

TABEL	OF	CONTENT
1)								PHP	Introduction
2)								PHP	Environmental	Setup
3)								PHP	Syntax	Overview
4)								PHP	Variable	Types
5)								PHP	Constants
6)								PHP	Operator	Types
7)								PHP	Decision	Making
8)								PHP	Loop	Types
9)								PHP	Arrays
10)PHP	Strings
11)PHP	Web	Concepts
12)PHP	Get	&	Post
13)PHP	File	Inclusion
14)PHP	Files	&	I/O
15)PHP	Functions
16)PHP	Cookies
17)PHP	Sessions

18)PHP	Sending	Emails
19)PHP	File	Uploading
20)PHP	Coding	Standard
21)PHP	Predefined	Variable
22)PHP	Regular	Expression
23)PHP	Error	Handling
24)PHP	Bugs	Debugging
25)PHP	Date	&	Time
26)PHP	&	MySQL
27)PHP	&Ajax
28)PHP	&	XML
29)PHP	–	Object	Oriented
30)PHP	-For	C	Developers
31)PHP	-For	PERL	Developers

	
	
	
	

	
	
	
	
PHP	Tutorial
The	PHP	Hypertext	Preprocessor	(PHP)	is	a	programming	language	that	allows
web	developers	to	create	dynamic	content	that	interacts	with	databases.	PHP	is
basically	used	for	developing	web	based	software	applications.	This	tutorial
helps	you	to	build	your	base	with	PHP.

Audience
This	tutorial	is	designed	for	PHP	programmers	who	are	completely	unaware	of
PHP	concepts	but	they	have	basic	understanding	on	computer	programming.

Prerequisites
Before	proceeding	with	this	tutorial	you	should	have	at	least	basic	understanding
of	computer	programming,	Internet,	Database,	and	MySQL	etc	is	very	helpful.
	

Execute	PHP	Online
For	most	of	the	examples	given	in	this	tutorial	you	will	find	Try	it	an	option,	so
just	make	use	of	this	option	to	execute	your	PHP	programs	at	the	spot	and	enjoy
your	learning.
Try	following	example	using	Try	it	option	available	at	the	top	right	corner	of	the
below	sample	code	box	−
<html>
			<head>
						<title>Online	PHP	Script	Execution</title>					
			</head>
	
			<body>

	
						<?php
									echo	"<h1>Hello,	PHP!</h1>";
						?>
	
			</body>
</html>
	

	

	

	

	

	

	

	

	

	

PHP	-	Introduction
	

PHP	started	out	as	a	small	open	source	project	that	evolved	as	more	and	more
people	found	out	how	useful	it	was.	Rasmus	Lerdorf	unleashed	the	first	version
of	PHP	way	back	in	1994.

PHP	is	a	recursive	acronym	for	"PHP:	Hypertext	Preprocessor".
PHP	is	a	server	side	scripting	language	that	is	embedded	in	HTML.	It	is
used	to	manage	dynamic	content,	databases,	session	tracking,	even	build
entire	e-commerce	sites.
It	is	integrated	with	a	number	of	popular	databases,	including	MySQL,
PostgreSQL,	Oracle,	Sybase,	Informix,	and	Microsoft	SQL	Server.
PHP	is	pleasingly	zippy	in	its	execution,	especially	when	compiled	as	an
Apache	module	on	the	Unix	side.	The	MySQL	server,	once	started,
executes	even	very	complex	queries	with	huge	result	sets	in	record-setting
time.
PHP	supports	a	large	number	of	major	protocols	such	as	POP3,	IMAP,
and	LDAP.	PHP4	added	support	for	Java	and	distributed	object
architectures	(COM	and	CORBA),	making	n-tier	development	a
possibility	for	the	first	time.
PHP	is	forgiving:	PHP	language	tries	to	be	as	forgiving	as	possible.
PHP	Syntax	is	C-Like.

Common	uses	of	PHP
PHP	performs	system	functions,	i.e.	from	files	on	a	system	it	can	create,
open,	read,	write,	and	close	them.
PHP	can	handle	forms,	i.e.	gather	data	from	files,	save	data	to	a	file,
through	email	you	can	send	data,	return	data	to	the	user.
You	add,	delete,	modify	elements	within	your	database	through	PHP.
Access	cookies	variables	and	set	cookies.
Using	PHP,	you	can	restrict	users	to	access	some	pages	of	your	website.
It	can	encrypt	data.

Characteristics	of	PHP
Five	important	characteristics	make	PHP's	practical	nature	possible	−

Simplicity
Efficiency
Security
Flexibility
Familiarity

"Hello	World"	Script	in	PHP
To	get	a	feel	for	PHP,	first	start	with	simple	PHP	scripts.	Since	"Hello,	World!"
is	an	essential	example,	first	we	will	create	a	friendly	little	"Hello,	World!"
script.
As	mentioned	earlier,	PHP	is	embedded	in	HTML.	That	means	that	in	amongst
your	normal	HTML	(or	XHTML	if	you're	cutting-edge)	you'll	have	PHP
statements	like	this	−
<html>
	
			<head>
						<title>Hello	World</title>
			</head>
	
			<body>
						<?php	echo	"Hello,	World!";?>
			</body>
	
</html>

It	will	produce	following	result	−
Hello,	World!

If	you	examine	the	HTML	output	of	the	above	example,	you'll	notice	that	the
PHP	code	is	not	present	in	the	file	sent	from	the	server	to	your	Web	browser.	All
of	the	PHP	present	in	the	Web	page	is	processed	and	stripped	from	the	page;	the
only	thing	returned	to	the	client	from	the	Web	server	is	pure	HTML	output.
All	PHP	code	must	be	included	inside	one	of	the	three	special	markup	tags	ATE
are	recognised	by	the	PHP	Parser.
<?php	PHP	code	goes	here	?>
	
<?				PHP	code	goes	here	?>
	
<script	language="php">	PHP	code	goes	here	</script>

A	most	common	tag	is	the	<?php...?>	and	we	will	also	use	the	same	tag	in	our
tutorial.
From	the	next	chapter	we	will	start	with	PHP	Environment	Setup	on	your
machine	and	then	we	will	dig	out	almost	all	concepts	related	to	PHP	to	make
you	comfortable	with	the	PHP	language.
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

PHP	-	Environment	Setup

Try	it	Option	Online
We	have	set	up	the	PHP	Programming	environment	on-line,	so	that	you	can
compile	and	execute	all	the	available	examples	on	line.	It	gives	you	confidence
in	what	you	are	reading	and	enables	you	to	verify	the	programs	with	different
options.	Feel	free	to	modify	any	example	and	execute	it	on-line.
<html>
			<head>
						<title>Online	PHP	Script	Execution</title>
			</head>
	
			<body>
	
						<?php
									echo	"<h1>Hello,	PHP!</h1>";
						?>
	
			</body>
</html>

For	most	of	the	examples	given	in	this	tutorial,	you	will	find	a	Try	it	option	in
our	website	code	sections	at	the	top	right	corner	that	will	take	you	to	the	online
compiler.	So	just	make	use	of	it	and	enjoy	your	learning.
In	order	to	develop	and	run	PHP	Web	pages	three	vital	components	need	to	be
installed	on	your	computer	system.

Web	Server	−	PHP	will	work	with	virtually	all	Web	Server	software,
including	Microsoft's	Internet	Information	Server	(IIS)	but	then	most	often
used	is	freely	available	Apache	Server.	Download	Apache	for	free	here	−
https://httpd.apache.org/download.cgi
Database	−	PHP	will	work	with	virtually	all	database	software,	including
Oracle	and	Sybase	but	most	commonly	used	is	freely	available	MySQL
database.	Download	MySQL	for	free	here	−
https://www.mysql.com/downloads/
PHP	Parser	−	In	order	to	process	PHP	script	instructions	a	parser	must	be
installed	to	generate	HTML	output	that	can	be	sent	to	the	Web	Browser.
This	tutorial	will	guide	you	how	to	install	PHP	parser	on	your	computer.

https://httpd.apache.org/download.cgi
https://www.mysql.com/downloads/

PHP	Parser	Installation
Before	you	proceed	it	is	important	to	make	sure	that	you	have	proper
environment	setup	on	your	machine	to	develop	your	web	programs	using	PHP.
Type	the	following	address	into	your	browser's	address	box.
http://127.0.0.1/info.php

If	this	displays	a	page	showing	your	PHP	installation	related	information	then	it
means	you	have	PHP	and	Webserver	installed	properly.	Otherwise	you	have	to
follow	given	procedure	to	install	PHP	on	your	computer.
This	section	will	guide	you	to	install	and	configure	PHP	over	the	following	four
platforms	−

PHP	Installation	on	Linux	or	Unix	with	Apache

Apache	Configuration	for	PHP
	

Apache	uses	httpd.conf	file	for	global	settings,	and	the	.htaccess	file	for	per-
directory	access	settings.	Older	versions	of	Apache	split	up	httpd.conf	into	three
files	(access.conf,	httpd.conf,	and	srm.conf),	and	some	users	still	prefer	this
arrangement.
Apache	server	has	a	very	powerful,	but	slightly	complex,	configuration	system
of	its	own.	Learn	more	about	it	at	the	Apache	Web	site	−	www.apache.org
The	following	section	describe	settings	in	httpd.conf	that	affect	PHP	directly	and
cannot	be	set	elsewhere.	If	you	have	standard	installation	then	httpd.conf	will	be
found	at	etchttpd/conf:

http://www.apache.org/

Timeout
This	value	sets	the	default	number	of	seconds	before	any	HTTP	request	will	time
out.	If	you	set	PHP's	max_execution_time	to	longer	than	this	value,	PHP	will
keep	grinding	away	but	the	user	may	see	a	404	error.	In	safe	mode,	this	value
will	be	ignored;	you	must	use	the	timeout	value	in	php.ini	instead

DocumentRoot
DocumentRoot	designates	the	root	directory	for	all	HTTP	processes	on	that
server.	It	looks	something	like	this	on	Unix	−
DocumentRoot	.usrlocal/apache_1.3.6/htdocs.

You	can	choose	any	directory	as	document	root.

AddType
The	PHP	MIME	type	needs	to	be	set	here	for	PHP	files	to	be	parsed.	Remember
that	you	can	associate	any	file	extension	with	PHP	like	.php3,	.php5	or	.htm.
AddType	application/x-httpd-php	.php
AddType	application/x-httpd-phps	.phps
AddType	application/x-httpd-php3	.php3	.phtml
AddType	application/x-httpd-php	.html

Action
You	must	uncomment	this	line	for	the	Windows	apxs	module	version	of	Apache
with	shared	object	support	−
LoadModule	php4_module	modules/php4apache.dll

or	on	Unix	flavors	−
LoadModule	php4_module	modules/mod_php.so

AddModule
You	must	uncomment	this	line	for	the	static	module	version	of	Apache.
AddModule	mod_php4.c

	
PHP	Installation	on	Mac	OS	X	with	Apache

PHP	-	Installation	on	Mac	OS	X

Mac	users	have	the	choice	of	either	a	binary	or	a	source	installation.	In	fact,	your
OS	X	probably	came	with	Apache	and	PHP	preinstalled.	This	is	likely	to	be
quite	an	old	build,	and	it	probably	lacks	many	of	the	less	common	extensions.
However,	if	all	you	want	is	a	quick	Apache	+	PHP	+	MySQL/PostgreSQL	setup
on	your	laptop,	this	is	certainly	the	easiest	way	to	fly.	All	you	need	to	do	is	edit
your	Apache	configuration	file	and	turn	on	the	Web	server.
So	just	follow	the	following	steps	−

Open	the	Apache	config	file	in	a	text	editor	as	root.
sudo	open	-a	TextEdit	etchttpd/httpd.conf

Edit	the	file.	Uncomment	the	following	lines	−
Load	Module	php5_module
AddModule	mod_php5.c
AddType	application/x-httpd-php	.php

You	may	also	want	to	uncomment	the	<Directory	home*/Sites>	block	or
otherwise	tell	Apache	which	directory	to	serve	out	of.
Restart	the	Web	server

sudo	apachectl	graceful

Open	a	text	editor.	Type:	<?php	phpinfo();	?>.	Save	this	file	in	your	Web
server's	document	root	as	info.php.
Start	any	Web	browser	and	browse	the	file.you	must	always	use	an	HTTP
request	(http://www.testdomain.com/info.php	or	http://localhost/info.php
or	http://127.0.0.1/info.php)	rather	than	a	filename	(homehttpd/info.php)
for	the	file	to	be	parsed	correctly

You	should	see	a	long	table	of	information	about	your	new	PHP	installation
message	Congratulations!
	

PHP	Installation	on	Windows	NT/2000/XP	with	IIS
	

PHP	-	Installation	on	Windows	with
IIS
	
The	Windows	server	installation	of	PHP	running	IIS	is	much	simpler	than	on
Unix,	since	it	involves	a	precompiled	binary	rather	than	a	source	build.
If	you	plan	to	install	PHP	over	Windows,	then	here	is	the	list	of	prerequisites	−

A	working	PHP-supported	Web	server.	Under	previous	versions	of	PHP,
IIS/PWS	was	the	easiest	choice	because	a	module	version	of	PHP	was
available	for	it;	but	PHP	now	has	added	a	much	wider	selection	of
modules	for	Windows.
A	correctly	installed	PHP-supported	database	like	MySQL	or	Oracle	etc.
(if	you	plan	to	use	one)
The	PHP	Windows	binary	distribution	(download	it	at
www.php.net/downloads.php)
A	utility	to	unzip	files	(search	http://download.cnet.com	for	PC	file
compression	utilities)

Now	here	are	the	steps	to	install	Apache	and	PHP5	on	your	Windows	machine.
If	your	PHP	version	is	different	then	please	take	care	accordingly.

Extract	the	binary	archive	using	your	unzip	utility;	C:\PHP	is	a	common
location.
Copy	some	.dll	files	from	your	PHP	directory	to	your	systems	directory
(usually	C:\Winnt\System32).	You	need	php5ts.dll	for	every	case.	You
will	also	probably	need	to	copy	the	file	corresponding	to	your	Web	server
module	-	C:\PHP\Sapi\php5isapi.dll.	It's	possible	you	will	also	need	others
from	the	dlls	subfolder	-	but	start	with	the	two	mentioned	above	and	add
more	if	you	need	them.
Copy	either	php.ini-dist	or	php.ini-recommended	(preferably	the	latter)	to
your	Windows	directory	(C:\Winnt	or	C:\Winnt40),	and	rename	it	php.ini.
Open	this	file	in	a	text	editor	(for	example,	Notepad).	Edit	this	file	to	get
configuration	directives;	We	highly	recommend	new	users	set	error
reporting	to	E_ALL	on	their	development	machines	at	this	point.	For	now,
the	most	important	thing	is	the	doc_root	directive	under	the	Paths	and

http://www.php.net/downloads.php

Directories	section.make	sure	this	matches	your	IIS	Inetpub	folder	(or
wherever	you	plan	to	serve	out	of).
Stop	and	restart	the	WWW	service.	Go	to	the	Start	menu	→	Settings	→
Control	Panel	→	Services.	Scroll	down	the	list	to	IIS	Admin	Service.
Select	it	and	click	Stop.	After	it	stops,	select	World	Wide	Web	Publishing
Service	and	click	Start.	Stopping	and	restarting	the	service	from	within
Internet	Service	Manager	will	not	suffice.	Since	this	is	Windows,	you	may
also	wish	to	reboot.
Open	a	text	editor.	Type:	<?php	phpinfo();	?>.	Save	this	file	in	your	Web
server's	document	root	as	info.php.
Start	any	Web	browser	and	browse	the	file.you	must	always	use	an	HTTP
request	(http://www.testdomain.com/info.php	or	http://localhost/info.php
or	http://127.0.0.1/info.php)	rather	than	a	filename	(homehttpd/info.php)
for	the	file	to	be	parsed	correctly

You	should	see	a	long	table	of	information	about	your	new	PHP	installation
message	Congratulations!
	

PHP	Installation	on	Windows	NT/2000/XP	with	Apache
	

PHP	-	Installation	on	Windows	with
Apache
To	install	Apache	with	PHP	5	on	Windows	follow	the	following	steps.	If	your
PHP	and	Apache	versions	are	different	then	please	take	care	accordingly.

Download	Apache	server	from	www.apache.org/dist/httpd/binaries/win32.
You	want	the	current	stable	release	version	with	the	no_src.msi	extension.
Double-click	the	installer	file	to	install;	C:\Program	Files	is	a	common
location.	The	installer	will	also	ask	you	whether	you	want	to	run	Apache
as	a	service	or	from	the	command	line	or	DOS	prompt.	We	recommend
you	do	not	install	as	a	service,	as	this	may	cause	problems	with	startup.
Extract	the	PHP	binary	archive	using	your	unzip	utility;	C:\PHP	is	a
common	location.
Copy	some	.dll	files	from	your	PHP	directory	to	your	system	directory
(usually	C:\Windows).	You	need	php5ts.dll	for	every	case.	You	will	also

probably	need	to	copy	the	file	corresponding	to	your	Web	server	module	-
C:\PHP\Sapi\php5apache.dll.	to	your	Apache	modules	directory.	It's
possible	that	you	will	also	need	others	from	the	dlls	subfolder.but	start
with	the	two	mentioned	previously	and	add	more	if	you	need	them.
Copy	either	php.ini-dist	or	php.ini-recommended	(preferably	the	latter)	to
your	Windows	directory,	and	rename	it	php.ini.	Open	this	file	in	a	text
editor	(for	example,	Notepad).	Edit	this	file	to	get	configuration	directives;
At	this	point,	we	highly	recommend	that	new	users	set	error	reporting	to
E_ALL	on	their	development	machines.
Tell	your	Apache	server	where	you	want	to	serve	files	from	and	what
extension(s)	you	want	to	identify	PHP	files	(.php	is	the	standard,	but	you
can	use	.html,	.phtml,	or	whatever	you	want).	Go	to	your	HTTP
configuration	files	(C:\Program	Files\Apache	Group\Apache\conf	or
whatever	your	path	is),	and	open	httpd.conf	with	a	text	editor.	Search	for
the	word	DocumentRoot	(which	should	appear	twice)	and	change	both
paths	to	the	directory	you	want	to	serve	files	out	of.	(The	default	is
C:\Program	Files\Apache	Group\Apache\htdocs.).	Add	at	least	one	PHP
extension	directive	as	shown	in	the	first	line	of	the	following	code	−

LoadModule	php5_module	modules/php5apache.dll
AddType	application/x-httpd-php	.php	.phtml

You	may	also	need	to	add	the	following	line	−
AddModule	mod_php5.c

Stop	and	restart	the	WWW	service.	Go	to	the	Start	menu	→	Settings	→
Control	Panel	→	Services.	Scroll	down	the	list	to	IIS	Admin	Service.
Select	it	and	click	Stop.	After	it	stops,	select	World	Wide	Web	Publishing
Service	and	click	Start.	Stopping	and	restarting	the	service	from	within
Internet	Service	Manager	will	not	suffice.	Since	this	is	Windows,	you	may
also	wish	to	reboot.
Open	a	text	editor.	Type:	<?php	phpinfo();	?>.	Save	this	file	in	your	Web
server's	document	root	as	info.php.
Start	any	Web	browser	and	browse	the	file.you	must	always	use	an	HTTP
request	(http://www.testdomain.com/info.php	or	http://localhost/info.php
or	http://127.0.0.1/info.php)	rather	than	a	filename	(homehttpd/info.php)
for	the	file	to	be	parsed	correctly

You	should	see	a	long	table	of	information	about	your	new	PHP	installation
message	Congratulations!
	

