FOURTH EDITION

Join the discussion @ p2p.wrox.com @

Professional

C++

Marc Gregoire

PROFESSIONAL

C++

INTRODUCTION . ..ttt ittt ittt ettt ittt ittt it xlvii
» PARTI INTRODUCTION TO PROFESSIONAL C++

CHAPTER 1 A Crash Course in C++ and the Standard Library 3
CHAPTER 2 Working with Strings and String Views. 57
CHAPTER3 CodingwithStyle.. 71
» PART Il PROFESSIONAL C++ SOFTWARE DESIGN

CHAPTER 4 Designing Professional C++ Programs 95
CHAPTER 5 Designingwith Objects....... 123
CHAPTER 6 DesigningforReuse. 143
» PART Il C++ CODING THE PROFESSIONAL WAY

CHAPTER7 MemoryManagement.......... 163
CHAPTER 8 Gaining Proficiency with Classes and Objects 199
CHAPTER9 Mastering Classes and Objects. 231
CHAPTER 10 Discovering Inheritance Techniques 277
CHAPTER 11 C++ Quirks, Oddities, and Incidentals 333
CHAPTER 12 Writing Generic Code with Templates 373
CHAPTER 13 Demystifying C++ 1/0 i 409
CHAPTER 14 Handling Errorsottt 433
CHAPTER 15 Overloading C++ Operators..............ooiiiiuinn.... 473
CHAPTER 16 Overview of the C++ Standard Library. 507
CHAPTER 17 Understanding Containers and Iterators 535
CHAPTER 18 Mastering Standard Library Algorithms 607
CHAPTER 19 String Localization and Regular Expressions 663
CHAPTER 20 Additional Library Utilities. 691

Continues

» PART IV
CHAPTER 21
CHAPTER 22
CHAPTER 23

» PART V
CHAPTER 24
CHAPTER 25
CHAPTER 26
CHAPTER 27
CHAPTER 28
CHAPTER 29
CHAPTER 30

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

MASTERING ADVANCED FEATURES OF C++

Customizing and Extending the Standard Library 727
Advanced Templates il 775
Multithreaded Programming with C++. 813
C++ SOFTWARE ENGINEERING

Maximizing Software Engineering Methods. 859
Writing Efficient C++. oL i 881
Becoming Adeptat Testing. ... 909
Conquering Debugging.o i 933
Incorporating Design Techniques and Frameworks............ 971
Applying Design Patterns il 991
Developing Cross-Platform and

Cross-Language Applications 1017
CHHInterviews.ottt e e 1039
Annotated Bibliography o oo 1063
Standard Library Header Files. 1075
Introductionto UML i, 1083
.. 1087

PROFESSIONAL
C++

PROFESSIONAL
C++

Fourth Edition

Marc Gregoire

A Y

WFrox

A Wiley Brand

Professional C++, Fourth Edition

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-42130-6
ISBN: 978-1-119-42126-9 (ebk)
ISBN: 978-1-119-42122-1 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.

If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport .wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017963243

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

Dedicated to my parents and my brother, who are
always there for me. Their support and patience

helped me in finishing this book.

ABOUT THE AUTHOR

MARC GREGOIRE is a software architect from Belgium. He graduated from the University of Leuven,
Belgium, with a degree in “Burgerlijk ingenieur in de computer wetenschappen” (equivalent to mas-
ter of science in engineering: computer science). The year after, he received an advanced master’s
degree in artificial intelligence, cum laude, at the same university. After his studies, Marc started
working for a software consultancy company called Ordina Belgium. As a consultant, he worked for
Siemens and Nokia Siemens Networks on critical 2G and 3G software running on Solaris for tele-
com operators. This required working with international teams stretching from South America and
the United States to Europe, the Middle East, Africa, and Asia. Now, Marc is a software architect at
Nikon Metrology (www.nikonmetrology.com), a division of Nikon and a leading provider of preci-
sion optical instruments and metrology solutions for 3D geometric inspection.

His main expertise is in C/C++, and specifically Microsoft VC++ and the MFC framework. He has
experience in developing C++ programs running 24/7 on Windows and Linux platforms: for exam-
ple, KNX/EIB home automation software. In addition to C/C++, Marc also likes C# and uses PHP
for creating web pages.

Since April 2007, he has received the annual Microsoft MVP (Most Valuable Professional) award
for his Visual C++ expertise.

Marc is the founder of the Belgian C++ Users Group (www.becpp . org), co-author of C++ Standard
Library Quick Reference (Apress), technical editor for numerous books for several publishers, and
a member on the CodeGuru forum (as Marc G). He maintains a blog at www.nuonsoft .com/blog/,
and is passionate about traveling and gastronomic restaurants.

ABOUT THE TECHNICAL EDITOR

PETER VAN WEERT is a Belgian software engineer, whose main interests and expertise are in C++,
programming languages, algorithms, and data structures.

He received his master of science in computer science from the University of Leuven, Belgium,
summa cum laude, with congratulations of the Board of Examiners. In 2010, the same university
awarded him a PhD for his research on the efficient compilation of rule-based programming lan-
guages (mainly Java). During his doctoral studies, he was a teaching assistant for courses on object-
oriented analysis and design, Java programming, and declarative programming languages.

After his studies, Peter worked for Nikon Metrology on large-scale, industrial-application software
in the area of 3D laser scanning and point cloud inspection. In 2017, he joined the software R&D
unit of Nobel Biocare, which specializes in digital dentistry software. Throughout his professional
career, Peter has mastered C++ software development, as well as the management, refactoring, and
debugging of very large code bases. He also gained further proficiency in all aspects of the software
development process, including the analysis of functional and technical requirements, and Agile-
and Scrum-based project and team management.

Peter is a regular speaker at, and board member of, the Belgian C++ Users Group. He also co-
authored two books: C++ Standard Library Quick Reference and Beginning C++ (5th edition), both
published by Apress.

CREDITS

PROJECT EDITOR EXECUTIVE EDITOR

Adaobi Obi Tulton Jim Minatel

TECHNICAL EDITOR PROJECT COORDINATOR, COVER
Peter Van Weert Brent Savage

PRODUCTION EDITOR PROOFREADER

Athiyappan Lalith Kumar Nancy Bell

COPY EDITOR INDEXER

Marylouise Wiack Johnna VanHoose Dinse
MANAGER OF CONTENT DEVELOPMENT COVER DESIGNER

AND ASSEMBLY Wiley

Mary Beth Wakefield

COVER IMAGE
PRODUCTION MANAGER © ittipon/Shutterstock
Kathleen Wisor

MARKETING MANAGER
Christie Hilbrich

ACKNOWLEDGMENTS

I THANK THE JOHN WILEY & SONS AND WROX Press editorial and production teams for their sup-
port. Especially, thank you to Jim Minatel, executive editor at Wiley, for giving me a chance to
write this new edition, Adaobi Obi Tulton, project editor, for managing this project, and Marylouise
Wiack, copy editor, for improving readability and consistency and making sure the text is gram-
matically correct.

A very special thank you to my technical editor, Peter Van Weert, for his outstanding technical
review. His many constructive comments and ideas have certainly made this book better.

Of course, the support and patience of my parents and my brother were very important in finishing
this book. I would also like to express my sincere gratitude toward my employer, Nikon Metrology,
for supporting me during this project.

Finally, I thank you, the reader, for trying this approach to professional C++ software development.

CONTENTS

INTRODUCTION xlvii
CHAPTER 1: A CRASH COURSE IN C++
AND THE STANDARD LIBRARY 3
The Basics of C++ 4
The Obligatory Hello, World 4
Comments 4
Preprocessor Directives 5
The main() Function 6
I/O Streams 7
Namespaces 8
Literals 10
Variables 10
Operators 13
Types 15
Enumerated Types 15
Structs 16
Conditional Statements 17
if/else Statements 17
switch Statements 18
The Conditional Operator 20
Logical Evaluation Operators 20
Functions 21
Function Return Type Deduction 22
Current Function’s Name 23
C-Style Arrays 23
std::array 25
std::vector 25
Structured Bindings 26
Loops 26
The while Loop 26
The do/while Loop 27
The for Loop 27

CONTENTS

The Range-Based for Loop
Initializer Lists
Those Are the Basics
Diving Deeper into C++
Strings in C++
Pointers and Dynamic Memory
The Stack and the Heap
Working with Pointers
Dynamically Allocated Arrays
Null Pointer Constant
Smart Pointers
The Many Uses of const
const Constants
const to Protect Parameters
References
Pass By Reference
Pass By const Reference
Exceptions
Type Inference
The auto Keyword
The decltype Keyword
C++ as an Object-Oriented Language
Defining Classes
Using Classes
Uniform Initialization
Direct List Initialization versus Copy List Initialization
The Standard Library
Your First Useful C++ Program
An Employee Records System
The Employee Class
Employee.h
Employee.cpp
EmployeeTest.cpp
The Database Class
Database.h
Database.cpp
DatabaseTest.cpp
The User Interface
Evaluating the Program
Summary

xviii

27
28
28
28
29
29
29
30
31
32
33
35
35
35
35
36
37
37
38
39
40
40
40
43
43
45
46
46
46
47
47
48
50
50
50
51
52
53
55
56

CONTENTS

CHAPTER 2: WORKING WITH STRINGS AND STRING VIEWS 57
Dynamic Strings 58
C-Style Strings 58
String Literals 60
Raw String Literals 60

The C++ std::string Class 62
What Is Wrong with C-Style Strings? 62
Using the string Class 62
std::string Literals 64
High-Level Numeric Conversions 64
Low-Level Numeric Conversions 65

The std::string_view Class 67
std::string_view Literals 69
Nonstandard Strings 69
Summary 69
CHAPTER 3: CODING WITH STYLE 71
The Importance of Looking Good 71
Thinking Ahead 72
Elements of Good Style 72
Documenting Your Code 72
Reasons to Write Comments 72
Commenting to Explain Usage 72
Commenting to Explain Complicated Code 74
Commenting to Convey Meta-information 75
Commenting Styles 77
Commenting Every Line 77
Prefix Comments 78
Fixed-Format Comments 79

Ad Hoc Comments 80
Self-Documenting Code 81
Decomposition 81
Decomposition through Refactoring 82
Decomposition by Design 83
Decomposition in This Book 83
Naming 83
Choosing a Good Name 83
Naming Conventions 84
Counters 84
Prefixes 84

Xix

CONTENTS

XX

Know Where to Find Help
Prototype

Hungarian Notation 85
Getters and Setters 86
Capitalization 86
Namespaced Constants 86
Using Language Features with Style 86
Use Constants 87
Use References Instead of Pointers 87
Use Custom Exceptions 88
Formatting 88
The Curly Brace Alignment Debate 88
Coming to Blows over Spaces and Parentheses 89
Spaces and Tabs 90
Stylistic Challenges 90
Summary 91
CHAPTER 4: DESIGNING PROFESSIONAL C++ PROGRAMS 95
What Is Programming Design? 96
The Importance of Programming Design 97
Designing for C++ 99
Two Rules for C++ Design 100
Abstraction 100
Benefiting from Abstraction 100
Incorporating Abstraction in Your Design 101
Reuse 101
Writing Reusable Code 102
Reusing Designs 103
Reusing Existing Code 103
A Note on Terminology 104
Deciding Whether or Not to Reuse Code 105
Advantages to Reusing Code 105
Disadvantages to Reusing Code 105
Putting It Together to Make a Decision 106
Strategies for Reusing Code 107
Understand the Capabilities and Limitations 107
Understand the Performance 108
Understand Platform Limitations 110
Understand Licensing and Support 110

111
111

CONTENTS

Bundling Third-Party Applications 112
Open-Source Libraries 112
The Open-Source Movements 112
Finding and Using Open-Source Libraries 113
Guidelines for Using Open-Source Code 113
The C++ Standard Library 114
C Standard Library 114
Deciding Whether or Not to Use the Standard Library 114
Designing a Chess Program 114
Requirements 115
Design Steps 115
Divide the Program into Subsystems 115
Choose Threading Models 117
Specify Class Hierarchies for Each Subsystem 118
Specify Classes, Data Structures, Algorithms, and Patterns for Each
Subsystem 118
Specify Error Handling for Each Subsystem 120
Summary 121
CHAPTER 5: DESIGNING WITH OBJECTS 123
Am | Thinking Procedurally? 124
The Object-Oriented Philosophy 124
Classes 124
Components 125
Properties 125
Behaviors 126
Bringing It All Together 126
Living in a World of Objects 127
Over-Obijectification 127
Overly General Objects 128
Object Relationships 129
The Has-A Relationship 129
The Is-A Relationship (Inheritance) 130
Inheritance Techniques 130
Polymorphism versus Code Reuse 131
The Fine Line between Has-A and Is-A 132
The Not-A Relationship 135
Hierarchies 136
Multiple Inheritance 137
Mixin Classes 138

XXi

CONTENTS

Abstraction 138
Interface versus Implementation 138
Deciding on an Exposed Interface 139

Consider the Audience 139
Consider the Purpose 139
Consider the Future 141
Designing a Successful Abstraction 141
Summary 142
CHAPTER 6: DESIGNING FOR REUSE 143

The Reuse Philosophy 144

How to Design Reusable Code 144
Use Abstraction 145
Structure Your Code for Optimal Reuse 146

Avoid Combining Unrelated or Logically Separate Concepts 146

Use Templates for Generic Data Structures and Algorithms 148
Provide Appropriate Checks and Safeguards 150
Design for Extensibility 151
Design Usable Interfaces 153
Design Interfaces That Are Easy to Use 153
Design General-Purpose Interfaces 157
Reconciling Generality and Ease of Use 157

The SOLID Principles 158
Summary 159
CHAPTER 7: MEMORY MANAGEMENT 163

Working with Dynamic Memory 164
How to Picture Memory 164
Allocation and Deallocation 166

Using new and delete 166
What about My Good Friend malloc? 167
When Memory Allocation Fails 167
Arrays 168
Arrays of Basic Types 168
Arrays of Objects 170
Deleting Arrays 171
Multi-dimensional Arrays 172
Working with Pointers 175

XXii

CONTENTS

A Mental Model for Pointers
Casting with Pointers
Array-Pointer Duality
Arrays Are Pointers!
Not All Pointers Are Arrays!
Low-Level Memory Operations
Pointer Arithmetic
Custom Memory Management
Garbage Collection
Object Pools
Smart Pointers
unique_ptr
Creating unique_ptrs
Using unique_ptrs

unique_ptr and C-Style Arrays

Custom Deleters
shared_ptr
Casting a shared_ptr

The Need for Reference Counting

Aliasing
weak_ptr
Move Semantics
enable_shared_from_this

The Old Deprecated/Removed auto_ptr

Common Memory Pitfalls
Underallocating Strings

Accessing Out-of-Bounds Memory

Memory Leaks

Finding and Fixing Memory Leaks in Windows with Visual C++
Finding and Fixing Memory Leaks in Linux with Valgrind
Double-Deleting and Invalid Pointers

Summary

175
176
177
177
179
179
179
180
181
182
182
183
183
185
186
186
186
187
188
189
189
190
191
192
192
192
193
194
195
196
197
197

CHAPTER 8: GAINING PROFICIENCY WITH CLASSES AND OBJECTS 199

Introducing the Spreadsheet Example

Writing Classes
Class Definitions
Class Members
Access Control
Order of Declarations
In-Class Member Initializers

200
200
200
201
201
203
203

XXiii

CONTENTS

Defining Methods 203
Accessing Data Members 204
Calling Other Methods 204
The this Pointer 206

Using Objects 207
Objects on the Stack 207
Objects on the Heap 207

Object Life Cycles 208

Object Creation 208
Writing Constructors 209
Using Constructors 210
Providing Multiple Constructors 21
Default Constructors 212
Constructor Initializers 215
Copy Constructors 218
Initializer-List Constructors 220
Delegating Constructors 222
Summary of Compiler-Generated Constructors 222

Object Destruction 224

Assigning to Objects 225
Declaring an Assignment Operator 225
Defining an Assignment Operator 226
Explicitly Defaulted and Deleted Assignment Operator 227

Compiler-Generated Copy Constructor and Copy Assignment Operator 228

Distinguishing Copying from Assignment 228
Objects as Return Values 228
Copy Constructors and Object Members 229

Summary 230
CHAPTER 9: MASTERING CLASSES AND OBJECTS 231
Friends 232
Dynamic Memory Allocation in Objects 233

The Spreadsheet Class 233

Freeing Memory with Destructors 235

Handling Copying and Assignment 236
The Spreadsheet Copy Constructor 239
The Spreadsheet Assignment Operator 240
Disallowing Assignment and Pass-By-Value 242

Handling Moving with Move Semantics 243
Rvalue References 243

Implementing Move Semantics 245

XXiv

CONTENTS

Testing the Spreadsheet Move Operations 248
Implementing a Swap Function with Move Semantics 250

Rule of Zero 250
More about Methods 251
static Methods 251
const Methods 251
mutable Data Members 253
Method Overloading 253
Overloading Based on const 254
Explicitly Deleting Overloads 255
Inline Methods 255
Default Arguments 257
Different Kinds of Data Members 258
static Data Members 258
Inline Variables 259
Accessing static Data Members within Class Methods 259
Accessing static Data Members Outside Methods 260
const static Data Members 260
Reference Data Members 261
const Reference Data Members 262
Nested Classes 263
Enumerated Types inside Classes 264
Operator Overloading 265
Example: Implementing Addition for SpreadsheetCells 265
First Attempt: The add Method 265
Second Attempt: Overloaded operator+ as a Method 266
Third Attempt: Global operator+ 268
Overloading Arithmetic Operators 269
Overloading the Arithmetic Shorthand Operators 269
Overloading Comparison Operators 270
Building Types with Operator Overloading 271
Building Stable Interfaces 272
Using Interface and Implementation Classes 272
Summary 275
CHAPTER 10: DISCOVERING INHERITANCE TECHNIQUES 277
Building Classes with Inheritance 278
Extending Classes 278

A Client's View of Inheritance 279

A Derived Class's View of Inheritance 280
Preventing Inheritance 281

XXV

CONTENTS

Overriding Methods
How | Learned to Stop Worrying and Make Everything virtual
Syntax for Overriding a Method
A Client's View of Overridden Methods
The override Keyword
The Truth about virtual
Preventing Overriding
Inheritance for Reuse
The WeatherPrediction Class
Adding Functionality in a Derived Class
Replacing Functionality in a Derived Class
Respect Your Parents
Parent Constructors
Parent Destructors
Referring to Parent Names
Casting Up and Down
Inheritance for Polymorphism
Return of the Spreadsheet
Designing the Polymorphic Spreadsheet Cell
The SpreadsheetCell Base Class
A First Attempt
Pure Virtual Methods and Abstract Base Classes
The Individual Derived Classes
StringSpreadsheetCell Class Definition
StringSpreadsheetCell Implementation
DoubleSpreadsheetCell Class Definition and Implementation
Leveraging Polymorphism
Future Considerations
Multiple Inheritance
Inheriting from Multiple Classes
Naming Collisions and Ambiguous Base Classes
Name Ambiguity
Ambiguous Base Classes
Uses for Multiple Inheritance
Interesting and Obscure Inheritance Issues
Changing the Overridden Method'’s Characteristics
Changing the Method Return Type
Changing the Method Parameters
Inherited Constructors
Special Cases in Overriding Methods

XXVi

281
281
282
283
284
286
290
291
291
292
293
294
294
296
297
299
301
301
301
302
302
303
304
304
304
305
306
306
308
308
309
309
31
312
312
313
313
315
316
320

CONTENTS

The Base Class Method s static 320

The Base Class Method Is Overloaded 321

The Base Class Method Is private or protected 322

The Base Class Method Has Default Arguments 324

The Base Class Method Has a Different Access Level 325
Copy Constructors and Assignment Operators in Derived Classes 327
Run-Time Type Facilities 329
Non-public Inheritance 331
Virtual Base Classes 331
Summary 332
CHAPTER 11: C++ QUIRKS, ODDITIES, AND INCIDENTALS 333
References 334
Reference Variables 334
Modifying References 335
References to Pointers and Pointers to References 336
Reference Data Members 336
Reference Parameters 336
References from Pointers 337
Pass-by-Reference versus Pass-by-Value 337
Reference Return Values 338
Rvalue References 338
Deciding between References and Pointers 339
Keyword Confusion 343
The const Keyword 343
const Variables and Parameters 343
const Methods 345

The constexpr Keyword 346

The static Keyword 347
static Data Members and Methods 347
static Linkage 347
static Variables in Functions 350
Order of Initialization of Nonlocal Variables 351
Order of Destruction of Nonlocal Variables 351
Types and Casts 351
Type Aliases 352
Type Aliases for Function Pointers 353
Type Aliases for Pointers to Methods and Data Members 355
typedefs 356

XXVii

CONTENTS

Casts 357
const_cast() 357
static_cast() 358
reinterpret_cast() 359
dynamic_cast() 360
Summary of Casts 361

Scope Resolution 362
Attributes 363
[[noreturn]] 363
[[deprecated]] 364
[[fallthroughl]] 364
[[nodiscard]] 364
[[maybe_unused]] 365
Vendor-Specific Attributes 365
User-Defined Literals 365

Standard User-Defined Literals 367
Header Files 367
C Utilities 369

Variable-Length Argument Lists 369
Accessing the Arguments 370
Why You Shouldn’t Use C-Style Variable-Length Argument Lists 371

Preprocessor Macros 371

Summary 372
CHAPTER 12: WRITING GENERIC CODE WITH TEMPLATES 373
Overview of Templates 374
Class Templates 375

Writing a Class Template 375
Coding without Templates 375
A Template Grid Class 378
Using the Grid Template 382

Angle Brackets 383

How the Compiler Processes Templates 383
Selective Instantiation 384
Template Requirements on Types 384

Distributing Template Code between Files 384
Template Definitions in Header Files 384
Template Definitions in Source Files 385

Template Parameters 386
Non-type Template Parameters 387

XXViii

CONTENTS

Default Values for Type Parameters 389
Template Parameter Deduction for Constructors 389
Method Templates 391
Method Templates with Non-type Parameters 393
Class Template Specialization 395
Deriving from Class Templates 397
Inheritance versus Specialization 399
Alias Templates 399
Function Templates 400
Function Template Specialization 401
Function Template Overloading 402
Function Template Overloading and Specialization Together 403
Friend Function Templates of Class Templates 403
More on Template Parameter Deduction 404
Return Type of Function Templates 405
Variable Templates 407
Summary 407
CHAPTER 13: DEMYSTIFYING C++ /O 409
Using Streams 410
What Is a Stream, Anyway? 410
Stream Sources and Destinations 41
Output with Streams 41
Output Basics 412
Methods of Output Streams 412
Handling Output Errors 414
Output Manipulators 415
Input with Streams 417
Input Basics 417
Handling Input Errors 418
Input Methods 419
Input Manipulators 423
Input and Output with Objects 423
String Streams 425
File Streams 426
Text Mode versus Binary Mode 427
Jumping around with seek() and tell() 428
Linking Streams Together 430
Bidirectional 1/0 431
Summary 432

XXiX

CONTENTS

CHAPTER 14: HANDLING ERRORS 433
Errors and Exceptions 434
What Are Exceptions, Anyway? 434
Why Exceptions in C++ Are a Good Thing 434
Recommendation 436
Exception Mechanics 436
Throwing and Catching Exceptions 437
Exception Types 439
Catching Exception Objects by const Reference 440
Throwing and Catching Multiple Exceptions 441
Matching and const 443
Matching Any Exception 443
Uncaught Exceptions 444
noexcept 445
Throw Lists (Deprecated/Removed) 446
Exceptions and Polymorphism 446
The Standard Exception Hierarchy 446
Catching Exceptions in a Class Hierarchy 448
Writing Your Own Exception Classes 449
Nested Exceptions 452
Rethrowing Exceptions 454
Stack Unwinding and Cleanup 456
Use Smart Pointers 457
Catch, Cleanup, and Rethrow 458
Common Error-Handling Issues 459
Memory Allocation Errors 459
Non-throwing new 460
Customizing Memory Allocation Failure Behavior 460
Errors in Constructors 462
Function-Try-Blocks for Constructors 464
Errors in Destructors 467
Putting It All Together 468
Summary 472
CHAPTER 15: OVERLOADING C++ OPERATORS 473
Overview of Operator Overloading 474
Why Overload Operators? 474
Limitations to Operator Overloading 474
Choices in Operator Overloading 475

Method or Global Function

XXX

475

CONTENTS

Choosing Argument Types 476
Choosing Return Types 477
Choosing Behavior 477
Operators You Shouldn’t Overload 477
Summary of Overloadable Operators 478
Rvalue References 481
Relational Operators 482
Overloading the Arithmetic Operators 483
Overloading Unary Minus and Unary Plus 483
Overloading Increment and Decrement 483
Overloading the Bitwise and Binary Logical Operators 484
Overloading the Insertion and Extraction Operators 485
Overloading the Subscripting Operator 486
Providing Read-Only Access with operator(] 489
Non-integral Array Indices 490
Overloading the Function Call Operator 491
Overloading the Dereferencing Operators 492
Implementing operator* 494
Implementing operator—> 494
What in the World Are operator.* and operator—>*? 495
Writing Conversion Operators 496
Solving Ambiguity Problems with Explicit Conversion Operators 497
Conversions for Boolean Expressions 498
Overloading the Memory Allocation and Deallocation Operators 500
How new and delete Really Work 500
The New-Expression and operator new 501

The Delete-Expression and operator delete 501
Overloading operator new and operator delete 501
Explicitly Deleting/Defaulting operator new and operator delete 504
Overloading operator new and operator delete with Extra Parameters 504
Overloading operator delete with Size of Memory as Parameter 505
Summary 506
CHAPTER 16: OVERVIEW OF THE C++ STANDARD LIBRARY 507
Coding Principles 508
Use of Templates 508
Use of Operator Overloading 509
Overview of the C++ Standard Library 509
Strings 509
Regular Expressions 510
I/O Streams 510

XXXi

CONTENTS

XXXii

Smart Pointers
Exceptions
Mathematical Utilities
Time Utilities
Random Numbers
Initializer Lists
Pair and Tuple
optional, variant, and any
Function Objects
Filesystem
Multithreading
Type Traits
Standard Integer Types
Containers
vector
list
forward_list
deque
array
queue
priority_queue
stack
set and multiset
map and multimap
Unordered Associative Containers/Hash Tables
bitset
Summary of Standard Library Containers
Algorithms
Non-modifying Sequence Algorithms
Modifying Sequence Algorithms
Operational Algorithms
Swap and Exchange Algorithms
Partition Algorithms
Sorting Algorithms
Binary Search Algorithms
Set Algorithms
Heap Algorithms
Minimum/Maximum Algorithms
Numerical Processing Algorithms

510
510
511
512
512
512
512
512
513
513
513
513
514
514
514
515
515
516
516
516
516
517
517
518
518
519
519
522
523
525
527
527
527
528
529
529
529
530
530

CONTENTS

Permutation Algorithms 532
Choosing an Algorithm 532
What's Missing from the Standard Library 532
Summary 533
CHAPTER 17: UNDERSTANDING CONTAINERS AND ITERATORS 535
Containers Overview 536
Requirements on Elements 537
Exceptions and Error Checking 539
lterators 539
Sequential Containers 542
vector 542
vector Overview 542
vector Details 544
vector Example: A Round-Robin Class 556

The vector<bool> Specialization 561
deque 562
list 562
Accessing Elements 562
lterators 562
Adding and Removing Elements 563

list Size 563
Special list Operations 563

list Example: Determining Enrollment 565
forward_list 566
array 568
Container Adaptors 569
queue 570
queue Operations 570
queue Example: A Network Packet Buffer 570
priority_queue 572
priority_queue Operations 573
priority_queue Example: An Error Correlator 573
stack 575
stack Operations 575
stack Example: Revised Error Correlator 575
Ordered Associative Containers 576
The pair Utility Class 576

XXXiii

CONTENTS

map 577
Constructing maps 577
Inserting Elements 578
map lterators 580
Looking Up Elements 581
Removing Elements 582
Nodes 582
map Example: Bank Account 583

multimap 585
multimap Example: Buddy Lists 586

set 589
set Example: Access Control List 589

multiset 590

Unordered Associative Containers or Hash Tables 591

Hash Functions 591

unordered_map 593
unordered_map Example: Phone Book 596

unordered_multimap 597

unordered_set/unordered_multiset 598

Other Containers 598

Standard C-Style Arrays 598

Strings 599

Streams 600

bitset 600
bitset Basics 600
Bitwise Operators 601
bitset Example: Representing Cable Channels 601

Summary 605
CHAPTER 18: MASTERING STANDARD LIBRARY ALGORITHMS 607
Overview of Algorithms 608

The find and find_if Algorithms 608

The accumulate Algorithm 611

Move Semantics with Algorithms 612

std::function 612
Lambda Expressions 614

Syntax 614

Generic Lambda Expressions 617

Lambda Capture Expressions 618

Lambda Expressions as Return Type 618

Lambda Expressions as Parameters 619

XXXiV

CONTENTS

Examples with Standard Library Algorithms
count_if
generate
Function Objects
Arithmetic Function Objects
Transparent Operator Functors
Comparison Function Objects
Logical Function Objects
Bitwise Function Objects
Adaptor Function Objects
Binders
Negators
Calling Member Functions
Invokers
Writing Your Own Function Objects
Algorithm Details
Iterators
Non-modifying Sequence Algorithms
Search Algorithms
Specialized Searchers
Comparison Algorithms
Counting Algorithms
Modifying Sequence Algorithms
transform
copy
move
replace
remove
unique
sample
reverse
shuffle
Operational Algorithms
for_each
for_each_n
Swap and Exchange Algorithms
swap
exchange
Partition Algorithms
Sorting Algorithms
Binary Search Algorithms

619
619
620
620
621
622
622
623
624
624
624
626
628
629
629
630
631
631
631
633
634
636
636
637
638
640
641
641
643
643
644
644
644
644
646
646
646
647
647
649
649

XXXV

CONTENTS

XXXVi

Set Algorithms 650
Minimum/Maximum Algorithms 653
Parallel Algorithms 655
Numerical Processing Algorithms 655
inner_product 656
jota 656
gcd and lem 656
reduce 656
transform_reduce 657
Scan Algorithms 657
Algorithms Example: Auditing Voter Registrations 657
The Voter Registration Audit Problem Statement 658
The auditVoterRolls Function 658
The getDuplicates Function 659
Testing the auditVoterRolls Function 660
Summary 661
CHAPTER 19: STRING LOCALIZATION AND
REGULAR EXPRESSIONS 663
Localization 663
Localizing String Literals 664
Wide Characters 664
Non-Western Character Sets 665
Conversions 667
Locales and Facets 668
Using Locales 668
Character Classification 669
Character Conversion 670
Using Facets 670
Regular Expressions 671
ECMAScript Syntax 672
Anchors 673
Wildcards 673
Alternation 673
Grouping 673
Repetition 673
Precedence 674
Character Set Matches 674
Word Boundaries 676

Back References

677

CONTENTS

Lookahead 677
Regular Expressions and Raw String Literals 677

The regex Library 678
regex_match() 679
regex_match() Example 680
regex_search() 682
regex_search() Example 683
regex_iterator 683
regex_iterator Example 684
regex_token_iterator 685
regex_token_iterator Examples 685
regex_replace() 687
regex_replace() Examples 688
Summary 690
CHAPTER 20: ADDITIONAL LIBRARY UTILITIES 691
Ratios 691
The Chrono Library 694
Duration 694
Clock 698
Time Point 700
Random Number Generation 702
Random Number Engines 703
Random Number Engine Adaptors 705
Predefined Engines and Engine Adaptors 705
Generating Random Numbers 706
Random Number Distributions 708
optional 71
variant 712
any 713
Tuples 714
Decompose Tuples 717
Structured Bindings 717

tie 717
Concatenation 718
Comparisons 718
make_from_tuple 719
apply 719
Filesystem Support Library 720
Path 720

XXXVii

CONTENTS

Directory Entry 721
Helper Functions 721
Directory lteration 722
Summary 723
CHAPTER 21: CUSTOMIZING AND EXTENDING THE STANDARD
LIBRARY 727
Allocators 728
Stream Iterators 729
Output Stream lterator 729
Input Stream Iterator 730
Iterator Adaptors 730
Reverse Iterators 730
Insert Iterators 731
Move lterators 733
Extending the Standard Library 735
Why Extend the Standard Library? 735
Writing a Standard Library Algorithm 735
find_all() 735
Iterator Traits 737
Writing a Standard Library Container 737
A Basic Hash Map 738
Making hash_map a Standard Library Container 747
Note on Allocators 760
Note on Reversible Containers 760
Making hash_map an Unordered Associative Container 760
Note on Sequential Containers 773
Summary 773
CHAPTER 22: ADVANCED TEMPLATES 775
More about Template Parameters 776
More about Template Type Parameters 776
Introducing Template Template Parameters 778
More about Non-type Template Parameters 780
Class Template Partial Specialization 782
Emulating Function Partial Specialization with Overloading 786
Template Recursion 787
An N-Dimensional Grid: First Attempt 788

A Real N-Dimensional Grid

XXXViii

789

CONTENTS

Variadic Templates 792
Type-Safe Variable-Length Argument Lists 792
Variable Number of Mixin Classes 795
Folding Expressions 796

Metaprogramming 797
Factorial at Compile Time 798
Loop Unrolling 799
Printing Tuples 800

constexpr if 802
Using a Compile-Time Integer Sequence with Folding 803
Type Traits 803
Using Type Categories 805
Using Type Relations 807
Using enable_if 808
Using constexpr if to Simplify enable_if Constructs 810
Logical Operator Traits 811
Metaprogramming Conclusion 811
Summary 812
CHAPTER 23: MULTITHREADED PROGRAMMING WITH C++ 813

Introduction 814
Race Conditions 815
Tearing 817
Deadlocks 817
False-Sharing 818

Threads 819
Thread with Function Pointer 819
Thread with Function Object 820
Thread with Lambda 822
Thread with Member Function 823
Thread Local Storage 823
Cancelling Threads 824
Retrieving Results from Threads 824
Copying and Rethrowing Exceptions 824

Atomic Operations Library 827
Atomic Type Example 828
Atomic Operations 830

Mutual Exclusion 831
Mutex Classes 831

Non-timed Mutex Classes 832
Timed Mutex Classes 832

XXXiX

CONTENTS

Locks 833
lock_guard 833
unique_lock 834
shared_lock 835
Acquiring Multiple Locks at Once 835
scoped_lock 835

std::call_once 836

Examples Using Mutual Exclusion Objects 837
Thread-Safe Writing to Streams 837
Using Timed Locks 838
Double-Checked Locking 839

Condition Variables 840
Spurious Wake-Ups 841
Using Condition Variables 841

Futures 843

std::promise and std::future 843

std::packaged_task 844

std::async 845

Exception Handling 846

std::shared_future 847

Example: Multithreaded Logger Class 848
Thread Pools 853
Threading Design and Best Practices 853
Summary 855
CHAPTER 24: MAXIMIZING SOFTWARE ENGINEERING METHODS 859

The Need for Process 860

Software Life Cycle Models 861

The Waterfall Model 861
Benefits of the Waterfall Model 862
Drawbacks of the Waterfall Model 862

Sashimi Model 863

Spiral-Like Models 863
Benefits of a Spiral-Like Model 864
Drawbacks of a Spiral-Like Model 866

Agile 866

Software Engineering Methodologies 867
The Unified Process 867
The Rational Unified Process 868

x|

CONTENTS

RUP as a Product 868

RUP as a Process 869

RUP in Practice 869
Scrum 869
Roles 870

The Process 870
Benefits of Scrum 871
Drawbacks of Scrum 872
Extreme Programming 872
XP in Theory 872

XP in Practice 876
Software Triage 876
Building Your Own Process and Methodology 877
Be Open to New Ideas 877
Bring New Ideas to the Table 877
Recognize What Works and What Doesn't Work 877
Don't Be a Renegade 878
Source Code Control 878
Summary 880
CHAPTER 25: WRITING EFFICIENT C++ 881
Overview of Performance and Efficiency 882
Two Approaches to Efficiency 882
Two Kinds of Programs 882

Is C++ an Inefficient Language? 882
Language-Level Efficiency 883
Handle Objects Efficiently 884
Pass-by-Reference 884
Return-by-Reference 886
Catch Exceptions by Reference 886

Use Move Semantics 886
Avoid Creating Temporary Objects 886

The Return-Value Optimization 887
Pre-allocate Memory 888
Use Inline Methods and Functions 888
Design-Level Efficiency 889
Cache Where Necessary 889
Use Object Pools 890
An Object Pool Implementation 891
Using the Object Pool 893

xli

CONTENTS

Profiling 894
Profiling Example with gprof 895
First Design Attempt 895
Profiling the First Design Attempt 898
Second Design Attempt 900
Profiling the Second Design Attempt 901
Profiling Example with Visual C++ 2017 902
Summary 907
CHAPTER 26: BECOMING ADEPT AT TESTING 909
Quality Control 910
Whose Responsibility Is Testing? 910
The Life Cycle of a Bug 910
Bug-Tracking Tools 912
Unit Testing 913
Approaches to Unit Testing 914
The Unit Testing Process 915
Define the Granularity of Your Tests 915
Brainstorm the Individual Tests 917
Create Sample Data and Results 918
Write the Tests 918

Run the Tests 919

Unit Testing in Action 919
Introducing the Microsoft Visual C++ Testing Framework 920
Writing the First Test 921
Building and Running Tests 922
Negative Tests 923
Adding the Real Tests 923
Debugging Tests 927
Basking in the Glorious Light of Unit Test Results 927
Higher-Level Testing 927
Integration Tests 928
Sample Integration Tests 928
Methods of Integration Testing 929
System Tests 929
Regression Tests 930
Tips for Successful Testing 930
Summary 931

xlii

CONTENTS

CHAPTER 27: CONQUERING DEBUGGING 933
The Fundamental Law of Debugging 934
Bug Taxonomies 934
Avoiding Bugs 934
Planning for Bugs 935

Error Logging 935
Debug Traces 937
Debug Mode 937

Ring Buffers 942
Assertions 945
Crash Dumps 946
Static Assertions 947
Debugging Techniques 948
Reproducing Bugs 948
Debugging Reproducible Bugs 949
Debugging Nonreproducible Bugs 950
Debugging Regressions 951
Debugging Memory Problems 951
Categories of Memory Errors 952

Tips for Debugging Memory Errors 954
Debugging Multithreaded Programs 956
Debugging Example: Article Citations 957
Buggy Implementation of an ArticleCitations Class 957
Testing the ArticleCitations class 960
Lessons from the ArticleCitations Example 969
Summary 969

CHAPTER 28: INCORPORATING DESIGN TECHNIQUES AND

FRAMEWORKS 971
“I Can Never Remember How to...” 972

...Write a Class 972
...Derive from an Existing Class 974
...Use the Copy-and-Swap Idiom 975
...Throw and Catch Exceptions 976
...Read from a File 976
...Write to a File 977
...Write a Template Class 977
There Must Be a Better Way 979
Resource Acquisition Is Initialization 979

Double Dispatch 981

xliii

CONTENTS

Attempt #1: Brute Force 982
Attempt #2: Single Polymorphism with Overloading 983
Attempt #3: Double Dispatch 984
Mixin Classes 985
Designing a Mixin Class 986
Implementing a Mixin Class 987
Using a Mixin Class 988
Object-Oriented Frameworks 988
Working with Frameworks 988
The Model-View-Controller Paradigm 989
Summary 990
CHAPTER 29: APPLYING DESIGN PATTERNS 991
The Iterator Pattern 992
The Singleton Pattern 993
Example: A Logging Mechanism 993
Implementation of a Singleton 994
Using a Singleton 997
The Abstract Factory Pattern 997
Example: A Car Factory Simulation 998
Implementation of a Factory 999
Using a Factory 1002
Other Uses of Factories 1003
The Proxy Pattern 1004
Example: Hiding Network Connectivity Issues 1004
Implementation of a Proxy 1004
Using a Proxy 1005
The Adaptor Pattern 1006
Example: Adapting a Logger Class 1006
Implementation of an Adaptor 1007
Using an Adaptor 1008
The Decorator Pattern 1008
Example: Defining Styles in Web Pages 1008
Implementation of a Decorator 1009
Using a Decorator 1010
The Chain of Responsibility Pattern 1010
Example: Event Handling 1011
Implementation of a Chain of Responsibility 1011
Chain of Responsibility without Hierarchy 1012
The Observer Pattern 1014
Implementation of an Observer 1014

xliv

CONTENTS

Implementation of an Observable 1015
Using an Observer 1016
Summary 1016
CHAPTER 30: DEVELOPING CROSS-PLATFORM AND CROSS-
LANGUAGE APPLICATIONS 1017
Cross-Platform Development 1018
Architecture Issues 1018
Size of Integers 1018
Binary Compatibility 1019
Address Sizes 1020
Byte Order 1020
Implementation Issues 1021
Compiler Quirks and Extensions 1021
Library Implementations 1022
Platform-Specific Features 1022
Cross-Language Development 1024
Mixing C and C++ 1024
Shifting Paradigms 1024
Linking with C Code 1028
Calling C++ Code from C# 1030
Calling C++ Code from Java with JNI 1031
Calling Scripts from C++ Code 1033
Calling C++ Code from Scripts 1034
A Practical Example: Encrypting Passwords 1034
Calling Assembly Code from C++ 1036
Summary 1038
APPENDIX A: C++ INTERVIEWS 1039
APPENDIX B: ANNOTATED BIBLIOGRAPHY 1063
APPENDIX C: STANDARD LIBRARY HEADER FILES 1075
APPENDIX D: INTRODUCTION TO UML 1083
INDEX 1087

xlv

INTRODUCTION

For many years, C++ has served as the de facto language for writing fast, powerful, and enterprise-
class object-oriented programs. As popular as C++ has become, the language is surprisingly difficult
to grasp in full. There are simple, but powerful, techniques that professional C++ programmers use
that don’t show up in traditional texts, and there are useful parts of C++ that remain a mystery even
to experienced C++ programmers.

Too often, programming books focus on the syntax of the language instead of its real-world use.
The typical C++ text introduces a major part of the language in each chapter, explaining the syntax
and providing an example. Professional C++ does not follow this pattern. Instead of giving you just
the nuts and bolts of the language with little practical context, this book will teach you how to use
C++ in the real world. It will show you the little-known features that will make your life easier, and
the programming techniques that separate novices from professional programmers.

WHO THIS BOOK IS FOR

Even if you have used the language for years, you might still be unfamiliar with the more-advanced
features of C++, or you might not be using the full capabilities of the language. Perhaps you write
competent C++ code, but would like to learn more about design and good programming style in
C++. Or maybe you’re relatively new to C++, but want to learn the “right” way to program from the
start. This book will meet those needs and bring your C++ skills to the professional level.

Because this book focuses on advancing from basic or intermediate knowledge of C++ to becoming
a professional C++ programmer, it assumes that you have some knowledge of the language. Chapter
1 covers the basics of C++ as a refresher, but it is not a substitute for actual training and use of the
language. If you are just starting with C++, but you have significant experience in another program-
ming language such as C, Java, or C#, you should be able to pick up most of what you need from
Chapter 1.

In any case, you should have a solid foundation in programming fundamentals. You should

know about loops, functions, and variables. You should know how to structure a program, and
you should be familiar with fundamental techniques such as recursion. You should have some
knowledge of common data structures such as queues, and useful algorithms such as sorting and
searching. You don’t need to know about object-oriented programming just yet—that is covered in
Chapter 5.

You will also need to be familiar with the compiler you will be using to develop your code. Two
compilers, Microsoft Visual C++ and GCC, are introduced later in this introduction. For other com-
pilers, refer to the documentation that came with your compiler.

INTRODUCTION

WHAT THIS BOOK COVERS

Professional C++ uses an approach to C++ programming that will both increase the quality of your
code and improve your programming efficiency. You will find discussions on new C++17 features
throughout this fourth edition. These features are not just isolated to a few chapters or sections;
instead, examples have been updated to use new features when appropriate.

Professional C++ teaches you more than just the syntax and language features of C++. It also
emphasizes programming methodologies, reusable design patterns, and good programming style.
The Professional C++ methodology incorporates the entire software development process, from
designing and writing code, to debugging, and working in groups. This approach will enable you to
master the C++ language and its idiosyncrasies, as well as take advantage of its powerful capabilities
for large-scale software development.

Imagine users who have learned all of the syntax of C++ without seeing a single example of its use.
They know just enough to be dangerous! Without examples, they might assume that all code should
go in the main () function of the program, or that all variables should be global—practices that are
generally not considered hallmarks of good programming.

Professional C++ programmers understand the correct way to use the language, in addition to the
syntax. They recognize the importance of good design, the theories of object-oriented program-
ming, and the best ways to use existing libraries. They have also developed an arsenal of useful code
and reusable ideas.

By reading and understanding this book, you will become a professional C++ programmer. You will
expand your knowledge of C++ to cover lesser-known and often misunderstood language features.
You will gain an appreciation for object-oriented design, and acquire top-notch debugging skills.
Perhaps most important, you will finish this book armed with a wealth of reusable ideas that you
can actually apply to your daily work.

There are many good reasons to make the effort to be a professional C++ programmer, as opposed
to a programmer who knows C++. Understanding the true workings of the language will improve
the quality of your code. Learning about different programming methodologies and processes will
help you to work better with your team. Discovering reusable libraries and common design patterns
will improve your daily efficiency and help you stop reinventing the wheel. All of these lessons will
make you a better programmer and a more valuable employee. While this book can’t guarantee you
a promotion, it certainly won’t hurt.

HOW THIS BOOK IS STRUCTURED

This book is made up of five parts.

Part I, “Introduction to Professional C++,” begins with a crash course in C++ basics to ensure a
foundation of C++ knowledge. Following the crash course, Part I goes deeper into working with
strings and string views because strings are used extensively in most examples throughout the book.
The last chapter of Part I explores how to write readable C++ code.

xlviii

INTRODUCTION

Part II, “Professional C++ Software Design,” discusses C++ design methodologies. You will read
about the importance of design, the object-oriented methodology, and the importance of code reuse.

Part III, “C++ Coding the Professional Way,” provides a technical tour of C++ from the profes-
sional point of view. You will read about the best ways to manage memory in C++, how to create
reusable classes, and how to leverage important language features such as inheritance. You will also
learn about the unusual and quirky parts of the language, techniques for input and output, error
handling, string localization, and how to work with regular expressions. You will read about how
to implement operator overloading, and how to write templates. This part also explains the C++
Standard Library, including containers, iterators, and algorithms. You will also read about some
additional libraries that are available in the standard, such as the libraries to work with time, ran-
dom numbers, and the filesystem.

Part IV, “Mastering Advanced Features of C++,” demonstrates how you can get the most out of
C++. This part of the book exposes the mysteries of C++ and describes how to use some of its more-
advanced features. You will read about how to customize and extend the C++ Standard Library to
your needs, advanced details on template programming, including template metaprogramming, and
how to use multithreading to take advantage of multiprocessor and multicore systems.

Part V, “C++ Software Engineering,” focuses on writing enterprise-quality software. You’ll read
about the engineering practices being used by programming organizations today; how to write effi-
cient C++ code; software testing concepts, such as unit testing and regression testing; techniques
used to debug C++ programs; how to incorporate design techniques, frameworks, and conceptual
object-oriented design patterns into your own code; and solutions for cross-language and cross-
platform code.

The book concludes with a useful chapter-by-chapter guide to succeeding in a C++ technical inter-
view, an annotated bibliography, a summary of the C++ header files available in the standard, and a
brief introduction to the Unified Modeling Language (UML).

This book is not a reference of every single class, method, and function available in C++. The book
C++ Standard Library Quick Reference by Peter Van Weert and Marc Gregoire! is a condensed
reference to all essential data structures, algorithms, and functions provided by the C++ Standard
Library. Appendix B lists a couple more references. Two excellent online references are:

> www.cppreference.com

You can use this reference online, or download an offline version for use when you are not
connected to the Internet.

> www.cplusplus.com/reference/

When I refer to a “Standard Library Reference” in this book, I am referring to one of these detailed
C++ references.

'Apress, 2016. ISBN: 978-1-4842-1875-4.

xlix

INTRODUCTION

WHAT YOU NEED TO USE THIS BOOK

All you need to use this book is a computer with a C++ compiler. This book focuses only on parts of
C++ that have been standardized, and not on vendor-specific compiler extensions.

Note that this book includes new features introduced with the C++17 standard. At the time of this
writing, some compilers are not yet fully C++17 compliant.

You can use whichever C++ compiler you like. If you don’t have a C++ compiler yet, you can
download one for free. There are a lot of choices. For example, for Windows, you can download
Microsoft Visual Studio 2017 Community Edition, which is free and includes Visual C++. For
Linux, you can use GCC or Clang, which are also free.

The following two sections briefly explain how to use Visual C++ and GCC. Refer to the documen-
tation that came with your compiler for more details.

Microsoft Visual C++

First, you need to create a project. Start Visual C++ and click File = New = Project. In the project
template tree on the left, select Visual C++ = Win32 (or Windows Desktop). Then select the Win32
Console Application (or Windows Console Application) template in the list in the middle of the win-
dow. At the bottom, specify a name for the project and a location where to save it, and click OK.

A wizard opens?. In this wizard, click Next, select Console Application, Empty Project, and click
Finish.

Once your new project is loaded, you can see a list of project files in the Solution Explorer. If this
docking window is not visible, go to View =@ Solution Explorer. You can add new files or existing
files to a project by right-clicking the project name in the Solution Explorer and then clicking Add =
New Item or Add = Existing Item.

Use Build = Build Solution to compile your code. When it compiles without errors, you can run it
with Debug => Start Debugging.

If your program exits before you have a chance to view the output, use Debug = Start without
Debugging. This adds a pause to the end of the program so you can view the output.

At the time of this writing, Visual C++ 2017 does not yet automatically enable C++17 features.

To enable C++17 features, in the Solution Explorer window, right-click your project and click
Properties. In the properties window, go to Configuration Properties @ C/C++ = Language, and set
the C++ Language Standard option to “ISO C++17 Standard” or “ISO C++ Latest Draft Standard,”
whichever is available in your version of Visual C++. These options are only accessible if your proj-
ect contains at least one .cpp file.

Visual C++ supports so-called precompiled headers, a topic outside the scope of this book. In gen-
eral, I recommend using precompiled headers if your compiler supports them. However, the source

2Depending on your version of VC++ 2017, you might not see any wizard. Instead, a new project will be
created automatically containing four files: stdafx.h, stdafx.cpp, targetver.h, and <projectname>.cpp. If that
is the case, and you want to compile source code files from the downloadable source archive for this book,
then you have to select those files in the Solution Explorer (View & Solution Explorer) and delete them.

INTRODUCTION

code files in the downloadable source code archive do not use precompiled headers, so you have to
disable that feature for them to compile without errors. In the Solution Explorer window, right-click
your project and click Properties. In the properties window, go to Configuration Properties =
C/C++ =@ Precompiled Headers, and set the Precompiled Header option to “Not Using Precompiled
Headers.”

GCC

Create your source code files with any text editor you prefer and save them to a directory. To
compile your code, open a terminal and run the following command, specifying all your . cpp files
that you want to compile:

gcc -lstdc++ -std=c++17 -o <executable name> <sourcel.cpp> [source2.cpp ...]
The -std=c++17 option is required to tell GCC to enable C++17 support.

For example, you can compile the AirlineTicket example from Chapter 1 by changing to the
directory containing the code and running the following command:

gcc -lstdc++ -std=c++17 -o AirlineTicket AirlineTicket.cpp AirlineTicketTest.cpp

When it compiles without errors, you can run it as follows:

./AirlineTicket

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, a number of conventions
are used throughout this book.

WARNING Boxes like this one hold important, not-to-be-forgotten information
that is directly relevant to the surrounding text.

NOTE Tips, hints, tricks, and asides to the current discussion are placed in
boxes like this one.

As for styles in the text:
Important words are highlighted when they are introduced.
Keyboard strokes are shown like this: Ctrl+A.

Filenames and code within the text are shown like so: monkey . cpp.

INTRODUCTION

URLs are shown like this: www.wrox.com.

Code is presented in three different ways:

In code examples, new and important code is highlighted like this.
Code that's less important in the present context or that has been shown before is
formatted like this.

Paragraphs or sections that are specific to the C++17 standard have a little C++17 icon on the left,
just as this paragraph does. C++11 and C++14 features are not marked with any icon.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code files that accompany the book. However, I suggest you type in all
the code manually because it greatly benefits the learning process and your memory. All of the
source code used in this book is available for download at www.wiley.com/go/proc++4e.

Alternatively, you can go to the main Wrox code download page at www.wrox.com/dynamic/books/
download.aspx to see the code that is available for this book and all other Wrox books.

NOTE Because many books have similar titles, you may find it easiest to search
by ISBN; for this book, the ISBN is 978-1-119-42130-6.

Once you’ve downloaded the code, just decompress it with your favorite decompression tool.

ERRATA

At Wrox, we make every effort to ensure that there are no errors in the text or in the code of our
books. However, no one is perfect, and mistakes do occur. If you find an error in one of our books,
such as a spelling mistake or faulty piece of code, we would be very grateful for your feedback. By
sending in errata, you may save another reader hours of frustration, and at the same time you will
be helping us provide even higher-quality information.

To find the errata page for this book, go to www.wrox.com and locate the title by using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this
page you can view all errata that has been submitted for this book and posted by Wrox editors. A
complete book list, including links to each book’s errata, is also available at www.wrox.com/misc-
pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport . shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

PART |
Introduction to Professional C++

» CHAPTER 1: A Crash Course in C++ and the Standard Library
» CHAPTER 2: Working with Strings and String Views

» CHAPTER 3: Coding with Style

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

A Crash Course in C++ and the
Standard Library

WHAT'S IN THIS CHAPTER?

> A brief overview of the most important parts and syntax of the
C++ language and the Standard Library

> The basics of smart pointers

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of the chapter’s
code download on this book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

The goal of this chapter is to cover briefly the most important parts of C++ so that you have

a base of knowledge before embarking on the rest of this book. This chapter is not a com-
prehensive lesson in the C++ programming language or the Standard Library. Certain basic
points, such as what a program is and what recursion is, are not covered. Esoteric points, such
as the definition of a union, or the volatile keyword, are also omitted. Certain parts of the
C language that are less relevant in C++ are also left out, as are parts of C++ that get in-depth
coverage in later chapters.

This chapter aims to cover the parts of C++ that programmers encounter every day. For
example, if you’ve been away from C++ for a while and you’ve forgotten the syntax of a for
loop, you’ll find that syntax in this chapter. Also, if you’re fairly new to C++ and don’t under-
stand what a reference variable is, you’ll learn about that kind of variable here, as well. You’ll
also learn the basics on how to use the functionality available in the Standard Library, such as
vector containers, string objects, and smart pointers.

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

4 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

If you already have significant experience with C++, skim this chapter to make sure that there
aren’t any fundamental parts of the language on which you need to brush up. If you’re new to C++,
read this chapter carefully and make sure you understand the examples. If you need additional
introductory information, consult the titles listed in Appendix B.

THE BASICS OF C++

The C++ language is often viewed as a “better C” or a “superset of C.” It was mainly designed to
be an object-oriented C, commonly called as “C with classes.” Later on, many of the annoyances
and rough edges of the C language were addressed as well. Because C++ is based on C, much of the
syntax you’ll see in this section will look familiar to you if you are an experienced C programmer.
The two languages certainly have their differences, though. As evidence, The C++ Programming
Language by C++ creator Bjarne Stroustrup (Fourth Edition; Addison-Wesley Professional, 2013)
weighs in at 1,368 pages, while Kernighan and Ritchie’s The C Programming Language (Second
Edition; Prentice Hall, 1988) is a scant 274 pages. So, if you’re a C programmer, be on the lookout
for new or unfamiliar syntax!

The Obligatory Hello, World

In all its glory, the following code is the simplest C++ program you’re likely to encounter:

#include <iostream>

int main()

{

std::cout << "Hello, World!" << std::endl;
return 0;

}

This code, as you might expect, prints the message, “Hello, World!” on the screen. It is a simple
program and unlikely to win any awards, but it does exhibit the following important concepts about
the format of a C++ program:

> Comments

> Preprocessor directives
» Themain() function
> T/O streams

These concepts are briefly explained in the following sections.

Comments

The first line of the program is a comment, a message that exists for the programmer only and is
ignored by the compiler. In C++, there are two ways to delineate a comment. In the preceding and
following examples, two slashes indicate that whatever follows on that line is a comment.

The Basics of C++ | 5

The same behavior (this is to say, none) would be achieved by using a multiline comment. Multiline
comments start with /* and end with */. The following code shows a multiline comment in action
(or, more appropriately, inaction).

Comments are covered in detail in Chapter 3.

Preprocessor Directives

Building a C++ program is a three-step process. First, the code is run through a preprocessor,
which recognizes meta-information about the code. Next, the code is compiled, or translated into
machine-readable object files. Finally, the individual object files are linked together into a single
application.

Directives aimed at the preprocessor start with the # character, as in the line #include <iostreams
in the previous example. In this case, an #include directive tells the preprocessor to take everything
from the <iostreams header file and make it available to the current file. The most common use of
header files is to declare functions that will be defined elsewhere. A function declaration tells the
compiler how a function is called, declaring the number and types of parameters, and the function
return type. A definition contains the actual code for the function. In C++, declarations usually go
into header files, typically with extension .h, while definitions usually go into source files, typically
with extension .cpp. A lot of other programming languages, such as C# and Java, do not separate
declarations and definitions into separate files.

