demonstrates lambda expressions with two Standard Library algorithms: count_if()
and generate(). More examples follow later in this chapter.

count_if
The following example uses the count_if() algorithm to count the number of elements in a given
vector that satisfy a certain condition. The condition is given in the form of a lambda expression,
which captures the value variable from its enclosing scope by value.

620  ❘  CHAPTER 18   Mastering Standard Library Algorithms

vector<int> vec{ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int value = 3;
int cnt = count_if(cbegin(vec), cend(vec),
 [value](int i){ return i > value; });
cout << "Found " << cnt << " values > " << value << endl;

The output is as follows:

Found 6 values > 3

The example can be extended to demonstrate capturing variables by reference. The following
lambda expression counts the number of times it is called by incrementing a variable in the enclos-
ing scope that is captured by reference:

vector<int> vec = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int value = 3;
int cntLambdaCalled = 0;
int cnt = count_if(cbegin(vec), cend(vec),
 [value, &cntLambdaCalled](int i){ ++cntLambdaCalled; return i > value; });
cout << "The lambda expression was called " << cntLambdaCalled
 << " times." << endl;
cout << "Found " << cnt << " values > " << value << endl;

The output is as follows:

The lambda expression was called 9 times.
Found 6 values > 3

generate
The generate() algorithm requires an iterator range and replaces the values in that range with
the values returned from the function given as a third argument. The following example uses the
generate() algorithm together with a lambda expression to put the numbers 2, 4, 8, 16, and so on
in a vector:

vector<int> vec(10);
int value = 1;
generate(begin(vec), end(vec), [&value]{ value *= 2; return value; });
for (const auto& i : vec) {
 cout << i << " ";
}

The output is as follows:

2 4 8 16 32 64 128 256 512 1024

FUNCTION OBJECTS

You can overload the function call operator in a class such that objects of the class can be used in
place of function pointers. These objects are called function objects, or just functors.

Many of the Standard Library algorithms, such as find_if() and a version of accumulate(), can
accept callables, for example function pointers, lambda expressions, and functors, as parameters

Function Objects  ❘  621

to modify the algorithm’s behavior. C++ provides several predefined functor classes, defined in the
<functional> header file, that perform the most commonly used callback operations.

The clumsiness of having to create a function or functor class, give it a name that does not conflict
with other names, and then use this name is considerable overhead for what is fundamentally a sim-
ple concept. In these cases, using anonymous (unnamed) functions represented by lambda expres-
sions is a big convenience. Their syntax is easier and can make your code easier to understand. They
are discussed in the previous sections. However, this section explains functors and how to use the
predefined functor classes because you will likely encounter them at some point.

Your <functional> header might also contain functions like bind1st(), bind2nd(), mem_fun(),
mem_fun_ref(), and ptr_fun(). These functions have officially been removed from the C++17
standard, and thus are not further discussed in this book. You should avoid using them.

NOTE  It is recommended to use lambda expressions, if possible, instead of
small function objects because lambda expressions are easier to use, read, and
understand.

Arithmetic Function Objects
C++ provides functor class templates for the five binary arithmetic operators: plus, minus, multi-
plies, divides, and modulus. Additionally, unary negate is supplied. These classes are templa-
tized on the type of the operands and are wrappers for the actual operators. They take one or two
parameters of the template type, perform the operation, and return the result. Here is an example
using the plus class template:

plus<int> myPlus;
int res = myPlus(4, 5);
cout << res << endl;

This example is silly, because there’s no reason to use the plus class template when you could just
use operator+ directly. The benefit of the arithmetic function objects is that you can pass them as
callbacks to algorithms, which you cannot do directly with the arithmetic operators. For example,
the implementation of the geometricMean() function earlier in this chapter used the accumulate()
function with a function pointer to the product() callback to multiply two integers. You could
rewrite it to use the predefined multiplies function object:

double geometricMean(const vector<int>& nums)
{
 double mult = accumulate(cbegin(nums), cend(nums), 1, multiplies<int>());
 return pow(mult, 1.0 / nums.size());
}

The expression multiplies<int>() creates a new object of the multiplies functor class template,
instantiating it with the int type.

The other arithmetic function objects behave similarly.

622  ❘  CHAPTER 18   Mastering Standard Library Algorithms

WARNING  The arithmetic function objects are just wrappers around the arith-
metic operators. If you use the function objects as callbacks in algorithms, make
sure that the objects in your container implement the appropriate operation,
such as operator* or operator+.

Transparent Operator Functors
C++ has support for transparent operator functors, which allow you to omit the template type
argument. For example, you can just specify multiplies<>() instead of multiplies<int>():

double geometricMeanTransparent(const vector<int>& nums)
{
 double mult = accumulate(cbegin(nums), cend(nums), 1, multiplies<>());
 return pow(mult, 1.0 / nums.size());
}

A very important feature of these transparent operators is that they are heterogeneous. That is, they
are not only more concise than the non-transparent functors, but they also have real functional
advantages. For instance, the following code uses a transparent operator functor and uses 1.1, a
double, as the initial value, while the vector contains integers. accumulate() calculates the result
as a double, and result will be 6.6:

vector<int> nums{ 1, 2, 3 };
double result = accumulate(cbegin(nums), cend(nums), 1.1, multiplies<>());

If this code uses a non-transparent operator functor as follows, then accumulate() calculates the
result as an integer, and result will be 6. When you compile this code, the compiler will give you
warnings about possible loss of data.

vector<int> nums{ 1, 2, 3 };
double result = accumulate(cbegin(nums), cend(nums), 1.1, multiplies<int>());

NOTE  It’s recommended to always use the transparent operator functors.

Comparison Function Objects
In addition to the arithmetic function object classes, the C++ language provides all the standard
comparisons: equal_to, not_equal_to, less, greater, less_equal, and greater_equal. You’ve
already seen less in Chapter 17 as the default comparison for elements in the priority_queue and
the associative containers. Now you can learn how to change that criterion. Here’s an example of a
priority_queue using the default comparison operator: std::less.

priority_queue<int> myQueue;
myQueue.push(3);
myQueue.push(4);
myQueue.push(2);

Function Objects  ❘  623

myQueue.push(1);
while (!myQueue.empty()) {
 cout << myQueue.top() << " ";
 myQueue.pop();
}

Here is the output from the program:

4 3 2 1

As you can see, the elements of the queue are removed in descending order, according to the less
comparison. You can change the comparison to greater by specifying it as the comparison template
argument. The priority_queue template definition looks like this:

template <class T, class Container = vector<T>, class Compare = less<T>>;

Unfortunately, the Compare type parameter is last, which means that in order to specify it, you must
also specify the container type. If you want to use a priority_queue that sorts the elements in
ascending order using greater, then you need to change the definition of the priority_queue in
the previous example to the following:

priority_queue<int, vector<int>, greater<>> myQueue;

The output now is as follows:

1 2 3 4

Note that myQueue is defined with a transparent operator, greater<>. In fact, it’s recommended to
always use a transparent operator for Standard Library containers that accept a comparator type.
Using a transparent comparator can be a bit more performant compared to using a non-transparent
operator. For example, if a map<string> uses a non-transparent comparator, performing a query
for a key given as a string literal might cause an unwanted copy to be created, because a string
instance has to be constructed from the string literal. When using a transparent comparator, this
copying is avoided.

Several algorithms that you will learn about later in this chapter require comparison callbacks, for
which the predefined comparators come in handy.

Logical Function Objects
C++ provides function object classes for the three logical operations: logical_not (operator!),
logical_and (operator&&), and logical_or (operator||). These logical operations deal only
with the values true and false. Bitwise function objects are covered in the next section.

Logical functors can, for example, be used to implement an allTrue() function that checks if all
the Boolean flags in a container are true:

bool allTrue(const vector<bool>& flags)
{
 return accumulate(begin(flags), end(flags), true, logical_and<>());
}

624  ❘  CHAPTER 18   Mastering Standard Library Algorithms

Similarly, the logical_or functor can be used to implement an anyTrue() function that returns
true if there is at least one Boolean flag in a container true:

bool anyTrue(const vector<bool>& flags)
{
 return accumulate(begin(flags), end(flags), false, logical_or<>());
}

NOTE  The allTrue() and anyTrue() functions are just given as examples. In
fact, the Standard Library provides the std::all_of() and any_of() algorithms
that perform the same operations, but that have the benefit of short-circuiting, so
they are more performant.

Bitwise Function Objects
C++ has function objects for all the bitwise operations: bit_and (operator&), bit_or
(operator|), bit_xor (operator^), and bit_not (operator~). These bitwise functors can,
for example, be used together with the transform() algorithm (discussed later in this chapter) to
perform bitwise operations on all elements in a container.

Adaptor Function Objects
When you try to use the basic function objects provided by the standard, it often feels as if you’re
trying to put a square peg into a round hole. For example, you can’t use the less function object
with find_if() to find an element smaller than some value because find_if() passes only one
argument to its callback each time, instead of two. The adaptor function objects attempt to rectify
this problem and others. They allow you to adapt function objects, lambda expressions, function
pointers, basically any callable. The adaptors provide a modicum of support for functional composi-
tion, that is, to combine functions together to create the exact behavior you need.

Binders
Binders can be used to bind parameters of callables to certain values. For this you use std::bind(),
defined in <functional>, which allows you to bind parameters of a callable in a flexible way. You
can bind parameters to fixed values, and you can even rearrange parameters in a different order. It is
best explained with an example.

Suppose you have a function called func() accepting two arguments:

void func(int num, string_view str)
{
 cout << "func(" << num << ", " << str << ")" << endl;
}

The following code demonstrates how you can use bind() to bind the second argument of func()
to a fixed value, myString. The result is stored in f1(). The auto keyword is used because the
return type of bind() is unspecified by the C++ standard, and thus is implementation specific.

Function Objects  ❘  625

Arguments that are not bound to specific values should be specified as _1, _2, _3, and so on. These
are defined in the std::placeholders namespace. In the definition of f1(), the _1 specifies where
the first argument to f1() needs to go when func() is called. After this, f1() can be called with
just a single integer argument.

string myString = "abc";
auto f1 = bind(func, placeholders::_1, myString);
f1(16);

Here is the output:

func(16, abc)

bind() can also be used to rearrange the arguments, as shown in the following code. The _2 speci-
fies where the second argument to f2() needs to go when func() is called. In other words, the f2()
binding means that the first argument to f2() will become the second argument to func(), and the
second argument to f2() will become the first argument to func().

auto f2 = bind(func, placeholders::_2, placeholders::_1);
f2("Test", 32);

The output is as follows:

func(32, Test)

As discussed in Chapter 17, the <functional> header file defines the std::ref() and cref()
helper template functions. These can be used to bind references or const references, respectively.
For example, suppose you have the following function:

void increment(int& value) { ++value; }

If you call this function as follows, then the value of index becomes 1:

int index = 0;
increment(index);

If you use bind() to call it as follows, then the value of index is not incremented because a copy
of index is made, and a reference to this copy is bound to the first parameter of the increment()
function:

int index = 0;
auto incr = bind(increment, index);
incr();

Using std::ref() to pass a proper reference correctly increments index:

int index = 0;
auto incr = bind(increment, ref(index));
incr();

There is a small issue with binding parameters in combination with overloaded functions. Suppose
you have the following two overloaded() functions. One accepts an integer and the other accepts a
floating-point number:

void overloaded(int num) {}
void overloaded(float f) {}

626  ❘  CHAPTER 18   Mastering Standard Library Algorithms

If you want to use bind() with these overloaded functions, you need to explicitly specify which of
the two overloads you want to bind. The following will not compile:

auto f3 = bind(overloaded, placeholders::_1); // ERROR

If you want to bind the parameters of the overloaded function accepting a floating-point argument,
you need the following syntax:

auto f4 = bind((void(*)(float))overloaded, placeholders::_1); // OK

Another example of bind() is to use the find_if() algorithm to find the first element in a sequence
that is greater than or equal to 100. To solve this problem earlier in this chapter, a pointer to a
perfectScore() function was passed to find_if(). This can be rewritten using the comparison
functor greater_equal and bind(). The following code uses bind() to bind the second parameter
of greater_equal to a fixed value of 100:

// Code for inputting scores into the vector omitted, similar as earlier.
auto endIter = end(myVector);
auto it = find_if(begin(myVector), endIter,
 bind(greater_equal<>(), placeholders::_1, 100));
if (it == endIter) {
 cout << "No perfect scores" << endl;
} else {
 cout << "Found a \"perfect\" score of " << *it << endl;
}

Of course, in this case, I would recommend the solution using a lambda expression:

auto it = find_if(begin(myVector), endIter, [](int i){ return i >= 100; });

WARNING  Before C++11 there was bind2nd() and bind1st(). Both are dep-
recated since C++11, and are actually removed from the C++17 standard. Use
lambda expressions or bind() instead.

Negators

not_fn
Negators are similar to binders but they complement the result of a callable. For example, if you
want to find the first element in a sequence of test scores less than 100, you can apply the not_fn()
negator adaptor to the result of perfectScore() like this:

// Code for inputting scores into the vector omitted, similar as earlier.
auto endIter = end(myVector);
auto it = find_if(begin(myVector), endIter, not_fn(perfectScore));
if (it == endIter) {
 cout << "All perfect scores" << endl;
} else {
 cout << "Found a \"less-than-perfect\" score of " << *it << endl;
}

C++17

Function Objects  ❘  627

The not_fn() functor complements the result of every call to the callable it takes as a parameter.
Note that in this example you could have used the find_if_not() algorithm.

As you can see, using functors and adaptors can become complicated. My advice is to use lambda
expressions instead of functors if possible. For example, the previous find_if() call using the
not_fn() negator can be written more elegantly and more readable using a lambda expression:

auto it = find_if(begin(myVector), endIter, [](int i){ return i < 100; });

not1 and not2
The std::not_fn() adaptor is introduced with C++17. Before C++17 you could use the
std::not1() and not2() adaptors. The “1” in not1() refers to the fact that its operand must be a
unary function (one that takes a single argument). If its operand is a binary function (which takes
two arguments), you must use not2() instead. Here is an example:

// Code for inputting scores into the vector omitted, similar as earlier.
auto endIter = end(myVector);
function<bool(int)> f = perfectScore;
auto it = find_if(begin(myVector), endIter, not1(f));

If you wanted to use not1() with your own functor class, then you had to make sure your functor
class definition included two typedefs: argument_type and result_type. If you wanted to use
not2(), then your functor class definition had to provide three typedefs: first_argument_type,
second_argument_type, and result_type. The easiest way to do that was to derive your function
object class from either unary_function or binary_function, depending on whether they take one
or two arguments. These two classes, defined in <functional>, are templatized on the parameter
and return types of the function they provide. For example:

class PerfectScore : public std::unary_function<int, bool>
{
 public:
 result_type operator()(const argument_type& score) const
 {
 return score >= 100;
 }
};

This functor can be used as follows:

auto it = find_if(begin(myVector), endIter, not1(PerfectScore()));

NOTE  not1() and not2() have been deprecated by the C++17 standard. Both
unary_function and binary_function are deprecated since C++11, and are
officially removed from C++17. You should avoid using any of this functionality
in new code.

628  ❘  CHAPTER 18   Mastering Standard Library Algorithms

Calling Member Functions
If you have a container of objects, you sometimes want to pass a pointer to a class method as the
callback to an algorithm. For example, you might want to find the first empty string in a vector
of strings by calling empty() on each string in the sequence. However, if you just pass a pointer
to string::empty() to find_if(), the algorithm has no way to know that it received a pointer to a
method instead of a normal function pointer or functor. The code to call a method pointer is differ-
ent from that to call a normal function pointer, because the former must be called in the context of
an object.

C++ provides a conversion function called mem_fn() that you can call with a method pointer before
passing it to an algorithm. The following example demonstrates this. Note that you have to specify
the method pointer as &string::empty. The &string:: part is not optional.

void findEmptyString(const vector<string>& strings)
{
 auto endIter = end(strings);
 auto it = find_if(begin(strings), endIter, mem_fn(&string::empty));
 if (it == endIter) {
 cout << "No empty strings!" << endl;
 } else {
 cout << "Empty string at position: "
 << static_cast<int>(it - begin(strings)) << endl;
 }
}

mem_fn() generates a function object that serves as the callback for find_if(). Each time it is
called back, it calls the empty() method on its argument.

mem_fn() works exactly the same when you have a container of pointers to objects instead of
objects themselves. Here is an example:

void findEmptyString(const vector<string*>& strings)
{
 auto endIter = end(strings);
 auto it = find_if(begin(strings), endIter, mem_fn(&string::empty));
 // Remainder of function omitted because it is the same as earlier
}

mem_fn() is not the most intuitive way to implement the findEmptyString() function. Using
lambda expressions, it can be implemented in a much more readable and elegant way. Here is the
implementation using a lambda expression working on a container of objects:

void findEmptyString(const vector<string>& strings)
{
 auto endIter = end(strings);
 auto it = find_if(begin(strings), endIter,
 [](const string& str){ return str.empty(); });
 // Remainder of function omitted because it is the same as earlier
}

Similarly, the following uses a lambda expression working on a container of pointers to objects:

void findEmptyString(const vector<string*>& strings)
{
 auto endIter = end(strings);

Function Objects  ❘  629

 auto it = find_if(begin(strings), endIter,
 [](const string* str){ return str->empty(); });
 // Remainder of function omitted because it is the same as earlier
}

Invokers
C++17 introduces std::invoke(), defined in <functional>, which you can use to call any callable
object with a set of parameters. The following example uses invoke() three times: once to invoke a
normal function, once to invoke a lambda expression, and once to invoke a member function on a
string instance.

void printMessage(string_view message) { cout << message << endl; }

int main()
{
 invoke(printMessage, "Hello invoke.");
 invoke([](const auto& msg) { cout << msg << endl; }, "Hello invoke.");
 string msg = "Hello invoke.";
 cout << invoke(&string::size, msg) << endl;
}

By itself, invoke() is not that useful, because you might as well just call the function or the lambda
expression directly. However, it is very useful in templated code where you need to invoke some
arbitrary callable object.

Writing Your Own Function Objects
You can write your own function objects to perform more specific tasks than those provided by the
predefined functors, and if you need to do something more complex than is suitable for a lambda
expression. Here is a very simple function object example:

class myIsDigit
{
 public:
 bool operator()(char c) const { return ::isdigit(c) != 0; }
};

bool isNumber(string_view str)
{
 auto endIter = end(str);
 auto it = find_if(begin(str), endIter, not_fn(myIsDigit()));
 return (it == endIter);
}

Note that the overloaded function call operator of the myIsDigit class must be const in order to
pass objects of it to find_if().

C++17

630  ❘  CHAPTER 18   Mastering Standard Library Algorithms

WARNING  The algorithms are allowed to make multiple copies of given predi-
cates, such as functors and lambda expressions, and call different copies for
different elements. This places strong restrictions on the side effects of such
predicates. For functors, the function call operator needs to be const; thus, you
cannot write functors such that they count on any internal state to the object
being consistent between calls. Similar for lambda expressions, they cannot be
marked as mutable.

There are some exceptions, for example generate() and generate_n() can
accept stateful predicates, but even these make one copy of the predicate. They
don’t return that copy, so, you don’t have access to the changes made to the state
once the algorithm is finished. The only exception is for_each(). It copies the
given predicate once into the for_each() algorithm, and returns that copy when
finished. You can access the changed state through this returned value.

If you need stateful predicates for other algorithms, wrap your predicate in an
std::reference_wrapper which you can create using std::ref().

Before C++11, a class defined locally in the scope of a function could not be used as a template argu-
ment. This limitation has been removed, as shown in the following example:

bool isNumber(string_view str)
{
 class myIsDigit
 {
 public:
 bool operator()(char c) const { return ::isdigit(c) != 0; }
 };
 auto endIter = end(str);
 auto it = find_if(begin(str), endIter, not_fn(myIsDigit()));
 return (it == endIter);
}

NOTE  As you can see from the previous examples, lambda expressions allow
you to write more readable and more elegant code. I recommend that you use
simple lambda expressions instead of function objects, and that you use function
objects only when they need to do more complicated things.

ALGORITHM DETAILS

Chapter 16 lists all available Standard Library algorithms, divided into different categories. Most of
the algorithms are defined in the <algorithm> header file, but a few are located in <numeric> and
in <utility>. They are all in the std namespace. I cannot discuss all available algorithms in this
chapter, and so I have picked a number of categories and provided examples for them. Once you

Algorithm Details  ❘  631

know how to use these algorithms, you should have no problems with the other algorithms. Consult
a Standard Library Reference, see Appendix B, for a full reference of all the algorithms.

Iterators
First, a few more words on iterators. There are five types of iterators: input, out-
put, forward, bidirectional, and random access. These are described in Chapter
17. There is no formal class hierarchy of these iterators, because the implemen-
tations for each container are not part of the standard hierarchy. However, one
can deduce a hierarchy based on the functionality they are required to provide.
Specifically, every random-access iterator is also bidirectional, every bidirec-
tional iterator is also forward, and every forward iterator is also input. Iterators
that satisfy the requirements for output iterators are called mutable iterators;
otherwise they are called constant iterators. Figure 18-1 shows such hierarchy.
Dotted lines are used because the figure is not a real class hierarchy.

The standard way for the algorithms to specify what kind of iterators they need is to use the fol-
lowing names for the iterator template type arguments: InputIterator, OutputIterator,
ForwardIterator, BidirectionalIterator, and RandomAccessIterator. These names are just
names: they don’t provide binding type checking. Therefore, you could, for example, try to call an
algorithm expecting a RandomAccessIterator by passing a bidirectional iterator. The template can-
not do type checking, so it would allow this instantiation. However, the code in the function that
uses the random-access iterator capabilities would fail to compile on the bidirectional iterator. Thus,
the requirement is enforced, just not where you would expect. The error message can therefore be
somewhat confusing. For example, attempting to use the generic sort() algorithm, which requires a
random access iterator, on a list, which provides only a bidirectional iterator, gives a cryptic error
of more than 30 lines in Visual C++ 2017, of which the first two lines are as follows:

...\vc\tools\msvc\14.11.25301\include\algorithm(3032): error C2784: 'unknown-type
std::operator -(const std::move_iterator<_RanIt> &,const std::move_iterator<_
RanIt2> &)': could not deduce template argument for 'const std::move_iterator<_
RanIt> &' from 'std::_List_unchecked_iterator<std::_List_val<std::_List_simple_
types<int>>>'
...\vc\tools\msvc\14.11.25301\include\xutility(2191): note: see declaration of
'std::operator -'

Non-modifying Sequence Algorithms
The non-modifying sequence algorithms include functions for searching elements in a range and for
comparing two ranges to each other; they also include a number of counting algorithms.

Search Algorithms
You’ve already seen examples of two search algorithms: find() and find_if(). The Standard
Library provides several other variations of the basic find() algorithm that work on sequences of
elements. The section, “Search Algorithms,” in Chapter 16 describes the different search algorithms
that are available, including their complexity.

input

forward

bidirectional

random access

FIGURE 18-1

632  ❘  CHAPTER 18   Mastering Standard Library Algorithms

All the algorithms use default comparisons of operator== or operator<, but also provide over-
loaded versions that allow you to specify a comparison callback.

Here are examples of some of the search algorithms:

// The list of elements to be searched
vector<int> myVector = { 5, 6, 9, 8, 8, 3 };
auto beginIter = cbegin(myVector);
auto endIter = cend(myVector);

// Find the first element that does not satisfy the given lambda expression
auto it = find_if_not(beginIter, endIter, [](int i){ return i < 8; });
if (it != endIter) {
 cout << "First element not < 8 is " << *it << endl;
}

// Find the first pair of matching consecutive elements
it = adjacent_find(beginIter, endIter);
if (it != endIter) {
 cout << "Found two consecutive equal elements with value " << *it << endl;
}

// Find the first of two values
vector<int> targets = { 8, 9 };
it = find_first_of(beginIter, endIter, cbegin(targets), cend(targets));
if (it != endIter) {
 cout << "Found one of 8 or 9: " << *it << endl;
}

// Find the first subsequence
vector<int> sub = { 8, 3 };
it = search(beginIter, endIter, cbegin(sub), cend(sub));
if (it != endIter) {
 cout << "Found subsequence {8,3}" << endl;
} else {
 cout << "Unable to find subsequence {8,3}" << endl;
}

// Find the last subsequence (which is the same as the first in this example)
auto it2 = find_end(beginIter, endIter, cbegin(sub), cend(sub));
if (it != it2) {
 cout << "Error: search and find_end found different subsequences "
 << "even though there is only one match." << endl;
}

// Find the first subsequence of two consecutive 8s
it = search_n(beginIter, endIter, 2, 8);
if (it != endIter) {
 cout << "Found two consecutive 8s" << endl;
} else {
 cout << "Unable to find two consecutive 8s" << endl;
}

Algorithm Details  ❘  633

Here is the output:

First element not < 8 is 9
Found two consecutive equal elements with value 8
Found one of 8 or 9: 9
Found subsequence {8,3}
Found two consecutive 8s

NOTE  Remember that some of the containers have methods equivalent to
generic algorithms. If that’s the case, it’s recommended to use the methods
instead of the generic algorithms, because the methods are more efficient.

Specialized Searchers
C++17 adds an optional extra parameter to the search() algorithm that allows you to specify
which search algorithm to use. You have three options: default_searcher, boyer_moore_
searcher, or boyer_moore_horspool_searcher, all defined in <functional>. The last two
options implement the well-known Boyer-Moore and Boyer-Moore-Horspool search algorithms.
These are very efficient, and can be used to find a substring in a larger piece of text. The complexity
of the Boyer-Moore searchers is as follows (N is the size of the sequence to search in, the haystack,
and M is the size of the pattern to find, the needle):

➤➤ If the pattern is not found: worst-case complexity is O(N+M)

➤➤ If the pattern is found: worst-case complexity is O(NM)

These are the theoretical worst-case complexities. In practice, these specialized searchers are sublin-
ear, better than O(N), which means they are much faster than the default one! They are sublinear
because they are able to skip characters instead of looking at each single character in the haystack.
They also have an interesting property that the longer the needle is, the faster they work, as they
will be able to skip more characters in the haystack. The difference between the Boyer-Moore and
the Boyer-Moore-Horspool algorithm is that the latter has less constant overhead for its initializa-
tion and in each loop iteration of its algorithm; however, its worst-case complexity can be signifi-
cantly higher than for the Boyer-Moore algorithm. So, which one to choose depends on your specific
use case.

Here is an example of using a Boyer-Moore searcher:

string text = "This is the haystack to search a needle in.";
string toSearchFor = "needle";
auto searcher = std::boyer_moore_searcher(
 cbegin(toSearchFor), cend(toSearchFor));
auto result = search(cbegin(text), cend(text), searcher);
if (result != cend(text)) {
 cout << "Found the needle." << endl;
} else {
 cout << "Needle not found." << endl;
}

C++17

634  ❘  CHAPTER 18   Mastering Standard Library Algorithms

Comparison Algorithms
You can compare entire ranges of elements in three different ways: equal(), mismatch(), and
lexicographical_compare(). These algorithms have the advantage that you can compare ranges
in different containers. For example, you can compare the contents of a vector with the contents of
a list. In general, these algorithms work best with sequential containers. They work by compar-
ing the values in corresponding positions of the two collections to each other. The following list
describes how each algorithm works.

➤➤ equal() returns true if all corresponding elements are equal. Originally, equal() accepted
three iterators: begin and end iterators for the first range, and a begin iterator for the second
range. This version required both ranges to have the same number of elements. Since C++14,
there is an overload accepting four iterators: begin and end iterators for the first range, and
begin and end iterators for the second range. This version can cope with ranges of different
sizes. It’s recommended to always use the four-iterator version because it’s safer!

➤➤ mismatch() returns iterators, one iterator for each range, to indicate where in the range the
corresponding elements mismatch. There are three-iterator and four-iterator versions avail-
able, just as with equal(). It’s again recommended to use the four-iterator version, because
of safety!

➤➤ lexicographical_compare()returns true if the first unequal element in the first range is
less than its corresponding element in the second range, or, if the first range has fewer ele-
ments than the second and all elements in the first range are equal to their corresponding
initial subsequence in the second set. lexicographical_compare() gets its name because it
resembles the rules for comparing strings, but extends this set of rules to deal with objects of
any type.

NOTE  If you want to compare the elements of two containers of the same type,
you can use operator== or operator< instead of equal() or lexicographical_
compare(). The algorithms are useful for comparing subranges, C-style arrays,
sequences of elements from different container types, and so on.

Here are some examples of these algorithms:

// Function template to populate a container of ints.
// The container must support push_back().
template<typename Container>
void populateContainer(Container& cont)
{
 int num;
 while (true) {
 cout << "Enter a number (0 to quit): ";
 cin >> num;
 if (num == 0) {
 break;
 }
 cont.push_back(num);
 }
}

Algorithm Details  ❘  635

int main()
{
 vector<int> myVector;
 list<int> myList;

 cout << "Populate the vector:" << endl;
 populateContainer(myVector);
 cout << "Populate the list:" << endl;
 populateContainer(myList);

 // Compare the two containers
 if (equal(cbegin(myVector), cend(myVector),
 cbegin(myList), cend(myList))) {
 cout << "The two containers have equal elements" << endl;
 } else {
 // If the containers were not equal, find out why not
 auto miss = mismatch(cbegin(myVector), cend(myVector),
 cbegin(myList), cend(myList));
 cout << "The following initial elements are the same in "
 << "the vector and the list:" << endl;
 for (auto i = cbegin(myVector); i != miss.first; ++i) {
 cout << *i << '\t';
 }
 cout << endl;
 }

 // Now order them.
 if (lexicographical_compare(cbegin(myVector), cend(myVector),
 cbegin(myList), cend(myList))) {
 cout << "The vector is lexicographically first." << endl;
 } else {
 cout << "The list is lexicographically first." << endl;
 }
 return 0;
}

Here is a sample run of the program:

Populate the vector:
Enter a number (0 to quit): 5
Enter a number (0 to quit): 6
Enter a number (0 to quit): 7
Enter a number (0 to quit): 0
Populate the list:
Enter a number (0 to quit): 5
Enter a number (0 to quit): 6
Enter a number (0 to quit): 9
Enter a number (0 to quit): 8
Enter a number (0 to quit): 0
The following initial elements are the same in the vector and the list:
5 6
The vector is lexicographically first.

636  ❘  CHAPTER 18   Mastering Standard Library Algorithms

Counting Algorithms
The non-modifying counting algorithms are all_of(), any_of(), none_of(), count(), and
count_if(). Here are some examples of the first three algorithms. (An example of count_if() is
given earlier in this chapter.)

// all_of()
vector<int> vec2 = { 1, 1, 1, 1 };
if (all_of(cbegin(vec2), cend(vec2), [](int i){ return i == 1; })) {
 cout << "All elements are == 1" << endl;
} else {
 cout << "Not all elements are == 1" << endl;
}

// any_of()
vector<int> vec3 = { 0, 0, 1, 0 };
if (any_of(cbegin(vec3), cend(vec3), [](int i){ return i == 1; })) {
 cout << "At least one element == 1" << endl;
} else {
 cout << "No elements are == 1" << endl;
}

// none_of()
vector<int> vec4 = { 0, 0, 0, 0 };
if (none_of(cbegin(vec4), cend(vec4), [](int i){ return i == 1; })) {
 cout << "All elements are != 1" << endl;
} else {
 cout << "Some elements are == 1" << endl;
}

The output is as follows:

All elements are == 1
At least one element == 1
All elements are != 1

Modifying Sequence Algorithms
The Standard Library provides a variety of modifying sequence algorithms that perform tasks
such as copying elements from one range to another, removing elements, or reversing the order of
elements in a range.

Some modifying algorithms use the concept of a source and a destination range. The elements are
read from the source range and modified in the destination range. Other algorithms perform their
work in-place, that is, they only require one range.

WARNING  The modifying algorithms cannot insert elements into a destina-
tion. They can only overwrite/modify whatever elements are in the destination
already. Chapter 21 describes how iterator adaptors can be used to really insert
elements into a destination.

Algorithm Details  ❘  637

NOTE  Ranges from maps and multimaps cannot be used as destinations of
modifying algorithms. These algorithms overwrite entire elements, which in
a map consist of key/value pairs. However, maps and multimaps mark the key
const, so it cannot be assigned to. The same holds for set and multiset. Your
alternative is to use an insert iterator, described in Chapter 21.

The section “Modifying Sequence Algorithms” in Chapter 16 lists all available modifying algo-
rithms with a description of each one. This section provides code examples for a number of those
algorithms. If you understand how to use the algorithms explained in this section, you should not
have any problems using the other algorithms for which no examples are given.

transform
A first version of the transform() algorithm applies a callback to each element in a range and
expects the callback to generate a new element, which it stores in the specified destination range.
The source and destination ranges can be the same if you want transform() to replace each element
in a range with the result from the call to the callback. The parameters are a begin and end iterator
of the source sequence, a begin iterator of the destination sequence, and the callback. For example,
you could add 100 to each element in a vector like this:

vector<int> myVector;
populateContainer(myVector);

cout << "The vector contains:" << endl;
for (const auto& i : myVector) { cout << i << " "; }
cout << endl;

transform(begin(myVector), end(myVector), begin(myVector),
 [](int i){ return i + 100;});

cout << "The vector contains:" << endl;
for (const auto& i : myVector) { cout << i << " "; }

Another version of transform() calls a binary function on pairs of elements in a range. It requires a
begin and end iterator of the first range, a begin iterator of the second range, and a begin iterator of
the destination range. The following example creates two vectors and uses transform() to calcu-
late the sum of pairs of elements and store the result back in the first vector:

vector<int> vec1, vec2;
cout << "Vector1:" << endl; populateContainer(vec1);
cout << "Vector2:" << endl; populateContainer(vec2);

if (vec2.size() < vec1.size())
{
 cout << "Vector2 should be at least the same size as vector1." << endl;
 return 1;
}

638  ❘  CHAPTER 18   Mastering Standard Library Algorithms

// Create a lambda to print the contents of a container
auto printContainer = [](const auto& container) {
 for (auto& i : container) { cout << i << " "; }
 cout << endl;
};

cout << "Vector1: "; printContainer(vec1);
cout << "Vector2: "; printContainer(vec2);

transform(begin(vec1), end(vec1), begin(vec2), begin(vec1),
 [](int a, int b){return a + b;});

cout << "Vector1: "; printContainer(vec1);
cout << "Vector2: "; printContainer(vec2);

The output could look like this:

Vector1:
Enter a number (0 to quit): 1
Enter a number (0 to quit): 2
Enter a number (0 to quit): 0
Vector2:
Enter a number (0 to quit): 11
Enter a number (0 to quit): 22
Enter a number (0 to quit): 33
Enter a number (0 to quit): 0
Vector1: 1 2
Vector2: 11 22 33
Vector1: 12 24
Vector2: 11 22 33

NOTE  transform() and the other modifying algorithms often return an iterator
referring to the past-the-end value of the destination range. The examples in this
book usually ignore that return value.

copy
The copy() algorithm allows you to copy elements from one range to another, starting with the first
element and proceeding to the last element in the range. The source and destination ranges must be
different, but, with restrictions, they can overlap. The restrictions are as follows: for copy(b,e,d),
overlapping is fine if d is before b, however, if d is within [b,e), then the behavior is undefined. As
with all modifying algorithms, copy() cannot insert elements into the destination. It just overwrites
whatever elements are there already. Chapter 21 describes how to use iterator adaptors to insert ele-
ments into a container or stream with copy().

Here is a simple example of copy() that uses the resize() method on a vector to ensure that there
is enough space in the destination container. It copies all elements from vec1 to vec2:

vector<int> vec1, vec2;
populateContainer(vec1);

Algorithm Details  ❘  639

vec2.resize(size(vec1));
copy(cbegin(vec1), cend(vec1), begin(vec2));
for (const auto& i : vec2) { cout << i << " "; }

There is also a copy_backward() algorithm, which copies the elements from the source backward to
the destination. In other words, it starts with the last element of the source, puts it in the last posi-
tion in the destination range, and then moves backward after each copy. Also for copy_backward(),
the source and destination ranges must be different, but, with restrictions, they can again overlap.
The restrictions this time are as follows: for copy_backward(b,e,d), overlapping is fine if d is
after e, however, if d is within (b,e], then the behavior is undefined. The preceding example can
be modified to use copy_backward() instead of copy(), as follows. Note that you need to specify
end(vec2) as a third argument instead of begin(vec2).

copy_backward(cbegin(vec1), cend(vec1), end(vec2));

This results in exactly the same output.

copy_if() works by having an input range specified by two iterators, an output destination speci-
fied by one iterator, and a predicate (for example, a function or lambda expression). The algorithm
copies all elements that satisfy the given predicate to the destination. Remember, copy does not
create or extend containers; it merely replaces existing elements, so the destination should be big
enough to hold all elements to be copied. Of course, after copying the elements, it might be desirable
to remove the space “beyond” where the last element was copied to. To facilitate this, copy_if()
returns an iterator to the one-past-the-last-copied element in the destination range. This method can
be used to determine how many elements should be removed from the destination container. The
following example demonstrates this by copying only the even numbers to vec2:

vector<int> vec1, vec2;
populateContainer(vec1);
vec2.resize(size(vec1));
auto endIterator = copy_if(cbegin(vec1), cend(vec1),
 begin(vec2), [](int i){ return i % 2 == 0; });
vec2.erase(endIterator, end(vec2));
for (const auto& i : vec2) { cout << i << " "; }

copy_n() copies n elements from the source to the destination. The first parameter of copy_n()
is the start iterator. The second parameter is an integer specifying the number of elements to copy,
and the third parameter is the destination iterator. The copy_n() algorithm does not perform any
bounds checking, so you must make sure that the start iterator, incremented by the number of ele-
ments to copy, does not exceed the end() of the collection or your program will have undefined
behavior. Here is an example:

vector<int> vec1, vec2;
populateContainer(vec1);
size_t cnt = 0;
cout << "Enter number of elements you want to copy: ";
cin >> cnt;
cnt = min(cnt, size(vec1));
vec2.resize(cnt);
copy_n(cbegin(vec1), cnt, begin(vec2));
for (const auto& i : vec2) { cout << i << " "; }

640  ❘  CHAPTER 18   Mastering Standard Library Algorithms

move
There are two move-related algorithms: move() and move_backward(). They both use move seman-
tics, which are discussed in Chapter 9. You have to provide a move assignment operator in your ele-
ment classes if you want to use these algorithms on containers with elements of your own types, as
demonstrated in the following example. The main() function creates a vector with three MyClass
objects, and then moves those elements from vecSrc to vecDst. Note that the code includes two dif-
ferent uses of move(). The move() function accepting a single argument converts an lvalue into an
rvalue and is defined in <utility>, while move() accepting three arguments is the Standard Library
move() algorithm to move elements between containers. Consult Chapter 9 for details on imple-
menting move assignment operators and the use of the single parameter version of std::move().

class MyClass
{
 public:
 MyClass() = default;
 MyClass(const MyClass& src) = default;
 MyClass(string_view str) : mStr(str) {}
 virtual ~MyClass() = default;

 // Move assignment operator
 MyClass& operator=(MyClass&& rhs) noexcept {
 if (this == &rhs)
 return *this;
 mStr = std::move(rhs.mStr);
 cout << "Move operator= (mStr=" << mStr << ")" << endl;
 return *this;
 }

 void setString(string_view str) { mStr = str; }
 string_view getString() const {return mStr;}
 private:
 string mStr;
};

int main()
{
 vector<MyClass> vecSrc {MyClass("a"), MyClass("b"), MyClass("c")};
 vector<MyClass> vecDst(vecSrc.size());
 move(begin(vecSrc), end(vecSrc), begin(vecDst));
 for (const auto& c : vecDst) { cout << c.getString() << " "; }
 return 0;
}

The output is as follows:

Move operator= (mStr=a)
Move operator= (mStr=b)
Move operator= (mStr=c)
a b c

Algorithm Details  ❘  641

NOTE  Chapter 9 explains that source objects in a move operation are left in
some valid but otherwise indeterminate state. For the previous example, this
means that you should not use the elements from vecSrc anymore after the
move operation, unless you bring them back to a determinate state; for example
by calling a method on them without any preconditions, such as setString().

move_backward() uses the same move mechanism as move(), but it moves the elements starting
from the last to the first element. For both move() and move_backward(), the source and destina-
tion ranges are allowed to overlap with certain restrictions. These restrictions are the same as dis-
cussed for copy() and copy_backward().

replace
The replace() and replace_if() algorithms replace elements in a range matching a value or pred-
icate, respectively, with a new value. Take replace_if() as an example. Its first and second param-
eters specify the range of elements in your container. The third parameter is a function or lambda
expression that returns true or false. If it returns true, the value in the container is replaced with
the value given as fourth parameter; if it returns false, it leaves the original value.

For example, you might want to replace all odd values in a container with the value zero:

vector<int> vec;
populateContainer(vec);
replace_if(begin(vec), end(vec), [](int i){ return i % 2 != 0; }, 0);
for (const auto& i : vec) { cout << i << " "; }

There are also variants of replace() and replace_if() called replace_copy() and replace_
copy_if() that copy the results to a different destination range. They are similar to copy(), in that
the destination range must already be large enough to hold the new elements.

remove
Suppose you have a range of elements and you want to remove elements matching a certain condi-
tion. The first solution that you might think of is to check the documentation to see if your con-
tainer has an erase() method, and then iterate over all the elements and call erase() for each
element that matches the condition. The vector is an example of a container that has such an
erase() method. However, if applied to the vector container, this solution is very inefficient as
it will cause a lot of memory operations to keep the vector contiguous in memory, resulting in a
quadratic complexity.1 This solution is also error-prone, because you need to be careful that you
keep your iterators valid after a call to erase(). For example, here is a function that removes empty
strings from a vector of strings without using algorithms. Note how iter is carefully manipu-
lated inside the for loop:

void removeEmptyStringsWithoutAlgorithms(vector<string>& strings)
{
 for (auto iter = begin(strings); iter != end(strings);) {

1Quadratic complexity means that the running time is a function of the square of the input size, O(n2).

642  ❘  CHAPTER 18   Mastering Standard Library Algorithms

 if (iter->empty())
 iter = strings.erase(iter);
 else
 ++iter;
 }
}

This solution is inefficient and not recommended. The correct solution for this problem is the
so-called remove-erase-idiom, which runs in linear time and is explained next.

Algorithms have access only to the iterator abstraction, not to the container. Thus, the remove
algorithms cannot really remove them from the underlying container. Instead, the algorithms work
by replacing the elements that match the given value or predicate with the next element that does not
match the given value or predicate. It does so using move assignments. The result is that the range
becomes partitioned into two sets: the elements to be kept and the elements to be erased. An itera-
tor is returned that points to the first element in the range of elements to be erased. If you want to
actually erase these elements from the container, you must first use the remove() algorithm, then
call erase() on the container to erase all the elements from the returned iterator up to the end of
the range. This is the remove-erase-idiom. Here is an example of a function that removes empty
strings from a vector of strings:

void removeEmptyStrings(vector<string>& strings)
{
 auto it = remove_if(begin(strings), end(strings),
 [](const string& str){ return str.empty(); });
 // Erase the removed elements.
 strings.erase(it, end(strings));
}
int main()
{
 vector<string> myVector = {"", "one", "", "two", "three", "four"};
 for (auto& str : myVector) { cout << "\"" << str << "\" "; }
 cout << endl;
 removeEmptyStrings(myVector);
 for (auto& str : myVector) { cout << "\"" << str << "\" "; }
 cout << endl;
 return 0;
}

The output is as follows:

"" "one" "" "two" "three" "four"
"one" "two" "three" "four"

WARNING  When using the remove-erase-idiom, make sure not to forget the
second argument to erase()! If you forget this second argument, erase() will
only erase a single element from the container, that is, the element pointed to by
the iterator passed as first argument.

Algorithm Details  ❘  643

The remove_copy() and remove_copy_if() variations of remove() and remove_if() do not
change the source range. Instead, they copy all kept elements to a different destination range. They
are similar to copy(), in that the destination range must already be large enough to hold the new
elements.

NOTE  The remove() family of functions are stable in that they maintain the
order of elements remaining in the container even while moving the retained ele-
ments toward the beginning.

unique
The unique() algorithm is a special case of remove() that removes all duplicate contiguous ele-
ments. The list container provides its own unique() method that implements the same semantics.
You should generally use unique() on sorted sequences, but nothing prevents you from running it
on unsorted sequences.

The basic form of unique() runs in place, but there is also a version of the algorithm called
unique_copy() that copies its results to a new destination range.

Chapter 17 shows an example of the list::unique() algorithm in the section “list Example:
Determining Enrollment,” so an example of the general form is omitted here.

sample
The sample() algorithm returns a selection of n randomly chosen elements from a given source
range and stores them in a destination range. It requires five parameters:

➤➤ A begin and end iterator of the range to sample

➤➤ A begin iterator of the destination range where you want to store the randomly selected
elements

➤➤ The number of elements to select

➤➤ A random number generation engine

Here is an example (details on how to use random number generation engines, and how to “seed”
them are explained in Chapter 20):

vector<int> vec{ 1,2,3,4,5,6,7,8,9,10 };
const size_t numberOfSamples = 5;
vector<int> samples(numberOfSamples);

random_device seeder;
const auto seed = seeder.entropy() ? seeder() : time(nullptr);
default_random_engine engine(
 static_cast<default_random_engine::result_type>(seed));

C++17

644  ❘  CHAPTER 18   Mastering Standard Library Algorithms

for (int i = 0; i < 6; ++i) {
 sample(cbegin(vec), cend(vec), begin(samples), numberOfSamples, engine);

 for (const auto& sample : samples) { cout << sample << " "; }
 cout << endl;
}

Here is some possible output:

1 2 5 8 10
1 2 4 5 7
5 6 8 9 10
2 3 4 6 7
2 5 7 8 10
1 2 5 6 7

reverse
The reverse() algorithm reverses the order of the elements in a range. The first element in the
range is swapped with the last, the second with the second-to-last, and so on.

The basic form of reverse() runs in place and requires two arguments: a start and end iterator for
the range. There is also a version of the algorithm called reverse_copy() that copies its results to
a new destination range and requires three arguments: a start and end iterator for the source range,
and a start iterator for the destination range. The destination range must already be large enough to
hold the new elements.

shuffle
shuffle() rearranges the elements of a range in a random order with a linear complexity. It’s use-
ful for implementing tasks like shuffling a deck of cards. shuffle() requires a start and end iterator
for the range that you want to shuffle and a uniform random number generator object that specifies
how the random numbers should be generated. Random number generators are discussed in detail
in Chapter 20.

Operational Algorithms
There are only two algorithms in this category: for_each() and for_each_n(). The latter is intro-
duced with C++17. They execute a callback on each element of the range, or on the first n elements
of a range, respectively. You can use them with simple function callbacks or lambda expressions for
things like printing elements from a container. The algorithms are mentioned here so you know they
exist; however, it’s often easier and more readable to use a simple range-based for loop instead.

for_each
Following is an example using a generic lambda expression, printing the elements from a map:

map<int, int> myMap = { { 4, 40 }, { 5, 50 }, { 6, 60 } };
for_each(cbegin(myMap), cend(myMap), [](const auto& p)
 { cout << p.first << "->" << p.second << endl; });

Algorithm Details  ❘  645

The type of p is const pair<int, int>&. The output is as follows:

4->40
5->50
6->60

The following example shows how to use the for_each() algorithm and a lambda expression to
calculate the sum and the product of a range of elements at the same time. Note that the lambda
expression explicitly captures only those variables it needs. It captures them by reference; other-
wise, changes made to sum and product in the lambda expression would not be visible outside the
lambda.

vector<int> myVector;
populateContainer(myVector);

int sum = 0;
int product = 1;
for_each(cbegin(myVector), cend(myVector),
 [&sum, &product](int i){
 sum += i;
 product *= i;
});
cout << "The sum is " << sum << endl;
cout << "The product is " << product << endl;

This example can also be written with a functor in which you accumulate information that you can
retrieve after for_each() has finished processing each element. For example, you could calculate
both the sum and product of the elements in one pass by writing a functor SumAndProduct that
tracks both at the same time:

class SumAndProduct
{
public:
 void operator()(int value);
 int getSum() const { return mSum; }
 int getProduct() const { return mProduct; }
private:
 int mSum = 0;
 int mProduct = 1;
};

void SumAndProduct::operator()(int value)
{
 mSum += value;
 mProduct *= value;
}

int main()
{
 vector<int> myVector;
 populateContainer(myVector);

646  ❘  CHAPTER 18   Mastering Standard Library Algorithms

 SumAndProduct func;
 func = for_each(cbegin(myVector), cend(myVector), func);
 cout << "The sum is " << func.getSum() << endl;
 cout << "The product is " << func.getProduct() << endl;
 return 0;
}

You might be tempted to ignore the return value of for_each(), yet still try to read information
from func after the call. However, that doesn’t work because the functor is copied into the for_
each(), and at the end, this copy is returned from the call. You must capture the return value in
order to ensure correct behavior.

A final point about both for_each() and for_each_n(), discussed next, is that your lambda or
callback is allowed to take its parameter by reference and modify it. That has the effect of changing
values in the actual iterator range. The voter registration example later in this chapter shows a use of
this capability.

for_each_n
The for_each_n() algorithm requires a begin iterator of the range, the number of elements to iter-
ate over, and a function callback. It returns an iterator equal to begin + n. As usual, it does not
perform any bounds checking. Here is an example that only iterates over the first two elements
of a map:

map<int, int> myMap = { { 4, 40 }, { 5, 50 }, { 6, 60 } };
for_each_n(cbegin(myMap), 2, [](const auto& p)
 { cout << p.first << "->" << p.second << endl; });

Swap and Exchange Algorithms
The C++ Standard Library provides the following swap and exchange algorithms.

swap
std::swap() is used to efficiently swap two values, using move semantics if available. Its use is
straightforward:

int a = 11;
int b = 22;
cout << "Before swap(): a = " << a << ", b = " << b << endl;
swap(a, b);
cout << "After swap(): a = " << a << ", b = " << b << endl;

The output is as follows:

Before swap(): a = 11, b = 22
After swap(): a = 22, b = 11

C++17

Algorithm Details  ❘  647

exchange
std::exchange(), defined in <utility>, replaces a value with a new value and returns the old
value, as in this example:

int a = 11;
int b = 22;
cout << "Before exchange(): a = " << a << ", b = " << b << endl;
int returnedValue = exchange(a, b);
cout << "After exchange(): a = " << a << ", b = " << b << endl;
cout << "exchange() returned: " << returnedValue << endl;

The output is as follows:

Before exchange(): a = 11, b = 22
After exchange(): a = 22, b = 22
exchange() returned: 11

exchange() is useful in implementing move assignment operators. A move assignment operator
needs to move the data from a source object to a destination object. Often, the data in the source
object is nullified. Typically, this is done as follows. Suppose Foo has as data member a pointer to
some raw memory, called mPtr:

Foo& operator=(Foo&& rhs) noexcept
{
 // Check for self-assignment
 if (this == &rhs) { return *this; }
 // Free the old memory
 delete mPtr; mPtr = nullptr;
 // Move data
 mPtr = rhs.mPtr; // Move data from source to destination
 rhs.mPtr = nullptr; // Nullify data in source
 return *this;
}

The assignments to mPtr and to rhs.mPtr near the end of the method can be implemented using
exchange() as follows:

Foo& operator=(Foo&& rhs) noexcept
{
 // Check for self-assignment
 if (this == &rhs) { return *this; }
 // Free the old memory
 delete mPtr; mPtr = nullptr;
 // Move data
 mPtr = exchange(rhs.mPtr, nullptr); // Move + nullify
 return *this;
}

Partition Algorithms
partition_copy() copies elements from a source to two different destinations. The specific
destination for each element is selected based on the result of a predicate, either true or false.

C++17

648  ❘  CHAPTER 18   Mastering Standard Library Algorithms

The returned value of partition_copy() is a pair of iterators: one iterator referring to one-past-the-
last-copied element in the first destination range, and one iterator referring to one-past-the-last-
copied element in the second destination range. These returned iterators can be used in combination
with erase() to remove excess elements from the two destination ranges, just as in the earlier copy_
if() example. The following example asks the user to enter a number of integers, which are then
partitioned into two destination vectors: one for the even numbers and one for the odd numbers.

vector<int> vec1, vecOdd, vecEven;
populateContainer(vec1);
vecOdd.resize(size(vec1));
vecEven.resize(size(vec1));

auto pairIters = partition_copy(cbegin(vec1), cend(vec1),
 begin(vecEven), begin(vecOdd),
 [](int i){ return i % 2 == 0; });

vecEven.erase(pairIters.first, end(vecEven));
vecOdd.erase(pairIters.second, end(vecOdd));

cout << "Even numbers: ";
for (const auto& i : vecEven) { cout << i << " "; }
cout << endl << "Odd numbers: ";
for (const auto& i : vecOdd) { cout << i << " "; }

The output can be as follows:

Enter a number (0 to quit): 11
Enter a number (0 to quit): 22
Enter a number (0 to quit): 33
Enter a number (0 to quit): 44
Enter a number (0 to quit): 0
Even numbers: 22 44
Odd numbers: 11 33

The partition() algorithm sorts a sequence such that all elements for which a predicate returns
true are before all elements for which it returns false, without preserving the original order of the
elements within each partition. The following example demonstrates how to partition a vector into
all even numbers followed by all odd numbers:

vector<int> vec;
populateContainer(vec);
partition(begin(vec), end(vec), [](int i){ return i % 2 == 0; });
cout << "Partitioned result: ";
for (const auto& i : vec) { cout << i << " "; }

The output can be as follows:

Enter a number (0 to quit): 55
Enter a number (0 to quit): 44
Enter a number (0 to quit): 33
Enter a number (0 to quit): 22
Enter a number (0 to quit): 11
Enter a number (0 to quit): 0
Partitioned result: 22 44 33 55 11

A couple of other partition algorithms are available. See Chapter 16 for a list.

Algorithm Details  ❘  649

Sorting Algorithms
The Standard Library provides several variations of sorting algorithms. A “sorting algorithm” reor-
ders the contents of a container such that an ordering is maintained between sequential elements of
the collection. Thus, it applies only to sequential collections. Sorting is not relevant for ordered asso-
ciative containers because they already maintain elements in a sorted order. Sorting is not relevant
to the unordered associative containers either, because they have no concept of ordering. Some con-
tainers, such as list and forward_list, provide their own sorting methods, because these methods
can be implemented more efficiently than a generic sorting mechanism. Consequently, the generic
sorting algorithms are most useful for vectors, deques, arrays, and C-style arrays.

The sort() algorithm sorts a range of elements in O(N log N) time in general. Following the appli-
cation of sort() to a range, the elements in the range are in nondecreasing order (lowest to highest),
according to operator<. If you don’t like that order, you can specify a different comparator, such as
greater.

A variant of sort(), called stable_sort(), maintains the relative order of equal elements in a
range, which means that it is less efficient than the sort() algorithm.

Here is an example of sort():

vector<int> vec;
populateContainer(vec);
sort(begin(vec), end(vec), greater<>());

There is also is_sorted() and is_sorted_until(). is_sorted() returns true if a given range
is sorted, while is_sorted_until() returns an iterator such that everything before this iterator is
sorted.

Binary Search Algorithms
There are several search algorithms that work only on sequences that are sorted, or that are at
least partitioned on the element that is searched for. These algorithms are binary_search(),
lower_bound(), upper_bound(), and equal_range(). The lower_bound(), upper_bound(), and
equal_range() algorithms are similar to their method equivalents on the map and set containers.
See Chapter 17 for an example on how to use them on such containers.

The lower_bound() algorithm finds the first element in a sorted range not less than (that is greater
or equal to) a given value. It is often used to find at which position in a sorted vector a new value
should be inserted, so that the vector remains sorted. Here is an example:

vector<int> vec;
populateContainer(vec);

// Sort the container
sort(begin(vec), end(vec));

cout << "Sorted vector: ";
for (const auto& i : vec) { cout << i << " "; }
cout << endl;

650  ❘  CHAPTER 18   Mastering Standard Library Algorithms

while (true) {
 int num;
 cout << "Enter a number to insert (0 to quit): ";
 cin >> num;
 if (num == 0) {
 break;
 }

 auto iter = lower_bound(begin(vec), end(vec), num);
 vec.insert(iter, num);

 cout << "New vector: ";
 for (const auto& i : vec) { cout << i << " "; }
 cout << endl;
}

The binary_search() algorithm finds a matching element in logarithmic time instead of linear
time. It requires a start and end iterator specifying the range to search in, a value to search, and
optionally a comparison callback. It returns true if the value is found in the specified range, false
otherwise. The following example demonstrates this algorithm:

vector<int> vec;
populateContainer(vec);

// Sort the container
sort(begin(vec), end(vec));

while (true) {
 int num;
 cout << "Enter a number to find (0 to quit): ";
 cin >> num;
 if (num == 0) {
 break;
 }
 if (binary_search(cbegin(vec), cend(vec), num)) {
 cout << "That number is in the vector." << endl;
 } else {
 cout << "That number is not in the vector." << endl;
 }
}

Set Algorithms
The set algorithms work on any sorted range. The includes() algorithm implements standard
subset determination, checking if all the elements of one sorted range are included in another sorted
range, in any order.

The set_union(), set_intersection(), set_difference(), and set_symmetric_difference()
algorithms implement the standard semantics of those operations. In set theory, the result of union
is all the elements in either set. The result of intersection is all the elements which are in both sets.
The result of difference is all the elements in the first set but not the second. The result of symmetric
difference is the “exclusive or” of sets: all the elements in one, but not both, sets.

Algorithm Details  ❘  651

WARNING  Make sure that your result range is large enough to hold the
result of the operations. For set_union() and set_symmetric_difference(),
the result is at most the sum of the sizes of the two input ranges. For set_inter-
section(), the result is at most the minimum size of the two input ranges, and
for set_difference() it’s at most the size of the first range.

WARNING  You can’t use iterator ranges from associative containers, including
sets, to store the results because they don’t allow changes to their keys.

Here are examples of how to use these algorithms:

vector<int> vec1, vec2, result;
cout << "Enter elements for set 1:" << endl;
populateContainer(vec1);
cout << "Enter elements for set 2:" << endl;
populateContainer(vec2);

// set algorithms work on sorted ranges
sort(begin(vec1), end(vec1));
sort(begin(vec2), end(vec2));

DumpRange("Set 1: ", cbegin(vec1), cend(vec1));
DumpRange("Set 2: ", cbegin(vec2), cend(vec2));

if (includes(cbegin(vec1), cend(vec1), cbegin(vec2), cend(vec2))) {
 cout << "The second set is a subset of the first." << endl;
}
if (includes(cbegin(vec2), cend(vec2), cbegin(vec1), cend(vec1))) {
 cout << "The first set is a subset of the second" << endl;
}

result.resize(size(vec1) + size(vec2));
auto newEnd = set_union(cbegin(vec1), cend(vec1), cbegin(vec2),
 cend(vec2), begin(result));
DumpRange("The union is: ", begin(result), newEnd);

newEnd = set_intersection(cbegin(vec1), cend(vec1), cbegin(vec2),
 cend(vec2), begin(result));
DumpRange("The intersection is: ", begin(result), newEnd);

newEnd = set_difference(cbegin(vec1), cend(vec1), cbegin(vec2),
 cend(vec2), begin(result));
DumpRange("The difference between set 1 and 2 is: ", begin(result), newEnd);

newEnd = set_symmetric_difference(cbegin(vec1), cend(vec1),
 cbegin(vec2), cend(vec2), begin(result));
DumpRange("The symmetric difference is: ", begin(result), newEnd);

652  ❘  CHAPTER 18   Mastering Standard Library Algorithms

DumpRange() is a small helper function template to write elements of a given range to the standard
output stream; it is implemented as follows:

template<typename Iterator>
void DumpRange(string_view message, Iterator begin, Iterator end)
{
 cout << message;
 for_each(begin, end, [](const auto& element) { cout << element << " "; });
 cout << endl;
}

Here is a sample run of the program:

Enter elements for set 1:
Enter a number (0 to quit): 5
Enter a number (0 to quit): 6
Enter a number (0 to quit): 7
Enter a number (0 to quit): 8
Enter a number (0 to quit): 0
Enter elements for set 2:
Enter a number (0 to quit): 8
Enter a number (0 to quit): 9
Enter a number (0 to quit): 10
Enter a number (0 to quit): 0
Set 1: 5 6 7 8
Set 2: 8 9 10
The union is: 5 6 7 8 9 10
The intersection is: 8
The difference between set 1 and set 2 is: 5 6 7
The symmetric difference is: 5 6 7 9 10

The merge() algorithm allows you to merge two sorted ranges together, while maintaining the
sorted order. The result is a sorted range containing all the elements of the two source ranges. It
works in linear time. The following parameters are required:

➤➤ Start and end iterator of the first source range

➤➤ Start and end iterator of the second source range

➤➤ Start iterator of the destination range

➤➤ Optionally, a comparison callback

Without merge(), you could still achieve the same effect by concatenating the two ranges and apply-
ing sort() to the result, but that would be less efficient, O(N log N) instead of the linear complex-
ity of merge().

WARNING  Always ensure that you supply a big enough destination range to
store the result of the merge!

Algorithm Details  ❘  653

The following example demonstrates merge():

vector<int> vectorOne, vectorTwo, vectorMerged;
cout << "Enter values for first vector:" << endl;
populateContainer(vectorOne);
cout << "Enter values for second vector:" << endl;
populateContainer(vectorTwo);

// Sort both containers
sort(begin(vectorOne), end(vectorOne));
sort(begin(vectorTwo), end(vectorTwo));

// Make sure the destination vector is large enough to hold the values
// from both source vectors.
vectorMerged.resize(size(vectorOne) + size(vectorTwo));

merge(cbegin(vectorOne), cend(vectorOne),
 cbegin(vectorTwo), cend(vectorTwo), begin(vectorMerged));

DumpRange("Merged vector: ", cbegin(vectorMerged), cend(vectorMerged));

Minimum/Maximum Algorithms
The min() and max() algorithms compare two or more elements of any type using operator< or
a user-supplied binary predicate, returning a const reference to the smallest or largest element,
respectively. The minmax() algorithm returns a pair containing the minimum and maximum value
of two or more elements. These algorithms do not take iterator parameters. There is also min_
element(), max_element(), and minmax_element() that work on iterator ranges.

The following program gives some examples:

int x = 4, y = 5;
cout << "x is " << x << " and y is " << y << endl;
cout << "Max is " << max(x, y) << endl;
cout << "Min is " << min(x, y) << endl;

// Using max() and min() on more than two values
int x1 = 2, x2 = 9, x3 = 3, x4 = 12;
cout << "Max of 4 elements is " << max({ x1, x2, x3, x4 }) << endl;
cout << "Min of 4 elements is " << min({ x1, x2, x3, x4 }) << endl;

// Using minmax()
auto p2 = minmax({ x1, x2, x3, x4 });
cout << "Minmax of 4 elements is <"
 << p2.first << "," << p2.second << ">" << endl;

// Using minmax() + C++17 structured bindings
auto[min1, max1] = minmax({ x1, x2, x3, x4 });
cout << "Minmax of 4 elements is <"
 << min1 << "," << max1 << ">" << endl;

654  ❘  CHAPTER 18   Mastering Standard Library Algorithms

// Using minmax_element() + C++17 structured bindings
vector<int> vec{ 11, 33, 22 };
auto[min2, max2] = minmax_element(cbegin(vec), cend(vec));
cout << "minmax_element() result: <"
 << *min2 << "," << *max2 << ">" << endl;

Here is the program output:

x is 4 and y is 5
Max is 5
Min is 4
Max of 4 elements is 12
Min of 4 elements is 2
Minmax of 4 elements is <2,12>
Minmax of 4 elements is <2,12>
minmax_element() result: <11,33>

NOTE  Sometimes you might encounter non-standard macros to find the mini-
mum and maximum. For example, the GNU C Library (glibc) has macros MIN()
and MAX(), while the Windows.h header file defines min() and max() macros.
Because these are macros, they have the potential to evaluate one of their argu-
ments twice, whereas std::min() and std::max() evaluate each argument
exactly once. Make sure you always use the C++ versions, std::min() and
std::max().

It might also happen that those min() and max() macros interfere when you
want to use std::min() and std::max(). In that case, you can prevent the use
of the macros by using an extra set of parentheses, as follows:

auto maxValue = (std::max)(1, 2);

On Windows you can also prevent the Windows min() and max() macros by
adding a #define NOMINMAX before you include Windows.h.

std::clamp() is a little helper function, defined in <algorithm>, that you can use to make sure
that a value (v) is between a given minimum (lo) and maximum (hi). It returns a reference to lo if
v < lo; returns a reference to hi if v > hi; otherwise returns a reference to v. Here is an example:

cout << clamp(-3, 1, 10) << endl;
cout << clamp(3, 1, 10) << endl;
cout << clamp(22, 1, 10) << endl;

The output is as follows:

1
3
10

C++17

Algorithm Details  ❘  655

Parallel Algorithms
C++17 adds support to more than 60 Standard Library algorithms for executing them in parallel to
improve their performance. Examples include for _ each(), all _ of(), copy(), count _ if(), find(),
replace(), search(), sort(), transform(), and many more. Algorithms that support parallel execu-
tion have the option to accept a so-called execution policy as their first parameter.

The execution policy allows you to specify whether or not an algorithm is allowed to be executed in
parallel or vectorized. There are three standard execution policy types, and three global instances of
those types, all defined in the <execution> header file in the std::execution namespace.

EXECUTION POLICY TYPE GLOBAL

INSTANCE

DESCRIPTION

sequenced_policy seq The algorithm is not allowed to paral-
lelize its execution.

parallel_policy par The algorithm is allowed to parallelize
its execution.

parallel_unsequenced_policy par_unseq The algorithm is allowed to parallel-
ize and vectorize its execution. It’s
also allowed to migrate its execution
across threads.

A Standard Library implementation is free to add additional execution policies.

Note that for an algorithm executing with parallel_unsequenced_policy, function calls to call-
backs are allowed to get interleaved, that is, they are unsequenced. This means that there are a lot of
restrictions on what a function callback can do. For example, it cannot allocate/deallocate memory,
acquire mutexes, use non-lock free std::atomics (see Chapter 23), and more. For the other stan-
dard policies, the function calls are sequenced, but in an indeterminate sequence. Such policies do
not impose restrictions on what the function callbacks can do.

Parallel algorithms do not take any measures to prevent data races and deadlocks, so it is your
responsibility to avoid them when executing an algorithm in parallel. Data race and deadlock
prevention is discussed in detail in Chapter 23.

Here is an example of sorting the contents of a vector using a parallel policy:

sort(std::execution::par, begin(myVector), end(myVector));

Numerical Processing Algorithms
You’ve already seen an example of one numerical processing algorithm: accumulate(). The follow-
ing sections give examples of some more numerical algorithms.

C++17

656  ❘  CHAPTER 18   Mastering Standard Library Algorithms

inner_product
inner_product(), defined in <numeric>, calculates the inner product of two sequences. For exam-
ple, the inner product in the following example is calculated as (1*9)+(2*8)+(3*7)+(4*6):

vector<int> v1{ 1, 2, 3, 4 };
vector<int> v2{ 9, 8, 7, 6 };
cout << inner_product(cbegin(v1), cend(v1), cbegin(v2), 0) << endl;

The output is 70.

iota
The iota() algorithm, defined in the <numeric> header file, generates a sequence of values in a
specified range starting with a specified value and applying operator++ to generate each successive
value. The following example shows how to use this algorithm on a vector of integers, but note
that it works on any element type that implements operator++:

vector<int> vec(10);
iota(begin(vec), end(vec), 5);
for (auto& i : vec) { cout << i << " "; }

The output is as follows:

5 6 7 8 9 10 11 12 13 14

gcd and lcm
The gcd() algorithm returns the greatest common divisor, while lcm() returns the least common
multiple of two integer types. Both are defined in <numeric>. Here is an example:

auto g = gcd(3, 18); // g = 3
auto l = lcm(3, 18); // l = 18

reduce
std::accumulate() is one of the few algorithms that does not support parallel execution. Instead,
you need to use the newly introduced std::reduce() algorithm to calculate a generalized sum with
the option to execute it in parallel. For example, the following two lines calculate the same sum,
except that reduce() runs a parallel and vectorized version and thus is much faster, especially on
big input ranges:

double result1 = std::accumulate(cbegin(vec), cend(vec), 0.0);
double result2 = std::reduce(std::execution::par_unseq, cbegin(vec), cend(vec));

In general, both accumulate() and reduce() calculate the following sum for a range of elements
[x0, xn), with a given initial value Init, and a given binary operator Ѳ:

Init Ѳ x0 Ѳ x1 Ѳ … Ѳ xn−1

C++17

C++17

Algorithms Example: Auditing Voter Registrations  ❘  657

transform_reduce
std::inner_product() is another algorithm that does not support parallel execution. Instead, you
need to use the generalized transform_reduce(), which has the option to execute in parallel, and
which you can use to calculate the inner product, among others. Its use is similar to reduce(), so
no example is given.

transform_reduce() calculates the following sum for a range of elements [x0, xn), with a given ini-
tial value Init, a given unary function f, and a given binary operator Ѳ:

Init Ѳ f(x0) Ѳ f(x1) Ѳ … Ѳ f(xn−1)

Scan Algorithms
C++17 introduces four scan algorithms: exclusive_scan(), inclusive_scan(), transform_
exclusive_scan(), and transform_inclusive_scan().

The following table shows which sums [y0, yn) are calculated by exclusive_scan() and by
inclusive_scan()/partial_sum() for a range of elements [x0, xn), with a given initial value
Init (0 for partial_sum()), and a given operator Ѳ.

exclusive_scan() inclusive_scan()/partial_sum()

y0 = Init

y1 = Init Ѳ x0

y2 = Init Ѳ x0 Ѳ x1

…

yn-1 = Init Ѳ x0 Ѳ x1 Ѳ … Ѳ xn−2

y0 = Init Ѳ x0

y1 = Init Ѳ x0 Ѳ x1

…

yn-1 = Init Ѳ x0 Ѳ x1 Ѳ … Ѳ xn−1

transform_exclusive_scan() and transform_inclusive_scan() both first apply a unary func-
tion to the elements before calculating the generalized sum, similar to how transform_reduce()
applies a unary function to the elements before reducing.

Note that all these scan algorithms can accept an optional execution policy to execute them in
parallel. The order of evaluation for these scan algorithms is non-deterministic, while it is from left
to right for partial_sum() and accumulate(). That’s also the reason why partial_sum() and
accumulate() cannot be parallelized!

ALGORITHMS EXAMPLE: AUDITING VOTER REGISTRATIONS

Voter fraud can be a problem everywhere. People sometimes attempt to register and vote in two or
more different voting districts. Additionally, some people, for example, convicted felons, are ineli-
gible to vote, but occasionally attempt to register and vote anyway. Using your newfound algorithm
skills, you could write a simple voter registration auditing function that checks the voter rolls for
certain anomalies.

C++17

C++17

658  ❘  CHAPTER 18   Mastering Standard Library Algorithms

The Voter Registration Audit Problem Statement
The voter registration audit function should audit the voters’ information. Assume that voter reg-
istrations are stored by district in a map that maps district names to a vector of voters. Your audit
function should take this map and a vector of convicted felons as parameters, and should remove
all convicted felons from the vectors of voters. Additionally, the function should find all voters who
are registered in more than one district and should remove those names from all districts. Voters
with duplicate registrations must have all their registrations removed, and therefore become ineli-
gible to vote. For simplicity, assume that the vector of voters is simply a vector of string names.
A real application would obviously require more data, such as address and party affiliation.

The auditVoterRolls Function
The auditVoterRolls() function works in three steps:

	 1.	 Find all the duplicate names in all the registration vectors by making a call to
getDuplicates().

	 2.	 Combine the set of duplicates and the vector of convicted felons.

	 3.	 Remove from every voter vector all the names found in the combined set of duplicates and
convicted felons. The approach taken here is to use for_each() to process each vector in
the map, applying a lambda expression to remove the offending names from each vector.

The following type aliases are used in the code:

using VotersMap = map<string, vector<string>>;
using DistrictPair = pair<const string, vector<string>>;

Here’s the implementation of auditVoterRolls():

// Expects a map of string/vector<string> pairs keyed on district names
// and containing vectors of all the registered voters in those districts.
// Removes from each vector any name on the convictedFelons vector and
// any name that is found on any other vector.
void auditVoterRolls(VotersMap& votersByDistrict,
 const vector<string>& convictedFelons)
{
 // Get all the duplicate names.
 set<string> toRemove = getDuplicates(votersByDistrict);

 // Combine the duplicates and convicted felons -- we want
 // to remove names on both vectors from all voter rolls.
 toRemove.insert(cbegin(convictedFelons), cend(convictedFelons));

 // Now remove all the names we need to remove using
 // nested lambda expressions and the remove-erase-idiom.
 for_each(begin(votersByDistrict), end(votersByDistrict),
 [&toRemove](DistrictPair& district) {
 auto it = remove_if(begin(district.second),
 end(district.second), [&toRemove](const string& name) {

Algorithms Example: Auditing Voter Registrations  ❘  659

 return (toRemove.count(name) > 0);
 }
);
 district.second.erase(it, end(district.second));
 }
);
}

This implementation uses the for_each() algorithm to demonstrate its use. Of course, instead of
for_each(), you could use a range-based for loop as follows (also uses C++17 structured bindings):

for (auto&[district, voters] : votersByDistrict) {
 auto it = remove_if(begin(voters), end(voters),
 [&toRemove](const string& name) {
 return (toRemove.count(name) > 0);
 }
);
 voters.erase(it, end(voters));
}

The getDuplicates Function
The getDuplicates() function must find any name that is on more than one voter registration
list. There are several different approaches one could use to solve this problem. To demonstrate the
adjacent_find() algorithm, this implementation combines the vectors from each district into one
big vector and sorts it. At that point, any duplicate names between the different vectors will be
next to each other in the big vector. Then the adjacent_find() algorithm can be used on the big,
sorted vector to find all consecutive duplicates and store them in a set called duplicates. Here is
the implementation:

// Returns a set of all names that appear in more than one vector in
// the map.
set<string> getDuplicates(const VotersMap& votersByDistrict)
{
 // Collect all the names from all the vectors into one big vector.
 vector<string> allNames;
 for (auto& district : votersByDistrict) {
 allNames.insert(end(allNames), begin(district.second),
 end(district.second));
 }

 // Sort the vector.
 sort(begin(allNames), end(allNames));

 // Now it's sorted, all duplicate names will be next to each other.
 // Use adjacent_find() to find instances of two or more identical names
 // next to each other.
 // Loop until adjacent_find() returns the end iterator.
 set<string> duplicates;
 for (auto lit = cbegin(allNames); lit != cend(allNames); ++lit) {
 lit = adjacent_find(lit, cend(allNames));

660  ❘  CHAPTER 18   Mastering Standard Library Algorithms

 if (lit == cend(allNames)) {
 break;
 }
 duplicates.insert(*lit);
 }
 return duplicates;
}

In this implementation, allNames is of type vector<string>. That way, this example can show you
how to use the sort() and adjacent_find() algorithms.

Another solution is to change the type of allNames to set<string>, which results in a more
compact implementation, because a set doesn’t allow duplicates. This new solution loops over all
vectors and tries to insert each name into allNames. When this insert fails, it means that there is
already an element with that name in allNames, so the name is added to duplicates. Note that this
code uses C++17 structured bindings.

set<string> getDuplicates(const VotersMap& votersByDistrict)
{
 set<string> allNames;
 set<string> duplicates;
 for (auto&[district, voters] : votersByDistrict) {
 for (auto& name : voters) {
 if (!allNames.insert(name).second) {
 duplicates.insert(name);
 }
 }
 }
 return duplicates;
}

Testing the auditVoterRolls Function
That’s the complete implementation of the voter roll audit functionality. Here is a small test
program:

// Initialize map using uniform initialization
VotersMap voters = {
 {"Orange", {"Amy Aardvark", "Bob Buffalo",
 "Charles Cat", "Dwayne Dog"}},
 {"Los Angeles", {"Elizabeth Elephant", "Fred Flamingo",
 "Amy Aardvark"}},
 {"San Diego", {"George Goose", "Heidi Hen", "Fred Flamingo"}}
};
vector<string> felons = {"Bob Buffalo", "Charles Cat"};

// Local lambda expression to print a district
auto printDistrict = [](const DistrictPair& district) {
 cout << district.first << ":";
 for (auto& str : district.second) {
 cout << " {" << str << "}";
 }
 cout << endl;
};

Summary  ❘  661

cout << "Before Audit:" << endl;
for (const auto& district : voters) { printDistrict(district); }
cout << endl;

auditVoterRolls(voters, felons);

cout << "After Audit:" << endl;
for (const auto& district : voters) { printDistrict(district); }
cout << endl;

The output of the program is as follows:

Before Audit:
Los Angeles: {Elizabeth Elephant} {Fred Flamingo} {Amy Aardvark}
Orange: {Amy Aardvark} {Bob Buffalo} {Charles Cat} {Dwayne Dog}
San Diego: {George Goose} {Heidi Hen} {Fred Flamingo}

After Audit:
Los Angeles: {Elizabeth Elephant}
Orange: {Dwayne Dog}
San Diego: {George Goose} {Heidi Hen}

SUMMARY

This chapter concludes the basic Standard Library functionality. It provided an overview of the vari-
ous algorithms and function objects that are available for your use. It also showed you how to use
lambda expressions, which often make it easier to understand what your code is doing. I hope that
you have gained an appreciation for the usefulness of the Standard Library containers, algorithms,
and function objects. If not, think for a moment about rewriting the voter registration audit example
without the Standard Library. You would need to write your own vector- and map-like classes, and
your own searching, removing, iterating, and other algorithms. The program would be much longer,
more error-prone, harder to debug, and more difficult to maintain.

The following chapters discuss a couple of other aspects of the C++ Standard Library. Chapter 19
discusses regular expressions. Chapter 20 covers a number of additional library utilities that are
available for you to use, and Chapter 21 gives a taste of some more advanced features, such as allo-
cators, iterator adaptors, and writing your own algorithms.

String Localization and Regular
Expressions

WHAT’S IN THIS CHAPTER?

➤➤ How to localize your applications to reach a worldwide audience

➤➤ How to use regular expressions to do powerful pattern matching

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

This chapter starts with a discussion of localization, which allows you to write software that
can be localized to different regions around the world.

The second part of this chapter introduces the regular expressions library, which makes it
easy to perform pattern matching on strings. It allows you to search for substrings matching a
given pattern, but also to validate, parse, and transform strings. Regular expressions are really
powerful, and it’s recommended that you start using them instead of manually writing your
own string processing code.

LOCALIZATION

When you’re learning how to program in C or C++, it’s useful to think of a character as
equivalent to a byte and to treat all characters as members of the ASCII (American Standard
Code for Information Interchange) character set. ASCII is a 7-bit set usually stored in an 8-bit

19

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

664  ❘  CHAPTER 19   String Localization and Regular Expressions

char type. In reality, experienced C++ programmers recognize that successful programs are used
throughout the world. Even if you don’t initially write your program with international audiences in
mind, you shouldn’t prevent yourself from localizing, or making the software locale aware, at a later
date.

NOTE  This chapter gives you an introduction to localization, different character
encodings, and string code portability. It is outside the scope of this book to
discuss all these topics in detail, because they each warrant an entire book on
their own.

Localizing String Literals
A critical aspect of localization is that you should never put any native-language string literals in
your source code, except maybe for debug strings targeted at the developer. In Microsoft Windows
applications, this is accomplished by putting the strings in STRINGTABLE resources. Most other plat-
forms offer similar capabilities. If you need to translate your application to another language, trans-
lating those resources should be all you need to do, without requiring any source changes. There are
tools available that will help you with this translation process.

To make your source code localizable, you should not compose sentences out of string literals, even
if the individual literals can be localized. Here is an example:

cout << "Read " << n << " bytes" << endl;

This statement cannot be localized to Dutch because it requires a reordering of the words. The
Dutch translation is as follows:

cout << n << " bytes gelezen" << endl;

To make sure you can properly localize this string, you could implement something like this:

cout << Format(IDS_TRANSFERRED, n) << endl;

IDS_TRANSFERRED is the name of an entry in a string resource table. For the English version, IDS_
TRANSFERRED could be defined as “Read $1 bytes”, while the Dutch version of the resource could
be defined as “$1 bytes gelezen”. The Format() function loads the string resource, and substi-
tutes $1 with the value of n.

Wide Characters
The problem with viewing a character as a byte is that not all languages, or character sets, can be
fully represented in 8 bits, or 1 byte. C++ has a built-in type called wchar_t that holds a wide char-
acter. Languages with non-ASCII (U.S.) characters, such as Japanese and Arabic, can be represented
in C++ with wchar_t. However, the C++ standard does not define a size for wchar_t. Some compil-
ers use 16 bits while others use 32 bits. To write cross-platform code, it is not safe to assume that
wchar_t is of a particular size.

Localization  ❘  665

If there is any chance that your program will be used in a non-Western character set context (hint:
there is!), you should use wide characters from the beginning. When working with wchar_t, string
and character literals are prefixed with the letter L to indicate that a wide-character encoding should
be used. For example, to initialize a wchar_t character to the letter m, you write it like this:

wchar_t myWideCharacter = L'm';

There are wide-character versions of most of your favorite types and classes. The wide string class
is wstring. The “prefix letter w” pattern applies to streams as well. Wide-character file output
streams are handled with wofstream, and input is handled with wifstream. The joy of pronounc-
ing these class names (woof-stream? whiff-stream?) is reason enough to make your programs locale
aware! Streams are discussed in detail in Chapter 13.

There are also wide-versions of cout, cin, cerr, and clog available, called wcout, wcin, wcerr, and
wclog. Using them is no different than using the non-wide versions:

wcout << L"I am a wide-character string literal." << endl;

Non-Western Character Sets
Wide characters are a great step forward because they increase the amount of space available to
define a single character. The next step is to figure out how that space is used. In wide character
sets, just like in ASCII, characters are represented by numbers, now called code points. The only
difference is that each number does not fit in 8 bits. The map of characters to code points is quite a
bit larger because it handles many different character sets in addition to the characters that English-
speaking programmers are familiar with.

The Universal Character Set (UCS)—defined by the International Standard ISO 10646—and
Unicode are both standardized sets of characters. They contain around one hundred thousand
abstract characters, each identified by an unambiguous name and a code point. The same characters
with the same numbers exist in both standards. Both have specific encodings that you can use. For
example, UTF-8 is an example of a Unicode encoding where Unicode characters are encoded using
one to four 8-bit bytes. UTF-16 encodes Unicode characters as one or two 16-bit values, and UTF-
32 encodes Unicode characters as exactly 32 bits.

Different applications can use different encodings. Unfortunately, the C++ standard does not
specify a size for wide characters (wchar_t). On Windows it is 16 bits, while on other platforms it
could be 32 bits. You need to be aware of this when using wide characters for character encoding
in cross-platform code. To help solve this issue, there are two other character types: char16_t and
char32_t. The following list gives an overview of all available character types.

➤➤ char: Stores 8 bits. This type can be used to store ASCII characters, or as a basic build-
ing block for storing UTF-8 encoded Unicode characters, where one Unicode character is
encoded as one to four chars.

➤➤ char16_t: Stores at least 16 bits. This type can be used as the basic building block for UTF-
16 encoded Unicode characters, where one Unicode character is encoded as one or two
char16_ts.

666  ❘  CHAPTER 19   String Localization and Regular Expressions

➤➤ char32_t: Stores at least 32 bits. This type can be used for storing UTF-32 encoded Unicode
characters as one char32_t.

➤➤ wchar_t: Stores a wide character of a compiler-specific size and encoding.

The benefit of using char16_t and char32_t instead of wchar_t is that the size of char16_t is
guaranteed to be at least 16 bits, and the size of char32_t is guaranteed to be at least 32 bits, inde-
pendent of the compiler. There is no minimum size guaranteed for wchar_t.

The standard also defines the following macros.

➤➤ __STDC_UTF_32__: If defined by the compiler, then the type char32_t uses UTF-32 encod-
ing. If it is not defined, char32_t has a compiler-dependent encoding.

➤➤ __STDC_UTF_16__: If defined by the compiler, then the type char16_t uses UTF-16 encod-
ing. If it is not defined, char16_t has a compiler-dependent encoding.

String literals can have a string prefix to turn them into a specific type. The complete set of sup-
ported string prefixes is as follows.

➤➤ u8: A char string literal with UTF-8 encoding.

➤➤ u: A char16_t string literal, which can be UTF-16 if __STDC_UTF_16__ is defined by the
compiler.

➤➤ U: A char32_t string literal, which can be UTF-32 if __STDC_UTF_32__ is defined by the
compiler.

➤➤ L: A wchar_t string literal with a compiler-dependent encoding.

All of these string literals can be combined with the raw string literal prefix, R, discussed in
Chapter 2. Here are some examples:

const char* s1 = u8R"(Raw UTF-8 encoded string literal)";
const wchar_t* s2 = LR"(Raw wide string literal)";
const char16_t* s3 = uR"(Raw char16_t string literal)";
const char32_t* s4 = UR"(Raw char32_t string literal)";

If you are using Unicode encoding, for example, by using u8 UTF-8 string literals, or if your com-
piler defines __STDC_UTF_16__ or __STDC_UTF_32__, you can insert a specific Unicode code point
in your non-raw string literal by using the \uABCD notation. For example, \u03C0 represents the pi
character, and \u00B2 represents the ‘squared’ character. The following formula string represents
“π r²”:

const char* formula = u8"\u03C0 r\u00B2";

Similarly, character literals can also have a prefix to turn them into specific types. The prefixes u, U,
and L are supported, and C++17 adds the u8 prefix for character literals. Here are some examples:
u'a', U'a', L'a', and u8'a'.

Localization  ❘  667

Besides the std::string class, there is also support for wstring, u16string, and u32string. They
are all defined as follows:

➤➤ using string = basic_string<char>;

➤➤ using wstring = basic_string<wchar_t>;

➤➤ using u16string = basic_string<char16_t>;

➤➤ using u32string = basic_string<char32_t>;

Multibyte characters are characters composed of one or more bytes with a compiler-dependent
encoding, similar to how Unicode can be represented with one to four bytes using UTF-8, or
with one or two 16-bit values using UTF-16. There are conversion functions to convert between
char16_t/char32_t and multibyte characters, and vice versa: mbrtoc16, c16rtomb, mbrtoc32, and
c32rtomb.

Unfortunately, the support for char16_t and char32_t doesn’t go much further. There are some
conversion classes available (see the next section), but, for example, there is nothing like a version
of cout or cin that supports char16_t and char32_t; this makes it difficult to print such strings
to a console or to read them from user input. If you want to do more with char16_t and char32_t
strings, you need to resort to third-party libraries. ICU—International Components for Unicode—is
one well-known library that provides Unicode and globalization support for your applications.

Conversions
The C++ standard provides the codecvt class template to help with converting between different
encodings. The <locale> header defines the following four encoding conversion classes.

CLASS DESCRIPTION

codecvt<char,char,mbstate_t> Identity conversion, that is, no conversion

codecvt<char16_t,char,mbstate_t> Conversion between UTF-16 and UTF-8

codecvt<char32_t,char,mbstate_t> Conversion between UTF-32 and UTF-8

codecvt<wchar_t,char,mbstate_t> Conversion between wide (implementation-
specific) and narrow character encodings

Before C++17, the following three code conversion facets were defined in <codecvt>: codecvt_
utf8, codecvt_utf16, and codecvt_utf8_utf16. These could be used with two convenience
conversion interfaces: wstring_convert and wbuffer_convert. However, C++17 has deprecated
those three conversion facets (the entire <codecvt> header) and the two convenience interfaces, so
they are not further discussed in this book. The C++ Standards Committee decided to deprecate this
functionality because it does not handle errors well. Ill-formed Unicode strings are a security risk,
and in fact can be, and have been, used as an attack vector to compromise the security of systems.

C++17

668  ❘  CHAPTER 19   String Localization and Regular Expressions

Also, the API is too obscure, and too hard to understand. I recommend using third-party libraries,
such as ICU, to work correctly with Unicode strings until the Standards Committee comes up with a
suitable, safe, and easier-to-use replacement for the deprecated functionality.

Locales and Facets
Character sets are only one of the differences in data representation between countries. Even coun-
tries that use similar character sets, such as Great Britain and the United States, still differ in how
they represent certain data, such as dates and money.

The standard C++ mechanism that groups specific data about a particular set of cultural parameters
is called a locale. An individual component of a locale, such as date format, time format, number
format, and so on, is called a facet. An example of a locale is U.S. English. An example of a facet is
the format used to display a date. There are several built-in facets that are common to all locales.
C++ also provides a way to customize or add facets.

There are third-party libraries available that make it easier to work with locales. One example is
boost.locale, which is able to use ICU as its backend, supporting collations and conversions, con-
verting strings to uppercase (instead of converting character by character to uppercase), and so on.

Using Locales
When using I/O streams, data is formatted according to a particular locale. Locales are objects that
can be attached to a stream, and they are defined in the <locale> header file. Locale names are
implementation specific. The POSIX standard is to separate a language and an area into two-letter
sections with an optional encoding. For example, the locale for the English language as spoken in
the U.S. is en_US, while the locale for the English language as spoken in Great Britain is en_GB. The
locale for Japanese spoken in Japan with Japanese Industrial Standard encoding is ja_JP.jis.

Locale names on Windows can have two formats. The preferred format is very similar to the POSIX
format, but uses a dash instead of an underscore. The second, old format, looks like this:

lang[_country_region[.code_page]]

Everything between the square brackets is optional. The following table lists some examples.

POSIX WINDOWS WINDOWS OLD

U.S. English en_US en-US English_United States

Great Britain English en_GB en-GB English_Great Britain

Most operating systems have a mechanism to determine the locale as defined by the user. In C++,
you can pass an empty string to the std::locale object constructor to create a locale from the
user’s environment. Once this object is created, you can use it to query the locale, possibly making
programmatic decisions based on it. The following code demonstrates how to use the user’s locale
for a stream by calling the imbue() method on the stream. The result is that everything that is sent
to wcout is formatted according to the formatting rules for your environment:

wcout.imbue(locale(""));
wcout << 32767 << endl;

Localization  ❘  669

This means that if your system locale is English United States and you output the number 32767, the
number is displayed as 32,767; however, if your system locale is Dutch Belgium, the same number is
displayed as 32.767.

The default locale is the classic/neutral locale, and not the user’s locale. The classic locale uses ANSI
C conventions, and has the name C. The classic C locale is similar to U.S. English, but there are
slight differences. For example, numbers are handled without any punctuation:

wcout.imbue(locale("C"));
wcout << 32767 << endl;

The output of this code is as follows:

32767

The following code manually sets the U.S. English locale, so the number 32767 is formatted with
U.S. English punctuation, independent of your system locale:

wcout.imbue(locale("en-US")); // "en_US" for POSIX
wcout << 32767 << endl;

The output of this code is as follows:

32,767

A locale object allows you to query information about the locale. For example, the following pro-
gram creates a locale matching the user’s environment. The name() method is used to get a C++
string that describes the locale. Then, the find() method is used on the string object to find
a given substring, which returns string::npos when the given substring is not found. The code
checks for the Windows name and the POSIX name. One of two messages is output, depending on
whether or not the locale appears to be U.S. English:

locale loc("");
if (loc.name().find("en_US") == string::npos &&
 loc.name().find("en-US") == string::npos) {
 wcout << L"Welcome non-U.S. English speaker!" << endl;
} else {
 wcout << L"Welcome U.S. English speaker!" << endl;
}

NOTE  When you have to write data to a file that is supposed to be read back by
a program, it’s recommended to write it using the neutral "C" locale; otherwise,
parsing will be difficult. On the other hand, when displaying data in a user inter-
face, it’s recommended to format the data according to the user locale, "".

Character Classification
The <locale> header contains the following character classification functions: std::isspace(),
isblank(), iscntrl(), isupper(), islower(), isalpha(), isdigit(), ispunct(), isxdigit(),
isalnum(), isprint(), isgraph(). They all accept two parameters: the character to classify, and

670  ❘  CHAPTER 19   String Localization and Regular Expressions

the locale to use for the classification. Here is an example of isupper() using the user’s environ-
ment locale:

bool result = isupper('A', locale(""));

Character Conversion
The <locale> header also defines two character conversion functions: std::toupper() and
tolower(). They accept two parameters: the character to convert, and the locale to use for the
conversion.

Using Facets
You can use the std::use_facet() function to obtain a particular facet in a particular locale. The
argument to use_facet() is a locale. For example, the following expression retrieves the standard
monetary punctuation facet of the British English locale using the POSIX locale name:

use_facet<moneypunct<wchar_t>>(locale("en_GB"));

Note that the innermost template type determines the character type to use. This is usually wchar_t
or char. The use of nested template classes is unfortunate, but once you get past the syntax, the
result is an object that contains all the information you want to know about British money punc-
tuation. The data available in the standard facets is defined in the <locale> header and its associ-
ated files. The following table lists the facet categories defined by the standard. Consult a Standard
Library reference for details about the individual facets.

FACET DESCRIPTION

ctype Character classification facets.

codecvt Conversion facets, see earlier in this chapter.

collate Comparing strings lexicographically.

time_get Parsing dates and times.

time_put Formatting dates and times.

num_get Parsing numeric values.

num_put Formatting numeric values.

numpunct Defines the formatting parameters for numeric values.

money_get Parsing monetary values.

money_put Formatting monetary values.

moneypunct Defines formatting parameters for monetary values.

Regular Expressions  ❘  671

The following program brings together locales and facets by printing out the currency symbol
in both U.S. English and British English. Note that, depending on your environment, the British
currency symbol may appear as a question mark, a box, or not at all. If your environment is set up
to handle it, you may actually get the British pound symbol:

locale locUSEng("en-US"); // For Windows
//locale locUSEng("en_US"); // For Linux
locale locBritEng("en-GB"); // For Windows
//locale locBritEng("en_GB"); // For Linux

wstring dollars = use_facet<moneypunct<wchar_t>>(locUSEng).curr_symbol();
wstring pounds = use_facet<moneypunct<wchar_t>>(locBritEng).curr_symbol();

wcout << L"In the US, the currency symbol is " << dollars << endl;
wcout << L"In Great Britain, the currency symbol is " << pounds << endl;

REGULAR EXPRESSIONS

Regular expressions, defined in the <regex> header, are a powerful feature of the Standard Library.
They are a special mini-language for string processing. They might seem complicated at first, but
once you get to know them, they make working with strings easier. Regular expressions can be used
for several string-related operations.

➤➤ Validation: Check if an input string is well formed.

For example: Is the input string a well-formed phone number?

➤➤ Decision: Check what kind of string an input represents.

For example: Is the input string the name of a JPEG or a PNG file?

➤➤ Parsing: Extract information from an input string.

For example: From a full filename, extract the filename part without the full path and with-
out its extension.

➤➤ Transformation: Search substrings and replace them with a new formatted substring.

For example: Search all occurrences of “C++17” and replace them with “C++”.

➤➤ Iteration: Search all occurrences of a substring.

For example: Extract all phone numbers from an input string.

➤➤ Tokenization: Split a string into substrings based on a set of delimiters.

For example: Split a string on whitespace, commas, periods, and so on to extract the
individual words.

Of course, you could write your own code to perform any of the preceding operations on your
strings, but using the regular expressions functionality is highly recommended, because writing
correct and safe code to process strings can be tricky.

672  ❘  CHAPTER 19   String Localization and Regular Expressions

Before I can go into more detail on regular expressions, there is some important terminology you
need to know. The following terms are used throughout the discussion.

➤➤ Pattern: The actual regular expression is a pattern represented by a string.

➤➤ Match: Determines whether there is a match between a given regular expression and all of
the characters in a given sequence [first, last).

➤➤ Search: Determines whether there is some substring within a given sequence [first, last) that
matches a given regular expression.

➤➤ Replace: Identifies substrings in a given sequence, and replaces them with a corresponding
new substring computed from another pattern, called a substitution pattern.

If you look around on the Internet, you will find several different grammars for regular expressions.
For this reason, C++ includes support for several of these grammars:

➤➤ ECMAScript: The grammar based on the ECMAScript standard. ECMAScript is a scripting
language standardized by ECMA-262. The core of JavaScript, ActionScript, Jscript, and so
on, all use the ECMAScript language standard at their core.

➤➤ basic: The basic POSIX grammar.

➤➤ extended: The extended POSIX grammar.

➤➤ awk: The grammar used by the POSIX awk utility.

➤➤ grep: The grammar used by the POSIX grep utility.

➤➤ egrep: The grammar used by the POSIX grep utility with the -E parameter.

If you already know any of these regular expression grammars, you can use it straight away in C++
by telling the regular expression library to use that specific syntax (syntax_option_type). The
default grammar in C++ is ECMAScript, whose syntax is explained in detail in the following sec-
tion. It is also the most powerful grammar, so it’s recommended to use ECMAScript instead of one
of the other more limited grammars. Explaining the other regular expression grammars falls outside
the scope of this book.

NOTE  If this is the first time you’re hearing about regular expressions, just use
the default ECMAScript syntax.

ECMAScript Syntax
A regular expression pattern is a sequence of characters representing what you want to match. Any
character in the regular expression matches itself except for the following special characters:

^ $ \ . * + ? () [] { } |

These special characters are explained throughout the following discussion. If you need to match
one of these special characters, you need to escape it using the \ character, as in this example:

\[or \. or * or \\

Regular Expressions  ❘  673

Anchors
The special characters ^ and $ are called anchors. The ^ character matches the position immediately
following a line termination character, and $ matches the position of a line termination character.
By default, ^ and $ also match the beginning and ending of a string, respectively, but this behavior
can be disabled.

For example, ^test$ matches only the string test, and not strings that contain test somewhere in
the line, such as 1test, test2, test abc, and so on.

Wildcards
The wildcard character . can be used to match any character except a newline character. For exam-
ple, the regular expression a.c will match abc, and a5c, but will not match ab5c, ac, and so on.

Alternation
The | character can be used to specify the “or” relationship. For example, a|b matches a or b.

Grouping
Parentheses () are used to mark subexpressions, also called capture groups. Capture groups can be
used for several purposes:

➤➤ Capture groups can be used to identify individual subsequences of the original string; each
marked subexpression (capture group) is returned in the result. For example, take the fol-
lowing regular expression: (.)(ab|cd)(.). It has three marked subexpressions. Running a
regex_search() with this regular expression on 1cd4 results in a match with four entries.
The first entry is the entire match, 1cd4, followed by three entries for the three marked
subexpressions. These three entries are 1, cd, and 4. The details on how to use the regex_
search() algorithm are shown in a later section.

➤➤ Capture groups can be used during matching for a purpose called back references (explained
later).

➤➤ Capture groups can be used to identify components during replace operations (explained
later).

Repetition
Parts of a regular expression can be repeated by using one of four repeats:

➤➤ * matches the preceding part zero or more times. For example, a*b matches b, ab, aab,
aaaab, and so on.

➤➤ + matches the preceding part one or more times. For example, a+b matches ab, aab, aaaab,
and so on, but not b.

➤➤ ? matches the preceding part zero or one time. For example, a?b matches b and ab, but
nothing else.

➤➤ {...} represents a bounded repeat. a{n} matches a repeated exactly n times; a{n,} matches
a repeated n times or more; and a{n,m} matches a repeated between n and m times inclusive.
For example, a{3,4} matches aaa and aaaa but not a, aa, aaaaa, and so on.

674  ❘  CHAPTER 19   String Localization and Regular Expressions

The repeats described in the previous list are called greedy because they find the longest match while
still matching the remainder of the regular expression. To make them non-greedy, a ? can be added
behind the repeat, as in *?, +?, ??, and {...}?. A non-greedy repetition repeats its pattern as few
times as possible while still matching the remainder of the regular expression.

For example, the following table shows a greedy and a non-greedy regular expression, and the
resulting submatches when running them on the input sequence aaabbb.

REGULAR EXPRESSION SUBMATCHES

Greedy: (a+)(ab)*(b+) "aaa" "" "bbb"

Non-greedy: (a+?)(ab)*(b+) "aa" "ab" "bb"

Precedence
Just as with mathematical formulas, it’s important to know the precedence of regular expression
elements. Precedence is as follows:

➤➤ Elements like a are the basic building blocks of a regular expression.

➤➤ Quantifiers like +, *, ?, and {...} bind tightly to the element on the left; for example, b+.

➤➤ Concatenation like ab+c binds after quantifiers.

➤➤ Alternation like | binds last.

For example, take the regular expression ab+c|d. This matches abc, abbc, abbbc, and so on, and
also d. Parentheses can be used to change these precedence rules. For example, ab+(c|d) matches
abc, abbc, abbbc, ..., abd, abbd, abbbd, and so on. However, by using parentheses you also mark it
as a subexpression or capture group. It is possible to change the precedence rules without creating
new capture groups by using (?:...). For example, ab+(?:c|d) matches the same as the preceding
ab+(c|d) but does not create an additional capture group.

Character Set Matches
Instead of having to write (a|b|c|...|z), which is clumsy and introduces a capture group, a special
syntax for specifying sets of characters or ranges of characters is available. In addition, a “not”
form of the match is also available. A character set is specified between square brackets, and allows
you to write [c1c2...cn], which matches any of the characters c1, c2 , ..., or cn. For example, [abc]
matches any character a, b, or c. If the first character is ^, it means “any but”:

➤➤ ab[cde] matches abc, abd, and abe.

➤➤ ab[^cde] matches abf, abp, and so on but not abc, abd, and abe.

If you need to match the ^, [, or] characters themselves, you need to escape them; for example,
[\[\^\]] matches the characters [, ^, or].

If you want to specify all letters, you could use a character set like [abcdefghijklmnopqrstu-
vwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ]; however, this is clumsy and doing this several times is
awkward, especially if you make a typo and omit one of the letters accidentally. There are two
solutions to this.

Regular Expressions  ❘  675

One solution is to use the range specification in square brackets; this allows you to write [a-zA-Z],
which recognizes all the letters in the range a to z and A to Z. If you need to match a hyphen, you
need to escape it; for example, [a-zA-Z\-]+ matches any word including a hyphenated word.

Another solution is to use one of the character classes. These are used to denote specific types of
characters and are represented as [:name:]. Which character classes are available depends on the
locale, but the names listed in the following table are always recognized. The exact meaning of these
character classes is also dependent on the locale. This table assumes the standard C locale.

CHARACTER

CLASS NAME

DESCRIPTION

digit Digits

d Same as digit

xdigit Digits (digit) and the following letters used in hexadecimal numbers: ‘a’, ‘b’,
‘c’, ‘d’, ‘e’, ‘f’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’.

alpha Alphabetic characters. For the C locale, these are all lowercase and uppercase
letters.

alnum A combination of the alpha class and the digit class

w Same as alnum

lower Lowercase letters, if applicable to the locale

upper Uppercase letters, if applicable to the locale

blank A blank character is a whitespace character used to separate words within a
line of text. For the C locale, these are ‘ ’ and ‘\t’ (tab).

space Whitespace characters. For the C locale, these are ‘ ’, ‘\t’, ‘\n’, ‘\r’, ‘\v’, and ‘\f’.

s Same as space

print Printable characters. These occupy a printing position—for example, on a
display—and are the opposite of control characters (cntrl). Examples are
lowercase letters, uppercase letters, digits, punctuation characters, and space
characters.

cntrl Control characters. These are the opposite of printable characters (print),
and don’t occupy a printing position, for example, on a display. Some
examples for the C locale are ‘\f’ (form feed), ‘\n’ (new line), and ‘\r’ (carriage
return).

graph Characters with a graphical representation. These are all characters that are
printable (print), except the space character ‘ ’.

punct Punctuation characters. For the C locale, these are all graphical characters
(graph) that are not alphanumeric (alnum). Some examples are ‘!’, ‘#’, ‘@’, ‘}’,
and so on.

676  ❘  CHAPTER 19   String Localization and Regular Expressions

Character classes are used within character sets; for example, [[:alpha:]]* in English means the
same as [a-zA-Z]*.

Because certain concepts like matching digits are so common, there are shorthand patterns for
them. For example, [:digit:] and [:d:] mean the same thing as [0-9]. Some classes have an even
shorter pattern using the escape notation \. For example, \d means [:digit:]. Therefore, to recog-
nize a sequence of one or more numbers, you can write any of the following patterns:

➤➤ [0-9]+

➤➤ [[:digit:]]+

➤➤ [[:d:]]+

➤➤ \d+

The following table lists the available escape notations for character classes.

ESCAPE NOTATION EQUIVALENT TO

\d [[:d:]]

\D [^[:d:]]

\s [[:s:]]

\S [^[:s:]]

\w [_[:w:]]

\W [^_[:w:]]

Here are some examples:

➤➤ Test[5-8] matches Test5, Test6, Test7, and Test8.

➤➤ [[:lower:]] matches a, b, and so on, but not A, B, and so on.

➤➤ [^[:lower:]] matches any character except lowercase letters like a, b, and so on.

➤➤ [[:lower:]5-7] matches any lowercase letter like a, b, and so on, and the numbers 5, 6,
and 7.

Word Boundaries
A word boundary can mean the following:

➤➤ The beginning of the source string if the first character of the source string is one of the word
characters, that is, a letter, digit, or an underscore. For the standard C locale this is equal to
[A-Za-z0-9_]. Matching the beginning of the source string is enabled by default, but you
can disable it (regex_constants::match_not_bow).

➤➤ The end of the source string if the last character of the source string is one of the word char-
acters. Matching the end of the source string is enabled by default, but you can disable it
(regex_constants::match_not_eow).

Regular Expressions  ❘  677

➤➤ The first character of a word, which is one of the word characters, while the preceding char-
acter is not a word character.

➤➤ The end of a word, which is a non-word character, while the preceding character is a word
character.

You can use \b to match a word boundary, and \B to match anything except a word boundary.

Back References
Back references allow you to reference a captured group inside the regular expression itself: \n refers
to the n-th captured group, with n > 0. For example, the regular expression (\d+)-.*-\1 matches a
string that has the following format:

➤➤ one or more digits captured in a capture group (\d+)

➤➤ followed by a dash -

➤➤ followed by zero or more characters .*

➤➤ followed by another dash -

➤➤ followed by exactly the same digits captured by the first capture group \1

This regular expression matches 123-abc-123, 1234-a-1234, and so on but does not match 123-
abc-1234, 123-abc-321, and so on.

Lookahead
Regular expressions support positive lookahead (which uses ?=pattern) and negative lookahead
(which uses ?!pattern). The characters following the lookahead must match (positive), or not match
(negative) the lookahead pattern, but those characters are not yet consumed.

For example: the pattern a(?!b) contains a negative lookahead to match a letter a not followed by a
b. The pattern a(?=b) contains a positive lookahead to match a letter a followed by a b, but b is not
consumed so it does not become part of the match.

The following is a more complicated example. The regular expression matches an input sequence
that consists of at least one lowercase letter, at least one uppercase letter, at least one punctuation
character, and is at least eight characters long. Such a regular expression can, for example, be used
to enforce that passwords satisfy certain criteria.

 (?=.*[[:lower:]])(?=.*[[:upper:]])(?=.*[[:punct:]]).{8,}

Regular Expressions and Raw String Literals
As you saw in the preceding sections, regular expressions often use special characters that should
be escaped in normal C++ string literals. For example, if you write \d in a regular expression, it
matches any digit. However, because \ is a special character in C++, you need to escape it in your
regular expression string literal as \\d; otherwise, your C++ compiler tries to interpret the \d. It can
get more complicated if you want your regular expression to match a single back-slash character \.
Because \ is a special character in the regular expression syntax itself, you need to escape it as \\.

678  ❘  CHAPTER 19   String Localization and Regular Expressions

The \ character is also a special character in C++ string literals, so you need to escape it in your C++
string literal, resulting in \\\\.

You can use raw string literals to make a complicated regular expression easier to read in your C++
source code. (Raw string literals are discussed in Chapter 2.) For example, take the following regu-
lar expression:

"(|\\n|\\r|\\\\)"

This regular expression matches spaces, newlines, carriage returns, and back slashes. As you can
see, you need a lot of escape characters. Using raw string literals, this can be replaced with the fol-
lowing more readable regular expression:

R"((|\n|\r|\\))"

The raw string literal starts with R"(and ends with)". Everything in between is the regular expres-
sion. Of course, you still need a double back slash at the end because the back slash needs to be
escaped in the regular expression itself.

This concludes a brief description of the ECMAScript grammar. The following sections explain how
to actually use regular expressions in your C++ code.

The regex Library
Everything for the regular expression library is in the <regex> header file and in the std namespace.
The basic template types defined by the regular expression library are

➤➤ basic_regex: An object representing a specific regular expression.

➤➤ match_results: A substring that matched a regular expression, including all the captured
groups. It is a collection of sub_matches.

➤➤ sub_match: An object containing a pair of iterators into the input sequence. These iterators
represent the matched capture group. The pair is an iterator pointing to the first character
of a matched capture group and an iterator pointing to one-past-the-last character of the
matched capture group. It has an str() method that returns the matched capture group as a
string.

The library provides three key algorithms: regex_match(), regex_search(), and regex_
replace(). All of these algorithms have different versions that allow you to specify the source
string as a string, a character array, or as a begin/end iterator pair. The iterators can be any of the
following:

➤➤ const char*

➤➤ const wchar_t*

➤➤ string::const_iterator

➤➤ wstring::const_iterator

In fact, any iterator that behaves as a bidirectional iterator can be used. See Chapters 17 and 18 for
details on iterators.

Regular Expressions  ❘  679

The library also defines the following two types for regular expression iterators, which are very
important if you want to find all occurrences of a pattern in a source string.

➤➤ regex_iterator: iterates over all the occurrences of a pattern in a source string.

➤➤ regex_token_iterator: iterates over all the capture groups of all occurrences of a pattern
in a source string.

To make the library easier to use, the standard defines a number of type aliases for the preceding
templates:

using regex = basic_regex<char>;
using wregex = basic_regex<wchar_t>;

using csub_match = sub_match<const char*>;
using wcsub_match = sub_match<const wchar_t*>;
using ssub_match = sub_match<string::const_iterator>;
using wssub_match = sub_match<wstring::const_iterator>;

using cmatch = match_results<const char*>;
using wcmatch = match_results<const wchar_t*>;
using smatch = match_results<string::const_iterator>;
using wsmatch = match_results<wstring::const_iterator>;

using cregex_iterator = regex_iterator<const char*>;
using wcregex_iterator = regex_iterator<const wchar_t*>;
using sregex_iterator = regex_iterator<string::const_iterator>;
using wsregex_iterator = regex_iterator<wstring::const_iterator>;

using cregex_token_iterator = regex_token_iterator<const char*>;
using wcregex_token_iterator = regex_token_iterator<const wchar_t*>;
using sregex_token_iterator = regex_token_iterator<string::const_iterator>;
using wsregex_token_iterator = regex_token_iterator<wstring::const_iterator>;

The following sections explain the regex_match(), regex_search(), and regex_replace() algo-
rithms, and the regex_iterator and regex_token_iterator classes.

regex_match()
The regex_match() algorithm can be used to compare a given source string with a regular expres-
sion pattern. It returns true if the pattern matches the entire source string, and false otherwise. It
is very easy to use. There are six versions of the regex_match() algorithm accepting different kinds
of arguments. They all have the following form:

template<...>
bool regex_match(InputSequence[, MatchResults], RegEx[, Flags]);

The InputSequence can be represented as follows:

➤➤ A start and end iterator into a source string

➤➤ An std::string

➤➤ A C-style string

680  ❘  CHAPTER 19   String Localization and Regular Expressions

The optional MatchResults parameter is a reference to a match_results and receives the match.
If regex_match() returns false, you are only allowed to call match_results::empty() or match_
results::size(); anything else is undefined. If regex_match() returns true, a match is found
and you can inspect the match_results object for what exactly got matched. This is explained with
examples in the following subsections.

