

PHP	PROGRAMMING

	
PHP	CRUSH	COURSE!	LEARN	PHP
PROGRAMMING	IN	4	HOURS!	PHP	FOR
BEGINNERS	-	SMART	AND	EASY	WAYS	TO

LEARN	PHP	&	MYSQL

Book	Description
“Learn	PHP	in	4	Hours!”	promises	to	give	you	complete	introductory	knowledge	to	PHP
and	MySQL.	You	will	be	able	to	get	started	on	your	journey	to	building	awesome	dynamic
websites	that	help	you	achieve	your	dreams	in	no	time.

This	book	contains	definitions	that	are	straightforward,	examples	that	are	short	and	sweet
and	explanations	that	ensure	mastery	of	the	basics	very	quickly.

You	will	be	able	to	blast	through	this	book	while	gaining	deep	knowledge	that	prepares
you	to	tackle	the	advanced	features	of	both	PHP	and	MySQL	while	simultaneously	being
able	to	do	something	very	useful	with	the	best	practices.	This	is	an	amazing	educational
book!

What	is	in	the	book?

Introduction	to	PHP	Programming

Chapter	1	–	Hour	1:	Installation	and	PHP

We	discuss	installation	of	a	web	server	package	and	show	how	to	use	it	to	run	PHP
script.	We	also	cover	some	of	the	basics	of	PHP

Chapter	2	–	Hour	2:	More	PHP	Basics

We	dive	deeper	into	the	basics	of	PHP

Chapter	3	–	Hour	3:	MySQL	Basics

We	discuss	how	to	access	the	command	line	to	enter	MySQL	commands	and	use
them	to	work	with	data	in	the	database

Chapter	4	–	Hour	4:	PHP	and	MySQL

We	consolidate	the	knowledge	and	use	both	PHP	and	MySQL	to	create	a	very
simple	website	with	dynamic	content

Let’s	get	started!

Table	of	Content
	

Introduction

	

Chapter	1	-	Hour	1:	Installing	and	PHP	Basics

	

Chapter	2	-	Hour	2:	More	PHP	Basics

	

Chapter	3	-	Hour	3:	MySQL	Basics

	

Chapter	4	-	Hour	4:	PHP	and	MySQL:	The	Dynamic	Duo

	

Conclusion

	

Introduction
	
“You	cannot	open	a	book	without	learning	something.”	-	Confucius

	

People	learn	PHP	for	many	reasons.	Every	language	has	a	bit	of	a	learning	curve	and	one
can	get	bogged	down	in	two	much	theory	that	it	can	make	it	unappealing	because	the	task
ahead	seems	odious.	Maybe	you	want	to	build	a	simple	blog	or	something	as	advanced	as
a	massive	online	e-commerce	site	with	thousands	of	products	up	for	sale.	It	is	hard	to
know	where	to	start	getting	the	needed	knowledge.

	

If	you	are	looking	for	a	way	to	get	going	fast	in	order	to	make	you	visions	a	reality	then
you	have	come	to	the	right	place!	This	books	aims	at	getting	you	started	on	your	journey
to	PHP	and	MySQL	mastery	in	4	hours!	It	does	this	by	telling	you	the	most	important	stuff
you	need	to	know	to	get	started	quickly	for	the	absolute	beginner,	in	either	PHP	or
MySQL,	so	you	get	to	doing	useful	stuff	as	quickly	as	possible.

	

This	is	not	a	comprehensive	guide	to	PHP	and	MySQL	that	covers	all	the	aspects	but	a
crash	course	that	gives	you	a	practical	guide	on	how	to	do	really	cool	basic	things	with
PHP	and	MySQL	on	their	own	and	together.	The	two	can	get	pretty	advanced	but	with	the
knowledge	in	this	book,	you	should	be	able	to	get	that	prototype	up	and	running	as	you
tackle	the	more	advanced	topics.

	

A	little	knowledge	of	HTML	and	CSS	will	be	needed	before	because,	really,	PHP	is	just	a
language	that	is	used	to	produce	web	pages	and	its	final	output	is	HTML.	We	will	go	over
all	the	basics	of	PHP	and	MySQL	and	finally	put	it	all	together	and	build	simple	web	site
where	you	will	be	able	to	store	a	records	of	your	favourite	artists	using	the	dynamic	duo.

	

The	basics	are	all	you	need	to	get	going	in	4	hours	(and	this	book,	of	course)	is	all	you
need.

	

But	what	is	PHP	or	MySQL	and	why	do	you	need	it	to	accomplish	this	previously
impossible	task?

	

A	Short	Introduction	to	PHP
	

PHP	stands	for	Hypertext	Processor.	It	is	a	server	side	scripting	language	that	is	used	to
produce	dynamic	web	content	among	other	things.	This	means	that	everything	PHP	does
is	not	done	on	the	computer	that	is	used	to	view	the	web	pages,	called	the	client,	but	a
specialised	computer	called	a	server	that	houses	all	the	webpages	that	you	are	viewing	on
the	client	machine.

	

Being	a	scripting	language	means	that	PHP	can’t	really	be	used	to	make	standalone
applications	that	run	on	your	computer	as	it	is	designed	to	only	do	things	when	an	event
happens	within	web	pages	like;	clicking	on	a	link	or	getting	form	data	when	a	web	form	is
sent.

You	can	embed	PHP	into	your	HTML	web	pages	and	produce	pages	that	are	customised
according	to	the	information	you	get	from	your	users.	This	ends	up	making	webpages
more	exciting	rather	than	if	they	were	just	static.PHP	can	be	used	to	produce	web	pages
because	its	final	output	is	HTML.

	

It	is	very	efficient	in	the	server	side,	widely	used,	cross-platform	(runs	on	Windows,
Linux,	UNIX,	Mac	OS	X,	etc.)	and	easier	to	learn	than	any	other	fully	featured	language
like	C,	Java	or	Perl.

	

PHP	is	also	very	powerful.	If	you	ever	doubt	its	power,	just	look	carefully	at	the	link	in
your	browser	next	time	you	decide	to	log	on	to	Facebook.	You	will	notice	that	the	largest
social	networking	site	on	the	planet	is	powered	by	PHP!		Even	Wikipedia	(That	site	which
tells	you	everything	you	need	to	know)	is	powered	by	PHP.	That	is	the	power	that	is
behind	PHP,	and	it	makes	it	a	good	alternative	to	its	competitors	such	as	Microsoft’s
Active	Server	Pages	(ASP).

It	also	has	an	active	community	that	can	really	help	you	in	a	bind	and	always	active.

According	to	the	http://www.w3schools.com	PHP	page;	this	is	what	PHP	will	allow	you	to
do:

PHP	can	generate	dynamic	page	content

PHP	can	create,	open,	read,	write,	delete,	and	close	files	on	the	server

PHP	can	collect	form	data

PHP	can	send	and	receive	cookies

PHP	can	add,	delete,	modify	data	in	your	database	(that	is	why	it	is	a	perfect	match	for	MySQL)

PHP	can	be	used	to	control	user-access

PHP	can	encrypt	data

http://www.w3schools.com

	

A	Short	Introduction	to	MySQL
	

MySQL	is	a	popular	open	source	relational	database	that	uses	SQL	as	its	base.	It	enables
you	to	store,	retrieve	and	manipulate	data.	It	is	a	highly	efficient	and	scalable	solution	that
is	also	cost	effective.

	

Many	web	based	programs	(including	computer	programs)	use	databases	to	store	their
information.	Things	like	social	applications	need	a	place	to	store	user	information,
pictures,	posts,	comments	etc.	that	is	where	a	database	like	MySQL	comes	in	handy	and
makes	storing	and	retrieving	large	amounts	of	information	a	breeze.

	

SQL,	often	pronounced	as	sequel,	stands	for	Structured	Query	Language.	It	is	simply	a
language	designed	for	management	of	data	by	databases	like	MySQL.	They	use	SQL	to
send	and	retrieve	data	using	specialised	commands	that	really	aren’t	all	that	hard	to	learn.
And	most	importantly,	for	this	book,	you	can	embed	SQL	into	programming	languages
like	PHP.

	

Also,	MySQL	is	open	source	and	is	available	for	free	and	can	be	changed	by	modifying
the	source	code,	if	particular	features	don’t	suit	your	fantacy.

	

What	We	Will	Cover	in	This	Book
	

This	book	is	separated	into	four	main	chapters	or	hours	that	help	you	get	to	the	heart	of
PHP	and	SQL	and	send	you	on	your	way	to	being	a	master	in	no	time.

	

In	the	first	hour	we	will	spend	time	installing	the	much	needed	web	server	package	called
XAMPP.	I	recommend	that	you	download	it	here:

https://www.apachefriends.org/index.html		before	we	start	that	chapter.	This	will	enable	us
to	run	examples	throughout	this	book.	Then	we	shall	pick	a	text	editor	for	our	PHP	code.
Then	we	will	look	at	how	to	run	PHP	scripts	and,	finally,	we	shall	cover	some	of	the
basics	of	PHP,	such	as	comments,	variables,	constants	and	operators.

	

The	examples	in	this	book	can	be	typed	out	or,	to	save	time,	copied	and	then	pasted	into
your	code	editor	or	command	line	interface.

https://www.apachefriends.org/index.html

	

In	the	second	hour,	we	shall	continue	with	PHP	and	cover	conditional	statements,	Loops,
Arrays	and	functions.	After	this	chapter,	you	should	consider	yourself	well	acquainted
with	PHP	to	tackle	further	advanced	topics.

	

You	can	take	a	break	after	this	part	and	let	it	all	sink	in	and	make	another	cup	of	coffee.

	

In	the	third	hour	we	tackle	MySQL	and	its	commands,	but	first	we	learn	how	to	access	the
command	line.	Then	we	move	on	to	the	commands	that	let	us	create	and	delete	databases;
create,	alter	and	delete	tables;	insert,	select,	update	and	delete	data	in	the	tables.

	

Finally,	in	the	final	hour,	we	put	PHP	and	MySQL	together	and	create	a	simple	website	to
show	you	how	these	two	work	together	hand	in	hand.

	

Let	us	get	to	it.	Grab	your	first	cup	of	coffee!

Chapter	1	-	Hour	1:	Installing	and	PHP
Basics
	
“The	way	to	get	started	is	to	take	the	first	step	with	dream-powered	optimism.”	-	Debasish	Mridha

	

This	chapter	we	will	cover:

Installing	a	web	server
Installing	a	text	editor
Starting	Apaches	to	run	PHP	scripts
Creating	and	running	a	PHP	script
PHP	basics	(comment,	variables,	operators,	constants,	strings)

Bear	with	me	a	little.	I	know	that	the	first	chapter	of	almost	every	programming	book	piles
on	the	theory	to	make	sure	you	know	what	you	are	getting	yourself	into.	I	won’t	lie;	even
in	this	short	book,	we	still	have	to	go	through	it	a	little.	Just	a	little	bit	of	it	to	cover	some
basics	of	PHP.	But	that	is	for	later	on	during	the	hour.	For	now	you	need	to	install	the
server	and	choose	an	appropriate	text	editor	to	use	when	writing	PHP	code!

	

Installing	a	Web	Server
	

Your	first	real	step	to	PHP	mastery	has	led	you	here.	You	can’t	just	run	PHP	in	a	browser
like	you	do	with	HTML.	To	run	PHP,	you	are	going	to	need	a	server	installed	on	your
local	machine	in	order	for	the	browser	to	parse	PHP	scripts	and	run	MySQL	queries	to	the
database	to	return	results.	Alternatively,	you	can	use	a	host	that	supports	PHP	and	MySQL
so	that	they	can	upload	it	to	their	server	and	you	can	test	and	deploy	your	dream	site	right
there.	But	I’m	guessing	you	really	want	to	test	it	locally	and	quickly.	So,	we	will	install	a
local	server	that	makes	your	very	own	computer	become	a	test	server.

	

There	are	many	servers	you	can	install	on	your	local	machine	such	as	XAMP,	WAMP	(for
windows),	and	MAMP	for	Mac	OS	X,	etc.,	but	this	book	covers	XAMP.	It	is	a	free	open
source	cross	platform	web	server	package	available	for	Windows,	Mac	and	Linux.