The <iostreams> header declares the input and output mechanisms provided by C++. If the program
did not include that header, it would be unable to perform its only task of outputting text.

NOTE In C, the names of the Standard Library header files usually end in .h,
such as <stdio.hs, and namespaces are not used.

In C++, the .h suffix is omitted for Standard Library headers, such as
<iostreams>, and everything is defined in the std namespace or a sub-namespace
Ofstd

The Standard Library beaders from C still exist in C++ but in two versions:

> The new and recommended versions without a .h suffix but with a c pre-
fix. These versions put everything in the std namespace (for example,

<cstdio>).

> The old versions with the .h suffix. These versions do not use namespaces
(for example, <stdio.h>).

6 | CHAPTER1

A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

The following table shows some of the most common preprocessor directives.

PREPROCESSOR
DIRECTIVE
#include [file]
#define [key]
[valuel

#ifdef [keyl]
#endif

#ifndef [key]
#endif

#pragma [xyz]

FUNCTIONALITY

The specified file is inserted into
the code at the location of the
directive.

Every occurrence of the speci-
fied key is replaced with the
specified value.

Code within the ifdef (“if
defined”) or ifndef ("if not
defined”) blocks are condition-
ally included or omitted based
on whether the specified key
has been defined with #define.

xyz is compiler dependent. It

often allows the programmer

to display a warning or error if
the directive is reached during
preprocessing.

COMMON USES

Almost always used to include header
files so that code can make use of
functionality defined elsewhere.

Often used in C to define a constant
value or a macro. C++ provides better
mechanisms for constants and most
types of macros. Macros can be dan-
gerous, so use them cautiously. See
Chapter 11 for details.

Used most frequently to protect
against circular includes. Each header
file starts with an #ifndef checking
the absence of a key, followed by

a #define directive to define that
key. The header file ends with an
#endif. This prevents the file from
being included multiple times; see the
example after this table.

See the example after this table.

One example of using preprocessor directives is to avoid multiple includes, as shown here:

#ifndef MYHEADER H
#define MYHEADER H

#endif

If your compiler supports the #pragma once directive, and most modern compilers do, then this can

be rewritten as follows:

#pragma once

Chapter 11 discusses this in more details.

The main() Function

main () is, of course, where the program starts. The return type of main () is an int, indicating
the result status of the program. You can omit any explicit return statements in main (), in which

The Basics of C++ | 7

case zero is returned automatically. The main () function either takes no parameters, or takes two
parameters as follows:

int main(int argc, char* argvl])

argc gives the number of arguments passed to the program, and argv contains those arguments.
Note that argv [0] can be the program name, but it might as well be an empty string, so do not rely
on it; instead, use platform-specific functionality to retrieve the program name. The important thing
to remember is that the actual parameters start at index 1.

I/O Streams

I/O streams are covered in depth in Chapter 13, but the basics of output and input are very simple.
Think of an output stream as a laundry chute for data. Anything you toss into it will be output
appropriately. std: : cout is the chute corresponding to the user console, or standard out. There are
other chutes, including std: : cerr, which outputs to the error console. The << operator tosses data
down the chute. In the preceding example, a quoted string of text is sent to standard out. Output
streams allow multiple types of data to be sent down the stream sequentially on a single line of code.
The following code outputs text, followed by a number, followed by more text:

std::cout << "There are " << 219 << " ways I love you." << std::endl;

std: :endl represents an end-of-line sequence. When the output stream encounters std: :endl, it
will output everything that has been sent down the chute so far and move to the next line. An alter-
nate way of representing the end of a line is by using the \n character. The \n character is an escape
sequence, which refers to a new-line character. Escape sequences can be used within any quoted
string of text. The following table shows the most common ones:

\n new line

\r carriage return

\t tab

\\ backslash character
\" quotation mark

Streams can also be used to accept input from the user. The simplest way to do this is to use the >>
operator with an input stream. The std: : cin input stream accepts keyboard input from the user.
Here is an example:

int value;
std::cin >> value;

User input can be tricky because you can never know what kind of data the user will enter. See
Chapter 13 for a full explanation of how to use input streams.

If you’re new to C++ and coming from a C background, you’re probably wondering what has been
done with the trusty old printf () and scanf () functions. While these functions can still be used
in C++, I recommend using the streams library instead, mainly because the printf () and scanf ()
family of functions do not provide any type safety.

8

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Namespaces

Namespaces address the problem of naming conflicts between different pieces of code. For example,
you might be writing some code that has a function called foo (). One day, you decide to start using
a third-party library, which also has a foo () function. The compiler has no way of knowing which
version of foo () you are referring to within your code. You can’t change the library’s function
name, and it would be a big pain to change your own.

Namespaces come to the rescue in such scenarios because you can define the context in which
names are defined. To place code in a namespace, enclose it within a namespace block. For example,
the following could be the contents of a file called namespaces.h:

namespace mycode {
void foo() ;
}

The implementation of a method or function can also be handled in a namespace. The foo ()
function, for instance, could be implemented in namespaces . cpp as follows:

#include <iostreams>
#include "namespaces.h"

void mycode: :foo()

{
}

Or alternatively:

std::cout << "foo() called in the mycode namespace" << std::endl;

#include <iostreams
#include "namespaces.h"

namespace mycode {
void foo ()

{
}

std::cout << "foo() called in the mycode namespace" << std::endl;

}

By placing your version of foo () in the namespace “mycode,” you are isolating it from the foo ()
function provided by the third-party library. To call the namespace-enabled version of foo (),
prepend the namespace onto the function name by using : :, also called the scope resolution
operator, as follows:

mycode: :foo() ;

Any code that falls within a “mycode” namespace block can call other code within the same
namespace without explicitly prepending the namespace. This implicit namespace is useful in mak-
ing the code more readable. You can also avoid prepending of namespaces with the using directive.
This directive tells the compiler that the subsequent code is making use of names in the specified
namespace. The namespace is thus implied for the code that follows:

#include "namespaces.h"

using namespace mycode;

The Basics of C++ | 9

int main()

foo();
return 0;

}

A single source file can contain multiple using directives, but beware of overusing this shortcut.
In the extreme case, if you declare that you’re using every namespace known to humanity, you’re
effectively eliminating namespaces entirely! Name conflicts will again result if you are using two
namespaces that contain the same names. It is also important to know in which namespace your
code is operating so that you don’t end up accidentally calling the wrong version of a function.

You’ve seen the namespace syntax before—you used it in the Hello, World program, where cout
and end1 are actually names defined in the std namespace. You could have written Hello, World
with the using directive as shown here:

#include <iostreams
using namespace std;

int main()

cout << "Hello, World!" << endl;
return 0;

}

A using declaration can be used to refer to a particular item within a namespace. For example, if
the only part of the std namespace that you intend to use is cout, you can refer to it as follows:

using std::cout;
Subsequent code can refer to cout without prepending the namespace, but other items in the std
namespace will still need to be explicit:

using std::cout;
cout << "Hello, World!" << std::endl;

WARNING Never put a using directive or using declaration in a header file;
otherwise, you force it on everyone who is including your header file.

C++17 makes it easier to work with nested namespaces. A nested namespace is a namespace inside
another one. Before C++17, you had to use nested namespaces as follows:

namespace MyLibraries {
namespace Networking {
namespace FTP {

}

10 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

This can be simplified a lot with C++17:

namespace MyLibraries::Networking::FTP {

}

A namespace alias can be used to give a new and possibly shorter name to another namespace. For
example: namespace MyFTP = MyLibraries::Networking: :FTP;

Literals

Literals are used to write numbers or strings in your code. C++ supports a number of standard liter-
als. Numbers can be specified with the following literals (the examples in the list represent the same
number, 123):

> Decimal literal, 123
» Octal literal, 0173
» Hexadecimal literal, 0x78
> Binary literal, ob1111011
Other examples of literals in C++ include
> A floating-point value (such as 3.14f)
> A double floating-point value (such as 3.14)
> A single character (such as 'a')
> A zero-terminated array of characters (such as "character array")

It is also possible to define your own type of literals, which is an advanced feature explained in
Chapter 11.

Digits separators can be used in numeric literals. A digits separator is a single quote character. For
example,

> 23'456'789
> 0.123'456f

C++17 adds support for hexadecimal floating-point literals—for example, 0x3 .ABCp-10, 0Xb.cp121.

Variables

In C++, variables can be declared just about anywhere in your code and can be used anywhere in
the current block below the line where they are declared. Variables can be declared without being
given a value. These uninitialized variables generally end up with a semi-random value based on
whatever is in memory at that time, and are therefore the source of countless bugs. Variables in C++
can alternatively be assigned an initial value when they are declared. The code that follows shows
both flavors of variable declaration, both using ints, which represent integer values.

int uninitializedInt;

int initializedInt = 7;

cout << uninitializedInt << " is a random value" << endl;

cout << initializedInt << " was assigned an initial value" << endl;

The Basics of C++

1

NOTE Most compilers will issue a warning or an error when code is using
uninitialized variables. Some compilers will generate code that will report an
error at run time.

The following table shows the most common types used in C++.

TYPE

(signed)

signed

(signed)

(signed)

(signed)

unsigned
unsigned
unsigned

unsigned

float

double

int

short (int)
long (int)

long long (int)
(int)

short (int)
long (int)

long long (int)

long double

char
charle t

char32 t

DESCRIPTION

Positive and negative inte-
gers; the range depends on
the compiler (usually 4 bytes).

Short integer (usually 2 bytes)

Long integer (usually 4 bytes)

Long long integer; the range
depends on the compiler,
but is at least the same as for
long (usually 8 bytes).

Limits the preceding types to
values >=0

Floating-point numbers

Double precision numbers;
precision is at least the same
as for float.

Long double precision num-
bers; precision is at least the
same as for double.

A single character
A single 16-bit character

A single 32-bit character

USAGE

int 1 = -7;

signed int i = -6;
signed i = -5;
short s = 13;
short int s = 14;

signed short s = 15;

signed short int s = 16;

long 1 = -7L;

long long 11 = 14LL;

unsigned int 1 = 2U;
unsigned j = 5U;
unsigned short s = 23U;

unsigned long 1 =
5400UL;

unsigned long long 11 =
140ULL;

float £ = 7.2f;

double d = 7.2;

long double d = 16.98L;

char ch = 'm';

charle_t cle

u'm';

char32 t c32 = U'm';

continues

12

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

(continued)

TYPE DESCRIPTION USAGE

wchar_t A single wide character; the wchar t w = L'm';
size depends on the compiler.

bool A Boolean type that can have bool b = true;
one of two values: true or
false

std: :byte! A single byte. Before C++17, std: :byte b{42};?

a char or unsigned char
was used to represent a byte,
but those types make it look
like you are working with
characters. std: :byte on the
other hand clearly states your
intention, that is, a single byte
of memory.

'Requires an include directive for the <cstddef > header file.

2Initialization of an std: :byte requires direct list initialization with a single-element list. See the “Direct
List Initialization versus Copy List Initialization” section later in this chapter for the definition of direct list
initialization.

NOTE C++ does not provide a basic string type. However, a standard imple-
mentation of a string is provided as part of the Standard Library, as described
later in this chapter and in more detail in Chapter 2.

Variables can be converted to other types by casting them. For example, a £1oat can be cast to an int.
C++ provides three ways to explicitly change the type of a variable. The first method is a holdover from
C; it is not recommended but unfortunately still commonly used. The second method is rarely used.
The third method is the most verbose, but is also the cleanest one, and is therefore recommended.

float myFloat = 3.14f;
int il = (int)myFloat;
int 12 = int (myFloat) ;
int i3 = static_cast<int> (myFloat) ;

The resulting integer will be the value of the floating-point number with the fractional part trun-
cated. Chapter 11 describes the different casting methods in more detail. In some contexts, variables
can be automatically cast, or coerced. For example, a short can be automatically converted into a
long because a long represents the same type of data with at least the same precision.

long somelLong = someShort;

When automatically casting variables, you need to be aware of the potential loss of data. For exam-
ple, casting a £loat to an int throws away information (the fractional part of the number). Most
compilers will issue a warning or even an error if you assign a £loat to an int without an explicit
cast. If you are certain that the left-hand side type is fully compatible with the right-hand side type,
it’s okay to cast implicitly.

The Basics of C++ | 13

Operators

What good is a variable if you don’t have a way to change it? The following table shows the most
common operators used in C++ and sample code that makes use of them. Note that operators in
C++ can be binary (operate on two expressions), unary (operate on a single expression), or even ter-
nary (operate on three expressions). There is only one ternary operator in C++, and it is explained in
the “Conditional Statements” section later in this chapter.

OPERATOR DESCRIPTION USAGE
= Binary operator to assign the value on the right to int i;
the expression on the left 4 = 3p
int j 8
j = i;
! Unary operator to complement the true/false bool b = !true;
(non-0/0) status of an expression bool b2 = !b;
+ Binary operator for addition int i = 3 + 2;
int j = 1 + 5;

int k = 1 + §;

- Binary operators for subtraction, multiplication, int i =5 - 1;
* and division int § = 5 * 2;
/ int k = § / 1i;
% Binary operator for the remainder of a division int remainder = 5 % 2;

operation. This is also referred to as the mod or
modulo operator.

++ Unary operator to increment an expression by 1. If Ay §
the operator occurs after the expression, or post- arardl g
increment, the result of the expression is the unin-
cremented value. If the operator occurs before
the expression, or pre-increment, the result of the
expression is the new value.

-- Unary operator to decrement an expression by 1 d==p
——i;

P Shorthand syntax fori = i + j i+=3;

-= Shorthand syntax for i-=73;

= i=1i-3; i *=3;

/= i=1*5; i/=3;

3= i=1i/3; el

i=1%73;

continues

14 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

(continued)
OPERATOR DESCRIPTION USAGE
& Takes the raw bits of one expression and performs i=173&k;
B a bitwise “AND" with the other expression j &= k;
| Takes the raw bits of one expression and performs i=191 k;
IE a bitwise “OR" with the other expression i |= k;
<< Takes the raw bits of an expression and “shifts” i=1<<1;
= each bit left (<<) or right (>>) the specified number i =i >> 4;
e of places i <cm 1;
>>= i >>= 4;
- Performs a bitwise “exclusive or,” also called i=1"73;
ST “XOR" operation, on two expressions i %= 5;

The following program shows the most common variable types and operators in action. If you are
unsure about how variables and operators work, try to figure out what the output of this program
will be, and then run it to confirm your answer.

int somelnteger = 256;
short someShort;

long somelong;

float someFloat;
double someDouble;

someInteger++;

somelInteger *= 2;

someShort = static_cast<shorts>(somelnteger) ;

someLong = someShort * 10000;

someFloat = somelLong + 0.785f;

someDouble = static_cast<double> (someFloat) / 100000;
cout << someDouble << endl;

The C++ compiler has a recipe for the order in which expressions are evaluated. If you have a com-
plicated line of code with many operators, the order of execution may not be obvious. For that
reason, it’s probably better to break up a complicated expression into several smaller expressions,
or explicitly group sub-expressions by using parentheses. For example, the following line of code is
confusing unless you happen to know the C++ operator precedence table by heart:

int i =34 +8 %24+ 21 /7% 2;
Adding parentheses makes it clear which operations are happening first:

int 1 =34 + (8 *2) + ((21 /7)) % 2);
For those of you playing along at home, both approaches are equivalent and end up with i equal to
51. If you assumed that C++ evaluated expressions from left to right, your answer would have been
1. C++ evaluates /, *, and % first (in left-to-right order), followed by addition and subtraction, then

bitwise operators. Parentheses let you explicitly tell the compiler that a certain operation should be
evaluated separately.

The Basics of C++ | 15

Types

In C++, you can use the basic types (int, bool, and so on) to build more complex types of your own
design. Once you are an experienced C++ programmer, you will rarely use the following techniques,
which are features brought in from C, because classes are far more powerful. Still, it is important to
know about the following ways of building types so that you will recognize the syntax.

Enumerated Types

An integer really represents a value within a sequence—the sequence of numbers. Enumerated types
let you define your own sequences so that you can declare variables with values in that sequence.
For example, in a chess program, you could represent each piece as an int, with constants for the
piece types, as shown in the following code. The integers representing the types are marked const
to indicate that they can never change.

const int PieceTypeKing = 0;
const int PieceTypeQueen = 1;
const int PieceTypeRook 2;
const int PieceTypePawn = 3;

int myPiece = PieceTypeKing;

This representation is fine, but it can become dangerous. Since a piece is just an int, what would
happen if another programmer added code to increment the value of a piece? By adding 1, a king
becomes a queen, which really makes no sense. Worse still, someone could come in and give a piece
a value of -1, which has no corresponding constant.

Enumerated types solve these problems by tightly defining the range of values for a variable. The
following code declares a new type, PieceType, which has four possible values, representing four of
the chess pieces:

enum PieceType { PieceTypeKing, PieceTypeQueen, PieceTypeRook, PieceTypePawn };

Behind the scenes, an enumerated type is just an integer value. The real value of PieceTypeKing

is 0. However, by defining the possible values for variables of type PieceType, your compiler can
give you a warning or an error if you attempt to perform arithmetic on PieceType variables or treat
them as integers. The following code, which declares a PieceType variable, and then attempts to
use it as an integer, results in a warning or an error on most compilers:

PieceType myPiece;
myPiece = 0;

It’s also possible to specify the integer values for members of an enumeration. The syntax is as
follows:

enum PieceType { PieceTypeKing = 1, PieceTypeQueen, PieceTypeRook = 10, PieceTypePawn };

In this example, PieceTypeKing has the integer value 1, PieceTypeQueen has the value 2 assigned
by the compiler, PieceTypeRook has the value 10, and PieceTypePawn has the value 11 assigned
automatically by the compiler.

16

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

If you do not assign a value to an enumeration member, the compiler automatically assigns it a value
that is the previous enumeration member incremented by 1. If you do not assign a value to the first
enumeration member yourself, the compiler assigns it the value 0.

Strongly Typed Enumerations

Enumerations as explained in the previous section are not strongly typed, meaning they are not #ype
safe. They are always interpreted as integers, and thus you can compare enumeration values from
completely different enumeration types.

The strongly-typed enum class enumerations solve this problem. For example, the following defines
a type-safe version of the earlier-defined PieceType enumeration:

enum class PieceType

{

King = 1,
Queen,
Rook = 10,
Pawn

}i

For an enum class, the enumeration value names are not automatically exported to the enclosing
scope, which means that you always have to use the scope resolution operator:

PieceType piece = PieceType::King;

This also means that you can give shorter names to the enumeration values, for example, King
instead of PieceTypeKing.

Additionally, the enumeration values are not automatically converted to integers, which means the
following is illegal:

if (PieceType::Queen == 2) {...}

By default, the underlying type of an enumeration value is an integer, but this can be changed as
follows:

enum class PieceType : unsigned long

{

King = 1,
Queen,
Rook = 10,
Pawn

NOTE Iz is recommended to use the strongly-typed enum class enumerations
instead of the type-unsafe enum enumerations.

Structs

Structs let you encapsulate one or more existing types into a new type. The classic example of
a struct is a database record. If you are building a personnel system to keep track of employee

The Basics of C++ | 17

information, you might want to store the first initial, last initial, employee number, and salary for
each employee. A struct that contains all of this information is shown in the employeestruct.h
header file that follows:

struct Employee {
char firstInitial;
char lastInitial;
int employeeNumber;
int salary;

}i

A variable declared with type Employee will have all of these fields built in. The individual fields

« »

of a struct can be accessed by using the “.” operator. The example that follows creates and then
outputs the record for an employee:

#include <iostream>
#include "employeestruct.h"

using namespace std;

int main()

{

Employee anEmployee;
anEmployee.firstInitial = 'M';
anEmployee.lastInitial = 'G';
anEmployee.employeeNumber = 42;
anEmployee.salary = 80000;

cout << "Employee: " << anEmployee.firstInitial <<
anEmployee.lastInitial << endl;

cout << "Number: " << anEmployee.employeeNumber << endl;

cout << "Salary: $" << anEmployee.salary << endl;

return 0;

Conditional Statements

Conditional statements let you execute code based on whether or not something is true. As shown
in the following sections, there are three main types of conditional statements in C++: if/else state-
ments, switch statements, and conditional operators.

if/else Statements

The most common conditional statement is the if statement, which can be accompanied by an
else. If the condition given inside the if statement is true, the line or block of code is executed. If
not, execution continues with the else case if present, or with the code following the conditional
statement. The following code shows a cascading if statement, a fancy way of saying that the if
statement has an else statement that in turn has another if statement, and so on:

if (1 > 4) {

} else if (i > 2) {

18 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

} else {

}

The expression between the parentheses of an if statement must be a Boolean value or evaluate to
a Boolean value. A value of 0 evaluates to false, while any non-zero value evaluates to true. For

example: if (0) is equivalent to if (false). Logical evaluation operators, described later, provide
ways of evaluating expressions to result in a true or false Boolean value.

Initializers for if Statements

C++17 allows you to include an initializer inside an if statement using the following syntax:
if (<initializer> ; <conditional expression>) { <body> }

Any variable introduced in the <initializers is only available in the <conditional expression>
and in the <body>. Such variables are not available outside the if statement.

It is too early in this book to give a useful example of this feature, but here is what it looks like:
if (Employee employee = GetEmployee() ; employee.salary > 1000) { ... }

In this example, the initializer gets an employee and the condition checks whether the salary of the
retrieved employee exceeds 1000. Only in that case is the body of the if statement executed.

More concrete examples will be given throughout this book.

switch Statements

The switch statement is an alternate syntax for performing actions based on the value of an expres-
sion. In C++, the expression of a switch statement must be of an integral type, a type convertible

to an integral type, an enumerated type, or a strongly typed enumeration, and must be compared

to constants. Each constant value represents a “case.” If the expression matches the case, the subse-
quent lines of code are executed until a break statement is reached. You can also provide a default
case, which is matched if none of the other cases match. The following pseudocode shows a com-
mon use of the switch statement:

switch (menultem) {
case OpenMenultem:

break;
case SaveMenultem:

break;
default:

break;

}

A switch statement can always be converted into if/else statements. The previous switch state-
ment can be converted as follows:

if (menultem == OpenMenultem) {

The Basics of C++ | 19

} else if (menultem == SaveMenultem) {
} else {

}

switch statements are generally used when you want to do something based on more than 1 specific
value of an expression, as opposed to some test on the expression. In such a case, the switch state-
ment avoids cascading if-else statements. If you only need to inspect 1 value, an if or if-else
statement is fine.

Once a case expression matching the switch condition is found, all statements that follow it are
executed until a break statement is reached. This execution continues even if another case expres-
sion is encountered, which is called fallthrough. The following example has a single set of statements
that is executed for several different cases:

switch (backgroundColor) ({

case Color::DarkBlue:
case Color::Black:

break;
case Color::Red:

break;

}

Fallthrough can be a source of bugs, for example if you accidentally forget a break statement.
Because of this, compilers might give a warning if a fallthrough is detected in a switch statement,
unless the case is empty as in the above example. Starting with C++17, you can tell the compiler that
a fallthrough is intentional using the [[fallthrough]] attribute as follows:
switch (backgroundColor) ({
case Color::DarkBlue:
doSomethingForDarkBlue () ;

[[fallthroughl];
case Color::Black:

doSomethingForBlackOrDarkBlue () ;
break;

case Color::Red:

case Color::Green:

break;
}
Initializers for switch Statements

Just as for if statements, C++17 adds support for initializers to switch statements. The syntax is as
follows:

switch (<initializer> ; <expression>) { <body> }

Any variables introduced in the <initializers are only available in the <expressions and in the
<body>. They are not available outside the switch statement.

| CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

The Conditional Operator

C++ has one operator that takes three arguments, known as a ternary operator. It is used as a short-
hand conditional expression of the form “if [something| then [perform action], otherwise [perform
some other action].” The conditional operator is represented by a ? and a :. The following code
outputs “yes” if the variable 1 is greater than 2, and “no” otherwise:

std::cout << ((i > 2) ? "yes" "no") ;

The parentheses around i > 2 are optional, so the following is equivalent:

std::cout << (i > 2 ? "yes" "no") ;

The advantage of the conditional operator is that it can occur within almost any context. In the
preceding example, the conditional operator is used within code that performs output. A convenient
way to remember how the syntax is used is to treat the question mark as though the statement that
comes before it really is a question. For example, “Is i greater than 2? If so, the result is ‘yes’; if not,
the result is ‘no.””

Unlike an if statement or a switch statement, the conditional operator doesn’t execute code blocks
based on the result. Instead, it is used within code, as shown in the preceding example. In this way,
it really is an operator (like + and -) as opposed to a true conditional statement, such as if and
switch.

Logical Evaluation Operators

You have already seen a logical evaluation operator without a formal definition. The > operator
compares two values. The result is “true” if the value on the left is greater than the value on the
right. All logical evaluation operators follow this pattern—they all result in a true or false.

The following table shows common logical evaluation operators:

OoP DESCRIPTION

< Determines if the left-hand side
- is less than, less than or equal
to, greater than, or greater than
or equal to the right-hand side

Determines if the left-hand
side equals the right-hand side.
Don’t confuse this with the =
(assignment) operator!

= Not equals. The result of the
statement is true if the left-hand
side does not equal the right-
hand side.

USAGE
if (1 < 0) {

std::cout << "i is negative";

if (1 == 3) {

std::cout << "i is 3";

if (i 1= 3) {

std::cout << "i is not 3";

The Basics of C++ | 21

oP DESCRIPTION USAGE

! Logical NOT. if (!someBoolean) {

This complements the true/false std::cout << "someBoolean is false";
status of a Boolean expression. }
This is a unary operator.

&& Logical AND. The result is true if (someBoolean && someOtherBoolean) {
if both parts of the expression Stedls oot e Mhokh e trua s
are true. }

[Logical OR. The result is true if if (someBoolean || someOtherBoolean) {
either part of the expression is std::cout << "at least one is true";
true.

}

C++ uses short-circuit logic when evaluating logical expressions. That means that once the final
result is certain, the rest of the expression won’t be evaluated. For example, if you are performing
a logical OR operation of several Boolean expressions, as shown in the following code, the result is
known to be true as soon as one of them is found to be true. The rest won’t even be checked.

bool result = booll || bool2 || (i > 7) || (27 / 13 $ 1 + 1) < 2;

In this example, if bool1 is found to be true, the entire expression must be true, so the other parts
aren’t evaluated. In this way, the language saves your code from doing unnecessary work. It can,
however, be a source of hard-to-find bugs if the later expressions in some way influence the state of
the program (for example, by calling a separate function). The following code shows a statement
using && that short-circuits after the second term because 0 always evaluates to false:

bool result = booll && 0 && (i > 7) && !done;

Short-circuiting can be beneficial for performance. You can put cheaper tests first so that more
expensive tests are not even executed when the logic short-circuits. It is also useful in the context
of pointers to avoid parts of the expression to be executed when a pointer is not valid. Pointers and
short-circuiting with pointers are discussed later in this chapter.

Functions

For programs of any significant size, placing all the code inside of main () is unmanageable.
To make programs easy to understand, you need to break up, or decompose, code into concise
functions.

In C++, you first declare a function to make it available for other code to use. If the function is used
inside only a particular file, you generally declare and define the function in the source file. If the
function is for use by other modules or files, you generally put the declaration in a header file and
the definition in a source file.

22 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

NOTE Function declarations are often called function prototypes or function

headers to emphasize that they represent how the function can be accessed, but
not the code behind it. The term function signature is used to denote the combi-
nation of the function name and its parameter list, but without the return type.

A function declaration is shown in the following code. This example has a return type of void,
indicating that the function does not provide a result to the caller. The caller must provide two
arguments for the function to work with—an integer and a character.

void myFunction (int i, char c);

Without an actual definition to match this function declaration, the link stage of the compila-
tion process will fail because code that makes use of the function will be calling nonexistent code.
The following definition prints the values of the two parameters:

void myFunction(int i, char c)

{

std::cout << "the value of 1 is " << 1 << std::endl;
std::cout << "the value of ¢ is " << ¢ << std::endl;

}

Elsewhere in the program, you can make calls to myFunction () and pass in arguments for the two
parameters. Some sample function calls are shown here:

myFunction(8, 'a');
myFunction (someInt, 'b');
myFunction (5, someChar) ;

NOTE In C++, unlike C, a function that takes no parameters just has an empty
parameter list. It is not necessary to use void to indicate that no parameters are
taken. However, you must still use void to indicate when no value is returned.

C++ functions can also return a value to the caller. The following function adds two numbers and
returns the result:

int addNumbers (int numberl, int number2)

{
}

This function can be called as follows:

return numberl + number2;

int sum = addNumbers (5, 3);

Function Return Type Deduction

With C++14, you can ask the compiler to figure out the return type of a function automatically.
To make use of this functionality, you need to specify auto as the return type:

auto addNumbers (int numberl, int number2)

{
}

return numberl + number2;

The Basics of C++ | 23

The compiler deduces the return type based on the expressions used for the return statements.
There can be multiple return statements in the function, but they should all resolve to the same
type. Such a function can even include recursive calls (calls to itself), but the first return statement
in the function must be a non-recursive call.

Current Function’s Name

Every function has a local predefined variable _ func__ containing the name of the current func-
tion. One use of this variable would be for logging purposes:

int addNumbers (int numberl, int number2)

{

std::cout << "Entering function " << _ func__ << std::endl;
return numberl + number2;

C-Style Arrays

Arrays hold a series of values, all of the same type, each of which can be accessed by its position in
the array. In C++, you must provide the size of the array when the array is declared. You cannot give
a variable as the size—it must be a constant, or a constant expression (constexpr). Constant expres-
sions are discussed in Chapter 11. The code that follows shows the declaration of an array of three
integers followed by three lines to initialize the elements to 0:
int myArray |
myArray [0]
myArray [1]
myArray [2]

’

3]
0;
0
0

7

i

WARNING [n C++, the first element of an array is always at position 0, not
position 1! The last position of the array is always the size of the array minus 1!

The next section discusses loops that you can use to initialize each element. However, instead of
using loops, or using the previous initialization mechanism, you can also accomplish the zero-
initialization with the following one-liner:

int myArray[3] = {0};
You can even drop the 0 as follows:
int myArray[3] = {};

An array can also be initialized with an initializer list, in which case the compiler can deduce the
size of the array automatically. For example,

int myArray[] = {1, 2, 3, 4};
If you do specify the size of the array, and the initializer list has less elements than the given size, the

remaining elements are set to 0. For example, the following code only sets the first element in the
array to the value 2, and sets all the other elements to 0:

int myArray[3] = {2};

24 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

To get the size of a stack-based C-style array, you can use the C++17 std: :size () function
(requires <arrays). For example:

unsigned int arraySize = std::size(myArray) ;

If your compiler is not yet C++17 compliant, the old trick to get the size of a stack-based C-style
array is to use the sizeof operator. The sizeof operator returns the size of its argument in bytes.
To get the number of elements in a stack-based array, you divide the size in bytes of the array by the
size in bytes of the first element. For example:

unsigned int arraySize = sizeof (myArray) / sizeof (myArray[0]);

The preceding examples show a one-dimensional array, which you can think of as a line of inte-
gers, each with its own numbered compartment. C++ allows multi-dimensional arrays. You might
think of a two-dimensional array as a checkerboard, where each location has a position along the
x-axis and a position along the y-axis. Three-dimensional and higher arrays are harder to picture
and are rarely used. The following code shows the syntax for allocating a two-dimensional array of
characters for a Tic-Tac-Toe board and then putting an “o0” in the center square:

char ticTacToeBoard[3] [3];
ticTacToeBoard[1] [1] = 'o';

Figure 1-1 shows a visual representation of this board with the position of each square.

TicTacToeBoard[O][0]| |TicTacToeBoard[O][1]| |TicTacToeBoard[0][2]

TicTacToeBoard[1]0] | [TicTacToeBoard[1]1]] | [TicTacToeBoard[1]2]

TicTacToeBoard[Z][O]| |TicTacToeBoard[2][1]| |TicTacToeBoard[2][2]
FIGURE 1-1

NOTE [n C++, it’s best to avoid C-style arrays as discussed in this section,
and instead use Standard Library functionality, such as std: :array, and
std: :vector, as discussed in the next two sections.

The Basics of C++ | 25

std::array

The arrays discussed in the previous section come from C, and still work in C++. However, C++
has a special type of fixed-size container called std: :array, defined in the <array> header file. It’s
basically a thin wrapper around C-style arrays.

There are a number of advantages to using std: :arrays instead of C-style arrays. They always
know their own size, are not automatically cast to a pointer to avoid certain types of bugs, and have
iterators to easily loop over the elements. Iterators are discussed in detail in Chapter 17.

The following example demonstrates how to use the array container. The use of angle brackets
after array, as in array<int, 3>, will become clear during the discussion of templates in Chapter
12. However, for now, just remember that you have to specify two parameters between the angle
brackets. The first parameter represents the type of the elements in the array, and the second one
represents the size of the array.

array<int, 3> arr = {9, 8, 7};

cout << "Array size = " << arr.size() << endl;
cout << "2nd element = " << arr[l] << endl;

NOTE Both the C-style arrays and the std: :arrays have a fixed size, which
must be known at compile time. They cannot grow or shrink at run time.

If you want an array with a dynamic size, it is reccommended to use std: : vector, as explained in
the next section. A vector automatically increases in size when you add new elements to it.

std::vector

The C++ Standard Library provides a number of different non-fixed-size containers that can be
used to store information. std: :vector, declared in <vectors, is an example of such a container.
The vector replaces the concept of C-style arrays with a much more flexible and safer mechanism.
As a user, you need not worry about memory management, as the vector automatically allocates
enough memory to hold its elements. A vector is dynamic, meaning that elements can be added and
removed at run time. Chapter 17 goes into more detail regarding containers, but the basic use of a
vector is straightforward, which is why it’s introduced in the beginning of this book so that it can
be used in examples. The following code demonstrates the basic functionality of vector.

vector<ints> myVector = { 11, 22 };

myVector.push back(33);
myVector.push back(44) ;

cout << "lst element: " << myVector[0] << endl;

26 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

myVector is declared as vector<int>. The angle brackets are required to specify the template
parameters, just as with std: :array. A vector is a generic container. It can contain almost any
kind of object; that’s why you have to specify the type of object you want in your vector between
the angle brackets. Templates are discussed in detail in Chapters 12 and 22.

To add elements to a vector, you can use the push_back () method. Individual elements can be
accessed using a similar syntax as for arrays, i.e. operator([].

Structured Bindings

C++17 introduces the concept of structured bindings. Structured bindings allow you to declare mul-
tiple variables that are initialized with elements from an array, struct, pair, or tuple.

For example, assume you have the following array:
std::array<int, 3> values = { 11, 22, 33 };

You can declare three variables, %, y, and z, initialized with the three values from the array as
follows. Note that you have to use the auto keyword for structured bindings. You cannot, for
example, specify int instead of auto.

auto [x, y, z] = values;

The number of variables declared with the structured binding has to match the number of values in
the expression on the right.

Structured bindings also work with structures if all non-static members are public. For example,

struct Point { double mX, mY, mZ; };

Point point;

point.mX = 1.0; point.mY¥ = 2.0; point.mZ = 3.0;
auto [x, y, z] = point;

Examples with std: :pair and std: :tuple are given in chapters 17 and 20 respectively.

Loops

Computers are great for doing the same thing over and over. C++ provides four looping mecha-
nisms: the while loop, do/while loop, for loop, and range-based for loop.

The while Loop

The while loop lets you perform a block of code repeatedly as long as an expression evaluates to
true. For example, the following completely silly code will output “This is silly.” five times:
int i = 0;
while (i < 5) {
std::cout << "This is silly." << std::endl;
++1;

The Basics of C++ | 27

The keyword break can be used within a loop to immediately get out of the loop and continue
execution of the program. The keyword continue can be used to return to the top of the loop

and reevaluate the while expression. However, using continue in loops is often considered poor
style because it causes the execution of a program to jump around somewhat haphazardly, so use it
sparingly.

The do/while Loop

C++ also has a variation on the while loop called do/while. It works similarly to the while loop,
except that the code to be executed comes first, and the conditional check for whether or not to con-
tinue happens at the end. In this way, you can use a loop when you want a block of code to always
be executed at least once and possibly additional times based on some condition. The example that
follows outputs the statement, “This is silly.” once, even though the condition ends up being false:
int i = 100;
do {
std::cout << "This is silly." << std::endl;
++1;
} while (1 < 5);

The for Loop

The for loop provides another syntax for looping. Any for loop can be converted to a while loop
and vice versa. However, the for loop syntax is often more convenient because it looks at a loop in
terms of a starting expression, an ending condition, and a statement to execute at the end of every
iteration. In the following code, i is initialized to 0; the loop continues as long as i is less than 5;
and at the end of every iteration, 1 is incremented by 1. This code does the same thing as the while
loop example, but is more readable because the starting value, ending condition, and per-iteration
statement are all visible on one line.

for (int 1 = 0; i < 5; ++1i) {

std::cout << "This is silly." << std::endl;
}

The Range-Based for Loop

The range-based for loop is the fourth looping mechanism. It allows for easy iteration over elements
of a container. This type of loop works for C-style arrays, initializer lists (discussed later in this
chapter), and any type that has begin () and end () methods returning iterators (see Chapter 17),
such as std: :array, std: :vector, and all other Standard Library containers discussed in

Chapter 17.

The following example first defines an array of four integers. The range-based for loop then iterates
over a copy of every element in this array and prints each value. To iterate over the elements them-
selves without making copies, use a reference variable, as I discuss later in this chapter.
std::array<int, 4> arr = {1, 2, 3, 4};
for (int i : arr) {
std::cout << 1 << std::endl;
}

28 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Initializer Lists

Initializer lists are defined in the <initializer list> header file and make it easy to write func-
tions that can accept a variable number of arguments. The initializer 1list class is a template
and so it requires you to specify the type of elements in the list between angle brackets, similar to
how you have to specify the type of object stored in a vector. The following example shows how to
use an initializer list:

#include <initializer list>
using namespace std;

int makeSum(initializer list<int> 1lst)

{
int total = 0;
for (int value : 1lst) {
total += value;
}

return total;

}

The function makeSum () accepts an initializer list of integers as argument. The body of the function
uses a range-based for loop to accumulate the total sum. This function can be used as follows:

int a = makeSum({1,2,3});
int b = makeSum({10,20,30,40,50,60});

Initializer lists are type safe and define which type is allowed to be in the list. For the makeSum ()
function shown here, all elements of the initializer list must be integers. Trying to call it with a
double results in a compiler error or warning, as shown here:

int ¢ = makeSum({1,2,3.0});

Those Are the Basics

At this point, you have reviewed the basic essentials of C++ programming. If this section was a
breeze, skim the next section to make sure that you are up to speed on the more-advanced material.
If you struggled with this section, you may want to obtain one of the fine introductory C++ books
mentioned in Appendix B before continuing.

DIVING DEEPER INTO C++

Loops, variables, and conditionals are terrific building blocks, but there is much more to learn. The
topics covered next include many features designed to help C++ programmers with their code as well
as a few features that are often more confusing than helpful. If you are a C programmer with little
C++ experience, you should read this section carefully.

Diving Deeper into C++ | 29

Strings in C++

There are three ways to work with strings of text in C++: the C-style, which represents strings as
arrays of characters; the C++ style, which wraps that representation in an easier-to-use string type;
and the general class of nonstandard approaches. Chapter 2 provides a detailed discussion.

For now, the only thing you need to know is that the C++ string type is defined in the <string>
header file, and that you can use a C++ string almost like a basic type. Just like I/O streams, the
string type lives in the std namespace. The following example shows that strings can be used just
like character arrays:

string myString = "Hello, World";

cout << "The value of myString is " << myString << endl;
cout << "The second letter is " << myString[l] << endl;

Pointers and Dynamic Memory

Dynamic memory allows you to build programs with data that is not of fixed size at compile time.
Most nontrivial programs make use of dynamic memory in some form.

The Stack and the Heap

Memory in your C++ application is divided into two parts—the stack and the heap. One way to
visualize the stack is as a deck of cards. The current top card represents the current scope of the pro-
gram, usually the function that is currently being executed. All variables declared inside the current
function will take up memory in the top stack frame, the top card of the deck. If the current func-
tion, which I’ll call foo (), calls another function bar (), a new card is put on the deck so that bar ()
has its own stack frame to work with. Any parameters passed from
foo () to bar () are copied from the foo () stack frame into the
bar () stack frame. Figure 1-2 shows what the stack might look
like during the execution of a hypothetical function foo () that has int j 11
declared two integer values.

inti 7

foo()
Stack frames are nice because they provide an isolated memory
workspace for each function. If a variable is declared inside the main()
foo () stack frame, calling the bar () function won’t change it FIGURE 1-2

unless you specifically tell it to. Also, when the foo () function is

done running, the stack frame goes away, and all of the variables declared within the function no
longer take up memory. Variables that are stack-allocated do not need to be deallocated (deleted) by
the programmer; it happens automatically.

The heap is an area of memory that is completely independent of the current function or stack
frame. You can put variables on the heap if you want them to exist even when the function in which
they were created has completed. The heap is less structured than the stack. You can think of it

as just a pile of bits. Your program can add new bits to the pile at any time or modify bits that are
already in the pile. You have to make sure that you deallocate (delete) any memory that you allo-
cated on the heap. This does not happen automatically, unless you use smart pointers, which are
discussed in the section “Smart Pointers.”

30

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Working with Pointers

You can put anything on the heap by explicitly allocating memory for it. For example, to put an
integer on the heap, you need to allocate memory for it, but first you need to declare a pointer:

int* myIntegerPointer;

The * after the int type indicates that the variable you are declaring refers or points to some integer
memory. Think of the pointer as an arrow that points at the dynamically allocated heap memory.

It does not yet point to anything specific because you haven’t assigned it to anything; it is an unini-
tialized variable. Uninitialized variables should be avoided at all times, and especially uninitialized
pointers because they point to some random place in memory. Working with such pointers will most
likely make your program crash. That’s why you should always declare and initialize your pointers
at the same time. You can initialize them to a null pointer (nullptr—for more information, see the
“Null Pointer Constant” section) if you don’t want to allocate memory right away:

int* myIntegerPointer = nullptr;

A null pointer is a special default value that no valid pointer will ever have, and converts to false
when used in a Boolean expression. For example:

if (!myIntegerPointer) ({ }

You use the new operator to allocate the memory:

myIntegerPointer = new int;

In this case, the pointer points to the address of just a single integer value. To access this value,
you need to dereference the pointer. Think of dereferencing as following the pointer’s arrow to the
actual value on the heap. To set the value of the newly allocated heap integer, you would use code
like the following:

*myIntegerPointer = 8;

Notice that this is not the same as setting myIntegerPointer to the value 8. You are not changing
the pointer; you are changing the memory that it points to. If you were to reassign the pointer value,
it would point to the memory address 8, which is probably random garbage that will eventually
make your program crash.

After you are finished with your dynamically allocated memory, you need to deallocate the memory
using the delete operator. To prevent the pointer from being used after having deallocated the
memory it points to, it’s recommended to set your pointer to nullptr:

delete myIntegerPointer;
myIntegerPointer = nullptr;

WARNING A pointer must be valid before it is dereferenced. Dereferencing a
null pointer or an uninitialized pointer causes undefined behavior. Your pro-
gram might crash, but it might just as well keep running and start giving strange
results.

Diving Deeper into C++ | 31

Pointers don’t always point to heap memory. You can declare a pointer that points to a variable on
the stack, even another pointer. To get a pointer to a variable, you use the & (“address of”) operator:
int 1 = 8;

int* myIntegerPointer = &i;

C++ has a special syntax for dealing with pointers to structures. Technically, if you have a pointer to
a structure, you can access its fields by first dereferencing it with *, then using the normal. syntax,
as in the code that follows, which assumes the existence of a function called getEmployee ().

Employee* anEmployee = getEmployee() ;
cout << (*anEmployee) .salary << endl;

This syntax is a little messy. The -> (arrow) operator lets you perform both the dereference and the
field access in one step. The following code is equivalent to the preceding code, but is easier to read:

Employee* anEmployee = getEmployee() ;
cout << anEmployee->salary << endl;

Remember the concept of short-circuiting logic, which was discussed earlier in this chapter? This
can be useful in combination with pointers to avoid using an invalid pointer, as in the following
example:

bool isValidSalary = (anEmployee && anEmployee->salary > 0);
Or, a little bit more verbose:

bool isValidSalary = (anEmployee != nullptr && anEmployee->salary > 0);

anEmployee is only dereferenced to get the salary if it is a valid pointer. If it is a null pointer, the
logical operation short-circuits, and the anEmployee pointer is not dereferenced.

Dynamically Allocated Arrays

The heap can also be used to dynamically allocate arrays. You use the new[] operator to allocate
memory for an array.

int arraySize = 8;
int* myVariableSizedArray = new int[arraySize];

This allocates memory for enough integers to satisfy the arraysize variable. Figure 1-3 shows what
the stack and the heap both look like after this code is executed. As you can see, the pointer variable
still resides on the stack, but the array that was dynamically created lives on the heap.

Now that the memory has been allocated, you can work with myvariablesizedarray as though it
were a regular stack-based array.

myVariableSizedArray[3] = 2;

32 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Stack Heap

myVariableSizedArray[0]
myVariableSizedArray[1]

— myVariableSizedArray[2]
] myVariableSizedArray myVariableSizedArray[3]
myVariableSizedArray[4]
myVariableSizedArray[5]
myVariableSizedArray[6]
| myVariableSizedArray[7]

FIGURE 1-3

When your code is done with the array, it should remove the array from the heap so that other vari-
ables can use the memory. In C++, you use the delete [] operator to do this.

delete[] myVariableSizedArray;
myVariableSizedArray = nullptr;

The brackets after delete indicate that you are deleting an array!

NOTE Avoid using malloc () and free () from C. Instead, use new and delete,
or new[] and deletel].

WARNING To prevent memory leaks, every call to new should be paired with a
call to delete, and every call to new (] should be paired with a call to delete[].
Not calling delete or delete[], or mismatching calls, results in memory leaks.
Memory leaks are discussed in Chapter 7.

Null Pointer Constant

Before C++11, the constant NULL was used for null pointers. NULL is simply defined as the constant
0, and this can cause problems. Take the following example:

void func(char* str) {cout << "char* version" << endl;}
void func(int i) {cout << "int version" << endl;}

int main()

{

func (NULL) ;
return 0;

Diving Deeper into C++ | 33

The main () function is calling func () with parameter NULL, which is supposed to be a null pointer
constant. In other words, you are expecting the char* version of func () to be called with a null
pointer as argument. However, since NULL is not a pointer, but identical to the integer 0, the integer
version of func () is called.

This problem is solved with the introduction of a real null pointer constant, nullptr. The following
code calls the char* version:

func (nullptr) ;

Smart Pointers

To avoid common memory problems, you should use smart pointers instead of “raw,” also called
“naked,” C-style pointers. Smart pointers automatically deallocate memory when the smart pointer
object goes out of scope, for example, when the function has finished executing.

The following are the two most important smart pointer types in C++, both defined in <memory>
and in the std namespace:

> std::unique_ ptr
> std: :shared ptr

unique_ptr is analogous to an ordinary pointer, except that it automatically frees the memory or
resource when the unique ptr goes out of scope or is deleted. As such, unique_ptr has sole own-
ership of the object pointed to. One advantage of a unique_ ptr is that memory and resources are
always freed, even when return statements are executed, or when exceptions (discussed later in this
chapter) are thrown. This, for example, simplifies coding when a function has multiple return state-
ments, because you don’t have to remember to free the resources before each return statement.

To create a unique_ptr, you should use std: :make unique<> (). For example, instead of writing
the following,

Employee* anEmployee = new Employee;
delete anEmployee;

you should write this:

auto anEmployee = make unique<Employee> () ;

Note that you do not call delete anymore; it happens automatically for you. The auto keyword is
discussed in more detail in the “Type Inference” section later in this chapter. For now, it suffices to
know that the auto keyword tells the compiler to automatically deduce the type of a variable, so
that you don’t have to manually specify the full type.

unique ptr is a generic smart pointer that can point to any kind of memory. That’s why it is a
template. Templates require the angle brackets, < >, to specify the template parameters. Between the
brackets, you have to specify the type of memory you want your unique_ptr to point to. Templates
are discussed in detail in Chapters 12 and 22, but the smart pointers are introduced in Chapter 1 so
that they can be used throughout the book—and as you will see, they are easy to use.

34

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

make unique () has been available since C++14. If your compiler is not yet C++14 compliant, you
can make your unique_ptr as follows (note that you now have to specify the type, Employee,
twice):

unique ptr<Employee> anEmployee (new Employee) ;

You can use the anEmployee smart pointer in the same way as a normal pointer, for example:

if (anEmployee) {
cout << "Salary: " << anEmployee->salary << endl;
}

A unigue_ptr can also be used to store a C-style array. The following example creates an array of
ten Employee instances, stores it in a unique ptr, and shows how to access an element from the
array:

auto employees = make unique<Employee[]>(10);
cout << "Salary: " << employees[0].salary << endl;

shared_ptr allows for distributed ownership of the data. Each time a shared ptr is assigned, a
reference count is incremented indicating there is one more owner of the data. When a shared ptr
goes out of scope, the reference count is decremented. When the reference count goes to zero, it
means there is no longer any owner of the data, and the object referenced by the pointer is freed.

To create a shared_ptr, you should use std: :make_shared<s (), which is similar to
make_unique<>():

auto anEmployee = make shared<Employees> () ;
if (anEmployee) {

cout << "Salary: " << anEmployee->salary << endl;
}

Starting with C++17, you can also store an array in a shared_ptr, whereas older versions of C++
did not allow this. Note however that make shared<> () of C++17 cannot be used in this case. Here
is an example:

shared ptr<Employee[]> employees(new Employee[10]) ;
cout << "Salary: " << employees[0].salary << endl;

Chapter 7 discusses memory management and smart pointers in more details, but because the basic
use of unique ptr and shared ptr is straightforward, they are already used in examples through-
out this book.

NOTE Raw pointers are only allowed if there is no ownership involved.
Otherwise, use unique ptr by default, and shared ptr if you need shared
ownership. If you know about auto_ptr, forget it; it was deprecated in
C++11/14, and has been removed from C++17.

Diving Deeper into C++ | 35

The Many Uses of const

The keyword const can be used in several different ways in C++. All of its uses are related, but there
are subtle differences. The subtleties of const make for excellent interview questions! Chapter 11
explains in detail all the ways that const can be used. This section outlines two common use-cases.

const Constants

If you assumed that the keyword const has something to do with constants, you have correctly
uncovered one of its uses. In the C language, programmers often use the preprocessor #define
mechanism to declare symbolic names for values that won’t change during the execution of the pro-
gram, such as the version number. In C++, programmers are encouraged to avoid #define in favor
of using const to define constants. Defining a constant with const is just like defining a variable,
except that the compiler guarantees that code cannot change the value.

const int versionNumberMajor = 2;

const int versionNumberMinor 1;
const std::string productName = "Super Hyper Net Modulator";

const to Protect Parameters

In C++, you can cast a non-const variable to a const variable. Why would you want to do this? It
offers some degree of protection from other code changing the variable. If you are calling a func-
tion that a coworker of yours is writing, and you want to ensure that the function doesn’t change
the value of a parameter you pass in, you can tell your coworker to have the function take a const
parameter. If the function attempts to change the value of the parameter, it will not compile.

In the following code, a string* is automatically cast to a const string* in the call to mys-
teryFunction () . If the author of mysteryFunction () attempts to change the value of the passed
string, the code will not compile. There are ways around this restriction, but using them requires
conscious effort. C++ only protects against accidentally changing const variables.

void mysteryFunction(const std::string* someString)

{

*someString = "Test";

}

int main()

{
std::string myString = "The string";
mysteryFunction (&myString) ;
return 0;

}

References

A reference in C++ allows you to give another name to an existing variable. For example:

int x = 42;
int& xReference = x;

36 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Attaching & to a type indicates that the variable is a reference. It is still used as though it was a nor-
mal variable, but behind the scenes, it is really a pointer to the original variable. Both the variable
x and the reference variable xReference point to exactly the same value. If you change the value
through either one of them, the change is visible through the other one as well.

Pass By Reference

Normally, when you pass a variable into a function, you are passing by value. If a function takes an
integer parameter, it is really a copy of the integer that you pass in, so you cannot modify the value
of the original variable. Pointers to stack variables are often used in C to allow functions to modify
variables in other stack frames. By dereferencing the pointer, the function can change the memory
that represents the variable even though that variable isn’t in the current stack frame. The problem
with this approach is that it brings the messiness of pointer syntax into what is really a simple task.

Instead of passing pointers to functions, C++ offers a better mechanism, called pass by reference,
where parameters are references instead of pointers. Following are two implementations of an
addone () function. The first one has no effect on the variable that is passed in because it is passed
by value and thus the function receives a copy of the value passed to it. The second one uses a refer-
ence and thus changes the original variable.

void addOne (int i)

{
}

void addOne (int& 1)

{
}

The syntax for the call to the addone () function with an integer reference is no different than if the
function just took an integer:

1++;

i++;

int myInt = 7;
addOne (myInt) ;

NOTE There is a subtle difference between the two addone () implementations.
The version using pass-by-value accepts literals without a problem; for example,
“addone (3) ; ” is legal. However, doing the same with the pass-by-reference
version of addone () will result in a compiler error. This can be solved by using
const references, discussed in the next section, or rvalue references, an advanced
C++ feature explained in Chapter 9.

If you have a function that needs to return a big structure or class (discussed later in this chapter)
that is expensive to copy, you’ll often see the function taking a non-const reference to such a struc-
ture or class which the function then modifies, instead of directly returning it. This was the recom-
mended way a long time ago to prevent the performance penalty of creating a copy when you return
the structure or class from the function. Since C++11, this is not necessary anymore. Thanks to

Diving Deeper into C++ | 37

move semantics, directly returning structures or classes from functions is efficient without any copy-
ing. Move semantics is discussed in detail in Chapter 9.

Pass By const Reference

You will often find code that uses const reference parameters for functions. At first, that seems
like a contradiction. Reference parameters allow you to change the value of a variable from within
another context. const seems to prevent such changes.

The main value in const reference parameters is efficiency. When you pass a value into a function,
an entire copy is made. When you pass a reference, you are really just passing a pointer to the origi-
nal so the computer doesn’t need to make a copy. By passing a const reference, you get the best of
both worlds: no copy is made but the original variable cannot be changed.

const references become more important when you are dealing with objects because they can be
large and making copies of them can have unwanted side effects. Subtle issues like this are covered
in Chapter 11. The following example shows how to pass an std: :string to a function as a const
reference:

void printString(const std::string& myString)

{
}

int main()

std::cout << myString << std::endl;

std::string someString = "Hello World";
printString(someString) ;
printString("Hello World");

return 0;

NOTE If you need to pass an object to a function, prefer to pass it by const
reference instead of by value. This prevents unnecessary copying. Pass it by
non-const reference if the function needs to modify the object.

Exceptions

C++ is a very flexible language, but not a particularly safe one. The compiler will let you write code
that scribbles on random memory addresses or tries to divide by zero (computers don’t deal well
with infinity). One language feature that attempts to add a degree of safety back to the language is
exceptions.

An exception is an unexpected situation. For example, if you are writing a function that retrieves

a web page, several things could go wrong. The Internet host that contains the page might be
down, the page might come back blank, or the connection could be lost. One way you could handle
this situation is by returning a special value from the function, such as nullptr or an error code.
Exceptions provide a much better mechanism for dealing with problems.

38 |

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Exceptions come with some new terminology. When a piece of code detects an exceptional situation,
it throws an exception. Another piece of code catches the exception and takes appropriate action.
The following example shows a function, divideNumbers (), that throws an exception if the caller
passes in a denominator of zero. The use of std: :invalid argument requires <stdexcepts>.

double divideNumbers (double numerator, double denominator)

{
if (denominator == 0) {
throw invalid argument ("Denominator cannot be 0.");

return numerator / denominator;

}

When the throw line is executed, the function immediately ends without returning a value. If the
caller surrounds the function call with a try/catch block, as shown in the following code, it
receives the exception and is able to handle it:

try {
cout << divideNumbers (2.5, 0.5) << endl;

cout << divideNumbers (2.3, 0) << endl;

cout << divideNumbers (4.5, 2.5) << endl;
} catch (const invalid _argument& exception) {

cout << "Exception caught: " << exception.what() << endl;
}

The first call to divideNumbers () executes successfully, and the result is output to the user. The
second call throws an exception. No value is returned, and the only output is the error message that
is printed when the exception is caught. The third call is never executed because the second call
throws an exception, causing the program to jump to the catch block. The output for the preceding
block of code is as follows:

5
An exception was caught: Denominator cannot be 0.

Exceptions can get tricky in C++. To use exceptions properly, you need to understand what happens
to the stack variables when an exception is thrown, and you have to be careful to properly catch
and handle the necessary exceptions. Also, the preceding example uses the built-in std: :invalid
argument type, but it is preferable to write your own exception types that are more specific to the
error being thrown. Lastly, the C++ compiler doesn’t force you to catch every exception that might
occur. If your code never catches any exceptions but an exception is thrown, it will be caught by the
program itself, which will be terminated. These trickier aspects of exceptions are covered in much
more detail in Chapter 14.

Type Inference

Type inference allows the compiler to automatically deduce the type of an expression. There are two
keywords for type inference: auto and decltype.

Diving Deeper into C++ | 39

The auto Keyword
The auto keyword has a number of completely different uses:
> Deducing a function’s return type, as explained earlier in this chapter.
Structured bindings, as explained earlier in this chapter.
Deducing the type of an expression, as discussed later in this section.
Deducing the type of non-type template parameters, see Chapter 12.
decltype (auto), see Chapter 12.