The RegEx parameter is the regular expression that needs to be matched. The optional Flags
parameter specifies options for the matching algorithm. In most cases you can keep the default. For
more details, consult a Standard Library Reference, see Appendix B.

regex_match() Example
Suppose you want to write a program that asks the user to enter a date in the format year/month/
day, where year is four digits, month is a number between 1 and 12, and day is a number between
1 and 31. You can use a regular expression together with the regex_match() algorithm to validate
the user input as follows. The details of the regular expression are explained after the code.

regex r("\\d{4}/(?:0?[1-9]|1[0-2])/(?:0?[1-9]|[1-2][0-9]|3[0-1])");
while (true) {
 cout << "Enter a date (year/month/day) (q=quit): ";
 string str;
 if (!getline(cin, str) || str == "q")
 break;

 if (regex_match(str, r))
 cout << " Valid date." << endl;
 else
 cout << " Invalid date!" << endl;
}

The first line creates the regular expression. The expression consists of three parts separated by a
forward slash (/) character: one part for year, one for month, and one for day. The following list
explains these parts.

➤➤ \d{4}: This matches any combination of four digits; for example, 1234, 2010, and so on.

➤➤ (?:0?[1-9]|1[0-2]): This subpart of the regular expression is wrapped inside parentheses
to make sure the precedence is correct. You don’t need a capture group, so (?:...) is used.
The inner expression consists of an alternation of two parts separated by the | character.

➤➤ 0?[1-9]: This matches any number from 1 to 9 with an optional 0 in front of it.
For example, it matches 1, 2, 9, 03, 04, and so on. It does not match 0, 10, 11, and
so on.

➤➤ 1[0-2]: This matches 10, 11, or 12, and nothing else.

➤➤ (?:0?[1-9]|[1-2][0-9]|3[0-1]): This subpart is also wrapped inside a non-capture
group and consists of an alternation of three parts.

➤➤ 0?[1-9]: This matches any number from 1 to 9 with an optional 0 in front of it.
For example, it matches 1, 2, 9, 03, 04, and so on. It does not match 0, 10, 11, and
so on.

Regular Expressions  ❘  681

➤➤ [1-2][0-9]: This matches any number between 10 and 29 inclusive and nothing
else.

➤➤ 3[0-1]: This matches 30 or 31 and nothing else.

The example then enters an infinite loop to ask the user to enter a date. Each date entered is given to
the regex_match() algorithm. When regex_match() returns true, the user has entered a date that
matches the date regular expression pattern.

This example can be extended a bit by asking the regex_match() algorithm to return captured
subexpressions in a results object. You first have to understand what a capture group does. By
specifying a match_results object like smatch in a call to regex_match(), the elements of the
match_results object are filled in when the regular expression matches the input string. To be able
to extract these substrings, you must create capture groups using parentheses.

The first element, [0], in a match_results object contains the string that matched the entire pat-
tern. When using regex_match() and a match is found, this is the entire source sequence. When
using regex_search(), discussed in the next section, this is a substring in the source sequence that
matches the regular expression. Element [1] is the substring matched by the first capture group, [2]
by the second capture group, and so on. To get a string representation of a capture group, you can
write m[i] as in the following code, or write m[i].str(), where i is the index of the capture group
and m is a match_results object.

The following code extracts the year, month, and day digits into three separate integer variables. The
regular expression in the revised example has a few small changes. The first part matching the year
is wrapped in a capture group, while the month and day parts are now also capture groups instead
of non-capture groups. The call to regex_match() includes a smatch parameter, which receives the
matched capture groups. Here is the adapted example:

regex r("(\\d{4})/(0?[1-9]|1[0-2])/(0?[1-9]|[1-2][0-9]|3[0-1])");
while (true) {
 cout << "Enter a date (year/month/day) (q=quit): ";
 string str;
 if (!getline(cin, str) || str == "q")
 break;

 smatch m;
 if (regex_match(str, m, r)) {
 int year = stoi(m[1]);
 int month = stoi(m[2]);
 int day = stoi(m[3]);
 cout << " Valid date: Year=" << year
 << ", month=" << month
 << ", day=" << day << endl;
 } else {
 cout << " Invalid date!" << endl;
 }
}

682  ❘  CHAPTER 19   String Localization and Regular Expressions

In this example, there are four elements in the smatch results objects:

➤➤ [0]: the string matching the full regular expression, which is the full date in this example

➤➤ [1]: the year

➤➤ [2]: the month

➤➤ [3]: the day

When you execute this example, you can get the following output:

Enter a date (year/month/day) (q=quit): 2011/12/01
 Valid date: Year=2011, month=12, day=1
Enter a date (year/month/day) (q=quit): 11/12/01
 Invalid date!

NOTE  These date-matching examples only check if the date consists of a year
(four digits), a month (1–12), and a day (1–31). They do not perform any valida-
tion for the number of days in a month, or for leap years, and so on. If you need
to do that, you have to write code to validate the year, month, and day values
that are extracted by regex_match(). If you validate the year, month, and day in
code, then the regular expression can be simplified to just match 4 digits for the
year, 1 or 2 digits for the month, and 1 or 2 digits for the day:

regex r("(\\d{4})/(\\d{1,2})/(\\d{1,2})");

regex_search()
The regex_match() algorithm discussed in the previous section returns true if the entire source
string matches the regular expression, and false otherwise. It cannot be used to find a matching
substring. Instead, you need to use the regex_search() algorithm, which allows you to search for
a substring that matches a certain pattern. There are six versions of the regex_search() algorithm,
and they all have the following form:

template<...>
bool regex_search(InputSequence[, MatchResults], RegEx[, Flags]);

All variations return true when a match is found somewhere in the input sequence, and false oth-
erwise. The parameters are similar to the parameters for regex_match().

Two versions of the regex_search() algorithm accept a begin and end iterator as the input
sequence that you want to process. You might be tempted to use this version of regex_search() in
a loop to find all occurrences of a pattern in a source string by manipulating these begin and end
iterators for each regex_search() call. Never do this! It can cause problems when your regular
expression uses anchors (̂ or $), word boundaries, and so on. It can also cause an infinite loop due
to empty matches. Use the regex_iterator or regex_token_iterator as explained later in this
chapter to extract all occurrences of a pattern from a source string.

Regular Expressions  ❘  683

WARNING  Never use regex_search() in a loop to find all occur-
rences of a pattern in a source string. Instead, use a regex_iterator or
regex_token_iterator.

regex_search() Example
The regex_search() algorithm can be used to extract matching substrings from an input
sequence. The following example extracts code comments from input lines. The regular expres-
sion searches for a substring that starts with // followed by some optional whitespace \s*
followed by one or more characters captured in a capture group (.+). This capture group cap-
tures only the comment substring. The smatch object m receives the search results. If successful,
m[1] contains the comment that was found. You can check the m[1].first and m[1].second
iterators to see where exactly the comment was found in the source string.

regex r("//\\s*(.+)$");
while (true) {
 cout << "Enter a string with optional code comments (q=quit): ";
 string str;
 if (!getline(cin, str) || str == "q")
 break;

 smatch m;
 if (regex_search(str, m, r))
 cout << " Found comment '" << m[1] << "'" << endl;
 else
 cout << " No comment found!" << endl;
}

The output of this program can look as follows:

Enter a string (q=quit): std::string str; // Our source string
 Found comment 'Our source string'
Enter a string (q=quit): int a; // A comment with // in the middle
 Found comment 'A comment with // in the middle'
Enter a string (q=quit): float f; // A comment with a (tab) character
 Found comment 'A comment with a (tab) character'

The match_results object also has a prefix() and suffix() method, which return the string pre-
ceding or following the match, respectively.

regex_iterator
As explained in the previous section, you should never use regex_search() in a loop to extract
all occurrences of a pattern from a source sequence. Instead, you should use a regex_iterator or
regex_token_iterator. They work similarly to iterators for Standard Library containers.

684  ❘  CHAPTER 19   String Localization and Regular Expressions

regex_iterator Example
The following example asks the user to enter a source string, extracts every word from the string, and
prints all words between quotes. The regular expression in this case is [\w]+, which searches for one
or more word-letters. This example uses std::string as source, so it uses sregex_iterator for the
iterators. A standard iterator loop is used, but in this case, the end iterator is done slightly differently
from the end iterators of ordinary Standard Library containers. Normally, you specify an end iterator
for a particular container, but for regex_iterator, there is only one “end” iterator. You can get this
end iterator by declaring a regex_iterator type using the default constructor.

The for loop creates a start iterator called iter, which accepts a begin and end iterator into the
source string together with the regular expression. The loop body is called for every match found,
which is every word in this example. The sregex_iterator iterates over all the matches. By deref-
erencing an sregex_iterator, you get a smatch object. Accessing the first element of this smatch
object, [0], gives you the matched substring:

regex reg("[\\w]+");
while (true) {
 cout << "Enter a string to split (q=quit): ";
 string str;
 if (!getline(cin, str) || str == "q")
 break;

 const sregex_iterator end;
 for (sregex_iterator iter(cbegin(str), cend(str), reg);
 iter != end; ++iter) {
 cout << "\"" << (*iter)[0] << "\"" << endl;
 }
}

The output of this program can look as follows:

Enter a string to split (q=quit): This, is a test.
"This"
"is"
"a"
"test"

As this example demonstrates, even simple regular expressions can do some powerful string
manipulation!

Note that both a regex_iterator and a regex_token_iterator internally contain a pointer to
the given regular expression. They both explicitly delete constructors accepting an rvalue regular
expression, so you cannot construct them with a temporary regex object. For example, the follow-
ing does not compile:

for (sregex_iterator iter(cbegin(str), cend(str), regex("[\\w]+"));
 iter != end; ++iter) { ... }

Regular Expressions  ❘  685

regex_token_iterator
The previous section describes regex_iterator, which iterates through every matched pattern. In
each iteration of the loop you get a match_results object, which you can use to extract subexpres-
sions for that match that are captured by capture groups.

A regex_token_iterator can be used to automatically iterate over all or selected capture groups
across all matched patterns. There are four constructors with the following format:

regex_token_iterator(BidirectionalIterator a,
 BidirectionalIterator b,
 const regex_type& re
 [, SubMatches
 [, Flags]]);

All of them require a begin and end iterator as input sequence, and a regular expression. The
optional SubMatches parameter is used to specify which capture groups should be iterated over.
SubMatches can be specified in four ways:

➤➤ As a single integer representing the index of the capture group that you want to iterate over.

➤➤ As a vector with integers representing the indices of the capture groups that you want to
iterate over.

➤➤ As an initializer_list with capture group indices.

➤➤ As a C-style array with capture group indices.

When you omit SubMatches or when you specify a 0 for SubMatches, you get an iterator that iter-
ates over all capture groups with index 0, which are the substrings matching the full regular expres-
sion. The optional Flags parameter specifies options for the matching algorithm. In most cases you
can keep the default. Consult a Standard Library Reference for more details.

regex_token_iterator Examples
The previous regex_iterator example can be rewritten using a regex_token_iterator as fol-
lows. Note that *iter is used in the loop body instead of (*iter)[0] as in the regex_iterator
example, because the token iterator with 0 as the default submatch index automatically iterates over
all capture groups with index 0. The output of this code is exactly the same as the output generated
by the regex_iterator example:

regex reg("[\\w]+");
while (true) {
 cout << "Enter a string to split (q=quit): ";
 string str;
 if (!getline(cin, str) || str == "q")
 break;

686  ❘  CHAPTER 19   String Localization and Regular Expressions

 const sregex_token_iterator end;
 for (sregex_token_iterator iter(cbegin(str), cend(str), reg);
 iter != end; ++iter) {
 cout << "\"" << *iter << "\"" << endl;
 }
}

The following example asks the user to enter a date and then uses a regex_token_iterator to iter-
ate over the second and third capture groups (month and day), which are specified as a vector of
integers. The regular expression used for dates is explained earlier in this chapter. The only differ-
ence is that ^ and $ anchors are added since we want to match the entire source sequence. Earlier,
that was not necessary, because regex_match() automatically matches the entire input string.

regex reg("^(\\d{4})/(0?[1-9]|1[0-2])/(0?[1-9]|[1-2][0-9]|3[0-1])$");
while (true) {
 cout << "Enter a date (year/month/day) (q=quit): ";
 string str;
 if (!getline(cin, str) || str == "q")
 break;

 vector<int> indices{ 2, 3 };
 const sregex_token_iterator end;
 for (sregex_token_iterator iter(cbegin(str), cend(str), reg, indices);
 iter != end; ++iter) {
 cout << "\"" << *iter << "\"" << endl;
 }
}

This code prints only the month and day of valid dates. Output generated by this example can look
like this:

Enter a date (year/month/day) (q=quit): 2011/1/13
"1"
"13"
Enter a date (year/month/day) (q=quit): 2011/1/32
Enter a date (year/month/day) (q=quit): 2011/12/5
"12"
"5"

The regex_token_iterator can also be used to perform a so-called field splitting or tokeniza-
tion. It is a much safer and more flexible alternative to using the old strtok() function from C.
Tokenization is triggered in the regex_token_iterator constructor by specifying -1 as the capture
group index to iterate over. When in tokenization mode, the iterator iterates over all substrings of
the input sequence that do not match the regular expression. The following code demonstrates this
by tokenizing a string on the delimiters , and ; with zero or more whitespace characters before or
after the delimiters:

regex reg(R"(\s*[,;]\s*)");
while (true) {
 cout << "Enter a string to split on ',' and ';' (q=quit): ";
 string str;
 if (!getline(cin, str) || str == "q")
 break;

Regular Expressions  ❘  687

 const sregex_token_iterator end;
 for (sregex_token_iterator iter(cbegin(str), cend(str), reg, -1);
 iter != end; ++iter) {
 cout << "\"" << *iter << "\"" << endl;
 }
}

The regular expression in this example is specified as a raw string literal and searches for patterns
that match the following:

➤➤ zero or more whitespace characters

➤➤ followed by a , or ; character

➤➤ followed by zero or more whitespace characters

The output can be as follows:

Enter a string to split on ',' and ';' (q=quit): This is, a; test string.
"This is"
"a"
"test string."

As you can see from this output, the string is split on , and ;. All whitespace characters around the
, and ; are removed, because the tokenization iterator iterates over all substrings that do not match
the regular expression, and because the regular expression matches , and ; with whitespace around
them.

regex_replace()
The regex_replace() algorithm requires a regular expression, and a formatting string that is used
to replace matching substrings. This formatting string can reference part of the matched substrings
by using the escape sequences in the following table.

ESCAPE

SEQUENCE

REPLACED WITH

$n The string matching the n-th capture group; for example, $1 for the first cap-
ture group, $2 for the second, and so on. n must be greater than 0.

$& The string matching the entire regular expression.

$` The part of the input sequence that appears to the left of the substring match-
ing the regular expression.

$´ The part of the input sequence that appears to the right of the substring
matching the regular expression.

$$ A single dollar sign.

688  ❘  CHAPTER 19   String Localization and Regular Expressions

There are six versions of the regex_replace() algorithm. The difference between them is in the
type of arguments. Four of them have the following format:

string regex_replace(InputSequence, RegEx, FormatString[, Flags]);

These four versions return the resulting string after performing the replacement. Both the
InputSequence and the FormatString can be an std::string or a C-style string. The RegEx
parameter is the regular expression that needs to be matched. The optional Flags parameter speci-
fies options for the replace algorithm.

Two versions of the regex_replace() algorithm have the following format:

OutputIterator regex_replace(OutputIterator,
 BidirectionalIterator first,
 BidirectionalIterator last,
 RegEx, FormatString[, Flags]);

These two versions write the resulting string to the given output iterator and return this output itera-
tor. The input sequence is given as a begin and end iterator. The other parameters are identical to
the other four versions of regex_replace().

regex_replace() Examples
As a first example, take the following HTML source string,

<body><h1>Header</h1><p>Some text</p></body>

and the regular expression,

<h1>(.*)</h1><p>(.*)</p>

The following table shows the different escape sequences and what they will be replaced with.

ESCAPE SEQUENCE REPLACED WITH

$1 Header

$2 Some text

$& <h1>Header</h1><p>Some text</p>

$` <body>

$´ </body>

The following code demonstrates the use of regex_replace():

const string str("<body><h1>Header</h1><p>Some text</p></body>");
regex r("<h1>(.*)</h1><p>(.*)</p>");

const string format("H1=$1 and P=$2"); // See above table
string result = regex_replace(str, r, format);

cout << "Original string: '" << str << "'" << endl;
cout << "New string : '" << result << "'" << endl;

Regular Expressions  ❘  689

The output of this program is as follows:

Original string: '<body><h1>Header</h1><p>Some text</p></body>'
New string : '<body>H1=Header and P=Some text</body>'

The regex_replace() algorithm accepts a number of flags that can be used to manipulate how it is
working. The most important flags are given in the following table.

FLAG DESCRIPTION

format_default The default is to replace all occurrences of the pattern, and to
also copy everything to the output that does not match the
pattern.

format_no_copy Replaces all occurrences of the pattern, but does not copy any-
thing to the output that does not match the pattern.

format_first_only Replaces only the first occurrence of the pattern.

The following example modifies the previous code to use the format_no_copy flag:

const string str("<body><h1>Header</h1><p>Some text</p></body>");
regex r("<h1>(.*)</h1><p>(.*)</p>");

const string format("H1=$1 and P=$2");
string result = regex_replace(str, r, format,
 regex_constants::format_no_copy);

cout << "Original string: '" << str << "'" << endl;
cout << "New string : '" << result << "'" << endl;

The output is as follows. Compare this with the output of the previous version.

Original string: '<body><h1>Header</h1><p>Some text</p></body>'
New string : 'H1=Header and P=Some text'

Another example is to get an input string and replace each word boundary with a newline so that
the output contains only one word per line. The following example demonstrates this without using
any loops to process a given input string. The code first creates a regular expression that matches
individual words. When a match is found, it is replaced with $1\n where $1 is replaced with the
matched word. Note also the use of the format_no_copy flag to prevent copying whitespace and
other non-word characters from the source string to the output.

regex reg("([\\w]+)");
const string format("$1\n");
while (true) {
 cout << "Enter a string to split over multiple lines (q=quit): ";
 string str;
 if (!getline(cin, str) || str == "q")
 break;

 cout << regex_replace(str, reg, format,
 regex_constants::format_no_copy) << endl;
}

690  ❘  CHAPTER 19   String Localization and Regular Expressions

The output of this program can be as follows:

Enter a string to split over multiple lines (q=quit): This is a test.
This
is
a
test

SUMMARY

This chapter gave you an appreciation for coding with localization in mind. As anyone who has
been through a localization effort will tell you, adding support for a new language or locale is infi-
nitely easier if you have planned ahead; for example, by using Unicode characters and being mindful
of locales.

The second part of this chapter explained the regular expressions library. Once you know the syntax
of regular expressions, it becomes much easier to work with strings. Regular expressions allow you
to validate strings, search for substrings inside an input sequence, perform find-and-replace opera-
tions, and so on. It is highly recommended that you get to know regular expressions and start using
them instead of writing your own string manipulation routines. They will make your life easier.

Additional Library Utilities
WHAT’S IN THIS CHAPTER?

➤➤ How to work with compile-time rational numbers

➤➤ How to work with time

➤➤ How to generate random numbers

➤➤ How to work with optional values

➤➤ How to use the variant and any data types

➤➤ What tuples are and how to use them

➤➤ How to use the filesystem support library

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

This chapter discusses some additional library functionality that is available in the C++
Standard Library and that does not naturally fit into other chapters.

RATIOS

The Ratio library allows you to exactly represent any finite rational number that you can
use at compile time. Ratios are used in the std::chrono::duration class discussed in the
next section. Everything is defined in the <ratio> header file and is in the std namespace.

20

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

692  ❘  CHAPTER 20   Additional Library Utilities

The numerator and denominator of a rational number are represented as compile-time constants
of type std::intmax_t, which is a signed integer type with the maximum width supported by a
compiler. Because of the compile-time nature of these rational numbers, using them might look a
bit complicated and different than what you are used to. You cannot define a ratio object the same
way as you define normal objects, and you cannot call methods on it. Instead, you need to use type
aliases. For example, the following line defines a rational compile-time constant representing the
fraction 1/60:

using r1 = ratio<1, 60>;

The numerator and denominator of the r1 rational number are compile-time constants and can be
accessed as follows:

intmax_t num = r1::num;
intmax_t den = r1::den;

Remember that a ratio is a compile-time constant, which means that the numerator and denomi-
nator need to be known at compile time. The following generates a compilation error:

intmax_t n = 1;
intmax_t d = 60;
using r1 = ratio<n, d>; // Error

Making n and d constants removes the error:

const intmax_t n = 1;
const intmax_t d = 60;
using r1 = ratio<n, d>; // Ok

Rational numbers are always normalized. For a rational number ratio<n, d>, the greatest com-
mon divisor, gcd, is calculated and the numerator, num, and denominator, den, are then defined as
follows:

➤➤ num = sign(n)*sign(d)*abs(n)/gcd

➤➤ den = abs(d)/gcd

The library supports adding, subtracting, multiplying, and dividing rational numbers. Because all
these operations are also happening at compile time, you cannot use the standard arithmetic opera-
tors. Instead, you need to use specific templates in combination with type aliases. The following
arithmetic ratio templates are available: ratio_add, ratio_subtract, ratio_multiply, and
ratio_divide. These templates calculate the result as a new ratio type. This type can be accessed
with the embedded type alias called type. For example, the following code first defines two ratios,
one representing 1/60 and the other representing 1/30. The ratio_add template adds those two
rational numbers together to produce the result rational number, which, after normalization, is
1/20.

using r1 = ratio<1, 60>;
using r2 = ratio<1, 30>;
using result = ratio_add<r1, r2>::type;

The standard also defines a number of ratio comparison templates: ratio_equal, ratio_not_
equal, ratio_less, ratio_less_equal, ratio_greater, and ratio_greater_equal. Just like the
arithmetic ratio templates, the ratio comparison templates are all evaluated at compile time.

Ratios  ❘  693

These comparison templates define a new type that is an std::bool_constant, representing
the result. bool_constant is an std::integral_constant, a struct template that stores a
type and a compile-time constant value. For example, integral_constant<int, 15> stores an
integer with value 15. bool_constant is an integral_constant with type bool. For instance,
bool_constant<true> is integral_constant<bool, true>, which stores a Boolean with value
true. The result of the ratio comparison templates is either bool_constant<true> or bool_
constant<false>. The value associated with a bool_constant or an integral_constant can be
accessed using the value data member. The following example demonstrates the use of ratio_less.
Chapter 13 discusses the use of boolalpha to output true or false for Boolean values.

using r1 = ratio<1, 60>;
using r2 = ratio<1, 30>;
using res = ratio_less<r2, r1>;
cout << boolalpha << res::value << endl;

The following example combines everything I have just covered. Note that because ratios are
compile-time constants, you cannot do something like cout << r1; you need to get the numerator
and denominator and print them separately.

// Define a compile-time rational number
using r1 = ratio<1, 60>;
cout << "1) " << r1::num << "/" << r1::den << endl;

// Get numerator and denominator
intmax_t num = r1::num;
intmax_t den = r1::den;
cout << "2) " << num << "/" << den << endl;

// Add two rational numbers
using r2 = ratio<1, 30>;
cout << "3) " << r2::num << "/" << r2::den << endl;
using result = ratio_add<r1, r2>::type;
cout << "4) " << result::num << "/" << result::den << endl;

// Compare two rational numbers
using res = ratio_less<r2, r1>;
cout << "5) " << boolalpha << res::value << endl;

The output is as follows:

1) 1/60
2) 1/60
3) 1/30
4) 1/20
5) false

The library provides a number of SI (Système International) type aliases for your convenience. They
are as follows:

using yocto = ratio<1, 1'000'000'000'000'000'000'000'000>; // *
using zepto = ratio<1, 1'000'000'000'000'000'000'000>; // *
using atto = ratio<1, 1'000'000'000'000'000'000>;
using femto = ratio<1, 1'000'000'000'000'000>;
using pico = ratio<1, 1'000'000'000'000>;

694  ❘  CHAPTER 20   Additional Library Utilities

using nano = ratio<1, 1'000'000'000>;
using micro = ratio<1, 1'000'000>;
using milli = ratio<1, 1'000>;
using centi = ratio<1, 100>;
using deci = ratio<1, 10>;
using deca = ratio<10, 1>;
using hecto = ratio<100, 1>;
using kilo = ratio<1'000, 1>;
using mega = ratio<1'000'000, 1>;
using giga = ratio<1'000'000'000, 1>;
using tera = ratio<1'000'000'000'000, 1>;
using peta = ratio<1'000'000'000'000'000, 1>;
using exa = ratio<1'000'000'000'000'000'000, 1>;
using zetta = ratio<1'000'000'000'000'000'000'000, 1>; // *
using yotta = ratio<1'000'000'000'000'000'000'000'000, 1>; // *

The SI units with an asterisk at the end are defined only if your compiler can represent the constant
numerator and denominator values for those type aliases as an intmax_t. An example of how to use
these predefined SI units is given in the discussion of durations in the next section.

THE CHRONO LIBRARY

The chrono library is a collection of classes that work with times. The library consists of the follow-
ing components:

➤➤ Durations

➤➤ Clocks

➤➤ Time points

Everything is defined in the std::chrono namespace and requires you to include the <chrono>
header file. The following sections explain each component.

Duration
A duration is an interval between two points in time. It is represented by the duration class tem-
plate, which stores a number of ticks and a tick period. The tick period is the time in seconds
between two ticks and is represented as a compile-time ratio constant, which means it could be a
fraction of a second. Ratios are discussed in the previous section. The duration template accepts
two template parameters and is defined as follows:

template <class Rep, class Period = ratio<1>> class duration {...}

The first template parameter, Rep, is the type of variable storing the number of ticks and should be
an arithmetic type, for example long, double, and so on. The second template parameter, Period,
is the rational constant representing the period of a tick. If you don’t specify the tick period, the
default value ratio<1> is used, which represents a tick period of one second.

Three constructors are provided: the default constructor; one that accepts a single value, the number
of ticks; and one that accepts another duration. The latter constructor can be used to convert from

The Chrono Library  ❘  695

one duration to another duration, for example, from minutes to seconds. An example is given
later in this section.

Durations support arithmetic operations such as +, -, *, /, %, ++, --, +=, -=, *=, /=, and %=, and sup-
port the comparison operators. The class also contains the methods shown in the following table.

METHOD DESCRIPTION

Rep count() const Returns the duration value as the number of ticks. The return
type is the type specified as a parameter to the duration
template.

static duration zero() Returns a duration with a duration value equivalent to zero.

static duration min()

static duration max()

Returns a duration with the minimum/maximum possible duration
value representable by the type specified as a parameter to the
duration template.

C++17 adds floor(), ceil(), round(), and abs() operations for durations that behave just as
they behave with numerical data.

Let’s see how durations can be used in actual code. A duration where each tick is one second can be
defined as follows:

duration<long> d1;

Because ratio<1> is the default tick period, this is the same as writing the following:

duration<long, ratio<1>> d1;

The following defines a duration in minutes (tick period = 60 seconds):

duration<long, ratio<60>> d2;

To define a duration where each tick period is a sixtieth of a second, use the following:

duration<double, ratio<1, 60>> d3;

As you saw earlier in this chapter, the <ratio> header file defines a number of SI rational constants.
These predefined constants come in handy for defining tick periods. For example, the following line
of code defines a duration where each tick period is one millisecond:

duration<long long, milli> d4;

The following example demonstrates several aspects of durations. It shows you how to define dura-
tions, how to perform arithmetic operations on them, and how to convert one duration into another
duration with a different tick period.

// Specify a duration where each tick is 60 seconds
duration<long, ratio<60>> d1(123);
cout << d1.count() << endl;

696  ❘  CHAPTER 20   Additional Library Utilities

// Specify a duration represented by a double with each tick
// equal to 1 second and assign the largest possible duration to it.
duration<double> d2;
d2 = d2.max();
cout << d2.count() << endl;

// Define 2 durations:
// For the first duration, each tick is 1 minute
// For the second duration, each tick is 1 second
duration<long, ratio<60>> d3(10); // = 10 minutes
duration<long, ratio<1>> d4(14); // = 14 seconds

// Compare both durations
if (d3 > d4)
 cout << "d3 > d4" << endl;
else
 cout << "d3 <= d4" << endl;

// Increment d4 with 1 resulting in 15 seconds
++d4;

// Multiply d4 by 2 resulting in 30 seconds
d4 *= 2;

// Add both durations and store as minutes
duration<double, ratio<60>> d5 = d3 + d4;

// Add both durations and store as seconds
duration<long, ratio<1>> d6 = d3 + d4;
cout << d3.count() << " minutes + " << d4.count() << " seconds = "
 << d5.count() << " minutes or "
 << d6.count() << " seconds" << endl;

// Create a duration of 30 seconds
duration<long> d7(30);

// Convert the seconds of d7 to minutes
duration<double, ratio<60>> d8(d7);
cout << d7.count() << " seconds = " << d8.count() << " minutes" << endl;

The output is as follows:

123
1.79769e+308
d3 > d4
10 minutes + 30 seconds = 10.5 minutes or 630 seconds
30 seconds = 0.5 minutes

NOTE  The second line in the output represents the largest possible duration
with type double. The exact value might be different depending on your
compiler.

The Chrono Library  ❘  697

Pay special attention to the following two lines:

duration<double, ratio<60>> d5 = d3 + d4;
duration<long, ratio<1>> d6 = d3 + d4;

They both calculate d3+d4 but the first line stores it as a floating point value representing minutes,
while the second line stores the result as an integral value representing seconds. Conversion from
minutes to seconds or vice versa happens automatically.

The following two lines from the preceding example demonstrate how to explicitly convert between
different units of time:

duration<long> d7(30); // seconds
duration<double, ratio<60>> d8(d7); // minutes

The first line defines a duration representing 30 seconds. The second line converts these 30 sec-
onds into minutes, resulting in 0.5 minutes. Converting in this direction can result in a non-integral
value, and thus requires you to use a duration represented by a floating point type; otherwise, you
will get some cryptic compilation errors. The following lines, for example, do not compile because
d8 is using long instead of a floating point type:

duration<long> d7(30); // seconds
duration<long, ratio<60>> d8(d7); // minutes // Error!

You can, however, force this conversion by using duration_cast():

duration<long> d7(30); // seconds
auto d8 = duration_cast<duration<long, ratio<60>>>(d7); // minutes

In this case, d8 will be 0 minutes, because integer division is used to convert 30 seconds to minutes.

Converting in the other direction does not require floating point types if the source is an integral
type, because the result is always an integral value if you started with an integral value. For exam-
ple, the following lines convert ten minutes into seconds, both represented by the integral type long:

duration<long, ratio<60>> d9(10); // minutes
duration<long> d10(d9); // seconds

The library provides the following standard duration types in the std::chrono namespace:

using nanoseconds = duration<X 64 bits, nano>;
using microseconds = duration<X 55 bits, micro>;
using milliseconds = duration<X 45 bits, milli>;
using seconds = duration<X 35 bits>;
using minutes = duration<X 29 bits, ratio<60>>;
using hours = duration<X 23 bits, ratio<3600>>;

The exact type of X depends on your compiler, but the C++ standard requires it to be a signed inte-
ger type of at least the specified size. The preceding type aliases make use of the predefined SI ratio
type aliases that are described earlier in this chapter. With these predefined types, instead of writing
this,

duration<long, ratio<60>> d9(10); // minutes

698  ❘  CHAPTER 20   Additional Library Utilities

you can simply write this:

minutes d9(10); // minutes

The following code is another example of how to use these predefined durations. The code first
defines a variable t, which is the result of 1 hour + 23 minutes + 45 seconds. The auto keyword is
used to let the compiler automatically figure out the exact type of t. The second line uses the con-
structor of the predefined seconds duration to convert the value of t to seconds, and writes the
result to the console.

auto t = hours(1) + minutes(23) + seconds(45);
cout << seconds(t).count() << " seconds" << endl;

Because the standard requires that the predefined durations use integer types, there can be compila-
tion errors if a conversion could end up with a non-integral value. While integer division normally
truncates, in the case of durations, which are implemented with ratio types, the compiler declares
any computation that could result in a non-zero remainder as a compile-time error. For example, the
following code does not compile because converting 90 seconds to minutes results in 1.5 minutes:

seconds s(90);
minutes m(s);

However, the following code does not compile either, even though 60 seconds is exactly 1 minute.
It is flagged as a compile-time error because converting from seconds to minutes could result in
non-integral values.

seconds s(60);
minutes m(s);

Converting in the other direction works perfectly fine because the minutes duration uses an integral
type and converting it to seconds always results in an integral value:

minutes m(2);
seconds s(m);

You can use the standard user-defined literals “h”, “min”, “s”, “ms”, “us”, and “ns” for creating
durations. Technically, these are defined in the std::literals::chrono_literals namespace, but
also made accessible with using namespace std::chrono. Here is an example:

using namespace std::chrono;
// ...
auto myDuration = 42min; // 42 minutes

Clock
A clock is a class consisting of a time_point and a duration. The time_point type is discussed
in detail in the next section, but those details are not required to understand how clocks work.
However, time_points themselves depend on clocks, so it’s important to know the details of
clocks first.

Three clocks are defined by the standard. The first one is called system_clock and represents
the wall clock time from the system-wide real-time clock. The second one is called steady_clock,
and it guarantees its time_point will never decrease, which is not guaranteed for system_clock
because the system clock can be adjusted at any time. The third one is the high_resolution_clock,

The Chrono Library  ❘  699

which has the shortest possible tick period. Depending on your compiler, it is possible for the high_
resolution_clock to be a synonym for steady_clock or system_clock.

Every clock has a static now() method to get the current time as a time_point. The system_clock
also defines two static helper functions for converting time_points to and from the time_t C-style
time representation. The first function is called to_time_t(), and it converts a given time_point
to a time_t; the second function is called from_time_t(), and it returns a time_point initialized
with a given time_t value. The time_t type is defined in the <ctime> header file.

The following example shows a complete program which gets the current time from the system and
outputs the time in a human-readable format to the console. The localtime() function converts a
time_t to a local time represented by tm and is defined in the <ctime> header file. The put_time()
stream manipulator, defined in the <iomanip> header, is introduced in Chapter 13.

// Get current time as a time_point
system_clock::time_point tpoint = system_clock::now();
// Convert to a time_t
time_t tt = system_clock::to_time_t(tpoint);
// Convert to local time
tm* t = localtime(&tt);
// Write the time to the console
cout << put_time(t, "%H:%M:%S") << endl;

If you want to convert a time to a string, you can use an std::stringstream or the C-style
strftime() function, defined in <ctime>, as follows. Using the strftime() function requires you
to supply a buffer that is big enough to hold the human-readable representation of the given time:

// Get current time as a time_point
system_clock::time_point tpoint = system_clock::now();
// Convert to a time_t
time_t tt = system_clock::to_time_t(tpoint);
// Convert to local time
tm* t = localtime(&tt);
// Convert to readable format
char buffer[80] = {0};
strftime(buffer, sizeof(buffer), "%H:%M:%S", t);
// Write the time to the console
cout << buffer << endl;

NOTE  These examples might give you a security-related error or warning on the
call to localtime(). With Microsoft Visual C++ you should use the safe version
called localtime_s(), while on Linux you should use localtime_r().

The chrono library can also be used to time how long it takes for a piece of code to execute. The
following example shows how you can do this. The actual type of the variables start and end is
high_resolution_clock::time_point, and the actual type of diff is a duration.

// Get the start time
auto start = high_resolution_clock::now();
// Execute code that you want to time
double d = 0;

700  ❘  CHAPTER 20   Additional Library Utilities

for (int i = 0; i < 1000000; ++i) {
 d += sqrt(sin(i) * cos(i));
}
// Get the end time and calculate the difference
auto end = high_resolution_clock::now();
auto diff = end - start;
// Convert the difference into milliseconds and output to the console
cout << duration<double, milli>(diff).count() << "ms" << endl;

The loop in this example is performing some arithmetic operations with sqrt(), sin(), and cos()
to make sure the loop doesn’t end too fast. If you get really small values for the difference in mil-
liseconds on your system, those values will not be accurate and you should increase the number
of iterations of the loop to make it last longer. Small timings will not be accurate because, while
timers often have a resolution in milliseconds, on most operating systems, this timer is updated
infrequently, for example, every 10 ms or 15 ms. This induces a phenomenon called gating error,
where any event that occurs in less than one timer tick appears to take place in zero units of time;
any event between one and two timer ticks appears to take place in one timer unit. For example, on
a system with a 15 ms timer update, a loop that takes 44 ms will appear to take only 30 ms. When
using such timers to time computations, it is important to make sure that the entire computation
takes place across a fairly large number of basic timer tick units so that these errors are minimized.

Time Point
A point in time is represented by the time_point class and stored as a duration relative to the
epoch. A time_point is always associated with a certain clock and the epoch is the origin of this
associated clock. For example, the epoch for the classic Unix/Linux time is 1st of January 1970,
and durations are measured in seconds. The epoch for Windows is 1st of January 1601 and dura-
tions are measured in 100-nanosecond units. Other operating systems have different epoch dates
and duration units.

The time_point class contains a function called time_since_epoch(), which returns a duration
representing the time between the epoch of the associated clock and the stored point in time.

Arithmetic operations of time_points and durations that make sense are supported. The following
table lists those operations. tp is a time_point and d is a duration.

tp + d = tp tp – d = tp

d + tp = tp tp – tp = d

tp += d tp -= d

An example of an operation that is not supported is tp+tp.

Comparison operators are also supported to compare two time points. Two static methods are pro-
vided: min(), which returns the smallest possible point in time, and max(), which returns the larg-
est possible point in time.

The time_point class has three constructors.

The Chrono Library  ❘  701

➤➤ time_point(): This constructs a time_point initialized with duration::zero(). The
resulting time_point represents the epoch of the associated clock.

➤➤ time_point(const duration& d): This constructs a time_point initialized with the given
duration. The resulting time_point represents epoch + d.

➤➤ template <class Duration2> time_point(const time_point<clock, Duration2>&

t): This constructs a time_point initialized with t.time_since_epoch().

Each time_point is associated with a clock. To create a time_point, you specify the clock as the
template parameter:

time_point<steady_clock> tp1;

Each clock also knows its time_point type, so you can also write it as follows:

steady_clock::time_point tp1;

The following example demonstrates the time_point class:

// Create a time_point representing the epoch
// of the associated steady clock
time_point<steady_clock> tp1;
// Add 10 minutes to the time_point
tp1 += minutes(10);
// Store the duration between epoch and time_point
auto d1 = tp1.time_since_epoch();
// Convert the duration to seconds and output to the console
duration<double> d2(d1);
cout << d2.count() << " seconds" << endl;

The output should be as follows:

600 seconds

Converting time_points can be done implicitly or explicitly, similar to duration conversions. Here
is an example of an implicit conversion. The output is 42000 ms.

time_point<steady_clock, seconds> tpSeconds(42s);
// Convert seconds to milliseconds implicitly.
time_point<steady_clock, milliseconds> tpMilliseconds(tpSeconds);
cout << tpMilliseconds.time_since_epoch().count() << " ms" << endl;

If the implicit conversion can result in a loss of data, then you need an explicit conversion using
time_point_cast(), just as duration_cast() is needed for explicit duration casts. The following
example outputs 42000 ms, even though you start from 42,424ms.

time_point<steady_clock, milliseconds> tpMilliseconds(42'424ms);
// Convert milliseconds to seconds explicitly.
time_point<steady_clock, seconds> tpSeconds(
 time_point_cast<seconds>(tpMilliseconds));

// Convert seconds back to milliseconds and output the result.
milliseconds ms(tpSeconds.time_since_epoch());
cout << ms.count() << " ms" << endl;

702  ❘  CHAPTER 20   Additional Library Utilities

C++17 adds floor(), ceil(), and round() operations for time_points that behave just as they
behave with numerical data.

RANDOM NUMBER GENERATION

Generating good random numbers in software is a complex topic. Before C++11, the only way to
generate random numbers was to use the C-style srand() and rand() functions. The srand() func-
tion needed to be called once in your application and was used to initialize the random number gen-
erator, also called seeding. Usually the current system time would be used as a seed.

WARNING  You need to make sure that you use a good-quality seed for your
software-based random number generator. If you initialize the random number
generator with the same seed every time, you will create the same sequence of
random numbers every time. This is why the seed is usually the current system
time.

Once the generator is initialized, random numbers could be generated with rand(). The following
example shows how to use srand() and rand(). The time(nullptr) call returns the system time,
and is defined in the <ctime> header file.

srand(static_cast<unsigned int>(time(nullptr)));
cout << rand() << endl;

A random number within a certain range can be generated with the following function:

int getRandom(int min, int max)
{
 return (rand() % static_cast<int>(max + 1 - min)) + min;
}

The old C-style rand() function generates random numbers in the range 0 to RAND_MAX, which is
defined by the standard to be at least 32,767. Unfortunately, the low-order bits of rand() are often
not very random, which means that using the previous getRandom() function to generate a random
number in a small range, such as 1 to 6, will not result in very good randomness.

NOTE  Software-based random number generators can never generate truly
random numbers. They are therefore called pseudo-random number genera-
tors because they rely on mathematical formulas to give the impression of
randomness.

The old srand() and rand() functions don’t offer much in terms of flexibility. You cannot, for
example, change the distribution of the generated random numbers. C++11 has added a powerful
library to generate random numbers by using different algorithms and distributions. The library is

C++17

Random Number Generation  ❘  703

defined in the <random> header file and has three big components: engines, engine adaptors, and
distributions. A random number engine is responsible for generating the actual random numbers
and storing the state for generating subsequent random numbers. The distribution determines the
range of the generated random numbers and how they are mathematically distributed within that
range. A random number engine adaptor modifies the results of a random number engine you asso-
ciate it with.

It’s highly recommended to stop using srand() and rand(), and to start using the classes from
<random>.

Random Number Engines
The following random number engines are available:

➤➤ random_device

➤➤ linear_congruential_engine

➤➤ mersenne_twister_engine

➤➤ subtract_with_carry_engine

The random_device engine is not a software-based generator; it is a special engine that requires
a piece of hardware attached to your computer that generates truly non-deterministic random
numbers, for example, by using the laws of physics. A classic mechanism measures the decay of a
radioactive isotope by counting alpha-particles-per-time-interval, but there are many other kinds of
physics-based random-number generators, including measuring the “noise” of reverse-biased diodes
(thus eliminating the concerns about radioactive sources in your computer). The details of these
mechanisms fall outside the scope of this book.

According to the specification for random_device, if no such device is attached to the computer,
the library is free to use one of the software algorithms. The choice of algorithm is up to the library
designer.

The quality of a random number generator is referred to as its entropy measure. The entropy()
method of the random_device class returns 0.0 if it is using a software-based pseudo-random num-
ber generator, and returns a nonzero value if there is a hardware device attached. The nonzero value
is an estimate of the entropy of the attached device.

Using a random_device engine is rather straightforward:

random_device rnd;
cout << "Entropy: " << rnd.entropy() << endl;
cout << "Min value: " << rnd.min()
 << ", Max value: " << rnd.max() << endl;
cout << "Random number: " << rnd() << endl;

A possible output of this program could be as follows:

Entropy: 32
Min value: 0, Max value: 4294967295
Random number: 3590924439

A random_device is usually slower than a pseudo-random number engine. Therefore, if you need to
generate a lot of random numbers, I recommend to use a pseudo-random number engine, and to use

704  ❘  CHAPTER 20   Additional Library Utilities

a random_device to generate a seed for the pseudo-random number engine. This is demonstrated in
the section “Generating Random Numbers.”

Next to the random_device engine, there are three pseudo-random number engines:

➤➤ The linear congruential engine requires a minimal amount of memory to store its state. The
state is a single integer containing the last generated random number or the initial seed if no
random number has been generated yet. The period of this engine depends on an algorithmic
parameter and can be up to 264 but is usually less. For this reason, the linear congruential
engine should not be used when you need a high-quality random number sequence.

➤➤ Of the three pseudo-random number engines, the Mersenne twister generates the highest
quality of random numbers. The period of a Mersenne twister depends on an algorithmic
parameter but is much bigger than the period of a linear congruential engine. The memory
required to store the state of a Mersenne twister also depends on its parameters but is much
larger than the single integer state of the linear congruential engine. For example, the pre-
defined Mersenne twister mt19937 has a period of 219937−1, while the state contains 625 inte-
gers or 2.5 kilobytes. It is also one of the fastest engines.

➤➤ The subtract with carry engine requires a state of around 100 bytes; however, the quality of
the generated random numbers is less than that of the numbers generated by the Mersenne
twister, and it is also slower than the Mersenne twister.

The mathematical details of the engines and of the quality of random numbers fall outside the scope
of this book. If you want to know more about these topics, you can consult a reference from the
“Random Numbers” section in Appendix B.

The random_device engine is easy to use and doesn’t require any parameters. However, creating
an instance of one of the three pseudo-random number generators requires you to specify a number
of mathematical parameters, which can be complicated. The selection of parameters greatly influ-
ences the quality of the generated random numbers. For example, the definition of the mersenne_
twister_engine class looks like this:

template<class UIntType, size_t w, size_t n, size_t m, size_t r,
 UIntType a, size_t u, UIntType d, size_t s,
 UIntType b, size_t t, UIntType c, size_t l, UIntType f>
 class mersenne_twister_engine {...}

It requires 14 parameters. The linear_congruential_engine and the subtract_with_carry_
engine classes also require a number of such mathematical parameters. For this reason, the stan-
dard defines a couple of predefined engines. One example is the mt19937 Mersenne twister, which is
defined as follows:

using mt19937 = mersenne_twister_engine<uint_fast32_t, 32, 624, 397, 31,
 0x9908b0df, 11, 0xffffffff, 7, 0x9d2c5680, 15, 0xefc60000, 18,
 1812433253>;

These parameters are all magic, unless you understand the details of the Mersenne twister algo-
rithm. In general, you do not want to modify any of these parameters unless you are a specialist in
the mathematics of pseudo-random number generators. Instead, it is highly recommended to use one
of the predefined type aliases such as mt19937. A complete list of predefined engines is given in a
later section.

Random Number Generation  ❘  705

Random Number Engine Adaptors
A random number engine adaptor modifies the result of a random number engine you associate it
with, which is called the base engine. This is an example of the adaptor pattern (see Chapter 29).
The following three adaptor templates are defined:

template<class Engine, size_t p, size_t r> class
 discard_block_engine {...}
template<class Engine, size_t w, class UIntType> class
 independent_bits_engine {...}
template<class Engine, size_t k> class
 shuffle_order_engine {...}

The discard_block_engine adaptor generates random numbers by discarding some of the values
generated by its base engine. It requires three parameters: the engine to adapt, the block size p, and
the used block size r. The base engine is used to generate p random numbers. The adaptor then dis-
cards p-r of those numbers and returns the remaining r numbers.

The independent_bits_engine adaptor generates random numbers with a given number of bits w
by combining several random numbers generated by the base engine.

The shuffle_order_engine adaptor generates the same random numbers that are generated by the
base engine, but delivers them in a different order.

How these adaptors internally work depends on mathematics and falls outside the scope of this
book.

A number of predefined engine adaptors are available. The next section gives an overview of the pre-
defined engines and engine adaptors.

Predefined Engines and Engine Adaptors
As mentioned earlier, it is not recommended to specify your own parameters for pseudo-random
number engines and engine adaptors, but instead to use one of the standard ones. C++ defines the
following predefined engines and engine adaptors, all in the <random> header file. They all have
complicated template arguments, but it is not necessary to understand those arguments to be able to
use them.

NAME TEMPLATE

minstd_rand0 linear_congruential_engine

minstd_rand linear_congruential_engine

mt19937 mersenne_twister_engine

mt19937_64 mersenne_twister_engine

ranlux24_base subtract_with_carry_engine

continues

706  ❘  CHAPTER 20   Additional Library Utilities

NAME TEMPLATE

ranlux48_base subtract_with_carry_engine

ranlux24 discard_block_engine

ranlux48 discard_block_engine

knuth_b shuffle_order_engine

default_random_engine implementation-defined

The default_random_engine is compiler dependent.

The following section gives an example of how to use these predefined engines.

Generating Random Numbers
Before you can generate any random number, you first need to create an instance of an engine.
If you use a software-based engine, you also need to define a distribution. A distribution is a math-
ematical formula describing how numbers are distributed within a certain range. The recommended
way to create an engine is to use one of the predefined engines discussed in the previous section.

The following example uses the predefined engine called mt19937, using a Mersenne twister engine.
This is a software-based generator. Just as with the old rand() generator, a software-based engine
should be initialized with a seed. The seed used with srand() was often the current time. In modern
C++, it’s recommended to use a random_device to generate a seed, and to use a time-based seed as a
fallback in case the random_device does not have any entropy.

random_device seeder;
const auto seed = seeder.entropy() ? seeder() : time(nullptr);
mt19937 eng(static_cast<mt19937::result_type>(seed));

Next, a distribution is defined. This example uses a uniform integer distribution, for the range
1 to 99. Distributions are explained in detail in the next section, but the uniform distribution is
easy enough to use for this example:

uniform_int_distribution<int> dist(1, 99);

Once the engine and distribution are defined, random numbers can be generated by calling the func-
tion call operator of the distribution, and passing the engine as argument. For this example, this is
written as dist(eng):

cout << dist(eng) << endl;

As you can see, to generate a random number using a software-based engine, you always need to
specify the engine and distribution. The std::bind() utility, introduced in Chapter 18 and defined
in the <functional> header file, can be used to remove the need to specify both the distribution and
the engine when generating a random number. The following example uses the same mt19937 engine
and uniform distribution as the previous example. It then defines gen() by using std::bind() to
bind eng to the first parameter for dist(). This way, you can call gen() without any argument to
generate a new random number. The example then demonstrates the use of gen() in combination

  (continued)

Random Number Generation  ❘  707

with the generate() algorithm to fill a vector of ten elements with random numbers.
The generate() algorithm is discussed in Chapter 18 and is defined in <algorithm>.

random_device seeder;
const auto seed = seeder.entropy() ? seeder() : time(nullptr);
mt19937 eng(static_cast<mt19937::result_type>(seed));
uniform_int_distribution<int> dist(1, 99);

auto gen = std::bind(dist, eng);

vector<int> vec(10);
generate(begin(vec), end(vec), gen);

for (auto i : vec) { cout << i << " "; }

NOTE  Remember that the generate() algorithm overwrites existing elements
and does not insert new elements. This means that you first need to size the vec-
tor to hold the number of elements you need, and then call the generate()
algorithm. The previous example sizes the vector by specifying the size as argu-
ment to the constructor.

Even though you don’t know the exact type of gen(), it’s still possible to pass gen() to another
function that wants to use that generator. You have two options: use a parameter of type
std::function<int()>, or use a function template. The previous example can be adapted to
generate random numbers in a function called fillVector(). Here is an implementation using
std::function:

void fillVector(vector<int>& vec, const std::function<int()>& generator)
{
 generate(begin(vec), end(vec), generator);
}

and here is a function template version:

template<typename T>
void fillVector(vector<int>& vec, const T& generator)
{
 generate(begin(vec), end(vec), generator);
}

This function is used as follows:

random_device seeder;
const auto seed = seeder.entropy() ? seeder() : time(nullptr);
mt19937 eng(static_cast<mt19937::result_type>(seed));
uniform_int_distribution<int> dist(1, 99);

auto gen = std::bind(dist, eng);

vector<int> vec(10);
fillVector(vec, gen);

for (auto i : vec) { cout << i << " "; }

708  ❘  CHAPTER 20   Additional Library Utilities

Random Number Distributions
A distribution is a mathematical formula describing how numbers are distributed within a certain
range. The random number generator library comes with the following distributions that can be
used with pseudo-random number engines to define the distribution of the generated random num-
bers. It’s a compacted representation. The first line of each distribution is the class name and class
template parameters, if any. The next lines are a constructor for the distribution. Only one con-
structor for each distribution is shown to give you an idea of the class. Consult a Standard Library
Reference, see Appendix B, for a detailed list of all constructors and methods of each distribution.

Available uniform distributions:

template<class IntType = int> class uniform_int_distribution
 uniform_int_distribution(IntType a = 0,
 IntType b = numeric_limits<IntType>::max());
template<class RealType = double> class uniform_real_distribution
 uniform_real_distribution(RealType a = 0.0, RealType b = 1.0);

Available Bernoulli distributions:

class bernoulli_distribution
 bernoulli_distribution(double p = 0.5);
template<class IntType = int> class binomial_distribution
 binomial_distribution(IntType t = 1, double p = 0.5);
template<class IntType = int> class geometric_distribution
 geometric_distribution(double p = 0.5);
template<class IntType = int> class negative_binomial_distribution
 negative_binomial_distribution(IntType k = 1, double p = 0.5);

Available Poisson distributions:

template<class IntType = int> class poisson_distribution
 poisson_distribution(double mean = 1.0);
template<class RealType = double> class exponential_distribution
 exponential_distribution(RealType lambda = 1.0);
template<class RealType = double> class gamma_distribution
 gamma_distribution(RealType alpha = 1.0, RealType beta = 1.0);
template<class RealType = double> class weibull_distribution
 weibull_distribution(RealType a = 1.0, RealType b = 1.0);
template<class RealType = double> class extreme_value_distribution
 extreme_value_distribution(RealType a = 0.0, RealType b = 1.0);

Available normal distributions:

template<class RealType = double> class normal_distribution
 normal_distribution(RealType mean = 0.0, RealType stddev = 1.0);
template<class RealType = double> class lognormal_distribution
 lognormal_distribution(RealType m = 0.0, RealType s = 1.0);
template<class RealType = double> class chi_squared_distribution
 chi_squared_distribution(RealType n = 1);
template<class RealType = double> class cauchy_distribution
 cauchy_distribution(RealType a = 0.0, RealType b = 1.0);
template<class RealType = double> class fisher_f_distribution
 fisher_f_distribution(RealType m = 1, RealType n = 1);

Random Number Generation  ❘  709

template<class RealType = double> class student_t_distribution
 student_t_distribution(RealType n = 1);

Available sampling distributions:

template<class IntType = int> class discrete_distribution
 discrete_distribution(initializer_list<double> wl);
template<class RealType = double> class piecewise_constant_distribution
 template<class UnaryOperation>
 piecewise_constant_distribution(initializer_list<RealType> bl,
 UnaryOperation fw);
template<class RealType = double> class piecewise_linear_distribution
 template<class UnaryOperation>
 piecewise_linear_distribution(initializer_list<RealType> bl,
 UnaryOperation fw);

Each distribution requires a set of parameters. Explaining all these mathematical parameters is out-
side the scope of this book, but the rest of this section includes a couple of examples to explain the
impact of a distribution on the generated random numbers.

Distributions are easiest to understand when you look at a graphical representation of them. For
example, the following code generates one million random numbers between 1 and 99, and counts
how many times a certain number is randomly chosen. The counters are stored in a map where the
key is a number between 1 and 99, and the value associated with a key is the number of times that
that key has been selected randomly. After the loop, the results are written to a CSV (comma-
separated values) file, which can be opened in a spreadsheet application.

const unsigned int kStart = 1;
const unsigned int kEnd = 99;
const unsigned int kIterations = 1'000'000;

// Uniform Mersenne Twister
random_device seeder;
const auto seed = seeder.entropy() ? seeder() : time(nullptr);
mt19937 eng(static_cast<mt19937::result_type>(seed));
uniform_int_distribution<int> dist(kStart, kEnd);
auto gen = bind(dist, eng);
map<int, int> m;
for (unsigned int i = 0; i < kIterations; ++i) {
 int rnd = gen();
 // Search map for a key = rnd. If found, add 1 to the value associated
 // with that key. If not found, add the key to the map with value 1.
 ++(m[rnd]);
}

// Write to a CSV file
ofstream of("res.csv");
for (unsigned int i = kStart; i <= kEnd; ++i) {
 of << i << "," << m[i] << endl;
}

The resulting data can then be used to generate a graphical representation. The graph of the preced-
ing uniform Mersenne twister is shown in Figure 20-1.

710  ❘  CHAPTER 20   Additional Library Utilities

0

2000

4000

6000

8000

10000

12000

1 11 21 31 41 51 61 71 81 91

FIGURE 20-1

The horizontal axis represents the range in which random numbers are generated. The graph clearly
shows that all numbers in the range 1 to 99 are randomly chosen around 10,000 times, and that the
distribution of the generated random numbers is uniform across the entire range.

The example can be modified to generate random numbers according to a normal distribution
instead of a uniform distribution. Only two small changes are required. First, you need to modify
the creation of the distribution as follows:

normal_distribution<double> dist(50, 10);

Because normal distributions use doubles instead of integers, you also need to modify the call to gen():

int rnd = static_cast<int>(gen());

Figure 20-2 shows a graphical representation of the random numbers generated according to this
normal distribution.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 11 21 31 41 51 61 71 81 91

FIGURE 20-2

optional  ❘  711

The graph clearly shows that most of the generated random numbers are around the center of the
range. In this example, the value 50 is randomly chosen around 40,000 times, while values like 20
and 80 are chosen only around 500 times.

OPTIONAL

std::optional, defined in <optional>, holds a value of a specific type, or nothing. It can be used
for parameters of a function if you want to allow for values to be optional. It is also often used as
a return type from a function if the function can either return something or not. This removes the
need to return “special” values from functions such as nullptr, end(), -1, EOF, and so on. It also
removes the need to write the function returning a Boolean while storing the actual value in a refer-
ence output parameter, such as bool getData(T& dataOut).

Here is an example of a function returning an optional:

optional<int> getData(bool giveIt)
{
 if (giveIt) {
 return 42;
 }
 return nullopt; // or simply return {};
}

You can call this function as follows:

auto data1 = getData(true);
auto data2 = getData(false);

To determine whether or not an optional has a value, use the has_value() method, or simply use
the optional in an if statement:

cout << "data1.has_value = " << data1.has_value() << endl;
if (data2) {
 cout << "data2 has a value." << endl;
}

If an optional has a value, you can retrieve it with value(), or with the dereferencing operator:

cout << "data1.value = " << data1.value() << endl;
cout << "data1.value = " << *data1 << endl;

If you call value() on an empty optional, a bad_optional_access exception is thrown.

value_or() can be used to return either the value of an optional, or another value when the
optional is empty:

cout << "data2.value = " << data2.value_or(0) << endl;

Note that you cannot store a reference in an optional, so optional<T&> does not work. Instead,
you can use optional<T*>, optional<reference_wrapper<T>>, or optional<reference_
wrapper<const T>>. Remember from Chapter 17 that you can use std::ref() or cref() to create
an std::reference_wrapper<T> or a reference_wrapper<const T> respectively.

C++17

712  ❘  CHAPTER 20   Additional Library Utilities

VARIANT

std::variant, defined in <variant>, can hold a single value of one of a given set of types. When
you define a variant, you have to specify the types it can potentially contain. For example, the fol-
lowing code defines a variant that can contain an integer, a string, or a floating point value, one at
a time:

variant<int, string, float> v;

This default-constructed variant contains a default-constructed value of its first type, int in this
case. If you want to be able to default construct a variant, you have to make sure that the first type
of the variant is default constructible. For example, the following does not compile because Foo is
not default constructible.

class Foo { public: Foo() = delete; Foo(int) {} };
class Bar { public: Bar() = delete; Bar(int) {} };

int main()
{
 variant<Foo, Bar> v;
}

In fact, neither Foo nor Bar are default constructible. If you still want to be able to default con-
struct such a variant, then you can use std::monostate, an empty alternative, as first type of the
variant:

variant<monostate, Foo, Bar> v;

You can use the assignment operator to store something in a variant:

variant<int, string, float> v;
v = 12;
v = 12.5f;
v = "An std::string"s;

A variant can only contain one value at any given time. So, with these three lines of code, first the
integer 12 is stored in the variant, then the variant is modified to contain a single floating-point
value, and lastly, the variant is modified again to contain a single string value.

You can use the index() method to query the index of the value’s type that is currently stored in the
variant. The std::holds_alternative() function template can be used to figure out whether or
not a variant currently contains a value of a certain type:

cout << "Type index: " << v.index() << endl;
cout << "Contains an int: " << holds_alternative<int>(v) << endl;

The output is as follows:

Type index: 1
Contains an int: 0

Use std::get<index>() or std::get<T>() to retrieve the value from a variant. These functions
throw a bad_variant_access exception if you are using the index of a type, or a type, that does
not match the current value in the variant:

cout << std::get<string>(v) << endl;
try {

C++17

any  ❘  713

 cout << std::get<0>(v) << endl;
} catch (const bad_variant_access& ex) {
 cout << "Exception: " << ex.what() << endl;
}

This is the output:

An std::string
Exception: bad variant access

To avoid exceptions, use the std::get_if<index>() or std::get_if<T>() helper functions. These
functions accept a pointer to a variant, and return a pointer to the requested value, or nullptr on
error:

string* theString = std::get_if<string>(&v);
int* theInt = std::get_if<int>(&v);
cout << "retrieved string: " << (theString ? *theString : "null") << endl;
cout << "retrieved int: " << (theInt ? *theInt : 0) << endl;

Here is the output:

retrieved string: An std::string
retrieved int: 0

There is an std::visit() helper function that you can use to apply the visitor pattern to a
variant. Suppose you have the following class that defines a number of overloaded function call
operators, one for each possible type in the variant:

class MyVisitor
{
 public:
 void operator()(int i) { cout << "int " << i << endl; }
 void operator()(const string& s) { cout << "string " << s << endl; }
 void operator()(float f) { cout << "float " << f << endl; }
};

You can use this with std::visit() as follows.

visit(MyVisitor(), v);

The result is that the appropriate overloaded function call operator is called based on the current
value stored in the variant. The output for this example is:

string An std::string

As with optional, you cannot store references in a variant. You can either store pointers, or store
instances of reference_wrapper<T> or reference_wrapper<const T>.

ANY

std::any, defined in <any>, is a class that can contain a single value of any type. Once it is con-
structed, you can ask an any instance whether or not it contains a value, and what the type of the
contained value is. To get access to the contained value, you need to use any_cast(), which throws
an exception of type bad_any_cast in case of failure. Here is an example:

any empty;
any anInt(3);
any aString("An std::string."s);

C++17

714  ❘  CHAPTER 20   Additional Library Utilities

cout << "empty.has_value = " << empty.has_value() << endl;
cout << "anInt.has_value = " << anInt.has_value() << endl << endl;

cout << "anInt wrapped type = " << anInt.type().name() << endl;
cout << "aString wrapped type = " << aString.type().name() << endl << endl;

int theInt = any_cast<int>(anInt);
cout << theInt << endl;
try {
 int test = any_cast<int>(aString);
 cout << test << endl;
} catch (const bad_any_cast& ex) {
 cout << "Exception: " << ex.what() << endl;
}

The output is as follows. Note that the wrapped type of aString is compiler dependent.

empty.has_value = 0
anInt.has_value = 1

anInt wrapped type = int
aString wrapped type = class std::basic_string<char,struct std::char_
traits<char>,class std::allocator<char> >

3
Exception: Bad any_cast

You can assign a new value to an any instance, and even assign a new value of a different type:

any something(3); // Now it contains an integer.
something = "An std::string"s; // Now the same instance contains a string.

Instances of any can be stored in Standard Library containers. This allows you to have heteroge-
neous data in a single container. The only downside is that you have to perform explicit any_casts
to retrieve specific values, as in this example:

vector<any> v;
v.push_back(any(42));
v.push_back(any("An std::string"s));

cout << any_cast<string>(v[1]) << endl;

As with optional and variant, you cannot store references in an any instance. You can either store
pointers, or store instances of reference_wrapper<T> or reference_wrapper<const T>.

TUPLES

The std::pair class, defined in <utility> and introduced in Chapter 17, can store exactly two
values, each with a specific type. The type of each value should be known at compile time. Here is a
short example:

pair<int, string> p1(16, "Hello World");
pair<bool, float> p2(true, 0.123f);

Tuples  ❘  715

cout << "p1 = (" << p1.first << ", " << p1.second << ")" << endl;
cout << "p2 = (" << p2.first << ", " << p2.second << ")" << endl;

The output is as follows:

p1 = (16, Hello World)
p2 = (1, 0.123)

An std::tuple, defined in <tuple>, is a generalization of a pair. It allows you to store any number
of values, each with its own specific type. Just like a pair, a tuple has a fixed size and fixed value
types, which are determined at compile time.

A tuple can be created with a tuple constructor, specifying both the template types and the actual
values. For example, the following code creates a tuple where the first element is an integer, the sec-
ond element a string, and the last element a Boolean:

using MyTuple = tuple<int, string, bool>;
MyTuple t1(16, "Test", true);

std::get<i>() is used to get the ith element from a tuple, where i is a 0-based index; that is, <0>
is the first element of the tuple, <1> is the second element of the tuple, and so on. The value returned
has the correct type for that index in the tuple:

cout << "t1 = (" << get<0>(t1) << ", " << get<1>(t1)
 << ", " << get<2>(t1) << ")" << endl;
// Outputs: t1 = (16, Test, 1)

You can check that get<i>() returns the correct type by using typeid(), from the <typeinfo>
header. The output of the following code says that the value returned by get<1>(t1) is indeed an
std::string:

cout << "Type of get<1>(t1) = " << typeid(get<1>(t1)).name() << endl;
// Outputs: Type of get<1>(t1) = class std::basic_string<char,
// struct std::char_traits<char>,class std::allocator<char> >

NOTE  The exact string returned by typeid() is compiler dependent. The
preceding output is from Visual C++ 2017.

You can also retrieve an element from a tuple based on its type with std::get<T>(), where T is the
type of the element you want to retrieve instead of the index. The compiler generates an error if the
tuple has several elements with the requested type. For example, you can retrieve the string ele-
ment from t1 as follows:

cout << "String = " << get<string>(t1) << endl;
// Outputs: String = Test

Iterating over the values of a tuple is unfortunately not straightforward. You cannot write a simple
loop and call something like get<i>(mytuple) because the value of i must be known at com-
pile time. A possible solution is to use template metaprogramming, which is discussed in detail in
Chapter 22, together with an example on how to print tuple values.

716  ❘  CHAPTER 20   Additional Library Utilities

The size of a tuple can be queried with the std::tuple_size template. Note that tuple_size
requires you to specify the type of the tuple (MyTuple in this case) and not an actual tuple
instance like t1:

cout << "Tuple Size = " << tuple_size<MyTuple>::value << endl;
// Outputs: Tuple Size = 3

If you don’t know the exact tuple type, you can always use decltype() as follows:

cout << "Tuple Size = " << tuple_size<decltype(t1)>::value << endl;
// Outputs: Tuple Size = 3

With C++17’s template argument deduction for constructors, you can omit the template type param-
eters when constructing a tuple, and let the compiler deduce them automatically based on the type
of arguments passed to the constructor. For example, the following defines the same t1 tuple con-
sisting of an integer, a string, and a Boolean. Note that you now have to specify "Test"s to make
sure it’s an std::string.

std::tuple t1(16, "Test"s, true);

Because of the automatic deduction of types, you cannot use & to specify a reference. If you want
to use template argument deduction for constructors to generate a tuple containing a reference or
a constant reference, then you need to use ref() or cref(), respectively, as is demonstrated in the
following example. The ref() and cref() utility functions are defined in the <functional> header
file. For example, the following construction results in a tuple of type tuple<int, double&,
const double&, string&>:

double d = 3.14;
string str1 = "Test";
std::tuple t2(16, ref(d), cref(d), ref(str1));

To test the double reference in the t2 tuple, the following code first writes the value of the double
variable to the console. The call to get<1>(t2) returns a reference to d because ref(d) was used
for the second (index 1) tuple element. The second line changes the value of the variable referenced,
and the last line shows that the value of d is indeed changed through the reference stored in the
tuple. Note that the third line fails to compile because cref(d) was used for the third tuple ele-
ment, that is, it is a constant reference to d.

cout << "d = " << d << endl;
get<1>(t2) *= 2;
//get<2>(t2) *= 2; // ERROR because of cref()
cout << "d = " << d << endl;
// Outputs: d = 3.14
// d = 6.28

Without C++17’s template argument deduction for constructors, you can use the std::make_
tuple() utility function to create a tuple. This helper function template also allows you to create
a tuple by only specifying the actual values. The types are deduced automatically at compile time.
For example:

auto t2 = std::make_tuple(16, ref(d), cref(d), ref(str1));

C++17

Tuples  ❘  717

Decompose Tuples
There are two ways in which you can decompose a tuple into its individual elements: structured
bindings (C++17) and std::tie().

Structured Bindings
Structured bindings, introduced in C++17, make it very easy to decompose a tuple into separate
variables. For example, the following code defines a tuple consisting of an integer, a string, and a
Boolean value, and then uses a structured binding to decompose it into three distinct variables:

tuple t1(16, "Test"s, true);
auto[i, str, b] = t1;
cout << "Decomposed: i = "
 << i << ", str = \"" << str << "\", b = " << b << endl;

With structured bindings, you cannot ignore specific elements while decomposing. If your tuple has
three elements, then your structured binding needs three variables. If you want to ignore elements,
then you have to use tie(), explained next.

tie
If you want to decompose a tuple without structured bindings, you can use the std::tie() util-
ity function, which generates a tuple of references. The following example first creates a tuple
consisting of an integer, a string, and a Boolean value. It then creates three variables—an integer,
a string, and a Boolean—and writes the values of those variables to the console. The tie(i, str,
b) call creates a tuple containing a reference to i, a reference to str, and a reference to b. The
assignment operator is used to assign tuple t1 to the result of tie(). Because the result of tie() is
a tuple of references, the assignment actually changes the values in the three separate variables, as
is shown by the output of the values after the assignment.

tuple<int, string, bool> t1(16, "Test", true);
int i = 0;
string str;
bool b = false;
cout << "Before: i = " << i << ", str = \"" << str << "\", b = " << b << endl;
tie(i, str, b) = t1;
cout << "After: i = " << i << ", str = \"" << str << "\", b = " << b << endl;

The result is as follows:

Before: i = 0, str = "", b = 0
After: i = 16, str = "Test", b = 1

With tie() you can ignore certain elements that you do not want to be decomposed. Instead of a
variable name for the decomposed value, you use the special std::ignore value. Here is the previ-
ous example, but now the string element of the tuple is ignored in the call to tie():

tuple<int, string, bool> t1(16, "Test", true);
int i = 0;
bool b = false;

C++17

718  ❘  CHAPTER 20   Additional Library Utilities

cout << "Before: i = " << i << ", b = " << b << endl;
tie(i, std::ignore, b) = t1;
cout << "After: i = " << i << ", b = " << b << endl;

Here is the new output:

Before: i = 0, b = 0
After: i = 16, b = 1

Concatenation
You can use std::tuple_cat() to concatenate two tuples into one tuple. In the following exam-
ple, the type of t3 is tuple<int, string, bool, double, string>:

tuple<int, string, bool> t1(16, "Test", true);
tuple<double, string> t2(3.14, "string 2");
auto t3 = tuple_cat(t1, t2);

Comparisons
Tuples also support the following comparison operators: ==, !=, <, >, <=, and >=. For the compari-
son operators to work, the element types stored in the tuple should support them as well. Here is
an example:

tuple<int, string> t1(123, "def");
tuple<int, string> t2(123, "abc");
if (t1 < t2) {
 cout << "t1 < t2" << endl;
} else {
 cout << "t1 >= t2" << endl;
}

The output is as follows:

t1 >= t2

Tuple comparisons can be used to easily implement lexicographical comparison operators for cus-
tom types that have several data members. For example, suppose you have a simple structure with
three data members:1

struct Foo
{
 int mInt;
 string mStr;
 bool mBool;
};

1Of course, in production-quality code, you should have private data members with public getters and
possibly public setters. A public struct is used in this example to keep the code compact and to the point.

Tuples  ❘  719

Implementing a correct operator< for Foo is not trivial! However, using std::tie() and tuple
comparisons, this becomes a simple one-liner:

bool operator<(const Foo& f1, const Foo& f2)
{
 return tie(f1.mInt, f1.mStr, f1.mBool) <
 tie(f2.mInt, f2.mStr, f2.mBool);
}

Here is an example of its use:

Foo f1{ 42, "Hello", 0 };
Foo f2{ 32, "World", 0 };
cout << (f1 < f2) << endl;
cout << (f2 < f1) << endl;

make_from_tuple
std::make_from_tuple() constructs an object of a given type T, passing the elements of a given
tuple as arguments to the constructor of T. For example, suppose you have the following class:

class Foo
{
 public:
 Foo(string str, int i) : mStr(str), mInt(i) {}
 private:
 string mStr;
 int mInt;
};

You can use make_from_tuple() as follows:

auto myTuple = make_tuple("Hello world.", 42);
auto foo = make_from_tuple<Foo>(myTuple);

The argument given to make_from_tuple() does not have to be a tuple, but it has to be something
that supports std::get<>() and std::tuple_size. Both std::array and std::pair satisfy these
requirements as well.

This function is not that practical for everyday use, but it comes in handy when writing very generic
code using templates and template metaprogramming.

apply
std::apply() calls a given callable (function, lambda expression, function object, and so on), pass-
ing the elements of a given tuple as arguments. Here is an example:

int add(int a, int b) { return a + b; }
...
cout << apply(add, std::make_tuple(39, 3)) << endl;

C++17

C++17

720  ❘  CHAPTER 20   Additional Library Utilities

As with make_from_tuple(), this function is also meant more for use with generic code using
templates and template metaprogramming, than for everyday use.

FILESYSTEM SUPPORT LIBRARY

C++17 introduces a filesystem support library. Everything is defined in the <filesystem> header,
and lives in the std::filesystem namespace. It allows you to write portable code to work with the
filesystem. You can use it for querying whether something is a directory or a file, iterating over the
contents of a directory, manipulating paths, and retrieving information about files such as their size,
extension, creation time, and so on. The two most important parts of the library—paths and direc-
tory entries—are introduced in the next sections.

Path
The basic component of the library is a path. A path can be an absolute or a relative path, and can
include a filename or not. For example, the following code defines a couple of paths. Note the use of
a raw string literal to avoid having to escape the backslashes.

path p1(LR"(D:\Foo\Bar)");
path p2(L"D:/Foo/Bar");
path p3(L"D:/Foo/Bar/MyFile.txt");
path p4(LR"(..\SomeFolder)");
path p5(L"/usr/lib/X11");

When a path is converted to a string (for example by using the c_str() method), or inserted into a
stream, it is converted to the native format of the system on which the code is running. For example:

path p1(LR"(D:\Foo\Bar)");
path p2(L"D:/Foo/Bar");
cout << p1 << endl;
cout << p2 << endl;

The output is as follows:

D:\Foo\Bar
D:\Foo\Bar

You can append a component to a path with the append() method, or with operator/=. A path
separator is automatically included. For example:

path p(L"D:\\Foo");
p.append("Bar");
p /= "Bar";
cout << p << endl;

The output is D:\Foo\Bar\Bar.

You can use concat(), or operator+=, to concatenate a string to an existing path. This does not
add any path separator! For example:

path p(L"D:\\Foo");
p.concat("Bar");
p += "Bar";
cout << p << endl;

C++17

Filesystem Support Library  ❘  721

The output now is D:\FooBarBar.

WARNING  append() and operator/= automatically add a path separator,
while concat() and operator+= do not.

A path supports iterators to iterate over its different components. Here is an example:

path p(LR"(C:\Foo\Bar)");
for (const auto& component : p) {
 cout << component << endl;
}

The output is as follows:

C:
\
Foo
Bar

The path interface supports operations such as remove_filename(), replace_filename(),
replace_extension(), root_name(), parent_path(), extension(), has_extension(), is_
absolute(), is_relative(), and more. Consult a Standard Library reference, see Appendix B, for
a full list of all available functionality.

Directory Entry
A path just represents a directory or a file on a filesystem. A path may refer to a non-existing direc-
tory or file. If you want to query an actual directory or file on the filesystem, you need to construct
a directory_entry from a path. This construction can fail if the given directory or file does not
exist. The directory_entry interface supports operations like is_directory(), is_regular_
file(), is_socket(), is_symlink(), file_size(), last_write_time(), and others.

The following example constructs a directory_entry from a path to query the size of a file:

path myPath(L"c:/windows/win.ini");
directory_entry dirEntry(myPath);
if (dirEntry.exists() && dirEntry.is_regular_file()) {
 cout << "File size: " << dirEntry.file_size() << endl;
}

Helper Functions
An entire collection of helper functions is available. For example, you can use copy() to copy files
or directories, create_directory() to create a new directory on the filesystem, exists() to query
whether or not a given directory or file exists, file_size() to get the size of a file, last_write_
time() to get the time the file was last modified, remove() to delete a file, temp_directory_path()
to get a directory suitable for storing temporary files, space() to query the available space on a file-
system, and more. Consult a Standard Library reference, see Appendix B, for a full list.

722  ❘  CHAPTER 20   Additional Library Utilities

The following example prints out the capacity of a filesystem and how much space is still free:

space_info s = space("c:\\");
cout << "Capacity: " << s.capacity << endl;
cout << "Free: " << s.free << endl;

You can find more examples of these helper functions in the following section on directory iteration.

Directory Iteration
If you want to recursively iterate over all files and subdirectories in a given directory, you can use the
recursive_directory_iterator as follows:

void processPath(const path& p)
{
 if (!exists(p)) {
 return;
 }

 auto begin = recursive_directory_iterator(p);
 auto end = recursive_directory_iterator();
 for (auto iter = begin; iter != end; ++iter) {
 const string spacer(iter.depth() * 2, ' ');

 auto& entry = *iter;

 if (is_regular_file(entry)) {
 cout << spacer << "File: " << entry;
 cout << " (" << file_size(entry) << " bytes)" << endl;
 } else if (is_directory(entry)) {
 std::cout << spacer << "Dir: " << entry << endl;
 }
 }
}

This function can be called as follows:

path p(LR"(D:\Foo\Bar)");
processPath(p);

You can also use a directory_iterator to iterate over the contents of a directory and implement
the recursion yourself. Here is an example that does the same thing as the previous example but
using a directory_iterator instead of a recursive_directory_iterator:

void processPath(const path& p, size_t level = 0)
{
 if (!exists(p)) {
 return;
 }

 const string spacer(level * 2, ' ');

 if (is_regular_file(p)) {
 cout << spacer << "File: " << p;
 cout << " (" << file_size(p) << " bytes)" << endl;

Summary  ❘  723

 } else if (is_directory(p)) {
 std::cout << spacer << "Dir: " << p << endl;
 for (auto& entry : directory_iterator(p)) {
 processPath(entry, level + 1);
 }
 }
}

SUMMARY

This chapter gave an overview of additional functionality provided by the C++ standard that did not
fit naturally in other chapters. You learned how to use the ratio template to define compile-time
rational numbers; the chrono library; the random number generation library; and the optional,
variant, and any data types. You also learned about tuples, which are a generalization of pairs.
The chapter finished with an introduction to the filesystem support library.

This chapter concludes Part 3 of the book. The next part discusses some more advanced topics and
starts with a chapter showing you how to customize and extend the functionality provided by the
C++ Standard Library.

PART IV
Mastering Advanced Features
of C++

▸▸ CHAPTER 21: Customizing and Extending the Standard Library

▸▸ CHAPTER 22: Advanced Templates

▸▸ CHAPTER 23: Multithreaded Programming with C++

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

Customizing and Extending the
Standard Library

WHAT’S IN THIS CHAPTER?

➤➤ What allocators are

➤➤ How to use stream iterators

➤➤ What iterator adaptors are, and how to use the standard iterator
adaptors

➤➤ How to extend the Standard Library

➤➤ How to write your own algorithms

➤➤ How to write your own containers

➤➤ How to write your own iterators

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

Chapters 16, 17, and 18 show that the Standard Library contains a powerful general-purpose
collection of containers and algorithms. The information covered so far should be sufficient
for most applications. However, those chapters show only the basic functionality of the
library. The Standard Library can be customized and extended however you like. For example,
you can apply iterators to input and output streams; write your own containers, algorithms,
and iterators; and even specify your own memory allocation schemes for containers to use.

21

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

728  ❘  CHAPTER 21   Customizing and Extending the Standard Library

This chapter provides a taste of these advanced features, primarily through the development of a
hash_map container.

NOTE  Customizing and extending the Standard Library is rarely necessary. If
you’re happy with the Standard Library containers and algorithms, you can skip
this chapter. However, if you really want to understand the Standard Library,
not just use it, give this chapter a chance. You should be comfortable with the
operator-overloading material in Chapter 15, and because this chapter uses tem-
plates extensively, you should also be comfortable with the template material
from Chapter 12 before continuing!

ALLOCATORS

Every Standard Library container takes an Allocator type as a template parameter, for which the
default usually suffices. For example, the vector template definition looks like this:

template <class T, class Allocator = allocator<T>> class vector;

The container constructors then allow you to specify an object of type Allocator. This permits
you to customize the way the containers allocate memory. Every memory allocation performed by
a container is made with a call to the allocate() method of the Allocator object. Conversely,
every deallocation is performed with a call to the deallocate() method of the Allocator object.
The Standard Library provides a default Allocator class called allocator, which implements these
methods as wrappers for operator new and operator delete.

If you want containers in your program to use a custom memory allocation and deallocation
scheme, you can write your own Allocator class. There are several reasons for using custom alloca-
tors. For example, if the underlying allocator has unacceptable performance, there are alternatives
that can be constructed. Or, if memory fragmentation is a problem (a lot of different allocations and
deallocations leaving unusable, small holes in memory), a single “pool” of objects of one type can
be created, called a memory pool. When OS-specific capabilities, such as shared memory segments,
must be allocated, using custom allocators allows the use of Standard Library containers in those
shared memory segments. The use of custom allocators is complex, and there are many potential
problems if you are not careful, so this should not be approached lightly.

Any class that provides allocate(), deallocate(), and several other required methods and type
aliases can be used in place of the default allocator class.

C++17 introduces the concept of polymorphic memory allocators. Basically, the problem with the
allocator for a container being specified as a template type parameter is that two containers that are
similar but have different allocator types are completely different. For example, two vector<int>
containers with different Allocator template type parameters are different, and so cannot be
assigned to one another.

The polymorphic memory allocators, defined in <memory_resource> in the std::pmr namespace,
help to solve this problem. The class std::pmr::polymorphic_allocator is a proper Allocator

C++17

Stream Iterators  ❘  729

class because it satisfies all the requirements, such as having an allocate() and deallocate()
method. The allocation behavior of a polymorphic_allocator depends on the memory_resource
it’s given during construction, and not on any template type parameters. As such, different
polymorphic_allocators can behave in completely different ways when allocating and deal-
locating memory, even though they all have the same type, that is, polymorphic_allocator.
The standard provides some built-in memory resources that you can use to initialize a polymor-
phic memory allocator: synchronized_pool_resource, unsynchronized_pool_resource, and
monotonic_buffer_resource.

However, in my experience, both custom allocators and polymorphic memory allocators are rather
advanced and rarely used features. I’ve never used them myself, so a detailed discussion falls outside
the scope of this book. For more information, consult one of the books listed in Appendix B that
specifically covers the C++ Standard Library.

STREAM ITERATORS

The Standard Library provides four stream iterators. These are iterator-like class templates that
allow you to treat input and output streams as input and output iterators. Using these stream itera-
tors, you can adapt input and output streams so that they can serve as sources and destinations,
respectively, for various Standard Library algorithms. The following stream iterators are available:

➤➤ ostream_iterator—an output stream iterator

➤➤ istream_iterator—an input stream iterator

There is also an ostreambuf_iterator and an istreambuf_iterator, but these are rarely used
and are not further discussed here.

Output Stream Iterator
The ostream_iterator class is an output stream iterator. It is a class template that takes the
element type as a type parameter. Its constructor takes an output stream and a delimiter string
to write to the stream following each element. The ostream_iterator class writes elements using
operator<<.

For example, you can use the ostream_iterator with the copy() algorithm to print the elements
of a container with only one line of code. The first parameter of copy() is the start iterator of the
range to copy, the second parameter is the end iterator of the range, and the third parameter is the
destination iterator:

vector<int> myVector(10);
iota(begin(myVector), end(myVector), 1); // Fill vector with 1,2,3...10

// Print the contents of the vector.
copy(cbegin(myVector), cend(myVector), ostream_iterator<int>(cout, " "));

The output is as follows:

1 2 3 4 5 6 7 8 9 10

730  ❘  CHAPTER 21   Customizing and Extending the Standard Library

Input Stream Iterator
You can use the input stream iterator, istream_iterator, to read values from an input stream
using the iterator abstraction. It is a class template that takes the element type as a type parameter.
Elements are read using operator>>. You can use an istream_iterator as a source for algorithms
and container methods.

For example, the following piece of code reads integers from the console until the end of the stream
is reached. On Windows, this happens when you press Ctrl+Z followed by Enter, while on Linux
you press Enter followed by Ctrl+D. The accumulate() algorithm is used to sum all the integers
together. Note that the default constructor of istream_iterator creates an end iterator.

cout << "Enter numbers separated by white space." << endl;
cout << "Press Ctrl+Z followed by Enter to stop." << endl;
istream_iterator<int> numbersIter(cin);
istream_iterator<int> endIter;
int sum = accumulate(numbersIter, endIter, 0);
cout << "Sum: " << sum << endl;

Take a moment to reflect on this code. If you remove all the output statements and the variable dec-
larations, the only line left is the call to accumulate(). Thanks to algorithms and input stream iter-
ators, this single line of code reads any number of integers from the console and sums them together,
without using any explicit loops.

ITERATOR ADAPTORS

The Standard Library provides three iterator adaptors, which are special iterators built on top of
other iterators. All three are defined in the <iterator> header. It’s also possible to write your own
iterator adaptors, but this is not covered in this book. Consult one of the books on the Standard
Library listed in Appendix B for details.

Reverse Iterators
The Standard Library provides an std::reverse_iterator class template that iterates through
a bidirectional or random access iterator in a reverse direction. Every reversible container in the
Standard Library, which happens to be every container that’s part of the standard except for-
ward_list and the unordered associative containers, supplies a reverse_iterator type alias
and methods called rbegin() and rend(). These reverse_iterator type aliases are of type
std::reverse_iterator<T> with T equal to the iterator type alias of the container. The method
rbegin() returns a reverse_iterator pointing to the last element of the container, and rend()
returns a reverse_iterator pointing to the element before the first element of the container.
Applying operator++ to a reverse_iterator calls operator-- on the underlying container itera-
tor, and vice versa. For example, iterating over a collection from the beginning to the end can be
done as follows:

for (auto iter = begin(collection); iter != end(collection); ++iter) {}

Iterating over the elements in the collection from the end to the beginning can be done using a
reverse_iterator by calling rbegin() and rend(). Note that you still call ++iter:

for (auto iter = rbegin(collection); iter != rend(collection); ++iter) {}

Iterator Adaptors  ❘  731

An std::reverse_iterator is useful mostly with algorithms in the Standard Library that have no
equivalents that work in reverse order. For example, the basic find() algorithm searches for the first
element in a sequence. If you want to find the last element in the sequence, you can use a reverse_
iterator instead. Note that when you call an algorithm such as find() with a reverse_itera-
tor, it returns a reverse_iterator as well. You can always obtain the underlying iterator from a
reverse_iterator by calling the base() method on the reverse_iterator. However, due to the
implementation details of reverse_iterator, the iterator returned from base() always refers to
one element past the element referred to by the reverse_iterator on which it’s called. In order to
get to the same element, you must subtract one.

Here is an example of find() with a reverse_iterator:

// The implementation of populateContainer() is identical to that shown in
// Chapter 18, so it is omitted here.

vector<int> myVector;
populateContainer(myVector);

int num;
cout << "Enter a number to find: ";
cin >> num;

auto it1 = find(begin(myVector), end(myVector), num);
auto it2 = find(rbegin(myVector), rend(myVector), num);
if (it1 != end(myVector)) {
 cout << "Found " << num << " at position " << it1 - begin(myVector)
 << " going forward." << endl;
 cout << "Found " << num << " at position "
 << it2.base() - 1 - begin(myVector) << " going backward." << endl;
} else {
 cout << "Failed to find " << num << endl;
}

A possible output of this program is as follows:

Enter a number (0 to quit): 11
Enter a number (0 to quit): 22
Enter a number (0 to quit): 33
Enter a number (0 to quit): 22
Enter a number (0 to quit): 11
Enter a number (0 to quit): 0
Enter a number to find: 22
Found 22 at position 1 going forward.
Found 22 at position 3 going backward.

Insert Iterators
As Chapter 18 mentions, algorithms like copy() don’t insert elements into a container; they simply
replace old elements in a range with new ones. In order to make algorithms like copy() more use-
ful, the Standard Library provides three insert iterator adaptors that actually insert elements into
a container: insert_iterator, back_insert_iterator, and front_insert_iterator. They are
all templatized on a container type, and take the actual container reference in their constructor.
Because they supply the necessary iterator interfaces, these adaptors can be used as the destination

732  ❘  CHAPTER 21   Customizing and Extending the Standard Library

iterators of algorithms like copy(). However, instead of replacing elements in the container, they
make calls on their container to actually insert new elements.

The basic insert_iterator calls insert(position, element) on the container, the
back_insert_iterator calls push_back(element), and the front_insert_iterator calls
push_front(element).

The following example uses a back_insert_iterator with the copy_if() algorithm to populate
vectorTwo with all elements from vectorOne that are not equal to 100:

vector<int> vectorOne, vectorTwo;
populateContainer(vectorOne);

back_insert_iterator<vector<int>> inserter(vectorTwo);
copy_if(cbegin(vectorOne), cend(vectorOne), inserter,
 [](int i){ return i != 100; });

copy(cbegin(vectorTwo), cend(vectorTwo), ostream_iterator<int>(cout, " "));

As you can see, when you use insert iterators, you don’t need to size the destination containers
ahead of time.

You can also use the std::back_inserter() utility function to create a back_insert_iterator.
In the previous example, you can remove the line that defines the inserter variable, and rewrite the
copy_if() call as follows. The result is exactly the same as the previous implementation:

copy_if(cbegin(vectorOne), cend(vectorOne),
 back_inserter(vectorTwo), [](int i){ return i != 100; });

With C++17’s template argument deduction for constructors, this can also be written as follows:

copy_if(cbegin(vectorOne), cend(vectorOne),
 back_insert_iterator(vectorTwo), [](int i) { return i != 100; });

The front_insert_iterator and insert_iterator work similarly, except that the insert_
iterator also takes an initial iterator position in its constructor, which it passes to the first call to
insert(position, element). Subsequent iterator position hints are generated based on the return
value from each insert() call.

One benefit of using an insert_iterator is that it allows you to use associative containers as
destinations of the modifying algorithms. Chapter 18 explains that the problem with associative
containers is that you are not allowed to modify the elements over which you iterate. By using an
insert_iterator, you can instead insert elements. Associative containers actually support a form
of insert() that takes an iterator position, and are supposed to use the position as a “hint,” which
they can ignore. When you use an insert_iterator on an associative container, you can pass the
begin() or end() iterator of the container to use as the hint. The insert_iterator modifies the
iterator hint that it passes to insert() after each call to insert(), such that the position is one past
the just-inserted element.

Here is the previous example modified so that the destination container is a set instead of a vector:

vector<int> vectorOne;
set<int> setOne;

Iterator Adaptors  ❘  733

populateContainer(vectorOne);

insert_iterator<set<int>> inserter(setOne, begin(setOne));
copy_if(cbegin(vectorOne), cend(vectorOne), inserter,
 [](int i){ return i != 100; });

copy(cbegin(setOne), cend(setOne), ostream_iterator<int>(cout, " "));

Similar to the back_insert_iterator example, you can use the std::inserter() utility function
to create an insert_iterator:

copy_if(cbegin(vectorOne), cend(vectorOne),
 inserter(setOne, begin(setOne)),
 [](int i){ return i != 100; });

Or, you can use C++17’s template argument deduction for constructors:

copy_if(cbegin(vectorOne), cend(vectorOne),
 insert_iterator(setOne, begin(setOne)),
 [](int i) { return i != 100; });

Move Iterators
Chapter 9 discusses move semantics, which can be used to prevent unnecessary copying in cases
where you know that the source object will be destroyed after an assignment operation or copy
construction. There is an iterator adaptor called std::move_iterator. The dereferencing operator
for a move_iterator automatically converts the value to an rvalue reference, which means that the
value can be moved to a new destination without the overhead of copying. Before you can use move
semantics, you need to make sure your objects are supporting it. The following MoveableClass sup-
ports move semantics. For more details, see Chapter 9.

class MoveableClass
{
 public:
 MoveableClass() {
 cout << "Default constructor" << endl;
 }
 MoveableClass(const MoveableClass& src) {
 cout << "Copy constructor" << endl;
 }
 MoveableClass(MoveableClass&& src) noexcept {
 cout << "Move constructor" << endl;
 }
 MoveableClass& operator=(const MoveableClass& rhs) {
 cout << "Copy assignment operator" << endl;
 return *this;
 }
 MoveableClass& operator=(MoveableClass&& rhs) noexcept {
 cout << "Move assignment operator" << endl;
 return *this;
 }
};

734  ❘  CHAPTER 21   Customizing and Extending the Standard Library

The constructors and assignment operators are not doing anything useful here, except printing a
message to make it easy to see which one is being called. Now that you have this class, you can
define a vector and store a few MoveableClass instances in it as follows:

vector<MoveableClass> vecSource;
MoveableClass mc;
vecSource.push_back(mc);
vecSource.push_back(mc);

The output could be as follows:

Default constructor // [1]
Copy constructor // [2]
Copy constructor // [3]
Move constructor // [4]

The second line of the code creates a MoveableClass instance by using the default constructor,
[1]. The first push_back() call triggers the copy constructor to copy mc into the vector, [2]. After
this operation, the vector has space for one element, the first copy of mc. Note that this discus-
sion is based on the growth strategy and the initial size of a vector as implemented by Microsoft
Visual C++ 2017. The C++ standard does not specify the initial capacity of a vector or its growth
strategy, so the output can be different with different compilers.

The second push_back() call triggers the vector to resize itself, to allocate space for the second
element. This resizing causes the move constructor to be called to move every element from the old
vector to the new resized vector, [4]. The copy constructor is triggered to copy mc a second time
into the vector, [3]. The order of moving and copying is undefined, so [3] and [4] could be reversed.

You can create a new vector called vecOne that contains a copy of the elements from vecSource as
follows:

vector<MoveableClass> vecOne(cbegin(vecSource), cend(vecSource));

Without using move_iterators, this code triggers the copy constructor two times, once for every
element in vecSource:

Copy constructor
Copy constructor

By using std::make_move_iterator() to create move_iterators, the move constructor of
MoveableClass is called instead of the copy constructor:

vector<MoveableClass> vecTwo(make_move_iterator(begin(vecSource)),
 make_move_iterator(end(vecSource)));

This generates the following output:

Move constructor
Move constructor

You can also use C++17’s template argument deduction for constructors:

vector<MoveableClass> vecTwo(move_iterator(begin(vecSource)),
 move_iterator(end(vecSource)));

Extending the Standard Library  ❘  735

EXTENDING THE STANDARD LIBRARY

The Standard Library includes many useful containers, algorithms, and iterators that you can use
in your applications. It is impossible, however, for any library to include all possible utilities that all
potential clients might need. Thus, the best libraries are extensible: they allow clients to adapt and
add to the basic capabilities to obtain exactly the functionality they require. The Standard Library
is inherently extensible because of its fundamental structure of separating data from the algorithms
that operate on them. You can write your own containers that can work with the Standard Library
algorithms by providing iterators that conforms to the Standard Library guidelines. Similarly, you
can write your own algorithms that work with iterators from the standard containers. Note that you
are not allowed to put your own containers and algorithms in the std namespace.

Why Extend the Standard Library?
If you sit down to write an algorithm or container in C++, you can either make it adhere to the
Standard Library conventions or not. For simple containers and algorithms, it might not be worth
the extra effort to follow the Standard Library requirements. However, for substantial code that you
plan to reuse, the effort pays off. First, the code will be easier for other C++ programmers to under-
stand, because you follow well-established interface guidelines. Second, you will be able to use your
container or algorithm with the other parts of the Standard Library (algorithms or containers) with-
out needing to provide special hacks or adaptors. Finally, it will force you to employ the necessary
rigor required to develop solid code.

Writing a Standard Library Algorithm
Chapter 18 describes a useful set of algorithms that are part of the Standard Library, but you will
inevitably encounter situations in your programs for which you need new algorithms. When that
happens, it is usually not difficult to write your own algorithm that works with Standard Library
iterators just like the standard algorithms.

find_all()
Suppose that you want to find all the elements matching a predicate in a given range. The find()
and find_if() algorithms are the most likely candidates, but each returns an iterator referring to
only one element. You can use copy_if() to find all elements matching a given predicate, but it fills
the output with copies of the found elements. If you want to avoid copies, you can use copy_if()
with a back_insert_iterator into a vector<reference_wrapper<T>>, but this does not give you
the position of the found elements. In fact, there is no standard algorithm to get iterators to all the
elements matching a predicate. However, you can write your own version of this functionality called
find_all().

The first task is to define the function prototype. You can follow the model established by copy_
if(), that is, a function template with three template type parameters: the input iterator type, the
output iterator type, and the predicate type. The arguments of the function are start and end itera-
tors of the input sequence, a start iterator of the output sequence, and a predicate object. As with

736  ❘  CHAPTER 21   Customizing and Extending the Standard Library

copy_if(), the algorithm returns an iterator into the output sequence that is one-past-the-last ele-
ment stored in the output sequence. Here is the prototype:

template <typename InputIterator, typename OutputIterator, typename Predicate>
OutputIterator find_all(InputIterator first, InputIterator last,
 OutputIterator dest, Predicate pred);

Another option would be to omit the output iterator, and to return an iterator into the input
sequence that iterates over all the matching elements in the input sequence. This would require you
to write your own iterator class, which is discussed later in this chapter.

The next task is to write the implementation. The find_all() algorithm iterates over all elements in
the input sequence, calls the predicate on each element, and stores iterators of matching elements in the
output sequence. Here is the implementation:

template <typename InputIterator, typename OutputIterator, typename Predicate>
OutputIterator find_all(InputIterator first, InputIterator last,
 OutputIterator dest, Predicate pred)
{
 while (first != last) {
 if (pred(*first)) {
 *dest = first;
 ++dest;
 }
 ++first;
 }
 return dest;
}

Similar to copy_if(), the algorithm only overwrites existing elements in the output sequence, so
make sure the output sequence is large enough to hold the result, or use an iterator adaptor such
as back_insert_iterator, as demonstrated in the following code. After finding all matching ele-
ments, the code counts the number of elements found, which is the number of iterators in matches.
Then, it iterates through the result, printing each element.

vector<int> vec{ 3, 4, 5, 4, 5, 6, 5, 8 };
vector<vector<int>::iterator> matches;

find_all(begin(vec), end(vec), back_inserter(matches),
 [](int i){ return i == 5; });

cout << "Found " << matches.size() << " matching elements: " << endl;
for (const auto& it : matches) {
 cout << *it << " at position " << (it - cbegin(vec)) << endl;;
}

The output is as follows:

Found 3 matching elements:
5 at position 2
5 at position 4
5 at position 6

Extending the Standard Library  ❘  737

Iterator Traits
Some algorithm implementations need additional information about their iterators. For example,
they might need to know the type of the elements referred to by the iterator in order to store tempo-
rary values, or perhaps they want to know whether the iterator is bidirectional or random access.

C++ provides a class template called iterator_traits that allows you to find this information. You
instantiate the iterator_traits class template with the iterator type of interest, and access one of
five type aliases: value_type, difference_type, iterator_category, pointer, or reference.
For example, the following function template declares a temporary variable of the type that an itera-
tor of type IteratorType refers to. Note the use of the typename keyword in front of the iterator
_traits line. You must specify typename explicitly whenever you access a type based on one or
more template parameters. In this case, the template parameter IteratorType is used to access the
value_type type.

#include <iterator>

template <typename IteratorType>
void iteratorTraitsTest(IteratorType it)
{
 typename std::iterator_traits<IteratorType>::value_type temp;
 temp = *it;
 cout << temp << endl;
}

This function can be tested with the following code:

vector<int> v{ 5 };
iteratorTraitsTest(cbegin(v));

With this code, the variable temp in iteratorTraitsTest() is of type int. The output is 5.

In this example, the auto keyword could be used to simplify the code, but that wouldn’t show you
how to use iterator_traits.

Writing a Standard Library Container
The C++ standard contains a list of requirements that any container must fulfill in order to qualify
as a Standard Library container.

Additionally, if you want your container to be sequential (like a vector), ordered associative (like
a map), or unordered associative (like an unordered_map), it must conform to supplementary
requirements.

My suggestion when writing a new container is to write the basic container first, following the gen-
eral Standard Library rules such as making it a class template, but without worrying too much yet
about the specific details of Standard Library conformity. After you’ve developed the basic imple-
mentation, you can add the iterator and methods so that it can work with the Standard Library
framework. This chapter takes that approach to develop a hash map.

738  ❘  CHAPTER 21   Customizing and Extending the Standard Library

WARNING  It is recommended to use the standard C++ unordered associative
containers, also called hash tables, instead of implementing your own. These
unordered associative containers, explained in Chapter 17, are called unordered
_map, unordered_multimap, unordered_set, and unordered_multiset. The
hash_map in this chapter is only used to demonstrate writing Standard Library
containers.

A Basic Hash Map
C++11 added support for hash tables, which are discussed in Chapter 17. However, pre-C++11 did
not include hash tables. Unlike the Standard Library map and set, which provide logarithmic inser-
tion, lookup, and deletion times, a hash table provides constant time insertion, deletion, and lookup
in the average case, linear in the worst case. Instead of storing elements in sorted order, a hash table
hashes, or maps, each element to a particular bucket. As long as the number of elements stored isn’t
significantly greater than the number of buckets, and the hash function distributes the elements uni-
formly between the buckets, the insertion, deletion, and lookup operations all run in constant time.

NOTE  This section assumes that you are familiar with hashed data structures. If
you are not, consult Chapter 17, which includes a discussion on hash tables, or
one of the standard data structure texts listed in Appendix B.

This section implements a simple, but fully functional, hash_map. Like a map, a hash_map stores
key/value pairs. In fact, the operations it provides are almost identical to those provided by the map,
but with different performance characteristics.

This hash_map implementation uses chained hashing (also called open hashing), and does not
attempt to provide advanced features such as rehashing. Chapter 17 explains the concept of chained
hashing in the section on unordered associative containers.

The Hash Function
The first choice when writing a hash_map is how to handle hash functions. Recalling the adage that
a good abstraction makes the easy case easy and the hard case possible, a good hash_map interface
allows clients to specify their own hash function and number of buckets in order to customize the
hashing behavior for their particular workload. On the other hand, clients that do not have the
desire, or ability, to write a good hash function and choose a number of buckets should still be
able to use the container without doing so. One solution is to allow clients to provide a hash func-
tion and number of buckets in the hash_map constructor, but also to provide default values. In this
implementation, the hash function is a simple function object containing just a single function call
operator. The function object is templatized on the key type that it hashes in order to support a tem-
platized hash_map container. Template specialization can be used to write custom hash functions for
certain types. Here is the basic hash function object:

template <typename T>
class hash
{

Extending the Standard Library  ❘  739

 public:
 size_t operator()(const T& key) const;
};

Note that everything for the hash_map implementation is inside a ProCpp namespace so that names
don’t clash with already existing names. The implementation of the hash function call operator is
tricky because it must apply to keys of any type. The following implementation computes an integer-
sized hash value by simply treating the key as a sequence of bytes:

// Calculate a hash by treating the key as a sequence
// of bytes and summing the ASCII values of the bytes.
template <typename T>
size_t hash<T>::operator()(const T& key) const
{
 const size_t bytes = sizeof(key);
 size_t sum = 0;
 for (size_t i = 0; i < bytes; ++i) {
 unsigned char b = *(reinterpret_cast<const unsigned char*>(&key) + i);
 sum += b;
 }
 return sum;
}

Unfortunately, when using this hashing method on strings, the function calculates the hash of the
entire string object, and not just of the actual text. The actual text is probably on the heap, and the
string object only contains a length and a pointer to the text on the heap. The pointer will be differ-
ent, even if the text it refers to is the same. The result is that two string objects with the same text
will generate different hash values. Therefore, it’s a good idea to provide a specialization of the hash
template for strings, and in general for any class that contains dynamically allocated memory.
Template specialization is discussed in detail in Chapter 12.

// A hash specialization for strings
template <>
class hash<std::string>
{
 public:
 size_t operator()(const std::string& key) const;
};

// Calculate a hash by summing the ASCII values of all characters.
size_t hash<std::string>::operator()(const std::string& key) const
{
 size_t sum = 0;
 for (auto c : key) {
 sum += static_cast<unsigned char>(c);
 }
 return sum;
}

If you want to use other pointer types or objects as the key, you should write your own hash special-
ization for those types.

740  ❘  CHAPTER 21   Customizing and Extending the Standard Library

WARNING  The hash functions shown in this section are very basic. They do not
guarantee uniform hashing for all key universes. If you need more mathemati-
cally rigorous hash functions, or if you don’t know what uniform hashing is,
consult an algorithm’s reference from Appendix B.

The Hash Map Interface
A hash_map supports three basic operations: insertion, deletion, and lookup. It is also swappable. Of
course, it provides a constructor and destructor as well. The copy and move constructors are explic-
itly defaulted, and the copy and move assignment operators are provided. Here is the public portion
of the hash_map class template:

template <typename Key, typename T, typename KeyEqual = std::equal_to<>,
 typename Hash = hash<Key>>
class hash_map
{
 public:
 using key_type = Key;
 using mapped_type = T;
 using value_type = std::pair<const Key, T>;

 virtual ~hash_map() = default; // Virtual destructor

 // Throws invalid_argument if the number of buckets is illegal.
 explicit hash_map(const KeyEqual& equal = KeyEqual(),
 size_t numBuckets = 101, const Hash& hash = Hash());

 // Copy constructor
 hash_map(const hash_map<Key, T, KeyEqual, Hash>& src) = default;
 // Move constructor
 hash_map(hash_map<Key, T, KeyEqual, Hash>&& src) noexcept = default;

 // Copy assignment operator
 hash_map<Key, T, KeyEqual, Hash>& operator=(
 const hash_map<Key, T, KeyEqual, Hash>& rhs);
 // Move assignment operator
 hash_map<Key, T, KeyEqual, Hash>& operator=(
 hash_map<Key, T, KeyEqual, Hash>&& rhs) noexcept;

 // Inserts the key/value pair x.
 void insert(const value_type& x);

 // Removes the element with key k, if it exists.
 void erase(const key_type& k);

 // Removes all elements.
 void clear() noexcept;

Extending the Standard Library  ❘  741

 // Find returns a pointer to the element with key k.
 // Returns nullptr if no element with that key exists.
 value_type* find(const key_type& k);
 const value_type* find(const key_type& k) const;

 // operator[] finds the element with key k, or inserts an
 // element with that key if none exists yet. Returns a reference to
 // the value corresponding to that key.
 T& operator[] (const key_type& k);

 // Swaps two hash_maps.
 void swap(hash_map<Key, T, KeyEqual, Hash>& other) noexcept;
 private:
 // Implementation details not shown yet
};

As you can see, the key and value types are both template parameters, similar as for the Standard
Library map. A hash_map stores pair<const Key, T> as the actual elements in the container. The
insert(), erase(), find(), clear(), and operator[] methods are straightforward. However, a
few aspects of this interface require further explanation.

The KeyEqual Template Parameter

Like a map, set, and other standard containers, a hash_map allows the client to specify the com-
parison type as a template parameter and to pass a specific comparison object of that type in the
constructor. Unlike a map and set, a hash_map does not sort elements by key, but must still compare
keys for equality. Thus, instead of using less as the default comparator, it uses the transparent
equal_to<> comparator. The comparison object is used only to detect attempts to insert duplicate
keys into the container.

The Hash Template Parameter

You should be able to change the hashing function to make it better suit the type of elements you
want to store in the hash map. Thus, the hash_map template takes four template parameters: the key
type, the value type, the comparator type, and the hash type.

The Type Aliases

The hash_map class template defines three type aliases:

using key_type = Key;
using mapped_type = T;
using value_type = std::pair<const Key, T>;

The value_type, in particular, is useful for referring to the more cumbersome pair<const Key,
T> type. As you will see, these type aliases are required to satisfy the Standard Library container
requirements.

The Implementation
After you finalize the hash_map interface, you need to choose the implementation model. The basic
hash table structure generally consists of a fixed number of buckets, each of which can store one or
more elements. The buckets should be accessible in constant time based on a bucket-id (the result of
hashing a key). Thus, a vector is the most appropriate container for the buckets. Each bucket must

742  ❘  CHAPTER 21   Customizing and Extending the Standard Library

store a list of elements, so the Standard Library list can be used as the bucket type. Thus, the final
structure is a vector of lists of pair<const Key, T> elements.1 Here are the private members of
the hash_map class:

private:
 using ListType = std::list<value_type>;
 std::vector<ListType> mBuckets;
 size_t mSize = 0;
 KeyEqual mEqual;
 Hash mHash;

Without the type aliases for value_type and ListType, the line declaring mBuckets would look
like this:

std::vector<std::list<std::pair<const Key, T>>> mBuckets;

The mEqual and mHash members store the comparison and hashing objects, respectively, and mSize
stores the number of elements currently in the container.

The Constructor

The constructor initializes all the fields. It constructs mBuckets with the correct number of buckets.
Unfortunately, the template syntax is somewhat dense. If the syntax confuses you, consult Chapter
12 for details on writing class templates.

// Construct mBuckets with the correct number of buckets.
template <typename Key, typename T, typename KeyEqual, typename Hash>
hash_map<Key, T, KeyEqual, Hash>::hash_map(
 const KeyEqual& equal, size_t numBuckets, const Hash& hash)
 : mBuckets(numBuckets), mEqual(equal), mHash(hash)
{
 if (numBuckets == 0) {
 throw std::invalid_argument("Number of buckets must be positive");
 }
}

The implementation requires at least one bucket, so the constructor enforces that restriction.

Searching Elements

Each of the three major operations (lookup, insertion, and deletion) requires code to find an
element with a given key. Thus, it is helpful to have a private helper method that performs that
task. findElement() first uses the hash object to calculate the hash of the key and limits the cal-
culated hash value to the number of hash buckets by taking the modulo of the calculated value.
Then, it searches all the elements in that bucket for an element with a key matching the given key.
The elements stored are key/value pairs, so the actual comparison must be done on the first field
of the element. The comparison function object specified in the constructor is used to perform the
comparison.

template <typename Key, typename T, typename KeyEqual, typename Hash>
std::pair<
 typename hash_map<Key, T, KeyEqual, Hash>::ListType::iterator, size_t>
 hash_map<Key, T, KeyEqual, Hash>::findElement(const key_type& k)
{

1Because of the const Key in the pair<const Key, T> elements stored in the list, you cannot use a
vector instead of a list in this case.