Apache	Configuration

If	you	are	using	Apache	as	a	Web	Server	then	this	section	will	guide	you	to	edit
Apache	Configuration	Files.
PHP.INI	File	Configuration

The	PHP	configuration	file,	php.ini,	is	the	final	and	most	immediate	way	to
affect	PHP's	functionality.

PHP.INI	file	Configuration
	

The	PHP	configuration	file,	php.ini,	is	the	final	and	most	immediate	way	to
affect	PHP's	functionality.	The	php.ini	file	is	read	each	time	PHP	is	initialized.in
other	words,	whenever	httpd	is	restarted	for	the	module	version	or	with	each
script	execution	for	the	CGI	version.	If	your	change	isn.t	showing	up,	remember
to	stop	and	restart	httpd.	If	it	still	isn.t	showing	up,	use	phpinfo()	to	check	the
path	to	php.ini.
The	configuration	file	is	well	commented	and	thorough.	Keys	are	case	sensitive,
keyword	values	are	not;	whitespace,	and	lines	beginning	with	semicolons	are
ignored.	Booleans	can	be	represented	by	1/0,	Yes/No,	On/Off,	or	True/False.
The	default	values	in	php.ini-dist	will	result	in	a	reasonable	PHP	installation	that
can	be	tweaked	later.
Here	we	are	explaining	the	important	settings	in	php.ini	which	you	may	need	for
your	PHP	Parser.

short_open_tag	=	Off
Short	open	tags	look	like	this:	<?	?>.	This	option	must	be	set	to	Off	if	you	want
to	use	XML	functions.

safe_mode	=	Off
If	this	is	set	to	On,	you	probably	compiled	PHP	with	the	--enable-safe-mode
flag.	Safe	mode	is	most	relevant	to	CGI	use.	See	the	explanation	in	the	section
"CGI	compile-time	options".	earlier	in	this	chapter.

safe_mode_exec_dir	=	[DIR]
This	option	is	relevant	only	if	safe	mode	is	on;	it	can	also	be	set	with	the	--with-
exec-dir	flag	during	the	Unix	build	process.	PHP	in	safe	mode	only	executes
external	binaries	out	of	this	directory.	The	default	is	usrlocal/bin.	This	has
nothing	to	do	with	serving	up	a	normal	PHP/HTML	Web	page.

safe_mode_allowed_env_vars	=	[PHP_]
This	option	sets	which	environment	variables	users	can	change	in	safe	mode.
The	default	is	only	those	variables	prepended	with	"PHP_".	If	this	directive	is
empty,	most	variables	are	alterable.

safe_mode_protected_env_vars	=	[LD_LIBRARY_PATH]
This	option	sets	which	environment	variables	users	can't	change	in	safe	mode,
even	if	safe_mode_allowed_env_vars	is	set	permissively

disable_functions	=	[function1,	function2...]
A	welcome	addition	to	PHP4	configuration	and	one	perpetuated	in	PHP5	is	the
ability	to	disable	selected	functions	for	security	reasons.	Previously,	this
necessitated	hand-editing	the	C	code	from	which	PHP	was	made.	Filesystem,
system,	and	network	functions	should	probably	be	the	first	to	go	because
allowing	the	capability	to	write	files	and	alter	the	system	over	HTTP	is	never
such	a	safe	idea.

max_execution_time	=	30
The	function	set_time_limit()	won.t	work	in	safe	mode,	so	this	is	the	main	way
to	make	a	script	time	out	in	safe	mode.	In	Windows,	you	have	to	abort	based	on
maximum	memory	consumed	rather	than	time.	You	can	also	use	the	Apache
timeout	setting	to	timeout	if	you	use	Apache,	but	that	will	apply	to	non-PHP
files	on	the	site	too.

error_reporting	=	E_ALL	&	~E_NOTICE
The	default	value	is	E_ALL	&	~E_NOTICE,	all	errors	except	notices.
Development	servers	should	be	set	to	at	least	the	default;	only	production	servers
should	even	consider	a	lesser	value

error_prepend_string	=	[""]
With	its	bookend,	error_append_string,	this	setting	allows	you	to	make	error
messages	a	different	color	than	other	text,	or	what	have	you.

warn_plus_overloading	=	Off
This	setting	issues	a	warning	if	the	+	operator	is	used	with	strings,	as	in	a	form
value.

variables_order	=	EGPCS
This	configuration	setting	supersedes	gpc_order.	Both	are	now	deprecated	along
with	register_globals.	It	sets	the	order	of	the	different	variables:	Environment,
GET,	POST,	COOKIE,	and	SERVER	(aka	Built-in).You	can	change	this	order
around.	Variables	will	be	overwritten	successively	in	left-to-right	order,	with	the
rightmost	one	winning	the	hand	every	time.	This	means	if	you	left	the	default
setting	and	happened	to	use	the	same	name	for	an	environment	variable,	a	POST
variable,	and	a	COOKIE	variable,	the	COOKIE	variable	would	own	that	name	at
the	end	of	the	process.	In	real	life,	this	doesn't	happen	much.

register_globals	=	Off
This	setting	allows	you	to	decide	whether	you	wish	to	register	EGPCS	variables
as	global.	This	is	now	deprecated,	and	as	of	PHP4.2,	this	flag	is	set	to	Off	by
default.	Use	superglobal	arrays	instead.	All	the	major	code	listings	in	this	book
use	superglobal	arrays.

gpc_order	=	GPC
This	setting	has	been	GPC	Deprecated.

magic_quotes_gpc	=	On
This	setting	escapes	quotes	in	incoming	GET/POST/COOKIE	data.	If	you	use	a
lot	of	forms	which	possibly	submit	to	themselves	or	other	forms	and	display
form	values,	you	may	need	to	set	this	directive	to	On	or	prepare	to	use
addslashes()	on	string-type	data.

magic_quotes_runtime	=	Off
This	setting	escapes	quotes	in	incoming	database	and	text	strings.	Remember
that	SQL	adds	slashes	to	single	quotes	and	apostrophes	when	storing	strings	and
does	not	strip	them	off	when	returning	them.	If	this	setting	is	Off,	you	will	need
to	use	stripslashes()	when	outputting	any	type	of	string	data	from	a	SQL
database.	If	magic_quotes_sybase	is	set	to	On,	this	must	be	Off.

magic_quotes_sybase	=	Off
This	setting	escapes	single	quotes	in	incoming	database	and	text	strings	with
Sybase-style	single	quotes	rather	than	backslashes.	If	magic_quotes_runtime	is
set	to	On,	this	must	be	Off.

auto-prepend-file	=	[path/to/file]
If	a	path	is	specified	here,	PHP	must	automatically	include()	it	at	the	beginning
of	every	PHP	file.	Include	path	restrictions	do	apply.

auto-append-file	=	[path/to/file]
If	a	path	is	specified	here,	PHP	must	automatically	include()	it	at	the	end	of
every	PHP	file.unless	you	escape	by	using	the	exit()	function.	Include	path
restrictions	do	apply.

include_path	=	[DIR]
If	you	set	this	value,	you	will	only	be	allowed	to	include	or	require	files	from
these	directories.	The	include	directory	is	generally	under	your	document	root;
this	is	mandatory	if	you.re	running	in	safe	mode.	Set	this	to	.	in	order	to	include
files	from	the	same	directory	your	script	is	in.	Multiple	directories	are	separated
by	colons:	.:usrlocal/apache/htdocs:usrlocal/lib.

doc_root	=	[DIR]
If	you.re	using	Apache,	you.ve	already	set	a	document	root	for	this	server	or
virtual	host	in	httpd.conf.	Set	this	value	here	if	you.re	using	safe	mode	or	if	you
want	to	enable	PHP	only	on	a	portion	of	your	site	(for	example,	only	in	one
subdirectory	of	your	Web	root).

file_uploads	=	[on/off]
Turn	on	this	flag	if	you	will	upload	files	using	PHP	script.

upload_tmp_dir	=	[DIR]
Do	not	uncomment	this	line	unless	you	understand	the	implications	of	HTTP
uploads!

session.save-handler	=	files
Except	in	rare	circumstances,	you	will	not	want	to	change	this	setting.	So	don't
touch	it.

ignore_user_abort	=	[On/Off]
This	setting	controls	what	happens	if	a	site	visitor	clicks	the	browser.s	Stop
button.	The	default	is	On,	which	means	that	the	script	continues	to	run	to
completion	or	timeout.	If	the	setting	is	changed	to	Off,	the	script	will	abort.	This
setting	only	works	in	module	mode,	not	CGI.

mysql.default_host	=	hostname
The	default	server	host	to	use	when	connecting	to	the	database	server	if	no	other
host	is	specified.

mysql.default_user	=	username
The	default	user	name	to	use	when	connecting	to	the	database	server	if	no	other
name	is	specified.

mysql.default_password	=	password
The	default	password	to	use	when	connecting	to	the	database	server	if	no	other
password	is	specified.
	
Windows	IIS	Configuration

To	configure	IIS	on	your	Windows	machine	you	can	refer	your	IIS	Reference
Manual	shipped	along	with	IIS.
	

	

	

	

	

	

	

	

	

	

	

PHP	-	Syntax	Overview
	

This	chapter	will	give	you	an	idea	of	very	basic	syntax	of	PHP	and	very
important	to	make	your	PHP	foundation	strong.

Escaping	to	PHP
The	PHP	parsing	engine	needs	a	way	to	differentiate	PHP	code	from	other
elements	in	the	page.	The	mechanism	for	doing	so	is	known	as	'escaping	to
PHP'.	There	are	four	ways	to	do	this	−
Canonical	PHP	tags

The	most	universally	effective	PHP	tag	style	is	−
<?php...?>

If	you	use	this	style,	you	can	be	positive	that	your	tags	will	always	be	correctly
interpreted.
Short-open	(SGML-style)	tags

Short	or	short-open	tags	look	like	this	−
<?...?>

Short	tags	are,	as	one	might	expect,	the	shortest	option	You	must	do	one	of	two
things	to	enable	PHP	to	recognize	the	tags	−

Choose	the	--enable-short-tags	configuration	option	when	you're	building
PHP.
Set	the	short_open_tag	setting	in	your	php.ini	file	to	on.	This	option	must
be	disabled	to	parse	XML	with	PHP	because	the	same	syntax	is	used	for
XML	tags.

ASP-style	tags

ASP-style	tags	mimic	the	tags	used	by	Active	Server	Pages	to	delineate	code
blocks.	ASP-style	tags	look	like	this	−
<%...%>

To	use	ASP-style	tags,	you	will	need	to	set	the	configuration	option	in	your
php.ini	file.
HTML	script	tags

HTML	script	tags	look	like	this	−
<script	language="PHP">...</script>

Commenting	PHP	Code
A	comment	is	the	portion	of	a	program	that	exists	only	for	the	human	reader	and
stripped	out	before	displaying	the	programs	result.	There	are	two	commenting
formats	in	PHP	−
Single-line	comments	−	They	are	generally	used	for	short	explanations	or	notes
relevant	to	the	local	code.	Here	are	the	examples	of	single	line	comments.
<?
			#	This	is	a	comment,	and
			#	This	is	the	second	line	of	the	comment
	
			//	This	is	a	comment	too.	Each	style	comments	only
			print	"An	example	with	single	line	comments";
?>

Multilines	printing	−	Here	are	the	examples	to	print	multiple	lines	in	a	single
print	statement	−
<?
			#	First	Example
			print	<<<END
			This	uses	the	"here	document"	syntax	to	output
			multiple	lines	with	$variable	interpolation.	Note
			that	the	here	document	terminator	must	appear	on	a
			line	with	just	a	semicolon	no	extra	whitespace!
			END;
	
			#	Second	Example
			print	"This	spans
			multiple	lines.	The	newlines	will	be
			output	as	well";
?>

Multilines	comments	−	They	are	generally	used	to	provide	pseudocode
algorithms	and	more	detailed	explanations	when	necessary.	The	multiline	style
of	commenting	is	the	same	as	in	C.	Here	are	the	example	of	multi	lines
comments.
<?
			/*	This	is	a	comment	with	multiline
						Author	:	Mohammad	Mohtashim
						Purpose:	Multiline	Comments	Demo
						Subject:	PHP

*/

	
			print	"An	example	with	multi	line	comments";

?>

PHP	is	whitespace	insensitive
Whitespace	is	the	stuff	you	type	that	is	typically	invisible	on	the	screen,
including	spaces,	tabs,	and	carriage	returns	(end-of-line	characters).
PHP	whitespace	insensitive	means	that	it	almost	never	matters	how	many
whitespace	characters	you	have	in	a	row.one	whitespace	character	is	the	same	as
many	such	characters.
For	example,	each	of	the	following	PHP	statements	that	assigns	the	sum	of	2	+	2
to	the	variable	$four	is	equivalent	−
$four	=	2	+	2;	//	single	spaces
$four	<tab>=<tab2<tab>+<tab>2	;	//	spaces	and	tabs
$four	=
2+
2;	//	multiple	lines

PHP	is	case	sensitive
Yeah	it	is	true	that	PHP	is	a	case	sensitive	language.	Try	out	following	example
−
<html>
			<body>
	
						<?php
									$capital	=	67;
									print("Variable	capital	is	$capital
");
									print("Variable	CaPiTaL	is	$CaPiTaL
");
						?>
	
			</body>
</html>

This	will	produce	the	following	result	−
Variable	capital	is	67
Variable	CaPiTaL	is

Statements	are	expressions	terminated	by	semicolons
A	statement	in	PHP	is	any	expression	that	is	followed	by	a	semicolon	(;).Any
sequence	of	valid	PHP	statements	that	is	enclosed	by	the	PHP	tags	is	a	valid
PHP	program.	Here	is	a	typical	statement	in	PHP,	which	in	this	case	assigns	a
string	of	characters	to	a	variable	called	$greeting	−
$greeting	=	"Welcome	to	PHP!";

Expressions	are	combinations	of	tokens
The	smallest	building	blocks	of	PHP	are	the	indivisible	tokens,	such	as	numbers
(3.14159),	strings	(.two.),	variables	($two),	constants	(TRUE),	and	the	special
words	that	make	up	the	syntax	of	PHP	itself	like	if,	else,	while,	for	and	so	forth

Braces	make	blocks
Although	statements	cannot	be	combined	like	expressions,	you	can	always	put	a
sequence	of	statements	anywhere	a	statement	can	go	by	enclosing	them	in	a	set
of	curly	braces.
Here	both	statements	are	equivalent	−
if	(3	==	2	+	1)
			print("Good	-	I	haven't	totally	lost	my	mind.
");
	
if	(3	==	2	+	1)	{
			print("Good	-	I	haven't	totally");
			print("lost	my	mind.
");

}

Running	PHP	Script	from	Command	Prompt
Yes	you	can	run	your	PHP	script	on	your	command	prompt.	Assuming	you	have
following	content	in	test.php	file
<?php
			echo	"Hello	PHP!!!!!";
?>

Now	run	this	script	as	command	prompt	as	follows	−
$	php	test.php

It	will	produce	the	following	result	−
Hello	PHP!!!!!

Hope	now	you	have	basic	knowledge	of	PHP	Syntax.

	

	

	

	

	

	

PHP	-	Variable	Types
Advertisements

Previous	Page

Next	Page		

The	main	way	to	store	information	in	the	middle	of	a	PHP	program	is	by	using	a
variable.
Here	are	the	most	important	things	to	know	about	variables	in	PHP.

All	variables	in	PHP	are	denoted	with	a	leading	dollar	sign	($).
The	value	of	a	variable	is	the	value	of	its	most	recent	assignment.
Variables	are	assigned	with	the	=	operator,	with	the	variable	on	the	left-
hand	side	and	the	expression	to	be	evaluated	on	the	right.
Variables	can,	but	do	not	need,	to	be	declared	before	assignment.
Variables	in	PHP	do	not	have	intrinsic	types	-	a	variable	does	not	know	in
advance	whether	it	will	be	used	to	store	a	number	or	a	string	of	characters.
Variables	used	before	they	are	assigned	have	default	values.
PHP	does	a	good	job	of	automatically	converting	types	from	one	to
another	when	necessary.
PHP	variables	are	Perl-like.

PHP	has	a	total	of	eight	data	types	which	we	use	to	construct	our	variables	−
Integers	−	are	whole	numbers,	without	a	decimal	point,	like	4195.
Doubles	−	are	floating-point	numbers,	like	3.14159	or	49.1.
Booleans	−	have	only	two	possible	values	either	true	or	false.
NULL	−	is	a	special	type	that	only	has	one	value:	NULL.
Strings	−	are	sequences	of	characters,	like	'PHP	supports	string
operations.'
Arrays	−	are	named	and	indexed	collections	of	other	values.
Objects	−	are	instances	of	programmer-defined	classes,	which	can
package	up	both	other	kinds	of	values	and	functions	that	are	specific	to	the
class.
Resources	−	are	special	variables	that	hold	references	to	resources
external	to	PHP	(such	as	database	connections).

https://www.tutorialspoint.com/php/php_syntax_overview.htm
https://www.tutorialspoint.com/php/php_constants.htm

The	first	five	are	simple	types,	and	the	next	two	(arrays	and	objects)	are
compound	-	the	compound	types	can	package	up	other	arbitrary	values	of
arbitrary	type,	whereas	the	simple	types	cannot.
We	will	explain	only	simple	data	type	in	this	chapters.	Array	and	Objects	will	be
explained	separately.

Integers
They	are	whole	numbers,	without	a	decimal	point,	like	4195.	They	are	the
simplest	type	.they	correspond	to	simple	whole	numbers,	both	positive	and
negative.	Integers	can	be	assigned	to	variables,	or	they	can	be	used	in
expressions,	like	so	−
$int_var	=	12345;
$another_int	=	-12345	+	12345;

Integer	can	be	in	decimal	(base	10),	octal	(base	8),	and	hexadecimal	(base	16)
format.	Decimal	format	is	the	default,	octal	integers	are	specified	with	a	leading
0,	and	hexadecimals	have	a	leading	0x.
For	most	common	platforms,	the	largest	integer	is	(2**31	.	1)	(or
2,147,483,647),	and	the	smallest	(most	negative)	integer	is	.	(2**31	.	1)	(or
.2,147,483,647).

Doubles
They	like	3.14159	or	49.1.	By	default,	doubles	print	with	the	minimum	number
of	decimal	places	needed.	For	example,	the	code	−
<?php
			$many	=	2.2888800;
			$many_2	=	2.2111200;
			$few	=	$many	+	$many_2;
	
			print("$many	+	$many_2	=	$few	
");
?>

It	produces	the	following	browser	output	−
2.28888	+	2.21112	=	4.5

Boolean
They	have	only	two	possible	values	either	true	or	false.	PHP	provides	a	couple
of	constants	especially	for	use	as	Booleans:	TRUE	and	FALSE,	which	can	be
used	like	so	−
if	(TRUE)
			print("This	will	always	print
");
	
else
			print("This	will	never	print
");

Interpreting	other	types	as	Booleans

Here	are	the	rules	for	determine	the	"truth"	of	any	value	not	already	of	the
Boolean	type	−

If	the	value	is	a	number,	it	is	false	if	exactly	equal	to	zero	and	true
otherwise.
If	the	value	is	a	string,	it	is	false	if	the	string	is	empty	(has	zero	characters)
or	is	the	string	"0",	and	is	true	otherwise.
Values	of	type	NULL	are	always	false.
If	the	value	is	an	array,	it	is	false	if	it	contains	no	other	values,	and	it	is
true	otherwise.	For	an	object,	containing	a	value	means	having	a	member
variable	that	has	been	assigned	a	value.
Valid	resources	are	true	(although	some	functions	that	return	resources
when	they	are	successful	will	return	FALSE	when	unsuccessful).
Don't	use	double	as	Booleans.