	

Go	to	this	website

https://www.apachefriends.org/index.html

and	download	the	latest	version	of	XAMP	for	windows	(the	same	steps	can	be	easily
translated	to	Mac	OSX	or	Linux).	Once	the	download	is	finished,	locate	the	file	on	your
local	machine	and	double-click	it	to	install	it.

	

Simple!	Now	PHP	and	MySQL	are	ready	for	use.

	

NOTE:	If	you	have	an	antivirus	running	at	this	time,	it	may	interfere	with	the	process.
You	might	want	to	switch	it	off	until	the	server	is	done	installing	to	avoid	any	potential
problems.

	

Installing	a	Text	Editor
	

Now,	you	will	need	a	text	editor	to	write	some	beautiful	PHP.	Ideally,	any	text	editor
would	do,	even	the	default	notepad	on	windows	or	terminal	for	Mac	OS	X	can	be	used
when	writing	PHP.	We	will	use	notepad++	because	it	has	some	nifty	features	which	can
contribute	towards	writing	clean	and	efficient	code	in	a	fast	way,	such	as	syntax
highlighting	and	auto	complete.

	

Plus	it’s	free!

	

This	text	editors	will	save	you	time	and	a	world	of	pain	by	just	downloading	it	here
Installing	a	Text	Editor		and	installing	it.	Just	remember	that	any	text	will	do.	So	even	if
you	don’t	have	notepad++,	you	can	use	whatever	you	like.

	

Starting	Apache	to	run	PHP	scripts
	

	

Now	that	you	have	installed	XAMPP,	you	need	to	start	the	apache	web	service	in	order	for
the	browser	to	be	able	to	run	PHP	scripts.	To	do	this,	open	up	the	Control	Panel	of
XAMPP	by	double	clicking	on	its	icon.	By	default,	it	should	start	Apache	automatically,
but	you	can	start	it	manually	by	clicking	“Start”	as	in	the	picture	below:

	

	

	

NOTE:	Some	other	applications	installed	on	your	computer	can	cause	Apache	not	to
start	because	they	are	using	the	same	port	Apache	is	configured	to	e.g.	Skype.	If	that	is
the	case,	just	stop	those	services	and	start	Apache	again.

	

Creating	Your	First	PHP	Script
	

This	part	is	fairly	easy	to	do.	All	you	have	to	do	is	follow	these	steps:

	

Step	1	-	Create	the	PHP	file
	

Open	up	your	text	editor	and	create	a	regular	text	file	and	place	the	following	code	into	it:

<!DOCTYPE	html>
<html>
														<body>

														<?php
																																										echo	“My	first	PHP	script!”;
																												?>

</body>
</html>

The	file	still	looks	like	your	basic	HTML	file	except	that	you	embed	PHP	code	between
tags	<?php	and	?>.	The	echo	statement	just	outputs	everything	that	comes	after	it	to	the
screen.	In	our	case,	this	will	be	“My	first	PHP	script!”.	We	shall	see	this	in	action	in	a
moment.

And	all	you	have	to	remember	is	that	every	PHP	statement	ends	with	a	semicolon	(Except
for	comments.	We	will	look	at	those	later	in	the	hour).

Save	the	file	as	“example.php”.

	

Step	2	-	Place	it	in	the	Root	Directory	of	XAMPP
	

Grab	the	file	“example.php”	that	you	just	created	and	place	it	in	the	root	directory	of	your
server	in	the	folder	named	“htdocs”,	and	Whalla!	You	are	ready	to	run	it	in	your	browser.

	

TIP:	To	find	the	root	directory,	you	can	look	for	it	on	your	local	machine	or	you
could	just	open	up	the	XAMPP	Control	Panel	and	click	the	“Explorer”	button,	as
shown	in	the	picture	below,	to	bring	up	the	root	folder	and	then	locate	the	htdocs
folder	and	place	the	file	in	there:

	

	

NOTE:	The	folder	to	place	your	PHP	files	will	be	different	with	each	server.	For
example;	you	place	them	in	the	folder	named	www	if	you	are	using	WAMP.

	

Step	3	-	Run	It	in	the	Browser
Open	up	your	browser	(Google	Chrome	or	Firefox	are	recommended)	and	type	the
following:

http://localhost/example.php

Press	Enter	and	you	should	see	the	following	window	below:

	

	

There	you	go!	If	you	follow	those	steps,	you	should	be	able	to	run	all	other	scripts	created
in	this	chapter.

http://localhost/example.php

	

PHP	Basics
	

Comments
	

Want	to	leave	messages	for	your	future	self	or	other	members	of	your	team?	Then
comments	save	you	the	trouble	of	having	to	remember	your	train	of	thought	and	make	for
an	excellent	way	to	document	what	your	thoughts	were	at	the	time.	They	can	also	be	used
to	exclude	certain	pieces	of	code	all	together.

	

//	This	is	a	single	line	comment

#	This	is	another	single	line	comment

/*
														This	is	a	comment	block.	Everything	in	here	will	be	ignored	and	can														
span	multiple	lines.
*/

Variables
	

To	build	your	dream	website,	you	will	need	data	and	a	way	to	store	this	data.	It	can	be	a
name,	a	number,	a	date	or	a	picture.	PHP	offers	a	way	for	you	to	store	them	in	memory	by
using	a	variable.

	

Each	variable	in	PHP	is	preceded	by	the	$	sign	followed	by	the	variable	name	without	any
spaces	in	between	the	sign	and	variable	name:

	

$myInt	=	10;

	

Let	us	see	some	of	this	in	action	with	the	following	code:

<!DOCTYPE	html>
<html>
														<body>
																												<?php
																																										$txt	=	“My	second	PHP	script!”;
																																										echo	$txt;
																												?>
														</body>
</html>

	

If	you	run	this	script	in	the	browser,	it	should	out	put	the	following:

	

“My	second	PHP	script!”;

	

Few	more	things	to	remember	about	variables:

	

They	are	case	sensitive.	This	means	$name	and	$naMe	are	two	different	variables
They	must	always	start	with	a	letter	or	underscore
They	cannot	start	with	numbers
They	can	only	contain	alpha	numeric	values

	

PHP	is	a	loosely	type	language	and	therefore	you	don’t	need	to	define	the	data	types	for
variables.	PHP	will	automatically	convert	the	variable	to	the	correct	data	type	depending
on	the	value	assigned	to	it.

	

Here	is	a	list	of	the	common	data	types	you	will	work	with:

	

Integer	–	Whole	numbers
Float	–	Decimal	numbers
String	–	String	or	characters
Boolean	–	true	or	false
Array	–	Multiple	items
Object	–	An	Object	defined	by	a	class

	

You	can	achieve	the	same	result	as	the	example	above		by	using	variables:
<!DOCTYPE	html>
<html>
														<body>
																												<?php
																																										$txt	=	“third”;
																																										echo	“My	”	.		$txt	.”	PHP	script!”;
																												?>
														</body>
</html>

	

In	this	example	we	are	joining	two	strings	together	using	the	period	(.)	as	it	is	used	to
concatenate	two	strings	together	and	outputting	the	concatenated	string	to	the	screen.

	

Constants
	

Constants	are	like	variables	except	that	their	values	cannot	be	changed	or	undefined.

When	define	a	constant	we	use	define()	method		followed	by	parameters	in	the	parenthesis
that	give	it	a	name	and	a	value.	The	following	example	shows	how	to	define	a	constant:

<?php
														define(“MESSAGE”,	“Happy	Learning!”);		//function	that	defines	a	constant
														echo	MESSAGE;
?>
Output:

Happy	Learning!

	

Unlike	variables,	you	can	actually	specify	whether	you	want	the	constant	to	be	case-
insensitive	or	not	by	adding	one	more	parameter,	that	takes	a	Boolean,	after	the	value	is
defined	(default	is	false):

<?php
														define(“MESSAGE”,	“Happy	Learning!”,		true,);
														echo	message;
?>

Some	rules	to	remember	about	constants:

They	must	start	with	a	letter	and	an	underscore	(they	don’t	need	to	start	with
the	$	sign)
They	global	across	the	entire	script	automatically

Operators
	

PHP	uses	operators	to	perform	various	operations	of	variables	and	values.	We	shall	now
look	at	the	operators	used	by	PHP	in	groups.
	

Arithmetic	Operators
	

These	are	operators	that	perform	mathematical	operations	on	values	and	return	calculated
results:

	

EXAMPLE OPERATOR RESULT

$x	+	$y Addition Sum	of	$x	and	$y

$x	-	$y Subtraction The	difference	between	$x	and	$y

$x	*	$y Multiplication The	Product	of	$x	and	$y

$x	/	$y Division The	dividend	of	$x	and	$y

$x	/	$y Modulus The	remainder	of	$x	divided	by	$y

$x	**	$y Exponent Result	of	$x	to	$y’th	power	(New	to	PHP
5.6)

	

Assignment	Operators

These	operators	are	used	to	set	values	to	variables:

	

ASSIGNMENT SAME
AS:

DESCRIPTION

$x	=	$y $x	=	$y Gets	the	value	of	$y	and	sets	it	to	$x

$x	+=	$y $x	=	$x	+	$y Gets	the	sum	of	$x	and	$y	and	sets
the	result	into	$x

$x	-=	$y $x	=	$x	-	$y Gets	the	difference	of	$x	and	$y	and
sets	the	result	into	$x

$x	*=	$y $x	=	$x	*	$y Gets	the	product	of	$x	and	$y	and
sets	the	result	into	$x

$x	/=	$y $x	=	$x	/	$y Gets	the	dividend	of	$x	and	$y	and
sets	the	result	into	$x

$x	%=	$y $x	=	$x	%	$y Gets	the	remainder	of	$x	divided	by
$y	and	sets	the	result	into	$x

	

Comparison	Operators
	

Comparison	operators	in	PHP	are	used	to	compare	two	values:

	

EXAMPLE NAME RESULT

$x	==	$y Equal Returns	true	if	both	$x	and	$y	are	equal

$x	===	$y Identical Returns	true	if	both	$x	and	$y	are	equal,	and	have
the	same	data	type

$x	!=	$y Not	equal Returns	true	if	both	$x	and	$y	are	not	equal

$x	<>	$y Not	equal Returns	true	if	both	$x	and	$y	are	not	equal

$x	!==	$y Not	identical Returns	true	if	both	$x	and	$y	are	not	equal,	or	if
they	don’t	have	the	same	data	type

$x	>	$y Greater	than Returns	true	if	$x	is	greater	than	$y

$x	<	$y Less	Than Returns	true	if	$x	is	less	than	$y

$x	>=	$y Greater	than	or
equal	to

Returns	true	if	$x	is	greater	than	or	equal	to	$y

$x	<=	$y Less	Than	or
equal	to

Returns	true	if	$x	is	less	than	or	equal	$y

	

	

Logical	Operators
	

Logical	operators	are	what	we	use	to	combine	conditional	statements	(which	we	will	cover
in	the	next	hour)	in	order	to	get	a	true	or	false	result:

	

EXAMPLE NAME RESULT

$x	&&	$y And Returns	true	if	both	$x	and	$y	are	true

$x	||	$y Or Returns	true	either	$x	or	$y	are	true

!$x Not Returns	true	if	$x	is	not	true

$x	and	$y And Returns	true	if	both	$x	and	$y	are	true

$x	or	$y Or Returns	true	either	$x	or	$y	are	true

$x	xor	$y Xor Returns	true	if	$x	is	less	than	$y

	

Increment/Decrement	(Ternary)	Operators

These	operators,	also	known	as	ternary	operators,	increase/decrease	a	variable’s	value	by
one

	

EXAMPLE NAME RESULT

++$x Pre-increment Adds	one	to	x,	then	returns	$x

$x++ Post-increment Returns	$x,	then	adds	one	to	$x

—$x Pre-decrement subtracts	one	from	x,	then	returns	$x

$x— Post-decrement Returns	$x,	then	subtracts	one	from	$x

	

String	Operator

These	are	operators	that	are	specially	designed	for	strings:

	

EXAMPLE NAME RESULT

$str1	.	$str2 Concatenation Returns	the	concatenation	of
$str1	and	$str2

xstr1	.=	$str2 Concatenation
assignment

Append	$str2	to	$str1

	

Array	Operators

These	are	operators	that	used	to	compare	arrays	(which	we	will	discuss	in	the	next	hour):

	

EXAMPLE OPERATOR RESULT

$x	+	$y Union Union	of	$x	and	$y

$x	==	$y Equality If	$x	and	$y	have	the	same	value/key
pairs,	the	result	is	true

$x	===	$y Identity If	$x	and	$y	have	the	same	value/key
pairs	in	the	same	order	and	of	the	same
data	type,	the	result	is	true

$x	!=	$y Inequality If	the	value	of	$x	is	not	equal	to	the
value	of	$y,	it	returns	true

$x	<>	$y Inequality If	the	value	of	$x	is	not	equal	to	the
value	of	$y,	it	returns	true

$x	!==	$y Non-indentity If	$x	and	$y	are	not	identical,	it	returns
true

	

	

Summary
	

So	far,	we	have	covered	a	lot	of	things	you	need	to	know	in	order	to	get	going	and	see
PHP	in	action.	We	have	installed	a	webserver	package	called	XAMPP	that	comes	with	the
APACHE	web	service	that	allows	us	to	run	PHP	scripts	in	our	browser.	You	should	now
be	very	knowledgeable	enough	to	create	and	run	PHP	scripts	and	have	a	good	idea	on	how
to	output	information	to	the	screen.	We	have	also	covered	some	of	the	basics	of	PHP	like
variables	and	constants,	and	looked	at	some	of	its	operators;	some	of	them	will	be	useful
in	the	next	hour.