Extending the Standard Library  ❘  743

 // Hash the key to get the bucket.
 size_t bucket = mHash(k) % mBuckets.size();

 // Search for the key in the bucket.
 auto iter = find_if(begin(mBuckets[bucket]), end(mBuckets[bucket]),
 [this, &k](const auto& element) { return mEqual(element.first, k); });

 // Return a pair of the iterator and the bucket index.
 return std::make_pair(iter, bucket);
}

findElement() returns a pair containing an iterator and a bucket index. The bucket index is the
index of the bucket to which the given key maps, independent of whether or not the given key is
actually in the container. The returned iterator refers to an element in the bucket list, the list
representing the bucket to which the key mapped. If the element is found, the iterator refers to that
element; otherwise, it is the end iterator for that list.

The syntax in the function header of this method is somewhat confusing, particularly the use
of the typename keyword. You must use the typename keyword whenever you are using a type
that is dependent on a template parameter. Specifically, the type ListType::iterator , which is
list<pair<const Key, T>>::iterator , is dependent on both the Key and T template parameters.

You can implement the find() method as a simple wrapper for findElement():

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::value_type*
 hash_map<Key, T, KeyEqual, Hash>::find(const key_type& k)
{
 // Use the findElement() helper, and C++17 structured bindings.
 auto[it, bucket] = findElement(k);
 if (it == end(mBuckets[bucket])) {
 // Element not found -- return nullptr.
 return nullptr;
 }
 // Element found -- return a pointer to it.
 return &(*it);
}

The const version of find() uses a const_cast to forward the request to the non-const version to
avoid code duplication:

template <typename Key, typename T, typename KeyEqual, typename Hash>
const typename hash_map<Key, T, KeyEqual, Hash>::value_type*
 hash_map<Key, T, KeyEqual, Hash>::find(const key_type& k) const
{
 return const_cast<hash_map<Key, T, KeyEqual, Hash>*>(this)->find(k);
}

The operator[] implementation uses findElement() and if it does not find the element, it inserts it
as follows:

template <typename Key, typename T, typename KeyEqual, typename Hash>
T& hash_map<Key, T, KeyEqual, Hash>::operator[] (const key_type& k)
{
 // Try to find the element. If it doesn't exist, add a new element.

744  ❘  CHAPTER 21   Customizing and Extending the Standard Library

 auto[it, bucket] = findElement(k);
 if (it == end(mBuckets[bucket])) {
 mSize++;
 mBuckets[bucket].push_back(std::make_pair(k, T()));
 return mBuckets[bucket].back().second;
 } else {
 return it->second;
 }
}

Inserting Elements

insert() must first check if an element with that key is already in the hash_map. If not, it can add
the element to the list in the appropriate bucket. Note that findElement() returns the bucket
index to which a key hashes, even if an element with that key is not found:

template <typename Key, typename T, typename KeyEqual, typename Hash>
void hash_map<Key, T, KeyEqual, Hash>::insert(const value_type& x)
{
 // Try to find the element.
 auto[it, bucket] = findElement(x.first);
 if (it != end(mBuckets[bucket])) {
 // The element already exists.
 return;
 } else {
 // We didn't find the element, so insert a new one.
 mSize++;
 mBuckets[bucket].push_back(x);
 }
}

Note that this implementation of insert() returns void, so the caller does not know whether the
element was inserted or if it was already in the hash_map. This shortcoming is resolved later in this
chapter, once iterators have been implemented for hash_map.

Deleting Elements

erase() follows the same pattern as insert(): It first attempts to find the element by calling
findElement(). If the element exists, it erases it from the list in the appropriate bucket. Otherwise,
it does nothing.

template <typename Key, typename T, typename KeyEqual, typename Hash>
void hash_map<Key, T, KeyEqual, Hash>::erase(const key_type& k)
{
 // First, try to find the element.
 auto[it, bucket] = findElement(k);
 if (it != end(mBuckets[bucket])) {
 // The element exists -- erase it.
 mBuckets[bucket].erase(it);
 mSize--;
 }
}

Extending the Standard Library  ❘  745

Removing All Elements

clear() simply clears each bucket, and sets the size of the hash_map to zero:

template <typename Key, typename T, typename KeyEqual, typename Hash>
void hash_map<Key, T, KeyEqual, Hash>::clear() noexcept
{
 // Call clear on each bucket.
 for (auto& bucket : mBuckets) {
 bucket.clear();
 }
 mSize = 0;
}

Swapping

The swap() method just swaps all data members using std::swap():

template <typename Key, typename T, typename KeyEqual, typename Hash>
void hash_map<Key, T, KeyEqual, Hash>::swap(
 hash_map<Key, T, KeyEqual, Hash>& other) noexcept
{
 using std::swap;

 swap(mBuckets, other.mBuckets);
 swap(mSize, other.mSize);
 swap(mEqual, other.mEqual);
 swap(mHash, other.mHash);
}

The following standalone swap() function is also provided, which simply forwards to the swap()
method:

template <typename Key, typename T, typename KeyEqual, typename Hash>
void swap(hash_map<Key, T, KeyEqual, Hash>& first,
 hash_map<Key, T, KeyEqual, Hash>& second) noexcept
{
 first.swap(second);
}

Assignment Operators

Here are the implementations of the copy and move assignment operators. See Chapter 9 for a dis-
cussion of the copy-and-swap idiom.

template <typename Key, typename T, typename KeyEqual, typename Hash>
hash_map<Key, T, KeyEqual, Hash>&
 hash_map<Key, T, KeyEqual, Hash>::operator=(
 const hash_map<Key, T, KeyEqual, Hash>& rhs)
{
 // check for self-assignment
 if (this == &rhs) {
 return *this;
 }

746  ❘  CHAPTER 21   Customizing and Extending the Standard Library

 // Copy-and-swap idiom
 auto copy = rhs; // Do all the work in a temporary instance
 swap(copy); // Commit the work with only non-throwing operations
 return *this;
}

template <typename Key, typename T, typename KeyEqual, typename Hash>
hash_map<Key, T, KeyEqual, Hash>&
 hash_map<Key, T, KeyEqual, Hash>::operator=(
 hash_map<Key, T, KeyEqual, Hash>&& rhs) noexcept
{
 swap(rhs);
 return *this;
}

Using the Basic Hash Map
Here is a small test program demonstrating the basic hash_map class template:

hash_map<int, int> myHash;
myHash.insert(make_pair(4, 40));
myHash.insert(make_pair(6, 60));

// x will have type hash_map<int, int>::value_type*
auto x = myHash.find(4);
if (x != nullptr) {
 cout << "4 maps to " << x->second << endl;
} else {
 cout << "cannot find 4 in map" << endl;
}

myHash.erase(4);

auto x2 = myHash.find(4);
if (x2 != nullptr) {
 cout << "4 maps to " << x2->second << endl;
} else {
 cout << "cannot find 4 in map" << endl;
}

myHash[4] = 35;
myHash[4] = 60;

auto x3 = myHash.find(4);
if (x3 != nullptr) {
 cout << "4 maps to " << x3->second << endl;
} else {
 cout << "cannot find 4 in map" << endl;
}

// Test std::swap().
hash_map<int, int> other(std::equal_to<>(), 11);
swap(other, myHash);

Extending the Standard Library  ❘  747

// Test copy construction and copy assignment.
hash_map<int, int> myHash2(other);
hash_map<int, int> myHash3;
myHash3 = myHash2;

// Test move construction and move assignment.
hash_map<int, int> myHash4(std::move(myHash3));
hash_map<int, int> myHash5;
myHash5 = std::move(myHash4);

The output is as follows:

4 maps to 40
cannot find 4 in map
4 maps to 60

Making hash_map a Standard Library Container
The basic hash_map shown in the previous section follows the spirit, but not the letter, of the
Standard Library. For most purposes, the preceding implementation is good enough. However, if
you want to use the Standard Library algorithms on your hash_map, you must do a bit more work.
The C++ standard specifies methods and type aliases that a data structure must provide in order to
qualify as a Standard Library container.

Required Type Aliases
The C++ standard specifies that every Standard Library container must provide the following pub-
lic type aliases.

TYPE NAME DESCRIPTION

value_type The element type stored in the container

reference A reference to the element type stored in the container

const_reference A const reference to the element type stored in the container

iterator The type for iterating over elements of the container

const_iterator A version of iterator for iterating over const elements of the
container

size_type A type that can represent the number of elements in the container; this
is usually just size_t (from <cstddef>).

difference_type A type that can represent the difference of two iterators for the con-
tainer; this is usually just ptrdiff_t (from <cstddef>).

Here are the definitions for the hash_map class template of all these type aliases except iterator
and const_iterator. Writing an iterator is covered in detail in a subsequent section. Note that
value_type (plus key_type and mapped_type, which are discussed later) was already defined in

748  ❘  CHAPTER 21   Customizing and Extending the Standard Library

the previous version of the hash_map. This implementation also adds a type alias hash_map_type to
give a shorter name to a specific template instantiation of hash_map:

template <typename Key, typename T, typename KeyEqual = std::equal_to<>,
 typename Hash = hash<Key>>
class hash_map
{
 public:
 using key_type = Key;
 using mapped_type = T;
 using value_type = std::pair<const Key, T>;
 using reference = value_type&;
 using const_reference = const value_type&;
 using size_type = size_t;
 using difference_type = ptrdiff_t;
 using hash_map_type = hash_map<Key, T, KeyEqual, Hash>;
 // Remainder of class definition omitted for brevity
};

Required Methods
In addition to the obligatory type aliases, every container must provide the following methods.

METHOD DESCRIPTION WORST-CASE

COMPLEXITY

Default constructor Constructs an empty container Constant

Copy constructor Performs a deep copy of the container Linear

Move constructor Performs a move constructing operation Constant

Copy assignment operator Performs a deep copy of the container Linear

Move assignment operator Performs a move assignment operation Constant

Destructor Destroys dynamically allocated memory; this
method calls destructor on all elements left in
the container.

Linear

iterator begin();

const_iterator

 begin() const;

Returns an iterator referring to the first
element in the container

Constant

iterator end();

const_iterator

 end() const;

Returns an iterator referring to one-past-the-
last element in the container

Constant

const_iterator

 cbegin() const;

Returns a const iterator referring to the first
element in the container

Constant

Extending the Standard Library  ❘  749

METHOD DESCRIPTION WORST-CASE

COMPLEXITY

const_iterator

 cend() const;

Returns a const iterator referring to one-
past-the-last element in the container

Constant

operator==

operator!=

Comparison operators that compare two con-
tainers, element by element

Linear

void swap(Container&)

 noexcept;

Swaps the contents of the container passed
to the method with the object on which the
method is called

Constant

size_type size()

 const;

Returns the number of elements in the
container

Constant

size_type max_size()

 const;

Returns the maximum number of elements
the container can hold

Constant

bool empty() const; Returns whether the container has any
elements

Constant

NOTE  In this hash_map example, comparison operators are omitted.
Implementing them would be a good exercise for you to try, but you first have to
think about the semantics of equality for two hash_maps. One possibility could
be that two hash_maps are equal if and only if they have exactly the same num-
ber of buckets with the same contents. Similarly, you'll have to think about what
it means for a hash_map to be less than another hash_map. An option is to define
it as a pairwise comparison of the elements.

The following code snippet shows the declarations of the remaining methods except for begin(),
end(), cbegin(), and cend(). Those are covered in the next section.

template <typename Key, typename T, typename KeyEqual = std::equal_to<>,
 typename Hash = hash<Key>>
class hash_map
{
 public:
 // Type aliases omitted for brevity

 // Size methods
 bool empty() const;
 size_type size() const;
 size_type max_size() const;

 // Other methods omitted for brevity
};

750  ❘  CHAPTER 21   Customizing and Extending the Standard Library

The implementations of size() and empty() are easy because the hash_map implementation tracks
its size in the mSize data member. Note that size_type is one of the type aliases defined in the
class. Because it is a member of the class, such a return type in the implementation must be fully
qualified with typename hash_map<Key, T, KeyEqual, Hash>:

template <typename Key, typename T, typename KeyEqual, typename Hash>
bool hash_map<Key, T, KeyEqual, Hash>::empty() const
{
 return mSize == 0;
}

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::size_type
 hash_map<Key, T, KeyEqual, Hash>::size() const
{
 return mSize;
}

max_size() is a little trickier. At first, you might think the maximum size of a hash_map container
is the sum of the maximum size of all the lists. However, the worst-case scenario is that all the
elements hash to the same bucket. Thus, the maximum size it can claim to support is the maximum
size of a single list:

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::size_type
 hash_map<Key, T, KeyEqual, Hash>::max_size() const
{
 return mBuckets[0].max_size();
}

Writing an Iterator
The most important container requirement is the iterator. In order to work with the generic algo-
rithms, every container must provide an iterator for accessing the elements in the container. Your
iterator should generally provide overloaded operator* and operator->, plus some other opera-
tions depending on its specific behavior. As long as your iterator provides the basic iteration opera-
tions, everything should be fine.

The first decision to make about your iterator is what kind it will be: forward, bidirectional, or
random access. Random-access iterators don’t make much sense for associative containers, so bidi-
rectional seems like the logical choice for a hash_map iterator. That means you must also provide
operator++, operator--, operator==, and operator!=. Consult Chapter 17 for more details on
the requirements for the different iterators.

The second decision is how to order the elements of your container. The hash_map is unsorted, so
iterating in a sorted order is probably too difficult. Instead, your iterator can just step through the
buckets, starting with the elements in the first bucket and progressing to those in the last bucket.
This order will appear random to the client, but will be consistent and repeatable.

The third decision is how to represent your iterator internally. The implementation is usually quite
dependent on the internal implementation of the container. The first purpose of an iterator is to refer
to a single element in the container. In the case of a hash_map, each element is in a Standard Library

Extending the Standard Library  ❘  751

list, so perhaps a hash_map iterator can be a wrapper around a list iterator referring to the ele-
ment in question. However, the second purpose of a bidirectional iterator is to allow the client to
progress to the next or previous element from the current one. In order to progress from one bucket
to the next, you need to track the current bucket and the hash_map object to which the iterator
refers.

Once you’ve chosen your implementation, you must decide on a consistent representation for the end
iterator. Recall that the end iterator should really be the “past-the-end” marker: the iterator that’s
reached by applying ++ to an iterator referring to the final element in the container. A hash_map
iterator can use as its end iterator the end iterator of the list of the final bucket in the hash_map.

A container needs to provide both a const iterator and a non-const iterator. The non-const iterator
must be convertible to a const iterator. This implementation defines a const_hash_map_iterator
class with hash_map_iterator deriving from it.

The const_hash_map_iterator Class

Given the decisions made in the previous section, it’s time to define the const_hash_map_iterator
class. The first thing to note is that each const_hash_map_iterator object is an iterator for a spe-
cific instantiation of the hash_map class. In order to provide this one-to-one mapping, the const_
hash_map_iterator must also be a class template with the hash map type as a template parameter
called HashMap.

The main question in the class definition is how to conform to the bidirectional iterator require-
ments. Recall that anything that behaves like an iterator is an iterator. Your class is not required to
derive from another class in order to qualify as a bidirectional iterator. However, if you want your
iterator to be usable in the generic algorithms functions, you must specify its traits. The discussion
earlier in this chapter explains that iterator_traits is a class template that defines, for each itera-
tor type, five type aliases: value_type, difference_type, iterator_category, pointer, and
reference. The iterator_traits class template coud be partially specialized for your new iterator
type if you want. Alternatively, the default implementation of the iterator_traits class template
just grabs the five type aliases out of the iterator class itself. Thus, you can simply define those type
aliases directly in your iterator class. The const_hash_map_iterator is a bidirectional iterator,
so you specify bidirectional_iterator_tag as the iterator category. Other legal iterator
categories are input_iterator_tag, output_iterator_tag, forward_iterator_tag, and
random_access_iterator_tag. For the const_hash_map_iterator, the element type is typename
HashMap::value_type.

Here is the basic const_hash_map_iterator class definition:

template <typename HashMap>
class const_hash_map_iterator
{
 public:
 using value_type = typename HashMap::value_type;
 using difference_type = ptrdiff_t;
 using iterator_category = std::bidirectional_iterator_tag;
 using pointer = value_type*;
 using reference = value_type&;
 using list_iterator_type = typename HashMap::ListType::const_iterator;

752  ❘  CHAPTER 21   Customizing and Extending the Standard Library

 // Bidirectional iterators must supply a default constructor.
 // Using an iterator constructed with the default constructor
 // is undefined, so it doesn't matter how it's initialized.
 const_hash_map_iterator() = default;

 const_hash_map_iterator(size_t bucket, list_iterator_type listIt,
 const HashMap* hashmap);

 // Don't need to define a copy constructor or operator= because the
 // default behavior is what we want.

 // Don't need destructor because the default behavior
 // (not deleting mHashmap) is what we want!

 const value_type& operator*() const;

 // Return type must be something to which -> can be applied.
 // Return a pointer to a pair<const Key, T>, to which the compiler
 // will apply -> again.
 const value_type* operator->() const;

 const_hash_map_iterator<HashMap>& operator++();
 const_hash_map_iterator<HashMap> operator++(int);

 const_hash_map_iterator<HashMap>& operator--();
 const_hash_map_iterator<HashMap> operator--(int);

 // The following are ok as member functions because we don't
 // support comparisons of different types to this one.
 bool operator==(const const_hash_map_iterator<HashMap>& rhs) const;
 bool operator!=(const const_hash_map_iterator<HashMap>& rhs) const;
 protected:
 size_t mBucketIndex = 0;
 list_iterator_type mListIterator;
 const HashMap* mHashmap = nullptr;

 // Helper methods for operator++ and operator--
 void increment();
 void decrement();
};

Consult Chapter 15 for details on operator overloading if the definitions and implementations
(shown in the next section) of the overloaded operators confuse you.

The const_hash_map_iterator Method Implementations

The const_hash_map_iterator constructor initializes the three member variables:

template<typename HashMap>
const_hash_map_iterator<HashMap>::const_hash_map_iterator(size_t bucket,
 list_iterator_type listIt, const HashMap* hashmap)
 : mBucketIndex(bucket), mListIterator(listIt), mHashmap(hashmap)
{
}

Extending the Standard Library  ❘  753

The default constructor is defaulted so that clients can declare const_hash_map_iterator variables
without initializing them. An iterator constructed with the default constructor does not need to refer
to any value, and attempting any operations on it is allowed to have undefined results.

The implementations of the dereferencing operators are concise, but can be tricky. Chapter 15
explains that operator* and operator-> are asymmetric; operator* returns a reference to
the actual underlying value, which in this case is the element to which the iterator refers, while
operator-> must return something to which the arrow operator can be applied again. Thus, it
returns a pointer to the element. The compiler then applies -> to the pointer, which results in access-
ing a field of the element.

// Return a reference to the actual element.
template<typename HashMap>
const typename const_hash_map_iterator<HashMap>::value_type&
 const_hash_map_iterator<HashMap>::operator*() const
{
 return *mListIterator;
}

// Return a pointer to the actual element, so the compiler can
// apply -> to it to access the actual desired field.
template<typename HashMap>
const typename const_hash_map_iterator<HashMap>::value_type*
 const_hash_map_iterator<HashMap>::operator->() const
{
 return &(*mListIterator);
}

The increment and decrement operators are implemented as follows. They defer the actual incre-
menting and decrementing to the private increment() and decrement() helper methods.

// Defer the details to the increment() helper.
template<typename HashMap>
const_hash_map_iterator<HashMap>&
 const_hash_map_iterator<HashMap>::operator++()
{
 increment();
 return *this;
}

// Defer the details to the increment() helper.
template<typename HashMap>
const_hash_map_iterator<HashMap>
 const_hash_map_iterator<HashMap>::operator++(int)
{
 auto oldIt = *this;
 increment();
 return oldIt;
}

// Defer the details to the decrement() helper.
template<typename HashMap>
const_hash_map_iterator<HashMap>&
 const_hash_map_iterator<HashMap>::operator--()

754  ❘  CHAPTER 21   Customizing and Extending the Standard Library

{
 decrement();
 return *this;
}

// Defer the details to the decrement() helper.
template<typename HashMap>
const_hash_map_iterator<HashMap>
 const_hash_map_iterator<HashMap>::operator--(int)
{
 auto oldIt = *this;
 decrement();
 return oldIt;
}

Incrementing a const_hash_map_iterator tells it to refer to the “next” element in the container.
This method first increments the list iterator, then checks if it has reached the end of its bucket. If
so, it finds the next non-empty bucket in the hash_map and sets the list iterator equal to the start
element in that bucket. Note that it can’t simply move to the next bucket, because there might not be
any elements in it. If there are no more non-empty buckets, mListIterator is set, by the convention
chosen for this example, to the end iterator of the last bucket in the hash_map, which is the special
“end” position of the const_hash_map_iterator. Iterators are not required to be any safer than
dumb pointers, so error-checking for things like incrementing an iterator already at the end is not
required.

// Behavior is undefined if mListIterator already refers to the past-the-end
// element, or is otherwise invalid.
template<typename HashMap>
void const_hash_map_iterator<HashMap>::increment()
{
 // mListIterator is an iterator into a single bucket. Increment it.
 ++mListIterator;

 // If we're at the end of the current bucket,
 // find the next bucket with elements.
 auto& buckets = mHashmap->mBuckets;
 if (mListIterator == end(buckets[mBucketIndex])) {
 for (size_t i = mBucketIndex + 1; i < buckets.size(); i++) {
 if (!buckets[i].empty()) {
 // We found a non-empty bucket.
 // Make mListIterator refer to the first element in it.
 mListIterator = begin(buckets[i]);
 mBucketIndex = i;
 return;
 }
 }
 // No more non-empty buckets. Set mListIterator to refer to the
 // end iterator of the last list.
 mBucketIndex = buckets.size() - 1;
 mListIterator = end(buckets[mBucketIndex]);
 }
}

Extending the Standard Library  ❘  755

Decrement is the inverse of increment: it makes the iterator refer to the “previous” element in the
container. However, there is an asymmetry because of the asymmetry between the way the start
and end positions are represented: start is the first element, but end is “one past” the last element.
The algorithm for decrement first checks if the underlying list iterator is at the start of its current
bucket. If not, it can just be decremented. Otherwise, the code needs to check for the first non-
empty bucket before the current one. If one is found, the list iterator must be set to refer to the last
element in that bucket, which is the end iterator decremented by one. If no non-empty buckets are
found, the decrement is invalid, so the code can do anything it wants (behavior is undefined). Note
that the for loop needs to use a signed integer type for its loop variable and not an unsigned type
such as size_t because the loop uses --i:

// Behavior is undefined if mListIterator already refers to the first
// element, or is otherwise invalid.
template<typename HashMap>
void const_hash_map_iterator<HashMap>::decrement()
{
 // mListIterator is an iterator into a single bucket.
 // If it's at the beginning of the current bucket, don't decrement it.
 // Instead, try to find a non-empty bucket before the current one.
 auto& buckets = mHashmap->mBuckets;
 if (mListIterator == begin(buckets[mBucketIndex])) {
 for (int i = mBucketIndex - 1; i >= 0; --i) {
 if (!buckets[i].empty()) {
 mListIterator = --end(buckets[i]);
 mBucketIndex = i;
 return;
 }
 }
 // No more non-empty buckets. This is an invalid decrement.
 // Set mListIterator to refer to the end iterator of the last list.
 mBucketIndex = buckets.size() - 1;
 mListIterator = end(buckets[mBucketIndex]);
 } else {
 // We're not at the beginning of the bucket, so just move down.
 --mListIterator;
 }
}

Note that both increment() and decrement() access private members of the hash_map class.
Thus, the hash_map class must declare const_hash_map_iterator to be a friend class.

After increment() and decrement(), operator== and operator!= are positively simple. They just
compare each of the three data members of the objects:

template<typename HashMap>
bool const_hash_map_iterator<HashMap>::operator==(
 const const_hash_map_iterator<HashMap>& rhs) const
{
 // All fields, including the hash_map to which the iterators refer,
 // must be equal.
 return (mHashmap == rhs.mHashmap &&

756  ❘  CHAPTER 21   Customizing and Extending the Standard Library

 mBucketIndex == rhs.mBucketIndex &&
 mListIterator == rhs.mListIterator);
}

template<typename HashMap>
bool const_hash_map_iterator<HashMap>::operator!=(
 const const_hash_map_iterator<HashMap>& rhs) const
{
 return !(*this == rhs);
}

The hash_map_iterator Class

The hash_map_iterator class derives from const_hash_map_iterator. It does not need to over-
ride operator==, operator!=, increment(), and decrement() because the base class versions are
just fine:

template <typename HashMap>
class hash_map_iterator : public const_hash_map_iterator<HashMap>
{
 public:
 using value_type =
 typename const_hash_map_iterator<HashMap>::value_type;
 using difference_type = ptrdiff_t;
 using iterator_category = std::bidirectional_iterator_tag;
 using pointer = value_type*;
 using reference = value_type&;
 using list_iterator_type = typename HashMap::ListType::iterator;

 hash_map_iterator() = default;
 hash_map_iterator(size_t bucket, list_iterator_type listIt,
 HashMap* hashmap);

 value_type& operator*();
 value_type* operator->();

 hash_map_iterator<HashMap>& operator++();
 hash_map_iterator<HashMap> operator++(int);

 hash_map_iterator<HashMap>& operator--();
 hash_map_iterator<HashMap> operator--(int);
};

The hash_map_iterator Method Implementations

The implementations of the hash_map_iterator methods are rather straightforward. The construc-
tor just calls the base class constructor. The operator* and operator-> use const_cast to return
a non-const type. operator++ and operator-- just use the increment() and decrement() from
the base class, but return a hash_map_iterator instead of a const_hash_map_iterator. Note
that the C++ name lookup rules require you to explicitly use the this pointer to refer to data
members and methods in a base class template:

template<typename HashMap>
hash_map_iterator<HashMap>::hash_map_iterator(size_t bucket,

Extending the Standard Library  ❘  757

 list_iterator_type listIt, HashMap* hashmap)
 : const_hash_map_iterator<HashMap>(bucket, listIt, hashmap)
{
}

// Return a reference to the actual element.
template<typename HashMap>
typename hash_map_iterator<HashMap>::value_type&
 hash_map_iterator<HashMap>::operator*()
{
 return const_cast<value_type&>(*this->mListIterator);
}

// Return a pointer to the actual element, so the compiler can
// apply -> to it to access the actual desired field.
template<typename HashMap>
typename hash_map_iterator<HashMap>::value_type*
 hash_map_iterator<HashMap>::operator->()
{
 return const_cast<value_type*>(&(*this->mListIterator));
}

// Defer the details to the increment() helper in the base class.
template<typename HashMap>
hash_map_iterator<HashMap>& hash_map_iterator<HashMap>::operator++()
{
 this->increment();
 return *this;
}

// Defer the details to the increment() helper in the base class.
template<typename HashMap>
hash_map_iterator<HashMap> hash_map_iterator<HashMap>::operator++(int)
{
 auto oldIt = *this;
 this->increment();
 return oldIt;
}

// Defer the details to the decrement() helper in the base class.
template<typename HashMap>
hash_map_iterator<HashMap>& hash_map_iterator<HashMap>::operator--()
{
 this->decrement();
 return *this;
}

// Defer the details to the decrement() helper in the base class.
template<typename HashMap>
hash_map_iterator<HashMap> hash_map_iterator<HashMap>::operator--(int)
{
 auto oldIt = *this;
 this->decrement();
 return oldIt;
}

758  ❘  CHAPTER 21   Customizing and Extending the Standard Library

Iterator Type Aliases and Access Methods

The final piece involved in providing iterator support for hash_map is to supply the necessary type
aliases in the hash_map class template, and to write the begin(), end(), cbegin(), and cend()
methods. The type aliases and method prototypes look like this:

template <typename Key, typename T, typename KeyEqual = std::equal_to<>,
 typename Hash = hash<Key>>
class hash_map
{
 public:
 // Other type aliases omitted for brevity
 using iterator = hash_map_iterator<hash_map_type>;
 using const_iterator = const_hash_map_iterator<hash_map_type>;

 // Iterator methods
 iterator begin();
 iterator end();
 const_iterator begin() const;
 const_iterator end() const;
 const_iterator cbegin() const;
 const_iterator cend() const;
 // Remainder of class definition omitted for brevity
};

The implementation of begin() includes an optimization for the case when there are no elements in
the hash_map, in which case the end iterator is returned. Here is the code:

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::iterator
 hash_map<Key, T, KeyEqual, Hash>::begin()
{
 if (mSize == 0) {
 // Special case: there are no elements, so return the end iterator.
 return end();
 }

 // We know there is at least one element. Find the first element.
 for (size_t i = 0; i < mBuckets.size(); ++i) {
 if (!mBuckets[i].empty()) {
 return hash_map_iterator<hash_map_type>(i,
 std::begin(mBuckets[i]), this);
 }
 }
 // Should never reach here, but if we do, return the end iterator.
 return end();
}

end() creates a hash_map_iterator referring to the end iterator of the last bucket:

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::iterator
 hash_map<Key, T, KeyEqual, Hash>::end()
{
 // The end iterator is the end iterator of the list of the last bucket.
 size_t bucket = mBuckets.size() - 1;

Extending the Standard Library  ❘  759

 return hash_map_iterator<hash_map_type>(bucket,
 std::end(mBuckets[bucket]), this);
}

The implementations of the const versions of begin() and end() use const_cast to call the non-
const versions. These non-const versions return a hash_map_iterator, which is convertible to a
const_hash_map_iterator:

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::const_iterator
 hash_map<Key, T, KeyEqual, Hash>::begin() const
{
 return const_cast<hash_map_type*>(this)->begin();
}

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::const_iterator
 hash_map<Key, T, KeyEqual, Hash>::end() const
{
 return const_cast<hash_map_type*>(this)->end();
}

The cbegin() and cend() methods forward the request to the const versions of begin() and
end():

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::const_iterator
 hash_map<Key, T, KeyEqual, Hash>::cbegin() const
{
 return begin();
}

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::const_iterator
 hash_map<Key, T, KeyEqual, Hash>::cend() const
{
 return end();
}

Using the hash_map Iterators

Now that hash_map supports iteration, you can iterate over its elements just as you would on any
Standard Library container, and you can pass the iterators to methods and functions. Here are some
examples:

hash_map<string, int> myHash;
myHash.insert(make_pair("KeyOne", 100));
myHash.insert(make_pair("KeyTwo", 200));
myHash.insert(make_pair("KeyThree", 300));

for (auto it = myHash.cbegin(); it != myHash.cend(); ++it) {
 // Use both -> and * to test the operations.
 cout << it->first << " maps to " << (*it).second << endl;
}

760  ❘  CHAPTER 21   Customizing and Extending the Standard Library

// Print elements using a range-based for loop
for (auto& p : myHash) {
 cout << p.first << " maps to " << p.second << endl;
}

// Print elements using a range-based for loop and C++17 structured bindings
for (auto&[key, value] : myHash) {
 cout << key << " maps to " << value << endl;
}

// Create an std::map with all the elements in the hash_map.
map<string, int> myMap(cbegin(myHash), cend(myHash));
for (auto& p : myMap) {
 cout << p.first << " maps to " << p.second << endl;
}

The last piece of code also shows that the non-member functions such as std::cbegin() and
std::cend() are working as expected.

Note on Allocators
As described earlier in this chapter, all the Standard Library containers allow you to specify a cus-
tom memory allocator. A “good citizen” hash_map implementation should do the same. However,
those details are omitted because they obscure the main points of this implementation, and because
custom allocators are rarely used.

Note on Reversible Containers
If your container supplies a bidirectional or random access iterator, it is considered reversible.
Reversible containers are supposed to supply two additional type aliases.

TYPE NAME DESCRIPTION

reverse_iterator The type for iterating over elements of the container in
reverse order

const_reverse_iterator A version of reverse_iterator for iterating over const
elements of the container in reverse order

Additionally, the container should provide rbegin() and rend(), which are symmetric with
begin() and end(); it should also provide crbegin() and crend(), which are symmetric with
cbegin() and cend(). The usual implementations just use the std::reverse_iterator adaptor
described earlier in this chapter. These are left as an exercise for you to try.

Making hash_map an Unordered Associative Container
In addition to the basic container requirements that were shown already, you can also make your
container adhere to additional requirements for ordered associative, unordered associative, or
sequential containers. This section modifies the hash_map class template to satisfy a few additional
unordered associative container requirements.

Extending the Standard Library  ❘  761

Unordered Associative Container Type Alias Requirements
Unordered associative containers require the following type aliases.

TYPE NAME DESCRIPTION

key_type The key type with which the container is instantiated

mapped_type The element type with which the container is instantiated

value_type pair<const Key, T>

hasher The hash type with which the container is instantiated

key_equal The equality predicate with which the container is instantiated

local_iterator An iterator type to iterate through a single bucket. Cannot be
used to iterate across buckets.

const_local_iterator A const iterator type to iterate through a single bucket. Cannot
be used to iterate across buckets.

node_type A type to represent a node. See Chapter 17 for a discussion on
nodes. Not further discussed in this section.

Here is the hash_map definition with an updated set of type aliases. Note that the definition of
ListType has been moved, because the definitions of the local iterators require ListType.

template <typename Key, typename T, typename KeyEqual = std::equal_to<>,
 typename Hash = hash<Key>>
class hash_map
{
 public:
 using key_type = Key;
 using mapped_type = T;
 using value_type = std::pair<const Key, T>;
 using hasher = Hash;
 using key_equal = KeyEqual;
 using reference = value_type&;
 using const_reference = const value_type&;
 using size_type = size_t;
 using difference_type = ptrdiff_t;
 using hash_map_type = hash_map<Key, T, KeyEqual, Hash>;
 using iterator = hash_map_iterator<hash_map_type>;
 using const_iterator = const_hash_map_iterator<hash_map_type>;

 private:
 using ListType = std::list<value_type>;
 public:
 using local_iterator = typename ListType::iterator;
 using const_local_iterator = typename ListType::const_iterator;

 // Remainder of hash_map class definition omitted for brevity
};

762  ❘  CHAPTER 21   Customizing and Extending the Standard Library

Unordered Associative Container Method Requirements
The standard prescribes quite a few additional method requirements for unordered associative
containers, as listed in the following table. In the last column, n is the number of elements in the
container.

METHOD DESCRIPTION COMPLEXITY

Constructor taking an iterator
range

Constructs the container and inserts the
elements from the iterator range. The
iterator range need not refer to another
container of the same type.

Note that all constructors of unordered
associative containers must take an
equality predicate. The constructors
should provide a default constructed
object as the default value.

On average O(n),
worst case O(n2)

Constructor taking an initial-
izer_list<value_type> as
parameter

Constructs the container and inserts the
elements from the initializer list into the
container.

On average O(n),
worst case O(n2)

Assignment operator with an
initializer_list<value_

type> as right-hand side

Replaces all elements from the container
with the elements from the initializer list.

On average O(n),
worst case O(n2)

hasher hash_function()

 const;

Returns the hash function. Constant

key_equal key_eq()

 const;

Returns the equality predicate for com-
paring keys.

Constant

pair<iterator, bool>

 insert(value_type&);

iterator insert(

 const_iterator hint,

 value_type&);

Two different forms of insert.

The hint can be ignored by the
implementation.

Containers that allow duplicate keys
return just iterator for the first form,
because insert() always succeeds in
that case.

On average O(1),
worst case O(n)

void insert(

 InputIterator start,

 InputIterator end);

Inserts a range of elements. The range
need not be from a container of the
same type.

On average O(m)
with m the num-
ber of elements
to insert. Worst
case O(m*n+m)

Extending the Standard Library  ❘  763

METHOD DESCRIPTION COMPLEXITY

void insert(

 initializer_list<

 value_type>);

Inserts the elements from the initializer
list into the container.

On average O(m)
with m the num-
ber of elements
to insert. Worst
case O(m*n+m)

pair<iterator, bool>

 emplace(Args&&...);

iterator emplace_hint(

 const_iterator hint,

 Args&&...);

Implements the emplace operations to
construct objects in-place. In-place con-
struction is discussed in Chapter 17.

On average O(1),
worst case O(n)

size_type

 erase(key_type&);

iterator erase(

 iterator position);

iterator erase(

 iterator start,

 iterator end);

Three different forms of erase.

The first form returns the number of val-
ues erased (0 or 1 in containers that do
not allow duplicate keys).

The second and third forms erase the
elements at position, or in the range
start to end, and return an iterator to
the element following the last erased
element.

Worst case O(n)

void clear(); Erases all elements. O(n)

Iterator

 find(key_type&);

const_iterator

 find(key_type&)

 const;

Finds the element with the specified key. On average O(1),
worst case O(n)

size_type

 count(key_type&)

 const;

Returns the number of elements with the
specified key (0 or 1 in containers that
do not allow duplicate keys).

On average O(1),
worst case O(n)

pair<iterator,iterator>

 equal_range(

 key_type&);

pair<const_iterator,

 const_iterator>

 equal_range(

 key_type&) const;

Returns iterators referring to the first ele-
ment with the specified key and one past
the last element with the specified key.

Worst case O(n)

764  ❘  CHAPTER 21   Customizing and Extending the Standard Library

Note that hash_map does not allow duplicate keys, so equal_range() always returns a pair of iden-
tical iterators.

C++17 adds extract() and merge() methods to the list of requirements. These have to do with
handling nodes as discussed in Chapter 17, but are omitted for this hash_map implementation.

Here is the complete hash_map class definition. The prototypes for insert(), erase(), and find()
need to change slightly from the previous versions shown because those initial versions don’t have
the right return types required for unordered associative containers.

template <typename Key, typename T, typename KeyEqual = std::equal_to<>,
 typename Hash = hash<Key>>
class hash_map
{
 public:
 using key_type = Key;
 using mapped_type = T;
 using value_type = std::pair<const Key, T>;
 using hasher = Hash;
 using key_equal = KeyEqual;
 using reference = value_type&;
 using const_reference = const value_type&;
 using size_type = size_t;
 using difference_type = ptrdiff_t;
 using hash_map_type = hash_map<Key, T, KeyEqual, Hash>;
 using iterator = hash_map_iterator<hash_map_type>;
 using const_iterator = const_hash_map_iterator<hash_map_type>;

 private:
 using ListType = std::list<value_type>;
 public:
 using local_iterator = typename ListType::iterator;
 using const_local_iterator = typename ListType::const_iterator;

 // The iterator classes need access to all members of the hash_map
 friend class hash_map_iterator<hash_map_type>;
 friend class const_hash_map_iterator<hash_map_type>;

 virtual ~hash_map() = default; // Virtual destructor

 // Throws invalid_argument if the number of buckets is illegal.
 explicit hash_map(const KeyEqual& equal = KeyEqual(),
 size_type numBuckets = 101, const Hash& hash = Hash());

 // Throws invalid_argument if the number of buckets is illegal.
 template <typename InputIterator>
 hash_map(InputIterator first, InputIterator last,
 const KeyEqual& equal = KeyEqual(),
 size_type numBuckets = 101, const Hash& hash = Hash());

 // Initializer list constructor
 // Throws invalid_argument if the number of buckets is illegal.
 explicit hash_map(std::initializer_list<value_type> il,
 const KeyEqual& equal = KeyEqual(), size_type numBuckets = 101,
 const Hash& hash = Hash());

Extending the Standard Library  ❘  765

 // Copy constructor
 hash_map(const hash_map_type& src) = default;
 // Move constructor
 hash_map(hash_map_type&& src) noexcept = default;

 // Copy assignment operator
 hash_map_type& operator=(const hash_map_type& rhs);
 // Move assignment operator
 hash_map_type& operator=(hash_map_type&& rhs) noexcept;
 // Initializer list assignment operator
 hash_map_type& operator=(std::initializer_list<value_type> il);

 // Iterator methods
 iterator begin();
 iterator end();
 const_iterator begin() const;
 const_iterator end() const;
 const_iterator cbegin() const;
 const_iterator cend() const;

 // Size methods
 bool empty() const;
 size_type size() const;
 size_type max_size() const;

 // Element insert methods
 T& operator[](const key_type& k);
 std::pair<iterator, bool> insert(const value_type& x);
 iterator insert(const_iterator hint, const value_type& x);
 template <typename InputIterator>
 void insert(InputIterator first, InputIterator last);
 void insert(std::initializer_list<value_type> il);

 // Element delete methods
 size_type erase(const key_type& k);
 iterator erase(iterator position);
 iterator erase(iterator first, iterator last);

 // Other modifying utilities
 void swap(hash_map_type& other) noexcept;
 void clear() noexcept;

 // Access methods for Standard Library conformity
 key_equal key_eq() const;
 hasher hash_function() const;

 // Lookup methods
 iterator find(const key_type& k);
 const_iterator find(const key_type& k) const;
 std::pair<iterator, iterator> equal_range(const key_type& k);
 std::pair<const_iterator, const_iterator>
 equal_range(const key_type& k) const;

766  ❘  CHAPTER 21   Customizing and Extending the Standard Library

 size_type count(const key_type& k) const;

 private:
 // Returns a pair containing an iterator to the found element with
 // a given key, and the index of that element's bucket.
 std::pair<typename ListType::iterator, size_t> findElement(
 const key_type& k);

 std::vector<ListType> mBuckets;
 size_type mSize = 0;
 KeyEqual mEqual;
 Hash mHash;
};

hash_map Iterator Range Constructor

The constructor accepting an iterator range is a method template so that it can take an iterator
range from any container, not just other hash_maps. If it were not a method template, it would need
to specify the InputIterator type explicitly as hash_map_iterator, limiting it to iterators from
hash_maps. Despite the syntax, the implementation is uncomplicated: it delegates the construction
to the explicit constructor to initialize all the data members, then calls insert() to actually insert
all the elements in the specified range.

// Make a call to insert() to actually insert the elements.
template <typename Key, typename T, typename KeyEqual, typename Hash>
template <typename InputIterator>
hash_map<Key, T, KeyEqual, Hash>::hash_map(
 InputIterator first, InputIterator last, const KeyEqual& equal,
 size_type numBuckets, const Hash& hash)
 : hash_map(equal, numBuckets, hash)
{
 insert(first, last);
}

hash_map Initializer List Constructor

Initializer lists are discussed in Chapter 1. Following is the implementation of the hash_map con-
structor that takes an initializer list, which is very similar to the implementation of the constructor
accepting an iterator range:

template <typename Key, typename T, typename KeyEqual, typename Hash>
hash_map<Key, T, KeyEqual, Hash>::hash_map(
 std::initializer_list<value_type> il,
 const KeyEqual& equal, size_type numBuckets, const Hash& hash)
 : hash_map(equal, numBuckets, hash)
{
 insert(std::begin(il), std::end(il));
}

With this initializer list constructor, a hash_map can be constructed as follows:

hash_map<string, int> myHash {
 { "KeyOne", 100 },
 { "KeyTwo", 200 },
 { "KeyThree", 300 } };

Extending the Standard Library  ❘  767

hash_map Initializer List Assignment Operator

Assignment operators can also accept an initializer list on the right-hand side. Following is an imple-
mentation of an initializer list assignment operator for hash_map. It uses a copy-and-swap-like algo-
rithm to guarantee strong exception safety.

template <typename Key, typename T, typename KeyEqual, typename Hash>
hash_map<Key, T, KeyEqual, Hash>& hash_map<Key, T, KeyEqual, Hash>::operator=(
 std::initializer_list<value_type> il)
{
 // Do all the work in a temporary instance
 hash_map_type newHashMap(il, mEqual, mBuckets.size(), mHash);
 swap(newHashMap); // Commit the work with only non-throwing operations
 return *this;
}

With this assignment operator, you can write code as follows:

myHash = {
 { "KeyOne", 100 },
 { "KeyTwo", 200 },
 { "KeyThree", 300 } };

hash_map Insertion Operations

In the earlier section, “Using the Basic Hash Map,” a simple insert() method is given. In this ver-
sion, four insert() methods are provided with additional features:

➤➤ The simple insert() operation returns a pair<iterator, bool>, which indicates both
where the item is inserted and whether or not it was newly created.

➤➤ The version of insert() that takes a hint is useless for a hash_map, but it is provided for
symmetry with other kinds of collections. The hint is ignored, and it merely calls the first
version.

➤➤ The third form of insert() is a method template, so ranges of elements from arbitrary con-
tainers can be inserted into the hash_map.

➤➤ The last form of insert() accepts an initializer_list<value_type>.

Note that technically, the following versions of insert() can also be provided. These accept rvalue
references.

std::pair<iterator, bool> insert(value_type&& x);
iterator insert(const_iterator hint, value_type&& x);

The hash_map does not provide these. Additionally, there are two versions of insert() related to
handling nodes. Nodes are discussed in Chapter 17. The hash_map omits these as well.

The first two insert() methods are implemented as follows:

template <typename Key, typename T, typename KeyEqual, typename Hash>
std::pair<typename hash_map<Key, T, KeyEqual, Hash>::iterator, bool>
 hash_map<Key, T, KeyEqual, Hash>::insert(const value_type& x)
{
 // Try to find the element.
 auto[it, bucket] = findElement(x.first);

768  ❘  CHAPTER 21   Customizing and Extending the Standard Library

 bool inserted = false;
 if (it == std::end(mBuckets[bucket])) {
 // We didn't find the element, so insert a new one.
 it = mBuckets[bucket].insert(it, x);
 inserted = true;
 mSize++;
 }
 return std::make_pair(
 hash_map_iterator<hash_map_type>(bucket, it, this), inserted);
}

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::iterator
 hash_map<Key, T, KeyEqual, Hash>::insert(
 const_iterator /*hint*/, const value_type& x)
{
 // Completely ignore position.
 return insert(x).first;
}

The third form of insert() is a method template for the same reason as the constructor shown
earlier: it should be able to insert elements by using iterators from containers of any type. The actual
implementation uses an insert_iterator, described earlier in this chapter.

template <typename Key, typename T, typename KeyEqual, typename Hash>
template <typename InputIterator>
void hash_map<Key, T, KeyEqual, Hash>::insert(
 InputIterator first, InputIterator last)
{
 // Copy each element in the range by using an insert_iterator adaptor.
 // Give begin() as a dummy position -- insert ignores it anyway.
 std::insert_iterator<hash_map_type> inserter(*this, begin());
 std::copy(first, last, inserter);
}

The last insert operation accepts an initializer list. The implementation for hash_map simply for-
wards the work to the insert() method accepting an iterator range:

template <typename Key, typename T, typename KeyEqual, typename Hash>
void hash_map<Key, T, KeyEqual, Hash>::insert(
 std::initializer_list<value_type> il)
{
 insert(std::begin(il), std::end(il));
}

With this insert() method, you can write code as follows:

myHash.insert({
 { "KeyFour", 400 },
 { "KeyFive", 500 } });

Extending the Standard Library  ❘  769

hash_map Emplace Operations

Emplace operations construct objects in-place. They are discussed in Chapter 17. The emplace meth-
ods for hash_map look as follows :

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

The ... in these lines are not typos. These are so-called variadic templates, that is, templates with
a variable number of template type parameters and a variable number of function parameters.
Variadic templates are discussed in Chapter 22. This hash_map implementation omits emplace
operations.

hash_map Erase Operations

The version of erase() in the earlier section, “A Basic Hash Map,” is not compliant with Standard
Library requirements. You need to implement the following versions:

➤➤ A version that takes as a parameter a key_type and returns a size_type for the number of
elements removed from the collection (for hash_map there are only two possible return val-
ues, 0 and 1).

➤➤ A version that erases a value at a specific iterator position, and returns an iterator to the ele-
ment following the erased element.

➤➤ A version that erases a range of elements based on two iterators, and returns an iterator to
the element following the last erased element.

The first version is implemented as follows:

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::size_type
 hash_map<Key, T, KeyEqual, Hash>::erase(const key_type& k)
{
 // First, try to find the element.
 auto[it, bucket] = findElement(k);
 if (it != std::end(mBuckets[bucket])) {
 // The element exists -- erase it.
 mBuckets[bucket].erase(it);
 mSize--;
 return 1;
 } else {
 return 0;
 }
}

The second version of erase() must remove the element at a specific iterator position. The iterator
given is, of course, a hash_map_iterator. Thus, hash_map must have some ability to obtain the
underlying bucket and list iterator from the hash_map_iterator. The approach taken here is to

770  ❘  CHAPTER 21   Customizing and Extending the Standard Library

make the hash_map class a friend of the hash_map_iterator (not shown in the earlier class defini-
tion). Here is the implementation of this version of erase():

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::iterator
 hash_map<Key, T, KeyEqual, Hash>::erase(iterator position)
{
 iterator next = position;
 ++next;
 // Erase the element from its bucket.
 mBuckets[position.mBucketIndex].erase(position.mListIterator);
 mSize--;
 return next;
}

The final version of erase() removes a range of elements. It iterates from first to last, calling
erase() on each element, thus letting the previous version of erase() do all the work:

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::iterator
 hash_map<Key, T, KeyEqual, Hash>::erase(iterator first, iterator last)
{
 // Erase all the elements in the range.
 for (iterator next = first; next != last;) {
 next = erase(next);
 }
 return last;
}

hash_map Accessor Operations

The standard requires methods called key_eq() and hash_function() to retrieve the equality
predicate and the hash function respectively:

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::key_equal
 hash_map<Key, T, KeyEqual, Hash>::key_eq() const
{
 return mEqual;
}

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::hasher
 hash_map<Key, T, KeyEqual, Hash>::hash_function() const
{
 return mHash;
}

The find() method is identical to the version shown earlier for the basic hash_map, except for the
return code. Instead of returning a pointer to the element, it constructs a hash_map_iterator refer-
ring to it:

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::iterator
 hash_map<Key, T, KeyEqual, Hash>::find(const key_type& k)
{

Extending the Standard Library  ❘  771

 // Use the findElement() helper, and C++17 structured bindings.
 auto[it, bucket] = findElement(k);
 if (it == std::end(mBuckets[bucket])) {
 // Element not found -- return the end iterator.
 return end();
 }
 // Element found -- convert the bucket/iterator to a hash_map_iterator.
 return hash_map_iterator<hash_map_type>(bucket, it, this);
}

The const version of find() returns a const_hash_map_iterator. It uses const_cast to call the
non-const version of find() to avoid code duplication. Note that the non-const find() returns a
hash_map_iterator, which is convertible to a const_hash_map_iterator.

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::const_iterator
 hash_map<Key, T, KeyEqual, Hash>::find(const key_type& k) const
{
 return const_cast<hash_map_type*>(this)->find(k);
}

The implementations of both versions of equal_range() are identical, except that one returns a
pair of hash_map_iterators while the other returns a pair of const_hash_map_iterators. They
both simply forward the request to find(). A hash_map cannot have elements with duplicate keys,
so the result of equal_range() for hash_map is always a pair of identical iterators.

template <typename Key, typename T, typename KeyEqual, typename Hash>
std::pair<
 typename hash_map<Key, T, KeyEqual, Hash>::iterator,
 typename hash_map<Key, T, KeyEqual, Hash>::iterator>
 hash_map<Key, T, KeyEqual, Hash>::equal_range(const key_type& k)
{
 auto it = find(k);
 return std::make_pair(it, it);
}

Because hash_map does not allow duplicate keys, count() can only return 1 or 0: 1 if it finds the
element, and 0 if it doesn’t. The implementation just wraps a call to find(). The find() method
returns the end iterator if it can’t find the element. count() retrieves an end iterator by calling
end() in order to compare it.

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::size_type
 hash_map<Key, T, KeyEqual, Hash>::count(const key_type& k) const
{
 // There are either 1 or 0 elements matching key k.
 // If we can find a match, return 1, otherwise return 0.
 if (find(k) == end()) {
 return 0;
 } else {
 return 1;
 }
}

772  ❘  CHAPTER 21   Customizing and Extending the Standard Library

The final method, operator[], is not required by the standard, but is provided for convenience
of the programmer, and to be symmetric with std::map. The prototype is identical to the one for
std::map. The comments explain the potentially confusing one-line implementation.

template <typename Key, typename T, typename KeyEqual, typename Hash>
T& hash_map<Key, T, KeyEqual, Hash>::operator[] (const key_type& k)
{
 // It's a bit cryptic, but it basically attempts to insert
 // a new key/value pair of k and a zero-initialized value. Regardless
 // of whether the insert succeeds or fails, insert() returns a pair of
 // an iterator/bool. The iterator refers to a key/value pair, the
 // second element of which is the value we want to return.
 return ((insert(std::make_pair(k, T()))).first)->second;
}

hash_map Bucket Operations

Unordered associative containers should also provide a number of bucket-related methods:

➤➤ bucket_count() returns the number of buckets in the container.

➤➤ max_bucket_count() returns the maximum number of buckets that are supported.

➤➤ bucket(key) returns the index of the bucket to which the given key maps.

➤➤ bucket_size(n) returns the number of elements in the bucket with given index.

➤➤ begin(n), end(n), cbegin(n), cend(n) return local begin and end iterators to the bucket
with given index.

Here are the implementations for the hash_map:

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::size_type
 hash_map<Key, T, KeyEqual, Hash>::bucket_count() const
{
 return mBuckets.size();
}

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::size_type
 hash_map<Key, T, KeyEqual, Hash>::max_bucket_count() const
{
 return mBuckets.max_size();
}

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::size_type
 hash_map<Key, T, KeyEqual, Hash>::bucket(const Key& k) const
{
 return const_cast<hash_map_type*>(this)->findElement(k).second;
}

Summary  ❘  773

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::size_type
 hash_map<Key, T, KeyEqual, Hash>::bucket_size(size_type n) const
{
 return mBuckets[n].size();
}

template <typename Key, typename T, typename KeyEqual, typename Hash>
typename hash_map<Key, T, KeyEqual, Hash>::local_iterator
 hash_map<Key, T, KeyEqual, Hash>::begin(size_type n)
{
 return mBuckets[n].begin();
}

The implementations for the other begin(n), end(n), cbegin(n), and cend(n) methods are
similar; they simply forward the call to the correct bucket list based on the given index.

Finally, an unordered associative container should also provide load_factor(), max_load_
factor(), rehash(), and reserve() methods. These are omitted for hash_map.

Note on Sequential Containers
The hash_map developed in the preceding sections is an unordered associative container. However,
you could also write a sequential container, or an ordered associative container, in which case you
would need to follow a different set of requirements. Instead of listing them here, it’s easier to point
out that the deque container follows the prescribed sequential container requirements almost exactly.
The only difference is that it provides an extra resize() method (not required by the standard). An
example of an ordered associative container is the map, on which you can model your own ordered
associative containers.

SUMMARY

The final example in this chapter showed almost the complete development of a hash_map unor-
dered associative container and its iterators. This hash_map implementation is given here only to
teach you how to write your own Standard Library-compliant containers and iterators. C++ does
include its own set of unordered associative containers. You should use those instead of your own
implementation.

In the process of reading this chapter, you hopefully gained an appreciation for the steps involved in
developing containers. Even if you never write another Standard Library algorithm or container, you
understand better the Standard Library’s mentality and capabilities, and you can put it to better use.

This chapter concludes the tour of the Standard Library. Even with all the details given in this book,
some features are still omitted. If this material excited you, and you would like more information,
consult some of the resources in Appendix B. Don’t feel compelled to use all the features discussed
here. Forcing them into your programs without a true need will just complicate your code. However,
I encourage you to consider incorporating aspects of the Standard Library into your programs where
they make sense. Start with the containers, maybe throw in an algorithm or two, and before you
know it, you’ll be a convert!

Advanced Templates
WHAT’S IN THIS CHAPTER?

➤➤ The different kinds of template parameters

➤➤ How to use partial specialization

➤➤ How to write recursive templates

➤➤ What variadic templates are

➤➤ How to write type-safe variable argument functions using variadic
templates

➤➤ What constexpr if statements are

➤➤ How to use folding expressions

➤➤ What metaprogramming is and how to use it

➤➤ What type traits can be used for

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

Chapter 12 covers the most widely used features of class and function templates. If you are
interested in only a basic knowledge of templates so that you can better understand how the
Standard Library works, or perhaps write your own simple classes, you can skip this chapter
on advanced templates. However, if templates interest you and you want to uncover their full
power, continue reading this chapter to learn about some of the more obscure, but fascinating,
details.

22

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

776  ❘  CHAPTER 22   Advanced Templates

MORE ABOUT TEMPLATE PARAMETERS

There are actually three kinds of template parameters: type, non-type, and template template (no,
you’re not seeing double: that really is the name). So far, you’ve seen examples of type and non-
type parameters (in Chapter 12), but not template template parameters. There are also some tricky
aspects to both type and non-type parameters that are not covered in Chapter 12. This section goes
deeper into all three types of template parameters.

More about Template Type Parameters
Template type parameters are the main purpose of templates. You can declare as many type param-
eters as you want. For example, you could add to the grid template from Chapter 12 a second type
parameter specifying another templatized class container on which to build the grid. The Standard
Library defines several templatized container classes, including vector and deque. The original grid
class uses a vector of vectors to store the elements of a grid. A user of the Grid class might want
to use a vector of deques instead. With another template type parameter, you can allow the user to
specify whether they want the underlying container to be a vector or a deque. Here is the class defi-
nition with the additional template parameter:

template <typename T, typename Container>
class Grid
{
 public:
 explicit Grid(size_t width = kDefaultWidth,
 size_t height = kDefaultHeight);
 virtual ~Grid() = default;

 // Explicitly default a copy constructor and assignment operator.
 Grid(const Grid& src) = default;
 Grid<T, Container>& operator=(const Grid& rhs) = default;

 // Explicitly default a move constructor and assignment operator.
 Grid(Grid&& src) = default;
 Grid<T, Container>& operator=(Grid&& rhs) = default;

 typename Container::value_type& at(size_t x, size_t y);
 const typename Container::value_type& at(size_t x, size_t y) const;

 size_t getHeight() const { return mHeight; }
 size_t getWidth() const { return mWidth; }

 static const size_t kDefaultWidth = 10;
 static const size_t kDefaultHeight = 10;

 private:
 void verifyCoordinate(size_t x, size_t y) const;

 std::vector<Container> mCells;
 size_t mWidth = 0, mHeight = 0;
};

More about Template Parameters  ❘  777

This template now has two parameters: T and Container. Thus, wherever you previously referred to
Grid<T>, you must now refer to Grid<T, Container> to specify both template parameters. Another
change is that mCells is now a vector of Containers instead of a vector of vectors.

Here is the constructor definition:

template <typename T, typename Container>
Grid<T, Container>::Grid(size_t width, size_t height)
 : mWidth(width), mHeight(height)
{
 mCells.resize(mWidth);
 for (auto& column : mCells) {
 column.resize(mHeight);
 }
}

This constructor assumes that the Container type has a resize() method. If you try to instantiate
this template by specifying a type that has no resize() method, the compiler will generate an error.

The return type of the at() methods is the type of the elements that is stored inside the given
container type. You can access this type with typename Container::value_type.

Here are the implementations of the remaining methods:

template <typename T, typename Container>
void Grid<T, Container>::verifyCoordinate(size_t x, size_t y) const
{
 if (x >= mWidth || y >= mHeight) {
 throw std::out_of_range("");
 }
}

template <typename T, typename Container>
const typename Container::value_type&
 Grid<T, Container>::at(size_t x, size_t y) const
{
 verifyCoordinate(x, y);
 return mCells[x][y];
}

template <typename T, typename Container>
typename Container::value_type&
 Grid<T, Container>::at(size_t x, size_t y)
{
 return const_cast<typename Container::value_type&>(
 std::as_const(*this).at(x, y));
}

Now you can instantiate and use Grid objects like this:

Grid<int, vector<optional<int>>> myIntVectorGrid;
Grid<int, deque<optional<int>>> myIntDequeGrid;

myIntVectorGrid.at(3, 4) = 5;
cout << myIntVectorGrid.at(3, 4).value_or(0) << endl;

778  ❘  CHAPTER 22   Advanced Templates

myIntDequeGrid.at(1, 2) = 3;
cout << myIntDequeGrid.at(1, 2).value_or(0) << endl;

Grid<int, vector<optional<int>>> grid2(myIntVectorGrid);
grid2 = myIntVectorGrid;

The use of the word Container for the parameter name doesn’t mean that the type really must be a
container. You could try to instantiate the Grid class with an int instead:

Grid<int, int> test; // WILL NOT COMPILE

This line does not compile, but it also might not give you the error you expect. It does not complain
that the second type argument is an int instead of a container. It tells you something more cryptic.
For example, Microsoft Visual C++ tells you that “‘Container’: must be a class or namespace when
followed by ‘::’.” That’s because the compiler attempts to generate a Grid class with int as the
Container. Everything works fine until it tries to process this line in the class template definition:

typename Container::value_type& at(size_t x, size_t y);

At that point, the compiler realizes that Container is an int, which does not have an embedded
value_type type alias.

Just as with function parameters, you can give template parameters default values. For example, you
might want to say that the default container for your Grid is a vector. The class template definition
would look like this:

template <typename T, typename Container = std::vector<std::optional<T>>>
class Grid
{
 // Everything else is the same as before.
};

You can use the type T from the first template parameter as the argument to the optional template
in the default value for the second template parameter. The C++ syntax requires that you do not
repeat the default value in the template header line for method definitions. With this default argu-
ment, clients can now instantiate a grid with the option of specifying an underlying container:

Grid<int, deque<optional<int>>> myDequeGrid;
Grid<int, vector<optional<int>>> myVectorGrid;
Grid<int> myVectorGrid2(myVectorGrid);

This approach is used by the Standard Library. The stack, queue, and priority_queue class tem-
plates all take a template type parameter, with a default value, specifying the underlying container.

Introducing Template Template Parameters
There is one problem with the Container parameter in the previous section. When you instantiate
the class template, you write something like this:

Grid<int, vector<optional<int>>> myIntGrid;

Note the repetition of the int type. You must specify that it’s the element type both of the Grid and
of the optional inside the vector. What if you wrote this instead:

Grid<int, vector<optional<SpreadsheetCell>>> myIntGrid;

More about Template Parameters  ❘  779

That wouldn’t work very well. It would be nice to be able to write the following, so that you
couldn’t make that mistake:

Grid<int, vector> myIntGrid;

The Grid class should be able to figure out that it wants a vector of optionals of ints. The
compiler won’t allow you to pass that argument to a normal type parameter, though, because
vector by itself is not a type but a template.

If you want to take a template as a template parameter, you must use a special kind of parameter
called a template template parameter. Specifying a template template parameter is sort of like speci-
fying a function pointer parameter in a normal function. Function pointer types include the return
type and parameter types of a function. Similarly, when you specify a template template parameter,
the full specification of the template template parameter includes the parameters to that template.

For example, containers such as vector and deque have a template parameter list that looks some-
thing like the following. The E parameter is the element type. The Allocator parameter is covered
in Chapter 17.

template <typename E, typename Allocator = std::allocator<E>>
class vector
{
 // Vector definition
};

To pass such a container as a template template parameter, all you have to do is copy and paste the
declaration of the class template (in this example, template <typename E, typename Allocator
= std::allocator<E>> class vector), replace the class name (vector) with a parameter name
(Container), and use that as the template template parameter of another template declaration—
Grid in this example—instead of a simple type name. Given the preceding template specification,
here is the class template definition for the Grid class that takes a container template as its second
template parameter:

template <typename T,
 template <typename E, typename Allocator = std::allocator<E>> class Container
 = std::vector>
class Grid
{
 public:
 // Omitted code that is the same as before
 std::optional<T>& at(size_t x, size_t y);
 const std::optional<T>& at(size_t x, size_t y) const;
 // Omitted code that is the same as before
 private:
 void verifyCoordinate(size_t x, size_t y) const;

 std::vector<Container<std::optional<T>>> mCells;
 size_t mWidth = 0, mHeight = 0;
};

What is going on here? The first template parameter is the same as before: the element type T. The
second template parameter is now a template itself for a container such as vector or deque. As you
saw earlier, this “template type” must take two parameters: an element type E and an allocator type.

780  ❘  CHAPTER 22   Advanced Templates

Note the repetition of the word class after the nested template parameter list. The name of this
parameter in the Grid template is Container (as before). The default value is now vector, instead
of vector<T>, because the Container parameter is now a template instead of an actual type.

The syntax rule for a template template parameter, more generically, is this:

template <..., template <TemplateTypeParams> class ParameterName, ...>

NOTE  Starting with C++17, you can also use the typename keyword instead of
class, as in the following example:

template <..., template <TemplateTypeParams> typename
ParameterName, ...>

Instead of using Container by itself in the code, you must specify Container<std::optional<T>>
as the container type. For example, the declaration of mCells is now as follows:

std::vector<Container<std::optional<T>>> mCells;

The method definitions don’t need to change, except that you must change the template lines, for
example:

template <typename T,
 template <typename E, typename Allocator = std::allocator<E>> class Container>
void Grid<T, Container>::verifyCoordinate(size_t x, size_t y) const
{
 if (x >= mWidth || y >= mHeight) {
 throw std::out_of_range("");
 }
}

This Grid template can be used as follows:

Grid<int, vector> myGrid;
myGrid.at(1, 2) = 3;
cout << myGrid.at(1, 2).value_or(0) << endl;
Grid<int, vector> myGrid2(myGrid);

This C++ syntax is a bit convoluted because it is trying to allow for maximum flexibility. Try not to
get bogged down in the syntax here, and keep the main concept in mind: you can pass templates as
parameters to other templates.

More about Non-type Template Parameters
You might want to allow the user to specify a default element used to initialize each cell in the grid.
Here is a perfectly reasonable approach to implement this goal. It uses T() as the default value for
the second template parameter.

template <typename T, const T DEFAULT = T()>
class Grid
{
 // Identical as before.
};

C++17

More about Template Parameters  ❘  781

This definition is legal. You can use the type T from the first parameter as the type for the second
parameter, and non-type parameters can be const just like function parameters. You can use this
initial value for T to initialize each cell in the grid:

template <typename T, const T DEFAULT>
Grid<T, DEFAULT>::Grid(size_t width, size_t height)
	 : mWidth(width), mHeight(height)
{
 mCells.resize(mWidth);
 for (auto& column : mCells) {
 column.resize(mHeight);
 for (auto& element : column) {
 element = DEFAULT;
 }
 }
}

The other method definitions stay the same, except that you must add the second template parame-
ter to the template lines, and all the instances of Grid<T> become Grid<T, DEFAULT>. After making
those changes, you can instantiate grids with an initial value for all the elements:

Grid<int> myIntGrid; // Initial value is 0
Grid<int, 10> myIntGrid2; // Initial value is 10

The initial value can be any integer you want. However, suppose that you try to create a
SpreadsheetCell Grid:

SpreadsheetCell defaultCell;
Grid<SpreadsheetCell, defaultCell> mySpreadsheet; // WILL NOT COMPILE

That line leads to a compiler error because you cannot pass objects as arguments to non-type
parameters.

WARNING  Non-type parameters cannot be objects, or even doubles or floats.
They are restricted to integral types, enums, pointers, and references.

This example illustrates one of the vagaries of class templates: they can work correctly on one type
but fail to compile for another type.

A more comprehensive way of allowing the user to specify an initial element value for a grid uses a
reference to a T as the non-type template parameter. Here is the new class definition:

template <typename T, const T& DEFAULT>
class Grid
{
 // Everything else is the same as the previous example.
};

Now you can instantiate this class template for any type. The C++17 standard says that the reference
you pass as the second template argument must be a converted constant expression of the type of the
template parameter. It is not allowed to refer to a subobject, a temporary object, a string literal, the

782  ❘  CHAPTER 22   Advanced Templates

result of a typeid expression, or the predefined __func__ variable. The following example declares
int and SpreadsheetCell grids using initial values:

int main()
{
 int defaultInt = 11;
 Grid<int, defaultInt> myIntGrid;

 SpreadsheetCell defaultCell(1.2);
 Grid<SpreadsheetCell, defaultCell> mySpreadsheet;
 return 0;
}

However, those are the rules of C++17, and unfortunately, most compilers do not implement those
rules yet. Before C++17, an argument passed to a reference non-type template parameter could not
be a temporary, and could not be a named lvalue without linkage (external or internal). So, here is
the same example but using the pre-C++17 rules. The initial values are defined with internal linkage:

namespace {
 int defaultInt = 11;
 SpreadsheetCell defaultCell(1.2);
}

int main()
{
 Grid<int, defaultInt> myIntGrid;
 Grid<SpreadsheetCell, defaultCell> mySpreadsheet;
 return 0;
}

CLASS TEMPLATE PARTIAL SPECIALIZATION

The const char* class specialization of the Grid class template shown in Chapter 12 is called a full
class template specialization because it specializes the Grid template for every template parameter.
There are no template parameters left in the specialization. That’s not the only way you can special-
ize a class; you can also write a partial class specialization, in which you specialize some template
parameters but not others. For example, recall the basic version of the Grid template with width and
height non-type parameters:

template <typename T, size_t WIDTH, size_t HEIGHT>
class Grid
{
 public:
 Grid() = default;
 virtual ~Grid() = default;

 // Explicitly default a copy constructor and assignment operator.
 Grid(const Grid& src) = default;
 Grid& operator=(const Grid& rhs) = default;

 std::optional<T>& at(size_t x, size_t y);
 const std::optional<T>& at(size_t x, size_t y) const;

 size_t getHeight() const { return HEIGHT; }
 size_t getWidth() const { return WIDTH; }

Class Template Partial Specialization  ❘  783

 private:
 void verifyCoordinate(size_t x, size_t y) const;

 std::optional<T> mCells[WIDTH][HEIGHT];
};

You could specialize this class template for const char* C-style strings like this:

#include "Grid.h" // The file containing the Grid template definition

template <size_t WIDTH, size_t HEIGHT>
class Grid<const char*, WIDTH, HEIGHT>
{
 public:
 Grid() = default;
 virtual ~Grid() = default;

 // Explicitly default a copy constructor and assignment operator.
 Grid(const Grid& src) = default;
 Grid& operator=(const Grid& rhs) = default;

 std::optional<std::string>& at(size_t x, size_t y);
 const std::optional<std::string>& at(size_t x, size_t y) const;

 size_t getHeight() const { return HEIGHT; }
 size_t getWidth() const { return WIDTH; }
 private:
 void verifyCoordinate(size_t x, size_t y) const;

 std::optional<std::string> mCells[WIDTH][HEIGHT];
};

In this case, you are not specializing all the template parameters. Therefore, your template line looks
like this:

template <size_t WIDTH, size_t HEIGHT>
class Grid<const char*, WIDTH, HEIGHT>

Note that the template has only two parameters: WIDTH and HEIGHT. However, you’re writing a
Grid class for three arguments: T, WIDTH, and HEIGHT. Thus, your template parameter list contains
two parameters, and the explicit Grid<const char*, WIDTH, HEIGHT> contains three arguments.
When you instantiate the template, you must still specify three parameters. You can’t instantiate the
template with only height and width.

Grid<int, 2, 2> myIntGrid; // Uses the original Grid
Grid<const char*, 2, 2> myStringGrid; // Uses the partial specialization
Grid<2, 3> test; // DOES NOT COMPILE! No type specified.

Yes, the syntax is confusing. And it gets worse. In partial specializations, unlike in full specializa-
tions, you include the template line in front of every method definition, as in the following example:

template <size_t WIDTH, size_t HEIGHT>
const std::optional<std::string>&
 Grid<const char*, WIDTH, HEIGHT>::at(size_t x, size_t y) const
{
 verifyCoordinate(x, y);
 return mCells[x][y];
}

784  ❘  CHAPTER 22   Advanced Templates

You need this template line with two parameters to show that this method is parameterized on those
two parameters. Note that wherever you refer to the full class name, you must use Grid<const
char*, WIDTH, HEIGHT>.

The previous example does not show the true power of partial specialization. You can write spe-
cialized implementations for a subset of possible types without specializing individual types. For
example, you can write a specialization of the Grid class template for all pointer types. The copy
constructor and assignment operator of this specialization could perform deep copies of objects to
which pointers point, instead of shallow copies.

Here is the class definition, assuming that you’re specializing the initial version of Grid with only
one parameter. In this implementation, Grid becomes the owner of supplied data, so it automati-
cally frees the memory when necessary.

#include "Grid.h"
#include <memory>

template <typename T>
class Grid<T*>
{
 public:
 explicit Grid(size_t width = kDefaultWidth,
 size_t height = kDefaultHeight);
 virtual ~Grid() = default;

 // Copy constructor and copy assignment operator.
 Grid(const Grid& src);
 Grid<T*>& operator=(const Grid& rhs);

 // Explicitly default a move constructor and assignment operator.
 Grid(Grid&& src) = default;
 Grid<T*>& operator=(Grid&& rhs) = default;

 void swap(Grid& other) noexcept;

 std::unique_ptr<T>& at(size_t x, size_t y);
 const std::unique_ptr<T>& at(size_t x, size_t y) const;

 size_t getHeight() const { return mHeight; }
 size_t getWidth() const { return mWidth; }

 static const size_t kDefaultWidth = 10;
 static const size_t kDefaultHeight = 10;

 private:
 void verifyCoordinate(size_t x, size_t y) const;

 std::vector<std::vector<std::unique_ptr<T>>> mCells;
 size_t mWidth = 0, mHeight = 0;
};

Class Template Partial Specialization  ❘  785

As usual, these two lines are the crux of the matter:

template <typename T>
class Grid<T*>

The syntax says that this class is a specialization of the Grid template for all pointer types. You are
providing the implementation only in cases where T is a pointer type. Note that if you instantiate a
grid like Grid<int*> myIntGrid, then T will actually be int, not int*. That’s a bit unintuitive, but
unfortunately, that’s the way it works. Here is an example of using this partial specialization:

Grid<int> myIntGrid; // Uses the non-specialized grid
Grid<int*> psGrid(2, 2); // Uses the partial specialization for pointer types

psGrid.at(0, 0) = make_unique<int>(1);
psGrid.at(0, 1) = make_unique<int>(2);
psGrid.at(1, 0) = make_unique<int>(3);

Grid<int*> psGrid2(psGrid);
Grid<int*> psGrid3;
psGrid3 = psGrid2;

auto& element = psGrid2.at(1, 0);
if (element) {
 cout << *element << endl;
 *element = 6;
}
cout << *psGrid.at(1, 0) << endl; // psGrid is not modified
cout << *psGrid2.at(1, 0) << endl; // psGrid2 is modified

Here is the output:

3
3
6

The implementations of the methods are rather straightforward, except for the copy constructor,
which uses the copy constructor of individual elements to make a deep copy of them:

template <typename T>
Grid<T*>::Grid(const Grid& src)
 : Grid(src.mWidth, src.mHeight)
{
 // The ctor-initializer of this constructor delegates first to the
 // non-copy constructor to allocate the proper amount of memory.

 // The next step is to copy the data.
 for (size_t i = 0; i < mWidth; i++) {
 for (size_t j = 0; j < mHeight; j++) {
 // Make a deep copy of the element by using its copy constructor.
 if (src.mCells[i][j]) {
 mCells[i][j].reset(new T(*(src.mCells[i][j])));
 }
 }
 }
}

786  ❘  CHAPTER 22   Advanced Templates

EMULATING FUNCTION PARTIAL SPECIALIZATION WITH
OVERLOADING

The C++ standard does not permit partial template specialization of functions. Instead, you can
overload the function with another template. The difference is subtle. Suppose that you want to
write a specialization of the Find() function template, presented in Chapter 12, that dereferences
the pointers to use operator== directly on the objects pointed to. Following the syntax for class
template partial specialization, you might be tempted to write this:

template <typename T>
size_t Find<T*>(T* const& value, T* const* arr, size_t size)
{
 for (size_t i = 0; i < size; i++) {
 if (*arr[i] == *value) {
 return i; // Found it; return the index
 }
 }
 return NOT_FOUND; // failed to find it; return NOT_FOUND
}

However, that syntax declares a partial specialization of the function template, which the C++ stan-
dard does not allow. The correct way to implement the behavior you want is to write a new template
for Find(). The difference might seem trivial and academic, but it won’t compile otherwise.

template <typename T>
size_t Find(T* const& value, T* const* arr, size_t size)
{
 for (size_t i = 0; i < size; i++) {
 if (*arr[i] == *value) {
 return i; // Found it; return the index
 }
 }
 return NOT_FOUND; // failed to find it; return NOT_FOUND
}

Note that the first parameter to this version of Find() is T* const&. This is done to make it sym-
metric with the original Find() function template, which accepts a const T& as a first parameter.
However, in this case, using T* instead of T* const& for the first parameter of the partial specializa-
tion of Find() works as well.

You can define in one program the original Find() template, the overloaded Find() for partial
specialization on pointer types, the complete specialization for const char*s, and the overloaded
Find() just for const char*s. The compiler selects the appropriate version to call based on its
deduction rules.

NOTE  Between all overloaded versions, function template specializations, and
specific function template instantiations, the compiler always chooses the “most
specific” one to call. If a non-template version is just as specific as a function
template instantiation, then the compiler prefers the non-template version.

Template Recursion  ❘  787

The following code calls Find() several times. The comments say which version of Find() is called.

size_t res = NOT_FOUND;

int myInt = 3, intArray[] = { 1, 2, 3, 4 };
size_t sizeArray = std::size(intArray);
res = Find(myInt, intArray, sizeArray); // calls Find<int> by deduction
res = Find<int>(myInt, intArray, sizeArray); // calls Find<int> explicitly

double myDouble = 5.6, doubleArray[] = { 1.2, 3.4, 5.7, 7.5 };
sizeArray = std::size(doubleArray);
// calls Find<double> by deduction
res = Find(myDouble, doubleArray, sizeArray);
// calls Find<double> explicitly
res = Find<double>(myDouble, doubleArray, sizeArray);

const char* word = "two";
const char* words[] = { "one", "two", "three", "four" };
sizeArray = std::size(words);
// calls template specialization for const char*s
res = Find<const char*>(word, words, sizeArray);
// calls overloaded Find for const char*s
res = Find(word, words, sizeArray);

int *intPointer = &myInt, *pointerArray[] = { &myInt, &myInt };
sizeArray = std::size(pointerArray);
// calls the overloaded Find for pointers
res = Find(intPointer, pointerArray, sizeArray);

SpreadsheetCell cell1(10), cellArray[] = { SpreadsheetCell(4),
SpreadsheetCell(10) };
sizeArray = std::size(cellArray);
// calls Find<SpreadsheetCell> by deduction
res = Find(cell1, cellArray, sizeArray);
// calls Find<SpreadsheetCell> explicitly
res = Find<SpreadsheetCell>(cell1, cellArray, sizeArray);

SpreadsheetCell *cellPointer = &cell1;
SpreadsheetCell *cellPointerArray[] = { &cell1, &cell1 };
sizeArray = std::size(cellPointerArray);
// Calls the overloaded Find for pointers
res = Find(cellPointer, cellPointerArray, sizeArray);

TEMPLATE RECURSION

Templates in C++ provide capabilities that go far beyond the simple classes and functions you have
seen so far in this chapter and Chapter 12. One of these capabilities is template recursion. This sec-
tion first provides a motivation for template recursion, and then shows how to implement it.

This section uses operator overloading, discussed in Chapter 15. If you skipped that chapter or are
unfamiliar with the syntax for overloading operator[], consult Chapter 15 before continuing.

788  ❘  CHAPTER 22   Advanced Templates

An N-Dimensional Grid: First Attempt
Up to now, the Grid template example supported only two dimensions, which limited its useful-
ness. What if you wanted to write a 3-D Tic-Tac-Toe game or write a math program with four-
dimensional matrices? You could, of course, write a templated or non-templated class for each of
those dimensions. However, that would repeat a lot of code. Another approach would be to write
only a single-dimensional grid. Then, you could create a Grid of any dimension by instantiating the
Grid with another Grid as its element type. This Grid element type could itself be instantiated with
a Grid as its element type, and so on. Here is the implementation of the OneDGrid class template.
It’s simply a one-dimensional version of the Grid template from earlier examples, with the addition
of a resize() method, and the substitution of operator[] for at(). Just as with Standard Library
containers such as vector, the operator[] implementation does not perform any bounds checking.
Also, for this example, mElements stores instances of T instead of instances of std::optional<T>.

template <typename T>
class OneDGrid
{
 public:
 explicit OneDGrid(size_t size = kDefaultSize);
 virtual ~OneDGrid() = default;

 T& operator[](size_t x);
 const T& operator[](size_t x) const;

 void resize(size_t newSize);
 size_t getSize() const { return mElements.size(); }

 static const size_t kDefaultSize = 10;
 private:
 std::vector<T> mElements;
};

template <typename T>
OneDGrid<T>::OneDGrid(size_t size)
{
 resize(size);
}

template <typename T>
void OneDGrid<T>::resize(size_t newSize)
{
 mElements.resize(newSize);
}

template <typename T>
T& OneDGrid<T>::operator[](size_t x)
{
 return mElements[x];
}

Template Recursion  ❘  789

template <typename T>
const T& OneDGrid<T>::operator[](size_t x) const
{
 return mElements[x];
}

With this implementation of OneDGrid, you can create multidimensional grids like this:

OneDGrid<int> singleDGrid;
OneDGrid<OneDGrid<int>> twoDGrid;
OneDGrid<OneDGrid<OneDGrid<int>>> threeDGrid;
singleDGrid[3] = 5;
twoDGrid[3][3] = 5;
threeDGrid[3][3][3] = 5;

This code works fine, but the declarations are messy. As you will see in the next section, you can do
better.

A Real N-Dimensional Grid
You can use template recursion to write a “real” N-dimensional grid because dimensionality of grids
is essentially recursive. You can see that in this declaration:

OneDGrid<OneDGrid<OneDGrid<int>>> threeDGrid;

You can think of each nested OneDGrid as a recursive step, with the OneDGrid of int as the base
case. In other words, a three-dimensional grid is a single-dimensional grid of single-dimensional
grids of single-dimensional grids of ints. Instead of requiring the user to do this recursion, you can
write a class template that does it for you. You can then create N-dimensional grids like this:

NDGrid<int, 1> singleDGrid;
NDGrid<int, 2> twoDGrid;
NDGrid<int, 3> threeDGrid;

The NDGrid class template takes a type for its element and an integer specifying its “dimensional-
ity.” The key insight here is that the element type of the NDGrid is not the element type specified in
the template parameter list, but is in fact another NDGrid of dimensionality one less than the cur-
rent one. In other words, a three-dimensional grid is a vector of two-dimensional grids; the two-
dimensional grids are each vectors of one-dimensional grids.

With recursion, you need a base case. You can write a partial specialization of the NDGrid for
dimensionality of 1, in which the element type is not another NDGrid, but is in fact the element type
specified by the template parameter.

Here is the general NDGrid template definition, with highlights showing where it differs from the
OneDGrid shown in the previous section:

template <typename T, size_t N>
class NDGrid
{
 public:
 explicit NDGrid(size_t size = kDefaultSize);
 virtual ~NDGrid() = default;

790  ❘  CHAPTER 22   Advanced Templates

 NDGrid<T, N-1>& operator[](size_t x);
 const NDGrid<T, N-1>& operator[](size_t x) const;

 void resize(size_t newSize);
 size_t getSize() const { return mElements.size(); }

 static const size_t kDefaultSize = 10;
 private:
 std::vector<NDGrid<T, N-1>> mElements;
};

Note that mElements is a vector of NDGrid<T, N-1>; this is the recursive step. Also, operator[]
returns a reference to the element type, which is again NDGrid<T, N-1>, not T.

The template definition for the base case is a partial specialization for dimension 1:

template <typename T>
class NDGrid<T, 1>
{
 public:
 explicit NDGrid(size_t size = kDefaultSize);
 virtual ~NDGrid() = default;

 T& operator[](size_t x);
 const T& operator[](size_t x) const;

 void resize(size_t newSize);
 size_t getSize() const { return mElements.size(); }

 static const size_t kDefaultSize = 10;
 private:
 std::vector<T> mElements;
};

Here the recursion ends: the element type is T, not another template instantiation.

The trickiest aspect of the implementations, other than the template recursion itself, is appropriately
sizing each dimension of the grid. This implementation creates the N-dimensional grid with every
dimension of equal size. It’s significantly more difficult to specify a separate size for each dimension.
However, even with this simplification, there is still a problem: the user should have the ability to
create the array with a specified size, such as 20 or 50. Thus, the constructor takes an integer size
parameter. However, when you dynamically resize a vector of sub-grids, you cannot pass this size
value on to the sub-grid elements because vectors create objects using their default constructor.
Thus, you must explicitly call resize() on each grid element of the vector. That code follows. The
base case doesn’t need to resize its elements because the elements are Ts, not grids.

Here are the implementations of the general NDGrid template, with highlights showing the differ-
ences from the OneDGrid:

template <typename T, size_t N>
NDGrid<T, N>::NDGrid(size_t size)
{
 resize(size);
}

Template Recursion  ❘  791

template <typename T, size_t N>
void NDGrid<T, N>::resize(size_t newSize)
{
 mElements.resize(newSize);
 // Resizing the vector calls the 0-argument constructor for
 // the NDGrid<T, N-1> elements, which constructs
 // them with the default size. Thus, we must explicitly call
 // resize() on each of the elements to recursively resize all
 // nested Grid elements.
 for (auto& element : mElements) {
 element.resize(newSize);
 }
}

template <typename T, size_t N>
NDGrid<T, N-1>& NDGrid<T, N>::operator[](size_t x)
{
 return mElements[x];
}

template <typename T, size_t N>
const NDGrid<T, N-1>& NDGrid<T, N>::operator[](size_t x) const
{
 return mElements[x];
}

Now, here are the implementations of the partial specialization (base case). Note that you must
rewrite a lot of the code because you don’t inherit any implementations with specializations.
Highlights show the differences from the non-specialized NDGrid.

template <typename T>
NDGrid<T, 1>::NDGrid(size_t size)
{
 resize(size);
}

template <typename T>
void NDGrid<T, 1>::resize(size_t newSize)
{
 mElements.resize(newSize);
}

template <typename T>
T& NDGrid<T, 1>::operator[](size_t x)
{
 return mElements[x];
}

template <typename T>
const T& NDGrid<T, 1>::operator[](size_t x) const
{
 return mElements[x];
}

792  ❘  CHAPTER 22   Advanced Templates

Now, you can write code like this:

NDGrid<int, 3> my3DGrid;
my3DGrid[2][1][2] = 5;
my3DGrid[1][1][1] = 5;
cout << my3DGrid[2][1][2] << endl;

VARIADIC TEMPLATES

Normal templates can take only a fixed number of template parameters. Variadic templates can take
a variable number of template parameters. For example, the following code defines a template that
can accept any number of template parameters, using a parameter pack called Types:

template<typename... Types>
class MyVariadicTemplate { };

NOTE  The three dots following typename are not an error. This is the syntax to
define a parameter pack for variadic templates. A parameter pack is something
that can accept a variable number of arguments. You are allowed to put spaces
before and after the three dots.

You can instantiate MyVariadicTemplate with any number of types, as in this example:

MyVariadicTemplate<int> instance1;
MyVariadicTemplate<string, double, list<int>> instance2;

It can even be instantiated with zero template arguments:

MyVariadicTemplate<> instance3;

To avoid instantiating a variadic template with zero template arguments, you can write your tem-
plate as follows:

template<typename T1, typename... Types>
class MyVariadicTemplate { };

With this definition, trying to instantiate MyVariadicTemplate with zero template arguments
results in a compiler error. For example, with Microsoft Visual C++ you get the following error:

error C2976: 'MyVariadicTemplate' : too few template arguments

It is not possible to directly iterate over the different arguments given to a variadic template. The
only way you can do this is with the aid of template recursion. The following sections show two
examples of how to use variadic templates.

Type-Safe Variable-Length Argument Lists
Variadic templates allow you to create type-safe variable-length argument lists. The following
example defines a variadic template called processValues(), allowing it to accept a variable
number of arguments with different types in a type-safe manner. The processValues() function

Variadic Templates  ❘  793

processes each value in the variable-length argument list and executes a function called
handleValue() for each single argument. This means that you have to write a handleValue()
function for each type that you want to handle—int, double, and string in this example:

void handleValue(int value) { cout << "Integer: " << value << endl; }
void handleValue(double value) { cout << "Double: " << value << endl; }
void handleValue(string_view value) { cout << "String: " << value << endl; }

void processValues() { /* Nothing to do in this base case.*/ }

template<typename T1, typename... Tn>
void processValues(T1 arg1, Tn... args)
{
 handleValue(arg1);
 processValues(args...);
}

What this example also demonstrates is the double use of the triple dots ... operator. This opera-
tor appears in three places and has two different meanings. First, it is used after typename in the
template parameter list and after type Tn in the function parameter list. In both cases it denotes a
parameter pack. A parameter pack can accept a variable number of arguments.

The second use of the ... operator is following the parameter name args in the function body. In
this case, it means a parameter pack expansion; the operator unpacks/expands the parameter pack
into separate arguments. It basically takes what is on the left side of the operator, and repeats it for
every template parameter in the pack, separated by commas. Take the following line:

processValues(args...);

This line unpacks/expands the args parameter pack into its separate arguments, separated by
commas, and then calls the processValues() function with the list of expanded arguments.
The template always requires at least one template parameter, T1. The act of recursively calling
processValues() with args... is that on each call there is one template parameter less.

Because the implementation of the processValues() function is recursive, you need to have a way
to stop the recursion. This is done by implementing a processValues() function that accepts no
arguments.

You can test the processValues() variadic template as follows:

processValues(1, 2, 3.56, "test", 1.1f);

The recursive calls generated by this example are as follows:

processValues(1, 2, 3.56, "test", 1.1f);
 handleValue(1);
 processValues(2, 3.56, "test", 1.1f);
 handleValue(2);
 processValues(3.56, "test", 1.1f);
 handleValue(3.56);
 processValues("test", 1.1f);
 handleValue("test");
 processValues(1.1f);
 handleValue(1.1f);
 processValues();

794  ❘  CHAPTER 22   Advanced Templates

It is important to remember that this method of variable-length argument lists is fully type-safe. The
processValues() function automatically calls the correct handleValue() overload based on the
actual type. Automatic casting can happen as usual in C++. For example, the 1.1f in the preced-
ing example is of type float. The processValues() function calls handleValue(double value)
because conversion from float to double is without any loss. However, the compiler will issue an
error when you call processValues() with an argument of a certain type for which there is no
handleValue() defined.

There is a problem, though, with the preceding implementation. Because it’s a recursive implementa-
tion, the parameters are copied for each recursive call to processValues(). This can become costly
depending on the type of the arguments. You might think that you can avoid this copying by passing
references to processValues() instead of using pass-by-value. Unfortunately, that also means that
you cannot call processValues() with literals anymore, because a reference to a literal value is not
allowed, unless you use const references.

To use non-const references and still allow literal values, you can use forwarding references. The
following implementation uses forwarding references, T&&, and uses std::forward() for
perfect forwarding of all parameters. Perfect forwarding means that if an rvalue is passed to
processValues(), it is forwarded as an rvalue reference. If an lvalue or lvalue reference is passed,
it is forwarded as an lvalue reference.

void processValues() { /* Nothing to do in this base case.*/ }

template<typename T1, typename... Tn>
void processValues(T1&& arg1, Tn&&... args)
{
 handleValue(std::forward<T1>(arg1));
 processValues(std::forward<Tn>(args)...);
}

There is one line that needs further explanation:

processValues(std::forward<Tn>(args)...);

The ... operator is used to unpack the parameter pack. It uses std::forward() on each individual
argument in the pack and separates them with commas. For example, suppose args is a parameter
pack with three arguments, a1, a2, and a3, of three types, A1, A2, and A3. The expanded call then
looks as follows:

processValues(std::forward<A1>(a1),
 std::forward<A2>(a2),
 std::forward<A3>(a3));

Inside the body of a function using a parameter pack, you can retrieve the number of arguments in
the pack as follows:

int numOfArgs = sizeof...(args);

A practical example of using variadic templates is to write a secure and type-safe printf()-like
function template. This would be a good practice exercise for you to try.

Variadic Templates  ❘  795

Variable Number of Mixin Classes
Parameter packs can be used almost everywhere. For example, the following code uses a parameter
pack to define a variable number of mixin classes for MyClass. Chapter 5 discusses the concept of
mixin classes.

class Mixin1
{
 public:
 Mixin1(int i) : mValue(i) {}
 virtual void Mixin1Func() { cout << "Mixin1: " << mValue << endl; }
 private:
 int mValue;
};

class Mixin2
{
 public:
 Mixin2(int i) : mValue(i) {}
 virtual void Mixin2Func() { cout << "Mixin2: " << mValue << endl; }
 private:
 int mValue;
};

template<typename... Mixins>
class MyClass : public Mixins...
{
 public:
 MyClass(const Mixins&... mixins) : Mixins(mixins)... {}
 virtual ~MyClass() = default;
};

This code first defines two mixin classes: Mixin1 and Mixin2. They are kept pretty simple for this
example. Their constructor accepts an integer, which is stored, and they have a function to print
information about that specific instance of the class. The MyClass variadic template uses a param-
eter pack typename... Mixins to accept a variable number of mixin classes. The class then inherits
from all those mixin classes and the constructor accepts the same number of arguments to initialize
each inherited mixin class. Remember that the ... expansion operator basically takes what is on the
left of the operator and repeats it for every template parameter in the pack, separated by commas.
The class can be used as follows:

MyClass<Mixin1, Mixin2> a(Mixin1(11), Mixin2(22));
a.Mixin1Func();
a.Mixin2Func();

MyClass<Mixin1> b(Mixin1(33));
b.Mixin1Func();
//b.Mixin2Func(); // Error: does not compile.

MyClass<> c;
//c.Mixin1Func(); // Error: does not compile.
//c.Mixin2Func(); // Error: does not compile.

796  ❘  CHAPTER 22   Advanced Templates

When you try to call Mixin2Func() on b, you will get a compilation error because b is not inherit-
ing from the Mixin2 class. The output of this program is as follows:

Mixin1: 11
Mixin2: 22
Mixin1: 33

Folding Expressions
C++17 adds supports for so-called folding expressions. This makes working with parameter packs
in variadic templates much easier. The following table lists the four types of folds that are sup-
ported. In this table, Ѳ can be any of the following operators: + - * / % ^ & | << >> += -= *=
/= %= ^= &= |= <<= >>= = == != < > <= >= && || , .* ->*.

NAME EXPRESSION IS EXPANDED TO

Unary right fold (pack Ѳ ...) pack0 Ѳ (... Ѳ (packn-1 Ѳ packn))

Unary left fold (... Ѳ pack) ((pack0 Ѳ pack1) Ѳ ...) Ѳ packn

Binary right fold (pack Ѳ ... Ѳ Init) pack0 Ѳ (... Ѳ (packn-1 Ѳ (packn Ѳ Init)))

Binary left fold (Init Ѳ ... Ѳ pack) (((Init Ѳ pack0) Ѳ pack1) Ѳ ...) Ѳ packn

Let’s look at some examples. Earlier, the processValue() function template was defined recursively
as follows:

void processValues() { /* Nothing to do in this base case.*/ }

template<typename T1, typename... Tn>
void processValues(T1 arg1, Tn... args)
{
 handleValue(arg1);
 processValues(args...);
}

Because it was defined recursively, it needs a base case to stop the recursion. With folding expres-
sions, this can be implemented with a single function template using a unary right fold, where no
base case is needed:

template<typename... Tn>
void processValues(const Tn&... args)
{
 (handleValue(args), ...);
}

Basically, the three dots in the function body trigger folding. That line is expanded to call
handleValue() for each argument in the parameter pack, and each call to handleValue() is
separated by a comma. For example, suppose args is a parameter pack with three arguments,
a1, a2, and a3. The expansion of the unary right fold then becomes as follows:

(handleValue(a1), (handleValue(a2), handleValue(a3)));

C++17

Metaprogramming  ❘  797

Here is another example. The printValues() function template writes all its arguments to the
console, separated by newlines.

template<typename... Values>
void printValues(const Values&... values)
{
 ((cout << values << endl), ...);
}

Suppose that values is a parameter pack with three arguments, v1, v2, and v3. The expansion of
the unary right fold then becomes as follows:

((cout << v1 << endl), ((cout << v2 << endl), (cout << v3 << endl)));

You can call printValues() with as many arguments as you want, as shown here:

printValues(1, "test", 2.34);

In these examples, the folding is used with the comma operator, but it can be used with almost
any kind of operator. For example, the following code defines a variadic function template using a
binary left fold to calculate the sum of all the values given to it. A binary left fold always requires
an Init value (see the overview table earlier). So, sumValues() has two template type parameters: a
normal one to specify the type of Init, and a parameter pack which can accept 0 or more arguments.

template<typename T, typename... Values>
double sumValues(const T& init, const Values&... values)
{
 return (init + ... + values);
}

Suppose that values is a parameter pack with three arguments, v1, v2, and v3. Here is the expan-
sion of the binary left fold in that case:

return (((init + v1) + v2) + v3);

The sumValues() function template can be used as follows:

cout << sumValues(1, 2, 3.3) << endl;
cout << sumValues(1) << endl;

The template requires at least one argument, so the following does not compile:

cout << sumValues() << endl;

METAPROGRAMMING

This section touches on template metaprogramming. It is a very complicated subject and there are
books written about it explaining all the little details. This book doesn’t have the space to go into
all of these details. Instead, this section explains the most important concepts, with the aid of a
couple of examples.

The goal of template metaprogramming is to perform some computation at compile time instead
of at run time. It is basically a programming language on top of C++. The following section starts

798  ❘  CHAPTER 22   Advanced Templates

the discussion with a simple example that calculates the factorial of a number at compile time and
makes the result available as a simple constant at run time.

Factorial at Compile Time
Template metaprogramming allows you to perform calculations at compile time instead of at run time.
The following code is a small example that calculates the factorial of a number at compile time. The
code uses template recursion, explained earlier in this chapter, which requires a recursive template and
a base template to stop the recursion. By mathematical definition, the factorial of 0 is 1, so that is used
as the base case.

template<unsigned char f>
class Factorial
{
 public:
 static const unsigned long long val = (f * Factorial<f - 1>::val);
};

template<>
class Factorial<0>
{
 public:
 static const unsigned long long val = 1;
};

int main()
{
 cout << Factorial<6>::val << endl;
 return 0;
}

This calculates the factorial of 6, mathematically written as 6!, which is 1×2×3×4×5×6 or 720.

NOTE  It is important to keep in mind that the factorial calculation is happen-
ing at compile time. At run time, you simply access the compile-time calculated
value through ::val, which is just a static constant value.

For this specific example of calculating the factorial of a number at compile time, you don’t neces-
sarily need to use template metaprogramming. Since the introduction of constexpr, it can be writ-
ten as follows without any templates, though the template implementation still serves as a good
example on how to implement recursive templates.

constexpr unsigned long long factorial(unsigned char f)
{
 if (f == 0) {
 return 1;
 } else {
 return f * factorial(f - 1);
 }
}

Metaprogramming  ❘  799

If you call this version as follows, the value is calculated at compile time:

constexpr auto f1 = factorial(6);

However, you have to be careful not to forget the constexpr in this statement. If, instead, you write
the following, then the calculation happens at run time!

auto f1 = factorial(6);

You cannot make such a mistake with the template metaprogramming version; that one always hap-
pens at compile time.

Loop Unrolling
A second example of template metaprogramming is to unroll loops at compile time instead of exe-
cuting the loop at run time. Note that loop unrolling should only be done when you really need it,
because the compiler is usually smart enough to unroll loops that can be unrolled for you.

This example again uses template recursion because it needs to do something in a loop at compile
time. On each recursion, the Loop template instantiates itself with i-1. When it hits 0, the recursion
stops.

template<int i>
class Loop
{
 public:
 template <typename FuncType>
 static inline void Do(FuncType func) {
 Loop<i - 1>::Do(func);
 func(i);
 }
};

template<>
class Loop<0>
{
 public:
 template <typename FuncType>
 static inline void Do(FuncType /* func */) { }
};

The Loop template can be used as follows:

void DoWork(int i) { cout << "DoWork(" << i << ")" << endl; }

int main()
{
 Loop<3>::Do(DoWork);
}

This code causes the compiler to unroll the loop and to call the function DoWork() three times in a
row. The output of the program is as follows:

DoWork(1)
DoWork(2)
DoWork(3)

800  ❘  CHAPTER 22   Advanced Templates

With a lambda expression you can use a version of DoWork() that accepts more than one parameter:

void DoWork2(string str, int i)
{
 cout << "DoWork2(" << str << ", " << i << ")" << endl;
}

int main()
{
 Loop<2>::Do([](int i) { DoWork2("TestStr", i); });
}

The code first implements a function that accepts a string and an int. The main() function uses a
lambda expression to call DoWork2() on each iteration with a fixed string, "TestStr", as first argu-
ment. If you compile and run this code, the output is as follows:

DoWork2(TestStr, 1)
DoWork2(TestStr, 2)

Printing Tuples
This example uses template metaprogramming to print the individual elements of an std::tuple.
Tuples are explained in Chapter 20. They allow you to store any number of values, each with its
own specific type. A tuple has a fixed size and fixed value types, determined at compile time.
However, tuples don’t have any built-in mechanism to iterate over their elements. The following
example shows how you could use template metaprogramming to iterate over the elements of a
tuple at compile time.

As is often the case with template metaprogramming, this example is again using template recur-
sion. The tuple_print class template has two template parameters: the tuple type, and an integer,
initialized with the size of the tuple. It then recursively instantiates itself in the constructor and dec-
rements the integer on every call. A partial specialization of tuple_print stops the recursion when
this integer hits 0. The main() function shows how this tuple_print class template can be used.

template<typename TupleType, int n>
class tuple_print
{
 public:
 tuple_print(const TupleType& t) {
 tuple_print<TupleType, n - 1> tp(t);
 cout << get<n - 1>(t) << endl;
 }
};

template<typename TupleType>
class tuple_print<TupleType, 0>
{
 public:
 tuple_print(const TupleType&) { }
};

Metaprogramming  ❘  801

int main()
{
 using MyTuple = tuple<int, string, bool>;
 MyTuple t1(16, "Test", true);
 tuple_print<MyTuple, tuple_size<MyTuple>::value> tp(t1);
}

If you look at the main() function, you can see that the line to use the tuple_print template looks
a bit complicated because it requires the exact type of the tuple and the size of the tuple as tem-
plate arguments. This can be simplified a lot by introducing a helper function template that auto-
matically deduces the template parameters. The simplified implementation is as follows:

template<typename TupleType, int n>
class tuple_print_helper
{
 public:
 tuple_print_helper(const TupleType& t) {
 tuple_print_helper<TupleType, n - 1> tp(t);
 cout << get<n - 1>(t) << endl;
 }
};

template<typename TupleType>
class tuple_print_helper<TupleType, 0>
{
 public:
 tuple_print_helper(const TupleType&) { }
};

template<typename T>
void tuple_print(const T& t)
{
 tuple_print_helper<T, tuple_size<T>::value> tph(t);
}

int main()
{
 auto t1 = make_tuple(167, "Testing", false, 2.3);
 tuple_print(t1);
}

The first change made here is renaming the original tuple_print class template to tuple_print_
helper. The code then implements a small function template called tuple_print(). It accepts the
tuple’s type as a template type parameter, and accepts a reference to the tuple itself as a function
parameter. The body of that function instantiates the tuple_print_helper class template. The
main() function shows how to use this simplified version. Because you no longer need to know the
exact type of the tuple, you can use make_tuple() together with auto. The call to the tuple_
print() function template is very simple:

tuple_print(t1);

You don’t need to specify the function template parameter because the compiler can deduce this
automatically from the supplied argument.

802  ❘  CHAPTER 22   Advanced Templates

constexpr if
C++17 introduced constexpr if. These are if statements executed at compile time, not at run time.
If a branch of a constexpr if statement is never taken, it is never compiled. This can be used to
simplify a lot of template metaprogramming techniques, and also comes in handy for SFINAE (dis-
cussed later in this chapter).

For example, you can simplify the previous code for printing elements of a tuple using
constexpr if, as follows. Note that the template recursion base case is not needed anymore,
because the recursion is stopped with the constexpr if statement.

template<typename TupleType, int n>
class tuple_print_helper
{
 public:
 tuple_print_helper(const TupleType& t) {
 if constexpr(n > 1) {
 tuple_print_helper<TupleType, n - 1> tp(t);
 }
 cout << get<n - 1>(t) << endl;
 }
};

template<typename T>
void tuple_print(const T& t)
{
 tuple_print_helper<T, tuple_size<T>::value> tph(t);
}

Now you can even get rid of the class template itself, and replace it with a simple function template
called tuple_print_helper:

template<typename TupleType, int n>
void tuple_print_helper(const TupleType& t) {
 if constexpr(n > 1) {
 tuple_print_helper<TupleType, n - 1>(t);
 }
 cout << get<n - 1>(t) << endl;
}

template<typename T>
void tuple_print(const T& t)
{
 tuple_print_helper<T, tuple_size<T>::value>(t);
}

This can be simplified even more. Both methods can be combined into one, as follows:

template<typename TupleType, int n = tuple_size<TupleType>::value>
void tuple_print(const TupleType& t) {
 if constexpr(n > 1) {
 tuple_print<TupleType, n - 1>(t);
 }
 cout << get<n - 1>(t) << endl;
}

C++17

Metaprogramming  ❘  803

It can still be called the same as before:

auto t1 = make_tuple(167, "Testing", false, 2.3);
tuple_print(t1);

Using a Compile-Time Integer Sequence with Folding
C++ supports compile-time integer sequences using std::integer_sequence, which is defined
in <utility>. A common use case with template metaprogramming is to generate a compile-time
sequence of indices, that is, an integer sequence of type size_t. For this, a helper std::index_
sequence is available. You can use std::index_sequence_for to generate an index sequence of the
same length as the length of a given parameter pack.

The tuple printer could be implemented using variadic templates, compile-time index sequences, and
C++17 folding expressions as follows:

template<typename Tuple, size_t... Indices>
void tuple_print_helper(const Tuple& t, index_sequence<Indices...>)
{
 ((cout << get<Indices>(t) << endl), ...);
}

template<typename... Args>
void tuple_print(const tuple<Args...>& t)
{
 tuple_print_helper(t, index_sequence_for<Args...>());
}

It can be called in the same way as before:

auto t1 = make_tuple(167, "Testing", false, 2.3);
tuple_print(t1);

With this call, the unary right fold expression in the tuple_print_helper() function template
expands to the following:

(((cout << get<0>(t) << endl),
 ((cout << get<1>(t) << endl),
 ((cout << get<2>(t) << endl),
 (cout << get<3>(t) << endl)))));

Type Traits
Type traits allow you to make decisions based on types at compile time. For example, you can write
a template that requires a type that is derived from a certain type, or a type that is convertible to a
certain type, or a type that is integral, and so on. The C++ standard defines several helper classes for
this. All type traits-related functionality is defined in the <type_traits> header file. Type traits are
divided into separate categories. The following list gives a few examples of the available type traits
in each category. Consult a Standard Library Reference, see Appendix B, for a complete list.

804  ❘  CHAPTER 22   Advanced Templates

➤	 Primary type categories

o	 is_void

o	 is_integral

o	 is_floating_point

o	 is_pointer

o	 ...

➤	 Type properties

o	 is_const

o	 is_literal_type

o	 is_polymorphic

o	 is_unsigned

o	 is_constructible

o	 is_copy_constructible

o	 is_move_constructible

o	 is_assignable

o	 is_trivially_copyable

o	 is_swappable*

o	 is_nothrow_swappable*

o	 has_virtual_destructor

o	 has_unique_object_representations*

o	 ...

➤	 Reference modifications

o	 remove_reference

o	 add_lvalue_reference

o	 add_rvalue_reference

➤	 Pointer modifications

o	 remove_pointer

o	 add_pointer

➤	 Composited type categories

o	 is_reference

o	 is_object

o	 is_scalar

o	 ...

➤	 Type relations

o	 is_same

o	 is_base_of

o	 is_convertible

o	 is_invocable*

o	 is_nothrow_invocable*

o	 ...

➤	 const-volatile modifications

o	 remove_const

o	 add_const

o	 ...

➤	 Sign modifications

o	 make_signed

o	 make_unsigned

➤	 Array modifications

o	 remove_extent

o	 remove_all_extents

➤	 Logical operator traits

o	 conjuction*

o	 disjunction*

o	 negation*

➤	 Other transformations

o	 enable_if

o	 conditional

o	 invoke_result*

o	 ...

Metaprogramming  ❘  805

The type traits marked with an asterisk (*) are only available since C++17.

Type traits is a pretty advanced C++ feature. By just looking at the preceding list, which is already
a shortened version of the list from the C++ standard, it is clear that this book cannot explain all
details about all type traits. This section explains just a couple of use cases to show you how type
traits can be used.

Using Type Categories
Before an example can be given for a template using type traits, you first need to know a bit more on
how classes like is_integral work. The C++ standard defines an integral_constant class that
looks like this:

template <class T, T v>
struct integral_constant {
 static constexpr T value = v;
 using value_type = T;
 using type = integral_constant<T, v>;
 constexpr operator value_type() const noexcept { return value; }
 constexpr value_type operator()() const noexcept { return value; }
};

It also defines bool_constant, true_type, and false_type type aliases:

template <bool B>
using bool_constant = integral_constant<bool, B>;

using true_type = bool_constant<true>;
using false_type = bool_constant<false>;

What this code defines is two types: true_type and false_type. When you access true_
type::value, you get the value true, and when you access false_type::value, you get the value
false. You can also access true_type::type, which results in the type of true_type. The same
holds for false_type. Classes like is_integral and is_class inherit from either true_type or
false_type. For example, is_integral can be specialized for type bool as follows:

template<> struct is_integral<bool> : public true_type { };

This allows you to write is_integral<bool>::value, which results in the value true. Note that
you don’t need to write these specializations yourself; they are part of the Standard Library.

The following code shows the simplest example of how type categories can be used:

if (is_integral<int>::value) {
 cout << "int is integral" << endl;
} else {
 cout << "int is not integral" << endl;
}

if (is_class<string>::value) {
 cout << "string is a class" << endl;
} else {
 cout << "string is not a class" << endl;
}

806  ❘  CHAPTER 22   Advanced Templates

This example uses is_integral to check whether or not int is an integral type, and it uses is_
class to check whether or not string is a class. The output is as follows:

int is integral
string is a class

For each trait that has a value member, C++17 adds a variable template that has the same name as
the trait followed by _v. Instead of writing some_trait<T>::value, you can write some_trait_
v<T>—for example, is_integral_v<T>, is_const_v<T>, and so on. Here is the previous example
written using these helpers:

if (is_integral_v<int>) {
 cout << "int is integral" << endl;
} else {
 cout << "int is not integral" << endl;
}

if (is_class_v<string>) {
 cout << "string is a class" << endl;
} else {
 cout << "string is not a class" << endl;
}

Of course, you will likely never use type traits in this way. They become more useful in combination
with templates to generate code based on some properties of a type. The following template func-
tions demonstrate this. The code defines two overloaded process_helper() function templates that
accept a type as template parameter. The first parameter to these functions is a value, and the sec-
ond is an instance of either true_type or false_type. The process() function template accepts a
single parameter and calls process_helper().

template<typename T>
void process_helper(const T& t, true_type)
{
 cout << t << " is an integral type." << endl;
}

template<typename T>
void process_helper(const T& t, false_type)
{
 cout << t << " is a non-integral type." << endl;
}

template<typename T>
void process(const T& t)
{
 process_helper(t, typename is_integral<T>::type());
}

The second argument in the call to process_helper() is as follows:

typename is_integral<T>::type()

This argument uses is_integral to figure out if T is an integral type. You use ::type to
access the resulting integral_constant type, which can be true_type or false_type.

C++17

Metaprogramming  ❘  807

The process_helper() function needs an instance of true_type or false_type as a second
parameter, so that is the reason for the two empty parentheses behind ::type. Note that the two
overloaded process_helper() functions use nameless parameters of type true_type and false_
type. They are nameless because they don’t use those parameters inside their function body. These
parameters are only used for function overload resolution.