Alternative function syntax, see Chapter 12.

Y Y Y VY Y Y

Generic lambda expressions, see Chapter 18.

auto can be used to tell the compiler to automatically deduce the type of a variable at compile time.
The following line shows the simplest use of the auto keyword in that context:

auto x = 123;

In this example, you don’t win much by typing auto instead of int; however, it becomes useful

for more complicated types. Suppose you have a function called getFoo () that has a complicated
return type. If you want to assign the result of calling getFoo () to a variable, you can spell out the
complicated type, or you can simply use auto and let the compiler figure it out:

auto result = getFool() ;

This has the added benefit that you can easily change the function’s return type without having to
update all the places in the code where that function is called.

However, using auto to deduce the type of an expression strips away reference and const qualifiers.
Suppose you have the following function:

#include <string>
const std::string message = "Test";

const std::string& fool()

{
}

You can call foo () and store the result in a variable with the type specified as auto, as follows:

return message;

auto f1 = foo();

Because auto strips away reference and const qualifiers, £1 is of type string, and thus a copy is
made. If you want a const reference, you can explicitly make it a reference and mark it const, as
follows:

const auto& f2 = foo();

40 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

WARNING Always keep in mind that auto strips away reference and const
qualifiers, and thus creates a copy! If you do not want a copy, use autos or
const autoé&.

The decltype Keyword

The decltype keyword takes an expression as argument, and computes the type of that expression,
as shown here:

int x = 123;
decltype(x) y = 456;

In this example, the compiler deduces the type of v to be int because that is the type of x.

The difference between auto and decltype is that decltype does not strip reference and const
qualifiers. Take again the function foo () returning a const reference to a string. Defining £2
using decltype as follows results in £2 being of type const strings, and thus no copy is made.

decltype (foo()) f2 = fool);

On first sight, decltype doesn’t seem to add much value. However, it is pretty powerful in the con-
text of templates, discussed in Chapters 12 and 22.

C++ AS AN OBJECT-ORIENTED LANGUAGE

If you are a C programmer, you may have viewed the features covered so far in this chapter as con-
venient additions to the C language. As the name C++ implies, in many ways the language is just a
“better C.” There is one major point that this view overlooks: unlike C, C++ is an object-oriented
language.

Object-oriented programming (OOP) is a very different, arguably more natural, way to write code.
If you are used to procedural languages such as C or Pascal, don’t worry. Chapter 5 covers all the
background information you need to know to shift your mindset to the object-oriented paradigm.
If you already know the theory of OOP, the rest of this section will get you up to speed (or refresh
your memory) on basic C++ object syntax.

Defining Classes

A class defines the characteristics of an object. In C++, classes are usually defined in a header file
(-h), while their definitions usually are in a corresponding source file (.cpp).

A basic class definition for an airline ticket class is shown in the following example. The class can
calculate the price of the ticket based on the number of miles in the flight and whether or not the
customer is a member of the “Elite Super Rewards Program.” The definition begins by declaring the
class name. Inside a set of curly braces, the data members (properties) of the class and its methods
(behaviors) are declared. Each data member and method is associated with a particular access level:
public, protected, or private. These labels can occur in any order and can be repeated. Members
that are public can be accessed from outside the class, while members that are private cannot be

C++ as an Object-Oriented Language | 41

accessed from outside the class. It’s recommended to make all your data members private, and if
needed, to give access to them with public getters and setters. This way, you can easily change the
representation of your data while keeping the public interface the same. The use of protected is
explained in the context of inheritance in Chapters 5 and 10.

#include <string>

class AirlineTicket

{
public:
AirlineTicket () ;
~AirlineTicket () ;

double calculatePriceInDollars() const;

const std::string& getPassengerName () const;
void setPassengerName (const std::string& name) ;

int getNumberOfMiles () const;
void setNumberOfMiles (int miles) ;

bool hasEliteSuperRewardsStatus() const;

void setHasEliteSuperRewardsStatus (bool status);
private:

std::string mPassengerName;

int mNumberOfMiles;

bool mHasEliteSuperRewardsStatus;

}i
This book follows the convention to prefix each data member of a class with a lowercase ‘m’, such as

mPassengerName.

NOTE To follow the const-correctness principle, it’s always a good idea to
declare member functions that do not change any data member of the object as
being const. These member functions are also called “inspectors,” compared to
“mutators” for non-const member functions.

The method that has the same name as the class with no return type is a constructor. It is automati-
cally called when an object of the class is created. The method with a tilde (~) character followed by
the class name is a destructor. It is automatically called when the object is destroyed.

There are two ways of initializing data members with a constructor. The recommended way is
to use a constructor initializer, which follows a colon after the constructor name. Here is the
AirlineTicket constructor with a constructor initializer:

AirlineTicket::AirlineTicket ()
mPassengerName ("Unknown Passenger")
, mNumberOfMiles (0)
, mHasEliteSuperRewardsStatus (false)

42 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

A second way is to put the initializations in the body of the constructor, as shown here:

AirlineTicket::AirlineTicket ()

{

mPassengerName = "Unknown Passenger";
mNumberOfMiles = 0;
mHasEliteSuperRewardsStatus = false;

}

If the constructor is only initializing data members without doing anything else, then there is no real
need for a constructor because data members can be initialized directly inside the class definition.
For example, instead of writing an AirlineTicket constructor, you can modify the definition of the
data members in the class definition as follows:
private:
std::string mPassengerName = "Unknown Passenger";

int mNumberOfMiles = 0;
bool mHasEliteSuperRewardsStatus = false;

If your class additionally needs to perform some other types of initialization, such as opening a file,
allocating memory, and so on, then you still need to write a constructor to handle those.

Here is the destructor for the AirlineTicket class:

AirlineTicket::~AirlineTicket ()

{
}

This destructor doesn’t do anything, and can simply be removed from this class. It is just shown
here so you know the syntax of destructors. Destructors are required if you need to perform some
cleanup, such as closing files, freeing memory, and so on. Chapters 8 and 9 discuss destructors in
more detail.

The definitions of some of the AirlineTicket class methods are shown here:

double AirlineTicket::calculatePriceInDollars() const
{

if (hasEliteSuperRewardsStatus())

return 0;

return getNumberOfMiles() * 0.1;

}

const string& AirlineTicket::getPassengerName () const

{
}

void AirlineTicket::setPassengerName (const string& name)

{
}

return mPassengerName;

mPassengerName = name;

Uniform Initialization | 43

Using Classes

The following sample program makes use of the AirlineTicket class. This example shows the
creation of a stack-based AirlineTicket object as well as a heap-based one:

AirlineTicket myTicket;

myTicket.setPassengerName ("Sherman T. Socketwrench");
myTicket.setNumberOfMiles (700) ;

double cost = myTicket.calculatePriceInDollars() ;
cout << "This ticket will cost $" << cost << endl;

auto myTicket2 = make unique<AirlineTickets>();
myTicket2->setPassengerName ("Laudimore M. Hallidue");
myTicket2->setNumberOfMiles (2000) ;
myTicket2->setHasEliteSuperRewardsStatus (true) ;

double cost2 = myTicket2->calculatePriceInDollars() ;

cout << "This other ticket will cost $" << cost2 << endl;

AirlineTicket* myTicket3 = new AirlineTicket () ;
delete myTicket3;

The preceding example exposes you to the general syntax for creating and using classes. Of course,
there is much more to learn. Chapters 8, 9, and 10 go into more depth about the specific C++ mech-
anisms for defining classes.

UNIFORM INITIALIZATION

Before C++11, initialization of types was not always uniform. For example, take the following defi-
nition of a circle, once as a structure, and once as a class:

struct CircleStruct
int x, y;
double radius;

i

class CircleClass
{
public:
CircleClass (int x, int y, double radius)
mX (x) , mY(y), mRadius (radius) {}
private:
int mX, mY;
double mRadius;

44 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

In pre-C++11, initialization of a variable of type circleStruct and a variable of type circleClass
looks different:

CircleStruct myCirclel = {10, 10, 2.5};
CircleClass myCircle2 (10, 10, 2.5);

For the structure version, you can use the {. ..} syntax. However, for the class version, you need to
call the constructor using function notation (.. .).

Since C++11, you can more uniformly use the {. ..} syntax to initialize types, as follows:

CircleStruct myCircle3 = {10, 10, 2.5};
CircleClass myCircle4 = {10, 10, 2.5};

The definition of myCcircle4 automatically calls the constructor of circleclass. Even the use of the
equal sign is optional, so the following is identical:

CircleStruct myCircle5{10, 10, 2.5};
CircleClass myCircle6{10, 10, 2.5};

Uniform initialization is not limited to structures and classes. You can use it to initialize anything in
C++. For example, the following code initializes all four variables with the value 3:

Uniform initialization can be used to perform zero-initialization* of variables; you just specify an
empty set of curly braces, as shown here:

int e{};
Using uniform initialization prevents narrowing. C++ implicitly performs narrowing, as shown here:

void func(int i) }

int main()

{
int x = 3.14;
func(3.14) ;

}

In both cases, C++ automatically truncates 3.14 to 3 before assigning it to x or calling func (). Note
that some compilers might issue a warning about this narrowing, while others won’t. With uniform
initialization, both the assignment to x and the call to func () must generate a compiler error if your
compiler fully conforms to the C++11 standard:

void func(int i) { }

int main()

{
int x = {3.14};
func({3.14});

}

*Zero-initialization constructs objects with the default constructor, and initializes primitive integer types
(such as char, int, and so on) to zero, primitive floating-point types to 0.0, and pointer types to nullptr.

Uniform Initialization | 45

Uniform initialization can be used to initialize dynamically allocated arrays, as shown here:

int* pArray = new int[4]{0, 1, 2, 3};

It can also be used in the constructor initializer to initialize arrays that are members of a class.

class MyClass

{
public:
MyClass () : mArray{0, 1, 2, 3} {}
private:
int mArray[4];
}i

Uniform initialization can be used with the Standard Library containers as well—such as the
std: :vector, as demonstrated later in this chapter.

Direct List Initialization versus Copy List Initialization
There are two types of initialization that use braced initializer lists:
> Copy list initialization. T obj = {argl, arg2, ...};
> Direct list initialization. T obj {argl, arg2, ...};

In combination with auto type deduction, there is an important difference between copy- and direct
list initialization introduced with C++17.

Starting with C++17, you have the following results:

auto a = {11};
auto b = {11, 22};

auto c¢ {11};
auto d {11, 22};

Note that for copy list initialization, all the elements in the braced initializer must be of the same
type. For example, the following does not compile:

auto b = {11, 22.33};
In earlier versions of the standard (C++11/14), both copy- and direct list initialization deduce an

initializer list<s:

auto a = {11};
auto {11, 22};

o
I

auto c¢
auto d {11, 22};

46 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

THE STANDARD LIBRARY

C++ comes with a Standard Library, which contains a lot of useful classes that can easily be used
in your code. The benefit of using these classes is that you don’t need to reinvent certain classes and
you don’t need to waste time on implementing things that have already been implemented for you.
Another benefit is that the classes available in the Standard Library are heavily tested and verified
for correctness by thousands of users. The Standard Library classes are also tuned for high perfor-
mance, so using them will most likely result in better performance compared to making your own
implementation.

A lot of functionality is available to you in the Standard Library. Chapters 16 to 20 provide more
details; however, when you start working with C++ it is a good idea to understand what the
Standard Library can do for you from the very beginning. This is especially important if you are a C
programmer. As a C programmer, you might try to solve problems in C++ the same way you would
solve them in C. However, in C++ there is probably an easier and safer solution to the problem that
involves using Standard Library classes.

You already saw some Standard Library classes earlier in this chapter—for example, std: : string,
std::array, std: :vector, std: :unique_ ptr, and std: :shared ptr. Many more classes are
introduced in Chapters 16 to 20.

YOUR FIRST USEFUL C++ PROGRAM

The following program builds on the employee database example used earlier in the discussion
on structs. This time, you will end up with a fully functional C++ program that uses many of the
features discussed in this chapter. This real-world example includes the use of classes, exceptions,
streams, vectors, namespaces, references, and other language features.

An Employee Records System

A program to manage a company’s employee records needs to be flexible and have useful features.
The feature set for this program includes the following abilities:

> To add an employee

To fire an employee

To promote an employee

To view all employees, past and present

To view all current employees

Y VYV VY Y Y

To view all former employees

The design for this program divides the code into three parts. The Employee class encapsulates the
information describing a single employee. The Database class manages all the employees of the
company. A separate UserInterface file provides the interactivity of the program.

Your First Useful C++ Program | 47

The Employee Class

The Employee class maintains all the information about an employee. Its methods provide a way to
query and change that information. Employees also know how to display themselves on the console.
Methods also exist to adjust the employee’s salary and employment status.

Employee.h

The Employee.h file defines the Employee class. The sections of this file are described individually
in the text that follows.

The first line contains a #pragma once to prevent the file from being included multiple times,
followed by the inclusion of the string functionality.

This code also declares that the subsequent code, contained within the curly braces, lives in
the Records namespace. Records is the namespace that is used throughout this program for
application-specific code.

#pragma once
#include <string>
namespace Records {

The following constant, representing the default starting salary for new employees, lives in the
Records namespace. Other code that lives in Records can access this constant as kDefaultStart-
ingsalary. Elsewhere, it must be referenced as Records: :kDefaultStartingSalary.

const int kDefaultStartingSalary = 30000;

Note that this book uses the convention to prefix constants with a lowercase ‘k’, from the German
“Konstant,” meaning “Constant.”

The Employee class is defined, along with its public methods. The promote () and demote () meth-
ods both have integer parameters that are specified with a default value. In this way, other code can
omit the integer parameters and the default will automatically be used.

A number of setters and getters provide mechanisms to change the information about an employee
or to query the current information about an employee.

The Employee class includes an explicitly defaulted constructor, as discussed in Chapter 8. It also
includes a constructor that accepts a first and last name.

class Employee
{
public:
Employee() = default;
Employee (const std::string& firstName,
const std::string& lastName) ;

void promote (int raiseAmount = 1000) ;
void demote (int demeritAmount = 1000) ;
void hire();

void fire();

void display() const;

48 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

void setFirstName (const std::string& firstName) ;
const std::string& getFirstName () const;

void setLastName (const std::string& lastName) ;
const std::string& getLastName() const;

void setEmployeeNumber (int employeeNumber) ;
int getEmployeeNumber () const;

void setSalary(int newSalary) ;
int getSalary() const;

bool isHired() const;

Finally, the data members are declared as private so that other parts of the code cannot modify
them directly. The setters and getters provide the only public way of modifying or querying those
values. The data members are also initialized here instead of in a constructor. By default, new
employees have no name, an employee number of -1, the default starting salary, and a status of not

hired.
private:
std::string mFirstName;
std::string mLastName;
int mEmployeeNumber = -1;
int mSalary = kDefaultStartingSalary;
bool mHired = false;
}i
}
Employee.cpp

The constructor accepting a first and last name just sets the corresponding data members:

#include <iostream>
#include "Employee.h"

using namespace std;

namespace Records {
Employee: :Employee (const std::string& firstName,
const std::string& lastName)
: mFirstName (firstName), mLastName (lastName)

{
}

The promote () and demote () methods simply call the setsalary () method with a new value.
Note that the default values for the integer parameters do not appear in the source file; they are only
allowed in a function declaration, not in a definition.

void Employee::promote (int raiseAmount)

{
}

setSalary(getSalary() + raiseAmount) ;

Your First Useful C++ Program

void Employee::demote (int demeritAmount)

{

setSalary(getSalary() - demeritAmount) ;

}

The hire () and fire () methods just set the mHired data member appropriately.

void Employee::hire()

{

mHired = true;

}

void Employee::fire()

{

mHired = false;

}

The display () method uses the console output stream to display information about the current
employee. Because this code is part of the Employee class, it could access data members, such as
mSalary, directly instead of using getters, such as getsalary (). However, it is considered good
style to make use of getters and setters when they exist, even within the class.

void Employee::display() const

{

cout
cout
cout
cout
cout
cout

}

<<
<<
<<
<<
<<
<<

"Employee: " << getLastName() << ", " << getFirstName() << endl;
M " << endl;

(isHired () ? "Current Employee" : "Former Employee") << endl;
"Employee Number: " << getEmployeeNumber () << endl;

"Salary: $" << getSalary() << endl;

endl;

A number of getters and setters perform the task of getting and setting values. Even though these

methods seem trivial, it’s better to have trivial getters and setters than to make your data members

public. For example, in the future, you may want to perform bounds checking in the setsalary ()
method. Getters and setters also make debugging easier because you can insert a breakpoint in them

to inspect values when they are retrieved or set. Another reason is that when you decide to change

how you are storing the data in your class, you only need to modify these getters and setters.

void Employee::setFirstName (const string& firstName)

{

mFirstName = firstName;

}

const string& Employee::getFirstName () const

{

return mFirstName;

}

50 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

EmployeeTest.cpp

As you write individual classes, it is often useful to test them in isolation. The following code
includes a main () function that performs some simple operations using the Employee class. Once
you are confident that the Employee class works, you should remove or comment-out this file so
that you don’t attempt to compile your code with multiple main () functions.

#include <iostreams>
#include "Employee.h"

using namespace std;
using namespace Records;

int main()

{

cout << "Testing the Employee class." << endl;
Employee emp;
emp.setFirstName ("John") ;
emp . setLastName ("Doe") ;
emp . setEmployeeNumber (71) ;
emp.setSalary(50000) ;

emp . promote () ;

emp . promote (50) ;
emp.hire();

emp.display() ;

return 0;

}

Another way of testing individual classes is with unit testing, which is discussed in Chapter 26.

The Database Class

The Database class uses the std: :vector class from the Standard Library to store Employee
objects.

Database.h

Because the database will take care of automatically assigning an employee number to a new
employee, a constant defines where the numbering begins.

#pragma once

#include <iostream>
#include <vector>
#include "Employee.h"

namespace Records {
const int kFirstEmployeeNumber = 1000;

The database provides an easy way to add a new employee by providing a first and last name.
For convenience, this method returns a reference to the new employee. External code can also get
an employee reference by calling the getEmployee () method. Two versions of this method are
declared. One allows retrieval by employee number. The other requires a first and last name.

class Database

{

public:

Your First Useful C++ Program | 51

Employee& addEmployee (const std::string& firstName,
const std::string& lastName) ;

Employee& getEmployee (int employeeNumber) ;

Employee& getEmployee (const std::string& firstName,
const std::string& lastName) ;

Because the database is the central repository for all employee records, it has methods that output
all employees, the employees who are currently hired, and the employees who are no longer hired.

void displayAll() const;
void displayCurrent () const;
void displayFormer () const;

mEmployees contains the Employee Objects. The mNextEmployeeNumber data member keeps track
of what employee number is assigned to a new employee, and is initialized with the kFirstEm-
ployeeNumber constant.

private:

std::vector<Employee> mEmployees;
int mNextEmployeeNumber = kFirstEmployeeNumber;

Database.cpp

The addEmployee () method creates a new Employee object, fills in its information, and adds it to
the vector. The mNextEmployeeNumber data member is incremented after its use so that the next
employee will get a new number.

#include <iostreams>
#include <stdexcepts>
#include "Database.h"

using namespace std;

namespace Records {
Employee& Database::addEmployee (const string& firstName,
const string& lastName)

Employee theEmployee (firstName, lastName) ;
theEmployee.setEmployeeNumber (mNextEmployeeNumber++) ;
theEmployee.hire() ;

mEmployees.push _back (theEmployee) ;

return mEmployees [mEmployees.size() - 1];

}

Only one version of getEmployee () is shown. Both versions work in similar ways. The meth-

ods loop over all employees in mEmployees using range-based for loops, and check to see if an
Employee is a match for the information passed to the method. An exception is thrown if no match
is found.

Employee& Database::getEmployee (int employeeNumber)
{
for (auto& employee : mEmployees)
if (employee.getEmployeeNumber () == employeeNumber) {

52 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

return employee;
}
}
throw logic_error ("No employee found.");

}

The display methods all use a similar algorithm. They loop through all employees and tell each
employee to display itself to the console if the criterion for display matches. displayFormer () is
similar to displayCurrent ().

void Database::displayAll () const

{
for (const auto& employee : mEmployees) {
employee.display () ;
}

}

void Database::displayCurrent () const

{

for (const auto& employee : mEmployees) {
if (employee.isHired())
employee.display () ;

DatabaseTest.cpp
A simple test for the basic functionality of the database is shown here:

#include <iostreams>
#include "Database.h"

using namespace std;
using namespace Records;

int main()

{
Database myDB;
Employee& empl = myDB.addEmployee ("Greg", "Wallis");
empl.fire();

Employee& emp2 = myDB.addEmployee ("Marc", "White");
emp2.setSalary(100000) ;

Employee& emp3 = myDB.addEmployee ("John", "Doe");
emp3.setSalary(10000) ;
emp3.promote () ;

cout << "all employees: " << endl << endl;
myDB.displayAll () ;

cout << endl << "current employees: " << endl << endl;
myDB.displayCurrent () ;

Your First Useful C++ Program | 53

cout << endl << "former employees: " << endl << endl;
myDB.displayFormer () ;

The User Interface

The final part of the program is a menu-based user interface that makes it easy for users to work
with the employee database.

The main () function is a loop that displays the menu, performs the selected action, then does it all
again. For most actions, separate functions are defined. For simpler actions, like displaying employ-
ees, the actual code is put in the appropriate case.

#include <iostream>

#include <stdexcepts>
#include <exceptions
#include "Database.h"

using namespace std;
using namespace Records;

int displayMenu() ;

void doHire (Database& db) ;
void doFire (Database& db) ;
void doPromote (Database& db) ;
void doDemote (Database& db) ;

int main()
{
Database employeeDB;
bool done = false;
while (!done) ({
int selection = displayMenu() ;
switch (selection)
case O:
done = true;
break;
case 1:
doHire (employeeDB) ;
break;
case 2:
doFire (employeeDB) ;
break;
case 3:
doPromote (employeeDB) ;
break;
case 4:
employeeDB.displayAll () ;
break;
case 5:
employeeDB.displayCurrent () ;
break;
case 6:
employeeDB.displayFormer () ;

54

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

}

break;

default:

cerr << "Unknown command." << endl;
break;

return 0;

}

The displayMenu () function outputs the menu and gets input from the user. One important note is
that this code assumes that the user will “play nice” and type a number when a number is requested.
When you read about I/O in Chapter 13, you will learn how to protect against bad input.

int displayMenu()

{

int selection;

cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

endl;

"Employee Database" << endl;

M mmmmm e " << endl;

"1l) Hire a new employee" << endl;

Fire an employee" << endl;

)
)
"3) Promote an employee" << endl;
"4) List all employees" << endl;
"5) List all current employees" << endl;
"6) List all former employees" << endl;

"0) Quit" << endl;

cin >> selection;
return selection;

}

The doHire () function gets the new employee’s name from the user and tells the database to add

the employee.

void doHire (Database& db)

{

string firstName;
string lastName;

cout

<<

"First name? ";

cin >> firstName;

cout

<<

"Last name? ";

cin >> lastName;

db.addEmployee (firstName, lastName) ;

Your First Useful C++ Program | 55

doFire () and doPromote () both ask the database for an employee by their employee number and
then use the public methods of the Employee object to make changes.

void doFire (Database& db)

{

int employeeNumber;

cout << "Employee number? ";
cin >> employeeNumber;

try {

Employee& emp = db.getEmployee (employeeNumber) ;

emp.fire();

cout << "Employee " << employeeNumber << " terminated." << endl;
} catch (const std::logic_error& exception) {

cerr << "Unable to terminate employee: " << exception.what() << endl;
}

}

void doPromote (Database& db)

{

int employeeNumber;
int raiseAmount;

cout << "Employee number? ";
cin >> employeeNumber;

cout << "How much of a raise? ";
cin >> raiseAmount;

try {

Employee& emp = db.getEmployee (employeeNumber) ;

emp.promote (raiseAmount) ;
} catch (const std::logic_error& exception) {

cerr << "Unable to promote employee: " << exception.what () << endl;
}

Evaluating the Program

The preceding program covers a number of topics from the very simple to the relatively complex.
There are a number of ways that you could extend this program. For example, the user interface
does not expose all of the functionality of the Database or Employee classes. You could modify the
UI to include those features. You could also change the Database class to remove fired employees
ﬁonlmEmployees

If there are parts of this program that don’t make sense, consult the preceding sections to review
those topics. If something is still unclear, the best way to learn is to play with the code and try
things out. For example, if you’re not sure how to use the conditional operator, write a short main ()
function that uses it.

56 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

SUMMARY

Now that you know the fundamentals of C++, you are ready to become a professional C++ pro-
grammer. When you start getting deeper into the C++ language later in this book, you can refer to
this chapter to brush up on parts of the language you may need to review. Going back to some of the
sample code in this chapter may be all you need to bring a forgotten concept back to the forefront of
your mind.

The next chapter goes deeper in on how strings are handled in C++, because every program you
write will have to work with strings one way or another.

Working with Strings
and String Views

WHAT'S IN THIS CHAPTER?

The differences between C-style strings and C++ strings
Details of the C++ std::string class

Why you should use std::string_view

Y Y v Y

What raw string literals are

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of the chapter’s

code download on this book’s website at www.wrox . com/go/proc++4e on the Download
Code tab.

Every program that you write will use strings of some kind. With the old C language, there
is not much choice but to use a dumb null-terminated character array to represent a string.
Unfortunately, doing so can cause a lot of problems, such as buffer overflows, which can
result in security vulnerabilities. The C++ Standard Library includes a safe and easy-to-use
std: :string class that does not have these disadvantages.

Because strings are so important, this chapter discusses them in more detail.

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

58

CHAPTER 2 WORKING WITH STRINGS AND STRING VIEWS

DYNAMIC STRINGS

Strings in languages that have supported them as first-class objects tend to have a number of
attractive features, such as being able to expand to any size, or to have sub-strings extracted or
replaced. In other languages, such as C, strings were almost an afterthought; there was no really
good “string” data type, just fixed arrays of bytes. The “string library” was nothing more than a
collection of rather primitive functions without even bounds checking. C++ provides a string type
as a first-class data type.

C-Style Strings

In the C language, strings are represented as an array of characters. The last character of a string
is a null character (“\0’) so that code operating on the string can determine where it ends. This null
character is officially known as NUL, spelled with one L, not two. NUL is not the same as the NULL
pointer. Even though C++ provides a better string abstraction, it is important to understand the C
technique for strings because they still arise in C++ programming. One of the most common situa-
tions is where a C++ program has to call a C-based interface in some third-party library or as part
of interfacing to the operating system.

By far, the most common mistake that programmers make with C strings is that they forget to
allocate space for the “\ 0’ character. For example, the string
“hello” appears to be five characters long, but six characters
worth of space are needed in memory to store the value, as FIGURE 2-1
shown in Figure 2-1.

mysting [@ | 7| 7 [[0

C++ contains several functions from the C language that operate on strings. These functions are
defined in the <cstring> header. As a general rule of thumb, these functions do not handle memory
allocation. For example, the strcpy () function takes two strings as parameters. It copies the second
string onto the first, whether it fits or not. The following code attempts to build a wrapper around
strepy () that allocates the correct amount of memory and returns the result, instead of taking

in an already allocated string. It uses the strlen() function to obtain the length of the string.

The caller is responsible for freeing the memory allocated by copystring ().

char* copyString(const char* str)

{

char* result = new char[strlen(str)];
strcpy (result, str);
return result;

}

The copystring () function as written is incorrect. The strlen () function returns the length of
the string, not the amount of memory needed to hold it. For the string “hel1o”, strlen() returns
5, not 6. The proper way to allocate memory for a string is to add 1 to the amount of space needed
for the actual characters. It seems a bit unnatural to have +1 all over the place. Unfortunately, that’s
how it works, so keep this in mind when you work with C-style strings. The correct implementation
is as follows:

char* copyString(const char* str)

{

char* result = new char[strlen(str) + 1];

Dynamic Strings | 59

strcpy (result, str);
return result;

}

One way to remember that strlen () returns only the number of actual characters in the string is

to consider what would happen if you were allocating space for a string made up of several other
strings. For example, if your function took in three strings and returned a string that was the con-
catenation of all three, how big would it be? To hold exactly enough space, it would be the length of
all three strings, added together, plus one space for the trailing “\0’ character. If strlen() included
the “\0” in the length of the string, the allocated memory would be too big. The following code uses
the strepy () and strcat () functions to perform this operation. The cat in strcat () stands for
concatenate.

char* appendStrings(const char* strl, const char* str2, const char* str3)

{

char* result = new char[strlen(strl) + strlen(str2) + strlen(str3) + 1];
strcpy (result, strl);

strcat (result, str2);

strcat (result, str3);

return result;

}

The sizeof () operator in C and C++ can be used to get the size of a certain data type or variable.
For example, sizeof (char) returns 1 because a char has a size of 1 byte. However, in the context
of C-style strings, sizeof () is not the same as strlen (). You should never use sizeof () to try to
get the size of a string. It returns different sizes depending on how the C-style string is stored. If it is
stored as a char[], then sizeof () returns the actual memory used by the string, including the “\o’
character, as in this example:

char textl[] = "abcdef";
size t sl = sizeof (textl);
size t s2 = strlen(textl);

However, if the C-style string is stored as a char*, then sizeof () returns the size of a pointer!

const char* text2 = "abcdef";
size t s3 = sizeof (text2);
size t s4 = strlen(text2);

Here, s3 will be 4 when compiled in 32-bit mode, and 8 when compiled in 64-bit mode because it is
returning the size of a const char*, which is a pointer.

A complete list of C functions to operate on strings can be found in the <cstring> header file.

WARNING When you use the C-style string functions with Microsoft Visual
Studio, the compiler is likely to give you security-related warnings or even
errors about these functions being deprecated. You can eliminate these warn-
ings by using other C Standard Library functions, such as strcpy s() or
strcat_s (), which are part of the “secure C library” standard (ISO/IEC TR
24731). However, the best solution is to switch to the C++ Standard Library
std: :string class, which we discuss in the section “The C++ std::string Class.’

1)

60

CHAPTER 2 WORKING WITH STRINGS AND STRING VIEWS

String Literals

You’ve probably seen strings written in a C++ program with quotes around them. For example, the
following code outputs the string hello by including the string itself, not a variable that contains it:

cout << "hello" << endl;

In the preceding line, “hello” is a string literal because it is written as a value, not a variable. String
literals are actually stored in a read-only part of memory. This allows the compiler to optimize
memory usage by reusing references to equivalent string literals. That is, even if your program uses
the string literal “hel10” 500 times, the compiler is allowed to create just one instance of hello in
memory. This is called literal pooling.

String literals can be assigned to variables, but because string literals are in a read-only part of
memory and because of the possibility of literal pooling, assigning them to variables can be risky.
The C++ standard officially says that string literals are of type “array of # const char”; however,
for backward compatibility with older non-const-aware code, most compilers do not enforce your
program to assign a string literal to a variable of type const char*. They let you assign a string
literal to a char* without const, and the program will work fine unless you attempt to change the
string. Generally, the behavior of modifying string literals is undefined. It could, for example, cause
a crash, or it could keep working with seemingly inexplicable side effects, or the modification could
silently be ignored, or it could just work; it all depends on your compiler. For example, the following
code exhibits undefined behavior:

char* ptr = "hello";
ptr([1l] = 'a';

A much safer way to code is to use a pointer to const characters when referring to string literals.
The following code contains the same bug, but because it assigned the literal to a const char*, the
compiler catches the attempt to write to read-only memory:

const char* ptr = "hello";
ptr[1l] = 'a’';

You can also use a string literal as an initial value for a character array (char [1). In this case, the
compiler creates an array that is big enough to hold the string and copies the string to this array.
The compiler does not put the literal in read-only memory and does not do any literal pooling.

char arr[] = "hello";

Raw String Literals

Raw string literals are string literals that can span across multiple lines of code, that don’t require
escaping of embedded double quotes, and where escape sequences like \t and \n are processed as
normal text and not as escape sequences. Escape sequences are discussed in Chapter 1. For example,
if you write the following with a normal string literal, you will get a compilation error because the
string contains non-escaped double quotes:

const char* str = "Hello "World"!";

Dynamic Strings | 61

Normally you have to escape the double quotes as follows:

const char* str = "Hello \"World\"!";

With a raw string literal, you can avoid the need to escape the quotes. The raw string literal starts
with R" (and ends with) v,

const char* str = R"(Hello "World"!)";

If you need a string consisting of multiple lines, without raw string literals you need to embed \n
escape sequences in your string where you want to start a new line. For example:

const char* str = "Line 1\nLine 2";

If you output this string to the console, you get the following:

Line 1
Line 2

With a raw string literal, instead of using \n escape sequences to start new lines, you can simply
press enter to start real physical new lines in your source code as follows. The output is the same as
the previous code snippet using the embedded \n.

const char* str = R"(Line 1
Line 2)";

Escape sequences are ignored in raw string literals. For example, in the following raw string literal,
the \t escape sequence is not replaced with a tab character, but is kept as the sequence of a back-
slash followed by the letter t:

const char* str = R"(Is the following a tab character? \t)";
So, if you output this string to the console, you get:

Is the following a tab character? \t

Because a raw string literal ends with) " you cannot embed a) " in your string using this syntax.
For example, the following string is not valid because it contains the) " sequence in the middle of
the string:

const char* str = R" (Embedded)" characters)";

If you need embedded) " characters, you need to use the extended raw string literal syntax, which is
as follows:

R"d-char-sequence (r-char-sequence) d-char-sequence"

The r-char-sequence is the actual raw string. The d-char-sequence is an optional delimiter
sequence, which should be the same at the beginning and at the end of the raw string literal. This
delimiter sequence can have at most 16 characters. You should choose this delimiter sequence as a
sequence that will not appear in the middle of your raw string literal.

The previous example can be rewritten using a unique delimiter sequence as follows:

const char* str = R"- (Embedded)" characters)-";

62 | CHAPTER2 WORKING WITH STRINGS AND STRING VIEWS

Raw string literals make it easier to work with database querying strings, regular expressions, file
paths, and so on. Regular expressions are discussed in Chapter 19.

The C++ std::string Class

C++ provides a much-improved implementation of the concept of a string as part of the Standard
Library. In C++, std: :string is a class (actually an instantiation of the basic_string class tem-
plate) that supports many of the same functionalities as the <cstring> functions, but that takes
care of memory allocation for you. The string class is defined in the <string> header in the std
namespace, and has already been introduced in the previous chapter. Now it’s time to take a deeper
look at it.

What Is Wrong with C-Style Strings?

To understand the necessity of the C++ string class, consider the advantages and disadvantages of
C-style strings.

Advantages:
They are simple, making use of the underlying basic character type and array structure.
They are lightweight, taking up only the memory that they need if used properly.

They are low level, so you can easily manipulate and copy them as raw memory.

Y VYV Y Y

They are well understood by C programmers—why learn something new?
Disadvantages:

They require incredible efforts to simulate a first-class string data type.
They are unforgiving and susceptible to difficult-to-find memory bugs.

They don’t leverage the object-oriented nature of C++.

Y VY VY

They require knowledge of their underlying representation on the part of the programmer.

The preceding lists were carefully constructed to make you think that perhaps there is a better way.
As you’ll learn, C++ strings solve all the problems of C strings and render most of the arguments
about the advantages of C strings over a first-class data type irrelevant.

Using the string Class

Even though string is a class, you can almost always treat it as if it were a built-in type. In fact, the
more you think of it that way, the better off you are. Through the magic of operator overloading,
C++ strings are much easier to use than C-style strings. For example, the + operator is redefined
for strings to mean “string concatenation.” The following code produces 1234:

string A("12");

string B("34");

string C;

C =A + B;

Dynamic Strings | 63

The += operator is also overloaded to allow you to easily append a string:

string A("12");
string B("34");
A += B;

Another problem with C strings is that you cannot use == to compare them. Suppose you have the
following two strings:

char* a = "12";
char b[] = "12";

Writing a comparison as follows always returns false, because it compares the pointer values, not
the contents of the strings:

if (a == Db)

Note that C arrays and pointers are related. You can think of C arrays, like the b array in the
example, as pointers to the first element in the array. Chapter 7 goes deeper in on the array-pointer
duality.

To compare C strings, you have to write something as follows:
if (strcmp(a, b) == 0)

Furthermore, there is no way to use <, <=, >=, or > to compare C strings, so strcmp () returns -1,
0, or 1, depending on the lexicographic relationship of the strings. This results in very clumsy and
hard-to-read code, which is also error-prone.

With C++ strings, operator==, operator!=, operator<, and so on are all overloaded to work on
the actual string characters. Individual characters can still be accessed with operatorI].

As the following code shows, when string operations require extending the string, the memory
requirements are automatically handled by the string class, so memory overruns are a thing of the
past:

string myString = "hello";

myString += ", there";

string myOtherString = myString;

if (myString == myOtherString) {

myOtherString[0] = 'H';
}

cout << myString << endl;
cout << myOtherString << endl;

The output of this code is

hello, there
Hello, there

There are several things to note in this example. One point is that there are no memory leaks even
though strings are allocated and resized on a few places. All of these string objects are created as
stack variables. While the string class certainly has a bunch of allocating and resizing to do, the
string destructors clean up this memory when string objects go out of scope.

64

CHAPTER 2 WORKING WITH STRINGS AND STRING VIEWS

Another point to note is that the operators work the way you want them to. For example, the =
operator copies the strings, which is most likely what you want. If you are used to working with
array-based strings, this will either be refreshingly liberating for you or somewhat confusing. Don’t
worry—once you learn to trust the string class to do the right thing, life gets so much easier.

For compatibility, you can use the ¢_str () method on a string to get a const character pointer,
representing a C-style string. However, the returned const pointer becomes invalid whenever the
string has to perform any memory reallocation, or when the string object is destroyed. You
should call the method just before using the result so that it accurately reflects the current contents
of the string, and you must never return the result of c_str () called on a stack-based string
object from a function.

There is also a data () method which, up until C++14, always returned a const char* justas c_
str (). Starting with C++17, however, data () returns a char* when called on a non-const string.

Consult a Standard Library Reference, see Appendix B, for a complete list of all supported opera-
tions that you can perform on string objects.

std::string Literals

A string literal in source code is usually interpreted as a const char*. You can use the standard

@« _

user-defined literal “s” to interpret a string literal as an std: : string instead.

auto stringl "Hello World";
auto string2 = "Hello World"s;

The standard user-defined literal “s” requires a using namespace std::string literals; or
using namespace std;.

High-Level Numeric Conversions

The std namespace includes a number of helper functions that make it easy to convert numeri-

cal values into strings or strings into numerical values. The following functions are available to
convert numerical values into strings. All these functions take care of memory allocations. A new
string object is created and returned from them.

> string to_string(int wval);

string to_string(unsigned val) ;

string to_string(long val) ;

string to_string(unsigned long val);
string to_string(long long val);

string to_string(unsigned long long val) ;
string to_string(float wval);

string to_string(double val);

Y Y Y VY Y VY VY Y

string to_string(long double val);

Dynamic Strings | 65

These functions are pretty straightforward to use. For example, the following code converts a long
double value into a string:

long double d = 3.14L;
string s = to_string(d);

Converting in the other direction is done by the following set of functions, also defined in the std
namespace. In these prototypes, str is the string that you want to convert, idx is a pointer that
receives the index of the first non-converted character, and base is the mathematical base that
should be used during conversion. The idx pointer can be a null pointer, in which case it will be
ignored. These functions ignore leading whitespace, throw invalid argument if no conversion
could be performed, and throw out_of range if the converted value is outside the range of the
return type.

> int stoi(const string& str, size t *idx=0, int base=10);

long stol (const string& str, size t *idx=0, int base=10);

unsigned long stoul (const string& str, size t *idx=0, int base=10);

long long stoll (const string& str, size t *idx=0, int base=10);

unsigned long long stoull (const string& str, size t *idx=0, int base=10);
float stof (const string& str, size t *idx=0);

double stod(const string& str, size t *idx=0);

Y Y Y VY VY VY Y

long double stold(const string& str, size t *idx=0);
Here is an example:

const string toParse = " 123USD";

size_t index = 0;

int value = stoi(toParse, &index);

cout << "Parsed value: " << value << endl;

cout << "First non-parsed character: '" << toParse[index] << "'" << endl;

The output is as follows:

Parsed value: 123
First non-parsed character: 'U'

Low-Level Numeric Conversions

The C++17 standard also provides a number of lower-level numerical conversion functions, all
defined in the <charconvs header. These functions do not perform any memory allocations, but
instead use buffers allocated by the caller. Additionally, they are tuned for high performance and
are locale-independent (see Chapter 19 for details on localization). The end result is that these func-
tions can be orders of magnitude faster than other higher-level numerical conversion functions. You
should use these functions if you want high performant, locale-independent conversions, for exam-
ple to serialize/deserialize numerical data to/from human readable formats such as JSON, XML,
and so on.

66

CHAPTER 2 WORKING WITH STRINGS AND STRING VIEWS

For converting integers to characters, the following set of functions is available:

to_chars_result to chars(char* first, char* last, IntegerT value, int base = 10);

Here, IntegerT can be any signed or unsigned integer type or char. The result is of type to chars
result, a type defined as follows:

struct to_chars result {
char* ptr;
errc ec;

}i

The ptr member is either equal to the one-past-the-end pointer of the written characters if the
conversion was successful, or it is equal to last if the conversion failed (in which case, ec ==
errc::value too large).

Here is an example of its use:

std::string out (10, ' ');
auto result = std::to_chars(out.data(), out.data() + out.size(), 12345);
if (result.ec == std::errc()) f{ }

Using C++17 structured bindings introduced in Chapter 1, you can write it as follows:

std::string out (10, ' ');
auto [ptr, ec] = std::to_chars(out.data(), out.data() + out.size(), 12345);
if (ec == std::errc()) { }

Similarly, the following set of conversion functions is available for floating point types:

to _chars result to chars(char* first, char* last, FloatT value);

to_chars_result to chars(char* first, char* last, FloatT value,
chars format format) ;

to _chars result to chars(char* first, char* last, FloatT value,
chars format format, int precision);

Here, FloatT can be float, double, or long double. Formatting can be specified with a combina-
tion of chars format flags:

enum class chars format {
scientific,
fixed,
hex,
general = fixed | scientific

}i

The default format is chars format: :general, which causes to chars () to convert the floating
point value to a decimal notation in the style of (-)ddd.ddd, or to a decimal exponent notation in the
style of (-)d.ddde=dd, whichever results in the shortest representation with at least one digit before
the decimal point (if present). If a format is specified but no precision, the precision is automatically
determined to result in the shortest possible representation for the given format, with a maximum
precision of 6 digits.

For the opposite conversion—that is, converting character sequences into numerical values—the
following set of functions is available:

from chars result from chars(const char* first, const char* last,
IntegerT& value, int base = 10);

Dynamic Strings | 67

from chars_result from chars(const char* first, const char* last,
FloatT& value,
chars format format = chars format::general);

Here, from chars_result is a type defined as follows:

struct from chars result
const char* ptr;
errc ec;

}i

The ptr member of the result type is a pointer to the first character that was not converted, or it
equals 1ast if all characters were successfully converted. If none of the characters could be con-
verted, ptr equals first, and the value of the error code will be errc: :invalid_argument. If the
parsed value is too large to be representable by the given type, the value of the error code will be
errc::result_out of range. Note that from chars() does not skip any leading whitespace.

The std::string_view Class

Before C++17, there was always a dilemma of choosing the parameter type for a function

that accepted a read-only string. Should it be a const char*? In that case, if a client had an

std: :string available, they had to call ¢_str () or data() on it to get a const char*. Even worse,
the function would lose the nice object-oriented aspects of the std: : string and all its nice helper
methods. Maybe the parameter could instead be a const std: :strings&? In that case, you always
needed an std: :string. If you passed a string literal, for example, the compiler silently created a
temporary string object that contained a copy of your string literal and passed that object to your
function, so there was a bit of overhead. Sometimes people would write multiple overloads of the
same function—one that accepted a const char*, and another that accepted a const strings—
but that was obviously a less-than-elegant solution.

With C++17, all those problems are solved with the introduction of the std: :string view class,
which is an instantiation of the std: :basic_string view class template, and is defined in the
<string views header. A string view is basically a drop-in replacement for const strings,

but without the overhead. It never copies strings! A string view supports an interface similar to
std: :string. One exception is the absence of c¢_str (), but data () is available. On the other hand,
string view does add the methods remove prefix(size t) and remove suffix(size t), which
shrink the string by advancing the starting pointer by a given offset, or by moving the end pointer
backward by a given offset.

Note that you cannot concatenate a string and a string view. The following code does not

compile:
string str = "Hello";
string view sv = " world";
auto result = str + sv;

To make it compile, you need to replace the last line with:

auto result = str + sv.data();

If you know how to use std: :string, then using a string view is very straightforward, as the
following example code demonstrates. The extractExtension () function extracts and returns the

| CHAPTER 2 WORKING WITH STRINGS AND STRING VIEWS

extension of a given filename. Note that string views are usually passed by value because they are
extremely cheap to copy. They just contain a pointer to, and the length of, a string.

string view extractExtension(string view fileName)

{
}

This function can be used with all kinds of different strings:

return fileName.substr (fileName.rfind('.'));

string fileName = R" (c:\temp\my file.ext)";
cout << "C++ string: " << extractExtension(fileName) << endl;

const char* cString = R" (c:\temp\my file.ext)";
cout << "C string: " << extractExtension(cString) << endl;

cout << "Literal: " << extractExtension(R" (c:\temp\my file.ext)") << endl;

There is not a single copy being made in all these calls to extractExtension (). The fileName
parameter of the extractExtension () function is just a pointer and a length, and so is the return
type of the function. This is all very efficient.

There is also a string_ view constructor that accepts any raw buffer and a length. This can be used
to construct a string view out of a string buffer that is not NUL terminated. It is also useful when
you do have a NUL-terminated string buffer, but you already know the length of the string, so the
constructor does not need to count the number of characters again.

const char* raw = ;

size t length = i
cout << "Raw: " << extractExtension(string view(raw, length)) << endl;

You cannot implicitly construct a string from a string_ view. Either you use an explicit string
constructor, or you use the string view: :data () member. For example, suppose you have the fol-
lowing function that accepts a const strings:

void handleExtension(const strings& extension) { }
Calling this function as follows does not work:

handleExtension (extractExtension("my file.ext"));
The following are two possible options you can use:

handleExtension (extractExtension("my file.ext").data()) ;
handleExtension (string (extractExtension("my file.ext")));

NOTE Use an std: :string view instead of const std::string& or const
char* whenever a function or method requires a read-only string as one of its
parameters.

Summary | 69

std::string_view Literals

You can use the standard user-defined literal “sv” to interpret a string literal as an std: :string
view. For example:

auto sv = "My string view"sv;

The standard user-defined literal “sv” requires a using namespace std::string view
literals; Or using namespace std;.

Nonstandard Strings

There are several reasons why many C++ programmers don’t use C++-style strings. Some program-
mers simply aren’t aware of the string type because it was not always part of the C++ specification.
Others have discovered over the years that the C++ string doesn’t provide the behavior they need,
and so have developed their own string type. Perhaps the most common reason is that development
frameworks and operating systems tend to have their own way of representing strings, such as the
cstring class in the Microsoft MFC. Often, this is for backward compatibility or to address legacy
issues. When starting a project in C++, it is very important to decide ahead of time how your group
will represent strings. Some things are for sure:

> You should not pick the C-style string representation.

> You can standardize on the string functionality available in the framework you are using,
such as the built-in string features of MFC, QT, ...

> If you use std: :string for your strings, then use std: :string view to pass read-only
strings as parameters to functions; otherwise, see if your framework has support for some-
thing similar like string views.

SUMMARY

This chapter discussed the C++ string and string view classes and what their benefits are com-
pared to plain old C-style character arrays. It also explained how a number of helper functions
make it easier to convert numerical values into strings and vice versa, and it introduced the concept
of raw string literals.

The next chapter discusses guidelines for good coding style, including code documentation, decom-
position, naming, code formatting, and other tips.

Coding with Style

WHAT'S IN THIS CHAPTER?

> The importance of documenting your code, and what kind of com-
menting styles you can use

> What decomposition means and how to use it
> What naming conventions are
> What formatting rules are

If you’re going to spend several hours each day in front of a keyboard writing code, you
should take some pride in all that work. Writing code that gets the job done is only part of a
programmer’s work. After all, anybody can learn the fundamentals of coding. It takes a true
master to code with style.

This chapter explores the question of what makes good code. Along the way, you’ll see several
approaches to C++ style. As you will discover, simply changing the style of code can make it
appear very different. For example, C++ code written by Windows programmers often has its
own style, using Windows conventions. It almost looks like a completely different language
than C++ code written by Mac OS programmers. Exposure to several different styles will help
you avoid that sinking feeling you get when opening up a C++ source file that barely resembles
the C++ you thought you knew.

THE IMPORTANCE OF LOOKING GOOD

Writing code that is stylistically “good” takes time. You probably don’t need much time to
whip together a quick-and-dirty program to parse an XML file. Writing the same program
with functional decomposition, adequate comments, and a clean structure would take you
more time. Is it really worth it?

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

72

CHAPTER 3 CODING WITH STYLE

Thinking Ahead

How confident would you be in your code if a new programmer had to work with it a year from
now? A friend of mine, faced with a growing mess of web application code, encouraged his team to
think about a hypothetical intern who would be starting in a year. How would this poor intern ever
get up to speed on the code base when there was no documentation and scary multiple-page func-
tions? When you’re writing code, imagine that somebody new or even you will have to maintain

it in the future. Will you even still remember how it works? What if you’re not available to help?
Well-written code avoids these problems because it is easy to read and understand.

Elements of Good Style

It is difficult to enumerate the characteristics of code that make it “stylistically good.” Over time,
youw’ll find styles that you like and notice useful techniques in code that others wrote. Perhaps more
important, you’ll encounter horrible code that teaches you what to avoid. However, good code
shares several universal tenets that are explored in this chapter:

> Documentation

> Decomposition

> Naming

> Use of the language
>

Formatting

DOCUMENTING YOUR CODE

In the programming context, documentation usually refers to comments contained in the source
files. Comments are your opportunity to tell the world what was going through your head when you
wrote the accompanying code. They are a place to say anything that isn’t obvious from looking at
the code itself.

Reasons to Write Comments

It may seem obvious that writing comments is a good idea, but have you ever stopped to think about
why you need to comment your code? Sometimes programmers acknowledge the importance of
commenting without fully understanding why comments are important. There are several reasons,
all of which are explored in this chapter.

Commenting to Explain Usage

One reason to use comments is to explain how clients should interact with the code. Normally, a
developer should be able to understand what a function does simply based on the name of the func-
tion, the type of the return value, and the name and type of its parameters. However, not everything
can be expressed in code. Sometimes a function requires certain pre- or postconditions that you
have to explain in a comment. Exceptions that can be thrown by a function are also something that

Documenting Your Code | 73

should be explained in a comment. In my opinion, you should only add a comment if it really adds
any useful information. So, it’s up to the developer to decide whether a function needs a comment
or not. Experienced programmers will have no problems deciding this, but less experienced develop-
ers might not always make the right decision. That’s why some companies have a rule stating that
each publicly accessible function or method in a header file should have a comment explaining what
it does. Some organizations go even further and formalize these comments by explicitly listing the
purpose of each method, what its arguments are, what values it returns, and possible exceptions it
can throw.

A comment gives you the opportunity to state, in English, anything that you can’t state in code. For

example, there’s really no way in C++ code to indicate that the saveRecord () method of a database
object throws an exception if openDatabase () has not been called yet. A comment, however, can be
the perfect place to note this restriction, as follows:

int saveRecord(Record& record) ;

The C++ language forces you to specify the return type of a method, but it does not provide a way
for you to say what the returned value actually represents. For example, the declaration of the
saveRecord () method may indicate that it returns an int (a bad design decision discussed fur-
ther in this section), but the client reading that declaration wouldn’t know what the int means.

A comment explains the meaning of it:

int saveRecord (Record& record) ;

As mentioned earlier, some companies require everything about a function to be documented in a
formal way. The following is an example of how such a comment for the saverRecord () method
might look like:

int saveRecord(Record& record) ;

74 | CHAPTER3 CODING WITH STYLE

However, I don’t recommend this style of commenting. The first two lines are completely useless,
since the name of the function is self-explanatory. The description of the parameter also does not
add any additional information. Documenting what exactly the return type represents for this ver-
sion of saveRecord () is required since it returns a generic int. However, a much better design
would be to return a RecordID instead of a plain int, which removes the need to add any comments
for the return type. RecordiD could simply be a type alias (see Chapter 11) for int, but it conveys
more information. The only comment that should remain is the exception. So, the following is my
recommendation for the saveRecord () method:

RecordID saveRecord (Record& record) ;

NOTE If your company coding guidelines don’t force you to write formal com-
ments for functions, use common sense when writing comments. Only state
something in a comment that is not obvious based on the name of the function,
the type of the return value, and the name and type of its parameters.

Sometimes, the parameters to, and the return type from, a function are generic and can be used to
pass all kinds of information. In that case you need to clearly document exactly what type is being
passed. For example, message handlers in Windows accept two parameters, LPARAM and WPARAM,
and can return an LRESULT. All three can be used to pass anything you like, but you cannot change
their type. By using type casting, they can, for example, be used to pass a simple integer or to pass a
pointer to some object. Your documentation could look like this:

Commenting to Explain Complicated Code

Good comments are also important inside the actual source code. In a simple program that pro-
cesses input from the user and writes a result to the console, it is probably easy to read through and
understand all of the code. In the professional world, however, you will often need to write code
that is algorithmically complex or too esoteric to understand simply by inspection.

Consider the code that follows. It is well written, but it may not be immediately apparent what it
is doing. You might recognize the algorithm if you have seen it before, but a newcomer probably
wouldn’t understand the way the code works.

void sort (int inArray[], size t inSize)
for (size t 1 = 1; i < inSize; i++) {
int element = inArrayl[i];
size t j =1 - 1;

Documenting Your Code | 75

while (j >= 0 && inArray[j] > element) {
inArray[j+1] = inArrayl[j];
J--i

}

inArray[j+1] = element;

A better approach would be to include comments that describe the algorithm that is being used, and
to document (loop) invariants. Invariants are conditions that have to be true during the execution
of a piece of code, for example, a loop iteration. In the modified function that follows, a thorough
comment at the top explains the algorithm at a high level, and inline comments explain specific lines
that may be confusing:
/ *

* Implements the "insertion sort" algorithm. The algorithm separates the
array into two parts--the sorted part and the unsorted part. Each
element, starting at position 1, is examined. Everything earlier in the
array is in the sorted part, so the algorithm shifts each element over
until the correct position is found to insert the current element. When
the algorithm finishes with the last element, the entire array is sorted.

/

void sort (int inArrayl[], size_t inSize)

{

Lo I T N

// Start at position 1 and examine each element.
for (size t i = 1; i < inSize; i++) {
// Loop invariant:
// All elements in the range 0 to i-1 (inclusive) are sorted.

int element = inArray[i];

// j marks the position in the sorted part after which element

// will be inserted.

size t j =1 - 1;

// As long as the current slot in the sorted array is higher than
// element, shift values to the right to make room for inserting

// (hence the name, "insertion sort") element in the right position.
while (j »>= 0 && inArray([j] > element) {

inArray[j+1] = inArrayl[jl;

J--;
}

// At this point the current position in the sorted array
// 1s *not* greater than the element, so this is its new position.
inArray[j+1] = element;

The new code is certainly more verbose, but a reader unfamiliar with sorting algorithms would be
much more likely to understand it with the comments included.

Commenting to Convey Meta-information

Another possible reason to use comments is to provide information at a higher level than the code
itself. This meta-information provides details about the creation of the code without addressing the
specifics of its behavior. For example, your organization may want to keep track of the original author
of each method. You can also use meta-information to cite external documents or refer to other code.

76

CHAPTER 3 CODING WITH STYLE

The following example shows several instances of meta-information, including the author, the

date it was created, and the specific feature it addresses. It also includes inline comments express-
ing metadata, such as the bug number that corresponds to a line of code and a reminder to revisit a
possible problem in the code later.

RecordID saveRecord (Record& record)

{

}

if (!mDatabaseOpen) ({
throw DatabaseNotOpenedException() ;
}

RecordID id = getDB()->saveRecord (record) ;
if (id == -1) return -1;

record.setId(id) ;

return id;

A change-log could also be included at the beginning of each file. The following shows a possible
example of such a change-log;:

WARNING All the meta-information in the previous examples (except for the
“TODO” comment) is discouraged when you use—and you should use—a
source code control solution, as discussed in Chapter 24. Such a solution offers
an annotated change history with revision dates, authors, and, if properly used,
comments accompanying each modification, including references to change
requests and bug reports. You should check in or commit each change request
or bug fix separately with a descriptive comment. With such a system, you don’t
need to manually keep track of meta-information.

Another type of meta-information is a copyright notice. Some companies require such a copyright
notice at the very beginning of every source file.

It’s easy to go overboard with comments. A good approach is to discuss which types of comments
are most useful with your group and to form a policy. For example, if one member of the group
uses a “TODO” comment to indicate code that still needs work, but nobody else knows about this
convention, the code in need of attention could be overlooked.

Documenting Your Code | 77

Commenting Styles

Every organization has a different approach to commenting code. In some environments, a par-
ticular style is mandated to give the code a common standard for documentation. Other times,
the quantity and style of commenting is left up to the programmer. The following examples depict
several approaches to commenting code.