So	let’s	move	on!

Chapter	2	-	Hour	2:	More	PHP	Basics
	

	

“Talk	is	cheap.	Show	me	the	code”	–	Thomas	C.	Gale

In	this	chapter	we	will	cover:

Conditional	Statements
Loops
Arrays
Functions

	

This	is	the	part	where	we	dive	a	little	deeper	into	the	basics	of	PHP	and	get	to	do	a	lot	of
cool	stuff.	You	are	done	with	salad	portion	of	the	basics,	this	is	the	meat	section.

	

Conditional	Statements
Conditional	statements	allow	for	a	bit	of	decision	making	in	code.	They	perform	different
actions	depending	on	the	whether	the	condition	the	programmer	specified	has	been
evaluated	as	true	or	false.

	

Here	is	a	list	of	conditional	statements	used	in	PHP:

If	statements
If…else	statements
If…else	if…else	statement
Switch	statements

Let	us	take	a	look	at	each	one	in	detail.

	

The	if	Statement
An	ifstatement	evaluates	an	expression	and	executes	a	block	of	code	if	the	expression
evaluated	to	true.	If	it	evaluated	to	false,	the	code	block	is	ignored.

The	following	example	will	output	“5	is	less	than	10!”	if	the	condition	is	true,	otherwise,
the	code	block	will	be	ignored:

	

<?php

													

$x	=	5;

																											

if	($x	<	10)	{

	

														echo	“$x	is	less	than	10!”;

	

}

?>

	
Output:

5	is	less	than	10!

	

The	if…elseif	Statement
The	if…elseif	statement	executes	a	code	if	block	if	the	expression	evaluated	as	true	and	another	code	if	that
expression	is	evaluated	as	false.

	

Let	us	alter	the	previous	example	a	bit.	The	following	code	will	output	“50	is	greater	than	20!”	which	is	on	the	second
code	block	because	it	satisfies	the	second	condition.	The	value	assigned	to	$x	is	50	and	it	will	return	false	on	the	first
condition:

	

<?php

	

$x	=	50;

	

if	($x	<	10)	{

	

														echo	“$x	is	less	than	10!”;

	

}	else	if	($x	>	20)	{

	

														echo	“$x	is	greater	than	20!”;

	

}

	

?>

Output:

50	is	greater	than	20!

	

	

The	if…elseif…else	Statement
	

Same	as	the	if…elseif	statement.	The	difference	is	that	when	all	other	conditions	fail,	the	last	code	block	is	executed.
	

In	The	example	below	will	output	“I5	is	between	10	and	20!”	because	$x	is	15.	It	needs	to
be	less	than	10	to	satisfy	the	first	condition,	and	greater	than	20	to	satisfy	the	second
condition,	otherwise,	it	is	between	10	and	20:

	

<?php

	

$x	=	15;

	

if	($x	<	10)	{

	

														echo	“$x	is	less	than	10!”;

	

}	else	if	($x	>	20)	{

	

														echo	“$x	is	greater	than	20!”;

	

}else	{

	

														echo	“$x	is	between	10	and	20!”;

	

}

	

?>

Output:

	

I5	is	between	10	and	20!

	

Switch	Statement
	

A	switch	statement	just	matches	the	value	of	an	expression	with	cases	in	the	structure.	If	a
match	is	found,	the	code	block	associated	with	that	case	is	executed.	When	no	match	is
found,	the	default	statement	is	used.	The	break	statement	is	what	prevents	the	code	from
jumping	into	the	next	case	automatically.

	

In	the	example	below	the	value	of	$lunch	will	be	checked	against	all	the	cases	to	see	if
any	of	them	match.	In	this	case,	the	output	will	be	“Burgers	are	yummy!”	since	that	is	the
corresponding	case.

	

<?php

	

$lunch	=	“burger”;

	

switch	($lunch)	{

														case	“cereal”:

																												echo	“Cereal?	You	had	breakfast	for	lunch!”;

																												break;

														case	“salad”:

																												echo	“Salad	makes	for	a	healthy	lunch!”;

																												break;

														case	“burger”:

																												echo	“Burgers	are	yummy!”;

																												break;

														default:

																												echo	“looks	like	you	skipped	lunch.	That	is	not	good!”;

}

	

?>

	

Output:

Burgers	are	yummy!

Loops
	

Here	is	a	list	of	looping	statements	in	PHP:

while
do…while
for
foreach

	

We	shall	go	into	each	one	in	detail.

	

The	While	Loop
	

The	while	loop	executes	a	block	of	code	repeatedly	as	long	as	the	specified	condition
remains	true.

	

The	code	below	shows	the	value	$x	being	if	it	is	less	than	or	equal	to	5.	If	the	condition	is
true,	it	gets	outputted	to	screen	and	then	incremented	again	until	the	condition	returns
false:

	

<?php

													

$x	=	1;

																											

while	($x	<=	5)	{

	

														echo	“The	value	of	x	is:	”	.	$x	.	“
”;

														$x++;

	

}

?>

	

Output:

	

The	value	of	x	is:	1
														The	value	of	x	is:	2
														The	value	of	x	is:	3
														The	value	of	x	is:	4
														The	value	of	x	is:	5

Do…While	Loop
	

Executes	the	block	of	code	at	least	once	then	loops	through	it	until	the	specified	condition
becomes	false.

	

The	example	below	shows	the	value	of	$x	being	outputted	to	the	screen	then	subtracted	by
one	at	least	once,	then	it	is	checked	to	see	if	it	is	greater	than	zero.	If	it	is,	then	it	repeats
the	process	until	it	becomes	less	than	zero:

	

<?php

													

$x	=	5;

																											

do	{

	

														echo	“The	value	of	x	is:	”	.	$x	.	“
”;

														$x—;

	

}	while	($x	>=	0);

	

?>

	

Output:

The	value	of	x	is:	5
														The	value	of	x	is:	4
														The	value	of	x	is:	3
														The	value	of	x	is:	2
														The	value	of	x	is:	1
														The	value	of	x	is:	0

For	Loop
	

Loops	through	a	code	block	a	specified	number	of	times.

There	are	three	things	needed	in	order	for	the	loop	to	work.	And	the	example	below	has
them	all:

	

1.	 Initialization	–	this	is	where	a	variable	is	declared	to	start	the	loop	counter.	This
is$x	=	1in	our	example.	This	mean	that	the	$x	is	the	initializer	and	it	is	set	to	start
at	1
	

2.	 Condition	–	This	is	the	second	part	of	the	loop	where	we	check	if	the	loop	counter
still	matches	a	condition.	When	it	returns	false,	the	loop	stops	execution	of	the	code
block.	Our	condition	in	the	example	below	is$x	<=	5
	

3.	 Increment	–	When	the	loop	ends,	this	part	of	the	code	is	executed	once	and	then
the	loop	repeats.	This	is	where	we	can	do	some	operations	to	the	loop	counter.	In
our	case	we	increase	the	value	of$xby	one		with$x++

<?php

																											

for	($x	=	1;	$x	<=	5;	$x++)	{

	

														echo	“The	value	of	x	is:	”	.	$x	.	“
”;

	

}

	

?>
	

Output:

The	value	of	x	is:	1
														The	value	of	x	is:	2
														The	value	of	x	is:	3
														The	value	of	x	is:	4
														The	value	of	x	is:	5

	

For	each	Loop
A	loop	that	goes	through	each	element	found	in	an	array.	It	executes	a	block	of	code	with
each	element	found	in	the	array	until	it	runs	out.

	

The	code	below	loops	through	all	the	elements	of	an	array	then	outputs	the	value	of	the
element	to	the	screen:

	

<?php

																											

$foods	=	array(“cereal”,	“salad”,	“burgers”,	“fries”);													

	

foreach	($foods	as	$food)	{

	

														echo	“$food	
”;

	

}

	

?>

	

Functions
	

A	function	is	a	piece	of	code	that	can	be	used	of	over	and	over	in	a	program.	A	function
takes	one	or	more	inputs	called	parameters	(also	called	arguments)	and	does	some
operations	to	them.	A	function	can	sometimes	return	a	value	after	it	is	done	processing.

	

A	few	things	to	remember	about	functions:

	

They	are	not	case-sensitive
They	are	not	executed	automatically	when	the	page	loads	until	they	are	called	by	a
certain	piece	of	code
PHP	has	more	than	1000	built	in	functions	that	can	cater	to	your	requirements

Creating	a	Function
	

Creating	your	own	function	is	easy;	just	start	with	the	keyword	function	followed	by	the
function	name	and	parenthesis.	After	that	place	your	code	between	two	curly	braces	{	and
}	called	the	opening	and	closing	braces,	respectively.	Now	you	can	use	the	function	as
many	times	as	you	need	it.	This	saves	you	the	trouble	of	having	to	re-type	the	code	every
time.

	

The	code	below	demonstrates	a	function	that	outputs	a	message	to	the	screen

	

<?php

																											

functionechoMessage()	{

	

														echo	“Hello,	I	am	a	PHP	function!”;

	

}

	

echoMessage();

?>

Output:

Hello,	I	am	a	PHP	function!

	

Parameters	for	Functions
	

Sometimes	you	can	pass	information	to	functions	so	that	operations	are	done	on	them.
This	information	is	known	as	parameters	and	is	placed	in	the	parenthesis.	You	can	add
multiple	parameters	by	separating	them	with	a	coma.

	

The	below	example	shows	a	function	that	subtracts	two	numbers	supplied	to	function	as
parameters:

	

<?php

																											

functionsubFunction($num1,	$num2)	{

													

														$diff	=	$num1	-	$num2;

														echo	“The	difference	between	$num1	and	$num2	is:	”	.	$diff;

	

}

	

subFunction(5,	6);

	

?>

Output:

The	difference	between	5	and	6	is:	-1

	

Function	that	Return	a	Value
	

A	function	can	not	only	accept	information,	but	they	can	also	give	it	back	in	form	of	a
return	value.	Just	write	the	return	keyword	followed	by	the	value	or	object	you	wish	the
function	to	return.	This	stops	execution	of	the	function.

	

In	the	following	example	we	use	the	function	to	add	to	numbers	and	then	return	the	sum.
We	then	assign	the	sum	of	numbers	to	the	variable	$return_val	then	output	that	to	the
screen.

	

<?php

																											

functionaddFunction($num1,	$num2)	{

													

														$sum	=	$num1	+	$num2;

														return	$sum;

	

}

$return_val	=	addFunction(20,	15);

echo	“The	value	returned	by	the	function	is:	”	.	$return_val;

	

?>

Output:

The	value	returned	by	this	function	is:	5

	

Default	Values	for	Parameters
	

In	case	a	function	that	needs	parameters	is	called	without	any	parameters,	we	can	specify	a
default	value	for	that	parameter	instead.