The code can be tested as follows:

process(123);
process(2.2);
process("Test"s);

Here is the output:

123 is an integral type.
2.2 is a non-integral type.
Test is a non-integral type.

The previous example could be written as a single function template as follows. However, that
doesn’t demonstrate how to use type traits to select different overloads based on a type.

template<typename T>
void process(const T& t)
{
 if constexpr (is_integral_v<T>) {
 cout << t << " is an integral type." << endl;
 } else {
 cout << t << " is a non-integral type." << endl;
 }
}

Using Type Relations
Some examples of type relations are is_same, is_base_of, and is_convertible. This section gives
an example of how to use is_same; the other type relations work similarly.

The following same() function template uses the is_same type trait to figure out whether or not the
two given arguments are of the same type, and outputs an appropriate message:

template<typename T1, typename T2>
void same(const T1& t1, const T2& t2)
{
 bool areTypesTheSame = is_same_v<T1, T2>;
 cout << "'" << t1 << "' and '" << t2 << "' are ";
 cout << (areTypesTheSame ? "the same types." : "different types.") << endl;
}

int main()
{
 same(1, 32);
 same(1, 3.01);
 same(3.01, "Test"s);
}

808  ❘  CHAPTER 22   Advanced Templates

The output is as follows:

'1' and '32' are the same types.
'1' and '3.01' are different types
'3.01' and 'Test' are different types

Using enable_if
The use of enable_if is based on a feature called Substitution Failure Is Not An Error (SFINAE), a
complicated feature of C++. This section only explains the basics of SFINAE.

If you have a set of overloaded functions, you can use enable_if to selectively disable certain over-
loads based on some type traits. The enable_if trait is usually used on the return types for your set
of overloads. enable_if accepts two template type parameters. The first is a Boolean, and the sec-
ond is a type that is void by default. If the Boolean is true, then the enable_if class has a nested
type that you can access using ::type. The type of this nested type is the type given as a second
template type parameter. If the Boolean is false, then there is no nested type.

The C++ standard defines alias templates for traits that have a type member, such as enable_if.
These have the same name as the trait, but are appended with _t. For example, instead of writing
the following,

typename enable_if<..., bool>::type

you can write a much shorter version,

enable_if_t<..., bool>

The same() function template from the previous section can be rewritten into an overloaded check_
type() function template by using enable_if as follows. In this version, the check_type() func-
tions return true or false depending on whether or not the types of the given values are the same.
If you don’t want to return anything from check_type(), you can remove the return statements,
and remove the second template type parameter for enable_if or replace it with void.

template<typename T1, typename T2>
enable_if_t<is_same_v<T1, T2>, bool>
 check_type(const T1& t1, const T2& t2)
{
 cout << "'" << t1 << "' and '" << t2 << "' ";
 cout << "are the same types." << endl;
 return true;
}

template<typename T1, typename T2>
enable_if_t<!is_same_v<T1, T2>, bool>
 check_type(const T1& t1, const T2& t2)
{
 cout << "'" << t1 << "' and '" << t2 << "' ";
 cout << "are different types." << endl;
 return false;
}

Metaprogramming  ❘  809

int main()
{
 check_type(1, 32);
 check_type(1, 3.01);
 check_type(3.01, "Test"s);
}

The output is the same as before:

'1' and '32' are the same types.
'1' and '3.01' are different types.
'3.01' and 'Test' are different types.

The code defines two versions of check_type(). The return type of both versions is the nested type
of enable_if, which is bool. First, is_same_v is used to check whether or not the two types are
the same. The result is given to enable_if_t. When the first argument to enable_if_t is true,
enable_if_t has type bool; otherwise, there is no type. This is where SFINAE comes into play.

When the compiler starts to compile the first line of main(), it tries to find a function check_
type() that accepts two integer values. It finds the first check_type() function template overload
in the source code and deduces that it can use an instance of this function template by making
T1 and T2 both integers. It then tries to figure out the return type. Because both arguments are
integers and thus the same types, is_same_v<T1, T2> is true, which causes enable_if_t<true,
bool> to be type bool. With this instantiation, everything is fine and the compiler can use that
version of check_type().

However, when the compiler tries to compile the second line in main(), it again tries to find a
suitable check_type() function. It starts with the first check_type() and decides it can use that
overload by setting T1 to type int and T2 to type double. It then tries to figure out the return type.
This time, T1 and T2 are different types, which means that is_same_v<T1, T2> is false. Because
of this, enable_if_t<false, bool> does not represent a type, leaving the function check_type()
without a return type. The compiler notices this error but does not yet generate a real compilation
error because of SFINAE (Substitution Failure Is Not An Error). Instead, the compiler gracefully
backtracks and tries to find another check_type() function. In this case, the second check_type()
works out perfectly fine because !is_same_v<T1, T2> is true, and thus enable_if_t<true,
bool> is type bool.

If you want to use enable_if on a set of constructors, you can’t use it with the return type because
constructors don’t have a return type. In that case, you can use enable_if on an extra constructor
parameter with a default value.

It is recommended to use enable_if judiciously. Use it only when you need to resolve overload
ambiguities that you cannot possibly resolve using any other technique, such as specialization,
partial specialization, and so on. For example, if you just want compilation to fail when you use a
template with the wrong types, use static_assert(), explained in Chapter 27, and not SFINAE.
Of course, there are legitimate use cases for enable_if. One such example is specializing a copy
function for a custom vector-like class to perform bit-wise copying of trivially copyable types using
enable_if and the is_trivially_copyable type trait. Such a specialized copy function could for
example use memcpy().

810  ❘  CHAPTER 22   Advanced Templates

WARNING  Relying on SFINAE is tricky and complicated. If your use of
SFINAE and enable_if selectively disables the wrong overloads in your over-
load set, you will get cryptic compiler errors, which will be hard to track down.

Using constexpr if to Simplify enable_if Constructs
As you can see from the earlier examples, using enable_if can become quite complicated. The
constexpr if feature, introduced in C++17, helps to dramatically simplify certain use cases of
enable_if.

For example, suppose you have the following two classes:

class IsDoable
{
 public:
 void doit() const { cout << "IsDoable::doit()" << endl; }
};

class Derived : public IsDoable { };

You can create a function template, call_doit(), that calls the doit() method if the method is
available; otherwise, it prints an error message to the console. You can do this with enable_if by
checking whether the given type is derived from IsDoable:

template<typename T>
enable_if_t<is_base_of_v<IsDoable, T>, void>
 call_doit(const T& t)
{
 t.doit();
}

template<typename T>
enable_if_t<!is_base_of_v<IsDoable, T>, void>
 call_doit(const T&)
{
 cout << "Cannot call doit()!" << endl;
}

The following code tests this implementation:

Derived d;
call_doit(d);
call_doit(123);

Here is the output:

IsDoable::doit()
Cannot call doit()!

You can simplify this enable_if implementation a lot by using C++17 constexpr if:

template<typename T>
void call_doit(const T& [[maybe_unused]] t)
{

C++17

Metaprogramming  ❘  811

 if constexpr(is_base_of_v<IsDoable, T>) {
 t.doit();
 } else {
 cout << "Cannot call doit()!" << endl;
 }
}

You cannot accomplish this using a normal if statement! With a normal if statement, both
branches need to be compiled, and this will fail if you supply a type T that is not derived from
IsDoable. In that case, the line t.doit() will fail to compile. However, with the constexpr if
statement, if a type is supplied that is not derived from IsDoable, then the line t.doit() won’t even
be compiled!

Note also the use of the [[maybe_unused]] attribute, introduced in C++17. Because the line
t.doit() is not compiled if the given type T is not derived from IsDoable, the parameter t won’t
be used in that instantiation of call_doit(). Most compilers give a warning or even an error if you
have unused parameters. The attribute prevents such warnings or errors for the parameter t.

Instead of using the is_base_of type trait, you can also use the new C++17 is_invocable trait,
which determines whether or not a given function can be called with a given set of arguments. Here
is an implementation of call_doit() using the is_invocable trait:

template<typename T>
void call_doit(const T& [[maybe_unused]] t)
{
 if constexpr(is_invocable_v<decltype(&IsDoable::doit), T>) {
 t.doit();
 } else {
 cout << "Cannot call doit()!" << endl;
 }
}

Logical Operator Traits
There are three logical operator traits: conjunction, disjunction, and negation. Variable tem-
plates, ending with _v, are available as well. These traits accept a variable number of template type
parameters, and can be used to perform logical operations on type traits, as in this example:

cout << conjunction_v<is_integral<int>, is_integral<short>> << " ";
cout << conjunction_v<is_integral<int>, is_integral<double>> << " ";

cout << disjunction_v<is_integral<int>, is_integral<double>,
 is_integral<short>> << " ";

cout << negation_v<is_integral<int>> << " ";

The output is as follows:

1 0 1 0

Metaprogramming Conclusion
As you have seen in this section, template metaprogramming can be a very powerful tool, but it can
also get quite complicated. One problem with template metaprogramming, not mentioned before,
is that everything happens at compile time so you cannot use a debugger to pinpoint a problem.

C++17

812  ❘  CHAPTER 22   Advanced Templates

If you decide to use template metaprogramming in your code, make sure you write good comments
to explain exactly what is going on and why you are doing something a certain way. If you don’t
properly document your template metaprogramming code, it might be very difficult for someone else
to understand your code, and it might even make it difficult for you to understand your own code in
the future.

SUMMARY

This chapter is a continuation of the template discussion from Chapter 12. These chapters show you
how to use templates for generic programming, and template metaprogramming for compile-time
computations. Hopefully you gained an appreciation for the power and capabilities of these features,
and an idea of how you could apply these concepts to your own code. Don’t worry if you didn’t
understand all the syntax, or didn’t follow all the examples, on your first reading. The concepts can
be difficult to grasp when you are first exposed to them, and the syntax is tricky whenever you want
to write more complicated templates. When you actually sit down to write a class or function tem-
plate, you can consult this chapter and Chapter 12 for a reference on the proper syntax.

Multithreaded Programming
with C++

WHAT’S IN THIS CHAPTER?

➤➤ What multithreaded programming is

➤➤ How to launch multiple threads

➤➤ How to retrieve results from threads

➤➤ What deadlocks and race conditions are, and how to use mutual
exclusion to prevent them

➤➤ How to use atomic types and atomic operations

➤➤ What condition variables are

➤➤ How to use futures and promises for inter-thread communication

➤➤ What thread pools are

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

Multithreaded programming is important on computer systems with multiple processor units.
It allows you to write a program to use all those processor units in parallel. There are mul-
tiple ways for a system to have multiple processor units. The system can have multiple discrete
processor chips, each one an independent CPU (Central Processor Unit). Or, the system can
have a single discrete processor chip that internally consists of multiple independent CPUs,

23

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

814  ❘  CHAPTER 23   Multithreaded Programming with C++

also called cores. These kinds of processors are called multicore processors. A system can also have
a combination of both. Systems with multiple processor units have existed for a long time; however,
they were rarely used in consumer systems. Today, all CPU vendors are selling multicore processors.
Nowadays, multicore processors are being used for everything from servers to consumer computers
to even smartphones. Because of this proliferation of multicore processors, it is important to know
how to write multithreaded applications. A professional C++ programmer needs to know how to
write correct multithreaded code to take full advantage of all the available processor units. Writing
multithreaded applications used to rely on platform- and operating system-specific APIs. This made
it difficult to write platform-independent multithreaded code. C++11 solved this problem by includ-
ing a standard threading library.

Multithreaded programming is a complicated subject. This chapter introduces you to multithreaded
programming using the standard threading library, but it cannot go into all of the details due to
space constraints. Entire books have been written about developing multithreaded programs. If
you are interested in more details, consult one of the references in the multithreading section in
Appendix B.

There are also third-party C++ libraries that try to make multithreaded programming more plat-
form independent, such as pthreads and the boost::thread library. However, because these librar-
ies are not part of the C++ standard, they are not discussed in this book.

INTRODUCTION

Multithreaded programming allows you to perform multiple calculations in parallel. As a result, you
can take advantage of the multiple processor units inside virtually all systems today. Two decades
ago, the processor market was racing for the highest frequency, which is perfect for single-threaded
applications. Around 2005, this race stopped due to a combination of power and heat management
problems. Since then, the processor market is racing toward the most cores on a single processor
chip. Dual- and quad-core processors are common, and even 12-, 16-, 18-, and more core processors
are available.

Similarly, if you look at the processors on graphics cards, called GPUs, you’ll see that they are
massively-parallel processors. Today, high-end graphics cards have more than 4,000 cores, a number
that will increase rapidly! These graphics cards are used not only for gaming, but also to perform
computationally intensive tasks. Examples are image and video manipulation, protein folding (use-
ful for discovering new drugs), processing signals as part of the SETI (Search for Extraterrestrial
Intelligence) project, and so on.

C++98/03 did not have support for multithreaded programming, and you had to resort to third-
party libraries or to the multithreading APIs of your target operating system. Because C++11
included a standard multithreading library, it became easier to write cross-platform multithreaded
applications. The current C++ standard targets only CPUs and not GPUs. This might change in the
future.

There are two reasons to start writing multithreaded code. First, if you have a computational prob-
lem and you manage to separate it into small pieces that can be run in parallel independently from
each other, you can expect a huge performance boost when running it on multiple processor units.

Introduction  ❘  815

Second, you can modularize computations along orthogonal axes. For example, you can do long
computations in a thread instead of blocking the UI thread, so the user interface remains responsive
while a long computation occurs in the background.

Figure 23-1 shows a situation that is perfectly suited for running in parallel. An example could be
the processing of pixels of an image by an algorithm that does not require information about neigh-
boring pixels. The algorithm could split the image into four parts. On a single-core processor, each
part would be processed sequentially; on a dual-core processor, two parts would be processed in
parallel; and on a quad-core processor, four parts would be processed in parallel, resulting in an
almost linear scaling of the performance with the number of cores.

Process part 1 Process part 2 Process part 3 Process part 4

Process part 1

Process part 2

Process part 3

Process part 4

Process part 1

Process part 2

Process part 3

Process part 4

Single core

Dual core

Quad core

Core 1

Core 2

Core 2

Core 3

Core 4

Core 1

Core 1

Time

FIGURE 23-1

Of course, it’s not always possible to split the problem into parts that can be executed independently
of each other in parallel. However, it can often be made parallel, at least partially, resulting in a
performance increase. A difficult part of multithreaded programming is making your algorithm
parallel, which is highly dependent on the type of the algorithm. Other difficulties are preventing
race conditions, deadlocks, tearing, and false-sharing. These are discussed in the following sections.
They are usually solved using atomics or explicit synchronization mechanisms, as discussed later in
this chapter.

NOTE  To prevent multithreading problems, try to design your programs so that
multiple threads need not read and write to shared memory. Or, use a synchroni-
zation method (as described in the section “Mutual Exclusion”) or atomic opera-
tions (as described in the section “Atomic Operations Library”).

Race Conditions
Race conditions can occur when multiple threads want to access any kind of shared resources.
Race conditions in the context of shared memory are called data races. A data race can occur when

816  ❘  CHAPTER 23   Multithreaded Programming with C++

multiple threads access shared memory, and at least one thread writes to the shared memory. For
example, suppose you have a shared variable and one thread increments this value while another
thread decrements it. Incrementing and decrementing the value means that the current value needs
to be retrieved from memory, incremented or decremented, and stored back in memory. On old
architectures, such as PDP-11 and VAX, this used to be implemented with an INC processor instruc-
tion, which was atomic. On modern x86 processors, the INC instruction is not atomic anymore,
meaning that other instructions can be executed in the middle of this operation, which might cause
the code to retrieve a wrong value.

The following table shows the result when the increment is finished before the decrement starts, and
assumes that the initial value is 1.

THREAD 1 (INCREMENT) THREAD 2 (DECREMENT)

load value (value = 1)

increment value (value = 2)

store value (value = 2)

load value (value = 2)

decrement value (value = 1)

store value (value = 1)

The final value stored in memory is 1. When the decrement thread is finished before the increment
thread starts, the final value is also 1, as shown in the following table.

THREAD 1 (INCREMENT) THREAD 2 (DECREMENT)

load value (value = 1)

decrement value (value = 0)

store value (value = 0)

load value (value = 0)

increment value (value = 1)

store value (value = 1)

However, when the instructions are interleaved, the result is different, as shown in the following
table.

THREAD 1 (INCREMENT) THREAD 2 (DECREMENT)

load value (value = 1)

increment value (value = 2)

Introduction  ❘  817

THREAD 1 (INCREMENT) THREAD 2 (DECREMENT)

load value (value = 1)

decrement value (value = 0)

store value (value = 2)

store value (value = 0)

The final result in this case is 0. In other words, the effect of the increment operation is lost. This is
a data race.

Tearing
Tearing is a specific case or consequence of a data race. There are two kinds of tearing: torn read
and torn write. If a thread has written part of your data to memory, while another part hasn’t been
written yet by the same thread, any other thread reading that data at that exact moment sees incon-
sistent data, a torn read. If two threads are writing to the data at the same time, one thread might
have written part of the data, while another thread might have written another part of the data. The
final result will be inconsistent, a torn write.

Deadlocks
If you opt to solve a race condition by using a synchronization method, such as mutual exclusion,
you might run into another common problem with multithreaded programming: deadlocks. Two
threads are deadlocked if they are both waiting for the other thread to do something. This can be
extended to more than two threads. For example, if two threads want to acquire access to a shared
resource, they need to ask for permission to access this resource. If one of the threads currently
holds the permission to access the resource, but is blocked indefinitely for some other reason, then
the other thread will block indefinitely as well when trying to acquire permission for the same
resource. One mechanism to acquire permission for a shared resource is called a mutual exclusion
object, discussed in detail later in this chapter. For example, suppose you have two threads and two
resources protected with two mutual exclusion objects, A and B. Both threads acquire permission
for both resources, but they acquire the permission in different order. The following table shows this
situation in pseudo-code.

THREAD 1 THREAD 2

Acquire A

Acquire B

// ... compute

Release B

Release A

Acquire B

Acquire A

// ... compute

Release A

Release B

Now, imagine that the code in the two threads is executed in the following order.

818  ❘  CHAPTER 23   Multithreaded Programming with C++

➤➤ Thread 1: Acquire A

➤➤ Thread 2: Acquire B

➤➤ Thread 1: Acquire B (waits/blocks, because B is held by thread 2)

➤➤ Thread 2: Acquire A (waits/blocks, because A is held by thread 1)

Both threads are now waiting indefinitely in a deadlock situation.
Figure 23-2 shows a graphical representation of the deadlock.
Thread 1 has acquired permission for resource A and is waiting
to acquire permission for resource B. Thread 2 has acquired per-
mission for resource B and is waiting to acquire permission for
resource A. In this graphical representation, you see a cycle that
depicts the deadlock. Both threads will wait indefinitely.

It’s best to always acquire permissions in the same order to avoid
these kinds of deadlocks. You can also include mechanisms in
your program to break these deadlocks. One possible solution
is to try for a certain time to acquire permission for a resource.
If the permission could not be obtained within a certain time
interval, the thread could stop waiting and possibly releases other
permissions it is currently holding. The thread might then sleep
for a little bit and try again later to acquire all the resources it needs. This method might give other
threads the opportunity to acquire necessary permissions and continue their execution. Whether
this method works or not depends heavily on your specific deadlock case.

Instead of using a workaround as described in the previous paragraph, you should try to avoid any
possible deadlock situation altogether. If you need to acquire permission to multiple resources pro-
tected with several mutual exclusion objects, instead of acquiring permission for each resource indi-
vidually, the recommended way is to use the standard std::lock() or std::try_lock() functions
described later in the section “Mutual Exclusion.” These functions obtain or try to obtain permis-
sion for several resources with one call.

False-Sharing
Most caches work with so-called cache lines. For modern CPUs, cache lines are usually 64 bytes.
If something needs to be written to a cache line, the entire line needs to be locked. This can bring a
serious performance penalty for multithreaded code if your data structure is not properly designed.
For example, if two threads are using two different pieces of data, but that data shares a cache line,
then when one thread writes something, the other thread is blocked because the entire cache line is
locked. You can optimize your data structures by using explicit memory alignments to make sure
data that is worked on by multiple threads does not share any cache lines. To do this in a portable
manner, C++17 introduces a constant called hardware_destructive_interference_size, defined
in <new>, which returns you the minimum recommended offset between two concurrently accessed
objects to avoid cache line sharing. You can use that value in combination with the alignas key-
word to properly align your data.

Thread 1 Thread 2

Resource B

Resource A

FIGURE 23-2

Threads  ❘  819

THREADS

The C++ threading library, defined in the <thread> header file, makes it very easy to launch new
threads. You can specify what needs to be executed in the new thread in several ways. You can let
the new thread execute a global function, the operator() of a function object, a lambda expres-
sion, or even a member function of an instance of some class. The following sections give small
examples of all these methods.

Thread with Function Pointer
Functions such as CreateThread(), _beginthread(), and so on, on Windows, and pthread_
create() with the pthreads library, require that the thread function has only one parameter. On
the other hand, a function that you want to use with the standard C++ std::thread class can have
as many parameters as you want.

Suppose you have a counter() function accepting two integers: the first representing an ID and the
second representing the number of iterations that the function should loop. The body of the function
is a single loop that loops the given number of iterations. On each iteration, a message is printed to
standard output:

void counter(int id, int numIterations)
{
 for (int i = 0; i < numIterations; ++i) {
 cout << "Counter " << id << " has value " << i << endl;
 }
}

You can launch multiple threads executing this function using std::thread. You can create a
thread t1, executing counter() with arguments 1 and 6 as follows:

thread t1(counter, 1, 6);

The constructor of the thread class is a variadic template, which means that it accepts any number
of arguments. Variadic templates are discussed in detail in Chapter 22. The first argument is the
name of the function to execute in the new thread. The subsequent variable number of arguments
are passed to this function when execution of the thread starts.

A thread object is said to be joinable if it represents or represented an active thread in the system.
Even when the thread has finished executing, a thread object remains in the joinable state. A default
constructed thread object is unjoinable. Before a joinable thread object is destroyed, you need to
make sure to call either join() or detach() on it. A call to join() is a blocking call, it waits until
the thread has finished its work. A call to detach() detaches a thread object from its underly-
ing OS thread, in which case the OS thread keeps running independently. Both methods cause the
thread to become unjoinable. If a thread object that is still joinable is destroyed, the destructor will
call std::terminate(), which abruptly terminates all threads and the application itself.

The following code launches two threads executing the counter() function. After launching the
threads, main() calls join() on both threads.

thread t1(counter, 1, 6);
thread t2(counter, 2, 4);

820  ❘  CHAPTER 23   Multithreaded Programming with C++

t1.join();
t2.join();

A possible output of this example looks as follows:

Counter 2 has value 0
Counter 1 has value 0
Counter 1 has value 1
Counter 1 has value 2
Counter 1 has value 3
Counter 1 has value 4
Counter 1 has value 5
Counter 2 has value 1
Counter 2 has value 2
Counter 2 has value 3

The output on your system will be different and it will most likely be different every time you run it.
This is because two threads are executing the counter() function at the same time, so the output
depends on the number of processing cores in your machine and on the thread scheduling of the
operating system.

By default, accessing cout from different threads is thread-safe and doesn’t cause any data races,
unless you have called cout.sync_with_stdio(false) before the first output or input operation.
However, even though there are no data races, output from different threads can still be interleaved!
This means that the output of the previous example can be mixed together as follows:

Counter Counter 2 has value 0
1 has value 0
Counter 1 has value 1
Counter 1 has value 2
...

This can be fixed using synchronization methods, which are discussed later in this chapter.

NOTE  Thread function arguments are always copied into some internal storage
for the thread. Use std::ref() or cref() from the <functional> header to
pass them by reference.

Thread with Function Object
Instead of using function pointers, you can also use a function object to execute in a thread. With
the function pointer technique of the previous section, the only way to pass information to the
thread is by passing arguments to the function. With function objects, you can add member vari-
ables to your function object class, which you can initialize and use however you want. The follow-
ing example first defines a class called Counter, which has two member variables: an ID and the
number of iterations for the loop. Both variables are initialized with the constructor. To make the

Threads  ❘  821

Counter class a function object, you need to implement operator(), as discussed in Chapter 18.
The implementation of operator() is the same as the counter() function from the previous
section. Here is the code:

class Counter
{
 public:
 Counter(int id, int numIterations)
 : mId(id), mNumIterations(numIterations)
 {
 }

 void operator()() const
 {
 for (int i = 0; i < mNumIterations; ++i) {
 cout << "Counter " << mId << " has value " << i << endl;
 }
 }
 private:
 int mId;
 int mNumIterations;
};

Three methods for initializing threads with a function object are demonstrated in the following code
snippet. The first method uses the uniform initialization syntax. You create an instance of Counter
with its constructor arguments and give it to the thread constructor between curly braces.

The second method defines a named instance of Counter and gives this named instance to the
constructor of the thread class.

The third method looks similar to the first one; it creates an instance of Counter and gives it to the
constructor of the thread class, but uses parentheses instead of curly braces. The ramifications of
this are discussed after the code.

// Using uniform initialization syntax
thread t1{ Counter{ 1, 20 }};

// Using named variable
Counter c(2, 12);
thread t2(c);

// Using temporary
thread t3(Counter(3, 10));

// Wait for threads to finish
t1.join();
t2.join();
t3.join();

If you compare the creation of t1 with the creation of t3, the only difference seems to be that
the first method uses curly braces while the third method uses parentheses. However, when your

822  ❘  CHAPTER 23   Multithreaded Programming with C++

function object constructor doesn’t require any parameters, the third method as written earlier does
not work. Here is an example:

class Counter
{
 public:
 Counter() {}
 void operator()() const { /* Omitted for brevity */ }
};

int main()
{
 thread t1(Counter()); // Error!
 t1.join();
}

This results in a compilation error because C++ interprets the first line in main() as a declaration
of a function called t1, which returns a thread object and accepts a pointer to a function without
parameters returning a Counter object. For this reason, it’s recommended to use the uniform initial-
ization syntax:

thread t1{ Counter{} }; // OK

NOTE  Function objects are always copied into some internal storage for the
thread. If you want to execute operator() on a specific instance of your func-
tion object instead of copying it, you should use std::ref() or cref() from the
<functional> header to pass your instance by reference, for example:

Counter c(2, 12);
thread t2(ref(c));

Thread with Lambda
Lambda expressions fit nicely with the standard C++ threading library. Here is an example that
launches a thread to execute a given lambda expression:

int main()
{
 int id = 1;
 int numIterations = 5;
 thread t1([id, numIterations] {
 for (int i = 0; i < numIterations; ++i) {
 cout << "Counter " << id << " has value " << i << endl;
 }
 });
 t1.join();
}

Threads  ❘  823

Thread with Member Function
You can specify a member function of a class to be executed in a thread. The following example
defines a basic Request class with a process() method. The main() function creates an instance
of the Request class, and launches a new thread, which executes the process() method of the
Request instance req.

class Request
{
 public:
 Request(int id) : mId(id) { }

 void process()
 {
 cout << "Processing request " << mId << endl;
 }
 private:
 int mId;
};

int main()
{
 Request req(100);
 thread t{ &Request::process, &req };
 t.join();
}

With this technique, you are executing a method on a specific object in a separate thread. If other
threads are accessing the same object, you need to make sure this happens in a thread-safe way to
avoid data races. Mutual exclusion, discussed later in this chapter, can be used as a synchronization
mechanism to make it thread-safe.

Thread Local Storage
The C++ standard supports the concept of thread local storage. With a keyword called thread_
local, you can mark any variable as thread local, which means that each thread will have its own
unique copy of the variable and it will last for the entire duration of the thread. For each thread, the
variable is initialized exactly once. For example, the following code defines two global variables.
Every thread shares one—and only one—copy of k, while each thread has its own unique copy of n:

int k;
thread_local int n;

Note that if the thread_local variable is declared in the scope of a function, its behavior is as if it
were declared static, except that every thread has its own unique copy and is initialized exactly
once per thread, no matter how many times that function is called in that thread.

824  ❘  CHAPTER 23   Multithreaded Programming with C++

Cancelling Threads
The C++ standard does not include any mechanism for cancelling a running thread from another
thread. The best way to achieve this is to provide some communication mechanism that the two
threads agree upon. The simplest mechanism is to have a shared variable, which the target thread
checks periodically to determine if it should terminate. Other threads can set this shared variable to
indirectly instruct the thread to shut down. You have to be careful here, because this shared variable
is being accessed by multiple threads, of which at least one is writing to the shared variable. It’s rec-
ommended to use atomic variables or condition variables, both discussed later in this chapter.

Retrieving Results from Threads
As you saw in the previous examples, launching a new thread is pretty easy. However, in most cases
you are probably interested in results produced by the thread. For example, if your thread performs
some mathematical calculations, you really would like to get the results out of the thread once
the thread is finished. One way is to pass a pointer or reference to a result variable to the thread
in which the thread stores the results. Another method is to store the results inside class member
variables of a function object, which you can retrieve later once the thread has finished executing.
This only works if you use std::ref() to pass your function object by reference to the thread
constructor.

However, there is another easier method to obtain a result from threads: futures. Futures also make
it easier to handle errors that occur inside your threads. They are discussed later in this chapter.

Copying and Rethrowing Exceptions
The whole exception mechanism in C++ works perfectly fine, as long as it stays within one
single thread. Every thread can throw its own exceptions, but they need to be caught within their
own thread. If a thread throws an exception and it is not caught inside the thread, the C++ run-
time calls std::terminate(), which terminates the whole application. Exceptions thrown in one
thread cannot be caught in another thread. This introduces quite a few problems when you would
like to use exception handling in combination with multithreaded programming.

Without the standard threading library, it’s very difficult if not impossible to gracefully handle
exceptions across threads. The standard threading library solves this issue with the following
exception-related functions. These functions work not only with std::exceptions, but also with
other kinds of exceptions, ints, strings, custom exceptions, and so on:

➤➤ exception_ptr current_exception() noexcept;

This is intended to be called from inside a catch block. It returns an exception_ptr object
that refers to the exception currently being handled, or a copy of the currently handled
exception. A null exception_ptr object is returned if no exception is being handled. This
referenced exception object remains valid for as long as there is an object of type exception
_ptr that is referencing it. exception_ptr is of type NullablePointer, which means it
can easily be tested with a simple if statement, as the example later in this section will
demonstrate.

Threads  ❘  825

➤➤ [[noreturn]] void rethrow_exception(exception_ptr p);

This function rethrows the exception referenced by the exception_ptr parameter.
Rethrowing the referenced exception does not have to be done in the same thread that gen-
erated the referenced exception in the first place, which makes this feature perfectly suited
for handling exceptions across different threads. The [[noreturn]] attribute makes it clear
that this function never returns normally. Attributes are introduced in Chapter 11.

➤➤ template<class E> exception_ptr make_exception_ptr(E e) noexcept;

This function creates an exception_ptr object that refers to a copy of the given exception
object. This is basically a shorthand notation for the following code:

try {
 throw e;
} catch(...) {
 return current_exception();
}

Let’s see how handling exceptions across different threads can be implemented using these func-
tions. The following code defines a function that does some work and throws an exception. This
function will ultimately be running in a separate thread:

void doSomeWork()
{
 for (int i = 0; i < 5; ++i) {
 cout << i << endl;
 }
 cout << "Thread throwing a runtime_error exception..." << endl;
 throw runtime_error("Exception from thread");
}

The following threadFunc() function wraps the call to the preceding function in a try/catch
block, catching all exceptions that doSomeWork() might throw. A single argument is supplied to
threadFunc(), which is of type exception_ptr&. Once an exception is caught, the function
current_exception() is used to get a reference to the exception being handled, which is then
assigned to the exception_ptr parameter. After that, the thread exits normally:

void threadFunc(exception_ptr& err)
{
 try {
 doSomeWork();
 } catch (...) {
 cout << "Thread caught exception, returning exception..." << endl;
 err = current_exception();
 }
}

The following doWorkInThread() function is called from within the main thread. Its responsibility
is to create a new thread and start executing threadFunc() in it. A reference to an object of
type exception_ptr is given as argument to threadFunc(). Once the thread is created, the
doWorkInThread() function waits for the thread to finish by using the join() method, after which
the error object is examined. Because exception_ptr is of type NullablePointer, you can eas-
ily check it using an if statement. If it’s a non-null value, the exception is rethrown in the current
thread, which is the main thread in this example. Because you are rethrowing the exception in the
main thread, the exception has been transferred from one thread to another thread.

826  ❘  CHAPTER 23   Multithreaded Programming with C++

void doWorkInThread()
{
 exception_ptr error;
 // Launch thread
 thread t{ threadFunc, ref(error) };
 // Wait for thread to finish
 t.join();
 // See if thread has thrown any exception
 if (error) {
 cout << "Main thread received exception, rethrowing it..." << endl;
 rethrow_exception(error);
 } else {
 cout << "Main thread did not receive any exception." << endl;
 }
}

The main() function is pretty straightforward. It calls doWorkInThread() and wraps the call in a
try/catch block to catch exceptions thrown by the thread spawned by doWorkInThread():

int main()
{
 try {
 doWorkInThread();
 } catch (const exception& e) {
 cout << "Main function caught: '" << e.what() << "'" << endl;
 }
}

The output is as follows:

0
1
2
3
4
Thread throwing a runtime_error exception...
Thread caught exception, returning exception...
Main thread received exception, rethrowing it...
Main function caught: 'Exception from thread'

To keep the examples in this chapter compact and to the point, their main() functions usually use
join() to block the main thread, and to wait until threads have finished. Of course, in real-world
applications you do not want to block your main thread. For example, in a GUI application,
blocking your main thread means that the UI becomes unresponsive. In that case, you can use a
messaging paradigm to communicate between threads. For example, the earlier threadFunc()
function could send a message to the UI thread with as argument a copy of the result of current_
exception(). But even then, you need to make sure to call either join() or detach() on
any spawned threads, as discussed earlier in this chapter.

Atomic Operations Library  ❘  827

ATOMIC OPERATIONS LIBRARY

Atomic types allow atomic access, which means that concurrent reading and writing without addi-
tional synchronization is allowed. Without atomic operations, incrementing a variable is not thread-
safe because the compiler first loads the value from memory into a register, increments it, and then
stores the result back in memory. Another thread might touch the same memory during this incre-
ment operation, which is a data race. For example, the following code is not thread-safe and con-
tains a data race. This type of data races is discussed in the beginning of this chapter.

int counter = 0; // Global variable
++counter; // Executed in multiple threads

You can use an std::atomic type to make this thread-safe without explicitly using any synchroni-
zation mechanism, such as mutual exclusion objects, which are discussed later in this chapter. Here
is the same code using an atomic integer:

atomic<int> counter(0) ; // Global variable
++counter; // Executed in multiple threads

You need to include the <atomic> header to use these atomic types. The C++ standard defines
named integral atomic types for all primitive types. The following table lists a few.

NAMED ATOMIC TYPE EQUIVALENT STD::ATOMIC TYPE

atomic_bool atomic<bool>

atomic_char atomic<char>

atomic_uchar atomic<unsigned char>

atomic_int atomic<int>

atomic_uint atomic<unsigned int>

atomic_long atomic<long>

atomic_ulong atomic<unsigned long>

atomic_llong atomic<long long>

atomic_ullong atomic<unsigned long long>

atomic_wchar_t atomic<wchar_t>

You can use atomic types without explicitly using any synchronization mechanism. However,
underneath, operations on atomics of a certain type might use a synchronization mechanism such
as mutual exclusion objects. This might happen, for example, when the hardware you are targeting
lacks the instructions to perform an operation atomically. You can use the is_lock_free() method
on an atomic type to query whether it supports lock-free operations, that is, its operations run with-
out any explicit synchronization mechanism underneath.

828  ❘  CHAPTER 23   Multithreaded Programming with C++

The std::atomic class template can be used with all kinds of types, not only integral types. For
example, you can create an atomic<double>, or an atomic<MyType>, but only if MyType is trivially
copyable. Depending on the size of the specified type, underneath these might require explicit syn-
chronization mechanisms. In the following example, both Foo and Bar are trivially copyable, that is,
std::is_trivially_copyable_v is true for both. However, atomic<Foo> is not lock free, while
atomic<Bar> is.

class Foo { private: int mArray[123]; };
class Bar { private: int mInt; };

int main()
{
 atomic<Foo> f;
 // Outputs: 1 0
 cout << is_trivially_copyable_v<Foo> << " " << f.is_lock_free() << endl;
 atomic<Bar> b;
 // Outputs: 1 1
 cout << is_trivially_copyable_v<Bar> << " " << b.is_lock_free() << endl;
}

When accessing a piece of data from multiple threads, atomics also solve problems such as memory
ordering, compiler optimizations, and so on. Basically, it’s virtually never safe to read and write
to the same piece of data from multiple threads without using atomics or explicit synchronization
mechanisms!

Atomic Type Example
This section explains in more detail why you should use atomic types. Suppose you have a func-
tion called increment() that increments an integer reference parameter in a loop. This code uses
std::this_thread::sleep_for() to introduce a small delay in each loop. The argument to
sleep_for() is an std::chrono::duration, which is explained in Chapter 20.

void increment(int& counter)
{
 for (int i = 0; i < 100; ++i) {
 ++counter;
 this_thread::sleep_for(1ms);
 }
}

Now, you would like to run several threads in parallel, all executing this increment() function on
a shared counter variable. By implementing this naively without atomic types or without any kind
of thread synchronization, you introduce data races. The following code launches ten threads, after
which it waits for all threads to finish by calling join() on each thread:

int main()
{
 int counter = 0;
 vector<thread> threads;
 for (int i = 0; i < 10; ++i) {
 threads.push_back(thread{ increment, ref(counter) });
 }

Atomic Operations Library  ❘  829

 for (auto& t : threads) {
 t.join();
 }
 cout << "Result = " << counter <<endl;
}

Because increment() increments its given integer 100 times, and ten threads are launched, each
of which executes increment() on the same shared counter, the expected result is 1,000. If you
execute this program several times, you might get the following output but with different values:

Result = 982
Result = 977
Result = 984

This code is clearly showing a data race. In this example, you can use an atomic type to fix the code.
The following code highlights the required changes:

#include <atomic>

void increment(atomic<int>& counter)
{
 for (int i = 0; i < 100; ++i) {
 ++counter;
 this_thread::sleep_for(1ms);
 }
}

int main()
{
 atomic<int> counter(0);
 vector<thread> threads;
 for (int i = 0; i < 10; ++i) {
 threads.push_back(thread{ increment, ref(counter) });
 }

 for (auto& t : threads) {
 t.join();
 }
 cout << "Result = " << counter << endl;
}

The changes add the <atomic> header file, and change the type of the shared counter to
std::atomic<int> instead of int. When you run this modified version, you always get 1,000 as the
result:

Result = 1000
Result = 1000
Result = 1000

Without explicitly adding any synchronization mechanism to the code, it is now thread-safe and
data-race-free because the ++counter operation on an atomic type loads, increments, and stores the
value in one atomic transaction, which cannot be interrupted.

However, there is a new problem with this modified code: a performance problem. You should try
to minimize the amount of synchronization, either atomic or explicit synchronization, because it

830  ❘  CHAPTER 23   Multithreaded Programming with C++

lowers performance. For this simple example, the best and recommended solution is to let
increment() calculate its result in a local variable, and only after the loop, add it to the counter
reference. Note that it is still required to use an atomic type, because you are still writing to
counter from multiple threads.

void increment(atomic<int>& counter)
{
 int result = 0;
 for (int i = 0; i < 100; ++i) {
 ++result;
 this_thread::sleep_for(1ms);
 }
 counter += result;
}

Atomic Operations
The C++ standard defines a number of atomic operations. This section describes a few of those
operations. For a full list, consult a Standard Library Reference, see Appendix B.

A first example of an atomic operation is the following:

bool atomic<T>::compare_exchange_strong(T& expected, T desired);

The logic implemented atomically by this operation is as follows, in pseudo-code:

if (*this == expected) {
 *this = desired;
 return true;
} else {
 expected = *this;
 return false;
}

Although this logic might seem fairly strange on first sight, this operation is a key building block for
writing lock-free concurrent data structures. Lock-free concurrent data structures allow operations
on their data without requiring any synchronization mechanisms. However, implementing such data
structures is an advanced topic, outside the scope of this book.

A second example is atomic<T>::fetch_add(), which works for integral atomic types. It fetches
the current value of the atomic type, adds the given increment to the atomic value, and returns the
original non-incremented value. Here is an example:

atomic<int> value(10);
cout << "Value = " << value << endl;
int fetched = value.fetch_add(4);
cout << "Fetched = " << fetched << endl;
cout << "Value = " << value << endl;

If no other threads are touching the contents of the fetched and value variables, the output is as
follows:

Value = 10
Fetched = 10
Value = 14

Mutual Exclusion  ❘  831

Atomic integral types support the following atomic operations: fetch_add(), fetch_sub(), fetch_
and(), fetch_or(), fetch_xor(), ++, --, +=, -=, &=, ^=, and |=. Atomic pointer types support
fetch_add(), fetch_sub(), ++, --, +=, and -=.

Most of the atomic operations can accept an extra parameter specifying the memory ordering that
you would like. Here is an example:

T atomic<T>::fetch_add(T value, memory_order = memory_order_seq_cst);

You can change the default memory_order. The C++ standard provides memory_order_relaxed,
memory_order_consume, memory_order_acquire, memory_order_release, memory_order_acq_
rel, and memory_order_seq_cst, all of which are defined in the std namespace. However, you
will rarely want to use them instead of the default. While another memory order may perform bet-
ter than the default, according to some metrics, if you use them in a slightly incorrect way, you will
again introduce data races or other difficult-to-track threading-related problems. If you do want to
know more about memory ordering, consult one of the multithreading references in Appendix B.

MUTUAL EXCLUSION

If you are writing multithreaded applications, you have to be sensitive to sequencing of operations. If
your threads read and write shared data, this can be a problem. There are many ways to avoid this
problem, such as never actually sharing data between threads. However, if you can’t avoid sharing
data, you must provide for synchronization so that only one thread at a time can change the data.

Scalars such as Booleans and integers can often be synchronized properly with atomic operations,
as described earlier; however, when your data is more complex, and you need to use that data from
multiple threads, you must provide explicit synchronization.

The Standard Library has support for mutual exclusion in the form of mutex and lock classes.
These can be used to implement synchronization between threads and are discussed in the following
sections.

Mutex Classes
Mutex stands for mutual exclusion. The basic mechanism of using a mutex is as follows:

➤➤ A thread that wants to use (read/write) memory shared with other threads tries to lock a
mutex object. If another thread is currently holding this lock, the new thread that wants
to gain access blocks until the lock is released, or until a timeout interval expires.

➤➤ Once the thread has obtained the lock, it is free to use the shared memory. Of course, this
assumes that all threads that want to use the shared data correctly acquire a lock on the
mutex.

➤➤ After the thread is finished with reading/writing to the shared memory, it releases the lock
to give some other thread an opportunity to obtain the lock to the shared memory. If two
or more threads are waiting on the lock, there are no guarantees as to which thread will be
granted the lock and thus allowed to proceed.

The C++ standard provides non-timed mutex and timed mutex classes.

832  ❘  CHAPTER 23   Multithreaded Programming with C++

Non-timed Mutex Classes
The Standard Library has three non-timed mutex classes: std::mutex, recursive_mutex, and
shared_mutex (since C++17). The first two classes are defined in <mutex>, and the last one in
<shared_mutex>. Each mutex supports the following methods.

➤➤ lock(): The calling thread tries to obtain the lock and blocks until the lock has been
acquired. It blocks indefinitely. If there is a desire to limit the amount of time the thread
blocks, you should use a timed mutex, discussed in the next section.

➤➤ try_lock(): The calling thread tries to obtain the lock. If the lock is currently held by
another thread, the call returns immediately. If the lock has been obtained, try_lock()
returns true; otherwise, it returns false.

➤➤ unlock(): The calling thread releases the lock it currently holds, making it available for
another thread.

std::mutex is a standard mutual exclusion class with exclusive ownership semantics. There can be
only one thread owning the mutex. If another thread wants to obtain ownership of this mutex, it
either blocks when using lock(), or fails when using try_lock(). A thread already having owner-
ship of a mutex is not allowed to call lock() or try_lock() again on that mutex. This might lead
to a deadlock!

std::recursive_mutex behaves almost identically to mutex, except that a thread already having
ownership of a recursive mutex is allowed to call lock() or try_lock() again on the same recur-
sive mutex. The calling thread should call the unlock() method as many times as it obtained a lock
on the recursive mutex.

The shared_mutex class supports the concept of shared lock ownership, also known as readers-
writers lock. A thread can get either exclusive ownership or shared ownership of the lock. Exclusive
ownership, also known as a write lock, can be acquired only when there are no other threads having
exclusive or shared ownership. Shared ownership, also known as a read lock, can be acquired if there
is no other thread having exclusive ownership, but other threads are allowed to have acquired shared
ownership. The shared_mutex class supports lock(), try_lock(), and unlock(). These methods
acquire and release exclusive locks. Additionally, they have the following shared ownership-related
methods: lock_shared(), try_lock_shared(), and unlock_shared(). These work similarly to the
other set of methods, but try to acquire or release shared ownership.

A thread already having a lock on a shared_mutex is not allowed to try to acquire a second lock on
that mutex. This might lead to a deadlock!

Timed Mutex Classes
The Standard Library provides three timed mutex classes: std::timed_mutex, recursive_timed_
mutex, and shared_timed_mutex. The first two classes are defined in <mutex>, and the last one in
<shared_mutex>. They all support the lock(), try_lock(), and unlock() methods; and shared_
timed_mutex also supports lock_shared(), try_lock_shared(), and unlock_shared(). All these
methods behave the same as described in the previous section. Additionally, they support the follow-
ing methods.

Mutual Exclusion  ❘  833

➤➤ try_lock_for(rel_time): The calling thread tries to obtain the lock for a certain rela-
tive time. If the lock could not be obtained after the given timeout, the call fails and returns
false. If the lock could be obtained within the timeout, the call succeeds and returns true.
The timeout is specified as an std::chrono::duration, see Chapter 20.

➤➤ try_lock_until(abs_time): The calling thread tries to obtain the lock until the system
time equals or exceeds the specified absolute time. If the lock could be obtained before
this time, the call returns true. If the system time passes the given absolute time, the func-
tion stops trying to obtain the lock and returns false. The absolute time is specified as an
std::chrono::time_point, see Chapter 20.

A shared_timed_mutex also supports try_lock_shared_for() and try_lock_shared_until().

A thread already having ownership of a timed_mutex or a shared_timed_mutex is not allowed to
acquire the lock a second time on that mutex. This might lead to a deadlock!

A recursive_timed_mutex allows a thread to acquire a lock multiple times, just as with
recursive_mutex.

WARNING  Do not manually call one of the previously discussed lock and
unlock methods on any of the mutex classes. Mutex locks are resources, and,
like all resources, they should almost exclusively be acquired using the RAII
(Resource Acquisition Is Initialization) paradigm, see Chapter 28. The C++
standard defines a number of RAII lock classes, which are discussed in the next
section. Using them is critical to avoid deadlocks. They automatically unlock a
mutex when a lock object goes out of scope, so you don’t need to manually call
unlock() at the right time.

Locks
A lock class is an RAII class that makes it easier to correctly obtain and release a lock on a mutex;
the destructor of the lock class automatically releases the associated mutex. The C++ standard
defines four types of locks: std::lock_guard, unique_lock, shared_lock, and scoped_lock. The
latter has been introduced with C++17.

lock_guard
lock_guard, defined in <mutex>, is a simple lock with two constructors:

➤➤ explicit lock_guard(mutex_type& m);

This is a constructor accepting a reference to a mutex. This constructor tries to obtain a
lock on the mutex and blocks until the lock is obtained. The explicit keyword for con-
structors is discussed in Chapter 9.

834  ❘  CHAPTER 23   Multithreaded Programming with C++

➤➤ lock_guard(mutex_type& m, adopt_lock_t);

This is a constructor accepting a reference to a mutex and an instance of std::adopt_
lock_t. There is a predefined adopt_lock_t instance provided, called std::adopt_lock.
The lock assumes that the calling thread has already obtained a lock on the referenced
mutex. The lock “adopts” the mutex, and automatically releases the mutex when the lock is
destroyed.

unique_lock
std::unique_lock, defined in <mutex>, is a more sophisticated lock that allows you to defer lock
acquisition until later in the execution, long after the declaration. You can use the owns_lock()
method, or the unique_lock’s bool conversion operator, to see if the lock has been acquired. An
example of using this conversion operator is given later in this chapter in the section “Using Timed
Locks.” unique_lock has several constructors:

➤➤ explicit unique_lock(mutex_type& m);

This constructor accepts a reference to a mutex. It tries to obtain a lock on the mutex and
blocks until the lock is obtained.

➤➤ unique_lock(mutex_type& m, defer_lock_t) noexcept;

This constructor accepts a reference to a mutex and an instance of std::defer_lock_t.
There is a predefined defer_lock_t instance provided, called std::defer_lock. The
unique_lock stores the reference to the mutex, but does not immediately try to obtain a
lock. A lock can be obtained later.

➤➤ unique_lock(mutex_type& m, try_to_lock_t);

This constructor accepts a reference to a mutex and an instance of std::try_to_lock_t.
There is a predefined try_to_lock_t instance provided, called std::try_to_lock. The
lock tries to obtain a lock to the referenced mutex, but if it fails, it does not block, in which
case, a lock can be obtained later.

➤➤ unique_lock(mutex_type& m, adopt_lock_t);

This constructor accepts a reference to a mutex and an instance of std::adopt_lock_t, for
example std::adopt_lock. The lock assumes that the calling thread has already obtained a
lock on the referenced mutex. The lock “adopts” the mutex, and automatically releases the
mutex when the lock is destroyed.

➤➤ unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>&

abs_time);

This constructor accepts a reference to a mutex and an absolute time. The constructor tries
to obtain a lock until the system time passes the given absolute time. The chrono library is
discussed in Chapter 20.

➤➤ unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time);

This constructor accepts a reference to a mutex and a relative time. The constructor tries to
get a lock on the mutex with the given relative timeout.

The unique_lock class also has the methods lock(), try_lock(), try_lock_for(), try_lock_
until(), and unlock(), which behave as explained in the section “Timed Mutex Classes,” earlier
in this chapter.

Mutual Exclusion  ❘  835

shared_lock
The shared_lock class, defined in <shared_mutex>, has the same type of constructors and the
same methods as unique_lock. The difference is that the shared_lock class calls the shared
ownership-related methods on the underlying shared mutex. Thus, the methods of shared_lock
are called lock(), try_lock(), and so on, but on the underlying shared mutex they call lock_
shared(), try_lock_shared(), and so on. This is done to give shared_lock the same interface as
unique_lock, so it can be used as a stand-in replacement for unique_lock, but acquires a shared
lock instead of an exclusive lock.

Acquiring Multiple Locks at Once
C++ has two generic lock functions that you can use to obtain locks on multiple mutex objects at
once without the risk of creating deadlocks. Both functions are defined in the std namespace, and
both are variadic template functions, as discussed in Chapter 22.

The first function, lock(), locks all the given mutex objects in an unspecified order without the risk
of deadlocks. If one of the mutex lock calls throws an exception, unlock() is called on all locks that
have already been obtained. Its prototype is as follows:

template <class L1, class L2, class... L3> void lock(L1&, L2&, L3&...);

try_lock() has a similar prototype, but it tries to obtain a lock on all the given mutex objects by
calling try_lock() on each of them in sequence. It returns -1 if all calls to try_lock() succeed.
If any try_lock() fails, unlock() is called on all locks that have already been obtained, and the
return value is the zero-based index of the parameter position of the mutex on which try_lock()
failed.

The following example demonstrates how to use the generic lock() function. The process() func-
tion first creates two locks, one for each mutex, and gives an instance of std::defer_lock_t as
a second argument to tell unique_lock not to acquire the lock during construction. The call to
std::lock() then acquires both locks without the risk of deadlocks.

mutex mut1;
mutex mut2;

void process()
{
 unique_lock lock1(mut1, defer_lock); // C++17
 unique_lock lock2(mut2, defer_lock); // C++17
 //unique_lock<mutex> lock1(mut1, defer_lock);
 //unique_lock<mutex> lock2(mut2, defer_lock);
 lock(lock1, lock2);
 // Locks acquired
} // Locks automatically released

scoped_lock
std::scoped_lock, defined in <mutex>, is similar to lock_guard, except that it accepts a variable
number of mutexes. This greatly simplifies acquiring multiple locks. For instance, the example with
the process() function in the previous section can be written using a scoped_lock as follows:

mutex mut1;
mutex mut2;

C++17

836  ❘  CHAPTER 23   Multithreaded Programming with C++

void process()
{
 scoped_lock locks(mut1, mut2);
 // Locks acquired
} // Locks automatically released

This uses C++17’s template argument deduction for constructors. If your compiler does not support
this feature yet, you have to write the following:

scoped_lock<mutex, mutex> locks(mut1, mut2);

std::call_once
You can use std::call_once() in combination with std::once_flag to make sure a certain func-
tion or method is called exactly one time, no matter how many threads try to call call_once()
with the same once_flag. Only one call_once() invocation actually calls the given function or
method. If the given function does not throw any exceptions, then this invocation is called the
effective call_once() invocation. If the given function does throw an exception, the exception is
propagated back to the caller, and another caller is selected to execute the function. The effective
invocation on a specific once_flag instance finishes before all other call_once() invocations on
the same once_flag. Other threads calling call_once() on the same once_flag block until the
effective call is finished. Figure 23-3 illustrates this with three threads. Thread 1 performs the effec-
tive call_once() invocation, thread 2 blocks until the effective invocation is finished, and thread 3
doesn’t block because the effective invocation from thread 1 has already finished.

Time

call_once → func → func returns → call_once returns

call_once → blocks → call_once returns

call_once → call_once returns

Thread 1

Thread 2

Thread 3

FIGURE 23-3

The following example demonstrates the use of call_once(). The example launches three threads
running processingFunction() that use some shared resources. These shared resources should
be initialized only once by calling initializeSharedResources() once. To accomplish this, each
thread calls call_once() with a global once_flag. The result is that only one thread effectively
executes initializeSharedResources(), and exactly one time. While this call_once() call is in
progress, other threads block until initializeSharedResources() returns.

once_flag gOnceFlag;

void initializeSharedResources()
{
 // ... Initialize shared resources to be used by multiple threads.
 cout << "Shared resources initialized." << endl;
}

Mutual Exclusion  ❘  837

void processingFunction()
{
 // Make sure the shared resources are initialized.
 call_once(gOnceFlag, initializeSharedResources);

 // ... Do some work, including using the shared resources
 cout << "Processing" << endl;
}

int main()
{
 // Launch 3 threads.
 vector<thread> threads(3);
 for (auto& t : threads) {
 t = thread{ processingFunction };
 }
 // Join on all threads
 for (auto& t : threads) {
 t.join();
 }
}

The output of this code is as follows:

Shared resources initialized.
Processing
Processing
Processing

Of course, in this example, you could call initializeSharedResources() once in the beginning of
the main() function before the threads are launched; however, that wouldn’t demonstrate the use of
call_once().

Examples Using Mutual Exclusion Objects
The following sections give a couple of examples on how to use mutual exclusion objects to synchro-
nize multiple threads.

Thread-Safe Writing to Streams
Earlier in this chapter, in the “Threads” section, there is an example with a class called Counter.
That example mentions that C++ streams are data-race free by default, but that the output from
multiple threads can be interleaved. To solve this interleaving issue, you can use a mutual exclusion
object to make sure that only one thread at a time is reading/writing to the stream object.

The following example synchronizes all accesses to cout in the Counter class. For this, a static
mutex object is added. It should be static, because all instances of the class should use the
same mutex instance. lock_guard is used to obtain a lock on the mutex before writing to cout.
Changes compared to the earlier version are shown in bold.

class Counter
{
 public:

838  ❘  CHAPTER 23   Multithreaded Programming with C++

 Counter(int id, int numIterations)
 : mId(id), mNumIterations(numIterations)
 {
 }

 void operator()() const
 {
 for (int i = 0; i < mNumIterations; ++i) {
 lock_guard lock(sMutex);
 cout << "Counter " << mId << " has value " << i << endl;
 }
 }
 private:
 int mId;
 int mNumIterations;
 static mutex sMutex;
};

mutex Counter::sMutex;

This code creates a lock_guard instance on each iteration of the for loop. It is recommended to
limit the time a lock is held as much as possible; otherwise, you are blocking other threads for too
long. For example, if the lock_guard instance was created once right before the for loop, then you
would basically lose all multithreading in this code because one thread would hold a lock for the
entire duration of its for loop, and all other threads would wait for this lock to be released.

Using Timed Locks
The following example demonstrates how to use a timed mutex. It is the same Counter class as
before, but this time it uses a timed_mutex in combination with a unique_lock. A relative time of
200 milliseconds is given to the unique_lock constructor, causing it to try to obtain a lock for 200
milliseconds. If the lock cannot be obtained within this timeout interval, the constructor returns.
Afterward, you can check whether or not the lock has been acquired. You can do this with an if
statement on the lock variable, because unique_lock defines a bool conversion operator. The time-
out is specified using the chrono library, discussed in Chapter 20.

class Counter
{
 public:
 Counter(int id, int numIterations)
 : mId(id), mNumIterations(numIterations)
 {
 }

 void operator()() const
 {
 for (int i = 0; i < mNumIterations; ++i) {
 unique_lock lock(sTimedMutex, 200ms);
 if (lock) {
 cout << "Counter " << mId << " has value " << i << endl;
 } else {
 // Lock not acquired in 200ms, skip output.
 }

Mutual Exclusion  ❘  839

 }
 }
 private:
 int mId;
 int mNumIterations;
 static timed_mutex sTimedMutex;
};

timed_mutex Counter::sTimedMutex;

Double-Checked Locking
The double-checked locking pattern is actually an anti-pattern, which you should avoid! It is shown
here because you might come across it in existing code bases. The idea of the double-checked lock-
ing pattern is to try to avoid the use of mutual exclusion objects. It’s a half-baked attempt at trying
to write more efficient code than using a mutual exclusion object. It can really go wrong when you
try to make it faster than demonstrated in the upcoming example, for instance, by using relaxed
atomics (not further discussed), using a regular Boolean instead of an atomic<bool>, and so on.
The pattern becomes sensitive to data races, and it is hard to get right. The irony is that using call_
once() will actually be faster, and using a magic static1 (if applicable) will be even faster than that.

WARNING  Avoid the double-checked locking pattern! Instead, use other mech-
anisms such as simple locks, atomic variables, call_once(), magic statics, and
so on.

Double-checked locking could, for example, be used to make sure that resources are initialized
exactly once. The following example shows how you can implement this. It is called the double-
checked locking pattern because it is checking the value of the gInitialized variable twice, once
before acquiring the lock and once right after acquiring the lock. The first gInitialized check is
used to prevent acquiring a lock when it is not needed. The second check is required to make sure
that no other thread performed the initialization between the first gInitialized check and acquir-
ing the lock.

void initializeSharedResources()
{
 // ... Initialize shared resources to be used by multiple threads.
 cout << "Shared resources initialized." << endl;
}

atomic<bool> gInitialized(false);
mutex gMutex;

1Function local static instances are called magic statics. C++ guarantees that such local static instances
are initialized in a thread-safe fashion, so you don’t need any manual thread synchronization. An example of
using a magic static is given in Chapter 29 with the discussion of the singleton pattern.

840  ❘  CHAPTER 23   Multithreaded Programming with C++

void processingFunction()
{

 if (!gInitialized) {
 unique_lock lock(gMutex);
 if (!gInitialized) {
 initializeSharedResources();
 gInitialized = true;
 }
 }
 cout << "OK" << endl;
}

int main()
{
 vector<thread> threads;
 for (int i = 0; i < 5; ++i) {
 threads.push_back(thread{ processingFunction });
 }
 for (auto& t : threads) {
 t.join();
 }
}

The output clearly shows that only one thread initializes the shared resources:

Shared resources initialized.
OK
OK
OK
OK
OK

NOTE  For this example, it’s recommended to use call_once() as demonstrated
earlier in this chapter, instead of double-checked locking!

CONDITION VARIABLES

Condition variables allow a thread to block until a certain condition is set by another thread, or
until the system time reaches a specified time. These variables allow for explicit inter-thread com-
munication. If you are familiar with multithreaded programming using the Win32 API, you can
compare condition variables with event objects in Windows.

Two kinds of condition variables are available, both of which are defined in the <condition_
variable> header file.

➤➤ std::condition_variable: A condition variable that can wait only on a unique_
lock<mutex>, which, according to the C++ standard, allows for maximum efficiency on
certain platforms.

➤➤ std::condition_variable_any: A condition variable that can wait on any kind of object,
including custom lock types.

Condition Variables  ❘  841

A condition_variable supports the following methods:

➤➤ notify_one();

This method wakes up one of the threads waiting on this condition variable. This is similar
to an auto-reset event in Windows.

➤➤ notify_all();

This method wakes up all threads waiting on this condition variable.

➤➤ wait(unique_lock<mutex>& lk);

The thread calling wait() should already have acquired a lock on lk. The effect of call-
ing wait() is that it atomically calls lk.unlock() and then blocks the thread, waiting for
a notification. When the thread is unblocked by a notify_one() or notify_all() call in
another thread, the function calls lk.lock() again, possibly blocking until the lock has
been acquired, and then returns.

➤➤ wait_for(unique_lock<mutex>& lk, const chrono::duration<Rep, Period>&

rel_time);

This method is similar to wait(), except that the thread is unblocked by a notify_one()
call, a notify_all() call, or when the given timeout has expired.

➤➤ wait_until(unique_lock<mutex>& lk, const chrono::time_point<Clock,

Duration>& abs_time);

This method is similar to wait(), except that the thread is unblocked by a notify_one()
call, a notify_all() call, or when the system time passes the given absolute time.

There are also versions of wait(), wait_for(), and wait_until() that accept an extra predicate
parameter. For instance, the version of wait() accepting an extra predicate is equivalent to the
following:

while (!predicate())
 wait(lk);

The condition_variable_any class supports the same methods as condition_variable, except
that it accepts any kind of lock class instead of only a unique_lock<mutex>. The lock class used
should have a lock() and unlock() method.

Spurious Wake-Ups
Threads waiting on a condition variable can wake up when another thread calls notify_one() or
notify_all(), with a relative timeout, or when the system time reaches a certain time. However,
they can also wake up spuriously. This means that a thread can wake up, even if no other thread
has called any notify method, and no timeouts have been reached yet. Thus, when a thread waits on
a condition variable and wakes up, it needs to check why it woke up. One way to check for this is by
using one of the versions of wait() accepting a predicate, as shown in the following example.

Using Condition Variables
As an example, condition variables can be used for background threads processing items from a
queue. You can define a queue in which you insert items to be processed. A background thread waits

842  ❘  CHAPTER 23   Multithreaded Programming with C++

until there are items in the queue. When an item is inserted into the queue, the thread wakes up,
processes the item, and goes back to sleep, waiting for the next item. Suppose you have the following
queue:

queue<string> mQueue;

You need to make sure that only one thread is modifying this queue at any given time. You can do
this with a mutex:

mutex mMutex;

To be able to notify a background thread when an item is added, you need a condition variable:

condition_variable mCondVar;

A thread that wants to add an item to the queue first acquires a lock on the mutex, then adds the
item to the queue, and notifies the background thread. You can call notify_one() or notify_
all() whether or not you currently have the lock; both work.

// Lock mutex and add entry to the queue.
unique_lock lock(mMutex);
mQueue.push(entry);
// Notify condition variable to wake up thread.
mCondVar.notify_all();

The background thread waits for notifications in an infinite loop, as follows. Note the use of wait()
accepting a predicate to correctly handle spurious wake-ups. The predicate checks if there really
is something in the queue. When the call to wait() returns, you are sure there is something in the
queue.

unique_lock lock(mMutex);
while (true) {
 // Wait for a notification.
 mCondVar.wait(lock, [this]{ return !mQueue.empty(); });
 // Condition variable is notified, so something is in the queue.
 // Process queue item...
}

The section “Example: Multithreaded Logger Class,” toward the end of this chapter, provides a
complete example on how to use condition variables to send notifications to other threads.

The C++ standard also defines a helper function called std::notify_all_at_thread_exit(cond,
lk) where cond is a condition variable and lk is a unique_lock<mutex> instance. A thread call-
ing this function should already have acquired the lock lk. When the thread exits, it automatically
executes the following:

lk.unlock();
cond.notify_all();

NOTE  The lock lk stays locked until the thread exits. So, you need to make sure
that this does not cause any deadlocks in your code, for example, due to wrong
lock ordering. Deadlocks are discussed earlier in this chapter.

Futures  ❘  843

FUTURES

As discussed earlier in this chapter, using std::thread to launch a thread that calculates a single
result does not make it easy to get the computed result back once the thread has finished execut-
ing. Another problem with std::thread is in how it handles errors like exceptions. If a thread
throws an exception and this exception is not caught by the thread itself, the C++ runtime calls
std::terminate(), which usually terminates the entire application.

A future can be used to more easily get the result out of a thread, and to transport exceptions from
one thread to another thread, which can then handle the exception however it wants. Of course, it’s
still good practice to always try to handle exceptions in the actual threads as much as possible, in
order to prevent them from leaving the thread.

A promise is something where a thread stores its result. A future is used to get access to the result
stored in a promise. That is, a promise is the input side for a result, a future is the output side. Once
a function, running in the same thread or in another thread, has calculated the value that it wants to
return, it can put this value in a promise. This value can then be retrieved through a future. You can
think of this mechanism as an inter-thread communication channel for a result.

C++ provides a standard future, called std::future. You can retrieve the result from an
std::future as follows. T is the type of the calculated result.

future<T> myFuture = ...; // Is discussed later
T result = myFuture.get();

The call to get() retrieves the result and stores it in the variable result. If calculating the result is
not finished yet, the call to get() blocks until the value becomes available. You can only call get()
once on a future. The behavior of calling it a second time is undefined by the standard.

If you want to avoid blocking, you can first ask the future if there is a result available:

if (myFuture.wait_for(0)) { // Value is available
 T result = myFuture.get();
} else { // Value is not yet available
 ...
}

std::promise and std::future
C++ provides the std::promise class as one way to implement the concept of a promise. You can
call set_value() on a promise to store a result, or you can call set_exception() on it to store an
exception in the promise. Note that you can only call set_value() or set_exception() once on a
specific promise. If you call it multiple times, an std::future_error exception will be thrown.

A thread A that launches another thread B to calculate something can create an std::promise and
pass this to the launched thread. Note that a promise cannot be copied, but it can be moved into a
thread! Thread B uses that promise to store the result. Before moving the promise into thread B,

844  ❘  CHAPTER 23   Multithreaded Programming with C++

thread A calls get_future() on the created promise to be able to get access to the result once B has
finished. Here is a simple example:

void DoWork(promise<int> thePromise)
{
 // ... Do some work ...
 // And ultimately store the result in the promise.
 thePromise.set_value(42);
}

int main()
{
 // Create a promise to pass to the thread.
 promise<int> myPromise;
 // Get the future of the promise.
 auto theFuture = myPromise.get_future();
 // Create a thread and move the promise into it.
 thread theThread{ DoWork, std::move(myPromise) };

 // Do some more work...

 // Get the result.
 int result = theFuture.get();
 cout << "Result: " << result << endl;

 // Make sure to join the thread.
 theThread.join();
}

NOTE  This code is just for demonstration purposes. It starts the calculation in a
new thread, and then calls get() on the future, which blocks until the result is
calculated. This sounds like a very expensive function call. In real-world appli-
cations, you can use futures by periodically checking if there is a result available
or not (using wait_for() as discussed earlier), or by using a synchronization
mechanism such as a condition variable. When the result is not yet available, you
can do something else in the meantime, instead of blocking.

std::packaged_task
An std::packaged_task makes it easier to work with promises than explicitly using
std::promise, as in the previous section. The following code demonstrates this. It creates a
packaged_task to execute CalculateSum(). The future is retrieved from the packaged_task by
calling get_future(). A thread is launched, and the packaged_task is moved into it. A packaged_
task cannot be copied! After the thread is launched, get() is called on the retrieved future to get
the result. This blocks until the result is available.

Note that CalculateSum() does not need to store anything explicitly in any kind of promise.
A packaged_task automatically creates a promise, automatically stores the result of the called

Futures  ❘  845

function, CalculateSum() in this case, in the promise, and automatically stores any exceptions
thrown from the function in the promise.

int CalculateSum(int a, int b) { return a + b; }

int main()
{
 // Create a packaged task to run CalculateSum.
 packaged_task<int(int, int)> task(CalculateSum);
 // Get the future for the result of the packaged task.
 auto theFuture = task.get_future();
 // Create a thread, move the packaged task into it, and
 // execute the packaged task with the given arguments.
 thread theThread{ std::move(task), 39, 3 };

 // Do some more work...

 // Get the result.
 int result = theFuture.get();
 cout << result << endl;

 // Make sure to join the thread.
 theThread.join();
}

std::async
If you want to give the C++ runtime more control over whether or not a thread is created to cal-
culate something, you can use std::async(). It accepts a function to be executed, and returns
a future that you can use to retrieve the result. There are two ways in which async() can run your
function:

➤➤ Run your function on a separate thread asynchronously

➤➤ Run your function on the calling thread synchronously at the time you call get() on the
returned future

If you call async() without additional arguments, the runtime automatically chooses one of the two
methods depending on factors such as the number of CPU cores in your system and the amount of
concurrency already taking place. You can influence the runtime’s behavior by specifying a policy
argument.

➤➤ launch::async: forces the runtime to execute the function asynchronously on a different
thread.

➤➤ launch::deferred: forces the runtime to execute the function synchronously on the calling
thread when get() is called.

➤➤ launch::async | launch::deferred: lets the runtime choose (= default behavior).

The following example demonstrates the use of async():

846  ❘  CHAPTER 23   Multithreaded Programming with C++

int calculate()
{
 return 123;
}

int main()
{
 auto myFuture = async(calculate);
 //auto myFuture = async(launch::async, calculate);
 //auto myFuture = async(launch::deferred, calculate);

 // Do some more work...

 // Get the result.
 int result = myFuture.get();
 cout << result << endl;
}

As you can see in this example, std::async() is one of the easiest methods to perform some cal-
culations either asynchronously (on a different thread), or synchronously (on the same thread), and
retrieve the result afterward.

WARNING  A future returned by a call to async() blocks in its destructor
until the result is available. That means that if you call async() without captur-
ing the returned future, the async() call effectively becomes a blocking call!
For example, the following line synchronously calls calculate():

async(calculate);

What happens with this statement is that async() creates and returns a future.
This future is not captured, so it is a temporary future. Because it is a tem-
porary future, its destructor is called before this statement is finished, and this
destructor will block until the result is available.

Exception Handling
A big advantage of using futures is that they can transport exceptions between threads. Calling
get() on a future either returns the calculated result, or rethrows any exception that has been
stored in the promise linked to the future. When you use packaged_task or async(), any
exception thrown from the launched function is automatically stored in the promise. If you use
std::promise as your promise, you can call set_exception() to store an exception in it. Here is
an example using async():

int calculate()
{
 throw runtime_error("Exception thrown from calculate().");
}

Futures  ❘  847

int main()
{
 // Use the launch::async policy to force asynchronous execution.
 auto myFuture = async(launch::async, calculate);

 // Do some more work...

 // Get the result.
 try {
 int result = myFuture.get();
 cout << result << endl;
 } catch (const exception& ex) {
 cout << "Caught exception: " << ex.what() << endl;
 }
}

std::shared_future
std::future<T> only requires T to be move-constructible. When you call get() on a future<T>,
the result is moved out of the future and returned to you. This means you can call get() only once
on a future<T>.

If you want to be able to call get() multiple times, even from multiple threads, then you need to use
an std::shared_future<T>, in which case T needs to be copy-constructible. A shared_future can
be created by using std::future::share(), or by passing a future to the shared_future construc-
tor. Note that a future is not copyable, so you have to move it into the shared_future constructor.

shared_future can be used to wake up multiple threads at once. For example, the following piece
of code defines two lambda expressions to be executed asynchronously on different threads. The
first thing each lambda expression does is set a value to their respective promise to signal that
they have started. Then they both call get() on signalFuture which blocks until a parameter
is made available through the future, after which they continue their execution. Each lambda
expression captures their respective promise by reference, and captures signalFuture by value,
so both lambda expressions have a copy of signalFuture. The main thread uses async() to exe-
cute both lambda expressions asynchronously on different threads, waits until both threads have
started, and then sets the parameter in the signalPromise which wakes up both threads.

promise<void> thread1Started, thread2Started;

promise<int> signalPromise;
auto signalFuture = signalPromise.get_future().share();
//shared_future<int> signalFuture(signalPromise.get_future());

auto function1 = [&thread1Started, signalFuture] {
 thread1Started.set_value();
 // Wait until parameter is set.
 int parameter = signalFuture.get();
 // ...
};

auto function2 = [&thread2Started, signalFuture] {
 thread2Started.set_value();
 // Wait until parameter is set.

848  ❘  CHAPTER 23   Multithreaded Programming with C++

 int parameter = signalFuture.get();
 // ...
};

// Run both lambda expressions asynchronously.
// Remember to capture the future returned by async()!
auto result1 = async(launch::async, function1);
auto result2 = async(launch::async, function2);

// Wait until both threads have started.
thread1Started.get_future().wait();
thread2Started.get_future().wait();

// Both threads are now waiting for the parameter.
// Set the parameter to wake up both of them.
signalPromise.set_value(42);

EXAMPLE: MULTITHREADED LOGGER CLASS

This section demonstrates how to use threads, mutual exclusion objects, locks, and condition vari-
ables to write a multithreaded Logger class. The class allows log messages to be added to a queue
from different threads. The Logger class itself processes this queue in a background thread that seri-
ally writes the log messages to a file. The class will be designed in two iterations to show you some
examples of problems you will encounter when writing multithreaded code.

The C++ standard does not have a thread-safe queue, so it is obvious that you have to protect access
to the queue with some synchronization mechanism to prevent multiple threads from reading/
writing to the queue at the same time. This example uses a mutual exclusion object and a condition
variable to provide the synchronization. Based on that, you might define the Logger class as follows:

class Logger
{
 public:
 // Starts a background thread writing log entries to a file.
 Logger();
 // Prevent copy construction and assignment.
 Logger(const Logger& src) = delete;
 Logger& operator=(const Logger& rhs) = delete;
 // Add log entry to the queue.
 void log(std::string_view entry);
 private:
 // The function running in the background thread.
 void processEntries();
 // Mutex and condition variable to protect access to the queue.
 std::mutex mMutex;
 std::condition_variable mCondVar;
 std::queue<std::string> mQueue;
 // The background thread.
 std::thread mThread;
};

Example: Multithreaded Logger Class  ❘  849

The implementation is as follows. Note that this initial design has a couple of problems and when
you try to run it, it might behave strangely or even crash. This is discussed and solved in the next
iteration of the Logger class. The inner while loop in the processEntries() method is worth
looking at. It processes all messages in the queue one at a time, and acquires and releases the lock on
each iteration. This is done to make sure the loop doesn’t keep the lock for too long, blocking other
threads.

Logger::Logger()
{
 // Start background thread.
 mThread = thread{ &Logger::processEntries, this };
}

void Logger::log(string_view entry)
{
 // Lock mutex and add entry to the queue.
 unique_lock lock(mMutex);
 mQueue.push(string(entry));
 // Notify condition variable to wake up thread.
 mCondVar.notify_all();
}

void Logger::processEntries()
{
 // Open log file.
 ofstream logFile("log.txt");
 if (logFile.fail()) {
 cerr << "Failed to open logfile." << endl;
 return;
 }

 // Start processing loop.
 unique_lock lock(mMutex);
 while (true) {
 // Wait for a notification.
 mCondVar.wait(lock);

 // Condition variable notified, something might be in the queue.
 lock.unlock();
 while (true) {
 lock.lock();
 if (mQueue.empty()) {
 break;
 } else {
 logFile << mQueue.front() << endl;
 mQueue.pop();
 }
 lock.unlock();
 }
 }
}

850  ❘  CHAPTER 23   Multithreaded Programming with C++

WARNING  As you can already see from this rather simple task, writing correct
multithreaded code is hard! Unfortunately, at this moment, threads, atomics,
mutual exclusion objects, condition variables, and futures, are all the C++ stan-
dard provides. C++ does not provide any concurrent data structures, at least not
yet in C++17. This might change in the future though.

The Logger class is just an example to show these basic building blocks. For
production-quality code, I recommend using an appropriate third party concur-
rent data structure, instead of writing your own. For example, the open-source
boost C++ libraries1 have an implementation of a queue that is lock-free, and
allows concurrent use without the need for any explicit synchronization.

This Logger class can be tested with the following test code. It launches a number of threads, all
logging a few messages to the same Logger instance.

void logSomeMessages(int id, Logger& logger)
{
 for (int i = 0; i < 10; ++i) {
 stringstream ss;
 ss << "Log entry " << i << " from thread " << id;
 logger.log(ss.str());
 }
}

int main()
{
 Logger logger;
 vector<thread> threads;
 // Create a few threads all working with the same Logger instance.
 for (int i = 0; i < 10; ++i) {
 threads.emplace_back(logSomeMessages, i, ref(logger));
 }
 // Wait for all threads to finish.
 for (auto& t : threads) {
 t.join();
 }
}

If you build and run this naive initial version, you will notice that the application is terminated
abruptly. That is caused because the application never calls join() or detach() on the background
thread. Remember from earlier in this chapter that the destructor of a thread object which is still
joinable, that is, neither join() nor detach() has been called yet, will call std::terminate() to
terminate all running threads and the application itself. This means that messages still in the queue
are not written to the file on disk. Some runtime libraries even issue an error or generate a crash

1http://www.boost.org/

Example: Multithreaded Logger Class  ❘  851

dump when the application is terminated like this. You need to add a mechanism to gracefully shut
down the background thread and wait until the background thread is completely shut down before
terminating the application. You can do this by adding a destructor and a Boolean member variable
to the class. The new definition of the class is as follows:

class Logger
{
 public:
 // Gracefully shut down background thread.
 virtual ~Logger();

 // Other public members omitted for brevity
 private:
 // Boolean telling the background thread to terminate.
 bool mExit = false;

 // Other members omitted for brevity
};

The destructor sets mExit to true, wakes up the background thread, and then waits until the thread
is shut down. The destructor acquires a lock on mMutex before setting mExit to true and before
calling notify_all(). This is to prevent a race condition and deadlock with processEntries().
processEntries() could be at the beginning of its while loop right after having checked mExit
and right before the call to wait(). If the main thread calls the Logger destructor at that very
moment, and the destructor wouldn’t acquire a lock on mMutex, then the destructor sets mExit
to true and calls notify_all() after processEntries() has checked mExit and before
processEntries() is waiting on the condition variable; thus, processEntries() will not see the
new value of mExit and it will miss the notification. In that case, the application is in a deadlock
situation, because the destructor is waiting on the join() call and the background thread is waiting
on the condition variable. Note that the destructor must release the lock on mMutex before calling
join(), which explains the extra code block using curly brackets.

WARNING  In general, you should always own a lock on the mutex associated
with a condition variable when setting the condition it’s waiting for.

Logger::~Logger()
{
 {
 unique_lock lock(mMutex);
 // Gracefully shut down the thread by setting mExit
 // to true and notifying the thread.
 mExit = true;
 // Notify condition variable to wake up thread.
 mCondVar.notify_all();
 }

852  ❘  CHAPTER 23   Multithreaded Programming with C++

 // Wait until thread is shut down. This should be outside the above code
 // block because the lock must be released before calling join()!
 mThread.join();
}

The processEntries() method needs to check this Boolean variable and terminate the processing
loop when it’s true:

void Logger::processEntries()
{
 // Open log file.
 ofstream logFile("log.txt");
 if (logFile.fail()) {
 cerr << "Failed to open logfile." << endl;
 return;
 }

 // Start processing loop.
 unique_lock lock(mMutex);
 while (true) {
 if (!mExit) { // Only wait for notifications if we don't have to exit.
 // Wait for a notification.
 mCondVar.wait(lock);
 }

 // Condition variable is notified, so something might be in the queue
 // and/or we need to shut down this thread.
 lock.unlock();
 while (true) {
 lock.lock();
 if (mQueue.empty()) {
 break;
 } else {
 logFile << mQueue.front() << endl;
 mQueue.pop();
 }
 lock.unlock();
 }
 if (mExit) {
 break;
 }
 }
}

Note that you cannot just check for mExit in the condition for the outer while loop because even
when mExit is true, there might still be log entries in the queue that need to be written.

You can add artificial delays in specific places in your multithreaded code to trigger certain behav-
ior. Note that such delays should only be added for testing, and should be removed from your final
code! For example, to test that the race condition with the destructor is solved, you can remove any
calls to log() from the main program, causing it to almost immediately call the destructor of the
Logger class, and add the following delay:

void Logger::processEntries()
{
 // Omitted for brevity

Threading Design and Best Practices  ❘  853

 // Start processing loop.
 unique_lock lock(mMutex);
 while (true) {
 this_thread::sleep_for(1000ms); // Needs #include <chrono>

 if (!mExit) { // Only wait for notifications if we don't have to exit.
 // Wait for a notification.
 mCondVar.wait(lock);
 }

 // Omitted for brevity
 }
}

THREAD POOLS

Instead of creating and deleting threads dynamically throughout your program’s lifetime, you can
create a pool of threads that can be used as needed. This technique is often used in programs that
want to handle some kind of event in a thread. In most environments, the ideal number of threads
is equal to the number of processing cores. If there are more threads than cores, threads will have to
be suspended to allow other threads to run, and this will ultimately add overhead. Note that while
the ideal number of threads is equal to the number of cores, this applies only in the case where the
threads are compute bound and cannot block for any other reason, including I/O. When threads
can block, it is often appropriate to run more threads than there are cores. Determining the optimal
number of threads in such cases is hard, and may involve throughput measurements.

Because not all processing is identical, it is not uncommon to have threads from a thread pool
receive, as part of their input, a function object or lambda expression that represents the computa-
tion to be done.

Because threads from a thread pool are pre-existing, it is much more efficient for the operating
system to schedule a thread from the pool to run than it is to create one in response to an input.
Furthermore, the use of a thread pool allows you to manage the number of threads that are created,
so, depending on the platform, you may have just one thread or thousands of threads.

Several libraries are available that implement thread pools, including Intel Threading Building
Blocks (TBB), Microsoft Parallel Patterns Library (PPL), and so on. It’s recommended to use such a
library for your thread pools instead of writing your own implementation. If you do want to imple-
ment a thread pool yourself, it can be done in a similar way to an object pool. Chapter 25 gives an
example implementation of an object pool.

THREADING DESIGN AND BEST PRACTICES

This section briefly lists a few best practices related to multithreaded programming.

➤➤ Use parallel Standard Library algorithms: The Standard Library contains a large collection
of algorithms. Since C++17, more than 60 of them support parallel execution! Whenever
possible, use such parallel algorithms instead of writing your own multithreaded code. See
Chapter 18 for details on how to specify parallelization options for algorithms.

854  ❘  CHAPTER 23   Multithreaded Programming with C++

➤➤ Before closing the application, make sure all thread objects are unjoinable: Make sure that
either join() or detach() has been called on all thread objects. Destructors of threads
that are still joinable will call std::terminate() which abruptly terminates all threads and
the application.

➤➤ The best synchronization is no synchronization: Multithreaded programming becomes much
easier if you manage to design your different threads in such a way that all threads working
on shared data read only from that shared data and never write to it, or only write to parts
never read by other threads. In that case, there is no need for any synchronization, and you
cannot have problems like data races or deadlocks.

➤➤ Try to use the single-thread ownership pattern: This means that a block of data is owned by
no more than one thread at a time. Owning the data means that no other thread is allowed
to read from or write to the data. When the thread is finished with the data, the data can be
passed off to another thread, which now has sole and complete responsibility/ownership of
the data. No synchronization is necessary in this case.

➤➤ Use atomic types and operations when possible: Atomic types and atomic operations make
it easier to write data-race and deadlock-free code, because they handle synchronization
automatically. If atomic types and operations are not possible in your multithreaded design,
and you need shared data, you have to use some synchronization mechanism, such as mutual
exclusion, to ensure proper synchronization.

➤➤ Use locks to protect mutable shared data: If you need mutable shared data to which multiple
threads can write, and you cannot use atomic types and operations, you have to use a locking
mechanism to make sure that reads and writes between different threads are synchronized.

➤➤ Release locks as soon as possible: When you need to protect your shared data with a lock,
make sure that you release the lock as soon as possible. While a thread is holding a lock, it is
blocking other threads waiting for the same lock, possibly hurting performance.

➤➤ Do not manually acquire multiple locks, instead use std::lock() or std::try_lock():
If multiple threads need to acquire multiple locks, they must be acquired in the same order
in all threads to prevent deadlocks. You should use the generic std::lock() or std::try_
lock() functions to acquire multiple locks.

➤➤ Use RAII lock objects: Use the lock_guard, unique_lock, shared_lock, or scoped_lock
RAII classes to automatically release locks at the right time.

➤➤ Use a multithreading-aware profiler: This helps to find performance bottlenecks in your mul-
tithreaded applications, and to find out if your multiple threads are indeed utilizing all avail-
able processing power in your system. An example of a multithreading-aware profiler is the
profiler in certain editions of Microsoft Visual Studio.

➤➤ Understand the multithreading support features of your debugger: Most debuggers have at
least basic support for debugging multithreaded applications. You should be able to get a list
of all running threads in your application, and you should be able to switch to any one of
those threads to inspect their call stack. You can use this, for example, to inspect deadlocks
because you can see exactly what each thread is doing.

Summary  ❘  855

➤➤ Use thread pools instead of creating and destroying a lot of threads dynamically: Your per-
formance decreases if you dynamically create and destroy a lot of threads. In that case, it’s
better to use a thread pool to reuse existing threads.

➤➤ Use higher-level multithreading libraries: The C++ standard, at this moment, only provides
basic building blocks for writing multithreaded code. Using those correctly is not trivial.
Where possible, use higher-level multithreading libraries such as Intel Threading Building
Blocks (TBB), Microsoft Parallel Patterns Library (PPL), and so on, rather than reinventing
the wheel. Multithreaded programming is hard to get right, and is error prone. More often
than not, your wheel may not be as round as you think.

SUMMARY

This chapter gave a brief overview of multithreaded programming using the standard C++ thread-
ing support library. It explained how you can use atomic types and atomic operations to operate on
shared data without having to use an explicit synchronization mechanism. In case you cannot use
these atomic types and operations, you learned how to use mutual exclusion mechanisms to ensure
proper synchronization between different threads that need read/write access to shared data. You
also saw how promises and futures represent a simple inter-thread communication channel; you can
use futures to more easily get a result back from a thread. The chapter finished with a number of
best practices for multithreaded application design.

As mentioned in the introduction, this chapter tried to touch on all the basic multithreading build-
ing blocks provided by the Standard Library, but due to space constraints, it cannot go into all the
details of multithreaded programming. There are books available that discuss nothing but multi-
threading. See Appendix B for a few references.

PART V
C++ Software Engineering

▸▸ CHAPTER 24: Maximizing Software Engineering Methods

▸▸ CHAPTER 25: Writing Efficient C++

▸▸ CHAPTER 26: Becoming Adept at Testing

▸▸ CHAPTER 27: Conquering Debugging

▸▸ CHAPTER 28: Incorporating Design Techniques and Frameworks

▸▸ CHAPTER 29: Applying Design Patterns

▸▸ CHAPTER 30: �Developing Cross-Platform and Cross-Language
Applications

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

Maximizing Software
Engineering Methods

WHAT’S IN THIS CHAPTER?

➤➤ What a software life cycle model is, with examples of the Waterfall
Model, the Sashimi Model, spiral-like models, and Agile

➤➤ What software engineering methodologies are, with examples of
UP, RUP, Scrum, XP, and Software Triage

➤➤ What Source Code Control means

Chapter 24 starts the last part of this book, which is about software engineering. This part
describes software engineering methods, code efficiency, testing, debugging, design techniques,
design patterns, and how to target multiple platforms.

When you first learned how to program, you were probably on your own schedule. You were
free to do everything at the last minute if you wanted to, and you could radically change your
design during implementation. When coding in the professional world, however, program-
mers rarely have such flexibility. Even the most liberal engineering managers admit that some
amount of process is necessary. These days, knowing the software engineering process is as
important as knowing how to code.

In this chapter, I will survey various approaches to software engineering. I will not go into
great depth on any one approach—there are plenty of excellent books on software engineering
processes. My intention is to cover some different types of processes in broad strokes so you
can compare and contrast them. I will try not to advocate or discourage any particular meth-
odology. Rather, I hope that by learning about the tradeoffs of several different approaches,
you’ll be able to construct a process that works for you and the rest of your team. Whether
you’re a contractor working alone on projects, or your team consists of hundreds of engineers
on several continents, understanding different approaches to software development will help
you with your job on a daily basis.

24

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

860  ❘  CHAPTER 24   Maximizing Software Engineering Methods

The last part of this chapter discusses Source Code Control solutions that make it easier to manage
source code and keep track of its history. A Source Code Control solution is mandatory in every
company in order to avoid a source code maintenance nightmare, and it is even highly recommended
for one-person projects.

THE NEED FOR PROCESS

The history of software development is filled with tales of failed projects. From over-budget and
poorly marketed consumer applications to grandiose mega-hyped operating systems, it seems that
no area of software development is free from this trend.

Even when software successfully reaches users, bugs have become so commonplace that end users
are often forced to endure constant updates and patches. Sometimes the software does not accom-
plish the tasks it is supposed to do or doesn’t work the way the user would expect. These issues all
point to a common truism of software: writing software is hard.

You may wonder why software engineering seems to differ from other forms of engineering in its
frequency of failures. For example, while cars have their share of bugs, you rarely see them stop
suddenly and demand a reboot due to a buffer overflow (though as more and more car components
become software-driven, you just may). Your TV may not be perfect, but you don’t have to upgrade
to version 2.3 to get Channel 6 to work.

Is it the case that other engineering disciplines are just more advanced than software development? Is a
civil engineer able to construct a working bridge by drawing upon the long history of bridge building?
Are chemical engineers able to build a compound successfully because most of the bugs were worked
out in earlier generations? Is software engineering too new, or is it really a different type of discipline
with inherent qualities contributing to the occurrence of bugs, unusable results, and doomed projects?

It certainly seems as if there’s something different about software engineering. For one thing, com-
puter technology changes rapidly, creating uncertainty in the software development process. Even
if an earth-shattering breakthrough does not occur during your project, the pace at which the IT
industry moves can lead to problems. Software also often needs to be developed quickly because
competition is fierce.

Software development schedules can also be unpredictable. Accurate scheduling is nearly impossible
when a single gnarly bug can take days or even weeks to fix. Even when things seem to be going
according to schedule, the widespread tendency of product definition changes (feature creep) can
throw a wrench in the process.

Software is often complex. There is no easy and accurate way to prove that a program is bug-free.
Buggy or messy code can have an impact on software for years if it is maintained through several
versions. Software systems are often so complex that when staff turnover occurs, nobody wants to
get anywhere near some legacy messy code. This leads to a cycle of endless patching, hacks, and
workarounds.

Software Life Cycle Models  ❘  861

Of course, standard business risks apply to software as well. Marketing pressures and miscommuni-
cation get in the way. Many programmers try to steer clear of corporate politics, but it’s not uncom-
mon to have adversity between the development and product marketing groups.

All of these factors working against software engineering products indicate the need for some sort of
process. Software projects are big, complicated, and fast-paced. To avoid failure, engineering groups
need to adopt a system to control this unwieldy process.

Elegantly designed software with clean and maintainable code can be developed. I’m convinced it
is possible, but it takes continuous efforts of each individual team member, and requires following
proper software development processes and practices.

SOFTWARE LIFE CYCLE MODELS

Complexity in software isn’t new. The need for a formalized process was recognized decades
ago. Several approaches to modeling the software life cycle have attempted to bring some order
to the chaos of software development by defining the software process in terms of steps from the
initial idea to the final product. These models, refined over the years, guide much of software
development today.

The Waterfall Model
A classic life cycle model for software is the Waterfall Model. This model is
based on the idea that software can be built almost like following a recipe.
There is a set of steps that, if followed correctly, will yield a mighty fine choco-
late cake, or program as the case may be. Each stage must be completed before
the next stage can begin, as shown in Figure 24-1. You can compare this process
to a waterfall, as you can only go downward to the next phase.

The process starts with formal planning, which includes gathering an exhaus-
tive list of requirements. This list defines feature completeness for the product.
The more specific the requirements are, the more likely that the project will suc-
ceed. Next, the software is designed and fully specified. The design step, like the
requirements step, needs to be as specific as possible to maximize the chance of
success. All design decisions are made at this time, often including pseudo-code
and the definition of specific subsystems that will need to be written. Subsystem
owners work out how their code will interact, and the team agrees on the specif-
ics of the architecture. Implementation of the design occurs next. Because the
design has been fully specified, the code needs to adhere strongly to the design
or else the pieces won’t fit together. The final four stages are reserved for unit
testing, subsystem testing, integration testing, and evaluation.

The main problem with the Waterfall Model is that, in practice, it is nearly
impossible to complete one stage without at least exploring the next stage.

Planning

Design

Implementation

Unit Testing

Subsystem
Testing

Integration
Testing

Evaluation

FIGURE 24-1

862  ❘  CHAPTER 24   Maximizing Software Engineering Methods

A design cannot be set in stone without at least writing some code. Furthermore, what is the point
of testing if the model doesn’t provide a way to go back to the coding phase?

Various incarnations have refined the process in different ways. For example, some plans include a
“feasibility” step where experiments are performed before formal requirements are even gathered.

Benefits of the Waterfall Model
The value of the Waterfall Model lies in its simplicity. You, or your manager, may have followed this
approach in past projects without formalizing it or recognizing it by name. The underlying assump-
tion behind the Waterfall Model is that as long as each step is accomplished as completely and accu-
rately as possible, subsequent steps will go smoothly. As long as all of the requirements are carefully
specified in the first step, and all the design decisions and problems are hashed out in the second
step, implementation in the third step should be a simple matter of translating the designs into code.

The simplicity of the Waterfall Model makes project plans based on this system organized and easy
to manage. Every project is started the same way: by exhaustively listing all the features that are
necessary. For example, managers using this approach can require that by the end of the design
phase, all engineers in charge of a subsystem must submit their design as a formal design document
or a functional subsystem specification. The benefit for the manager is that by having engineers
specify requirements and designs upfront, risks are, hopefully, minimized.

From the engineer’s point of view, the Waterfall Model forces resolution of major issues upfront.
All engineers will need to understand their project and design their subsystem before writing a sig-
nificant amount of code. Ideally, this means that code can be written once instead of being hacked
together or rewritten when the pieces don’t fit.

For small projects with very specific requirements, the Waterfall Model can work quite well.
Particularly for consulting arrangements, it has the advantage of specifying clearly defined metrics
for success at the start of the project. Formalizing requirements helps the consultant to produce
exactly what the client wants, and forces the client to be specific about the goals for the project.

Drawbacks of the Waterfall Model
In many organizations, and almost all modern software engineering texts, the Waterfall Model has
fallen out of favor. Critics disparage its fundamental premise that software development tasks hap-
pen in discrete, linear steps. The Waterfall Model generally does not allow backward movement.
Unfortunately, in many projects today, new requirements are introduced throughout the develop-
ment of the product. Often, a potential customer will request a feature that is necessary for the sale,
or a competitor’s product will have a new feature that requires parity.

NOTE  The upfront specification of all requirements makes the Waterfall Model
unusable for many organizations because it is not dynamic enough.

Software Life Cycle Models  ❘  863

Another drawback is that in an effort to minimize risk by making decisions as formally and early as
possible, the Waterfall Model may actually be hiding risk. For example, a major design issue might
be undiscovered, glossed over, forgotten, or purposely avoided during the design phase. By the time
integration testing reveals the mismatch, it may be too late to save the project. A major design flaw
has arisen but, according to the Waterfall Model, the product is one step away from shipping! A
mistake anywhere in the waterfall process will likely lead to failure at the end of the process. Early
detection is difficult and occurs rarely.

If you do use the Waterfall Model, it is often necessary to make it more flexible by taking cues from
other approaches.

Sashimi Model
A number of refinements to the Waterfall Model have been formalized. One such refinement is
called the Sashimi Model. The main advancement that the Sashimi Model brought was the con-
cept of overlap between stages. The name, Sashimi Model, comes from a Japanese fish dish, called
sashimi, in which different pieces of fish are overlapping each other. While the model still stresses a
rigorous process of planning, designing, coding, and testing, successive stages can partially overlap.
Figure 24-2 shows an example of the Sashimi Model, illustrating the overlapping of stages. Overlap
permits activities in two phases to occur simultaneously. This recognizes the fact that one stage can
often not be finished completely without at least partially looking at the next stage.

Planning

Design

Implementation

Unit Testing

Subsystem
Testing

Integration
Testing

Evaluation

FIGURE 24-2

Spiral-Like Models
The Spiral Model was proposed by Barry W. Boehm in 1986 as a risk-driven software development
process. Several derivatives have been formulated, which are called spiral-like models. The model
discussed in this section is part of a family of techniques known as iterative processes. The funda-
mental idea is that it’s okay if something goes wrong because you’ll fix it the next time around. A
single spin through this spiral-like model is shown in Figure 24-3.

864  ❘  CHAPTER 24   Maximizing Software Engineering Methods

Discovery Evaluation

Analysis Development

FIGURE 24-3

The phases of this model are similar to the steps of the Waterfall Model. The discovery phase
involves discovering requirements, determining objectives, determining alternatives (design alter-
natives, reuse, buying third-party libraries, and so on), and determining any constraints. During
the evaluation phase, implementation alternatives are evaluated, risks are analyzed, and prototype
options are considered. In a spiral-like model, particular attention is paid to evaluating and resolv-
ing risks in the evaluation phase. The tasks deemed most risky are the ones that are implemented
in the current cycle of the spiral. The tasks in the development phase are determined by the risks
identified in the evaluation phase. For example, if evaluation reveals a risky algorithm that may be
impossible to implement, the main task for development in the current cycle will be modeling, build-
ing, and testing that algorithm. The fourth phase is reserved for analysis and planning. Based on the
results of the current cycle, a plan for the subsequent cycle is formed.

Figure 24-4 shows an example of three cycles through the spiral in the development of an operating
system. The first cycle yields a plan containing the major requirements for the product. The second
cycle results in a prototype showing the user experience. The third cycle builds a component that is
determined to be a high risk.

Benefits of a Spiral-Like Model
A spiral-like model can be viewed as the application of an iterative approach to the best that the
Waterfall Model has to offer. Figure 24-5 shows a spiral-like model as a waterfall process that has
been modified to allow iteration. Hidden risks and a linear development path, the main drawbacks
of the Waterfall Model, are resolved through iterative cycles.

Software Life Cycle Models  ❘  865

Discovery Evaluation

Analysis Development

Feature A
Requirements
3

Feature A Risk
Analysis

Prototype
Requirements
2

Prototype
Options

Plan
Requirements
1

Prototype Plan

Feature A Plan

New Feature A Plan

Build Plan

Build Prototype
Feature A Risk
Elimination

Plan
Alternatives

FIGURE 24-4

Planning

Design

Implementation

Unit Testing

Subsystem
Testing

Integration
Testing

Evaluation

Planning

Design

Implementation

Unit Testing

Subsystem
Testing

Integration
Testing

Evaluation

Planning

Design

Implementation

Unit Testing

Subsystem
Testing

Integration
Testing

Evaluation

FIGURE 24-5

Performing the riskiest tasks first is another benefit. By bringing risk to the forefront and acknowl-
edging that new conditions can arise at any time, a spiral-like model avoids the hidden time bombs
that can occur with the Waterfall Model. When unexpected problems arise, they can be dealt with
by using the same four-stage approach that works for the rest of the process.

866  ❘  CHAPTER 24   Maximizing Software Engineering Methods

This iterative approach also allows for incorporating feedback from testers. For example, an early
version of the product can be released for internal or even external evaluation. Testers could, for
instance, say that a certain feature is missing, or an existing feature is not working as expected. A
spiral-like model has a built-in mechanism to react to such input.

Finally, by repeatedly analyzing after each cycle and building new designs, the practical difficulties
with the design-then-implement approach are virtually eliminated. With each cycle, there is more
knowledge of the system that can influence the design.

Drawbacks of a Spiral-Like Model
The main drawback of a spiral-like model is that it can be difficult to scope each iteration small
enough to gain real benefit. In a worst-case scenario, a spiral-like model can degenerate into a
Waterfall Model because the iterations are too long. Unfortunately, a spiral-like model only models
the software life cycle; it cannot prescribe a specific way to break down a project into single-cycle
iterations because that division varies from project to project.

Other possible drawbacks are the overhead of repeating all four phases for each cycle and the dif-
ficulty of coordinating cycles. Logistically, it may be difficult to assemble all the group members for
design discussions at the right time. If different teams are working on different parts of the prod-
uct simultaneously, they are probably operating in parallel cycles, which can get out of synch. For
example, during the development of an operating system, the user interface group could be ready to
start the discovery phase of the Window Manager cycle, but the core OS group could still be in the
development phase of the memory subsystem.

Agile
To address the shortcomings of the Waterfall Model, the Agile Model was introduced in 2001 in the
form of an Agile Manifesto.

MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT

The entire manifesto, taken from http://agilemanifesto.org/, is as follows:

We are uncovering better ways of developing software by doing it and helping oth-
ers do it. Through this work we have come to value:

➤➤ Individuals and interactions over processes and tools

➤➤ Working software over comprehensive documentation

➤➤ Customer collaboration over contract negotiation

➤➤ Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.

Software Engineering Methodologies  ❘  867

As can be understood from this manifesto, the term Agile is only a high-level description. Basically,
it tells you to make the process flexible so that customers’ changes can easily be incorporated into
the project during development. Scrum is one of the most used Agile software development method-
ologies, and is discussed in the next section.

SOFTWARE ENGINEERING METHODOLOGIES

Software life cycle models provide a formal way of answering the question, “What do we do next?”
but are rarely able to contribute an answer to the logical follow-up question, “How do we do it?”
To provide some answers to the “how” question, a number of methodologies have been developed
that provide practical rules of thumb for professional software development. Books and articles on
software methodologies abound, but a few of these methodologies deserve particular attention: UP,
RUP, Scrum, Extreme Programming, and Software Triage.

The Unified Process
The Unified Process (UP) is an iterative and incremental software development process. The UP is
not set in stone; it’s a framework that you should customize to the specific needs of your project.
According to the Unified Process, a project can be split into four phases.

➤➤ Inception: This phase is usually very short. It includes a feasibility study, writing of a business
case, deciding whether the project should be developed in-house or bought from a third-party
vendor, defining a rough estimate of the cost and timeline, and defining the scope.

➤➤ Elaboration: Most of the requirements are documented. Risk factors are addressed, and the
system architecture is validated. To validate the architecture, the most important parts of the
core of the architecture are built as an executable delivery. This should demonstrate that the
developed architecture will be able to support the entire system.

➤➤ Construction: All requirements are implemented on top of the executable architecture deliv-
ery from the elaboration phase.

➤➤ Transition: The product is delivered to the customer. Feedback from the customer is
addressed in subsequent transition iterations.

The elaboration, construction, and transition phases are split into time-boxed iterations, each hav-
ing a tangible result. In each iteration, the teams are working on several disciplines of the project at
the same time: business modeling, requirements, analysis and design, implementation, testing, and
deployment. The amount of work done in each discipline changes with each iteration. This iterative
and overlapping development is shown in Figure 24-6. In this example, the inception phase is done
in one iteration, the elaboration phase in two, the construction phase in four, and the transition
phase in two iterations.

868  ❘  CHAPTER 24   Maximizing Software Engineering Methods

Business Modeling

Inception Elaboration Construction Transition

Requirements

Analysis & Design

Implementation

Test

Deployment

Time

I1 E1 E2 C1 C2 C3 C4 T1 T2

FIGURE 24-6

The Rational Unified Process
The Rational Unified Process (RUP) is one of the best-known refinements of the Unified Process.
It is a disciplined and formal approach to managing the software development process. The most
important characteristic of the RUP is that, unlike the Spiral Model or the Waterfall Model, RUP
is more than just a theoretical process model. RUP is actually a software product that is sold by
Rational Software, a division of IBM. Treating the process itself as software brings about some
interesting advantages:

➤➤ The process itself can be updated and refined, just as software products periodically
have updates.

➤➤ Rather than simply suggesting a development framework, RUP includes a set of software
tools for working with that framework.

➤➤ As a product, RUP can be rolled out to the entire engineering team so that all members are
using the exact same processes and tools.

➤➤ Like many software products, RUP can be customized to the needs of the users.

RUP as a Product
As a product, the RUP takes the form of a suite of software applications that guides developers
through the software development process. The product also offers specific guidance for other
Rational products, such as the Rational Rose visual modeling tool and the Rational ClearCase con-
figuration management tool. Extensive groupware communication tools are included as part of the
“marketplace of ideas” that allows developers to share knowledge.

Software Engineering Methodologies  ❘  869

One of the basic principles behind RUP is that each iteration on a development cycle should have a
tangible result. During the Rational Unified Process, users will create numerous designs, require-
ment documents, reports, and plans. The RUP software provides visualization and development
tools for the creation of these artifacts.

RUP as a Process
Defining an accurate model is the central principle of RUP. Models, according to RUP, help explain
the complicated structures and relationships in the software development process. In RUP, models
are often expressed in Unified Modeling Language (UML) format, see Appendix D.

RUP defines each part of the process as an individual workflow (called discipline in the earlier
discussion of the Unified Process). Workflows represent each step of a process in terms of who is
responsible for the step, what tasks are being performed, the artifacts or results of these tasks, and
the sequence of events that drives the tasks. Almost everything about RUP is customizable, but sev-
eral core process workflows are defined “out of the box” by RUP.

The core process workflows bear some resemblance to the stages of the Waterfall Model, but
each one is iterative and more specific in definition. The business modeling workflow models busi-
ness processes, usually with the goal of driving software requirements forward. The requirements
workflow creates the requirements definition by analyzing the problems in the system and iterating
on its assumptions. The analysis and design workflow deals with system architecture and subsystem
design. The implementation workflow covers the modeling, coding, and integration of software
subsystems. The testing workflow models the planning, implementation, and evaluation of software
quality tests. The deployment workflow is a high-level view of overall planning, releasing, support-
ing, and testing workflows. The configuration management workflow goes from new project con-
ception to iteration and end-of-product scenarios. Finally, the environment workflow supports the
engineering organization through the creation and maintenance of development tools.

RUP in Practice
RUP is aimed mainly at larger organizations and offers several advantages over the adoption of tra-
ditional life cycle models. Once the team has gotten over the learning curve of using the software,
all members will be using a common platform for designing, communicating, and implementing
their ideas. The process can be customized to the needs of the team, and each stage reveals a wealth
of valuable artifacts that document each phase of the development.

A product like RUP can be too heavyweight for some organizations. Teams with diverse develop-
ment environments or tight engineering budgets might not want to, or be able to, standardize on a
software-based development system. The learning curve can also be a factor; new engineers who
aren’t familiar with the process software will have to learn how to use it, while at the same time get-
ting up to speed on the product and the existing code base.

Scrum
The Agile model is just a high-level foundation; it does not specify exactly how the model should be
implemented in real life. That’s where Scrum comes into play; it’s an Agile methodology with precise
descriptions of how to use it on a daily basis.

870  ❘  CHAPTER 24   Maximizing Software Engineering Methods

Scrum is an iterative process. It is very popular as a means to manage software development proj-
ects. In Scrum, each iteration is called a sprint cycle. The sprint cycle is the central part of the Scrum
process. The length of sprints, which should be decided at the beginning of the project, is typically
between two and four weeks. At the end of each sprint, the goal is to have a version of the software
available that is fully working and tested, and which represents a subset of the customers’ require-
ments. Scrum recognizes that customers will often change their minds during development, so it
allows the result of each sprint to be shipped to the customer. This gives customers the opportunity
to see iterative versions of the software, and allows them to give feedback to the development team
about potential issues.

Roles
There are three roles in Scrum. The first role, Product Owner (PO), is the connection to the cus-
tomer and to other people. The PO writes high-level user stories based on input from the customer,
gives each user story a priority, and puts the stories in the Scrum product backlog. Actually, every-
one on the team is allowed to write high-level user stories for the product backlog, but the Product
Owner decides which user stories are kept and which are removed.

The second role, Scrum Master (SM), is responsible for keeping the process running and can be part
of the team, although not the team leader, because with Scrum the team leads itself. The SM is the
contact person for the team so that the rest of the team members can concentrate on their tasks. The
SM ensures that the Scrum process is followed correctly by the team, for example, by organizing the
Daily Scrum meetings, which are discussed later. The Scrum Master and Product Owner should be
two different people.

The third and final role in the Scrum process is the team itself. Teams develop the software, and
should be kept small, with preferably fewer than ten members.

The Process
The Scrum process enforces a daily meeting called the Daily Scrum or Standup. In this meeting, all
team members stand together with the Scrum Master. According to the Scrum process, this meeting
should start every day at exactly the same time and location, and should be no longer than 15 min-
utes. During this meeting, all team members get to answer three questions:

➤➤ What did you do since the last Daily Scrum?

➤➤ What are you planning to do after the current Daily Scrum?

➤➤ What problems are you facing in reaching your goal?

Problems faced by team members should be noted by the Scrum Master, who will try to solve them
after the Daily Scrum meeting.

Before the start of each sprint cycle, there is a Sprint Planning meeting in which team members must
decide which product features they will implement in the new sprint. This is formalized in a sprint
backlog. The features are selected from a product backlog containing prioritized user stories, which
are high-level requirements of new features. User stories from the product backlog are broken down
into smaller tasks with an effort estimation and are put on the sprint backlog. Once a sprint is in

Software Engineering Methodologies  ❘  871

progress, the sprint backlog is frozen and cannot be changed during that sprint. The duration of
the Sprint Planning meeting depends on the length of the sprints, typically, four hours Sprint
Planning meeting for each two weeks of a sprint. The Sprint Planning meeting is usually split into
two parts: meeting with the Product Owner and the team to discuss the priority of product backlog
items, and meeting with only the team to complete the sprint backlog.

In a Scrum team you will sometimes find a physical board with three columns: To Do, In Progress,
and Done. Every task for the sprint is written on a small piece of paper and stuck on the board in
the correct column. Tasks are not assigned to people during a meeting; instead, every team member
can go to the board, pick one of the To Do tasks, and move that paper to the In Progress column.
When the team member is finished with that task, the paper is moved to the Done column. This
method makes it easy for team members to quickly get an overview of the work that still needs to be
done and what tasks are in progress or finished. Instead of a physical Scrum board, you can also use
a software solution to work with a virtual Scrum board.

Sometimes, a burn-down chart is also created every day that displays the days of the sprint on the
horizontal axis and the remaining development hours on the vertical axis. This gives a quick over-
view of the progress made and can be used to determine whether all planned tasks can be completed
during the sprint.