Commenting Every Line

One way to avoid lack of documentation is to force yourself to overdocument by including a com-
ment for every line. Commenting every line of code should ensure that there’s a specific reason for
everything you write. In reality, such heavy commenting on a large scale is unwieldy, messy, and
tedious! For example, consider the following useless comments:

int result;
result = doodad.getResult () ;

if (result % 2 == 0) {
logError () ;

} else {
logSuccess () ;

}

return result;

The comments in this code express each line as part of an easily readable English story. This is
entirely useless if you assume that the reader has at least basic C++ skills. These comments don’t add
any additional information to code. Specifically, look at this line:

if (result % 2 == 0) {

The comment is just an English translation of the code. It doesn’t say why the programmer has used
the modulo operator on the result with the value 2. The following would be a better comment:

if (result % 2 == 0) {

The modified comment, while still fairly obvious to most programmers, gives additional information
about the code. The modulo operator with 2 is used because the code needs to check if the result
is even.

Despite its tendency to be verbose and superfluous, heavy commenting can be useful in cases where
the code would otherwise be difficult to comprehend. The following code also comments every line,
but these comments are actually helpful:

result = doodad.calculate (kStart, kEnd, kOffset);
result &= getProcessorMask() ;

setUserField((result + kMarigoldOffset) / MarigoldConstant + MarigoldConstant) ;

78 | CHAPTER3 CODING WITH STYLE

This code is taken out of context, but the comments give you a good idea of what each line does.
Without them, the calculations involving & and the mysterious “Marigold Formula” would be
difficult to decipher.

NOTE Commenting every line of code is usually not warranted, but if the code
is complicated enough to require it, don’t just translate the code to English:
explain what’s really going on.

Prefix Comments

Your group may decide to begin all source files with a standard comment. This is an excellent
opportunity to document important information about the program and specific file. Examples of
information that you might want to document at the top of every file include the following;:

> The last-modified date’

The original author”

A change-log (as described earlier)”
The feature ID addressed by the file
Copyright information

A brief description of the file/class

Incomplete features

Y Y Y VY Y VY Y

Known bugs

The items marked with an asterisk are usually automatically handled by your source code control
solution.

Your development environment may allow you to create a template that automatically starts new
files with your prefix comment. Some source control systems such as Subversion (SVN) can even
assist by filling in metadata. For example, if your comment contains the string $1d$, SVN can
automatically expand the comment to include the author, filename, revision, and date.

An example of a prefix comment is shown here:
/*
* $Id: Watermelon.cpp,123 2004/03/10 12:52:33 marcg $
*
* Implements the basic functionality of a watermelon. All units are expressed
* in terms of seeds per cubic centimeter. Watermelon theory is based on the
* white paper "Algorithms for Watermelon Processing."
*
* The following code is (c¢) copyright 2017, FruitSoft, Inc. ALL RIGHTS RESERVED
*/

Documenting Your Code | 79

Fixed-Format Comments

Writing comments in a standard format that can be parsed by external document builders is an
increasingly popular programming practice. In the Java language, programmers can write com-
ments in a standard format that allows a tool called JavaDoc to automatically create hyperlinked
documentation for the project. For C++, a free tool called Doxygen (available at www . doxygen
.org) parses comments to automatically build HTML documentation, class diagrams, UNIX man
pages, and other useful documents. Doxygen even recognizes and parses JavaDoc-style comments
in C++ programs. The code that follows shows JavaDoc-style comments that are recognized by
Doxygen:

class Watermelon

{

public:

Watermelon (int initialSeeds) ;

double calcSeedRatio(bool slowCalc) ;

i

Doxygen recognizes the C++ syntax and special comment directives such as eparam and ereturn to
generate customizable output. An example of a Doxygen-generated HTML class reference is shown
in Figure 3-1.

Note that you should still avoid writing useless comments, including when you use a tool to auto-
matically generate documentation. Take a look at the watermelon constructor in the previous code.
Its comment omits a description and only describes the parameter. Adding a description, as in the
following example, is redundant:

Watermelon (int initialSeeds) ;

Automatically generated documentation like the file shown in Figure 3-1 can be helpful during
development because it allows developers to browse through a high-level description of classes and
their relationships. Your group can easily customize a tool like Doxygen to work with the style of
comments that you have adopted. Ideally, your group would set up a machine that builds documen-
tation on a daily basis.

80 | CHAPTER3 CODING WITH STYLE

Main Page ‘ Classes ~ | Files ~ | Q- Search
Public Member Functions | List of all members

Watermelon Class Reference

#include <Watermelon.h>

Public Member Functions

Watermelon (int initialSeeds)

double caleSeedRatioc (bool slowCalc)

Detailed Description

Implements the basic functionality of a watermelon TODO: Implement updated algorithms!

Constructor & Destructor Documentation

+ Watermelon()

Watermelon:-Watermelon (int initialSeeds)

Parameters

initialSeeds The starting number of seeds, musi be > 0

Member Function Documentation

+ calcSeedRatio()

double Watermelon::calcSeedRatio (bool slowCalc)

Computes the seed ratio, using the Marigold algorithm.

Parameters

slowCale Whether or not to use long (slow) calculations

Returns
The marigold ratio

FIGURE 3-1

Ad Hoc Comments

Most of the time, you use comments on an as-needed basis. Here are some guidelines for comments
that appear within the body of your code:

> Avoid offensive or derogatory language. You never know who might look at your code

someday.
Liberal use of inside jokes is generally considered okay. Check with your manager.

Before adding a comment, first consider whether you can rework the code to make the com-
ment redundant. For example, by renaming variables, functions, and classes, by reordering
steps in the code, by introducing intermediate well-named variables, and so on.

Decomposition | 81

> Imagine someone else is reading your code. If there are subtleties that are not immediately
obvious, then you should document those.

> Don’t put your initials in the code. Source code control solutions will track that kind of
information automatically for you.

> If you are doing something with an API that isn’t immediately obvious, include a reference to
the documentation of that API where it is explained.

> Remember to update your comments when you update the code. Nothing is more confusing
than code that is fully documented with incorrect information.

> If you use comments to separate a function into sections, consider whether the function
might be broken into multiple, smaller functions.

Self-Documenting Code

Well-written code often doesn’t need abundant commenting. The best code is written to be readable.
If you find yourself adding a comment for every line, consider whether the code could be rewritten
to better match what you are saying in the comments. For example, use descriptive names for your
functions, parameters, variables, classes, and so on. Properly make use of const; that is, if a vari-
able is not supposed to be modified, mark it as const. Reorder the steps in a function to make it
clearer what it is doing. Introduce intermediate well-named variables to make an algorithm easier to
understand. Remember that C++ is a language. Its main purpose is to tell the computer what to do,
but the semantics of the language can also be used to explain its meaning to a reader.

Another way of writing self-documenting code is to break up, or decompose, your code into smaller
pieces. Decomposition is covered in detail in the following section.

NOTE Good code is naturally readable and only requires comments to provide
useful additional information.

DECOMPOSITION

Decomposition is the practice of breaking up code into smaller pieces. There is nothing more daunt-
ing in the world of coding than opening up a file of source code to find 300-line functions and mas-
sive, nested blocks of code. Ideally, each function or method should accomplish a single task. Any
subtasks of significant complexity should be decomposed into separate functions or methods. For
example, if somebody asks you what a method does and you answer, “First it does A, then it does B;
then, if C, it does D; otherwise, it does E,” you should probably have separate helper methods for A,
B, C,D, and E.

Decomposition is not an exact science. Some programmers will say that no function should be lon-
ger than a page of printed code. That may be a good rule of thumb, but you could certainly find a
quarter-page of code that is desperately in need of decomposition. Another rule of thumb is that

if you squint your eyes and look at the format of the code without reading the actual content, it
shouldn’t appear too dense in any one area. For example, Figures 3-2 and 3-3 show code that has

82 | CHAPTER3 CODING WITH STYLE

been purposely blurred so that you don’t focus on the content.
It should be obvious that the code in Figure 3-3 has better
decomposition than the code in Figure 3-2.

Decomposition through Refactoring

Sometimes, when you’ve had a few coffees and you’re really in
the programming zone, you start coding so fast that you end
up with code that does exactly what it’s supposed to do, but
is far from pretty. All programmers do this from time to time.

Short periods of vigorous coding are sometimes the most pro- FIGURE 3-2
ductive times in the course of a project. Dense code also arises

over the course of time as code is modified. As new require-
ments and bug fixes emerge, existing code is amended with
small modifications. The computing term cruft refers to the
gradual accumulation of small amounts of code that eventually
turns a once-elegant piece of code into a mess of patches and
special cases.

Refactoring is the act of restructuring your code. The following
list contains example techniques that you can use to refactor
your code. Consult one of the refactoring books in Appendix B
to get a more comprehensive list.

> Techniques that allow for more abstraction:

> Encapsulate Field. Make a field private and give
access to it with getter and setter methods.

> Generalize Type. Create more general types to
allow for more code sharing.

> Techniques for breaking code apart into more logical FIGURE 3-3
pieces:

> Extract Method. Turn part of a larger method into a new method to make it easier to
understand.

>

Extract Class. Move part of the code from an existing class into a new class.

> Techniques for improving names and the location of code:

>

>
>
>

Move Method or Move Field. Move to a more appropriate class or source file.
Rename Method or Rename Field. Change the name to better reveal its purpose.
Pull Up. In object-oriented programming, move to a base class.

Push Down. In object-oriented programming, move to a derived class.

Whether your code starts its life as a dense block of unreadable cruft or it just evolves that way,
refactoring is necessary to periodically purge the code of accumulated hacks. Through refactoring,
you revisit existing code and rewrite it to make it more readable and maintainable. Refactoring is

Naming | 83

an opportunity to revisit the decomposition of code. If the purpose of the code has changed or if it
was never decomposed in the first place, when you refactor the code, squint at it and determine if
it needs to be broken down into smaller parts.

When refactoring code, it is very important to be able to rely on a testing framework that catches
any defects that you might introduce. Unit tests, discussed in Chapter 26, are particularly well
suited for helping you catch mistakes during refactoring.

Decomposition by Design

If you use modular decomposition and approach every module, method, or function by considering
what pieces of it you can put off until later, your programs will generally be less dense and more
organized than if you implement every feature in its entirety as you code.

Of course, you should still design your program before jumping into the code.

Decomposition in This Book

You will see decomposition in many of the examples in this book. In many cases, methods are
referred to for which no implementation is shown because they are not relevant to the example and
would take up too much space.

NAMING

The C++ compiler has a few naming rules:
> Names cannot start with a number (for example, 9tos).

> Names that contain a double underscore (such as my _name) are reserved and shall not be
used.

> Names that begin with an underscore (such as _name or Name) are reserved and shall not be
used.

Other than those rules, names exist only to help you and your fellow programmers work with the
individual elements of your program. Given this purpose, it is surprising how often programmers
use unspecific or inappropriate names.

Choosing a Good Name

The best name for a variable, method, function, parameter, class, namespace, and so on accurately
describes the purpose of the item. Names can also imply additional information, such as the type or
specific usage. Of course, the real test is whether other programmers understand what you are try-
ing to convey with a particular name.

There are no set-in-stone rules for naming other than the rules that work for your organization.
However, there are some names that are rarely appropriate. The following table shows some names
at both ends of the naming continuum.

84

CHAPTER 3 CODING WITH STYLE

GOOD NAMES

sourceName, destinationName

Distinguishes two objects
gSettings
Conveys global status

mNameCounter

Conveys data member status

calculateMarigoldOffset ()

Simple, accurate

mTypeString

Easy on the eyes

errorMessage

Descriptive name

sourceFile, destinationFile

No abbreviations

Naming Conventions

BAD NAMES

thingl, thing2

Too general
globalUserSpecificSettingsAndPreferences
Too long

mNC

Too obscure, too brief

doAction ()

Too general, imprecise
typeSTR256

A name only a computer could love
mIHateLarry

Unacceptable inside joke

string

Non-descriptive name

srcFile, dstFile

Abbreviations

Selecting a name doesn’t always require a lot of thought and creativity. In many cases, you’ll want
to use standard techniques for naming. Following are some of the types of data for which you can

make use of standard names.

Counters

@i

Early in your programming career, you probably saw code that used the variable “i” as a coun-
ter. It is customary to use i and j as counters and inner-loop counters, respectively. Be careful
with nested loops, however. It’s a common mistake to refer to the “ith” element when you really
mean the “jth” element. When working with 2-D data, it’s probably easier to use row and column
as indices, instead of i and j. Some programmers prefer using counters outerLoopIndex and
innerLoopIndex, and some even frown upon using i and j as loop counters.

Prefixes

Many programmers begin their variable names with a letter that provides some information about
the variable’s type or usage. On the other hand, there are as many programmers, or even more, who
disapprove of using any kind of prefix because this could make evolving code less maintainable in
the future. For example, if a member variable is changed from static to non-static, you have to

Naming | 85

rename all the uses of that name. If you don’t rename them, your names continue to convey seman-
tics, but now they are the wrong semantics.

However, you often don’t have a choice and you need to follow the guidelines of your company. The
following table shows some potential prefixes.

PREFIX EXAMPLE NAME LITERAL PREFIX MEANING USAGE

m mData “member” Data member within a class

m_ m_data

s sLookupTable “static” Static variable or data member

ms msLookupTable

ms_ ms_lookupTable

k kMaximumLength “konstant” (German for A constant value. Some programmers
“constant”) use all uppercase names without a

prefix to indicate constants.

b bCompleted “Boolean” Designates a Boolean value

is isCompleted

n nLines “number” A data member that is also a counter.
nNum oNumLines Because an “n” looks similar to an

“m,"” some programmers instead use
mNum as a prefix.

Hungarian Notation

Hungarian Notation is a variable and data-member-naming convention that is popular with
Microsoft Windows programmers. The basic idea is that instead of using single-letter prefixes such
as m, you should use more verbose prefixes to indicate additional information. The following line of
code shows the use of Hungarian Notation:

char* pszName;

The term Hungarian Notation arose from the fact that its inventor, Charles Simonyi, is Hungarian.
Some also say that it accurately reflects the fact that programs using Hungarian Notation end up
looking as if they were written in a foreign language. For this latter reason, some programmers
tend to dislike Hungarian Notation. In this book, prefixes are used, but not Hungarian Notation.
Adequately named variables don’t need much additional context information besides the prefix.
For example, a data member named mName says it all.

NOTE Good names convey information about their purpose without making
the code unreadable.

86

CHAPTER 3 CODING WITH STYLE

Getters and Setters

If your class contains a data member, such as mStatus, it is customary to provide access to the mem-
ber via a getter called getstatus () and a setter called setstatus (). To give access to a Boolean
data member, you typically use is as a prefix instead of get, for example isRunning (). The C++
language has no prescribed naming for these methods, but your organization will probably want to
adopt this or a similar naming scheme.

Capitalization

There are many different ways of capitalizing names in your code. As with most elements of cod-
ing style, it is very important that your group adopts a standardized approach and that all members
adopt that approach. One way to get messy code is to have some programmers naming classes in all
lowercase with underscores representing spaces (priority queue) and others using capitals with
each subsequent word capitalized (PriorityQueue). Variables and data members almost always
start with a lowercase letter and use either underscores (my gqueue) or capitals (myQueue) to indicate
word breaks. Functions and methods are traditionally capitalized in C++, but, as you’ve seen, in this
book I have adopted the style of lowercase functions and methods to distinguish them from class
names. A similar style of capitalizing letters is used to indicate word boundaries for class and data
member names.

Namespaced Constants

Imagine that you are writing a program with a graphical user interface. The program has several
menus, including File, Edit, and Help. To represent the ID of each menu, you may decide to use a
constant. A perfectly reasonable name for a constant referring to the Help menu ID is kHelp.

The name kHelp will work fine until you add a Help button to the main window. You also need a
constant to refer to the ID of the button, but kHelp is already taken.

A possible solution for this is to put your constants in different namespaces, which are discussed in
Chapter 1. You create two namespaces: Menu and Button. Each namespace has a kHelp constant
and you use them as Menu: :kHelp and Button: : kHelp. Another, and more recommended solution
is to use enumerated types, also introduced in Chapter 1.

USING LANGUAGE FEATURES WITH STYLE

The C++ language lets you do all sorts of terribly unreadable things. Take a look at this wacky code:

i++ + ++1;

This is unreadable but more importantly, its behavior is undefined by the C++ standard. The prob-
lem is that i++ uses the value of i but has a side effect of incrementing it. The standard does not say
when this incrementing should be done, only that the side effect (increment) should be visible after
the sequence point “;”, but the compiler can do it at any time during the execution of that line. It’s
impossible to know which value of i will be used for the ++i part. Running this code with different

compilers and platforms can result in different values.

Using Language Features with Style | 87

The following is another example of code which you should avoid, because it exhibits undefined
behavior if your compiler is not C++17 compliant. With C++17, this has well-defined behavior: first
i is incremented, and then used as index in a[i].

ali] = ++1i;

With all the power that the C++ language offers, it is important to consider how the language
features can be used toward stylistic good instead of evil.

Use Constants

Bad code is often littered with “magic numbers.” In some function, the code might be using
2.71828. Why 2.71828? What does that value mean? People with a mathematical background might
find it obvious that this represents an approximation of the transcendental value e, but most people
don’t know this. The language offers constants to give a symbolic name to a value that doesn’t
change, such as 2.71828.

const double kApproximationForE = 2.71828182845904523536;

Use References Instead of Pointers

Traditionally, C++ programmers learned C first. In C, pointers were the only pass-by-reference
mechanism, and they certainly worked just fine for many years. Pointers are still required in some
cases, but in many situations you can switch to references. If you learned C first, you probably think
that references don’t really add any new functionality to the language. You might think that they
merely introduce a new syntax for functionality that pointers could already provide.

There are several advantages to using references rather than pointers. First, references are safer than
pointers because they don’t deal directly with memory addresses and cannot be nullptr. Second,
references are more stylistically pleasing than pointers because they use the same syntax as stack
variables, avoiding symbols such as * and &. They’re also easy to use, so you should have no prob-
lem adopting references into your style palette. Unfortunately, some programmers think that if they
see an & in a function call, they know the called function is going to change the object, and if they
don’t see the & it must be pass-by-value. With references, they say they don’t know if the function is
going to change the object unless they look at the function prototype. This is a wrong way of think-
ing. Passing in a pointer does not automatically mean that the object will be modified, because the
parameter might be const T*. Passing both a pointer and a reference can modify the object, or

it may not, depending on whether the function prototype uses const T*, T*, const T, Or T&.
So, you need to look at the prototype anyway to know if the function might change the object.

Another benefit of references is that they clarify ownership of memory. If you are writing a method
and another programmer passes you a reference to an object, it is clear that you can read and
possibly modify the object, but you have no easy way of freeing its memory. If you are passed a
pointer, this is less clear. Do you need to delete the object to clean up memory? Or will the caller
do that? Note that the preferred way of handling memory is to use smart pointers, introduced in
Chapter 1.

88

CHAPTER 3 CODING WITH STYLE

Use Custom Exceptions

C++ makes it easy to ignore exceptions. Nothing about the language syntax forces you to deal with
exceptions and you could easily write error-tolerant programs with traditional mechanisms such as
returning nullptr or setting an error flag.

Exceptions provide a much richer mechanism for error handling, and custom exceptions allow you
to tailor this mechanism to your needs. For example, a custom exception type for a web browser
could include fields that specify the web page that contained the error, the network state when the
error occurred, and additional context information.

Chapter 14 contains a wealth of information about exceptions in C++.

NOTE Language features exist to help the programmer. Understand and make
use of features that contribute to good programming style.

FORMATTING

Many programming groups have been torn apart and friendships ruined over code-formatting argu-
ments. In college, a friend of mine got into such a heated debate with a peer over the use of spaces in
an if statement that people were stopping by to make sure that everything was okay.

If your organization has standards in place for code formatting, consider yourself lucky. You may
not like the standards they have in place, but at least you won’t have to argue about them.

If no standards are in place for code formatting, I reccommend to introduce them in your organiza-
tion. Standardized coding guidelines make sure that all programmers on your team follow the same
naming conventions, formatting rules, and so on, which makes the code more uniform and easier to
understand.

If everybody on your team is just writing code their own way, try to be as tolerant as you can.
As you’ll see, some practices are just a matter of taste, while others actually make it difficult to
work in teams.

The Curly Brace Alignment Debate

Perhaps the most frequently debated point is where to put the curly braces that demark a block of
code. There are several styles of curly brace use. In this book, the curly brace is put on the same line
as the leading statement, except in the case of a function, class, or method name. This style is shown
in the code that follows (and throughout this book):

void someFunction ()

{

if (condition())
cout << "condition was true" << endl;
} else {

cout << "condition was false" << endl;

}

Formatting | 89

This style conserves vertical space while still showing blocks of code by their indentation. Some
programmers would argue that preservation of vertical space isn’t relevant in real-world coding.
A more verbose style is shown here:

void someFunction ()

{

if (condition())

{
}
else

{
}

cout << "condition was true" << endl;

cout << "condition was false" << endl;

Some programmers are even liberal with the use of horizontal space, yielding code like this:

void someFunction ()

{

if (condition())

{

cout << "condition was true" << endl;

cout << "condition was false" << endl;

Another point of debate is whether or not to put braces around single statements, for example:

void someFunction ()

{

if (condition())
cout << "condition was true" << endl;
else

cout << "condition was false" << endl;

}

Of course, I won’t recommend any particular style because I don’t want hate mail.

NOTE When selecting a style for denoting blocks of code, the important consid-
eration is how well you can see which block falls under which condition simply
by looking at the code.

Coming to Blows over Spaces and Parentheses

The formatting of individual lines of code can also be a source of disagreement. Again,
I won’t advocate a particular approach, but you are likely to encounter a few of the styles
shown here.

90

CHAPTER 3 CODING WITH STYLE

In this book, I use a space after any keyword, a space before and after any operator, a space after
every comma in a parameter list or a call, and parentheses to clarify the order of operations, as
follows:
if (i == 2) {
j=i+ (k/m;
}

An alternative, shown next, treats if stylistically like a function, with no space between the key-
word and the left parenthesis. Also, the parentheses used to clarify the order of operations inside of
the if statement are omitted because they have no semantic relevance.
if(1i==2) {
j=1+k/ m;
}

The difference is subtle, and the determination of which is better is left to the reader, yet I can’t
move on from the issue without pointing out that if is not a function.

Spaces and Tabs

The use of spaces and tabs is not merely a stylistic preference. If your group does not agree on a con-
vention for spaces and tabs, there are going to be major problems when programmers work jointly.
The most obvious problem occurs when Alice uses four-space tabs to indent code and Bob uses
five-space tabs; neither will be able to display code properly when working on the same file. An even
worse problem arises when Bob reformats the code to use tabs at the same time that Alice edits the
same code; many source code control systems won’t be able to merge in Alice’s changes.

Most, but not all, editors have configurable settings for spaces and tabs. Some environments even
adapt to the formatting of the code as it is read in, or always save using spaces even if the Tab key
is used for authoring. If you have a flexible environment, you have a better chance of being able to
work with other people’s code. Just remember that tabs and spaces are different because a tab can
be any length and a space is always a space.

STYLISTIC CHALLENGES

Many programmers begin a new project by pledging that this time, they will do everything right.
Any time a variable or parameter shouldn’t be changed, it’ll be marked const. All variables will
have clear, concise, readable names. Every developer will put the left curly brace on the subsequent
line and will adopt the standard text editor and its conventions for tabs and spaces.

For a number of reasons, it is difficult to sustain this level of stylistic consistency. In the case of
const, sometimes programmers just aren’t educated about how to use it. You will eventually

come across old code or a library function that isn’t const-savvy. A good programmer will use
const_cast () to temporarily suspend the const property of a variable, but an inexperienced pro-
grammer will start to unwind the const property back from the calling function, once again ending
up with a program that never uses const.

Summary | 91

Other times, standardization of style comes up against programmers’ individual tastes and biases.
Perhaps the culture of your team makes it impractical to enforce strict style guidelines. In such situa-
tions, you may have to decide which elements you really need to standardize (such as variable names
and tabs) and which ones are safe to leave up to individuals (perhaps spacing and commenting style).
You can even obtain or write scripts that will automatically correct style “bugs” or flag stylistic
problems along with code errors. Some development environments, such as Microsoft Visual C++
2017, support automatic formatting of code according to rules that you specify. This makes it trivial
to write code that always follows the guidelines that have been configured.

SUMMARY

The C++ language provides a number of stylistic tools without any formal guidelines on how to use
them. Ultimately, any style convention is measured by how widely it is adopted and how much it
benefits the readability of the code. When coding as part of a team, you should raise issues of style
early in the process as part of the discussion of what language and tools to use.

The most important point about style is to appreciate that it is an important aspect of programming.
Teach yourself to check over the style of your code before you make it available to others. Recognize
good style in the code you interact with and adopt the conventions that you and your organization
find useful.

This chapter concludes the first part of this book. The next part discusses software design on a high
level.

PART Il

Professional C++
Software Design

» CHAPTER 4: Designing Professional C++ Programs
» CHAPTER 5: Designing with Objects

» CHAPTER 6: Designing for Reuse

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

Designing Professional
C++ Programs

WHAT'S IN THIS CHAPTER?

The definition of programming design
The importance of programming design

The aspects of design that are unique to C++

Y Y v Y

The two fundamental themes for effective C++ design: abstraction
and reuse

The different types of code available for reuse
The advantages and disadvantages of code reuse
General strategies and guidelines for reusing code
Open-source libraries

The C++ Standard Library

Y Y Y Y Y

Before writing a single line of code in your application, you should design your program.
What data structures will you use? What classes will you write? This plan is especially impor-
tant when you program in groups. Imagine sitting down to write a program with no idea what
your coworker, who is working on the same program, is planning! In this chapter, you’ll learn
how to use the Professional C++ approach to C++ design.

Despite the importance of design, it is probably the most misunderstood and underused aspect
of the software-engineering process. Too often, programmers jump into applications without
a clear plan: they design as they code. This approach can lead to convoluted and overly com-
plicated designs. It also makes development, debugging, and maintenance tasks more difficult.

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

96 | CHAPTER4 DESIGNING PROFESSIONAL C++ PROGRAMS

Although it seems counterintuitive, investing extra time at the beginning of a project to design it
properly actually saves time over the life of the project.

WHAT IS PROGRAMMING DESIGN?

The very first step when starting a new program, or a new feature for an existing program, is to
analyze the requirements. This involves having discussions with your stakebolders. A vital outcome
of this analysis phase is a functional requirements document describing what exactly the new piece of
code has to do, but it does not explain how it has to do it. Requirement analysis can also result in a
non-functional requirements document describing how the final system should be, compared to what
it should do. Examples of non-functional requirements are that the system needs to be secure, exten-
sible, satisfy certain performance criteria, and so on.

Once all requirements have been collected, the design phase of the project can start. Your program
design, or software design, is the specification of the architecture that you will implement to fulfill
all the requirements (functional and non-functional) of the program. Informally, the design is how
you plan to write the program. You should generally write your design in the form of a design docu-
ment. Although every company or project has its own variation of a desired design document for-
mat, most design documents share the same general layout, which includes two main parts:

1. The gross subdivision of the program into subsystems, including interfaces and dependencies
between the subsystems, data flow between the subsystems, input and output to and from
each subsystem, and a general threading model.

2. The details of each subsystem, including subdivision into classes, class hierarchies, data struc-
tures, algorithms, a specific threading model, and error-handling specifics.

The design documents usually include diagrams and tables showing subsystem interactions and class
hierarchies. The Unified Modeling Language (UML) is the industry standard for such diagrams, and
is used for diagrams in this and subsequent chapters. (See Appendix D for a brief introduction to the
UML syntax.) With that being said, the exact format of the design document is less important than
the process of thinking about your design.

NOTE The point of designing is to think about your program before you
write it.

You should generally try to make your design as good as possible before you begin coding. The
design should provide a map of the program that any reasonable programmer could follow in order
to implement the application. Of course, it is inevitable that the design will need to be modified once
you begin coding and you encounter issues that you didn’t think of earlier. Software-engineering
processes have been designed to give you the flexibility to make these changes. Scrum, an agile
software development methodology, is one example of such an iterative process whereby the applica-
tion is developed in cycles, known as sprints. With each sprint, designs can be modified, and new
requirements can be taken into account. Chapter 24 describes various software-engineering process
models in more detail.

The Importance of Programming Design | 97

THE IMPORTANCE OF PROGRAMMING DESIGN

It’s tempting to skip the analysis and design steps, or to perform them only cursorily, in order to
begin programming as soon as possible. There’s nothing like seeing code compiling and running

to give you the impression that you have made progress. It seems like a waste of time to formal-

ize a design, or to write down functional requirements when you already know, more or less, how
you want to structure your program. Besides, writing a design document just isn’t as much fun

as coding. If you wanted to write papers all day, you wouldn’t be a computer programmer! As a
programmer myself, I understand this temptation to begin coding immediately, and have certainly
succumbed to it on occasion. However, it will most likely lead to problems on all but the simplest
projects. Whether or not you succeed without a design prior to the implementation depends on your
experience as a programmer, your proficiency with commonly used design patterns, and how deeply
you understand C++, the problem domain, and the requirements.

If you are working in a team where each team member will work on a different part of the project,
it is paramount that there is a design document for all team members to follow. Design documents
also help newcomers to get up to speed with the designs of a project.

To help you understand the importance of programming design, imagine that you own a plot of
land on which you want to build a house. When the builder shows up, you ask to see the blueprints.
“What blueprints?” he responds. “I know what 'm doing. I don’t need to plan every little detail
ahead of time. Two-story house? No problem. I did a one-story house a few months ago—TI’ll just
start with that model and work from there.”

Suppose that you suspend your disbelief and allow the builder to proceed. A few months later,

you notice that the plumbing appears to run outside the house instead of inside the walls. When you
query the builder about this anomaly, he says, “Oh. Well, I forgot to leave space in the walls for the
plumbing. I was so excited about this new drywall technology that it just slipped my mind. But it
works just as well outside, and functionality is the most important thing.” You’re starting to have
your doubts about his approach, but, against your better judgment, you allow him to continue.

When you take your first tour of the completed building, you notice that the kitchen lacks a sink.
The builder excuses himself by saying, “We were already two-thirds done with the kitchen by the
time we realized there wasn’t space for the sink. Instead of starting over, we just added a separate
sink room next door. It works, right?”

Do the builder’s excuses sound familiar if you translate them to the software domain? Have you
ever found yourself implementing an “ugly” solution to a problem like putting plumbing outside
the house? For example, maybe you forgot to include locking in your queue data structure that is
shared between multiple threads. By the time you realize the problem, you decide to just perform the
locking manually on all places where the queue is used. Sure, it’s ugly, but it works, you say. That
is, until someone new joins the project who assumes that the locking is built into the data structure,
fails to ensure mutual exclusion in her access to the shared data, and causes a race condition bug
that takes three weeks to track down. Of course, this locking problem is just given as an example of
an ugly workaround. Obviously, a professional C++ programmer would never decide to perform the
locking manually on each queue access but would instead directly incorporate the locking inside
the queue class, or make the queue class thread-safe in a lock-free manner.

98

CHAPTER 4 DESIGNING PROFESSIONAL C++ PROGRAMS

Formalizing a design before you code helps you determine how everything fits together. Just as blue-
prints for a house show how the rooms relate to each other and work together to fulfill the require-
ments of the house, the design for a program shows how the subsystems of the program relate to
each other and work together to fulfill the software requirements. Without a design plan, you are
likely to miss connections between subsystems, possibilities for reuse or shared information, and the
simplest ways to accomplish tasks. Without the “big picture” that the design gives, you might
become so bogged down in individual implementation details that you lose track of the overarching
architecture and goals. Furthermore, the design provides written documentation to which all mem-
bers of the project can refer. If you use an iterative process like the agile Scrum methodology men-
tioned earlier, you need to make sure to keep the design documentation up-to-date during each cycle
of the process.

If the preceding analogy hasn’t convinced you to design before

Pawn
you code, here is an example where jumping directly into cod-

-mLocationOnBoard : Location
-mColor : Color
-mlsCaptured : bool

ing fails to lead to an optimal design. Suppose that you want to
write a chess program. Instead of designing the entire program

before you begin coding, you decide to jump in with the easiest
parts and move slowly to the more difficult parts. Following the
object-oriented perspective introduced in Chapter 1 and covered
in more detail in Chapter 5, you decide to model your chess pieces
with classes. You figure the pawn is the simplest chess piece, so
you opt to start there. After considering the features and behav-

+move() : void
+isMovelegal() : bool
+draw() : void
+promote() : void

FIGURE 4-1

iors of a pawn, you write a class with the properties and methods shown in the UML class diagram

in Figure 4-1.

In this design, the mcolor attribute denotes whether the pawn is black or white. The promote ()

method executes upon reaching the opposing side of the board.

Of course, you haven’t actually made this class diagram. You’ve
gone straight to the implementation phase. Happy with that class,
you move on to the next easiest piece: the bishop. After considering
its attributes and functionality, you write a class with the proper-
ties and methods shown in the class diagram in Figure 4-2.

Again, you haven’t generated a class diagram, because you jumped
straight to the coding phase. However, at this point you begin to
suspect that you might be doing something wrong. The bishop and
the pawn look similar. In fact, their properties are identical and

Bishop

-mLocationOnBoard : Location
-mColor : Color
-mlsCaptured : bool

+move() : void
+isMovelegal() : bool
+draw() : void

FIGURE 4-2

they share many methods. Although the implementations of the move method might differ between
the pawn and the bishop, both pieces need the ability to move. If you had designed your program
before jumping into coding, you would have realized that the various pieces are actually quite simi-
lar, and that you should find some way to write the common functionality only once. Chapter 5

explains the object-oriented design techniques for doing that.

Furthermore, several aspects of the chess pieces depend on other subsystems of your program.
For example, you cannot accurately represent the location on the board in a chess piece class
without knowing how you will model the board. On the other hand, perhaps you will design
your program so that the board manages pieces in a way that doesn’t require them to know their

Designing for C++ | 99

own locations. In either case, encoding the location in the piece classes before designing the
board leads to problems. To take another example, how can you write a draw method for a piece
without first deciding your program’s user interface? Will it be graphical or text-based? What
will the board look like? The problem is that subsystems of a program do not exist in isolation—
they interrelate with other subsystems. Most of the design work determines and defines these
relationships.

DESIGNING FOR C++

There are several aspects of the C++ language that you need to keep in mind when designing
for C++:

> C++ has an immense feature set. It is almost a complete superset of the C language, plus
classes and objects, operator overloading, exceptions, templates, and many other features.
The sheer size of the language makes design a daunting task.

> C++ is an object-oriented language. This means that your designs should include class hierar-
chies, class interfaces, and object interactions. This type of design is quite different from “tra-
ditional” design in C or other procedural languages. Chapter 5 focuses on object-oriented
design in C++.

» C++ has numerous facilities for designing generic and reusable code. In addition to basic
classes and inheritance, you can use other language facilities such as templates and operator
overloading for effective design. Design techniques for reusable code are discussed in more
detail later in this chapter and also in Chapter 6.

> C++ provides a useful Standard Library, including a string class, I/O facilities, and many
common data structures and algorithms. All of these facilitate coding in C++.

> C++ is a language that readily accommodates many design patterns, or common ways to
solve problems.

Tackling a design can be overwhelming. I have spent entire days scribbling design ideas on paper,
crossing them out, writing more ideas, crossing those out, and repeating the process. Sometimes
this process is helpful, and, at the end of those days (or weeks), it leads to a clean, efficient design.
Other times it is frustrating and leads nowhere, but it is not a waste of effort. You will most likely
waste more time if you have to re-implement a design that turned out to be broken. It’s important
to remain aware of whether or not you are making real progress. If you find that you are stuck, you
can take one of the following actions:

Ask for help. Consult a coworker, mentor, book, newsgroup, or web page.
Work on something else for a while. Come back to this design choice later.

Make a decision and move on. Even if it’s not an ideal solution, decide on something and try

to work with it. An incorrect choice will soon become apparent. However, it may turn out to
be an acceptable method. Perhaps there is no clean way to accomplish what you want to with
this design. Sometimes you have to accept an “ugly” solution if it’s the only realistic strategy

to fulfill your requirements. Whatever you decide, make sure you document your decision,

100 | CHAPTER4 DESIGNING PROFESSIONAL C++ PROGRAMS

so that you and others in the future know why you made it. This includes documenting
designs that you have rejected and the rationale behind the rejection.

NOTE Keep in mind that good design is hard, and getting it right takes practice.
Don’t expect to become an expert overnight, and don’t be surprised if you find it
more difficult to master C++ design than C++ coding.

TWO RULES FOR C++ DESIGN

There are two fundamental design rules in C++: abstraction and reuse. These guidelines are so
important that they can be considered themes of this book. They come up repeatedly throughout the
text, and throughout effective C++ program designs in all domains.

Abstraction

The principle of abstraction is easiest to understand through a real-world analogy. A television is a
simple piece of technology found in most homes. You are probably familiar with its features: you
can turn it on and off, change the channel, adjust the volume, and add external components such
as speakers, DVRs, and Blu-ray players. However, can you explain how it works inside the black
box? That is, do you know how it receives signals over the air or through a cable, translates them,
and displays them on the screen? Most people certainly can’t explain how a television works, yet are
quite capable of using it. That is because the television clearly separates its internal implementation
from its external interface. We interact with the television through its interface: the power button,
channel changer, and volume control. We don’t know, nor do we care, how the television works; we
don’t care whether it uses a cathode ray tube or some sort of alien technology to generate the image
on our screen. It doesn’t matter because it doesn’t affect the interface.

Benefiting from Abstraction

The abstraction principle is similar in software. You can use code without knowing the underly-
ing implementation. As a trivial example, your program can make a call to the sqgrt () function
declared in the header file <cmath> without knowing what algorithm the function actually uses

to calculate the square root. In fact, the underlying implementation of the square root calculation
could change between releases of the library, and as long as the interface stays the same, your func-
tion call will still work. The principle of abstraction extends to classes as well. As introduced in
Chapter 1, you can use the cout object of class ostream to stream data to standard output like this:

cout << "This call will display this line of text" << endl;

In this line, you use the documented interface of the cout insertion operator (<<) with a character
array. However, you don’t need to understand how cout manages to display that text on the user’s
screen. You only need to know the public interface. The underlying implementation of cout is free
to change as long as the exposed behavior and interface remain the same.

Two Rules for C++ Design | 101

Incorporating Abstraction in Your Design

You should design functions and classes so that you and other programmers can use them without
knowing, or relying on, the underlying implementations. To see the difference between a design that
exposes the implementation and one that hides it behind an interface, consider the chess program
again. You might want to implement the chessboard with a two-dimensional array of pointers to
ChessPiece objects. You could declare and use the board like this:

ChessPiece* chessBoard[8] [8];

chessBoard[0] [0] = new Rook() ;

However, that approach fails to use the concept of abstraction. Every programmer who uses the
chessboard knows that it is implemented as a two-dimensional array. Changing that implementation
to something else, such as a one-dimensional flattened vector of size 64, would be difficult, because
you would need to change every use of the board in the entire program. Everyone using the chess-
board also has to properly take care of memory management. There is no separation of interface
from implementation.

A better approach is to model the chessboard as a class. You could then expose an interface that
hides the underlying implementation details. Here is an example of the ChessBoard class:

class ChessBoard

{

public:

void setPieceAt(size t x, size t y, ChessPiece* piece);
ChessPiece* getPieceAt (size t x, size t y);
bool isEmpty(size t x, size t y) const;

private:

}i

Note that this interface makes no commitment to any underlying implementation. The chessBoard
could easily be a two-dimensional array, but the interface does not require it. Changing the imple-
mentation does not require changing the interface. Furthermore, the implementation can provide
additional functionality, such as bounds checking.

Hopefully, this example has convinced you that abstraction is an important technique in C++ pro-
gramming. Chapter 5 covers abstraction and object-oriented design in more detail, and Chapters 8
and 9 provide all the details about writing your own classes.

Reuse

The second fundamental rule of design in C++ is reuse. Again, it is helpful to examine a real-world
analogy to understand this concept. Suppose that you give up your programming career in favor of
working as a baker. On your first day of work, the head baker tells you to bake cookies. In order to
fulfill his orders, you find the recipe for chocolate-chip cookies, mix the ingredients, form cookies
on the cookie sheet, and place the sheet in the oven. The head baker is pleased with the result.

Now, I’'m going to point out something so obvious that it will surprise you: you didn’t build your
own oven in which to bake the cookies. Nor did you churn your own butter, mill your own flour,

102

CHAPTER 4 DESIGNING PROFESSIONAL C++ PROGRAMS

or form your own chocolate chips. I can hear you think, “That goes without saying.” That’s true if
you’re a real cook, but what if you’re a programmer writing a baking simulation game? In that case,
you would think nothing of writing every component of the program, from the chocolate chips to
the oven. Or, you could save yourself time by looking around for code to reuse. Perhaps your office-
mate wrote a cooking simulation game and has some nice oven code lying around. Maybe it doesn’t
do everything you need, but you might be able to modify it and add the necessary functionality.

Something else you took for granted is that you followed a recipe for the cookies instead of making
up your own. Again, that goes without saying. However, in C++ programming, it does not go with-
out saying. Although there are standard ways of approaching problems that arise over and over in
C++, many programmers persist in reinventing these strategies in each design.

The idea of using existing code is not new. You’ve been reusing code from the first day you printed
something with cout. You didn’t write the code to actually print your data to the screen. You used
the existing cout implementation to do the work.

Unfortunately, not all programmers take advantage of available code. Your designs should take into
account existing code and reuse it when appropriate.

Writing Reusable Code

The design theme of reuse applies to code you write as well as to code that you use. You should
design your programs so that you can reuse your classes, algorithms, and data structures. You and
your coworkers should be able to use these components in both the current project and future proj-
ects. In general, you should avoid designing overly specific code that is applicable only to the case

at hand.

One language technique for writing general-purpose code in C++ is the template. The following
example shows a templatized data structure. If you’ve never seen this syntax before, don’t worry!
Chapter 12 explains the syntax in depth.

Instead of writing a specific ChessBoard class that stores ChessPieces, as shown earlier, consider
writing a generic GameBoard template that can be used for any type of two-dimensional board game
such as chess or checkers. You would need only to change the class declaration so that it takes the
piece to store as a template parameter instead of hard-coding it in the interface. The template could
look something like this:

template <typename PieceType>
class GameBoard

{

public:

void setPieceAt (size t x, size t y, PieceType* piece);
PieceType* getPieceAt (size t x, size t y);
bool isEmpty(size t x, size t y) const;

private:

}i

With this simple change in the interface, you now have a generic game board class that you can
use for any two-dimensional board game. Although the code change is simple, it is important to

Reusing Existing Code | 103

make these decisions in the design phase, so that you are able to implement the code effectively
and efficiently.

Chapter 6 goes into more detail on how to design your code with reuse in mind.

Reusing Designs
Learning the C++ language and becoming a good C++ programmer are two very different things.
If you sat down and read the C++ standard, memorizing every fact, you would know C++ as well
as anybody else. However, until you gained some experience by looking at code and writing your
own programs, you wouldn’t necessarily be a good programmer. The reason is that the C++ syntax

defines what the language can do in its raw form, but doesn’t say anything about how each feature
should be used.

As the baker example illustrates, it would be ludicrous to reinvent recipes for every dish that you
make. However, programmers often make an equivalent mistake in their designs. Instead of using
existing “recipes,” or patterns, for designing programs, they reinvent these techniques every time
they design a program.

As they become more experienced in using the C++ language, C++ programmers develop their own
individual ways of using the features of the language. The C++ community at large has also built
some standard ways of leveraging the language, some formal and some informal. Throughout this
book, I point out these reusable applications of the language, known as design techniques and
design patterns. Additionally, Chapters 28 and 29 focus almost exclusively on design techniques
and patterns. Some will seem obvious to you because they are simply a formalization of the obvious
solution. Others describe novel solutions to problems you’ve encountered in the past. Some present
entirely new ways of thinking about your program organization.

For example, you might want to design your chess program so that you have a single ErrorLogger
object that serializes all errors from different components to a log file. When you try to design your
ErrorLogger class, you realize that you would like to have only a single instance of the ErrorLogger
class in your program. But, you also want several components in your program to be able to use this
ErrorLogger instance; that is, these components all want to use the same ErrorLogger service.

A standard strategy to implement such a service mechanism is to use dependency injection. With
dependency injection, you create an interface for each service and you inject the interfaces a compo-
nent needs into the component. Thus, a good design at this point would specify that you want to use
the dependency injection pattern.

It is important for you to familiarize yourself with these patterns and techniques so that you can
recognize when a particular design problem calls for one of these solutions. There are many more
techniques and patterns applicable to C++ than those described in this book. Even though a nice
selection is covered here, you may want to consult a book on design patterns for more and different
patterns. See Appendix B for suggestions.

REUSING EXISTING CODE

Experienced C++ programmers never start a project from scratch. They incorporate code from a
wide variety of sources, such as the Standard Library, open-source libraries, proprietary code bases
in their workplace, and their own code from previous projects. You should reuse code liberally in

104 | CHAPTER4 DESIGNING PROFESSIONAL C++ PROGRAMS

your designs. In order to make the most of this rule, you need to understand the types of code that
you can reuse and the tradeoffs involved in code reuse.

NOTE Reusing code does not mean copying and pasting existing code! In fact,
it means quite the opposite: reusing code without duplicating it.

A Note on Terminology

Before analyzing the advantages and disadvantages of code reuse, it is helpful to specify the termi-
nology involved and to categorize the types of reused code. There are three categories of code avail-
able for reuse:

> Code you wrote yourself in the past

> Code written by a coworker

> Code written by a third party outside your current organization or company
There are also several ways that the code you reuse can be structured:

> Stand-alone functions or classes. When you reuse your own code or coworkers’ code, you
will generally encounter this variety.

> Libraries. A library is a collection of code used to accomplish a specific task, such as parsing
XML, or to handle a specific domain, such as cryptography. Other examples of functional-
ity usually found in libraries include threads and synchronization support, networking, and
graphics.

> Frameworks. A framework is a collection of code around which you design a program. For
example, the Microsoft Foundation Classes (MFC) library provides a framework for creating
graphical user interface applications for Microsoft Windows. Frameworks usually dictate the
structure of your program.

NOTE A program uses a library but fits into a framework. Libraries provide
specific functionality, while frameworks are fundamental to your program
design and structure.

Another term that arises frequently is application programming interface, or API. An APl is an
interface to a library or body of code for a specific purpose. For example, programmers often refer
to the sockets API, meaning the exposed interface to the sockets networking library, instead of the
library itself.

NOTE Although people use the terms API and library interchangeably, they are
not equivalent. The library refers to the implementation, while the API refers to
the published interface to the library.

Reusing Existing Code | 105

For the sake of brevity, the rest of this chapter uses the term library to refer to any reused code,
whether it is really a library, framework, or random collection of functions from your office-mate.

Deciding Whether or Not to Reuse Code

The rule to reuse code is easy to understand in the abstract. However, it’s somewhat vague when

it comes to the details. How do you know when it’s appropriate to reuse code, and which code to
reuse? There is always a tradeoff, and the decision depends on the specific situation. However, there
are some general advantages and disadvantages to reusing code.

Advantages to Reusing Code

Reusing code can provide tremendous advantages to you and to your project.

>

You may not know how to, or may not be able to justify the time to write the code you need.
Would you really want to write code to handle formatted input and output? Of course not.
That’s why you use the standard C++ I/O streams.

Your designs will be simpler because you will not need to design those components of the
application that you reuse.

The code that you reuse usually requires no debugging. You can often assume that library
code is bug-free because it has already been tested and used extensively.

Libraries handle more error conditions than would your first attempt at the code. You might
forget obscure errors or edge cases at the beginning of the project, and would waste time fixing
these problems later. Library code that you reuse has generally been tested extensively and used
by many programmers before you, so you can assume that it handles most errors properly.

Libraries generally are designed to be suspect of bad user inputs. Invalid requests, or requests
not appropriate for the current state, usually result in suitable error notifications. For exam-
ple, a request to seek a nonexistent record in a database, or to read a record from a database
that is not open, would have well-specified behavior from a library.

Reusing code written by domain experts is safer than writing your own code for that area.
For example, you should not attempt to write your own security code unless you are a
security expert. If you need security or cryptography in your programs, use a library. Many
seemingly minor details in code of that nature could compromise the security of the entire
program, and possibly the entire system, if you got them wrong.

Library code is constantly improving. If you reuse the code, you receive the benefits of these
improvements without doing the work yourself. In fact, if the library writers have properly
separated the interface from the implementation, you can obtain these benefits by upgrad-
ing your library version without changing your interaction with the library. A good upgrade
modifies the underlying implementation without changing the interface.

Disadvantages to Reusing Code

Unfortunately, there are also some disadvantages to reusing code.

>

When you use only code that you wrote yourself, you understand exactly how it works.
When you use libraries that you didn’t write yourself, you must spend time understanding

106

CHAPTER 4 DESIGNING PROFESSIONAL C++ PROGRAMS

the interface and correct usage before you can jump in and use it. This extra time at the
beginning of your project will slow your initial design and coding.

When you write your own code, it does exactly what you want. Library code might not pro-
vide the exact functionality that you require.

Even if the library code provides the exact functionality you need, it might not give you the
performance that you desire. The performance might be bad in general, poor for your specific
use case, or completely unspecified.

Using library code introduces a Pandora’s box of support issues. If you discover a bug in the
library, what do you do? Often you don’t have access to the source code, so you couldn’t fix
it even if you wanted to. If you have already invested significant time in learning the library
interface and using the library, you probably don’t want to give it up, but you might find it
difficult to convince the library developers to fix the bug on your time schedule. Also, if you
are using a third-party library, what do you do if the library authors drop support for the
library before you stop supporting the product that depends on it? Think carefully about this
before you decide to use a library for which you cannot get source code.

In addition to support problems, libraries present licensing issues, which cover topics such as
disclosure of your source, redistribution fees (often called binary license fees), credit attribu-
tion, and development licenses. You should carefully inspect the licensing issues before using
any library. For example, some open-source libraries require you to make your own code
open-source.

Another consideration with reusing code is cross-platform portability. If you want to write a
cross-platform application, make sure the libraries you use are also cross-platform portable.

Reusing code requires a trust factor. You must trust whoever wrote the code by assuming
that they did a good job. Some people like to have control over all aspects of their project,
including every line of source code.

Upgrading to a new version of the library can cause problems. The upgrade could introduce
bugs, which could have fatal consequences in your product. A performance-related upgrade
might optimize performance in certain cases but make it worse in your specific use case.

Upgrading your compiler to a new version can cause problems when you are using binary-
only libraries. You can only upgrade the compiler when the library vendor provides binaries
compatible with your new version of the compiler.

Putting It Together to Make a Decision

Now that you are familiar with the terminology, advantages, and disadvantages of reusing code, you
are better prepared to make the decision about whether or not to reuse code. Often, the decision is
obvious. For example, if you want to write a graphical user interface (GUI) in C++ for Microsoft
Windows, you should use a framework such as Microsoft Foundation Class (MFC) or Qt. You
probably don’t know how to write the underlying code to create a GUI in Windows, and more
importantly, you don’t want to waste time to learn it. You will save person-years of effort by using a
framework in this case.

Reusing Existing Code | 107

However, other times the choice is less obvious. For example, if you are unfamiliar with a library or
framework, and need only a simple data structure, it might not be worth the time to learn the entire
framework to reuse only one component that you could write in a few days.

Ultimately, you need to make a decision based on your own particular needs. It often comes down
to a tradeoff between the time it would take to write it yourself and the time required to find and
learn how to use a library to solve the problem. Carefully consider how the advantages and disad-
vantages listed previously apply to your specific case, and decide which factors are most important
to you. Finally, remember that you can always change your mind, which might even be relatively
easy if you handled the abstraction correctly.

Strategies for Reusing Code

When you use libraries, frameworks, coworkers’ code, or your own code, there are several guide-
lines you should keep in mind.

Understand the Capabilities and Limitations

Take the time to familiarize yourself with the code. It is important to understand both its capabili-
ties and its limitations. Start with the documentation and the published interfaces or APIs. Ideally,
that will be sufficient to understand how to use the code. However, if the library doesn’t provide a
clear separation between interface and implementation, you may need to explore the source code
itself if it is provided. Also, talk to other programmers who have used the code and who might be
able to explain its intricacies. You should begin by learning the basic functionality. If it’s a library,
what functions does it provide? If it’s a framework, how does your code fit in? What classes should
you derive from? What code do you need to write yourself? You should also consider specific issues
depending on the type of code.

Here are some points to keep in mind:
> Is the code safe for multithreaded programs?

> Does the library impose any specific compiler settings on code using it? If so, is that accept-
able in your project?

> Which initialization and cleanup calls are needed?
On what other libraries does the library or framework depend?

If you derive from a class, which constructor should you call on it? Which virtual methods
should you override?

> If a call returns memory pointers, who is responsible for freeing the memory: the caller or
the library? If the library is responsible, when is the memory freed? It’s highly recommended
to find out if you can use smart pointers (see Chapter 1) to manage memory allocated by the
library.

> What error conditions do library calls check for, and what do they assume? How are errors
handled? How is the client program notified about errors? Avoid using libraries that pop up
message boxes, issue messages to stderr/cerr or stdout/cout, or terminate the program.

108 | CHAPTER4 DESIGNING PROFESSIONAL C++ PROGRAMS

What are all the return values (by value or reference) from a call?

> What are all the possible exceptions thrown?

Understand the Performance

It is important to know the performance guarantees that the library or other code provides. Even if
your particular program is not performance sensitive, you should make sure that the code you use
doesn’t have awful performance for your particular use.

Big-O Notation

Programmers generally discuss and document algorithm and library performance using big-O nota-
tion. This section explains the general concepts of algorithm complexity analysis and big-O notation
without a lot of unnecessary mathematics. If you are already familiar with these concepts, you can
skip this section.

Big-O notation specifies relative, rather than absolute, performance. For example, instead of saying
that an algorithm runs in a specific amount of time, such as 300 milliseconds, big-O notation speci-
fies how an algorithm performs as its input size increases. Examples of input sizes include the num-
ber of items to be sorted by a sorting algorithm, the number of elements in a hash table during a key
lookup, and the size of a file to be copied between disks.

NOTE Big-O notation applies only to algorithms whose speed depends on their
inputs. It does not apply to algorithms that take no input or whose running time
is random. In practice, you will find that the running times of most algorithms of
interest depend on their input, so this limitation is not significant.

To be more formal: big-O notation speci- 5
fies an algorithm’s run time as a function of g
its input size, also known as the complexity ‘z’ 4
of the algorithm. It’s not as complicated as E 3
it sounds. For example, an algorithm could 'E
take twice as long to process twice as many g 2
elements. Thus, if it takes 2 seconds to pro- § 1
cess 400 elements, it will take 4 seconds to 3

o

process 800 elements. Figure 4-3 shows this 0 200 400 600 800 1000
graphically. It is said that the complexity of
such an algorithm is a linear function of its
input size, because, graphically, it is repre-
sented by a straight line.

Input Size
FIGURE 4-3

Big-O notation summarizes the algorithm’s linear performance like this: O(n). The O just means
that you’re using big-O notation, while the # represents the input size. O(n) specifies that the algo-
rithm speed is a direct linear function of the input size.

Reusing Existing Code | 109

Of course, not all algorithms have performance that is linear with respect to their input size. The
following table summarizes the common complexities, in order of their performance from best to

worst.

ALGORITHM
COMPLEXITY

Constant

Logarithmic

Linear

Linear
Logarithmic

Quadratic

Exponential

BIG-O
NOTATION

EXPLANATION

The running time is independent of
input size.

The running time is a function of the
logarithm base 2 of the input size.

The running time is directly propor-
tional to the input size.

The running time is a function of the
linear times the logarithmic function
of the input size.

The running time is a function of the
square of the input size.

The running time is an exponential
function of the input size.

EXAMPLE ALGORITHMS

Accessing a single ele-
ment in an array

Finding an element in a
sorted list using binary
search

Finding an element in
an unsorted list

Merge sort

A slower sorting algo-
rithm like selection sort

Optimized traveling
salesman problem

There are two advantages to specifying performance as a function of the input size instead of in

absolute numbers:

1. TItis platform independent. Specifying that a piece of code runs in 200 milliseconds on one
computer says nothing about its speed on a second computer. It is also difficult to compare
two different algorithms without running them on the same computer with the exact same
load. On the other hand, performance specified as a function of the input size is applicable to
any platform.

2. Performance as a function of input size covers all possible inputs to the algorithm with one
specification. The specific time in seconds that an algorithm takes to run covers only one spe-
cific input, and says nothing about any other input.

Tips for Understanding Performance

Now that you are familiar with big-O notation, you are prepared to understand most performance

documentation. The C++ Standard Library in particular describes its algorithm and data structure

performance using big-O notation. However, big-O notation is sometimes insufficient or even mis-

leading. Consider the following issues whenever you think about big-O performance specifications:

> 1If an algorithm takes twice as long to work on twice as much data, it doesn’t say anything

about how long it took in the first place! If the algorithm is written badly but scales well, it’s

still not something you want to use. For example, suppose the algorithm makes unnecessary

110 | CHAPTER4 DESIGNING PROFESSIONAL C++ PROGRAMS

disk accesses. That probably wouldn’t affect the big-O time but would be very bad for over-
all performance.

> Along those lines, it’s difficult to compare two algorithms with the same big-O running time.
For example, if two different sorting algorithms both claim to be O(n log »), it’s hard to tell
which is really faster without running your own tests.