Each	of	the	following	variables	has	the	truth	value	embedded	in	its	name	when	it
is	used	in	a	Boolean	context.
$true_num	=	3	+	0.14159;
$true_str	=	"Tried	and	true"
$true_array[49]	=	"An	array	element";
$false_array	=	array();
$false_null	=	NULL;
$false_num	=	999	-	999;
$false_str	=	"";

NULL
NULL	is	a	special	type	that	only	has	one	value:	NULL.	To	give	a	variable	the
NULL	value,	simply	assign	it	like	this	−
$my_var	=	NULL;

The	special	constant	NULL	is	capitalized	by	convention,	but	actually	it	is	case
insensitive;	you	could	just	as	well	have	typed	−
$my_var	=	null;

A	variable	that	has	been	assigned	NULL	has	the	following	properties	−
It	evaluates	to	FALSE	in	a	Boolean	context.
It	returns	FALSE	when	tested	with	IsSet()	function.

Strings
They	are	sequences	of	characters,	like	"PHP	supports	string	operations".
Following	are	valid	examples	of	string
$string_1	=	"This	is	a	string	in	double	quotes";
$string_2	=	'This	is	a	somewhat	longer,	singly	quoted	string';
$string_39	=	"This	string	has	thirty-nine	characters";
$string_0	=	"";	//	a	string	with	zero	characters

Singly	quoted	strings	are	treated	almost	literally,	whereas	doubly	quoted	strings
replace	variables	with	their	values	as	well	as	specially	interpreting	certain
character	sequences.
<?php
			$variable	=	"name";
			$literally	=	'My	$variable	will	not	print!';
	
			print($literally);
			print	"
";
	
			$literally	=	"My	$variable	will	print!";
			print($literally);
?>

This	will	produce	following	result	−
My	$variable	will	not	print!\n
My	name	will	print

There	are	no	artificial	limits	on	string	length	-	within	the	bounds	of	available
memory,	you	ought	to	be	able	to	make	arbitrarily	long	strings.
Strings	that	are	delimited	by	double	quotes	(as	in	"this")	are	preprocessed	in	both
the	following	two	ways	by	PHP	−

Certain	character	sequences	beginning	with	backslash	(\)	are	replaced	with
special	characters
Variable	names	(starting	with	$)	are	replaced	with	string	representations	of
their	values.

The	escape-sequence	replacements	are	−
\n	is	replaced	by	the	newline	character
\r	is	replaced	by	the	carriage-return	character
\t	is	replaced	by	the	tab	character
\$	is	replaced	by	the	dollar	sign	itself	($)
\"	is	replaced	by	a	single	double-quote	(")
\\	is	replaced	by	a	single	backslash	(\)

Here	Document

You	can	assign	multiple	lines	to	a	single	string	variable	using	here	document	−
<?php
			$channel	=<<<XML
	
			<channel>
						<title>What's	For	Dinner</title>
						<link>http://menu.example.com/	</link>
						<description>Choose	what	to	eat	tonight.</description>
			</channel>
XML;
	
			echo	<<<END
			This	uses	the	"here	document"	syntax	to	output	multiple	lines	with	variable
			interpolation.	Note	that	the	here	document	terminator	must	appear	on	a	line	with
			just	a	semicolon.	no	extra	whitespace!
			
	
END;
	
			print	$channel;
?>

This	will	produce	following	result	−
This	uses	the	"here	document"	syntax	to	output
multiple	lines	with	variable	interpolation.	Note
that	the	here	document	terminator	must	appear	on	a
line	with	just	a	semicolon.	no	extra	whitespace!
	
<channel>
<title>What's	For	Dinner<title>
<link>http://menu.example.com/<link>
<description>Choose	what	to	eat	tonight.</description>

Variable	Scope
Scope	can	be	defined	as	the	range	of	availability	a	variable	has	to	the	program	in
which	it	is	declared.	PHP	variables	can	be	one	of	four	scope	types	−

Local	variables

PHP	-	Local	Variables
	

Scope	can	be	defined	as	the	range	of	availability	a	variable	has	to	the	program	in
which	it	is	declared.	PHP	variables	can	be	one	of	four	scope	types	−

Local	variables
Function	parameters
Global	variables
Static	variables.

Local	Variables
A	variable	declared	in	a	function	is	considered	local;	that	is,	it	can	be	referenced
solely	in	that	function.	Any	assignment	outside	of	that	function	will	be
considered	to	be	an	entirely	different	variable	from	the	one	contained	in	the
function	−
<?php
			$x	=	4;
	
			function	assignx	()	{
						$x	=	0;
						print	"\$x	inside	function	is	$x.	
";

}

	
			assignx();
			print	"\$x	outside	of	function	is	$x.	
";
?>

This	will	produce	the	following	result	−
$x	inside	function	is	0.
$x	outside	of	function	is	4.

	
Function	parameters

PHP	-	Function	Parameters
	

Scope	can	be	defined	as	the	range	of	availability	a	variable	has	to	the	program	in
which	it	is	declared.	PHP	variables	can	be	one	of	four	scope	types	−

Local	variables
Function	parameters
Global	variables
Static	variables

NOTE	−	PHP	Functions	are	covered	in	detail	in	PHP	Function	Book
But	in	short	a	function	is	a	small	unit	of	program	which	can	take	some	input	in
the	form	of	parameters	and	does	some	processing	and	may	return	a	some	value.

Function	Parameters
Function	parameters	are	declared	after	the	function	name	and	inside	parentheses.
They	are	declared	much	like	a	typical	variable	would	be	−
<?php
			//	multiply	a	value	by	10	and	return	it	to	the	caller
			function	multiply	($value)	{
						$value	=	$value	*	10;
						return	$value;

}

	
			$retval	=	multiply	(10);
			Print	"Return	value	is	$retval\n";
?>

This	will	produce	the	following	result	−
Return	value	is	100

	
Global	variables

	

PHP	-	Global	Variables

Scope	can	be	defined	as	the	range	of	availability	a	variable	has	to	the	program	in
which	it	is	declared.	PHP	variables	can	be	one	of	four	scope	types	−

Local	variables
Function	parameters
Global	variables
Static	variables.

Global	Variables
In	contrast	to	local	variables,	a	global	variable	can	be	accessed	in	any	part	of	the
program.	However,	in	order	to	be	modified,	a	global	variable	must	be	explicitly
declared	to	be	global	in	the	function	in	which	it	is	to	be	modified.	This	is
accomplished,	conveniently	enough,	by	placing	the	keyword	GLOBAL	in	front
of	the	variable	that	should	be	recognized	as	global.	Placing	this	keyword	in	front
of	an	already	existing	variable	tells	PHP	to	use	the	variable	having	that	name.
Consider	an	example	−
<?php
			$somevar	=	15;
	
			function	addit()	{
						GLOBAL	$somevar;
						$somevar++;
	
						print	"Somevar	is	$somevar";

}

	
			addit();
?>

This	will	produce	the	following	result	−
Somevar	is	16

	
Static	variables

	

PHP	-	Static	Variables
	

Scope	can	be	defined	as	the	range	of	availability	a	variable	has	to	the	program	in
which	it	is	declared.	PHP	variables	can	be	one	of	four	scope	types	−

Local	variables
Function	parameters
Global	variables
Static	variables.

Static	Variables
The	final	type	of	variable	scoping	that	I	discuss	is	known	as	static.	In	contrast	to
the	variables	declared	as	function	parameters,	which	are	destroyed	on	the
function's	exit,	a	static	variable	will	not	lose	its	value	when	the	function	exits
and	will	still	hold	that	value	should	the	function	be	called	again.
You	can	declare	a	variable	to	be	static	simply	by	placing	the	keyword	STATIC
in	front	of	the	variable	name.
<?php
			function	keep_track()	{
						STATIC	$count	=	0;
						$count++;
						print	$count;
						print	"
";

}

	
			keep_track();
			keep_track();
			keep_track();
?>

This	will	produce	the	following	result	−
1
2
3

	
	
	

Variable	Naming
Rules	for	naming	a	variable	is	−

Variable	names	must	begin	with	a	letter	or	underscore	character.
A	variable	name	can	consist	of	numbers,	letters,	underscores	but	you
cannot	use	characters	like	+	,	-	,	%	,	(,)	.	&	,	etc

There	is	no	size	limit	for	variables.

	

	

	

	

	

	

PHP	-	Constants	Types
Advertisements

Previous	Page

Next	Page		

A	constant	is	a	name	or	an	identifier	for	a	simple	value.	A	constant	value	cannot
change	during	the	execution	of	the	script.	By	default,	a	constant	is	case-
sensitive.	By	convention,	constant	identifiers	are	always	uppercase.	A	constant
name	starts	with	a	letter	or	underscore,	followed	by	any	number	of	letters,
numbers,	or	underscores.	If	you	have	defined	a	constant,	it	can	never	be	changed
or	undefined.
To	define	a	constant	you	have	to	use	define()	function	and	to	retrieve	the	value
of	a	constant,	you	have	to	simply	specifying	its	name.	Unlike	with	variables,	you
do	not	need	to	have	a	constant	with	a	$.	You	can	also	use	the	function	constant()
to	read	a	constant's	value	if	you	wish	to	obtain	the	constant's	name	dynamically.

https://www.tutorialspoint.com/php/php_variable_types.htm
https://www.tutorialspoint.com/php/php_operator_types.htm

constant()	function
As	indicated	by	the	name,	this	function	will	return	the	value	of	the	constant.
This	is	useful	when	you	want	to	retrieve	value	of	a	constant,	but	you	do	not
know	its	name,	i.e.	It	is	stored	in	a	variable	or	returned	by	a	function.

constant()	example
<?php
			define("MINSIZE",	50);
	
			echo	MINSIZE;
			echo	constant("MINSIZE");	//	same	thing	as	the	previous	line
?>

Only	scalar	data	(boolean,	integer,	float	and	string)	can	be	contained	in
constants.

Differences	between	constants	and	variables	are
There	is	no	need	to	write	a	dollar	sign	($)	before	a	constant,	where	as	in
Variable	one	has	to	write	a	dollar	sign.
Constants	cannot	be	defined	by	simple	assignment,	they	may	only	be
defined	using	the	define()	function.
Constants	may	be	defined	and	accessed	anywhere	without	regard	to
variable	scoping	rules.
Once	the	Constants	have	been	set,	may	not	be	redefined	or	undefined.

Valid	and	invalid	constant	names
//	Valid	constant	names
define("ONE",					"first	thing");
define("TWO2",				"second	thing");
define("THREE_3",	"third	thing");
	
//	Invalid	constant	names
define("2TWO",				"second	thing");
define("__THREE__",	"third	value");

PHP	Magic	constants
PHP	provides	a	large	number	of	predefined	constants	to	any	script	which	it	runs.
There	are	five	magical	constants	that	change	depending	on	where	they	are	used.
For	example,	the	value	of	__LINE__	depends	on	the	line	that	it's	used	on	in	your
script.	These	special	constants	are	case-insensitive	and	are	as	follows	−
A	few	"magical"	PHP	constants	are	given	below	−
Sr.No Name	&	Description

1
__LINE__
The	current	line	number	of	the	file.

2

__FILE__
The	full	path	and	filename	of	the	file.	If	used	inside	an	include,the	name
of	the	included	file	is	returned.	Since	PHP	4.0.2,	__FILE__	always
contains	an	absolute	path	whereas	in	older	versions	it	contained	relative
path	under	some	circumstances.

3

__FUNCTION__
The	function	name.	(Added	in	PHP	4.3.0)	As	of	PHP	5	this	constant
returns	the	function	name	as	it	was	declared	(case-sensitive).	In	PHP	4	its
value	is	always	lowercased.

4

__CLASS__
The	class	name.	(Added	in	PHP	4.3.0)	As	of	PHP	5	this	constant	returns
the	class	name	as	it	was	declared	(case-sensitive).	In	PHP	4	its	value	is
always	lowercased.

5
__METHOD__
The	class	method	name.	(Added	in	PHP	5.0.0)	The	method	name	is
returned	as	it	was	declared	(case-sensitive).

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

PHP	-	Operator	Types
	

What	is	Operator?	Simple	answer	can	be	given	using	expression	4	+	5	is	equal
to	9.	Here	4	and	5	are	called	operands	and	+	is	called	operator.	PHP	language
supports	following	type	of	operators.

Arithmetic	Operators
Comparison	Operators
Logical	(or	Relational)	Operators
Assignment	Operators
Conditional	(or	ternary)	Operators

Lets	have	a	look	on	all	operators	one	by	one.

Arithmetic	Operators
There	are	following	arithmetic	operators	supported	by	PHP	language	−
Assume	variable	A	holds	10	and	variable	B	holds	20	then	−
Show	Examples

PHP	-	Comparison	Operators
Example
	

Try	following	example	to	understand	all	the	comparison	operators.	Copy	and
paste	following	PHP	program	in	test.php	file	and	keep	it	in	your	PHP	Server's
document	root	and	browse	it	using	any	browser.
<html>
	
			<head>
						<title>Comparison	Operators</title>
			</head>
	
			<body>
	
						<?php
									$a	=	42;
									$b	=	20;
	
									if($a	==	$b)	{
												echo	"TEST1	:	a	is	equal	to	b
";
									}else	{
												echo	"TEST1	:	a	is	not	equal	to	b
";

}

	
									if($a	>	$b)	{
												echo	"TEST2	:	a	is	greater	than		b
";
									}else	{
												echo	"TEST2	:	a	is	not	greater	than	b
";

}

	
									if($a	<	$b)	{
												echo	"TEST3	:	a	is	less	than		b
";
									}else	{
												echo	"TEST3	:	a	is	not	less	than	b
";

}

	
									if($a	!=	$b)	{
												echo	"TEST4	:	a	is	not	equal	to	b
";
									}else	{
												echo	"TEST4	:	a	is	equal	to	b
";

}

	
									if($a	>=	$b)	{
												echo	"TEST5	:	a	is	either	greater	than	or	equal	to	b
";
									}else	{
												echo	"TEST5	:	a	is	neither	greater	than	nor	equal	to	b
";

}

	
									if($a	<=	$b)	{
												echo	"TEST6	:	a	is	either	less	than	or	equal	to	b
";
									}else	{
												echo	"TEST6	:	a	is	neither	less	than	nor	equal	to	b
";

}

						?>
	
			</body>
</html>

This	will	produce	the	following	result	−
TEST1	:	a	is	not	equal	to	b
TEST2	:	a	is	greater	than	b
TEST3	:	a	is	not	less	than	b
TEST4	:	a	is	not	equal	to	b
TEST5	:	a	is	either	greater	than	or	equal	to	b
TEST6	:	a	is	neither	less	than	nor	equal	to	b

	
Operator Description Example

+ Adds	two	operands A	+	B	will	give	30

- Subtracts	second	operand	from	the	first A	-	B	will	give	-10

*

* Multiply	both	operands A	*	B	will	give	200

/ Divide	numerator	by	de-numerator B	/	A	will	give	2

% Modulus	Operator	and	remainder	of	after	an
integer	division B	%	A	will	give	0

++ Increment	operator,	increases	integer	value	by
one A++	will	give	11

-- Decrement	operator,	decreases	integer	value
by	one A--	will	give	9

Comparison	Operators
There	are	following	comparison	operators	supported	by	PHP	language
Assume	variable	A	holds	10	and	variable	B	holds	20	then	−
Show	Examples

PHP	-	Comparison	Operators
Example

Try	following	example	to	understand	all	the	comparison	operators.	Copy	and
paste	following	PHP	program	in	test.php	file	and	keep	it	in	your	PHP	Server's
document	root	and	browse	it	using	any	browser.
<html>
	
			<head>
						<title>Comparison	Operators</title>
			</head>
	
			<body>
	
						<?php
									$a	=	42;
									$b	=	20;
	
									if($a	==	$b)	{
												echo	"TEST1	:	a	is	equal	to	b
";
									}else	{
												echo	"TEST1	:	a	is	not	equal	to	b
";

}

	
									if($a	>	$b)	{
												echo	"TEST2	:	a	is	greater	than		b
";
									}else	{
												echo	"TEST2	:	a	is	not	greater	than	b
";

}

	
									if($a	<	$b)	{
												echo	"TEST3	:	a	is	less	than		b
";
									}else	{
												echo	"TEST3	:	a	is	not	less	than	b
";

}

	

									if($a	!=	$b)	{
												echo	"TEST4	:	a	is	not	equal	to	b
";
									}else	{
												echo	"TEST4	:	a	is	equal	to	b
";

}

	
									if($a	>=	$b)	{
												echo	"TEST5	:	a	is	either	greater	than	or	equal	to	b
";
									}else	{
												echo	"TEST5	:	a	is	neither	greater	than	nor	equal	to	b
";

}

	
									if($a	<=	$b)	{
												echo	"TEST6	:	a	is	either	less	than	or	equal	to	b
";
									}else	{
												echo	"TEST6	:	a	is	neither	less	than	nor	equal	to	b
";

}

						?>
	
			</body>
</html>

This	will	produce	the	following	result	−
TEST1	:	a	is	not	equal	to	b
TEST2	:	a	is	greater	than	b
TEST3	:	a	is	not	less	than	b
TEST4	:	a	is	not	equal	to	b
TEST5	:	a	is	either	greater	than	or	equal	to	b
TEST6	:	a	is	neither	less	than	nor	equal	to	b

	
Operator Description Example

== Checks	if	the	value	of	two	operands	are	equal
or	not,	if	yes	then	condition	becomes	true. (A	==	B)	is	not	true.

!=
Checks	if	the	value	of	two	operands	are	equal
or	not,	if	values	are	not	equal	then	condition
becomes	true.

(A	!=	B)	is	true.

>
Checks	if	the	value	of	left	operand	is	greater
than	the	value	of	right	operand,	if	yes	then (A	>	B)	is	not	true.

condition	becomes	true.

<
Checks	if	the	value	of	left	operand	is	less	than
the	value	of	right	operand,	if	yes	then
condition	becomes	true.

(A	<	B)	is	true.

>=
Checks	if	the	value	of	left	operand	is	greater
than	or	equal	to	the	value	of	right	operand,	if
yes	then	condition	becomes	true.

(A	>=	B)	is	not	true.

<=
Checks	if	the	value	of	left	operand	is	less	than
or	equal	to	the	value	of	right	operand,	if	yes
then	condition	becomes	true.

(A	<=	B)	is	true.