Once a sprint cycle is finished, there are two meetings: the Sprint Review and the Sprint
Retrospective. The duration of the Sprint Review meeting again depends on the length of the
sprints, typically, two hours per two weeks of a sprint. During the Sprint Review meeting, the
results of the sprint cycle are discussed, including what tasks were completed and what tasks were
not completed, and why. The Sprint Retrospective typically takes around one-and-a-half hours
for each two weeks of a sprint, and allows the team to think about how the last sprint cycle was
executed. For example, the team can identify shortcomings in the process and adapt the process for
the next sprint. Questions like “What went well?”, “What could be improved?”, “What do we want
to start, continue, or stop doing?”, and so on, are answered. This is called continuous improvement,
that is, after every sprint, the process is examined and improved.

A final step in the Scrum process is a demo. At the end of each sprint cycle, a demo should be given
to show the sprint results to all interested stakeholders.

Benefits of Scrum
Scrum is resilient to unforeseen problems that come up during the development stage. When a prob-
lem pops up, it can be handled in one of the following sprints. The team is involved in every step of
the project. They discuss user stories from the product backlog with the Product Owner and convert
these user stories into smaller tasks for inclusion in a sprint backlog. The team autonomously assigns
work to their members with the aid of the Scrum task board. This board makes it easy to quickly
see which team member is working on which task. And finally, the Daily Scrum meeting ensures
that everyone knows what is happening.

A huge benefit to the paying customer is the demo that follows each sprint, which demonstrates the
new iterative version of the project. The customer quickly gets a sense of how the project is progress-
ing, and can make changes to the requirements, which usually can be incorporated into a future
sprint.

872  ❘  CHAPTER 24   Maximizing Software Engineering Methods

Drawbacks of Scrum
Some companies might find it difficult to accept that the team itself decides who is doing what.
Tasks are not assigned to team members by a manager or a team leader. All members pick their own
tasks from the Scrum task board.

The Scrum Master is a key person to make sure the team stays on track. It is very important that
the SM trusts the team. Having too tight a control over the team members will cause the Scrum pro-
cess to fail.

A possible problem with Scrum is called feature creep. Scrum allows new user stories to be added to
the product backlog during development. There is a danger that project managers will keep adding
new features to the product backlog. This problem is best solved by deciding on a final release date,
or the end date of the last sprint.

Extreme Programming
When a friend of mine arrived home from work years ago and told his wife that his company had
adopted some of the principles of Extreme Programming, she joked, “I hope you wear a safety har-
ness for that.” Despite the somewhat hokey name, Extreme Programming (or XP) effectively bun-
dles up the best of other software development guidelines, and adds some new material.

XP, popularized by Kent Beck in eXtreme Programming eXplained (Addison-Wesley, 1999), claims
to take the best practices of good software development and turn them up a notch. For example,
most programmers would agree that testing is a good thing. In XP, testing is deemed so good that
you’re supposed to write the tests before you write the code.

XP in Theory
The Extreme Programming methodology is made up of 12 main guiding principles, grouped into
four categories. These principles are manifested throughout all phases of the software development
process, and have a direct impact on the daily tasks of engineers.

Fine-Scale Feedback
XP provides four fine-grained guidelines related to coding, planning, and testing.

Code in Pairs

XP suggests that all production code should be written by two people working side-by-side, a
technique called pair programming. Obviously, only one person can actually be in control of the
keyboard. The other person reviews the code his peer is writing, and takes a high-level approach,
thinking about issues such as testing, necessary refactoring, and the overall model of the project.

As an example, if you are in charge of writing the user interface for a particular feature of your
application, you might want to ask the original author of the feature to sit down with you. He can
advise you about the correct use of the feature, warn you about any “gotchas” you should watch
out for, and help oversee your efforts at a high level. Even if you can’t acquire the help of the origi-
nal author, just grabbing another member of the team can help. The theory is that working in pairs

Software Engineering Methodologies  ❘  873

builds shared knowledge, ensures proper design, and puts an informal system of checks and bal-
ances in place.

Planning Game

In the Waterfall Model, planning happens once, at the beginning of the process. Under the Spiral
Model, planning is the first phase of each iteration. Under XP, planning is more than just a step—it’s
a never-ending task. XP teams start with a rough plan that captures the major points of the product
being developed. During each iteration of the process, there is a so-called planning game meeting.
Throughout the development process, the plan is refined and modified as necessary. The theory is
that conditions are constantly changing and new information is obtained all the time. There are two
major parts in the planning process:

➤➤ Release Planning happens with the developers and the customers, and its goal is to determine
which requirements need to be included in which upcoming releases.

➤➤ Iteration Planning happens only with the developers, and it plans the actual tasks for the
developers.

Under XP, estimates for a given feature are always made by the person who will be implementing
that particular feature. This helps to avoid situations where the implementer is forced to adhere to
an unrealistic and artificial schedule. Initially, estimates are very rough, perhaps on the order of
weeks for a feature. As the time horizon shortens, the estimates become more granular. Features are
broken down into tasks taking no more than five days.

Test Constantly

According to eXtreme Programming eXplained, “Any program feature without an automated test
simply doesn’t exist.” Extreme Programming is zealous about testing. Part of your responsibility as
an XP engineer is to write the unit tests that accompany your code. A unit test is generally a small
piece of code that makes sure that an individual piece of functionality works. For example, indi-
vidual unit tests for a file-based object store may include testSaveObject, testLoadObject, and
testDeleteObject.

XP takes unit testing one step further by suggesting that unit tests should be written before the
actual code is written. Of course, the tests won’t pass because the code hasn’t been written yet. In
theory, if your tests are thorough, you should know when your code is done because all the tests will
complete successfully. This is called test-driven development, TDD. I told you it was “extreme.”

Have a Customer on Site

Because an XP-savvy engineering group constantly refines its product plan and builds only what is
currently necessary, having a customer contribute to the process is very valuable. Although it is not
always possible to convince a customer to be physically present during development, the idea that
there should be communication between engineering and the end user is clearly a valuable notion.
In addition to assisting with the design of individual features, customers can help prioritize tasks by
conveying their individual needs.

874  ❘  CHAPTER 24   Maximizing Software Engineering Methods

Continuous Process
XP advocates that you should continuously integrate subsystems so that mismatches between sub-
systems can be detected early. You should also refactor code whenever necessary, and aim to build
and deploy small incremental releases.

Integrate Continuously

All programmers are familiar with the dreaded chore of integrating code. This task becomes neces-
sary when you discover that your view of the object store is a complete mismatch with the way it
was actually written. When subsystems come together, problems are exposed. XP recognizes this
phenomenon and advocates integrating code into the project frequently as it is being developed.

XP suggests a specific method for integration. Two programmers (the pair that developed the code)
sit down at a designated “integration station” and merge the code in together. The code is not
checked in until it passes 100 percent of the tests. By having a single station, conflicts are avoided
and integration is clearly defined as a step that must occur before a check-in.

A similar approach can still work on an individual level. Engineers run tests individually or in pairs
before checking code into the repository. A designated machine continually runs automated tests.
When the automated tests fail, the team receives an e-mail indicating the problem and listing the
most recent check-ins.

Refactor When Necessary

Most programmers refactor their code from time to time. Refactoring is the process of redesigning
existing working code to take into account new knowledge or alternate uses that have been discov-
ered since the code was written. Refactoring is difficult to build into a traditional software engineer-
ing schedule because its results are not as tangible as implementing a new feature. Good managers,
however, recognize its importance for long-term code maintainability.

The extreme way of refactoring is to recognize situations during development when refactoring is
useful and to do the refactoring at that time. Instead of deciding at the start of a release which exist-
ing parts of the product need design work, XP programmers learn to recognize the signs of code
that is ready to be refactored. While this practice will almost certainly result in unexpected and
unscheduled tasks, restructuring the code when appropriate should make future development easier.

Build Small Releases

One of the theories of XP is that software projects grow risky and unwieldy when they try to accom-
plish too much at one time. Instead of massive software releases that involve core changes and sev-
eral pages of release notes, XP advocates smaller releases with a timeframe closer to two months
than 18 months. With such a short release cycle, only the most important features can make it into
the product. This forces engineering and marketing to agree on what features are truly important.

Shared Understanding
Software is developed by a team. Any code written is not owned by individuals, but by the team as a
whole. XP gives a couple of guidelines to make sure sharing the code and ideas is possible.

Software Engineering Methodologies  ❘  875

Share Common Coding Standards

Due to the collective ownership guideline and the practice of pair programming, coding in an
extreme environment can be difficult if each engineer has their own naming and indenting conven-
tions. XP doesn’t advocate any particular style, but recommends that if you can look at a piece of
code and immediately identify the author, your group probably needs a better definition of its cod-
ing standards.

For additional information on various approaches to coding style, see Chapter 3.

Share the Code

In many traditional development environments, code ownership is strongly defined and often
enforced. A friend of mine once worked in an environment where the manager explicitly forbade
checking in changes to code written by any other member of the team. XP takes the extreme oppo-
site approach by declaring that the code is collectively owned by everybody.

Collective ownership is practical for a number of reasons. From a management point of view, it is
less detrimental when a single engineer leaves suddenly because there are others who understand
that part of the code. From an engineer’s point of view, collective ownership builds a common view
of how the system works. This helps with design tasks and frees the individual programmer to make
any changes that will add value to the overall project.

One important note about collective ownership is that it is not necessary for every programmer to
be familiar with every single line of code. It is more of a mindset that the project is a team effort,
and there is no reason for any one person to hoard knowledge.

Simplify Your Designs

A mantra frequently sung by XP-savvy engineers is “avoid speculative generality.” This goes against
the natural inclinations of many programmers. If you are given the task of designing a file-based
object store, you may start down the path of creating the be-all, end-all solution to all file-based
storage problems. Your design might quickly evolve to cover multiple languages and any type of
object. XP says you should lean toward the other end of the generality continuum. Instead of mak-
ing the ideal object store that will win awards and be celebrated by your peers, design the simplest
possible object store that gets the job done. You should understand the current requirements and
write your code to those specifications to avoid overly complex code.

It may be hard to get used to simplicity in design. Depending on the type of work you do, your code
may need to exist for years and be used by other parts of the code that you haven’t even dreamed
of. As discussed in Chapter 6, the problem with building in functionality that may be useful in the
future is that you don’t know what those hypothetical use cases are, and there is no way to craft a
good design that is purely speculative. Instead, XP says you should build something that is useful
today and leave open the opportunity to modify it later.

Share a Common Metaphor

XP uses the term metaphor for the idea that all members of the team (including customers and
managers) should share a common high-level view of the system. This does not refer to the specifics

876  ❘  CHAPTER 24   Maximizing Software Engineering Methods

of how objects will communicate, or the exact APIs that will be written. Rather, the metaphor is
the mental model and naming model for the components of the system. Each component should be
given a descriptive name, so that each member of the team can guess its functionality simply based
on its name. Team members should use the metaphor to drive shared terminology when discussing
the project.

Programmer Welfare
Obviously, the welfare of the developers is important. So, the final guideline of XP is a guidance on
working sane hours.

Work Sane Hours

XP has a thing or two to say about the hours you’ve been putting in. The claim is that a well-rested
programmer is a happy and productive programmer. XP advocates a workweek of approximately
40 hours and warns against putting in overtime for more than two consecutive weeks.

Of course, different people need different amounts of rest. The main idea, though, is that if you sit
down to write code without a clear head, you’re going to write poor code and abandon many of the
XP principles.

XP in Practice
XP purists claim that the 12 tenets of Extreme Programming are so intertwined that adopting some
of them without others would largely ruin the methodology. For example, pair programming is vital
to testing because if you can’t determine how to test a particular piece of code, your partner can
help. Also, if you’re tired one day and decide to skip the testing, your partner will be there to evoke
feelings of guilt.

Some of the XP guidelines, however, can prove difficult to implement. To some engineers, the idea
of writing tests before code is too abstract. For those engineers, it may be sufficient to design the
tests without actually writing them until there is code to test. Many of the XP principles are rigidly
defined, but if you understand the theory behind them, you may be able to find ways to adapt the
guidelines to the needs of your project.

The collaborative aspects of XP can be challenging as well. Pair programming has measurable ben-
efits, but it may be difficult for a manager to rationalize having half as many people actually writing
code each day. Some members of the team may even feel uncomfortable with such close collabora-
tion, perhaps finding it difficult to type while others are watching. Pair programming also has obvi-
ous challenges if the team is geographically spread out, or if members tend to telecommute regularly.

For some organizations, Extreme Programming may be too radical. Large, established companies
with formal policies in place for engineering may be slow to adopt approaches like XP. However,
even if your company is resistant to the implementation of XP, you can still improve your own pro-
ductivity by understanding the theory behind it.

Software Triage
In the fatalistically named book Death March (Prentice Hall, 1997), Edward Yourdon describes
the frequent and scary condition of software that is behind schedule, short on staff, over budget,

Building Your Own Process and Methodology  ❘  877

or poorly designed. Yourdon’s theory is that when software projects get into this state, even the best
modern software development methodologies will no longer apply. As you have learned in this chap-
ter, many approaches to software development are built around formalized documents or taking a
user-centered approach to design. In a project that’s already in “death march” mode, there simply
isn’t time for these approaches.

The idea behind software triage is that when a project is already in a bad state, resources are scarce.
Time is scarce, engineers are scarce, and money may be scarce. The main mental obstacle that
managers and developers need to overcome when a project is way behind schedule is that it will be
impossible to satisfy the original requirements in the allotted time. The task then becomes organiz-
ing remaining functionality into “must-have,” “should-have,” and “nice-to-have” lists.

Software triage is a daunting and delicate process. It often requires the leadership of an outside
seasoned veteran of “death march” projects to make the tough decisions. For the engineer, the most
important point is that in certain conditions, it may be necessary to throw familiar processes out the
window (along with some existing code, unfortunately) to finish a project on time.

BUILDING YOUR OWN PROCESS AND METHODOLOGY

It’s unlikely that any book or engineering theory will perfectly match the needs of your project or
organization. I recommend that you learn from as many approaches as you can and design your own
process. Combining concepts from different approaches may be easier than you think. For example,
RUP optionally supports an XP-like approach. Here are some tips for building the software engi-
neering process of your dreams.

Be Open to New Ideas
Some engineering techniques seem crazy at first or unlikely to work. Look at new innovations in
software engineering methodologies as a way to refine your existing process. Try things out when
you can. If XP sounds intriguing, but you’re not sure if it will work in your organization, see if
you can work it in slowly, taking a few of the principles at a time or trying it out with a smaller
pilot project.

Bring New Ideas to the Table
Most likely, your engineering team is made up of people from varying backgrounds. You may have
people who are veterans of startups, long-time consultants, recent graduates, and PhDs on your
team. You all have a different set of experiences and your own ideas of how a software project
should be run. Sometimes the best processes turn out to be a combination of the way things are
typically done in these very different environments.

Recognize What Works and What Doesn’t Work
At the end of a project (or better yet, during the project, as with the Sprint Retrospective of the
Scrum methodology), get the team together to evaluate the process. Sometimes there’s a major

878  ❘  CHAPTER 24   Maximizing Software Engineering Methods

problem that nobody notices until the entire team stops to think about it. Perhaps there’s a problem
that everybody knows about but nobody has discussed.

Consider what isn’t working and see how those parts can be fixed. Some organizations require
formal code reviews prior to any source code check-in. If code reviews are so long and boring that
nobody does a good job, discuss code-reviewing techniques as a group.

Also consider what is going well and see how those parts can be extended. For example, if maintain-
ing the feature tasks as a group-editable website is working, then maybe devote some time to mak-
ing the website even better.

Don’t Be a Renegade
Whether a process is mandated by your manager or custom-built by the team, it’s there for a reason.
If your process involves writing formal design documents, make sure you write them. If you think
that the process is broken or too complex, talk to your manager about it. Don’t just avoid the
process—it will come back to haunt you.

SOURCE CODE CONTROL

Managing all source code is very important for any company, big or small, even for one-person
projects. In a company, for example, it would be very impractical to store all the source code on the
machines of individual developers that are not managed by any Source Code Control software. This
would result in a maintenance nightmare because not everyone would always have the latest code.
All source code must be managed by Source Code Control software. There are three kinds of Source
Code Control software solutions.

➤➤ Local: These solutions store all source code files and their history locally on your machine
and are not really suitable for use in a team. These are solutions from the ’70s and ’80s and
shouldn’t be used anymore. They are not discussed further.

➤➤ Client/Server: These solutions are split into a client component and a server component.
For a personal developer, the client and server components can run on the same machine,
but the separation makes it easy to move the server component to a dedicated physical
server machine if the need arises.

➤➤ Distributed: These solutions go one step further than the client/server model. There is no
central place where everything is stored. Every developer has a copy of all the files, including
all the history. A peer-to-peer approach is used instead of a client/server approach. Code is
synchronized between peers by exchanging patches.

The client/server solution consists of two parts. The first part is the server software, which is soft-
ware running on the central server and which is responsible for keeping track of all source code files
and their history. The second part is the client software. This client software should be installed on
every developer’s machine; this software is responsible for communicating with the server software
to get the latest version of a source file, get a previous version of a source file, commit local changes
back to the server, roll back changes to a previous version, and so on.

Source Code Control  ❘  879

A distributed solution doesn’t use a central server. The client software uses peer-to-peer protocols
to synchronize with other peers by exchanging patches. Common operations such as committing
changes, rolling back changes, and so on, are fast because no network access to a central server is
involved. The disadvantage is that it requires more space on the client machine because it needs to
store all the files, including the entire history.

Most Source Code Control systems have a special terminology, but unfortunately, not all systems
use exactly the same terms. The following list explains a number of terms that are commonly used.

➤➤ Branch: The source code can be branched, which means that multiple versions can be devel-
oped side-by-side. For example, one branch can be created for every released version. On
those branches, bug fixes can be implemented for those released versions, while new features
are added to the main branch. Bug fixes created for released versions can also be merged
back to the main branch.

➤➤ Checkout: This is the action of creating a local copy on the developer’s machine, coming
either from a central server or from peers.

➤➤ Check in, Commit, or Merge: A developer should make changes to the local copy of the
source code. When everything works correctly on the local machine, the developer can check
in/commit/merge those local changes back to the central server, or exchange patches with
peers.

➤➤ Conflict: When multiple developers make changes to the same source file, a conflict might
occur when committing that source file. The Source Code Control software often tries to
automatically resolve these conflicts. If that is not possible, the client software asks the user
to resolve any conflicts manually.

➤➤ Label or Tag: A label or tag can be attached to all files or to a specific commit at any given
time. This makes it easy to jump back to the version of the source code at that time.

➤➤ Repository: The collection of all files managed by the Source Code Control software is called
the repository. This also includes metadata about those files, such as commit comments.

➤➤ Resolve: When commit conflicts occur, the user has to resolve them before committing can
continue.

➤➤ Revision or Version: A revision, or version, is a snapshot of the contents of a file at a specific
point in time. Versions represent specific points that the code can be reverted to, or compared
against.

➤➤ Update or Sync: Updating or synchronizing means that the local copy on the developer’s
machine is synchronized with a version on the central server or with peers. Note that this
may require a merge, which may result in a conflict that needs to be resolved.

➤➤ Working Copy: The working copy is the local copy on the individual developer’s machine.

Several Source Code Control software solutions are available. Some of them are free, and some are
commercial. The following table lists a few available solutions.

880  ❘  CHAPTER 24   Maximizing Software Engineering Methods

FREE/OPEN-SOURCE COMMERCIAL

Local Only SCCS, RCS PVCS

Client/Server CVS, Subversion IBM Rational ClearCase, Microsoft Team Foundation
Server, Perforce

Distributed Git, Mercurial,
Bazaar

TeamWare, BitKeeper, Plastic SCM

NOTE  The preceding list is definitely not an exhaustive one. It’s just a small
selection to give you an idea of what’s available.

This book does not recommend a particular software solution. Most software companies these days
have a Source Code Control solution already in place, which every developer needs to adopt. If this
is not the case, the company should definitely invest some time into researching the available solu-
tions, and pick one that suits them. The bottom line is that it will be a maintenance nightmare with-
out any Source Code Control solution in place. Even for your personal projects, you might want to
investigate the available solutions. If you find one that you like, it will make your life easier. It will
automatically keep track of different versions and a history of your changes. This makes it easy for
you to roll back to an older version if a change didn’t work out the way it was supposed to.

SUMMARY

This chapter introduced you to several models and methodologies for the software development
process. There are certainly many other ways of building software, both formalized and infor-
mal. There probably isn’t a single correct method for developing software except the method that
works for your team. The best way to find this method is to do your own research, learn what you
can from various methods, talk to your peers about their experiences, and iterate on your process.
Remember, the only metric that matters when examining a process methodology is how much it
helps your team to write code.

The last part of this chapter briefly touched on the concept of Source Code Control. This should be
an integral part of any software company, big or small, and is even beneficial for personal projects
at home. There are several Source Code Control software solutions available, so it is recommended
that you try out a few, and see which one of them works for you.

Writing Efficient C++
WHAT’S IN THIS CHAPTER?

➤➤ What “efficiency” and “performance” mean

➤➤ What kind of language-level optimizations you can use

➤➤ Which design-level guidelines you can follow to design
efficient programs

➤➤ What profiling tools are

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

The efficiency of your programs is important regardless of your application domain. If your
product competes with others in the marketplace, speed can be a major differentiator: given
the choice between a slower and a faster program, which one would you choose? No one
would buy an operating system that takes two weeks to boot up, unless it was the only option.
Even if you don’t intend to sell your products, they will have users. Those users will not be
happy with you if they end up wasting time waiting for your programs to complete tasks.

Now that you understand the concepts of Professional C++ design and coding, and have
tackled some of the more complex facilities that the language provides, you are ready to incor-
porate performance into your programs. Writing efficient programs involves thought at the
design level, as well as details at the implementation level. Although this chapter falls late in
this book, remember to consider performance from the beginning of your projects.

25

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

882  ❘  CHAPTER 25   Writing Efficient C++

OVERVIEW OF PERFORMANCE AND EFFICIENCY

Before delving further into the details, it’s helpful to define the terms performance and efficiency,
as used in this book. The performance of a program can refer to several areas, such as speed,
memory usage, disk access, and network use. This chapter focuses on speed performance. The term
efficiency, when applied to programs, means running without wasted effort. An efficient program
completes its tasks as quickly as possible within the given circumstances. A program can be efficient
without being fast, if the application domain is inherently prohibitive to quick execution.

NOTE  An efficient, or high-performance, program runs as fast as is possible for
the particular tasks.

Note that the title of this chapter, “Writing Efficient C++,” means writing programs that run
efficiently, not efficiently writing programs. That is, the time you learn to save by reading this chap-
ter will be your users’, not your own!

Two Approaches to Efficiency
Language-level efficiency involves using the language as efficiently as possible, for example, pass-
ing objects by reference instead of by value. However, this will only get you so far. Much more
important is design-level efficiency, which includes choosing efficient algorithms, avoiding unneces-
sary steps and computations, and selecting appropriate design optimizations. More often than not,
optimizing existing code involves replacing a bad algorithm or data structure with a better, more
efficient one.

Two Kinds of Programs
As I’ve noted, efficiency is important for all application domains. Additionally, there is a small sub-
set of programs, such as system-level software, embedded systems, intensive computational applica-
tions, and real-time games, that require extremely high levels of efficiency. Most programs don’t.
Unless you write those types of high-performance applications, you probably don’t need to worry
about squeezing every ounce of speed out of your C++ code. Think of it as the difference between
building normal family cars and building sports cars. Every car must be reasonably efficient, but
sports cars require extremely high performance. You wouldn’t want to waste your time optimizing
family cars for speed when they’ll never go faster than 70 miles per hour.

Is C++ an Inefficient Language?
C programmers often resist using C++ for high-performance applications. They claim that the
language is inherently less efficient than C or a similar procedural language because C++ includes
high-level concepts, such as exceptions and virtual methods. However, there are problems with this
argument.

When discussing the efficiency of a language, you must separate the performance capabilities of the
language itself from the effectiveness of its compilers at optimizing it, that is, you cannot ignore

Language-Level Efficiency  ❘  883

the effect of compilers. Recall that the C or C++ code you write is not the code that the computer
executes. A compiler first translates that code into machine language, applying optimizations in the
process. This means that you can’t simply run benchmarks of C and C++ programs and compare
the results. You’re really comparing the compiler optimizations of the languages, not the languages
themselves. C++ compilers can optimize away many of the high-level constructs in the language to
generate machine code similar to, or even better than, the machine code generated from a compa-
rable C program. These days, much more research and development is poured into C++ compilers
than into C compilers, so C++ code might actually get better optimized and might run faster than
C code.

Critics, however, still maintain that some features of C++ cannot be optimized away. For example,
as Chapter 10 explains, virtual methods require the existence of a vtable and an additional level
of indirection at run time, possibly making them slower than regular non-virtual function calls.
However, when you really think about it, this argument is unconvincing. Virtual method calls pro-
vide more than just a function call: they also give you a run-time choice of which function to call.
A comparable non-virtual function call would need a conditional statement to decide which func-
tion to call. If you don’t need those extra semantics, you can use a non-virtual function. A general
design rule in the C++ language is that “if you don’t use a feature, you don’t need to pay for it.” If
you don’t use virtual methods, you pay no performance penalty for the fact that you could use them.
Thus, non-virtual function calls in C++ are identical to function calls in C in terms of performance.
However, because virtual function calls have such a tiny overhead, I recommend making all your
class methods, including destructors but not constructors, virtual for all your non-final classes.

Far more important, the high-level constructs of C++ enable you to write cleaner programs that are
more efficient at the design level, are more readable, more easily maintained, and avoid accumulat-
ing unnecessary and dead code.

I believe that you will be better served in your development, performance, and maintenance by
choosing C++ instead of a procedural language such as C.

There are also other higher-level object-oriented languages such as C# and Java, both of which run
on top of a virtual machine. C++ code is executed directly by a CPU; there is no such thing as a
virtual machine to run your code. C++ is closer to the hardware, which means that in most cases it
runs faster than languages such as C# and Java.

LANGUAGE-LEVEL EFFICIENCY

Many books, articles, and programmers spend a lot of time trying to convince you to apply language-
level optimizations to your code. These tips and tricks are important, and can speed up your programs
in some cases. However, they are far less important than the overall design and algorithm choices in
your program. You can pass-by-reference all you want, but it won’t make your program fast if you per-
form twice as many disk writes as you need to. It’s easy to get bogged down in references and pointers
and forget about the big picture.

Furthermore, some of these language-level tricks can be performed automatically by good optimiz-
ing compilers. You should never spend time optimizing a particular area, unless a profiler, discussed
later in this chapter, tells you that that particular area is a bottleneck.

884  ❘  CHAPTER 25   Writing Efficient C++

That being said, using certain language-level optimizations, such as pass-by-reference, is just consid-
ered good coding style.

In this book, I’ve tried to present a balance of strategies. So, I’ve included here what I feel are the
most useful language-level optimizations. This list is not comprehensive, but is a good start to write
optimized code. However, make sure to read, and practice, the design-level efficiency advice that I
offer later in this chapter as well.

WARNING  Apply language-level optimizations judiciously. I recommend mak-
ing a clean, well-structured design and implementation first. Then use a profiler,
and only invest time optimizing those parts that are flagged by a profiler as being
a performance bottleneck.

Handle Objects Efficiently
C++ does a lot of work for you behind the scenes, particularly with regard to objects. You should
always be aware of the performance impact of the code you write. If you follow a few simple guide-
lines, your code will become more efficient. Note that these guidelines are only relevant for objects,
and not for primitive types such as bool, int, float, and so on.

Pass-by-Reference
The pass-by-reference rule is discussed elsewhere in this book, but it’s worth repeating here.

WARNING  Objects should rarely be passed by value to a function or method.

When you pass an object of a derived class by value as argument for a function parameter with
as type one of the base classes, then the derived object is sliced to fit into the base class type. This
causes information to be lost, see Chapter 10 for details.

Pass-by-value also incurs copying costs that are avoided with pass-by-reference. One reason why this
rule can be difficult to remember is that on the surface there doesn’t appear to be any problem when
you pass-by-value. Consider a class to represent a person that looks like this:

class Person
{
 public:
 Person() = default;
 Person(std::string_view firstName, std::string_view lastName, int age);
 virtual ~Person() = default;

 std::string_view getFirstName() const { return mFirstName; }
 std::string_view getLastName() const { return mLastName; }
 int getAge() const { return mAge; }

Language-Level Efficiency  ❘  885

 private:
 std::string mFirstName, mLastName;
 int mAge = 0;
};

You could write a function that takes a Person object as follows:

void processPerson(Person p)
{
 // Process the person.
}

You can call this function like this:

Person me("Marc", "Gregoire", 38);
processPerson(me);

This doesn’t look like there’s any more code than if you write the function like this instead:

void processPerson(const Person& p)
{
 // Process the person.
}

The call to the function remains the same. However, consider what happens when you pass-by-
value in the first version of the function. In order to initialize the p parameter of processPerson(),
me must be copied with a call to its copy constructor. Even though you didn’t write a copy construc-
tor for the Person class, the compiler generates one that copies each of the data members. That still
doesn’t look so bad: there are only three data members. However, two of them are strings, which
are themselves objects with copy constructors. So, each of their copy constructors will be called
as well. The version of processPerson() that takes p by reference incurs no such copying costs.
Thus, pass-by-reference in this example avoids three copy constructor calls when the code enters the
function.

And you’re still not done. Remember that p in the first version of processPerson() is a local vari-
able to the processPerson() function, and so must be destroyed when the function exits. This
destruction requires a call to the Person destructor, which will call the destructor of all of the data
members. strings have destructors, so exiting this function (if you passed by value) incurs calls to
three destructors. None of those calls are needed if the Person object is passed by reference.

NOTE  If a function must modify an object, you can pass the object by reference.
If the function should not modify the object, you can pass it by const reference,
as in the preceding example. See Chapter 11 for details on references and const.

NOTE  Avoid using pass-by-pointer, which is a relatively obsolete method for
pass-by-reference. It is a throwback to the C language, and thus rarely suitable
for C++ (unless passing nullptr has meaning in your design).

886  ❘  CHAPTER 25   Writing Efficient C++

Return-by-Reference
Just as you should pass objects by reference to functions, you should also return them by reference
from functions in order to avoid copying the objects unnecessarily. Unfortunately, it is sometimes
impossible to return objects by reference, such as when you write overloaded operator+ and other
similar operators. And, you should never return a reference or a pointer to a local object that will be
destroyed when the function exits!

Since C++11, the language has support for move semantics, which allows you to efficiently return
objects by value, instead of using reference semantics.

Catch Exceptions by Reference
As noted in Chapter 14, you should catch exceptions by reference in order to avoid slicing and
unnecessary copying. Throwing exceptions is heavy in terms of performance, so any little thing you
can do to improve their efficiency will help.

Use Move Semantics
You should make sure your classes have a move constructor and move assignment operator to allow
the C++ compiler to use move semantics with objects of those classes. According to the rule of zero
(see Chapter 9), you should try to design your classes such that the compiler generated copy and
move constructors and copy and move assignment operators are sufficient. If the compiler cannot
implicitly define these for a class, try to explicitly default them if that works for your class. If that
is also not an option, you should implement them yourself. With move semantics for your objects,
returning them by value from a function will be efficient without incurring large copying costs.
Consult Chapter 9 for details on move semantics.

Avoid Creating Temporary Objects
The compiler creates temporary, unnamed objects in several circumstances. Chapter 9 explains that
after writing a global operator+ for a class, you can add objects of that class to other types, as long
as those types can be converted to objects of that class. For example, the SpreadsheetCell class
definition looks in part like this:

class SpreadsheetCell
{
 public:
 // Other constructors omitted for brevity
 SpreadsheetCell(double initialValue);
 // Remainder omitted for brevity
};

SpreadsheetCell operator+(const SpreadsheetCell& lhs,
 const SpreadsheetCell& rhs);

The constructor that takes a double allows you to write code like this:

SpreadsheetCell myCell(4), aThirdCell;
aThirdCell = myCell + 5.6;
aThirdCell = myCell + 4;

Language-Level Efficiency  ❘  887

The second line constructs a temporary SpreadsheetCell object from the 5.6 argument; it then
calls the operator+ with myCell and this temporary object as arguments. The result is stored in
aThirdCell. The third line does the same thing, except that 4 must be coerced to a double in order
to call the double constructor of the SpreadsheetCell.

The important point in this example is that the compiler generates code to create an extra, unnamed
SpreadsheetCell object for both addition operations in this example. That object must be con-
structed and destructed with calls to its constructor and destructor. If you’re still skeptical, try
inserting cout statements in your constructor and destructor, and watch the printout.

In general, the compiler constructs a temporary object whenever your code converts a variable of
one type to another type for use in a larger expression. This rule applies mostly to function calls.
For example, suppose that you write a function with the following prototype:

void doSomething(const SpreadsheetCell& s);

You can call this function like this:

doSomething(5.56);

The compiler constructs a temporary SpreadsheetCell object from 5.56 using the double con-
structor. This temporary object is then passed to doSomething(). Note that if you remove the
const from the s parameter, you can no longer call doSomething() with a constant; you must pass
a variable.

You should generally attempt to avoid cases in which the compiler is forced to construct temporary
objects. Although it is impossible to avoid in some situations, you should at least be aware of the
existence of this “feature” so you aren’t surprised by performance and profiling results.

Move semantics is used by the compiler to make working with temporary objects more efficient.
That’s another reason to make sure your classes support move semantics. See Chapter 9 for details.

The Return-Value Optimization
A function that returns an object by value can cause the creation of a temporary object. Continuing
with the Person example from earlier, consider this function:

Person createPerson()
{
 Person newP("Marc", "Gregoire", 38);
 return newP;
}

Suppose that you call it like this (assuming that operator<< is implemented for the Person class):

cout << createPerson();

Even though this call does not store the result of createPerson() anywhere, the result must be
stored somewhere in order to pass it to operator<<. In order to generate code for this behavior, the
compiler is allowed to create a temporary variable in which to store the Person object returned from
createPerson().

888  ❘  CHAPTER 25   Writing Efficient C++

Even if the result of the function is not used anywhere, the compiler might still generate code to cre-
ate the temporary object. For example, suppose that you have this code:

createPerson();

The compiler might generate code to create a temporary object for the return value, even though it
is not used.

However, you usually don’t need to worry about this issue because in most cases, the compiler
optimizes away the temporary variable to avoid all copying and moving. For the createPerson()
example, this optimization is called named return value optimization (NRVO) because the return
statement returns a named variable. In the case the return statement has as argument a nameless
temporary value, then this optimization is called return value optimization (RVO). These kinds of
optimizations are usually only enabled for release builds. For NRVO to work, the argument to the
return statement must be a single local variable. For example, in the following case, the compiler
cannot do NRVO:

Person createPerson()
{
 Person person1;
 Person person2;
 return getRandomBool() ? person1 : person2;
}

If NRVO and RVO are not applicable, then copying or moving will happen. If the object you want
to return from a function supports move semantics, then it is moved out of the function instead of
copied.

Pre-allocate Memory
One of the main advantages of using containers such as those from the C++ Standard Library is
that they handle all memory management for you. The containers grow automatically when you
add more elements to them. However, sometimes this causes a performance penalty. For example,
an std::vector container stores its elements contiguously in memory. If it needs to grow in size, it
needs to allocate a new block of memory, and then move (or copy) all elements to this new memory.
This has serious performance implications, for example, if you use push_back() in a loop to add
millions of elements to a vector.

If you know in advance how many elements you are going to add to a vector, or if you have a rough
estimate, you should pre-allocate enough memory before starting to add your elements. A vector
has a capacity, that is, the number of elements that can be added without reallocation, and a size,
that is, the actual number of elements in the container. You can pre-allocate memory by changing
the capacity using the reserve() method, or by resizing the vector using resize(). See Chapter
17 for details.

Use Inline Methods and Functions
As described in Chapter 9, the code for an inline method or function is inserted directly into the
code where it is called, avoiding the overhead of a function call. You should mark as inline all
functions and methods that you think can qualify for this optimization. However, do not overuse

Design-Level Efficiency  ❘  889

this feature, because it basically throws away a fundamental design principle, which states that
the interface and the implementation should be separated, such that the implementation can evolve
without any changes to the interface. Consider using this feature only for often-used, fundamental
classes. Also, remember that inlining requests by the programmer are only a recommendation to the
compiler, which is allowed to refuse them.

On the other hand, some compilers inline appropriate functions and methods during their optimiza-
tion steps, even if those functions aren’t marked with the inline keyword, and even if those func-
tions are implemented in a source file instead of a header file. Thus, you should read your compiler
documentation before wasting a lot of effort deciding which functions to inline.

DESIGN-LEVEL EFFICIENCY

The design choices in your program affect its performance far more than do language details such as
pass-by-reference. For example, if you choose an algorithm for a fundamental task in your applica-
tion that runs in O(n2) time instead of a simpler one that runs in O(n) time, you could potentially
perform the square of the number of operations that you really need. To put numbers on that, a task
that uses an O(n2) algorithm and performs one million operations would perform only one thousand
with an O(n) algorithm. Even if that operation is optimized beyond recognition at the language
level, the simple fact that you perform one million operations when a better algorithm would use
only one thousand will make your program very inefficient. Always choose your algorithms care-
fully. Refer to Part II, specifically Chapter 4, of this book for a detailed discussion of algorithm
design choices and big-O notation.

In addition to your choice of algorithms, design-level efficiency includes specific tips and tricks.
Instead of writing your own data structures and algorithms, you should use existing ones, such as
those from the C++ Standard Library, the Boost libraries, or other libraries, as much as possible
because they are written by experts. These libraries have been, and are being, used a lot, so you
can expect most bugs to have been discovered and fixed. You should also think about incorporat-
ing multithreading in your design to take full advantage of all processing power available on the
machine. See Chapter 23 for more details. The remainder of this section presents two more design
techniques for optimizing your program: caching and using object pools.

Cache Where Necessary
Caching means storing items for future use in order to avoid retrieving or recalculating them. You
might be familiar with the principle from its use in computer hardware. Modern computer proces-
sors are built with memory caches that store recently and frequently accessed memory values in a
location that is quicker to access than main memory. Most memory locations that are accessed at
all are accessed more than once in a short time period, so caching at the hardware level can signifi-
cantly speed up computations.

Caching in software follows the same approach. If a task or computation is particularly slow, you
should make sure that you are not performing it more than necessary. Store the results in memory
the first time you perform the task so that they are available for future needs. Here is a list of tasks
that are usually slow.

890  ❘  CHAPTER 25   Writing Efficient C++

➤➤ Disk access: You should avoid opening and reading the same file more than once in your
program. If memory is available, save the file contents in RAM if you need to access
it frequently.

➤➤ Network communication: Whenever you need to communicate over a network, your pro-
gram is subject to the vagaries of the network load. Treat network accesses like file accesses,
and cache as much static information as possible.

➤➤ Mathematical computations: If you need the result of a very complex computation in more
than one place, perform the calculation once and share the result. However, if it’s not very
complex, then it’s probably faster to just calculate it instead of retrieving it from a cache. Use
a profiler to be sure.

➤➤ Object allocation: If you need to create and use a large number of short-lived objects in your
program, consider using an object pool, described later in this chapter.

➤➤ Thread creation: Creating threads is slow. You can “cache” threads in a thread-pool, similar
to caching objects in an object-pool.

One common problem with caching is that the data you store often comprises only copies of the
underlying information. The original data might change during the lifetime of the cache. For
example, you might want to cache the values in a configuration file so that you don’t need to read it
repeatedly. However, the user might be allowed to change the configuration file while your program
is running, which would make your cached version of the information obsolete. In cases like this,
you need a mechanism for cache invalidation: when the underlying data changes, you must either
stop using your cached information or repopulate your cache.

One technique for cache invalidation is to request that the entity managing the underlying data noti-
fies your program of the data change. It could do this through a callback that your program regis-
ters with the manager. Alternatively, your program could poll for certain events that would trigger
it to repopulate the cache automatically. Regardless of your specific cache invalidation technique,
make sure that you think about these issues before relying on a cache in your program.

NOTE  Always keep in mind that maintaining caches takes code, memory, and
processing time. On top of that, caches can be a source of subtle bugs. You
should only add caching to a particular area when a profiler clearly shows that
that area is a performance bottleneck. First write clean and correct code, then
profile it, and only then optimize parts of it.

Use Object Pools
There are different kinds of object pools. One kind of object pool is where it allocates a large chunk
of memory at once, in which the object pool creates smaller objects in-place. These objects can be
handed out to clients, and reused when the clients are done with them, without incurring any addi-
tional calls to the memory manager to allocate or deallocate memory for individual objects.

Design-Level Efficiency  ❘  891

This section describes another kind of object pool. If your program needs a large number of short-
lived objects of the same type that have an expensive constructor (for example, a constructor
creating a large, pre-sized vector for storing data), and a profiler confirms that allocating and deallo-
cating these objects is a bottleneck, then you can create a pool, or cache, of those objects. Whenever
you need an object in your code, you ask the pool for one. When you are done with the object, you
return it to the pool. The object pool creates the objects only once, so their constructor is called only
once, not each time they are used. Thus, object pools are appropriate when the constructor performs
some setup actions that apply to many uses of the object, and when you can set instance-specific
parameters on the object through non-constructor method calls.

An Object Pool Implementation
This section provides an implementation of an object pool class template that you can use in your
programs. The pool hands out objects via the acquireObject() method. If acquireObject() is
called but there are no free objects, then the pool allocates another instance of the object. acquire-
Object() returns an Object that is an std::shared_ptr with a custom deleter. The custom deleter
doesn’t actually delete the memory; it simply puts the object back on the list of free objects.

The most difficult aspect of an object pool implementation is keeping track of which objects are free
and which are in use. This implementation takes the approach of storing free objects in a queue.
Each time a client requests an object, the pool gives that client the top object from the queue. The
code uses the std::queue class from the Standard Library, as discussed in Chapter 17. Because this
standard data structure is used, this implementation is not thread safe. One way to make it thread
safe is to use a lock-free concurrent queue. However, the Standard Library does not provide any con-
current data structures, so you’ll have to use third-party libraries.

Here is the class definition, with comments that explain the details. The class template is parameter-
ized on the class type from which the objects in the pool are to be constructed.

#include <queue>
#include <memory>

// Provides an object pool that can be used with any class that provides a
// default constructor.
//
// acquireObject() returns an object from the list of free objects. If
// there are no more free objects, acquireObject() creates a new instance.
// The pool only grows: objects are never removed from the pool (freed),
// until the pool is destroyed.
// acquireObject() returns an Object which is an std::shared_ptr with a
// custom deleter that automatically puts the object back into the object
// pool when the shared_ptr is destroyed and its reference reaches 0.
//
// The constructor and destructor on each object in the pool will be called
// only once each for the lifetime of the object pool, not once per
// acquisition and release.
//
// The primary use of an object pool is to avoid creating and deleting
// objects repeatedly. This object pool is most suited to applications that

892  ❘  CHAPTER 25   Writing Efficient C++

// use large numbers of objects with expensive constructors for short
// periods of time, and if a profiler tells you that allocating and
// deallocating these objects is a bottleneck.
template <typename T>
class ObjectPool
{
 public:
 ObjectPool() = default;
 virtual ~ObjectPool() = default;

 // Prevent assignment and pass-by-value
 ObjectPool(const ObjectPool<T>& src) = delete;
 ObjectPool<T>& operator=(const ObjectPool<T>& rhs) = delete;

 // The type of smart pointer returned by acquireObject().
 using Object = std::shared_ptr<T>;

 // Reserves and returns an object for use.
 Object acquireObject();
 private:
 // Stores the objects that are not currently in use by clients.
 std::queue<std::unique_ptr<T>> mFreeList;
};

When using this object pool, you have to make sure that the object pool itself outlives all the objects
handed out by the pool. A user of the object pool specifies through the template parameter the name
of the class from which objects can be created.

acquireObject() returns the top object from the free list, first allocating a new object if there are
no free objects:

template <typename T>
typename ObjectPool<T>::Object ObjectPool<T>::acquireObject()
{
 if (mFreeList.empty()) {
 mFreeList.emplace(std::make_unique<T>());
 }

 // Move next free object from the queue to a local unique_ptr.
 std::unique_ptr<T> obj(std::move(mFreeList.front()));
 mFreeList.pop();

 // Convert the object pointer to an Object (a shared_ptr with
 // a custom deleter).
 Object smartObject(obj.release(), [this](T* t){
 // The custom deleter doesn't actually deallocate the
 // memory, but simply puts the object back on the free list.
 mFreeList.emplace(t);
 });

 // Return the Object.
 return smartObject;
}

Design-Level Efficiency  ❘  893

Using the Object Pool
Consider an application that uses a lot of short-lived objects with an expensive constructor. Let’s
assume the ExpensiveObject class definition looks as follows:

class ExpensiveObject
{
 public:
 ExpensiveObject() { /* Expensive construction ... */ }
 virtual ~ExpensiveObject() = default;
 // Methods to populate the object with specific information.
 // Methods to retrieve the object data.
 // (not shown)
 private:
 // Data members (not shown)
};

Instead of creating and deleting large numbers of such objects throughout the lifetime of your pro-
gram, you can use the object pool developed in the previous section. Your program structure could
be something like this:

ObjectPool<ExpensiveObject>::Object
 getExpensiveObject(ObjectPool<ExpensiveObject>& pool)
{
 // Obtain an ExpensiveObject object from the pool.
 auto object = pool.acquireObject();

 // Populate the object. (not shown)

 return object;
}

void processExpensiveObject(ObjectPool<ExpensiveObject>::Object& object)
{
 // Process the object. (not shown)
}

int main()
{
 ObjectPool<ExpensiveObject> requestPool;

 {
 vector<ObjectPool<ExpensiveObject>::Object> objects;
 for (size_t i = 0; i < 10; ++i) {
 objects.push_back(getExpensiveObject(requestPool));
 }
 }

 for (size_t i = 0; i < 100; ++i) {
 auto req = getExpensiveObject(requestPool);
 processExpensiveObject(req);
 }
 return 0;
}

894  ❘  CHAPTER 25   Writing Efficient C++

The first part of this main() function contains an inner code block which creates ten expensive
objects and stores them in the objects container. Because all created Objects are stored in a
vector and thus kept alive, the object pool is forced to create ten ExpensiveObject instances. At
the closing brace of the inner code block, the vector goes out of scope, and all Objects contained
in it are automatically released back to the object pool.

In the second for loop, the Objects (= shared_ptrs) returned by getExpensiveObject() go out of
scope at the end of each iteration of the for loop, and so are automatically released back to the pool.
If you add an output statement to the constructor of the ExpensiveObject class, you’ll see that the
constructor is only called ten times during the entire program, even though the second for loop in
main() loops a hundred times.

PROFILING

It is good to think about efficiency as you design and code. There is no point in writing obviously
inefficient programs if this can be avoided with some common sense, or experience-based intuition.
However, I urge you not to get too obsessed with performance during the design and coding phases.
It’s best to first make a clean, well-structured design and implementation, then use a profiler, and
only optimize parts that are flagged by the profiler as being performance bottlenecks. Remember
the “90/10” rule, introduced in Chapter 4, which states that 90 percent of the running time of most
programs is spent in only 10 percent of the code (Hennessy and Patterson, Computer Architecture,
A Quantitative Approach, Fourth Edition, [Morgan Kaufmann, 2006]). This means that you could
optimize 90 percent of your code, but still only improve the running time of the program by 10
percent. Obviously, you want to optimize the parts of the code that are exercised the most for the
specific workload that you expect the program to run.

Consequently, it is often helpful to profile your program to determine which parts of the code
require optimization. There are many profiling tools available that analyze programs as they run in
order to generate data about their performance. Most profiling tools provide analysis at the function
level by specifying the amount of time (or percent of total execution time) spent in each function
in the program. After running a profiler on your program, you can usually tell immediately which
parts of the program need optimization. Profiling before and after optimizing is essential to prove
that your optimizations had an effect.

If you are using Microsoft Visual C++ 2017, you already have a great built-in profiler, which is dis-
cussed later in this chapter. If you are not using Visual C++, Microsoft has a Community edition
available which is free of charge for students, open-source developers, and individual developers to
create both free and paid applications. It’s also free of charge for up to five users in small organiza-
tions. Another great profiling tool is Rational PurifyPlus from IBM. There are also a number of
smaller free profiling tools available: Very Sleepy and Luke Stackwalker are popular profilers for
Windows, Valgrind and gprof (GNU profiler) are well-known profilers for Unix/Linux systems, and
there are plenty of other choices.

Profiling  ❘  895

Profiling Example with gprof
The power of profiling can best be seen with a real coding example. As a disclaimer, the perfor-
mance bugs in the first implementation shown are not subtle! Real efficiency issues would probably
be more complex, but a program long enough to demonstrate them would be too lengthy for this
book.

Suppose that you work for the United States Social Security Administration. Every year the admin-
istration puts up a website that allows users to look up the popularity of new baby names from
the previous year. Your job is to write the back-end program that looks up names for users. Your
input is a file containing the name of every new baby. This file will obviously contain redundant
names. For example, in the file for boys for 2003, the name Jacob was the most popular, showing
up 29,195 times. Your program must read the file to construct an in-memory database. A user may
then request the absolute number of babies with a given name, or the rank of that name among all
the babies.

First Design Attempt
A logical design for this program consists of a NameDB class with the following public methods:

#include <string_view>

class NameDB
{
 public:
 // Reads list of baby names in nameFile to populate the database.
 // Throws invalid_argument if nameFile cannot be opened or read.
 NameDB(std::string_view nameFile);

 // Returns the rank of the name (1st, 2nd, etc).
 // Returns –1 if the name is not found.
 int getNameRank(std::string_view name) const;

 // Returns the number of babies with this name.
 // Returns –1 if the name is not found.
 int getAbsoluteNumber(std::string_view name) const;

 // Protected and private members and methods not shown
};

The hard part is choosing a good data structure for the in-memory database. My first attempt is a
vector of name/count pairs. Each entry in the vector stores one of the names, along with a count
of the number of times that name shows up in the raw data file. Here is the complete class definition
with this design:

#include <string_view>
#include <string>
#include <vector>
#include <utility>

class NameDB
{

896  ❘  CHAPTER 25   Writing Efficient C++

 public:
 NameDB(std::string_view nameFile);
 int getNameRank(std::string_view name) const;
 int getAbsoluteNumber(std::string_view name) const;
 private:
 std::vector<std::pair<std::string, int>> mNames;

 // Helper methods
 bool nameExists(std::string_view name) const;
 void incrementNameCount(std::string_view name);
 void addNewName(std::string_view name);
};

Note the use of the Standard Library vector and pair classes, both of which are discussed in
Chapter 17. A pair is a utility class that combines two values of possibly different types.

Here are the implementations of the constructor and the helper methods nameExists(),
incrementNameCount(), and addNewName(). The loops in nameExists() and increment
NameCount() iterate over all the elements of the vector.

// Reads the names from the file and populates the database.
// The database is a vector of name/count pairs, storing the
// number of times each name shows up in the raw data.
NameDB::NameDB(string_view nameFile)
{
 // Open the file and check for errors.
 ifstream inputFile(nameFile.data());
 if (!inputFile) {
 throw invalid_argument("Unable to open file");
 }

 // Read the names one at a time.
 string name;
 while (inputFile >> name) {
 // Look up the name in the database so far.
 if (nameExists(name)) {
 // If the name exists in the database, just increment the count.
 incrementNameCount(name);
 } else {
 // If the name doesn't yet exist, add it with a count of 1.
 addNewName(name);
 }
 }
}

// Returns true if the name exists in the database, false otherwise.
bool NameDB::nameExists(string_view name) const
{
 // Iterate through the vector of names looking for the name.
 for (auto& entry : mNames) {
 if (entry.first == name) {
 return true;
 }
 }
 return false;
}

Profiling  ❘  897

// Precondition: name exists in the vector of names.
// Postcondition: the count associated with name is incremented.
void NameDB::incrementNameCount(string_view name)
{
 for (auto& entry : mNames) {
 if (entry.first == name) {
 entry.second++;
 return;
 }
 }
}

// Adds a new name to the database.
void NameDB::addNewName(string_view name)
{
 mNames.push_back(make_pair(name.data(), 1));
}

Note that in the preceding example, you could use an algorithm like find_if() to accomplish the
same thing as the loops in nameExists() and incrementNameCount(). The loops are shown explic-
itly in order to emphasize the performance problems.

You might have noticed some performance problems already. What if there are hundreds of thou-
sands of names? The many linear searches involved in populating the database will become slow.

In order to complete the example, here are the implementations of the two public methods:

// Returns the rank of the name.
// First looks up the name to obtain the number of babies with that name.
// Then iterates through all the names, counting all the names with a higher
// count than the specified name. Returns that count as the rank.
int NameDB::getNameRank(string_view name) const
{
 // Make use of the getAbsoluteNumber() method.
 int num = getAbsoluteNumber(name);

 // Check if we found the name.
 if (num == -1) {
 return -1;
 }

 // Now count all the names in the vector that have a
 // count higher than this one. If no name has a higher count,
 // this name is rank number 1. Every name with a higher count
 // decreases the rank of this name by 1.
 int rank = 1;
 for (auto& entry : mNames) {
 if (entry.second > num) {
 rank++;
 }
 }
 return rank;
}

898  ❘  CHAPTER 25   Writing Efficient C++

// Returns the count associated with this name.
int NameDB::getAbsoluteNumber(string_view name) const
{
 for (auto& entry : mNames) {
 if (entry.first == name) {
 return entry.second;
 }
 }
 return -1;
}

Profiling the First Design Attempt
In order to test the program, you need a main() function:

#include "NameDB.h"
#include <iostream>
using namespace std;

int main()
{
 NameDB boys("boys_long.txt");
 cout << boys.getNameRank("Daniel") << endl;
 cout << boys.getNameRank("Jacob") << endl;
 cout << boys.getNameRank("William") << endl;
 return 0;
}

This main() function creates one NameDB database called boys, telling it to populate itself with the
file boys_long.txt, which contains 500,500 names.

There are three steps to using gprof:

	 1.	 Compile your program with a special flag that causes it to log raw execution information
when it is run. When using GCC as your compiler, the flag is –pg, as in this example:

> gcc -lstdc++ -std=c++17 -pg -o namedb NameDB.cpp NameDBTest.cpp

	 2.	 Run your program. This should generate a file called gmon.out in the working directory. Be
patient when you run the program because this first version is slow.

	 3.	 Run the gprof command. This final step enables you to analyze the gmon.out profiling infor-
mation and produce a (somewhat) readable report. gprof outputs to standard out, so you
should redirect the output to a file:

> gprof namedb gmon.out > gprof_analysis.out

Now you can analyze the data. Unfortunately, the output file is somewhat cryptic and intimidating,
so it takes a little while to learn how to interpret it. gprof provides two separate sets of information.
The first set summarizes the amount of time spent executing each function in the program. The
second and more useful set summarizes the amount of time spent executing each function and its
descendants; this set is also called a call graph. Here is some of the output from the gprof_
analysis.out file, edited to make it more readable. Note that the numbers will be different on
your machine.

Profiling  ❘  899

index %time self children called name
[1] 100.0 0.00 14.06 main [1]
 0.00 14.00 1/1 NameDB::NameDB [2]
 0.00 0.04 3/3 NameDB::getNameRank [25]
 0.00 0.01 1/1 NameDB::~NameDB [28]

The following list explains the different columns.

➤➤ index: an index to be able to refer to this entry in the call graph.

➤➤ %time: the percentage of the total execution time of the program required by this function
and its descendants.

➤➤ self: how many seconds the function itself was executing.

➤➤ children: how many seconds the descendants of this function were executing.

➤➤ called: how often this function was called.

➤➤ name: the name of the function. If the name of the function is followed by a number between
square brackets, that number refers to another index in the call graph.

The preceding extract tells you that main() and its descendants took 100 percent of the total execu-
tion time of the program, for a total of 14.06 seconds. The second line shows that the NameDB
constructor took 14.00 seconds of the total 14.06 seconds. So, it’s immediately clear where the per-
formance issue is situated. To track down which part of the constructor is taking so long, you need
to jump to the call graph entry with index 2, because that’s the index in square brackets behind the
name in the last column. The call graph entry with index 2 is as follows on my test system:

[2] 99.6 0.00 14.00 1 NameDB::NameDB [2]
 1.20 6.14 500500/500500 NameDB::nameExists [3]
 1.24 5.24 499500/499500 NameDB::incrementNameCount [4]
 0.00 0.18 1000/1000 NameDB::addNewName [19]
 0.00 0.00 1/1 vector::vector [69]

The nested entries below NameDB::NameDB show which of its descendants took the most time.
Here you can see that nameExists() took 6.14 seconds, and incrementNameCount()took 5.24
seconds. These times are the sums of all the calls to the functions. The fourth column in those lines
shows the number of calls to the function (500,500 to nameExists() and 499,500 to increment-
NameCount()). No other function took a significant amount of time.

Without going any further in this analysis, two things should jump out at you:

	 1.	 Taking 14 seconds to populate the database of approximately 500,000 names is slow.
Perhaps you need a better data structure.

	 2.	 nameExists() and incrementNameCount() take an almost identical amount of time, and
are called almost the same number of times. If you think about the application domain, that
makes sense: most names in the input text file are duplicates, so the vast majority of the calls
to nameExists() are followed by a call to incrementNameCount(). If you look back at the
code, you can see that these functions are almost identical; they could probably be combined.
In addition, most of what they are doing is searching the vector. It would probably be better
to use a sorted data structure to reduce the searching time.

900  ❘  CHAPTER 25   Writing Efficient C++

Second Design Attempt
With these two observations from the gprof output, it’s time to redesign the program. The new
design uses a map instead of a vector. Chapter 17 explains that the Standard Library map keeps the
entries sorted, and provides O(log n) lookup instead of the O(n) searches in a vector. A good exer-
cise for you to try would be to use an std::unordered_map, which has an expected O(1) for look-
ups, and to use a profiler to see if that is faster than std::map for this application.

The new version of the program also combines nameExists() and incrementNameCount() into one
nameExistsAndIncrement() method.

Here is the new class definition:

#include <string_view>
#include <string>
#include <map>

class NameDB
{
 public:
 NameDB(std::string_view nameFile);
 int getNameRank(std::string_view name) const;
 int getAbsoluteNumber(std::string_view name) const;
 private:
 std::map<std::string, int> mNames;
 bool nameExistsAndIncrement(std::string_view name);
 void addNewName(std::string_view name);
};

Here are the new method implementations:

// Reads the names from the file and populates the database.
// The database is a map associating names with their frequency.
NameDB::NameDB(string_view nameFile)
{
 // Open the file and check for errors.
 ifstream inputFile(nameFile.data());
 if (!inputFile) {
 throw invalid_argument("Unable to open file");
 }

 // Read the names one at a time.
 string name;
 while (inputFile >> name) {
 // Look up the name in the database so far.
 if (!nameExistsAndIncrement(name)) {
 // If the name exists in the database, the
 // method incremented it, so we just continue.
 // We get here if it didn't exist, in which case
 // we add it with a count of 1.
 addNewName(name);
 }
 }
}

Profiling  ❘  901

// Returns true if the name exists in the database, false
// otherwise. If it finds it, it increments it.
bool NameDB::nameExistsAndIncrement(string_view name)
{
 // Find the name in the map.
 auto res = mNames.find(name.data());
 if (res != end(mNames)) {
 res->second++;
 return true;
 }
 return false;
}

// Adds a new name to the database.
void NameDB::addNewName(string_view name)
{
 mNames[name.data()] = 1;
}

int NameDB::getNameRank(string_view name) const
{
 // Implementation omitted, same as before.
}

// Returns the count associated with this name.
int NameDB::getAbsoluteNumber(string_view name) const
{
 auto res = mNames.find(name.data());
 if (res != end(mNames)) {
 return res->second;
 }
 return -1;
}

Profiling the Second Design Attempt
By following the same steps shown earlier, you can obtain the gprof performance data on the new
version of the program. The data is quite encouraging:

index %time self children called name
[1] 100.0 0.00 0.21 main [1]
 0.02 0.18 1/1 NameDB::NameDB [2]
 0.00 0.01 1/1 NameDB::~NameDB [13]
 0.00 0.00 3/3 NameDB::getNameRank [28]
[2] 95.2 0.02 0.18 1 NameDB::NameDB [2]
 0.02 0.16 500500/500500 NameDB::nameExistsAndIncrement
[3] 0.00 0.00 1000/1000 NameDB::addNewName [24]
 0.00 0.00 1/1 map::map [87]

If you run this on your machine, the output will be different. It’s even possible that you will not
see the data for NameDB methods in your output. Because of the efficiency of this second attempt,
the timings are getting so small that you might see more map methods in the output than NameDB
methods.

902  ❘  CHAPTER 25   Writing Efficient C++

On my test system, main() now takes only 0.21 seconds—a 67-fold improvement! There are cer-
tainly further improvements that you could make on this program. For example, the current con-
structor performs a lookup to see if the name is already in the map, and if not, adds it to the map.
You could combine these two operations simply with the following single line:

++mNames[name];

If the name is already in the map, this statement just increments its counter. If the name is not
yet in the map, this statement first adds an entry to the map with the given name as key and a
zero-initialized value, and then increments the value, resulting in a counter of 1.

With this improvement, you can remove the nameExistsAndIncrement() and addNewName()
methods, and change the constructor as follows:

NameDB::NameDB(string_view nameFile)
{
 // Open the file and check for errors
 ifstream inputFile(nameFile.data());
 if (!inputFile) {
 throw invalid_argument("Unable to open file");
 }

 // Read the names one at a time.
 string name;
 while (inputFile >> name) {
 ++mNames[name];
 }
}

getNameRank() still uses a loop that iterates over all elements in the map. A good exercise for you to
try is to come up with another data structure so that the linear iteration in getNameRank() can be
avoided.

Profiling Example with Visual C++ 2017
Most editions of Microsoft Visual C++ 2017 come with a great built-in profiler, which is briefly
discussed in this section. The VC++ profiler has a complete graphical user interface. This book does
not recommend one profiler over another, but it is always good to have an idea of what a command
line–based profiler like gprof can provide in comparison with a GUI-based profiler like the one
included with VC++.

To start profiling an application in Visual C++ 2017, you first need to open the project in Visual
Studio. This example uses the same NameDB code as in the first inefficient design attempt from earlier
in the chapter. That code is not repeated here. Once your project is opened in Visual Studio, click
on the Analyze menu, and then choose Performance Profiler. A new window appears, as shown in
Figure 25-1.

In this new window, enable the “Performance Wizard” option and click the Start button. This starts
a wizard, as shown in Figure 25-2.

Profiling  ❘  903

FIGURE 25-1

FIGURE 25-2

904  ❘  CHAPTER 25   Writing Efficient C++

Depending on your version of VC++ 2017, there are a number of different profiling methods avail-
able. The following non-exhaustive list explains three of them.

➤➤ CPU Sampling: This method is used to monitor applications with low overhead. This means
that the act of profiling the application will not have a big performance impact on the target
application.

➤➤ Instrumentation: This method adds extra code to the application to be able to accurately
count the number of function calls and to time individual function calls. However, this
method has a much bigger performance impact on the application. It is recommended to
use the CPU Sampling method first to get an idea about the bottlenecks in your applica-
tion. If that method does not give you enough information, you can try the Instrumentation
method.

➤➤ Resource contention data (concurrency): This method allows you to graphically monitor
multithreaded applications. It allows you to see which threads are running, which threads are
waiting for something, and so on.

For this profiling example, leave the default CPU sampling method selected and click the Next but-
ton. The next page of the wizard asks you to select the application that you want to profile. Here
you should select your NameDB project and click the Next button. On the last page of the wizard,
you can enable the “Launch profiling after the wizard finishes” option and then click the Finish but-
ton. You may get a message saying that you don’t have the right credentials for profiling, and asking
whether you would like to upgrade your credentials. If you get this message, you should allow VC++
to upgrade your credentials; otherwise, the profiler will not work.

When the program execution is finished, Visual Studio automatically opens the profiling report.
Figure 25-3 shows how this report might look like when profiling the first attempt of the NameDB
application.

From this report, you can immediately see the hot path. Just like with gprof, it shows that the
NameDB constructor takes up most of the running time of the program, and that increment
NameCount() and nameExists() both take almost the same time. The Visual Studio profiling
report is interactive. For example, you can drill down the NameDB constructor by clicking on it. This
results in a drill-down report for that function, as show in Figure 25-4.

This drill-down view shows a graphical breakdown at the top, and the actual code of the method
at the bottom. The code view shows the percentage of the running time that a line needed. The
lines using up most of the time are shown in red. When you are interactively browsing the profiling
report, you can always go back by using the back arrow in the top-left corner of the report.

Profiling  ❘  905

FIGURE 25-3

At the top of the report there is also a drop-down menu, which you can use to quickly jump to cer-
tain summary or details pages.

If you go back to the “Summary” page of the profiling report, you can see that there is a “Show
Trimmed Call Tree” link on the right. Clicking that link displays a trimmed call tree showing you
an alternative view of the hot path in your code, as shown in Figure 25-5.

906  ❘  CHAPTER 25   Writing Efficient C++

FIGURE 25-4

FIGURE 25-5

Also in this view, you immediately see that main() is calling the NameDB constructor, which is using
up most of the running time.

Summary  ❘  907

SUMMARY

This chapter discussed the key aspects of efficiency and performance in C++ programs, and pro-
vided several specific tips and techniques for designing and writing more efficient applications.
Hopefully you gained an appreciation for the importance of performance and for the power of
profiling tools.

There are two important things to remember from this chapter. The first thing is that you should
not get too obsessed with performance while designing and coding. It’s recommended to first make
a correct, well-structured design and implementation, then use a profiler, and only optimize those
parts that are flagged by a profiler as being a performance bottleneck.

The second thing to remember is that design-level efficiency is far more important than language-
level efficiency. For example, you shouldn’t use algorithms or data structures with bad complexity if
there are better ones available.

Becoming Adept at Testing
WHAT’S IN THIS CHAPTER?

➤➤ What software quality control is and how to track bugs

➤➤ What unit testing means

➤➤ Unit testing in practice using the Visual C++ Testing Framework

➤➤ What integration, system, and regression testing means

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

A programmer has overcome a major hurdle in her career when she realizes that testing is a
part of the software development process. Bugs are not an occasional occurrence. They are
found in every project of significant size. A good quality-assurance (QA) team is invaluable,
but the full burden of testing cannot be placed on QA alone. Your responsibility as a program-
mer is to write code that works, and to write tests to prove its correctness.

A distinction is often made between white-box testing, in which the tester is aware of the
inner workings of the program, and black-box testing, which tests the program’s function-
ality without any knowledge of its implementation. Both forms of testing are important to
professional-quality projects. Black-box testing is the most fundamental approach because it
typically models the behavior of a user. For example, a black-box test can examine interface
components such as buttons. If the tester clicks the button and nothing happens, there is obvi-
ously a bug in the program.

26

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

910  ❘  CHAPTER 26   Becoming Adept at Testing

Black-box testing cannot cover everything. Modern programs are too large to employ a simulation
of clicking every button, providing every kind of input, and performing all combinations of com-
mands. White-box testing is necessary, because, when you know the code when tests are written at
the object or subsystem level, then it is easier to make sure all code paths in the code are exercised
by tests. This helps to ensure test coverage. White-box tests are often easier to write and automate
than black-box tests. This chapter focuses on topics that would generally be considered white-box
testing techniques because the programmer can use these techniques during the development.

This chapter begins with a high-level discussion of quality control, including some approaches to
viewing and tracking bugs. A section on unit testing, one of the simplest and most useful types of
testing, follows this introduction. You then read about the theory and practice of unit testing, as
well as several examples of unit tests in action. Next, higher-level tests are covered, including
integration tests, system tests, and regression tests. Finally, this chapter ends with a list of tips for
successful testing.

QUALITY CONTROL

Large programming projects are rarely finished when a feature-complete goal is reached. There are
always bugs to find and fix, both during and after the main development phase. It is essential to
understand the shared responsibility of quality control and the life cycle of a bug in order to perform
well in a group.

Whose Responsibility Is Testing?
Software development organizations have different approaches to testing. In a small startup, there
may not be a group of people whose full-time job is testing the product. Testing may be the responsi-
bility of the individual developers, or all the employees of the company may be asked to lend a hand
and try to break the product before its release. In larger organizations, a full-time quality assur-
ance staff probably qualifies a release by testing it according to a set of criteria. Nonetheless, some
aspects of testing may still be the responsibility of the developers. Even in organizations where the
developers have no role in formal testing, you still need to be aware of what your responsibilities are
in the larger process of quality assurance.

The Life Cycle of a Bug
All good engineering groups recognize that bugs will occur in software both before and after its
release. There are many different ways to deal with these problems. Figure 26-1 shows a formal
bug process, expressed as a flow chart. In this particular process, a bug is always filed by a mem-
ber of the QA team. The bug reporting software sends a notification to the development manager,
who sets the priority of the bug and assigns the bug to the appropriate module owner. The module
owner can accept the bug, or explain why the bug actually belongs to a different module or is
invalid, giving the development manager the opportunity to assign it to someone else.

Quality Control  ❘  911

Once the bug has found its rightful owner, a fix is made and the developer marks the bug as “fixed.”
At this point, the QA engineer verifies that the bug no longer exists and marks the bug as “closed”
or reopens the bug if it is still present.

Received
by

Manager

Received by
Module
Owner

Bug Fixed

Priority
Assigned

Owner
Determined

Accept
or

Reject
Bug Report
Filed by QA

Bug Closed

Received
by QA

Engineer

Check
Fix

Rejected

Re-opened

Accepted

Verified

FIGURE 26-1

A less formal approach is shown in Figure 26-2. In this workflow, anybody can file a bug, and assign
an initial priority and a module. The module owner receives the bug report and can either accept
it or reassign it to another engineer or module. When a correction is made, the bug is marked as
“fixed.” Toward the end of the testing phase, all the developers and QA engineers divide up the
fixed bugs and verify that each bug is no longer present in the current build. The release is ready
when all bugs are marked as “closed.”

Received by
Module
Owner

Bug Fixed

Accept
or

Reject
Bug Report
Filed with

Priority
and Module

Accepted

Reassigned

FIGURE 26-2

912  ❘  CHAPTER 26   Becoming Adept at Testing

Bug-Tracking Tools
There are many ways to keep track of software bugs, from informal spreadsheet- or e-mail-based
schemes to expensive third-party bug-tracking software. The appropriate solution for your organi-
zation depends on the group’s size, the nature of the software, and the level of formality you want to
build around bug fixing.

There are also a number of free open-source bug-tracking solutions available. One of the more
popular free tools for bug tracking is Bugzilla, written by the authors of the Mozilla web browser.
As an open-source project, Bugzilla has gradually accumulated a number of useful features to the
point where it now rivals expensive bug-tracking software packages. Here are just a few of its many
features:

➤➤ Customizable settings for a bug, including its priority, associated component, status, and
so on

➤➤ E-mail notification of new bug reports or changes to an existing report

➤➤ Tracking of dependencies between bugs and resolution of duplicate bugs

➤➤ Reporting and searching tools

➤➤ A web-based interface for filing and updating bugs

Figure 26-3 shows a bug being entered into a Bugzilla project that was set up for the second edition
of this book. For my purposes, each chapter was input as a Bugzilla component. The filer of the bug
can specify the severity of the bug (how big of a deal it is). A summary and description are included
to make it possible to search for the bug or list it in a report format.

Bug-tracking tools like Bugzilla are essential components of a professional software development
environment. In addition to supplying a central list of currently open bugs, bug-tracking tools pro-
vide an important archive of previous bugs and their fixes. A support engineer, for instance, might
use the tool to search for a problem similar to one reported by a customer. If a fix was made, the
support person will be able to tell the customer which version they need to update to, or how to
work around the problem.

Unit Testing  ❘  913

FIGURE 26-3

UNIT TESTING

The only way to find bugs is through testing. One of the most important types of tests from a devel-
oper’s point of view is the unit test. Unit tests are pieces of code that exercise specific functionality
of a class or subsystem. These are the finest-grained tests that you could possibly write. Ideally, one

914  ❘  CHAPTER 26   Becoming Adept at Testing

or more unit tests should exist for every low-level task that your code can perform. For example,
imagine that you are writing a math library that can perform addition and multiplication. Your suite
of unit tests might contain the following tests:

➤➤ Test a simple addition

➤➤ Test addition of large numbers

➤➤ Test addition of negative numbers

➤➤ Test addition of zero to a number

➤➤ Test the commutative property of addition

➤➤ Test a simple multiplication

➤➤ Test multiplication of large numbers

➤➤ Test multiplication of negative numbers

➤➤ Test multiplication with zero

➤➤ Test the commutative property of multiplication

Well-written unit tests protect you in many ways:

	 1.	 They prove that a piece of functionality actually works. Until you have some code that actu-
ally makes use of your class, its behavior is a major unknown.

	 2.	 They provide a first alert when a recently introduced change breaks something. This specific
usage, called a regression test, is covered later in this chapter.

	 3.	 When used as part of the development process, they force the developer to fix problems from
the start. If you are prevented from checking in your code with failed unit tests, then you’re
forced to address problems right away.

	 4.	 Unit tests let you try out code before other code is in place. When you first started program-
ming, you could write an entire program and then run it for the first time. Professional pro-
grams are too big for that approach, so you need to be able to test components in isolation.

	 5.	 Last, but certainly not least, they provide an example of usage. Almost as a side effect, unit
tests make great reference code for other programmers. If a co-worker wants to know how to
perform matrix multiplication by using your math library, you can point her to the appropri-
ate test.

Approaches to Unit Testing
It’s hard to go wrong with unit tests, unless you don’t write them or you write them poorly. In gen-
eral, the more tests you have, the more coverage you have. The more coverage you have, the less
likely it is for bugs to fall through the cracks and for you to have to tell your boss, or worse, your
customer, “Oh, we never tested that.”

There are several methodologies for writing unit tests most effectively. The Extreme Programming
methodology, explained in Chapter 24, instructs its followers to write unit tests before writing code.

Unit Testing  ❘  915

Writing tests first helps you to solidify the requirements for the component and to provide a metric
that can be used to determine when it is done. However, writing tests first can be tricky and requires
diligence on the part of the programmer. For some programmers, it simply doesn’t mesh well with
their coding style. A less rigid approach is to design the tests before coding, but implement them
later in the process. This way, the programmer is still forced to understand the requirements of the
module but doesn’t have to write code that makes use of nonexistent classes.

In some groups, the author of a particular subsystem doesn’t write the unit tests for that subsystem.
The idea is that if you write the tests for your own code, you might subconsciously work around
problems that you know about, or only cover certain cases that you know your code handles well.
In addition, it’s sometimes difficult to get excited about finding bugs in code you just wrote, so you
might only put in a half-hearted effort. Having one developer write unit tests for another developer’s
code requires a lot of extra overhead and coordination. When such coordination is accomplished,
however, this approach helps guarantee more-effective tests.

Another way to ensure that unit tests are actually testing the right parts of the code is to write them
so that they maximize code coverage. You can use a code coverage tool, such as gcov, that tells you
what percentage of the code is called by unit tests. The idea is that a properly tested piece of code
has unit tests to test all possible code paths that can be taken through that piece of code.

The Unit Testing Process
The process of providing unit tests for your code starts from the very beginning, long before any
code is written. Keeping unit-testability in mind during the design phase can influence the design
decisions you make for your software. Even if you do not subscribe to the methodology of writing
unit tests before you write code, you should at least take the time to consider what sorts of tests
you will provide, even while still in the design phase. This way, you can break the task up into well-
defined chunks, each of which has its own test-validated criteria. For example, if your task is to
write a database access class, you might first write the functionality that inserts data into the data-
base. Once that is fully tested with a suite of unit tests, you can continue to write the code to sup-
port updates, deletes, and selects, testing each piece as you go.

The following list of steps is a suggested approach for designing and implementing unit tests. As
with any programming methodology, the best process is the one that yields the best results. I suggest
that you experiment with different ways of using unit tests to discover what works best for you.

Define the Granularity of Your Tests
Writing unit tests takes time, there is no way around this. Software developers are often crunched
for time. To reach deadlines, developers tend to skip writing unit tests, because they think they will
finish faster that way. Unfortunately, this thinking does not take the whole picture into account.
Omitting unit tests will back-fire in the long run. The earlier a bug is detected in the software devel-
opment process, the less it costs. If a developer finds a bug during unit testing, it can be fixed imme-
diately, before anyone else encounters it. However, if the bug is discovered by QA, then it becomes
a much costlier bug. The bug can cause an extra development cycle, requires bug management, has
to go back to the development team for a fix, and then back to QA to verify the fix. If a bug slips
through the QA process and finds its way to the customer, then it becomes even more expensive.

916  ❘  CHAPTER 26   Becoming Adept at Testing

The granularity of tests refers to their scope. As the following table illustrates, you can initially unit
test a database class with just a few test functions, and then gradually add more tests to ensure that
everything works as it should.

LARGE-GRAINED TESTS MEDIUM-GRAINED TESTS FINE-GRAINED TESTS

testConnection()

testInsert()

testUpdate()

testDelete()

testSelect()

testConnectionDropped()

testInsertBadData()

testInsertStrings()

testInsertIntegers()

testUpdateStrings()

testUpdateIntegers()

testDeleteNonexistentRow()

testSelectComplicated()

testSelectMalformed()

testConnectionThroughHTTP()

testConnectionLocal()

testConnectionErrorBadHost()

testConnectionErrorServerBusy()

testInsertWideCharacters()

testInsertLargeData()

testInsertMalformed()

testUpdateWideCharacters()

testUpdateLargeData()

testUpdateMalformed()

testDeleteWithoutPermissions()

testDeleteThenUpdate()

testSelectNested()

testSelectWideCharacters()

testSelectLargeData()

As you can see, each successive column brings in more-specific tests. As you move from large-
grained tests to more finely grained tests, you start to consider error conditions, different input data
sets, and different modes of operation.

Of course, the decisions you make initially when choosing the granularity of your tests are not set in
stone. Perhaps the database class is just being written as a proof-of-concept and might not even be
used. A few simple tests may be adequate now, and you can always add more later. Or perhaps the
use cases will change at a later date. For example, the database class might not initially have been
written with international characters in mind. Once such features are added, they should be tested
with specific targeted unit tests.

Consider the unit tests to be part of the actual implementation of a feature. When you make a modi-
fication, don’t just modify the tests so that they continue to work. Write new tests and re-evaluate
the existing ones. When bugs are uncovered and fixed, add new unit tests that specifically test those
fixes.

NOTE  Unit tests are part of the subsystem that they are testing. As you enhance
and refine the subsystem, enhance and refine the tests.

Unit Testing  ❘  917

Brainstorm the Individual Tests
Over time, you will gain an intuition for which aspects of a piece of code should turn into a unit
test. Certain methods or inputs will just feel like they should be tested. This intuition is gained
through trial and error, and by looking at unit tests that other people in your group have written. It
should be pretty easy to pick out which programmers are the best unit testers. Their tests tend to be
organized and frequently modified.

Until unit test creation becomes second nature, approach the task of figuring out which tests to
write by brainstorming. To get some ideas flowing, consider the following questions:

	 1.	 What are the things that this piece of code was written to do?

	 2.	 What are the typical ways each method would be called?

	 3.	 What preconditions of the methods could be violated by the caller?

	 4.	 How could each method be misused?

	 5.	 What kinds of data are you expecting as input?

	 6.	 What kinds of data are you not expecting as input?

	 7.	 What are the edge cases or exceptional conditions?

You don’t need to write formal answers to those questions (unless your manager is a particularly
fervent devotee of this book or of certain testing methodologies), but they should help you generate
some ideas for unit tests. The table of tests for the database class contained test functions, each of
which arose from one of these questions.

Once you have generated ideas for some of the tests you would like to use, consider how you might
organize them into categories; the breakdown of tests will fall into place. In the database class
example, the tests could be split into the following categories:

➤➤ Basic tests

➤➤ Error tests

➤➤ Localization tests

➤➤ Bad input tests

➤➤ Complicated tests

Splitting your tests into categories makes them easier to identify and augment. It might also make it
easier to realize which aspects of the code are well tested and which could use a few more unit tests.

WARNING  It’s easy to write a massive number of simple tests, but don’t forget
about the more complicated cases!

918  ❘  CHAPTER 26   Becoming Adept at Testing

Create Sample Data and Results
The most common trap to fall into when writing unit tests is to match the test to the behavior of the
code, instead of using the test to validate the code. If you write a unit test that performs a database
select for a piece of data that is definitely in the database, and the test fails, is it a problem with the
code or a problem with the test? It’s often easier to assume that the code is right and to modify the
test to match. This approach is usually wrong.

To avoid this pitfall, you should understand the inputs to the test and the expected output before
you try it out. This is sometimes easier said than done. For example, say you wrote some code to
encrypt an arbitrary block of text using a particular key. A reasonable unit test would take a fixed
string of text and pass it in to the encryption module. Then, it would examine the result to see if it
was correctly encrypted.

When you go to write such a test, it is tempting to try out the behavior with the encryption module
first and see the result. If it looks reasonable, you might write a test to look for that value. Doing so
really doesn’t prove anything, however! You haven’t actually tested the code; you’ve just written a
test that guarantees it will continue to return that same value. Often times, writing the test requires
some real work; you would need to encrypt the text independently of your encryption module to get
an accurate result.

WARNING  Decide on the correct output for your test before you ever run the
test.

Write the Tests
The exact code behind a test varies, depending on what type of test framework you have in place.
One framework, the Microsoft Visual C++ Testing Framework, is discussed later in this chapter.
Independent of the actual implementation, however, the following guidelines will help ensure effec-
tive tests:

➤➤ Make sure that you’re testing only one thing in each test. That way, if a test fails, it will point
to a specific piece of functionality.

➤➤ Be specific inside the test. Did the test fail because an exception was thrown or because the
wrong value was returned?

➤➤ Use logging extensively inside of test code. If the test fails someday, you will have some
insight into what happened.

➤➤ Avoid tests that depend on earlier tests or are otherwise interrelated. Tests should be as
atomic and isolated as possible.

➤➤ If the test requires the use of other subsystems, consider writing stubs or mocks of those
subsystems that simulate the modules’ behavior so that changes in loosely related code don’t
cause the test to fail.

Unit Testing  ❘  919

➤➤ Ask your code reviewers to look at your unit tests as well. When you do a code review, tell
the other engineer where you think additional tests could be added.

As you will see later in this chapter, unit tests are usually very small and simple pieces of code. In
most cases, writing a single unit test will take only a few minutes, making them one of the most pro-
ductive uses of your time.

Run the Tests
When you’re done writing a test, you should run it right away before the anticipation of the results
becomes too much to bear. The joy of a screen full of passing unit tests shouldn’t be minimized. For
most programmers, this is the easiest way to see quantitative data that declares your code useful and
correct.

Even if you adopt the methodology of writing tests before writing code, you should still run the tests
immediately after they are written. This way, you can prove to yourself that the tests fail initially.
Once the code is in place, you have tangible data that shows that it accomplished what it was sup-
posed to accomplish.

It’s unlikely that every test you write will have the expected result the first time. In theory, if you are
writing tests before writing code, all of your tests should fail. If one passes, either the code magically
appeared or there is a problem with the test. If the code is done and tests still fail (some would say
that if tests fail, the code is actually not done), there are two possibilities: the code could be wrong,
or the tests could be wrong.

Running unit tests must be automated. This can be done in several ways. One option is to have a
dedicated system that automatically runs all unit tests after every continuous integration build, or at
least once a night. Such a system must send out e-mails to notify developers when unit tests are fail-
ing. Another option is to set up your local development environment so that unit tests are executed
every time you compile your code. For this, unit tests should be kept small and very efficient. If
you do have longer-running unit tests, put these separate, and let these be tested by a dedicated test
system.

Unit Testing in Action
Now that you’ve read about unit testing in theory, it’s time to actually write some tests. The fol-
lowing example draws on the object pool implementation from Chapter 25. As a brief recap, the
object pool is a class that can be used to avoid excessive object creation. By keeping track of already-
created objects, the pool acts as a broker between code that needs a certain type of object and such
objects that already exist.

The interface for the ObjectPool class is as follows; consult Chapter 25 for all the details.

template <typename T>
class ObjectPool
{
 public:
 ObjectPool() = default;
 virtual ~ObjectPool() = default;

920  ❘  CHAPTER 26   Becoming Adept at Testing

 // Prevent assignment and pass-by-value
 ObjectPool(const ObjectPool<T>& src) = delete;
 ObjectPool<T>& operator=(const ObjectPool<T>& rhs) = delete;

 // The type of smart pointer returned by acquireObject().
 using Object = std::shared_ptr<T>;

 // Reserves and returns an object for use.
 Object acquireObject();

 private:
 // Stores the objects that are not currently in use by clients.
 std::queue<std::unique_ptr<T>> mFreeList;
};

Introducing the Microsoft Visual C++ Testing Framework
Microsoft Visual C++ comes with a built-in testing framework. The advantage of using a unit test-
ing framework is that it allows the developer to focus on writing tests instead of dealing with setting
up tests, building logic around tests, and gathering results. The following discussion is written for
Visual C++ 2017.

NOTE  If you are not using Visual C++, there are a number of open-source unit
testing frameworks available. Google Test1 is one such framework for C++, and
the Boost Test Library2 is another one. They both include a number of help-
ful utilities for test developers, and options to control the automatic output of
results.

To get started with the Visual C++ Testing Framework, you have to create a test project. The fol-
lowing steps explain how to test the ObjectPool class:

	 1.	 Start Visual C++, create a new project, select Visual C++ ➪ Test ➪ Native Unit Test Project,
give the project a name, and click OK.

	 2.	 The wizard creates a new test project, which includes a file called unittest1.cpp. Select this
file in the Solution Explorer and delete it, because you will add your own files.

	 3.	 Add empty files called ObjectPoolTest.h and ObjectPoolTest.cpp to the newly created
test project.

	 4.	 Add an #include "stdafx.h" as the first line in ObjectPoolTest.cpp. (This line is
required for the precompiled header feature of Visual C++.)

Now you are ready to start adding unit tests to the code.

1https://github.com/google/googletest
2http://www.boost.org/doc/libs/1_65_1/libs/test/

Unit Testing  ❘  921

The most common way is to divide your unit tests into logical groups of tests, called test classes.
You will now create a test class called ObjectPoolTest. The basic code in ObjectPoolTest.h for
getting started is as follows:

#pragma once
#include <CppUnitTest.h>

TEST_CLASS(ObjectPoolTest)
{
 public:
};

This code defines a test class called ObjectPoolTest, but the syntax is a bit different compared to
standard C++. This is so that the framework can automatically discover all the tests.

If you need to perform any tasks that need to happen prior to running the tests defined in a test
class, or to perform any cleanup after the tests have been executed, then you can implement an ini-
tialize method and a cleanup method. Here is an example:

TEST_CLASS(ObjectPoolTest)
{
 public:
 TEST_CLASS_INITIALIZE(setUp);
 TEST_CLASS_CLEANUP(tearDown);
};

Because the tests for ObjectPool are relatively simple and isolated, empty definitions will suffice
for setUp() and tearDown(), or you can simply remove them altogether. If you do need them, the
beginning stage of the ObjectPoolTest.cpp source file is as follows:

#include "stdafx.h"
#include "ObjectPoolTest.h"

void ObjectPoolTest::setUp() { }
void ObjectPoolTest::tearDown() { }

That’s all the initial code you need to start developing unit tests.

NOTE  In real-world scenarios, you usually divide the testing code and the code
you want to test into separate projects. In the interest of keeping this example
succinct, I have not done this here.

Writing the First Test
Because this may be your first exposure to the Visual C++ Testing Framework, or to unit tests at
large, the first test will be a very simple one. It tests whether 0 < 1.

An individual unit test is just a method of a test class. To create a simple test, add its declaration to
the ObjectPoolTest.h file:

TEST_CLASS(ObjectPoolTest)
{
 public:

922  ❘  CHAPTER 26   Becoming Adept at Testing

 TEST_CLASS_INITIALIZE(setUp);
 TEST_CLASS_CLEANUP(tearDown);

 TEST_METHOD(testSimple); // Your first test!
};

The implementation of this test uses Assert::IsTrue(), defined in the Microsoft::VisualStudio
::CppUnitTestFramework namespace, to perform the actual test. In this case, the test claims that 0
is less than 1. Here is the updated ObjectPoolTest.cpp file:

#include "stdafx.h"
#include "ObjectPoolTest.h"

using namespace Microsoft::VisualStudio::CppUnitTestFramework;

void ObjectPoolTest::setUp() { }
void ObjectPoolTest::tearDown() { }

void ObjectPoolTest::testSimple()
{
 Assert::IsTrue(0 < 1);
}

That’s it. Of course, most of your unit tests will do something a bit more interesting than a simple
assert. As you will see, the common pattern is to perform some sort of calculation, and then assert
that the result is the value you expect. With the Visual C++ Testing Framework, you don’t even need
to worry about exceptions; the framework catches and reports
them as necessary.

Building and Running Tests
Build your solution by clicking Build ➪ Build Solution, and
open the Test Explorer (Test ➪ Windows ➪ Test Explorer),
shown in Figure 26-4.

After having built the solution, the Test Explorer automati-
cally displays all discovered unit tests. In this case, it displays
the testSimple unit test. You can run the tests by clicking the
“Run All” link in the upper-left corner of the window. When
you do that, the Test Explorer shows whether the unit tests
succeed or fail. In this case, the single unit test succeeds, as
shown in Figure 26-5.

If you modify the code to assert that 1 < 0, the test fails, and
the Test Explorer reports the failure, as shown in Figure 26-6.

FIGURE 26-4

Unit Testing  ❘  923

FIGURE 26-5

The lower part of the Test Explorer window displays useful information related to the selected unit
test. In case of a failed unit test, it tells you exactly what failed. In this case, it says that an assertion
failed. There is also a stack trace that was captured at the time the failure occurred. You can click
the hyperlinks in that stack trace to jump directly to the offending line—very useful for debugging.

Negative Tests
You can write negative tests, tests that do something that should fail. For example, you can
write a negative test to test that a certain method throws an expected exception. The Visual C++
Testing Framework provides the Assert::ExpectException() function to handle expected
exceptions. For example, the following unit test uses ExpectException() to execute a lambda
expression that throws an std::invalid_argument exception. The template type parameter for
ExpectException() specifies the type of exception to expect.

void ObjectPoolTest::testException()
{
 Assert::ExpectException<std::invalid_argument>(
 []{throw std::invalid_argument("Error"); },
 L"Unknown exception caught.");
}

Adding the Real Tests
Now that the framework is all set up and a simple test is working, it’s time to turn your attention
to the ObjectPool class and write some code that actually tests it. All of the following tests will be
added to ObjectPoolTest.h and ObjectPoolTest.cpp, just like the earlier initial test.

FIGURE 26-6

924  ❘  CHAPTER 26   Becoming Adept at Testing

First, copy the ObjectPool.h header file next to the ObjectPoolTest.h file you created, and then
add it to the project.

Before you can write the tests, you’ll need a helper class to use with the ObjectPool class. The
ObjectPool creates objects of a certain type and hands them out to the caller as requested. Some of
the tests will need to check if a retrieved object is the same as a previously retrieved object. One way
to do this is to create a pool of serial objects—objects that have a monotonically increasing serial
number. The following code shows the Serial.h header file defining such a class:

#include <cstddef> // For size_t

class Serial
{
 public:
 Serial();
 size_t getSerialNumber() const;
 private:
 static size_t sNextSerial;
 size_t mSerialNumber;
};

And here are the implementations in Serial.cpp:

#include "stdafx.h"
#include "Serial.h"

size_t Serial::sNextSerial = 0; // The first serial number is 0.

Serial::Serial()
 : mSerialNumber(sNextSerial++) // A new object gets the next serial number.
{
}

size_t Serial::getSerialNumber() const
{
 return mSerialNumber;
}

Now, on to the tests! As an initial sanity check, you might want a test that creates an object pool. If
any exceptions are thrown during creation, the Visual C++ Testing Framework will report an error:

void ObjectPoolTest::testCreation()
{
 ObjectPool<Serial> myPool;
}

Don’t forget to add a TEST_METHOD(testCreation); statement to the header file. This holds for all
subsequent tests as well. You also need to add an include for "ObjectPool.h" and for "Serial.h"
to the ObjectPoolTest.cpp source file.

Unit Testing  ❘  925

A second test, testAcquire(), tests a specific piece of public functionality: the ability of the
ObjectPool to give out an object. In this case, there is not much to assert. To prove validity of the
resulting Serial reference, the test asserts that its serial number is greater than or equal to zero:

void ObjectPoolTest::testAcquire()
{
 ObjectPool<Serial> myPool;
 auto serial = myPool.acquireObject();
 Assert::IsTrue(serial->getSerialNumber() >= 0);
}

The next test is a bit more interesting. The ObjectPool should not give out the same Serial
object twice (unless it is released back to the pool). This test checks the exclusivity property of the
ObjectPool by retrieving a number of objects from the pool. The retrieved objects are stored in a
vector to make sure they aren’t automatically released back to the pool at the end of each for loop
iteration. If the pool is properly dishing out unique objects, none of their serial numbers should
match. This implementation uses the vector and set containers from the Standard Library. Consult
Chapter 17 for details if you are unfamiliar with these containers. The code is written according to
the AAA principle: Arrange, Act, Assert; the test first sets up everything for the test to run, then
does some work (retrieving a number of objects from the pool), and finally asserts the expected
result (all serial numbers are different).

void ObjectPoolTest::testExclusivity()
{
 ObjectPool<Serial> myPool;
 const size_t numberOfObjectsToRetrieve = 10;
 std::vector<ObjectPool<Serial>::Object> retrievedSerials;
 std::set<size_t> seenSerialNumbers;

 for (size_t i = 0; i < numberOfObjectsToRetrieve; i++) {
 auto nextSerial = myPool.acquireObject();

 // Add the retrieved Serial to the vector to keep it 'alive',
 // and add the serial number to the set.
 retrievedSerials.push_back(nextSerial);
 seenSerialNumbers.insert(nextSerial->getSerialNumber());
 }

 // Assert that all retrieved serial numbers are different.
 Assert::AreEqual(numberOfObjectsToRetrieve, seenSerialNumbers.size());
}

The final test (for now) checks the release functionality. Once an object is released, the ObjectPool
can give it out again. The pool shouldn’t create additional objects until it has recycled all released
objects.

The test first retrieves ten Serial objects from the pool, stores them in a vector to keep them alive,
records the serial number of the last retrieved Serial, and finally clears the vector to return all
retrieved objects back to the pool.

926  ❘  CHAPTER 26   Becoming Adept at Testing

The second phase of the test again retrieves ten objects from the pool and stores them in a vector to
keep them alive. All these retrieved objects must have a serial number less than or equal to the last
serial number retrieved during the first phase of the test. After retrieving ten objects, one additional
object is retrieved. This object should have a new serial number.

Finally, two assertions assert that all ten objects were recycled, and that the eleventh object had a
new serial number.

void ObjectPoolTest::testRelease()
{
 ObjectPool<Serial> myPool;
 const size_t numberOfObjectsToRetrieve = 10;

 std::vector<ObjectPool<Serial>::Object> retrievedSerials;
 for (size_t i = 0; i < numberOfObjectsToRetrieve; i++) {
 // Add the retrieved Serial to the vector to keep it 'alive'.
 retrievedSerials.push_back(myPool.acquireObject());
 }
 size_t lastSerialNumber = retrievedSerials.back()->getSerialNumber();
 // Release all objects back to the pool.
 retrievedSerials.clear();

 // The above loop has created ten Serial objects, with serial
 // numbers 0-9, and released all ten Serial objects back to the pool.

 // The next loop first again retrieves ten Serial objects. The serial
 // numbers of these should all be <= lastSerialNumber.
 // The Serial object acquired after that should have a new serial number.

 bool wronglyNewObjectCreated = false;
 for (size_t i = 0; i < numberOfObjectsToRetrieve; i++) {
 auto nextSerial = myPool.acquireObject();
 if (nextSerial->getSerialNumber() > lastSerialNumber) {
 wronglyNewObjectCreated = true;
 break;
 }
 retrievedSerials.push_back(nextSerial);
 }

 // Acquire one more Serial object, which should have a serial
 // number > lastSerialNumber.
 auto anotherSerial = myPool.acquireObject();
 bool newObjectCreated =
 (anotherSerial->getSerialNumber() > lastSerialNumber);

 Assert::IsFalse(wronglyNewObjectCreated);
 Assert::IsTrue(newObjectCreated);
}

Higher-Level Testing  ❘  927

If you add all these tests and run them, the Test Explorer
should look like Figure 26-7. Of course, if one or more tests
fail, you are presented with the quintessential issue in unit
testing: is it the test or the code that is broken?

Debugging Tests
The Visual C++ Testing Framework makes it easy to debug
unit tests that are failing. The Test Explorer shows a stack
trace captured at the time a unit test failed, containing hyper-
links pointing directly to offending lines.

However, sometimes it is useful to run a unit test directly in
the debugger so that you can inspect variables at run time,
step through the code line by line, and so on. To do this,
you put a breakpoint on some line of code in your unit test.
Then, you right-click the unit test in the Test Explorer and
click Debug Selected Tests. The testing framework starts run-
ning the selected tests in the debugger and breaks at your breakpoint. From then on, you can step
through the code however you want.

Basking in the Glorious Light of Unit Test Results
The tests in the previous section should have given you a good idea of how to start writing
professional-quality tests for real code. It’s just the tip of the iceberg, though. The previous
examples should help you think of additional tests that you could write for the ObjectPool class.
For example, you should include a test that acquires and releases objects multiple times, and tests
whether such objects are properly recycled.

There is no end to the number of unit tests you could write for a given piece of code, and that’s the
best thing about unit tests. If you find yourself wondering how your code might react to a certain
situation, that’s a unit test. If a particular aspect of your subsystem seems to be presenting problems,
increase unit test coverage of that particular area. Even if you simply want to put yourself in the cli-
ent’s shoes to see what it’s like to work with your class, writing unit tests is a great way to get a dif-
ferent perspective.

HIGHER-LEVEL TESTING

While unit tests are the best first line of defense against bugs, they are only part of the larger testing
process. Higher-level tests focus on how pieces of the product work together, as opposed to the rela-
tively narrow focus of unit tests. In a way, higher-level tests are more challenging to write because
it’s less clear what tests need to be written. Still, you cannot really claim that the program works
until you have tested how its pieces work together.

FIGURE 26-7

928  ❘  CHAPTER 26   Becoming Adept at Testing

Integration Tests
An integration test covers areas where components meet. Unlike a unit test, which generally acts
on the level of a single class, an integration test usually involves two or more classes. Integration
tests excel at testing interactions between two components, often written by two different program-
mers. In fact, the process of writing an integration test often reveals important incompatibilities in
designs.

Sample Integration Tests
Because there are no hard-and-fast rules to determine what integration tests you should write, some
examples might help you get a sense of when integration tests are useful. The following scenarios
depict cases where an integration test is appropriate, but they do not cover every possible case. Just
as with unit tests, over time you will refine your intuition for useful integration tests.

A JSON-Based File Serializer
Suppose that your project includes a persistence layer that is used to save certain types of objects to
disk and to read them back in. The hip way to serialize data is to use the JSON format, so a logi-
cal breakdown of components might include a JSON conversion layer sitting on top of a custom
file API. Both of these components can be thoroughly unit tested. The JSON layer can have unit
tests that ensure that different types of objects are correctly converted to JSON and populated from
JSON. The file API can have tests that read, write, update, and delete files on disk.

When these modules start to work together, integration tests are appropriate. At the very least, you
should have an integration test that saves an object to disk through the JSON layer, then reads it
back in and does a comparison to the original. Because the test covers both modules, it is a basic
integration test.

Readers and Writers to a Shared Resource
Imagine a program that contains a data structure shared by different components. For example, a
stock-trading program can have a queue of buy-and-sell requests. Components related to receiving
stock transaction requests can add orders to the queue, and components related to performing stock
trades can take data off the queue. You can unit test the heck out of the queue class, but until it is
tested with the actual components that will be using it, you really don’t know if any of your assump-
tions are wrong.

A good integration test uses the stock request components and the stock trade components as clients
of the queue class. You can write some sample orders and make sure that they successfully enter and
exit the queue through the client components.

Wrapper around a Third-Party Library
Integration tests do not always need to occur at integration points in your own code. Many times,
integration tests are written to test the interaction between your code and a third-party library.

For example, you may be using a database connection library to talk to a relational database system.
Perhaps you built an object-oriented wrapper around the library that adds support for connection
caching or provides a friendlier interface. This is a very important integration point to test because,

Higher-Level Testing  ❘  929

even though the wrapper probably provides a more useful interface to the database, it introduces
possible misuse of the original library.

In other words, writing a wrapper is a good thing, but writing a wrapper that introduces bugs is
going to be a disaster.

Methods of Integration Testing
When it comes to actually writing integration tests, there is often a fine line between integration and
unit tests. If a unit test is modified so that it touches another component, is it suddenly an integra-
tion test? In a way, the answer is moot because a good test is a good test, regardless of the type of
test. I recommend that you use the concepts of integration and unit testing as two approaches to
testing, but avoid getting caught up in labeling the category of every single test.

In terms of implementation, integration tests are often written by using a unit testing framework,
further blurring their distinction. As it turns out, unit testing frameworks provide an easy way to
write a yes/no test and produce useful results. Whether the test is looking at a single unit of func-
tionality or the intersection of two components hardly makes a difference from the framework’s
point of view.

However, for performance and organizational reasons, you may want to attempt to separate unit
tests from integration tests. For example, your group may decide that everybody must run integra-
tion tests before checking in new code, but be a bit laxer on running unrelated unit tests. Separating
the two types of tests also increases the value of results. If a test failure occurs within the JSON
class tests, it will be clear that it’s a bug in that class, not in the interaction between that class and
the file API.

System Tests
System tests operate at an even higher level than integration tests. These tests examine the program
as a whole. System tests often make use of a virtual user that simulates a human being working with
the program. Of course, the virtual user must be programmed with a script of actions to perform.
Other system tests rely on scripts or a fixed set of inputs and expected outputs.

Much like unit and integration tests, an individual system test performs a specific test and expects
a specific result. It is not uncommon to use system tests to make sure that different features work in
combination with one another.

In theory, a fully system-tested program would contain a test for every permutation of every feature.
This approach quickly grows unwieldy, but you should still make an effort to test many features
in combination. For example, a graphics program could have a system test that imports an image,
rotates it, performs a blur filter, converts it to black and white, and then saves it. The test would
compare the saved image to a file that contains the expected result.

Unfortunately, few specific rules can be stated about system tests because they are highly dependent
on the actual application. For applications that process files with no user interaction, system tests
can be written much like unit and integration tests. For graphical programs, a virtual user approach
may be best. For server applications, you might need to build stub clients that simulate network traf-
fic. The important part is that you are actually testing real use of the program, not just a piece of it.

930  ❘  CHAPTER 26   Becoming Adept at Testing

Regression Tests
Regression testing is more of a testing concept than a specific type of test. The idea is that
once a feature works, developers tend to put it aside and assume that it will continue to work.
Unfortunately, new features and other code changes often conspire to break previously working
functionality.

Regression tests are often put in place as a sanity check for features that are, more or less, complete
and working. If the regression test is well written, it will cease to pass when a change is introduced
that breaks the feature.

If your company has an army of quality-assurance testers, regression testing may take the form of
manual testing. The tester acts as a user would and goes through a series of steps, gradually testing
every feature that worked in the previous release. This approach is thorough and accurate if care-
fully performed, but is not particularly scalable.

At the other extreme, you could build a completely automated system that performs each function as
a virtual user. This would be a scripting challenge, though several commercial and noncommercial
packages exist to ease the scripting of various types of applications.

A middle ground is known as smoke testing. Some tests will only test a subset of the most important
features that should work. The idea is that if something is broken, it should show up right away. If
smoke tests pass, they could be followed by more rigorous manual or automated testing. The term
smoke testing was introduced a long time ago, in electronics. After a circuit was built, with different
components like vacuum tubes, resistors, and so on, the question was, “Is it assembled correctly?”
A solution was to “plug it in, turn it on, and see if smoke comes out.” If smoke came out, the design
might be wrong, or the assembly might be wrong. By seeing what part went up in smoke, the error
could be determined.

Some bugs are like nightmares: they are both terrifying and recurring. Recurring bugs are frustrat-
ing and a poor use of engineering resources. Even if, for some reason, you decide not to write a suite
of regression tests, you should still write regression tests for bugs that you fix.

By writing a test for a bug fix, you both prove that the bug is fixed and set up an alert that is trig-
gered if the bug ever comes back (for example, if your change is rolled back or otherwise undone,
or if two branches are not merged correctly into the main development branch). When a regression
test of a previously fixed bug fails, it should be easy to fix because the regression test can refer to the
original bug number and describe how it was fixed the first time.

TIPS FOR SUCCESSFUL TESTING

As a software engineer, your role in testing may range anywhere from basic unit testing responsibil-
ity to complete management of an automated test system. Because testing roles and styles vary so
much, here are several tips from my experience that may help you in different testing situations:

➤➤ Spend some time designing your automated test system. A system that runs constantly
throughout the day will detect failures quickly. A system that sends e-mails to engineers auto-
matically, or sits in the middle of the room loudly playing show tunes when a failure occurs,
will result in increased visibility of problems.

Summary  ❘  931

➤➤ Don’t forget about stress testing. Even if a full suite of unit tests passes for your database
access class, it could still fall down when used by several dozen threads simultaneously. You
should test your product under the most extreme conditions it could face in the real world.

➤➤ Test on a variety of platforms or a platform that closely mirrors the customer’s system. One
method of testing on multiple operating systems is to use a virtual machine environment that
allows you to run several different operating systems on the same physical machine.

➤➤ Some tests can be written to intentionally inject faults in a system. For example, you could
write a test that deletes a file while it is being read, or that simulates a network outage during
a network operation.

➤➤ Bugs and tests are closely related. Bug fixes should be proven by writing regression tests.
A comment with a test could refer to the original bug number.

➤➤ Don’t remove tests that are failing. When a co-worker is slaving over a bug and finds out you
removed tests, he will come looking for you.

The most important tip I can give you is to remember that testing is a part of software development.
If you agree with that and accept it before you start coding, it won’t be quite as unexpected when
the feature is finished, but there is still more work to do to prove that it works.

SUMMARY

This chapter covered the basic information that all professional programmers should know about
testing. Unit testing in particular is the easiest and most effective way to increase the quality of your
own code. Higher-level tests provide coverage of use cases, synchronicity between modules, and pro-
tection against regressions. No matter what your role is with regard to testing, you should now be
able to confidently design, create, and review tests at various levels.

Now that you know how to find bugs, it’s time to learn how to fix them. To that end, Chapter 27
covers techniques and strategies for effective debugging.

Conquering Debugging
WHAT’S IN THIS CHAPTER?

➤➤ The fundamental law of debugging, and bug taxonomies

➤➤ Tips for avoiding bugs

➤➤ How to plan for bugs

➤➤ The different kinds of memory errors

➤➤ How to use a debugger to pinpoint code causing a bug

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

Your code will contain bugs. Every professional programmer would like to write bug-free
code, but the reality is that few software engineers succeed in this endeavor. As computer users
know, bugs are endemic in computer software. The software that you write is probably no
exception. Therefore, unless you plan to bribe your co-workers into fixing all your bugs, you
cannot be a professional C++ programmer without knowing how to debug C++ code. One fac-
tor that often distinguishes experienced programmers from novices is their debugging skills.

Despite the obvious importance of debugging, it is rarely given enough attention in courses
and books. Debugging seems to be the type of skill that everyone wants you to know, but no
one knows how to teach. This chapter attempts to provide concrete debugging guidelines and
techniques.

27

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

934  ❘  CHAPTER 27   Conquering Debugging

This chapter starts with the fundamental law of debugging and bug taxonomies, followed by tips
for avoiding bugs. Techniques for planning for bugs include error logging, debug traces, assertions,
and crash dumps. Specific tips are given for debugging the problems that arise, including techniques
for reproducing bugs, debugging reproducible bugs, debugging nonreproducible bugs, debugging
memory errors, and debugging multithreaded programs. The chapter concludes with a step-by-step
debugging example.

THE FUNDAMENTAL LAW OF DEBUGGING

The first rule of debugging is to be honest with yourself and admit that your code will contain bugs!
This realistic assessment enables you to put your best effort into preventing bugs from crawling into
your code in the first place, while you simultaneously include the necessary features to make debug-
ging as easy as possible.

WARNING  The fundamental law of debugging states that you should avoid
bugs when you’re coding, but plan for bugs in your code.

BUG TAXONOMIES

A bug in a computer program is incorrect run-time behavior. This undesirable behavior includes
both catastrophic and noncatastrophic bugs. Examples of catastrophic bugs are program death,
data corruption, operating system failures, or some other horrific outcome. A catastrophic bug can
also manifest itself external to the software or computer system running the software; for example,
medical software might contain a catastrophic bug causing a massive radiation overdose to a
patient. Noncatastrophic bugs are bugs that cause the program to behave incorrectly in more subtle
ways; for example, a web browser might return the wrong web page, or a spreadsheet application
might calculate the standard deviation of a column incorrectly.

There are also so-called cosmetic bugs, where something is visually not correct, but otherwise works
correctly. For example, a button in a user interface is kept enabled when it shouldn’t be, but clicking
it does nothing. All computations are perfectly correct, the program does not crash, but it doesn’t
look as “nice” as it should.

The underlying cause, or root cause, of the bug is the mistake in the program that causes this incor-
rect behavior. The process of debugging a program includes both determining the root cause of the
bug, and fixing the code so that the bug will not occur again.

AVOIDING BUGS

It’s impossible to write completely bug-free code, so debugging skills are important. However, a few
tips can help you to minimize the number of bugs.

Planning for Bugs  ❘  935

➤➤ Read this book from cover to cover: Learn the C++ language intimately, especially pointers
and memory management. Then, recommend this book to your friends and coworkers so
they avoid bugs too.

➤➤ Design before you code: Designing while you code tends to lead to convoluted designs that
are harder to understand and are more error-prone. It also makes you more likely to omit
possible edge cases and error conditions.

➤➤ Do code reviews: In a professional environment, every single line of code should be peer-
reviewed. Sometimes it takes a fresh perspective to notice problems.

➤➤ Test, test, and test again: Thoroughly test your code, and have others test your code! They
are more likely to find problems you haven’t thought of.

➤➤ Write automated unit tests: Unit tests are designed to test isolated functionality. You should
write unit tests for all implemented features. Run these unit tests automatically as part of
your continuous integration setup, or automatically after each local compilation. Chapter 26
discusses unit testing in detail.

➤➤ Expect error conditions, and handle them appropriately: In particular, plan for and handle
errors when working with files. They will occur. See chapters 13 and 14.

➤➤ Use smart pointers to avoid memory leaks: Smart pointers automatically free resources when
they are not needed anymore.

➤➤ Don’t ignore compiler warnings: Configure your compiler to compile with a high warning
level. Do not blindly ignore warnings. Ideally, you should enable an option in your compiler
to treat warnings as errors. This forces you to address each warning.

➤➤ Use static code analysis: A static code analyzer helps you to pinpoint problems in your code
by analyzing your source code. Ideally, static code analysis is done automatically by your
build process to detect problems early.

➤➤ Use good coding style: Strive for readability and clarity, use meaningful names, don’t use
abbreviations, add code comments (not only interface comments), use the override key-
word, and so on. This makes it easier for other people to understand your code.

PLANNING FOR BUGS

Your programs should contain features that enable easier debugging when the inevitable bugs arise.
This section describes these features and presents sample implementations, where appropriate, that
you can incorporate into your own programs.