> The big-O notation describes the time complexity of an algorithm asymptotically, as the
input size grows to infinity. For small inputs, big-O time can be very misleading. An O(#2)
algorithm might actually perform better than an O(log 7) algorithm on small input sizes.
Consider your likely input sizes before making a decision.

In addition to considering big-O characteristics, you should look at other facets of the algorithm
performance. Here are some guidelines to keep in mind:

> You should consider how often you intend to use a particular piece of library code. Some
people find the “90/10” rule helpful: 90 percent of the running time of most programs is
spent in only 10 percent of the code (Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, Fifth Edition, 2011, Morgan Kaufmann). If the library code you
intend to use falls in the oft-exercised 10 percent category of your code, you should make
sure to analyze its performance characteristics carefully. On the other hand, if it falls into
the oft-ignored 90 percent of the code, you should not spend much time analyzing its perfor-
mance because it will not benefit the overall program performance very much. Chapter 25
discusses profilers, tools to help you find performance bottlenecks in your code.

> Don’t trust the documentation. Always run performance tests to determine if library code
provides acceptable performance characteristics.

Understand Platform Limitations

Before you start using library code, make sure that you understand on which platforms it runs. That
might sound obvious, but even libraries that claim to be cross-platform might contain subtle differ-
ences on different platforms.

Also, platforms include not only different operating systems but different versions of the same oper-
ating system. If you write an application that should run on Solaris 8, Solaris 9, and Solaris 10,
ensure that any libraries you use also support all those releases. You cannot assume either forward
or backward compatibility across operating system versions. That is, just because a library runs on
Solaris 9 doesn’t mean that it will run on Solaris 10 and vice versa.

Understand Licensing and Support

Using third-party libraries often introduces complicated licensing issues. You must sometimes pay
license fees to third-party vendors for the use of their libraries. There may also be other licensing
restrictions, including export restrictions. Additionally, open-source libraries are sometimes distrib-
uted under licenses that require any code that links with them to be open source as well. A number
of licenses commonly used by open-source libraries are discussed later in this chapter.

Using third-party libraries also introduces support issues. Before you use a library, make sure that
you understand the process for submitting bugs, and that you realize how long it will take for bugs

Reusing Existing Code | 111

to be fixed. If possible, determine how long the library will continue to be supported so that you can
plan accordingly.

WARNING Make sure that you understand the license restrictions of any third-
party libraries you use if you plan to distribute or sell the code you develop.
When in doubt, consult a legal expert.

Interestingly, even using libraries from within your own organization can introduce support issues.
You may find it just as difficult to convince a coworker in another part of your company to fix

a bug in their library as you would to convince a stranger in another company to do the same
thing. In fact, you may even find it harder, because you’re not a paying customer. Make sure that
you understand the politics and organizational issues within your own organization before using
internal libraries.

Know Where to Find Help

Using libraries and frameworks can sometimes be daunting at first. Fortunately, there are

many avenues of support available. First of all, consult the documentation that accompanies
the library. If the library is widely used, such as the Standard Library or the MFC, you should
be able to find a good book on the topic. In fact, for help with the Standard Library, you can
consult Chapters 16 to 21. If you have specific questions not addressed by books and product
documentation, try searching the web. Type your question in your favorite search engine to find
web pages that discuss the library. For example, when you search for the phrase, “introduction
to C++ Standard Library,” you will find several hundred websites about C++ and the Standard
Library. Also, many websites contain their own private newsgroups or forums on specific topics
for which you can register.

WARNING A note of caution: don’t believe everything you read on the web!
Web pages do not necessarily undergo the same review process as printed books
and documentation, and may contain inaccuracies.

Prototype

When you first sit down with a new library or framework, it is often a good idea to write a quick
prototype. Trying out the code is the best way to familiarize yourself with the library’s capabilities.
You should consider experimenting with the library even before you tackle your program design so
that you are intimately familiar with the library’s capabilities and limitations. This empirical testing
will allow you to determine the performance characteristics of the library as well.

Even if your prototype application looks nothing like your final application, time spent prototyping
is not a waste. Don’t feel compelled to write a prototype of your actual application. Write a dummy
program that just tests the library capabilities you want to use. The point is only to familiarize your-
self with the library.

112

| CHAPTER4 DESIGNING PROFESSIONAL C++ PROGRAMS

WARNING Due to time constraints, programmers sometimes find their proto-
types morphing into the final product. If you have hacked together a prototype
that is insufficient as the basis for the final product, make sure that it doesn’t get
used that way.

Bundling Third-Party Applications

Your project might include multiple applications. Perhaps you need a web server front end to sup-
port your new e-commerce infrastructure. It is possible to bundle third-party applications, such as

a web server, with your software. This approach takes code reuse to the extreme in that you reuse
entire applications. However, most of the caveats and guidelines for using libraries apply to bundling
third-party applications as well. Specifically, make sure that you understand the legality and licens-
ing ramifications of your decision.

NOTE Consult a legal expert whose specialty is intellectual property before
bundling third-party applications with your software distributions.

Also, the support issue becomes more complex. If customers encounter a problem with your bundled
web server, should they contact you or the web server vendor? Make sure that you resolve this issue
before you release the software.

Open-Source Libraries

Open-source libraries are an increasingly popular class of reusable code. The general meaning

of open-source is that the source code is available for anyone to look at. There are formal defini-
tions and legal rules about including source code with all your distributions, but the important thing
to remember about open-source software is that anyone (including you) can look at the source code.
Note that open-source applies to more than just libraries. In fact, the most famous open-source
product is probably the Android operating system. Linux is another open-source operating system.
Google Chrome and Mozilla Firefox are two examples of famous open-source web browsers.

The Open-Source Movements

Unfortunately, there is some confusion in terminology in the open-source community. First of all,
there are two competing names for the movement (some would say two separate, but similar, move-
ments). Richard Stallman and the GNU project use the term free software. Note that the term free
does not imply that the finished product must be available without cost. Developers are welcome to
charge as much or as little as they want. Instead, the term free refers to the freedom for people to
examine the source code, modify the source code, and redistribute the software. Think of the free
in free speech rather than the free in free beer. You can read more about Richard Stallman and the
GNU project at www.gnu. org.

The Open Source Initiative uses the term open-source software to describe software in which the
source code must be available. As with free software, open-source software does not require the

Reusing Existing Code | 113

product or library to be available without cost. However, an important difference with free software
is that open-source software is not required to give you the freedom to use, modify, and redistribute
it. You can read more about the Open Source Initiative at www . opensource.org.

There are several licensing options available for open-source projects. One of them is the GNU
Public License (GPL). However, using a library under the GPL requires you to make your own prod-
uct open-source under the GPL as well. On the other hand, an open-source project can use a licens-
ing option like Boost Software License, Berkeley Software Distribution (BSD) license, Code Project
Open License (CPOL), Creative Commons (CC) license, and so on, which allows using the open-
source library in a closed-source product.

Because the name “open-source” is less ambiguous than “free software,” this book uses “open-
source” to refer to products and libraries with which the source code is available. The choice of
name is not intended to imply endorsement of the open-source philosophy over the free software
philosophy: it is only for ease of comprehension.

Finding and Using Open-Source Libraries

Regardless of the terminology, you can gain amazing benefits from using open-source software.
The main benefit is functionality. There is a plethora of open-source C++ libraries available for var-
ied tasks, from XML parsing to cross-platform error logging.

Although open-source libraries are not required to provide free distribution and licensing, many
open-source libraries are available without monetary cost. You will generally be able to save money
in licensing fees by using open-source libraries.

Finally, you are often but not always free to modify open-source libraries to suit your exact needs.

Most open-source libraries are available on the web. For example, searching for “open-source C++
library XML parsing” results in a list of links to XML libraries in C and C++. There are also a few
open-source portals where you can start your search, including the following:

> www.boost .org

> www.gnu.org

> github.com/open-source
>

www.sourceforge.net

Guidelines for Using Open-Source Code

Open-source libraries present several unique issues and require new strategies. First of all, open-
source libraries are usually written by people in their “free” time. The source base is generally avail-
able for any programmer who wants to pitch in and contribute to development or bug fixing. As a
good programming citizen, you should try to contribute to open-source projects if you find yourself
reaping the benefits of open-source libraries. If you work for a company, you may find resistance

to this idea from your management because it does not lead directly to revenue for your company.
However, you might be able to convince management that indirect benefits, such as exposure of
your company name, and perceived support from your company for the open-source movement,
should allow you to pursue this activity.

114 | CHAPTER4 DESIGNING PROFESSIONAL C++ PROGRAMS

Second, because of the distributed nature of their development, and lack of single ownership, open-
source libraries often present support issues. If you desperately need a bug fixed in a library, it is
often more efficient to make the fix yourself than to wait for someone else to do it. If you do fix
bugs, you should make sure to put those fixes back into the public source base for the library. Some
licenses even require you to do so. Even if you don’t fix any bugs, make sure to report problems that
you find so that other programmers don’t waste time encountering the same issues.

The C++ Standard Library

The most important library that you will use as a C++ programmer is the C++ Standard Library.
As its name implies, this library is part of the C++ standard, so any standards-conforming compiler
should include it. The Standard Library is not monolithic: it includes several disparate components,
some of which you have been using already. You may even have assumed they were part of the core
language. Chapters 16 to 21 go into more detail about the Standard Library.

C Standard Library

Because C++ is mostly a superset of C, the C Standard Library is still available. Its functionality
includes mathematical functions such as abs (), sqrt (), and pow (), and error-handling helpers such
as assert () and errno. Additionally, the C Standard Library facilities for manipulating character
arrays as strings, such as strlen() and strcpy (), and the C-style I/O functions, such as printf ()
and scanf (), are all available in C++.

NOTE C++ provides better strings and 1/0 support than C. Even though the
C-style strings and I/O routines are available in C++, you should avoid them in
favor of C++ strings (Chapter 2) and 1/O streams (Chapter 13).

Note that the C header files have different names in C++. These names should be used instead of the
C library names, because they are less likely to result in name conflicts. For details of the C libraries,
consult a Standard Library Reference, see Appendix B.

Deciding Whether or Not to Use the Standard Library

The Standard Library was designed with functionality, performance, and orthogonality as its priori-
ties. The benefits of using it are substantial. Imagine having to track down pointer errors in linked
list or balanced binary tree implementations, or to debug a sorting algorithm that isn’t sorting prop-
erly. If you use the Standard Library correctly, you will rarely, if ever, need to perform that kind of
coding. Chapters 16 to 21 provide in-depth information on the Standard Library functionality.

DESIGNING A CHESS PROGRAM

This section introduces a systematic approach to designing a C++ program in the context of a simple
chess game application. In order to provide a complete example, some of the steps refer to concepts
covered in later chapters. You should read this example now, in order to obtain an overview of the
design process, but you might also consider rereading it after you have finished later chapters.

Designing a Chess Program | 115

Requirements

Before embarking on the design, it is important to possess clear requirements for the program’s
functionality and efficiency. Ideally, these requirements would be documented in the form of a
requirements specification. The requirements for the chess program would contain the following
types of specifications, although in more detail and greater number:

> The program should support the standard rules of chess.

> The program should support two human players. The program should not provide an artifi-
cially intelligent computer player.

> The program should provide a text-based interface:
> The program should render the game board and pieces in plain text.

> Players should express their moves by entering numbers representing locations on the
chessboard.

The requirements ensure that you design your program so that it performs as its users expect.

Design Steps

You should take a systematic approach to designing your program, working from the general to
the specific. The following steps do not always apply to all programs, but they provide a general
guideline. Your design should include diagrams and tables as appropriate. UML is an industry
standard for making diagrams. You can refer to Appendix D for a brief introduction, but in short,
UML defines a multitude of standard diagrams you can use for documenting software designs,

for example, class diagrams, sequence diagrams, and so on. I recommend using UML or at least
UML-like diagrams where applicable. However, I don’t advocate strictly adhering to the UML syn-
tax because having a clear, understandable diagram is more important than having a syntactically
correct one.

Divide the Program into Subsystems

Your first step is to divide your program into its general functional subsystems and to specify the
interfaces and interactions between the subsystems. At this point, you should not worry about spe-
cifics of data structures and algorithms, or even classes. You are trying only to obtain a general feel
for the various parts of the program and their interactions. You can list the subsystems in a table
that expresses the high-level behaviors or functionality of the subsystem, the interfaces exported
from the subsystem to other subsystems, and the interfaces consumed, or used, by this subsystem
on other subsystems. The recommended design for this chess game is to have a clear separation
between storing the data and displaying the data by using the Model-View-Controller IMVC) para-
digm. This paradigm models the notion that many applications commonly deal with a set of data,
one or more views on that data, and manipulation of the data. In MVC, a set of data is called the
model, a view is a particular visualization of the model, and the controller is the piece of code that
changes the model in response to some event. The three components of MVC interact in a feedback
loop: actions are handled by the controller, which adjusts the model, resulting in a change to the
view or views. Using this paradigm, you can easily switch between having a text-based interface and
a graphical user interface. A table for the chess game subsystems could look like this.

116 | CHAPTER4 DESIGNING PROFESSIONAL C++ PROGRAMS

SUBSYSTEM NAME INSTANCES FUNCTIONALITY INTERFACES INTERFACES CONSUMED
EXPORTED
GamePlay 1 Starts game Game Over Take Turn (on Player)
Controls game Draw (on
flow ChessBoardView)

Controls drawing

Declares winner

Ends game
ChessBoard 1 Stores chess Get Piece At Game Over (on
pieces Set Piece At GamePlay)

Checks for ties
and checkmates

ChessBoardView 1 Draws the associ- Draw Draw (on
ated ChessBoard ChessPieceView)
ChessPiece 32 Moves itself Move Get Piece At (on
Checks for legal Check Move ChessBoard)
moves Set Piece At (on
ChessBoard)
ChessPieceView 32 Draws the associ- Draw None

ated ChessPiece

Player 2 Interacts with the ~ Take Turn Get Piece At (on
user by prompt- ChessBoard)
ing the user for
a move, and
obtaining the

Move (on ChessPiece)
Check Move (on

, ChessPiece)
user’'s move
Moves pieces
ErrorLogger 1 Writes error Log Error None
messages to a
log file

As this table shows, the functional subsystems of this chess game include a GamePlay subsystem,
a ChessBoard and ChessBoardView, 32 ChessPieces and ChessPieceViews, two Players, and one
ErrorLogger. However, that is not the only reasonable approach. In software design, as in pro-
gramming itself, there are often many different ways to accomplish the same goal. Not all solu-
tions are equal; some are certainly better than others. However, there are often several equally
valid methods.

Designing a Chess Program | 117

A good division into subsystems separates the program into its basic functional parts. For example,
a Player is a subsystem distinct from the ChessBoard, ChessPieces, or GamePlay. It wouldn’t make
sense to lump the players into the GamePlay subsystem because they are logically separate subsys-
tems. Other choices might not be as obvious.

In this MVC design, the ChessBoard and ChessPiece subsystems are part of the Model. The
ChessBoardView and ChessPieceView are part of the View, and the Player is part of the Controller.

Because it is often difficult to visualize subsystem relationships from tables, it is usually helpful to
show the subsystems of a program in a diagram where lines represent calls from one subsystem to
another. Figure 4-4 shows the chess game subsystems visualized as a UML use-case diagram.

ChessBoardView GamePlay Player

GameOver

!
!

ChessPieceView ChessBoard

Draw GetPieceAt

'
L

ErrorLogger SetPieceAt

FIGURE 4-4

Choose Threading Models

It’s too early in the design phase to think about how to multithread specific loops in algorithms you
will write. However, in this step, you choose the number of high-level threads in your program and
specify their interactions. Examples of high-level threads are a UI thread, an audio-playing thread, a
network communication thread, and so on. In multithreaded designs, you should try to avoid shared
data as much as possible because it will make your designs simpler and safer. If you cannot avoid
shared data, you should specify locking requirements. If you are unfamiliar with multithreaded
programs, or your platform does not support multithreading, then you should make your programs
single-threaded. However, if your program has several distinct tasks, each of which could work

in parallel, it might be a good candidate for multiple threads. For example, graphical user inter-

face applications often have one thread performing the main application work and another thread
waiting for the user to press buttons or select menu items. Multithreaded programming is covered

in Chapter 23.

The chess program needs only one thread to control the game flow.

118 | CHAPTER4 DESIGNING PROFESSIONAL C++ PROGRAMS

Specify Class Hierarchies for Each Subsystem

In this step, you determine the class hierarchies that you intend to write in your program. The chess
program needs a class hierarchy to represent the chess pieces. This hierarchy could work as shown
in Figure 4-5. The generic ChessPiece class serves as the abstract base class. A similar hierarchy is
required for the ChessPieceview class.

. 1
A\

| Rook | | Bishop | | Knight | | King | | Pawn | | Queen
[i i i i i

FIGURE 4-5

Another class hierarchy can be used for the chessBoardview class to make it possible to have a text-
based interface or a graphical user interface for the game. Figure 4-6 shows an example hierarchy
that allows the chessboard to be displayed as text on a console, or with a 2D or 3D graphical user
interface. A similar hierarchy is required for the Player controller and for the individual classes of
the ChessPieceview hierarchy.

ChessBoardView
N

ChessBoardViewConsole ChessBoardViewGUI2D ChessBoardViewGUI3D

FIGURE 4-6

Chapter 5 explains the details of designing classes and class hierarchies.

Specify Classes, Data Structures, Algorithms, and Patterns for Each Subsystem

In this step, you consider a greater level of detail, and specify the particulars of each subsystem,
including the specific classes that you write for each subsystem. It may well turn out that you model
each subsystem itself as a class. This information can again be summarized in a table.

Designing a Chess Program | 119

SUBSYSTEM

GamePlay

ChessBoard

ChessBoardView

ChessPiece

ChessPieceView

CLASSES

GamePlay class

ChessBoard class

ChessBoardvView
abstract base class

Concrete

derived classes
ChessBoardView
Console,
ChessBoardView
GUI2D, and so on

ChessPiece
abstract base class

Rook, Bishop,

Knight, King, Pawn,

and Queen derived
classes

ChessPieceView
abstract base class

Derived classes
RookView,
BishopView, and
so on, and concrete
derived classes
RookViewConsole,
RookViewGUI2D,
and so on

DATA STRUCTURES

GamePlay object
includes one
ChessBoard
object and two
Player objects.

ChessBoard
object stores a
two-dimensional
representa-

tion of 32
ChessPieces.

Stores infor-
mation on
how to draw a
chessboard

Each piece
stores its loca-
tion on the
chessboard.

Stores informa-
tion on how to
draw a chess
piece

ALGORITHMS

Gives each
player a turn
to play

Checks for a
win or tie after
each move

Draws a
chessboard

Piece checks
for a legal
move by
querying the
chessboard
for pieces

at various
locations.

Draws a chess
piece

PATTERNS

None

None

Observer

None

Observer

continues

120 |

CHAPTER 4 DESIGNING PROFESSIONAL C++ PROGRAMS

(continued)
SUBSYSTEM CLASSES DATA STRUCTURES ALGORITHMS PATTERNS
Player Player abstract None prompts the Mediator
base class user for a
Concrete move, checks
derived classes if the move
PlayerConsole, is legal, and
PlayerGUI2D, and moves the
so on piece
ErrorLogger One ErrorLogger A queue of mes- Buffers mes- Dependency
class sages to log sages and injection
writes them to
a log file

This section of the design document would normally present the actual interfaces for each class, but
this example will forgo that level of detail.

Designing classes and choosing data structures, algorithms, and patterns can be tricky. You should
always keep in mind the rules of abstraction and reuse discussed earlier in this chapter. For abstrac-
tion, the key is to consider the interface and the implementation separately. First, specify the inter-
face from the perspective of the user. Decide what you want the component to do. Then decide how
the component will do it by choosing data structures and algorithms. For reuse, familiarize your-
self with standard data structures, algorithms, and patterns. Also, make sure you are aware of the
Standard Library in C++, as well as any proprietary code available in your workplace.

Specify Error Handling for Each Subsystem

In this design step, you delineate the error handling in each subsystem. The error handling should
include both system errors, such as memory allocation failures, and user errors, such as invalid
entries. You should specify whether each subsystem uses exceptions. You can again summarize this
information in a table.

SUBSYSTEM HANDLING SYSTEM ERRORS HANDLING USER ERRORS
GamePlay Logs an error with the ErrorLogger, Not applicable (no direct user
shows a message to the user, and interface)

gracefully shuts down the program

if unable to allocate memory for

ChessBoard or Players
ChessBoard Logs an error with the ErrorLogger Not applicable (no direct user
ChessPees and throws an exception if unable to interface)

allocate memory

Summary | 121

SUBSYSTEM

ChessBoardView

ChessPieceView

HANDLING SYSTEM ERRORS

Logs an error with the ExrrorLogger
and throws an exception if some-
thing goes wrong during rendering

HANDLING USER ERRORS

Not applicable (no direct user
interface)

Player Logs an error with the ErrorLogger Sanity-checks a user move entry to
and throws an exception if unable to ensure that it is not off the board; it
allocate memory then prompts the user for another

entry. This subsystem checks each
move's legality before moving the
piece; if illegal, it prompts the user
for another move.

ErrorLogger Attempts to log an error, informs the Not applicable (no direct user

user, and gracefully shuts down interface)
the program if unable to allocate

memory

The general rule for error handling is to handle everything. Think hard about all possible error con-
ditions. If you forget one possibility, it will show up as a bug in your program! Don’t treat anything
as an “unexpected” error. Expect all possibilities: memory allocation failures, invalid user entries,
disk failures, and network failures, to name a few. However, as the table for the chess game shows,
you should handle user errors differently from internal errors. For example, a user entering an
invalid move should not cause your chess program to terminate. Chapter 14 discusses error handling
in more depth.

SUMMARY

In this chapter, you learned about the professional C++ approach to design. I hope that it convinced
you that software design is an important first step in any programming project. You also learned
about some of the aspects of C++ that make design difficult, including its object-oriented focus, its
large feature set and Standard Library, and its facilities for writing generic code. With this informa-
tion, you are better prepared to tackle C++ design.

This chapter introduced two design themes. The first theme, the concept of abstraction, or separating
interface from implementation, permeates this book and should be a guideline for all your design work.

The second theme, the notion of reuse, both of code and designs, also arises frequently in real-world
projects, and in this book. You learned that your C++ designs should include both reuse of code,

in the form of libraries and frameworks, and reuse of ideas and designs, in the form of techniques
and patterns. You should write your code to be as reusable as possible. Also remember about the
tradeoffs and about specific guidelines for reusing code, including understanding the capabilities and
limitations, the performance, licensing and support models, the platform limitations, prototyping,
and where to find help. You also learned about performance analysis and big-O notation. Now that
you understand the importance of design and the basic design themes, you are ready for the rest of
Part II. Chapter 5 describes strategies for using the object-oriented aspects of C++ in your design.

Designing with Objects

WHAT'S IN THIS CHAPTER?

> What object-oriented programming design is
> How you can define relationships between different objects

> The importance of abstraction and how to use it in your designs

Now that you have developed an appreciation for good software design from Chapter 4, it’s
time to pair the notion of objects with the concept of good design. The difference between
programmers who use objects in their code and those who truly grasp object-oriented pro-
gramming comes down to the way their objects relate to each other and to the overall design
of the program.

This chapter begins with a very brief description of procedural programming (C-style), fol-
lowed by a detailed discussion of object-oriented programming (OOP). Even if you’ve been
using objects for years, you will want to read this chapter for some new ideas regarding how to
think about objects. I will discuss the different kinds of relationships between objects, includ-
ing pitfalls programmers often succumb to when building an object-oriented program. I will
also describe how the principle of abstraction relates to objects.

When thinking about procedural programming or object-oriented programming, the most
important point to remember is that they just represent different ways of reasoning about
what’s going on in your program. Too often, programmers get bogged down in the syntax and
jargon of OOP before they adequately understand what an object is. This chapter is light on
code and heavy on concepts and ideas. For specifics on C++ object syntax, see Chapters 8, 9,
and 10.

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

124 | CHAPTER5 DESIGNING WITH OBJECTS

AM | THINKING PROCEDURALLY?

A procedural language, such as C, divides code into small pieces, each of which (ideally) accom-
plishes a single task. Without procedures in C, all your code would be lumped together inside
main (). Your code would be difficult to read, and your coworkers would be annoyed, to say
the least.

The computer doesn’t care if all your code is in main () or if it’s split into bite-sized pieces with
descriptive names and comments. Procedures are an abstraction that exists to help you, the
programmer, as well as those who read and maintain your code. The concept is built around a
fundamental question about your program—What does this program do? By answering that ques-
tion in English, you are thinking procedurally. For example, you might begin designing a stock
selection program by answering as follows: First, the program obtains stock quotes from the
Internet. Then, it sorts this data by specific metrics. Next, it performs analysis on the sorted data.
Finally, it outputs a list of buy and sell recommendations. When you start coding, you might directly
turn this mental model into C functions: retrieveQuotes () , sortQuotes (), analyzeQuotes (),
and outputRecommendations ().

NOTE Even though C refers to procedures as “functions,” C is not a functional
language. The term functional is very different from procedural and refers to
languages like Lisp, which use an entirely different abstraction.

The procedural approach tends to work well when your program follows a specific list of steps.
However, in large, modern applications, there is rarely a linear sequence of events. Often a user is
able to perform any command at any time. Procedural thinking also says nothing about data repre-
sentation. In the previous example, there was no discussion of what a stock quote actually is.

If the procedural mode of thought sounds like the way you approach a program, don’t worry. Once
you realize that OOP is simply an alternative, more flexible way of thinking about software, it’ll
come naturally.

THE OBJECT-ORIENTED PHILOSOPHY

Unlike the procedural approach—which is based on the question, What does this program do¢—the
object-oriented approach asks another question: What real-world objects am I modeling? OOP is
based on the notion that you should divide your program not into tasks, but into models of physical
objects. While this seems abstract at first, it becomes clearer when you consider physical objects in
terms of their classes, components, properties, and bebhaviors.

Classes

A class helps distinguish an object from its definition. Consider the orange. There’s a difference
between talking about oranges in general as tasty fruit that grows on trees, and talking about a
specific orange, such as the one that’s currently dripping juice on my keyboard.

The Object-Oriented Philosophy | 125

When answering the question “What are oranges?” you are talking about the class of things known
as oranges. All oranges are fruit. All oranges grow on trees. All oranges are some shade of orange.
All oranges have some particular flavor. A class is simply the encapsulation of what defines a
classification of objects.

When describing a specific orange, you are talking about an object. All objects belong to a particu-
lar class. Because the object on my desk is an orange, I know that it belongs to the orange class.
Thus, I know that it is a fruit that grows on trees. I can further say that it is a medium shade of
orange and ranks “mighty tasty” in flavor. An object is an instance of a class—a particular item
with characteristics that distinguish it from other instances of the same class.

As a more concrete example, reconsider the stock selection application from earlier. In OOP, “stock
quote” is a class because it defines the abstract notion of what makes up a quote. A specific quote,
such as “current Microsoft stock quote,” would be an object because it is a particular instance of
the class.

From a C background, think of classes and objects as analogous to types and variables. In fact, in
Chapter 8, you’ll see that the syntax for classes is similar to the syntax for C structs.

Components

If you consider a complex real-world object, such as an airplane, it should be fairly easy to see that it
is made up of smaller components. There’s the fuselage, the controls, the landing gear, the engines,
and numerous other parts. The ability to think of objects in terms of their smaller components is
essential to OOP, just as the breaking up of complicated tasks into smaller procedures is fundamen-
tal to procedural programming.

A component is essentially the same thing as a class, just smaller and more specific. A good object-
oriented program might have an Airplane class, but this class would be huge if it fully described an
airplane. Instead, the Airplane class deals with many smaller, more manageable, components. Each
of these components might have further subcomponents. For example, the landing gear is a compo-
nent of an airplane, and the wheel is a component of the landing gear.

Properties

Properties are what distinguish one object from another. Going back to the orange class, recall that
all oranges are defined as having some shade of orange and a particular flavor. These two character-
istics are properties. All oranges have the same properties, just with different values. My orange has
a “mighty tasty” flavor, but yours may have a “terribly unpleasant” flavor.

You can also think about properties on the class level. As recognized earlier, all oranges are fruit
and grow on trees. These are properties of the fruit class, whereas the specific shade of orange is
determined by the particular fruit object. Class properties are shared by all objects of a class, while
object properties are present in all objects of the class, but with different values.

In the stock selection example, a stock quote has several object properties, including the name of the
company, its ticker symbol, the current price, and other statistics.

Properties are the characteristics that describe an object. They answer the question, “What makes
this object different?”

126

| CHAPTERS DESIGNING WITH OBJECTS

Behaviors

Behaviors answer either of two questions: What does this object do? or What can 1 do to this
object? In the case of an orange, it doesn’t do a whole lot, but we can do things to it. One behavior
is that it can be eaten. Like properties, you can think of behaviors on the class level or the object
level. All oranges can pretty much be eaten in the same way. However, they might differ in some
other behavior, such as being rolled down an incline, where the behavior of a perfectly round orange
would differ from that of a more oblate one.

The stock selection example provides some more practical behaviors. If you recall, when thinking
procedurally, T determined that my program needed to analyze stock quotes as one of its functions.
Thinking in OOP, you might decide that a stock quote object can analyze itself. Analysis becomes a
behavior of the stock quote object.

In object-oriented programming, the bulk of functional code is moved out of procedures and into
classes. By building classes that have certain behaviors and defining how they interact, OOP offers a
much richer mechanism for attaching code to the data on which it operates. Behaviors for classes are
implemented in so-called class methods.

Bringing It All Together

With these concepts, you could take another look at the stock selection program and redesign it in
an object-oriented manner.

As discussed, “stock quote” would be a fine class to start with. To obtain the list of quotes, the
program needs the notion of a group of stock quotes, which is often called a collection. So, a better
design might be to have a class that represents a “collection of stock quotes,” which is made up of
smaller components that represent a single “stock quote.”

Moving on to properties, the collection class would have at least one property—the actual list of
quotes received. It might also have additional properties, such as the exact date and time of the most
recent retrieval. As for behaviors, the “collection of stock quotes” would be able to talk to a server
to get the quotes and provide a sorted list of quotes. This is the “retrieve quotes” behavior.

The stock quote class would have the properties discussed earlier—name, symbol, current price, and
so on. Also, it would have an analyze behavior. You might consider other behaviors, such as buying
and selling the stock.

It is often useful to create diagrams showing the relationship between components. Figure 5-1 uses
the UML class diagram syntax, see Appendix D, to indicate that a StockQuoteCollection con-
tains zero or more (0..*) StockQuote objects, and that a stockQuote object belongs to a single (1)
StockQuoteCollection.

StockQuote
StockQuoteCollection —
-mCompanyName : string
-mStockQuotes : vector 1 0.* -mTickerSymbol : string
-mTimestamp : DateTime [® mStockQuotes— _mCurrentPrice : Currency
+retrieveQuotes() : void +analyze() : void
+sortQuotes() : void +buyShares() : void

+sellShares() : void

FIGURE 5-1

Living in a World of Objects | 127

Figure 5-2 shows a possible UML class diagram for Orange
the orange class.

-mSeeds: vector
-mColor : Color

-mFlavor : Flavor 1 0..x
----------------------------------- @®— mSeeds Seed

LIVING IN A WORLD OF OBJECTS +eat() : void

+roll() void

. +toss() : void
Programmers who transition from a procedural e
+peel() : void

thought process to the object-oriented paradigm +squeeze() : void
often experience an epiphany about the combina-
tion of properties and behaviors into objects. Some
programmers find themselves revisiting the design
of programs they’re working on and rewriting certain pieces as objects. Others might be tempted to
throw all the code away and restart the project as a fully object-oriented application.

FIGURE 5-2

There are two major approaches to developing software with objects. To some people, objects
simply represent a nice encapsulation of data and functionality. These programmers sprinkle
objects throughout their programs to make the code more readable and easier to maintain.
Programmers taking this approach slice out isolated pieces of code and replace them with objects
like a surgeon implanting a pacemaker. There is nothing inherently wrong with this approach.
These people see objects as a tool that is beneficial in many situations. Certain parts of a program
just “feel like an object,” like the stock quote. These are the parts that can be isolated and described
in real-world terms.

Other programmers adopt the OOP paradigm fully and turn everything into an object. In their
minds, some objects correspond to real-world things, such as an orange or a stock quote, while oth-
ers encapsulate more abstract concepts, such as a sorter or an undo object.

The ideal approach is probably somewhere in between these extremes. Your first object-oriented
program might really have been a traditional procedural program with a few objects sprinkled in.
Or perhaps you went whole hog and made everything an object, from a class representing an int to
a class representing the main application. Over time, you will find a happy medium.

Over-Objectification

There is often a fine line between designing a creative object-oriented system and annoying every-
body else on your team by turning every little thing into an object. As Freud used to say, sometimes
a variable is just a variable. Okay, that’s a paraphrase of what he said.

Perhaps you’re designing the next bestselling Tic-Tac-Toe game. You'’re going all-out OOP on this
one, so you sit down with a cup of coffee and a notepad to sketch out your classes and objects.

In games like this, there’s often an object that oversees game play and is able to detect the winner.
To represent the game board, you might envision a crid object that will keep track of the markers
and their locations. In fact, a component of the grid could be the Piece object that represents an X
or an O.

Wait, back up! This design proposes to have a class that represents an X or an O. That is perhaps
object overkill. After all, can’t a char represent an X or an O just as well? Better yet, why can’t the
Grid just use a two-dimensional array of an enumerated type? Does a Piece object just complicate
the code? Take a look at the following table representing the proposed piece class:

128 | CHAPTER5 DESIGNING WITH OBJECTS

CLASS ASSOCIATED COMPONENTS PROPERTIES BEHAVIORS

Piece None XorO None

The table is a bit sparse, strongly hinting that what we have here may be too granular to be a
full-fledged object.

On the other hand, a forward-thinking programmer might argue that while Piece is a pretty
meager class as it currently stands, making it into an object allows future expansion without any
real penalty. Perhaps down the road, this will be a graphical application and it might be useful to
have the piece class support drawing behavior. Additional properties could be the color of the
Piece or whether the Piece was the most recently moved.

Another solution might be to think about the state of a grid square instead of using pieces. The state
of a square can be Empty, X, or O. To make the design future-proof to support a graphical appli-
cation, you could design an abstract base class state with concrete derived classes StateEmpty,
StateX, and Stateo, which know how to render themselves.

Obviously, there is no right answer. The important point is that these are issues that you should
consider when designing your application. Remember that objects exist to help programmers
manage their code. If objects are being used for no reason other than to make the code “more
object-oriented,” something is wrong.

Overly General Objects

Perhaps a worse annoyance than objects that shouldn’t be objects is objects that are too general.
All OOP students start with examples like “orange”—things that are objects, no question about

it. In real-life coding, objects can get pretty abstract. Many OOP programs have an “application
object,” despite the fact that an application isn’t really something you can envision in material
form. Yet it may be useful to represent the application as an object because the application itself has
certain properties and behaviors.

An overly general object is an object that doesn’t represent a particular thing at all. The programmer
may be attempting to make an object that is flexible or reusable, but ends up with one that is confus-
ing. For example, imagine a program that organizes and displays media. It can catalog your photos,
organize your digital music collection, and serve as a personal journal. The overly general approach
is to think of all these things as “media” objects and build a single class that can accommodate all
of the formats. It might have a property called “data” that contains the raw bits of the image, song,
or journal entry, depending on the type of media. It might have a behavior called
“perform” that appropriately draws the image, plays the song, or brings up the
journal entry for editing.

The clues that this class is too general are in the names of the properties and behav-
iors. The word “data” has little meaning by itself—you have to use a general term
here because this class has been overextended to three very different uses. Similarly,
“perform” will do very different things in the three different cases. Finally, this
design is too general because “media” isn’t a particular object, not in the user inter- Media
face, not in real life, and not even in the programmer’s mind. A major clue that
a class is too general is when many ideas in the programmer’s mind all unite as a
single object, as shown in Figure 5-3. FIGURE 5-3

Object Relationships | 129

OBJECT RELATIONSHIPS

As a programmer, you will certainly encounter cases where different classes have characteris-
tics in common, or at least seem somehow related to each other. For example, although creat-
ing a “media” object to represent images, music, and text in a digital catalog program is too
general, these objects do share characteristics. You may want all of them to keep track of the
date and time that they were last modified, or you might want them all to support a delete
behavior.

Object-oriented languages provide a number of mechanisms for dealing with such relationships
between objects. The tricky part is to understand what the relationship actually is. There are two
main types of object relationships—a has-a relationship and an is-a relationship.

The Has-A Relationship

Objects engaged in a has-a, or aggregation, relationship follow the pattern A has a B, or A contains
a B. In this type of relationship, you can envision one object as part of another. Components, as
defined earlier, generally represent a has-a relationship because they describe objects that are made
up of other objects.

A real-world example of this might be the relationship between a zoo and a monkey. You could say
that a zoo has a monkey or a zoo contains a monkey. A simulation of a zoo in code would have a
200 object, which has a monkey component.

Often, thinking about user interface scenarios is helpful in understanding object relationships. This
is so because even though not all Uls are implemented in OOP (though these days, most are), the
visual elements on the screen translate well into objects. One Ul analogy for a has-a relationship is
a window that contains a button. The button and the window are clearly two separate objects but
they are obviously related in some way. Because the button is inside the window, you say that the
window has a button.

Figure 5-4 shows a real-world and a user interface has-a relationship.

Microsoft Excel

! ‘Want to save your changes to 'Book2'7

Don't Save Cancel —— — A window has a button.

An airplane has a wing (hopefully twol).

FIGURE 5-4

130

| CHAPTERS5 DESIGNING WITH OBJECTS

The Is-A Relationship (Inheritance)

The is-a relationship is such a fundamental concept of object-oriented programming that it has
many names, including deriving, subclassing, extending, and inberiting. Classes model the fact that
the real world contains objects with properties and behaviors. Inheritance models the fact that these
objects tend to be organized in hierarchies. These hierarchies indicate is-a relationships.

Fundamentally, inheritance follows the pattern A is a B or A is really quite a bit like B—it can get
tricky. To stick with the simple case, revisit the zoo, but assume that there are other animals besides
monkeys. That statement alone has already constructed the relationship—a monkey is an animal.
Similarly, a giraffe is an animal, a kangaroo is an animal, and a penguin is an animal. So what?
Well, the magic of inheritance comes when you realize that monkeys, giraffes, kangaroos, and
penguins have certain things in common. These commonalities are characteristics of animals in
general.

What this means for the programmer is that you can define an Animal class that encapsulates all of
the properties (size, location, diet, and so on) and behaviors (move, eat, sleep) that pertain to every
animal. The specific animals, such as monkeys,

become derived classes of Animal because a
. 1
A

monkey contains all the characteristics of an

animal. Remember, a monkey is an animal plus
some additional characteristics that make it dis- | | | |

tinct. Figure 5-5 shows an inheritance diagram | Monkey || Giraffe || Kangaroo || Penguin |
for animals. The arrows indicate the direction of | I I Il :
the is-a relationship. FIGURE 5-5

Just as monkeys and giraffes are different types of animals, a user interface often has different types
of buttons. A checkbox, for example, is a button. Assuming that a button is simply a Ul element that
can be clicked to perform an action, a Checkbox extends the Button class by adding state—whether
the box is checked or unchecked.

When relating classes in an is-a relationship, one goal is to factor common functionality into the
base class, the class that other classes extend. If you find that all of your derived classes have code
that is similar or exactly the same, consider how you could move some or all of the code into the
base class. That way, any changes that need to be made only happen in one place and future derived
classes get the shared functionality “for free.”

Inheritance Techniques

The preceding examples cover a few of the techniques used in inheritance without formalizing them.
When deriving classes, there are several ways that the programmer can distinguish a class from its
parent class, also called base class or superclass. A derived class may use one or more of these tech-
niques, and they are recognized by completing the sentence, “A is a B that ...”.

Adding Functionality

A derived class can augment its parent by adding additional functionality. For example, a monkey is
an animal that can swing from trees. In addition to having all of the methods of Animal, the Monkey
class also has a swingFromTrees () method, which is specific to only the Monkey class.

Object Relationships | 131

Replacing Functionality

A derived class can replace or override a method of its parent entirely. For example, most animals
move by walking, so you might give the Animal class a move () method that simulates walking.

If that’s the case, a kangaroo is an animal that moves by hopping instead of walking. All the other
properties and methods of the Animal base class still apply, but the Kangaroo derived class simply
changes the way that the move () method works. Of course, if you find yourself replacing all of the
functionality of your base class, it may be an indication that inheriting was not the correct thing to
do after all, unless the base class is an abstract base class. An abstract base class forces each of the
derived classes to implement all methods that do not have an implementation in the abstract base
class. You cannot create instances of an abstract base class. Abstract base classes are discussed in
Chapter 10.

Adding Properties

A derived class can also add new properties to the ones that were inherited from the base class. For
example, a penguin has all the properties of an animal but also has a beak size property.

Replacing Properties

C++ provides a way of overriding properties similar to the way you can override methods. However,
doing so is rarely appropriate, because it hides the property from the base class; that is, the base
class can have a specific value for a property with a certain name, while the derived class can have
another value for another property but with the same name. Hiding is explained in more detail in
Chapter 10. It’s important not to get the notion of replacing a property confused with the notion of
derived classes having different values for properties. For example, all animals have a diet property
that indicates what they eat. Monkeys eat bananas and penguins eat £ish, but neither of these is
replacing the diet property—they simply differ in the value assigned to the property.

Polymorphism versus Code Reuse

Polymorphism is the notion that objects that adhere to a standard set of properties and methods
can be used interchangeably. A class definition is like a contract between objects and the code that
interacts with them. By definition, any monkey object must support the properties and methods of
the monkey class.

This notion extends to base classes as well. Because all monkeys are animals, all Monkey objects
support the properties and methods of the animal class as well.

Polymorphism is a beautiful part of object-oriented programming because it truly takes advantage
of what inheritance offers. In a zoo simulation, you could programmatically loop through all of the
animals in the zoo and have each animal move once. Because all animals are members of the Animal
class, they all know how to move. Some of the animals have overridden the move method, but that’s
the best part—your code simply tells each animal to move without knowing or caring what type of
animal it is. Each one moves whichever way it knows how.

There is another reason to use inheritance besides polymorphism. Often, it’s just a matter of lever-
aging existing code. For example, if you need a class that plays music with an echo effect, and your
coworker has already written one that plays music without any effects, you might be able to derive a

132 | CHAPTER5 DESIGNING WITH OBJECTS

new class from the existing class and add in the new functionality. The is-a relationship still applies
(an echo music player is a music player that adds an echo effect), but you didn’t intend for these
classes to be used interchangeably. What you end up with are two separate classes, used in com-
pletely different parts of the program (or maybe even in different programs entirely) that happen to
be related only to avoid reinventing the wheel.

The Fine Line between Has-A and Is-A

In the real world, it’s pretty easy to classify has-a and is-a relationships between objects. Nobody
would claim that an orange has a fruit—an orange is a fruit. In code, things sometimes aren’t
so clear.

Consider a hypothetical class that represents a hash table. A hash table is a data structure that
efficiently maps a key to a value. For example, an insurance company could use a Hashtable class
to map member IDs to names so that given an ID, it’s easy to find the corresponding member name.
The member ID is the key and the member name is the value.

In a standard hash table implementation, every key has a single value. If the ID 14534 maps to the
member name “Kleper, Scott”, it cannot also map to the member name “Kleper, Marni”. In most
implementations, if you tried to add a second value for a key that already has a value, the first value
would go away. In other words, if the ID 14534 mapped to “Kleper, Scott” and you then assigned
the ID 14534 to “Kleper, Marni”, then Scott would effectively be uninsured. This is demonstrated
in the following sequence, which shows two calls to a hypothetical hash table insert () method and
the resulting contents of the hash table.

hash.insert (14534, "Kleper, Scott");

KEYS VALUES

14534 “Kleper, Scott” [string]

hash.insert (14534, "Kleper, Marni");

KEYS VALUES

14534 “Kleper, Marni” [string]

It’s not difficult to imagine uses for a data structure that’s like a hash table, but allows multiple val-
ues for a given key. In the insurance example, a family might have several names that correspond
to the same ID. Because such a data structure is very similar to a hash table, it would be nice to
leverage that functionality somehow. A hash table can have only a single value as a key, but that
value can be anything. Instead of a string, the value could be a collection (such as an array or a list)
containing the multiple values for the key. Every time you add a new member for an existing ID, you
add the name to the collection. This would work as shown in the following sequence:

Collection collection;

collection.insert ("Kleper, Scott");
hash.insert (14534, collection);

Object Relationships | 133

KEYS VALUES

14534 {"Kleper, Scott"} [collection]

Collection collection = hash.get (14534);
collection.insert ("Kleper, Marni");
hash.insert (14534, collection);

KEYS VALUES

14534 {“Kleper, Scott”, “Kleper, Marni”} [collection]

Messing around with a collection instead of a string is tedious and requires a lot of repetitive code.
It would be preferable to wrap up this multiple-value functionality in a separate class, perhaps called
a MultiHash. The MultiHash class would work just like Hashtable except that behind the scenes,

it would store each value as a collection of strings instead of a single string. Clearly, MultiHash is
somehow related to Hashtable because it is still using a hash table to store the data. What is unclear
is whether that constitutes an is-a or a has-a relationship.

To start with the is-a relationship, imagine that MultiHash is a derived class of Hashtable.

It would have to override the method that adds an entry into the table so that it would either create
a collection and add the new element, or retrieve the existing collection
and add the new element. It would also override the method that retrieves a

value. It could, for example, append all the values for a given key together Hashtable
into one string. This seems like a perfectly reasonable design. Even though it +insert(key, value)
overrides all the methods of the base class, it will still make use of the base *getikey)
class’s methods by using the original methods within the derived class. This
approach is shown in the UML class diagram in Figure 5-6.
Now consider it as a has-a relationship. MultiHash is its own class, but it MuttiHash
contains a Hashtable object. It probably has an interface very similar to modifies insert()
Hashtable, but it need not be the same. Behind the scenes, when a user adds modifies get()
something to the MultiHash, it is really wrapped in a collection and put in EIGURE 5-6
a Hashtable object. This also seems perfectly
reasonable and is shown in Figure 5-7.

MultiHash Hashtable

1 1
; : . +insert(key, value) @ has-a — +insert(key, value)
answer, though a friend of mine who has writ- +getAll(key) +get(key)

ten a MultiHash class for production use,

So, which solution is right? There’s no clear

viewed it as a has-a relationship. The main rea- FIGURE 5-7

son was to allow modifications to the exposed

interface without worrying about maintaining hash table functionality. For example, in Figure 5-7,
the get () method was changed to getall (), making it clear that this would get all the values for

a particular key in a MultiHash. Additionally, with a has-a relationship, you don’t have to worry
about any hash table functionality bleeding through. For example, if the hash table class supported
a method that would get the total number of values, it would report the number of collections unless
MultiHash knew to override it.

134 | CHAPTER5 DESIGNING WITH OBJECTS

That said, one could make a convincing argument that a MultiHash actually is a Hashtable with
some new functionality, and it should have been an is-a relationship. The point is that there is some-
times a fine line between the two relationships, and you will need to consider how the class is going
to be used and whether what you are building just leverages some functionality from another class
or really is that class with modified or new functionality.

The following table represents the arguments for and against taking either approach for the
MultiHash class.

IS-A HAS-A
Reasons Fundamentally, it's the same abstrac- MultiHash can have whatever meth-
For tion with different characteristics. ods are useful without needing to

It provides (almost) the same methods worry about what methods Hashtable

as Hashtable. has.
The implementation could change to
something other than a Hashtable
without changing the exposed

methods.
Reasons A hash table by definition has one value In a sense, MultiHash reinvents the
Against per key. To say MultiHash is a hash wheel by coming up with new methods.
table is blasphemy! Some additional properties and meth-
MultiHash overrides both methods of ods of Hashtable might have been
Hashtable, a strong sign that some- useful.

thing about the design is wrong.

Unknown or inappropriate properties
or methods of Hashtable could “bleed
through” to MultiHash.

The reasons against using an is-a relationship in this case are pretty strong. Additionally, the Liskov
substitution principle (LSP) can help you decide between an is-a and a has-a relationship. This prin-
ciple states that you should be able to use a derived class instead of a base class without altering the
behavior. Applied to this example, it states that this should be a has-a relationship, because you can-
not just start using a MultiHash where before you were using a Hashtable. If you would do so, the
behavior would change. For example, the insert () method of Hashtable removes an earlier value
with the same key that is already in the map, while MultiHash does not remove such values.

If you do have a choice between the two types of relationships, I recommend, after years of experi-
ence, opting for a has-a relationship over an is-a relationship.

Note that the Hashtable and MultiHash are used here to demonstrate the difference between

the is-a and has-a relationships. In your own code, it is reccommended to use one of the standard
hash table classes instead of writing your own. The C++ Standard Library provides an unordered
map class, which you should use instead of the Hashtable, and an unordered multimap class,

Object Relationships | 135

which you should use instead of the Multinash. Both of these standard classes are discussed in
Chapter 17.

The Not-A Relationship

As you consider what type of relationship classes have, you should consider whether or not they
actually have a relationship at all. Don’t let your zeal for object-oriented design turn into a lot of
needless class/derived-class relationships.

One pitfall occurs when things are obviously related in the real world but have no actual relation-
ship in code. Object-oriented hierarchies need to model functional relationships, not artificial ones.
Figure 5-8 shows relationships that are meaningful as ontologies or hierarchies, but are unlikely to
represent a meaningful relationship in code.

Blues Rock || Pop || Folk Rock | Smooth Jazz

| CEO |

| VP of Sales | | VP of Engineering |

|Sa|esAssociate| | Pre-sales | Project Lead
Engineer

FIGURE 5-8

The best way to avoid needless inheritance is to sketch out your design first. For every class and
derived class, write down what properties and methods you’re planning on putting into the class.
You should rethink your design if you find that a class has no particular properties or methods of
its own, or if all of those properties and methods are completely overridden by its derived classes,
except when working with abstract base classes as mentioned earlier.

136 | CHAPTER5 DESIGNING WITH OBJECTS

Hierarchies

Just as a class A can be a base class of B, B can
also be a base class of c. Object-oriented hier-

archies can model multilevel relationships like | |
this. A zoo simulation with more animals might
be designed with every animal as a derived
class of a common 2Animal class, as shown in
Figure 5-9.

| Monkey || Giraffe || Kangaroo || Penguin |
[fl fl fl]

FIGURE 5-9

As you code each of these derived classes, you might find that a lot of them are similar. When this
occurs, you should consider putting in a common parent. Realizing that Lion and panther both
move the same way and have the same diet might indicate a need for a possible Bigcat class. You
could further subdivide the Animal class to include WaterAnimal and Marsupial. A more hierar-
chical design that leverages this commonality is shown in Figure 5-10.

A\
| Monkey || BigCat || Giraffe || Marsupia|| |WaterAnima||
[i il i]]
| Lion || Panther | T | Dolphin || Penguin |
[il] [i |
Koala Kangaroo
| !! |

FIGURE 5-10

A biologist looking at this hierarchy may be disappointed—a penguin isn’t really in the same family
as a dolphin. However, it underlines a good point—in code, you need to balance real-world relation-
ships with shared-functionality relationships. Even though two things might be very closely related
in the real world, they might have a not-a relationship in code because they really don’t share func-
tionality. You could just as easily divide animals into mammals and fish, but that wouldn’t factor
any commonality to the base class.

Another important point is that there could be other ways of organizing the hierarchy. The pre-
ceding design is organized mostly by how the animals move. If it were instead organized by the
animals’ diet or height, the hierarchy could be very different. In the end, what matters is how the
classes will be used. The needs will dictate the design of the object hierarchy.

A good object-oriented hierarchy accomplishes the following:
> Organizes classes into meaningful functional relationships
> Supports code reuse by factoring common functionality to base classes

> Avoids having derived classes that override much of the parent’s functionality, unless the
parent is an abstract class.

Object Relationships | 137

Multiple Inheritance

Every example so far has had a single inheritance chain. In other words, a given class has, at most,
one immediate parent class. This does not have to be the case. Through multiple inheritance, a class
can have more than one base class.

Figure 5-11 shows a multiple inheritance design. There is still a base class called animal, which
is further divided by size. A separate hierarchy categorizes by diet, and a third takes care of
movement. Each type of animal is then a derived class of all three of these classes, as shown by
different lines.

W

Jumper || Walker || Swimmer || Carnivore || Herbivore || Fish Eater || Big Animal ||SmaIIAnimaI|
i i i] i]]

Kangaroo
I

FIGURE 5-11
In a user interface context, imagine an image that the user can click | Button | | Image |
on. This object seems to be both a button and an image so the imple- | - S = !

mentation might involve inheriting from both the Image class and the
Button class, as shown in Figure 5-12.

PictureButton

Multiple inheritance can be very useful in certain cases, but it also -
has a number of disadvantages that you should always keep in mind. FIGURE 5-12

Many programmers dislike multiple inheritance. C++ has explicit

support for such relationships, though the Java language does away with them altogether, except
for inheriting from multiple interfaces (abstract base classes). There are several reasons to which
multiple inheritance critics point.

First, visualizing multiple inheritance is complicated. As you can see in Figure 5-11, even a simple
class diagram can become very complicated when there are multiple hierarchies and crossing lines.
Class hierarchies are supposed to make it easier for the programmer to understand the relation-
ships between code. With multiple inheritance, a class could have several parents that are in no way
related to each other. With so many classes contributing code to your object, can you really keep
track of what’s going on?

Second, multiple inheritance can destroy otherwise clean hierarchies. In the animal example, switch-
ing to a multiple inheritance approach means that the Animal base class is less meaningful because
the code that describes animals is now separated into three separate hierarchies. While the design
illustrated in Figure 5-11 shows three clean hierarchies, it’s not difficult to imagine how they could
get messy. For example, what if you realize that all Jumpers not only move in the same way, but they
also eat the same things? Because there are separate hierarchies, there is no way to join the concepts
of movement and diet without adding yet another derived class.

138

| CHAPTERS5 DESIGNING WITH OBJECTS

Third, implementation of multiple inheritance is complicated. What if two of your base classes
implement the same method in different ways? Can you have two base classes that are them-
selves a derived class of a common base class? These possibilities complicate the implementa-
tion because structuring such intricate relationships in code is difficult both for the author and
a reader.

The reason that other languages can leave out multiple inheritance is that it is usually avoidable.
By rethinking your hierarchy, you can often avoid introducing multiple inheritance when you have
control over the design of a project.

Mixin Classes

Mixin classes represent another type of relationship between classes. In C++, a mixin class is imple-
mented syntactically just like multiple inheritance, but the semantics are refreshingly different.

A mixin class answers the question, “What else is this class able to do?” and the answer often ends

with “-able.” Mixin classes are a way that you can add functionality to a class without committing

to a full is-a relationship. You can think of it as a shares-with relationship.

Going back to the zoo example, you might want to introduce the notion that some animals are
“pettable.” That is, there are some animals that visitors to the zoo can pet, presumably without
being bitten or mauled. You might want all pettable animals to support the behavior “be pet.”
Because pettable animals don’t have anything else in common and you don’t want to break the
existing hierarchy you’ve designed, Pettable makes a great mixin class.

Mixin classes are used frequently in user interfaces. Instead of saying that a PictureButton class
is both an Image and a Button, you might say that it’s an Image that is cClickable. A folder icon
on your desktop could be an Image that is Draggable and clickable. Software developers tend to
make up a lot of fun adjectives.

The difference between a mixin class and a base class has more to do with how you think about the
class than any code difference. In general, mixin classes are easier to digest than multiple inheritance
because they are very limited in scope. The Pettable mixin class just adds one behavior to any
existing class. The clickable mixin class might just add “mouse down” and “mouse up” behaviors.
Also, mixin classes rarely have a large hierarchy so there’s no cross-contamination of functionality.
Chapter 28 goes into more detail on mixin classes.

ABSTRACTION

In Chapter 4, you learned about the concept of abstraction—the notion of separating implemen-
tation from the means used to access it. Abstraction is a good idea for many reasons that were
explored earlier. It’s also a fundamental part of object-oriented design.

Interface versus Implementation

The key to abstraction is effectively separating the interface from the implementation. The imple-
mentation is the code you’re writing to accomplish the task you set out to accomplish. The interface
is the way that other people use your code. In C, the header file that describes the functions in a
library you’ve written is an interface. In object-oriented programming, the interface to a class is

Abstraction | 139

the collection of publicly accessible properties and methods. A good interface contains only public
methods. Properties of a class should never be made public but can be exposed through public
methods, also called getters and setters.

Deciding on an Exposed Interface

The question of how other programmers will interact with your objects comes into play when
designing a class. In C++, a class’s properties and methods can each be public, protected, or pri-
vate. Making a property or method public means that other code can access it; protected means
that other code cannot access the property or method but derived classes can access them; private
is a stricter control, which means that not only are the properties or methods locked for other code,
but even derived classes can’t access them. Note that access specifiers are at the class level, not at
the object level. This means that a method of a class can access, for example, private properties or
private methods of other objects of the same class.

Designing the exposed interface is all about choosing what to make public. When working on a
large project with other programmers, you should view the exposed interface design as a process.

Consider the Audience

The first step in designing an exposed interface is to consider whom you are designing it for. Is your
audience another member of your team? Is this an interface that you will personally be using? Is it
something that a programmer external to your company will use? Perhaps a customer or an offshore
contractor? In addition to determining who will be coming to you for help with the interface, this
should shed some light on some of your design goals.