	

In	the	example	below,	we	call	a	function	three	times.	We	don’t	pass	a	value	in	the	first
function	call	just	so	we	demonstrate	the	difference:

	

<?php

																											

functionPrintName($name	=	“Jack”)	{

													

														echo	“Hi,	my	name	is	$name	
”;

	

}

	

PrintName();	//	will	use	the	default	value	of	Jack

PrintName(“Jill”);

PrintName(“Adam”);

	

?>

Output:

	

Hi,	my	name	is	Jack	
														Hi,	my	name	is	Jill	
														Hi,	my	name	is	Adam

Arrays
	

An	array	is	data	structure	that	can	store	multiple	homogenous	values	in	a	single	variable.
Each	value	is	associated	with	a	key	that	is	used	to	identify	it	and	return	it.

	

Numeric	Array
	

These	are	arrays	that	use	numbers	as	their	index.	The	index	begins	at	zero	by	default.

They	are	two	ways	to	create	numeric	arrays:

	

1.	 This	way	automatically	assigns	the	index:

	

$dairy	=	array(“yoghurt”,	“ice	cream”,	“cheese	cake”);

	

2.	 This	way	assigns	the	index	manually:

	

$dairy[0]	=	“yoghurt”

$dairy[1]	=	“ice	cream”

$dairy[2]	=	“cheese	cake”

	

The	example	below	shows	how	to	get	values	from	a	numeric	array	using	indices:

<?php

$dairy	=	array(“yoghurt”,	“ice	cream”,	“cheese	cake”);

	

//	accessing	values	by	their	index

echo	“I	to	eat	”	.	$dairy[0]	.	“,	”	.	$dairy[1]	.	“	and	”	.	$dairy[2].	“!”;

	

$arrayCount	=	count($dairy);	//	PHP	built	in	function	that	returns	the	number	of
elements	in	the	array

	

//	looping	through	a	numeric	array	using	a	for	loop

for	($i	=	0;	$i	<	$arrayCount;	$i++)	{

	

														echo	$dairy[$i]	.	“
”;

	

}

	

?>

	

Output:

I	to	eat	yoghurt,	ice	cream	and	cheese	cake!
														yoghurt
														ice	cream
														cheese	cake

	

Associative	Array
Use	strings	as	their	index	that	make	for	a	strong	association	between	key	and	value.

They	are	two	ways	to	create	associative	arrays.	We	will	demonstrate	by	using	prices	of
fantasy	suits:

1.	 Firsts	method:
	

$suit_prices	=	array(“batman”	=>	4000,	“arrow”	=>	1500,	“superman”	=>	0);
	

2.	 Second	method:

$suit_prices[“batman”]	=>	4000;

$suit_prices[“arrow”]	=>	1500;

$suit_prices[“superman”]	=>	0;

	

Note:	When	outputting	values	of	associative	arrays,	don’t	put	the	associative	array
inside	double	quotes,	otherwise,	the	values	won’t	get	outputted.

	

The	example	below	demonstrates	how	to	access	value	for	an	associative	array:

<?php

$suit_prices	=	array(“batman”	=>	4000,	“arrow”	=>	1500,	“superman”	=>	0);

	

echo	“The	Bat	suit	costs:	”	.	$suit_prices[‘batman’]	.	“
”;

echo	“The	Green	Arrow	suit	costs:	”	.	$suit_prices[‘arrow’]	.	“
”;

echo	“The	Superman	is	free.	It	suit	costs:	”	.	$suit_prices[‘superman’]	.	“
”;

	

?>

	

Output:

The	Bat	suit	costs:	4000
														The	Green	Arrow	suit	costs:	1500
														The	Superman	suit	is	free.	It	costs:	0

	

The	other	type	of	array	worth	mentioning	is	a	multidimensional	array	These	are	arrays	that
contain	other	arrays.	But	they	are	an	advanced	topic	that	you	can	look	into	further.

Summary
	

Congratulations!	You	are	now	acquainted	with	the	basics	of	PHP.	By	now	you	should	be
able	see	the	power	PHP	offers	you.	In	this	chapter	we	discussed	conditional	statements
that	allow	the	code	you	write	to	make	decisions	based	on	specified	conditions.	Then	we
looked	at	loops	that	execute	a	block	of	code	until	a	condition	specified	return	false	or	until
they	run	out	elements.	Next	we	discussed	how	to	call	code	multiple	times	in	a	program	by
putting	them	in	a	function,	and	also	how	to	pass	them	information	and	have	them	return
values	to	us.	Finally,	we	looked	into	numeric	and	associative	arrays.	We	created	them	and
returned	values	by	either	accessing	them	directly	or	looping	through	them.

	

Now	you	are	ready	to	take	a	breather	from	PHP	and	make	another	cup	of	coffee.	This	only
gets	more	interesting!
	

	
Chapter	3	-	Hour	3:	MySQL	Basics
	

“Tell	me	and	I	forget,	teach	me	and	I	may	remember,	involve	me	and	I	learn.”	-	Benjamin
Franklin

	

In	this	chapter	we	will	cover:

Start	MySQL
Create	and	Deleting	Databases
Creating,	Reading,	Updating	and	Deleting	Tables	(CRUD)

	

Now	that	we	have	looked	into	PHP,	let’s	look	at	what	enables	the	PHP	to	populate
webpages	with	content.	That	would	be	a	database	such	as	MySQL.	We	will	look	at	most
of	the	things	you	need	to	know	in	order	to	consider	yourself	a	master	of	the	basics	of
MySQL	and	do	what	you	need	to	for	that	next	step	in	achieving	your	dreams.

	

This	will	be	a	breeze	as	we	will	learn	how	to	do	some	really	cool	things	with	databases.

	

Below	is	a	picture	of	the	table	we	will	create	and	be	working	with	in	the	database.	We	will
just	be	adding	albums	to	a	music	database.	You	have	the	table	name	at	the	very	top	and	the
fields	or	columns	below	the	table	name.

http://www.goodreads.com/author/show/289513.Benjamin_Franklin

	

Albums

AlbumID
AlbumName
AlbumArtist
AlbumType
NumberOfTracks
DateReleased

	

	

Starting	MySQL	Client
	

What	we	are	to	be	doing	for	this	hour	is	entering	MySQL	commands	using	the	command-
line	of	the	MySQL	client	that	comes	with	XAMPP	by	opening	up	Windows	command
prompt	and	navigating	to	the	root	folder	of	where	XAMPP	is	installed.

	

When	you	open	command	prompt,	enter	the	below	command	to	navigate	to	the	“C”	drive,
Assuming	XAMPP	is	installed	there,	and	then	press	enter	after	that:

	

cd	\
	
Now,	navigate	to	where	the	executable	for	the	client	is	installed	to	start	it.	That	is	in
xampp->mysql->bin	by	entering	the	following	command	and	then	pressing	enter:

	
cdxampp\mysql\bin

	

Once	there,	type	the	following	command:

	
mysql	-u	your_username	-p

	

Replace	“your_username”	with	your	actual	username.	This	is	“root”	by	default.	You	will	then
be	asked	to	enter	your	password.	Once	you	do	that,	press	enter.	The	password	is	blank	by
default	and	you	really	ought	to	change	that	for	security	reasons.	But	that	is	beyond	the
scope	of	this	book.

	

If	you	notice	with	command-line	is	being	prompted	by	something	called	MariaDB.	Don’t
get	confused	because	it	is	just	a	community-developed	fork	of	the	MySQL	relational
database	management	system.	A	large	number	of	SQL	commands	will	still	work	and
unlike	the	previous	MySQL	prompt,	it	lets	you	known	which	database	you	have	selected.

	

Now	we	are	ready	to	get	started!

	

TIP:	Alternatively	you	can	use	the	phpmyadmin	interface	to	create	databases	and	table
with	just	a	few	clicks.	You	can	also	type	SQL	commands	there	but	since	we	want	to	get
hard-core	as	fast	as	possible,	we	won’t	be	doing	that.	Besides,	nothing	in	this	hour	has
been	hard	so	far,	I	hope.

	

Creating	and	Deleting	a	Database
	

Let’s	start	by	creating	a	database	by	entering	the	following	command:

	
CREATE	DATABASE	music;

	

Always	remember	this:

	

From	here	onwards,	all	statements	and	commands	typed	should	end	with	semicolon
or	/g.	Otherwise	the	client	will	think	you	are	still	typing	the	command	and	it	won’t
execute
Although	not	required,	because	command	line	is	not	case	sensitive,	MySQL
commands	are	typed	in	uppercase	letters	to	distinguish	between	commands	and
things	like	database	names,	table	names,	columns	and	rows

	

To	delete	the	database	it	is	as	easy	as	entering:

	
DROP	database_name;

	

Where	“database_name”	is	the	name	of	the	database	you	want	to	drop.

	

Now	that	we	have	created	our	database,	we	need	to	select	it	in	order	to	create	tables.	We
type	the	following	into	you	command	line	to	select	the	database	we	just	created,	and	then
press	enter:
USE	music;

	

WARNING:	Don’t	forget	to	select	the	database	otherwise	you	will	get	errors	when	you
try	to	create	tables	etc.

	

NOTE:	the	command-line	prompt	will	let	you	know	which	database	you	have	selected.
It	should	look	something	like	this	“Maria	DB	[music]>”.

	

Creating,	Altering	and	Deleting	Tables
	

Now	that	we	have	selected	out	database,	let’s	create	some	tables.	The	first	table	we	will
create	is	about	information	on	the	artist.

	

It	is	good	practice	(and	headache	saving)	to	first	check	if	any	tables	with	the	same	name
exists	because	you	can’t	create	two	tables	with	the	same	name	in	the	same	database.	If	one
is	found,	it	is	deleted	along	with	its	data.	So,	be	careful	with	this	command	especially	if
the	table	is	related	to	other	tables.

	

Creating	Tables
	

We	create	the	table	as	follows:

	
CREATE	TABLE	Album

(
														AlbumIDsmallint	unsigned	NOT	NULL	auto_increment	PRIMARY	KEY,
														AlbumNamevarchar(255)	NOT	NULL,
														AlbumArtistvarchar(80)	NOT	NULL,
														AlbumType	ENUM(‘A’,	‘E’,	‘M’)	NOT	NULL,
														numTracksvarchar(3)	NOT	NULL,
														DateReleasedDATE	NOT	NULL
);

	

TIP:	When	typing	large	commands	it	is	easy	to	mess	up.	Especially	when	using
thecommand	line.	If	this	happens	just	press	the	up	arrow	on	your	keyboard	to	bring	up
previous	commands	and	use	the	left	and	right	arrows	to	navigate	to	where	you	messed
up	and	fix.

	

To	see	the	list	of	tables	in	you	database,	enter	the	following	piece	of	code:
SHOW	tables;

You	see	the	following	output:
+–––––—+
|	Tables_in_music	|
+–––––—+
|	album											|
+–––––—+

When	you	press	Enter,	the	following	table	will	be	added	to	the	music	database.	Let	us
break	down	what	is	happening:

	

1.	 Creating	the	Album	Table

CREATE	TABLE	Artists	()	creates	a	new	table	and	the	lines	inside	the	parenthesis
define	the	table’s	structure.

	

2.	 Giving	Each	Album	a	Unique	ID

The	field	(or	column)	AlbumsID	has	the	following	properties:

smallint	unsigned	(unsigned	small	integer)	–	this	means	we	can	store	artists	in
the	range	32,278	to	–	32,767.We	will	look	at	the	common	data	types	that	you
will	be	working	with	later	on	in	the	chapter.
NOT	NULL	–	this	means	the	field	cannot	be	left	blank	when	creating	a	record.
auto_increment	–	this	just	means	that	you	don’t	have	to	enter	anything	in	the
field.	When	a	record	is	created,	it	will	be	assigned	a	new	value	by	MySQL.
PRIMARY	KEY	-Each	table	can	only	have	one	Primary	Key.	It	is	used	to	uniquely
identify	a	record/row	in	a	database	and,	once	created,	it	can	never	be
changed.	This	makes	it	quicker	to	find	(at	the	expense	of	some	storage
space).

	

3.	 Adding	the	AlbumName	Field

Next	we	create	a	field	to	store	the	name	of	the	album.	The	data	type	varcharstands
for	variable	number	of	character	and	stores	a	string	of	up	to	225	characters.

	

4.	 Adding	the	AlbumArtist	Field

	

This	field	also	stores	a	variable	number	of	characters	and	its	string	is	limited	to
only	80	characters.