Logical	Operators
There	are	following	logical	operators	supported	by	PHP	language
Assume	variable	A	holds	10	and	variable	B	holds	20	then	−
Show	Examples
	

	
PHP	-	Logical	Operators	Example
	

Try	following	example	to	understand	all	the	logical	operators.	Copy	and	paste
following	PHP	program	in	test.php	file	and	keep	it	in	your	PHP	Server's
document	root	and	browse	it	using	any	browser.
<html>
	
			<head>
						<title>Logical	Operators</title>
			</head>
	
			<body>
	
						<?php
									$a	=	42;
									$b	=	0;
	
									if($a	&&	$b)	{
												echo	"TEST1	:	Both	a	and	b	are	true
";
									}else{
												echo	"TEST1	:	Either	a	or	b	is	false
";

}

	
									if($a	and	$b)	{
												echo	"TEST2	:	Both	a	and	b	are	true
";
									}else{
												echo	"TEST2	:	Either	a	or	b	is	false
";

}

	
									if($a	||	$b)	{
												echo	"TEST3	:	Either	a	or	b	is	true
";
									}else{
												echo	"TEST3	:	Both	a	and	b	are	false
";

}

	
									if($a	or	$b)	{
												echo	"TEST4	:	Either	a	or	b	is	true
";
									}else	{
												echo	"TEST4	:	Both	a	and	b	are	false
";

}

	
									$a	=	10;
									$b	=	20;
	
									if($a)	{
												echo	"TEST5	:	a	is	true	
";
									}else	{
												echo	"TEST5	:	a		is	false
";

}

	
									if($b)	{
												echo	"TEST6	:	b	is	true	
";
									}else	{
												echo	"TEST6	:	b		is	false
";

}

	
									if(!$a)	{
												echo	"TEST7	:	a	is	true	
";
									}else	{
												echo	"TEST7	:	a		is	false
";

}

	
									if(!$b)	{
												echo	"TEST8	:	b	is	true	
";
									}else	{
												echo	"TEST8	:	b		is	false
";

}

						?>
	
			</body>
</html>

This	will	produce	the	following	result	−
TEST1	:	Either	a	or	b	is	false
TEST2	:	Either	a	or	b	is	false
TEST3	:	Either	a	or	b	is	true
TEST4	:	Either	a	or	b	is	true
TEST5	:	a	is	true
TEST6	:	b	is	true
TEST7	:	a	is	false
TEST8	:	b	is	false

	
Operator Description Example

and
Called	Logical	AND	operator.	If	both	the
operands	are	true	then	condition	becomes	true. (A	and	B)	is	true.

or
Called	Logical	OR	Operator.	If	any	of	the	two
operands	are	non	zero	then	condition	becomes
true.

(A	or	B)	is	true.

&&
Called	Logical	AND	operator.	If	both	the
operands	are	non	zero	then	condition	becomes
true.

(A	&&	B)	is	true.

||
Called	Logical	OR	Operator.	If	any	of	the	two
operands	are	non	zero	then	condition	becomes
true.

(A	||	B)	is	true.

!

Called	Logical	NOT	Operator.	Use	to	reverses
the	logical	state	of	its	operand.	If	a	condition	is
true	then	Logical	NOT	operator	will	make
false.

!(A	&&	B)	is	false.

Assignment	Operators
There	are	following	assignment	operators	supported	by	PHP	language	−
Show	Examples

PHP	-	Assignment	Operators
Example
	

Try	following	example	to	understand	all	the	assignment	operators.	Copy	and
paste	following	PHP	program	in	test.php	file	and	keep	it	in	your	PHP	Server's
document	root	and	browse	it	using	any	browser.
<html>
	
			<head>
						<title>Assignment	Operators</title>
			</head>
	
			<body>
	
						<?php
									$a	=	42;
									$b	=	20;
	
									$c	=	$a	+	$b;			/*	Assignment	operator	*/
									echo	"Addtion	Operation	Result:	$c	
";
	
									$c	+=	$a;		/*	c	value	was	42	+	20	=	62	*/
									echo	"Add	AND	Assigment	Operation	Result:	$c	
";
	
									$c	-=	$a;	/*	c	value	was	42	+	20	+	42	=	104	*/
									echo	"Subtract	AND	Assignment	Operation	Result:	$c	
";
	
									$c	*=	$a;	/*	c	value	was	104	-	42	=	62	*/
									echo	"Multiply	AND	Assignment	Operation	Result:	$c	
";
	
									$c	=	$a;		*	c	value	was	62	42	=	2604	/
									echo	"Division	AND	Assignment	Operation	Result:	$c	
";
	
									$c	%=	$a;	/*	c	value	was	2604/42	=	62*/
									echo	"Modulus	AND	Assignment	Operation	Result:	$c	
";
						?>
	
			</body>
</html>

This	will	produce	the	following	result	−
Addtion	Operation	Result:	62

Add	AND	Assigment	Operation	Result:	104
Subtract	AND	Assignment	Operation	Result:	62
Multiply	AND	Assignment	Operation	Result:	2604
Division	AND	Assignment	Operation	Result:	62
Modulus	AND	Assignment	Operation	Result:	20

	
Operator Description Example

=
Simple	assignment	operator,	Assigns
values	from	right	side	operands	to	left
side	operand

C	=	A	+	B	will	assign	value	of	A	+	B	into	C

+=
Add	AND	assignment	operator,	It	adds
right	operand	to	the	left	operand	and
assign	the	result	to	left	operand

C	+=	A	is	equivalent	to	C	=	C	+	A

-=
Subtract	AND	assignment	operator,	It
subtracts	right	operand	from	the	left
operand	and	assign	the	result	to	left
operand

C	-=	A	is	equivalent	to	C	=	C	-	A

*=
Multiply	AND	assignment	operator,	It
multiplies	right	operand	with	the	left
operand	and	assign	the	result	to	left
operand

C	*=	A	is	equivalent	to	C	=	C	*	A

/=
Divide	AND	assignment	operator,	It
divides	left	operand	with	the	right
operand	and	assign	the	result	to	left
operand

C	/=	A	is	equivalent	to	C	=	C	/	A

%=
Modulus	AND	assignment	operator,	It
takes	modulus	using	two	operands	and
assign	the	result	to	left	operand

C	%=	A	is	equivalent	to	C	=	C	%	A

Conditional	Operator
There	is	one	more	operator	called	conditional	operator.	This	first	evaluates	an
expression	for	a	true	or	false	value	and	then	execute	one	of	the	two	given
statements	depending	upon	the	result	of	the	evaluation.	The	conditional	operator
has	this	syntax	−
Show	Examples

PHP	-	Conditional	Operator	Example
Try	following	example	to	understand	the	conditional	operator.	Copy	and	paste
following	PHP	program	in	test.php	file	and	keep	it	in	your	PHP	Server's
document	root	and	browse	it	using	any	browser.
<html>
	
			<head>
						<title>Arithmetical	Operators</title>
			</head>
	
			<body>
	
						<?php
									$a	=	10;
									$b	=	20;
	
									/*	If	condition	is	true	then	assign	a	to	result	otheriwse	b	*/
									$result	=	($a	>	$b)	?	$a	:$b;
	
									echo	"TEST1	:	Value	of	result	is	$result
";
	
									/*	If	condition	is	true	then	assign	a	to	result	otheriwse	b	*/
									$result	=	($a	<	$b)	?	$a	:$b;
	
									echo	"TEST2	:	Value	of	result	is	$result
";
						?>
	
			</body>
</html>

This	will	produce	the	following	result	−
TEST1	:	Value	of	result	is	20
TEST2	:	Value	of	result	is	10

	
Operator Description Example

?	: Conditional	Expression If	Condition	is	true	?	Then	value	X	:	Otherwise
value	Y

Operators	Categories
All	the	operators	we	have	discussed	above	can	be	categorised	into	following
categories	−

Unary	prefix	operators,	which	precede	a	single	operand.
Binary	operators,	which	take	two	operands	and	perform	a	variety	of
arithmetic	and	logical	operations.
The	conditional	operator	(a	ternary	operator),	which	takes	three	operands
and	evaluates	either	the	second	or	third	expression,	depending	on	the
evaluation	of	the	first	expression.
Assignment	operators,	which	assign	a	value	to	a	variable.

Precedence	of	PHP	Operators
Operator	precedence	determines	the	grouping	of	terms	in	an	expression.	This
affects	how	an	expression	is	evaluated.	Certain	operators	have	higher	precedence
than	others;	for	example,	the	multiplication	operator	has	higher	precedence	than
the	addition	operator	−
For	example	x	=	7	+	3	*	2;	Here	x	is	assigned	13,	not	20	because	operator	has
higher	precedence	than	+	so	it	first	get	multiplied	with	32	and	then	adds	into	7.
Here	operators	with	the	highest	precedence	appear	at	the	top	of	the	table,	those
with	the	lowest	appear	at	the	bottom.	Within	an	expression,	higher	precedence
operators	will	be	evaluated	first.

Category Operator Associativity

Unary !	++	-- Right	to	left

Multiplicative *	/	% Left	to	right

Additive +	- Left	to	right

Relational <	<=	>	>= Left	to	right

Equality ==	!= Left	to	right

Logical	AND && Left	to	right

Logical	OR || Left	to	right

Conditional ?: Right	to	left

Assignment =	+=	-=	*=	/=	%= Right	to	left

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
PHP	-	Decision	Making
	

The	if,	elseif	...else	and	switch	statements	are	used	to	take	decision	based	on	the
different	condition.
You	can	use	conditional	statements	in	your	code	to	make	your	decisions.	PHP
supports	following	three	decision	making	statements	−

if...else	statement	−	use	this	statement	if	you	want	to	execute	a	set	of	code
when	a	condition	is	true	and	another	if	the	condition	is	not	true
elseif	statement	−	is	used	with	the	if...else	statement	to	execute	a	set	of
code	if	one	of	the	several	condition	is	true
switch	statement	−	is	used	if	you	want	to	select	one	of	many	blocks	of
code	to	be	executed,	use	the	Switch	statement.	The	switch	statement	is
used	to	avoid	long	blocks	of	if..elseif..else	code.

The	If...Else	Statement
If	you	want	to	execute	some	code	if	a	condition	is	true	and	another	code	if	a
condition	is	false,	use	the	if....else	statement.
Syntax
if	(condition)
			code	to	be	executed	if	condition	is	true;
else
			code	to	be	executed	if	condition	is	false;

Example

The	following	example	will	output	"Have	a	nice	weekend!"	if	the	current	day	is
Friday,	Otherwise,	it	will	output	"Have	a	nice	day!":
<html>
			<body>
	
						<?php
									$d	=	date("D");
	
									if	($d	==	"Fri")
												echo	"Have	a	nice	weekend!";
	
									else
												echo	"Have	a	nice	day!";
						?>
	
			</body>
</html>

It	will	produce	the	following	result	−
Have	a	nice	day!

The	ElseIf	Statement
If	you	want	to	execute	some	code	if	one	of	the	several	conditions	are	true	use	the
elseif	statement
Syntax
if	(condition)
			code	to	be	executed	if	condition	is	true;
elseif	(condition)
			code	to	be	executed	if	condition	is	true;
else
			code	to	be	executed	if	condition	is	false;

Example

The	following	example	will	output	"Have	a	nice	weekend!"	if	the	current	day	is
Friday,	and	"Have	a	nice	Sunday!"	if	the	current	day	is	Sunday.	Otherwise,	it
will	output	"Have	a	nice	day!"	−
<html>
			<body>
	
						<?php
									$d	=	date("D");
	
									if	($d	==	"Fri")
												echo	"Have	a	nice	weekend!";
	
									elseif	($d	==	"Sun")
												echo	"Have	a	nice	Sunday!";
	
									else
												echo	"Have	a	nice	day!";
						?>
	
			</body>
</html>

It	will	produce	the	following	result	−
Have	a	nice	day!

The	Switch	Statement
If	you	want	to	select	one	of	many	blocks	of	code	to	be	executed,	use	the	Switch
statement.
The	switch	statement	is	used	to	avoid	long	blocks	of	if..elseif..else	code.
Syntax
switch	(expression){
			case	label1:
						code	to	be	executed	if	expression	=	label1;
						break;	
	
			case	label2:
						code	to	be	executed	if	expression	=	label2;
						break;
						default:
	
			code	to	be	executed
			if	expression	is	different
			from	both	label1	and	label2;

}

Example

The	switch	statement	works	in	an	unusual	way.	First	it	evaluates	given
expression	then	seeks	a	lable	to	match	the	resulting	value.	If	a	matching	value	is
found	then	the	code	associated	with	the	matching	label	will	be	executed	or	if
none	of	the	lable	matches	then	statement	will	execute	any	specified	default	code.
<html>
			<body>
	
						<?php
									$d	=	date("D");
	
									switch	($d){
												case	"Mon":
															echo	"Today	is	Monday";
															break;
	
												case	"Tue":
															echo	"Today	is	Tuesday";
															break;
	
												case	"Wed":
															echo	"Today	is	Wednesday";
															break;

	
												case	"Thu":
															echo	"Today	is	Thursday";
															break;
	
												case	"Fri":
															echo	"Today	is	Friday";
															break;
	
												case	"Sat":
															echo	"Today	is	Saturday";
															break;
	
												case	"Sun":
															echo	"Today	is	Sunday";
															break;
	
												default:
															echo	"Wonder	which	day	is	this	?";

}

						?>
	
			</body>
</html>

It	will	produce	the	following	result	−
Today	is	Monday
	

	

	

	

	

	

	

PHP	-	Loop	Types
Advertisements

Previous	Page

Next	Page		

Loops	in	PHP	are	used	to	execute	the	same	block	of	code	a	specified	number	of
times.	PHP	supports	following	four	loop	types.

for	−	loops	through	a	block	of	code	a	specified	number	of	times.
while	−	loops	through	a	block	of	code	if	and	as	long	as	a	specified
condition	is	true.
do...while	−	loops	through	a	block	of	code	once,	and	then	repeats	the	loop
as	long	as	a	special	condition	is	true.
foreach	−	loops	through	a	block	of	code	for	each	element	in	an	array.

We	will	discuss	about	continue	and	break	keywords	used	to	control	the	loops
execution.

https://www.tutorialspoint.com/php/php_decision_making.htm
https://www.tutorialspoint.com/php/php_arrays.htm

The	for	loop	statement
The	for	statement	is	used	when	you	know	how	many	times	you	want	to	execute
a	statement	or	a	block	of	statements.

Syntax
for	(initialization;	condition;	increment){
			code	to	be	executed;

}

The	initializer	is	used	to	set	the	start	value	for	the	counter	of	the	number	of	loop
iterations.	A	variable	may	be	declared	here	for	this	purpose	and	it	is	traditional
to	name	it	$i.
Example

The	following	example	makes	five	iterations	and	changes	the	assigned	value	of
two	variables	on	each	pass	of	the	loop	−
<html>
			<body>
	
						<?php
									$a	=	0;
									$b	=	0;
	
									for($i	=	0;	$i<5;	$i++)	{
												$a	+=	10;

												$b	+=	5;

}

	
									echo	("At	the	end	of	the	loop	a	=	$a	and	b	=	$b");
						?>
	
			</body>
</html>

This	will	produce	the	following	result	−
At	the	end	of	the	loop	a	=	50	and	b	=	25

The	while	loop	statement
The	while	statement	will	execute	a	block	of	code	if	and	as	long	as	a	test
expression	is	true.
If	the	test	expression	is	true	then	the	code	block	will	be	executed.	After	the	code
has	executed	the	test	expression	will	again	be	evaluated	and	the	loop	will
continue	until	the	test	expression	is	found	to	be	false.

Syntax
while	(condition)	{
			code	to	be	executed;

}

Example

This	example	decrements	a	variable	value	on	each	iteration	of	the	loop	and	the
counter	increments	until	it	reaches	10	when	the	evaluation	is	false	and	the	loop
ends.
<html>
			<body>
	
						<?php
									$i	=	0;

									$num	=	50;
	
									while($i	<	10)	{
												$num--;
												$i++;

}

	
									echo	("Loop	stopped	at	i	=	$i	and	num	=	$num");
						?>
	
			</body>
</html>

This	will	produce	the	following	result	−
Loop	stopped	at	i	=	10	and	num	=	40

The	do...while	loop	statement
The	do...while	statement	will	execute	a	block	of	code	at	least	once	-	it	then	will
repeat	the	loop	as	long	as	a	condition	is	true.
Syntax
do	{
			code	to	be	executed;

}

while	(condition);

Example

The	following	example	will	increment	the	value	of	i	at	least	once,	and	it	will
continue	incrementing	the	variable	i	as	long	as	it	has	a	value	of	less	than	10	−
<html>
			<body>
	
						<?php
									$i	=	0;
									$num	=	0;
	
									do	{
												$i++;

}

	
									while($i	<	10);
									echo	("Loop	stopped	at	i	=	$i");
						?>
	
			</body>
</html>

This	will	produce	the	following	result	−
Loop	stopped	at	i	=	10

The	foreach	loop	statement
The	foreach	statement	is	used	to	loop	through	arrays.	For	each	pass	the	value	of
the	current	array	element	is	assigned	to	$value	and	the	array	pointer	is	moved	by
one	and	in	the	next	pass	next	element	will	be	processed.
Syntax
foreach	(array	as	value)	{
			code	to	be	executed;

}

Example

Try	out	following	example	to	list	out	the	values	of	an	array.
<html>
			<body>
	
						<?php
									$array	=	array(1,	2,	3,	4,	5);
	
									foreach($array	as	$value)	{
												echo	"Value	is	$value	
";

}

						?>
	
			</body>
</html>

This	will	produce	the	following	result	−
Value	is	1
Value	is	2
Value	is	3
Value	is	4
Value	is	5

The	break	statement
The	PHP	break	keyword	is	used	to	terminate	the	execution	of	a	loop
prematurely.
The	break	statement	is	situated	inside	the	statement	block.	It	gives	you	full
control	and	whenever	you	want	to	exit	from	the	loop	you	can	come	out.	After
coming	out	of	a	loop	immediate	statement	to	the	loop	will	be	executed.

Example

In	the	following	example	condition	test	becomes	true	when	the	counter	value
reaches	3	and	loop	terminates.
<html>
			<body>
	
						<?php
									$i	=	0;
	
									while($i	<	10)	{
												$i++;
												if($i	==	3)break;

}

									echo	("Loop	stopped	at	i	=	$i");
						?>
	
			</body>
</html>

This	will	produce	the	following	result	−

Loop	stopped	at	i	=	3

The	continue	statement
The	PHP	continue	keyword	is	used	to	halt	the	current	iteration	of	a	loop	but	it
does	not	terminate	the	loop.
Just	like	the	break	statement	the	continue	statement	is	situated	inside	the
statement	block	containing	the	code	that	the	loop	executes,	preceded	by	a
conditional	test.	For	the	pass	encountering	continue	statement,	rest	of	the	loop
code	is	skipped	and	next	pass	starts.

Example

In	the	following	example	loop	prints	the	value	of	array	but	for	which	condition
becomes	true	it	just	skip	the	code	and	next	value	is	printed.
<html>
			<body>
	
						<?php
									$array	=	array(1,	2,	3,	4,	5);
	
									foreach($array	as	$value)	{
												if($value	==	3)continue;
												echo	"Value	is	$value	
";

}

						?>
	
			</body>
</html>

This	will	produce	the	following	result	−
Value	is	1
Value	is	2

Value	is	4
Value	is	5
	

	

	

	

PHP	-	Arrays
Advertisements

Previous	Page

Next	Page		

An	array	is	a	data	structure	that	stores	one	or	more	similar	type	of	values	in	a
single	value.	For	example	if	you	want	to	store	100	numbers	then	instead	of
defining	100	variables	its	easy	to	define	an	array	of	100	length.
There	are	three	different	kind	of	arrays	and	each	array	value	is	accessed	using	an
ID	c	which	is	called	array	index.