If the interface is for your own use, you probably have more freedom to iterate on the design. As
you’re making use of the interface, you can change it to suit your own needs. However, you should
keep in mind that roles on an engineering team change and it is quite likely that, some day, others
will be using this interface as well.

Designing an interface for other internal programmers to use is slightly different. In a way, your
interface becomes a contract with them. For example, if you are implementing the data store com-
ponent of a program, others are depending on that interface to support certain operations. You will
need to find out all of the things that the rest of the team wants your class to do. Do they need ver-
sioning? What types of data can they store? As a contract, you should view the interface as slightly
less flexible. If the interface is agreed upon before coding begins, you’ll receive some groans from
other programmers if you decide to change it after code has been written.

If the client is an external customer, you will be designing with a very different set of requirements.
Ideally, the target customer will be involved in specifying what functionality your interface exposes.
You’ll need to consider both the specific features they want as well as what customers might want in
the future. The terminology used in the interface will have to correspond to the terms that the cus-
tomer is familiar with, and the documentation will have to be written with that audience in mind.
Inside jokes, codenames, and programmer slang should be left out of your design.

Consider the Purpose

There are many reasons for writing an interface. Before putting any code on paper or even deciding
on what functionality you’re going to expose, you need to understand the purpose of the interface.

140

| CHAPTERS5 DESIGNING WITH OBJECTS

Application Programming Interface

An application programming interface (API) is an externally visible mechanism to extend a
product or use its functionality within another context. If an internal interface is a contract, an
APl is closer to a set-in-stone law. Once people who don’t even work for your company are using
your API, they don’t want it to change unless you’re adding new features that will help them.

So, care should be given to planning the API and discussing it with customers before making it
available to them.

The main tradeoff in designing an API is usually ease of use versus flexibility. Because the target
audience for the interface is not familiar with the internal working of your product, the learning
curve to use the API should be gradual. After all, your company is exposing this API to customers
because the company wants it to be used. If it’s too difficult to use, the APl is a failure. Flexibility
often works against this. Your product may have a lot of different uses, and you want the customer
to be able to leverage all the functionality you have to offer. However, an API that lets the customer
do anything that your product can do may be too complicated.

As a common programming adage goes, “A good API makes the easy case easy and the hard case
possible.” That is, APIs should have a simple learning curve. The things that most programmers will
want to do should be accessible. However, the API should allow for more advanced usage, and it’s
acceptable to trade off complexity of the rare case for simplicity of the common case.

Utility Class or Library

Often, your task is to develop some particular functionality for general use elsewhere in the applica-
tion. It could be a random number library or a logging class. In these cases, the interface is some-
what easier to decide on because you tend to expose most or all of the functionality, ideally without
giving too much away about its implementation. Generality is an important issue to consider.
Because the class or library is general purpose, you’ll need to take the possible set of use cases into
account in your design.

Subsystem Interface

You may be designing the interface between two major subsystems of the application, such as the
mechanism for accessing a database. In these cases, separating the interface from the implementa-
tion is paramount because other programmers are likely to start implementing against your interface
before your implementation is complete. When working on a subsystem, first think about what its
main purpose is. Once you have identified the main task your subsystem is charged with, think
about specific uses and how it should be presented to other parts of the code. Try to put yourself in
their shoes and not get bogged down in implementation details.

Component Interface

Most of the interfaces you define will probably be smaller than a subsystem interface or an API.
These will be classes that you use within other code that you’ve written. In these cases, the main pit-
fall occurs when your interface evolves gradually and becomes unruly. Even though these interfaces
are for your own use, think of them as though they weren’t. As with a subsystem interface, consider
the main purpose of each class and be cautious of exposing functionality that doesn’t contribute to
that purpose.

Abstraction | 141

Consider the Future

As you are designing your interface, keep in mind what the future holds. Is this a design you will be
locked into for years? If so, you might need to leave room for expansion by coming up with a plug-in
architecture. Do you have evidence that people will try to use your interface for purposes other than
what it was designed for? Talk to them and get a better understanding of their use case. The alter-
native is rewriting it later, or worse, attaching new functionality haphazardly and ending up with

a messy interface. Be careful, though! Speculative generality is yet another pitfall. Don’t design the
be-all, end-all logging class if the future uses are unclear, because it might unnecessarily complicate
the design, the implementation, and its public interface.

Designing a Successful Abstraction

Experience and iteration are essential to good abstractions. Truly well-designed interfaces come from
years of writing and using other abstractions. You can also leverage someone else’s years of writing
and using abstractions by reusing existing, well-designed abstractions in the form of standard design
patterns. As you encounter other abstractions, try to remember what worked and what didn’t work.
What did you find lacking in the Windows file system API you used last week? What would you have
done differently if you had written the network wrapper, instead of your coworker? The best inter-
face is rarely the first one you put on paper, so keep iterating. Bring your design to your peers and ask
for feedback. If your company uses code reviews, start the code review by doing a review of the inter-
face specifications before the implementation starts. Don’t be afraid to change the abstraction once
coding has begun, even if it means forcing other programmers to adapt. Hopefully, they’ll realize that
a good abstraction is beneficial to everyone in the long term.

Sometimes you need to evangelize a bit when communicating your design to other program-

mers. Perhaps the rest of the team didn’t see a problem with the previous design or feels that your
approach requires too much work on their part. In those situations, be prepared both to defend your
work and to incorporate their ideas when appropriate.

A good abstraction means that the interface has only public methods. All code should be in the
implementation file and not in the class definition file. This means that the interface files containing
the class definitions are stable and will not change. A specific technique to accomplish this is called the
private implementation idiom, or pimpl idiom, and is discussed in Chapter 9.

Beware of single-class abstractions. If there is significant depth to the code you’re writing, consider
what other companion classes might accompany the main interface. For example, if you’re exposing
an interface to do some data processing, consider also writing a result object that provides an easy
way to view and interpret the results.

Always turn properties into methods. In other words, don’t allow external code to manipulate

the data behind your class directly. You don’t want some careless or nefarious programmer to

set the height of a bunny object to a negative number. Instead, have a “set height” method that does
the necessary bounds checking.

Iteration is worth mentioning again because it is the most important point. Seek and respond to
feedback on your design, change it when necessary, and learn from mistakes.

142

CHAPTER 5 DESIGNING WITH OBJECTS

SUMMARY

In this chapter, you’ve gained an appreciation for the design of object-oriented programs without

a lot of code getting in the way. The concepts you’ve learned are applicable to almost any object-
oriented language. Some of it may have been a review to you, or it may be a new way of formalizing
a familiar concept. Perhaps you picked up some new approaches to old problems, or new arguments
in favor of the concepts you’ve been preaching to your team all along. Even if you’ve never used
objects in your code, or have used them only sparingly, you now know more about how to design
object-oriented programs than many experienced C++ programmers.

The relationships between objects are important to study, not just because well-linked objects con-
tribute to code reuse and reduce clutter, but also because you will be working in a team. Objects
that relate in meaningful ways are easier to read and maintain. You may decide to use the “Object
Relationships™ section as a reference when you design your programs.

Finally, you learned about creating successful abstractions and the two most important design
considerations—audience and purpose.

The next chapter continues the design theme by explaining how to design your code with reuse
in mind.

Designing for Reuse

WHAT'S IN THIS CHAPTER?

> The reuse philosophy: Why you should design code for reuse
> How to design reusable code

> How to use abstraction

> Strategies for structuring your code for reuse

> Six strategies for designing usable interfaces

> How to reconcile generality with ease of use

» The SOLID principles

Reusing libraries and other code in your programs is an important design strategy.
However, it is only half of the reuse strategy. The other half is designing and writing the
code that you can reuse in your programs. As you’ve probably discovered, there is a signifi-
cant difference between well-designed and poorly designed libraries. Well-designed libraries
are a pleasure to use, while poorly designed libraries can prod you to give up in disgust and
write the code yourself. Whether you’re writing a library explicitly designed for use by other
programmers or merely deciding on a class hierarchy, you should design your code with
reuse in mind. You never know when you’ll need a similar piece of functionality in a subse-
quent project.

Chapter 4 introduces the design theme of reuse and explains how to apply this theme by incor-
porating libraries and other code in your designs, but it doesn’t explain how to design reusable
code. That is the topic of this chapter. It builds on the object-oriented design principles
described in Chapter 5.

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

144 | CHAPTER 6 DESIGNING FOR REUSE

THE REUSE PHILOSOPHY

You should design code that both you and other programmers can reuse. This rule applies not only
to libraries and frameworks that you specifically intend for other programmers to use, but also to
any class, subsystem, or component that you design for a program. You should always keep in mind

the mottos:
» “Write once, use often”
> “Avoid code duplication at any cost”

> “DRY—Don’t Repeat Yourself”

There are several reasons for this:

> Code is rarely used in only one program. You can be sure that your code will be used again
somehow, so design it correctly to begin with.

> Designing for reuse saves time and money. If you design your code in a way that precludes
future use, you ensure that you or your partners will spend time reinventing the wheel later
when you encounter a need for a similar piece of functionality.

» Other programmers in your group must be able to use the code that you write. You are prob-
ably not working alone on a project. Your coworkers will appreciate your efforts to offer
them well-designed, functionality-packed libraries and pieces of code to use. Designing for
reuse can also be called cooperative coding.

> Lack of reuse leads to code duplication; code duplication leads to a maintenance nightmare.
If a bug is found in duplicated code, it has to be fixed in all places where it got duplicated.
Whenever you find yourself copy-pasting a piece of code, you have to at least consider mov-
ing it out to a helper function or class.

> You will be the primary beneficiary of your own work. Experienced programmers never
throw away code. Over time, they build a personal library of evolving tools. You never know
when you will need a similar piece of functionality in the future.

WARNING When you design or write code as an employee of a company, the
company, not you, generally owns the intellectual property rights. It is often
illegal to retain copies of your designs or code when you terminate your employ-
ment with the company. The same is also true when you are self-employed and
working for clients.

HOW TO DESIGN REUSABLE CODE

Reusable code fulfills two main goals. First, it is general enough to use for slightly different purposes
or in different application domains. Program components with details of a specific application are
difficult to reuse in other programs.

How to Design Reusable Code | 145

Second, reusable code is also easy to use. It doesn’t require significant time to understand its inter-
face or functionality. Programmers must be able to incorporate it readily into their applications.

The means of “delivering” your library to clients is also important. You can deliver it in source
form and clients just incorporate your source into their project. Another option is to deliver a static
library, which they link into their application, or you can deliver a Dynamic Link Library (DLL) for
Windows clients, or a shared object (. so) for Linux clients. Each of these delivery mechanisms can
impose additional constraints on how you code your library.

NOTE This chapter uses the term “client” to refer to a programmer who uses
your interfaces. Don’t confuse clients with “users” who run your programs. This
chapter also uses the phrase “client code” to refer to code that is written to use
your interfaces.

The most important strategy for designing reusable code is abstraction. Chapter 4 presents the real-
world analogy of a television, which you can use through its interfaces without understanding how
it works inside. Similarly, when you design code, you should clearly separate the interface from the
implementation. This separation makes the code easier to use, primarily because clients do not need
to understand the internal implementation details in order to use the functionality.

Abstraction separates code into interfaces and implementation, so designing reusable code focuses
on these two main areas. First, you must structure the code appropriately. What class hierarchies
will you use? Should you use templates? How should you divide the code into subsystems?

Second, you must design the interfaces, which are the “entries” into your library, or code that pro-
grammers use, to access the functionality you provide.

Use Abstraction

You learned about the principle of abstraction in Chapter 4 and read more about its application to
object-oriented design in Chapter 5. To follow the principle of abstraction, you should provide inter-
faces to your code that hide the underlying implementation details. There should be a clear distinc-
tion between the interface and the implementation.

Using abstraction benefits both you and the clients who use your code. Clients benefit because they
don’t need to worry about the implementation details; they can take advantage of the functionality
you offer without understanding how the code really works. You benefit because you can modify
the underlying code without changing the interface to the code. Thus, you can provide upgrades and
fixes without requiring clients to change their use. With dynamically linked libraries, clients might
not even need to rebuild their executables. Finally, you both benefit because you, as the library
writer, can specify in the interface exactly what interactions you expect and what functionality you
support. Consult Chapter 3 for a discussion on how to write documentation. A clear separation of
interfaces and implementations will prevent clients from using the library in ways that you didn’t
intend, which can otherwise cause unexpected behaviors and bugs.

WARNING When designing your interface, do not expose implementation
details to your clients.

146 | CHAPTER 6 DESIGNING FOR REUSE

Sometimes libraries require client code to keep information returned from one interface in order to
pass it to another. This information is sometimes called a handle and is often used to keep track of
specific instances that require state to be remembered between calls. If your library design requires a
handle, don’t expose its internals. Make that handle into an opaque class, in which the programmer
can’t access the internal data members, either directly, or through public getters or setters. Don’t
require the client code to tweak variables inside this handle. An example of a bad design would be

a library that requires you to set a specific member of a structure in a supposedly opaque handle in
order to turn on error logging.

NOTE Unfortunately, C++ is fundamentally unfriendly to the principle of good
abstraction when writing classes. The syntax requires you to combine your
public interfaces and non-public (private or protected) data members and
methods together in one class definition, thereby exposing some of the internal
implementation details of the class to its clients. Chapter 9 describes some tech-
niques for working around this in order to present clean interfaces.

Abstraction is so important that it should guide your entire design. As part of every decision you
make, ask yourself whether your choice fulfills the principle of abstraction. Put yourself in your cli-
ents’ shoes and determine whether or not you’re requiring knowledge of the internal implementation
in the interface. You should rarely, if ever, make exceptions to this rule.

Structure Your Code for Optimal Reuse

You must consider reuse from the beginning of your design, on all levels, that is, from a single func-
tion, over a class, to entire libraries and frameworks. In the text that follows, all these different lev-
els are called components. The following strategies will help you organize your code properly. Note
that all of these strategies focus on making your code general purpose. The second aspect of design-
ing reusable code, providing ease of use, is more relevant to your interface design and is discussed
later in this chapter.

Avoid Combining Unrelated or Logically Separate Concepts

When you design a component, you should keep it focused on a single task or group of tasks, that is,
you should strive for high cobesion. This is also known as the Single Responsibility Principle (SRP).
Don’t combine unrelated concepts such as a random number generator and an XML parser.

Even when you are not designing code specifically for reuse, keep this strategy in mind. Entire
programs are rarely reused on their own. Instead, pieces or subsystems of the programs are incor-
porated directly into other applications, or are adapted for slightly different uses. Thus, you should
design your programs so that you divide logically separate functionality into distinct compo-

nents that can be reused in different programs. Each such component should have well-defined
responsibilities.

This program strategy models the real-world design principle of discrete, interchangeable parts.
For example, you could write a car class and put all properties and behaviors of the engine into it.

How to Design Reusable Code | 147

However, engines are separable components that are not tied to other aspects of the car. The engine
could be removed from one car and put into another car. A proper design would include an Engine
class that contains all engine-specific functionality. A car instance then just contains an instance
of Engine.

Divide Your Programs into Logical Subsystems

You should design your subsystems as discrete components that can be reused independently, that is,
strive for low coupling. For example, if you are designing a networked game, keep the networking
and graphical user interface aspects in separate subsystems. That way, you can reuse either com-
ponent without dragging in the other one. For example, you might want to write a non-networked
game, in which case you could reuse the graphical interface subsystem, but wouldn’t need the net-
working aspect. Similarly, you could design a peer-to-peer file-sharing program, in which case you
could reuse the networking subsystem but not the graphical user interface functionality.

Make sure to follow the principle of abstraction for each subsystem. Think of each subsystem as a
miniature library for which you must provide a coherent and easy-to-use interface. Even if you’re the
only programmer who ever uses these miniature libraries, you will benefit from well-designed inter-
faces and implementations that separate logically distinct functionality.

Use Class Hierarchies to Separate Logical Concepts

In addition to dividing your program into logical subsystems, you should avoid combining unrelated
concepts at the class level. For example, suppose you want to write a class for a self-driving car. You
decide to start with a basic class for a car and incorporate all the self-driving logic directly into it.
However, what if you just want a non-self-driving car in your program? In that
case, all the logic related to self-driving is useless, and might require your pro-
gram to link with libraries that it could otherwise avoid, such as vision libraries,
LIDAR libraries, and so on. A solution is to create a class hierarchy (introduced in
Chapter 5) in which a self-driving car is a derived class of a generic car. That way,

SelfDrivingCar

you can use the car base class in programs that do not need self-driving capabilities

without incurring the cost of such algorithms. Figure 6-1 shows this hierarchy. FIGURE 6-1

This strategy works well when there are two logical concepts, such as self-driving and cars. It
becomes more complicated when there are three or more concepts. For example, suppose you want
to provide both a truck and a car, each of which

could be self-driving or not. Logically, both the ><
truck and the car are a special case of a vehicle, ——
and so they should be derived classes of a vehicle
class. Similarly, self-driving classes could be
derived classes of non-self-driving classes. You
can’t provide these separations with a linear hier-
archy. One possibility is to make the self-driving [G | [Tk |
aspect a mixin class as shown in Figure 6-2. The ' I !

SelfDriveable mixin class provides all the neces- SelfDrivingCar SelfDrivingTruck
sary algorithms for implementing the self-driving

functionality. FIGURE 6-2

Vehicle

148

CHAPTER 6 DESIGNING FOR REUSE

This hierarchy requires you to write six different classes, but the clear separation of functionality is
worth the effort.

Similarly, you should avoid combining unrelated concepts, that is, strive for high cohesion, at any
level of your design, not only at the class level. For example, at the level of methods, a single method
should not perform logically unrelated things, mix mutation (set) and inspection (get), and so on.

Use Aggregation to Separate Logical Concepts

Aggregation, discussed in Chapter 5, models the has-a relationship: objects contain other objects
to perform some aspects of their functionality. You can use aggregation to separate unrelated or
related but separate functionality when inheritance is not appropriate.

For example, suppose you want to write a Family class to store the members of a family. Obviously,
a tree data structure would be ideal for storing this information. Instead of integrating the code for
the tree structure in your Family class, you should write a separate Tree class. Your Family class
can then contain and use a Tree instance. To use the object-oriented terminology, the Family has-a
Tree. With this technique, the tree data structure could be reused more easily in another program.

Eliminate User Interface Dependencies

If your library is a data manipulation library, you want to separate data manipulation from the user
interface. This means that for those kinds of libraries you should never assume in which type of
user interface the library will be used. As such, do not use cout, cerr, cin, stdout, stderr, or
stdin, because if the library is used in the context of a graphical user interface, these concepts may
make no sense. For example, a Windows GUI-based application usually will not have any form of
console I/0. If you think your library will only be used in GUI-based applications, you should still
never pop up any kind of message box or other kind of notification to the end user, because that is
the responsibility of the client code. It’s the client code that decides how messages are displayed for
the user. These kinds of dependencies not only result in poor reusability, but they also prevent client
code from properly responding to an error, for example, to handle it silently.

The Model-View-Controller (MVC) paradigm, introduced in Chapter 4, is a well-known design pat-
tern to separate storing data from visualizing that data. With this paradigm, the model can be in the
library, while the client code can provide the view and the controller.

Use Templates for Generic Data Structures and Algorithms

C++ has a concept called templates that allows you to create structures that are generic with respect
to a type or class. For example, you might have written code for an array of integers. If you subse-
quently would like an array of doubles, you need to rewrite and replicate all the code to work with
doubles. The notion of a template is that the type becomes a parameter to the specification, and you
can create a single body of code that can work on any type. Templates allow you to write both data
structures and algorithms that work on any types.

The simplest example of this is the std: : vector class, which is part of the C++ Standard Library.
To create a vector of integers, you write std: : vector<int>; to create a vector of doubles, you
write std: :vector<doubles. Template programming is, in general, extremely powerful but can be
very complex. Luckily, it is possible to create rather simple usages of templates that parameterize

How to Design Reusable Code | 149

according to a type. Chapters 12 and 22 explain the techniques to write your own templates, while
this section discusses some of their important design aspects.

Whenever possible, you should use a generic design for data structures and algorithms instead of
encoding specifics of a particular program. Don’t write a balanced binary tree structure that stores
only book objects. Make it generic, so that it can store objects of any type. That way, you could use
it in a bookstore, a music store, an operating system, or anywhere that you need a balanced binary
tree. This strategy underlies the Standard Library, which provides generic data structures and algo-
rithms that work on any types.

Why Templates Are Better Than Other Generic Programming Techniques

Templates are not the only mechanism for writing generic data structures. Another approach to
write generic structures in C and C++ is to store void* pointers instead of pointers of a specific
type. Clients can use this structure to store anything they want by casting it to a void*. However,
the main problem with this approach is that it is not type-safe: the containers are unable to check
or enforce the types of the stored elements. You can cast any type to a void* to store in the struc-
ture, and when you remove the pointers from the data structure, you must cast them back to what
you think they are. Because there are no checks involved, the results can be disastrous. Imagine a
scenario where one programmer stores pointers to int in a data structure by first casting them to
void*, but another programmer thinks they are pointers to Process objects. The second program-
mer will blithely cast the void* pointers to Process* pointers and try to use them as Process*
objects. Needless to say, the program will not work as expected.

Yet another approach is to write the data structure for a specific class. Through polymorphism, any
derived class of that class can be stored in the structure. Java takes this approach to an extreme:

it specifies that every class derives directly or indirectly from the object class. The containers in
earlier versions of Java store Objects, so they can store objects of any type. However, this approach
is also not type-safe. When you remove an object from the container, you must remember what it
really is and down-cast it to the appropriate type. Down casting means casting it to a more specific
class in a class hierarchy, that is, casting it downward in the hierarchy.

Templates, on the other hand, are type-safe when used correctly. Each instantiation of a template
stores only one type. Your program will not compile if you try to store different types in the same
template instantiation. Newer versions of Java do support the concept of generics that are type-safe
just like C++ templates.

Problems with Templates

Templates are not perfect. First of all, their syntax might be confusing, especially for someone who
has not used them before. Second, templates require homogeneous data structures, in which you
can store only objects of the same type in a single structure. That is, if you write a templatized bal-
anced binary tree, you can create one tree object to store Process objects and another tree object

to store ints. You can’t store both ints and Processes in the same tree. This restriction is a direct
result of the type-safe nature of templates. Starting with C++17, there is a standardized way around
this homogeneity restriction. You can write your data structure to store std: :variant or std: :any
objects. An std: :any object can store a value of any type, while an std: :variant object can store
a value of a selection of types. Both any and variant are discussed in detail in Chapter 20.

150

| CHAPTER 6 DESIGNING FOR REUSE

Templates versus Inheritance

Programmers sometimes find it tricky to decide whether to use templates or inheritance. Following
are some tips to help you make the decision.

Use templates when you want to provide identical functionality for different types. For example, if

you want to write a generic sorting algorithm that works on any type, use templates. If you want

to create a container that can store any type, use templates. The key concept is that the templatized
structure or algorithm treats all types the same. However, if required, templates can be specialized

for specific types to treat those types differently. Template specialization is discussed in Chapter 12.

When you want to provide different behaviors for related types, use inheritance. For example, use
inheritance if you want to provide two different, but similar, containers such as a queue and a prior-
ity queue.

Note that you can combine inheritance and templates. You could write a templatized class that
derives from a templatized base class. Chapter 12 covers the details of the template syntax.

Provide Appropriate Checks and Safeguards

There are two opposite styles for writing safe code. The optimal programming style is probably
using a healthy mix of both of them. The first is called design-by-contract, which means that the
documentation for a function or a class represents a contract with a detailed description of what
the responsibility of the client code is and what the responsibility of your function or class is. There
are three important aspects of design-by-contract: preconditions, postconditions, and invariants.
Preconditions list the conditions that client code must satisfy before calling a function or method.
Postconditions list the conditions that must be satisfied by the function or method when it has fin-
ished executing. Finally, invariants list the conditions that must be satisfied during the whole execu-
tion of the function or method.

Design-by-contract is often used in the Standard Library. For example, std: : vector defines a con-
tract for using the array notation to get a certain element from a vector. The contract states that no
bounds checking is performed, but that this is the responsibility of the client code. In other words, a
precondition for using array notation to get elements from a vector is that the given index is valid.
This is done to increase performance for client code that knows their indices are within bounds.
vector also defines an at () method to get a specific element that does perform bounds checking.
So, client code can choose whether it uses the array notation without bounds checking, or the at ()
method with bounds checking.

The second style is that you design your functions and classes to be as safe as possible. The most
important aspect of this guideline is to perform error checking in your code. For example, if your
random number generator requires a seed to be in a specific range, don’t just trust the user to pass a
valid seed. Check the value that is passed in, and reject the call if it is invalid. The at () method of
vector as discussed in the previous paragraph is another example of a method that is designed with
safety in mind. If the user provides an invalid index, the method throws an exception.

As an analogy, consider an accountant who prepares income tax returns. When you hire an accoun-
tant, you provide them with all your financial information for the year. The accountant uses this
information to fill out forms from the IRS. However, the accountant does not blindly fill out your

How to Design Reusable Code | 151

information on the form, but instead makes sure the information makes sense. For example, if you
own a house, but forget to specify the property tax you paid, the accountant will remind you to sup-
ply that information. Similarly, if you say that you paid $12,000 in mortgage interest, but made only
$15,000 gross income, the accountant might gently ask you if you provided the correct numbers (or
at least recommend more affordable housing).

You can think of the accountant as a “program” where the input is your financial information and
the output is an income tax return. However, the value added by an accountant is not just that they
fill out the forms. You also choose to employ an accountant because of the checks and safeguards
that they provide. Similarly in programming, you could provide as many checks and safeguards as
possible in your implementations.

There are several techniques and language features that help you to write safe code and to incor-
porate checks and safeguards in your programs. To report errors to client code, you can return an
error code or a distinct value like false or nullptr. Alternatively, you can throw an exception to
notify the client code of any errors. Chapter 14 covers exceptions in detail. To write safe code that
works with dynamically allocated resources such as memory, use smart pointers. Conceptually, a
smart pointer is a pointer to some resource that automatically frees the resource when it goes out of
scope. Smart pointers are introduced in Chapter 1.

Design for Extensibility

You should strive to design your classes in such a way that they can be extended by deriving
another class from them, but they should be closed for modification, that is, the behavior should
be extendable without you having to modify its implementation. This is called the Open/Closed
Principle (OCP).

As an example, suppose you start implementing a drawing application. The first version should only
support squares. Your design contains two classes: Square and Renderer. The former contains

the definition of a square, such as the length of its sides. The latter is responsible for drawing the
squares. You come up with something as follows:

class Square

{
}i

class Renderer

{
public:
void render (const vector<Square>& squares) ;

}i

void Renderer::render (const vector<Squares>& squares)

{

for (auto& square : squares)

{
}

152

| CHAPTER 6 DESIGNING FOR REUSE

Next, you add support for circles, so you create a Circle class:

class Circle

{
}i

To be able to render circles, you have to modify the render () method of the Renderer class. You
decide to change it as follows:

void Renderer::render (const vector<Square>& squares,
const vector<Circle>& circles)

for (auto& square : squares)

for (auto& circle : circles)

While doing this, you feel there is something wrong, and you are correct! In order to extend the
functionality to add support for circles, you have to modify the current implementation of the
render () method, so it’s not closed for modifications.

Your design in this case should use inheritance. This example jumps ahead a bit on the syntax for
inheritance. Chapter 10 discusses inheritance; however, the syntactical details are not important to
understand this example. For now, you only need to know that the following syntax specifies that
Square derives from the Shape class:

class Square : public Shape {};

Here is a design using inheritance:

class Shape

{
public:
virtual void render() = 0;

}i

class Square : public Shape

{

public:
virtual void render () override { }

}i

class Circle : public Shape

{
public:
virtual void render() override { }

How to Design Reusable Code | 153

class Renderer

{

public:
void render (const vector<shared ptr<Shape>>& objects);

}i

void Renderer::render (const vector<shared ptr<Shape>>& objects)

{

for (auto& object : objects)

{
}

object->render() ;
}

With this design, if you want to add support for a new type of shape, you just need to write a new
class that derives from Shape and that implements the render () method. You don’t need to modify
anything in the Renderer class. So, this design can be extended without having to modify the exist-
ing code, that is, it’s open for extension, and closed for modification.

Design Usable Interfaces

In addition to abstracting and structuring your code appropriately, designing for reuse requires you
to focus on the interface with which programmers interact. Even if you have the most beautiful and
most efficient implementation, your library will not be any good if it has a wretched interface.

Note that every component in your program should have good interfaces, even if you don’t intend
them to be used in multiple programs. First of all, you never know when something will be reused.
Second, a good interface is important even for the first use, especially if you are programming in a
group and other programmers must use the code you design and write.

The main purpose of interfaces is to make the code easy to use, but some interface techniques can
help you follow the principle of generality as well.

Design Interfaces That Are Easy to Use

Your interfaces should be easy to use. That doesn’t mean that they must be trivial, but they should
be as simple and intuitive as the functionality allows. You shouldn’t require consumers of your
library to wade through pages of source code in order to use a simple data structure, or to go
through contortions in their code to obtain the functionality they need. This section provides four
specific strategies for designing interfaces that are easy to use.

Follow Familiar Ways of Doing Things

The best strategy for developing easy-to-use interfaces is to follow standard and familiar ways of
doing things. When people encounter an interface similar to something they have used in the past,
they will understand it better, adopt it more readily, and be less likely to use it improperly.

For example, suppose that you are designing the steering mechanism of a car. There are a number
of possibilities: a joystick, two buttons for moving left or right, a sliding horizontal lever, or a good
old steering wheel. Which interface do you think would be easiest to use? Which interface do you
think would sell the most cars? Consumers are familiar with steering wheels, so the answer to both

154 | CHAPTER 6 DESIGNING FOR REUSE

questions is, of course, the steering wheel. Even if you developed another mechanism that provided
superior performance and safety, you would have a tough time selling your product, let alone teach-
ing people how to use it. When you have a choice between following standard interface models and
branching out in a new direction, it’s usually better to stick to the interface to which people are
accustomed.

Innovation is important, of course, but you should focus on innovation in the underlying implemen-
tation, not in the interface. For example, consumers are excited about the innovative fully electric
engine in some car models. These cars are selling well in part because the interface to use them is
identical to cars with standard gasoline engines.

Applied to C++, this strategy implies that you should develop interfaces that follow standards to
which C++ programmers are accustomed. For example, C++ programmers expect the constructor
and destructor of a class to initialize and clean up an object, respectively. When you design your
classes, you should follow this standard. If you require programmers to call initialize () and
cleanup () methods for initialization and cleanup instead of placing that functionality in the con-
structor and destructor, you will confuse everyone who tries to use your class. Because your class
behaves differently from other C++ classes, programmers will take longer to learn how to use it and
will be more likely to use it incorrectly by forgetting to call initialize () or cleanup().

NOTE Always think about your interfaces from the perspective of someone
using them. Do they make sense? Are they what you would expect?

C++ provides a language feature called operator overloading that can help you develop easy-to-use
interfaces for your objects. Operator overloading allows you to write classes such that the standard
operators work on them just as they work on built-in types like int and double. For example, you
can write a Fraction class that allows you to add, subtract, and stream fractions like this:

Fraction £f1(3,4);

Fraction £2(1,2);

Fraction sum = f1 + £f2;

Fraction diff = f1 - £2;

cout << f1l << " " << f2 << endl;

Contrast that with the same behavior using method calls:

Fraction f1(3,4);

Fraction f2(1,2);

Fraction sum = fl.add(f2);
Fraction diff = fl.subtract(f2);
f1.print (cout) ;

cout << " ";

f2.print (cout) ;

cout << endl;

As you can see, operator overloading allows you to provide an easier-to-use interface for your
classes. However, be careful not to abuse operator overloading. It’s possible to overload the

+ operator so that it implements subtraction and the - operator so that it implements multiplication.
Those implementations would be counterintuitive. This does not mean that each operator should

How to Design Reusable Code | 155

always implement exactly the same behavior. For example, the string class implements the + opera-
tor to concatenate strings, which is an intuitive interface for string concatenation. See Chapters 9
and 15 for details on operator overloading.

Don’t Omit Required Functionality

This strategy is twofold. First, include interfaces for all behaviors that clients could need. That
might sound obvious at first. Returning to the car analogy, you would never build a car without a
speedometer for the driver to view their speed! Similarly, you would never design a Fraction class
without a mechanism for client code to access the nominator and denominator values.

However, other possible behaviors might be more obscure. This strategy requires you to anticipate
all the uses to which clients might put your code. If you are thinking about the interface in one par-
ticular way, you might miss functionality that could be needed when clients use it differently. For
example, suppose that you want to design a game board class. You might consider only the typical
games, such as chess and checkers, and decide to support a maximum of one game piece per spot on
the board. However, what if you later decide to write a backgammon game, which allows multiple
pieces in one spot on the board? By precluding that possibility, you have ruled out the use of your
game board as a backgammon board.

Obviously, anticipating every possible use for your library is difficult, if not impossible. Don’t feel
compelled to agonize over potential future uses in order to design the perfect interface. Just give it
some thought and do the best you can.

The second part of this strategy is to include as much functionality in the implementation as pos-
sible. Don’t require client code to specify information that you already know in the implementation,
or could know if you designed it differently. For example, if your library requires a temporary file,
don’t make the clients of your library specify that path. They don’t care what file you use; find some
other way to determine an appropriate temporary file path.

Furthermore, don’t require library users to perform unnecessary work to amalgamate results. If
your random number library uses a random number algorithm that calculates the low-order and
high-order bits of a random number separately, combine the numbers before giving them to the user.

Present Uncluttered Interfaces

In order to avoid omitting functionality in their interfaces, some programmers go to the opposite
extreme: they include every possible piece of functionality imaginable. Programmers who use the
interfaces are never left without the means to accomplish a task. Unfortunately, the interface might
be so cluttered that they never figure out how to do it!

Don’t provide unnecessary functionality in your interfaces; keep them clean and simple. It might
appear at first that this guideline directly contradicts the previous strategy of not omitting necessary
functionality. Although one strategy to avoid omitting functionality would be to include every imag-
inable interface, that is not a sound strategy. You should include necessary functionality and omit
useless or counterproductive interfaces.

Consider cars again. You drive a car by interacting with only a few components: the steering wheel,
the brake and accelerator pedals, the gearshift, the mirrors, the speedometer, and a few other dials
on your dashboard. Now, imagine a car dashboard that looked like an airplane cockpit, with hun-
dreds of dials, levers, monitors, and buttons. It would be unusable! Driving a car is so much easier

156

| CHAPTER 6 DESIGNING FOR REUSE

than flying an airplane that the interface can be much simpler: You don’t need to view your altitude,
communicate with control towers, or control the myriad components in an airplane such as the
wings, engines, and landing gear.

Additionally, from the library development perspective, smaller libraries are easier to maintain. If
you try to make everyone happy, then you have more room to make mistakes, and if your imple-
mentation is complicated enough so that everything is intertwined, even one mistake can render the
library useless.

Unfortunately, the idea of designing uncluttered interfaces looks good on paper, but is remarkably
hard to put into practice. The rule is ultimately subjective: you decide what’s necessary and what’s
not. Of course, your clients will be sure to tell you when you get it wrong!

Provide Documentation and Comments

Regardless of how easy you make your interfaces to use, you should supply documentation for their
use. You can’t expect programmers to use your library properly unless you tell them how to do it.
Think of your library or code as a product for other programmers to consume. Your product should
have documentation explaining its proper use.

There are two ways to provide documentation for your interfaces: comments in the interfaces them-
selves and external documentation. You should strive to provide both. Most public APIs provide
only external documentation: comments are a scarce commodity in many of the standard Unix and
Windows header files. In Unix, the documentation usually comes in the form of online manuals
called man pages. In Windows, the documentation usually accompanies the integrated development
environment.

Despite the fact that most APIs and libraries omit comments in the interfaces themselves, I actu-
ally consider this form of documentation the most important. You should never give out a “naked”
header file that contains only code. Even if your comments repeat exactly what’s in the external
documentation, it is less intimidating to look at a header file with friendly comments than one with
only code. Even the best programmers still like to see written language every so often!

Some programmers use tools to create documentation automatically from comments. Chapter 3 dis-
cusses this technique in more detail.

Whether you provide comments, external documentation, or both, the documentation should
describe the behavior of the library, not the implementation. The behavior includes the inputs,
outputs, error conditions and handling, intended uses, and performance guarantees. For example,
documentation describing a call to generate a single random number should specify that it takes no
parameters, returns an integer in a previously specified range, and should list all the exceptions that
might be thrown when something goes wrong. This documentation should not explain the details

of the linear congruence algorithm for actually generating the number. Providing too much imple-
mentation detail in interface comments is probably the single most common mistake in interface
development. Many developers have seen perfectly good separations of interface and implementation
ruined by comments in the interface that are more appropriate for library maintainers than clients.

Of course, you should also document your internal implementation; just don’t make it publicly
available as part of your interface. Chapter 3 provides details on the appropriate use of comments in
your code.

How to Design Reusable Code | 157

Design General-Purpose Interfaces

The interfaces should be general purpose enough that they can be adapted to a variety of tasks. If
you encode specifics of one application in a supposedly general interface, it will be unusable for any
other purpose. Here are some guidelines to keep in mind.

Provide Multiple Ways to Perform the Same Functionality

In order to satisfy all your “customers,” it is sometimes helpful to provide multiple ways to perform
the same functionality. Use this technique judiciously, however, because over-application can easily
lead to cluttered interfaces.

Consider cars again. Most new cars these days provide remote keyless entry systems, with which
you can unlock your car by pressing a button on a key fob. However, these cars always provide a
standard key that you can use to physically unlock the car, for example, when the battery in the key
fob is drained. Although these two methods are redundant, most customers appreciate having both
options.

Sometimes there are similar situations in program interface design. For example, std: :vector
provides two methods to get access to a single element at a specific index. You can use either the

at () method, which performs bounds checking, or operator[], which does not. If you know your
indices are valid, you can use operator[] and forgo the overhead that at () incurs due to bounds
checking.

Note that this strategy should be considered an exception to the “uncluttered” rule in interface
design. There are a few situations where the exception is appropriate, but you should most often fol-
low the “uncluttered” rule.

Provide Customizability

In order to increase the flexibility of your interfaces, provide customizability. Customizability can be
as simple as allowing a client to turn error logging on or off. The basic premise of customizability is

that it allows you to provide the same basic functionality to every client, but gives clients the ability

to tweak it slightly.

You can allow greater customizability through function pointers and template parameters. For
example, you could allow clients to set their own error-handling routines.

The Standard Library takes this customizability strategy to the extreme and actually allows clients
to specify their own memory allocators for containers. If you want to use this feature, you must
write a memory allocator object that follows the Standard Library guidelines and adheres to the
required interfaces. Each container in the Standard Library takes an allocator as one of its template
parameters. Chapter 21 provides more details.

Reconciling Generality and Ease of Use

The two goals of ease of use and generality sometimes appear to conflict. Often, introducing gener-
ality increases the complexity of the interfaces. For example, suppose that you need a graph struc-
ture in a map program to store cities. In the interest of generality, you might use templates to write a
generic map structure for any type, not just cities. That way, if you need to write a network simula-
tor in your next program, you can employ the same graph structure to store routers in the network.

158 | CHAPTER 6 DESIGNING FOR REUSE

Unfortunately, by using templates, you make the interface a little clumsier and harder to use, espe-
cially if the potential client is not familiar with templates.

However, generality and ease of use are not mutually exclusive. Although in some cases increased
generality may decrease ease of use, it is possible to design interfaces that are both general purpose
and straightforward to use. Here are two guidelines you can follow.

Supply Multiple Interfaces

In order to reduce complexity in your interfaces while still providing enough functionality, you can
provide multiple separate interfaces. This is called the Interface Segregation Principle (ISP). For
example, you could write a generic networking library with two separate facets: one presents the
networking interfaces useful for games, and the other presents the networking interfaces useful for
the HyperText Transport Protocol (HTTP) for web browsing.

Make Common Functionality Easy to Use

When you provide a general-purpose interface, some functionality will be used more often than
other functionality. You should make the commonly used functionality easy to use, while still pro-
viding the option for the more advanced functionality. Returning to the map program, you might
want to provide an option for clients of the map to specify names of cities in different languages.
English is so predominant that you could make that the default but provide an extra option to
change languages. That way, most clients will not need to worry about setting the language, but
those who want to will be able to do so.

The SOLID Principles

The basic principles of object-oriented design are often abbreviated with the easy-to-remember acro-
nym: SOLID. The following table summarizes the five SOLID principles. Most of the principles are
discussed earlier in this chapter, if not, a reference is given to the chapter where they are discussed.

S Single Responsibility Principle (SRP)
A single component should have a single, well-defined responsibility and should not combine
unrelated functionality.

(o] Open/Closed Principle (OCP)

A class should be open to extension (by deriving from it), but closed for modification.

L Liskov Substitution Principle (LSP)

You should be able to replace an instance of an object with an instance of a subtype of
that object. Chapter 5 explains this principle in the section “The Fine Line between Has-A
and Is-A" with an example to decide whether the relationship between Hashtable and
MultiHash is a has-a or an is-a relationship.

Summary | 159

| Interface Segregation Principle (ISP)

Keep interfaces clean and simple. It is better to have many smaller, well-defined single-
responsibility interfaces than to have broad, general-purpose interfaces.

D Dependency Inversion Principle (DIP)

Use interfaces to invert dependency relationships. Chapter 4 briefly mentions an example of
an ErrorLogger service. You should define an ErrorLogger interface, and use dependency
injection to inject this interface into each component that wants to use the ErrorLogger
service. Dependency injection is one way to support the dependency inversion principle.

SUMMARY

By reading this chapter, you learned why you should design reusable code and how you should do it.
You read about the philosophy of reuse, summarized as “write once, use often,” and learned that reusable
code should be both general purpose and easy to use. You also discovered that designing reusable code
requires you to use abstraction, to structure your code appropriately, and to design good interfaces.

This chapter presented specific tips for structuring your code: to avoid combining unrelated or
logically separate concepts, to use templates for generic data structures and algorithms, to provide
appropriate checks and safeguards, and to design for extensibility.

This chapter also presented six strategies for designing interfaces: to follow familiar ways of doing
things, to not omit required functionality, to present uncluttered interfaces, to provide documenta-
tion and comments, to provide multiple ways to perform the same functionality, and to provide cus-
tomizability. It concluded with two tips for reconciling the often-conflicting demands of generality
and ease of use: to supply multiple interfaces and to make common functionality easy to use.

The chapter concluded with SOLID, an easy-to-remember acronym that describes the most impor-
tant design principles discussed in this and other chapters.

This is the last chapter of the second part of the book, which focuses on discussing design themes on
a higher level. The next part delves into the implementation phase of the software engineering pro-
cess, with details of C++ coding.

PART lII
C++ Coding the Professional Way

» CHAPTER 7: Memory Management

» CHAPTER 8: Gaining Proficiency with Classes and Objects
» CHAPTER 9: Mastering Classes and Objects

» CHAPTER 10: Discovering Inheritance Techniques

» CHAPTER 11: C++ Quirks, Oddities, and Incidentals

» CHAPTER 12: Writing Generic Code with Templates

» CHAPTER 13: Demystifying C++ /O

» CHAPTER 14: Handling Errors

» CHAPTER 15: Overloading C++ Operators

» CHAPTER 16: Overview of the C++ Standard Library

» CHAPTER 17: Understanding Containers and lterators

» CHAPTER 18: Mastering Standard Library Algorithms

» CHAPTER 19: String Localization and Regular Expressions

» CHAPTER 20: Additional Library Utilities

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

Memory Management

WHAT'S IN THIS CHAPTER?

Different ways to use and manage memory
The often-perplexing relationship between arrays and pointers
A low-level look at working with memory

Smart pointers and how to use them

Y Y Y Y Y

Solutions to a few memory-related problems

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www . wrox . com/go/proc++4e on the Download
Code tab.

In many ways, programming in C++ is like driving without a road. Sure, you can go anywhere
you want, but there are no lines or traffic lights to keep you from injuring yourself. C++, like
the C language, has a hands-off approach toward its programmers. The language assumes
that you know what you’re doing. It allows you to do things that are likely to cause problems
because C++ is incredibly flexible and sacrifices safety in favor of performance.

Memory allocation and management is a particularly error-prone area of C++ programming.
To write high-quality C++ programs, professional C++ programmers need to understand
how memory works behind the scenes. This first chapter of Part III explores the ins and outs
of memory management. You will learn about the pitfalls of dynamic memory and some tech-
niques for avoiding and eliminating them.

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

164 | CHAPTER7 MEMORY MANAGEMENT

This chapter discusses low-level memory handling because professional C++ programmers will
encounter such code. However, in modern C++ you should avoid low-level memory operations as
much as possible. For example, instead of dynamically allocated C-style arrays, you should use
Standard Library containers, such as vector, which handle all memory management automatically
for you. Instead of raw pointers, you should use smart pointers, such as unique_ptr and shared
ptr, which automatically free the underlying resource, such as memory, when it’s not needed any-
more. Basically, you should try to avoid having calls to memory allocation routines such as new/
new([] and delete/delete] in your code. Of course, it might not always be possible, and in exist-
ing code it will most likely not be the case, so as a professional C++ programmer, you will still need
to know how memory works behind the scenes.

WARNING In modern C++ you should avoid low-level memory operations as
much as possible in favor of modern constructs such as containers and smart
pointers!

WORKING WITH DYNAMIC MEMORY

Memory is a low-level component of the computer that sometimes unfortunately rears its head even
in a high-level programming language like C++. Many programmers understand only enough about
dynamic memory to get by. They shy away from data structures that use dynamic memory, or get
their programs to work by trial and error. A solid understanding of how dynamic memory really
works in C++ is essential to becoming a professional C++ programmer.

How to Picture Memory

Understanding dynamic memory is much easier if you have a mental model for what objects look
like in memory. In this book, a unit of memory is shown as a box with a label next to it. The label
indicates a variable name that corresponds to the memory. The data inside the box displays the
current value of the memory.

For example, Figure 7-1 shows the state of memory .
after the following line is executed. The line should

be in a function, so that i is a local variable:

i is a so-called automatic variable allocated on the FIGURE 7-1
stack. It is automatically deallocated when the pro-

gram flow leaves the scope in which the variable is
declared.

Working with Dynamic Memory | 165

When you use the new keyword, memory is allocated on the heap. The following code creates a
variable ptr on the stack initialized with nullptr, and then allocates memory on the heap to which
ptr points:

int* ptr = nullptr;
ptr = new int;

This can also be written as a one-liner:

int* ptr = new int;

Figure 7-2 shows the state of memory after this
. . , : Stack Heap
code is executed. Notice that the variable ptr is

still on the stack even though it points to memory

on the heap. A pointer is just a variable and can . I: EI o
live on either the stack or the heap, although this pEr i pEr
fact is easy to forget. Dynamic memory, however, FIGURE 7-2

is always allocated on the heap.

WARNING As a rule of thumb, every time you declare a pointer variable, you
should immediately initialize it with either a proper pointer or nullptr. Don’t
leave it uninitialized!

The next example shows that pointers can exist both on the stack and on the heap:

int** handle = nullptr;
handle = new int*;
*handle = new int;

The preceding code first declares a pointer to a pointer to an integer as the variable handle. It then
dynamically allocates enough memory to hold a pointer to an integer, storing the pointer to that
new memory in handle. Next, that memory (*handle) is assigned a pointer to another section of
dynamic memory that is big enough to hold the integer. Figure 7-3 shows the two levels of pointers
with one pointer residing on the stack (handle) and the other residing on the heap (*handle).

handle > *handle
I: L

T

)

Q
o

i

&
<

**handle

B

FIGURE 7-3

166

| CHAPTER7 MEMORY MANAGEMENT

Allocation and Deallocation

To create space for a variable, you use the new keyword. To release that space for use by other parts
of the program, you use the delete keyword. Of course, it wouldn’t be C++ if simple concepts such
as new and delete didn’t have several variations and intricacies.

Using new and delete

When you want to allocate a block of memory, you call new with the type of variable for which you
need space. new returns a pointer to that memory, although it is up to you to store that pointer in a
variable. If you ignore the return value of new, or if the pointer variable goes out of scope, the mem-
ory becomes orphaned because you no longer have a way to access it. This is also called a memory

leak.

For example, the following code orphans enough memory to hold an int. Figure 7-4 shows the state
of memory after the code is executed. When there are blocks of data on the heap with no access,
direct or indirect, from the stack, the memory is orphaned or leaked.

void leaky ()

{

new int;
cout << "I just leaked an int!" << endl;

}

[leaked integer]

FIGURE 7-4

Until they find a way to make computers with an infinite supply of fast memory, you will need to
tell the compiler when the memory associated with an object can be released and reused for another
purpose. To free memory on the heap, you use the delete keyword with a pointer to the memory,
as shown here:

int* ptr = new int;

delete ptr;

ptr = nullptr;

WARNING As a rule of thumb, every line of code that allocates memory with
new, and that uses a raw pointer instead of storing the pointer in a smart pointer,
should correspond to another line of code that releases the same memory with
delete.

Working with Dynamic Memory | 167

NOTE [¢ is recommended to set a pointer back to nullptr after having freed its
memory. That way, you do not accidentally use a pointer to memory that has
already been deallocated.

What about My Good Friend malloc?

If you are a C programmer, you may be wondering what is wrong with the malloc () function. In C,
malloc () is used to allocate a given number of bytes of memory. For the most part, using malloc ()
is simple and straightforward. The malloc () function still exists in C++, but you should avoid it.
The main advantage of new over malloc () is that new doesn’t just allocate memory, it constructs
objects!

For example, consider the following two lines of code, which use a hypothetical class called Foo:

Foo* myFoo = (Foo*)malloc (sizeof (Foo)) ;
Foo* myOtherFoo = new Foo() ;

After executing these lines, both myFoo and myotherFoo will point to areas of memory on the heap
that are big enough for a Foo object. Data members and methods of Foo can be accessed using both
pointers. The difference is that the Foo object pointed to by myFoo isn’t a proper object because it
was never constructed. The malloc () function only sets aside a piece of memory of a certain size. It
doesn’t know about or care about objects. In contrast, the call to new allocates the appropriate size
of memory and also calls an appropriate constructor to construct the object.

A similar difference exists between the free () function and the delete operator. With free (),
the object’s destructor is not called. With delete, the destructor is called and the object is properly
cleaned up.

WARNING You should never use malloc () and free () in C++. Use only new
and delete.

When Memory Allocation Fails

Many, if not most, programmers write code with the assumption that new will always be success-
ful. The rationale is that if new fails, it means that memory is very low and life is very, very bad. It
is often an unfathomable state to be in because it’s unclear what your program could possibly do in
this situation.

By default, your program will terminate if new fails. In many programs, this behavior is acceptable.
The program exits when new fails because new throws an exception if there is not enough memory
available for the request. Chapter 14 explains possible approaches to recover gracefully from an out-
of-memory situation.

168

CHAPTER7 MEMORY MANAGEMENT

There is also an alternative version of new, which will not throw an exception. Instead, it will return
nullptr, similar to the behavior of malloc () in C. The syntax for using this version is as follows:

int* ptr = new(nothrow) int;

Of course, you still have the same problem as the version that throws an exception—what do you

do when the result is nul1ptr? The compiler doesn’t require you to check the result, so the nothrow
version of new is more likely to lead to other bugs than the version that throws an exception. For this
reason, it’s suggested that you use the standard version of new. If out-of-memory recovery is impor-
tant to your program, the techniques covered in Chapter 14 give you all the tools you need.

Arrays

Arrays package multiple variables of the same type into a single variable with indices. Working with
arrays quickly becomes natural to a novice programmer because it is easy to think about values in
numbered slots. The in-memory representation of an array is not far off from this mental model.

Arrays of Basic Types

When your program allocates memory for an array, it is allocating contiguous pieces of memory,
where each piece is large enough to hold a single element of the array. For example, a local array of
five ints can be declared on the stack as follows:

int myArray[5];

Figure 7-5 shows the state of memory after the array is created. When creating arrays on the stack,
the size must be a constant value known at compile time.

NOTE Some compilers allow variable-sized arrays on the stack. This is not a
standard feature of C++, so I recommend cautiously backing away when you
see it.

myArray [0]

myArray [1]

myArray [2]

myArray [3]

myArray [4]

FIGURE 7-5

Working with Dynamic Memory | 169

Declaring arrays on the heap is no different, except that you use a pointer to refer to the location of
the array. The following code allocates memory for an array of five ints and stores a pointer to the
memory in a variable called myArrayptr:

int* myArrayPtr = new int[5];

myArrayPtr > myArrayPtr [0]

myArrayPtr[1]

myArrayPtr [2]

myArrayPtr [3]

myArrayPtr [4]

FIGURE 7-6

As Figure 7-6 illustrates, the heap-based array is similar to the stack-based array, but in a different
location. The myArrayPtr variable points to the Oth element of the array.

Each call to new[] should be paired with a call to delete[] to clean up the memory. For example,

delete [] myArrayPtr;
myArrayPtr = nullptr;

The advantage of putting an array on the heap is that you can define its size at run time. For exam-
ple, the following code snippet receives a desired number of documents from a hypothetical func-
tion named askUserForNumberOfDocuments () and uses that result to create an array of Document
objects.

Document* createDocArray ()

{

size t numDocs = askUserForNumberOfDocuments () ;
Document* docArray = new Document [numDocs] ;
return docArray;

}

Remember that each call to new[] should be paired with a call to delete[], so in this example, it’s
important that the caller of createbocArray () uses deletel] to clean up the returned memory.
Another problem is that C-style arrays don’t know their size; thus callers of createDocArray ()
have no idea how many elements there are in the returned array!

In the preceding function, docArray is a dynamically allocated array. Do not get this confused with
a dynamic array. The array itself is not dynamic because its size does not change once it is allocated.
Dynamic memory lets you specify the size of an allocated block at run time, but it does not auto-
matically adjust its size to accommodate the data.

170

| CHAPTER7 MEMORY MANAGEMENT

NOTE There are data structures, such as Standard Library containers, that do
dynamically adjust their size and that do know their actual size. You should use
these containers instead of C-style arrays because they are much safer to use.

There is a function in C++ called realloc (), which is a holdover from the C language. Do not use
it! In C, realloc () is used to effectively change the size of an array by allocating a new block of
memory of the new size, copying all of the old data to the new location, and deleting the original
block. This approach is extremely dangerous in C++ because user-defined objects will not respond
well to bitwise copying.

WARNING Do not use realloc () in C++! It is not your friend.

Arrays of Objects

Arrays of objects are no different than arrays of simple types. When you use new [N] to allocate
an array of N objects, enough space is allocated for N contiguous blocks where each block is large
enough for a single object. Using new [], the zero-argument (= default) constructor for each of the
objects is automatically called. In this way, allocating an array of objects using new[] returns a
pointer to an array of fully formed and initialized objects.

For example, consider the following class:

class Simple

{
public:
Simple() { cout << "Simple constructor called!" << endl; }
~Simple() { cout << "Simple destructor called!" << endl; }

}i
If you allocate an array of four Simple objects, the Simple constructor is called four times.
Simple* mySimpleArray = new Simple [4];

The memory diagram for this array is shown in Figure 7-7. As you can see, it is no different than an
array of basic types.

mySimpleArray

v

mySimpleArray [0]

mySimpleArray [1]

mySimpleArray [2]

mySimpleArray [3]

FIGURE 7-7

Working with Dynamic Memory | 171

Deleting Arrays

As mentioned earlier, when you allocate memory with the array version of new (new[]), you must
release it with the array version of delete (delete[1). This version automatically destructs the
objects in the array in addition to releasing the memory associated with them.

Simple* mySimpleArray = new Simple[4];

delete [] mySimpleArray;
mySimpleArray = nullptr;

If you do not use the array version of delete, your program may behave in odd ways. With some
compilers, only the destructor for the first element of the array will be called because the compiler
only knows that you are deleting a pointer to an object, and all the other elements of the array will
become orphaned objects. With other compilers, memory corruption may occur because new and
new[] can use completely different memory allocation schemes.

WARNING Always use delete on anything allocated with new, and always use
delete[] on anything allocated with new!].

Of course, the destructors are only called if the elements of the array are objects. If you have an
array of pointers, you still need to delete each object pointed to individually just as you allocated
each object individually, as shown in the following code:

const size_t size = 4;
Simple** mySimplePtrArray = new Simple* [size];

for (size t i = 0; i < size; i++) { mySimplePtrArrayl[i]l = new Simple(); }

for (size t i = 0; i < size; i++) { delete mySimplePtrArray[i]; }

delete [] mySimplePtrArray;
mySimplePtrArray = nullptr;

WARNING [n modern C++ you should avoid using raw C-style pointers.
Instead of storing plain-old dumb pointers in C-style arrays, you should store
smart pointers in modern Standard Library containers. Such smart pointers are
discussed later in this chapter, and will automatically deallocate the memory
associated with them at the right time.

172

| CHAPTER7 MEMORY MANAGEMENT

Multi-dimensional Arrays

Multi-dimensional arrays extend the notion of indexed values to multiple indices. For example, a
Tic-Tac-Toe game might use a two-dimensional array to represent a three-by-three grid. The follow-
ing example shows such an array declared on the stack, zero-initialized, and accessed with some test
code:

char board[3][3] = {};
board[0] [0] = 'X';
board[2] [1] = 'O';

You may be wondering whether the first subscript in a two-dimensional array is the x-coordinate or
the y-coordinate. The truth is that it doesn’t really matter, as long as you are consistent. A four-by-
seven grid could be declared as char board[4] [7] or char board[7] [4]. For most applications, it
is easiest to think of the first subscript as the x-axis and the second as the y-axis.