	

5.	 Adding	the	AlbumType	Enumerated	Type	Field

The	enumerated	type	ENUM	is	a	string	object	that	has	set	of	values	that	are	allowed.
In	our	case,	the	allowed	values	are	‘L’	for	Long	Play	(LP),	‘E’	for	Extended	Play
(EP)	and	‘M’	for	a	mix	tape.

	

6.	 Adding	the	numTracks	Field

	

If	this	seems	wrong	to	you,	then	you	have	been	paying	attention!	This	field	is	used
to	store	the	number	of	tracks	the	album	has	and	should	be	a	numeric	type	and	not	a
string	type.	This	was	done	intentionally	to	demonstrate	how	to	change	the	data	type
and	name	of	a	field/column	later	of	in	the	chapter.
	

7.	 Adding	DateReleased	Field

The	last	line	created	stores	the	date	the	album	was	released.	The	date	data	type
is	used	to	store	date	values.

	

Let	us	look	at	some	of	the	common	data	types	that	you	will	be	using:

Numeric	Types
1.	 INT:	whole	number	2^31	to	-2^31	–	1
2.	 FLOAT:	Decimal	spaces	1.1E38	to	-1.1E37
3.	 Double:	Decimal	spaces	1.7E308	to	-1.7E307
String	Types
1.	 CHAR:	fixed	length	character	string
2.	 VARCHAR:	Character	string	with	a	variable	length
3.	 ENUM:	A	character	string	that	has	a	limited	number	of	total	values	which	you

must	define
Date	and	Time
1.	 DATE:	YYYY:MM:DD
2.	 TIME:	HH:MM:SS
3.	 DATETIME:YYYY-MM-DD	HH:MM:SS
4.	 YEAR:	YYYY

Altering	Tables
	

Sometime	you	can	make	a	mistake	or	may	just	wish	to	changes	things	in	your	table.
Luckily,	you	can	do	so	with	MySQL	by	altering	the	table	using	MySQL	statements.	We
will	look	at	changing	table	and	column	names,	and	changing	data	types.

	

First	we	need	to	look	at	the	table	we	just	created	by	the	typing	following	command	to
describe	our	table.	We	should	be	able	to	see	its	structure	in	the	command	line:

	
DESCRIBE	Album;

You	should	see	the	following	output:
+––––—+–––––––-+––+–—+–––+–––––-+
|	Field								|	Type																	|	Null	|	Key	|	Default	|	Extra										|
+––––—+–––––––-+––+–—+–––+–––––-+
AlbumID	smallint(5) unsigned	NO	PRI	NULL	auto_increment
AlbumName	varchar(255)	NO		NULL	
AlbumArtist	varchar(80)	NO		NULL	
AlbumType	enum(‘A’,‘E’,‘M’)	NO		NULL	
numTracks	varchar(3)	NO		NULL	
DateReleased	date	NO		NULL	
+––––—+–––––––-+––+–—+–––+–––––-+

	

Looks	like	we	can	indeed	change	a	few	things:

	

1.	 Changing	the	Table	Name

Seems	the	singular	form	“Album”	doesn’t	make	much	sense	as	a	table	is	used	to
store	multiple	records.	We	should	use	the	plural	form	and	change	it	from	Album	to
Albums.	Just	so	it	makes	more	sense.

Here	is	how	we	change	the	table	name:
RENAME	TABLE	Album	to	Albums;

If	we	enter	the	show	tables	command	we	should	see	the	table	name	has	changed:
+–––––—+

														|	Tables_in_music	|
														+–––––—+
														|	albums										|
														+–––––—+

	

2.	 Changing	The	Data	Type	of	numTracks

The	field	numTracks	should	not	be	a	string	type	but	numeric.	The	following	code
should	change	its	data	type	to	the	appropriate	one:

ALTER	TABLE	Albums
														MODIFY	COLUMN	numTrackssmallint(2)	NOT	NULL;

3.	 Changing	the	Column	Name	fornumTracks

It	seems	we	are	still	not	done	with	the	field	numTracks.	We	need	to	change	it	to	make
it	a	little	more	readable	by	changing	it	from	numTracks	to	NumberOfTracks.

ALTER	TABLE	Albums
														CHANGE	numTracksNumberOfTrackssmallint(2)	NOT	NULL;

NOTE:	we	still	have	to	define	the	data	type	even	when	changing	the	name	of	the
column

With	the	following	changes,	when	we	enter	the	statement	to	describe	the	table,	we	should
see	the	following:

	
+–––––-+–––––––-+––+–—+–––+–––––-+

|	Field										|	Type																	|	Null	|	Key	|	Default	|	Extra										|

+–––––-+–––––––-+––+–—+–––+–––––-+

|	AlbumID								|	smallint(5)	unsigned	|	NO			|	PRI	|	NULL				|	auto_increment	|

|	AlbumName						|	varchar(255)									|	NO			|					|	NULL				|																|

AlbumArtist	varchar(80)	NO		NULL	
AlbumType	enum(‘A’,‘E’,‘M’)	NO		NULL	
NumberOfTracks	smallint(2)	NO		NULL	
DateReleased	date	NO		NULL	
+–––––-+–––––––-+––+–—+–––+–––––-+

	

That	looks	much	better!

	

Deleting	Tables
The	code	below	can	be	used	to	delete	a	table	and	all	its	data	from	the	database:
DROP	TABLE	table_name;

Where	table_name	is	the	name	of	the	table	you	wish	to	delete.

	

Inserting	Records	into	a	Table
We	use	the	INSERT	INTO	statement	in	order	to	insert	new	records	in	a	table.
INSERT	INTO	Albums	VALUES

(NULL,	“Rush	of	Blood	to	the	Head”,	“Coldplays”,	‘A’,	12,	“2002-08-02”),

(NULL,	“Dirty	Gold”,	“Angel	Haze”,	‘A’,	16,	“2013-12-30”),

(NULL,	“Back	to	the	Woods”,	“Angel	Haze”,	‘M’,	13,	“15-09-15”),

(NULL,	“Parachutes”,	“Coldplay”,	‘A’,	10,	“1999-07-10”),

(NULL,	“1989	(Delux	Edition)”,	“Taylor	Swift”,	‘A’,	15,	“2014-10-27”),

(NULL,	“Prospekts	March”,	“Coldplay”,	‘E’,	8,	“2008-09-21”),

(NULL,	“Random	Access	Memories”,	“Daft	Punk”,	‘A’,	14,	“2013-05-13”),

(NULL,	“X	&	Y”,	“Coldplay”,	‘A’,	13,	“2005-06-01”);

Seems	we	like	Coldplay	a	bit	too	much.	Who	doesn’t?

	

The	SELECT	Statement
	

The	SELECT	statement	allows	you	to	retrieve	data	from	a	data	base.	The	following	example
demonstrates	how	to	use	SELECT	statement	to	retrieve	all	the	records	from	the	Albums
table:
SELECT	*	FROM	Albums;

The	output	should	be	something	like	this:
+–––+–––––––––+––––—+–––—+–––––-+––––—+

|	AlbumID	|	AlbumName																	|	AlbumArtist		|AlbumType	|	NumberOfTracks	|	DateReleased	|

+–––+–––––––––+––––—+–––—+–––––-+––––—+

|							1	|	Rush	of	Blood	to	the	Head	|	Coldplays				|	A									|													12	|	2002-08-02			|

|							2	|	Dirty	Gold																|	Angel	Haze			|	A									|													16	|	2013-12-30			|

|							3	|	Back	to	the	Woods									|	Angel	Haze			|	M									|													13	|	2015-09-15			|

|							4	|	Parachutes																|	Coldplay					|	A									|													10	|	1999-07-10			|

|							5	|	1989	(Delux	Edition)						|	Taylor	Swift	|	A									|													15	|	2014-10-27			|

|							6	|	Prospekts	March											|	Coldplay					|	E									|														8	|	2008-09-21			|

|							7	|	Random	Access	Memories				|	Daft	Punk				|	A									|													14	|	2013-05-13			|

|							8	|	X	&	Y																					|	Coldplay					|	A									|													13	|	2005-06-01			|

+–––+–––––––––+––––—+–––—+–––––-+––––—+

	

	

To	select	specific	columns	we	use	the	following	SELECT	statement:

	
SELECT	AlbumName,	AlbumArtist,	DateReleased,	NumberOfTracks

FROM	Albums;

	

The	output	should	be:

	
+–––––––––+––––—+––––—+–––––-+

|	AlbumName																	|	AlbumArtist		|DateReleased	|	NumberOfTracks	|

+–––––––––+––––—+––––—+–––––-+

|	Rush	of	Blood	to	the	Head	|	Coldplays				|	2002-08-02			|													12	|

|	Dirty	Gold																|	Angel	Haze			|	2013-12-30			|													16	|

|	Back	to	the	Woods									|	Angel	Haze			|	2015-09-15			|													13	|

|	Parachutes																|	Coldplay					|	1999-07-10			|													10	|

|	1989	(Delux	Edition)						|	Taylor	Swift	|	2014-10-27			|													15	|

|	Prospekts	March											|	Coldplay					|	2008-09-21			|														8	|

|	Random	Access	Memories				|	Daft	Punk				|	2013-05-13			|													14	|

|	X	&	Y																					|	Coldplay					|	2005-06-01			|													13	|

+–––––––––+––––—+––––—+–––––-+

The	WHERE	Clause
	

Sometimes	you	will	need	to	filter	out	records	and	select	only	those	records	that	fulfil	a
certain	criterion.	This	is	where	the	WHERE	clause	comes	into	play	as	the	following
example	demonstrates:

	
SELECT	AlbumName,	AlbumArtist,	DateReleased,	NumberOfTracks

FROM	Albums

WHERE	AlbumArtist	=	‘Coldplay’

	

This	should	output:

	
+–––––—+––––-+––––—+–––––-+

|	AlbumName							|	AlbumArtist	|	DateReleased	|	NumberOfTracks	|

+–––––—+––––-+––––—+–––––-+

|	Parachutes						|	Coldplay				|	1999-07-10			|													10	|

|	Prospekts	March	|	Coldplay				|	2008-09-21			|														8	|

|	X	&	Y											|	Coldplay				|	2005-06-01			|													13	|

+–––––—+––––-+––––—+–––––-+

	

NOTE:	This	example	was	done	on	a	text	field,	hence,	the	single	quotes	on	the	value	we
want	to	check	against.	You	can	check	against	numeric	fields	too.	Just	remove	the	single
quotes	and	make	sure	you	type	a	numeric	value	that	corresponds	to	the	numeric	data	type
of	that	field.

	

You	can	further	filter	out	the	record	using	the	ANDandOR	operators	to	narrow	down	the
results	further:

	

The	AND	operator	displays	records	that	match	both	conditions	of	the	criterion:
SELECT	AlbumName,	AlbumArtist,AlbumType

FROM	Albums

WHERE	AlbumArtist	=	‘Coldplay’	AND	AlbumType	=	‘A’;

	

The	output	should	display	results	where	the	AlbumName	is	Coldplay	and	the	AlbumType	is
‘L’.	If	any	record	doesn’t	match	that	criterion,	it	will	be	excluded:

	
+––––+––––-+–––—+

|	AlbumName		|AlbumArtist	|	AlbumType	|

+––––+––––-+–––—+

|	Parachutes	|	Coldplay				|	A									|

|	X	&	Y						|	Coldplay				|	A									|

+––––+––––-+–––—+

	

The	OR	operator	is	used	to	return	records	that	match	either	of	the	one	of	the	criterion
specified.

	
SELECT	AlbumName,	AlbumArtist,	AlbumType

FROM	Albums

WHERE	AlbumType	=	‘E’	OR	AlbumType	=	‘M’;

	

In	the	above	example,	any	record	that	has	either	AlbumType	of	‘E’	or	AlbumType	of	‘M’	will
be	displayed.	The	rest	will	be	excluded.	The	output	should	be	as	follows:

	
+––––––-+––––-+–––—+

|	AlbumName									|	AlbumArtist	|	AlbumType	|

+––––––-+––––-+–––—+

|	Back	to	the	Woods	|	Angel	Haze		|	M									|

|	Prospekts	March			|	Coldplay				|	E									|

+––––––-+––––-+–––—+

The	ORDER	BY	Keyword
	

In	order	to	sort	the	result_set	(the	table	returned	by	a	SELECT	statement)	by	one	or	more
columns,	we	use	the	ORDER	BY	keyword	and	specify	whether	it	should	be	in	descending	or
ascending	order:

	
SELECT	AlbumName,	AlbumArtist

FROM	Albums

ORDER	BY	AlbumArtist	ASC;

	

NOTE:	By	default,	they	are	sorted	in	ascending	order.	This	means	that	if	we	leave	out
the	ASC	keyword,	it	would	not	make	a	difference.	We	can	sort	them	in	descending	order
by	replacing	ASC	with	DESC	in	the	above	example.