Numeric	array	−	An	array	with	a	numeric	index.	Values	are	stored	and
accessed	in	linear	fashion.
Associative	array	−	An	array	with	strings	as	index.	This	stores	element
values	in	association	with	key	values	rather	than	in	a	strict	linear	index
order.
Multidimensional	array	−	An	array	containing	one	or	more	arrays	and
values	are	accessed	using	multiple	indices

NOTE	−	Built-in	array	functions	is	given	in	function	reference	PHP	Array
Functions

https://www.tutorialspoint.com/php/php_loop_types.htm
https://www.tutorialspoint.com/php/php_strings.htm
https://www.tutorialspoint.com/php/php_array_functions.htm

Numeric	Array
These	arrays	can	store	numbers,	strings	and	any	object	but	their	index	will	be
represented	by	numbers.	By	default	array	index	starts	from	zero.
Example

Following	is	the	example	showing	how	to	create	and	access	numeric	arrays.
Here	we	have	used	array()	function	to	create	array.	This	function	is	explained	in
function	reference.
<html>
			<body>
	
						<?php
									/*	First	method	to	create	array.	*/
									$numbers	=	array(1,	2,	3,	4,	5);
	
									foreach($numbers	as	$value)	{
												echo	"Value	is	$value	
";

}

	
									/*	Second	method	to	create	array.	*/
									$numbers[0]	=	"one";
									$numbers[1]	=	"two";
									$numbers[2]	=	"three";
									$numbers[3]	=	"four";
									$numbers[4]	=	"five";
	
									foreach($numbers	as	$value)	{
												echo	"Value	is	$value	
";

}

						?>
	
			</body>
</html>

This	will	produce	the	following	result	−
Value	is	1
Value	is	2
Value	is	3
Value	is	4
Value	is	5
Value	is	one
Value	is	two

Value	is	three
Value	is	four
Value	is	five

Associative	Arrays
The	associative	arrays	are	very	similar	to	numeric	arrays	in	term	of	functionality
but	they	are	different	in	terms	of	their	index.	Associative	array	will	have	their
index	as	string	so	that	you	can	establish	a	strong	association	between	key	and
values.
To	store	the	salaries	of	employees	in	an	array,	a	numerically	indexed	array
would	not	be	the	best	choice.	Instead,	we	could	use	the	employees	names	as	the
keys	in	our	associative	array,	and	the	value	would	be	their	respective	salary.
NOTE	−	Don't	keep	associative	array	inside	double	quote	while	printing
otherwise	it	would	not	return	any	value.
Example
<html>
			<body>
	
						<?php
									/*	First	method	to	associate	create	array.	*/
									$salaries	=	array("mohammad"	=>	2000,	"qadir"	=>	1000,	"zara"	=>	500);
	
									echo	"Salary	of	mohammad	is	".	$salaries['mohammad']	.	"
";
									echo	"Salary	of	qadir	is	".		$salaries['qadir'].	"
";
									echo	"Salary	of	zara	is	".		$salaries['zara'].	"
";
	
									/*	Second	method	to	create	array.	*/
									$salaries['mohammad']	=	"high";
									$salaries['qadir']	=	"medium";
									$salaries['zara']	=	"low";
	
									echo	"Salary	of	mohammad	is	".	$salaries['mohammad']	.	"
";
									echo	"Salary	of	qadir	is	".		$salaries['qadir'].	"
";
									echo	"Salary	of	zara	is	".		$salaries['zara'].	"
";
						?>
	
			</body>
</html>

This	will	produce	the	following	result	−
Salary	of	mohammad	is	2000
Salary	of	qadir	is	1000
Salary	of	zara	is	500
Salary	of	mohammad	is	high
Salary	of	qadir	is	medium
Salary	of	zara	is	low

Multidimensional	Arrays
A	multi-dimensional	array	each	element	in	the	main	array	can	also	be	an	array.
And	each	element	in	the	sub-array	can	be	an	array,	and	so	on.	Values	in	the
multi-dimensional	array	are	accessed	using	multiple	index.
Example

In	this	example	we	create	a	two	dimensional	array	to	store	marks	of	three
students	in	three	subjects	−
This	example	is	an	associative	array,	you	can	create	numeric	array	in	the	same
fashion.
<html>
			<body>
	
						<?php
									$marks	=	array(
												"mohammad"	=>	array	(
															"physics"	=>	35,
															"maths"	=>	30,
															"chemistry"	=>	39
),
	
												"qadir"	=>	array	(
															"physics"	=>	30,
															"maths"	=>	32,
															"chemistry"	=>	29
),
	
												"zara"	=>	array	(
															"physics"	=>	31,
															"maths"	=>	22,
															"chemistry"	=>	39
)

);

	
									/*	Accessing	multi-dimensional	array	values	*/
									echo	"Marks	for	mohammad	in	physics	:	"	;
									echo	$marks['mohammad']['physics']	.	"
";
	
									echo	"Marks	for	qadir	in	maths	:	";
									echo	$marks['qadir']['maths']	.	"
";
	
									echo	"Marks	for	zara	in	chemistry	:	"	;
									echo	$marks['zara']['chemistry']	.	"
";

						?>
	
			</body>
</html>

This	will	produce	the	following	result	−
Marks	for	mohammad	in	physics	:	35
Marks	for	qadir	in	maths	:	32
Marks	for	zara	in	chemistry	:	39
	

	

	

	

	

	

	

	

	

	

	

PHP	-	Strings
	

They	are	sequences	of	characters,	like	"PHP	supports	string	operations".
NOTE	−	Built-in	string	functions	is	given	in	function	reference	PHP	String
Functions
Following	are	valid	examples	of	string
$string_1	=	"This	is	a	string	in	double	quotes";
$string_2	=	"This	is	a	somewhat	longer,	singly	quoted	string";
$string_39	=	"This	string	has	thirty-nine	characters";
$string_0	=	"";	//	a	string	with	zero	characters

Singly	quoted	strings	are	treated	almost	literally,	whereas	doubly	quoted	strings
replace	variables	with	their	values	as	well	as	specially	interpreting	certain
character	sequences.
<?php
			$variable	=	"name";
			$literally	=	'My	$variable	will	not	print!\\n';
	
			print($literally);
			print	"
";
	
			$literally	=	"My	$variable	will	print!\\n";
	
			print($literally);
?>

This	will	produce	the	following	result	−
My	$variable	will	not	print!\n
My	name	will	print

There	are	no	artificial	limits	on	string	length	-	within	the	bounds	of	available
memory,	you	ought	to	be	able	to	make	arbitrarily	long	strings.
Strings	that	are	delimited	by	double	quotes	(as	in	"this")	are	preprocessed	in	both
the	following	two	ways	by	PHP	−

Certain	character	sequences	beginning	with	backslash	(\)	are	replaced	with
special	characters
Variable	names	(starting	with	$)	are	replaced	with	string	representations	of
their	values.

The	escape-sequence	replacements	are	−
\n	is	replaced	by	the	newline	character

\r	is	replaced	by	the	carriage-return	character
\t	is	replaced	by	the	tab	character
\$	is	replaced	by	the	dollar	sign	itself	($)
\"	is	replaced	by	a	single	double-quote	(")
\\	is	replaced	by	a	single	backslash	(\)

String	Concatenation	Operator
To	concatenate	two	string	variables	together,	use	the	dot	(.)	operator	−
<?php
			$string1="Hello	World";
			$string2="1234";
	
			echo	$string1	.	"	"	.	$string2;
?>

This	will	produce	the	following	result	−
Hello	World	1234

If	we	look	at	the	code	above	you	see	that	we	used	the	concatenation	operator	two
times.	This	is	because	we	had	to	insert	a	third	string.
Between	the	two	string	variables	we	added	a	string	with	a	single	character,	an
empty	space,	to	separate	the	two	variables.

Using	the	strlen()	function
The	strlen()	function	is	used	to	find	the	length	of	a	string.
Let's	find	the	length	of	our	string	"Hello	world!":
<?php
			echo	strlen("Hello	world!");
?>

This	will	produce	the	following	result	−
12

The	length	of	a	string	is	often	used	in	loops	or	other	functions,	when	it	is
important	to	know	when	the	string	ends.	(i.e.	in	a	loop,	we	would	want	to	stop
the	loop	after	the	last	character	in	the	string)

Using	the	strpos()	function
The	strpos()	function	is	used	to	search	for	a	string	or	character	within	a	string.
If	a	match	is	found	in	the	string,	this	function	will	return	the	position	of	the	first
match.	If	no	match	is	found,	it	will	return	FALSE.
Let's	see	if	we	can	find	the	string	"world"	in	our	string	−
<?php
			echo	strpos("Hello	world!","world");
?>

This	will	produce	the	following	result	−
6

As	you	see	the	position	of	the	string	"world"	in	our	string	is	position	6.	The
reason	that	it	is	6,	and	not	7,	is	that	the	first	position	in	the	string	is	0,	and	not	1.
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

PHP	-	Web	Concepts
	

This	session	demonstrates	how	PHP	can	provide	dynamic	content	according	to
browser	type,	randomly	generated	numbers	or	User	Input.	It	also	demonstrated
how	the	client	browser	can	be	redirected.

Identifying	Browser	&	Platform
PHP	creates	some	useful	environment	variables	that	can	be	seen	in	the
phpinfo.php	page	that	was	used	to	setup	the	PHP	environment.
One	of	the	environment	variables	set	by	PHP	is	HTTP_USER_AGENT	which
identifies	the	user's	browser	and	operating	system.
PHP	provides	a	function	getenv()	to	access	the	value	of	all	the	environment
variables.	The	information	contained	in	the	HTTP_USER_AGENT	environment
variable	can	be	used	to	create	dynamic	content	appropriate	to	the	browser.
Following	example	demonstrates	how	you	can	identify	a	client	browser	and
operating	system.
NOTE	−	The	function	preg_match()is	discussed	in	PHP	Regular	expression
session.
<html>
			<body>
	
						<?php
									function	getBrowser()	{
												$u_agent	=	$_SERVER['HTTP_USER_AGENT'];
												$bname	=	'Unknown';
												$platform	=	'Unknown';
												$version	=	"";
	
												//First	get	the	platform?
												if	(preg_match('linuxi',	$u_agent))	{
															$platform	=	'linux';
												}elseif	(preg_match('macintosh|mac	os	xi',	$u_agent))	{
															$platform	=	'mac';
												}elseif	(preg_match('windows|win32i',	$u_agent))	{
															$platform	=	'windows';

}

	
												//	Next	get	the	name	of	the	useragent	yes	seperately	and	for	good	reason
												if(preg_match('MSIEi',$u_agent)	&&	!preg_match('Operai',$u_agent))	{
															$bname	=	'Internet	Explorer';
															$ub	=	"MSIE";
												}	elseif(preg_match('Firefoxi',$u_agent))	{
															$bname	=	'Mozilla	Firefox';
															$ub	=	"Firefox";
												}	elseif(preg_match('Chromei',$u_agent))	{
															$bname	=	'Google	Chrome';
															$ub	=	"Chrome";

												}elseif(preg_match('Safarii',$u_agent))	{
															$bname	=	'Apple	Safari';
															$ub	=	"Safari";
												}elseif(preg_match('Operai',$u_agent))	{
															$bname	=	'Opera';
															$ub	=	"Opera";
												}elseif(preg_match('Netscapei',$u_agent))	{
															$bname	=	'Netscape';
															$ub	=	"Netscape";

}

	
												//	finally	get	the	correct	version	number
												$known	=	array('Version',	$ub,	'other');
												$pattern	=	'#(?<browser>'	.	join('|',	$known)	.	')[/]+(?<version>[0-9.|a-zA-Z.]*)#';
	
												if	(!preg_match_all($pattern,	$u_agent,	$matches))	{
															//	we	have	no	matching	number	just	continue

}

	
												//	see	how	many	we	have
												$i	=	count($matches['browser']);
	
												if	($i	!=	1)	{
															//we	will	have	two	since	we	are	not	using	'other'	argument	yet
	
															//see	if	version	is	before	or	after	the	name
															if	(strripos($u_agent,"Version")	<	strripos($u_agent,$ub)){
																		$version=	$matches['version'][0];
															}else	{
																		$version=	$matches['version'][1];

}

												}else	{
															$version=	$matches['version'][0];

}

	
												//	check	if	we	have	a	number
												if	($version	==	null	||	$version	==	"")	{$version	=	"?";}
												return	array(
															'userAgent'	=>	$u_agent,
															'name'						=>	$bname,

															'version'			=>	$version,
															'platform'		=>	$platform,
															'pattern'			=>	$pattern

);

}

	
									//	now	try	it
									$ua	=	getBrowser();
									$yourbrowser	=	"Your	browser:	"	.	$ua['name']	.	"	"	.	$ua['version']	.
												"	on	"	.$ua['platform']	.	"	reports:	
"	.	$ua['userAgent'];
	
									print_r($yourbrowser);
						?>
	
			</body>
</html>

This	is	producing	following	result	on	my	machine.	This	result	may	be	different
for	your	computer	depending	on	what	you	are	using.
It	will	produce	the	following	result	−
Your	browser:	Google	Chrome	54.0.2840.99	on	windows	reports:
Mozilla/5.0	(Windows	NT	6.3;	Win64;	x64)	AppleWebKit/537.36	(KHTML,	like	Gecko)
			Chrome/54.0.2840.99	Safari/537.36

Display	Images	Randomly
The	PHP	rand()	function	is	used	to	generate	a	random	number.i	This	function
can	generate	numbers	with-in	a	given	range.	The	random	number	generator
should	be	seeded	to	prevent	a	regular	pattern	of	numbers	being	generated.	This	is
achieved	using	the	srand()	function	that	specifies	the	seed	number	as	its
argument.
Following	example	demonstrates	how	you	can	display	different	image	each	time
out	of	four	images	−
<html>
			<body>
	
						<?php
									srand(microtime()	*	1000000);
									$num	=	rand(1,	4);
	
									switch($num)	{
												case	1:	$image_file	=	"/php/images/logo.png";
															break;
	
												case	2:	$image_file	=	"/php/images/php.jpg";
															break;
	
												case	3:	$image_file	=	"/php/images/logo.png";
															break;
	
												case	4:	$image_file	=	"/php/images/php.jpg";
															break;

}

									echo	"Random	Image	:	";
						?>
	
			</body>
</html>

It	will	produce	the	following	result	−
TRY	IT	YOURSELF

Using	HTML	Forms
The	most	important	thing	to	notice	when	dealing	with	HTML	forms	and	PHP	is
that	any	form	element	in	an	HTML	page	will	automatically	be	available	to	your
PHP	scripts.
Try	out	following	example	by	putting	the	source	code	in	test.php	script.
<?php
			if($_POST["name"]	||	$_POST["age"])	{
						if	(preg_match("/[^A-Za-z'-]/",$_POST['name']))	{
									die	("invalid	name	and	name	should	be	alpha");

}

	
						echo	"Welcome	".	$_POST['name'].	"
";
						echo	"You	are	".	$_POST['age'].	"	years	old.";
	
						exit();

}

?>
<html>
			<body>
	
						<form	action	=	"<?php	$_PHP_SELF	?>"	method	=	"POST">
									Name:	<input	type	=	"text"	name	=	"name"	/>
									Age:	<input	type	=	"text"	name	=	"age"	/>
									<input	type	=	"submit"	/>
						</form>
	
			</body>
</html>

It	will	produce	the	following	result	−

The	PHP	default	variable	$_PHP_SELF	is	used	for	the	PHP	script	name
and	when	you	click	"submit"	button	then	same	PHP	script	will	be	called
and	will	produce	following	result	−
The	method	=	"POST"	is	used	to	post	user	data	to	the	server	script.	There
are	two	methods	of	posting	data	to	the	server	script	which	are	discussed	in
PHP	GET	&	POST	chapter.

Browser	Redirection
The	PHP	header()	function	supplies	raw	HTTP	headers	to	the	browser	and	can
be	used	to	redirect	it	to	another	location.	The	redirection	script	should	be	at	the
very	top	of	the	page	to	prevent	any	other	part	of	the	page	from	loading.
The	target	is	specified	by	the	Location:	header	as	the	argument	to	the	header()
function.	After	calling	this	function	the	exit()	function	can	be	used	to	halt
parsing	of	rest	of	the	code.
Following	example	demonstrates	how	you	can	redirect	a	browser	request	to
another	web	page.	Try	out	this	example	by	putting	the	source	code	in	test.php
script.
<?php
			if($_POST["location"])	{
						$location	=	$_POST["location"];
						header("Location:$location");
	
						exit();

}

?>
<html>
			<body>
	
						<p>Choose	a	site	to	visit	:</p>
	
						<form	action	=	"<?php	$_SERVER['PHP_SELF']	?>"	method	="POST">
									<select	name	=	"location">.
	
												<option	value	=	"http://www.tutorialspoint.com">
															Tutorialspoint.com
												</option>
	
												<option	value	=	"http://www.google.com">
															Google	Search	Page
												</option>
	
									</select>
									<input	type	=	"submit"	/>
						</form>
	
			</body>
</html>

It	will	produce	the	following	result	−

Displaying	"File	Download"	Dialog	Box
Sometime	it	is	desired	that	you	want	to	give	option	where	a	use	will	click	a	link
and	it	will	pop	up	a	"File	Download"	box	to	the	user	in	stead	of	displaying	actual
content.	This	is	very	easy	and	will	be	achieved	through	HTTP	header.
The	HTTP	header	will	be	different	from	the	actual	header	where	we	send
Content-Type	as	text/html\n\n.	In	this	case	content	type	will	be
application/octet-stream	and	actual	file	name	will	be	concatenated	along	with
it.
For	example,if	you	want	make	a	FileName	file	downloadable	from	a	given	link
then	its	syntax	will	be	as	follows.
#!usrbin/perl
	
#	HTTP	Header
print	"Content-Type:application/octet-stream;	name=\"FileName\"\r\n";
print	"Content-Disposition:	attachment;	filename=\"FileName\"\r\n\n";
	
#	Actual	File	Content
open(FILE,	"<FileName");
	
while(read(FILE,	$buffer,	100)){
			print("$buffer");

}

	

	

	

	

	

	

	

	

	

PHP	-	GET	&	POST	Methods
There	are	two	ways	the	browser	client	can	send	information	to	the	web	server.

The	GET	Method
The	POST	Method

Before	the	browser	sends	the	information,	it	encodes	it	using	a	scheme	called
URL	encoding.	In	this	scheme,	name/value	pairs	are	joined	with	equal	signs	and
different	pairs	are	separated	by	the	ampersand.
name1=value1&name2=value2&name3=value3

Spaces	are	removed	and	replaced	with	the	+	character	and	any	other
nonalphanumeric	characters	are	replaced	with	a	hexadecimal	values.	After	the
information	is	encoded	it	is	sent	to	the	server.

The	GET	Method
The	GET	method	sends	the	encoded	user	information	appended	to	the	page
request.	The	page	and	the	encoded	information	are	separated	by	the	?	character.
http://www.test.com/index.htm?name1=value1&name2=value2

The	GET	method	produces	a	long	string	that	appears	in	your	server	logs,
in	the	browser's	Location:	box.
The	GET	method	is	restricted	to	send	upto	1024	characters	only.
Never	use	GET	method	if	you	have	password	or	other	sensitive
information	to	be	sent	to	the	server.
GET	can't	be	used	to	send	binary	data,	like	images	or	word	documents,	to
the	server.
The	data	sent	by	GET	method	can	be	accessed	using	QUERY_STRING
environment	variable.
The	PHP	provides	$_GET	associative	array	to	access	all	the	sent
information	using	GET	method.