Multi-dimensional Stack Arrays

In memory, a stack-based two-dimensional array looks like Figure 7-8. Because memory doesn’t
have two axes (addresses are merely sequential), the computer represents a two-dimensional array
just like a one-dimensional array. The difference is in the size of the array and the method used to
access it.

board [0] [0]

board[0] [1] board[0]
board [0] [2]

board[1] [0]

board[1] [1] board[1]
board[1] [2]

board[2] [0]

board[2] [1] board[2]
board[2] [2]

FIGURE 7-8

The size of a multi-dimensional array is all of its dimensions multiplied together, then multiplied
by the size of a single element in the array. In Figure 7-8, the three-by-three boardis 3 x3x1=9
bytes, assuming that a character is 1 byte. For a four-by-seven board of characters, the array would
be 4 x 7 x 1 = 28 bytes.

Working with Dynamic Memory | 173

To access a value in a multi-dimensional array, the computer treats each subscript as if it were
accessing another subarray within the multi-dimensional array. For example, in the three-by-three
grid, the expression board [0] actually refers to the subarray highlighted in Figure 7-9. When you
add a second subscript, such as board [0] [2], the computer is able to access the correct element by
looking up the second subscript within the subarray, as shown in Figure 7-10.

board [0] [0] board[0] [0]
board[0] [1] board[0] board[0] [1] board[0]
board[0] [2] board[0] [2]
board[1] [0] board[1] [0]
board[1] [1] board[1] board[1] [1] board[1]
board[1] [2] board[1] [2]
board([2] [0] board[2] [0]
board([2] [1] board[2] board[2] [1] board[2]
board[2] [2] board[2] [2]
FIGURE 7-9 FIGURE 7-10

These techniques are extended to N-dimensional arrays, though dimensions higher than three tend
to be difficult to conceptualize and are rarely used.

Multi-dimensional Heap Arrays

If you need to determine the dimensions of a multi-dimensional array at run time, you can use a
heap-based array. Just as a single-dimensional dynamically allocated array is accessed through a
pointer, a multi-dimensional dynamically allocated array is also accessed through a pointer. The
only difference is that in a two-dimensional array, you need to start with a pointer-to-a-pointer; and
in an N-dimensional array, you need N levels of pointers. At first, it might seem as if the correct way
to declare and allocate a dynamically allocated multi-dimensional array is as follows:

char** board = new char[i] [j];

This code doesn’t compile because heap-based arrays don’t work like stack-based arrays. Their
memory layout isn’t contiguous, so allocating enough memory for a stack-based multi-dimensional
array is incorrect. Instead, you can start by allocating a single contiguous array for the first sub-
script dimension of a heap-based array. Each element of that array is actually a pointer to another
array that stores the elements for the second subscript dimension. This layout for a two-by-two
dynamically allocated board is shown in Figure 7-11.

174 | CHAPTER7 MEMORY MANAGEMENT

v
board — board[0]

board[1]
board[0] [0]
board[0] [1]

¢ board[1] [0]

board[1] [1]

FIGURE 7-11

Unfortunately, the compiler doesn’t allocate memory for the subarrays on your behalf. You can
allocate the first-dimension array just like a single-dimensional heap-based array, but the individual
subarrays must be explicitly allocated. The following function properly allocates memory for a
two-dimensional array:

char** allocateCharacterBoard(size t xDimension, size t yDimension)

{

char** myArray = new char* [xDimension] ;
for (size t i = 0; i < xDimension; i++) {
myArray[i] = new char[yDimension] ;

return myArray;

}

Similarly, when you want to release the memory associated with a multi-dimensional heap-based
array, the array delete[] syntax will not clean up the subarrays on your behalf. Your code to
release an array should mirror the code to allocate it, as in the following function:

void releaseCharacterBoard (char** myArray, size t xDimension)

{
for (size t i = 0; i < xDimension; i++) {
delete [] myArray[i];
}

delete [] myArray;

}

Now that you know all the details to work with arrays, it is recommended to avoid these old

C-style arrays as much as possible because they do not provide any memory safety. They are
explained here because you will encounter them in legacy code. In new code, you should use the
C++ Standard Library containers such as std: :array, std: : vector, and so on (see Chapter 17).
For example, use vector<T> for a one-dimensional dynamic array, use vector<vector<T>> for a
two-dimensional dynamic array, and so on. Of course, working directly with data structures such as
vector<vector<T>> is still tedious, especially for constructing them. If you do need N-dimensional

Working with Dynamic Memory | 175

dynamic arrays in your application, it is recommended to write helper classes that provide an easier
to use interface. For example, to work with two-dimensional data with equally long rows, you
should consider writing (or reusing of course) a Matrix<T> or Table<T> class template which inter-
nally might use a vector<vector<Ts>> data structure. See Chapter 12 for details on writing class
templates

WARNING Use C++ Standard Library containers such as std: :array,
std: :vector, and so on, instead of C-style arrays!

Working with Pointers

Pointers get their bad reputation from the relative ease with which you can abuse them. Because a
pointer is just a memory address, you could theoretically change that address manually, even doing
something as scary as the following line of code:

char* scaryPointer = (char*)7;

This line builds a pointer to the memory address 7, which is likely to be random garbage or memory
used elsewhere in the application. If you start to use areas of memory that weren’t set aside on your
behalf, for example with new or on the stack, eventually you will corrupt the memory associated
with an object, or the memory involved with the management of the heap, and your program will
malfunction. Such a malfunction can manifest itself in several ways. For example, it can reveal itself
as invalid results because the data has been corrupted, or as hardware exceptions being triggered
due to accessing non-existent memory, or attempting to write to protected memory. If you are lucky,
you will get one of the serious errors that usually result in program termination by the operating
system or the C++ runtime library; if you are unlucky, you will just get wrong results.

A Mental Model for Pointers

There are two ways to think about pointers. More mathematically minded readers might view point-
ers as addresses. This view makes pointer arithmetic, covered later in this chapter, a bit easier to
understand. Pointers aren’t mysterious pathways through memory; they are numbers that happen to
correspond to a location in memory. Figure 7-12 illustrates a two-by-two grid in the address-based
view of the world.

NOTE The addresses in Figure 7-12 are just for illustrative purposes. Addresses
on a real system are highly dependent on your hardware and operating system.

Readers who are more comfortable with spatial representations might derive more benefit from the
“arrow” view of pointers. A pointer is a level of indirection that says to the program, “Hey! Look
over there.” With this view, multiple levels of pointers become individual steps on the path to the
data. Figure 7-11 shows a graphical view of pointers in memory.

When you dereference a pointer, by using the * operator, you are telling the program to look one
level deeper in memory. In the address-based view, think of a dereference as a jump in memory to

176 | CHAPTER7 MEMORY MANAGEMENT

the address indicated by the pointer. With the graphical view, every dereference corresponds to
following an arrow from its base to its head.

board 1000 2000 1000

5000 1001

2000

2001

5000

5001

FIGURE 7-12

When you take the address of a location, using the & operator, you are adding a level of indirection
in memory. In the address-based view, the program is noting the numerical address of the location,
which can be stored as a pointer. In the graphical view, the & operator creates a new arrow whose
head ends at the location designated by the expression. The base of the arrow can be stored as a
pointer.

Casting with Pointers

Because pointers are just memory addresses (or arrows to somewhere), they are somewhat weakly
typed. A pointer to an XML document is the same size as a pointer to an integer. The compiler will
let you easily cast any pointer type to any other pointer type using a C-style cast:

Document* documentPtr = getDocument () ;
char* myCharPtr = (char*)documentPtr;

A static cast offers a bit more safety. The compiler refuses to perform a static cast on pointers to
unrelated data types:

Document* documentPtr = getDocument () ;
char* myCharPtr = static cast<char*>(documentPtr) ;

If the two pointers you are casting are actually pointing to objects that are related through inheri-
tance, the compiler will permit a static cast. However, a dynamic cast is a safer way to accomplish a
cast within an inheritance hierarchy. Chapter 10 discusses inheritance in detail, while the different
C++ style casts are discussed in Chapter 11.

Array-Pointer Duality | 177

ARRAY-POINTER DUALITY

You have already seen some of the overlap between pointers and arrays. Heap-allocated arrays are
referred to by a pointer to their first element. Stack-based arrays are referred to by using the array
syntax ([1) with an otherwise normal variable declaration. As you are about to learn, however, the
overlap doesn’t end there. Pointers and arrays have a complicated relationship.

Arrays Are Pointers!

A heap-based array is not the only place where you can use a pointer to refer to an array. You can
also use the pointer syntax to access elements of a stack-based array. The address of an array is
really the address of the first element (index 0). The compiler knows that when you refer to an array
in its entirety by its variable name, you are really referring to the address of the first element. In this
way, the pointer works just like a heap-based array. The following code creates a zero-initialized
array on the stack, and uses a pointer to access it:

int myIntArray[10] = {};
int* myIntPtr = myIntArray;

myIntPtr[4] = 5;

The ability to refer to a stack-based array through a pointer is useful when passing arrays into func-
tions. The following function accepts an array of integers as a pointer. Note that the caller needs to
explicitly pass in the size of the array because the pointer implies nothing about size. In fact, C++
arrays of any form, pointer or not, have no built-in notion of size. That is another reason why you
should use modern containers such as those provided by the Standard Library.

void doublelInts(int* theArray, size t size)

{
for (size t i = 0; 1 < size; i++) {
theArray[i] *= 2;
}

}

The caller of this function can pass a stack-based or heap-based array. In the case of a heap-based
array, the pointer already exists and is passed by value into the function. In the case of a stack-based
array, the caller can pass the array variable, and the compiler automatically treats the array variable
as a pointer to the array, or you can explicitly pass the address of the first element. All three forms
are shown here:

size t arrSize = 4;

int* heapArray = new int[arrsize]{ 1, 5, 3, 4 };

doublelInts (heapArray, arrSize);

delete [] heapArray;
heapArray = nullptr;

178

| CHAPTER7 MEMORY MANAGEMENT

int stackArray[] = { 5, 7, 9, 11 };

arrSize = std::size(stackArray);

//arrSize = sizeof (stackArray) / sizeof (stackArray[0]);
doublelInts (stackArray, arrSize);

doublelInts (&stackArray[0], arrSize);

The parameter-passing semantics of arrays is uncannily similar to that of pointers, because the com-
piler treats an array as a pointer when it is passed to a function. A function that takes an array as
an argument and changes values inside the array is actually changing the original array, not a copy.
Just like a pointer, passing an array effectively mimics pass-by-reference functionality because what
you really pass to the function is the address of the original array, not a copy. The following imple-
mentation of doubleInts () changes the original array even though the parameter is an array, not a
pointer:

void doublelInts(int theArrayl[], size t size)

for (size t i = 0; < size; i++)
*

i
theArray[i] 2;
}

}

Any number between the square brackets after theArray in the function prototype is simply
ignored. The following three versions are identical:

void doublelInts(int* theArray, size t size);
void doubleInts(int theArrayl[], size t size);
void doublelInts(int theArray[2], size t size);

You may be wondering why things work this way. Why doesn’t the compiler just copy the array

when array syntax is used in the function definition? This is done for efficiency—it takes time to
copy the elements of an array, and they potentially take up a lot of memory. By always passing a
pointer, the compiler doesn’t need to include the code to copy the array.

There is a way to pass known-length stack-based arrays “by reference” to a function, although the
syntax is non-obvious. This does not work for heap-based arrays. For example, the following dou-
bleIntsStack () accepts only stack-based arrays of size 4:

void doubleIntsStack(int (&theArray) [4]);

A function template, discussed in detail in Chapter 12, can be used to let the compiler deduce the
size of the stack-based array automatically:

template<size t N>
void doubleIntsStack(int (&theArray) [N])

{
;1< N; oi+s) |

for (size t i = 0;
*= 2

theArray[i]
}

}

To summarize, arrays declared using array syntax can be accessed through a pointer. When an array
is passed to a function, it is always passed as a pointer.

Low-Level Memory Operations | 179

Not All Pointers Are Arrays!

Because the compiler lets you pass in an array where a pointer is expected, as in the doubleInts()
function in the previous section, you may be led to believe that pointers and arrays are the same. In
fact, there are subtle, but important, differences. Pointers and arrays share many properties and can
sometimes be used interchangeably (as shown earlier), but they are not the same.

A pointer by itself is meaningless. It may point to random memory, a single object, or an array. You
can always use array syntax with a pointer, but doing so is not always appropriate because pointers
aren’t always arrays. For example, consider the following code:

int* ptr = new int;

The pointer ptr is a valid pointer, but it is not an array. You can access the pointed-to value using
array syntax (ptr[0]), but doing so is stylistically questionable and provides no real benefit. In fact,
using array syntax with non-array pointers is an invitation for bugs. The memory at ptr (1] could
be anything!

WARNING Arrays are automatically referenced as pointers, but not all pointers
are arrays.

LOW-LEVEL MEMORY OPERATIONS

One of the great advantages of C++ over C is that you don’t need to worry quite as much about
memory. If you code using objects, you just need to make sure that each individual class properly
manages its own memory. Through construction and destruction, the compiler helps you manage
memory by telling you when to do it. Hiding the management of memory within classes makes a
huge difference in usability, as demonstrated by the Standard Library classes. However, with some
applications or with legacy code, you may encounter the need to work with memory at a lower level.
Whether for legacy, efficiency, debugging, or curiosity, knowing some techniques for working with
raw bytes can be helpful.

Pointer Arithmetic

The C++ compiler uses the declared types of pointers to allow you to perform pointer arithmetic.
If you declare a pointer to an int and increase it by 1, the pointer moves ahead in memory by the
size of an int, not by a single byte. This type of operation is most useful with arrays, because they
contain homogeneous data that is sequential in memory. For example, assume you declare an array
of ints on the heap:

int* myArray = new int[8];
You are already familiar with the following syntax for setting the value in position 2:

myArray [2] = 33;

180 | CHAPTER7 MEMORY MANAGEMENT

With pointer arithmetic, you can equivalently use the following syntax, which obtains a pointer to
the memory that is “2 ints ahead” of myArray and then dereferences it to set the value:

* (myArray + 2) = 33;

As an alternative syntax for accessing individual elements, pointer arithmetic doesn’t seem too
appealing. Its real power lies in the fact that an expression like myArray + 2 is still a pointer to an
int, and thus can represent a smaller int array. Suppose you have the following wide string. Wide
strings are discussed in Chapter 19, but the details are not important at this point. For now, it is
enough to know that wide strings support so-called Unicode characters to represent, for example,
Japanese strings. The wchar_t type is a character type that can accommodate such Unicode charac-
ters, and it is usually bigger than a char (1 byte). To tell the compiler that a string literal is a wide-
string literal, you prefix it with an L:

const wchar t* myString = L"Hello, World";

Suppose you also have a function that takes in a wide string and returns a new string that contains a
capitalized version of the input:

wchar_t* toCaps(const wchar_t* inString);

You can capitalize myString by passing it into this function. However, if you only want to capital-
ize part of myString, you can use pointer arithmetic to refer to only a latter part of the string. The
following code calls tocaps () on the world part of the wide string by just adding 7 to the pointer,
even though wchar t is usually more than 1 byte:

toCaps (myString + 7);

Another useful application of pointer arithmetic involves subtraction. Subtracting one pointer from
another of the same type gives you the number of elements of the pointed-to type between the two
pointers, not the absolute number of bytes between them.

Custom Memory Management

For 99 percent of the cases you will encounter (some might say 100 percent of the cases), the built-
in memory allocation facilities in C++ are adequate. Behind the scenes, new and delete do all the
work of handing out memory in properly sized chunks, maintaining a list of available areas of mem-
ory, and releasing chunks of memory back to that list upon deletion.

When resource constraints are extremely tight, or under very special conditions, such as managing
shared memory, implementing custom memory management may be a viable option. Don’t worry—
it’s not as scary as it sounds. Basically, managing memory yourself means that classes allocate a
large chunk of memory and dole out that memory in pieces as it is needed.

How is this approach any better? Managing your own memory can potentially reduce overhead.
When you use new to allocate memory, the program also needs to set aside a small amount of space
to record how much memory was allocated. That way, when you call delete, the proper amount of
memory can be released. For most objects, the overhead is so much smaller than the memory allo-
cated that it makes little difference. However, for small objects or programs with enormous numbers
of objects, the overhead can have an impact.

Low-Level Memory Operations | 181

When you manage memory yourself, you might know the size of each object a priori, so you might
be able to avoid the overhead for each object. The difference can be enormous for large numbers of
small objects. The syntax for performing custom memory management is described in Chapter 135.

Garbage Collection

At the other end of the memory hygiene spectrum lies garbage collection. With environments that
support garbage collection, the programmer rarely, if ever, explicitly frees memory associated with
an object. Instead, objects to which there are no longer any references will be cleaned up automati-
cally at some point by the runtime library.

Garbage collection is not built into the C++ language as it is in C# and Java. In modern C++, you
use smart pointers to manage memory, while in legacy code you will see memory management at

the object level through new and delete. Smart pointers such as shared ptr (discussed later in this
chapter) provide something very similar to garbage-collected memory, that is, when the last shared
ptr instance for a certain resource is destroyed, at that point in time the resource is destroyed as
well. It is possible but not easy to implement true garbage collection in C++, but freeing yourself
from the task of releasing memory would probably introduce new headaches.

One approach to garbage collection is called mark and sweep. With this approach, the garbage col-
lector periodically examines every single pointer in your program and annotates the fact that the
referenced memory is still in use. At the end of the cycle, any memory that hasn’t been marked is
deemed to be not in-use and is freed.

A mark-and-sweep algorithm could be implemented in C++ if you were willing to do the following;:

1. Register all pointers with the garbage collector so that it can easily walk through the list of
all pointers.

2. Derive all objects from a mixin class, perhaps GarbageCollectible, that allows the garbage
collector to mark an object as in-use.

3. Protect concurrent access to objects by making sure that no changes to pointers can occur
while the garbage collector is running.

As you can see, this approach to garbage collection requires quite a bit of diligence on the part of
the programmer. It may even be more error-prone than using delete! Attempts at a safe and easy
mechanism for garbage collection have been made in C++, but even if a perfect implementation of
garbage collection in C++ came along, it wouldn’t necessarily be appropriate to use for all applica-
tions. Among the downsides of garbage collection are the following;:

> When the garbage collector is actively running, the program might become unresponsive.

> With garbage collectors, you have so-called non-deterministic destructors. Because an object
is not destroyed until it is garbage-collected, the destructor is not executed immediately when
the object leaves its scope. This means that cleaning up resources (such as closing a file,
releasing a lock, and so on), which is done by the destructor, is not performed until some
indeterminate time in the future.

182

| CHAPTER7 MEMORY MANAGEMENT

Writing a garbage collection mechanism is very hard. You will undoubtedly do it wrong, it will be
error prone, and more than likely slow. So, if you do want to use garbage-collected memory in your
application, I highly recommend you to research existing specialized garbage-collection libraries
that you can reuse. See Chapter 4 for a discussion on code reuse.

Object Pools

Garbage collection is like buying plates for a picnic and leaving any used plates out in the yard
where the wind will conveniently blow them into the neighbor’s yard. Surely, there must be a more
ecological approach to memory management.

Object pools are the equivalent of recycling. You buy a reasonable number of plates, and after using
a plate, you clean it so that it can be reused later. Object pools are ideal for situations where you
need to use many objects of the same type over time, and creating each one incurs overhead.

Chapter 25 contains further details on using object pools for performance efficiency.

SMART POINTERS

Memory management in C++ is a perennial source of errors and bugs. Many of these bugs arise
from the use of dynamic memory allocation and pointers. When you extensively use dynamic mem-
ory allocation in your program and pass many pointers between objects, it’s difficult to remember to
call delete on each pointer exactly once and at the right time. The consequences of getting it wrong
are severe: when you free dynamically allocated memory more than once, you can cause memory
corruption or a fatal run-time error, and when you forget to free dynamically allocated memory, you
cause memory leaks.

Smart pointers help you manage your dynamically allocated memory and are the recommended
technique for avoiding memory leaks. Conceptually, a smart pointer can hold a dynamically allo-
cated resource, such as memory. When a smart pointer goes out of scope or is reset, it can auto-
matically free the resource it holds. Smart pointers can be used to manage dynamically allocated
resources in the scope of a function, or as data members in classes. They can also be used to pass
ownership of dynamically allocated resources through function arguments.

C++ provides several language features that make smart pointers attractive. First, you can write

a type-safe smart pointer class for any pointer type using templates, see Chapter 12. Second, you
can provide an interface to the smart pointer objects using operator overloading, see Chapter 15,
that allows code to use the smart pointer objects as if they were dumb pointers. Specifically, you
can overload the * and -> operators such that client code can dereference a smart pointer object the
same way it dereferences a normal pointer.

There are several kinds of smart pointers. The simplest type of smart pointer takes sole/unique
ownership of the resource, and when the smart pointer goes out of scope or is reset, it frees the ref-
erenced resource. The Standard Library provides std: :unique_ptr which is a smart pointer with
unique ownership semantics.

Smart Pointers | 183

However, managing pointers presents more problems than just remembering to free them when
they go out of scope. Sometimes several objects or pieces of code contain copies of the same pointer.
This problem is called aliasing. In order to free all resources properly, the last piece of code to

use the resource should free the resource pointed to by the pointer. However, it is sometimes dif-
ficult to know which piece of code uses the resource last. It may even be impossible to determine

the order when you code because it might depend on run-time inputs. Thus, a more sophisticated
type of smart pointer implements reference counting to keep track of its owners. Every time such a
reference-counted smart pointer is copied, a new instance is created pointing to the same resource,
and the reference count is incremented. When such a smart pointer instance goes out of scope or is
reset, the reference count is decremented. When the reference count drops to zero, there are no own-
ers of the resource anymore, so the smart pointer frees the resource. The Standard Library provides
std: :shared ptr which is a smart pointer with shared ownership semantics using reference count-
ing. The standard shared ptr is thread-safe, but this does not mean that the pointed-to resource is
thread-safe! See Chapter 23 for a discussion on multithreading.

Both standard smart pointers, unique_ptr and shared ptr, are discussed in detail in the next sec-
tions. Both require you to include the <memory> header file.

NOTE Your default smart pointer should be unique ptr. Only use shared ptr
when you really need to share the resource.

WARNING Never assign the result of a resource allocation to a dumb pointer.
Whatever resource allocation method you use, always immediately store the
resource pointer in a smart pointer, either unique ptr or shared ptr, or use
other RAII classes. RAII stands for Resource Acquisition Is Initialization. An
RAII class takes ownership of a certain resource and handles its deallocation at
the right time. It’s a design technique discussed in Chapter 28.

unique_ptr

As a rule of thumb, always store dynamically allocated resources in instances of unique ptr.

Creating unique_ptrs

Consider the following function that blatantly leaks memory by allocating a simple object on the
heap and neglecting to release it:

void leaky ()

{
Simple* mySimplePtr = new Simple();
mySimplePtr->go() ;

184 | CHAPTER7 MEMORY MANAGEMENT

Sometimes you might think that your code is properly deallocating dynamically allocated memory.
Unfortunately, it most likely is ot correct in all situations. Take the following function:

void couldBeLeaky ()

{
Simple* mySimplePtr = new Simple();
mySimplePtr->go() ;
delete mySimplePtr;

}

This function dynamically allocates a simple object, uses the object, and then properly calls
delete. However, you can still have memory leaks in this example! If the go () method throws an
exception, the call to delete is never executed, causing a memory leak.

In both cases you should use a unique_ptr. The object is not explicitly deleted; but when the
unique_ptr instance goes out of scope (at the end of the function, or because an exception is
thrown), it automatically deallocates the simple object in its destructor:

void notLeaky ()

{

auto mySimpleSmartPtr = make unique<Simples>();
mySimpleSmartPtr->go() ;

}

This code uses make_unique () from C++14, in combination with the auto keyword, so that you
only have to specify the type of the pointer, Simple in this case, once. If the Simple constructor
requires parameters, you put them in between the parentheses of the make unique () call.

If your compiler does not yet support make_unique (), you can create your unique_ptr as follows.
Note that Simple must be mentioned twice:

unique ptr<Simple> mySimpleSmartPtr (new Simple());

Before C++17, you had to use make_unique () not only because you have to specify the type only
once, but also because of safety reasons! Consider the following call to a function called foo ():

foo(unique_ptr<Simple>(new Simple()), unique_ptr<Bar>(new Bar(data())));

If the constructor of Simple or Bar, or the data () function, throws an exception, depending on
your compiler optimizations, it was very possible that either a simple or a Bar object would be
leaked. With make unique (), nothing would leak:

foo (make unique<Simples>(), make unique<Bar>(data()))

With C++17, both calls to foo () are safe, but I still recommend using make unigue () as it results in
code that is easier to read.

NOTE Always use make_unique () fo create a unique ptr.

Smart Pointers | 185

Using unique_ptrs
One of the greatest characteristics of the standard smart pointers is that they provide enormous ben-
efit without requiring the user to learn a lot of new syntax. Smart pointers can still be dereferenced

(using * or ->) just like standard pointers. For example, in the earlier example, the -> operator is
used to call the go () method:

mySimpleSmartPtr->go() ;

Just as with standard pointers, you can also write this as follows:

(*mySimpleSmartPtr) .go() ;

The get () method can be used to get direct access to the underlying pointer. This can be useful to
pass the pointer to a function that requires a dumb pointer. For example, suppose you have the fol-
lowing function:

void processData(Simple* simple) { }

Then you can call it as follows:

auto mySimpleSmartPtr = make unique<Simples () ;
processData (mySimpleSmartPtr.get());

You can free the underlying pointer of a unique_ptr and optionally change it to another pointer
using reset (). For example:

mySimpleSmartPtr.reset () ;
mySimpleSmartPtr.reset (new Simple());

You can disconnect the underlying pointer from a unique_ptr with release (). The release ()
method returns the underlying pointer to the resource and then sets the smart pointer to nullptr.
Effectively, the smart pointer loses ownership of the resource, and as such, you become responsible
for freeing the resource when you are done with it. For example:

Simple* simple = mySimpleSmartPtr.release();

delete simple;
simple = nullptr;

Because a unique ptr represents unique ownership, it cannot be copied! Using the std: :move ()
utility (discussed in Chapter 9), it is possible to #ove one unique ptr to another one using move
semantics. This is used to explicitly move ownership, as in this example:

class Foo
{
public:
Foo (unique ptr<int> data) : mData(move(data)) { }
private:
unique ptr<int> mData;

}i

auto myIntSmartPtr = make unique<int>(42);
Foo f (move (myIntSmartPtr));

186 | CHAPTER7 MEMORY MANAGEMENT

unique_ptr and C-Style Arrays

A unique ptr is suitable to store a dynamically allocated old C-style array. The following example
creates a unique ptr that holds a dynamically allocated C-style array of ten integers:

auto myVariableSizedArray = make unique<int[]>(10);
Even though it is possible to use a unique ptr to store a dynamically allocated C-style array, it’s
recommended to use a Standard Library container instead, such as std: :array or std: :vector.
Custom Deleters
By default, unique ptr uses the standard new and delete operators to allocate and deallocate

memory. You can change this behavior as follows:

int* malloc_int (int value)

{

int* p = (int*)malloc(sizeof (int));
*p = value;
return p;

}

int main()

{

unique ptr<int, decltype(free)*> myIntSmartPtr (malloc_int (42), free);
return 0O;

}

This code allocates memory for an integer with malloc_int (). The unique ptr deallocates the
memory by calling the standard free () function. As said before, in C++ you should never use mal-
loc (), but new instead. However, this feature of unique ptr is available because it is useful to man-
age other resources instead of just memory. For example, it can be used to automatically close a file
or network socket or anything when the unique ptr goes out of scope.

Unfortunately, the syntax for a custom deleter with unique ptr is a bit clumsy. You need to specify
the type of your custom deleter as a template type parameter. In this example, decltype (free) is
used which returns the type of free (). The template type parameter should be the type of a pointer
to a function, so an additional * is appended, as in decltype (free) *. Using a custom deleter

with shared ptr is much easier. The following section on shared ptr demonstrates how to use a
shared_ptr to automatically close a file when it goes out of scope.

shared_ptr

You use shared ptr in a similar way to unique ptr. To create one, you use make shared (), which
is more efficient than creating a shared ptr directly. Here’s an example:

auto mySimpleSmartPtr = make shared<Simples> () ;

WARNING Always use make shared () fo create a shared_ptr.

Smart Pointers | 187

Starting with C++17, a shared_ptr can also be used to store a pointer to a dynamically allocated
old C-style array, just as you can do with a unique_ptr. This was not possible before C++17.
However, even though it is now possible in C++17, it is still recommended to use Standard Library
containers instead of C-style arrays.

A shared ptr also supports the get () and reset () methods, just as a unique_ptr. The only dif-
ference is that when calling reset (), due to reference counting, the underlying resource is only freed
when the last shared ptr is destroyed or reset. Note that shared_ptr does not support release ().
You can use use_count () to retrieve the number of shared ptr instances that are sharing the same
resource.

Just like unique ptr, shared ptr by default uses the standard new and delete operators to allo-
cate and deallocate memory, or new[] and delete[] when storing a C-style array with C++17. You
can change this behavior as follows:

shared ptr<int> myIntSmartPtr(malloc int (42), free);

As you can see, you don’t have to specify the type of the custom deleter as a template type param-
eter, so this makes it much easier than a custom deleter with unique ptr.

The following example uses a shared ptr to store a file pointer. When the shared ptr is

reset (in this case when it goes out of scope), the file pointer is automatically closed with a

call to closeFile (). Note that C++ has proper object-oriented classes to work with files (see
Chapter 13). Those classes already automatically close their files. This example using the old C
functions fopen () and fclose () is just to give a demonstration of what shared_ptrs can be used
for besides pure memory:

void CloseFile (FILE* filePtr)

{
if (filePtr == nullptr)
return;
fclose (filePtr) ;
cout << "File closed." << endl;

}

int main()

{

FILE* f = fopen("data.txt", "w");
shared ptr<FILE> filePtr(f, CloseFile);
if (filePtr == nullptr) {
cerr << "Error opening file." << endl;
} else {
cout << "File opened." << endl;

}

return 0;

Casting a shared_ptr

The functions that are available to cast shared ptrs are const_pointer cast (), dynamic_
pointer cast (), and static_pointer cast (). C++17 adds reinterpret_pointer cast () to

188

| CHAPTER7 MEMORY MANAGEMENT

this list. These behave and work similar to the non-smart pointer casting functions const_cast (),

dynamic_cast (), static_cast (), and reinterpret cast (), which are discussed in detail in
Chapter 11.

The Need for Reference Counting

As a general concept, reference counting is a technique for keeping track of the number of instances
of a class or particular object in use. A reference-counting smart pointer is one that keeps track of
how many smart pointers have been built to refer to a single real pointer, or single object. This way,
smart pointers can avoid double deletion.

The double deletion problem is easy to provoke. Consider again the simple class introduced earlier
in this chapter, which simply prints out messages when an object is created and destroyed. If you
were to create two standard shared ptrs and have them both refer to the same simple object, as
in the following code, both smart pointers would attempt to delete the same object when they are
destroyed:

void doubleDelete ()

{
Simple* mySimple = new Simple() ;
shared ptr<Simple> smartPtrl (mySimple) ;
shared ptr<Simple> smartPtr2 (mySimple) ;

}

Depending on your compiler, this piece of code might crash! If you do get output, it could be as
follows:

Simple constructor called!
Simple destructor called!
Simple destructor called!

Yikes! One call to the constructor and two calls to the destructor? You get the same problem with
unique ptr. You might be surprised that even the reference-counted shared ptr class behaves this
way. However, this is correct behavior according to the C++ standard. You should not use shared_
ptr as in the previous doubleDelete () function to create two shared_ptrs pointing to the same
object. Instead, you should make a copy as follows:

void noDoubleDelete ()

{

auto smartPtrl = make shared<Simple>();
shared ptr<Simple> smartPtr2 (smartPtrl);

}

Here is the output of this code:

Simple constructor called!
Simple destructor called!

Even though there are two shared ptrs pointing to the same simple object, the simple object is
destroyed only once. Remember that unique_ptr is not reference counted. In fact, unique_ptr does
not allow you to use its copy constructor as in the noDoubleDelete () function.

Smart Pointers | 189

If you really need to be able to write code as shown in the previous doubleDelete () function exam-
ple, you will need to implement your own smart pointer to prevent double deletion. But again, it is
recommended to use the standard shared ptr template for sharing a resource. Simply avoid code
like that in the doubleDelete () function, and use the copy constructor instead.

Aliasing

A shared ptr support so-called aliasing. This allows a shared ptr to share ownership over

a pointer (owned pointer) with another shared ptr, but pointing to a different object (stored
pointer). It can, for example, be used to have a shared ptr pointing to a member of an object while
owning the object itself. Here’s an example:

class Foo

{
public:
Foo(int value) : mData(value) { }
int mData;

}i

auto foo = make shared<Foo>(42) ;
auto aliasing = shared ptr<int>(foo, &foo->mData);

The Foo object is only destroyed when both shared ptrs (foo and aliasing) are destroyed.

The owned pointer is used for reference counting, while the stored pointer is returned when

you dereference the pointer or when you call get () on it. The stored pointer is used with most
operations, such as the comparison operators. You can use the owner before () method, or the
std: :owner less class to perform comparisons based on the owned pointer instead. This can be
useful in certain situations, such as storing shared ptrs in an std: : set. Chapter 17 discusses the
set container in detail.

weak_ptr

There is one more class in C++ that is related to shared ptr, called weak ptr. A weak ptr can con-
tain a reference to a resource managed by a shared ptr. The weak ptr does not own the resource,
so the shared ptr is not prevented from deallocating the resource. A weak ptr does not destroy
the pointed-to resource when the weak ptr is destroyed (for example when it goes out of scope);
however, it can be used to determine if the resource has been freed by the associated shared ptr or
not. The constructor of a weak_ptr requires a shared_ptr or another weak ptr as argument. To
get access to the pointer stored in a weak_ptr, you need to convert it to a shared ptr. There are
two ways to do this:

> Use the 1ock () method on a weak_ptr instance, which returns a shared_ptr. The returned
shared ptr is nullptr if the shared ptr associated with the weak ptr has been deallo-
cated in the meantime.

> Create a new shared_ptr instance and give a weak ptr as argument to the shared ptr
constructor. This throws an std: :bad_weak ptr exception if the shared ptr associated
with the weak_ptr has been deallocated.

190 | CHAPTER7 MEMORY MANAGEMENT

The following example demonstrates the use of weak ptr:

void useResource (weak ptr<Simple>& weakSimple)

{

int

}

auto resource = weakSimple.lock();
if (resource) ({
cout << "Resource still alive." << endl;
} else {
cout << "Resource has been freed!" << endl;
}

main ()
auto sharedSimple = make shared<Simple> () ;

weak ptr<Simple> weakSimple (sharedSimple) ;

useResource (weakSimple) ;

sharedSimple.reset () ;

useResource (weakSimple) ;

return 0;

The output of this code is as follows:

Simple constructor called!
Resource still alive.
Simple destructor called!
Resource has been freed!

Starting with C++17, weak_ptr also supports C-style arrays, just as shared ptr supports C-style

arrays since C++17.

Move Semantics

The standard smart pointers, shared_ptr, unique ptr, and weak_ptr all support move semantics
to make them efficient. Move semantics is discussed in detail in Chapter 9; however, the details are
not important at this time. What is important is that this means it is very efficient to return such a
smart pointer from a function. For example, you can write the following create () function and use

it as demonstrated in main():

unique ptr<Simple> create()

{

auto ptr = make unique<Simples>();

return ptr;

Smart Pointers | 191

int main()

{

unique ptr<Simple> mySmartPtrl = create();
auto mySmartPtr2 = create();
return 0;

enable _shared from_this

The std: :enable_shared from this mixin class allows a method on an object to safely return a
shared ptr or weak_ptr to itself. Mixin classes are discussed in Chapter 28. Basically, the enable
shared from this mixin class adds the following two methods to a class:

> shared from this(): returns a shared ptr that shares ownership of the object.
> weak_ from this(): returns a weak_ptr that tracks ownership of the object.

This is an advanced feature not discussed in detail, but the following code briefly demonstrates
its use:

class Foo : public enable shared from this<Foo>

{
public:
shared ptr<Foo> getPointer () {
return shared from this();
}

}i

int main()

{
auto ptrl = make shared<Foos> () ;
auto ptr2 ptrl->getPointer() ;

}

Note that you can only use shared_from this () on an object if its pointer has already been
stored in a shared ptr. In the example, make shared () is used in main () to create a shared ptr
called ptr1 which contains an instance of Foo. After this shared ptr creation, it is allowed to call
shared from this () on that Foo instance.

The following would be a completely wrong implementation of the getPointer () method:

class Foo

{
public:
shared ptr<Foo> getPointer() {
return shared ptr<Foo>(this);
}

}i

If you use the same code for main () as shown earlier, this implementation of Foo causes a double
deletion. You have two completely independent shared ptrs (ptrl and ptr2) pointing to the same
object, which will both try to delete the object when they go out of scope.

192 | CHAPTER7 MEMORY MANAGEMENT

The Old Deprecated/Removed auto_ptr

The old, pre-C++11 Standard Library included a basic implementation of a smart pointer, called
auto_ptr. Unfortunately, auto_ptr has some serious shortcomings. One of these shortcomings

is that it does not work correctly when used inside Standard Library containers such as vectors.
C++11 and C++14 officially deprecated auto_ptr, and C++17 finally removed it entirely. It has been
replaced with unique ptr and shared ptr. auto ptr is mentioned here to make sure you know
about it and to make sure you never use it.

WARNING Do not use the old auto_ptr smart pointer anymore. Instead, use
unique ptr or shared ptr!

COMMON MEMORY PITFALLS

It is difficult to pinpoint the exact situations that can lead to a memory-related bug. Every memory
leak or bad pointer has its own nuances. There is no magic bullet for resolving memory issues, but
there are several common categories of problems and some tools you can use to detect and resolve

them.

Underallocating Strings

The most common problem with C-style strings is underallocation. In most cases, this arises when
the programmer fails to allocate an extra character for the trailing '\ o' sentinel. Underallocation
of strings also occurs when programmers assume a certain fixed maximum size. The basic built-
in C-style string functions do not adhere to a fixed size—they will happily write off the end of the
string into uncharted memory.

The following code demonstrates underallocation. It reads data off a network connection and

puts it in a C-style string. This is done in a loop because the network connection receives only a
small amount of data at a time. On each loop, getMoreData () is called, which returns a pointer to
dynamically allocated memory. When nullptr is returned from getMoreData (), all of the data has
been received. strcat () is a C function that concatenates the C-style string given as a second argu-
ment to the end of the C-style string given as a first argument. It expects the destination buffer to be
big enough.

char buffer[1024] = {0};
while (true) {
char* nextChunk = getMoreDatal() ;
if (nextChunk == nullptr) ({
break;
} else {
strcat (buffer, nextChunk) ;
delete [] nextChunk;

Common Memory Pitfalls | 193

There are three ways to resolve the possible underallocation problem. In decreasing order of prefer-
ence, they are as follows:

1. Use C++-style strings, which handle the memory associated with concatenation on your
behalf.

2. Instead of allocating a buffer as a global variable or on the stack, allocate it on the heap.
When there is insufficient space left, allocate a new buffer large enough to hold at least the
current contents plus the new chunk, copy the original buffer into the new buffer, append the
new contents, and delete the original buffer.

3. Create a version of getMoreData () that takes a maximum count (including the *\o' char-
acter) and returns no more characters than that; then track the amount of space left and the
current position in the buffer.

Accessing Out-of-Bounds Memory

Earlier in this chapter, you read that because a pointer is just a memory address, it is possible to
have a pointer that points to a random location in memory. Such a condition is quite easy to fall
into. For example, consider a C-style string that has somehow lost its '\0' termination character.
The following function, which fills the string with all 'm' characters, continues to fill the contents of
memory after the string with 'm's:

void fillWithM(char* inStr)

{
int i = 0;
while (inStr[i] != '\0') {
inStr[i] = 'm';
i++;

}

If an improperly terminated string is handed to this function, it is only a matter of time before an
essential part of memory is overwritten and the program crashes. Consider what might happen if
the memory associated with the objects in your program is suddenly overwritten with 'm's. It’s not
pretty!

Bugs that result in writing to memory past the end of an array are often called buffer overflow
errors. These bugs have been exploited by several high-profile malware programs such as viruses
and worms. A devious hacker can take advantage of the ability to overwrite portions of memory to
inject code into a running program.

Many memory-checking tools detect buffer overflows. Also, using higher-level constructs like C++
strings and vectors helps prevent numerous bugs associated with writing to C-style strings and
arrays.

WARNING Avoid using old C-style strings and arrays that offer no protection
whatsoever. Instead, use modern and safe constructs like C++ strings and vec-
tors that manage all their memory for you.

194 | CHAPTER7 MEMORY MANAGEMENT

Memory Leaks

Finding and fixing memory leaks can be one of the more frustrating parts of programming in C or
C++. Your program finally works and appears to give the correct results. Then, you start to notice
that your program gobbles up more and more memory as it runs. Your program has a memory leak.
The use of smart pointers to avoid memory leaks is a good first approach to solving the problem.

Memory leaks occur when you allocate memory and neglect to release it. At first, this sounds like
the result of careless programming that could easily be avoided. After all, if every new has a corre-
sponding delete in every class you write, there should be no memory leaks, right? Actually, that’s
not always true. In the following code, the simple class is properly written to release any memory
that it allocates.

When dosomething () is called, the outsimplePtr pointer is changed to another simple object
without deleting the old one to demonstrate a memory leak. Once you lose a pointer to an object,
it’s nearly impossible to delete it.

class Simple
{
public:
Simple() { mIntPtr = new int(); }
~Simple() { delete mIntPtr; }
void setValue (int value) { *mIntPtr = value; }
private:
int* mIntPtr;

}i

void doSomething (Simple*& outSimplePtr)

{
}

int main()

{

outSimplePtr = new Simple() ;

Simple* simplePtr = new Simple();
doSomething (simplePtr) ;

delete simplebPtr;

return 0;

WARNING Keep in mind that this code is only for demonstration purposes! In
production-quality code, you should make mIntpPtr and simplePtr unique
ptrs, and make outSimplePtr a reference to a unique ptr.

In cases like the preceding example, the memory leak probably arose from poor communication
between programmers or poor documentation of code. The caller of doSomething () may not have
realized that the variable was passed by reference and thus had no reason to expect that the pointer
would be reassigned. If they did notice that the parameter was a non-const reference to a pointer,

Common Memory Pitfalls | 195

they may have suspected that something strange was happening, but there is no comment around
doSomething () that explains this behavior.

Finding and Fixing Memory Leaks in Windows with Visual C++

Memory leaks are hard to track down because you can’t easily look at memory and see what objects
are not in use and where they were originally allocated. However, there are programs that can do
this for you. Memory leak detection tools range from expensive professional software packages to
free downloadable tools. If you work with Microsoft Visual C++%, its debug library has built-in sup-
port for memory leak detection. This memory leak detection is not enabled by default, unless you
create an MFC project. To enable it in other projects, you need to start by including the following
three lines at the beginning of your code:

#define _CRTDBG_MAP_ALLOC
#include <cstdlib>
#include <crtdbg.hs>

These lines should be in the exact order as shown. Next, you need to redefine the new operator as
follows:

#ifdef _DEBUG
#ifndef DBG NEW
#define DBG NEW new (NORMAL BLOCK , FILE , _ LINE)
#define new DBG_NEW
#endif
#endif

Note that this is within an “#ifdef DEBUG” statement so the redefinition of new is done only when
compiling a debug version of your application. This is what you normally want. Release builds usu-
ally do not do any memory leak detection.

The last thing you need to do is to add the following line as the first line in your main () function:

_CrtSetDbgFlag(CRTDBG ALLOC MEM DF | CRTDBG LEAK CHECK DF);

This tells the Visual C++ CRT (C RunTime) library to write all detected memory leaks to the debug
output console when the application exits. For the previous leaky program, the debug console will
contain lines similar to the following:

Detected memory leaks!
Dumping objects ->

c:\leaky\leaky.cpp(15) : {147} normal block at 0x014FABF8, 4 bytes long.
Data: < > 00 00 00 00
c:\leaky\leaky.cpp(33) : {146} normal block at 0x014F5048, 4 bytes long.

Data: <Pa > 50 61 20 01
Object dump complete.

The output clearly shows in which file and on which line memory was allocated but never deal-
located. The line number is between parentheses immediately behind the filename. The number
between the curly braces is a counter for the memory allocations. For example, {147} means the
147th allocation in your program since it started. You can use the VC++ _CrtsSetBreakalloc ()
function to tell the VC++ debug runtime to break into the debugger when a certain allocation is

*There is a free version of Microsoft Visual C++ available, called the Community Edition.

196 | CHAPTER7 MEMORY MANAGEMENT

performed. For example, you can add the following line to the beginning of your main () function to
instruct the debugger to break on the 147th allocation:

_CrtSetBreakAlloc (147) ;

In this leaky program, there are two leaks: the first simple object that is never deleted (line 33) and
the heap-based integer that it creates (line 15). In the Visual C++ debugger output window, you can
simply double-click on one of the memory leaks and it will automatically jump to that line in your
code.

Of course, programs like Microsoft Visual C++ (discussed in this section) and Valgrind (discussed
in the next section) can’t actually fix the leak for you—what fun would that be? These tools provide
information that you can use to find the actual problem. Normally, that involves stepping through
the code to find out where the pointer to an object was overwritten without the original object being
released. Most debuggers provide “watch point” functionality that can break execution of the pro-
gram when this occurs.

Finding and Fixing Memory Leaks in Linux with Valgrind

Valgrind is an example of a free open-source tool for Linux that, among other things, pinpoints the
exact line in your code where a leaked object was allocated.

The following output, generated by running Valgrind on the previous leaky program, pinpoints the
exact locations where memory was allocated but never released. Valgrind finds the same two mem-
ory leaks—the first Simple object never deleted and the heap-based integer that it creates:

==15606== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
==15606== malloc/free: in use at exit: 8 bytes in 2 blocks.

==15606== malloc/free: 4 allocs, 2 frees, 16 bytes allocated.

==15606== For counts of detected errors, rerun with: -v

==15606== searching for pointers to 2 not-freed blocks.

==15606== checked 4455600 bytes.

==15606==

==15606== 4 bytes in 1 blocks are still reachable in loss record 1 of 2
==15606== at 0x4002978F: _ builtin new (vg replace malloc.c:172)
==15606== by 0x400297E6: operator new(unsigned) (vg_replace malloc.c:185)
==15606== by 0x804875B: Simple::Simple() (leaky.cpp:4)

==15606== by 0x8048648: main (leaky.cpp:24)

==15606==

==15606==

==15606== 4 bytes in 1 blocks are definitely lost in loss record 2 of 2
==15606== at 0x4002978F: _ builtin new (vg_replace malloc.c:172)
==15606== by 0x400297E6: operator new(unsigned) (vg_replace malloc.c:185)
==15606== by 0x8048633: main (leaky.cpp:20)

==15606== by 0x4031FA46: _ libc start main (in /lib/libc-2.3.2.s0)
==15606==

==15606== LEAK SUMMARY:

==15606== definitely lost: 4 bytes in 1 blocks.

==15606== possibly lost: 0 bytes in 0 blocks.

==15606== still reachable: 4 bytes in 1 blocks.

==15606== suppressed: 0 bytes in 0 blocks.

Summary | 197

WARNING [t is strongly recommended to use smart pointers as often as pos-
sible to avoid memory leaks.

Double-Deleting and Invalid Pointers

Once you release memory associated with a pointer using delete, the memory is available for use
by other parts of your program. Nothing stops you, however, from attempting to continue to use
the pointer, which is now a dangling pointer. Double deletion is also a problem. If you use delete
a second time on a pointer, the program could be releasing memory that has since been assigned to
another object.

Double deletion and use of already released memory are both difficult problems to track down
because the symptoms may not show up immediately. If two deletions occur within a relatively short
amount of time, the program potentially could work indefinitely because the associated memory
might not be reused that quickly. Similarly, if a deleted object is used immediately after being
deleted, most likely it will still be intact.

Of course, there is no guarantee that such behavior will work or continue to work. The memory
allocator is under no obligation to preserve any object once it has been deleted. Even if it does work,
it is extremely poor programming style to use objects that have been deleted.

Many memory leak-detection programs, such as Microsoft Visual C++ and Valgrind, are capable of
detecting double deletion and use of released objects.

If you disregard the recommendation for using smart pointers and instead still use dumb pointers,
at least set your pointers to nullptr after deallocating their memory. This prevents you from acci-
dentally deleting the same pointer twice or using an invalid pointer. It’s worth noting that you are
allowed to call delete on a nullptr pointer; it simply will not do anything.

SUMMARY

In this chapter, you learned the ins and outs of dynamic memory. Aside from memory-checking
tools and careful coding, there are two key takeaways to avoid dynamic memory-related problems.
First, you need to understand how pointers work under the hood. After reading about two different
mental models for pointers, you should now know how the compiler doles out memory. Second, you
can avoid all sorts of dynamic memory issues by using objects which automatically manage such
memory, like the C++ string class, the vector container, smart pointers, and so on.

If there is one takeaway from this chapter, it is that you should try to avoid using old C-style
constructs and functions as much as possible, and use the safe C++ alternatives.

Gaining Proficiency with
Classes and Objects

WHAT'S IN THIS CHAPTER?

> How to write your own classes with methods and data members
How to control access to your methods and data members
How to use objects on the stack and on the heap

What the life cycle of an object is

How to write code that is executed when an object is created

Y Y VY VY Y

How to write code to copy or assign objects

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s code
download on the book’s website at www.wrox.com/go/proc++4e on the Download Code tab.

As an object-oriented language, C++ provides facilities for using objects and for writing

object definitions, called classes. You can certainly write programs in C++ without classes and
objects, but by doing so, you do not take advantage of the most fundamental and useful aspect
of the language; writing a C++ program without classes is like traveling to Paris and eating at
McDonald’s. In order to use classes and objects effectively, you must understand their syntax
and capabilities.

Chapter 1 reviewed the basic syntax of class definitions. Chapter 5 introduced the object-
oriented approach to programming in C++ and presented specific design strategies for classes

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

200 | CHAPTER8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

and objects. This chapter describes the fundamental concepts involved in using classes and objects,
including writing class definitions, defining methods, using objects on the stack and the heap, writ-
ing constructors, default constructors, compiler-generated constructors, constructor initializers
(known as ctor-initializers), copy constructors, initializer-list constructors, destructors, and assign-
ment operators. Even if you are already comfortable with classes and objects, you should skim this
chapter because it contains various tidbits of information with which you might not yet be familiar.

INTRODUCING THE SPREADSHEET EXAMPLE

Both this chapter and the next present a runnable example of a simple spreadsheet application.

A spreadsheet is a two-dimensional grid of “cells,” and each cell contains a number or a string.
Professional spreadsheets such as Microsoft Excel provide the ability to perform mathematical oper-
ations, such as calculating the sum of the values of a set of cells. The spreadsheet example in these
chapters does not attempt to challenge Microsoft in the marketplace, but is useful for illustrating the
issues of classes and objects.

The spreadsheet application uses two basic classes: Spreadsheet and SpreadsheetcCell. Each
Spreadsheet object contains SpreadsheetCell objects. In addition, a SpreadsheetApplication
class manages a collection of spreadsheets. This chapter focuses on the spreadsheetcell.
Chapter 9 develops the spreadsheet and SpreadsheetApplication classes.

NOTE This chapter shows several different versions of the SpreadsheetCell
class in order to introduce concepts gradually. Thus, the various attempts at

the class throughout the chapter do not always illustrate the “best” way to do
every aspect of class writing. In particular, the early examples omit important
features that would normally be included, but have not yet been introduced. You
can download the final version of the class as described in the beginning of this
chapter.

WRITING CLASSES

When you write a class, you specify the behaviors, or methods, that will apply to objects of that
class and the properties, or data members, that each object will contain.

There are two components in the process of writing classes: defining the classes themselves and
defining their methods.

Class Definitions

Here is a first attempt at a simple SpreadsheetcCell class, in which each cell can store only a
single number:

class SpreadsheetCell

{

public:

Writing Classes | 201

void setValue (double inValue) ;

double getValue () const;
private:

double mValue;

}i

As described in Chapter 1, every class definition begins with the keyword class and the name of
the class. A class definition is a statement in C++, so it must end with a semicolon. If you fail to ter-
minate your class definition with a semicolon, your compiler will probably give you several errors,
most of which will appear to be completely unrelated.

Class definitions usually go in a file named after the class. For example, the Spreadsheetcell class
definition can be put in a file called spreadsheetcell.h. This rule is not enforced and you are free
to name your file whatever you like.

Class Members

A class can have a number of members. A member can be a member function (which in turn is a
method, constructor, or destructor), a member variable, also called a data member, member enu-
merations, type aliases, nested classes, and so on.

The two lines that look like function prototypes declare the methods that this class supports:

void setValue (double inValue) ;
double getValue() const;

Chapter 1 points out that it is always a good idea to declare member functions that do not change
the object as const.

The line that looks like a variable declaration declares the data member for this class.

double mValue;

A class defines the member functions and data members that apply. They apply only to a specific
instance of the class, which is an object. The only exceptions to this rule are static members, which
are explained in Chapter 9. Classes define concepts; objects contain real bits. So, each object con-
tains its own value for the mvalue variable. The implementation of the member functions is shared
across all objects. Classes can contain any number of member functions and data members. You
cannot give a data member the same name as a member function.

Access Control

Every member in a class is subject to one of three access specifiers: public, protected, or private.
An access specifier applies to all member declarations that follow it, until the next access speci-

fier. In the SpreadsheetcCell class, the setValue () and getValue () methods have public access,
while the mvalue data member has private access.

The default access specifier for classes is private: all member declarations before the first access
specifier have the private access specification. For example, moving the public access specifier
below the setvalue () method declaration gives the setvalue () method private access instead of
public:

class SpreadsheetCell

{

void setValue (double inValue);

202 | CHAPTER8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

public:

double getValue()
private:

double mValue;

const;

}i

In C++, a struct can have methods just like a class. In fact, the only difference is that the default
access specifier for a struct is public while the default for a class is private. For example, the
SpreadsheetCell class can be rewritten using a struct as follows:

struct SpreadsheetCell

{

void setValue (double inValue) ;

double getValue () const;
private:

double mValue;

}i

It’s custom to use a struct instead of a class if you only need a collection of publicly accessible
data members and no or very few methods. An example of such a simple struct is a structure to
store point coordinates:

struct Point

{

double x;
double y;

}i

The following table summarizes the meanings of the three access specifiers:

ACCESS
SPECIFICATION

MEANING

WHEN TO USE

public Any code can call a public Behaviors (methods) that you want clients
member function or access a to use
public data member of an Access methods (getters and setters) for
object. private and protected data members
protected Any member function of the “Helper” methods that you do not want cli-
class can call protected ents to use
member functions and access
protected data members.
Member functions of a derived
class can access protected
members of a base class.
private Only member functions of the Everything should be private by default,

class can call private mem-
ber functions and access pri -
vate data members. Member
functions in derived classes
cannot access private mem-
bers from a base class.

especially data members. You can provide
protected getters and setters if you only
want to allow derived classes to access
them, and provide public getters and set-
ters if you want clients to access them.

Writing Classes | 203

Order of Declarations

You can declare your members and access control specifiers in any order: C++ does not impose
any restrictions, such as member functions before data members or public before private.

Additionally, you can repeat access specifiers. For example, the Spreadsheetcell definition could
look like this:

class SpreadsheetCell

{
public:
void setValue(double inValue);
private:
double mValue;
public:
double getValue() const;

}i

However, for clarity it is a good idea to group public, protected, and private declarations, and
to group member functions and data members within those declarations.

In-Class Member Initializers

Member variables can be initialized directly in the class definition. For example, the

SpreadsheetCell class can, by default, initialize mvalue to 0 directly in the class definition as
follows:

class SpreadsheetCell

{

private:
double mValue = 0;
i

Defining Methods

The preceding definition for the spreadsheetcell class is enough for you to create objects of the
class. However, if you try to call the setvalue () or getvalue () methods, your linker will com-
plain that those methods are not defined. That’s because the class definition specifies the prototypes
for the methods, but does not define their implementations. Just as you write both a prototype and
a definition for a stand-alone function, you must write a prototype and a definition for a method.
Note that the class definition must precede the method definitions. Usually the class definition goes
in a header file, and the method definitions go in a source file that #includes that header file. Here
are the definitions for the two methods of the Spreadsheetcell class:

#include "SpreadsheetCell.h"

void SpreadsheetCell::setValue (double inValue)

{
}

double SpreadsheetCell::getValue() const

{
}

mValue = inValue;

return mValue;

204 | CHAPTER8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

Note that the name of the class followed by two colons precedes each method name:

void SpreadsheetCell::setValue (double inValue)

The : : is called the scope resolution operator. In this context, the syntax tells the compiler that the
coming definition of the setvalue () method is part of the spreadsheetcell class. Note also that
you do not repeat the access specification when you define the method.

NOTE If you are using the Microsoft Visual C++ IDE, you will notice that by
default, all source files start as follows:

#include "stdafx.h"

In a VC++ project, by default, every source file should start with this line, and
your own include files must follow this. If you place your own include files
before stdafx.h, they will appear to have no effect and you will get all kinds of
compilation errors. This situation involves the concept of precompiled header
files, which is outside the scope of this book. Consult the Microsoft documenta-
tion on precompiled header files to learn the details.