Error Logging
Imagine this scenario: You have just released a new version of your flagship product, and one of the
first users reports that the program “stopped working.” You attempt to pry more information from
the user, and eventually discover that the program died in the middle of an operation. The user can’t

936  ❘  CHAPTER 27   Conquering Debugging

quite remember what he was doing, or if there were any error messages. How will you debug this
problem?

Now imagine the same scenario, but in addition to the limited information from the user, you are
also able to examine the error log on the user’s computer. In the log you see a message from your
program that says, “Error: unable to open config.xml file.” Looking at the code near the spot where
that error message was generated, you find a line in which you read from the file without checking
whether the file was opened successfully. You’ve found the root cause of your bug!

Error logging is the process of writing error messages to persistent storage so that they will be avail-
able following an application, or even machine, death. Despite the example scenario, you might
still have doubts about this strategy. Won’t it be obvious by your program’s behavior if it encoun-
ters errors? Won’t the user notice if something goes wrong? As the preceding example shows, user
reports are not always accurate or complete. In addition, many programs, such as the operating
system kernel and long-running daemons like inetd or syslogd on Unix, are not interactive and
run unattended on a machine. The only way these programs can communicate with users is through
error logging. In many cases, a program might also want to automatically recover from certain
errors, and hide those errors from the user. Still, having logs of those errors available can be invalu-
able to improve the overall stability of the program.

Thus, your program should log errors as it encounters them. That way, if a user reports a bug, you
will be able to examine the log files on the machine to see if your program reported any errors prior
to encountering the bug. Unfortunately, error logging is platform dependent: C++ does not contain a
standard logging mechanism. Examples of platform-specific logging mechanisms include the syslog
facility in Unix, and the event reporting API in Windows. You should consult the documentation
for your development platform. There are also some open-source implementations of cross-platform
logging frameworks. Here are two examples:

➤➤ log4cpp at http://log4cpp.sourceforge.net/

➤➤ Boost.Log at http://www.boost.org/

Now that you’re convinced that logging is a great feature to add to your programs, you might be
tempted to log messages every few lines in your code so that, in the event of any bug, you’ll be able
to trace the code path that was executing. These types of log messages are appropriately called
traces.

However, you should not write these traces to log files for two reasons. First, writing to persistent
storage is slow. Even on systems that write the logs asynchronously, logging that much information
will slow down your program. Second, and most important, most of the information that you would
put in your traces is not appropriate for the end user to see. It will just confuse the user, leading to
unwarranted service calls. That said, tracing is an important debugging technique under the correct
circumstances, as described in the next section.

Here are some specific guidelines for the types of errors your programs should log:

➤➤ Unrecoverable errors, such as a system call failing unexpectedly.

➤➤ Errors for which an administrator can take action, such as low memory, an incorrectly for-
matted data file, an inability to write to disk, or a network connection being down.

Planning for Bugs  ❘  937

➤➤ Unexpected errors such as a code path that you never expected to take or variables with
unexpected values. Note that your code should “expect” users to enter invalid data and
should handle it appropriately. An unexpected error represents a bug in your program.

➤➤ Potential security breaches, such as a network connection attempted from an unauthorized
address, or too many network connections attempted (denial of service).

It is also useful to log warnings, or recoverable errors, which allows you to investigate if you can
possibly avoid them.

Most logging APIs allow you to specify a log level or error level, typically error, warning, and info.
You can log non-error conditions under a log level that is less severe than “error.” For example, you
might want to log significant state changes in your application, or startup and shutdown of the pro-
gram. You also might consider giving your users a way to adjust the log level of your program at run
time so that they can customize the amount of logging that occurs.

Debug Traces
When debugging complicated problems, public error messages generally do not contain enough
information. You often need a complete trace of the code path taken, or values of variables before
the bug showed up. In addition to basic messages, it’s sometimes helpful to include the following
information in debug traces:

➤➤ The thread ID, if it’s a multithreaded program

➤➤ The name of the function that generates the trace

➤➤ The name of the source file in which the code that generates the trace lives

You can add this tracing to your program through a special debug mode, or via a ring buffer. Both
of these methods are explained in detail in the following sections. Note that in multithreaded pro-
grams you have to make your trace logging thread-safe. See Chapter 23 for details on multithreaded
programming.

NOTE  Trace files can be written in text format, but if you do, be careful with
logging too much detail. You don’t want to leak intellectual property through
your log files! An alternative is to write the files in a format that only you can
read.

Debug Mode
The first technique to add debug traces is to provide a debug mode for your program. In debug
mode, the program writes trace output to standard error or to a file, and perhaps does extra check-
ing during execution. There are several ways to add a debug mode to your program. Note that all
these examples are writing traces in text format.

938  ❘  CHAPTER 27   Conquering Debugging

Start-Time Debug Mode
Start-time debug mode allows your application to run with or without debug mode depending on a
command-line argument. This strategy includes the debug code in the “release” binary, and allows
debug mode to be enabled at a customer site. However, it does require users to restart the program
in order to run it in debug mode, which may prevent you from obtaining useful information about
certain bugs.

The following example is a simple program implementing a start-time debug mode. This program
doesn’t do anything useful; it is only for demonstrating the technique.

All logging functionality is wrapped in a Logger class. This class has two static data members:
the name of the log file, and a Boolean saying whether logging is enabled or disabled. The class has
a static public log() variadic template method. Variadic templates are discussed in Chapter 22.
Note that the log file is opened, flushed, and closed on each call to log(). This might lower perfor-
mance a bit; however, it does guarantee correct logging, which is more important.

class Logger
{
 public:
 static void enableLogging(bool enable) { msLoggingEnabled = enable; }
 static bool isLoggingEnabled() { return msLoggingEnabled; }

 template<typename... Args>
 static void log(const Args&... args)
 {
 if (!msLoggingEnabled)
 return;

 ofstream logfile(msDebugFileName, ios_base::app);
 if (logfile.fail()) {
 cerr << "Unable to open debug file!" << endl;
 return;
 }
 // Use a C++17 unary right fold, see Chapter 22.
 ((logfile << args),...);
 logfile << endl;
 }
 private:
 static const string msDebugFileName;
 static bool msLoggingEnabled;
};

const string Logger::msDebugFileName = "debugfile.out";
bool Logger::msLoggingEnabled = false;

The following helper macro is defined to make it easy to log something. It uses __func__, a pre-
defined variable defined by the C++ standard that contains the name of the current function.

#define log(...) Logger::log(__func__, "(): ", __VA_ARGS__)

Planning for Bugs  ❘  939

This macro replaces every call to log() in your code with a call to Logger::log(). The macro
automatically includes the function name as first argument to Logger::log(). For example, sup-
pose you call the macro as follows:

log("The value is: ", value);

The log() macro replaces this with the following:

Logger::log(__func__, "(): ", "The value is: ", value);

Start-time debug mode needs to parse the command-line arguments to find out whether or not it
should enable debug mode. Unfortunately, there is no standard functionality in C++ for parsing
command-line arguments. This program uses a simple isDebugSet() function to check for the
debug flag among all the command-line arguments, but a function to parse all command-line argu-
ments would need to be more sophisticated.

bool isDebugSet(int argc, char* argv[])
{
 for (int i = 1; i < argc; i++) {
 if (strcmp(argv[i], "-d") == 0) {
 return true;
 }
 }
 return false;
}

Some arbitrary test code is used to exercise the debug mode in this example. Two classes are defined,
ComplicatedClass and UserCommand. Both classes define an operator<< to write instances of
them to a stream. The Logger class uses this operator to dump objects to the log file.

class ComplicatedClass { /* ... */ };
ostream& operator<<(ostream& ostr, const ComplicatedClass& src)
{
 ostr << "ComplicatedClass";
 return ostr;
}

class UserCommand { /* ... */ };
ostream& operator<<(ostream& ostr, const UserCommand& src)
{
 ostr << "UserCommand";
 return ostr;
}

Here is some test code with a number of log calls:

UserCommand getNextCommand(ComplicatedClass* obj)
{
 UserCommand cmd;
 return cmd;
}

940  ❘  CHAPTER 27   Conquering Debugging

void processUserCommand(UserCommand& cmd)
{
 // details omitted for brevity
}

void trickyFunction(ComplicatedClass* obj)
{
 log("given argument: ", *obj);

 for (size_t i = 0; i < 100; ++i) {
 UserCommand cmd = getNextCommand(obj);
 log("retrieved cmd ", i, ": ", cmd);

 try {
 processUserCommand(cmd);
 } catch (const exception& e) {
 log("exception from processUserCommand(): ", e.what());
 }
 }
}

int main(int argc, char* argv[])
{
 Logger::enableLogging(isDebugSet(argc, argv));

 if (Logger::isLoggingEnabled()) {
 // Print the command-line arguments to the trace
 for (int i = 0; i < argc; i++) {
 log(argv[i]);
 }
 }

 ComplicatedClass obj;
 trickyFunction(&obj);

 // Rest of the function not shown
 return 0;
}

There are two ways to run this application:

> STDebug
> STDebug -d

Debug mode is activated only when the -d argument is specified on the command line.

WARNING  Macros in C++ should be avoided as much as possible because they
can be hard to debug. However, for logging purposes, using a simple macro is
acceptable, and it makes using the logging code much easier.

Planning for Bugs  ❘  941

Compile-Time Debug Mode
Instead of enabling or disabling debug mode through a command-line argument, you could also
use a preprocessor symbol such as DEBUG_MODE and #ifdefs to selectively compile the debug code
into your program. In order to generate a debug version of this program, you would have to compile
it with the symbol DEBUG_MODE defined. Your compiler should allow you to define symbols during
compilation; consult your compiler’s documentation for details. For example, GCC allows you to
specify –Dsymbol through the command-line. Microsoft VC++ allows you to specify the symbols
through the Visual Studio IDE, or by specifying /D symbol if you use the VC++ command-line
tools. Visual C++ automatically defines the _DEBUG symbol for debug builds. However, that symbol
is Visual C++ specific, so the example in this section uses a custom symbol called DEBUG_MODE.

The advantage of this method is that your debug code is not compiled into the “release” binary, and
so does not increase its size. The disadvantage is that there is no way to enable debugging at a cus-
tomer site for testing or following the discovery of a bug.

An example implementation is given in CTDebug.cpp in the downloadable source code archive. One
important remark on this implementation is that it contains the following definition for the log()
macro:

#ifdef DEBUG_MODE
 #define log(...) Logger::log(__func__, "(): ", __VA_ARGS__)
#else
 #define log(...)
#endif

That is, if DEBUG_MODE is not defined, then all calls to log() are replaced with nothing, called
no-ops.

WARNING  Be careful not to put any code that must be executed for correct
program functioning inside your log() calls. For example, the following line of
code is probably asking for trouble:

log("Result: ", myFunctionCall());

If DEBUG_MODE is not defined, the preprocessor replaces all log() calls with no-
ops, which means that the call to myFunctionCall() is removed as well!

Run-Time Debug Mode
The most flexible way to provide a debug mode is to allow it to be enabled or disabled at run time.
One way to provide this feature is to supply an asynchronous interface that controls debug mode on
the fly. This interface could be an asynchronous command that makes an interprocess call into the
application (for example, using sockets, signals, or remote procedure calls). This interface could also
take the form of a menu command in the user interface. C++ provides no standard way to perform
interprocess communication, so an example of this technique is not shown.

942  ❘  CHAPTER 27   Conquering Debugging

Ring Buffers
Debug mode is useful for debugging reproducible problems and for running tests. However, bugs
often appear when the program is running in non-debug mode, and by the time you or the customer
enables debug mode, it is too late to gain any information about the bug. One solution to this prob-
lem is to enable tracing in your program at all times. You usually need only the most recent traces to
debug a program, so you should store only the most recent traces at any point in a program’s execu-
tion. One way to provide for this is through careful use of log file rotations.

However, for performance reasons, it is better that your program doesn’t log these traces continu-
ously to disk. Instead, it should store them in memory and provide a mechanism to dump all the
trace messages to standard error or to a log file if the need arises.

A common technique is to use a ring buffer, also known as a circular buffer, to store a fixed number
of messages, or messages in a fixed amount of memory. When the buffer fills up, it starts writing
messages at the beginning of the buffer again, overwriting the older messages. This cycle can repeat
indefinitely. The following sections provide an implementation of a ring buffer and show you how
you can use it in your programs.

Ring Buffer Interface
The following RingBuffer class provides a simple debug ring buffer. The client specifies the number
of entries in the constructor, and adds messages with the addEntry() method. Once the number of
entries exceeds the number allowed, new entries overwrite the oldest entries in the buffer. The buffer
also provides the option to output entries to a stream as they are added to the buffer. The client can
specify an output stream in the constructor, and can reset it with the setOutput() method. Finally,
the operator<< streams the entire buffer to an output stream. This implementation uses a variadic
template method. Variadic templates are discussed in Chapter 22.

class RingBuffer
{
 public:
 // Constructs a ring buffer with space for numEntries.
 // Entries are written to *ostr as they are queued (optional).
 explicit RingBuffer(size_t numEntries = kDefaultNumEntries,
 std::ostream* ostr = nullptr);
 virtual ~RingBuffer() = default;

 // Adds an entry to the ring buffer, possibly overwriting the
 // oldest entry in the buffer (if the buffer is full).
 template<typename... Args>
 void addEntry(const Args&... args)
 {
 std::ostringstream os;
 // Use a C++17 unary right fold, see Chapter 22.
 ((os << args), ...);
 addStringEntry(os.str());
 }

 // Streams the buffer entries, separated by newlines, to ostr.
 friend std::ostream& operator<<(std::ostream& ostr, RingBuffer& rb);

Planning for Bugs  ❘  943

 // Streams entries as they are added to the given stream.
 // Specify nullptr to disable this feature.
 // Returns the old output stream.
 std::ostream* setOutput(std::ostream* newOstr);

 private:
 std::vector<std::string> mEntries;
 std::vector<std::string>::iterator mNext;

 std::ostream* mOstr;
 bool mWrapped;

 static const size_t kDefaultNumEntries = 500;

 void addStringEntry(std::string&& entry);
};

Ring Buffer Implementation
This implementation of the ring buffer stores a fixed number of string objects. This approach
certainly is not the most efficient solution. Other possibilities would be to provide a fixed number
of bytes of memory for the buffer. However, this implementation should be sufficient unless you’re
writing a high-performance application.

For multithreaded programs, it’s useful to add the ID of the thread and a timestamp to each trace
entry. Of course, the ring buffer has to be made thread-safe before using it in a multithreaded appli-
cation. See Chapter 23 for multithreaded programming.

Here are the implementations:

// Initialize the vector to hold exactly numEntries. The vector size
// does not need to change during the lifetime of the object.
// Initialize the other members.
RingBuffer::RingBuffer(size_t numEntries, ostream* ostr)
 : mEntries(numEntries), mOstr(ostr), mWrapped(false)
{
 if (numEntries == 0)
 throw invalid_argument("Number of entries must be > 0.");
 mNext = begin(mEntries);
}

// The addStringEntry algorithm is pretty simple: add the entry to the next
// free spot, then reset mNext to indicate the free spot after
// that. If mNext reaches the end of the vector, it starts over at 0.
//
// The buffer needs to know if the buffer has wrapped or not so
// that it knows whether to print the entries past mNext in operator<<.
void RingBuffer::addStringEntry(string&& entry)
{
 // If there is a valid ostream, write this entry to it.
 if (mOstr) {
 *mOstr << entry << endl;
 }

944  ❘  CHAPTER 27   Conquering Debugging

 // Move the entry to the next free spot and increment
 // mNext to point to the free spot after that.
 *mNext = std::move(entry);
 ++mNext;

 // Check if we've reached the end of the buffer. If so, we need to wrap.
 if (mNext == end(mEntries)) {
 mNext = begin(mEntries);
 mWrapped = true;
 }
}

// Set the output stream.
ostream* RingBuffer::setOutput(ostream* newOstr)
{
 return std::exchange(mOstr, newOstr);
}

// operator<< uses an ostream_iterator to "copy" entries directly
// from the vector to the output stream.
//
// operator<< must print the entries in order. If the buffer has wrapped,
// the earliest entry is one past the most recent entry, which is the entry
// indicated by mNext. So, first print from entry mNext to the end.
//
// Then (even if the buffer hasn't wrapped) print from beginning to mNext-1.
ostream& operator<<(ostream& ostr, RingBuffer& rb)
{
 if (rb.mWrapped) {
 // If the buffer has wrapped, print the elements from
 // the earliest entry to the end.
 copy(rb.mNext, end(rb.mEntries), ostream_iterator<string>(ostr, "\n"));
 }

 // Now, print up to the most recent entry.
 // Go up to mNext because the range is not inclusive on the right side.
 copy(begin(rb.mEntries), rb.mNext, ostream_iterator<string>(ostr, "\n"));

 return ostr;
}

Using the Ring Buffer
In order to use the ring buffer, you can create an instance of it and start adding messages to it.
When you want to print the buffer, just use operator<< to print it to the appropriate ostream. Here
is the earlier start-time debug mode program modified to use a ring buffer instead. Changes are
highlighted. The definitions of the ComplicatedClass and UserCommand classes, and the functions
getNextCommand(), processUserCommand(), and trickyFunction() are not shown. They are
exactly the same as before.

RingBuffer debugBuf;

#define log(...) debugBuf.addEntry(__func__, "(): ", __VA_ARGS__)

Planning for Bugs  ❘  945

int main(int argc, char* argv[])
{
 // Log the command-line arguments
 for (int i = 0; i < argc; i++) {
 log(argv[i]);
 }

 ComplicatedClass obj;
 trickyFunction(&obj);

 // Print the current contents of the debug buffer to cout
 cout << debugBuf;

 return 0;
}

Displaying the Ring Buffer Contents
Storing trace debug messages in memory is a great start, but in order for them to be useful, you need
a way to access these traces for debugging.

Your program should provide a “hook” to tell it to export the messages. This hook could be simi-
lar to the interface you would use to enable debugging at run time. Additionally, if your program
encounters a fatal error that causes it to exit, it could export the ring buffer automatically to a log
file before exiting.

Another way to retrieve these messages is to obtain a memory dump of the program. Each platform
handles memory dumps differently, so you should consult a reference or expert for your platform.

Assertions
The <cassert> header defines an assert macro. It takes a Boolean expression and, if the expres-
sion evaluates to false, prints an error message and terminates the program. If the expression
evaluates to true, it does nothing.

WARNING  Normally, you should avoid any library functions or macros that
can terminate your program. The assert macro is an exception. If an assertion
triggers, it means that some assumption is wrong or that something is cata-
strophically, unrecoverably wrong, and the only sane thing to do is to terminate
the application at that very moment, instead of continuing.

Assertions allow you to “force” your program to exhibit a bug at the exact point where that bug
originates. If you didn’t assert at that point, your program might proceed with those incorrect
values, and the bug might not show up until much later. Thus, assertions allow you to detect bugs
earlier than you otherwise would.

946  ❘  CHAPTER 27   Conquering Debugging

NOTE  The behavior of the standard assert macro depends on the NDEBUG pre-
processor symbol: if the symbol is not defined, the assertion takes place; other-
wise it is ignored. Compilers often define this symbol when compiling “release”
builds. If you want to leave assertions in release builds, you may have to change
your compiler settings, or write your own version of assert that isn’t affected
by the value of NDEBUG.

You could use assertions in your code whenever you are “assuming” something about the state of
your variables. For example, if you call a library function that is supposed to return a pointer and
claims never to return nullptr, throw in an assert after the function call to make sure that the
pointer isn’t nullptr.

Note that you should assume as little as possible. For example, if you are writing a library function,
don’t assert that the parameters are valid. Instead, check the parameters, and return an error code
or throw an exception if they are invalid.

As a rule, assertions should only be used for cases that are truly problematic, and should therefore
never be ignored when they occur during development. If you hit an assertion during development,
fix it, don’t just disable the assertion.

WARNING  Be careful not to put any code that must be executed for correct
program functioning inside assertions. For example, the following line of code is
probably asking for trouble:

assert(myFunctionCall() != nullptr);

If a release build of your code strips assertions, then the call to myFunction-
Call() is stripped as well!

Crash Dumps
Make sure your programs create crash dumps, also called memory dumps, core dumps, and so on.
A crash dump is a dump file that is created when your application crashes. It contains information
about which threads were running at the time of the crash, a call stack of all the threads, and so
on. How you create such dumps is platform dependent, so you should consult the documentation of
your platform, or use a third-party library that takes care of it for you. Breakpad1 is an example of
such an open-source cross-platform library that can write and process crash dumps.

Also make sure you set up a symbol server and a source code server. The symbol server is used to
store debugging symbols of released binaries of your software. These symbols are used later on to
interpret crash dumps received from customers. The source code server, discussed in Chapter 24,
stores all revisions of your source code. When debugging crash dumps, this source code server is

1https://github.com/google/breakpad/

Static Assertions  ❘  947

used to download the correct source code for the revision of your software that created the crash
dump.

The exact procedure of analyzing crash dumps depends on your platform and compiler, so consult
their documentation.

From my personal experience, I have found that a crash dump is often worth more than a thousand
bug reports.

STATIC ASSERTIONS

The assertions discussed earlier in this chapter are evaluated at run time. static_assert() allows
assertions evaluated at compile time. A call to static_assert() accepts two parameters: an expres-
sion to evaluate at compile time and a string. When the expression evaluates to false, the compiler
issues an error that contains the given string. A simple example could be to check that you are com-
piling with a 64-bit compiler:

static_assert(sizeof(void*) == 8, "Requires 64-bit compilation.");

If you compile this with a 32-bit compiler where a pointer is four bytes, the compiler issues an error
that can look like this:

test.cpp(3): error C2338: Requires 64-bit compilation.

Since C++17, the string parameter is optional, as in this example:

static_assert(sizeof(void*) == 8);

In this case, if the expression evaluates to false, you get a compiler-dependent error message. For
example, Microsoft Visual C++ 2017 gives the following error:

test.cpp(3): error C2607: static assertion failed

Another example where static_asserts are pretty powerful is in combination with type traits,
which are discussed in Chapter 22. For example, if you write a function template or class template,
you could use static_asserts together with type traits to issue compiler errors when template
types don’t satisfy certain conditions. The following example requires that the template type for the
process() function template has Base1 as a base class:

class Base1 {};
class Base1Child : public Base1 {};

class Base2 {};
class Base2Child : public Base2 {};

template<typename T>
void process(const T& t)
{
 static_assert(is_base_of_v<Base1, T>, "Base1 should be a base for T.");
}

C++17

948  ❘  CHAPTER 27   Conquering Debugging

int main()
{
 process(Base1());
 process(Base1Child());
 //process(Base2()); // Error
 //process(Base2Child()); // Error
}

If you try to call process() with an instance of Base2 or Base2Child, the compiler issues an error
that could look like this:

test.cpp(13): error C2338: Base1 should be a base for T.
 test.cpp(21) : see reference to function template
 instantiation 'void process<Base2>(const T &)' being compiled
 with
 [
 T=Base2
]

DEBUGGING TECHNIQUES

Debugging a program can be incredibly frustrating. However, with a systematic approach it
becomes significantly easier. Your first step in trying to debug a program should always be to repro-
duce the bug. Depending on whether or not you can reproduce the bug, your subsequent approach
will differ. The next four sections explain how to reproduce bugs, how to debug reproducible bugs,
how to debug nonreproducible bugs, and how to debug regressions. Additional sections explain
details about debugging memory errors and debugging multithreaded programs.

Reproducing Bugs
If you can reproduce the bug consistently, it will be much easier to determine the root cause. Finding
the root cause of bugs that are not reproducible is difficult, if not impossible.

As a first step to reproduce the bug, run the program with exactly the same inputs as the run when
the bug first appeared. Be sure to include all inputs, from the program’s startup to the time of the
bug’s appearance. A common mistake is to attempt to reproduce the bug by performing only the
triggering action. This technique may not reproduce the bug because the bug might be caused by an
entire sequence of actions.

For example, if your web browser program dies when you request a certain web page, it may be due
to memory corruption triggered by that particular request’s network address. On the other hand, it
may be because your program records all requests in a queue, with space for one million entries, and
this entry was number one million and one. Starting the program over and sending one request cer-
tainly wouldn’t trigger the bug in that case.

Sometimes it is impossible to emulate the entire sequence of events that leads to the bug. Perhaps the
bug was reported by someone who can’t remember everything that she did. Alternatively, maybe the
program was running for too long to emulate every input. In that case, do your best to reproduce
the bug. It takes some guesswork, and can be time-consuming, but effort at this point will save time
later in the debugging process. Here are some techniques you can try:

Debugging Techniques  ❘  949

➤➤ Repeat the triggering action in the correct environment and with as many inputs as possible
similar to the initial report.

➤➤ Do a quick review of the code related to the bug. More often than not, you’ll find a likely
cause that will guide you in reproducing the problem.

➤➤ Run automated tests that exercise similar functionality. Reproducing bugs is one benefit of
automated tests. If it takes 24 hours of testing before the bug shows up, it’s preferable to let
those tests run on their own rather than spend 24 hours of your time trying to reproduce
the bug.

➤➤ If you have the necessary hardware available, running slight variations of tests concurrently
on different machines can sometimes save time.

➤➤ Run stress tests that exercise similar functionality. If your program is a web server that died
on a particular request, try running as many browsers as possible simultaneously that make
that request.

After you are able to reproduce the bug consistently, you should attempt to find the smallest
sequence that triggers the bug. You can start with the minimum sequence, containing only the trig-
gering action, and slowly expand the sequence to cover the entire sequence from startup until the
bug is triggered. This will result in the simplest and most efficient test case to reproduce it, which
makes it simpler to find the root cause of the problem, and easier to verify the fix.

Debugging Reproducible Bugs
When you can reproduce a bug consistently and efficiently, it’s time to figure out the problem in the
code that causes the bug. Your goal at this point is to find the exact lines of code that trigger the
problem. You can use two different strategies.

	 1.	 Logging debug messages: By adding enough debug messages to your program and watching
its output when you reproduce the bug, you should be able to pinpoint the exact lines of code
where the bug occurs. If you have a debugger at your disposal, adding debug messages is
usually not recommended because it requires modifications to the program and can be time-
consuming. However, if you have already instrumented your program with debug messages
as described earlier, you might be able to find the root cause of your bug by running your
program in debug mode while reproducing the bug. Note that bugs sometimes disappear
simply when you enable logging because the act of enabling logging can slightly change the
timings of your application.

	 2.	 Using a debugger: Debuggers allow you to step through the execution of your program and
to view the state of memory and the values of variables at various points. They are often
indispensable tools for finding the root cause of bugs. When you have access to the source
code, you will use a symbolic debugger: a debugger that utilizes the variable names, class
names, and other symbols in your code. In order to use a symbolic debugger, you must
instruct your compiler to generate debug symbols. Check the documentation of your com-
piler for details on how to enable symbol generation.

The debugging example at the end of this chapter demonstrates both these approaches.

950  ❘  CHAPTER 27   Conquering Debugging

Debugging Nonreproducible Bugs
Fixing bugs that are not reproducible is significantly more difficult than fixing reproducible bugs.
You often have very little information and must employ a lot of guesswork. Nevertheless, a few
strategies can aid you.

	 1.	 Try to turn a nonreproducible bug into a reproducible bug. By using educated guesses, you
can often determine approximately where the bug lies. It’s worthwhile to spend some time
trying to reproduce the bug. Once you have a reproducible bug, you can figure out its root
cause by using the techniques described earlier.

	 2.	 Analyze error logs. This is easy to do if you have instrumented your program with error log
generation, as described earlier. You should sift through this information because any errors
that were logged directly before the bug occurred are likely to have contributed to the bug
itself. If you’re lucky (or if you coded your program well), your program will have logged the
exact reason for the bug at hand.

	 3.	 Obtain and analyze traces. Again, this is easy to do if you have instrumented your program
with tracing output, for example, via a ring buffer as described earlier. At the time of the
bug’s occurrence, you hopefully obtained a copy of the traces. These traces should lead you
right to the location of the bug in your code.

	 4.	 Examine a crash/memory dump file, if it exists. Some platforms generate memory dump files
of applications that terminate abnormally. On Unix and Linux, these memory dumps are
called core files. Each platform provides tools for analyzing these memory dumps. They can,
for example, be used to generate a stack trace of the application, or to view the contents of
its memory before the application died.

	 5.	 Inspect the code. Unfortunately, this is often the only strategy to determine the cause of a
nonreproducible bug. Surprisingly, it often works. When you examine code, even code that
you wrote yourself, with the perspective of the bug that just occurred, you can often find
mistakes that you overlooked previously. I don’t recommend spending hours staring at your
code, but tracing through the code path manually can often lead you directly to the problem.

	 6.	 Use a memory-watching tool, such as one of those described in the section “Debugging
Memory Problems,” later in this chapter. Such tools often alert you to memory errors that
don’t always cause your program to misbehave, but could potentially be the cause of the bug
in question.

	 7.	 File or update a bug report. Even if you can’t find the root cause of the bug right away, the
report will be a useful record of your attempts if the problem is encountered again.

	 8.	 If you are unable to find the root cause of the bug, be sure to add extra logging or tracing, so
that you will have a better chance next time the bug occurs.

Once you have found the root cause of a nonreproducible bug, you should create a reproducible test
case and move it to the “reproducible bugs” category. It is important to be able to reproduce a bug
before you actually fix it. Otherwise, how will you test the fix? A common mistake when debugging

Debugging Techniques  ❘  951

nonreproducible bugs is to fix the wrong problem in the code. Because you can’t reproduce the bug,
you don’t know if you’ve really fixed it, so you shouldn’t be surprised when it shows up again a
month later.

Debugging Regressions
If a feature contains a regression bug, it means that the feature used to work correctly, but stopped
working due to the introduction of a bug.

A useful debugging technique for investigating regressions is to look at the change log of relevant
files. If you know at what time the feature was still working, look at all the change logs since that
time. You might notice something suspicious that could lead you to the root cause.

Another approach that can save you a lot of time when debugging regressions is to use a binary
search approach with older versions of the software to try and figure out when it started to go
wrong. You can use binaries of older versions if you keep them, or revert the source code to an older
revision. Once you know when it started to go wrong, inspect the change logs to see what changed
at that time. This mechanism is only possible when you can reproduce the bug.

Debugging Memory Problems
Most catastrophic bugs, such as application death, are caused by memory errors. Many non-
catastrophic bugs are triggered by memory errors as well. Some memory bugs are obvious. If your
program attempts to dereference a nullptr pointer, the default action is to terminate the program.
However, nearly every platform enables you to respond to catastrophic errors and take remedial
action. The amount of effort you devote to the response depends on the importance of this kind of
recovery to your end users. For example, a text editor really needs to make a best attempt to save the
modified buffers (possibly under a “recovered” name), while for other programs, users may find the
default behavior acceptable, even if it is unpleasant.

Some memory bugs are more insidious. If you write past the end of an array in C++, your program
will probably not crash at that point. However, if that array was on the stack, you may have writ-
ten into a different variable or array, changing values that won’t show up until later in the program.
Alternatively, if the array was on the heap, you could cause memory corruption in the heap, which
will cause errors later when you attempt to allocate or free more memory dynamically.

Chapter 7 introduces some of the common memory errors from the perspective of what to avoid
when you’re coding. This section discusses memory errors from the perspective of identifying prob-
lems in code that exhibits bugs. You should be familiar with the discussion in Chapter 7 before con-
tinuing with this section.

WARNING  Most, if not all, of the following memory problems can be avoided
by using smart pointers instead of raw pointers.

952  ❘  CHAPTER 27   Conquering Debugging

Categories of Memory Errors
In order to debug memory problems, you should be familiar with the types of errors that can occur.
This section describes the major categories of memory errors. Each category lists different types
of memory errors, including a small code example demonstrating each error, and a list of possible
symptoms that you might observe. Note that a symptom is not the same thing as a bug: a symptom
is an observable behavior caused by a bug.

Memory-Freeing Errors
The following table summarizes five major errors that involve freeing memory.

ERROR TYPE SYMPTOMS EXAMPLE

Memory leak Process memory
usage grows over
time.

Process runs more
slowly over time.

Eventually, depend-
ing on the OS, opera-
tions and system calls
fail because of lack of
memory.

void memoryLeak()

{

 int* p = new int[1000];

 return; // Bug! Not freeing p.

}

Using
mismatched
allocation and
free operations

Does not usu-
ally cause a crash
immediately.

This type of error can
cause memory cor-
ruption on some plat-
forms, which might
show up as a crash
later in the program.

Certain mismatches
can also cause mem-
ory leaks.

void mismatchedFree()

{

 int* p1 = (int*)malloc(sizeof(int));

 int* p2 = new int;

 int* p3 = new int[1000];

 delete p1; // BUG! Should use free()

 delete[] p2; // BUG! Should use delete

 free(p3); // BUG! Should use delete[]

}

Freeing
memory more
than once

Can cause a crash
if the memory at
that location has
been handed out in
another allocation
between the two calls
to delete.

void doubleFree()

{

 int* p1 = new int[1000];

 delete[] p1;

 int* p2 = new int[1000];

 delete[] p1; // BUG! freeing p1 twice

} // BUG! Leaking memory of p2

Debugging Techniques  ❘  953

ERROR TYPE SYMPTOMS EXAMPLE

Freeing
unallocated
memory

Will usually cause a
crash.

void freeUnallocated()

{

 int* p = reinterpret_cast<int*>(10000);

 delete p; // BUG! p not a valid pointer.

}

Freeing stack
memory

Technically a special
case of freeing unal-
located memory. This
will usually cause a
crash.

void freeStack()

{

 int x;

 int* p = &x;

 delete p; // BUG! Freeing stack memory

}

The crashes mentioned in this table can have different manifestations depending on your platform,
such as segmentation faults, bus errors, access violations, and so on.

As you can see, some of the errors do not cause immediate program termination. These bugs are
more subtle, leading to problems later in the program’s execution.

Memory-Access Errors
Another category of memory errors involves the actual reading and writing of memory.

ERROR TYPE SYMPTOMS EXAMPLE

Accessing
invalid memory

Almost always
causes the pro-
gram to crash
immediately.

void accessInvalid()

{

 int* p = reinterpret_cast<int*>(10000);

 *p = 5; // BUG! p is not a valid pointer.

}

Accessing
freed memory

Does not usually
cause a program
crash.

If the memory has
been handed out in
another allocation,
this error type can
cause “strange”
values to appear
unexpectedly.

void accessFreed()

{

 int* p1 = new int;

 delete p1;

 int* p2 = new int;

 *p1 = 5; // BUG! The memory pointed to

 // by p1 has been freed.

}

continues

954  ❘  CHAPTER 27   Conquering Debugging

ERROR TYPE SYMPTOMS EXAMPLE

Accessing
memory in
a different
allocation

Does not cause a
crash.

This error type can
cause “strange”
and potentially
dangerous val-
ues to appear
unexpectedly.

void accessElsewhere()

{

 int x, y[10], z;

 x = 0;

 z = 0;

 for (int i = 0; i <= 10; i++) {

 y[i] = 5; // BUG for i==10! element 10

 // is past end of array.

 }

}

Reading
uninitialized
memory

Does not cause a
crash, unless you
use the uninitialized
value as a pointer
and dereference it
(as in the example).
Even then, it will
not always cause a
crash.

void readUninitialized()

{

 int* p;

 cout << *p; // BUG! p is uninitialized

}

Memory-access errors don’t always cause a crash. They can instead lead to subtle errors, in which
the program does not terminate but instead produces erroneous results. Erroneous results can lead
to serious consequences, for example, when external devices (such as robotic arms, X-ray machines,
radiation treatments, life support systems, and so on) are being controlled by the computer.

Note that the symptoms discussed here for both memory-freeing errors and memory-access errors
are the default symptoms for release builds of your program. Debug builds will most likely behave
differently, and when you run the program inside a debugger, the debugger might break into the
code when an error occurs.

Tips for Debugging Memory Errors
Memory-related bugs often show up in slightly different places in the code each time you run the
program. This is usually the case with heap memory corruption. Heap memory corruption is like a
time bomb, ready to explode at some attempt to allocate, free, or use memory on the heap. So, when
you see a bug that is reproducible, but that shows up in slightly different places, you should suspect
memory corruption.

  (continued)

Debugging Techniques  ❘  955

If you suspect a memory bug, your best option is to use a memory-checking tool for C++. Debuggers
often provide options to run the program while checking for memory errors. For example, if you
run a debug build of your application in the Microsoft Visual C++ debugger, it will catch almost all
types of errors discussed in the previous sections. Additionally, there are some excellent third-party
tools such as Purify from Rational Software (now owned by IBM) and Valgrind for Linux (discussed
in Chapter 7). Microsoft also provides a free download called Application Verifier, which can be
used with release builds of your applications in a Windows environment. It is a run-time verification
tool to help you find subtle programming errors like the previously discussed memory errors. These
debuggers and tools work by interposing their own memory-allocation and -freeing routines in order
to check for any misuse of dynamic memory, such as freeing unallocated memory, dereferencing
unallocated memory, or writing off the end of an array.

If you don’t have a memory-checking tool at your disposal, and the normal strategies for debugging
are not helping, you may need to resort to code inspection. First, narrow down the part of the code
containing the bug. Then, as a general rule, look at all raw pointers. Provided that you work on
moderate- to good-quality code, most pointers should already be wrapped in smart pointers. If you
do encounter raw pointers, take a closer look at how they are used, because they might be the cause
of the error. Here are some more items to look for in your code.

Object and Class-Related Errors
➤➤ Verify that your classes with dynamically allocated memory have destructors that free exactly

the memory that’s allocated in the object: no more, and no less.

➤➤ Ensure that your classes handle copying and assignment correctly with copy constructors
and assignment operators, as described in Chapter 9. Make sure move constructors and
move assignment operators properly set pointers in the source object to nullptr so that their
destructors don’t try to free that memory.

➤➤ Check for suspicious casts. If you are casting a pointer to an object from one type to another,
make sure that it’s valid. When possible, use dynamic_casts.

WARNING  Whenever you see raw pointers being used to handle ownership
of resources, I highly recommend you to replace those raw pointers with smart
pointers, and to try to refactor your classes to follow the rule of zero, as dis-
cussed in Chapter 9. This removes the types of errors explained in the first and
second bullet in the preceding list.

General Memory Errors
➤➤ Make sure that every call to new is matched with exactly one call to delete. Similarly, every

call to malloc, alloc, or calloc should be matched with one call to free, and every call
to new[] should be matched with one call to delete[]. To avoid freeing memory multiple
times or using freed memory, it’s recommended to set your pointer to nullptr after freeing
its memory. Of course, the best solution is to avoid using raw pointers to handle ownership
of resources, and instead use smart pointers.

956  ❘  CHAPTER 27   Conquering Debugging

➤➤ Check for buffer overruns. Whenever you iterate over an array or write into or read from a
C-style string, verify that you are not accessing memory past the end of the array or string.
These problems can often be avoided by using Standard Library containers and strings.

➤➤ Check for dereferencing of invalid pointers.

➤➤ When declaring a pointer on the stack, make sure you always initialize it as part of its decla-
ration. For example, use T* p = nullptr; or T* p = new T; but never T* p;. Better yet,
use smart pointers!

➤➤ Similarly, make sure your classes always initialize pointer data members with in-class initial-
izers or in their constructors, by either allocating memory in the constructor or setting the
pointers to nullptr. Also here, the best solution is to use smart pointers.

Debugging Multithreaded Programs
C++ includes a threading support library that provides mechanisms for threading and synchroniza-
tion between threads. This threading support library is discussed in Chapter 23. Multithreaded C++
programs are common, so it is important to think about the special issues involved in debugging
a multithreaded program. Bugs in multithreaded programs are often caused by variations in tim-
ings in the operating system scheduling, and can be difficult to reproduce. Thus, debugging multi-
threaded programs requires a special set of techniques.

	 1.	 Use a debugger: A debugger makes it relatively easy to diagnose certain multithreaded prob-
lems, for example, deadlocks. When the deadlock appears, break into the debugger and
inspect the different threads. You will be able to see which threads are blocked and on which
line in the code they are blocked. Combining this with trace logs that show you how you
came into the deadlock situation should be enough to fix deadlocks.

	 2.	 Use log-based debugging: When debugging multithreaded programs, log-based debugging
can sometimes be more effective than using a debugger to debug certain problems. You can
add log statements to your program before and after critical sections, and before acquiring
and after releasing locks. Log-based debugging is extremely useful in investigating race con-
ditions. However, the act of adding log statements slightly changes run-time timings, which
might hide the bug.

	 3.	 Insert forced sleeps and context switches: If you are having trouble consistently reproducing
the problem, or you have a hunch about the root cause but want to verify it, you can force
certain thread-scheduling behavior by making your threads sleep for specific amounts of time.
The <thread> header defines sleep_until() and sleep_for() in the std::this_thread
namespace, which you can use to sleep. The time to sleep is specified as an std::time_point
or an std::duration respectively, both part of the chrono library discussed in Chapter 20.
Sleeping for several seconds right before releasing a lock, immediately before signaling a con-
dition variable, or directly before accessing shared data can reveal race conditions that would
otherwise go undetected. If this debugging technique reveals the root cause, it must be fixed,
so that it works correctly after removing these forced sleeps and context switches. Never
leave these forced sleeps and context switches in your code! That would be the wrong “fix”
for the problem.

Debugging Techniques  ❘  957

	 4.	 Perform code review: Reviewing your thread synchronization code often helps in fixing race
conditions. Try to prove over and over that what happened is not possible, until you see how
it is. It doesn’t hurt to write down these “proofs” in code comments. Also, ask a coworker to
do pair debugging; she might see something you are overlooking.

Debugging Example: Article Citations
This section presents a buggy program and shows you the steps to take in order to debug it and fix
the problem.

Suppose that you’re part of a team writing a web page that allows users to search for the research
articles that cite a particular paper. This type of service is useful for authors who are trying to find
work similar to their own. Once they find one paper representing a related work, they can look for
every paper that cites that one to find other related work.

In this project, you are responsible for the code that reads the raw citation data from text files. For
simplicity, assume that the citation information for each paper is found in its own file. Furthermore,
assume that the first line of each file contains the author, title, and publication information for the
paper; that the second line is always empty; and that all subsequent lines contain the citations from
the article (one on each line). Here is an example file for one of the most important papers in com-
puter science:

Alan Turing, "On Computable Numbers, with an Application to the
Entscheidungsproblem", Proceedings of the London Mathematical Society, Series 2,
Vol.42 (1936-37), 230-265.

Gödel, "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme, I", Monatshefte Math. Phys., 38 (1931), 173-198.
Alonzo Church. "An unsolvable problem of elementary number theory", American J. of
Math., 58 (1936), 345-363.
Alonzo Church. "A note on the Entscheidungsproblem", J. of Symbolic Logic, 1
(1936), 40-41.
E.W. Hobson, "Theory of functions of a real variable (2nd ed., 1921)", 87-88.

Buggy Implementation of an ArticleCitations Class
You may decide to structure your program by writing an ArticleCitations class that reads the
file and stores the information. This class stores the article information from the first line in one
string, and the citations in a C-style array of strings.

WARNING  The design decision to use a C-style array is a very bad one! You
should opt for one of the Standard Library containers to store the citations.
This is just used here as a demonstration of memory problems. There are other
obvious issues with this implementation, such as using int instead of size_t,
and not using the copy-and-swap idiom (see Chapter 9) to implement the assign-
ment operator. However, for the purpose of illustrating buggy applications, it’s
perfect.

958  ❘  CHAPTER 27   Conquering Debugging

The ArticleCitations class definition looks like this:

class ArticleCitations
{
 public:
 ArticleCitations(std::string_view fileName);
 virtual ~ArticleCitations();
 ArticleCitations(const ArticleCitations& src);
 ArticleCitations& operator=(const ArticleCitations& rhs);

 std::string_view getArticle() const { return mArticle; }
 int getNumCitations() const { return mNumCitations; }
 std::string_view getCitation(int i) const { return mCitations[i]; }
 private:
 void readFile(std::string_view fileName);
 void copy(const ArticleCitations& src);

 std::string mArticle;
 std::string* mCitations;
 int mNumCitations;
};

The implementation is as follows. Keep in mind that this program is buggy! Don’t use it verbatim or
as a model.

ArticleCitations::ArticleCitations(string_view fileName)
 : mCitations(nullptr), mNumCitations(0)
{
 // All we have to do is read the file.
 readFile(fileName);
}

ArticleCitations::ArticleCitations(const ArticleCitations& src)
{
 copy(src);
}

ArticleCitations& ArticleCitations::operator=(const ArticleCitations& rhs)
{
 // Check for self-assignment.
 if (this == &rhs) {
 return *this;
 }
 // Free the old memory.
 delete [] mCitations;
 // Copy the data
 copy(rhs);
 return *this;
}

void ArticleCitations::copy(const ArticleCitations& src)
{
 // Copy the article name, author, etc.
 mArticle = src.mArticle;
 // Copy the number of citations
 mNumCitations = src.mNumCitations;
 // Allocate an array of the correct size

Debugging Techniques  ❘  959

 mCitations = new string[mNumCitations];
 // Copy each element of the array
 for (int i = 0; i < mNumCitations; i++) {
 mCitations[i] = src.mCitations[i];
 }
}

ArticleCitations::~ArticleCitations()
{
 delete [] mCitations;
}

void ArticleCitations::readFile(string_view fileName)
{
 // Open the file and check for failure.
 ifstream inputFile(fileName.data());
 if (inputFile.fail()) {
 throw invalid_argument("Unable to open file");
 }
 // Read the article author, title, etc. line.
 getline(inputFile, mArticle);

 // Skip the white space before the citations start.
 inputFile >> ws;

 int count = 0;
 // Save the current position so we can return to it.
 streampos citationsStart = inputFile.tellg();
 // First count the number of citations.
 while (!inputFile.eof()) {
 // Skip white space before the next entry.
 inputFile >> ws;
 string temp;
 getline(inputFile, temp);
 if (!temp.empty()) {
 count++;
 }
 }

 if (count != 0) {
 // Allocate an array of strings to store the citations.
 mCitations = new string[count];
 mNumCitations = count;
 // Seek back to the start of the citations.
 inputFile.seekg(citationsStart);
 // Read each citation and store it in the new array.
 for (count = 0; count < mNumCitations; count++) {
 string temp;
 getline(inputFile, temp);
 if (!temp.empty()) {
 mCitations[count] = temp;
 }
 }
 } else {
 mNumCitations = -1;
 }
}

960  ❘  CHAPTER 27   Conquering Debugging

Testing the ArticleCitations class
The following program asks the user for a filename, constructs an ArticleCitations instance for
that file, and passes this instance by value to the processCitations() function, which prints out
all the information:

void processCitations(ArticleCitations cit)
{
 cout << cit.getArticle() << endl;
 int num = cit.getNumCitations();
 for (int i = 0; i < num; i++) {
 cout << cit.getCitation(i) << endl;
 }
}

int main()
{
 while (true) {
 cout << "Enter a file name (\"STOP\" to stop): ";
 string fileName;
 cin >> fileName;
 if (fileName == "STOP") {
 break;
 }

 ArticleCitations cit(fileName);
 processCitations(cit);
 }
 return 0;
}

You decide to test the program on the Alan Turing example (stored in a file called paper1.txt).
Here is the output:

Enter a file name ("STOP" to stop): paper1.txt
Alan Turing, "On Computable Numbers, with an Application to the
Entscheidungsproblem", Proceedings of the London Mathematical Society, Series 2,
Vol.42 (1936-37), 230-265.
[4 empty lines omitted for brevity]
Enter a file name ("STOP" to stop): STOP

That doesn’t look right. There are supposed to be four citations printed instead of four blank lines.

Message-Based Debugging
For this bug, you decide to try log-based debugging, and because this is a console application, you
decide to just print messages to cout. In this case, it makes sense to start by looking at the function
that reads the citations from the file. If that doesn’t work right, then obviously the object won’t have
the citations. You can modify readFile() as follows:

void ArticleCitations::readFile(string_view fileName)
{
 // Code omitted for brevity

 // First count the number of citations.

Debugging Techniques  ❘  961

 cout << "readFile(): counting number of citations" << endl;
 while (!inputFile.eof()) {
 // Skip white space before the next entry.
 inputFile >> ws;
 string temp;
 getline(inputFile, temp);
 if (!temp.empty()) {
 cout << "Citation " << count << ": " << temp << endl;
 count++;
 }
 }

 cout << "Found " << count << " citations" << endl;
 cout << "readFile(): reading citations" << endl;
 if (count != 0) {
 // Allocate an array of strings to store the citations.
 mCitations = new string[count];
 mNumCitations = count;
 // Seek back to the start of the citations.
 inputFile.seekg(citationsStart);
 // Read each citation and store it in the new array.
 for (count = 0; count < mNumCitations; count++) {
 string temp;
 getline(inputFile, temp);
 if (!temp.empty()) {
 cout << temp << endl;
 mCitations[count] = temp;
 }
 }
 } else {
 mNumCitations = -1;
 }
 cout << "readFile(): finished" << endl;
}

Running the same test with this program gives the following output:

Enter a file name ("STOP" to stop): paper1.txt
readFile(): counting number of citations
Citation 0: Gödel, "Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme, I", Monatshefte Math. Phys., 38 (1931), 173-198.
Citation 1: Alonzo Church. "An unsolvable problem of elementary number theory",
American J. of Math., 58 (1936), 345-363.
Citation 2: Alonzo Church. "A note on the Entscheidungsproblem", J. of Symbolic
Logic, 1 (1936), 40-41.
Citation 3: E.W. Hobson, "Theory of functions of a real variable (2nd ed., 1921)",
87-88.
Found 4 citations
readFile(): reading citations
readFile(): finished
Alan Turing, "On Computable Numbers, with an Application to the
Entscheidungsproblem", Proceedings of the London Mathematical Society, Series 2,
Vol.42 (1936-37), 230-265.
[4 empty lines omitted for brevity]
Enter a file name ("STOP" to stop): STOP

962  ❘  CHAPTER 27   Conquering Debugging

As you can see from the output, the first time the program reads the citations from the file, in order
to count them, it reads them correctly. However, the second time, they are not read correctly; noth-
ing is printed between “readFile(): reading citations” and “readFile(): finished”. Why not? One way
to delve deeper into this issue is to add some debugging code to check the state of the file stream
after each attempt to read a citation:

void printStreamState(const istream& inputStream)
{
 if (inputStream.good()) {
 cout << "stream state is good" << endl;
 }
 if (inputStream.bad()) {
 cout << "stream state is bad" << endl;
 }
 if (inputStream.fail()) {
 cout << "stream state is fail" << endl;
 }
 if (inputStream.eof()) {
 cout << "stream state is eof" << endl;
 }
}

void ArticleCitations::readFile(string_view fileName)
{
 // Code omitted for brevity

 // First count the number of citations.
 cout << "readFile(): counting number of citations" << endl;
 while (!inputFile.eof()) {
 // Skip white space before the next entry.
 inputFile >> ws;
 printStreamState(inputFile);
 string temp;
 getline(inputFile, temp);
 printStreamState(inputFile);
 if (!temp.empty()) {
 cout << "Citation " << count << ": " << temp << endl;
 count++;
 }
 }

 cout << "Found " << count << " citations" << endl;
 cout << "readFile(): reading citations" << endl;
 if (count != 0) {
 // Allocate an array of strings to store the citations.
 mCitations = new string[count];
 mNumCitations = count;
 // Seek back to the start of the citations.
 inputFile.seekg(citationsStart);
 // Read each citation and store it in the new array.
 for (count = 0; count < mNumCitations; count++) {
 string temp;
 getline(inputFile, temp);
 printStreamState(inputFile);

Debugging Techniques  ❘  963

 if (!temp.empty()) {
 cout << temp << endl;
 mCitations[count] = temp;
 }
 }
 } else {
 mNumCitations = -1;
 }
 cout << "readFile(): finished" << endl;
}

When you run your program this time, you find some interesting information:

Enter a file name ("STOP" to stop): paper1.txt
readFile(): counting number of citations
stream state is good
stream state is good
Citation 0: Gödel, "Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme, I", Monatshefte Math. Phys., 38 (1931), 173-198.
stream state is good
stream state is good
Citation 1: Alonzo Church. "An unsolvable problem of elementary number theory",
American J. of Math., 58 (1936), 345-363.
stream state is good
stream state is good
Citation 2: Alonzo Church. "A note on the Entscheidungsproblem", J. of Symbolic
Logic, 1 (1936), 40-41.
stream state is good
stream state is good
Citation 3: E.W. Hobson, "Theory of functions of a real variable (2nd ed., 1921)",
87-88.
stream state is eof
stream state is fail
stream state is eof
Found 4 citations
readFile(): reading citations
stream state is fail
stream state is fail
stream state is fail
stream state is fail
readFile(): finished
Alan Turing, "On Computable Numbers, with an Application to the
Entscheidungsproblem", Proceedings of the London Mathematical Society, Series 2,
Vol.42 (1936-37), 230-265.
[4 empty lines omitted for brevity]
Enter a file name ("STOP" to stop): STOP

It looks like the stream state is good until after the final citation is read for the first time. Because
the paper1.txt file contains an empty last line, the while loop is executed one more time after
having read the last citation. In this last loop, inputFile >> ws reads the white-space of the last
line, which causes the stream state to become eof. Then, the code still tries to read a line using
getline() which causes the stream state to become fail and eof. That is expected. What is not
expected is that the stream state remains as fail after all attempts to read the citations a second
time. That doesn’t appear to make sense at first: the code uses seekg() to seek back to the begin-
ning of the citations before reading them a second time.

964  ❘  CHAPTER 27   Conquering Debugging

However, Chapter 13 explains that streams maintain their error states until you clear them explic-
itly; seekg() doesn’t clear the fail state automatically. When in an error state, streams fail to read
data correctly, which explains why the stream state is also fail after trying to read the citations
a second time. A closer look at the code reveals that it fails to call clear() on the istream after
reaching the end of the file. If you modify the code by adding a call to clear(), it will read the
citations properly.

Here is the corrected readFile() method without the debugging cout statements:

void ArticleCitations::readFile(string_view fileName)
{
 // Code omitted for brevity

 if (count != 0) {
 // Allocate an array of strings to store the citations.
 mCitations = new string[count];
 mNumCitations = count;
 // Clear the stream state.
 inputFile.clear();
 // Seek back to the start of the citations.
 inputFile.seekg(citationsStart);
 // Read each citation and store it in the new array.
 for (count = 0; count < mNumCitations; count++) {
 string temp;
 getline(inputFile, temp);
 if (!temp.empty()) {
 mCitations[count] = temp;
 }
 }
 } else {
 mNumCitations = -1;
 }
}

Running the same test again on paper1.txt now shows you the correct four citations.

Using the GDB Debugger on Linux
Now that your ArticleCitations class seems to work well on one citations file, you decide to blaze
ahead and test some special cases, starting with a file with no citations. The file looks like this, and
is stored in a file named paper2.txt:

Author with no citations

When you try to run your program on this file, depending on your version of Linux and your com-
piler, you might get a crash that looks something like the following:

Enter a file name ("STOP" to stop): paper2.txt
terminate called after throwing an instance of 'std::bad_alloc'
 what(): std::bad_alloc
Aborted (core dumped)

The message “core dumped” means that the program crashed. This time you decide to give the
debugger a shot. The Gnu Debugger (GDB) is widely available on Unix and Linux platforms.

Debugging Techniques  ❘  965

First, you must compile your program with debugging information (-g with g++). Then you can
launch the program under GDB. Here’s an example session using the debugger to find the root cause
of this problem. This example assumes your compiled executable is called buggyprogram. Text that
you have to type is shown in bold.

> gdb buggyprogram
[Start-up messages omitted for brevity]
Reading symbols from /home/marc/c++/gdb/buggyprogram...done.
(gdb) run
Starting program: buggyprogram
Enter a file name ("STOP" to stop): paper2.txt
terminate called after throwing an instance of 'std::bad_alloc'
 what(): std::bad_alloc
Program received signal SIGABRT, Aborted.
0x00007ffff7535c39 in raise () from /lib64/libc.so.6
(gdb)

When the program crashes, the debugger breaks the execution, and allows you to poke around in
the state of the program at that time. The backtrace or bt command shows the current stack trace.
The last operation is at the top, with frame number zero (#0):

(gdb) bt
#0 0x00007ffff7535c39 in raise () from /lib64/libc.so.6
#1 0x00007ffff7537348 in abort () from /lib64/libc.so.6
#2 0x00007ffff7b35f85 in __gnu_cxx::__verbose_terminate_handler() () from /lib64/
libstdc++.so.6
#3 0x00007ffff7b33ee6 in ?? () from /lib64/libstdc++.so.6
#4 0x00007ffff7b33f13 in std::terminate() () from /lib64/libstdc++.so.6
#5 0x00007ffff7b3413f in __cxa_throw () from /lib64/libstdc++.so.6
#6 0x00007ffff7b346cd in operator new(unsigned long) () from /lib64/libstdc++.so.6
#7 0x00007ffff7b34769 in operator new[](unsigned long) () from /lib64/libstdc++.
so.6
#8 0x00000000004016ea in ArticleCitations::copy (this=0x7fffffffe090, src=...) at
ArticleCitations.cpp:40
#9 0x00000000004015b5 in ArticleCitations::ArticleCitations (this=0x7fffffffe090,
src=...)
 at ArticleCitations.cpp:16
#10 0x0000000000401d0c in main () at ArticleCitationsTest.cpp:20

When you get a stack trace like this, you should try to find the first stack frame from the top that
is in your own code. In this example, this is stack frame #8. From this frame, you can see that
there seems to be a problem in the copy() method of ArticleCitations. This method is invoked
because main() calls processCitations() and passes the argument by value, which triggers a call
to the copy constructor, which calls copy(). Of course, in production code you should pass a const
reference, but pass-by-value is used in this example of a buggy program. You can tell the debug-
ger to switch to stack frame #8 with the frame command, which requires the index of the frame to
jump to:

(gdb) frame 8
#8 0x00000000004016ea in ArticleCitations::copy (this=0x7fffffffe090, src=...) at
ArticleCitations.cpp:40
40 mCitations = new string[mNumCitations];

966  ❘  CHAPTER 27   Conquering Debugging

This output shows that the following line caused a problem:

mCitations = new string[mNumCitations];

Now, you can use the list command to show the code in the current stack frame around the
offending line:

(gdb) list
35 // Copy the article name, author, etc.
36 mArticle = src.mArticle;
37 // Copy the number of citations
38 mNumCitations = src.mNumCitations;
39 // Allocate an array of the correct size
40 mCitations = new string[mNumCitations];
41 // Copy each element of the array
42 for (int i = 0; i < mNumCitations; i++) {
43 mCitations[i] = src.mCitations[i];
44 }

In GDB, you can print values available in the current scope with the print command. In order to
find the root cause of the problem, you can try printing some of the variables. The error happens
inside the copy() method, so checking the value of the src parameter is a good start:

(gdb) print src
$1 = (const ArticleCitations &) @0x7fffffffe060: {
 _vptr.ArticleCitations = 0x401fb0 <vtable for ArticleCitations+16>,
 mArticle = "Author with no citations", mCitations = 0x7fffffffe080, mNumCitations
= -1}

Ah-ha! Here’s the problem. This article isn’t supposed to have any citations. Why is mNumCitations
set to the strange value -1? Take another look at the code in readFile() for the case where
there are no citations. In that case, it looks like mNumCitations is erroneously set to -1. The fix
is easy: you always need to initialize mNumCitations to 0, instead of setting it to -1 when there
are no citations. Another problem is that readFile() can be called multiple times on the same
ArticleCitations object, so you also need to free a previously allocated mCitations array. Here is
the fixed code:

void ArticleCitations::readFile(string_view fileName)
{
 // Code omitted for brevity

 delete [] mCitations; // Free previously allocated citations.
 mCitations = nullptr;
 mNumCitations = 0;
 if (count != 0) {
 // Allocate an array of strings to store the citations.
 mCitations = new string[count];
 mNumCitations = count;
 // Clear the stream state.
 inputFile.clear();
 // Seek back to the start of the citations.
 inputFile.seekg(citationsStart);

 // Code omitted for brevity
 }
}

Debugging Techniques  ❘  967

As this example shows, bugs don’t always show up right away. It often takes a debugger and some
persistence to find them.

Using the Visual C++ 2017 Debugger
This section explains the same debugging procedure as described in the previous section, but uses
the Microsoft Visual C++ 2017 debugger instead of GDB.

First, you need to create a project. Start VC++ and click File ➪ New ➪ Project. In the project tem-
plate tree on the left, select Visual C++ ➪ Win32 (or Windows Desktop). Then select the Win32
Console Application (or Windows Console Application) template in the list in the middle of the win-
dow. At the bottom, you can specify a name for the project and a location where to save it. Specify
ArticleCitations as the name, choose a folder in which to save the project, and click OK. A wizard
opens.2 In this wizard, click Next, select Console application, select Empty Project, and click Finish.

Once your new project is created, you can see a list of project files
in the Solution Explorer. If this docking window is not visible, go to
View ➪ Solution Explorer. There should be no files in the solution
right now. Right-click the ArticleCitations project in the Solution
Explorer and click Add ➪ Existing Item. Add all the files from the
06_ArticleCitations\06_VisualStudio folder in the download-
able source code archive to the project. After this, your Solution
Explorer should look similar to Figure 27-1.

VC++ 2017 does not yet automatically enable C++17 features yet.
Because this example uses std::string_view from C++17, you
have to tell VC++ to enable C++17 features. In the Solution Explorer
window, right-click the ArticleCitations project and click Properties.
In the properties window, go to Configuration Properties ➪ C/C++
➪ Language, and set the C++ Language Standard option to “ISO C++17 Standard” or “ISO C++
Latest Draft Standard”, whichever is available in your version of Visual C++.

Visual C++ supports so-called precompiled headers, a topic outside the scope of this book. In
general, I recommend to use precompiled headers if your compiler supports them. However, the
ArticleCitations implementation does not use precompiled headers, so you have to disable that
feature for this particular project. In the Solution Explorer window, right-click the ArticleCitations
project and click Properties. In the properties window, go to Configuration Properties ➪ C/C++ ➪
Precompiled Headers, and set the Precompiled Header option to “Not Using Precompiled Headers.”

Now you can compile the program. Click Build ➪ Build Solution. Then copy the paper1.txt and
paper2.txt test files to your ArticleCitations project folder, which is the folder containing the
ArticleCitations.vcxproj file.

2Depending on your version of VC++ 2017, you might not see any wizard. Instead, a new project will be
created automatically containing four files: stdafx.h, stdafx.cpp, targetver.h, and ArticleCitations.cpp. If that
is the case, please select those files in the Solution Explorer (View ➪ Solution Explorer) and delete them.

FIGURE 27-1

968  ❘  CHAPTER 27   Conquering Debugging

Run the application with Debug ➪ Start Debugging, and test the program by first specifying the
paper1.txt file. It should properly read the file and output the result to the console. Then, test
paper2.txt. The debugger breaks the execution with a message similar to Figure 27-2.

FIGURE 27-2

This immediately shows you the line where the crash happened. If you only see disassembly code,
right-click anywhere on the disassembly and select Go To Source Code. You can now inspect vari-
ables by simply hovering your mouse over the name of a variable. If you hover over src, you’ll notice
that mNumCitations is -1. The reason and the fix are exactly the same as in the earlier example.

You can come to the same conclusion by inspecting the call stack (Debug ➪ Windows ➪ Call Stack).
In this call stack, you need to find the first line that contains code that you wrote. This is shown in
Figure 27-3.

FIGURE 27-3

Just as with GDB, you see that the problem is in copy(). You can double-click that line in the call
stack window to jump to the right place in the code.

Instead of hovering over variables to inspect their values, you can also use the Debug ➪ Windows
➪ Autos window, which shows a list of variables. Figure 27-4 shows this list with the src variable
expanded to show its data members. From this window, you can also see that mNumCitations is -1.

Summary  ❘  969

FIGURE 27-4

Lessons from the ArticleCitations Example
You might be inclined to disregard this example as too small to be representative of real debugging.
Although the buggy code is not lengthy, many classes that you write will not be much bigger, even
in large projects. Imagine if you had failed to test this example thoroughly before integrating it with
the rest of the project. If these bugs showed up later, you and other engineers would have to spend
more time narrowing down the problem before you could debug it as shown here. Additionally, the
techniques shown in this example apply to all debugging, whether on a large or small scale.

SUMMARY

The most important concept in this chapter is the fundamental law of debugging: avoid bugs when
you’re coding, but plan for bugs in your code. The reality of programming is that bugs will appear.
If you’ve prepared your program properly, with error logging, debug traces, and assertions, then the
actual debugging will be significantly easier.

In addition to these techniques, this chapter also presented specific approaches for debugging bugs.
The most important rule when actually debugging is to reproduce the problem. Then, you can use
a symbolic debugger, or log-based debugging, to track down the root cause. Memory errors pres-
ent particular difficulties, and account for the majority of bugs in legacy C++ code. This chapter
described the various categories of memory bugs and their symptoms, and showed examples of
debugging errors in a program.

Debugging is a hard skill to learn. To take your C++ skills to a professional level, you will have to
practice debugging a lot.

Incorporating Design
Techniques and Frameworks

WHAT’S IN THIS CHAPTER?

➤➤ An overview of C++ language features that are common, but
involve easy-to-forget syntax

➤➤ What RAII is and why it is a powerful concept

➤➤ What the double dispatch technique is and how to use it

➤➤ How to use mixin classes

➤➤ What frameworks are

➤➤ The model-view-controller paradigm

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

One of the major themes of this book has been the adoption of reusable techniques and pat-
terns. As a programmer, you tend to face similar problems repeatedly. With an arsenal of
diverse approaches, you can save yourself time by applying the proper technique to a given
problem.

A design technique is a standard approach for solving a particular problem in C++. Often, a
design technique aims to overcome an annoying feature or language deficiency. Other times,
a design technique is a piece of code that you use in many different programs to solve a com-
mon C++ problem.

28

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

972  ❘  CHAPTER 28   Incorporating Design Techniques and Frameworks

This chapter focuses on design techniques—C++ idioms that aren’t necessarily built-in parts of the
language, but are nonetheless frequently used. The first part of this chapter covers the language
features in C++ that are common, but involve easy-to-forget syntax. Most of this material is a
review, but it is a useful reference tool when the syntax escapes you. The topics covered include the
following:

➤➤ Starting a class from scratch

➤➤ Extending a class by deriving from it

➤➤ Implementing the copy-and-swap idiom

➤➤ Throwing and catching exceptions

➤➤ Reading from a file

➤➤ Writing to a file

➤➤ Defining a template class

The second part of this chapter focuses on higher-level techniques that build upon C++ language
features. These techniques offer a better way to accomplish everyday programming tasks. Topics
include the following:

➤➤ RAII (Resource Acquisition Is Initialization)

➤➤ The double dispatch technique

➤➤ Mixin classes

This chapter concludes with an introduction to frameworks, a coding technique that greatly eases
the development of large applications.

“I CAN NEVER REMEMBER HOW TO…”

Chapter 1 compares the size of the C standard to the size of the C++ standard. It is possible, and
somewhat common, for a C programmer to memorize the entire C language. The keywords are
few, the language features are minimal, and the behaviors are well defined. This is not the case with
C++. Even C++ experts need to look things up sometimes. With that in mind, this section presents
examples of coding techniques that are used in almost all C++ programs. When you remember the
concept but forgot the syntax, turn to the following sections for a refresher.

…Write a Class
Don’t remember how to get started? No problem—here is the definition of a simple class:

#pragma once

// A simple class that illustrates class definition syntax.
class Simple
{
 public:

“I Can Never Remember How to…”  ❘  973

 Simple(); // Constructor
 virtual ~Simple() = default; // Defaulted virtual destructor

 // Disallow assignment and pass-by-value.
 Simple(const Simple& src) = delete;
 Simple& operator=(const Simple& rhs) = delete;

 // Explicitly default move constructor and move assignment operator.
 Simple(Simple&& src) = default;
 Simple& operator=(Simple&& rhs) = default;

 virtual void publicMethod(); // Public method
 int mPublicInteger; // Public data member

 protected:
 virtual void protectedMethod(); // Protected method
 int mProtectedInteger = 41; // Protected data member

 private:
 virtual void privateMethod(); // Private method
 int mPrivateInteger = 42; // Private data member
 static const int kConstant = 2; // Private constant
 static int sStaticInt; // Private static data member
};

NOTE  This class definition shows some things that are possible. However, in
your own class definitions, you should try to avoid having public or protected
data members. Instead, you should make them private, and provide public or
protected getter and setter methods.

As Chapter 10 explains, it’s a good idea to always make at least your destructor virtual in case
someone wants to derive from your class. It’s allowed to leave the destructor non-virtual, but only
if you mark your class as final so that no other classes can derive from it. If you only want to make
your destructor virtual but you don’t need any code inside the destructor, then you can explicitly
default it, as in the Simple class example.

This example also demonstrates that you can explicitly delete or default special member functions.
The copy constructor and copy assignment operator are deleted to prevent assignment and pass-by-
value, while the move constructor and move assignment operator are explicitly defaulted.

Next, here is the implementation, including the initialization of the static data member:

#include "Simple.h"

int Simple::sStaticInt = 0; // Initialize static data member.

Simple::Simple() : mPublicInteger(40)
{
 // Implementation of constructor
}

974  ❘  CHAPTER 28   Incorporating Design Techniques and Frameworks

void Simple::publicMethod() { /* Implementation of public method */ }

void Simple::protectedMethod() { /* Implementation of protected method */ }

void Simple::privateMethod() { /* Implementation of private method */ }

With C++17, you can remove the initialization of sStaticInt from the source file if you make it an
inline variable instead, initialized in the class definition as follows:

static inline int sStaticInt = 0; // Private static data member

Chapters 8 and 9 provide all the details for writing your own classes.

…Derive from an Existing Class
To derive from an existing class, you declare a new class that is an extension of another class. Here
is the definition for a class called DerivedSimple, which derives from Simple:

#pragma once

#include "Simple.h"

// A derived class of the Simple class.
class DerivedSimple : public Simple
{
 public:
 DerivedSimple(); // Constructor

 virtual void publicMethod() override; // Overridden method
 virtual void anotherMethod(); // Added method
};

The implementation is as follows:

#include "DerivedSimple.h"

DerivedSimple::DerivedSimple() : Simple()
{
 // Implementation of constructor
}

void DerivedSimple::publicMethod()
{
 // Implementation of overridden method
 Simple::publicMethod(); // You can access base class implementations.
}

void DerivedSimple::anotherMethod()
{
 // Implementation of added method
}

Consult Chapter 10 for details on inheritance techniques.

C++17

“I Can Never Remember How to…”  ❘  975

…Use the Copy-and-Swap Idiom
The copy-and-swap idiom is discussed in detail in Chapter 9. It’s an idiom to implement a possibly
throwing operation on an object with a strong exception-safety guarantee, that is, all-or-nothing.
You simply create a copy of the object, modify that copy (can be a complex algorithm, possibly
throwing exceptions), and finally, when no exceptions have been thrown, swap the copy with the
original object. An assignment operator is an example of an operation for which you can use the
copy-and-swap idiom. Your assignment operator first makes a local copy of the source object, then
swaps this copy with the current object using only a non-throwing swap() implementation.

Here is a concise example of the copy-and-swap idiom used for a copy assignment operator. The
class defines a copy constructor, a copy assignment operator, and a friend swap() function, which is
marked as noexcept.

class CopyAndSwap
{
 public:
 CopyAndSwap() = default;
 virtual ~CopyAndSwap(); // Virtual destructor

 CopyAndSwap(const CopyAndSwap& src); // Copy constructor
 CopyAndSwap& operator=(const CopyAndSwap& rhs); // Assignment operator

 friend void swap(CopyAndSwap& first, CopyAndSwap& second) noexcept;

 private:
 // Private data members...
};

The implementation is as follows:

CopyAndSwap::~CopyAndSwap()
{
 // Implementation of destructor
}

CopyAndSwap::CopyAndSwap(const CopyAndSwap& src)
{
 // This copy constructor can first delegate to a non-copy constructor
 // if any resource allocations have to be done. See the Spreadsheet
 // implementation in Chapter 9 for an example.

 // Make a copy of all data members
}

void swap(CopyAndSwap& first, CopyAndSwap& second) noexcept
{
 using std::swap; // Requires <utility>

 // Swap each data member, for example:
 // swap(first.mData, second.mData);
}

976  ❘  CHAPTER 28   Incorporating Design Techniques and Frameworks

CopyAndSwap& CopyAndSwap::operator=(const CopyAndSwap& rhs)
{
 // Check for self-assignment
 if (this == &rhs) {
 return *this;
 }

 auto copy(rhs); // Do all the work in a temporary instance
 swap(*this, copy); // Commit the work with only non-throwing operations
 return *this;
}

Consult Chapter 9 for a more detailed discussion.

…Throw and Catch Exceptions
If you’ve been working on a team that doesn’t use exceptions (for shame!) or if you’ve gotten used to
Java-style exceptions, the C++ syntax may escape you. Here’s a refresher that uses the built-in excep-
tion class std::runtime_error. In most large programs, you will write your own exception classes.

#include <stdexcept>
#include <iostream>

void throwIf(bool throwIt)
{
 if (throwIt) {
 throw std::runtime_error("Here's my exception");
 }
}

int main()
{
 try {
 throwIf(false); // doesn't throw
 throwIf(true); // throws
 } catch (const std::runtime_error& e) {
 std::cerr << "Caught exception: " << e.what() << std::endl;
 return 1;
 }
 return 0;
}

Chapter 14 discusses exceptions in more detail.

...Read from a File
Complete details for file input are included in Chapter 13. Here is a quick sample program for file
reading basics. This program reads its own source code and outputs it one token at a time:

#include <iostream>
#include <fstream>
#include <string>

“I Can Never Remember How to…”  ❘  977

using namespace std;

int main()
{
 ifstream inputFile("FileRead.cpp");
 if (inputFile.fail()) {
 cerr << "Unable to open file for reading." << endl;
 return 1;
 }

 string nextToken;
 while (inputFile >> nextToken) {
 cout << "Token: " << nextToken << endl;
 }
 return 0;
}

…Write to a File
The following program outputs a message to a file, then reopens the file and appends another mes-
sage. Additional details can be found in Chapter 13.

#include <iostream>
#include <fstream>

using namespace std;

int main()
{
 ofstream outputFile("FileWrite.out");
 if (outputFile.fail()) {
 cerr << "Unable to open file for writing." << endl;
 return 1;
 }
 outputFile << "Hello!" << endl;
 outputFile.close();

 ofstream appendFile("FileWrite.out", ios_base::app);
 if (appendFile.fail()) {
 cerr << "Unable to open file for appending." << endl;
 return 2;
 }
 appendFile << "Append!" << endl;
 return 0;
}

…Write a Template Class
Template syntax is one of the messiest parts of the C++ language. The most-forgotten piece of the
template puzzle is that code that uses a class template needs to be able to see the method implemen-
tations as well as the class template definition. The same holds for function templates. For class
templates, the usual technique to accomplish this is to simply put the implementations directly
in the header file following the class template definition, as in the following example. Another

978  ❘  CHAPTER 28   Incorporating Design Techniques and Frameworks

technique is to put the implementations in a separate file, often with an .inl extension, and then
#include that file as the last line in the class template header file. The following program shows a
class template that wraps a reference to an object and adds get and set semantics to it. Here is the
SimpleTemplate.h header file:

template <typename T>
class SimpleTemplate
{
 public:
 SimpleTemplate(T& object);

 const T& get() const;
 void set(const T& object);
 private:
 T& mObject;
};

template<typename T>
SimpleTemplate<T>::SimpleTemplate(T& object) : mObject(object)
{
}

template<typename T>
const T& SimpleTemplate<T>::get() const
{
 return mObject;
}

template<typename T>
void SimpleTemplate<T>::set(const T& object)
{
 mObject = object;
}

The code can be tested as follows:

#include <iostream>
#include <string>
#include "SimpleTemplate.h"

using namespace std;

int main()
{
 // Try wrapping an integer.
 int i = 7;
 SimpleTemplate<int> intWrapper(i);
 i = 2;
 cout << "wrapped value is " << intWrapper.get() << endl;

 // Try wrapping a string.
 string str = "test";
 SimpleTemplate<string> stringWrapper(str);

There Must Be a Better Way  ❘  979

 str += "!";
 cout << "wrapped value is " << stringWrapper.get() << endl;
 return 0;
}

Details about templates can be found in Chapters 12 and 22.

THERE MUST BE A BETTER WAY

As you read this paragraph, thousands of C++ programmers throughout the world are solving
problems that have already been solved. Someone in a cubicle in San Jose is writing a smart pointer
implementation from scratch that uses reference counting. A young programmer on a Mediterranean
island is designing a class hierarchy that could benefit immensely from the use of mixin classes.

As a Professional C++ programmer, you need to spend less of your time reinventing the wheel, and
more of your time adapting reusable concepts in new ways. This section gives some examples of
general-purpose approaches that you can apply directly to your own programs or customize for your
needs.

Resource Acquisition Is Initialization
RAII, or Resource Acquisition Is Initialization, is a simple yet very powerful concept. It is used to
automatically free acquired resources when an RAII instance goes out of scope. This happens at
a deterministic point in time. Basically, the constructor of a new RAII instance acquires owner-
ship of a certain resource and initializes the instance with that resource, hence the name Resource
Acquisition Is Initialization. The destructor automatically frees the acquired resource when the RAII
instance is destroyed.

Here is an example of a File RAII class that safely wraps a C-style file handle (std::FILE) and
automatically closes the file when the RAII instance goes out of scope. The RAII class also pro-
vides get(), release(), and reset() methods that behave similar to the same methods on certain
Standard Library classes, such as std::unique_ptr.

#include <cstdio>

class File final
{
 public:
 File(std::FILE* file);
 ~File();

 // Prevent copy construction and copy assignment.
 File(const File& src) = delete;
 File& operator=(const File& rhs) = delete;

 // Allow move construction and move assignment.
 File(File&& src) noexcept = default;
 File& operator=(File&& rhs) noexcept = default;

980  ❘  CHAPTER 28   Incorporating Design Techniques and Frameworks

 // get(), release(), and reset()
 std::FILE* get() const noexcept;
 std::FILE* release() noexcept;
 void reset(std::FILE* file = nullptr) noexcept;

 private:
 std::FILE* mFile;
};

File::File(std::FILE* file) : mFile(file)
{
}

File::~File()
{
 reset();
}

std::FILE* File::get() const noexcept
{
 return mFile;
}

std::FILE* File::release() noexcept
{
 std::FILE* file = mFile;
 mFile = nullptr;
 return file;
}

void File::reset(std::FILE* file /*= nullptr*/) noexcept
{
 if (mFile) {
 fclose(mFile);
 }
 mFile = file;
}

It can be used as follows:

File myFile(fopen("input.txt", "r"));

As soon as the myFile instance goes out of scope, its destructor is called, and the file is automati-
cally closed.

I recommend to never include a default constructor or to explicitly delete the default constructor
for RAII classes. The reason can best be explained using a Standard Library RAII class that has a
default constructor, std::unique_lock (see Chapter 23). Proper use of unique_lock is as follows:

class Foo
{
 public:
 void setData();
 private:
 mutex mMutex;
};

There Must Be a Better Way  ❘  981

void Foo::setData()
{
 unique_lock<mutex> lock(mMutex);
 // ...
}

The setData() method uses the unique_lock RAII object to construct a local lock object that
locks the mMutex data member and automatically unlocks that mutex at the end of the method.

However, because you do not directly use the lock variable after it has been defined, it is easy to
make the following mistake:

void Foo::setData()
{
 unique_lock<mutex>(mMutex);
 // ...
}

In this code, you accidentally forgot to give the unique_lock a name. This will compile, but it does
not what you intended it to do! It will actually declare a local variable called mMutex (hiding the
mMutex data member), and initialize it with a call to the unique_lock’s default constructor. The
result is that the mMutex data member is not locked!

WARNING  Never include a default constructor in an RAII class.

Double Dispatch
Double dispatch is a technique that adds an extra dimension to the concept of polymorphism. As
described in Chapter 5, polymorphism lets the program determine behavior based on types at run
time. For example, you could have an Animal class with a move() method. All Animals move, but
they differ in terms of how they move. The move() method is defined for every derived class of
Animal so that the appropriate method can be called, or dispatched, for the appropriate animal at
run time without knowing the type of the animal at compile time. Chapter 10 explains how to use
virtual methods to implement this run-time polymorphism.

Sometimes, however, you need a method to behave according to the run-time type of two objects,
instead of just one. For example, suppose that you want to add a method to the Animal class that
returns true if the animal eats another animal, and false otherwise. The decision is based on two
factors: the type of animal doing the eating, and the type of animal being eaten. Unfortunately, C++
provides no language mechanism to choose a behavior based on the run-time type of more than one
object. Virtual methods alone are insufficient for modeling this scenario because they determine a
method, or behavior, depending on the run-time type of only the receiving object.

Some object-oriented languages provide the ability to choose a method at run time based on the run-
time types of two or more objects. They call this feature multi-methods. In C++, however, there is
no core language feature to support multi-methods, but you can use the double dispatch technique,
which provides a way to make functions virtual for more than one object.

982  ❘  CHAPTER 28   Incorporating Design Techniques and Frameworks

NOTE  Double dispatch is really a special case of multiple dispatch, in which a
behavior is chosen depending on the run-time types of two or more objects. In
practice, double dispatch, which chooses a behavior based on the run-time types
of exactly two objects, is usually sufficient.

Attempt #1: Brute Force
The most straightforward way to implement a method whose behavior depends on the run-time
types of two different objects is to take the perspective of one of the objects and use a series of if/
else constructs to check the type of the other. For example, you could implement a method called
eats() in each class derived from Animal that takes the other animal as a parameter. The method is
declared pure virtual in the base class as follows:

class Animal
{
 public:
 virtual bool eats(const Animal& prey) const = 0;
};

Each derived class implements the eats() method, and returns the appropriate value based on the
type of the parameter. The implementation of eats() for several derived classes follows. Note that
the Dinosaur avoids the series of if/else constructs because—according to the author—dinosaurs
eat anything:

bool Bear::eats(const Animal& prey) const
{
 if (typeid(prey) == typeid(Bear)) {
 return false;
 } else if (typeid(prey) == typeid(Fish)) {
 return true;
 } else if (typeid(prey) == typeid(Dinosaur)) {
 return false;
 }
 return false;
}

bool Fish::eats(const Animal& prey) const
{
 if (typeid(prey) == typeid(Bear)) {
 return false;
 } else if (typeid(prey) == typeid(Fish)) {
 return true;
 } else if (typeid(prey) == typeid(Dinosaur)) {
 return false;
 }
 return false;
}

bool Dinosaur::eats(const Animal& prey) const
{
 return true;
}

There Must Be a Better Way  ❘  983

This brute force approach works, and it’s probably the most straightforward technique for a small
number of classes. However, there are several reasons why you might want to avoid this approach:

➤➤ Object-oriented programming (OOP) purists often frown upon explicitly querying the type of
an object because it implies a design that is lacking a proper object-oriented structure.

➤➤ As the number of types grows, such code can become messy and repetitive.

➤➤ This approach does not force derived classes to consider new types. For example, if you
added a Donkey, the Bear class would continue to compile, but would return false when
told to eat a Donkey, even though everybody knows that bears eat donkeys.

Attempt #2: Single Polymorphism with Overloading
You could attempt to use polymorphism with overloading to circumvent all of the cascading if/else
constructs. Instead of giving each class a single eats() method that takes an Animal reference, why
not overload the method for each derived class of Animal? The base class definition would look like
this:

class Animal
{
 public:
 virtual bool eats(const Bear&) const = 0;
 virtual bool eats(const Fish&) const = 0;
 virtual bool eats(const Dinosaur&) const = 0;
};

Because the methods are pure virtual in the base class, each derived class is forced to implement
the behavior for every other type of Animal. For example, the Bear class contains the following
methods:

class Bear : public Animal
{
 public:
 virtual bool eats(const Bear&) const override { return false; }
 virtual bool eats(const Fish&) const override { return true; }
 virtual bool eats(const Dinosaur&) const override { return false; }
};

This approach initially appears to work, but it really solves only half of the problem. In order to call
the proper eats() method on an Animal, the compiler needs to know the compile-time type of the
animal being eaten. A call such as the following will be successful because the compile-time types of
both the animal that eats and the animal that is eaten are known:

Bear myBear;
Fish myFish;
cout << myBear.eats(myFish) << endl;

The missing piece is that the solution is only polymorphic in one direction. You can access myBear
through an Animal reference and the correct method will be called:

Bear myBear;
Fish myFish;
Animal& animalRef = myBear;
cout << animalRef.eats(myFish) << endl;

984  ❘  CHAPTER 28   Incorporating Design Techniques and Frameworks

However, the reverse is not true. If you pass an Animal reference to the eats() method, you will get
a compilation error because there is no eats() method that takes an Animal. The compiler cannot
determine, at compile time, which version to call. The following example does not compile:

Bear myBear;
Fish myFish;
Animal& animalRef = myFish;
cout << myBear.eats(animalRef) << endl; // BUG! No method Bear::eats(Animal&)

Because the compiler needs to know which overloaded version of the eats() method is going to be
called at compile time, this solution is not truly polymorphic. It would not work, for example, if you
were iterating over an array of Animal references and passing each one to a call to eats().

Attempt #3: Double Dispatch
The double dispatch technique is a truly polymorphic solution to the multiple-type problem. In
C++, polymorphism is achieved by overriding methods in derived classes. At run time, methods are
called based on the actual type of the object. The preceding single polymorphic attempt didn’t work
because it attempted to use polymorphism to determine which overloaded version of a method to
call instead of using it to determine on which class to call the method.

To begin, focus on a single derived class, perhaps the Bear class. The class needs a method with the
following declaration:

virtual bool eats(const Animal& prey) const override;

The key to double dispatch is to determine the result based on a method call on the argument.
Suppose that the Animal class has a method called eatenBy(), which takes an Animal reference as
a parameter. This method returns true if the current Animal gets eaten by the one passed in. With
such a method, the definition of eats() becomes very simple:

bool Bear::eats(const Animal& prey) const
{
 return prey.eatenBy(*this);
}

At first, it looks like this solution adds another layer of method calls to the single polymorphic
method. After all, each derived class still has to implement a version of eatenBy() for every
derived class of Animal. However, there is a key difference. Polymorphism is occurring twice!
When you call the eats() method on an Animal, polymorphism determines whether you are call-
ing Bear::eats(), Fish::eats(), or one of the others. When you call eatenBy(), polymorphism
again determines which class’s version of the method to call. It calls eatenBy() on the run-time type
of the prey object. Note that the run-time type of *this is always the same as the compile-time type
so that the compiler can call the correct overloaded version of eatenBy() for the argument (in this
case Bear).

Following are the class definitions for the Animal hierarchy using double dispatch. Note that for-
ward class declarations are necessary because the base class uses references to the derived classes:

// forward declarations
class Fish;
class Bear;
class Dinosaur;

There Must Be a Better Way  ❘  985

class Animal
{
 public:
 virtual bool eats(const Animal& prey) const = 0;

 virtual bool eatenBy(const Bear&) const = 0;
 virtual bool eatenBy(const Fish&) const = 0;
 virtual bool eatenBy(const Dinosaur&) const = 0;
};

class Bear : public Animal
{
 public:
 virtual bool eats(const Animal& prey) const override;

 virtual bool eatenBy(const Bear&) const override;
 virtual bool eatenBy(const Fish&) const override;
 virtual bool eatenBy(const Dinosaur&) const override;
};
// The definitions for the Fish and Dinosaur classes are identical to the
// Bear class, so they are not shown here.

The implementations follow. Note that each Animal-derived class implements the eats() method in
the same way, but it cannot be factored up into the base class. The reason is that if you attempt to
do so, the compiler won’t know which overloaded version of the eatenBy() method to call because
*this would be an Animal, not a particular derived class. Method overload resolution is determined
according to the compile-time type of the object, not its run-time type.

bool Bear::eats(const Animal& prey) const { return prey.eatenBy(*this); }
bool Bear::eatenBy(const Bear&) const { return false; }
bool Bear::eatenBy(const Fish&) const { return false; }
bool Bear::eatenBy(const Dinosaur&) const { return true; }

bool Fish::eats(const Animal& prey) const { return prey.eatenBy(*this); }
bool Fish::eatenBy(const Bear&) const { return true; }
bool Fish::eatenBy(const Fish&) const { return true; }
bool Fish::eatenBy(const Dinosaur&) const { return true; }

bool Dinosaur::eats(const Animal& prey) const { return prey.eatenBy(*this); }
bool Dinosaur::eatenBy(const Bear&) const { return false; }
bool Dinosaur::eatenBy(const Fish&) const { return false; }
bool Dinosaur::eatenBy(const Dinosaur&) const { return true; }

Double dispatch is a concept that takes a bit of getting used to. I suggest playing with this code to
adapt to the concept and its implementation.

Mixin Classes
Chapters 5 and 10 introduce the technique of using multiple inheritance to build mixin classes.
Mixin classes add a small piece of extra behavior to a class in an existing hierarchy. You can usu-
ally spot a mixin class by its name, which ends in “-able”, for example, Clickable, Drawable,
Printable, or Lovable.

986  ❘  CHAPTER 28   Incorporating Design Techniques and Frameworks

Designing a Mixin Class
Mixin classes contain actual code that can be reused by other classes. A single mixin class imple-
ments a well-defined piece of functionality. For example, you might have a mixin class called
Playable that is mixed into certain types of media objects. The mixin class could, for example,
contain most of the code to communicate with the computer’s sound drivers. By mixing in the class,
the media object would get that functionality for free.

When designing a mixin class, you need to consider what behavior you are adding and whether it
belongs in the object hierarchy or in a separate class. Using the previous example, if all media classes
are playable, the base class should derive from Playable instead of mixing the Playable class into
all of the derived classes. If only certain media classes are playable and they are scattered through-
out the hierarchy, a mixin class makes sense.

One of the cases where mixin classes are particularly useful is when you have classes organized into
a hierarchy on one axis, but they also contain similarities on another axis. For example, consider
a war simulation game played on a grid. Each grid location can contain an Item with attack and
defense capabilities and other characteristics. Some items, such as a Castle, are stationary. Others,
such as a Knight or FloatingCastle, can move throughout the grid. When initially designing the
object hierarchy, you might end up with something like Figure 28-1, which organizes the classes
according to their attack and defense capabilities.

FloatingCastle

CastleBarrier

Defender Attacker

SuperKnight

Knight Turret

Item

FIGURE 28-1

The hierarchy in Figure 28-1 ignores the movement functionality that certain classes contain.
Building your hierarchy around movement would result in a structure similar to Figure 28-2.

Of course, the design of Figure 28-2 throws away all the organization of Figure 28-1. What’s a good
object-oriented programmer to do?

There are two common solutions for this problem. Assuming that you go with the first hierarchy,
organized around attackers and defenders, you need some way to work movement into the equation.
One possibility is that, even though only a portion of the derived classes support movement, you
could add a move() method to the Item base class. The default implementation would do nothing.
Certain derived classes would override move() to actually change their location on the grid.

There Must Be a Better Way  ❘  987

Turret

NonMover Mover

SuperKnight

Knight FloatingCastle

Item

Castle Barrier

FIGURE 28-2

The other approach is to write a Movable mixin class. The elegant hierarchy from Figure 28-1 could
be preserved, but certain classes in the hierarchy would derive from Movable in addition to their
parent. Figure 28-3 shows this design.

FloatingCastle

CastleBarrier

Defender Attacker

SuperKnight

Knight Turret

Item

Movable

FIGURE 28-3

Implementing a Mixin Class
Writing a mixin class is no different from writing a normal class. In fact, it’s usually much simpler.
Using the earlier war simulation, the Movable mixin class might look as follows:

class Movable
{
 public:
 virtual void move() { /* Implementation to move an item... */ }
};

This Movable mixin class implements the actual code to move an item on the grid. It also provides
a type for Items that can be moved. This allows you to create, for example, an array of all movable
items without knowing or caring what actual derived class of Item they belong to.

988  ❘  CHAPTER 28   Incorporating Design Techniques and Frameworks

Using a Mixin Class
The code for using a mixin class is syntactically equivalent to multiple inheritance. In addition to
deriving from your parent class in the main hierarchy, you also derive from the mixin class:

class FloatingCastle : public Castle, public Movable
{
 // ...
};

This mixes in the functionality provided by the Movable mixin class into the FloatingCastle class.
Now you have a class that exists in the most logical place in the hierarchy, but still shares common-
ality with objects elsewhere in the hierarchy.

OBJECT-ORIENTED FRAMEWORKS

When graphical operating systems first came on the scene in the 1980s, procedural programming
was the norm. At the time, writing a GUI application usually involved manipulating complex data
structures and passing them to OS-provided functions. For example, to draw a rectangle in a win-
dow, you might have had to populate a Window struct with the appropriate information and pass it
to a drawRect() function.

As object-oriented programming (OOP) grew in popularity, programmers looked for a way to apply
the OOP paradigm to GUI development. The result is known as an object-oriented framework.
In general, a framework is a set of classes that are used collectively to provide an object-oriented
interface to some underlying functionality. When talking about frameworks, programmers are usu-
ally referring to large class libraries that are used for general application development. However, a
framework can really represent functionality of any size. If you write a suite of classes that provides
database functionality for your application, those classes could be considered a framework.

Working with Frameworks
The defining characteristic of a framework is that it provides its own set of techniques and patterns.
Frameworks usually require a bit of learning to get started with because they have their own mental
model. Before you can work with a large application framework, such as the Microsoft Foundation
Classes (MFC), you need to understand its view of the world.

Frameworks vary greatly in their abstract ideas and in their actual implementation. Many frame-
works are built on top of legacy procedural APIs, which may affect various aspects of their design.
Other frameworks are written from the ground up with object-oriented design in mind. Some
frameworks might ideologically oppose certain aspects of the C++ language. For example, a frame-
work could consciously shun the notion of multiple inheritance.

When you start working with a new framework, your first task is to find out what makes it tick. To
what design principles does it subscribe? What mental model are its developers trying to convey?
What aspects of the language does it use extensively? These are all vital questions, even though they
may sound like things that you’ll pick up along the way. If you fail to understand the design, model,

Object-Oriented Frameworks  ❘  989

or language features of the framework, you will quickly get into situations where you overstep the
bounds of the framework.

An understanding of the framework’s design will also make it possible for you to extend it. For
example, if the framework omits a feature, such as support for printing, you could write your own
printing classes using the same model as the framework. By doing so, you retain a consistent model
for your application, and you have code that can be reused by other applications.

A framework might use certain specific data types. For example, the MFC framework uses the
CString data type to represent strings, instead of using the Standard Library std::string class.
This does not mean that you have to switch to the data types provided by the framework for your
entire code base. Instead, you should convert the data types on the boundaries between the frame-
work code and the rest of your code.

The Model-View-Controller Paradigm
As I mentioned earlier, frameworks vary in their approaches to object-oriented design. One common
paradigm is known as model-view-controller, or MVC. This paradigm models the notion that many
applications commonly deal with a set of data, one or more views on that data, and manipulation of
the data.

In MVC, a set of data is called the model. In a race car simulator, the model would keep track of
various statistics, such as the current speed of the car and the amount of damage it has sustained. In
practice, the model often takes the form of a class with many getters and setters. The class definition
for the model of the race car might look as follows:

class RaceCar
{
 public:
 RaceCar();
 virtual ~RaceCar() = default;

 virtual double getSpeed() const;
 virtual void setSpeed(double speed);

 virtual double getDamageLevel() const;
 virtual void setDamageLevel(double damage);
 private:
 double mSpeed;
 double mDamageLevel;
};

A view is a particular visualization of the model. For example, there could be two views on a
RaceCar. The first view could be a graphical view of the car, and the second could be a graph that
shows the level of damage over time. The important point is that both views are operating on the
same data—they are different ways of looking at the same information. This is one of the main
advantages of the MVC paradigm: by keeping data separated from its display, you can keep your
code more organized, and easily create additional views.

990  ❘  CHAPTER 28   Incorporating Design Techniques and Frameworks

The final piece to the MVC paradigm is the controller. The controller is the piece of code that
changes the model in response to some event. For example, when the driver of the race car simula-
tor runs into a concrete barrier, the controller instructs the model to bump up the car’s damage
level and reduce its speed. The controller can also manipulate the view. For example, when the user
scrolls a scrollbar in the user interface, the controller instructs the view to scroll its content.

The three components of MVC interact in a feedback loop. Actions are handled by the controller,
which adjusts the model and/or views. If the model changes, it notifies the views to update them.
This interaction is shown in Figure 28-4.

Controller

User

View

Model

Displays to

Uses Manipulates

Updates

Manipulates

FIGURE 28-4

The model-view-controller paradigm has gained widespread support within many popular frame-
works. Even nontraditional applications, such as web applications, are moving in the direction of
MVC because it enforces a clear separation between data, the manipulation of data, and the display-
ing of data.

The MVC pattern has evolved into several different variants, such as model-view-presenter (MVP),
model-view-adapter (MVA), model-view-viewmodel (MVVM), and so on.

SUMMARY

In this chapter, you read about some of the common techniques that Professional C++ programmers
use consistently in their projects. As you advance as a software developer, you will undoubtedly
form your own collection of reusable classes and libraries. Discovering design techniques opens the
door to developing and using patterns, which are higher-level reusable constructs. You will experi-
ence the many applications of patterns next in Chapter 29.

Applying Design Patterns
WHAT’S IN THIS CHAPTER?

➤➤ What a pattern is and what the difference is with a design
technique

➤➤ How to use the following patterns:

➤➤ Iterator

➤➤ Singleton

➤➤ Abstract factory

➤➤ Proxy

➤➤ Adaptor

➤➤ Decorator

➤➤ Chain of responsibility

➤➤ Observer

A design pattern is a standard approach to program organization that solves a general prob-
lem. C++ is an object-oriented language, so the design patterns of interest to C++ program-
mers are generally object-oriented patterns, which describe strategies for organizing objects
and object relationships in your programs. These patterns are usually applicable to any object-
oriented language, such as C++, C#, Java, or Smalltalk. In fact, if you are familiar with C# or
Java programming, you will recognize many of these patterns.

Design patterns are less language-specific than are techniques. The difference between a pat-
tern and a technique is admittedly fuzzy, and different books employ different definitions.
This book defines a technique as a strategy particular to the C++ language, while a pattern is
a more general strategy for object-oriented design applicable to any object-oriented language.

29

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

992  ❘  CHAPTER 29   Applying Design Patterns

Note that many patterns have several different names. The distinctions between the patterns them-
selves can be somewhat vague, with different sources describing and categorizing them slightly
differently. In fact, depending on the books or other sources you use, you may find the same name
applied to different patterns. There is even disagreement as to which design approaches qualify as
patterns. With a few exceptions, this book follows the terminology used in the seminal book Design
Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma et al. (Addison-wesley
Professional, 1994). However, other pattern names and variations are noted when appropriate.

The design pattern concept is a simple but powerful idea. Once you are able to recognize the recur-
ring object-oriented interactions that occur in a program, finding an elegant solution becomes a
matter of merely selecting the appropriate pattern to apply. This chapter describes several design
patterns in detail and presents sample implementations.

Certain patterns go by different names or are subject to different interpretations. Any aspect of
design is likely to provoke debate among programmers, and I believe that is a good thing. Don’t sim-
ply accept these patterns as the only way to accomplish a task—draw on their approaches and ideas
to refine them and form new patterns.

THE ITERATOR PATTERN

The iterator pattern provides a mechanism for separating algorithms or operations from the data
on which they operate. At first glance, this pattern seems to contradict the fundamental principle in
object-oriented programming of grouping together in objects data and the behaviors that operate
on that data. While that argument is true on a certain level, the iterator pattern does not advocate
removing fundamental behaviors from objects. Instead, it solves two problems that commonly arise
with tight coupling of data and behaviors.

The first problem with tightly coupling data and behaviors is that it precludes generic algorithms
that work on a variety of objects, not all of which are in the same class hierarchy. In order to write
generic algorithms, you need some standard mechanism to access the contents of the objects.

The second problem with tightly coupled data and behaviors is that it’s sometimes difficult to add
new behaviors. At the very least, you need access to the source code for the data objects. However,
what if the object hierarchy of interest is part of a third-party framework or library that you cannot
change? It would be nice to be able to add an algorithm or operation that works on the data without
modifying the original object hierarchy of classes that hold the data.

You’ve already seen an example of the iterator pattern in the Standard Library. Conceptually,
iterators provide a mechanism for an operation or algorithm to access a container of elements in a
sequence. The name comes from the English word iterate, which means “repeat.” It applies to itera-
tors because they repeat the action of moving forward in the sequence to reach each new element.
In the Standard Library, the generic algorithms use iterators to access the elements of the containers
on which they operate. By defining a standard iterator interface, the Standard Library allows you to
write algorithms that can work on any container that supplies an iterator with the appropriate inter-
face. Thus, iterators allow you to write generic algorithms without modifying the classes that hold
the data. Figure 29-1 shows an iterator as the central coordinator; operations depend on iterators,
and data objects provide iterators.

The Singleton Pattern  ❘  993

Data Object Iterator Operation

FIGURE 29-1

Chapter 21 illustrates a detailed example of how to implement an iterator for a class that conforms
to the Standard Library requirements, which means that its iterator can be used by the generic
Standard Library algorithms.

THE SINGLETON PATTERN

The singleton is one of the simplest design patterns. In English, the word singleton means “one of a
kind” or “individual.” It has a similar meaning in programming. The singleton pattern is a strategy for
enforcing the existence of exactly one instance of a class in a program. Applying the singleton pattern
to a class guarantees that only one object of that class will ever be created. The singleton pattern also
specifies that that one object is globally accessible from anywhere in the program. Programmers usu-
ally refer to a class following the singleton pattern as a singleton class.

If your program relies on the assumption that there will be exactly one instance of a class, you could
enforce that assumption with the singleton pattern.

However, the singleton pattern has a number of disadvantages that you need to be aware of. If you
have multiple singletons, it’s not always easy to guarantee that they are initialized in the right order
at program startup. It’s also not easy to ensure a singleton is still there when callers need it during
program shutdown. On top of that, singleton classes introduce hidden dependencies, cause tight
coupling, and complicate unit testing. In a unit test, for example, you might want to write a stub
version (see Chapter 26) of a singleton, but given the nature of a typical singleton implementation,
that’s hard to do. A more appropriate design pattern could be dependency injection. With depen-
dency injection, you create an interface for each service you provide, and inject the interfaces a com-
ponent needs into the component. Dependency injection allows mocking (stub versions), makes it
easier to introduce multiple instances later on, allows for more complicated ways of constructing the
single object than a typical singleton, for example using factories, and so on. Still, the singleton pat-
tern is discussed here because you will encounter it.

Example: A Logging Mechanism
Singletons can be useful for utility classes. Many applications have a notion of a logger—a class that
is responsible for writing status information, debugging data, and errors to a central location. The
ideal logging class has the following characteristics:

➤➤ It is available at all times.

➤➤ It is easy to use.

➤➤ There is only one instance.

994  ❘  CHAPTER 29   Applying Design Patterns

The singleton pattern is a good match for a logger because, even though the logger could be used
in many different contexts and for many different purposes, it is conceptually a single instance.
Implementing the logger class as a singleton also makes it easier to use because you never have to
worry about which logger is the current one or how to get a hold of the current logger; there’s only
one, so it’s a moot point!

Implementation of a Singleton
There are two basic ways to implement singleton behavior in C++. The first approach uses a class
with only static methods. Such a class needs no instantiation and is accessible from anywhere. The
problem with this method is that it lacks a built-in mechanism for construction and destruction.
However, technically, a class that uses all static methods isn’t really a singleton: it’s a nothington or
a static class, to coin new terms. The term singleton implies that there is exactly one instance of the
class. If all of the methods are static and the class is never instantiated at all, you cannot really call it
a singleton anymore. So, this is not further discussed in this section.

The second approach uses access control levels to regulate the creation and access of one single
instance of a class. This is a true singleton and discussed further with an example of a simple
Logger class, which provides the following features:

➤➤ It can log a single string or a vector of strings.

➤➤ Each log message has an associated log level, which is prefixed to the log message.

➤➤ The logger can be set up to only log messages of a certain log level.

➤➤ Every logged message is flushed to disk so that it will appear in the file immediately.

To build a true singleton in C++, you can use the access control mechanisms as well as the static
keyword. An actual Logger object exists at run time, and the class enforces that only one object
is ever instantiated. Clients can always get a hold of that object through a static method called
instance(). The class definition looks like this:

// Definition of a singleton logger class.
class Logger final
{
 public:
 enum class LogLevel {
 Error,
 Info,
 Debug
 };

 // Returns a reference to the singleton Logger object.
 static Logger& instance();

 // Prevent copy/move construction.
 Logger(const Logger&) = delete;
 Logger(Logger&&) = delete;

The Singleton Pattern  ❘  995

 // Prevent copy/move assignment operations.
 Logger& operator=(const Logger&) = delete;
 Logger& operator=(Logger&&) = delete;

 // Sets the log level.
 void setLogLevel(LogLevel level);

 // Logs a single message at the given log level.
 void log(std::string_view message, LogLevel logLevel);

 // Logs a vector of messages at the given log level.
 void log(const std::vector<std::string>& messages,
 LogLevel logLevel);
 private:
 // Private constructor and destructor.
 Logger();
 ~Logger();

 // Converts a log level to a human readable string.
 std::string_view getLogLevelString(LogLevel level) const;

 static const char* const kLogFileName;
 std::ofstream mOutputStream;
 LogLevel mLogLevel = LogLevel::Error;
};

This implementation is based on Scott Meyer’s singleton pattern. This means that the instance()
method contains a local static instance of the Logger class. C++ guarantees that this local static
instance is initialized in a thread-safe fashion, so you don’t need any manual thread synchroniza-
tion in this version of the singleton pattern. These are so-called magic statics. Note that only the
initialization is thread safe! If multiple threads are going to call methods on the Logger class, then
you should make the Logger methods themselves thread safe as well. See Chapter 23 for a detailed
discussion on synchronization mechanisms to make a class thread safe.

The implementation of the Logger class is fairly straightforward. Once the log file has been opened,
each log message is written to it with the log level prepended. The constructor and destructor are
called automatically when the static instance of the Logger class in the instance() method is cre-
ated and destroyed. Because the constructor and destructor are private, no external code can create
or delete a Logger. Here is the implementation:

#include "Logger.h"
#include <stdexcept>

using namespace std;

const char* const Logger::kLogFileName = "log.out"; //*

Logger& Logger::instance()
{
 static Logger instance;
 return instance;
}

996  ❘  CHAPTER 29   Applying Design Patterns

Logger::Logger()
{
 mOutputStream.open(kLogFileName, ios_base::app);
 if (!mOutputStream.good()) {
 throw runtime_error("Unable to initialize the Logger!");
 }
}

Logger::~Logger()
{
 mOutputStream << "Logger shutting down." << endl;
 mOutputStream.close();
}

void Logger::setLogLevel(LogLevel level)
{
 mLogLevel = level;
}

string_view Logger::getLogLevelString(LogLevel level) const
{
 switch (level) {
 case LogLevel::Error:
 return "ERROR";
 case LogLevel::Info:
 return "INFO";
 case LogLevel::Debug:
 return "DEBUG";
 }
 throw runtime_error("Invalid log level.");
}

void Logger::log(string_view message, LogLevel logLevel)
{
 if (mLogLevel < logLevel) {
 return;
 }

 mOutputStream << getLogLevelString(logLevel).data()
 << ": " << message << endl;
}

void Logger::log(const vector<string>& messages, LogLevel logLevel)
{
 if (mLogLevel < logLevel) {
 return;
 }

 for (const auto& message : messages) {
 log(message, logLevel);
 }
}

The Abstract Factory Pattern  ❘  997

If your compiler supports C++17 inline variables, introduced in Chapter 9, then you can remove
the line marked with //* from the source file, and instead define it as an inline variable directly
in the class definition, as follows:

class Logger final
{
 // Omitted for brevity

 static inline const char* const kLogFileName = "log.out";
};

NOTE  To focus on the actual singleton pattern, this implementation uses a
hardcoded filename. Of course, in production-quality software, this filename
should be configurable by the user, and you should not use relative paths, but
fully qualified paths, for example, by retrieving the temporary directory for your
operating system.

Using a Singleton
The singleton Logger class can be tested as follows:

// Set log level to Debug.
Logger::instance().setLogLevel(Logger::LogLevel::Debug);

// Log some messages.
Logger::instance().log("test message", Logger::LogLevel::Debug);
vector<string> items = {"item1", "item2"};
Logger::instance().log(items, Logger::LogLevel::Error);

// Set log level to Error.
Logger::instance().setLogLevel(Logger::LogLevel::Error);
// Now that the log level is set to Error, logging a Debug
// message will be ignored.
Logger::instance().log("A debug message", Logger::LogLevel::Debug);

After executing, the file log.out contains the following lines:

DEBUG: test message
ERROR: item1
ERROR: item2
Logger shutting down.

THE ABSTRACT FACTORY PATTERN

A factory in real life constructs tangible objects, such as tables or cars. Similarly, a factory in object-
oriented programming constructs objects. When you use factories in your program, portions of
code that want to create a particular object ask the factory for an instance of the object instead of
calling the object constructor themselves. For example, an interior decorating program might have

C++17

998  ❘  CHAPTER 29   Applying Design Patterns

a FurnitureFactory object. When part of the code needs a piece of furniture such as a table, it
would call the createTable() method of the FurnitureFactory object, which would return a
new table.

At first glance, factories seem to lead to complicated designs without clear benefits. It appears that
you’re only adding another layer of complexity to the program. Instead of calling createTable()
on a FurnitureFactory, you could simply create a new Table object directly. However, factories
can actually be quite useful. Instead of creating various objects all over the program, you centralize
the object creation for a particular domain.

Another benefit of factories is that you can use them alongside class hierarchies to construct objects
without knowing their exact class. As you’ll see in the following example, factories can run parallel
to class hierarchies. This is not to say they must run parallel to class hierarchies. Factories may as
well just create any number of concrete types.

Another reason to use a factory is that maybe the creation of your objects requires certain informa-
tion, state, resources, and so on, owned by the factory. A factory can also be used if creating your
objects requires a complex series of steps to be executed in the right order, or if all created objects
need to be linked to other objects in a correct manner, and so on.

One of the main benefits is that factories abstract the object creation process; using dependency
injection, you can easily substitute a different factory in your program. Just as you can use polymor-
phism with the created objects, you can use polymorphism with factories. The following example
demonstrates this.

Example: A Car Factory Simulation
In the real world, when you talk about driving a car, you can do so without referring to the specific
type of car. You could be discussing a Toyota or a Ford. It doesn’t matter, because both Toyotas and
Fords are drivable. Now, suppose that you want a new car. You would then need to specify whether
you wanted a Toyota or a Ford, right? Not always. You could just say, “I want a car,” and depend-
ing on where you were, you would get a specific car. If you said, “I want a car,” in a Toyota factory,
chances are you’d get a Toyota. (Or you’d get arrested, depending on how you asked.) If you said,
“I want a car,” in a Ford factory, you’d get a Ford.

The same concepts apply to C++ programming. The first concept, a generic car that’s drivable, is
nothing new; it’s standard polymorphism, described in Chapter 5. You could write an abstract Car
class that defines a virtual drive() method. Both Toyota and Ford could be derived classes of the
Car class, as shown in Figure 29-2.