Try	out	following	example	by	putting	the	source	code	in	test.php	script.
<?php
			if($_GET["name"]	||	$_GET["age"])	{
						echo	"Welcome	".	$_GET['name'].	"
";
						echo	"You	are	".	$_GET['age'].	"	years	old.";
	
						exit();

}

?>
<html>
			<body>
	
						<form	action	=	"<?php	$_PHP_SELF	?>"	method	=	"GET">
									Name:	<input	type	=	"text"	name	=	"name"	/>
									Age:	<input	type	=	"text"	name	=	"age"	/>
									<input	type	=	"submit"	/>
						</form>
	
			</body>
</html>

It	will	produce	the	following	result	−

The	POST	Method
The	POST	method	transfers	information	via	HTTP	headers.	The	information	is
encoded	as	described	in	case	of	GET	method	and	put	into	a	header	called
QUERY_STRING.

The	POST	method	does	not	have	any	restriction	on	data	size	to	be	sent.
The	POST	method	can	be	used	to	send	ASCII	as	well	as	binary	data.
The	data	sent	by	POST	method	goes	through	HTTP	header	so	security
depends	on	HTTP	protocol.	By	using	Secure	HTTP	you	can	make	sure
that	your	information	is	secure.
The	PHP	provides	$_POST	associative	array	to	access	all	the	sent
information	using	POST	method.

Try	out	following	example	by	putting	the	source	code	in	test.php	script.
<?php
			if($_POST["name"]	||	$_POST["age"])	{
						if	(preg_match("/[^A-Za-z'-]/",$_POST['name']))	{
									die	("invalid	name	and	name	should	be	alpha");

}

						echo	"Welcome	".	$_POST['name'].	"
";
						echo	"You	are	".	$_POST['age'].	"	years	old.";
	
						exit();

}

?>
<html>
			<body>
	
						<form	action	=	"<?php	$_PHP_SELF	?>"	method	=	"POST">
									Name:	<input	type	=	"text"	name	=	"name"	/>
									Age:	<input	type	=	"text"	name	=	"age"	/>
									<input	type	=	"submit"	/>
						</form>
	
			</body>
</html>

It	will	produce	the	following	result	−

The	$_REQUEST	variable
The	PHP	$_REQUEST	variable	contains	the	contents	of	both	$_GET,	$_POST,
and	$_COOKIE.	We	will	discuss	$_COOKIE	variable	when	we	will	explain
about	cookies.
The	PHP	$_REQUEST	variable	can	be	used	to	get	the	result	from	form	data	sent
with	both	the	GET	and	POST	methods.
Try	out	following	example	by	putting	the	source	code	in	test.php	script.
<?php
			if($_REQUEST["name"]	||	$_REQUEST["age"])	{
						echo	"Welcome	".	$_REQUEST['name'].	"
";
						echo	"You	are	".	$_REQUEST['age'].	"	years	old.";
						exit();

}

?>
<html>
			<body>
	
						<form	action	=	"<?php	$_PHP_SELF	?>"	method	=	"POST">
									Name:	<input	type	=	"text"	name	=	"name"	/>
									Age:	<input	type	=	"text"	name	=	"age"	/>
									<input	type	=	"submit"	/>
						</form>
	
			</body>
</html>

Here	$_PHP_SELF	variable	contains	the	name	of	self	script	in	which	it	is	being
called.
It	will	produce	the	following	result	−

	

	

	

	

	

	

	

	

	

	

	

	

PHP	-	File	Inclusion
Advertisements

Previous	Page

Next	Page		

You	can	include	the	content	of	a	PHP	file	into	another	PHP	file	before	the	server
executes	it.	There	are	two	PHP	functions	which	can	be	used	to	included	one	PHP
file	into	another	PHP	file.

The	include()	Function
The	require()	Function

This	is	a	strong	point	of	PHP	which	helps	in	creating	functions,	headers,	footers,
or	elements	that	can	be	reused	on	multiple	pages.	This	will	help	developers	to
make	it	easy	to	change	the	layout	of	complete	website	with	minimal	effort.	If
there	is	any	change	required	then	instead	of	changing	thousand	of	files	just
change	included	file.

https://www.tutorialspoint.com/php/php_get_post.htm
https://www.tutorialspoint.com/php/php_files.htm

The	include()	Function
The	include()	function	takes	all	the	text	in	a	specified	file	and	copies	it	into	the
file	that	uses	the	include	function.	If	there	is	any	problem	in	loading	a	file	then
the	include()	function	generates	a	warning	but	the	script	will	continue	execution.
Assume	you	want	to	create	a	common	menu	for	your	website.	Then	create	a	file
menu.php	with	the	following	content.
Home	-
ebXML	-
AJAX	-
PERL	

Now	create	as	many	pages	as	you	like	and	include	this	file	to	create	header.	For
example	now	your	test.php	file	can	have	following	content.
<html>
			<body>
	
						<?php	include("menu.php");	?>
						<p>This	is	an	example	to	show	how	to	include	PHP	file!</p>
	
			</body>
</html>

It	will	produce	the	following	result	−

The	require()	Function
The	require()	function	takes	all	the	text	in	a	specified	file	and	copies	it	into	the
file	that	uses	the	include	function.	If	there	is	any	problem	in	loading	a	file	then
the	require()	function	generates	a	fatal	error	and	halt	the	execution	of	the	script.
So	there	is	no	difference	in	require()	and	include()	except	they	handle	error
conditions.	It	is	recommended	to	use	the	require()	function	instead	of	include(),
because	scripts	should	not	continue	executing	if	files	are	missing	or	misnamed.
You	can	try	using	above	example	with	require()	function	and	it	will	generate
same	result.	But	if	you	will	try	following	two	examples	where	file	does	not	exist
then	you	will	get	different	results.
<html>
			<body>
	
						<?php	include("xxmenu.php");	?>
						<p>This	is	an	example	to	show	how	to	include	wrong	PHP	file!</p>
	
			</body>
</html>

This	will	produce	the	following	result	−
This	is	an	example	to	show	how	to	include	wrong	PHP	file!

Now	lets	try	same	example	with	require()	function.
<html>
			<body>
	
							<?php	require("xxmenu.php");	?>
							<p>This	is	an	example	to	show	how	to	include	wrong	PHP	file!</p>
	
			</body>
</html>

This	time	file	execution	halts	and	nothing	is	displayed.
NOTE	−	You	may	get	plain	warning	messages	or	fatal	error	messages	or
nothing	at	all.	This	depends	on	your	PHP	Server	configuration.
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

PHP	-	Files	&	I/O
	

This	chapter	will	explain	following	functions	related	to	files	−
Opening	a	file
Reading	a	file
Writing	a	file
Closing	a	file

Opening	and	Closing	Files
The	PHP	fopen()	function	is	used	to	open	a	file.	It	requires	two	arguments
stating	first	the	file	name	and	then	mode	in	which	to	operate.
Files	modes	can	be	specified	as	one	of	the	six	options	in	this	table.
Mode Purpose

r
Opens	the	file	for	reading	only.
Places	the	file	pointer	at	the	beginning	of	the	file.

r+
Opens	the	file	for	reading	and	writing.
Places	the	file	pointer	at	the	beginning	of	the	file.

w

Opens	the	file	for	writing	only.
Places	the	file	pointer	at	the	beginning	of	the	file.
and	truncates	the	file	to	zero	length.	If	files	does	not
exist	then	it	attempts	to	create	a	file.

w+

Opens	the	file	for	reading	and	writing	only.
Places	the	file	pointer	at	the	beginning	of	the	file.
and	truncates	the	file	to	zero	length.	If	files	does	not
exist	then	it	attempts	to	create	a	file.

a
Opens	the	file	for	writing	only.
Places	the	file	pointer	at	the	end	of	the	file.
If	files	does	not	exist	then	it	attempts	to	create	a	file.

a+
Opens	the	file	for	reading	and	writing	only.
Places	the	file	pointer	at	the	end	of	the	file.
If	files	does	not	exist	then	it	attempts	to	create	a	file.

If	an	attempt	to	open	a	file	fails	then	fopen	returns	a	value	of	false	otherwise	it
returns	a	file	pointer	which	is	used	for	further	reading	or	writing	to	that	file.
After	making	a	changes	to	the	opened	file	it	is	important	to	close	it	with	the
fclose()	function.	The	fclose()	function	requires	a	file	pointer	as	its	argument	and
then	returns	true	when	the	closure	succeeds	or	false	if	it	fails.

Reading	a	file
Once	a	file	is	opened	using	fopen()	function	it	can	be	read	with	a	function	called
fread().	This	function	requires	two	arguments.	These	must	be	the	file	pointer
and	the	length	of	the	file	expressed	in	bytes.
The	files	length	can	be	found	using	the	filesize()	function	which	takes	the	file
name	as	its	argument	and	returns	the	size	of	the	file	expressed	in	bytes.
So	here	are	the	steps	required	to	read	a	file	with	PHP.

Open	a	file	using	fopen()	function.
Get	the	file's	length	using	filesize()	function.
Read	the	file's	content	using	fread()	function.
Close	the	file	with	fclose()	function.

The	following	example	assigns	the	content	of	a	text	file	to	a	variable	then
displays	those	contents	on	the	web	page.
<html>
	
			<head>
						<title>Reading	a	file	using	PHP</title>
			</head>
	
			<body>
	
						<?php
									$filename	=	"tmp.txt";
									$file	=	fopen($filename,	"r");
	
									if($file	==	false)	{
												echo	("Error	in	opening	file");
												exit();

}

	
									$filesize	=	filesize($filename);
									$filetext	=	fread($file,	$filesize);
									fclose($file);
	
									echo	("File	size	:	$filesize	bytes");
									echo	("<pre>$filetext</pre>");
						?>
	
			</body>
</html>

It	will	produce	the	following	result	−

Writing	a	file
A	new	file	can	be	written	or	text	can	be	appended	to	an	existing	file	using	the
PHP	fwrite()	function.	This	function	requires	two	arguments	specifying	a	file
pointer	and	the	string	of	data	that	is	to	be	written.	Optionally	a	third	integer
argument	can	be	included	to	specify	the	length	of	the	data	to	write.	If	the	third
argument	is	included,	writing	would	will	stop	after	the	specified	length	has	been
reached.
The	following	example	creates	a	new	text	file	then	writes	a	short	text	heading
inside	it.	After	closing	this	file	its	existence	is	confirmed	using	file_exist()
function	which	takes	file	name	as	an	argument
<?php
			$filename	=	"homeuser/guest/newfile.txt";
			$file	=	fopen($filename,	"w");
	
			if($file	==	false)	{
						echo	("Error	in	opening	new	file");
						exit();

}

			fwrite($file,	"This	is		a	simple	test\n");
			fclose($file);
?>
<html>
	
			<head>
						<title>Writing	a	file	using	PHP</title>
			</head>
	
			<body>
	
						<?php
									$filename	=	"newfile.txt";
									$file	=	fopen($filename,	"r");
	
									if($file	==	false)	{
												echo	("Error	in	opening	file");
												exit();

}

	
									$filesize	=	filesize($filename);
									$filetext	=	fread($file,	$filesize);

	
									fclose($file);
	
									echo	("File	size	:	$filesize	bytes");
									echo	("$filetext");
									echo("file	name:	$filename");
						?>
	
			</body>
</html>

It	will	produce	the	following	result	−

We	have	covered	all	the	function	related	to	file	input	and	out	in	PHP	File	System
Function	chapter.
	

	

	

	

	

	

PHP	-	Functions

PHP	functions	are	similar	to	other	programming	languages.	A	function	is	a	piece
of	code	which	takes	one	more	input	in	the	form	of	parameter	and	does	some
processing	and	returns	a	value.
You	already	have	seen	many	functions	like	fopen()	and	fread()	etc.	They	are
built-in	functions	but	PHP	gives	you	option	to	create	your	own	functions	as	well.
There	are	two	parts	which	should	be	clear	to	you	−

Creating	a	PHP	Function
Calling	a	PHP	Function

In	fact	you	hardly	need	to	create	your	own	PHP	function	because	there	are
already	more	than	1000	of	built-in	library	functions	created	for	different	area	and
you	just	need	to	call	them	according	to	your	requirement.
Please	refer	to	PHP	Function	Reference	for	a	complete	set	of	useful	functions.

Creating	PHP	Function
Its	very	easy	to	create	your	own	PHP	function.	Suppose	you	want	to	create	a
PHP	function	which	will	simply	write	a	simple	message	on	your	browser	when
you	will	call	it.	Following	example	creates	a	function	called	writeMessage()	and
then	calls	it	just	after	creating	it.
Note	that	while	creating	a	function	its	name	should	start	with	keyword	function
and	all	the	PHP	code	should	be	put	inside	{	and	}	braces	as	shown	in	the
following	example	below	−
<html>
	
			<head>
						<title>Writing	PHP	Function</title>
			</head>
	
			<body>
	
						<?php
									/*	Defining	a	PHP	Function	*/
									function	writeMessage()	{
												echo	"You	are	really	a	nice	person,	Have	a	nice	time!";

}

	
									/*	Calling	a	PHP	Function	*/
									writeMessage();
						?>
	
			</body>
</html>

This	will	display	following	result	−
You	are	really	a	nice	person,	Have	a	nice	time!

PHP	Functions	with	Parameters
PHP	gives	you	option	to	pass	your	parameters	inside	a	function.	You	can	pass	as
many	as	parameters	your	like.	These	parameters	work	like	variables	inside	your
function.	Following	example	takes	two	integer	parameters	and	add	them	together
and	then	print	them.
<html>
	
			<head>
						<title>Writing	PHP	Function	with	Parameters</title>
			</head>
	
			<body>
	
						<?php
									function	addFunction($num1,	$num2)	{
												$sum	=	$num1	+	$num2;
												echo	"Sum	of	the	two	numbers	is	:	$sum";

}

	
									addFunction(10,	20);
						?>
	
			</body>
</html>

This	will	display	following	result	−
Sum	of	the	two	numbers	is	:	30

Passing	Arguments	by	Reference
It	is	possible	to	pass	arguments	to	functions	by	reference.	This	means	that	a
reference	to	the	variable	is	manipulated	by	the	function	rather	than	a	copy	of	the
variable's	value.
Any	changes	made	to	an	argument	in	these	cases	will	change	the	value	of	the
original	variable.	You	can	pass	an	argument	by	reference	by	adding	an
ampersand	to	the	variable	name	in	either	the	function	call	or	the	function
definition.
Following	example	depicts	both	the	cases.
<html>
	
			<head>
						<title>Passing	Argument	by	Reference</title>
			</head>
	
			<body>
	
						<?php
									function	addFive($num)	{
												$num	+=	5;

}

	
									function	addSix(&$num)	{
												$num	+=	6;

}

	
									$orignum	=	10;
									addFive($orignum);
	
									echo	"Original	Value	is	$orignum
";
	
									addSix($orignum);
									echo	"Original	Value	is	$orignum
";
						?>
	
			</body>
</html>

This	will	display	following	result	−
Original	Value	is	10

Original	Value	is	16

PHP	Functions	returning	value
A	function	can	return	a	value	using	the	return	statement	in	conjunction	with	a
value	or	object.	return	stops	the	execution	of	the	function	and	sends	the	value
back	to	the	calling	code.
You	can	return	more	than	one	value	from	a	function	using	return
array(1,2,3,4).
Following	example	takes	two	integer	parameters	and	add	them	together	and	then
returns	their	sum	to	the	calling	program.	Note	that	return	keyword	is	used	to
return	a	value	from	a	function.
<html>
	
			<head>
						<title>Writing	PHP	Function	which	returns	value</title>
			</head>
	
			<body>
	
						<?php
									function	addFunction($num1,	$num2)	{
												$sum	=	$num1	+	$num2;
												return	$sum;

}

									$return_value	=	addFunction(10,	20);
	
									echo	"Returned	value	from	the	function	:	$return_value";
						?>
	
			</body>
</html>

This	will	display	following	result	−
Returned	value	from	the	function	:	30

Setting	Default	Values	for	Function	Parameters
You	can	set	a	parameter	to	have	a	default	value	if	the	function's	caller	doesn't
pass	it.
Following	function	prints	NULL	in	case	use	does	not	pass	any	value	to	this
function.
<html>
	
			<head>
						<title>Writing	PHP	Function	which	returns	value</title>
			</head>
	
			<body>
	
						<?php
									function	printMe($param	=	NULL)	{
												print	$param;

}

	
									printMe("This	is	test");
									printMe();
						?>
	
			</body>
</html>

This	will	produce	following	result	−
This	is	test

Dynamic	Function	Calls
It	is	possible	to	assign	function	names	as	strings	to	variables	and	then	treat	these
variables	exactly	as	you	would	the	function	name	itself.	Following	example
depicts	this	behaviour.
<html>
	
			<head>
						<title>Dynamic	Function	Calls</title>
			</head>
	
			<body>
	
						<?php
									function	sayHello()	{
												echo	"Hello
";

}

	
									$function_holder	=	"sayHello";
									$function_holder();
						?>
	
			</body>
</html>

This	will	display	following	result	−
Hello
	

	

	

	

	

	

	

	

	

	

	

	

	

PHP	-	Cookies
	

Cookies	are	text	files	stored	on	the	client	computer	and	they	are	kept	of	use
tracking	purpose.	PHP	transparently	supports	HTTP	cookies.
There	are	three	steps	involved	in	identifying	returning	users	−

Server	script	sends	a	set	of	cookies	to	the	browser.	For	example	name,
age,	or	identification	number	etc.
Browser	stores	this	information	on	local	machine	for	future	use.
When	next	time	browser	sends	any	request	to	web	server	then	it	sends
those	cookies	information	to	the	server	and	server	uses	that	information	to
identify	the	user.

This	chapter	will	teach	you	how	to	set	cookies,	how	to	access	them	and	how	to
delete	them.

The	Anatomy	of	a	Cookie
Cookies	are	usually	set	in	an	HTTP	header	(although	JavaScript	can	also	set	a
cookie	directly	on	a	browser).	A	PHP	script	that	sets	a	cookie	might	send
headers	that	look	something	like	this	−
HTTP/1.1	200	OK
Date:	Fri,	04	Feb	2000	21:03:38	GMT
Server:	Apache/1.3.9	(UNIX)	PHP/4.0b3
SetCookie:	name=xyz;	expires=Friday,	04-Feb-07	22:03:38	GMT;
																	path=/;	domain=tutorialspoint.com
Connection:	close
Content-Type:	text/html

As	you	can	see,	the	SetCookie	header	contains	a	name	value	pair,	a	GMT	date,	a
path	and	a	domain.	The	name	and	value	will	be	URL	encoded.	The	expires	field
is	an	instruction	to	the	browser	to	"forget"	the	cookie	after	the	given	time	and
date.
If	the	browser	is	configured	to	store	cookies,	it	will	then	keep	this	information
until	the	expiry	date.	If	the	user	points	the	browser	at	any	page	that	matches	the
path	and	domain	of	the	cookie,	it	will	resend	the	cookie	to	the	server.The
browser's	headers	might	look	something	like	this	−
GET	HTTP1.0
Connection:	Keep-Alive
UserAgent:	Mozilla/4.6	(X11;	I;	Linux	2.2.6-15apmac	ppc)
Host:	zink.demon.co.uk:1126
Accept:	image/gif,	*/*
Accept-Encoding:	gzip
Accept-Language:	en
Accept-Charset:	iso-8859-1,*,utf-8
Cookie:	name=xyz

A	PHP	script	will	then	have	access	to	the	cookie	in	the	environmental	variables
$_COOKIE	or	$HTTP_COOKIE_VARS[]	which	holds	all	cookie	names	and
values.	Above	cookie	can	be	accessed	using	$HTTP_COOKIE_VARS["name"].