Accessing Data Members

Non-static methods of a class, such as setvalue () and getvalue (), are always executed on behalf
of a specific object of that class. Inside a method body, you have access to all data members of

the class for that object. In the previous definition for setvalue (), the following line changes the
mvValue variable inside whatever object calls the method:

mValue = inValue;

If setvalue () is called for two different objects, the same line of code (executed once for each
object) changes the variable in two different objects.

Calling Other Methods

You can call methods of a class from inside another method. For example, consider an extension to
the Spreadsheetcell class. Real spreadsheet applications allow text data as well as numbers in the
cells. When you try to interpret a text cell as a number, the spreadsheet tries to convert the text to

a number. If the text does not represent a valid number, the cell value is ignored. In this program,
strings that are not numbers will generate a cell value of 0. Here is a first stab at a class definition
for a Spreadsheetcell that supports text data:

#include <string>
#include <string view>
class SpreadsheetCell
{
public:
void setValue (double inValue) ;
double getValue () const;

void setString(std::string view inString);

Writing Classes | 205

std::string getString() const;

private:
std::string doubleToString(double inValue) const;
double stringToDouble(std::string view inString) const;
double mValue;

NOTE This code uses the C++17 std: :string view class. If your compiler
is not yet C++17 compliant, you can replace std: :string view with const
std: :stringé.

This version of the class stores the data only as a double. If the client sets the data as a string, it

is converted to a double. If the text is not a valid number, the double value is set to 0.0. The class
definition shows two new methods to set and retrieve the text representation of the cell, and two
new private helper methods to convert a double to a string and vice versa. Here are the implemen-
tations of all the methods:

#include "SpreadsheetCell.h"
using namespace std;

void SpreadsheetCell::setValue (double inValue)

{
}

double SpreadsheetCell::getValue() const

{

mvValue = invValue;

return mValue;

}
void SpreadsheetCell::setString(string view inString)
{

mValue = stringToDouble(inString) ;

string SpreadsheetCell::getString() const

return doubleToString (mValue) ;

}
string SpreadsheetCell::doubleToString(double inValue) const
{
return to_string(inValue);
}

double SpreadsheetCell::stringToDouble(string view inString) const

{
}

return strtod(inString.data(), nullptr);

206

| CHAPTER 8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

Note that with this implementation of the doubleToString () method, a value of, for example, 6.1
is converted to “6.100000”. However, because it is a private helper method, you are free to modify
the implementation without having to modify any client code.

The this Pointer

Every normal method call passes a pointer to the object for which it is called as a “hidden” param-
eter with the name this. You can use this pointer to access data members or call methods, and you
can pass it to other methods or functions. It is sometimes also useful for disambiguating names. For
example, you could have defined the Spreadsheetcell class with a value data member instead

of mvalue and you could have defined the setvalue () method to take a parameter named value
instead of invalue. In that case, setvalue () would look like this:

void SpreadsheetCell::setValue (double value)

{
}

That line is confusing. Which value do you mean: the value that was passed as a parameter, or the
value that is a member of the object?

value = value;

NOTE With some compilers or compiler settings, the preceding ambiguous line
compiles without any warnings or errors, but it will not produce the results that
you are expecting.

In order to disambiguate the names, you can use the this pointer:

void SpreadsheetCell::setValue (double value)

{
}

However, if you use the naming conventions described in Chapter 3, you will never encounter this
type of name collision.

this->value = value;

You can also use the this pointer to call a function or method that takes a pointer to an object
from within a method of that object. For example, suppose you write a printcell () stand-alone
function (not method) like this:

void printCell (const SpreadsheetCell& cell)

{
}

If you want to call printcell () from the setvalue () method, you must pass *this as the argu-
ment to give printCell () a reference to the SpreadsheetCell on which setvalue () operates:

cout << cell.getString() << endl;

void SpreadsheetCell::setValue (double value)

{

this->value = value;
printCell (*this) ;

Writing Classes | 207

NOTE [nstead of writing a printCell () function, it would be more convenient
to overload the << operator, as explained in Chapter 15. You can then use the
following line to print a SpreadsheetCell:

cout << *this << endl;

Using Objects

The previous class definition says that a SpreadsheetCell consists of one data member, four pub-
lic methods, and two private methods. However, the class definition does not actually create any
SpreadsheetCells; it just specifies their shape and behavior. In that sense, a class is similar to
architectural blueprints. The blueprints specify what a house should look like, but drawing the blue-
prints doesn’t build any houses. Houses must be constructed later based on the blueprints.

Similarly, in C++ you can construct a SpreadsheetCell “object” from the SpreadsheetCell
class definition by declaring a variable of type spreadsheetcell. Just as a builder can build
more than one house based on a given set of blueprints, a programmer can create more than one
SpreadsheetCell object from a SpreadsheetcCell class. There are two ways to create and use
objects: on the stack and on the heap.

Objects on the Stack
Here is some code that creates and uses SpreadsheetCell objects on the stack:

SpreadsheetCell myCell, anotherCell;
myCell.setValue (6) ;

anotherCell.setString("3.2");

cout << "cell 1: " << myCell.getValue() << endl;

cout << "cell 2: " << anotherCell.getValue() << endl;

You create objects just as you declare simple variables, except that the variable type is the class
name. The . in lines like mycell.setvalue (6) ; is called the “dot” operator; it allows you to call
methods on the object. If there were any public data members in the object, you could access them
with the dot operator as well. Remember that public data members are not recommended.

The output of the program is as follows:

cell 1: 6
cell 2: 3.2

Objects on the Heap
You can also dynamically allocate objects by using new:

SpreadsheetCell* myCellp = new SpreadsheetCell() ;
myCellp->setValue(3.7);
cout << "cell 1: " << myCellp->getValue() <<

" " << myCellp->getString() << endl;
delete myCellp;
myCellp = nullptr;

208

| CHAPTER 8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

When you create an object on the heap, you access its members through the “arrow” operator: ->.
The arrow combines dereferencing (*) and member access (.). You could use those two operators
instead, but doing so would be stylistically awkward:

SpreadsheetCell* myCellp = new SpreadsheetCell() ;
(*myCellp) .setValue(3.7);
cout << "cell 1: " << (*myCellp).getValue() <<

" " << (*myCellp) .getString() << endl;
delete myCellp;
myCellp = nullptr;

Just as you must free other memory that you allocate on the heap, you must free the memory for
objects that you allocate on the heap by calling delete on the objects. To guarantee safety and to
avoid memory problems, you should use smart pointers, as in the following example:

auto myCellp = make unique<SpreadsheetCell>();

myCellp->setValue(3.7);
cout << "cell 1: " << myCellp->getValue() <<
" " << myCellp->getString() << endl;

With smart pointers you don’t need to manually free the memory; it happens automatically.

WARNING If you allocate an object with new, free it with delete when you are
finished with it, or use smart pointers to manage the memory automatically!

NOTE If you don’t use smart pointers, it is always a good idea to reset a pointer
to the null pointer after deleting the object to which it pointed. You are not
required to do this, but it will make debugging easier in case the pointer is acci-
dently used after deleting the object.

OBJECT LIFE CYCLES

The object life cycle involves three activities: creation, destruction, and assignment. It is important
to understand how and when objects are created, destroyed, and assigned, and how you can custom-
ize these behaviors.

Object Creation

Objects are created at the point you declare them (if they’re on the stack) or when you explicitly
allocate space for them with new, new[], or a smart pointer. When an object is created, all its
embedded objects are also created. Here is an example:

#include <strings>

Object Life Cycles | 209

class MyClass

{

private:
std::string mName;

}i

int main()

{
MyClass obj;
return 0;

}

The embedded string object is created at the point where the MyClass object is created in the
main () function and is destructed when its containing object is destructed.

It is often helpful to give variables initial values as you declare them, as in this example:
int x = 0;

Similarly, you should give initial values to objects. You can provide this functionality by declaring
and writing a special method called a constructor, in which you can perform initialization work for
the object. Whenever an object is created, one of its constructors is executed.

NOTE C++ programmers sometimes call a constructor a ctor.

Writing Constructors

Syntactically, a constructor is specified by a method name that is the same as the class name. A
constructor never has a return type and may or may not have parameters. A constructor that can be
called without any arguments is called a default constructor. This can be a constructor that does not
have any parameters, or a constructor for which all parameters have default values. There are cer-
tain contexts in which you may have to provide a default constructor and you will get compilation
errors if you have not provided one. Default constructors are discussed later in this chapter.

Here is a first attempt at adding a constructor to the SpreadsheetcCell class:

class SpreadsheetCell

{
public:
SpreadsheetCell (double initialValue) ;

}i

Just as you must provide implementations for normal methods, you must provide an implementation
for the constructor:

SpreadsheetCell: :SpreadsheetCell (double initialValue)

{
}

The SpreadsheetCell constructor is a member of the Spreadsheetcell class, so C++ requires the
normal SpreadsheetCell: : scope resolution before the constructor name. The constructor name

setValue (initialValue) ;

210 | CHAPTER 8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

itself is also SpreadsheetCell, so the code ends up with the funny-looking spreadsheetcell: :Spr
eadsheetCell. The implementation simply makes a call to setvalue ().

Using Constructors

Using the constructor creates an object and initializes its values. You can use constructors with both
stack-based and heap-based allocation.

Constructors on the Stack
When you allocate a spreadsheetCell object on the stack, you use the constructor like this:

SpreadsheetCell myCell(5), anotherCell (4);
cout << "cell 1: " << myCell.getValue() << endl;
cout << "cell 2: " << anotherCell.getValue() << endl;

Note that you do not call the spreadsheetcell constructor explicitly. For example, do not use
something like the following:

SpreadsheetCell myCell.SpreadsheetCell (5);

Similarly, you cannot call the constructor later. The following is also incorrect:

SpreadsheetCell myCell;
myCell.SpreadsheetCell (5) ;

Constructors on the Heap
When you dynamically allocate a SpreadsheetCell object, you use the constructor like this:

auto smartCellp = make unique<SpreadsheetCell>(4) ;

SpreadsheetCell* myCellp = new SpreadsheetCell (5);
SpreadsheetCell* anotherCellp = nullptr;
anotherCellp = new SpreadsheetCell (4);

delete myCellp; myCellp = nullptr;
delete anotherCellp; anotherCellp = nullptr;

Note that you can declare a pointer to a SpreadsheetCell object without calling the construc-
tor immediately, which is different from objects on the stack, where the constructor is called at the
point of declaration.

If you declare a pointer on the stack in a function, or declare a pointer as a data member in a class,
and you don’t immediately initialize the pointer, then it should be initialized to nullptr as in the
previous declaration for anothercellp. If you don’t assign it to nullptr, the pointer is undefined.
Accidentally using an undefined pointer will cause unexpected and difficult-to-diagnose memory
corruption. If you initialize it to nullptr, using that pointer will cause a memory access error in
most operating environments, instead of producing unexpected results.

Remember to call delete on objects that you dynamically allocate with new, or use smart pointers!

Object Life Cycles | 211

Providing Multiple Constructors

You can provide more than one constructor in a class. All constructors have the same name (the
name of the class), but different constructors must take a different number of arguments or differ-
ent argument types. In C++, if you have more than one function with the same name, the compiler
selects the one whose parameter types match the types at the call site. This is called overloading and
is discussed in detail in Chapter 9.

In the spreadsheetcCell class, it is helpful to have two constructors: one to take an initial double
value and one to take an initial string value. Here is the new class definition:

class SpreadsheetCell

{

public:
SpreadsheetCell (double initialValue) ;
SpreadsheetCell (std::string view initialValue);

}i
Here is the implementation of the second constructor:

SpreadsheetCell: :SpreadsheetCell (string view initialValue)

{
}

And here is some code that uses the two different constructors:

setString(initialvalue) ;

SpreadsheetCell aThirdCell ("test");

SpreadsheetCell aFourthCell(4.4);

auto aFifthCellp = make unique<SpreadsheetCell>("5.5");
cout << "aThirdCell: " << aThirdCell.getValue() << endl;
cout << "aFourthCell: " << aFourthCell.getValue() << endl;
cout << "aFifthCellp: " << aFifthCellp->getValue() << endl;

When you have multiple constructors, it is tempting to try to implement one constructor in terms of
another. For example, you might want to call the double constructor from the string constructor as
follows:

SpreadsheetCell: :SpreadsheetCell (string view initialValue)

{
}

That seems to make sense. After all, you can call normal class methods from within other meth-
ods. The code will compile, link, and run, but will not do what you expect. The explicit call to
the spreadsheetCell constructor actually creates a new temporary unnamed object of type
SpreadsheetCell. It does not call the constructor for the object that you are supposed to be
initializing.

SpreadsheetCell (stringToDouble (initialValue)) ;

However, C++ supports delegating constructors that allow you to call other constructors from the
same class from inside the ctor-initializer. This is discussed later in this chapter.

212 | CHAPTER 8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

Default Constructors

A default constructor is a constructor that requires no arguments. It is also called a 0-argument
constructor. With a default constructor, you can give initial values to data members even though the
client did not specify them.

When You Need a Default Constructor

Consider arrays of objects. The act of creating an array of objects accomplishes two tasks: it allo-
cates contiguous memory space for all the objects and it calls the default constructor on each object.
C++ fails to provide any syntax to tell the array creation code directly to call a different constructor.
For example, if you do not define a default constructor for the SpreadsheetCell class, the follow-
ing code does not compile:

SpreadsheetCell cells|[3];
SpreadsheetCell* myCellp = new SpreadsheetCell[10];

You can circumvent this restriction for stack-based arrays by using initializers like these:

SpreadsheetCell cells[3] = {SpreadsheetCell(0), SpreadsheetCell(23),
SpreadsheetCell (41) };

However, it is usually easier to ensure that your class has a default constructor if you intend to cre-
ate arrays of objects of that class. If you haven’t defined your own constructors, the compiler auto-
matically creates a default constructor for you. This compiler-generated constructor is discussed in a
later section.

A default constructor is also required for classes that you want to store in Standard Library contain-
ers, such as std: :vector.

Default constructors are also useful when you want to create objects of that class inside
other classes, which is shown later in this chapter in the section, “Constructor Initializers.”

How to Write a Default Constructor
Here is part of the spreadsheetcell class definition with a default constructor:

class SpreadsheetCell

{

public:
SpreadsheetCell () ;

}i
Here is a first crack at an implementation of the default constructor:

SpreadsheetCell: : SpreadsheetCell ()

{
}

If you use an in-class member initializer for mvalue, then the single statement in this default
constructor can be left out:

mValue = 0;

SpreadsheetCell: :SpreadsheetCell ()

{
}

Object Life Cycles | 213

You use the default constructor on the stack like this:

SpreadsheetCell myCell;
myCell.setValue (6) ;
cout << "cell 1: " << myCell.getValue() << endl;

The preceding code creates a new SpreadsheetCell called mycell, sets its value, and prints out its
value. Unlike other constructors for stack-based objects, you do not call the default constructor with
function-call syntax. Based on the syntax for other constructors, you might be tempted to call the
default constructor like this:

SpreadsheetCell myCell();

myCell.setValue (6) ;
cout << "cell 1: " << myCell.getValue() << endl;

Unfortunately, the line attempting to call the default constructor compiles. The line following it does
not compile. This problem is commonly known as the most vexing parse, and it means that your
compiler thinks the first line is actually a function declaration for a function with the name mycel1
that takes zero arguments and returns a SpreadsheetCell object. When it gets to the second line, it
thinks that you’re trying to use a function name as an object!

WARNING When creating an object on the stack, omit parentheses for the
default constructor.

For heap-based object allocation, the default constructor can be used as follows:

auto smartCellp = make unique<SpreadsheetCells>();

SpreadsheetCell* myCellp = new SpreadsheetCell() ;

delete myCellp; myCellp = nullptr;

Compiler-Generated Default Constructor
The first Spreadsheetcell class definition in this chapter looked like this:

class SpreadsheetCell
{
public:
void setValue (double inValue) ;
double getValue () const;
private:
double mvValue;

}i
This definition does not declare a default constructor, but still, the code that follows works fine:

SpreadsheetCell myCell;
myCell.setValue (6) ;

214 | CHAPTER 8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

The following definition is the same as the preceding definition except that it adds an explicit
constructor, accepting a double. It still does not explicitly declare a default constructor.

class SpreadsheetCell

{
public:
SpreadsheetCell (double initialValue);

}i
With this definition, the following code does not compile anymore:

SpreadsheetCell myCell;
myCell.setValue (6) ;

What’s going on here? The reason it is not compiling is that if you don’t specify any constructors,
the compiler writes one for you that doesn’t take any arguments. This compiler-generated default
constructor calls the default constructor on all object members of the class, but does not initialize
the language primitives such as int and double. Nonetheless, it allows you to create objects of that
class. However, if you declare a default constructor, or any other constructor, the compiler no longer
generates a default constructor for you.

NOTE A default constructor is the same thing as a 0-argument constructor. The
term default constructor does not refer only to the constructor that is automati-
cally generated if you fail to declare any constructors. It also refers to the con-
structor that is defaulted to if no arguments are required.

Explicitly Defaulted Constructors

In C++03 or older, if your class required a number of explicit constructors accepting arguments
but also a default constructor that did nothing, you still had to explicitly write your empty default
constructor as shown earlier.

To avoid having to write empty default constructors manually, C++ supports the concept of explic-
itly defaulted constructors. This allows you to write the class definition as follows without the need
to implement the default constructor in the implementation file:

class SpreadsheetCell

{
public:
SpreadsheetCell () = default;
SpreadsheetCell (double initialvValue) ;
SpreadsheetCell (std::string view initialvalue);

}i

SpreadsheetCell defines two custom constructors. However, the compiler still generates a stan-
dard compiler-generated default constructor due to the use of the default keyword.

Object Life Cycles | 215

Explicitly Deleted Constructors

C++ also supports the concept of explicitly deleted constructors. For example, you can define a
class with only static methods (see Chapter 9) for which you do not want to write any constructors
and you also do not want the compiler to generate the default constructor. In that case, you need to
explicitly delete the default constructor:

class MyClass

{
public:
MyClass() = delete;

}i
Constructor Initializers

Up to now, this chapter initialized data members in the body of a constructor, as in this example:

SpreadsheetCell: :SpreadsheetCell (double initialValue)

{
}

C++ provides an alternative method for initializing data members in the constructor, called the
constructor initializer, also known as the ctor-initializer or member initializer list. Here is the same
SpreadsheetCell constructor, rewritten to use the ctor-initializer syntax:

setValue (initialValue) ;

SpreadsheetCell: :SpreadsheetCell (double initialValue)
: mValue (initialvValue)
{

}

As you can see, the ctor-initializer appears syntactically between the constructor argument list and
the opening brace for the body of the constructor. The list starts with a colon and is separated by
commas. Each element in the list is an initialization of a data member using function notation or
the uniform initialization syntax, a call to a base class constructor (see Chapter 10), or a call to a
delegated constructor, which is discussed later.

Initializing data members with a ctor-initializer provides different behavior than does initializing data
members inside the constructor body itself. When C++ creates an object, it must create all the

data members of the object before calling the constructor. As part of creating these data members, it
must call a constructor on any of them that are themselves objects. By the time you assign a value to
an object inside your constructor body, you are not actually constructing that object. You are only
modifying its value. A ctor-initializer allows you to provide initial values for data members as they
are created, which is more efficient than assigning values to them later.

If your class has as data member an object of a class that has a default constructor, then you

do not have to explicitly initialize the object in the ctor-initializer. For example, if you have an
std::string as data member, its default constructor initializes the string to the empty string, so
initializing it to " in the ctor-initializer is superfluous.

216 | CHAPTER 8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

On the other hand, if your class has as data member an object of a class without a default constructor,
you have to use the ctor-initializer to properly construct that object. For example, take the following
SpreadsheetCell class:

class SpreadsheetCell

{
public:
SpreadsheetCell (double 4d) ;

}i

This class only has one explicit constructor accepting a double and does not include a default
constructor. You can use this class as a data member of another class as follows:

class SomeClass

{
public:
SomeClass () ;
private:
SpreadsheetCell mCell;

Vi
And you can implement the SomeClass constructor as follows:

SomeClass: :SomeClass () { }

However, with this implementation, the code does not compile. The compiler does not know how to
initialize the mce11l data member of SomeClass because it does not have a default constructor.

You have to initialize the mcell data member in the ctor-initializer as follows:

SomeClass: :SomeClass () : mCell(1.0) { }

NOTE Ctor-initializers allow initialization of data members at the time of their
creation.

Some programmers prefer to assign initial values in the body of the constructor, even though this
might be less efficient. However, several data types must be initialized in a ctor-initializer or with an
in-class initializer. The following table summarizes them:

DATA TYPE EXPLANATION

const data members You cannot legally assign a value to a const variable after it is
created. Any value must be supplied at the time of creation.

Reference data members References cannot exist without referring to something.

Object data members for which C++ attempts to initialize member objects using a default con-

there is no default constructor structor. If no default constructor exists, it cannot initialize the
object.

Base classes without default These are covered in Chapter 10.

constructors

Object Life Cycles | 217

There is one important caveat with ctor-initializers: they initialize data members in the order that
they appear in the class definition, not their order in the ctor-initializer. Take the following defini-
tion for a class called Foo. Its constructor simply stores a double value and prints out the value to
the console.

class Foo

{
public:
Foo (double value) ;
private:
double mValue;

}i

Foo: :Foo (double value) : mValue(value)

{
}

Suppose you have another class, MyClass, that contains a Foo object as one of its data members:

cout << "Foo::mValue = " << mValue << endl;

class MyClass

{
public:
MyClass (double value) ;
private:
double mValue;
Foo mFoo;
}i
Its constructor could be implemented as follows:
MyClass: :MyClass (double value) : mValue(value), mFoo (mValue)
{
cout << "MyClass::mValue = " << mValue << endl;

}

The ctor-initializer first stores the given value in mvalue, and then calls the Foo constructor with
mvalue as argument. You can create an instance of MyClass as follows:

MyClass instance(1.2);

Here is the output of the program:

Foo::mValue = 1.2
MyClass::mValue = 1.2

So, everything looks fine. Now make one tiny change to the MyClass definition. You just reverse the
order of the mvalue and mFoo data members. Nothing else is changed.

class MyClass
{
public:
MyClass (double value) ;
private:
Foo mFoo;
double mValue;

218

| CHAPTER 8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

The output of the program now depends on your system. It could, for example, be as follows:

Foo::mValue = -9.25596e+61
MyClass::mValue = 1.2

This is far from what you would expect. You might assume, based on your ctor-initializer, that
mvalue is initialized before using mvalue in the call to the Foo constructor. But C++ doesn’t work
that way. The data members are initialized in the order they appear in the definition of the class, not
the order in the ctor-initializer! So, in this case, the Foo constructor is called first with an uninitial-
ized mvalue.

Note that some compilers issue a warning when the order in the class definition does not match the
order in the ctor-initializer.

WARNING Ctor-initializers initialize data members in their declared order in
the class definition, not their order in the ctor-initializer list.

Copy Constructors

There is a special constructor in C++ called a copy constructor that allows you to create an object
that is an exact copy of another object. If you don’t write a copy constructor, C++ generates one
for you that initializes each data member in the new object from its equivalent data member in the
source object. For object data members, this initialization means that their copy constructors are

called.

Here is the declaration for a copy constructor in the SpreadsheetcCell class:

class SpreadsheetCell

{
public:
SpreadsheetCell (const SpreadsheetCell& src);

}i

The copy constructor takes a const reference to the source object. Like other constructors, it does
not return a value. Inside the constructor, you should copy all the data members from the source
object. Technically, of course, you can do whatever you want in the copy constructor, but it’s gener-
ally a good idea to follow expected behavior and initialize the new object to be a copy of the old
one. Here is a sample implementation of the SpreadsheetCell copy constructor. Note the use of
the ctor-initializer.

SpreadsheetCell: :SpreadsheetCell (const SpreadsheetCell& src)
: mValue (src.mValue)
{

}

Object Life Cycles | 219

NOTE The spreadsheetCell copy constructor is only shown for demonstra-
tion purposes. In fact, in this case, the copy constructor can be omitted because
the default compiler-generated one is good enough. However, under certain
conditions, this default copy constructor is not sufficient. These conditions are
covered in Chapter 9.

Given a set of data members, called m1, m2, ... mn, the compiler-generated copy constructor can be
expressed as follows:

classname: :classname (const classnameé& src)
: ml(src.ml), m2(src.m2), ... mn(src.mn) { }

Therefore, in most circumstances, there is no need for you to specify a copy constructor!

When the Copy Constructor Is Called

The default semantics for passing arguments to functions in C++ is pass-by-value. That means that
the function or method receives a copy of the value or object. Thus, whenever you pass an object to
a function or method, the compiler calls the copy constructor of the new object to initialize it. For
example, suppose you have the following printString () function accepting a string parameter by
value:

void printString(string inString)

{
}

Recall that the C++ string is actually a class, not a built-in type. When your code makes a call to
printString() passing a string argument, the string parameter inString is initialized with

a call to its copy constructor. The argument to the copy constructor is the string you passed

to printString (). In the following example, the string copy constructor is executed for the
inString object in printString () with name as its parameter.

cout << inString << endl;

string name = "heading one";
printString(name) ;

When the printString () method finishes, instring is destroyed. Because it was only a copy of
name, name remains intact. Of course, you can avoid the overhead of copy constructors by passing
parameters as const references.

When returning objects by value from a function, the copy constructor might also get called. This is
discussed in the section “Objects as Return Values” later in this chapter.

Calling the Copy Constructor Explicitly

You can use the copy constructor explicitly as well. It is often useful to be able to construct
one object as an exact copy of another. For example, you might want to create a copy of a
SpreadsheetCell object like this:

SpreadsheetCell myCelll(4);
SpreadsheetCell myCell2 (myCelll) ;

220

| CHAPTER 8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

Passing Objects by Reference

In order to avoid copying objects when you pass them to functions and methods, you should declare
that the function or method takes a reference to the object. Passing objects by reference is usually
more efficient than passing them by value, because only the address of the object is copied, not the
entire contents of the object. Additionally, pass-by-reference avoids problems with dynamic memory
allocation in objects, which is discussed in Chapter 9.

When you pass an object by reference, the function or method using the object reference could
change the original object. When you are only using pass-by-reference for efficiency, you should
preclude this possibility by declaring the object const as well. This is known as passing objects by
const reference and has been done in examples throughout this book.

NOTE For performance reasons, it is best to pass objects by const reference
instead of by value.

Note that the SpreadsheetCell class has a number of methods accepting an std: :string view as
parameter. As discussed in Chapter 2, a string view is basically just a pointer and a length. So, it
is very cheap to copy, and is usually passed by value.

Also primitive types, such as int, double, and so on, should just be passed by value. You don’t gain
anything by passing such types by const reference.

The doubleTostring () method of the spreadsheetcell class always returns a string by value
because the implementation of the method creates a local string object that at the end of the
method is returned to the caller. Returning a reference to this string wouldn’t work because the
string to which it references will be destroyed when the function exits.

Explicitly Defaulted and Deleted Copy Constructor

You can explicitly default or delete a compiler-generated copy constructor as follows:

SpreadsheetCell (const SpreadsheetCell& src) = default;
or

SpreadsheetCell (const SpreadsheetCell& src) = delete;

By deleting the copy constructor, the object cannot be copied anymore. This can be used to disallow
passing the object by value, as discussed in Chapter 9.

Initializer-List Constructors

An initializer-list constructor is a constructor with an std: :initializer list<T> as first para-
meter, without any additional parameters or with additional parameters having default values. Before
you can use the std: :initializer list<T> template, you need to include the <initializer lists>
header. The following class demonstrates its use. The class accepts only an initializer list<T>
with an even number of elements; otherwise, it throws an exception.

Object Life Cycles | 221

class EvenSequence
{
public:
EvenSequence (initializer list<double> args)

{

o

if (args.size() % 2 != 0) {
throw invalid_argument ("initializer_ list should "
"contain even number of elements.");

}

mSequence.reserve (args.size()) ;

for (const auto& value : args)
mSequence.push back (value) ;

}

void dump () const

{

for (const auto& value : mSequence) {
cout << wvalue << ", ";

i
cout << endl;

}

private:
vector<double> mSequence;

}i

Inside the initializer-list constructor you can access the elements of the initializer-list with a range-
based for loop. You can get the number of elements in the initializer-list with the size () method.

The EvenSequence initializer-list constructor uses a range-based for loop to copy elements from
the given initializer list<T>. You can also use the assign () method of vector. The different
methods of vector, including assign (), are discussed in detail in Chapter 17. To give you an idea
of the power of a vector, here is the initializer-list constructor using assign ():

EvenSequence (initializer list<double> args)

{

°

if (args.size() % 2 != 0) {
throw invalid argument ("initializer list should "
"contain even number of elements.");

}

mSequence.assign(args) ;

}

EvenSequence objects can be constructed as follows:

EvenSequence pl = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0};
pl.dump () ;

try {
EvenSequence p2 = {1.0, 2.0, 3.0};
} catch (const invalid_argument& e) {
cout << e.what() << endl;
}

222

| CHAPTER 8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

The construction of p2 throws an exception because it has an odd number of elements in the initial-
izer-list. The preceding equal signs are optional and can be left out, as in this example:

EvenSequence pl{1.0, 2.0, 3.0, 4.0, 5.0, 6.0};

The Standard Library has full support for initializer-list constructors. For example, the
std: :vector container can be initialized with an initializer-list:

std::vector<std::string> myVec = {"String 1", "String 2", "String 3"};

Without initializer-list constructors, one way to initialize this vector is by using several push
back () calls:

std::vector<std: :string> myVec;
myVec.push back ("String 1");
myVec.push back("String 2");
myVec.push back ("String 3");

Initializer lists are not limited to constructors and can also be used with normal functions as
explained in Chapter 1.

Delegating Constructors

Delegating constructors allow constructors to call another constructor from the same class.
However, this call cannot be placed in the constructor body; it must be in the ctor-initializer and it
must be the only member-initializer in the list. Following is an example:

SpreadsheetCell::SpreadsheetCell (string view initialValue)
SpreadsheetCell (stringToDouble (initialValue))
{

}

When this string_view constructor (the delegating constructor) is called, it first delegates the call
to the target constructor, which is the double constructor in this example. When the target con-
structor returns, the body of the delegating constructor is executed.

Make sure you avoid constructor recursion while using delegate constructors. Here is an example:

class MyClass

{

MyClass (char c) : MyClass(1.2) { }
MyClass (double d) : MyClass('m') { }

}i

The first constructor delegates to the second constructor, which delegates back to the first one. The
behavior of such code is undefined by the standard and depends on the compiler.

Summary of Compiler-Generated Constructors

The compiler can automatically generate a default constructor and a copy constructor for every class.
However, the constructors that the compiler automatically generates depend on the constructors
that you define yourself according to the rules in the following table.

Object Life Cycles | 223

IF YOU DEFINE . . .

[no constructors]

A default constructor
only

A copy constructor only

A single-argument or
multi-argument non-
copy constructor only

A default constructor
as well as a single-
argument or multi-
argument non-copy
constructor

... THEN THE COMPILER
GENERATES . . .

A default constructor

A copy constructor

A copy constructor

No constructors

A copy constructor

A copy constructor

...AND YOU CAN CREATE AN OBJECT . ..

With no arguments:
SpreadsheetCell cell;
As a copy of another object:

SpreadsheetCell myCell (cell) ;

With no arguments:
SpreadsheetCell cell;

As a copy of another object:
SpreadsheetCell myCell (cell) ;
Theoretically, as a copy of another
object. Practically, you can’t create any
objects, because there are no non-copy
constructors.

With arguments:

SpreadsheetCell cell(6) ;

As a copy of another object:

SpreadsheetCell myCell (cell) ;

With no arguments:
SpreadsheetCell cell;

With arguments:
SpreadsheetCell myCell (5) ;

As a copy of another object:

SpreadsheetCell anotherCell (cell) ;

Note the lack of symmetry between the default constructor and the copy constructor. As long as you
don’t define a copy constructor explicitly, the compiler creates one for you. On the other hand, as
soon as you define any constructor, the compiler stops generating a default constructor.

As mentioned before in this chapter, the automatic generation of a default constructor and a default
copy constructor can be influenced by defining them as explicitly defaulted or explicitly deleted.

NOTE A final type of constructor is called a move constructor, which is required
to implement move semantics. Move semantics can be used to increase perfor-
mance in certain situations and is discussed in detail in Chapter 9.

224 | CHAPTER8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

Object Destruction

When an object is destroyed, two events occur: the object’s destructor method is called, and the
memory it was taking up is freed. The destructor is your chance to perform any cleanup work for
the object, such as freeing dynamically allocated memory or closing file handles. If you don’t declare
a destructor, the compiler writes one for you that does recursive member-wise destruction and
allows the object to be deleted. The section on dynamic memory allocation in Chapter 9 shows you
how to write a destructor.

Objects on the stack are destroyed when they go out of scope, which means whenever the current
function, method, or other execution block ends. In other words, whenever the code encounters an
ending curly brace, any objects created on the stack within those curly braces are destroyed. The
following program shows this behavior:

int main()

{

SpreadsheetCell myCell(5);

if (myCell.getValue() == 5) {
SpreadsheetCell anotherCell(6) ;

}

cout << "myCell: " << myCell.getValue() << endl;
return 0;

}

Objects on the stack are destroyed in the reverse order of their declaration (and construction). For
example, in the following code fragment, mycel12 is created before anotherCell2, so another-
cell2 is destroyed before mycell2 (note that you can start a new code block at any point in your
program with an opening curly brace):

{

SpreadsheetCell myCell2 (4);
SpreadsheetCell anotherCell2 (5) ;

}

This ordering also applies to objects that are data members of other objects. Recall that data mem-
bers are initialized in the order of their declaration in the class. Thus, following the rule that objects
are destroyed in the reverse order of their construction, data member objects are destroyed in the
reverse order of their declaration in the class.

Objects allocated on the heap without the help of smart pointers are not destroyed automatically.
You must call delete on the object pointer to call its destructor and free the memory. The following
program shows this behavior:

int main()

{
SpreadsheetCell* cellPtrl = new SpreadsheetCell(5);
SpreadsheetCell* cellPtr2 = new SpreadsheetCell(6);
cout << "cellPtrl: " << cellPtrl-s>getValue() << endl;
delete cellbPtrl;
cellbPtrl = nullptr;
return 0;

Object Life Cycles | 225

WARNING Do not write programs like the preceding example where cel1pPtr2
is not deleted. Make sure you always free dynamically allocated memory by call-
ing delete or deletel] depending on whether the memory was allocated using
new or new([]. Or better yet, use smart pointers as discussed earlier!

NOTE There are tools that are able to detect unfreed objects. These tools are
discussed in Chapter 7.

Assigning to Objects

Just as you can assign the value of one int to another in C++, you can assign the value of one object
to another. For example, the following code assigns the value of myCcell to anothercCell:

SpreadsheetCell myCell (5), anotherCell;
anotherCell = myCell;

You might be tempted to say that mycell is “copied” to anothercell. However, in the world of
C++, “copying” only occurs when an object is being initialized. If an object already has a value
that is being overwritten, the more accurate term is “assigned to.” Note that the facility that C++
provides for copying is the copy constructor. Because it is a constructor, it can only be used for
object creation, not for later assignments to the object.

Therefore, C++ provides another method in every class to perform assignment. This method is
called the assignment operator. Its name is operator= because it is actually an overloading of the
= operator for that class. In the preceding example, the assignment operator for anothercell is
called, with mycel1 as the argument.

NOTE The assignment operator as explained in this section is sometimes called
the copy assignment operator because both the left-hand side and the right-hand
side object stay alive after the assignment. This distinction is made because
there is also a move assignment operator in which the right-hand side object is
destroyed after the assignment for performance reasons. This move assignment
operator is explained in Chapter 9.

As usual, if you don’t write your own assignment operator, C++ writes one for you to allow objects
to be assigned to one another. The default C++ assignment behavior is almost identical to its default
copying behavior: it recursively assigns each data member from the source to the destination object.

Declaring an Assignment Operator

Here is the assignment operator for the SpreadsheetCell class:

226 | CHAPTER8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

class SpreadsheetCell

{
public:
SpreadsheetCell& operator=(const SpreadsheetCell& rhs);

}i

The assignment operator often takes a const reference to the source object, like the copy construc-
tor. In this case, the source object is called rhs, which stands for right-hand side of the equals sign,
but you are free to call it whatever you want. The object on which the assignment operator is called
is the left-hand side of the equals sign.

Unlike a copy constructor, the assignment operator returns a reference to a SpreadsheetCell
object. The reason is that assignments can be chained, as in the following example:

myCell = anotherCell = aThirdCell;

When that line is executed, the first thing that happens is the assignment operator for anothercell
is called with aThirdcel1l as its “right-hand side” parameter. Next, the assignment operator for
myCell is called. However, its parameter is not anothercCell. Its right-hand side is the result of

the assignment of aThirdcCell to anothercell. If that assignment fails to return a result, there is
nothing to pass to myCell.

You might be wondering why the assignment operator for myCell can’t just take anothercell. The
reason is that using the equals sign is actually just shorthand for what is really a method call. When
you look at the line in its full functional syntax, you can see the problem:

myCell.operator=(anotherCell.operator=(aThirdCell)) ;

Now, you can see that the operator= call from anothercell must return a value, which is passed
to the operator= call for mycel11. The correct value to return is anothercell itself, so it can serve
as the source for the assignment to mycell. However, returning anothercell directly would be
inefficient, so you can return a reference to anotherCell.

WARNING You could actually declare the assignment operator to return what-
ever type you wanted, including void. However, you should always return a ref-
erence to the object on which it is called because that’s what clients expect.

Defining an Assignment Operator

The implementation of the assignment operator is similar to that of a copy constructor, with several
important differences. First, a copy constructor is called only for initialization, so the destination
object does not yet have valid values. An assignment operator can overwrite the current values in
an object. This consideration doesn’t really come into play until you have dynamically allocated
memory in your objects. See Chapter 9 for details.

Second, it’s legal in C++ to assign an object to itself. For example, the following code compiles and
runs:

SpreadsheetCell cell (4);
cell = cell;

Object Life Cycles | 227

Your assignment operator needs to take the possibility of self-assignment into account. In the
SpreadsheetCell class, this is not important, as its only data member is a primitive type, double.
However, when your class has dynamically allocated memory or other resources, it’s paramount to
take self-assignment into account, as is discussed in detail in Chapter 9. To prevent problems in such
cases, assignment operators usually check for self-assignment at the beginning of the method and
return immediately.

Here is the start of the definition of the assignment operator for the Spreadsheetcell class:

SpreadsheetCell& SpreadsheetCell: :operator=(const SpreadsheetCellé& rhs)

{

if (this == &rhs) ({

This first line checks for self-assignment, but it might be a bit cryptic. Self-assignment occurs when
the left-hand side and the right-hand side of the equals sign are the same. One way to tell if two
objects are the same is if they occupy the same memory location—more explicitly, if pointers to
them are equal. Recall that this is a pointer to an object accessible from any method called on the
object. Thus, this is a pointer to the left-hand side object. Similarly, &rhs is a pointer to the right-
hand side object. If these pointers are equal, the assignment must be self-assignment, but because
the return type is SpreadsheetCells, a correct value must still be returned. All assignment operators
return *this, and the self-assignment case is no exception:

return *this;

}

this is a pointer to the object on which the method executes, so *this is the object itself. The
compiler returns a reference to the object to match the declared return value. Now, if it is not self-
assignment, you have to do an assignment to every member:

mValue = rhs.mValue;
return *this;

}

Here the method copies the values, and finally, it returns *this, as explained previously.

NOTE The spreadsheetCell assignment operator is only shown for demon-
stration purposes. In fact, in this case, the assignment operator can be omit-

ted because the default compiler-generated one is good enough; it does simple
member-wise assignments of all the data members. However, under certain con-
ditions, this default assignment operator is not sufficient. These conditions are
covered in Chapter 9.

Explicitly Defaulted and Deleted Assignment Operator
You can explicitly default or delete a compiler-generated assignment operator as follows:

SpreadsheetCell& operator=(const SpreadsheetCell& rhs) = default;
or

SpreadsheetCell& operator=(const SpreadsheetCell& rhs) = delete;

228 | CHAPTER8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

Compiler-Generated Copy Constructor and Copy Assignment
Operator

C++11 has deprecated the generation of a copy constructor if the class has a user-declared copy
assignment operator or destructor. If you still need a compiler-generated copy constructor in such a
case, you can explicitly default one:

MyClass (const MyClassé& src) = default;

C++11 has also deprecated the generation of a copy assignment operator if the class has a user-
declared copy constructor or destructor. If you still need a compiler-generated copy assignment
operator in such a case, you can explicitly default one:

MyClass& operator=(const MyClass& rhs) = default;

Distinguishing Copying from Assignment

It is sometimes difficult to tell when objects are initialized with a copy constructor rather than
assigned to with the assignment operator. Essentially, things that look like a declaration are going
to be using copy constructors, and things that look like assignment statements are handled by the
assignment operator. Consider the following code:

SpreadsheetCell myCell(5);
SpreadsheetCell anotherCell (myCell) ;

Anothercell is constructed with the copy constructor.

SpreadsheetCell aThirdCell = myCell;

aThirdcell is also constructed with the copy constructor, because this is a declaration. The
operator= is not called for this line! This syntax is just another way to write SpreadsheetCell
aThirdcell (myCell) ;. However, consider the following code:

anotherCell = myCell;

Here, anothercell has already been constructed, so the compiler calls operator=.

Objects as Return Values

When you return objects from functions or methods, it is sometimes difficult to see exactly what
copying and assignment is happening. For example, the implementation of SpreadsheetCell: :
getString () looks like this:

string SpreadsheetCell::getString() const

{
}

Now consider the following code:

return doubleToString(mValue) ;

SpreadsheetCell myCell2(5);
string sl;
sl = myCell2.getString() ;

Object Life Cycles | 229

When getstring () returns the string, the compiler actually creates an unnamed temporary string
object by calling a string copy constructor. When you assign this result to s1, the assignment
operator is called for s1 with the temporary string as a parameter. Then, the temporary string
object is destroyed. Thus, the single line of code invokes the copy constructor and the assignment
operator (for two different objects). However, compilers are free and sometimes required to imple-
ment Return Value Optimization (RVO), also known as copy elision, to optimize away costly copy
constructions when returning values.

In case you’re not confused enough, consider this code:

SpreadsheetCell myCell3(5);
string s2 = myCell3.getString();

In this case, getString () still creates a temporary unnamed string object when it returns. But
now, s2 gets its copy constructor called, not its assignment operator.

With move semantics, the compiler can use a move constructor instead of a copy constructor to
return the string from getString (). This is more efficient and is discussed in Chapter 9.

If you ever forget the order in which these things happen or which constructor or operator is called,
you can easily figure it out by temporarily including helpful output in your code or by stepping
through it with a debugger.

Copy Constructors and Object Members

You should also note the difference between assignment and copy constructor calls in constructors.
If an object contains other objects, the compiler-generated copy constructor calls the copy construc-
tors of each of the contained objects recursively. When you write your own copy constructor, you
can provide the same semantics by using a ctor-initializer, as shown previously. If you omit a data
member from the ctor-initializer, the compiler performs default initialization on it (a call to the
default constructor for objects) before executing your code in the body of the constructor. Thus, by
the time the body of the constructor executes, all object data members have already been initialized.

For example, you could write your copy constructor like this:

SpreadsheetCell: :SpreadsheetCell (const SpreadsheetCell& src)

{
}

However, when you assign values to data members in the body of the copy constructor, you are
using the assignment operator on them, not the copy constructor, because they have already been
initialized, as described previously.

mValue = src.mValue;

If you write the copy constructor as follows, then mvalue is initialized using the copy constructor:

SpreadsheetCell: :SpreadsheetCell (const SpreadsheetCell& src)
: mValue (src.mValue)
{

}

230 | CHAPTER8 GAINING PROFICIENCY WITH CLASSES AND OBJECTS

SUMMARY

This chapter covered the fundamental aspects of C++’s facilities for object-oriented programming;:
classes and objects. It first reviewed the basic syntax for writing classes and using objects, includ-
ing access control. Then, it covered object life cycles: when objects are constructed, destructed, and
assigned to, and what methods those actions invoke. The chapter included details of the constructor
syntax, including ctor-initializers and initializer-list constructors, and introduced the notion of copy
assignment operators. It also specified exactly which constructors the compiler writes for you, and
under what circumstances, and explained that default constructors require no arguments.

You may have found this chapter to be mostly review. Or, it may have opened your eyes to the world
of object-oriented programming in C++. In any case, now that you are proficient with objects and
classes, read Chapter 9 to learn more about their tricks and subtleties.

Mastering Classes and Obijects

WHAT'S IN THIS CHAPTER?

How to use dynamic memory allocation in objects
What the copy-and-swap idiom is

What rvalues and rvalue references are

How move semantics can increase performance

What the rule of zero means

Y Y Y VY Y Y

The different kinds of data members you can have (static, const,
reference)

\

The different kinds of methods you can implement (static, const,
inline)

The details of method overloading

How to work with default arguments

How to use nested classes

How to make classes friends of other classes

What operator overloading is

Y Y Y VY Y Y

How to write separate interface and implementation classes

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www . wrox.com/go/proc++4e on the Download

Code tab.

Professional C++, Fourth Edition. Marc Gregoire.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

232

| CHAPTER9 MASTERING CLASSES AND OBJECTS

Chapter 8 started the discussion on classes and objects. Now it’s time to master their subtleties

so you can use them to their full potential. By reading this chapter, you will learn how to manipu-
late and exploit some of the most powerful aspects of the C++ language in order to write safe,
effective, and useful classes.

Many of the concepts in this chapter arise in advanced C++ programming, especially in the C++
Standard Library.

FRIENDS

C++ allows classes to declare that other classes, member functions of other classes, or non-member
functions are friends, and can access protected and private data members and methods. For
example, suppose you have two classes called Foo and Bar. You can specify that the Bar class is a
friend of Foo as follows:

class Foo

{

friend class Bar;

}i

Now all the methods of Bar can access the private and protected data members and methods of
Foo.

If you only want to make a specific method of Bar a friend, you can do that as well. Suppose the
Bar class has a method processFoo (const Foos foo). The following syntax is used to make this
method a friend of Foo:

class Foo

{

friend void Bar::processFoo (const Foo& foo) ;

}i

Standalone functions can also be friends of classes. You might, for example, want to write a func-
tion that dumps all data of a Foo object to the console. You might want this function to be outside
the Foo class to model an external audit, but the function should be able to access the internal data
members of the object in order to check it properly. Here is the Foo class definition with a friend
dumpFoo()funCﬁon:

class Foo

{

friend void dumpFoo (const Foo& foo) ;

}i

The friend declaration in the class serves as the function’s prototype. There’s no need to write the
prototype elsewhere (although it’s harmless to do so).

Here is the function definition:

void dumpFoo (const Foo& foo)

{

Dynamic Memory Allocation in Objects | 233

}

You write this function just like any other function, except that you can directly access private and
protected data members of Foo. You don’t repeat the friend keyword in the function definition.

Note that a class needs to know which other classes, methods, or functions want to be its friends; a
class, method, or function cannot declare itself to be a friend of some other class and access the non-
public names of that class.

friend classes and methods are easy to abuse; they allow you to violate the principle of encapsula-
tion by exposing internals of your class to other classes or functions. Thus, you should use them
only in limited circumstances. Some use cases are shown throughout this chapter.

DYNAMIC MEMORY ALLOCATION IN OBJECTS

Sometimes you don’t know how much memory you will need before your program actually runs. As
you read in Chapter 7, the solution is to dynamically allocate as much space as you need during pro-
gram execution. Classes are no exception. Sometimes you don’t know how much memory an object
will need when you write the class. In that case, the object should dynamically allocate memory.
Dynamically allocated memory in objects provides several challenges, including freeing the memory,
handling object copying, and handling object assignment.

The Spreadsheet Class

Chapter 8 introduces the SpreadsheetcCell class. This chapter moves on to write the Spreadsheet
class. As with the spreadsheetcell class, the spreadsheet class evolves throughout this chapter.
Thus, the various attempts do not always illustrate the best way to do every aspect of class writing.
To start, a Spreadsheet is simply a two-dimensional array of Spreadsheetcells, with methods to
set and retrieve cells at specific locations in the spreadsheet. Although most spreadsheet applica-
tions use letters in one direction and numbers in the other to refer to cells, this Spreadsheet uses
numbers in both directions. Here is a first attempt at a class definition for a simple Spreadsheet
class:

#include <cstddefs>
#include "SpreadsheetCell.h"

class Spreadsheet
{
public:
Spreadsheet (size t width, size t height);
void setCellAt(size t x, size t y, const SpreadsheetCellé& cell);
SpreadsheetCell& getCellAt (size t x, size t y);
private:
bool inRange(size t value, size t upper) const;
size t mWidth = 0;
size_t mHeight = 0;
SpreadsheetCell** mCells = nullptr;

234 | CHAPTER9 MASTERING CLASSES AND OBJECTS

NOTE The Spreadsheet class uses normal pointers for the mcells array. This
is done throughout this chapter to show the consequences and to explain how
you should handle dynamic memory in classes. In production code, you should
use one of the standard C++ containers, like std: :vector which greatly simpli-
fies the implementation of Spreadsheet, but then you won’t learn how to cor-
rectly handle dynamic memory using raw pointers. In modern C++, you should
never use raw pointers, but you might come across them in existing code, in
which case you need to know how to work with them.

Note that the Spreadsheet class does not contain a standard two-dimensional array of
SpreadsheetCells. Instead, it contains a SpreadsheetCell+**, This is because each Spreadsheet
object might have different dimensions, so the constructor of the class must dynamically allocate the
two-dimensional array based on the client-specified height and width. In order to allocate dynami-
cally a two-dimensional array, you need to write the following code. Note that in C++, unlike in
Java, it’s not possible to simply write new SpreadsheetCell [mWidth] [mHeight].

Spreadsheet: :Spreadsheet (size t width, size t height)
: mWidth(width), mHeight (height)
{

mCells = new SpreadsheetCell* [mWidth];

for (size t 1 = 0; i < mWidth; i++) {
mCells[i] = new SpreadsheetCell [mHeight];

}

}

The resulting memory for a Spreadsheet called s1 on the stack with width 4 and height 3 is shown
in Figure 9-1.

Stack Heap
Each element is an
d
7 unname
L1 SpreadsheetCell*.
4 3 - VNN

mWidth mHeight mCells

Spreadsheet s1

Each element is an unnamed
SpreadsheetCell.

FIGURE 9-1

The implementations of the set and retrieval methods are straightforward:

void Spreadsheet::setCellAt(size t x, size t y, const SpreadsheetCell& cell)

{

if (!inRange(x, mWidth) || !inRange(y, mHeight)) {

Dynamic Memory Allocation in Objects | 235

throw std::out _of range("");

}

mCells[x] [y] = cell;

}

SpreadsheetCell& Spreadsheet::getCellAt (size t x, size t y)

{
if (!inRange(x, mWidth) || !inRange(y, mHeight)) {
throw std::out_of range("");
}

return mCells[x] [y];

}

Note that these two methods use a helper method inRange () to check that x and y represent valid
coordinates in the spreadsheet. Attempting to access an array element at an out-of-range index will
cause the program to malfunction. This example uses exceptions, which are mentioned in Chapter 1
and described in detail in Chapter 14.

If you look at the setcellat () and getcellat () methods, you see there is some clear code dupli-
cation. Chapter 6 explains that code duplication should be avoided at all costs. So, let’s follow
that guideline. Instead of a helper method called inrange (), the following verifyCoordinate ()
method is defined for the class:

void verifyCoordinate(size t x, size t y) const;

The implementation checks the given coordinate and throws an exception if the coordinate is
invalid:

void Spreadsheet::verifyCoordinate(size t x, size t y) const

{
if (x >= mWidth || y >= mHeight) ({
throw std::out _of range("");
}

}

The setcellat () and getCellat () methods can now be simplified:

void Spreadsheet::setCellAt(size t x, size t y, const SpreadsheetCell& cell)

{

verifyCoordinate (x, y);
mCells [x] [y] = cell;

}

SpreadsheetCell& Spreadsheet::getCellAt(size t x, size t y)

{

verifyCoordinate (x, y);
return mCells[x] [y];

Freeing Memory with Destructors

Whenever you are finished with dynamically allocated memory, you should free it. If you dynami-
cally allocate memory in an object, the place to free that memory is in the destructor. The compiler

236 | CHAPTER9 MASTERING CLASSES AND OBJECTS

guarantees that the destructor is called when the object is destroyed. Here is the Spreadsheet class
definition with a destructor:

class Spreadsheet

{
public:
Spreadsheet (size_t width, size t height);
~Spreadsheet () ;

}i
The destructor has the same name as the name of the class (and of the constructors), preceded by

a tilde (~). The destructor takes no arguments, and there can only be one of them. Destructors are
implicitly marked as noexcept, since they should not throw any exceptions.

NOTE A function can be marked with the noexcept keyword to specify that it
won’t throw any exceptions. For example:

void myNonThrowingFunction () noexcept { /* ... */ }

Destructors are implicitly noexcept, so you don’t need to add the keyword for
them. If a noexcept function does throw an exception, the program is termi-
nated. More details about noexcept, and why it is important that destructors
don’t throw any exceptions, are discussed in Chapter 14, “Handling Errors.”

Here is the implementation of the Spreadsheet class destructor:

Spreadsheet: : ~Spreadsheet ()

{

for (size t i = 0; i < mWidth; i++) {
delete [] mCells[i];
}

delete [] mCells;
mCells = nullptr;

}

This destructor frees the memory that was allocated in the constructor. However, no rule requires
you to free memory in the destructor. You can write whatever code you want in the destructor, but
it is a good idea to use it only for freeing memory or disposing of other resources.

Handling Copying and Assignment

Recall from Chapter 8 that if you don’t write a copy constructor and an assignment operator your-
self, C++ writes them for you. These compiler-generated methods recursively call the copy construc-
tor or assignment operator on object data members. However, for primitives, such as int, double,
and pointers, they provide shallow or bitwise copying or assignment: they just copy or assign the

Dynamic Memory Allocation in Objects | 237

data members from the source object directly to the destination object. That presents problems
when you dynamically allocate memory in your object. For example, the following code copies the
spreadsheet s1 to initialize s when s1 is passed to the printSpreadsheet () function:

#include "Spreadsheet.h"

void printSpreadsheet (Spreadsheet s)

{
}

int main()

{

Code omitted for brevity.

Spreadsheet sl1(4, 3);
printSpreadsheet (s1) ;
return 0;

}

The spreadsheet contains one pointer variable: mcel1s. A shallow copy of a spreadsheet gives
the destination object a copy of the mcells pointer, but not a copy of the underlying data. Thus,

you end up with a situation where both s and s1 have a pointer to the same data, as shown in
Figure 9-2.

Stack Heap

4 3 T/ 3 NN

mWidth mHeight mCells

Spreadsheet s1 /

4 3 /

mWidth mHeight mCells

Spreadsheet s
FIGURE 9-2

If s changes something to which mcel1s points, that change shows up in s1 too. Even worse, when
the printSpreadsheet () function exits, s’s destructor is called, which frees the memory pointed to
by mcells. That leaves the situation shown in Figure 9-3.

238 | CHAPTER9 MASTERING CLASSES AND OBJECTS

Stack Heap

7 Freed memory

4 3 -

mWidth mHeight mCells

Spreadsheet s1
FIGURE 9-3

Now s1 has a pointer that no longer points to valid memory. This is called a dangling pointer.

Unbelievably, the problem is even worse with assignment. Suppose that you have the following code:

Spreadsheet s1(2, 2), s2(4, 3);
sl = s2;

After the first line, when both objects are constructed, you have the memory layout shown in
Figure 9-4.

Stack Heap

4 3 T 3 NN

mWidth mHeight mCells

Spreadsheet s2

G I I s e e

mWidth mHeight mCells

Spreadsheet s1
FIGURE 9-4

After the assignment statement, you have the layout shown in Figure 9-5.

Now, not only do the mcel1ls pointers in s1 and s2 point to the same memory, but you have also
orphaned the memory to which mcells in s1 previously pointed. This is called a memory leak. That
is why in assignment operators you must do a deep copy.

As you can see, relying on C++’s default copy constructor and default assignment operator is not
always a good idea.

Dynamic Memory Allocation in Objects | 239

Stack Heap

4 3 T /3 NN

mWidth mHeight mCells

Spreadsheet s2 /

/ Orphaned
I
. 3 7 ¢ \ memory!

mWidth mHeight mCells

Spreadsheet s1
FIGURE 9-5

WARNING Whenever you have dynamically allocated memory in a class, you

should write your own copy constructor and assignment operator to provide a
deep copy of the memory.

The Spreadsheet Copy Constructor

Here is a declaration for a copy constructor in the Spreadsheet class:

class Spreadsheet

{
public:
Spreadsheet (const Spreadsheet& src);
// Code omitted for brevity

}i
The definition is as follows:

Spreadsheet: :Spreadsheet (const Spreadsheet& src)
: Spreadsheet (src.mWidth, src.mHeight)
{

for (size t i

= 0; i < mWidth; i++) {
for (size t
[

0
j = 0; j < mHeight; j++) {
1[j] = src.mCells[i] [j];

}

Note the use of a delegating constructor. The ctor-initializer of this copy constructor delegates
first to the non-copy constructor to allocate the proper amount of memory. The body of the copy

240 | CHAPTER9 MASTERING CLASSES AND OBJECTS

constructor then copies the actual values. Together, this process implements a deep copy of the
mCells dynamically allocated