Your program could drive Cars without knowing whether they were really Toyotas or Fords.
However, with standard object-oriented programming, the one place that you’d need to specify
Toyota or Ford would be when you created the car. Here, you would need to call the constructor
for one or the other. You couldn’t just say, “I want a car.” However, suppose that you also had a
parallel class hierarchy of car factories. The CarFactory base class could define a virtual
requestCar() method. The ToyotaFactory and FordFactory derived classes would override
the requestCar() method to build a Toyota or a Ford. Figure 29-3 shows the CarFactory
hierarchy.

The Abstract Factory Pattern  ❘  999

Car

Toyota Ford

+drive()

FIGURE 29-2

Now, suppose that there is one CarFactory object in a program. When code in the program, such
as a car dealer, wants a new car, it calls requestCar() on the CarFactory object. Depending on
whether that car factory is really a ToyotaFactory or a FordFactory, the code gets either a Toyota
or a Ford. Figure 29-4 shows the objects in a car dealer program using a ToyotaFactory.

CarDealer

ToyotaFactory

Builds ToyotaReturns “Car”

Requests “Car”

FIGURE 29-4

Figure 29-5 shows the same program, but with a FordFactory instead of a ToyotaFactory. Note
that the CarDealer object and its relationship with the factory stay the same.

CarDealer

FordFactory

Builds FordReturns “Car”

Requests “Car”

FIGURE 29-5

This example demonstrates using polymorphism with factories. When you ask the car factory for a
car, you might not know whether it’s a Toyota factory or a Ford factory, but either way it will give
you a Car that you can drive. This approach leads to easily extensible programs; simply changing the
factory instance can allow the program to work on a completely different set of objects and classes.

Implementation of a Factory
One reason for using factories is that the type of the object you want to create may depend on some
condition. For example, if you want a car, you might want to put your order into the factory that

CarFactory

ToyotaFactory FordFactory

+requestCar()

+requestCar() +requestCar()

FIGURE 29-3

1000  ❘  CHAPTER 29   Applying Design Patterns

has received the fewest requests so far, regardless of whether the car you eventually get is a Toyota
or a Ford. The following implementation shows how to write such factories in C++.

The first thing you’ll need is the hierarchy of cars. To keep this example concise, the Car class simply
has an abstract method that returns a description of the car:

class Car
{
 public:
 virtual ~Car() = default; // Always a virtual destructor!
 virtual std::string_view info() const = 0;
};

class Ford : public Car
{
 public:
 virtual std::string_view info() const override { return "Ford"; }
};

class Toyota : public Car
{
 public:
 virtual std::string_view info() const override { return "Toyota"; }
};

The CarFactory base class is a bit more interesting. Each factory keeps track of the number of cars
produced. When the public requestCar() method is called, the number of cars produced at the
factory is increased by one, and the pure virtual createCar() method is called, which creates and
returns a new car. The idea is that individual factories override createCar() to return the appropri-
ate type of car. The CarFactory itself implements requestCar(), which takes care of updating the
number of cars produced. The CarFactory also provides a public method to query the number of
cars produced at each factory.

The class definitions for the CarFactory class and derived classes are as follows:

#include "Car.h"
#include <cstddef>
#include <memory>

class CarFactory
{
 public:
 virtual ~CarFactory() = default; // Always a virtual destructor!
 std::unique_ptr<Car> requestCar();
 size_t getNumberOfCarsProduced() const;

 protected:
 virtual std::unique_ptr<Car> createCar() = 0;

 private:
 size_t mNumberOfCarsProduced = 0;
};

The Abstract Factory Pattern  ❘  1001

class FordFactory : public CarFactory
{
 protected:
 virtual std::unique_ptr<Car> createCar() override;
};

class ToyotaFactory : public CarFactory
{
 protected:
 virtual std::unique_ptr<Car> createCar() override;
};

As you can see, the derived classes simply override createCar() to return the specific type of car
that they produce. The implementation of the CarFactory hierarchy is as follows:

// Increment the number of cars produced and return the new car.
std::unique_ptr<Car> CarFactory::requestCar()
{
 ++mNumberOfCarsProduced;
 return createCar();
}

size_t CarFactory::getNumberOfCarsProduced() const
{
 return mNumberOfCarsProduced;
}

std::unique_ptr<Car> FordFactory::createCar()
{
 return std::make_unique<Ford>();
}

std::unique_ptr<Car> ToyotaFactory::createCar()
{
 return std::make_unique<Toyota>();
}

The implementation approach used in this example is called an abstract factory because the type
of object created depends on which concrete derived class of the factory class is being used. A simi-
lar pattern can be implemented in a single class instead of a class hierarchy. In that case, a single
create() method takes a type or string parameter from which it decides which object to create. For
example, a CarFactory class could provide a requestCar() method that takes a string representing
the type of car to build, and constructs the appropriate car.

NOTE  Factory methods are one way to implement virtual constructors, which
are methods that create objects of different types. For example, the request-
Car() method creates both Toyotas and Fords, depending on the concrete fac-
tory object on which it is called.

1002  ❘  CHAPTER 29   Applying Design Patterns

Using a Factory
The simplest way to use a factory is to instantiate it and to call the appropriate method, as in the fol-
lowing piece of code:

ToyotaFactory myFactory;
auto myCar = myFactory.requestCar();
cout << myCar->info() << endl; // Outputs Toyota

A more interesting example makes use of the virtual constructor idea to build a car in the
factory that has the fewest cars produced. To do this, you can create a new factory, called
LeastBusyFactory, that derives from CarFactory and that accepts a number of other CarFactory
objects in its constructor. As all CarFactory classes have to do, LeastBusyFactory overrides the
createCar() method. Its implementation finds the least busy factory in the list of factories passed
to the constructor, and asks that factory to create a car. Here is the implementation of such a
factory:

class LeastBusyFactory : public CarFactory
{
 public:
 // Constructs a LeastBusyFactory instance, taking ownership of
 // the given factories.
 explicit LeastBusyFactory(vector<unique_ptr<CarFactory>>&& factories);

 protected:
 virtual unique_ptr<Car> createCar() override;

 private:
 vector<unique_ptr<CarFactory>> mFactories;
};

LeastBusyFactory::LeastBusyFactory(vector<unique_ptr<CarFactory>>&& factories)
 : mFactories(std::move(factories))
{
 if (mFactories.empty())
 throw runtime_error("No factories provided.");
}

unique_ptr<Car> LeastBusyFactory::createCar()
{
 CarFactory* bestSoFar = mFactories[0].get();

 for (auto& factory : mFactories) {
 if (factory->getNumberOfCarsProduced() <
 bestSoFar->getNumberOfCarsProduced()) {
 bestSoFar = factory.get();
 }
 }

 return bestSoFar->requestCar();
}

The following code makes use of this factory to build ten cars, whatever brand they might be, from
the factory that has produced the least number of cars.

The Abstract Factory Pattern  ❘  1003

vector<unique_ptr<CarFactory>> factories;

// Create 3 Ford factories and 1 Toyota factory.
factories.push_back(make_unique<FordFactory>());
factories.push_back(make_unique<FordFactory>());
factories.push_back(make_unique<FordFactory>());
factories.push_back(make_unique<ToyotaFactory>());

// To get more interesting results, preorder some cars.
factories[0]->requestCar();
factories[0]->requestCar();
factories[1]->requestCar();
factories[3]->requestCar();

// Create a factory that automatically selects the least busy
// factory from a list of given factories.
LeastBusyFactory leastBusyFactory(std::move(factories));

// Build 10 cars from the least busy factory.
for (size_t i = 0; i < 10; i++) {
 auto theCar = leastBusyFactory.requestCar();
 cout << theCar->info() << endl;
}

When executed, the program prints out the make of each car produced:

Ford
Ford
Ford
Toyota
Ford
Ford
Ford
Toyota
Ford
Ford

The results are rather predictable because the loop effectively iterates through the factories in a
round-robin fashion. However, one could imagine a scenario where multiple dealers are requesting
cars, and the current status of each factory isn’t quite so predictable.

Other Uses of Factories
You can also use the factory pattern for more than just modeling real-world factories. For example,
consider a word processor in which you want to support documents in different languages, where
each document uses a single language. There are many aspects of the word processor in which the
choice of document language requires different support: the character set used in the document
(whether or not accented characters are needed), the spell checker, the thesaurus, and the way the
document is displayed, to name just a few. You could use factories to design a clean word proces-
sor by writing an abstract LanguageFactory base class and concrete factories for each language of
interest, such as EnglishLanguageFactory and FrenchLanguageFactory. When the user speci-
fies a language for a document, the program instantiates the appropriate language factory and
attaches it to the document. From then on, the program doesn’t need to know which language is

1004  ❘  CHAPTER 29   Applying Design Patterns

supported in the document. When it needs a language-specific piece of functionality, it can just ask
the LanguageFactory. For example, when it needs a spell checker, it can call the createSpell-
checker() method on the factory, which will return a spell checker in the appropriate language.

THE PROXY PATTERN

The proxy pattern is one of several patterns that divorce the abstraction of a class from its underly-
ing representation. A proxy object serves as a stand-in for a real object. Such objects are generally
used when using the real object would be time-consuming or impossible. For example, take a docu-
ment editor. A document could contain several big objects, such as images. Instead of loading all
those images when opening the document, the document editor could substitute all images with
image proxies. These proxies don’t immediately load the images. Only when the user scrolls down
in the document and reaches an image, does the document editor ask the image proxy to draw itself.
At that time, the proxy delegates the work to the real image class, which loads the image.

Example: Hiding Network Connectivity Issues
Consider a networked game with a Player class that represents a person on the Internet who has
joined the game. The Player class includes functionality that requires network connectivity, such
as an instant messaging feature. If a player’s connection becomes slow or unresponsive, the Player
object representing that person can no longer receive instant messages.

Because you don’t want to expose network problems to the user, it may be desirable to have a sepa-
rate class that hides the networked parts of a Player. This PlayerProxy object would substitute for
the actual Player object. Either clients of the class would use the PlayerProxy class at all times as
a gatekeeper to the real Player class, or the system would substitute a PlayerProxy when a Player
became unavailable. During a network failure, the PlayerProxy object could still display the
player’s name and last-known state, and could continue to function when the original Player object
could not. Thus, the proxy class hides some undesirable semantics of the underlying Player class.

Implementation of a Proxy
The first step is defining an IPlayer interface containing the public interface for a Player.

class IPlayer
{
 public:
 virtual std::string getName() const = 0;
 // Sends an instant message to the player over the network and
 // returns the reply as a string.
 virtual std::string sendInstantMessage(
 std::string_view message) const = 0;
};

The Player class definition then becomes as follows. The sendInstantMessage() method of a
Player requires network connectivity to properly function.

class Player : public IPlayer
{
 public:

The Proxy Pattern  ❘  1005

 virtual std::string getName() const override;
 // Network connectivity is required.
 virtual std::string sendInstantMessage(
 std::string_view message) const override;
};

The PlayerProxy class also derives from IPlayer, and contains another IPlayer instance (the
‘real’ Player):

class PlayerProxy : public IPlayer
{
 public:
 // Create a PlayerProxy, taking ownership of the given player.
 PlayerProxy(std::unique_ptr<IPlayer> player);
 virtual std::string getName() const override;
 // Network connectivity is optional.
 virtual std::string sendInstantMessage(
 std::string_view message) const override;

 private:
 std::unique_ptr<IPlayer> mPlayer;
};

The constructor takes ownership of the given IPlayer:

PlayerProxy::PlayerProxy(std::unique_ptr<IPlayer> player)
 : mPlayer(std::move(player))
{
}

The implementation of the PlayerProxy’s sendInstantMessage() method checks the network con-
nectivity, and either returns a default string or forwards the request.

std::string PlayerProxy::sendInstantMessage(std::string_view message) const
{
 if (hasNetworkConnectivity())
 return mPlayer->sendInstantMessage(message);
 else
 return "The player has gone offline.";
}

Using a Proxy
If a proxy is well written, using it should be no different from using any other object. For the
PlayerProxy example, the code that uses the proxy could be completely unaware of its existence.
The following function, designed to be called when the Player has won, could be dealing with an
actual Player or a PlayerProxy. The code is able to handle both cases in the same way because the
proxy ensures a valid result.

bool informWinner(const IPlayer& player)
{
 auto result = player.sendInstantMessage("You have won! Play again?");
 if (result == "yes") {
 cout << player.getName() << " wants to play again." << endl;
 return true;

1006  ❘  CHAPTER 29   Applying Design Patterns

 } else {
 // The player said no, or is offline.
 cout << player.getName() << " does not want to play again." << endl;
 return false;
 }
}

THE ADAPTOR PATTERN

The motivation for changing the abstraction given by a class is not always driven by a desire to
hide functionality. Sometimes, the underlying abstraction cannot be changed but it doesn’t suit the
current design. In this case, you can build an adaptor or wrapper class. The adaptor provides the
abstraction that the rest of the code uses and serves as the bridge between the desired abstraction
and the actual underlying code. Chapter 17 discusses how the Standard Library uses the adaptor
pattern to implement containers like stack and queue in terms of other containers, such as deque
and list.

Example: Adapting a Logger Class
For this adaptor pattern example, let’s assume a very basic Logger class. Here is the class definition:

class Logger
{
 public:
 enum class LogLevel {
 Error,
 Info,
 Debug
 };

 Logger();
 virtual ~Logger() = default; // Always a virtual destructor!

 void log(LogLevel level, std::string message);
 private:
 // Converts a log level to a human readable string.
 std::string_view getLogLevelString(LogLevel level) const;
};

And here are the implementations:

Logger::Logger()
{
 cout << "Logger constructor" << endl;
}

void Logger::log(LogLevel level, std::string message)
{
 cout << getLogLevelString(level).data() << ": " << message << endl;
}

string_view Logger::getLogLevelString(LogLevel level) const
{
 // Same implementation as the Singleton logger earlier in this chapter.
}

The Adaptor Pattern  ❘  1007

The Logger class has a constructor, which outputs a line of text to the standard console, and a
method called log() that writes the given message to the console prefixed with a log level.

One reason why you might want to write a wrapper class around this basic Logger class is to change
its interface. Maybe you are not interested in the log level and you would like to call the log()
method with only one parameter, the actual message. You might also want to change the interface
to accept an std::string_view instead of an std::string as parameter for the log() method.

Implementation of an Adaptor
The first step in implementing the adaptor pattern is to define the new interface for the underlying
functionality. This new interface is called NewLoggerInterface and looks like this:

class NewLoggerInterface
{
 public:
 virtual ~NewLoggerInterface() = default; // Always virtual destructor!
 virtual void log(std::string_view message) = 0;
};

This class is an abstract class, which declares the desired interface that you want for your new
logger. The interface only defines one abstract method, that is, a log() method accepting only a
single argument of type string_view, which needs to be implemented by any class implementing
this interface.

The next step is to write the actual new logger class, NewLoggerAdaptor, which implements
NewLoggerInterface so that it has the interface that you designed. The implementation wraps a
Logger instance; it uses composition.

class NewLoggerAdaptor : public NewLoggerInterface
{
 public:
 NewLoggerAdaptor();
 virtual void log(std::string_view message) override;
 private:
 Logger mLogger;
};

The constructor of the new class writes a line to standard output to keep track of which construc-
tors are being called. The code then implements the log() method from NewLoggerInterface by
forwarding the call to the log() method of the Logger instance that is wrapped. In that call, the
given string_view is converted to a string, and the log level is hard-coded as Info:

NewLoggerAdaptor::NewLoggerAdaptor()
{
 cout << "NewLoggerAdaptor constructor" << endl;
}

void NewLoggerAdaptor::log(string_view message)
{
 mLogger.log(Logger::LogLevel::Info, message.data());
}

1008  ❘  CHAPTER 29   Applying Design Patterns

Using an Adaptor
Because adaptors exist to provide a more appropriate interface for the underlying functionality, their
use should be straightforward and specific to the particular case. Given the previous implementa-
tion, the following code snippet uses the new simplified interface for the Logger class:

NewLoggerAdaptor logger;
logger.log("Testing the logger.");

It produces the following output:

Logger constructor
NewLoggerAdaptor constructor
INFO: Testing the logger.

THE DECORATOR PATTERN

The decorator pattern is exactly what it sounds like: a “decoration” on an object. It is also often
called a wrapper. The pattern is used to add or change the behavior of an object at run time.
Decorators are a lot like derived classes, but their effects can be temporary. For example, if you
have a stream of data that you are parsing and you reach data that represents an image, you could
temporarily decorate the stream object with an ImageStream object. The ImageStream constructor
would take the stream object as a parameter and would have built-in knowledge of image parsing.
Once the image is parsed, you could continue using the original object to parse the remainder of the
stream. The ImageStream acts as a decorator because it adds new functionality (image parsing) to
an existing object (a stream).

Example: Defining Styles in Web Pages
As you may already know, web pages are written in a simple text-based structure called HyperText
Markup Language (HTML). In HTML, you can apply styles to a text by using style tags, such as
 and for bold and <I> and </I> for italic. The following line of HTML displays the mes-
sage in bold:

A party? For me? Thanks!

The following line displays the message in bold and italic:

<I>A party? For me? Thanks!</I>

Suppose you are writing an HTML editing application. Your users will be able to type in para-
graphs of text and apply one or more styles to them. You could make each type of paragraph a new
derived class, as shown in Figure 29-6, but that design could be cumbersome and would grow expo-
nentially as new styles were added.

Paragraph

BoldParagraph ItalicParagraph BoldItalicParagraph

FIGURE 29-6

The Decorator Pattern  ❘  1009

The alternative is to consider styled paragraphs not as types of para-
graphs, but as decorated paragraphs. This leads to situations like
the one shown in Figure 29-7, where an ItalicParagraph operates
on a BoldParagraph, which in turn operates on a Paragraph. The
recursive decoration of objects nests the styles in code just as they
are nested in HTML.

Implementation of a Decorator
To start, you need an IParagraph interface:

class IParagraph
{
 public:
 virtual ~IParagraph() = default; // Always a virtual destructor!
 virtual std::string getHTML() const = 0;
};

The Paragraph class implements this IParagraph interface:

class Paragraph : public IParagraph
{
 public:
 Paragraph(std::string_view text) : mText(text) {}
 virtual std::string getHTML() const override { return mText; }
 private:
 std::string mText;
};

To decorate a Paragraph with zero or more styles, you need styled IParagraph classes, each one
constructible from an existing IParagraph. This way, they can all decorate a Paragraph or a styled
IParagraph. The BoldParagraph class derives from IParagraph and implements getHTML().
However, because you only intend to use it as a decorator, its single public non-copy constructor
takes a const reference to an IParagraph.

class BoldParagraph : public IParagraph
{
 public:
 BoldParagraph(const IParagraph& paragraph) : mWrapped(paragraph) {}

 virtual std::string getHTML() const override {
 return "" + mWrapped.getHTML() + "";
 }
 private:
 const IParagraph& mWrapped;
};

The ItalicParagraph class is almost identical:

class ItalicParagraph : public IParagraph
{
 public:
 ItalicParagraph(const IParagraph& paragraph) : mWrapped(paragraph) {}

Paragraph

BoldParagraph

ItalicParagraph

FIGURE 29-7

1010  ❘  CHAPTER 29   Applying Design Patterns

 virtual std::string getHTML() const override {
 return "<I>" + mWrapped.getHTML() + "</I>";
 }
 private:
 const IParagraph& mWrapped;
};

Using a Decorator
From the user’s point of view, the decorator pattern is appealing because it is very easy to apply, and
is transparent once applied. The user doesn’t need to know that a decorator has been employed at
all. A BoldParagraph behaves just like a Paragraph.

Here is a quick example that creates and outputs a paragraph, first in bold, then in bold and italic:

Paragraph p("A party? For me? Thanks!");
// Bold
std::cout << BoldParagraph(p).getHTML() << std::endl;
// Bold and Italic
std::cout << ItalicParagraph(BoldParagraph(p)).getHTML() << std::endl;

The output is as follows:

A party? For me? Thanks!
<I>A party? For me? Thanks!</I>

THE CHAIN OF RESPONSIBILITY PATTERN

A chain of responsibility is used when you want a number of objects to get a crack at performing a
particular action. The technique can employ polymorphism so that the most specific class gets called
first and can either handle the call or pass it up to its parent. The parent then makes the same deci-
sion—it can handle the call or pass it up to its parent. A chain of responsibility does not necessarily
have to follow a class hierarchy, but it typically does.

Chains of responsibility are perhaps most commonly used for event handling. Many modern appli-
cations, particularly those with graphical user interfaces, are designed as a series of events and
responses. For example, when a user clicks on the File menu and selects Open, an open event has
occurred. When the user moves the mouse over the drawable area of a paint program, mouse move
events are generated continuously. If the user presses down a button on the mouse, a mouse down
event for that button-press is generated. The program can then start paying attention to the mouse
move events, allowing the user to “draw” some object, and continue doing this until the mouse
up event occurs. Each operating system has its own way of naming and using these events, but the
overall idea is the same: when an event occurs, it is somehow communicated to the program, which
takes appropriate action.

As you know, C++ does not have any built-in facilities for graphical programming. It also has no
notion of events, event transmission, or event handling. A chain of responsibility is a reasonable
approach to event handling to give different objects a chance to handle certain events.

The Chain of Responsibility Pattern  ❘  1011

Example: Event Handling
Consider a drawing program, which has a hierarchy of Shape classes, as in Figure 29-8.

Shape

Square Circle Triangle

FIGURE 29-8

The leaf nodes can handle certain events. For example, Circle can receive mouse move events to
change the radius of the circle. The parent class handles events that have the same effect, regardless
of the particular shape. For example, a delete event is handled the same way, regardless of the type
of shape being deleted. With a chain of responsibility, the leaf nodes get the first crack at handling
a particular event. If that leaf node cannot handle the event, it explicitly forwards the event to
the next handler in the chain, and so on. For example, if a mouse down event occurs on a Square
object, first the Square gets a chance to handle the event. If it doesn’t handle the event, it forwards
the event to the next handler in the chain, which is the Shape class for this example. Now the Shape
class gets a crack at handling the event. If Shape can’t handle the event either, it could forward it to
its parent if it had one, and so on. This continues all the way up the chain. It’s a chain of responsibil-
ity because each handler may either handle the event, or pass the event up to the next handler in the
chain.

Implementation of a Chain of Responsibility
The code for a chained messaging approach varies based on how your operating system handles
events, but it tends to resemble the following code, which uses integers to represent types of events:

void Square::handleMessage(int message)
{
 switch (message) {
 case kMessageMouseDown:
 handleMouseDown();
 break;
 case kMessageInvert:
 handleInvert();
 break;
 default:
 // Message not recognized--chain to base class.
 Shape::handleMessage(message);
 }
}

1012  ❘  CHAPTER 29   Applying Design Patterns

void Shape::handleMessage(int message)
{
 switch (message) {
 case kMessageDelete:
 handleDelete();
 break;
 default:
 {
 stringstream ss;
 ss << __func__ << ": Unrecognized message received: " << message;
 throw invalid_argument(ss.str());
 }
 }
}

When the event-handling portion of the program or framework receives a message, it finds the cor-
responding shape and calls handleMessage(). Through polymorphism, the derived class’s version
of handleMessage() is called. This gives the leaf node the first chance at handling the message. If it
doesn’t know how to handle the message, it passes it up to its base class, which gets the next chance.
In this example, the final recipient of the message throws an exception if it is unable to handle the
event. You could also have your handleMessage() method return a Boolean indicating success or
failure.

This chain of responsibility example can be tested as follows. For the chain to respond to events,
there must be another class that dispatches the events to the correct object. Because this task varies
greatly by framework or platform, the following example shows pseudo-code for handling a mouse
down event, in lieu of platform-specific C++ code:

MouseLocation loc = getClickLocation();
Shape* clickedShape = findShapeAtLocation(loc);
if (clickedShape)
 clickedShape->handleMessage(kMessageMouseDown);

The chained approach is flexible and has a very appealing structure for object-oriented hierar-
chies. The downside is that it requires diligence on the part of the programmer. If you forget to
chain up to the base class from a derived class, events will effectively get lost. Worse, if you chain
to the wrong class, you could end up in an infinite loop! Note that while event chains usually
correlate with a class hierarchy, they do not have to. In the preceding example, the Square class
could have just as easily passed the message to an entirely different object. An example of such a
chain of responsibility is given in the next section.

Chain of Responsibility without Hierarchy
If the different handlers in a chain of responsibility are not related by a class hierarchy, you need to
keep track of the chain yourself. Here is an example. First, a Handler mixin class is defined:

class Handler
{
 public:
 virtual ~Handler() = default;

 Handler(Handler* nextHandler) : mNextHandler(nextHandler) { }

The Chain of Responsibility Pattern  ❘  1013

 virtual void handleMessage(int message)
 {
 if (mNextHandler)
 mNextHandler->handleMessage(message);
 }
 private:
 Handler* mNextHandler;
};

Next, two concrete handlers are defined, both deriving from the Handler mixin. The first handles
only messages with ID 1, and the second handles only messages with ID 2. If any of the handlers
receives a message it doesn’t know about, it calls the next handler in the chain.

class ConcreteHandler1 : public Handler
{
 public:
 ConcreteHandler1(Handler* nextHandler) : Handler(nextHandler) {}

 void handleMessage(int message) override
 {
 cout << "ConcreteHandler1::handleMessage()" << endl;
 if (message == 1)
 cout << "Handling message " << message << endl;
 else {
 cout << "Not handling message " << message << endl;
 Handler::handleMessage(message);
 }
 }
};

class ConcreteHandler2 : public Handler
{
 public:
 ConcreteHandler2(Handler* nextHandler) : Handler(nextHandler) {}

 void handleMessage(int message) override
 {
 cout << "ConcreteHandler2::handleMessage()" << endl;
 if (message == 2)
 cout << "Handling message " << message << endl;
 else {
 cout << "Not handling message " << message << endl;
 Handler::handleMessage(message);
 }
 }
};

This implementation can be tested as follows:

ConcreteHandler2 handler2(nullptr);
ConcreteHandler1 handler1(&handler2);

handler1.handleMessage(1);
cout << endl;

1014  ❘  CHAPTER 29   Applying Design Patterns

handler1.handleMessage(2);
cout << endl;

handler1.handleMessage(3);

The output is as follows:

ConcreteHandler1::handleMessage()
Handling message 1

ConcreteHandler1::handleMessage()
Not handling message 2
ConcreteHandler2::handleMessage()
Handling message 2

ConcreteHandler1::handleMessage()
Not handling message 3
ConcreteHandler2::handleMessage()
Not handling message 3

THE OBSERVER PATTERN

The observer pattern is used to have objects/observers get notified by observable objects. With the
observer pattern, individual objects register themselves with the observable object they are interested
in. When the observable object’s state changes, it notifies all registered observers of this change.

The main benefit of using the observer pattern is that it decreases coupling. The observable class
does not need to know the concrete observer types that are observing it. The observable class only
needs to know about a basic interface, for example IObserver.

Implementation of an Observer
First, an IObserver interface is defined. Any object that wants to observe an observable should
implement this interface:

class IObserver
{
 public:
 virtual ~IObserver() = default; // Always a virtual destructor!
 virtual void notify() = 0;
};

Here are two concrete observers that simply print out a message in response to a notification:

class ConcreteObserver1 : public IObserver
{
 public:
 void notify() override
 {
 std::cout << "ConcreteObserver1::notify()" << std::endl;
 }
};

class ConcreteObserver2 : public IObserver
{

The Observer Pattern  ❘  1015

 public:
 void notify() override
 {
 std::cout << "ConcreteObserver2::notify()" << std::endl;
 }
};

Implementation of an Observable
An observable just keeps a list of IObservers that have registered themselves to get notified. It needs
to support adding and removing observers, and should be able to notify all registered observers. All
this functionality can be provided by an Observable mixin class. Here is the implementation:

class Observable
{
 public:
 virtual ~Observable() = default; // Always a virtual destructor!

 // Add an observer. Ownership is not transferred.
 void addObserver(IObserver* observer)
 {
 mObservers.push_back(observer);
 }

 // Remove the given observer.
 void removeObserver(IObserver* observer)
 {
 mObservers.erase(
 std::remove(begin(mObservers), end(mObservers), observer),
 end(mObservers));
 }

 protected:
 void notifyAllObservers()
 {
 for (auto* observer : mObservers)
 observer->notify();
 }

 private:
 std::vector<IObserver*> mObservers;
};

A concrete class, ObservableSubject, that wants to be observable simply derives from the
Observable mixin class to get all its functionality. Whenever the state of an ObservableSubject
changes, it simply calls notifyAllObservers() to notify all registered observers.

class ObservableSubject : public Observable
{
 public:
 void modifyData()
 {
 // ...
 notifyAllObservers();
 }
};

1016  ❘  CHAPTER 29   Applying Design Patterns

Using an Observer
Following is a very simple test that demonstrates how to use the observer pattern.

ObservableSubject subject;

ConcreteObserver1 observer1;
subject.addObserver(&observer1);

subject.modifyData();

std::cout << std::endl;

ConcreteObserver2 observer2;
subject.addObserver(&observer2);

subject.modifyData();

The output is as follows:

ConcreteObserver1::notify()

ConcreteObserver1::notify()
ConcreteObserver2::notify()

SUMMARY

This chapter has given you just a taste of how patterns can help you organize object-oriented con-
cepts into high-level designs. A lot of design patterns are cataloged and discussed on Wikipedia1.
It’s easy to get carried away and spend all your time trying to find the specific pattern that applies
to your task. Instead, I recommend that you concentrate on a few patterns that interest you and
focus your learning on how patterns are developed, not just the small differences between similar
ones. After all, to paraphrase the old saying, “Teach me a design pattern, and I’ll code for a day.
Teach me how to create design patterns, and I’ll code for a lifetime.”

1https://en.wikipedia.org/wiki/Software_design_pattern

Developing Cross-Platform and
Cross-Language Applications

WHAT’S IN THIS CHAPTER?

➤➤ How to write code that runs on multiple platforms

➤➤ How to mix different programming languages together

C++ programs can be compiled to run on a variety of computing platforms, and the language
has been rigorously defined to ensure that programming in C++ for one platform is very
similar to programming in C++ for another. Yet, despite the standardization of the language,
platform differences eventually come into play when writing professional-quality programs in
C++. Even when development is limited to a particular platform, small differences in compilers
can elicit major programming headaches. This chapter examines the necessary complication of
programming in a world with multiple platforms and multiple programming languages.

The first part of this chapter surveys the platform-related issues that C++ programmers
encounter. A platform is the collection of all of the details that make up your development
and/or run-time system. For example, your platform may be the Microsoft Visual C++ 2017
compiler running on Windows 10 on an Intel Core i7 processor. Alternatively, your platform
might be the GCC 7.2 compiler running on Linux on a PowerPC processor. Both of these plat-
forms are able to compile and run C++ programs, but there are significant differences between
them.

The second part of this chapter looks at how C++ can interact with other programming lan-
guages. While C++ is a general-purpose language, it may not always be the right tool for the
job. Through a variety of mechanisms, you can integrate C++ with other languages that may
better serve your needs.

30

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

1018  ❘  CHAPTER 30   Developing Cross-Platform and Cross-Language Applications

CROSS-PLATFORM DEVELOPMENT

There are several reasons why the C++ language encounters platform issues. C++ is a high-level
language, and the standard does not specify certain low-level details. For example, the layout of an
object in memory is undefined by the standard and left to the compiler. Different compilers can use
different memory layouts for objects. C++ also faces the challenge of providing a standard language
and a Standard Library without a standard implementation. Varying interpretations of the specifica-
tion among C++ compiler and library vendors can lead to trouble when moving from one system to
another. Finally, C++ is selective in what the language provides as standard. Despite the presence of
a Standard Library, programs often need functionality that is not provided by the language or the
Standard Library. This functionality generally comes from third-party libraries or the platform, and
can vary greatly.

Architecture Issues
The term architecture generally refers to the processor, or family of processors, on which a program
runs. A standard PC running Windows or Linux generally runs on the x86 or x64 architecture, and
older versions of Mac OS were usually found on the PowerPC architecture. As a high-level language,
C++ shields you from the differences between these architectures. For example, a Core i7 processor
may have a single instruction that performs the same functionality as six PowerPC instructions. As
a C++ programmer, you don’t need to know what this difference is or even that it exists. One advan-
tage to using a high-level language is that the compiler takes care of converting your code into the
processor’s native assembly code format.

However, processor differences do sometimes rise up to the level of C++ code. The first one dis-
cussed, the size of integers, is very important if you are writing cross-platform code. The others you
won’t face often, unless you are doing particularly low-level work, but still, you should be aware
that they exist.

Size of Integers
The C++ standard does not define the exact size of integer types. The standard just says the
following:

There are five standard signed integer types: signed char, short int, int, long
int, and long long int. In this list, each type provides at least as much storage
as those preceding it in the list.

The standard does give a few additional hints for the size of these types, but never an exact size. The
actual size is compiler-dependent. Thus, if you want to write cross-platform code, you cannot really
rely on these types.

Cross-Platform Development  ❘  1019

Besides these standard integer types, the C++ standard does define a number of types that have
clearly specified sizes, all defined in the <cstdint> header file, although some of the types are
optional. Here is an overview:

TYPE DESCRIPTION

int8_t

int16_t

int32_t

int64_t

Signed integers of which the size is exactly 8, 16, 32, or 64 bits. This type
is defined by the standard as being optional, although most compilers
support it.

int_fast8_t

int_fast16_t

int_fast32_t

int_fast64_t

Signed integers with sizes of at least 8, 16, 32, or 64 bits. For these,
the compiler should use the fastest integer type it has that satisfies the
requirements.

int_least8_t

int_least16_t

int_least32_t

int_least64_t

Signed integers with sizes of at least 8, 16, 32, or 64 bits. For these,
the compiler should use the smallest integer type it has that satisfies the
requirements.

intmax_t An integer type with the maximum size supported by the compiler.

intptr_t An integer type big enough to store a pointer. This type is also optional,
but most compilers support it.

There are also unsigned versions available, such as uint8_t, uint_fast8_t, and so on.

If you want to write cross-platform code, I recommend you to use these <cstdint> types instead of
the basic integer types.

Binary Compatibility
As you probably already know, you cannot take a program written and compiled for a Core i7 com-
puter and run it on a PowerPC-based Mac. These two platforms are not binary compatible because
their processors do not support the same set of instructions. When you compile a C++ program,
your source code is turned into binary instructions that the computer executes. That binary format
is defined by the platform, not by the C++ language.

One solution to support platforms that are not binary compatible is to build each version separately
with a compiler on each target platform.

1020  ❘  CHAPTER 30   Developing Cross-Platform and Cross-Language Applications

Another solution is cross-compiling. When you are using platform X for your development, but you
want your program to run on platforms Y and Z, you can use a cross-compiler on your platform X
that generates binary code for platforms Y and Z.

You can also make your program open source. When you make your source available to the end
user, she can compile it natively on her system and build a version of the program that is in the cor-
rect binary format for her machine. As discussed in Chapter 4, open-source software has become
increasingly popular. One of the major reasons is that it allows programmers to collaboratively
develop software and increase the number of platforms on which it can run.

Address Sizes
When someone describes an architecture as 32-bit, they most likely mean that the address size is
32 bits, or 4 bytes. In general, a system with a larger address size can handle more memory and
might operate more quickly on complex programs.

Because pointers are memory addresses, they are inherently tied to address sizes. Many program-
mers are taught that pointers are always 4 bytes, but this is wrong. For example, consider the fol-
lowing code snippet, which outputs the size of a pointer:

int *ptr = nullptr;
cout << "ptr size is " << sizeof(ptr) << " bytes" << endl;

If this program is compiled and run on a 32-bit x86 system, the output will be as follows:

ptr size is 4 bytes

If you compile it with a 64-bit compiler and run it on an x64 system, the output will be as follows:

ptr size is 8 bytes

From a programmer’s point of view, the upshot of varying pointer sizes is that you cannot equate a
pointer with 4 bytes. More generally, you need to be aware that most sizes are not prescribed by the
C++ standard. The standard only says that a short integer has as much, or less, space than an inte-
ger, which has as much, or less, space than a long integer.

The size of a pointer is also not necessarily the same as the size of an integer. For example, on a
64-bit platform, pointers are 64 bit, but integers could be 32 bit. Casting a 64-bit pointer to a 32-bit
integer will result in losing 32 critical bits! The standard does define an std::intptr_t integer type
in <cstdint> which is an integer type at least big enough to hold a pointer. The definition of this
type is optional according to the standard, but virtually all compilers support it.

WARNING  Never assume that a pointer is 32 bits or 4 bytes. Never cast a
pointer to an integer, unless you use std::intptr_t.

Byte Order
All modern computers store numbers in a binary representation, but the representation of the same
number on two platforms may not be identical. This sounds contradictory, but as you’ll see, there
are two approaches to reading numbers that both make sense.

Cross-Platform Development  ❘  1021

A single slot in your computer’s memory is usually a byte because most computers are byte address-
able. Number types in C++ are usually multiple bytes. For example, a short may be 2 bytes.
Imagine that your program contains the following line:

short myShort = 513;

In binary, the number 513 is 0000 0010 0000 0001. This number contains 16 ones and zeros, or 16
bits. Because there are 8 bits in a byte, the computer needs 2 bytes to store the number. Because each
individual memory address contains 1 byte, the computer needs to split the number up into multiple
bytes. Assuming that a short is 2 bytes, the number is split into two even parts. The higher part
of the number is put into the high-order byte and the lower part of the number is put into the low-
order byte. In this case, the high-order byte is 0000 0010 and the low-order byte is 0000 0001.

Now that the number has been split up into memory-sized parts, the only question that remains is
how to store them in memory. Two bytes are needed, but the order of the bytes is unclear and, in
fact, depends on the architecture of the system in question.

One way to represent the number is to put the high-order byte first in memory and the low-order
byte next. This strategy is called big-endian ordering because the bigger part of the number comes
first. PowerPC and SPARC processors use a big-endian approach. Some other processors, such
as x86, arrange the bytes in the opposite order, putting the low-order byte first in memory. This
approach is called little-endian ordering because the smaller part of the number comes first. An
architecture may choose one approach or the other, usually based on backward compatibility. For
the curious, the terms “big-endian” and “little-endian” predate modern computers by several hun-
dred years. Jonathan Swift coined the terms in his eighteenth-century novel Gulliver’s Travels to
describe the opposing camps of a debate about the proper end on which to break an egg.

Regardless of the ordering a particular architecture uses, your programs can continue to use numer-
ical values without paying any attention to whether the machine uses big-endian ordering or little-
endian ordering. The ordering only comes into play when data moves between architectures. For
example, if you are sending binary data across a network, you may need to consider the ordering of
the other system. One solution is to use the standard network byte ordering, which is always big-
endian. So, before sending data across a network, you convert it to big-endian, and whenever you
receive data from a network, you convert it from big-endian to the byte ordering of your system.

Similarly, if you are writing binary data to a file, you may need to consider what will happen when
that file is opened on a system with opposite byte ordering.

Implementation Issues
When a C++ compiler is written, it is designed by a human being who attempts to adhere to the C++
standard. Unfortunately, the C++ standard is more than a thousand pages long and written in a
combination of prose, language grammars, and examples. Two human beings implementing a com-
piler according to such a standard are unlikely to interpret every piece of prescribed information in
the exact same way or to catch every single edge case. As a result, compilers will have bugs.

Compiler Quirks and Extensions
There is no simple rule for finding or avoiding compiler bugs. The best you can do is to stay up to
speed on compiler updates and perhaps subscribe to a mailing list or newsgroup for your compiler.

1022  ❘  CHAPTER 30   Developing Cross-Platform and Cross-Language Applications

If you suspect that you have encountered a compiler bug, a simple web search for the error message
or condition you have witnessed could uncover a workaround or patch.

One area that compilers are notorious for having trouble with is language additions that are added
by recent updates to the standard. Although in recent years, vendors of major compilers are pretty
quick in adding support for the latest features.

Another issue to be aware of is that compilers often include their own language extensions without
making it obvious to the programmer. For example, variable-length stack-based arrays (VLAs) are
not part of the C++ language; however, they are part of the C language. Some compilers support
both the C and the C++ standard, and can allow the use of VLAs in C++ code. One such compiler is
g++. The following compiles and runs as expected with the g++ compiler:

int i = 4;
char myStackArray[i]; // Not a standard language feature!

Some compiler extensions may be useful, but if there is a chance that you will switch compilers at
some point, you should see if your compiler has a strict mode where it avoids using such extensions.
For example, compiling the previous code with the -pedantic flag passed to g++ yields the follow-
ing warning:

warning: ISO C++ forbids variable length array 'myStackArray' [-Wvla]

The C++ specification allows for a certain type of compiler-defined language extension through the
#pragma mechanism. #pragma is a precompiler directive whose behavior is defined by the imple-
mentation. If the implementation does not understand the directive, it ignores it. For example, some
compilers allow the programmer to turn compiler warnings off temporarily with #pragma.

Library Implementations
Most likely, your compiler includes an implementation of the C++ Standard Library. Because the
Standard Library is written in C++, however, you aren’t required to use the implementation that
came bundled with your compiler. You could use a third-party Standard Library that, for example,
has been optimized for speed, or you could even write your own.

Of course, Standard Library implementers face the same problems that compiler writers face: the
standard is subject to interpretation. In addition, certain implementations may make tradeoffs that
are incompatible with your needs. For example, one implementation may optimize for speed, while
another implementation may focus on using as little memory as possible for containers.

When working with a Standard Library implementation, or indeed any third-party library, it is
important to consider the tradeoffs that the designers made during the development. Chapter 4
contains a more detailed discussion of the issues involved in using libraries.

Platform-Specific Features
C++ is a great general-purpose language. With the addition of the Standard Library, the language is
packed full of so many features that a casual programmer could happily code in C++ for years with-
out going beyond what is built in. However, professional programs require facilities that C++ does
not provide. This section lists several important features that are provided by the platform or third-
party libraries, not by the C++ language or the C++ Standard Library.

Cross-Platform Development  ❘  1023

➤➤ Graphical user interfaces: Most commercial programs today run on an operating system that
has a graphical user interface, containing such elements as clickable buttons, movable win-
dows, and hierarchical menus. C++, like the C language, has no notion of these elements. To
write a graphical application in C++, you can use platform-specific libraries that allow you to
draw windows, accept input through the mouse, and perform other graphical tasks. A better
option is to use a third-party library, such as wxWidgets or Qt, that provides an abstraction
layer for building graphical applications. These libraries often provide support for many dif-
ferent target platforms.

➤➤ Networking: The Internet has changed the way we write applications. These days, most
applications check for updates through the web, and games provide a networked multiplayer
mode. C++ does not provide a mechanism for networking yet, though several standard librar-
ies exist. The most common means of writing networking software is through an abstraction
called sockets. A socket library implementation can be found on most platforms, and it pro-
vides a simple procedure-oriented way to transfer data over a network. Some platforms sup-
port a stream-based networking system that operates like I/O streams in C++. There are also
third-party networking libraries available that provide a networking abstraction layer. These
libraries often support many different target platforms. IPv6, the successor to IPv4, is gaining
traction. Therefore, choosing a networking library that is IPv-independent would be a better
choice than choosing one that only supports IPv4.

➤➤ OS events and application interaction: In pure C++ code, there is little interaction with the
surrounding operating system and other applications. The command-line arguments are
about all you get in a standard C++ program without platform extensions. For example,
operations such as copy and paste are not directly supported in C++. You can either use
platform-provided libraries, or use third-party libraries that support multiple platforms. For
example, both wxWidgets and Qt are examples of libraries that abstract the copy and paste
operations and support multiple platforms.

➤➤ Low-level files: Chapter 13 explains standard I/O in C++, including reading and writing files.
Many operating systems provide their own file APIs, which are usually incompatible with
the standard file classes in C++. These libraries often provide OS-specific file tools, such as a
mechanism to get the home directory of the current user.

➤➤ Threads: Concurrent threads of execution within a single program were not directly sup-
ported in C++03 or earlier. Since C++11, a threading support library has been included with
the Standard Library, as explained in Chapter 23, and C++17 has added parallel algorithms,
as discussed in Chapter 18. If you need more powerful threading functionality besides what
the Standard Library provides, then you need to use third-party libraries. Examples are the
Intel Threading Building Blocks (TBB), and The STE||AR Group High Performance ParalleX
(HPX) library.

NOTE  If you are doing cross-platform development, and you need functional-
ity not provided by the C++ language or the Standard Library, you should try
to find a third-party cross-platform library that provides the functionality you
require. If you start using platform-specific API’s, then you are complicating
your cross-platform application a lot, because you will have to implement the
functionality for each platform you support.

1024  ❘  CHAPTER 30   Developing Cross-Platform and Cross-Language Applications

CROSS-LANGUAGE DEVELOPMENT

For certain types of programs, C++ may not be the best tool for the job. For example, if your Unix
program needs to interact closely with the shell environment, you may be better off writing a shell
script than a C++ program. If your program performs heavy text processing, you may decide that
the Perl language is the way to go. If you need a lot of database interaction, then C# or Java might
be a better choice. C# and the WPF framework might be better suited to write modern GUI appli-
cations, and so on. Still, if you do decide to use another language, you sometimes might want to
be able to call into C++ code, for example, to perform some computational-expensive operations.
Fortunately, there are some techniques you can use to get the best of both worlds—the unique spe-
cialty of another language combined with the power and flexibility of C++.

Mixing C and C++
As you already know, the C++ language is almost a superset of the C language. That means that
almost all C programs will compile and run in C++. There are a few exceptions. Some exceptions
have to do with the fact that a handful of C features are not supported by C++, for example, C
supports variable-length arrays (VLAs), while C++ does not. Other exceptions usually have to do
with reserved words. In C, for example, the term class has no particular meaning. Thus, it could be
used as a variable name, as in the following C code:

int class = 1; // Compiles in C, not C++
printf("class is %d\n", class);

This program compiles and runs in C, but yields an error when compiled as C++ code. When you
translate, or port, a program from C to C++, these are the types of errors you will face. Fortunately,
the fixes are usually quite simple. In this case, rename the class variable to classID and the
code will compile. The other types of errors you’ll face are the handful of C features that are not
supported by C++, but these are usually rare.

The ease of incorporating C code in a C++ program comes in handy when you encounter a useful
library or legacy code that was written in C. Functions and classes, as you’ve seen many times in
this book, work just fine together. A class method can call a function, and a function can make use
of objects.

Shifting Paradigms
One of the dangers of mixing C and C++ is that your program may start to lose its object-oriented
properties. For example, if your object-oriented web browser is implemented with a procedural
networking library, the program will be mixing these two paradigms. Given the importance and
quantity of networking tasks in such an application, you might consider writing an object-oriented
wrapper around the procedural library. A typical design pattern that can be used for this is called
the façade.

For example, imagine that you are writing a web browser in C++, but you are using a C networking
library that contains the functions declared in the following code. Note that the HostHandle and
ConnectionHandle data structures have been omitted for brevity.

// netwrklib.h
#include "HostHandle.h"
#include "ConnectionHandle.h"

Cross-Language Development  ❘  1025

// Gets the host record for a particular Internet host given
// its hostname (i.e. www.host.com)
HostHandle* lookupHostByName(char* hostName);

// Frees the given HostHandle
void freeHostHandle(HostHandle* host);

// Connects to the given host
ConnectionHandle* connectToHost(HostHandle* host);

// Closes the given connection
void closeConnection(ConnectionHandle* connection);

// Retrieves a web page from an already-opened connection
char* retrieveWebPage(ConnectionHandle* connection, char* page);

// Frees the memory pointed to by page
void freeWebPage(char* page);

The netwrklib.h interface is fairly simple and straightforward. However, it is not object-oriented,
and a C++ programmer who uses such a library is bound to feel icky, to use a technical term. This
library isn’t organized into a cohesive class and it isn’t even const-correct. Of course, a talented C
programmer could have written a better interface, but as the user of a library, you have to accept
what you are given. Writing a wrapper is your opportunity to customize the interface.

Before you build an object-oriented wrapper for this library, take a look at how it might be used
as-is to gain an understanding of its actual usage. In the following program, the netwrklib library
is used to retrieve the web page at www.wrox.com/index.html:

HostHandle* myHost = lookupHostByName("www.wrox.com");
ConnectionHandle* myConnection = connectToHost(myHost);
char* result = retrieveWebPage(myConnection, "/index.html");

cout << "The result is " << result << endl;

freeWebPage(result);
closeConnection(myConnection);
freeHostHandle(myHost);

A possible way to make the library more object-oriented is to provide a single abstraction that recog-
nizes the links between looking up a host, connecting to the host, and retrieving a web page. A good
object-oriented wrapper hides the needless complexity of the HostHandle and ConnectionHandle
types.

This example follows the design principles described in Chapters 5 and 6: the new class should
capture the common use case for the library. The previous example shows the most frequently used
pattern: first a host is looked up, then a connection is established, and finally a page is retrieved. It is
also likely that subsequent pages will be retrieved from the same host, so a good design will accom-
modate that mode of use as well.

1026  ❘  CHAPTER 30   Developing Cross-Platform and Cross-Language Applications

To start, the HostRecord class wraps the functionality of looking up a host. It’s an RAII class. Its
constructor uses lookupHostByName() to perform the lookup, and its destructor automatically frees
the retrieved HostHandle. Here is the code:

class HostRecord
{
 public:
 // Looks up the host record for the given host
 explicit HostRecord(std::string_view host);
 // Frees the host record
 virtual ~HostRecord();
 // Returns the underlying handle.
 HostHandle* get() const noexcept;
 private:
 HostHandle* mHostHandle = nullptr;
};

HostRecord::HostRecord(std::string_view host)
{
 mHostHandle = lookupHostByName(const_cast<char*>(host.data()));
}

HostRecord::~HostRecord()
{
 if (mHostHandle)
 freeHostHandle(mHostHandle);
}

HostHandle* HostRecord::get() const noexcept
{
 return mHostHandle;
}

Because the HostRecord class deals with C++ string_views instead of C-style strings, it uses the
data() method on host to obtain a const char*, then performs a const_cast() to make up for
netwrklib’s const-incorrectness.

Next, a WebHost class can be implemented that uses the HostRecord class. The WebHost class cre-
ates a connection to a given host and supports retrieving webpages. It’s also an RAII class. When
the WebHost object is destroyed, it automatically closes the connection to the host. Here is the code:

class WebHost
{
 public:
 // Connects to the given host
 explicit WebHost(std::string_view host);
 // Closes the connection to the host
 virtual ~WebHost();
 // Obtains the given page from this host
 std::string getPage(std::string_view page);
 private:
 ConnectionHandle* mConnection = nullptr;
};

Cross-Language Development  ❘  1027

WebHost::WebHost(std::string_view host)
{
 HostRecord hostRecord(host);
 if (hostRecord.get()) {
 mConnection = connectToHost(hostRecord.get());
 }
}

WebHost::~WebHost()
{
 if (mConnection)
 closeConnection(mConnection);
}

std::string WebHost::getPage(std::string_view page)
{
 std::string resultAsString;
 if (mConnection) {
 char* result = retrieveWebPage(mConnection,
 const_cast<char*>(page.data()));
 resultAsString = result;
 freeWebPage(result);
 }
 return resultAsString;
}

The WebHost class effectively encapsulates the behavior of a host and provides useful functionality
without unnecessary calls and data structures. The implementation of the WebHost class makes
extensive use of the netwrklib library without exposing any of its workings to the user. The con-
structor of WebHost uses a HostRecord RAII object for the specified host. The resulting HostRecord
is used to set up a connection to the host, which is stored in the mConnection data member for
later use. The HostRecord RAII object is automatically destroyed at the end of the constructor.
The WebHost destructor closes the connection. The getPage() method uses retrieveWebPage()
to retrieve a web page, converts it to an std::string, uses freeWebPage() to free memory, and
returns the std::string.

The WebHost class makes the common case easy for the client programmer:

WebHost myHost("www.wrox.com");
string result = myHost.getPage("/index.html");
cout << "The result is " << result << endl;

NOTE  Networking-savvy readers may note that keeping a connection open to
a host indefinitely is considered bad practice and doesn’t adhere to the HTTP
specification. I’ve chosen elegance over etiquette in this example.

As you can see, the WebHost class provides an object-oriented wrapper around the C library. By
providing an abstraction, you can change the underlying implementation without affecting client
code, and you can provide additional features. These features can include connection reference
counting, automatically closing connections after a specific time to adhere to the HTTP specifica-
tion and automatically reopening the connection on the next getPage() call, and so on.

1028  ❘  CHAPTER 30   Developing Cross-Platform and Cross-Language Applications

Linking with C Code
The previous example assumed that you had the raw C code to work with. The example took advan-
tage of the fact that most C code will successfully compile with a C++ compiler. If you only have
compiled C code, perhaps in the form of a library, you can still use it in your C++ program, but you
need to take a few extra steps.

Before you can start using compiled C code in your C++ programs, you first need to know about
a concept called name mangling. In order to implement function overloading, the complex C++
namespace is “flattened.” For example, if you have a C++ program, it is legitimate to write the
following:

void MyFunc(double);
void MyFunc(int);
void MyFunc(int, int);

However, this would mean that the linker would see several different names, all called MyFunc, and
would not know which one you want to call. Therefore, all C++ compilers perform an operation
that is referred to as name mangling and is the logical equivalent of generating names, as follows:

MyFunc_double
MyFunc_int
MyFunc_int_int

To avoid conflicts with other names you might have defined, the generated names usually have some
characters that are legal to the linker but not legal in C++ source code. For example, Microsoft
VC++ generates names as follows:

?MyFunc@@YAXN@Z
?MyFunc@@YAXH@Z
?MyFunc@@YAXHH@Z

This encoding is complex and often vendor-specific. The C++ standard does not specify how
function overloading should be implemented on a given platform, so there is no standard for name
mangling algorithms.

In C, function overloading is not supported (the compiler will complain about duplicate definitions).
So, names generated by the C compiler are quite simple, for example, _MyFunc.

Now, if you compile a simple program with the C++ compiler, even if it has only one instance of the
MyFunc name, it still generates a request to link to a mangled name. However, when you link with
the C library, it cannot find the desired mangled name, and the linker complains. Therefore, it is
necessary to tell the C++ compiler to not mangle that name. This is done by using the extern
"language" qualification both in the header file (to instruct the client code to create a name com-
patible with the specified language) and, if your library source is in C++, at the definition site (to
instruct the library code to generate a name compatible with the specified language).

Here is the syntax of extern "language":

extern "language" declaration1();
extern "language" declaration2();

Cross-Language Development  ❘  1029

or it can also be like this:

extern "language" {
 declaration1();
 declaration2();
}

The C++ standard says that any language specification can be used, so in principle, the following
could be supported by a compiler:

extern "C" MyFunc(int i);
extern "Fortran" MatrixInvert(Matrix* M);
extern "Pascal" SomeLegacySubroutine(int n);
extern "Ada" AimMissileDefense(double angle);

In practice, many compilers only support "C". Each compiler vendor will inform you which
language designators they support.

For example, in the following code, the function prototype for doCFunction() is specified as an
external C function:

extern "C" {
 void doCFunction(int i);
}

int main()
{
 doCFunction(8); // Calls the C function.
 return 0;
}

The actual definition for doCFunction() is provided in a compiled binary file attached in the link
phase. The extern keyword informs the compiler that the linked-in code was compiled in C.

A more common pattern for using extern is at the header level. For example, if you are using a
graphics library written in C, it probably came with an .h file for you to use. You can write another
header file that wraps the original one in an extern block to specify that the entire header defines
functions written in C. The wrapper .h file is often named with .hpp to distinguish it from the C
version of the header:

// graphicslib.hpp
extern "C" {
 #include "graphicslib.h"
}

Another common model is to write a single header file, which is conditioned on whether it is being
compiled for C or C++. A C++ compiler predefines the symbol __cplusplus if you are compiling for
C++. The symbol is not defined for C compilations. So, you will often see header files in the follow-
ing form:

#ifdef __cplusplus
 extern "C" {
#endif

1030  ❘  CHAPTER 30   Developing Cross-Platform and Cross-Language Applications

 declaration1();
 declaration2();
#ifdef __cplusplus
 } // matches extern "C"
#endif

This means that declaration1() and declaration2() are functions that are in a library compiled
by the C compiler. Using this technique, the same header file can be used in both C and C++ clients.

Whether you are including C code in your C++ program or linking against a compiled C library,
remember that even though C++ is almost a superset of C, they are different languages with dif-
ferent design goals. Adapting C code to work in C++ is quite common, but providing an object-
oriented C++ wrapper around procedural C code is often much better.

Calling C++ Code from C#
Even though this is a C++ book, I won’t pretend that there aren’t snazzier languages out there.
One example is C#. By using the Interop services from C#, it’s pretty easy to call C++ code from
within your C# applications. An example scenario could be that you develop parts of your appli-
cation, like the graphical user interface, in C#, but use C++ to implement certain performance-
critical or computational-expensive components. To make Interop work, you need to write a
library in C++, which can be called from C#. On Windows, the library will be in a .DLL file. The
following C++ example defines a FunctionInDLL() function that will be compiled into a library.
The function accepts a Unicode string and returns an integer. The implementation writes the
received string to the console and returns the value 42 to the caller:

#include <iostream>

using namespace std;

extern "C"
{
 __declspec(dllexport) int FunctionInDLL(const wchar_t* p)
 {
 wcout << L"The following string was received by C++:\n '";
 wcout << p << L"'" << endl;
 return 42; // Return some value...
 }
}

Keep in mind that you are implementing a function in a library, not writing a program, so you do
not need a main() function. How you compile this code depends on your environment. If you are
using Microsoft Visual C++, you need to go to the properties of your project and select “Dynamic
Library (.dll)” as the configuration type. Note that the example uses __declspec(dllexport) to
tell the linker that this function should be made available to clients of the library. This is the way
you do it with Microsoft Visual C++. Other linkers might use a different mechanism to export
functions.

Once you have the library, you can call it from C# by using the Interop services. First, you need to
include the Interop namespace:

using System.Runtime.InteropServices;

Cross-Language Development  ❘  1031

Next, you define the function prototype, and tell C# where it can find the implementation of the
function. This is done with the following line, assuming you have compiled the library as HelloCpp
.dll:

[DllImport("HelloCpp.dll", CharSet = CharSet.Unicode)]
public static extern int FunctionInDLL(String s);

The first part of this line is saying that C# should import this function from a library called
HelloCpp.dll, and that it should use Unicode strings. The second part specifies the actual proto-
type of the function, which is a function accepting a string as parameter and returning an integer.
The following code shows a complete example of how to use the C++ library from C#:

using System;
using System.Runtime.InteropServices;

namespace HelloCSharp
{
 class Program
 {
 [DllImport("HelloCpp.dll", CharSet = CharSet.Unicode)]
 public static extern int FunctionInDLL(String s);

 static void Main(string[] args)
 {
 Console.WriteLine("Written by C#.");
 int result = FunctionInDLL("Some string from C#.");
 Console.WriteLine("C++ returned the value " + result);
 }
 }
}

The output is as follows:

Written by C#.
The following string was received by C++:
 'Some string from C#.'
C++ returned the value 42

The details of the C# code are outside the scope of this C++ book, but the general idea should be
clear with this example.

Calling C++ Code from Java with JNI
The Java Native Interface, or JNI, is a part of the Java language that allows programmers to access
functionality that was not written in Java. Because Java is a cross-platform language, the original
intent was to make it possible for Java programs to interact with the operating system. JNI also
allows programmers to make use of libraries written in other languages, such as C++. Access to C++
libraries may be useful to a Java programmer who has a performance-critical or computational-
expensive piece of code, or who needs to use legacy code.

JNI can also be used to execute Java code within a C++ program, but such a use is far less common.
Because this is a C++ book, I do not include an introduction to the Java language. This section is
recommended if you already know Java and want to incorporate C++ code into your Java code.

1032  ❘  CHAPTER 30   Developing Cross-Platform and Cross-Language Applications

To begin your Java cross-language adventure, start with the Java program. For this example, the
simplest of Java programs will suffice:

public class HelloCpp {
 public static void main(String[] args)
 {
 System.out.println("Hello from Java!");
 }
}

Next, you need to declare a Java method that will be written in another language. To do this, you
use the native keyword and leave out the implementation:

public class HelloCpp {
 // This will be implemented in C++.
 public static native void callCpp();

 // Remainder omitted for brevity
}

The C++ code will eventually be compiled into a shared library that gets dynamically loaded into
the Java program. You can load this library inside a Java static block so that it is loaded when the
Java program begins executing. The name of the library can be whatever you want, for example,
hellocpp.so on Linux systems, or hellocpp.dll on Windows systems.

public class HelloCpp {
 static {
 System.loadLibrary("hellocpp");
 }

 // Remainder omitted for brevity
}

Finally, you need to actually call the C++ code from within the Java program. The callCpp() Java
method serves as a placeholder for the not-yet-written C++ code. Here is the complete Java program:

public class HelloCpp {
 static {
 System.loadLibrary("hellocpp");
 }

 // This will be implemented in C++.
 public static native void callCpp();

 public static void main(String[] args)
 {
 System.out.println("Hello from Java!");
 callCpp();
 }
}

That’s all for the Java side. Now, just compile the Java program as you normally would:

javac HelloCpp.java

Cross-Language Development  ❘  1033

Then use the javah program (I like to pronounce it as jav-AHH!) to create a header file for the
native method:

javah HelloCpp

After running javah, you will find a file named HelloCpp.h, which is a fully working (if somewhat
ugly) C/C++ header file. Inside of that header file is a C function definition for a function called
Java_HelloCpp_callCpp(). Your C++ program will need to implement this function. The full
prototype is as follows:

JNIEXPORT void JNICALL Java_HelloCpp_callCpp(JNIEnv*, jclass);

Your C++ implementation of this function can make full use of the C++ language. This example
outputs some text from C++. First, you need to include the jni.h header file and the HelloCpp.h
file that was created by javah. You also need to include any C++ headers that you intend to use:

#include <jni.h>
#include "HelloCpp.h"
#include <iostream>

The C++ function is written as normal. The parameters to the function allow interaction with the
Java environment and the object that called the native code. They are beyond the scope of this
example.

JNIEXPORT void JNICALL Java_HelloCpp_callCpp(JNIEnv*, jclass)
{
 std::cout << "Hello from C++!" << std::endl;
}

How to compile this code into a library depends on your environment, but you will most likely need
to tweak your compiler’s settings to include the JNI headers. Using the GCC compiler on Linux,
your compile command might look like this:

g++ -shared -I/usr/java/jdk/include/ -I/usr/java/jdk/include/linux \
HelloCpp.cpp -o hellocpp.so

The output from the compiler is the library used by the Java program. As long as the shared library
is somewhere in the Java class path, you can execute the Java program normally:

java HelloCpp

You should see the following result:

Hello from Java!
Hello from C++!

Of course, this example just scratches the surface of what is possible through JNI. You could use
JNI to interface with OS-specific features or hardware drivers. For complete coverage of JNI, you
should consult a Java text.

Calling Scripts from C++ Code
The original Unix OS included a rather limited C library, which did not support certain common
operations. Unix programmers therefore developed the habit of launching shell scripts from applica-
tions to accomplish tasks that should have had API or library support.

1034  ❘  CHAPTER 30   Developing Cross-Platform and Cross-Language Applications

Today, many of these Unix programmers still insist on using scripts as a form of subroutine call.
Usually, they execute the system() C library call with a string that is the script to execute. There
are significant risks to this approach. For example, if there is an error in the script, the caller may or
may not get a detailed error indication. The system() call is also exceptionally heavy-duty, because
it has to create an entire new process to execute the script. This may ultimately be a serious perfor-
mance bottleneck in your application.

Using system() to launch scripts is not further discussed in this text. In general, you should
explore the features of C++ libraries to see if there are better ways to do something. There are some
platform-independent wrappers around a lot of platform-specific libraries, for example, the Boost
Asio library, which provides portable networking and other low-level I/O, including sockets, timers,
serial ports, and so on. If you need to work with the filesystem, C++17 now includes a platform-
independent <filesystem> API, as discussed in Chapter 20. Concepts like launching a Perl script
with system() to process some textual data may not be the best choice. Using techniques like the
regular expressions library of C++, see Chapter 19, might be a better choice for your string process-
ing needs.

Calling C++ Code from Scripts
C++ contains a built-in general-purpose mechanism to interface with other languages and environ-
ments. You’ve already used it many times, probably without paying much attention to it—it’s the
arguments to and return value from the main() function.

C and C++ were designed with command-line interfaces in mind. The main() function receives the
arguments from the command line, and returns a status code that can be interpreted by the caller.
In a scripting environment, arguments to and status codes from your program can be a powerful
mechanism that allows you to interface with the environment.

A Practical Example: Encrypting Passwords
Assume that you have a system that writes everything a user sees and types to a file for auditing pur-
poses. The file can be read only by the system administrator so that she can figure out who to blame
if something goes wrong. An excerpt of such a file might look like this:

Login: bucky-bo
Password: feldspar

bucky-bo> mail
bucky-bo has no mail
bucky-bo> exit

While the system administrator may want to keep a log of all user activity, she may also want to
obscure everybody’s passwords in case the file is somehow obtained by a hacker. She decides to
write a script to parse the log files, and to use C++ to perform the actual encryption. The script then
calls out to a C++ program to perform the encryption.

The following script uses the Perl language, though almost any scripting language could accomplish
this task. Note also that these days, there are libraries available for Perl that perform encryption,
but, for the sake of this example, let’s assume the encryption is done in C++. If you don’t know Perl,

Cross-Language Development  ❘  1035

you will still be able to follow along. The most important element of the Perl syntax for this example
is the ` character. The ` character instructs the Perl script to shell out to an external command. In
this case, the script will shell out to a C++ program called encryptString.

NOTE  Launching an external process causes a big overhead because a complete
new process has to be created. You shouldn’t use it when you need to call the
external process often. In this password encryption example, it is okay, because
you can assume that a log file will only contain a few password lines.

The strategy for the script is to loop over every line of a file, userlog.txt, looking for lines that
contain a password prompt. The script writes a new file, userlog.out, which contains the same
text as the source file, except that all passwords are encrypted. The first step is to open the input
file for reading and the output file for writing. Then, the script needs to loop over all the lines in
the file. Each line in turn is placed in a variable called $line.

open (INPUT, "userlog.txt") or die "Couldn't open input file!";
open (OUTPUT, ">userlog.out") or die "Couldn't open output file!";
while ($line = <INPUT>) {

Next, the current line is checked against a regular expression to see if this particular line contains
the Password: prompt. If it does, Perl stores the password in the variable $1.

 if ($line =~ m/^Password: (.*)/) {

If a match is found, the script calls the encryptString program with the detected password to
obtain an encrypted version of it. The output of the program is stored in the $result variable, and
the result status code from the program is stored in the variable $?. The script checks $? and quits
immediately if there is a problem. If everything is okay, the password line is written to the output
file with the encrypted password instead of the original one.

 $result = `./encryptString $1`;
 if ($? != 0) { exit(-1); }
 print OUTPUT "Password: $result\n";
 } else {

If the current line is not a password prompt, the script writes the line as-is to the output file. At the
end of the loop, it closes both files and exits.

 print OUTPUT "$line";
 }
}
close (INPUT);
close (OUTPUT);

That’s it. The only other required piece is the actual C++ program. Implementation of a crypto-
graphic algorithm is beyond the scope of this book. The important piece is the main() function
because it accepts the string that should be encrypted as an argument.

Arguments are contained in the argv array of C-style strings. You should always check the argc
parameter before accessing an element of argv. If argc is 1, there is one element in the argument list

1036  ❘  CHAPTER 30   Developing Cross-Platform and Cross-Language Applications

and it is accessible as argv[0]. The 0th element of the argv array is generally the name of the pro-
gram, so actual parameters begin at argv[1].

Following is the main() function for a C++ program that encrypts the input string. Notice that the
program returns 0 for success and non-0 for failure, as is standard in Linux.

int main(int argc, char* argv[])
{
 if (argc < 2) {
 cerr << "Usage: " << argv[0] << " string-to-be-encrypted" << endl;
 return -1;
 }
 cout << encrypt(argv[1]);
 return 0;
}

NOTE  There is actually a blatant security hole in this code. When the to-be-
encrypted string is passed to the C++ program as a command-line argument, it
may be visible to other users through the process table. One example of a more
secure way to get the information into the C++ program would be to send it
through standard input.

Now that you’ve seen how easily C++ programs can be incorporated into scripting languages, you
can combine the strengths of the two languages for your own projects. You can use a scripting
language to interact with the operating system and control the flow of the script, and a traditional
programming language like C++ for the heavy lifting.

NOTE  This example is just to demonstrate how to use Perl and C++ together.
C++ includes a regular expressions library, which makes it very easy to convert
this Perl/C++ solution into a pure C++ solution. This pure C++ solution will run
much faster because it avoids calling an external program. See Chapter 19 for
details on this regular expressions library.

Calling Assembly Code from C++
C++ is considered a fast language, especially relative to other languages. Yet, in some rare cases,
you might want to use raw assembly code when speed is absolutely critical. The compiler generates
assembly code from your source files, and this generated assembly code is fast enough for virtually
all purposes. Both the compiler and the linker (when it supports link time code generation) use opti-
mization algorithms to make the generated assembly code as fast as possible. These optimizers are
getting more and more powerful by using special processor instruction sets such as MMX, SSE, and
AVX. These days, it’s very hard to write your own assembly code that outperforms the code gener-
ated by the compiler, unless you know all the little details of these enhanced instruction sets.

Cross-Language Development  ❘  1037

However, in case you do need it, the keyword asm can be used by a C++ compiler to allow the pro-
grammer to insert raw assembly code. The keyword is part of the C++ standard, but its implementa-
tion is compiler-defined. In some compilers, you can use asm to drop from C++ down to the level of
assembly right in the middle of your program. Sometimes, the support for the asm keyword depends
on your target architecture. For example, Microsoft VC++ 2017 supports the asm keyword when
compiling in 32-bit mode, but asm is not supported when compiling in 64-bit mode.

Assembly code can be useful in some applications, but I don’t recommend it for most programs.
There are several reasons to avoid assembly code:

➤➤ Your code is no longer portable to another processor once you start including raw assembly
code for your platform.

➤➤ Most programmers don’t know assembly languages and won’t be able to modify or maintain
your code.

➤➤ Assembly code is not known for its readability. It can hurt your program’s use of style.

➤➤ Most of the time, it is not necessary. If your program is slow, look for algorithmic problems,
or consult some of the other performance suggestions from Chapter 25.

WARNING  When you encounter performance issues in your application, use a
profiler to determine the real hotspot, and look into algorithmic speed-ups! Only
start thinking about using assembly code if you have exhausted all other options,
and even then, think about the disadvantages of assembly code.

Practically, if you have a computationally expensive block of code, you should move it to its own
C++ function. If you determine, using performance profiling (see Chapter 25), that this function is a
performance bottleneck, and there is no way to write the code smaller and faster, you might use raw
assembly code to try to increase its performance.

In such a case, one of the first things you want to do is declare the function extern "C" so the
C++ name mangling is suppressed. Then, you can write a separate module in assembly code that
performs the function more efficiently. The advantage of a separate module is that there is both a
“reference implementation” in C++ that is platform-independent, and also a platform-specific high-
performance implementation in raw assembly code. The use of extern "C" means that the assembly
code can use a simple naming convention (otherwise, you have to reverse-engineer your compiler’s
name mangling algorithm). Then, you can link with either the C++ version or the assembly code
version.

You would write this module in assembly code and run it through an assembler, rather than using
inline asm directives in C++. This is particularly true in many of the popular x86-compatible 64-bit
compilers, where the inline asm keyword is not supported.

However, you should only use raw assembly code if there are significant performance improvements.
Increasing the performance by a factor of 2 might possibly justify the effort. A factor of 10 is com-
pelling. An improvement of 10 percent is not worth the effort.

1038  ❘  CHAPTER 30   Developing Cross-Platform and Cross-Language Applications

SUMMARY

If you take away one point from this chapter, it should be that C++ is a flexible language. It exists
in the sweet spot between languages that are too tied to a particular platform, and languages that
are too high-level and generic. Rest assured that when you develop code in C++, you aren’t locking
yourself into the language forever. C++ can be mixed with other technologies, and has a solid his-
tory and code base that will help guarantee its relevance in the future.

In Part V of this book, I discussed software engineering methods, writing efficient C++, testing
and debugging techniques, design techniques and patterns, and cross-platform and cross-language
application development. This is a terrific way to end your journey through Professional C++ pro-
gramming because these topics help good C++ programmers become great C++ programmers. By
thinking through your designs, experimenting with different approaches in object-oriented pro-
gramming, selectively adding new techniques to your coding repertoire, and practicing testing and
debugging techniques, you’ll be able to take your C++ skills to the professional level.

C++ Interviews
Reading this book will surely give your C++ career a kick-start, but employers will want you
to prove yourself before they offer the big bucks. Interview methodologies vary from company
to company, but many aspects of technical interviews are predictable. A thorough interviewer
will want to test your basic coding skills, your debugging skills, your design and style skills,
and your problem-solving skills. The set of questions you might be asked is quite large. In this
appendix, you’ll read about some of the different types of questions you may encounter and
the best tactics for landing that high-paying C++ programming job you’re after.

This appendix iterates through the chapters of the book, discussing the aspects of each chapter
that are likely to come up in an interview situation. Each section also includes a discussion
of the types of questions that could be designed to test those skills, and the best ways to deal
with those questions.

CHAPTER 1: A CRASH COURSE IN C++ AND THE STANDARD
LIBRARY

A technical interview will often include some basic C++ questions to weed out the candidates
who put C++ on their resume simply because they’ve heard of the language. These questions
might be asked during a phone screen, when a developer or recruiter calls you before bring-
ing you in for an in-person interview. They could also be asked via e-mail or in person. When
answering these questions, remember that the interviewer is just trying to establish that you’ve
actually learned and used C++. You generally don’t need to get every detail right to earn high
marks.

Things to Remember
➤➤ Use of functions

➤➤ Header file syntax, including the omission of “.h” for Standard Library headers

➤➤ Basic use of namespaces

A

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

1040  ❘  APPENDIX A   C++ Interviews

➤➤ Language basics, such as loop syntax, including the range-based for loop, conditional state-
ments, the conditional operator, and variables

➤➤ Enumerated types

➤➤ The difference between the stack and the heap

➤➤ Dynamically allocated arrays

➤➤ Use of const

➤➤ What pointers and references are, and their differences

➤➤ The auto keyword

➤➤ Basic use of Standard Library containers such as std::vector

➤➤ Structured bindings (C++17)

➤➤ The existence of more user-friendly support for nested namespaces in C++17

Types of Questions
Basic C++ questions will often come in the form of a vocabulary test. The interviewer may ask you
to define C++ terms, such as const or static. She may be looking for the textbook answer, but you
can often score extra points by giving sample usage or extra detail. For example, in addition to say-
ing that one of the uses of const is to specify that a reference parameter cannot be changed, you can
also say that a const reference is more efficient than a copy when passing an object into a function
or method.

The other form that basic C++ competence questions can take is a short program that you write in
front of the interviewer. An interviewer may give you a warm-up question, such as, “Write Hello,
World in C++.” When you get a seemingly simple question like this, make sure that you score all
the extra points you can by showing that you are namespace-savvy, you use streams instead of
printf(), and you know which standard headers to include.

CHAPTERS 2 AND 19: WORKING WITH STRINGS AND STRING
VIEWS, STRING LOCALIZATION, AND REGULAR EXPRESSIONS

Strings are very important, and are used in almost every kind of application. An interviewer will
most likely ask at least one question related to string handling in C++.

Things to Remember
➤➤ The std::string and std::string_view classes

➤➤ Differences between the C++ std::string class and C-style strings, including why C-style
strings should be avoided

➤➤ Conversion of strings to numeric types such as integers and floating point numbers, and vice
versa

Chapter 3: Coding with Style  ❘  1041

➤➤ Raw string literals

➤➤ The importance of localization

➤➤ Ideas behind Unicode

➤➤ The concepts of locales and facets

➤➤ What regular expressions are

Types of Questions
An interviewer could ask you to explain how you can append two strings together. With this ques-
tion, he wants to find out whether you are thinking as a professional C++ programmer or as a C
programmer. If you get such a question, you should explain the std::string class, and show how
to use it to append two strings. It’s also worth mentioning that the string class will handle all
memory management for you automatically, and contrasting this to C-style strings.

Your interviewer may not ask specifically about localization, but you can show your worldwide
interest by using wchar_t instead of char during the interview. If you do receive a question about
your experience with localization, be sure to mention the importance of considering worldwide use
from the beginning of the project.

You may also be asked about the general idea behind locales and facets. You probably will not have
to explain the exact syntax, but you should explain that they allow you to format text and numbers
according to the rules of a certain language or country.

You might get a question about Unicode, but most likely it will be a question to explain the ideas
and the basic concepts behind Unicode instead of implementation details. So, make sure you under-
stand the high-level concepts of Unicode and that you can explain their use in the context of local-
ization. You should also know about the different options for encoding Unicode characters, such as
UTF-8 and UTF-16, without specific details.

As discussed in Chapter 19, regular expressions can have a daunting syntax. It is unlikely that an
interviewer will ask you about little details of regular expressions. However, you should be able to
explain the concept of regular expressions and what kind of string manipulations you can do with
them.

CHAPTER 3: CODING WITH STYLE

Anybody who’s coded in the professional world has had a co-worker who codes as if they learned
C++ from the back of a cereal box. Nobody wants to work with someone who writes messy code, so
interviewers sometimes attempt to determine a candidate’s style skills.

Things to Remember
➤➤ Style matters, even during interview questions that aren’t explicitly style-related.

➤➤ Well-written code doesn’t need extensive comments.

1042  ❘  APPENDIX A   C++ Interviews

➤➤ Comments can be used to convey meta information.

➤➤ Decomposition is the practice of breaking up code into smaller pieces.

➤➤ Refactoring is the act of restructuring your code, for example to clean up previously written
code.

➤➤ Naming techniques are important, so pay attention to how you name your variables, classes,
and so on.

Types of Questions
Style questions can come in a few different forms. A friend of mine was once asked to write the code
for a relatively complex algorithm on a whiteboard. As soon as he wrote the first variable name, the
interviewer stopped him and told him he passed. The question wasn’t about the algorithm; it was
just a red herring to see how well he named his variables. More commonly, you may be asked to
submit code that you’ve written, or to give your opinions on style.

You need to be careful when a potential employer asks you to submit code. You probably cannot
legally submit code that you wrote for a previous employer. You also have to find a piece of code
that shows off your skills without requiring too much background knowledge. For example, you
wouldn’t want to submit your master’s thesis on high-speed image rendering to a company that is
interviewing you for a database administration position.

If the company gives you a specific program to write, that’s a perfect opportunity to show off what
you’ve learned in this book. Even if the potential employer doesn’t specify the program, you should
consider writing a small program specifically to submit to the company. Instead of selecting some
code you’ve already written, start from scratch to produce code that is relevant to the job and high-
lights good style.

If you have documentation that you have written and that can be released, meaning it is not confi-
dential, use it to show your skills to communicate; it will give you extra points. Websites you have
built or maintained, and articles you have submitted to places like CodeGuru, CodeProject, and so
on, are very useful. This tells the interviewer that you can not only write code, but also communi-
cate to others how to use that code effectively. Of course, having a book title attached to your name
is also a big plus.

If you are contributing to active open-source projects, for example on GitHub, you’ll score extra
points. Even better would be if you have your own open-source project that you actively maintain.
That’s the perfect opportunity to show off your coding style and your communication skills. Profile
pages on websites such as GitHub are taken as part of your resume by certain employers.

CHAPTER 4: DESIGNING PROFESSIONAL C++ PROGRAMS

Your interviewer will want to make sure that in addition to knowing the C++ language, you are
skilled at applying it. You may not be asked a design question explicitly, but good interviewers have
a variety of techniques to sneak design into other questions, as you’ll see.

Chapter 4: Designing Professional C++ Programs  ❘  1043

A potential employer will also want to know that you’re able to work with code that you didn’t
write yourself. If you’ve listed specific libraries on your resume, then you should be prepared to
answer questions about them. If you didn’t list specific libraries, a general understanding of the
importance of libraries will probably suffice.

Things to Remember
➤➤ Design is subjective. Be prepared to defend design decisions you make during the interview.

➤➤ Recall the details of a design you’ve done in the past prior to the interview in case you are
asked for an example.

➤➤ Be prepared to define abstraction and give an example.

➤➤ Be prepared to sketch out a design visually, including class hierarchies.

➤➤ Be prepared to tout the benefits of code reuse.

➤➤ Understand the concept of libraries.

➤➤ Know the tradeoffs between building from scratch and reusing existing code.

➤➤ Know the basics of big-O notation, or at least remember that O(n log n) is better than O(n2).

➤➤ Understand the functionality that is included in the C++ Standard Library.

➤➤ Know the high-level definition of design patterns.

Types of Questions
Design questions are hard for an interviewer to come up with; any program that you could design in
an interview setting is probably too simple to demonstrate real-world design skills. Design questions
may come in a fuzzier form, such as, “Tell me the steps in designing a good program,” or “Explain
the principle of abstraction.” They can also be less explicit. When discussing your previous job, the
interviewer may ask, “Can you explain the design of that project to me?” Be careful not to expose
intellectual property from your previous jobs though.

If the interviewer is asking you about a specific library, he will probably focus on the high-level
aspects of the library as opposed to technical specifics. For example, you may be asked to explain
what the strengths and weaknesses of the Standard Library are from a library design point of view.
The best candidates talk about the Standard Library’s breadth and standardization as strengths, and
its sometimes complex usage as a drawback.

You may also be asked a design question that initially doesn’t sound as if it’s related to libraries. For
example, the interviewer could ask how you would go about creating an application that downloads
MP3 music from the web and plays it on a local computer. This question isn’t explicitly related to
libraries, but that’s what it’s getting at; the question is really asking about process.

You should begin by talking about how you would gather requirements and do initial prototypes.
Because the question mentions two specific technologies, the interviewer would like to know how
you would deal with them. This is where libraries come into play. If you tell the interviewer that you

1044  ❘  APPENDIX A   C++ Interviews

would write your own web classes and MP3 playing code, you won’t fail the test, but you will be
challenged to justify the time and expense of reinventing these tools.

A better answer is to say that you would survey existing libraries that perform web and MP3 func-
tionality to see if one exists that suits the project. You might want to name some technologies that
you would start with, such as libcurl for web retrieval in Linux, or the Windows Media library for
music playback in Windows.

Mentioning some websites with free libraries, and some ideas of what those websites provide, might
also get you extra points. Some examples are www.codeguru.com and www.codeproject.com for
Windows libraries; www.boost.org and www.github.com for platform-independent C++ libraries,
and so on. Giving examples of some of the licenses that are available for open-source software, such
as the GNU General Public License, Boost Software License, Creative Commons license, CodeGuru
license, OpenBSD license, and so on, might score you extra credit.

CHAPTER 5: DESIGNING WITH OBJECTS

Object-oriented design questions are used to weed out C programmers who merely know what a
reference is, from C++ programmers who actually use the object-oriented features of the language.
Interviewers don’t take anything for granted; even if you’ve been using object-oriented languages for
years, they may still want to see evidence that you understand the methodology.

Things to Remember
➤➤ The differences between the procedural and object-oriented paradigms

➤➤ The differences between a class and an object

➤➤ Expressing classes in terms of components, properties, and behaviors

➤➤ Is-a and has-a relationships

➤➤ The tradeoffs involved in multiple inheritance

Types of Questions
There are typically two ways to ask object-oriented design questions: you can be asked to define an
object-oriented concept, or you can be asked to sketch out an object-oriented hierarchy. The former
is pretty straightforward. Remember that examples might earn you extra credit.

If you’re asked to sketch out an object-oriented hierarchy, the interviewer will usually provide a
simple application, such as a card game, for which you should design a class hierarchy. Interviewers
often ask design questions about games because those are applications with which most people are
already familiar. They also help lighten the mood a bit when compared to questions about things
like database implementations. The hierarchy you generate will, of course, vary based on the game
or application they are asking you to design. Here are some points to consider:

➤➤ The interviewer wants to see your thought process. Think aloud, brainstorm, engage the
interviewer in a discussion, and don’t be afraid to erase and go in a different direction.

Chapter 7: Memory Management  ❘  1045

➤➤ The interviewer may assume that you are familiar with the application. If you’ve never heard
of blackjack and you get a question about it, ask the interviewer to clarify or change the
question.

➤➤ Unless the interviewer gives you a specific format to use when describing the hierarchy, it’s
recommended that your class diagrams take the form of inheritance trees with rough lists of
methods and data members for each class.

➤➤ You may have to defend your design or revise it to take added requirements into consider-
ation. Try to gauge whether the interviewer sees actual flaws in your design, or whether she
just wants to put you on the defensive to see your skills of persuasion.

CHAPTER 6: DESIGNING FOR REUSE

Interviewers rarely ask questions about designing reusable code. This omission is unfortunate
because having programmers on staff who can write only single-purpose code can be detrimental to
a programming organization. Occasionally, you’ll find a company that is savvy on code reuse and
asks about it in their interviews. Such a question is an indication that it might be a good company to
work for.

Things to Remember
➤➤ The principle of abstraction

➤➤ The creation of subsystems and class hierarchies

➤➤ The general rules for good interface design, which are interfaces with only public methods
and no implementation details

➤➤ When to use templates and when to use inheritance

Types of Questions
Questions about reuse will almost certainly be about previous projects on which you have worked.
For example, if you worked at a company that produced both consumer and professional video-
editing applications, the interviewer may ask how code was shared between the two applications.
Even if you aren’t explicitly asked about code reuse, you might be able to sneak it in. When you’re
describing some of your past work, tell the interviewer if the modules you wrote were used in other
projects. Even when answering apparently straight coding questions, make sure to consider and
mention the interfaces involved. As always, be careful not to expose intellectual property from your
previous jobs though.

CHAPTER 7: MEMORY MANAGEMENT

You can be sure that an interviewer will ask you some questions related to memory management,
including your knowledge of smart pointers. Besides smart pointers, you will also get more low-level
questions. The goal is to determine whether the object-oriented aspects of C++ have distanced you

1046  ❘  APPENDIX A   C++ Interviews

too much from the underlying implementation details. Memory management questions will give you
a chance to prove that you know what’s really going on.

Things to Remember
➤➤ Know how to draw the stack and the heap; this can help you understand what’s going on.

➤➤ Avoid using low-level memory allocation and deallocation functions. In modern C++, there
should be no calls to new, delete, new[], delete[], malloc(), free(), and so on. Instead,
use smart pointers.

➤➤ Understand smart pointers; use std::unique_ptr by default, shared_ptr for shared ownership.

➤➤ Use std::make_unique() to create an std::unique_ptr.

➤➤ Use std::make_shared() to create an std::shared_ptr.

➤➤ Never use the deprecated std::auto_ptr; it has even been removed from C++17.

➤➤ If you do need to use low-level memory allocation functions, use new, delete, new[], and
delete[] instead of malloc() and free().

➤➤ If you have an array of pointers to objects, you still need to allocate memory for each individ-
ual pointer and delete the memory—the array allocation syntax doesn’t take care of pointers.

➤➤ Be aware of the existence of memory allocation problem detectors, such as Valgrind, to
expose memory problems.

Types of Questions
Find-the-bug questions often contain memory issues, such as double deletion, new/delete/new[]/
delete[] mix-up, and memory leaks. When you are tracing through code that makes heavy use of
pointers and arrays, you should draw and update the state of the memory as you process each line of
code.

Another good way to find out if a candidate understands memory is to ask how pointers and arrays
differ. At this point, the differences may be so tacit in your mind that the question catches you
off-guard for a moment. If that’s the case, skim Chapter 7 again for the discussion on pointers and
arrays.

When answering questions about memory allocation, it’s always a good idea to mention the con-
cept of smart pointers and their benefits for automatically cleaning up memory and other resources.
You definitely should also mention that it’s much better to use Standard Library containers, such as
std::vector, instead of C-style arrays, because the Standard Library containers handle memory
management for you automatically.

CHAPTERS 8 AND 9: GAINING PROFICIENCY WITH CLASSES
AND OBJECTS, AND MASTERING CLASSES AND OBJECTS

There are no bounds to the types of questions you can be asked about classes and objects. Some
interviewers are syntax-fixated and might throw some complicated code at you. Others are less con-
cerned with the implementation and more interested in your design skills.

Chapters 8 and 9: Gaining Proficiency with Classes and Objects, and Mastering Classes and Objects  ❘  1047

Things to Remember
➤➤ Basic class definition syntax

➤➤ Access specifiers for methods and data members

➤➤ The use of the this pointer

➤➤ How name resolution works

➤➤ Object creation and destruction, on both the stack and the heap

➤➤ Cases when the compiler generates a constructor for you

➤➤ Constructor initializers

➤➤ Copy constructors and assignment operators

➤➤ Delegating constructors

➤➤ The mutable keyword

➤➤ Method overloading and default parameters

➤➤ const members

➤➤ Friend classes and methods

➤➤ Managing dynamically allocated memory in objects

➤➤ static methods and data members

➤➤ Inline methods and the fact that the inline keyword is just a hint for the compiler, which
can ignore the hint

➤➤ The key idea of separating interface and implementation classes, which says that interfaces
should only contain public methods, should be as stable as possible, and should not contain
any data members or private/protected methods. Thus, interfaces can remain stable while
implementations are free to change under them.

➤➤ In-class member initializers

➤➤ Explicitly defaulted and deleted special member functions

➤➤ The difference between rvalues and lvalues

➤➤ Rvalue references

➤➤ Move semantics with move constructors and move assignment operators

➤➤ The copy-and-swap idiom and what it is used for

➤➤ The rule of zero, and the rule of five

Types of Questions
Questions such as, “What does the keyword mutable mean?” are great for phone screening.
A recruiter may have a list of C++ terms and will move candidates to the next stage of the process
based on the number of terms that they get right. You may not know all of the terms thrown at you,

1048  ❘  APPENDIX A   C++ Interviews

but keep in mind that other candidates are facing the same questions and it’s one of the few metrics
available to a recruiter.

The find-the-bug style of questions is popular among interviewers and course instructors alike. You
will be presented with some nonsense code and asked to point out its flaws. Interviewers struggle
to find quantitative ways to analyze candidates, and this is one of the few ways to do it. In general,
your approach should be to read each line of code and voice your concerns, brainstorming aloud.
The types of bugs can fall into these categories.

➤➤ Syntax errors: These are rare; interviewers know you can find compile-time bugs with a
compiler.

➤➤ Memory problems: These include problems such as leaks and double deletion.

➤➤ “You wouldn’t do that” problems: This category includes things that are technically
correct but are not recommended. For example, you wouldn’t use C-style character arrays;
you would use std::string instead.

➤➤ Style errors: Even if the interviewer doesn’t count it as a bug, point out poor comments or
variable names.

Here’s a find-the-bug problem that demonstrates each of these areas:

class Buggy
{
 Buggy(int param);
 ~Buggy();
 double fjord(double val);
 int fjord(double val);
 protected:
 void turtle(int i = 7, int j);
 int param;
 double* mGraphicDimension;
};

Buggy::Buggy(int param)
{
 param = param;
 mGraphicDimension = new double;
}

Buggy::~Buggy()
{
}

double Buggy::fjord(double val)
{
 return val * param;
}

int Buggy::fjord(double val)
{
 return (int)fjord(val);
}

Chapters 8 and 9: Gaining Proficiency with Classes and Objects, and Mastering Classes and Objects  ❘  1049

void Buggy::turtle(int i, int j)
{
 cout << "i is " << i << ", j is " << j << endl;
}

Take a careful look at the code, and then consult the following corrected version for the answers:

#include <iostream> // Streams are used in the implementation.
#include <memory> // For std::unique_ptr.

class Buggy
{
 public: // These should most likely be public.
 Buggy(int param);

 // Recommended to make destructors virtual. Also, explicitly
 // default it, because this class doesn't need to do anything
 // in it.
 virtual ~Buggy() = default;

 // Disallow copy construction and copy assignment operator.
 Buggy(const Buggy& src) = delete;
 Buggy& operator=(const Buggy& rhs) = delete;

 // Explicitly default move constructor and move assignment op.
 Buggy(Buggy&& src) noexcept = default;
 Buggy& operator=(Buggy&& rhs) noexcept = default;

 // int version won't compile. Overloaded
 // methods cannot differ only in return type.
 double fjord(double val);

 private: // Use private by default.
 void turtle(int i, int j); // Only last parameters can have defaults.
 int mParam; // Data member naming.
 std::unique_ptr<double> mGraphicDimension; // Use smart pointers!
};

Buggy::Buggy(int param) // Prefer using ctor initializer
 : mParam(param)
 , mGraphicDimension(new double)
{
}

double Buggy::fjord(double val)
{
 return val * mParam; // Changed data member name.
}

void Buggy::turtle(int i, int j)
{
 std::cout << "i is " << i << ", j is " << j << std::endl; // Namespaces.
}

1050  ❘  APPENDIX A   C++ Interviews

You should explain why you should never use raw pointers that represent ownership, but smart
pointers instead. You should also explain why you are explicitly defaulting the move constructor
and move assignment operator, and why you opt to delete the copy constructor and copy assignment
operator. Explain what impact it would have on the class if you do need to implement a copy con-
structor and a copy assignment operator.

CHAPTER 10: DISCOVERING INHERITANCE TECHNIQUES

Questions about inheritance usually come in the same forms as questions about classes. The inter-
viewer might also ask you to implement a class hierarchy to show that you have worked with C++
enough to write derived classes without looking it up in a book.

Things to Remember
➤➤ The syntax for deriving a class

➤➤ The difference between private and protected from a derived class point of view

➤➤ Method overriding and virtual

➤➤ The difference between overloading and overriding

➤➤ The reason why destructors should be virtual

➤➤ Chained constructors

➤➤ The ins and outs of upcasting and downcasting

➤➤ The principle of polymorphism

➤➤ Pure virtual methods and abstract base classes

➤➤ Multiple inheritance

➤➤ Run-time type information (RTTI)

➤➤ Inherited constructors

➤➤ The final keyword on classes

➤➤ The override and final keywords on methods

Types of Questions
Many of the pitfalls in inheritance questions are related to getting the details right. When you are
writing a base class, don’t forget to make the methods virtual. If you mark all methods virtual,
be prepared to justify that decision. You should be able to explain what virtual means and how
it works. Also, don’t forget the public keyword before the name of the parent class in the derived
class definition (for example, class Derived : public Base). It’s unlikely that you’ll be asked to
perform nonpublic inheritance during an interview.

Chapter 11: C++ Quirks, Oddities, and Incidentals  ❘  1051

More challenging inheritance questions have to do with the relationship between a base class and
a derived class. Be sure you know how the different access levels work, and the difference between
private and protected. Remind yourself of the phenomenon known as slicing, when certain types
of casts cause a class to lose its derived class information.

CHAPTER 11: C++ QUIRKS, ODDITIES, AND INCIDENTALS

Many interviewers tend to focus on the more obscure cases because that way, experienced C++
programmers can demonstrate that they have conquered the unusual parts of C++. Sometimes inter-
viewers have difficulty coming up with interesting questions and end up asking the most obscure
question they can think of.

Things to Remember
➤➤ The need for references to be bound to a variable when they are declared and the binding

cannot be changed

➤➤ The advantages of pass-by-reference over pass-by-value

➤➤ The many uses of const

➤➤ The many uses of static

➤➤ The different types of casts in C++

➤➤ How type aliases and typedefs work

➤➤ The general idea behind attributes

➤➤ The fact that you can define your own user-defined literals, but without the syntactical details

Types of Questions
Asking a candidate to define const and static is a classic C++ interview question. Both keywords
provide a sliding scale with which an interviewer can assess an answer. For example, a fair candi-
date will talk about static methods and static data members. A good candidate will give good
examples of static methods and static data members. A great candidate will also know about
static linkage and static variables in functions.

The edge cases described in this chapter also come in find-the-bug type problems. Be on the lookout
for misuse of references. For example, imagine a class that contains a reference as a data member:

class Gwenyth
{
 private:
 int& mCaversham;
};

1052  ❘  APPENDIX A   C++ Interviews

Because mCaversham is a reference, it needs to be bound to a variable when the class is constructed.
To do that, you’d need to use a constructor initializer. The class could take the variable to be refer-
enced as a parameter to the constructor:

class Gwenyth
{
 public:
 Gwenyth(int& i);
 private:
 int& mCaversham;
};

Gwenyth::Gwenyth(int& i) : mCaversham(i)
{
}

CHAPTERS 12 AND 22: WRITING GENERIC CODE WITH
TEMPLATES, AND ADVANCED TEMPLATES

As one of the most arcane parts of C++, templates are a good way for interviewers to separate the
C++ novices from the pros. While most interviewers will forgive you for not remembering some of
the advanced template syntax, you should go into the interview knowing the basics.

Things to Remember
➤➤ How to use a class or function template

➤➤ How to write a basic class or function template

➤➤ Template argument deduction, including for constructors

➤➤ Alias templates and why they are better than typedefs

➤➤ The concept of variadic templates

➤➤ The ideas behind metaprogramming

➤➤ Type traits and what they can be used for

Types of Questions
Many interview questions start out with a simple problem and gradually add complexity. Often,
interviewers have an endless amount of complexity that they are prepared to add, and they simply
want to see how far you get. For example, an interviewer might begin a problem by asking you to
create a class that provides sequential access to a fixed number of ints. Next, the class will need
to grow to accommodate an arbitrary-sized array. Then, it will need arbitrary data types, which is
where templates come in. From there, the interviewer could take the problem in a number of direc-
tions, asking you to use operator overloading to provide array-like syntax, or continuing down the
template path by asking you to provide a default type.

Chapter 14: Handling Errors  ❘  1053

Templates are more likely to be employed in the solution of another coding problem than to be
asked about explicitly. You should brush up on the basics in case the subject comes up. However,
most interviewers understand that the template syntax is difficult, and asking someone to write
complex template code in an interview is rather cruel.

The interviewer might ask you high-level questions related to metaprogramming to find out whether
or not you have heard about it. While explaining, you could give a small example such as calculating
the factorial of a number at compile time. Don’t worry if the syntax is not entirely correct. As long
as you explain what it is supposed to do, you should be fine.

CHAPTER 13: DEMYSTIFYING C++ I/O

If you’re interviewing for a job writing GUI applications, you probably won’t get too many ques-
tions about I/O streams because GUI applications tend to use other mechanisms for I/O. However,
streams can come up in other problems and, as a standard part of C++, they are fair game as far as
the interviewer is concerned.

Things to Remember
➤➤ The definition of a stream

➤➤ Basic input and output using streams

➤➤ The concept of manipulators

➤➤ Types of streams (console, file, string, and so on)

➤➤ Error-handling techniques

Types of Questions
I/O may come up in the context of any question. For example, the interviewer could ask you to read
in a file containing test scores and put them in a vector. This question tests basic C++ skills, basic
Standard Library, and basic I/O. Even if I/O is only a small part of the problem you’re working on,
be sure to check for errors. If you don’t, you’re giving the interviewer an opportunity to say some-
thing negative about your otherwise perfect program.

CHAPTER 14: HANDLING ERRORS

Managers sometimes shy away from hiring recent graduates or novice programmers for vital (and
high-paying) jobs because it is assumed that they don’t write production-quality code. You can prove
to an interviewer that your code won’t keel over randomly by demonstrating your error-handling
skills during an interview.

1054  ❘  APPENDIX A   C++ Interviews

Things to Remember
➤➤ Syntax of exceptions

➤➤ Catching exceptions as const references

➤➤ Why hierarchies of exceptions are preferable to a few generic ones

➤➤ The basics of how stack unwinding works when an exception gets thrown

➤➤ How to handle errors in constructors and destructors

➤➤ How smart pointers help to avoid memory leaks when exceptions are thrown

➤➤ The fact that you must never use the C functions setjmp() and longjmp() in C++

Types of Questions
Interviewers will be on the lookout to see how you report and handle errors. When you are asked to
write a piece of code, make sure you implement proper error handling.

You might be asked to give a high-level overview of how stack unwinding works when an exception
is thrown, without implementation details.

Of course, not all programmers understand or appreciate exceptions. Some may even have a com-
pletely unfounded bias against them for performance reasons. If the interviewer asks you to do
something without exceptions, you’ll have to revert to traditional nullptr checks and error codes.
That would be a good time to demonstrate your knowledge of nothrow new.

An interviewer can also ask questions in the form of “Would you use this?” One example question
could be, “Would you use setjmp()/longjmp() in C++, as they are more efficient than exceptions?”
Your answer should be a big no, because setjmp()/longjmp() do not work in C++ as they might
bypass scoped destructors. The belief that exceptions have a big performance penalty is a miscon-
ception. On modern compilers, just having code that can handle potential exceptions has close to
zero performance penalty.

CHAPTER 15: OVERLOADING C++ OPERATORS

It’s possible, though somewhat unlikely, that you will have to perform something more difficult than
a simple operator overload during an interview. Some interviewers like to have an advanced ques-
tion on hand that they don’t really expect anybody to answer correctly. The intricacies of operator
overloading make great, nearly impossible questions because few programmers get the syntax right
without looking it up. That means it’s a great area to review before an interview.

Things to Remember
➤➤ Overloading stream operators, because they are commonly overloaded operators, and are

conceptually unique

➤➤ What a functor is and how to create one

Chapters 16, 17, 18, and 21: The Standard Library  ❘  1055

➤➤ Choosing between a method operator and a global function

➤➤ How some operators can be expressed in terms of others (for example, operator<= can be
written by complementing the result of operator>)

Types of Questions
Let’s face it: operator overloading questions (other than the simple ones) can be cruel. Anybody who
is asking such questions knows this and is going to be impressed when you get it right. It’s impos-
sible to predict the exact question that you’ll get, but the number of operators is finite. As long as
you’ve seen an example of overloading each operator that makes sense to overload, you’ll do fine!

Besides asking you to implement an overloaded operator, you could be asked high-level questions
about operator overloading. A find-the-bug question could contain an operator that is overloaded
to do something that is conceptually wrong for that particular operator. In addition to syntax, keep
the use cases and theory of operator overloading in mind.

CHAPTERS 16, 17, 18, AND 21: THE STANDARD LIBRARY

As you’ve seen, certain aspects of the Standard Library can be difficult to work with. Few
interviewers would expect you to recite the details of Standard Library classes unless you claim to
be a Standard Library expert. If you know that the job you’re interviewing for makes heavy use of
the Standard Library, you might want to write some Standard Library code the day before to refresh
your memory. Otherwise, recalling the high-level design of the Standard Library and its basic usage
should suffice.

Things to Remember
➤➤ The different types of containers and their relationships with iterators

➤➤ Use of vector, which is the most frequently used Standard Library class

➤➤ Use of associative containers, such as map

➤➤ The differences between associative containers and unordered associative containers, such as
unordered_map

➤➤ The purpose of Standard Library algorithms and some of the built-in algorithms

➤➤ The use of lambda expressions in combination with Standard Library algorithms

➤➤ The remove-erase idiom

➤➤ The fact that with C++17, a lot of the Standard Library algorithms have an option to execute
in parallel

➤➤ The ways in which you can extend the Standard Library (details are most likely unnecessary)

➤➤ Your own opinions about the Standard Library

1056  ❘  APPENDIX A   C++ Interviews

Types of Questions
If interviewers are dead set on asking detailed Standard Library questions, there really are no
bounds to the types of questions they could ask. If you’re feeling uncertain about syntax though,
you should state the obvious during the interview: “In real life, of course, I’d look that up in
Professional C++, but I’m pretty sure it works like this...” At least that way, the interviewer is
reminded that he should forgive the details as long as you get the basic idea right.

High-level questions about the Standard Library are often used to gauge how much you’ve used
the Standard Library without making you recall all the details. For example, casual users of the
Standard Library may be familiar with associative and non-associative containers. A slightly more
advanced user would be able to define an iterator, describe how iterators work with containers, and
describe the remove-erase idiom. Other high-level questions could ask you about your experience
with Standard Library algorithms, or whether you’ve customized the Standard Library. An inter-
viewer might also gauge your knowledge about lambda expressions, and their use with Standard
Library algorithms.

CHAPTER 20: ADDITIONAL LIBRARY UTILITIES

This chapter describes a number of features and additional libraries from the C++ standard that
don’t fit in other chapters, including some new C++17 features. An interviewer might touch on a few
of those topics to see whether you are keeping up to date with the latest developments in the C++
world.

Things to Remember
➤➤ Compile-time rational numbers

➤➤ Using the chrono library to work with durations, clocks, and time points

➤➤ Using the <random> library as the preferred method of generating random numbers

➤➤ How to work with std::optional values

➤➤ The std::variant and std::any data types

➤➤ std::tuple as a generalization of std::pair

➤➤ The existence of a filesystem API

Types of Questions
You shouldn’t expect detailed questions about these topics. However, knowledge of the C++17
std::optional, variant, and any classes will definitely score you extra points. You might also be
asked to explain the basic ideas and concepts of the chrono and random number generation librar-
ies, but without going into syntax details. If the interviewer starts focusing on random numbers, it
is important to explain the differences between true random numbers and pseudo-random numbers.
You should also explain how the random number generation library uses the concepts of generators
and distributions.

Chapter 24: Maximizing Software Engineering Methods  ❘  1057

CHAPTER 23: MULTITHREADED PROGRAMMING WITH C++

Multithreaded programming is becoming more and more important with the release of multicore
processors for everything from servers to consumer computers. Even smartphones have multicore
processors. An interviewer might ask you a couple of multithreading questions. C++ includes a
standard threading support library, so it’s a good idea to know how it works.

Things to Remember
➤➤ Race conditions and deadlocks and how to prevent them

➤➤ std::thread to spawn threads

➤➤ The atomic types and atomic operations

➤➤ The concept of mutual exclusion, including the use of the different mutex and lock classes, to
provide synchronization between threads

➤➤ Condition variables and how to use them to signal other threads

➤➤ Futures and promises

➤➤ Copying and rethrowing of exceptions across thread boundaries

Types of Questions
Multithreaded programming is a complicated subject, so you don’t need to expect detailed ques-
tions, unless you are interviewing for a specific multithreading programming position.

Instead, an interviewer might ask you to explain the different kinds of problems you can encounter
with multithreaded code: problems such as race conditions, deadlocks, and tearing. You may also
be asked to explain the general concepts behind multithreaded programming. This is a very broad
question, but it allows the interviewer to get an idea of your multithreading knowledge. You can
also mention that with C++17, a lot of the Standard Library algorithms have an option to run in
parallel.

CHAPTER 24: MAXIMIZING SOFTWARE ENGINEERING
METHODS

You should be suspicious if you go through the complete interview process with a company, and
the interviewers do not ask any process questions—it may mean that they don’t have any process or
that they don’t care about it. Alternatively, they might not want to scare you away with their process
behemoth. Another important aspect of any development process is Source Code Control.

Most of the time, you’ll get a chance to ask questions regarding the company. I suggest you consider
asking about engineering processes and Source Code Control solutions as one of your standard
questions.

1058  ❘  APPENDIX A   C++ Interviews

Things to Remember
➤➤ Traditional life-cycle models

➤➤ The tradeoffs of different models

➤➤ The main principles behind Extreme Programming

➤➤ Scrum as an example of an Agile process

➤➤ Other processes you have used in the past

➤➤ Principles behind Source Code Control solutions

Types of Questions
The most common question you’ll be asked is to describe the process that your previous employer
used. Be careful, though, not to disclose any confidential information. When answering, you should
mention what worked well and what failed, but try not to denounce any particular methodology.
The methodology you criticize could be the one that your interviewer uses.

Almost every candidate is listing Scum/Agile as a skill these days. If the interviewer asks you about
Scrum, he probably doesn’t want you to simply recite the textbook definition—the interviewer
knows that you can read the table of contents of a Scrum book. Instead, pick a few ideas from
Scrum that you find appealing. Explain each one to the interviewer along with your thoughts on it.
Try to engage the interviewer in a conversation, proceeding in a direction in which he is interested
based on the cues that he gives.

If you get a question regarding Source Code Control, it will most likely be a high-level question.
You should explain the general principles behind Source Code Control solutions, mention the fact
that there are commercial and free open-source solutions available, and possibly explain how Source
Code Control was implemented by your previous employer.

CHAPTER 25: WRITING EFFICIENT C++

Efficiency questions are quite common in interviews because many organizations are facing scalabil-
ity issues with their code and need programmers who are savvy about performance.

Things to Remember
➤➤ Language-level efficiency is important, but it can only go so far; design-level choices are ulti-

mately much more significant.

➤➤ Algorithms with bad complexity, such as quadratic algorithms, should be avoided.

➤➤ Reference parameters are more efficient because they avoid copying.

➤➤ Object pools can help avoid the overhead of creating and destroying objects.

➤➤ Profiling is vital to determine which operations are really consuming the most time, so you
don’t waste effort trying to optimize code that is not a performance bottleneck.

Chapter 26: Becoming Adept at Testing  ❘  1059

Types of Questions
Often, the interviewer will use her own product as an example to drive efficiency questions.
Sometimes the interviewer will describe an older design and some performance-related symptoms
she experienced. The candidate is supposed to come up with a new design that alleviates the prob-
lem. Unfortunately, there is a major problem with a question like this: what are the odds that you’re
going to come up with the same solution that the company did when the problem was actually
solved? Because the odds are slim, you need to be extra careful to justify your designs. You may not
come up with the actual solution, but you could still have an answer that is correct or even better
than the company’s newer design.

Other types of efficiency questions may ask you to tweak some C++ code for performance or iterate
on an algorithm. For example, the interviewer could show you code that contains extraneous copies
or inefficient loops.

The interviewer might also ask you for a high-level description of profiling tools and what their ben-
efits are.

CHAPTER 26: BECOMING ADEPT AT TESTING

Potential employers value strong testing abilities. Because your resume probably doesn’t indicate
your testing skills, unless you have explicit quality assurance (QA) experience, you might face inter-
view questions about testing.

Things to Remember
➤➤ The difference between black-box and white-box testing

➤➤ The concept of unit testing, integration testing, system testing, and regression testing

➤➤ Techniques for higher-level tests

➤➤ Testing and QA environments in which you’ve worked before: what worked and what
didn’t?

Types of Questions
An interviewer could ask you to write some tests during the interview, but it’s unlikely that a pro-
gram presented during an interview would contain the depth necessary for interesting tests. It’s
more likely that you will be asked high-level testing questions. Be prepared to describe how testing
was done at your last job, and what you liked and didn’t like about it. Again, be careful not to dis-
close any confidential information. After you’ve answered the interviewer’s questions about testing,
a good question for you to ask the interviewer is to ask how testing is done at their company. It
might start a conversation about testing and give you a better idea of the environment at your poten-
tial job.

1060  ❘  APPENDIX A   C++ Interviews

CHAPTER 27: CONQUERING DEBUGGING

Engineering organizations look for candidates who are able to debug their own code as well as
code that they’ve never seen before. Technical interviews often attempt to size up your debugging
muscles.

Things to Remember
➤➤ Debugging doesn’t start when bugs appear; you should instrument your code ahead of time,

so you’re prepared for bugs when they arrive.

➤➤ Logs and debuggers are your best tools.

➤➤ You should know how to use assertions.

➤➤ The symptoms that a bug exhibits may appear to be unrelated to the actual cause.

➤➤ Object diagrams can be helpful in debugging, especially during an interview.

Types of Questions
During an interview, you might be challenged with an obscure debugging problem. Remember that
the process is the most important thing, and the interviewer probably knows that. Even if you don’t
find the bug during the interview, make sure that the interviewer knows what steps you would go
through to track it down. If the interviewer hands you a function and tells you that it crashes during
execution, he should award you just as many points if you properly discuss the sequence of steps to
find the bug, as if you find the bug right away.