	

That	should	output	records	in	ascending	order	based	on	the	name	of	the	artist	of	the
album:
	

+–––––––––+––––—+

|	AlbumName																	|	AlbumArtist		|

+–––––––––+––––—+

|	Dirty	Gold																|	Angel	Haze			|

|	Back	to	the	Woods									|	Angel	Haze			|

|	Parachutes																|	Coldplay					|

|	Prospekts	March											|	Coldplay					|

|	X	&	Y																					|	Coldplay					|

|	Rush	of	Blood	to	the	Head	|	Coldplays				|

|	Random	Access	Memories				|	Daft	Punk				|

|	1989	(Delux	Edition)						|	Taylor	Swift	|

+–––––––––+––––—+

The	UPDATE	Statement
Looking	back	at	the	some	of	the	records	we	have	displayed	so	far,	it	seems	we	made	a
mistake	and	named	Coldplay	as	Coldplays	in	one	of	the	records.	This	can	be	corrected	by
updating	that	record	using	the	UPDATE	statement..

	

If	we	output	the	record	now	with	the	following	code:

	
SELECT	AlbumID,	AlbumName,	AlbumArtist

FROM	Albums;

	

The	output	should	be:

	
+–––+–––––––––+––––—+

|	AlbumID	|	AlbumName																	|	AlbumArtist		|

+–––+–––––––––+––––—+

|							1	|	Rush	of	Blood	to	the	Head	|	Coldplays				|

|							2	|	Dirty	Gold																|	Angel	Haze			|

|							3	|	Back	to	the	Woods									|	Angel	Haze			|

|							4	|	Parachutes																|	Coldplay					|

|							5	|	1989	(Delux	Edition)						|	Taylor	Swift	|

|							6	|	Prospekts	March											|	Coldplay					|

|							7	|	Random	Access	Memories				|	Daft	Punk				|

|							8	|	X	&	Y																					|	Coldplay					|

+–––+–––––––––+––––—+

	

We	update	that	recode	like	this:
	

UPDATE	Albums

SET	AlbumArtist	=	‘Coldplay’

WHERE	AlbumID	=	1;

	

Warning:	Don’t	omit	the	WHERE	clause	or	all	the	records	in	the	table	will	be	updated.
	

If	we	output	it	now,	we	should	see	the	record	has	been	updated:

	
+–––+–––––––––+––––—+

|	AlbumID	|	AlbumName																	|	AlbumArtist		|

+–––+–––––––––+––––—+

|							1	|	Rush	of	Blood	to	the	Head	|	Coldplay					|

|							2	|	Dirty	Gold																|	Angel	Haze			|

|							3	|	Back	to	the	Woods									|	Angel	Haze			|

|							4	|	Parachutes																|	Coldplay					|

|							5	|	1989	(Delux	Edition)						|	Taylor	Swift	|

|							6	|	Prospekts	March											|	Coldplay					|

|							7	|	Random	Access	Memories				|	Daft	Punk				|

|							8	|	X	&	Y																					|	Coldplay					|

+–––+–––––––––+––––—+

Deleting	Records	in	a	Tables
	

To	delete	records	in	a	table,	we	use	the	DELETE	statement.	The	following	example	deletes
the	record/row	from	the	table	with	an	AlbumID	of	1:

	
DELETE	FROM	Albums

WHERE	AlbumID	=	1;

	

Warning:	Don’t	omit	the	WHERE	clause	or	all	the	records	in	the	table	will	be	deleted.
	

Now	we	output	the	records	in	the	table.	We	will	limit	the	number	of	columns	to	only
AlbumID,	AlbumName	and	AlbumArtist.	The	record	with	an	AlbumID	of	1	should	be	missing
from	the	result_set	because	it	has	been	deleted.

	
+–––+––––––––+––––—+

|	AlbumID	|	AlbumName														|	AlbumArtist		|

+–––+––––––––+––––—+

|							2	|	Dirty	Gold													|	Angel	Haze			|

|							3	|	Back	to	the	Woods						|	Angel	Haze			|

|							4	|	Parachutes													|	Coldplay					|

|							5	|	1989	(Delux	Edition)			|	Taylor	Swift	|

|							6	|	Prospekts	March								|	Coldplay					|

|							7	|	Random	Access	Memories	|	Daft	Punk				|

|							8	|	X	&	Y																		|	Coldplay					|

+–––+––––––––+––––—+

	

If	you	want	to	delete	all	records	in	the	table,	the	following	DELETE	statement	will	do	just
that:

	
DELETE	from	Albums;

	

Summary
	

Okay,	now	that	you	are	familiar	with	basics	of	MySQL	and	can	access	it	using	the
command	line	and	use	it	to	create	and	delete	databases;	create,	alter	and	delete	tables;
select,	insert,	update,	and	delete	table	data;	and	do	other	neat	things	with	data	like	filtering
it	and	ordering	it	the	way	you	want	using	MySQL	commands,	it	is	the	time	to	move	on
and	look	at	how	we	can	use	PHP	and	MySQL	together	and	create	a	very	simple	website
where	you	add	records	to	a	database	of	our	favorite	artists.

	

Chapter	4	-	Hour	4:	PHP	and	MySQL:	The
Dynamic	Duo
	

“A	language	that	doesn’t	affect	the	way	you	think	is	not	worth	knowing”	–	Alan	J.	Perils
	

In	this	chapter	we	will	cover:

	

	

Creating	the	Family	Database
Creating	and	Inserting	Values	into	the	Family	Members	Table
Creating	a	PHP	configuration	File	the	Website
Creating	the	Index	Page
Creating	the	Form	to	Input	Data
Creating	the	Member	Added	Page

	

Think	of	seeing	your	two	favorite	artists	performing	together.	This	is	what	it	should	feel
like	at	this	movement	as	we	are	about	see	PHP	and	MySQL	(mostly	PHP)	work	together
to	create	a	website.	By	now	you	should	be	able	to	imagine	the	good	music	these	two	can
make	together.

	

The	website	is	simple;	let’s	say	you	want	to	keep	track	of	your	family	members	online.	We
will	create	a	simple	website	that	lets	you	add	them	(if	you	like	them)	to	a	database	so	you
don’t	always	have	to	remember	who	they	are.	We	will	forego	a	lot	of	security	features	just
to	keep	it	simple	and	other	functions	but	this	simple	example	should	be	enough	to	get	you
on	your	way.

By	now	you	have	a	fairly	good	grasp	of	PHP	and	can	use	the	command	line	to	type	SQL
commands.	We	will	need	both.	So	make	sure	both	Apache	and	MySQL	are	running	in
XAMPP	(See	Chapter	1	and	Chapter	3	on	how	to	enable	Apache	and	MySQL
respectively).

So	let	us	get	started!

	

Creating	Family	Database
	

Open	up	the	command	line	and	fire	up	the	MySQL	Client	and	login	as	the	‘root’	(see
Chapter	3).

Create	the	Database	by	entering	the	following	code:
CREATE	DATABASE	Family;

Then	select	the	database	in	order	to	use	it:
USE	Family;

Create	and	Inserting	Values	into	the	Family	Members	Table
Now	we	create	the	table	that	stores	the	information.	It	should	look	like	this:

	

Family	Members

Member	ID

First	Name

Last	Name

Age

Gender

Relationship

	

The	code	to	create	the	tables	looks	as	follows:
CREATE	TABLE	FamilyMembers

(

MemberIDint	unsigned	NOT	NULL	auto_increment	PRIMARY	KEY,

FirstNamevarchar(80)	NOT	NULL,

LastNamevarchar(80)	NOT	NULL,

Age	int(3)	unsigned	NOT	NULL,

Gender	ENUM	(‘Male’,	‘Female’)	NOT	NULL,

Relationship	varchar(80)	NOT	NULL

);

	

When	we	describe	the	table	we	get	something	like	this:
	

+––––—+–––––––—+––+–—+–––+–––––-+

|	Field								|	Type																		|	Null	|	Key	|	Default	|	Extra										|

+––––—+–––––––—+––+–—+–––+–––––-+

|	MemberID					|	int(10)	unsigned						|	NO			|	PRI	|	NULL				|	auto_increment	|

|	FirstName				|	varchar(80)											|	NO			|					|	NULL				|																|

|	LastName					|	varchar(80)											|	NO			|					|	NULL				|																|

|	Age										|	int(3)	unsigned							|	NO			|					|	NULL				|																|

|	Gender							|	enum(‘Male’,‘Female’)	|	NO			|					|	NULL				|																|

|	Relationship	|	varchar(80)											|	NO			|					|	NULL				|																|

+––––—+–––––––—+––+–—+–––+–––––-+

	

Then	we	insert	values	into	the	tables:

	
INSERT	INTO	FamilyMembers	VALUES

(NULL,	‘Robert’,	‘Williams’,	52,	‘Male’,	‘Father’),

(NULL,	‘Martha’,	‘Williams’,	49,	‘Female’,	‘Mother’),

(NULL,	‘Doreen’,	‘Williams’,	18,	‘Female’,	‘Sister’),

(NULL,	‘Jace’,	‘Williams’,	13,	‘Female’,	‘Adoptive	Sister’),

(NULL,	‘Benson’,	‘Williams’,	22,	‘Male’,	‘Brother’),

(NULL,	‘Timothy’,	‘James’,	23,	‘Male’,	‘Cousin’);

When	we	select	all	the	records	in	the	table,	we	see	something	like	this:
+–––-+–––—+–––-+–—+––—+–––––—+

|	MemberID	|	FirstName	|	LastName	|	Age	|	Gender	|	Relationship				|

+–––-+–––—+–––-+–—+––—+–––––—+

|								1	|	Robert				|	Williams	|		52	|	Male			|	Father										|

|								2	|	Martha				|	Williams	|		49	|	Female	|	Mother										|

|								3	|	Doreen				|	Williams	|		18	|	Female	|	Sister										|

|								4	|	Jace						|	Williams	|		13	|	Female	|	Adoptive	Sister	|

|								5	|	Benson				|	Williams	|		22	|	Male			|	Brother									|

|								6	|	Timothy			|	James				|		23	|	Male			|	Cousin										|

+–––-+–––—+–––-+–—+––—+–––––—+

	

Now	we	are	done	with	the	command	line	(but	not	MySQL),	so	we	can	close	that.

	

Create	PHP	configuration	File	for	the	Website
	

We	must	first	create	a	folder	and	name	it	“Family”	and	place	in	it	in	the	htdocs	folder.	This
folder	is	located	in	the	root	directory	of	our	XAMPP	installation.	Then	we	create	a	file
called	config.php	and	place	it	in	the	root	folder	of	our	website

	

Warning:	for	security	purpose	this	file	needs	to	be	placed	outside	of	the	server	because,
while	it	is	not	easy	to	read	PHP	through	the	browser,	it	can	happen	if	the	server	is
misconfigured.	But	since	we	want	to	keep	this	as	simple	as	possible,	we	will	place	it	here.

Next	we	define	the	constants	needed	to	establish	out	connection	string	that	we	shall	use
too	connect	to	the	music	database:

	

<?php
														define(‘DB_NAME’,	‘Family’);
														define(‘DB_USER’,	‘root’);
														define(‘DB_PASSWORD’,	”);	
														define(‘DB_HOST’,	‘localhost’);
?>

	

Warning:	for	security	reason,	putting	in	a	plain	text	password	is	a	major	security	risk.	You
can	use	hash()	and	store	the	hash	in	the	configuration	file	config.php.	Then	you	can	check
if	the	entered	password	matches	the	hash	when	logging	in.