Setting	Cookies	with	PHP
PHP	provided	setcookie()	function	to	set	a	cookie.	This	function	requires	upto
six	arguments	and	should	be	called	before	<html>	tag.	For	each	cookie	this
function	has	to	be	called	separately.
setcookie(name,	value,	expire,	path,	domain,	security);

Here	is	the	detail	of	all	the	arguments	−
Name	−	This	sets	the	name	of	the	cookie	and	is	stored	in	an	environment
variable	called	HTTP_COOKIE_VARS.	This	variable	is	used	while
accessing	cookies.
Value	−	This	sets	the	value	of	the	named	variable	and	is	the	content	that
you	actually	want	to	store.
Expiry	−	This	specify	a	future	time	in	seconds	since	00:00:00	GMT	on	1st
Jan	1970.	After	this	time	cookie	will	become	inaccessible.	If	this
parameter	is	not	set	then	cookie	will	automatically	expire	when	the	Web
Browser	is	closed.
Path	−	This	specifies	the	directories	for	which	the	cookie	is	valid.	A
single	forward	slash	character	permits	the	cookie	to	be	valid	for	all
directories.
Domain	−	This	can	be	used	to	specify	the	domain	name	in	very	large
domains	and	must	contain	at	least	two	periods	to	be	valid.	All	cookies	are
only	valid	for	the	host	and	domain	which	created	them.
Security	−	This	can	be	set	to	1	to	specify	that	the	cookie	should	only	be
sent	by	secure	transmission	using	HTTPS	otherwise	set	to	0	which	mean
cookie	can	be	sent	by	regular	HTTP.

Following	example	will	create	two	cookies	name	and	age	these	cookies	will	be
expired	after	one	hour.
<?php
			setcookie("name",	"John	Watkin",	time()+3600,	"/","",	0);
			setcookie("age",	"36",	time()+3600,	"/",	"",		0);
?>
<html>
	
			<head>
						<title>Setting	Cookies	with	PHP</title>
			</head>
	
			<body>
						<?php	echo	"Set	Cookies"?>
			</body>

	
</html>

Accessing	Cookies	with	PHP
PHP	provides	many	ways	to	access	cookies.	Simplest	way	is	to	use	either
$_COOKIE	or	$HTTP_COOKIE_VARS	variables.	Following	example	will
access	all	the	cookies	set	in	above	example.
<html>
	
			<head>
						<title>Accessing	Cookies	with	PHP</title>
			</head>
	
			<body>
	
						<?php
									echo	$_COOKIE["name"].	"
";
	
									/*	is	equivalent	to	*/
									echo	$HTTP_COOKIE_VARS["name"].	"
";
	
									echo	$_COOKIE["age"]	.	"
";
	
									/*	is	equivalent	to	*/
									echo	$HTTP_COOKIE_VARS["age"]	.	"
";
						?>
	
			</body>
</html>

You	can	use	isset()	function	to	check	if	a	cookie	is	set	or	not.
<html>
	
			<head>
						<title>Accessing	Cookies	with	PHP</title>
			</head>
	
			<body>
	
						<?php
									if(isset($_COOKIE["name"]))
												echo	"Welcome	"	.	$_COOKIE["name"]	.	"
";
	
									else
												echo	"Sorry...	Not	recognized"	.	"
";
						?>
	
			</body>
</html>

Deleting	Cookie	with	PHP
Officially,	to	delete	a	cookie	you	should	call	setcookie()	with	the	name	argument
only	but	this	does	not	always	work	well,	however,	and	should	not	be	relied	on.
It	is	safest	to	set	the	cookie	with	a	date	that	has	already	expired	−
<?php
			setcookie("name",	"",	time()-	60,	"/","",	0);
			setcookie("age",	"",	time()-	60,	"/","",	0);
?>
<html>
	
			<head>
						<title>Deleting	Cookies	with	PHP</title>
			</head>
	
			<body>
						<?php	echo	"Deleted	Cookies"	?>
			</body>
	
</html>
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

PHP	-	Sessions
	

An	alternative	way	to	make	data	accessible	across	the	various	pages	of	an	entire
website	is	to	use	a	PHP	Session.
A	session	creates	a	file	in	a	temporary	directory	on	the	server	where	registered
session	variables	and	their	values	are	stored.	This	data	will	be	available	to	all
pages	on	the	site	during	that	visit.
The	location	of	the	temporary	file	is	determined	by	a	setting	in	the	php.ini	file
called	session.save_path.	Before	using	any	session	variable	make	sure	you	have
setup	this	path.
When	a	session	is	started	following	things	happen	−

PHP	first	creates	a	unique	identifier	for	that	particular	session	which	is	a
random	string	of	32	hexadecimal	numbers	such	as
3c7foj34c3jj973hjkop2fc937e3443.
A	cookie	called	PHPSESSID	is	automatically	sent	to	the	user's	computer
to	store	unique	session	identification	string.
A	file	is	automatically	created	on	the	server	in	the	designated	temporary
directory	and	bears	the	name	of	the	unique	identifier	prefixed	by	sess_	ie
sess_3c7foj34c3jj973hjkop2fc937e3443.

When	a	PHP	script	wants	to	retrieve	the	value	from	a	session	variable,	PHP
automatically	gets	the	unique	session	identifier	string	from	the	PHPSESSID
cookie	and	then	looks	in	its	temporary	directory	for	the	file	bearing	that	name
and	a	validation	can	be	done	by	comparing	both	values.
A	session	ends	when	the	user	loses	the	browser	or	after	leaving	the	site,	the
server	will	terminate	the	session	after	a	predetermined	period	of	time,	commonly
30	minutes	duration.

Starting	a	PHP	Session
A	PHP	session	is	easily	started	by	making	a	call	to	the	session_start()
function.This	function	first	checks	if	a	session	is	already	started	and	if	none	is
started	then	it	starts	one.	It	is	recommended	to	put	the	call	to	session_start()	at
the	beginning	of	the	page.
Session	variables	are	stored	in	associative	array	called	$_SESSION[].	These
variables	can	be	accessed	during	lifetime	of	a	session.
The	following	example	starts	a	session	then	register	a	variable	called	counter
that	is	incremented	each	time	the	page	is	visited	during	the	session.
Make	use	of	isset()	function	to	check	if	session	variable	is	already	set	or	not.
Put	this	code	in	a	test.php	file	and	load	this	file	many	times	to	see	the	result	−
<?php
			session_start();
	
			if(isset($_SESSION['counter']))	{
						$_SESSION['counter']	+=	1;
			}else	{
						$_SESSION['counter']	=	1;

}

			$msg	=	"You	have	visited	this	page	".		$_SESSION['counter'];
			$msg	.=	"in	this	session.";
?>
	
<html>
	
			<head>
						<title>Setting	up	a	PHP	session</title>
			</head>
	
			<body>
						<?php		echo	($msg);	?>
			</body>
	
</html>

It	will	produce	the	following	result	−
You	have	visited	this	page	1in	this	session.

Destroying	a	PHP	Session
A	PHP	session	can	be	destroyed	by	session_destroy()	function.	This	function
does	not	need	any	argument	and	a	single	call	can	destroy	all	the	session
variables.	If	you	want	to	destroy	a	single	session	variable	then	you	can	use
unset()	function	to	unset	a	session	variable.
Here	is	the	example	to	unset	a	single	variable	−
<?php
			unset($_SESSION['counter']);
?>

Here	is	the	call	which	will	destroy	all	the	session	variables	−
<?php
			session_destroy();
?>

Turning	on	Auto	Session
You	don't	need	to	call	start_session()	function	to	start	a	session	when	a	user
visits	your	site	if	you	can	set	session.auto_start	variable	to	1	in	php.ini	file.

Sessions	without	cookies
There	may	be	a	case	when	a	user	does	not	allow	to	store	cookies	on	their
machine.	So	there	is	another	method	to	send	session	ID	to	the	browser.
Alternatively,	you	can	use	the	constant	SID	which	is	defined	if	the	session
started.	If	the	client	did	not	send	an	appropriate	session	cookie,	it	has	the	form
session_name=session_id.	Otherwise,	it	expands	to	an	empty	string.	Thus,	you
can	embed	it	unconditionally	into	URLs.
The	following	example	demonstrates	how	to	register	a	variable,	and	how	to	link
correctly	to	another	page	using	SID.
<?php
			session_start();
	
			if	(isset($_SESSION['counter']))	{
						$_SESSION['counter']	=	1;
			}else	{
						$_SESSION['counter']++;

}

	
			$msg	=	"You	have	visited	this	page	".		$_SESSION['counter'];
			$msg	.=	"in	this	session.";
	
			echo	($msg);
?>
	
<p>
			To	continue		click	following	link	

	
			<a		href	=	"nextpage.php?<?php	echo	htmlspecialchars(SID);	?>">
</p>

It	will	produce	the	following	result	−
You	have	visited	this	page	1in	this	session.
To	continue	click	following	link

The	htmlspecialchars()	may	be	used	when	printing	the	SID	in	order	to	prevent
XSS	related	attacks.

	

PHP	-	Sending	Emails	using	PHP

PHP	must	be	configured	correctly	in	the	php.ini	file	with	the	details	of	how	your
system	sends	email.	Open	php.ini	file	available	in	etc	directory	and	find	the
section	headed	[mail	function].
Windows	users	should	ensure	that	two	directives	are	supplied.	The	first	is	called
SMTP	that	defines	your	email	server	address.	The	second	is	called
sendmail_from	which	defines	your	own	email	address.
The	configuration	for	Windows	should	look	something	like	this	−
[mail	function]
;	For	Win32	only.
SMTP	=	smtp.secureserver.net
	
;	For	win32	only
sendmail_from	=	webmaster@tutorialspoint.com

Linux	users	simply	need	to	let	PHP	know	the	location	of	their	sendmail
application.	The	path	and	any	desired	switches	should	be	specified	to	the
sendmail_path	directive.
The	configuration	for	Linux	should	look	something	like	this	−
[mail	function]
;	For	Win32	only.
SMTP	=
	
;	For	win32	only
sendmail_from	=
	
;	For	Unix	only
sendmail_path	=	usrsbin/sendmail	-t	-i

Now	you	are	ready	to	go	−

Sending	plain	text	email
PHP	makes	use	of	mail()	function	to	send	an	email.	This	function	requires	three
mandatory	arguments	that	specify	the	recipient's	email	address,	the	subject	of	the
the	message	and	the	actual	message	additionally	there	are	other	two	optional
parameters.
mail(to,	subject,	message,	headers,	parameters);

Here	is	the	description	for	each	parameters.
Sr.No Parameter	&	Description

1
to
Required.	Specifies	the	receiver	/	receivers	of	the	email

2
subject
Required.	Specifies	the	subject	of	the	email.	This	parameter	cannot
contain	any	newline	characters

3
message
Required.	Defines	the	message	to	be	sent.	Each	line	should	be
separated	with	a	LF	(\n).	Lines	should	not	exceed	70	characters

4
headers
Optional.	Specifies	additional	headers,	like	From,	Cc,	and	Bcc.	The
additional	headers	should	be	separated	with	a	CRLF	(\r\n)

5
parameters
Optional.	Specifies	an	additional	parameter	to	the	send	mail	program

As	soon	as	the	mail	function	is	called	PHP	will	attempt	to	send	the	email	then	it
will	return	true	if	successful	or	false	if	it	is	failed.
Multiple	recipients	can	be	specified	as	the	first	argument	to	the	mail()	function
in	a	comma	separated	list.

Sending	HTML	email
When	you	send	a	text	message	using	PHP	then	all	the	content	will	be	treated	as
simple	text.	Even	if	you	will	include	HTML	tags	in	a	text	message,	it	will	be
displayed	as	simple	text	and	HTML	tags	will	not	be	formatted	according	to
HTML	syntax.	But	PHP	provides	option	to	send	an	HTML	message	as	actual
HTML	message.
While	sending	an	email	message	you	can	specify	a	Mime	version,	content	type
and	character	set	to	send	an	HTML	email.
Example

Following	example	will	send	an	HTML	email	message	to
xyz@somedomain.com	copying	it	to	afgh@somedomain.com.	You	can	code	this
program	in	such	a	way	that	it	should	receive	all	content	from	the	user	and	then	it
should	send	an	email.
<html>
	
			<head>
						<title>Sending	HTML	email	using	PHP</title>
			</head>
	
			<body>
	
						<?php
									$to	=	"xyz@somedomain.com";
									$subject	=	"This	is	subject";
	
									$message	=	"This	is	HTML	message.";
									$message	.=	"<h1>This	is	headline.</h1>";
	
									$header	=	"From:abc@somedomain.com	\r\n";
									$header	.=	"Cc:afgh@somedomain.com	\r\n";
									$header	.=	"MIME-Version:	1.0\r\n";
									$header	.=	"Content-type:	text/html\r\n";
	
									$retval	=	mail	($to,$subject,$message,$header);
	
									if($retval	==	true)	{
												echo	"Message	sent	successfully...";
									}else	{
												echo	"Message	could	not	be	sent...";

}

						?>

	
			</body>
</html>

Sending	attachments	with	email
To	send	an	email	with	mixed	content	requires	to	set	Content-type	header	to
multipart/mixed.	Then	text	and	attachment	sections	can	be	specified	within
boundaries.
A	boundary	is	started	with	two	hyphens	followed	by	a	unique	number	which	can
not	appear	in	the	message	part	of	the	email.	A	PHP	function	md5()	is	used	to
create	a	32	digit	hexadecimal	number	to	create	unique	number.	A	final	boundary
denoting	the	email's	final	section	must	also	end	with	two	hyphens.
<?php
			//	request	variables	//	important
			$from	=	$_REQUEST["from"];
			$emaila	=	$_REQUEST["emaila"];
			$filea	=	$_REQUEST["filea"];
	
			if	($filea)	{
						function	mail_attachment	($from	,	$to,	$subject,	$message,	$attachment){
									$fileatt	=	$attachment;	//	Path	to	the	file
									$fileatt_type	=	"application/octet-stream";	//	File	Type
	
									$start	=	strrpos($attachment,	'/')	==	-1	?
												strrpos($attachment,	'//')	:	strrpos($attachment,	'/')+1;

	

									$fileatt_name	=	substr($attachment,	$start,
												strlen($attachment));	//	Filename	that	will	be	used	for	the
												file	as	the	attachment
	
									$email_from	=	$from;	//	Who	the	email	is	from
									$subject	=	"New	Attachment	Message";
	
									$email_subject	=		$subject;	//	The	Subject	of	the	email
									$email_txt	=	$message;	//	Message	that	the	email	has	in	it
									$email_to	=	$to;	//	Who	the	email	is	to
	
									$headers	=	"From:	".$email_from;
									$file	=	fopen($fileatt,'rb');
									$data	=	fread($file,filesize($fileatt));
									fclose($file);
	
									$msg_txt="\n\n	You	have	recieved	a	new	attachment	message	from	$from";
									$semi_rand	=	md5(time());
									$mime_boundary	=	"==Multipart_Boundary_x{$semi_rand}x";
									$headers	.=	"\nMIME-Version:	1.0\n"	.	"Content-Type:	multipart/mixed;\n"	.	"
												boundary=\"{$mime_boundary}\"";
	

									$email_txt	.=	$msg_txt;

	

									$email_message	.=	"This	is	a	multipart	message	in	MIME	format.\n\n"	.
												"--{$mime_boundary}\n"	.	"Content-Type:text/html;
												charset	=	\"iso-8859-1\"\n"	.	"Content-Transfer-Encoding:	7bit\n\n"	.
												$email_txt	.	"\n\n";

	

									$data	=	chunk_split(base64_encode($data));
	
									$email_message	.=	"--{$mime_boundary}\n"	.	"Content-Type:	{$fileatt_type};\n"	.
												"	name	=	\"{$fileatt_name}\"\n"	.	//"Content-Disposition:	attachment;\n"	.
												//"	filename	=	\"{$fileatt_name}\"\n"	.	"Content-Transfer-Encoding:
												base64\n\n"	.	$data	.	"\n\n"	.	"--{$mime_boundary}--\n";

	

									$ok	=	mail($email_to,	$email_subject,	$email_message,	$headers);
	
									if($ok)	{
												echo	"File	Sent	Successfully.";
												unlink($attachment);	//	delete	a	file	after	attachment	sent.
									}else	{
												die("Sorry	but	the	email	could	not	be	sent.	Please	go	back	and	try	again!");

}

}

						move_uploaded_file($_FILES["filea"]["tmp_name"],
									'temp/'.basename($_FILES['filea']['name']));

	

						mail_attachment("$from",	"youremailaddress@gmail.com",
									"subject",	"message",	("temp/".$_FILES["filea"]["name"]));

}

?>
	
<html>
			<head>
	
						<script	language	=	"javascript"	type	=	"text/javascript">

									function	CheckData45()	{
												with(document.filepost)	{
															if(filea.value	!	=	"")	{
																		document.getElementById('one').innerText	=
																					"Attaching	File	...	Please	Wait";

}

}

}

						</script>
	
			</head>
			<body>
	
						<table	width	=	"100%"	height	=	"100%"	border	=	"0"
									cellpadding	=	"0"	cellspacing	=	"0">
									<tr>
												<td	align	=	"center">
															<form	name	=	"filepost"	method	=	"post"
																		action	=	"file.php"	enctype	=	"multipart/form-data"	id	=	"file">
	
																		<table	width	=	"300"	border	=	"0"	cellspacing	=	"0"
																					cellpadding	=	"0">

	

																					<tr	valign	=	"bottom">
																								<td	height	=	"20">Your	Name:</td>
																					</tr>
	
																					<tr>
																								<td><input	name	=	"from"	type	=	"text"
																											id	=	"from"	size	=	"30"></td>
																					</tr>
	
																					<tr	valign	=	"bottom">
																								<td	height	=	"20">Your	Email	Address:</td>
																					</tr>
	
																					<tr>
																								<td	class	=	"frmtxt2"><input	name	=	"emaila"
																											type	=	"text"	id	=	"emaila"	size	=	"30"></td>
																					</tr>
	
																					<tr>

																								<td	height	=	"20"	valign	=	"bottom">Attach	File:</td>
																					</tr>
	
																					<tr	valign	=	"bottom">
																								<td	valign	=	"bottom"><input	name	=	"filea"
																											type	=	"file"	id	=	"filea"	size	=	"16"></td>
																					</tr>
	
																					<tr>
																								<td	height	=	"40"	valign	=	"middle"><input
																											name	=	"Reset2"	type	=	"reset"	id	=	"Reset2"	value	=	"Reset">
																								<input	name	=	"Submit2"	type	=	"submit"
																											value	=	"Submit"	onClick	=	"return	CheckData45()"></td>
																					</tr>
																		</table>
	
															</form>
	
															<center>
																		<table	width	=	"400">
	
																					<tr>
																								<td	id	=	"one">
																								</td>
																					</tr>
	
																		</table>
															</center>
	
												</td>
									</tr>
						</table>
	
			</body>
</html>

	

	

	

	

	

	

	

	

	

	

PHP	-	File	Uploading
	

A	PHP	script	can	be	used	with	a	HTML	form	to	allow	users	to	upload	files	to	the
server.	Initially	files	are	uploaded	into	a	temporary	directory	and	then	relocated
to	a	target	destination	by	a	PHP	script.
Information	in	the	phpinfo.php	page	describes	the	temporary	directory	that	is
used	for	file	uploads	as	upload_tmp_dir	and	the	maximum	permitted	size	of
files	that	can	be	uploaded	is	stated	as	upload_max_filesize.	These	parameters
are	set	into	PHP	configuration	file	php.ini
The	process	of	uploading	a	file	follows	these	steps	−

The	user	opens	the	page	containing	a	HTML	form	featuring	a	text	files,	a
browse	button	and	a	submit	button.
The	user	clicks	the	browse	button	and	selects	a	file	to	upload	from	the
local	PC.
The	full	path	to	the	selected	file	appears	in	the	text	filed	then	the	user
clicks	the	submit	button.
The	selected	file	is	sent	to	the	temporary	directory	on	the	server.
The	PHP	script	that	was	specified	as	the	form	handler	in	the	form's	action
attribute	checks	that	the	file	has	arrived	and	then	copies	the	file	into	an
intended	directory.
The	PHP	script	confirms	the	success	to	the	user.