CHAPTER 28: INCORPORATING DESIGN TECHNIQUES
AND FRAMEWORKS

Each of the techniques presented in Chapter 28 makes a fine interview question. Rather than repeat
what you already read in the chapter, I suggest that you skim over Chapter 28 prior to an interview
to make sure that you are able to understand each of the techniques.

If you are being interviewed for a GUI-based job, you should know about the existence of frame-
works such as MFC, Qt, and possibly others.

CHAPTER 29: APPLYING DESIGN PATTERNS

Because design patterns are very popular in the professional world (many candidates even list them
as skills), it’s likely that you’ll encounter an interviewer who wants you to explain a pattern, give a
use case for a pattern, or implement a pattern.

Chapter 30: Developing Cross-Platform and Cross-Language Applications   ❘  1061

Things to Remember
➤➤ The basic idea of a pattern as a reusable object-oriented design concept

➤➤ The patterns you have read about in this book, as well as others that you’ve used in your
work

➤➤ The fact that you and your interviewer may use different words for the same pattern, given
that there are hundreds of patterns with often-conflicting names

Types of Questions
Answering questions about design patterns is usually a walk in the park, unless the interviewer
expects you to know the details of every single pattern known to humankind. Luckily, most inter-
viewers who appreciate design patterns will just want to chat with you about them and get your
opinions. After all, looking up concepts in a book or online instead of memorizing them is a good
pattern in itself.

CHAPTER 30: DEVELOPING CROSS-PLATFORM
AND CROSS-LANGUAGE APPLICATIONS

Few programmers submit resumes that list only a single language or technology, and few large
applications rely on only a single language or technology. Even if you’re only interviewing for a
C++ position, the interviewer may still ask questions about other languages, especially as they relate
to C++.

Things to Remember
➤➤ The ways in which platforms can differ (architecture, integer sizes, and so on)

➤➤ The fact that you should try to find a cross-platform library to accomplish a certain task,
instead of starting to implement the functionality yourself for different kinds of platforms

➤➤ The interactions between C++ and other languages

Types of Questions
The most popular cross-language question is to compare and contrast two different languages. You
should avoid saying only positive or negative things about a particular language, even if you really
love or hate that language. The interviewer wants to know that you are able to see tradeoffs and
make decisions based on them.

Cross-platform questions are more likely to be asked while discussing previous work. If your resume
indicates that you once wrote C++ applications that ran on a custom hardware platform, you should
be prepared to talk about the compiler you used and the challenges of that platform.

Annotated Bibliography
This appendix contains a list of books and online resources on various C++-related topics
that were either consulted while writing this book, or are recommended for further or back-
ground reading.

C++

Beginning C++ Without Previous Programming Experience
➤➤ Bjarne Stroustrup. Programming: Principles and Practice Using C++, 2nd ed. Addison-

Wesley Professional, 2014. ISBN: 0-321-99278-4.

An introduction to programming in C++ by the inventor of the language. This book
assumes no previous programming experience, but even so, it is also a good read for
experienced programmers.

➤➤ Steve Oualline. Practical C++ Programming, 2nd ed. O’Reilly Media, 2003.
ISBN: 0-596-00419-2.

An introductory C++ text that assumes no prior programming experience.

➤➤ Walter Savitch. Problem Solving with C++, 9th ed. Pearson, 2014. ISBN:
0-133-59174-3.

Assumes no prior programming experience. This book is often used as a textbook in
introductory programming courses.

Beginning C++ With Previous Programming Experience
➤➤ Bjarne Stroustrup. A Tour of C++. Addison-Wesley Professional, 2013. ISBN:

0-321-95831-4.

A quick (about 190 pages) tutorial-based overview of the entire C++ language and
Standard Library at a moderately high level for people who already know C++ or are
at least experienced programmers. This book includes C++11 features.

B

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

1064  ❘  APPENDIX B   Annotated Bibliography

➤➤ Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo. C++ Primer, 5th ed. Addison-Wesley
Professional, 2012. ISBN: 0-321-71411-3.

A very thorough introduction to C++ that covers just about everything in the language in a
very accessible format and in great detail.

➤➤ Andrew Koenig and Barbara E. Moo. Accelerated C++: Practical Programming by Example.
Addison-Wesley Professional, 2000. ISBN: 0-201-70353-X.

Covers the same material as C++ Primer, but in much less space, because it assumes that the
reader has programmed in another language before.

➤➤ Bruce Eckel. Thinking in C++, Volume 1: Introduction to Standard C++, 2nd ed. Prentice
Hall, 2000. ISBN: 0-139-79809-9.

An excellent introduction to C++ programming that expects the reader to know C already.
This text is available at no cost online at www.bruceeckel.com.

General C++
➤➤ The C++ Programming Language, at www.isocpp.org.

The home of Standard C++ on the web, containing news, status, and discussions about the
C++ standard on all compilers and platforms.

➤➤ The C++ Super-FAQ, at isocpp.org/faq.

A huge collection of frequently asked questions about C++.

➤➤ Scott Meyers. Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and
C++14. O’Reilly, 2014. ISBN: 1-491-90399-6.

➤➤ Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd
ed. Addison-Wesley Professional, 2005. ISBN: 0-321-33487-6.

➤➤ Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs and Designs.
Addison-Wesley Professional, 1996. ISBN: 0-201-63371-X.

Three books that provide excellent tips and tricks on commonly misused and misunderstood
features of C++.

➤➤ Bjarne Stroustrup. The C++ Programming Language, 4th ed. Addison-Wesley Professional,
2013. ISBN: 0-321-56384-0.

The “bible” of C++ books, written by the designer of C++. Every C++ programmer should
own a copy of this book, although it can be a bit obscure in places for the C++ novice.

➤➤ Herb Sutter. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and
Solutions. Addison-Wesley Professional, 1999. ISBN: 0-201-61562-2.

Presented as a set of puzzles, with one of the best, most thorough discussions of proper
resource management and exception safety in C++ through Resource Acquisition is
Initialization (RAII). This book also includes in-depth coverage of a variety of topics, such
as the pimpl idiom, name lookup, good class design, and the C++ memory model.

C++  ❘  1065

➤➤ Herb Sutter. More Exceptional C++: 40 New Engineering Puzzles, Programming Problems,
and Solutions. Addison-Wesley Professional, 2001. ISBN: 0-201-70434-X.

Covers additional exception safety topics not covered in Exceptional C++: 47 Engineering
Puzzles, Programming Problems, and Solutions. This book also discusses effective object-
oriented programming and correct use of certain aspects of the Standard Library.

➤➤ Herb Sutter. Exceptional C++ Style: 40 New Engineering Puzzles, Programming Problems,
and Solutions. Addison-Wesley Professional, 2004. ISBN: 0-201-76042-8.

Discusses generic programming, optimization, and resource management. This book also
has an excellent exposition of how to write modular code in C++ by using nonmember func-
tions and the single responsibility principle.

➤➤ Stephen C. Dewhurst. C++ Gotchas: Avoiding Common Problems in Coding and Design.
Addison-Wesley Professional, 2002. ISBN: 0-321-12518-5.

Provides 99 specific tips for C++ programming.

➤➤ Bruce Eckel and Chuck Allison. Thinking in C++, Volume 2: Practical Programming.
Prentice Hall, 2003. ISBN: 0-130-35313-2.

The second volume of Eckel’s book, which covers more advanced C++ topics. The text is
also available at no cost online at www.bruceeckel.com.

➤➤ Ray Lischner. C++ in a Nutshell. O’Reilly, 2009. ISBN: 0-596-00298-X.

A C++ reference covering everything from the basics to more-advanced material.

➤➤ Stephen Prata, C++ Primer Plus, 6th ed. Addison-Wesley Professional, 2011.
ISBN: 0-321-77640-2.

One of the most comprehensive C++ books available.

➤➤ The C++ Reference, at www.cppreference.com.

An excellent reference of C++98, C++03, C++11, C++14, and C++17.

➤➤ The C++ Resources Network, at www.cplusplus.com.

A website containing a lot of information related to C++, with a complete reference of the
language, including C++17.

I/O Streams and Strings
➤➤ Cameron Hughes and Tracey Hughes. Stream Manipulators and Iterators in C++. www

.informit.com/articles/article.aspx?p=171014.

A well-written article that takes the mystery out of defining custom stream manipulators in
C++.

➤➤ Philip Romanik and Amy Muntz. Applied C++: Practical Techniques for Building Better
Software. Addison-Wesley Professional, 2003. ISBN: 0-321-10894-9.

A unique blend of software development advice and C++ specifics, as well as a very good
explanation of locale and Unicode support in C++.

1066  ❘  APPENDIX B   Annotated Bibliography

➤➤ Joel Spolsky. The Absolute Minimum Every Software Developer Absolutely, Positively
Must Know About Unicode and Character Sets (No Excuses!). www.joelonsoftware.com/
articles/Unicode.html.

A treatise by Joel Spolsky on the importance of localization. After reading this, you’ll want
to check out the other entries on his Joel on Software website.

➤➤ The Unicode Consortium. The Unicode Standard 5.0, 5th ed. Addison-Wesley Professional,
2006. ISBN: 0-321-48091-0.

The definitive book on Unicode, which all developers using Unicode must have.

➤➤ Unicode, Inc. Where is my Character? www.unicode.org/standard/where.

The best resource for finding Unicode characters, charts, and tables.

➤➤ Wikipedia. Universal Coded Character Set. http://en.wikipedia.org/wiki/
Universal_Character_Set.

An explanation of what the Universal Character Set (UCS) is, including the Unicode
standard.

The C++ Standard Library
➤➤ Peter Van Weert and Marc Gregoire. C++ Standard Library Quick Reference. Apress, 2016.

ISBN: 978-1-4842-1875-4.

This quick reference is a condensed guide to all essential data structures, algorithms, and
functions provided by the C++ Standard Library

➤➤ Nicolai M. Josuttis. The C++ Standard Library: A Tutorial and Reference, 2nd ed. Addison-
Wesley Professional, 2012. ISBN: 0-321-62321-5.

Covers the entire Standard Library, including I/O streams and strings as well as the contain-
ers and algorithms. This book is an excellent reference.

➤➤ Scott Meyers. Effective STL: 50 Specific Ways to Improve Your Use of the Standard
Template Library. Addison-Wesley Professional, 2001. ISBN: 0-201-74962-9.

Written in the same spirit as the author’s Effective C++ books. This book provides targeted
tips for using the Standard Library, but is not a reference or tutorial.

➤➤ Stephan T. Lavavej. Standard Template Library (STL). http://channel9.msdn.com/
Shows/Going+Deep/C9-Lectures-Introduction-to-STL-with-Stephan-T-Lavavej.

An interesting video lecture series on the C++ Standard Library.

➤➤ David R. Musser, Gillmer J. Derge, and Atul Saini. STL Tutorial and Reference Guide:
Programming with the Standard Template Library, 2nd ed. Addison-Wesley Professional,
2001. ISBN: 0-321-70212-3.

Similar to the Josuttis text, but covering only parts of the Standard Library, such as contain-
ers and algorithms.

Unified Modeling Language  ❘  1067

C++ Templates
➤➤ Herb Sutter. “Sutter’s Mill: Befriending Templates.” C/C++ User’s Journal. http://

drdobbs.com/cpp/184403853.

An excellent explanation of making function templates friends of classes.

➤➤ David Vandevoorde, Nicolai M. Josuttis, and Douglas Gregor. C++ Templates: The
Complete Guide, 2nd ed. Addison-Wesley Professional, 2017. ISBN: 0-321-71412-1.

Everything you ever wanted to know (or didn’t want to know) about C++ templates. This
book assumes significant background in general C++.

➤➤ David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond. Addison-Wesley Professional, 2004. ISBN:
0-321-22725-5.

Delivers practical metaprogramming tools and techniques into the hands of the everyday
programmer.

C++11/C++14/C++17
➤➤ C++ Standards Committee Papers. www.open-std.org/jtc1/sc22/wg21/docs/papers.

A wealth of papers written by the C++ standards committee.

➤➤ Scott Meyers. Presentation Materials: Overview of the New C++ (C++11/14). Artima, 2013.
www.artima.com/shop/overview_of_the_new_cpp.

A document containing the presentation materials from a Scott Meyers’ training course.
This is an excellent reference to get a list of all C++11 and select C++14 features.

➤➤ Wikipedia. C++11. http://en.wikipedia.org/wiki/C%2B%2B11.

➤➤ Wikipedia. C++14. http://en.wikipedia.org/wiki/C%2B%2B14.

➤➤ Wikipedia. C++17. http://en.wikipedia.org/wiki/C%2B%2B17.

Three Wikipedia articles with a description of new features added to C++11, C++14, and
C++17.

➤➤ ECMAScript 2017 Language Specification. www.ecma-international.org/publications/
files/ECMA-ST/ECMA-262.pdf.

One of the syntaxes of the regular expressions in C++ is the same as the regular expressions
in the ECMAScript language, as described in this specification document.

UNIFIED MODELING LANGUAGE
➤➤ Russ Miles and Kim Hamilton. Learning UML 2.0: A Pragmatic Introduction to UML.

O’Reilly Media, 2006. ISBN: 0-596-00982-8.

A very readable book on UML 2.0. The authors use Java in examples, but they are convert-
ible to C++ without too much trouble.

1068  ❘  APPENDIX B   Annotated Bibliography

ALGORITHMS AND DATA STRUCTURES
➤➤ Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms, 3rd ed. The MIT Press, 2009. ISBN: 0-262-03384-4.

One of the most popular introductory algorithms books, covering all the common data
structures and algorithms.

➤➤ Donald E. Knuth. The Art of Computer Programming Volume 1: Fundamental Algorithms,
3rd ed. Addison-Wesley Professional, 1997. ISBN: 0-201-89683-1.

➤➤ Donald E. Knuth. The Art of Computer Programming Volume 2: Seminumerical Algorithms,
3rd ed. Addison-Wesley Professional, 1997. ISBN: 0-201-89684-2.

➤➤ Donald E. Knuth. The Art of Computer Programming Volume 3: Sorting and Searching, 2nd
ed. Addison-Wesley Professional. 1998. ISBN: 0-201-89685-0.

➤➤ Donald E. Knuth. The Art of Computer Programming Volume 4A: Combinatorial
Algorithms, Part 1. Addison-Wesley Professional, 2011. ISBN: 0-201-03804-8.

Knuth’s four-volume tome on algorithms and data structures. If you enjoy mathemati-
cal rigor, there is no better text on this topic. However, it is probably inaccessible without
undergraduate knowledge of mathematics or theoretical computer science.

➤➤ Kyle Loudon. Mastering Algorithms with C: Useful Techniques from Sorting to Encryption.
O’Reilly Media, 1999. ISBN: 1-565-92453-3.

An approachable reference to data structures and algorithms.

RANDOM NUMBERS
➤➤ Eric Bach and Jeffrey Shallit. Algorithmic Number Theory, Efficient Algorithms. The MIT

Press, 1996. ISBN: 0-262-02405-5.

➤➤ Oded Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness.
Springer, 2010. ISBN: 3-642-08432-X.

Two books that explain the theory of computational pseudo-randomness.

➤➤ Wikipedia. Mersenne Twister. http://en.wikipedia.org/wiki/Mersenne_twister.

A mathematical explanation of the Mersenne Twister, used to generate pseudo-random
numbers.

OPEN-SOURCE SOFTWARE
➤➤ The Open Source Initiative at www.opensource.org.

➤➤ The GNU Operating System—Free Software Foundation at www.gnu.org.

Websites where the two main open-source movements explain their philosophies and pro-
vide information about obtaining open-source software and contributing to its development.

Software Engineering Methodology  ❘  1069

➤➤ The Boost C++ Libraries at www.boost.org.

A huge number of free, peer-reviewed portable C++ source libraries. This website is
definitely worth checking out.

➤➤ GitHub at www.github.com, and SourceForge at www.sourceforge.net.

Two websites that host many open-source projects. These are great resources for finding
useful open-source software.

➤➤ www.codeguru.com and www.codeproject.com.

Excellent resources to find free libraries and code for reuse in your own projects.

SOFTWARE ENGINEERING METHODOLOGY
➤➤ Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices. Pearson,

2013. ISBN: 978-1292025940.

Written for software engineers “in the trenches,” this text focuses on the technology—the
principles, patterns, and process—that help software engineers effectively manage increas-
ingly complex operating systems and applications.

➤➤ Mike Cohn. Succeeding with Agile: Software Development Using Scrum. Addison-Wesley
Professional, 2009. ISBN: 0-321-57936-4.

An excellent guide to start with the Scrum methodology.

➤➤ Andrew Hunt and David Thomas, The Pragmatic Programmer. Addison Wesley, 1999.
ISBN: 978-0201616224.

A classic book, and a must read for every software engineer. Almost twenty years later, its
advice is still spot on. It examines the core process—what do you do, as an individual and
as a team, if you want to create software that’s easy to work with and good for your users.

➤➤ Barry W. Boehm, TRW Defense Systems Group. “A Spiral Model of Software Development
and Enhancement.” IEEE Computer, 21(5): 61–72, 1988.

A landmark paper that described the state of software development at the time and pro-
posed the Spiral Model.

➤➤ Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change, 2nd ed.
Addison-Wesley Professional, 2004. ISBN: 0-321-27865-8.

One of several books in a series that promote Extreme Programming as a new approach to
software development.

➤➤ Robert T. Futrell, Donald F. Shafer, and Linda Isabell Shafer. Quality Software Project
Management. Prentice Hall, 2002. ISBN: 0-130-91297-2.

A guidebook for anybody who is responsible for the management of software development
processes.

➤➤ Robert L. Glass. Facts and Fallacies of Software Engineering. Addison-Wesley Professional,
2002. ISBN: 0-321-11742-5.

Discusses various aspects of the software development process and exposes hidden truisms
along the way.

1070  ❘  APPENDIX B   Annotated Bibliography

➤➤ Philippe Kruchten. The Rational Unified Process: An Introduction, 3rd ed. Addison-Wesley
Professional, 2003. ISBN: 0-321-19770-4.

Provides an overview of RUP, including its mission and processes.

➤➤ Edward Yourdon. Death March, 2nd ed. Prentice Hall, 2003. ISBN: 0-131-43635-X.

A wonderfully enlightening book about the politics and realities of software development.

➤➤ Wikipedia. Scrum. http://en.wikipedia.org/wiki/Scrum_(software_development).

A detailed discussion of the Scrum methodology.

➤➤ Manifesto for Agile Software Development. http://agilemanifesto.org/.

The complete Agile software development manifesto.

➤➤ Wikipedia. Version control. https://en.wikipedia.org/wiki/Version_control.

Explains the concepts behind revision control systems, and what kinds of solutions are
available.

PROGRAMMING STYLE
➤➤ Bjarne Stroustrup and Herb Sutter. C++ Core Guidelines. https://github.com/isocpp/

CppCoreGuidelines/blob/master/CppCoreGuidelines.md.

This document is a set of guidelines for using C++ well. The aim of this document is to help
people to use modern C++ effectively.

➤➤ Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional, 1999. ISBN:
0-201-48567-2.

A classic book that espouses the practice of recognizing and improving bad code.

➤➤ Herb Sutter and Andrei Alexandrescu. C++ Coding Standards: 101 Rules, Guidelines, and
Best Practices. Addison-Wesley Professional, 2004. ISBN: 0-321-11358-0.

A must-have book on C++ design and coding style. “Coding standards” here doesn’t mean
“how many spaces I should indent my code.” This book contains 101 best practices, idioms,
and common pitfalls that can help you to write correct, understandable, and efficient C++
code.

➤➤ Diomidis Spinellis. Code Reading: The Open Source Perspective. Addison-Wesley
Professional, 2003. ISBN: 0-201-79940-5.

A unique book that turns the issue of programming style upside down by challenging the
reader to learn to read code properly in order to become a better programmer.

➤➤ Dimitri van Heesch. Doxygen. www.stack.nl/~dimitri/doxygen/index.html.

A highly configurable program that generates documentation from source code and
comments.

Testing  ❘  1071

➤➤ John Aycock. Reading and Modifying Code. John Aycock, 2008. ISBN 0-980-95550-5.

A nice little book with advice about how to perform the most common operations on code:
reading, modifying, testing, debugging, and writing.

➤➤ Wikipedia. Code refactoring. http://en.wikipedia.org/wiki/Refactoring.

A discussion of what code refactoring means, including a number of techniques for
refactoring.

➤➤ Google. Google C++ Style Guide. https://google.github.io/styleguide/cppguide
.html.

A discussion of the C++ style guidelines used at Google.

COMPUTER ARCHITECTURE
➤➤ David A. Patterson and John L. Hennessy. Computer Organization and Design: The

Hardware/Software Interface, 4th ed. Morgan Kaufmann, 2011. ISBN: 0-123-74493-8.

➤➤ John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach, 5th ed. Morgan Kaufmann, 2011. ISBN: 0-123-83872-X.

Two books that provide all the information most software engineers will ever need to know
about computer architecture.

EFFICIENCY
➤➤ Dov Bulka and David Mayhew. Efficient C++: Performance Programming Techniques.

Addison-Wesley Professional, 1999. ISBN: 0-201-37950-3.

One of the few books to focus exclusively on efficient C++ programming. This book covers
both language-level and design-level efficiency.

➤➤ GNU gprof, http://sourceware.org/binutils/docs/gprof/.

Information about the gprof profiling tool.

TESTING
➤➤ Elfriede Dustin. Effective Software Testing: 50 Specific Ways to Improve Your Testing.

Addison-Wesley Professional, 2002. ISBN: 0-201-79429-2.

A book aimed at quality assurance professionals, although any software engineer will
benefit from this book’s discussion of the software-testing process.

1072  ❘  APPENDIX B   Annotated Bibliography

DEBUGGING
➤➤ Microsoft Visual Studio Community Edition, at http://microsoft.com/vs.

The Community Edition of Microsoft Visual Studio is a version of Visual Studio free of
charge for students, open-source developers, and individual developers to create both free
and paid applications. It’s also free of charge for up to five users in small organizations.
It comes with an excellent graphical symbolic debugger.

➤➤ The GNU Debugger (GDB), at www.gnu.org/software/gdb/gdb.html.

An excellent command-line symbolic debugger.

➤➤ Valgrind, at http://valgrind.org/.

An open-source memory-debugging tool for Linux.

➤➤ Microsoft Application Verifier, at https://docs.microsoft.com/en-us/
windows-hardware/drivers/debugger/application-verifier.

A run-time verification tool for C++ code that assists in finding subtle programming
errors and security issues that can be difficult to identify with normal application testing
techniques.

DESIGN PATTERNS
➤➤ Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994. ISBN:
0-201-63361-2.

Called the “Gang of Four” (GoF) book (because of its four authors), the seminal work on
design patterns.

➤➤ Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns
Applied. Addison-Wesley Professional, 2001. ISBN: 0-201-70431-5.

Offers an approach to C++ programming that employs highly reusable code and patterns.

➤➤ John Vlissides. Pattern Hatching: Design Patterns Applied. Addison-Wesley Professional,
1998. ISBN: 0-201-43293-5.

A companion to the GoF book, explaining how patterns can actually be applied.

➤➤ Eric Freeman, Bert Bates, Kathy Sierra, and Elisabeth Robson. Head First Design Patterns.
O’Reilly Media, 2004. ISBN: 0-596-00712-4.

A book that goes further than just listing design patterns. The authors show good and bad
examples of using patterns, and give solid reasoning behind each pattern.

➤➤ Wikipedia. Software design pattern. http://en.wikipedia.org/wiki/
Design_pattern_(computer_science).

Contains descriptions of a large number of design patterns used in computer programming.

Multithreaded Programming  ❘  1073

OPERATING SYSTEMS
➤➤ Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System Concepts, 9th ed.

Wiley, 2012. ISBN: 1-118-06333-3.

A great discussion on operating systems, including multithreading issues such as deadlocks
and race conditions.

MULTITHREADED PROGRAMMING
➤➤ Anthony Williams. C++ Concurrency in Action: Practical Multithreading. Manning

Publications, 2012. ISBN: 1-933-98877-0.

An excellent book on practical multithreaded programming, including the C++ threading
library.

➤➤ Cameron Hughes and Tracey Hughes. Professional Multicore Programming: Design and
Implementation for C++ Developers. Wrox, 2008. ISBN: 0-470-28962-7.

A book for developers of various skill levels who are making the move into multicore
programming.

➤➤ Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2012. ISBN: 0-123-97337-6.

A great book on writing code for multiprocessor and multicore systems.

Standard Library Header Files
The interface to the C++ Standard Library consists of 87 header files, 26 of which present the
C Standard Library. It’s often difficult to remember which header files you need to include in
your source code, so this appendix provides a brief description of the contents of each header,
organized into eight categories:

➤➤ The C Standard Library

➤➤ Containers

➤➤ Algorithms, iterators, and allocators

➤➤ General utilities

➤➤ Mathematical utilities

➤➤ Exceptions

➤➤ I/O streams

➤➤ Threading support library

THE C STANDARD LIBRARY

The C++ Standard Library includes almost the entire C Standard Library. The header files are
generally the same, except for two points:

➤➤ The header names are <cname> instead of <name.h>.

➤➤ All the names declared in the <cname> header files are in the std namespace.

NOTE  For backward compatibility, you can still include <name.h> if you want.
However, that puts the names into the global namespace instead of the std
namespace, and on top of that, the use of <name.h> has been deprecated. It is
recommended to avoid this feature.

C

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

1076  ❘  APPENDIX C   Standard Library Header Files

The following table provides a summary of the most useful functionality. Note that it’s recom-
mended to avoid using C functionality, and instead use equivalent C++ features whenever possible.

HEADER FILENAME CONTENTS

<cassert> assert() macro

<ccomplex> Only includes <complex>. This header is deprecated since C++17.

<cctype> Character predicates and manipulation functions, such as isspace() and
tolower()

<cerrno> Defines errno expression, a macro to get the last error number for certain C
functions.

<cfenv> Supports the floating-point environment, such as floating-point exceptions,
rounding, and so on.

<cfloat> C-style defines related to floating-point arithmetic, such as FLT_MAX

<cinttypes> Defines a number of macros to use with the printf(), scanf(), and similar
functions. This header also includes a few functions to work with intmax_t.

<ciso646> In C, the <iso646.h> file defines macros and, or, and so on. In C++, those
are keywords, so this header is empty.

<climits> C-style limit defines, such as INT_MAX. It is recommended to use the C++
equivalents from <limits> instead.

<clocale> A few localization macros and functions like LC_ALL and setlocale(). See
also the C++ equivalents in <locale>.

<cmath> Math utilities, including trigonometric functions sqrt(), fabs(), and others

<csetjmp> setjmp() and longjmp(). Never use these in C++!

<csignal> signal() and raise(). Avoid these in C++.

<cstdalign> Alignment-related macro __alignas_is_defined. This is deprecated since
C++17.

<cstdarg> Macros and types for processing variable-length argument lists

<cstdbool> Boolean type-related macro __bool_true_false_are_defined. This is
deprecated since C++17.

<cstddef> Important constants such as NULL, and important types such as size_t

<cstdint> Defines a number of standard integer types such as int8_t, int64_t and
so on. It also includes macros specifying minimum and maximum values of
those types.

Containers  ❘  1077

HEADER FILENAME CONTENTS

<cstdio> File operations, including fopen() and fclose(). Formatted I/O:
printf(), scanf(), and family. Character I/O: getc(), putc(), and fam-
ily. File positioning: fseek() and ftell(). It is recommended to use C++
streams instead. (See the section “I/O Streams,” later in this appendix.)

<cstdlib> Random numbers with rand() and srand() (deprecated since C++14; use
the C++ <random> instead). This header includes the abort() and exit()
functions, which you should avoid; C-style memory allocation functions
calloc(), malloc(), realloc(), and free(); C-style searching and sort-
ing with qsort() and bsearch(); string to number conversions: atof(),
atoi(); a set of functions related to multibyte/wide string manipulation.

<cstring> Low-level memory management functions, including memcpy() and mem-
set(). This header includes C-style string functions, such as strcpy() and
strcmp().

<ctgmath> Only includes <complex> and <cmath>. This header is deprecated since
C++17.

<ctime> Time-related functions, including time() and localtime()

<cuchar> Defines a number of Unicode-related macros, and functions like
mbrtoc16().

<cwchar> Versions of string, memory, and I/O functions for wide characters

<cwctype> Versions of functions in <cctype> for wide characters: iswspace(),
towlower(), and so on.

CONTAINERS

The definitions for the Standard Library containers can be found in 12 header files.

HEADER FILENAME CONTENTS

<array> The array class template

<bitset> The bitset class template

<deque> The deque class template

<forward_list> The forward_list class template

<list> The list class template

<map> The map and multimap class templates

<queue> The queue and priority_queue class templates

continues

1078  ❘  APPENDIX C   Standard Library Header Files

HEADER FILENAME CONTENTS

<set> The set and multiset class templates

<stack> The stack class template

<unordered_map> The unordered_map and unordered_multimap class templates

<unordered_set> The unordered_set and unordered_multiset class templates

<vector> The vector class template and the vector<bool> specialization

Each of these header files contains all the definitions you need to use the specified container, includ-
ing iterators. Chapter 17 describes these containers in detail.

ALGORITHMS, ITERATORS, AND ALLOCATORS

The following header files define the available Standard Library algorithms, iterators, and allocators.

HEADER FILENAME CONTENTS

<algorithm> Prototypes for most of the algorithms in the Standard Library. See
Chapter 18.

<execution> Defines the execution policy types for use with the Standard
Library algorithms. See Chapter 18.

<functional> Defines the built-in function objects, negators, binders, and
adaptors. See Chapter 18.

<iterator> Definitions of iterator_traits, iterator tags, iterator,
reverse_iterator, insert iterators (such as back_insert_
iterator), and stream iterators. See Chapter 21.

<memory> Defines the default allocator, functions for dealing with uninitial-
ized memory inside containers, unique_ptr, shared_ptr, make_
unique(), and make_shared(), introduced in Chapter 1.

<memory_resource> Defines polymorphic allocators and memory resources. See
Chapter 21.

<numeric> Prototypes for some numerical algorithms: accumulate(), inner_
product(), partial_sum(), adjacent_difference(), and a
few others. See Chapter 18.

<scoped_allocator> An allocator that can be used with nested containers such as a
vector of strings, or a vector of maps.

C++17

C++17

  (continued)

General Utilities  ❘  1079

GENERAL UTILITIES

The Standard Library contains some general-purpose utilities in several different header files.

HEADER FILENAME CONTENTS

<any> Defines the any class. See Chapter 20.

<charconv> Defines the chars_format enumeration class, the from_chars()
and to_chars() functions, and related structs.

<chrono> Defines the chrono library. See Chapter 20.

<codecvt> Provides code conversion facets for various character encodings.
This header is deprecated since C++17.

<filesystem> Defines all available classes and functions to work with the
filesystem. See Chapter 20.

<initializer_list> Defines the initializer_list class. See Chapter 1.

<limits> Defines the numeric_limits class template, and specializations
for most built-in types. See Chapter 16.

<locale> Defines the locale class, the use_facet() and has_facet()
function templates, and the various facet families. See Chapter 19.

<new> Defines the bad_alloc exception and set_new_handler()
function. This header also defines the prototypes for all six forms
of operator new and operator delete. See Chapter 15.

<optional> Defines the optional class. See Chapter 20.

<random> Defines the random number generation library. See Chapter 20.

<ratio> Defines the Ratio library to work with compile-time rational
numbers. See Chapter 20.

<regex> Defines the regular expressions library. See Chapter 19.

<string> Defines the basic_string class template and the type aliases
string and wstring. See Chapter 2.

<string_view> Defines the basic_string_view class template and the type
aliases string_view and wstring_view. See Chapter 2.

<system_error> Defines error categories and error codes.

<tuple> Defines the tuple class template as a generalization of the pair
class template. See Chapter 20.

C++17

C++17

C++17

C++17

C++17

continues

1080  ❘  APPENDIX C   Standard Library Header Files

HEADER FILENAME CONTENTS

<type_traits> Defines type traits for use with template metaprogramming. See
Chapter 22.

<typeindex> Defines a simple wrapper for type_info, which can be used as an
index type in associative containers and in unordered associative
containers.

<typeinfo> Defines the bad_cast and bad_typeid exceptions. Defines the
type_info class, objects of which are returned by the typeid
operator. See Chapter 10 for details on typeid.

<utility> Defines the pair class template and make_pair() (see Chapter
17). This header also defines utility functions such as swap(),
exchange(), move(), and more.

<variant> Defines the variant class. See Chapter 20.

MATHEMATICAL UTILITIES

C++ provides some facilities for numeric processing. These capabilities are not described in
detail in this book; for details, consult one of the Standard Library references listed in the
Annotated Bibliography in Appendix B.

HEADER FILENAME CONTENTS

<complex> Defines the complex class template for working with complex numbers.

<valarray> Defines valarray and related classes and class templates for working with
mathematical vectors and matrices.

EXCEPTIONS

Exceptions and exception support are covered in Chapter 14. Two header files provide most of the
requisite definitions, but some exceptions for other domains are defined in the header file for that
domain.

HEADER FILENAME CONTENTS

<exception> Defines the exception and bad_exception classes, and the set_
unexpected(), set_terminate(), and uncaught_exception() functions.

<stdexcept> Non-domain-specific exceptions not defined in <exception>.

C++17

  (continued)

Threading Support Library  ❘  1081

I/O STREAMS

The following table lists all the header files related to I/O streams in C++. However, normally your
applications only need to include <fstream>, <iomanip>, <iostream>, <istream>, <ostream>, and
<sstream>. Consult Chapter 13 for details.

HEADER FILENAME CONTENTS

<fstream> Defines the basic_filebuf, basic_ifstream, basic_ofstream, and
basic_fstream classes. This header declares the filebuf, wfilebuf,
ifstream, wifstream, ofstream, wofstream, fstream, and wfstream
type aliases.

<iomanip> Declares the I/O manipulators not declared elsewhere (mostly in <ios>).

<ios> Defines the ios_base and basic_ios classes. This header declares most of
the stream manipulators. You rarely have to include this header directly.

<iosfwd> Forward declarations of the templates and type aliases found in the other
I/O stream header files. You rarely need to include this header directly.

<iostream> Declares cin, cout, cerr, clog, and the wide-character counterparts. Note
that it’s not just a combination of <istream> and <ostream>.

<istream> Defines the basic_istream and basic_iostream classes. This header
declares the istream, wistream, iostream, and wiostream type aliases.

<ostream> Defines the basic_ostream class. This header declares the ostream and
wostream type aliases.

<sstream> Defines the basic_stringbuf, basic_istringstream, basic_ostring-
stream, and basic_stringstream classes. This header declares the
stringbuf, wstringbuf, istringstream, wistringstream, ostring-
stream, wostringstream, stringstream, and wstringstream type
aliases.

<streambuf> Defines the basic_streambuf class. This header declares the type aliases
streambuf and wstreambuf. You rarely have to include this header
directly.

<strstream> Deprecated.

THREADING SUPPORT LIBRARY

C++ includes a threading support library, which allows you to write platform-independent multi-
threaded applications. See Chapter 23 for details. The threading support library consists of the
following header files.

1082  ❘  APPENDIX C   Standard Library Header Files

HEADER FILENAME CONTENTS

<atomic> Defines the atomic types, atomic<T>, and atomic operations.

<condition_variable> Defines the condition_variable and condition_
variable_any classes.

<future> Defines future, promise, packaged_task, and async().

<mutex> Defines call_once() and the different non-shared mutex and
lock classes.

<shared_mutex> Defines the shared_mutex, shared_timed_mutex, and
shared_lock classes.

<thread> Defines the thread class.

Introduction to UML
Unified Modeling Language, or UML, is the industry standard for diagrams visualizing class
hierarchies, subsystem interactions, sequence diagrams, and so on. This book uses UML for its
class diagrams. Explaining the entire UML standard warrants a book in itself, so this appen-
dix is just a brief introduction to only those aspects of UML that are used throughout this
book, which are class diagrams. There are different versions of the UML standard. This book
uses UML 2.

TYPES OF DIAGRAMS

UML defines the following collection of types of diagrams:

➤➤ Structural UML diagrams

➤➤ Class diagram

➤➤ Component diagram

➤➤ Composite structure diagram

➤➤ Deployment diagram

➤➤ Object diagram

➤➤ Package diagram

➤➤ Profile diagram

➤➤ Behavioral UML diagrams

➤➤ Activity diagram

➤➤ Communication diagram

➤➤ Interaction overview diagram

➤➤ Sequence diagram

D

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

1084  ❘  APPENDIX D   Introduction to UML

➤➤ State diagram

➤➤ Timing diagram

➤➤ Use case diagram

Because this book only uses class diagrams, that is the only type of diagram that is discussed further
in this appendix.

CLASS DIAGRAMS

Class diagrams are used to visualize individual classes and the relationships between different
classes, both are discussed in the next sections.

Class Representation
A class is represented in UML as a box with a maximum of three compartments, containing the
following:

➤➤ The name of the class

➤➤ The data members of the class

➤➤ The methods of the class

Figure D-1 shows an example.

MyClass has two data members—one of type string, the other of
type float—and it has two methods. The plus and minus signs in
front of each member specify its visibility. The following table lists
the most commonly used visibilities.

VISIBILITY MEANING

+ public member

- private member

protected member

Depending on the goal of your class diagram, sometimes details of members
are left out, in which case a class is represented with a box, as shown in Figure
D-2. This can, for example, be used if you are only interested in visualizing the
relationships between different classes without details of members of individual
classes.

Relationships Representation
UML 2 supports six different kinds of relationships between classes. I discuss these relationships in
the following sections.

MyClass

- mDataMember : string
- mValue : float
+ getValue() : float
+ setValue(value : float) : void

FIGURE D-1

MyClass

FIGURE D-2

Class Diagrams  ❘  1085

Inheritance
Inheritance is visualized using a line starting from the derived
class and going to the base class. The line ends in a hollow
triangle on the side of the base class, depicting the is-a rela-
tionship. Figure D-3 shows an example.

Realization/Implementation
A class implementing a certain interface is basically inherit-
ing from that interface (is-a relationship). However, to make a
distinction between generic inheritance and interface realiza-
tion, the latter is visualized similar to inheritance but using
a dashed line instead of a solid line, as shown
in Figure D-4. The ListBox class is derived
from UIElement, and implements/realizes the
Clickable and Scrollable interfaces.

Aggregation
Aggregation represents a has-a relationship. It is
shown with a line with a hollow diamond shape
on the side of the class that contains the instance
or instances of the other class. In an aggregation relation-
ship, you can also optionally specify the multiplicity of
each participant in the relationship. The location of the
multiplicity, that is, on which side of the line you need to
write it, can be confusing at first (see Figure D-5). In this
example, a Class can contain/aggregate one or more Students, and each Student can follow zero
or more Classes. An aggregation relationship means that the aggregated object or objects can con-
tinue to live when the aggregator is destroyed. For example, if a Class is destroyed, its Students are
not destroyed.

The following table lists a few examples of possible multiplicities.

MULTIPLICITY MEANING

N Exactly N instances

0..1 Zero or one instance

0..* Zero or more instances

N..* N or more instances

Composition
Composition is very similar to aggregation, and is visually represented almost the same, except that
a full diamond is used instead of a hollow diamond. With composition, in contrast to aggregation,

BaseClass

Derived1 Derived2

MoreDerived

FIGURE D-3

UIElement

ListBox

Clickable Scrollable

FIGURE D-4

Class Student
0..* 1..*

FIGURE D-5

1086  ❘  APPENDIX D   Introduction to UML

if the class that contains instances of the other class is
destroyed, those contained instances are destroyed as well.
Figure D-6 shows an example. A Window can contain zero
or more Buttons, and each Button has to be contained by
exactly one Window. If the Window is destroyed, all Buttons
it contains are destroyed as well.

Dependency
A dependency visualizes that a class depends on another
class. It is depicted as a dashed line with an arrow point-
ing toward the dependent class. Usually, some text on the
dashed line describes the dependency. To come back to the
car factory example of Chapter 29, a CarFactory is depen-
dent on a Car because the factory creates the cars. This is
visualized in Figure D-7.

Association
An association is a generalization of an aggregation. It rep-
resents a binary link between classes, while an aggregation
is a unidirectional link. A binary link can be traversed in
both directions. Figure D-8 shows an example. Every Book
knows who its authors are, and every Author knows which books she wrote.

Window Button
1 0..*

FIGURE D-6

CarFactory Carcreates

FIGURE D-7

Author Book
1..* 1..*

FIGURE D-8

1087

INDEX

Symbols

< > (angle brackets), in templates, 383
| | operator, 21
character, 5
! operator, 13, 21
!= operator, 20
% operator, 13
%= operator, 13
& operator, 14
&& operator, 21
&= operator, 14
* operator, 13
*= operator, 13
+ operator, 13
++ operator, 13
+= operator, 13
-- operator, 13
-= operator, 13
/ operator, 13
/= operator, 13
<< operator, 14

output streams and, 412
overloading, 423–425

<<= operator, 14
<= operator, 20
= operator, 13
== operator, 20
> operator, 20
>> operator, 14

input streams, 417–418
overloading, 423–425

>>= operator, 14
>= operator, 20

^ operator, 14
^= operator, 14
| operator, 14
|= operator, 14

A

abs() function, 511, 695
abstract classes, 303
abstraction

design, 141
implementation, 138–139
interface, 138–139
reusable code and, 145–146

access, 201
accumulate algorithm, 611–612
adaptor function objects

binders, 624–626
member functions, call, calling, 628–629
negators, 626–627

adaptor patterns, 1006–1008
adjacent_find() algorithm, 524
Agile Manifesto, 866–867
<algorithm> header, 630–631
algorithms, 630–631

accumulate, 611–612
auditing voter registration example,

657–661
binary search, 649–650

binary_search(), 529
equal_range(), 529
lower_bound(), 529
upper_bound(), 529

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

1088

algorithms – algorithms

callbacks, 607
comparison, 524–525

equal(), 525
lexicographical_compare(), 525
mismatch(), 525

counting, 525
all_of(), 525
any_of(), 525
count(), 525
count_if(), 525
none_of(), 525

find(), 608–611
find_all(), 735–736
find_if(), 608–611
header files, 1078–1079
heap

is_heap, 530
is_heap_until(), 530
make_heap(), 530
pop_heap(), 530
push_heap(), 530
sort_heap(), 530

iterators, 521–522, 608, 631, 737
minimum-maximum, 653–654

clamp(), 530
max(), 530
max_element(), 530
min(), 530
min_element(), 530
minmax(), 530
minmax_element(), 530

modifying sequence
copy(), 525, 638–639
copy_backward(), 525
copy_if(), 525
copy_n(), 525
fill(), 526
fill_n(), 526
generate(), 526
generate_n(), 526
move(), 526, 640–641
move_backward(), 526
random_shuffle(), 526

remove(), 526, 641–643
remove_copy(), 526
remove_copy_if(), 526
remove_if(), 526
replace(), 526, 641
replace_copy(), 526
replace_copy_if(), 526
replace_if(), 526
reverse(), 526, 644
reverse_copy(), 526
sample(), 526, 643–644
shuffle(), 526, 644
transform(), 526, 637–638
unique(), 526, 643
unique_copy(), 526

move semantics, 612
non-modifying, 523–524
numerical processing, 655

accumulate(), 531
adjacent_difference(), 531
exclusive_scan(), 531
gcd(), 530, 656
inclusive_scan(), 531
inner-product(), 656
inner_product(), 531
iota(), 530, 656
lcm(), 531, 656
partial_sum(), 531
reduce(), 531, 656
transform_exclusive_scan(),

531
transform_inclusive_scan(), 531
transform_reduce(), 531, 657

operational
for_each(), 527, 644–646
for_each_n(), 527, 646

parallel, 655
partition, 647–648

is_partitioned(), 527
partition(), 527
partition_copy(), 528
partition_point(), 528
stable_partition(), 528

1089

aliases – arrays

permutation
is-permutation(), 532
next-permutation(), 532
prev-permutation(), 532

resources, 1068
scan algorithms, 657
search, 524

adjacent_find(), 524
find(), 524
find_end(), 524
find_first_if(), 524
find_if(), 524
find_if_not(), 524
search(), 524
search_n(), 524

sequence algorithms
modifying, 636–644
non-modifying, 631–636

set, 650–653
includes(), 529
inplace_merge(), 529
merge(), 529
set_difference(), 529
set_intersection(), 529
set_symmetric_difference(), 529
set_union(), 529

sorting, 649
is_sorted(), 528
is_sorted_until(), 528
nth-element(), 528
partial_sort(), 528
partial_sort_copy(), 528
sort(), 528
stable_sort(), 528

Standard Library, 507, 521
swap and exchange

exchange(), 527, 647
iter_swap(), 527
swap(), 527, 646
swap_ranges(), 527

writing, 735–737
aliases, 334

alias templates, 399

namespaces, 10
aliasing, 183, 189
allocate() method, 728–729
allocating arrays, dynamically,

31–32
allocating memory, 166–168
Allocator type, 728–729
allocators, header files, 1078–1079
all_of() algorithm, 525, 636
anonymous namespaces, 349
<any> header, 713–714
any_of() algorithm, 525, 636
APIs (application programming interface),

140
architecture, crossplatform development and

address sizes, 1020
binary compatibility, 1019–1020
byte order, 1020–1021
integer size, 1018–1019

arguments
default, 257–258
types, operator overload, 476

arithmetic function objects, 621
arithmetic operators

durations and, 695
overloading, 269–270

decrement, 483–484
increment, 483–484
unary minus, 483
unary plus, 483

array container, 516, 520, 568–569
arrays

allocating, dynamically, 31–32
associative arrays, 518
basic types, 168–170
constant expressions and, 23
declaring, heap, 169
deleting, 171
dynamic, 169
initializing, 23
multi-dimensional

heap, 173–175
stack, 172–173

1090

ASCII – callbacks

of objects, 170
one-dimensional, 24
as pointers, 177–178
std::array container, 25
std::vector container, 25–26

ASCII (American Standard Code for
Information Interchange), 663–664

assertions, debugging and, 945–946
assign() method, 545
assignment operators, 236–242

copy, 228
declaring, 225–226
defaulted, explicit, 227
defining, 226–227
deleted, explicit, 227
move, 243, 245–246

swap() function, 247–248
objects, as return values, 228–229

associative arrays, 518
at() function, 376
atan2() function, 511
<atomic> header, 827

atomic operations, 830–831
atomic types, 827–830

attributes
[[deprecated]], 364
[[fallthrough]], 364
[[maybe_unused]], 365
[[nodiscard]], 364–365
[[noreturn]], 363
vendor-specific, 365

auto keyword, 40, 613
automatic variables, 164
auto_ptr, 192

B

bad() method, 414–415
base() method, 731
base classes, 130, 278, 302–304

ambiguous, 311–312
virtual, 312, 331–332

begin() function, 523
behaviors, 126

Bessel functions, 511
beta functions, 511
bidirectional streams, 431–432
big-endian ordering of bytes, 1021
binary logical operators, overloading,

484–485
binary operators, 13
binary_search() algorithm, 649
bind() negator adaptor, 624–626
binding

dynamic, 287
early, 287
late, 287
method hiding and, 287
static, 287

bitset container, 519, 521, 600–601
bitwise copying, 236
bitwise function objects, 624
bitwise operators, overloading, 484–485
black-box testing, 909
Boehm, Barry W., 863
boolalpha input manipulator, 423
boolalpha output manipulator, 415
boyer_moore_horspool_searcher algorithm,

633
boyer_moore_searcher algorithm, 633
bridge pattern, 272
buffered streams, 410, 413
bugs. See also debugging

avoiding bugs, 934–935
Bugzilla, 912
life cycle, 910–911
root causes, 934
tracking, 912–913

byte order, 1020–1021

C

C++ resources, 1063–1064
C++11, resources, 1067
C++14, resources, 1067
C++17, resources, 1067
cache lines, 818
callbacks, 607, 610

1091

calling member functions – classes

calling member functions, 628–629
casting, 299–300

casting variables, 12
pointers and, 176

casts
const_cast(), 357–358, 361
dynamic_cast(), 360–361
reinterpret_cast(), 359–361
static_cast(), 358–359, 361

catch exceptions, object handling and, 886
catching exceptions, 437–439, 976

in class hierarchy, 448–449
const reference, 440–441
multiple, 441–443

cbegin() function, 523
ceil() function, 511, 695
cend() function, 523
cerr stream, 410
chain of responsibility pattern, 1010–1014
chaining constructors, 295
character classification, localization and,

669–670
character sets, 664

non-Western, 665
character types, 665
Chrono library

clocks, 698–700
durations, 694–698
time points, 700–702

cin stream, 410
class constants, 260–261
class templates, 514

< > (angle brackets), 383
alias templates, 399
compiler and, 383–384

instantiation, 384
types and, 384

definitions
in header files, 384–385
in source files, 385–386

driving from, 397–398
inheritance, 397–398
instantiation, 378, 382
parameters, 386

deduction for constructors, 389–391
default values, 389
non-type parameters, 387–388

writing
coding without templates, 375–378
Grid class, 378–381
Grid template, 382–383

classes, 124–125
abstract, 303
access specifiers, 201-202
base, 278, 302–304

ambiguous, 311–312
virtual, 312

constructors, 201
data members, 200, 201
declarations, ordering, 203
defining

constructor initializer, 41–42
constructors, 41–42
data members, 40
destructors, 41–42
methods, 40

definitions, 200–201
Derived, 279–281
derived, 304–305

functionality, 292–294
parent constructors, 294–296
parent destructors, 296–297

deriving from existing, 974
destructors, 201
exceptions, writing, 449–452
friends, 232–233
Grid, 378–383
hash tables, 132
hierarchies, catching exceptions, 448–449
high_resolution_clock, 698–699
Impl, 273
implement class, 272–275
instances, 125, 201
interface class, 272–275
interviews, 1046–1050
istream_iterator, 730
Logger, 938
member functions, 201

1092

cleanup – comments

member variables, 201
members, 201, 203
methods, 201
mixin, 138
nested, 263–264
opaque, 146
ostream_iterator, 729
pair, 576–577
parent, 278
reference_wrapper, 537
rule of zero, 250
statements, 201
std::ostringstream, 425
string, 509
string_view, 509
superclasses, 278
system_clock, 698
template classes, 977–979
time_point, 698, 700–702
types, enumerated, 264–265
using, 43
writing, 972–974

cleanup() function, 248
clocks, 698–700

high_resolution_clock class, 698–699
system_clock class, 698
time_point class, 698, 700–702

clog stream, 410
clone() method, 375
code

compiled, 5
decomposition, 81–83
reuse

advantages, 105
APIs, 104
big-O notation, 108–109
capabilities, 107–108
design, 146–148
design-by-contract, 150
disadvantages, 105–106
error checking, 150
extensibility and, 151–153
frameworks, 104
libraries, 104

licensing and, 110–111
open-source libraries, 112–114
performance and, 109–110
platforms and, 110
versus polymorphism, 131–132
postconditions, 150
preconditions, 150
prototypes, 111–112
resources, 111
safe code, 150–151
SRP (Single Responsibility Principle),

146–147
stand-alone classes, 104
stand-alone functions, 104
Standard Library, 114
support and, 110–111
templates, 148–150
third-party apps, 112
types of code, 104
writing reusable, 102–103

code points, character sets, 665
coding style, 71. See also design

challenges, 90–91
constants, 87
documentation, comments, 72–81
exceptions, custom, 88
formatting

curly braces { }, 88–89
parentheses, 89–90
spaces, 89–90
tabs, 90

interviews, 1041–1042
planning, 72
references, 87

collections, 126
collisions, 591
comments, 3–4

ad hoc, 80–81
complicated code and, 74–75
every line, 77–78
fixed-format, 79–80
meta-information and, 75–76
prefixes, 78
self-documenting code, 81

1093

comparison algorithms – containers

usage explanation, 72–74
comparison algorithms, 524–525, 634–635
comparison function objects, 622–623
comparison operators, overloading, 270–271
compiled code, 5
compiler-generated constructors, 222–223
component interface, 140
components, 125
computer architecture, resources, 1071
concatenation, tuples, 718
condition variables, 840–842
conditional statements

if/else, 17–18
operator, 20
switch, 18–19

<condition_variable> header, 840
console, streams and, 410
const keyword

constants, 35
methods, 345
parameter protection, 35
parameters, 343
pointers, 343–345
references, 37, 345
variables, 343

const methods, 251–252
const reference data members,

262–263
const static data members, 260–261
const value, 334–335
constant iterators, 631
constants

class constants, 260–261
null pointer, 32–33

const_cast(), 357–358, 361, 376
constexpr keyword

constant expression, 346
literal type, 346

constructors, 209
chaining, 295
compiler-generated, 222–223, 228
converting constructors, 307
copy, 218–219
default, 212–215

compiler-generated, 213–214
explicitly defaulted, 214
explicitly deleted, 215
need, 212
writing, 212–213

delegating, 211, 222, 238–239
derived classes, 294–296
error handling, 462–464
function-try-blocks, 464–467
on the heap, 210
inherited, 316–319
initializer-list constructors,

220–222
initializers, 215–218
move, 245–248
multiple, 211
overloading, 211
parent, 294–296
on the stack, 210
typed constructors, 307
writing, 209–210

container adapters
priority_queue, 572–575
queue, 570–572
stack, 575–576

containers
Allocator type, 728–729
allocators, 760
associative, 536, 760–773
bitset, 519, 600–604
container adapters, 536
error checking, 539
hash functions, 738–740
hash map interface

assignment operators, 745–746
deleting elements, 744
hash template parameter, 741
implementation, 741–742
inserting elements, 744
KeyEqual template parameter, 741
removing elements, 745
searching elements, 742–744
swapping elements, 745
type aliases, 741

1094

conversions – cross-platform development

hash maps
buckets, 738
hash functions, 738–740, 746–747
methods, 748–750
type aliases, 747–748

hash tables, 536, 591–598
header files, 1077–1078
interfaces, 514
iterators, 539–541, 750–751

access methods, 758–759
const_hash_map_iterator class,

751–752
const_hash_map_iterator method

implementations, 752–756
hash_map_iterator method

implementations, 756–757
type aliases, 758–759
using, 759–760

ordered associative, 576
reversible, 760
sequential, 536, 737, 773

array, 568–569
deque, 562
forwards_list, 566–568
list, 562–566

standard C-style arrays, 598–599
Standard Library, 507, 514

array, 516, 520
bitset, 521
deque, 516, 520
forward_list, 515, 520
list, 515, 520
map, 518
map multimap, 521
multimap, 518
multiset, 517–518
priority_queue, 516–517, 520
queue, 516, 520
set, 517–518
set multiset, 521
stack, 517, 521
unordered_map, 521
unordered_multimap, 521
unordered_multiset, 521
unordered_set, 521

vector, 342, 514–515, 519
strings, 599–600
unordered associative containers, 518–519,

536, 591–598
writing, 737–773

conversions
implicit, 267
localization, 667–668

converting constructors, 307
cooked mode literal operators, 366
copy() algorithm, 525
copy() method, 732
copy assignment operator, compiler

generated, 228
copy constructors, 218–219, 236–242
copy list initialization, 45
copy-and-swap idiom, 975–976
copy_backward() algorithm, 525
copy_if() algorithm, 525
copy_n() algorithm, 525
core dumps, 946–947
count() algorithm, 525, 636
count_if() algorithm, 525
counting algorithms, 525, 636
cout stream, 410

standard output, 412
crash dumps, 946–947
crbegin() function, 523
createDocArray() function, 169
cref() function, 537
crend() function, 523
cross-language development

C and C++, 1024
C code, 1028–1030
C++ code

calling assembly code from, 1036–1037
calling from C#, 1030–1031
calling from Java with JNI, 1031–1033
calling from scripts, 1034–1036
calling scripts from, 1033–1034

facade, 1024
object-oriented wrapper, 1024–1025

cross-platform development
architecture and

address sizes, 1020

1095

<cstdint> header – derived classes

binary compatibility, 1019–1020
byte order, 1020–1021
integer size, 1018–1019

cross-compiling, 1020
implementation

compilers and, 1021–1022
library implementations, 1022

platform-specific features, 1022–1023
<cstdint> header, 514
C-style arrays, 598–599
cylindricalNeumann functions, 511

D

dangling pointers, 197, 238
data members, 200

moving, 247
mutable, 253
pointers, type aliases, 355–356
references, 261–263, 336
static, 258

accessing, 259–260
inline variables, 259

data races, 815–817
data structures, resources, 1068
deadlocks, multithreaded programming and,

817–818
deallocate() method, 728
deallocating memory, 166–168
debugging

article citations example, 957–969
assertions, 945–948
avoiding bugs, 934–935
catastrophic bugs, 934
cosmetic bugs, 934
crash dumps, 946–947
debug traces

debug mode, 937–941
ring buffers, 942–945

error logging and, 935–937
interviews, 1060
memory problems, 951, 954–956

memory-access errors, 953–954
memory-freeing errors, 952–953

multithreaded programs, 956–957
noncatastrophic bugs, 934
regressions, 951
reproducing bugs, 948–949

debugging nonreproducible, 950–951
debugging reproducible, 949

resources, 1072
root causes of bugs, 934
tests, 927

dec input manipulator, 423
dec output manipulator, 415
declaring functions, 5, 21–22
decltype keyword, 40
decomposing code, 21
decomposition, 81–82

modular, 83
refactoring

abstraction, 82
breaking code apart, 82
locations, 82
names, 82

decorator pattern, 1008–1010
default arguments, 257–258
default keyword, 214–215
default_searcher algorithm, 633
#define directive, 6
delegating constructors, 211, 222,

238–239
delete[], 169
delete() operator, 32
delete keyword, deallocating memory,

166–167
delete operator, 500–506
[[deprecated]] attribute, 364
deque container, 516, 520, 562
dereferencing operators, overloading,

492–494
operator->*, 495–496
operator *, 494
operator ->, 494

dereferencing pointers, 30, 175–176
Derived class, 279–281
derived classes, 304–305

constructors, parent, 294–296

1096

Derived constructor – dynamic strings

destructors, parent, 296–297
functionality, 292–294

Derived constructor, 294–296
design. See also reusable code

abstraction and
benefits, 100
incorporating, 101

C++, 99–100
chess program, 114–115

algorithms, 118–120
class hierarchies, 118
classes, 118–120
data structures, 118–120
error handling, 120–121
patterns, 118–120
subsystems, 115–117
threading models, 117

frameworks and, interviews, 1060
functional requirements and, 96
importance of, 97–99
multithreaded programming, 853–855
non-functional requirements and, 96
object-oriented design, interviews,

1044–1045
patterns, 99, 103, 991

adaptor pattern, 1006–1008
chain of responsibility, 1010–1014
decorator pattern, 1008–1010
dependency injection, 993
factory patterns, 997–1004
interviews, 1060–1061
iterator pattern, 992–993
observer pattern, 1014–1016
proxy pattern, 1004–1006
resources, 1072
singleton, 993–997

program design, interviews, 1042–1044
software design, 96
stakeholders and, 96
Standard Library and, 114
techniques, 103, 971–972

design-level efficiency, 889
caching, 889–890
object pools, 890–891, 893–894

implementation, 891–892

destruction, variables, non-local, 351
destructors, 224–225, 235–236

derived classes, 296–297
error handling and, 467
parent, 296–297
virtual keyword, 288–290

DIP (Dependency Inversion Principle), 159
direct list initialization, 45
directives

#endif, 367–368
#ifndef, 367–368
#include, 368
#pragma once, 368
preprocessor, 6

directories, iteration, 722–723
DLLs (Dynamic Link Library), 354–355
documentation

comments
ad hoc, 80–81
complicated code and, 74–75
every line, 77–78
fixed-format, 79–80
meta-information, 75–76
prefixes, 78
self-documenting code, 81
usage explanation, 72–74

man pages, 156
doSomething() function, 453
double dispatch, 981–985
double-ended queue, 516
doubleInts(), 178
doubly linked lists, 515
do/while loop, 27
downcasting, 300
doWorkInThread() function, 825
DumpRange() function, 652
durations, 694–698
dynamic arrays, 169
dynamic binding, 287
dynamic casts, pointers and, 176
dynamic memory, 164–165

allocation, 233–235
dynamic strings, 58

C-style
copyString() function, 58

1097

dynamically allocating arrays – exceptions

sizeof() operator, 59
strlen() function, 58–59

nonstandard strings, 69
std::string class, 62–67
std::string_view class, 67–69
string literals

assigning, 60
literal pooling, 60
raw string literals, 60–62

dynamically allocating arrays, 31–32
dynamic_cast(), 360–361, 453

E

earlybinding, 287
efficiency

design-level, 882, 889
caching, 889–890
object pools, 890–894

interviews, 1058–1059
language, 882–883
language-level, 882, 883–884

inline functions, 888–889
inline methods, 888–889
memory allocation, 888
object handling, 884–888

profiling and, 894
example, Visual C++ 2017, 902–906
gprof and, 895–902

resources, 1071
elements, value semantics, 537–538
elliptic integrals, 511
emplace() method, 580
emplace operations, containers,

554
employee records program, 46

Database class
Database.cpp file, 51–52
Database.h file, 50–51
DatabaseTest.cpp file, 52–53

Employee class
Employee.cpp file, 48–49
Employee.h file, 47–48
EmployeeTest.cpp file, 50

user interface, 53–55

enable_shared_from_this, 191
encodings, UCS, 665
end() function, 523
#endif directive, 6, 367–368
enumerated types, 15–16, 264–265

strongly typed enumerations,
16

structs, 16–17
eof() method, 414–415
equal() algorithm, 525, 634–635
equal_range() algorithm, 649
erf() function, 511
error checking, containers, 539
error handling, 433

constructors, 462–464
destructors, 467
exceptions, 434–435
input streams, 418–419
interviews, 1053–1054
memory allocation errors, 459–461
output streams, 414–415

error logging, debugging and, 935–937
exception handling, futures, 846–847
exceptions, 433

catching, 437–439, 976
in class hierarchy, 448–449
const reference, 440–441
multiple, 441–443

classes, writing, 449–452
cleanup and, 458
copying, 824–826
custom, 88
exception specification, 446
header files, 1081
nested, 452–454
noexcept keyword, 445–446
rethrowing, 454–456, 458, 824–826
standard, 446

hierarchy, 446–448
throw list, 446
throwing, 437–439

multiple, 441–443
throwing exceptions, 976
types, 439–440
uncaught, 444–445

1098

exchange – function pointers

exchange() algorithm, 647
exclusive_scan() algorithm, 657
exceptions, 37–38, 434–435

Standard Library, 510
execution policy, parallel algorithms, 655
exp() function, 511
explicit keyword, 391
expressions, folding expressions, 796–797
extern keyword, 349–350
extraction operators, overloading, 485–486

F

factory patterns, 997–999, 1002–1003
implementing, 999–1001
other uses, 1003–1004

fail() method, 414–415
[[fallthrough]] attribute, 364
false-sharing, multithreaded programming

and, 818
fgets() function, 411
file streams, 426–427

binary mode, 427–428
fgets() function and, 411
<filestream> header file, 426–427
fprintf() function and, 411
fputs() function and, 411
fread() function and, 411
fscanf() function and, 411
fwrite() function and, 411
ios_base::app constant, 427
ios_base::ate constant, 427
ios_base::binary constant, 427
ios_base::in constant, 427
ios_base::out constant, 427
ios_base::trunc constant, 427
text mode, 427–428

files
header files, 5
reading from, 976–977
source files, 5

<filestream> header file, 426–427
filesystem support library, 513

directory entry, 721

directory iteration, 722–723
helper functions, 721–722
path, 720–721

fill() algorithm, 526
fill_n() algorithm, 526
find() algorithm, 524, 608–611
find_end() algorithm, 524
find_first_if() algorithm, 524
find_if() algorithm, 524, 608–611
find_if_not() algorithm, 524
findMatches() function, 355
floor() function, 511, 695
flush() method, 410, 413
flush-on-access, streams, 430–431
fma() function, 511
folding expressions, 796–797
for loop, 27
for_each() algorithm, 646
for_each_n() algorithm, 646
forward declarations, 261, 368–369
forward_list container, 515, 520
forwards_list container, 566–568
fprintf() function, 411
fputs() function, 411
frameworks, object-oriented

MFC (Microsoft Framework Classes), 988
MVC (Model-View-Controller), 989–990

fread() function, 411
freeing memory, 235–236
friends, 232–233
fscanf() function, 411
full class template specialization, 782–785
function call operator, overloading, 491–492
function objects, 513, 607

arithmetic, 621
bitwise, 624
comparison, 622–623
invokers, 629
logical, 623–624
threads and, 820–822
transparent, 622
writing, 629–630

function pointers
threads and, 819–820

1099

function templates – functors

type aliases, 353–355
function templates, 400–401

class templates and, 403–404
overloading, 402–403

specialization and, 403
return types, 405–406
specialization, 401–402

functional composition, adaptor function
objects and, 624

functional relationships, 135
functionality, 130–131
functions, 21, 374

abs(), 511
at(), 376
atan2(), 511
begin(), 523
cbegin(), 523
ceil(), 511
cend(), 523
cleanup(), 248
crbegin(), 523
createDocArray(), 169
crend(), 523
current function name, 23
declarations, 5, 21–22
definitions, 5
[[deprecated]] attribute, 364
doSomething(), 453
doWorkInThread(), 825
DumpRange(), 652
end(), 523
erf(), 511
exp(), 511
fgets(), 411
findMatches(), 355
floor(), 511
fma(), 511
fprintf(), 411
fputs(), 411
fread(), 411
friends, 232
fscanf(), 411
fwrite(), 411
getValue(), 201

handleMessage(), 244
handleValue(), 793
hash functions, 591–593
increment(), 828–829
intEqual(), 355
log(), 511, 939
main(), 6–7
make_pair(), 389–390
malloc(), 167
[[maybe_unused]] attribute, 365
member functions, calling, 628–629
mem_fn(), 628–629
new handler callback, 460–461
[[nodiscard]] attribute, 364–365
[[noreturn]] attribute, 363–364
parameters, 374
polymorphic function wrapper, 612
pow(), 511
predicate function callbacks, 610
processValues(), 792–793
pthread_create(), 819
rand(), 512, 702
rbegin(), 523, 730
realloc(), 170
refcall(), 339
remainder(), 511
rend(), 523, 730
rethrow_nested(), 453
return type, deduction, 22–23
set_terminate(), 445
setValue(), 201
sin(), 511
sinh(), 511
sprintf(), 411
sprintf_s(), 411
sqrt(), 511
srand(), 512, 702
sscanf(), 411
swap(), 247–248
terminate(), 444
tgamma(), 511
threadFunc(), 825

function-try-blocks, 464–467
functors, 607. See function objects

1100

<future> folder – header files

<future> folder, 513
futures, 843

exception handling, 846–847
promises, 843
std::async, 845–846
std::future, 843–844
std::packaged_task, 844–845
std::promise, 843–844
std::shared_future, 847–848
threads, 824

fwrite() function, 411

G

GameBoard class, error handling and, 468–
472

generate() algorithm, 526
generate_n() algorithm, 526
generic programming, 374, 378

templates and, 508
get_money input manipulator, 423
getStatus(), 85
getters, 139
get_time input manipulator, 423
getValue() function, 201
global scope, 362
good() method, 414–415
GPUs (graphics cards), 814
granularity of tests, 916
Grid class, 378, 380–381

definition, 379–380
methods, 380–381

H

handleMessage() function, 244
handles, 146
handleValue() function, 793
has-a relationships, 129, 132–135
hash functions, 591–593
hash tables, 518–519, 591–598
header files, 5, 1075–1077

<algorithm>, 630–631
algorithms, 1078–1079

allocators, 1078–1079
<any>, 713–714
<array>, 516
<atomic>, 827
<chrono>, 512
<condition_variable>, 840
containers, 1077–1078
<deque>, 516
duplicate definitions, 367–368
exceptions, 1081
<filestream>, 426–427
forward declarations, 368–369
<forward_list>, 515
<functional>, 621
<future>, 513
general utilities, 1079–1080
initializer lists, 28
<initializer_list>, 512
I/O streams, 1081–1082
<iostream>, 5, 412
iterators, 1078–1079
<list>, 515
<locale>, 509
<map>, 518
mathematical utilities,

1081
<multimap>, 518
<multiset>, 517–518
<numeric>, 630
<optional>, 711
<ostream>, 412
<priority_queue>, 516–517
<queue>, 516
<ratio>, 691–694
<set>, 517–518
<stack>, 517
cstdint>, 514
<string>, 509
template definitions, 384–385
<thread>, 513
threading support library, 1082
<tuple>, 512
<type_traits>, 514
<utility>, 512, 630

1101

heap – input streams

<variant>, 712–713
<vector>, 514–515

heap
constructors on, 210
new keyword, 165
objects, 207
pointers, 30–31

Hello World, 3
helper functions, filesystem support library,

721–722
hex input manipulator, 423
hex output manipulator, 415
hierarchies, 136

catching exceptions, 448–449
standard exceptions, 446–448

high_resolution_clock class, 698–699
Hungarian Notation, 85

I

_i literal, 366
#ifdef directive, 6
if/else statements, 17–18
#ifndef directive, 6, 367–368
Impl class, 273
implementation class, 272–275
implicit conversions, 267
#include directive, 6, 368
inclusive_scan() algorithm, 657
increment() function, 828–829
inheritance

base classes, 130
virtual, 331–332

casts, 360–361
constructors, 316–319
derived classes

assignment operator, 327–329
copy constructors, 327–329

extending classes, 278–279
Derived class, 279–281

functionality, 130–131
multiple, 137–138, 308–309

base classes, ambiguous, 311–312
naming collisions, 309–310

uses, 312
non-public, 331
overridden methods

base class method, 324–327
base class method overloaded, 321–322
base class method private, 322–324
base class method protected, 322–324
base class method static, 320–321
method return type, 313–315
parameters, changing, 315–316

parent classes, 130
polymorphism and, 301–308
preventing, 281
properties, 131
reuse and, 291–300
RTTI (run-time type information),

329–330
specialization comparison, 399
superclasses, 130
templates, 397–398

inheritance techniques, interviews,
1050–1051

initialization
constructors, 215–218
RAII (Resource Acquisition is Initialization),

979–981
uniform, 43–45

copy list, 45
direct list, 45

variables, non-local, 351
initializer lists, 28
initializer-list constructors, 220–222
<initializer_list> header, 512
inline keyword, 256
inline methods, 255–257

efficiency and, 888–889
inline variables, static data member access,

259
in-memory stream, 425
input streams

>> operator, 417–418
error handling, 418–419
manipulators, 423
methods

1102

insert – ios_base::in constant

bad(), 418
fail(), 418
get(), 419
getline(), 422
good(), 418
peek(), 421–422
putback(), 421
unget(), 420–421

objects and, 423–425
insert() method, 578–579, 732
insertion operators, overloading, 485–486
insert_or_assign() method, 579–580
instances, 125, 201
int* type declaration, 352–353
integration, 929

JSON-based file serializer, 928
shared resources, readers/writers, 928
wrapper, third-party library, 928–929

intEqual() function, 355
interface class, 272–275
interfaces

abstraction and, 138–139
APIs (application programming interface),

140
audience and, 139
component interface, 140
containers, 514
libraries, 140
planning, 141
purpose, 139
reusable, 153

comments, 156
customizability, 157
documentation, 156
ease of use and generality, 157–158
familiarity, 153–154
general-purpose, 157
ISP (Interface Segregation Principle), 158
multiple, 158
operator overloading, 154
required functionality, 155
uncluttered, 155–156

subsystems, 140
utility classes, 140

interviews
applications, 1061
classes, 1046–1050
coding style, 1041–1042
debugging, 1060
design

frameworks and, 1060
object-oriented design, 1044–1045
patterns, 1060–1061
program design, 1042–1044
reuse and, 1045

efficiency, 1058–1059
error handling, 1053–1054
inheritance techniques, 1050–1051
I/O, 1053
library utilities, 1056
memory management, 1045–1046
multithreaded programming, 1057
objects, 1046–1050
obscure questions, 1051–1052
operator overload, 1054–1055
regular expressions, 1040–1041
software engineering methods, 1057–1058
Standard Library, 1039–1040, 1055–1056
strings, 1040–1041

localization, 1040–1041
views, 1040–1041

templates, 1052–1053
testing abilities, 1059

IntPtr, 352–353
ints array, 340–341
invoke() adaptor, 629
I/O

bidirectional, 431–432
interviews, 1053

I/O streams, 7
header files, 1081–1082
Standard Library, 510

I/O streams and strings, resources,
1065–1066

ios_base::app constant, 427
ios_base::ate constant, file streams, 427
ios_base::binary constant, file streams, 427
ios_base::in constant, file streams, 427

1103

ios_base::out constant – libraries

ios_base::out constant, file streams, 427
ios_base::trunc constant, file streams, 427
<iostream> header file, 5, 412
is-a relationships, 130–135
ISP (Interface Segregation Principle), 158, 159
istream_iterator class, 730
iteration, directories, 722–723
iterative processes, 863
iterator adaptors

insert iterators, 731–733
move iterators, 733–734
reverse iterators, 730–731

iterator design pattern, 992–993
iterators, 521–522, 608, 737

BidirectionalIterator, 631
constant iterators, 631
containers, 539–541
ForwardIterator, 631
header files, 1078–1079
InputIterator, 631
mutable, 631
OutputIterator, 631
RandomAccessIterator, 631
streams

istream_iterator class, 730
ostream_iterator class, 729

K

keywords
auto, 40, 613
const, 35

methods, 345
parameters, 343
pointers, 343–345
references, 345
variables, 343

constexpr, 346
decltype, 40
default, 214–215
explicit, 391
extern, 349–350
inline, 256
new, 165

noexcept, 445–446
override, 284–285
static

data members, 347
linkage, 347–349
methods, 347

throw, 454–456
try, 464–467
virtual, 281–282, 287–290

L

lambda expressions
capture expressions, 618
generic expressions, 617–618
as parameters, 619
as return types, 618–619
Standard Library algorithms

count_if(), 619–620
generate(), 620

syntax, 614–617
threads and, 822

language, efficiency and, 882–883
language-level efficiency, 882, 883–884

inline functions, 888–889
inline methods, 888–889
memory allocation, 888
object handling

catch exceptions, 886
move semantics, 886
pass-by-reference, 884–885
return-by-reference, 886
return-value optimization, 887–888
temporary objects, 886–887

late binding, 287
Legender polynomials, 511
lexicographical_compare() algorithm, 525,

634–635
libraries

filesystem support
directory entry, 721
directory iteration, 722–723
helper functions, 721–722
path, 720–721

1104

library utilities – mathematical utilities

interfaces, 140
open-source

BSD (Berkeley Software Distribution), 113
CC (Creative Commons) license, 113
CPOL (Code Project Open License), 113
GPL (GNU Public License), 113
locating, 113
use guidelines, 113–114

Ratio library, 691–694
library utilities, interviews, 1056
linked lists, 515
linking streams, 430–431
list container, 515, 520, 562–566
lists

doubly linked, 515
singly linked, 515

literal operators, 366–367
literal types, 346
literals, 10

_i literal, 366
_s literal, 366
string literals, localization and, 664
user-defined, 365–366

standard, 367
little-endian ordering of bytes, 1021
local storage, threads, 823
<locale> header, 509, 667–668
localization, 509, 663–664

ASCII characters and, 663–664
character classification, 669–670
character conversion and, 670
character sets, 664

matches, 674–676
non-Western, 665

conversions, 667–668
facet categories, 670–671
facets, 668
locales, 668–669
string literals, 664
wide characters, 664–665

log() function, 511, 939
Logger class, 938
logical evaluation operators

!, 21

!=, 20
&&, 21
<=, 20
==, 20
>, 20
>=, 20
| , 21

logical expressions, short-circuit logic, 21
logical function objects, 623–624
loops

for, 27
do/while, 27
while, 26–27

lower_bound() algorithm, 649
LSP (Liskov Substitution Principle), 134, 158
lvalues, 243–245

M

macros, preprocessor and, 371–372
main() function, 6–7
make_pair() function, 389–390
malloc() function, 167
man pages, 156
map container, 518

element look up, 581–582
element removal, 582
example, 583–585
inserting elements, 578–580
iterators, 580–581
nodes, 582–583

map multimap container, 521
MatchFunction, 355
mathematical utilities, Standard Library, 511

Bessel functions, 511
beta functions, 511
complex numbers, 511
cylindricalNeumann functions, 511
elliptic integrals, 511
Legender polynomials, 511
numeric limits and, 511
ratio class, 511
ratio class template, 511
valarray class, 511

1105

max – methods

max() algorithm, 653
[[maybe_unused]] attribute, 365
member functions

calling, 628–629
threads and, 823

mem_fn() function, 628–629
memory

allocating
failure, 167–168
new keyword, 166–167

deallocating, delete keyword, 166–167
destructors, 235–236
double deleting, 197
dynamic, 164–165
freeing, 235–236
garbage collection, 181–182
heap, 29

new keyword, 165
leaks, 194–197, 238
low-level operations, 179–182
malloc() function, 167
object pools, 182
orphaned, 238
out-of-bounds, accessing, 193
pointer arithmetic, 179–180
pointers, 30–31

dangling, 197
polymorphic memory wrappers, 728–729
stack, 29
stack frame, 29
strings, underallocating, 192–193

memory allocation
errors, custom failure behavior, 460–461
operators, overloading

delete expression, 501
delete operator, 500–506
new expression, 501
new operator, 500–506

pre-allocating, 888
memory dumps, 946–947
memory management, 163–164

custom, 180–181
interviews, 1045–1046

memory pool, 728

merge() algorithm, 652
meta-information, coding style and, 75–76
metaprogramming templates, 797–798

loop unrolling, 799–800
tuples, printing, 800–801

compile-time integer sequence, 803
constexpr if statement, 802–803

type traits, 803–805
constexpr if statement, 810–811
enable_if, 808–810
logical operators, 811
type categories, 805–807
type relations, 807–808

methodPtr variable, 355–356
methods, 412–413

: : (scope resolution operator), 204
access, 204
allocate(), 728–729
assign(), 545
bad(), 414–415, 418
base(), 731
calling others, 204–206
clone(), 375
const, 251–252
const keyword, 345
constructors, 209

compiler-generated, 222–223
copy, 218–219
default, 212–215
delegating, 211, 222
on the heap, 210
initializer-list constructors, 220–222
initializers, 215–218
multiple, 211
overloading, 211
on the stack, 210
writing, 209–210

copy(), 732
deallocate(), 728
destructors, 224–225
emplace(), 580
eof(), 414–415
fail(), 414–415, 418
flush(), 410, 413

1106

min – mutable data members

good(), 414–415, 418
hiding, 286–290
inline, 255–257
insert(), 578–579, 732
insert_or_assign(), 579–580
method templates, 391–393

non-type parameters, 393–395
moveFrom(), 247
mutable data members, 253
operator[], 580
overloading, 253–254

const and, 254–255
deleting explicitly, 255

overriding, 281–282
override keyword, 284–285
preventing, 290
syntax, 282–283

pointers, type aliases, 355–356
pure virtual methods, 303
put(), 413
resize(), 777
seek(), 428–430
static, 251
std::as_const(), 358
str(), 425
swap(), 546
tell(), 428–430
this pointer, 206–207
tie(), 430–431
write(), 413

min() algorithm, 653
minimum-maximum algorithms, 653–654
mismatch() algorithm, 525, 634–635
mixin classes, 138, 985, 988

designing, 986–987
implementing, 987

modifying sequence algorithms, 525–526,
636–644

copy(), 638–639
move(), 640–641
remove(), 641–643
replace(), 641
reverse(), 644
sample(), 643–644

shuffle(), 644
transform(), 637–638
unique(), 643

move() algorithm, 526
move assignment operators, 243, 245–248,

481
move constructor, 245–248
move semantics, 190, 243, 612, 733

implementing, 245–246
object handling and, 886

move_backward() algorithm, 526
moveFrom() method, 247
multicore processors, 814
multi-dimensional arrays

heap, 173–175
stack, 172–173

multimap container, 518
multiple inheritance, 137–138, 308–309
multiset container, 517–518
multithreaded programming, 814

condition variables, 840–842
data races, 815–817
deadlocks, 817–818
debugging, 956–957
false-sharing, 818
<future> header, 513
futures, 843

exception handling, 846–847
promises, 843
std::async, 845–846
std::future, 843–844
std::packaged_task, 844–845
std::promise, 843–844
std::shared_future, 847–848

interviews, 1057
logger class example, 848–853
mutual exclusion, mutex classes, 832–840
race conditions, 815–817
resources, 1073
tearing, 817
<thread> header, 513
thread pools, 853
threading design, 853–855

mutable data members, 253

1107

mutable iterators – not2

mutable iterators, 631
mutex classes, 831

double-checked locking, 839–840
locks

lock_guard, 833–834
multiple, 835
scoped_lock, 835–836
shared_lock, 835
unique_lock, 834

non-timed
exclusive ownership, 832
lock() method, 832
read locks, 832
readers-writers lock, 832
shared lock ownership, 832
shared ownership, 832
shared_mutex class, 832
try_lock() method, 832
unlock() method, 832

std::call_once, 836–837
thread writing, safe streams, 837–838
timed, 832–833
timed locks, 838–839

mutual exclusion, mutex classes, 831
non-timed, 832
timed, 832–833

N

namespaces, 8–10
aliases, 10
anonymous, 349
nested, 9–10

naming
conventions

capitalization, 86
counters, 84
getStatus(), 86
getters, 86
Hungarian Notation, 85
namespaced constants, 86
prefixes, 84–85
setStatus(), 86
setters, 86

selecting, 83–84
negative tests, 923
nested classes, 263–264
nested exceptions, 452–454
nested namespaces, 9–10
new[], 169
new handler callback function, 460–461
new keyword, 165

allocating memory, 166–167
new operator, 500–506
noboolalpha input manipulator, 423
noboolalpha output manipulator, 415
node handles, 582–583
node-based data structures, 582–583
[[nodiscard]] attribute, 364–365
noexcept keyword, 445–446
none_of() algorithm, 525, 636
non-local variables

destruction, 351
initialization order, 351

non-modifying algorithms, 523–524
non-modifying sequence algorithms

comparison algorithms, 634–635
counting algorithms, 636
search algorithms, 631–633
specialized searchers, 633

non-timed mutex classes
exclusive ownership, 832
lock() method, 832
read locks, 832
readers-writers lock, 832
shared lock ownership, 832
shared ownership, 832
shared_mutex class, 832
try_lock() method, 832
unlock() method, 832

non-type parameters, templates,
387–388

method templates, 393–395
[[noreturn]] attribute, 363
noshowpoint output manipulator, 415
noskipws input manipulator, 423
not1() negator adaptor, 627
not2() negator adaptor, 627

1108

not_fn – OOP

not_fn() negator adaptor, 626–627
NRVO (named return value optimization),

888
null pointers, 30–33
<numeric> header, 630

O

object files, linking, 5
object handling

catch exceptions, 886
move semantics, 886
return-by-reference, 886
return-value optimization, 887–888
temporary objects, 886–887

objects, 127, 374
assignment operators

declaring, 225–226
defining, 226–227
explicitly defaulted, 227
explicitly deleted, 227

block ends, 224
casting, 299–300
constructors, 209

compiler-generated, 222–223
copy, 218–219
default, 212–215
delegating, 211, 222
on the heap, 210
initializer-list constructors, 220–222
initializers, 215–218
multiple, 211
overloading, 211
on the stack, 210
writing, 209–210

creating, 208–209
data members, moving, 247
destructors, 224–225
functors, 513, 607
on the heap, 207–208
input, 423–425
interviews, 1046–1050
out of scope, 224
output, 423–425

over-objectification, 127–128
passing by reference, 220
as return values, 228–229
on the stack, 207

obscure questions in interviews, 1051–1052
observer pattern, 1014–1016
OCP (Open/Closed Principle), 158
oct input manipulator, 423
oct output manipulator, 415
one-dimensional arrays, 24
OOP (object-oriented programming), 40, 124

aggregation, 129
behaviors, 126
classes, 124–125

base classes, 130
instances, 125

collections, 126
components, 125
deriving, 130
extending, 130
frameworks, 988–989
general, 128
hierarchies, 136
inheritance, 130

base classes, 130
functionality, 130–131
multiple, 137–138
parent classes, 130
properties, 131
superclasses, 130

instances, 125
MVC (Model-View-Controller), 990
objects, 127, 374

general, 128
over-objectification, 127–128

polymorphism, 131–132
properties, 125
relationships

functional, 135
has-a, 129, 132–135
is-a, 132–135
is-a relationship, 130–132
mixin classes, 138
shares-with, 138

1109

opaque classes – operators

SOLID principles, 158–159
state, 127–128
subclassing, 130

opaque classes, 146
open-source libraries

BSD (Berkeley Software Distribution), 113
CC (Creative Commons) license, 113
CPOL (Code Project Open License), 113
GPL (GNU Public License), 113
locating, 113
use guidelines, 113–114

operating systems, resources, 1073
operational algorithms, 646
operator[] method, 580
operator overload

add() method, 265
argument types, 476
arithmetic operators, 269–270

decrement, 483–484
increment, 483–484
unary minus, 483
unary plus, 483

behavior, 477
binary logical operators, 484–485
bitwise operators, 484–485
comparison, 270–271
conversions, implicit, 267
dereferencing operators, 492–494

operator->*, 495–496
operator *, 494
operator ->, 494

extraction operators, 485–486
function call operator, 491–492
global functions, 475–476
insertion operators, 485–486
interviews, 1054–1055
limitations, 474–475
memory allocation operators, 500–506

delete expression, 501
delete operator, 500–506
new expression, 501
new operator, 500–506

methods, 475–476
move assignment operators, 481

operator+, 266–269
operators not to overload, 477–478
overloadable operators, 478–481
reasons, 474
relational operators, 482
return types, 477
rvalue references, 481–482
Standard Library, 509
subscripting operator, 486–489

non-integral array indices,
490

operator[], 489–490
type building and, 271–272

operators
arity, 475
assignment operators, 240–242

copy, 228
declaring, 225–226
defaulted, explicit, 227
defining, 226–227
deleted, explicit, 227
move, 243

associativity, 475
binary, 13
conditional statements, 20
conversion, 496–497

Boolean expressions, 498–500
explicit, 497

delete, 32, 500–506
literal, 366–367
logical evaluation

!, 21
!=, 20
&&, 21
<, 20
<=, 20
==, 20
>, 20
>=, 20
| , 21

move assignment operators, 481
new, 31–32, 500–506
precedence, 475
relational, 482

1110

<optional> header – pointers

ternary, 13
unary, 13

<optional> header, 711
ordered associative containers

map
constructing, 577–578
element look up, 581–582
element removal, 582
example, 583–585
inserting elements, 578–580
iterators, 580–581
nodes, 582–583

multimap, 585–588
multiset, 590
set, 589–590

orphaned memory, 238
orthogonality, 521
<ostream> header file, 412
ostream_iterator class, 729
output streams, 411–412

cout, 412
error handling, 414–415
manipulators, 415–417
methods, 412–413

bad(), 414–415
eof(), 414–415
fail(), 414–415
flush(), 413
good(), 414–415
put(), 413
write(), 413

objects and, 423–425
raw output, 413

overload resolution, 254
overloading, 211

methods, 253–254
const and, 254–255
deleting explicitly, 255

override keyword, 284–285
overriding methods, 281–282

override keyword, 284–285
preventing, 290
syntax, 282–283

P

pair class, 576–577
parallel algorithms, 655
parameter packs, 793
parameterization, 374

deducation, 404–405
types, 374
values, 374

parameters, 257, 374
const keyword, 343
const keyword and, 35
cooked-mode literal operators, 366
references, 336–337

pass-by-reference, 337–338
pass-by-value, 337–338
from pointers, 337

template template parameters, 778–780
templates, 386

deduction for constructors, 389–391
default values, 389
non-type parameters, 387–388, 780–782
type parameters, 778–780

parent classes, 130, 278
partial class template specialization, 782–787
partial specialization, templates, 397
partition algorithms, 647–648
partition_copy() algorithm, 648
passing, by reference, 220
pimpl idiom, 272
platform, 1017

binary compatibility, 1019–1020
pointer arithmetic, 179–180
pointers, 30–31

aliasing, 183
arrays as, 177–178
casting with, 176
const keyword, 343–345
dangling, 197, 238
to data members, type aliases, 355–356
dereferencing, 30, 175–176
function pointers, type aliases, 353–355
to methods, type aliases, 355–356

1111

polymorphic function wrapper – random numbers

models, 175–176
null, 30

constant, 32–33
reference counting, 183
to references, 336
versus references, 87, 339–343
shared ownership, 183
smart, 33–34

auto_ptr, 192
enable_shared_from_this, 191
move semantics, 190
referencing counting and, 188–189
shared_ptr, 186–188
unique_ptr, 183–186
weak_ptr, 189–190

smart pointers, 182–183
on the stack, 210
to structures, 31
this, 206–207

polymorphic function wrapper, 612
polymorphic memory wrappers, 728–729
polymorphism, 131–132

inheritance and, 301–308
pow() function, 511
#pragma directive, 6
#pragma once directive, 368
predicate function callbacks, 610
preprocessor, 5

directives, 6
macros, 371–372

priority_queue container, 516–517, 520
function objects and, 622–623

private implementation idiom, 272
private nested classes, 264
procedural approach, 124
procedures, 374
process, software engineering and, 860–861
processors, multicore, 814
processValues() function, 792–793
profiling, 894

gprof and, 895–902
programming, 374. See also design; OOP

(object-oriented programming)

functions, 374
generic, 378
multithreaded, 814
objects, 374
parameters, 374
procedures, 374
style, resources, 1070–1071
templates, 374

properties, 125, 131
protected nested classes, 264
proxy patterns, 1004–1006
pseudo-random number engines

linear congruential, 704
Mersenne twister, 704
subtract with carry engine,

704
pthread_create() function,

819
ptrRef, 336
pure virtual methods, 303
push_back() call, 734
put() method, 413
put_money output manipulator, 415
put_time output manipulator, 415

Q

QA (quality assurance), 909
queue container, 516, 520
quoted input manipulator, 423
quoted output manipulator, 415

R

race conditions, 815–817
RAII (Resource Acquisition Is Initialization),

979–981
rand() function, 512, 702
random numbers

distributions
Bernoulli, 708
normal, 708–709
Poisson, 708

1112

random_shuffle – regular expressions

sampling, 709
uniform, 708

engines, 702–704, 707–711
adapter pattern, 705
adaptors, 705–706
base engine, 705
linear_congruential_engine, 703
mersenne_twister_engine, 703
predefined, 705–706
random_device, 703
subtract_with_carry_engine, 703

generate() algorithm, 707
generating, 702–703, 706–707
pseudo-random number engines

linear congruential, 704
Mersenne twister, 704
subtract with carry engine, 704

resources, 1068
Standard Library, 512

random_shuffle() algorithm, 526
range-based for loop, 27
<ratio> header, 691–694
Ratio library, 691–694
raw mode literal operators, 366
raw pointers, 33–34
raw string literals, 60–62
raw-mode literal operators, 367
rbegin() function, 523, 730
reading from files, 976–977
realloc() function, 170
recursive_directory_iterator, 722
ref() function, 537
refcall() function, 339
reference data members, 261–262

const, 262–263
reference variables, 334–335
references, 35–36, 334

const keyword, 345, 440–441
data members, 336
lvalues, 243–245
modifying, 335
parameters, 336–337

pass-by-reference, 337–338
pass-by-value, 337–338

from pointers, 337
passing by, 36–37, 220
passing by const reference, 37
to pointers, 336
return values, 338
rvalues, 243–245, 338–339
versus pointers, 87, 339–343

reference_wrapper class, 537
regression testing, 930
regular expressions

alternation, 673
anchors, 673
back references, 673, 677
capture groups, 673
character sets, 674–676

character classes, 675–676
range specification, 675

decision making and, 671
ECMAScript, 672
grammars, 672
grouping, 673
interviews, 1040–1041
iteration and, 671
lookahead, 677
matches, 672
parsing and, 671
patterns, 672
precedence, 674
raw string labels, 677–678
regex library, 678–679
regex_iterator() algorithm, 683–684
regex_match() algorithm, 679–682
regex_replace() algorithm, 687–690
regex_search() algorithm, 682–683
regex_token_iterator, 685–687
repetition, 673–674
replace, 672
replace operations, 673
searches, 672
Standard Library, 510
subexpressions, 673
tokenization and, 671
transformation and, 671
validation and, 671

1113

reinterpret_cast – reusable code

wildcards, 673
word boundaries, 676–677

reinterpret_cast(), 359–361
relational operators, 482
relationships

functional, 135
has-a, 129, 132–135
is-a, 130–135
mixin classes, 138
shares-with, 138

remainder() function, 511
remove() algorithm, 526
remove_copy() algorithm, 526
remove_copy_if() algorithm, 526
remove-erase-idiom, 642
remove_if() algorithm, 526
rend() function, 523, 730
replace() algorithm, 526
replace_copy() algorithm, 526
replace_copy_if() algorithm, 526
replace_if() algorithm, 526
resize() method, 777
resources

algorithms, 1068
beginning C++, 1063–1064
C++11, 1067
C++14, 1067
C++17, 1067
computer architecture, 1071
data structures, 1068
debugging, 1072
design patterns, 1072
efficiency, 1071
general C++, 1064–1065
I/O streams and strings, 1065–1066
multithreaded programming, 1073
operating systems, 1073
programming style, 1070–1071
random numbers, 1068
software

engineering methodology, 1069–1070
open-source, 1068–1069

Standard Library, 1066
templates, 1067

testing, 1071
UML (Unified Modeling Language), 1067

rethrowing exceptions, 454–456, 458
rethrow_nested() function, 453
return type functions, 22–23

function templates, 405–406
return values

optimization, object handling and, 887–888
references, 338

return-by-reference, object handling and, 886
reusable code, 101–104

abstraction and, 145–146
advantages, 105
APIs, 104
big-O notation, 108–109
capabilities, 107–108
dependency injection, 103
design

aggregation, 148
class hierarchies, 147–148
high cohesion, 146–148
interface dependencies, 148
low coupling, 147
subsystems, 147

design reuse, 103
design-by-contract, 150
disadvantages, 105–106
error checking, 150
extensibility and, 151–153
frameworks, 104
inheritance and, WeatherPrediction class,

291–294
interfaces, 153

comments, 156
customizability, 157
documentation, 156
ease of use and generality, 157–158
familiarity, 153–154
general-purpose, 157
ISP (Interface Segregation Principle), 158
multiple, 158
operator overloading, 154
required functionality, 155
uncluttered, 155–156

1114

reverse – set multiset container

interviews, 1045
libraries, 104
licensing and, 110–111
mottos, 144
open-source libraries

BSD (Berkeley Software Distribution), 113
CC (Creative Commons) license, 113
CPOL (Code Project Open License), 113
GPL (GNU Public License), 113
locating, 113
open-source software, 112
use guidelines, 113–114

optimal reuse design, 146–153
performance and, 109–110
platforms and, 110
versus polymorphism, 131–132
postconditions, 150
preconditions, 150
prototypes, 111–112
resources, 111
safe code, 150–151
SRP (Single Responsibility Principle),

146–147
stand-alone classes, 104
stand-alone functions, 104
Standard Library, 114
support and, 110–111
templates, 148

benefits, 149
versus inheritance, 150
problems, 149
std::vector class, 148

third-party apps, 112
types of code, 104
writing reusable code, 102–103

reverse() algorithm, 526
reverse_copy() algorithm, 526
ring buffers, debugging and, 942–945
round() function, 695
rule of zero, 250
runtime_error, 441–443
rvalues, 243–245, 733

operator overload and, 481
references, 338–339

RVO (Return Value Optimization), 229, 888

S

_s literal, 366
sample() algorithm, 526
Sashimi Model life cycle model, 863
scan algorithms, 657
scope, 362

global scope, 362
resolution, 362

search() algorithm, 524
search algorithms, 524, 631–633

binary search, 649–650
search_n() algorithm, 524
seek() method, 428–430
sequence algorithms

modifying, 636–644
non-modifying

comparison algorithms, 634–635
counting algorithms, 636
search algorithms, 631–633
specialized searchers, 633

sequential containers, 773
array, 568–569
deque, 562
forwards_list, 566–568
list, 562–566
vector

algorithmic complexity, 554
assigning, 545–546
comparing, 546
constructors, 544–545
copying, 545–546
destructors, 544–545
dynamic-length, 544
elements, 550–553
fixed-length, 542–543
iterators, 547–550, 554
memory allocation scheme, 554–556
move semantics, 553–554
reference storage, 550
round-robin schedule example, 556–561
vectorbool specialization, 561

set algorithms, 650–653
set container, 517–518
set multiset container, 521

1115

set_difference – specialized searchers

set_difference() algorith, 650
setfill output manipulator, 415
set_intersection() algorith, 650
set_new_handler(), 461
setprecision output manipulator, 415
setStatus(), 85
set_symmetric_difference() algorith,

650
set_terminate() function, 445
setters, 139
set_union() algorith, 650
setValue() function, 201
setw output manipulator, 415
shallow copying, 236
shared_ptr pointer, 186–188
shares-with relationships, 138
short circuit logic, 21
showpoint output manipulator, 415
shuffle() algorithm, 526
sin() function, 511
singleton design pattern, 993–997
singly linked lists, 515
sinh() function, 511
skipws input manipulator, 423
smart pointers, 33–34, 182–183

auto_ptr, 192
enable_shared_from_this, 191
move semantics, 190
reference counting and, 188–189
shared_ptr pointer, 186–188
stack unwinding, 457–458
Standard Library, 510
unique_ptr pointer, 182–186
weak_ptr, 189–190

smoke testing, 930
software

design, 96
open-source, resources, 1068–1069

software engineering methods
custom, 877–878
interviews, 1057–1058
process and, 860–861
resources, 1069–1070
RUP (Rational Unified Process), 868–869
Scrum, 869

benefits, 871
Daily Scrum, 870
drawbacks, 872
effort estimation, 870
PO (Product Owner), 870
product backlog, 870
SM (Scrum Master), 870
sprint cycle, 870
Sprint Planning, 870

triage, 876–877
UP (Unified Process)

construction phase, 867
disciplines, 867
elaboration phase, 867
inception phase, 867
iterations, 867
transition phase, 867

XP (Extreme Programming), 872–876
integration, 874
iteration planning, 873
metaphor, 874
pair programming, 872–873
refactoring, 874
release planning, 873
small releases, 874
testing, 873

software life cycle
Agile Model, 866–867
Sashimi Model, 863
Spiral Model, 863
spiral-like models, 863–866
Waterfall Model, 861–863

SOLID principles
DIP (Dependency Inversion Principle), 159
ISP (Interface Segregation Principle), 159
LSP (Liskov Substitution Principle), 158
OCP (Open/Closed Principle), 158
SRP (Single Responsibility Principle), 158

sorting algorithms, 649
Source Code Control software, 878–880
source code servers, 946–947
source files, 5

template definitions, 385–386
specialization versus inheritance, 399
specialized searchers, 633

1116

Spiral Model life cycle model – Standard Library

Spiral Model life cycle model, 863
spiral-like models, life cycle, 863–866
spreadsheet application, 200
sqrt() function, 511
srand() function, 512, 702
SRP (Single Responsibility Principle),

146–147, 158
stack, 29

constructors on, 210
objects, 207

stack container, 517, 521
stack frame, 29
stack unwinding, 456–457

smart pointers, 457–458
stakeholders, design and, 96
Standard Library, 46, 114

algorithms, 507, 521
accumulate, 611–612
binary search, 529
comparison, 524–525
counting, 525
find(), 608–611
find_all(), 735–736
find_if(), 608–611
heap, 529–530
iterators, 521, 737
lambda expressions, 619–620
minimum-maximum, 530
modifying sequence, 525–526
move semantics, 612
non-modifying, 523–524
numerical processing, 530–531
operational, 527
partition, 527–528
permutation, 532
search, 524
set, 529
sorting, 528
swap and exchange, 527
writing, 735–737

any class, 513
C, 5
containers, 507, 514

adapters, 569–576

allocators, 760
array, 516, 520
associative, 536, 760–773
bitset, 519, 521, 600–604
container adapters, 536
deque, 516, 520
element requirements, 537–538
error checking, 539
forward_list, 515, 520
hash maps, 738–760
hash tables, 536, 591–598
iterators, 539–541
list, 515, 520
map, 518
map multimap, 521
multimap, 518
multiset, 517–518
ordered associative containers, 576–590
priority_queue, 516–517, 520
queue, 516, 520
reversible, 760
sequential, 536, 542–569, 737
set, 517–518
set multiset, 521
stack, 517, 521
standard C-style arrays, 598–599
strings, 599–600
unordered associative containers, 536,

591–598
unordered_map, 521
unordered_multimap, 521
unordered_multiset, 521
unordered_set, 521
vector, 514–515, 519
writing, 737–773

exceptions, 510
extending, 735
extensibility, 532
filesystem support library, 513
function objects, 513
hash tables, 518–519
header files, 1075–1077

algorithms, 1078–1079
allocators, 1078–1079

1117

standard user-defined literals – static_cast

containers, 1077–1078
exceptions, 1081
general utilities, 1079–1080
I/O streams, 1081–1082
iterators, 1078–1079
mathematical utilities, 1081
threading support library, 1082

heterogeneous elements, 512
homogeneous elements, 512
initializer lists, 512
integer types, standard, 514
interviews, 1039–1040, 1055–1056
I/O streams, 510
mathematical utilities, 511

abs() function, 511
atan2() function, 511
Bessel functions, 511
beta functions, 511
ceil() function, 511
complex numbers, 511
cylindricalNeumann functions, 511
elliptic integrals, 511
erf() function, 511
exp() function, 511
floor() function, 511
fma() function, 511
Legender polynomials, 511
log() function, 511
numeric limits and, 511
pow() function, 511
ratio class, 511
remainder() function, 511
sin() function, 511
sinh() function, 511
sqrt() function, 511
tgamma() function, 511
valarray class, 511

missing functionality, 532
modifying sequence algorithms, 525–526
multithreading, 513
operator overloading, 509
optional class, 512–513
orthogonality, 521
pair template, 512

random number library
rand() function, 512
srand() function, 512

regular expressions, 510
resources, 1066
smart pointers, 510
stream iterators

istream_iterator class, 730
ostream_iterator class, 729

streams, 510
strings, 509
templates, 508–509
time utilities, <chrono> header file, 512
<tuple> header file, 512
type aliases, 353
type traits, 513
unordered associative containers, 518–519
<utility> header, 512
variant class, 513

standard user-defined literals, 367
state, 128
statements

conditional
if/else, 17–18
operator, 20
switch, 18–19

switch, [[fallthrough]] attribute, 364
static assertions, 947–948
static binding, 287
static casts, pointers and, 176
static data members, 258

access, 259–260
const, 260–261
inline variables, 259

static keyword
data members, 347
linkage, 347

external, 348
internal, 348
static, 348

methods, 347
static methods, 251
static variables, 350
static_cast(), 358–359, 361

1118

std::array container – strings

std::array container, 25
std::as_const() method, 358
std::atomic type, 827
std::back_inserter, 732
std::bad_cast exception, 360–361
std::condition_variable, 840
std::condition_variable_any, 840
std::function, 612–614
std::make_from_tuple(), 719
std::make_move_iterator(), 734
std::make_pair(), 342
std::ostringstream class, 425
std::pair class, 714–716
std::pair utility class, 342
std::reverse_iterator, 730–731
std::shared_future, 847–848
std::string class, 62–64

literals, 64
numeric conversions

high level, 64–65
low level, 65–67

std::string_view class, 67–69
std::throw_with_nested(), 453
std::tie, 717–718
std::unique_ptr pointer, 182–183
std::vector, 352–353
std::vector array container, 25–26
STL (Standard Template Library),

507
str() method, 425
streams, 410, 600

bidirectional, 431–432
buffered, 410, 413
cerr, 410
cin, 410
clog, 410
cout, 410
current position, 411, 426
destinations, 411
file streams, 426–427

fgets() function and, 411
<filestream> header file, 426–427
fprintf() function and, 411
fputs() function and, 411

fread() function and, 411
fscanf() function and, 411
fwrite() function and, 411
ios_base::app constant, 427
ios_base::ate constant, 427
ios_base::binary constant, 427
ios_base::in constant, 427
ios_base::out constant, 427
ios_base::trunc constant, 427

flushes, 413
flush-on-access, 430–431
input

>> operator, 417–418
error handling, 418–419
manipulators, 423

iterators
istream_iterator class, 730
ostream_iterator class, 729

linking, 430–431
output, 411–412

<< operator, 412
cout, 412
error handling, 414–415
manipulators, 415–417

seek() method, 428–430
sources, 411
Standard Library, 510
string

in-memory stream, 425
sprintf() function, 411
sprintf_s() function, 411
sscanf() function, 411

tell() method, 428–430
tie() method, 430–431
unbuffered, 410

string class, 509
<string> header, 509
string literals, localizing, 664
string streams

in-memory stream, 425
sprintf() function, 411
sprintf_s() function, 411
sscanf() function, 411

strings, 29, 598–599

1119

string_view class – testing

dynamic, 58
C-style, 58–59
nonstandard strings, 69
std::string class, 62–67
std::string_view class, 67–69
string literals, 60–62

interviews, 1040–1041
time point conversion, 699

string_view class, 509
structured bindings, 26
structures, pointers to, 31
subscripting operator, overloading, 486–489

non-integral array indices, 490
operator[], 489–490

subsystems, interface and, 140
superclasses, 130, 278
swap() algorithm, 647
swap() method, 247–248, 546
swap and exchange algorithms, 646–647
switch statements, 18–19

[[fallthrough]] attribute, 364
symbol servers, 946–947
system tests, 929
system_clock class, 698

T

tearing, multithreaded programming and,
817

tell() method, 428–430
template classes, writing, 977–979
templates, 102, 374, 514

class templates
< > (angle brackets), 383
alias templates, 399
compiler and, 383–384
definitions, 384–386
driving from, 397–398
inheritance, 397–398
instantiation, 378, 382
parameters, 386–391
writing, 375–383

function templates, 400–401
class templates and, 403–404

overloading, 402–403
return types, 405–406
specialization, 401–402

generic programming and, 508
interviews, 1052–1053
metaprogramming, 797–798

factorial at compile time, 798–799
loops, unrolling, 799–800
tuples, printing, 800–803
type traits, 803–812

parameterization
parameter deduction, 404–405
types, 374
values, 374

parameters, non-type, 780–782
recursion, 787

N-Dimensional grid, 788–792
resources, 1067
reusable code, 148

benefits, 149
versus inheritance, 150
problems, 149
std::vector class, 148

specialization, 395–397
full class, 782–785
partial class, 782–785

Standard Library, 508–509
template parameters, 778–780
type parameters, 776–778
variable templates, 407
variadic

folding expressions, 796–797
mixin classes, 795–796
type-safe variable-length argument lists,

792–794
temporary objects, object handling and,

886–887
terminate() function, 444
ternary operators, 13
testing

black-box, 909
bugs, 910–913
granularity, 916
integration, 929

1120

tgamma – unbuffered streams

JSON-based file serializer, 928
shared resources, readers/writers, 928
wrapper, third-party library, 928–929

interviews, 1059
regression testing, 930
resources, 1071
smoke testing, 930
system tests, 929
unit testing, 913–914

approaches, 914–915
building, 922–923
debugging, 927
granularity, 915–916
negative tests, 923
planning, 917
results, 927
running, 919, 922–923
sample data, 918
Visual C++ testing framework, 920–921
writing, 918–919, 921–922

white-box, 909
tgamma() function, 511
this pointer, 206–207, 227
<thread> folder, 513, 819
thread objects, 819
threadFunc() function, 825
threading design, 853–855
threading support library, header files, 1082
threads

cancelling, 824
exceptions

copying, 824–826
rethrowing, 824–826

function object and, 820–822
function pointer and, 819–820
lambda expressions and, 822
local storage and, 823
member function and, 823
results, retrieving, 824

throw keyword, 454–456
throwing exceptions, 437–439, 976

multiple, 441–443
tie() method, 430–431
time points, 699–702
time utilities, Standard Library, 512

timed mutex classes, 832–833
time_point class, 698, 700–702
transform() algorithm, 526
transform_exclusive_scan() algorithm, 657
transform_inclusive_scan() algorithm, 657
transparent operator functors, 622
try keyword, 464–467
tuples

comparisons, 718–719
concatenation, 718
decompose

std::tie, 717–718
structured bindings, 717

std::apply, 719–720
std::make_from_tuple(), 719
std::pair class, 714–716
std::tuple_cat(), 718
<utility> header, 714–716

type aliases, 352–353
function pointers, 353–355
pointers

to data members, 355–356
to methods, 355–356

type building, operator overload and,
271–272

type inference, 38
auto keyword, 39–40
decltype keyword, 40

type parameters, templates, 776–778
typed constructors, 307
typedefs, 356–357
types

enumerated, 15–16, 264–265
strongly typed enumerations, 16

literal, 346
structs, 16–17
templates and, 384

<type_traits> header, 513

U

UCS (Universal Character Set), 665
UML (Unified Modeling Language), 96, 1067
unary operators, 13
unbuffered streams, 410

1121

uncaught exceptions – weak_ptr

uncaught exceptions, 444–445
Unicode, 509
uniform initialization, 43–45
unique() algorithm, 526
unique_copy() algorithm, 526
unique_ptr pointer, 182–186
unit testing, 913–914

approaches, 914–915
building, 922–923
debugging, 927
granularity, 915–916
negative tests, 923
planning, 917
results, 927
running, 919, 922–923
sample data, 918
Visual C++ testing framework, 920–921
writing, 918–919, 921–922

unordered_map container, 521
unordered_multimap container, 521
unordered_multiset container, 521
unordered_set container, 521
upcasting, 299
upper_bound() algorithm, 649
user-defined literals, 365–367
using declaration, 9
utilities

general, header files, 1079–1080
interface, 140
mathematical, header files, 1081
variable-length argument lists, 369–370

argument access, 370–371
disadvantages, 371

<utility> header, 630
tuples, 714–716

V

value semantics, elements, 537–538
variable templates, 407
variables, 10–12

automatic variables, 164
casting, 12
coerced, 12
condition variables, 840–842

const keyword, 343
inline, static data member access, 259
methodPtr, 355–356
non-local

destruction, 351
initialization order, 351

static, 350
uninitialized, 30

variadic templates
folding expressions, 796–797
mixin classes, 795–796
parameter packs, 793
type-safe variable-length argument lists,

792–794
<variant> header, 712–713
vector container, 342, 514–515, 519, 542–561

algorithmic complexity, 554
allocators, 542
assigning, 545–546
comparing, 546
constructors, 544–545
copying, 545–546
destructors, 544–545
dynamic-length, 544
elements, 550–553
fixed-length, 542–543
iterators, 547–550, 554
memory allocation scheme, 554–556
move semantics, 553–554
reference storage, 550
round-robin schedule example, 556–561
vectorbool specialization, 561

vendor-specific attributes, 365
virtual base classes, 312, 331–332
virtual keyword, 281–282

destructors, 288–290
implementing, 287–288

virtual methods, 303
Visual C++ testing framework, 920–921
vtables, 287

W

Waterfall Model life cycle model, 861–863
weak_ptr, 189–190

1122

WeatherPrediction class – zero-initialization constructs

WeatherPrediction class, 291–294
while loop, 26–27
white-box testing, 909
wide characters, localization, 664–665
wifstream, 665
Windows, DLL (Dynamic Link Library),

354–355
wofstream, 665
write() method, 413

Wrox downloads, 3
ws input manipulator, 423

X‑Y‑Z

xRef, 334–335

zero-initialization constructs, 544