	

Then	we	establish	the	connection	string	by	passing	in	the	constants;	host	name,	username,
password,	and	database	name	to	the	method	that	establishes	the	connection:

	

<?php

define(‘DB_NAME’,‘Family’);

define(‘DB_USER’,‘root’);

define(‘DB_PASSWORD’,”);

define(‘DB_HOST’,‘localhost’);

$conn	=	@mysqli_connect(DB_HOST,	DB_USER,	DB_PASSWORD,	DB_NAME);

	

?>

	

Now	we	need	to	check	if	the	connections	succeeded	or	not.	If	it	didn’t,	we	display	the
appropriate	error	message	and	stop	execution	of	the	PHP	script:

	

<?php

define(‘DB_NAME’,‘Family’);

define(‘DB_USER’,‘root’);

define(‘DB_PASSWORD’,”);

define(‘DB_HOST’,‘localhost’);

$conn	=	@mysqli_connect(DB_HOST,	DB_USER,	DB_PASSWORD,	DB_NAME);

if	(!$conn)	{

														die(‘Could	not	connect:	‘	.	mysqli_connect_error());

}

	

?>

	

And	that’s	it	for	establishing	the	connection	string.	This	script	will	be	required	by	every
PHP	script	that	needs	to	connect	to	the	database	to	work	with	the	data.

	

Creating	the	Index	Page
	

Now	we	need	to	create	the	landing	page	which	shall	list	the	family	members	that	are	in
our	family	database	in	a	table.	We	are	going	to	add	some	CSS	(by	linking	to	external	style
sheets)	to	create	an	attractive	table	to	display	our	data	in.

	

We	create	a	file	named	index.php	and	place	it	root	directory	of	the	website.	The	code	for
file	should	look	something	like	this:

	

<!DOCTYPE	html>

<html>

	

<head>

<link	rel=“stylesheet”	type=“text/css”	href=“css/main.css”>

<link	rel=“stylesheet”	type=“text/css”	href=“css/table_styling.css”>

</head>

	

<body>

	

<div	id=“container”>

	

<div	id=“header”>

<h2>My	Family</h2>

</div>

	

<div	id=“btn_add”>

ADD

</div>

	

<div	id=“content”>

<?php

	

require_once(‘config.php’);

																																									

																																										$sql	=	“SELECT	MemberID,	FirstName,	LastName,	Age,
Gender,	Relationship

																																																																						FROM	FamilyMembers”;

	

$response	=	@mysqli_query($conn,	$sql);

																																									

																																										if	($response){

																																									

echo	‘<table>

																																																																						<tr>

																																																																																				<th>Member	ID</th>

																																																																																				<th>First	Name</th>

																																																																																				<th>Last	Name</th>

																																																																																				<th>Age</th>

																																																																																				<th>Gender</th>

																																																																																				<th>Relationship</th>

																																																																						</tr>’;

																																																																					

																																																								while	($row	=	mysqli_fetch_array($response)){

																																																																					

																																																																						echo	‘<tr>

																																																																																				<td>’	.	$row[‘MemberID’]	.
‘</td>

																																																																																				<td>’	.	$row[‘FirstName’]	.
‘</td>

																																																																																				<td>’	.	$row[‘LastName’]	.
‘</td>

																																																																																				<td>’	.	$row[‘Age’]	.	‘</td>

																																																																																				<td>’	.	$row[‘Gender’]	.	‘</td>

																																																																																				<td>’	.	$row[‘Relationship’]	.
‘</td>

																																																																						</tr>’;

																																																																					

																																																								}

																																																							

																																																								echo	‘</table>’;

																																																							

																																										}

																																										else	{

																																																							

																																																								echo	“Cound	not	get	a	response	from	database	”	.
mysqli_error($conn);

																																																							

																																										}

																																									

																																										mysqli_close($conn);

													

																												?>

	

</div>

	

</div>

	

</body>

	

</html>
	

There	is	quite	a	lot	going	on	here	but	we	will	not	get	into	it	all.	We	also	won’t	be
discussing	any	of	the	HTML	and	CSS	as	this	book	assuming	you	have	some	basic
knowledge	of	those	and	how	to	link	external	style	sheets.

	

Firstly,	in	the	PHP	code,	we	include	the	config.php	file	by	calling	the	require_once
function	and	passing	the	path	to	the	file	as	a	parameter	(we	pass	in	a	relative	path	since	the
configuration	file).	This	will	allow	us	to	access	our	database	connection	we	defined	in	that
file:

require_once(‘config.php’);

	

Next	we	create	the	query	string	that	will	be	used	to	retrieve	data	from	database	using	SQL
and	assign	it	to	the	variable$sql:
	

$sql	=	“SELECT	MemberID,	FirstName,	LastName,	Age,	Gender,	Relationship	FROM
FamilyMembers”;
	

We	use	aSELECTstatement	to	select	the	fields	we	wish	to	display	from	the	FamilyMemberstable
following	the	same	syntax	rules	we	would	use	on	the	command	line.

	

Then	we	send	the	query	to	the	database	using	the	mysqli_query	function	and	pass	in	the
connection	variable,	which	is	now	accessible	because	we	included	the	config.php,	and	the
query	string	then	assign	the	return	value	to	the	$response	variable:

	

$response	=	@mysqli_query($conn,	$sql);

	

After	that,	we	check	if	we	got	a	response	from	the	database	using	an	if	statement:

if	($response){

	

}

	

If	we	got	a	response	from	the	database,		we	create	a	with	a	table	row	and	table	headers	by
embedding	HTML	in	PHP	code	and	echoing	that	inside	the	if	statement:

echo	‘<table>

<tr>

														<th>Member	ID</th>

														<th>First	Name</th>

														<th>Last	Name</th>

														<th>Age</th>

														<th>Gender</th>

														<th>Relationship</th>

</tr>’;
	

Okay,	that	does	it	for	the	columns.	Now	we	need	to	display	the	rows	one	by	one
dynamically	in	case	we	have	many.	The	following	code	does	that:

while	($row	=	mysqli_fetch_array($response)){

																																																																					

echo	‘<tr>

														<td>’	.	$row[‘MemberID’]	.	‘</td>

														<td>’	.	$row[‘FirstName’]	.	‘</td>

														<td>’	.	$row[‘LastName’]	.	‘</td>

														<td>’	.	$row[‘Age’]	.	‘</td>

														<td>’	.	$row[‘Gender’]	.	‘</td>

														<td>’	.	$row[‘Relationship’]	.	‘</td>

</tr>’;

																																																																					

}
	

In	the	above	code,	we	use	a	loop	to	go	through	an	array	we	get	from	the	response	using
the	mysqli_fetch_array()function	and	passing	in	the	$response	variable	as	a	parameter.
We	assign	the	value	(which	is	also	an	array	contain	the	fields	of	the	row)	we	get	from	the
function	into	the	variable	$row	and	embed	HTML	around	them	to	create	new	table	rows
dynamically	as	many	as	they	are	elements	in	the	array.

	

Then	we	close	of	the	table	off	and	that	is	it	for	displaying	the	data	dynamically:

echo	‘</table>’;

	

But	what	if	there	was	no	response	for	the	database	because	something	went	wrong?	That
could	happen.	In	that	case	we	add	an	else	statement	after	our	if	statement	to	display	the
error	message	using	the	mysqli_error	function	and	we	pass	in	our	connection	as	a
parameter:
	

else{

																																																							

echo	“Cound	not	get	a	response	from	database	”	.															mysqli_error($conn);

																																																							

}

	

Lastly,	we	close	the	database	connection	using	the	mysqli_close	function,	passing	in	the
connection	as	a	parameter	and	we	are	done	with	the	index	page:

mysqli_close($conn);
	

Go	into	the	browser	and	enter	that	path	to	the	index.php	as	follows	then	press	Enter:
https://localhost/Family/index.php

	

The	below	window	should	display:
	

	

As	you	can	see;	it	is	displaying	the	records	we	entered	previous	and	has	generated	the

https://localhost/Family/index.php

table	dynamically.	Neat	huh!

CSS	for	index	Page
Create	a	folder	inside	the	websites	root	folder	called	css	and	create	two	CSS	files	called
main.css	and	table_styling.css.	These	are	the	external	style	sheets	for	the	page.

	

We	enter	the	following	code	into	main.css	to	style	the	body,	headers,	and	links.	It	also
centers	the	content:

	

body	{

background-color:	#EEE;

}

	

#container	{

width:	900px;

margin-left:	auto;

margin-right:	auto;

}

	

#header	{

color:	#2ca089;

text-align:	center;

font-size:	2em;

}

	

/*	links	*/

	

a:link,	a:visited	{

background-color:	#2ca089;

color:	white;

padding:	5px	12px;

text-align:	center;													

text-decoration:	none;

display:	inline-block;

}

	

a:hover,	a:active	{

background-color:	#AFDCB1;

}

	

#btn_add	{

padding:	5px	0px;

text-align:	right;

}

	

Then	we	enter	the	following	code	into	table_styling.css	to	style	the	table:

	

table	{

border-collapse:	collapse;

width:	100%;

}

	

th,	td	{

text-align:	left;

padding:	8px;

}

	

tr:nth-child(even){background-color:	white;	}

	

th	{

background-color:	#2ca089;

color:	white;

}

	

Creating	the	Form	to	Input	Data
	

We	create	a	file	called	form.php	and	place	it	the	root	folder	of	the	website.	Then	we	place
the	code	below:

	

<!DOCTYPE	html>

<html>

	

<head>

<link	rel=“stylesheet”	type=“text/css”	href=“css/main.css”>

<link	rel=“stylesheet”	type=“text/css”	href=“css/form_styling.css”>

</head>

	

<body>

	

<div	id=“container”>

	

<div	id=content>

	

<div>

<form	action=“member_added.php”	method=“post”>

	

<div	id=“header”>

<h3>Add	Family	Member</h3>

</div>

	

<div	id=“btn_add”>

View	Members

</div>

	

<label	for=“fname”>First	Name</label>

<input	type=“text”	id=“first_name”	name=“first_name”	maxlength=“80”>

	

<label	for=“lname”>Last	Name</label>

<input	type=“text”	id=“last_name”	name=“last_name”	maxlength=“80”>

	

<label	for=“age”>Age</label>

<input	type=“number”	id=“age”	name=“age”	min=“1”	max=“100”>

	

<label	for=“gender”>Gender</label>

<select	id=“gender”	name=“gender”>

<option	value=“Male”>Male</option>

<option	value=“Female”>Female</option>

</select>

	

<label	for=“relationship”>Relationship</label>

<input	type=“text”	id=“relationship”	name=“relationship”	maxlength=“80”>

	

<input	type=“submit”	name=“submit”	value=“ADD”>

</form>

</div>

	

</div>

	

</div>

	

</body>

	

</html>
	

Nothing	out	of	the	ordinary	is	happening	here.	This	just	your	basic	HTML	form	which	we
will	use	to	send	the	data	inputted	into	the	fields	to	the	database.	The	form	has	the	two
attributes	which	are	of	interest	to	us:

	

form	action	-	This	tells	the	form	to	send	the	form-data	to	the	member_added.php
script(which	we	shall	create	in	a	moment)	that	will	process	the	information	when	the	ADD
button	is	pressed

method	=	“post”	–	Tells	the	form	to	send	the	form-data	as	an	HTTP	post	transaction.	This
means	that	the	data	is	appended	inside	the	body	of	the	HTTP	request	URL.	This	is	good
for	sending	sensitive	data	(things	like	passwords)	unlike	the	“get”	method	which	just
appends	the	data	to	the	URL	and	anyone	one	can	see	it.

	

Go	into	the	browser	and	display	the	index	page.	Click	the	ADD	button	at	top	right	of	the
table	and	the	following	page	should	display	with	the	form	to	add	family	members:
	

	

CSS	for	Form	Page
	

Create	a	CSS	file	called	form_stlying.php	and	place	it	in	the	root	directory	of	the	website.
Place	the	following	style	rules	in	that	file	to	style	the	form	using	this	external	style	sheet:
	

input[type=text],	input[type=number],	select	{

width:	100%;

padding:	12px	20px;

margin:	8px	0;

display:	inline-block;

border:	1px	solid	#ccc;

border-radius:	4px;

box-sizing:	border-box;

}

	

input[type=submit]	{

width:	100%;

background-color:	#2ca089;

color:	white;

padding:	14px	20px;

margin:	8px	0;

border:	none;

border-radius:	4px;

cursor:	pointer;

}

	

input[type=submit]:hover	{

background-color:	#2ca089;

}

	

Creating	the	Member	Added	Page
	

Finally,	you	need	to	create	one	final	PHP	script	for	to	process	the	data	sent	by	the	form.
We	create	a	new	PHP	script	and	called	member_added	and	place	in	the	root	directory	of
our	website.	Then	we	place	the	following	code	in	the	script:
	

<!DOCTYPE	html>

<html>

	

<head>

<link	rel=“stylesheet”	type=“text/css”	href=“css/main.css”>

<link	rel=“stylesheet”	type=“text/css”	href=“css/form_styling.css”>

</head>

	

<body>

	

<div	id=“container”>

	

<div	id=“content”>

	

<?php

	

require_once(‘config.php’);

	

if(isset($_POST[‘submit’]))	{

	

$null_fields	=	array();

	

if	(empty($_POST[‘first_name’]))	{

	

$null_fields[]	=	‘First	Name’;

	

}	else	{

	

$first_name	=	trim($_POST[‘first_name’]);

}

	

if	(empty($_POST[‘last_name’]))	{

	

$null_fields[]	=	‘Last	Name’;

	

}	else	{

	

$last_name	=	trim($_POST[‘last_name’]);

	

}

if	(empty($_POST[‘age’]))	{

	

$null_fields[]	=	‘Age’;

	

}	else	{

	

$age	=	$_POST[‘age’];

	

}

if	(empty($_POST[‘gender’]))	{

	

$null_fields[]	=	‘Gender’;

	

}	else	{

	

$gender	=	$_POST[‘gender’];

	

}

if	(empty($_POST[‘relationship’]))	{

	

$null_fields[]	=	‘Reliationship’;

	

}	else	{

	

$relationship	=	$_POST[‘relationship’];

	

}

	

if	(empty($null_fields))	{

	

$null_variable	=	NULL;

$sql	=	“INSERT	INTO	FamilyMembers	VALUES	(‘$null_variable’,	‘$first_name’,
‘$last_name’,	‘$age’,	‘$gender’,

																																																																																																		‘$relationship’)”;

																																																																					

																																																																						if	(!mysqli_query($conn,	$sql))	{

	

																																																																																				die	(‘Error:	‘	.
mysqli_error($conn));

																																																																																			

																																																																						}

	

echo	“Family	member	has	been	entered!”;

	

mysqli_close($conn);

}

																																																								else	{

																																																																					

																																																																						echo	“You	need	to	enter	the	follwing

missing	data:	
”;

																																																																					

																																																																						foreach	($null_fields	as	$null_field)	{

																																																																					

																																																																																				echo	$null_field	.	“
”;

																																																																																			

																																																																						}

																																																								}

}

	

?>

	

<div>

<form	action=“member_added.php”	method=“post”>

<div	id=“header”>

<h3>Add	Family	Member</h3>

</div>

	

<div	id=“btn_add”>

View	Members

</div>

	

<label	for=“fname”>First	Name</label>

<input	type=“text”	id=“first_name”	name=“first_name”	maxlength=“80”>

	

<label	for=“lname”>Last	Name</label>

<input	type=“text”	id=“last_name”	name=“last_name”	maxlength=“80”>

	

<label	for=“age”>Age</label>

<input	type=“number”	id=“age”	name=“age”	min=“1”	max=“100”>

	

<label	for=“gender”>Gender</label>

<select	id=“gender”	name=“gender”>

<option	value=“Male”>Male</option>

<option	value=“Female”>Female</option>

</select>

	

<label	for=“relationship”>Relationship</label>

<input	type=“text”	id=“relationship”	name=“relationship”	maxlength=“80”>

	

<input	type=“submit”	name=“submit”	value=“ADD”>

</form>

</div>

	

</div>

	

</div>

	

</body>

	

</html>

	

Let	us	break	this	down	and	look	at	the	most	interesting	bits.

	

We	have	to	check	if	the	information	was	submitted	by	the	form	before	we	work	with	it.
We	do	this	with	an	if	statement	and	use	the	isset()	built	in	PHP	function	that	checks	if	a
variable	is	null.	We	pass	in	the	associative	array	$_POSTas	a	parameter.	It	contains	all
values	inputted	into	the	form	found	in	form.php.	The	array	is	passed	to	the	script	via	the
post	method	of	the	form:

	

if(isset($_POST[‘submit’]))	{

	

}

	

Inside	the	conditional	statement,	we	then	declare	an	array	to	check	if	we	happen	to	have
missed	any	if	the	form	inputs:

	

$null_fields	=	array();

	

Next	we	start	checking	if	any	the	values	in	the	array	are	empty	before	we	send	them	to	the
database.	If	so,	we	add	them	to	the	$null_fields	array	if	not,	we	create	a	variable	and	store
them	there.	We	will	just	look	at	one	of	the	if…else	statements	because	the	rest	a	similar:

	

if	(empty($_POST[‘first_name’]))	{

	

$null_fields[]	=	‘First	Name’;

	

}	else	{

	

$first_name	=	trim($_POST[‘first_name’]);

	

}

	

We	do	this	for	the	rest	of	values	in	the	$_POST	array.

	

Warning:	This	may	not	be	the	most	secure	way	of	verifying	data	before	it	goes	to	the
database.	For	that	we	need	to	use	regular	expressions	and	that	is	an	advanced	topic.	We
are	just	trying	to	keep	things	simple.

	

Next	we	have	to	check	if	the	$null_fields	array	turned	out	empty.	This	means	all	the	data
was	submitted:

	

if	(empty($null_fields))	{

	

}

	

If	we	are	inside	that	condition,	it	means	that	all	the	data	was	submitted	and	we	can	query
the	database.	We	use	the	INSERT	TO	statement	to	insert	the	data	into	the
FamilyMembers	table.	We	follow	the	rules	used	to	insert	data	into	a	table	by	making	sure
the	variables	are	in	the	same	order	as	they	are	defined	in	the	tables.	We	declared	an	extra
variable	before	the	creating	the	query	string	to	pass	in	as	a	null	value	for	the	primary.	We
also	make	sure	the	number	of	parameters	match	the	number	of	fields	in	the	table:

	

$null_variable	=	NULL;

$sql	=	“INSERT	INTO	FamilyMembers	VALUES	(‘$null_variable’,	‘$first_name’,
‘$last_name’,	‘$age’,	‘$gender’,	‘$relationship’)”;

	

Next,	we	use	query	database	using	the	mysqli_query(),	passing	in	the	connection	and
query	string	as	parameters,	while	simultaneously	checking	for	any	errors	return	by	the
function.	It	returns	FALSE	on	failure.	If	errors	are	found,	we	display	them	so	they	can	be
fixed.	If	not	errors	are	found,	we	echo	a	success	message:

	

if	(!mysqli_query($conn,	$sql))	{

	

die	(‘Error:	‘	.	mysqli_error($conn));

																																																																																			

}else	{

	

echo	“Family	member	has	been	entered!”;

																																																																					

}

	

So	now	we	are	done	with	what	happens	when	the	player	inputs	all	the	data,	but	if	he
misses	any,	we	should	display	to	him	the	fields	he	missed	by	looping	through	the
$null_fields	array	using	a	foreach	loop	and	echoing	them	to	the	screen.

	

else	{

																																																																					

echo	“You	need	to	enter	the	follwing	missing	data:	
”;

																																																																					

foreach	($null_fields	as	$null_field)	{

																																																																					

														echo	$null_field	.	“
”;

																																																																																			

}

}

	

Then	after	that,	we	exit	the	condition	that	checks	if	the	$_POST	array	is	empty	and	close
the	connection	to	the	database:

	

mysqli_close($conn);

	

Then	right	after	the	closing	PHP	tag	we	display	the	form	again	that	allows	for	the	PHP
script	to	call	itself	so	that	we	can	continue	inputting	data	or	re-enter	data	in	case	we	forgot
some	fields.

	

And	we	are	done!	Now	we	should	be	able	to	add	family	members	and	view	them.	We
should	also	be	able	to	navigate	between	pages	using	the	buttons	on	the	top	right	corner	of
the	forms	or	table	that	allow	you	switch	between	the	pages.

	

Start	up	the	index	page	and	go	to	the	form	page	to	add	some	data

	

	

Click	the	ADD	button	to	add	the	member	to	database.	You	should	see	the	success
message:

	

	

Click	the	View	Members	button	to	verify.	The	below	window	should	display	with	the	new
member	added:

	

Summary
So	there	you	have	it!	Before	this	chapter	we	looked	at	PHP	and	MySQL	separately	and	in	this	chapter	was	aimed	at
consolidating	the	two,	and	showing	how	to	use	them	to	produce	dynamic	content.	It	should	not	be	that	hard	to	modify
the	website	to	do	whatever	you	need	it	to	do	as	you	are	now	capable.

	

In	the	chapter	we	created	a	configuration	file	that	stored	the	connection	to	the	database	and	used	it	all	throughout	the
website	to	establish	a	connection	to	the	database	and	query	it	to	store	and	retrieve	data.	We	created	a	page	that	enables
you	to	view	information	about	the	family	members	you	have	added	to	database.	We	also	created	a	page	with	a	form	for
inputting	the	data	and	a	page	that	has	the	PHP	needed	to	process	the	data	when	the	form	is	submitted.

Conclusion
	

“Education	is	the	kindling	of	a	flame,	not	the	filling	of	a	vessel.”	―	Socrates

	

This	is	the	end	of	this	book,	but	not	your	learning.	You	still	have	to	go	out	there	and	learn
what	other	things	you	can	do	with	PHP	and	MySQL	and	get	a	more	in	depth
understanding	of	the	concept.	At	this	point	though,	I	sincerely	hope	you	have	been
equipped	with	enough	knowledge	to	do	what	is	you	need	to	do	with	a	basic	understanding
of	PHP	and	MYSQL.

	

In	the	first	hour,	we	covered	the	basics	of	PHP	like	comments,	variables,	constants	and
operators.	But	not	before	we	learned	how	to	install	the	server	package	XAMPP	to	that	has
the	Apache	service	for	the	server.	We	run	a	PHP	script	and	displayed	neat	messages	to	the
screen.	We	also	chose	a	cool	text	editor	to	write	beautiful	PHP	code.

http://www.goodreads.com/author/show/275648.Socrates

	

In	second	hour,	we	got	a	little	deeper	into	the	basics	of	PHP	and	looked	at	how	we	can
write	conditional	statements	that	allow	us	to	execute	blocks	of	code	depending	on	a
specified	condition.	Next	we	looked	at	how	to	loop	thorough	code	until	a	certain	condition
is	met	using	while	and	for	loops.	We	then	looked	at	how	we	encapsulated	code	blocks	and
re-use	them	through	the	program	using	functions.	We	passed	information	to	the	in	the
form	of	parameters	and	they	return	some	of	it	back	after	performing	operations	on	that
information.	Then	we	finally	we	saw	how	to	store	collections	of	data	into	arrays	and	how
to	loop	through	them.

	

In	the	third,	hour	we	learned	MySQL.	We	learned	how	to	bring	up	the	command	prompt	to
enter	MySQL	commands	to	perform	various	operations	such	as	creating	and	deleting
databases;	creating,	altering	and	deleting	tables;	retrieving,	inserting,	updating	and
deleting	the	data	in	the	tables.

	

In	the	fourth	and	final	chapter	we	looked	at	how	we	can	use	PHP	and	MySQL	together	to
create	dynamic	content	for	a	simple	website	we	were	making	a	list	of	our	favorite	family
members	and	their	details.

	

All	this	is	knowledge	for	the	absolute	beginner	who	needs	something	to	quickly	guide
them	with	clear	examples	and	explanations.	I	wish	you	well	in	your	futures	endeavors	and
I	believe	you	are	well	on	your	way	to	achieving	your	dreams.	Glad	I	could	help.
	

	Introduction
	Chapter 1 - Hour 1: Installing and PHP Basics
	Chapter 2 - Hour 2: More PHP Basics
	Chapter 3 - Hour 3: MySQL Basics
	Chapter 4 - Hour 4: PHP and MySQL: The Dynamic Duo
	Conclusion
	https://www.apachefriends.org/index.html
	Installing a Text Editor