As	usual	when	writing	files	it	is	necessary	for	both	temporary	and	final	locations
to	have	permissions	set	that	enable	file	writing.	If	either	is	set	to	be	read-only
then	process	will	fail.
An	uploaded	file	could	be	a	text	file	or	image	file	or	any	document.

Creating	an	upload	form
The	following	HTM	code	below	creates	an	uploader	form.	This	form	is	having
method	attribute	set	to	post	and	enctype	attribute	is	set	to	multipart/form-data
<?php
			if(isset($_FILES['image'])){
						$errors=	array();
						$file_name	=	$_FILES['image']['name'];
						$file_size	=$_FILES['image']['size'];
						$file_tmp	=$_FILES['image']['tmp_name'];
						$file_type=$_FILES['image']['type'];
						$file_ext=strtolower(end(explode('.',$_FILES['image']['name'])));
	
						$expensions=	array("jpeg","jpg","png");
	
						if(in_array($file_ext,$expensions)===	false){
									$errors[]="extension	not	allowed,	please	choose	a	JPEG	or	PNG	file.";

}

	
						if($file_size	>	2097152){
									$errors[]='File	size	must	be	excately	2	MB';

}

	
						if(empty($errors)==true){
									move_uploaded_file($file_tmp,"images/".$file_name);
									echo	"Success";
						}else{
									print_r($errors);

}

}

?>
<html>
			<body>
	
						<form	action=""	method="POST"	enctype="multipart/form-data">
									<input	type="file"	name="image"	/>
									<input	type="submit"/>
						</form>
	

			</body>
</html>

It	will	produce	the	following	result	−

Creating	an	upload	script
There	is	one	global	PHP	variable	called	$_FILES.	This	variable	is	an	associate
double	dimension	array	and	keeps	all	the	information	related	to	uploaded	file.	So
if	the	value	assigned	to	the	input's	name	attribute	in	uploading	form	was	file,
then	PHP	would	create	following	five	variables	−

$_FILES['file']['tmp_name']	−	the	uploaded	file	in	the	temporary
directory	on	the	web	server.
$_FILES['file']['name']	−	the	actual	name	of	the	uploaded	file.
$_FILES['file']['size']	−	the	size	in	bytes	of	the	uploaded	file.
$_FILES['file']['type']	−	the	MIME	type	of	the	uploaded	file.
$_FILES['file']['error']	−	the	error	code	associated	with	this	file	upload.

Example

Below	example	should	allow	upload	images	and	gives	back	result	as	uploaded
file	information.
<?php
			if(isset($_FILES['image'])){
						$errors=	array();
						$file_name	=	$_FILES['image']['name'];
						$file_size	=	$_FILES['image']['size'];
						$file_tmp	=	$_FILES['image']['tmp_name'];
						$file_type	=	$_FILES['image']['type'];
						$file_ext=strtolower(end(explode('.',$_FILES['image']['name'])));
	
						$expensions=	array("jpeg","jpg","png");
	
						if(in_array($file_ext,$expensions)===	false){
									$errors[]="extension	not	allowed,	please	choose	a	JPEG	or	PNG	file.";

}

	
						if($file_size	>	2097152)	{
									$errors[]='File	size	must	be	excately	2	MB';

}

	
						if(empty($errors)==true)	{
									move_uploaded_file($file_tmp,"images/".$file_name);
									echo	"Success";
						}else{

									print_r($errors);

}

}

?>
<html>
			<body>
	
						<form	action	=	""	method	=	"POST"	enctype	=	"multipart/form-data">
									<input	type	=	"file"	name	=	"image"	/>
									<input	type	=	"submit"/>

	

									
												Sent	file:	<?php	echo	$_FILES['image']['name'];		?>
												File	size:	<?php	echo	$_FILES['image']['size'];		?>
												File	type:	<?php	echo	$_FILES['image']['type']	?>
									

	

						</form>
	
			</body>
</html>

It	will	produce	the	following	result	−

	

	

	

	

	

	

	

	

PHP	-	Coding	Standard

Every	company	follows	a	different	coding	standard	based	on	their	best	practices.
Coding	standard	is	required	because	there	may	be	many	developers	working	on
different	modules	so	if	they	will	start	inventing	their	own	standards	then	source
will	become	very	un-manageable	and	it	will	become	difficult	to	maintain	that
source	code	in	future.
Here	are	several	reasons	why	to	use	coding	specifications	−

Your	peer	programmers	have	to	understand	the	code	you	produce.	A
coding	standard	acts	as	the	blueprint	for	all	the	team	to	decipher	the	code.
Simplicity	and	clarity	achieved	by	consistent	coding	saves	you	from
common	mistakes.
If	you	revise	your	code	after	some	time	then	it	becomes	easy	to	understand
that	code.
Its	industry	standard	to	follow	a	particular	standard	to	being	more	quality
in	software.

There	are	few	guidelines	which	can	be	followed	while	coding	in	PHP.
Indenting	and	Line	Length	−	Use	an	indent	of	4	spaces	and	don't	use	any
tab	because	different	computers	use	different	setting	for	tab.	It	is
recommended	to	keep	lines	at	approximately	75-85	characters	long	for
better	code	readability.
Control	Structures	−	These	include	if,	for,	while,	switch,	etc.	Control
statements	should	have	one	space	between	the	control	keyword	and
opening	parenthesis,	to	distinguish	them	from	function	calls.	You	are
strongly	encouraged	to	always	use	curly	braces	even	in	situations	where
they	are	technically	optional.

Examples
if	((condition1)	||	(condition2))	{
			action1;
}elseif	((condition3)	&&	(condition4))	{
			action2;
}else	{
			default	action;

}

You	can	write	switch	statements	as	follows	−
switch	(condition)	{
			case	1:
						action1;
						break;
	
			case	2:
						action2;
						break;
	
			default:
						defaultaction;
						break;

}

Function	Calls	−	Functions	should	be	called	with	no	spaces	between	the
function	name,	the	opening	parenthesis,	and	the	first	parameter;	spaces
between	commas	and	each	parameter,	and	no	space	between	the	last
parameter,	the	closing	parenthesis,	and	the	semicolon.	Here's	an	example
−

$var	=	foo($bar,	$baz,	$quux);

Function	Definitions	−	Function	declarations	follow	the	"BSD/Allman
style"	−

function	fooFunction($arg1,	$arg2	=	'')	{
			if	(condition)	{
						statement;

}

			return	$val;

}

Comments	−	C	style	comments	(/*	*/)	and	standard	C++	comments	(//)
are	both	fine.	Use	of	Perl/shell	style	comments	(#)	is	discouraged.
PHP	Code	Tags	−	Always	use	<?php	?>	to	delimit	PHP	code,	not	the	<?
?>	shorthand.	This	is	required	for	PHP	compliance	and	is	also	the	most
portable	way	to	include	PHP	code	on	differing	operating	systems	and
setups.
Variable	Names	−

Use	all	lower	case	letters

Use	'_'	as	the	word	separator.
Global	variables	should	be	prepended	with	a	'g'.
Global	constants	should	be	all	caps	with	'_'	separators.
Static	variables	may	be	prepended	with	's'.

Make	Functions	Reentrant	−	Functions	should	not	keep	static	variables
that	prevent	a	function	from	being	reentrant.
Alignment	of	Declaration	Blocks	−	Block	of	declarations	should	be
aligned.
One	Statement	Per	Line	−	There	should	be	only	one	statement	per	line
unless	the	statements	are	very	closely	related.
Short	Methods	or	Functions	−	Methods	should	limit	themselves	to	a
single	page	of	code.

There	could	be	many	more	points	which	should	be	considered	while	writing
your	PHP	program.	Over	all	intention	should	be	to	be	consistent	throughout	of
the	code	programming	and	it	will	be	possible	only	when	you	will	follow	any
coding	standard.	You	can	device	your	own	standard	if	you	like	something
different.
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
PHP	-	Predefined	Variables
PHP	provides	a	large	number	of	predefined	variables	to	any	script	which	it	runs.
PHP	provides	an	additional	set	of	predefined	arrays	containing	variables	from
the	web	server	the	environment,	and	user	input.	These	new	arrays	are	called
superglobals	−
All	the	following	variables	are	automatically	available	in	every	scope.

PHP	SuperglobalS
Sr.No Variable	&	Description

1

$GLOBALS
Contains	a	reference	to	every	variable	which	is	currently	available
within	the	global	scope	of	the	script.	The	keys	of	this	array	are	the
names	of	the	global	variables.

2

$_SERVER
This	is	an	array	containing	information	such	as	headers,	paths,	and
script	locations.	The	entries	in	this	array	are	created	by	the	web	server.
There	is	no	guarantee	that	every	web	server	will	provide	any	of	these.
See	next	section	for	a	complete	list	of	all	the	SERVER	variables.

3
$_GET
An	associative	array	of	variables	passed	to	the	current	script	via	the
HTTP	GET	method.

4
$_POST
An	associative	array	of	variables	passed	to	the	current	script	via	the
HTTP	POST	method.

5
$_FILES
An	associative	array	of	items	uploaded	to	the	current	script	via	the
HTTP	POST	method.

6
$_REQUEST
An	associative	array	consisting	of	the	contents	of	$_GET,	$_POST,
and	$_COOKIE.

7
$_COOKIE
An	associative	array	of	variables	passed	to	the	current	script	via	HTTP
cookies.

8
$_SESSION
An	associative	array	containing	session	variables	available	to	the
current	script.

9 $_PHP_SELF

A	string	containing	PHP	script	file	name	in	which	it	is	called.

10
$php_errormsg
$php_errormsg	is	a	variable	containing	the	text	of	the	last	error
message	generated	by	PHP.

Server	variables:	$_SERVER
$_SERVER	is	an	array	containing	information	such	as	headers,	paths,	and	script
locations.	The	entries	in	this	array	are	created	by	the	web	server.	There	is	no
guarantee	that	every	web	server	will	provide	any	of	these.
Sr.No Variable	&	Description

1
$_SERVER['PHP_SELF']
The	filename	of	the	currently	executing	script,	relative	to	the	document
root

2

$_SERVER['argv']
Array	of	arguments	passed	to	the	script.	When	the	script	is	run	on	the
command	line,	this	gives	C-style	access	to	the	command	line
parameters.	When	called	via	the	GET	method,	this	will	contain	the
query	string.

3
$_SERVER['argc']
Contains	the	number	of	command	line	parameters	passed	to	the	script
if	run	on	the	command	line.

4
$_SERVER['GATEWAY_INTERFACE']
What	revision	of	the	CGI	specification	the	server	is	using;	i.e.
'CGI/1.1'.

5
$_SERVER['SERVER_ADDR']
The	IP	address	of	the	server	under	which	the	current	script	is
executing.

6

$_SERVER['SERVER_NAME']
The	name	of	the	server	host	under	which	the	current	script	is	executing.
If	the	script	is	running	on	a	virtual	host,	this	will	be	the	value	defined
for	that	virtual	host.

7
$_SERVER['SERVER_SOFTWARE']
Server	identification	string,	given	in	the	headers	when	responding	to
requests.

8

$_SERVER['SERVER_PROTOCOL']
Name	and	revision	of	the	information	protocol	via	which	the	page	was

requested;	i.e.	'HTTP/1.0';

9
$_SERVER['REQUEST_METHOD']
Which	request	method	was	used	to	access	the	page;	i.e.	'GET',	'HEAD',
'POST',	'PUT'.

10
$_SERVER['REQUEST_TIME']
The	timestamp	of	the	start	of	the	request.	Available	since	PHP	5.1.0.

11
$_SERVER['QUERY_STRING']
The	query	string,	if	any,	via	which	the	page	was	accessed.

12
$_SERVER['DOCUMENT_ROOT']
The	document	root	directory	under	which	the	current	script	is
executing,	as	defined	in	the	server's	configuration	file.

13
$_SERVER['HTTP_ACCEPT']
Contents	of	the	Accept:	header	from	the	current	request,	if	there	is	one.

14
$_SERVER['HTTP_ACCEPT_CHARSET']
Contents	of	the	Accept-Charset:	header	from	the	current	request,	if
there	is	one.	Example:	'iso-8859-1,*,utf-8'.

15
$_SERVER['HTTP_ACCEPT_ENCODING']
Contents	of	the	Accept-Encoding:	header	from	the	current	request,	if
there	is	one.	Example:	'gzip'.

16
$_SERVER['HTTP_ACCEPT_LANGUAGE']
Contents	of	the	Accept-Language:	header	from	the	current	request,	if
there	is	one.	Example:	'en'.

17
$_SERVER['HTTP_CONNECTION']
Contents	of	the	Connection:	header	from	the	current	request,	if	there	is
one.	Example:	'Keep-Alive'.

18
$_SERVER['HTTP_HOST']
Contents	of	the	Host:	header	from	the	current	request,	if	there	is	one.

19

$_SERVER['HTTP_REFERER']
The	address	of	the	page	(if	any)	which	referred	the	user	agent	to

the	current	page.

20

$_SERVER['HTTP_USER_AGENT']
This	is	a	string	denoting	the	user	agent	being	which	is	accessing	the
page.	A	typical	example	is:	Mozilla/4.5	[en]	(X11;	U;	Linux	2.2.9
i586).

21
$_SERVER['HTTPS']
Set	to	a	non-empty	value	if	the	script	was	queried	through	the	HTTPS
protocol.

22
$_SERVER['REMOTE_ADDR']
The	IP	address	from	which	the	user	is	viewing	the	current	page.

23
$_SERVER['REMOTE_HOST']
The	Host	name	from	which	the	user	is	viewing	the	current	page.	The
reverse	dns	lookup	is	based	off	the	REMOTE_ADDR	of	the	user.

24
$_SERVER['REMOTE_PORT']
The	port	being	used	on	the	user's	machine	to	communicate	with	the
web	server.

25
$_SERVER['SCRIPT_FILENAME']
The	absolute	pathname	of	the	currently	executing	script.

26
$_SERVER['SERVER_ADMIN']
The	value	given	to	the	SERVER_ADMIN	(for	Apache)	directive	in	the
web	server	configuration	file.

27
$_SERVER['SERVER_PORT']
The	port	on	the	server	machine	being	used	by	the	web	server	for
communication.	For	default	setups,	this	will	be	'80'.

28
$_SERVER['SERVER_SIGNATURE']
String	containing	the	server	version	and	virtual	host	name	which	are
added	to	server-generated	pages,	if	enabled.

29
$_SERVER['PATH_TRANSLATED']
Filesystem	based	path	to	the	current	script.

$_SERVER['SCRIPT_NAME']

30 Contains	the	current	script's	path.	This	is	useful	for	pages	which	need
to	point	to	themselves.

31
$_SERVER['REQUEST_URI']
The	URI	which	was	given	in	order	to	access	this	page;	for	instance,
'/index.html'.

32

$_SERVER['PHP_AUTH_DIGEST']
When	running	under	Apache	as	module	doing	Digest	HTTP
authentication	this	variable	is	set	to	the	'Authorization'	header	sent	by
the	client.

33

$_SERVER['PHP_AUTH_USER']
When	running	under	Apache	or	IIS	(ISAPI	on	PHP	5)	as	module	doing
HTTP	authentication	this	variable	is	set	to	the	username	provided	by
the	user.

34

$_SERVER['PHP_AUTH_PW']
When	running	under	Apache	or	IIS	(ISAPI	on	PHP	5)	as	module	doing
HTTP	authentication	this	variable	is	set	to	the	password	provided	by
the	user.

35
$_SERVER['AUTH_TYPE']
When	running	under	Apache	as	module	doing	HTTP	authenticated	this
variable	is	set	to	the	authentication	type.

	

	

	

	

	

	

	

	

	

	

	

	

PHP	-	Regular	Expressions
Regular	expressions	are	nothing	more	than	a	sequence	or	pattern	of	characters
itself.	They	provide	the	foundation	for	pattern-matching	functionality.
Using	regular	expression	you	can	search	a	particular	string	inside	a	another
string,	you	can	replace	one	string	by	another	string	and	you	can	split	a	string	into
many	chunks.
PHP	offers	functions	specific	to	two	sets	of	regular	expression	functions,	each
corresponding	to	a	certain	type	of	regular	expression.	You	can	use	any	of	them
based	on	your	comfort.

POSIX	Regular	Expressions
PERL	Style	Regular	Expressions

POSIX	Regular	Expressions
The	structure	of	a	POSIX	regular	expression	is	not	dissimilar	to	that	of	a	typical
arithmetic	expression:	various	elements	(operators)	are	combined	to	form	more
complex	expressions.
The	simplest	regular	expression	is	one	that	matches	a	single	character,	such	as	g,
inside	strings	such	as	g,	haggle,	or	bag.
Lets	give	explanation	for	few	concepts	being	used	in	POSIX	regular	expression.
After	that	we	will	introduce	you	with	regular	expression	related	functions.
Brackets

Brackets	([])	have	a	special	meaning	when	used	in	the	context	of	regular
expressions.	They	are	used	to	find	a	range	of	characters.
Sr.No Expression	&	Description

1
[0-9]
It	matches	any	decimal	digit	from	0	through	9.

2
[a-z]
It	matches	any	character	from	lowercase	a	through	lowercase	z.

3
[A-Z]
It	matches	any	character	from	uppercase	A	through	uppercase	Z.

4
[a-Z]
It	matches	any	character	from	lowercase	a	through	uppercase	Z.

The	ranges	shown	above	are	general;	you	could	also	use	the	range	[0-3]	to	match
any	decimal	digit	ranging	from	0	through	3,	or	the	range	[b-v]	to	match	any
lowercase	character	ranging	from	b	through	v.
Quantifiers

The	frequency	or	position	of	bracketed	character	sequences	and	single	characters
can	be	denoted	by	a	special	character.	Each	special	character	having	a	specific
connotation.	The	+,	*,	?,	{int.	range},	and	$	flags	all	follow	a	character
sequence.
Sr.No Expression	&	Description

1
p+
It	matches	any	string	containing	at	least	one	p.

2 p*
It	matches	any	string	containing	zero	or	more	p's.

3
p?
It	matches	any	string	containing	zero	or	one	p's.

4
p{N}
It	matches	any	string	containing	a	sequence	of	N	p's

5
p{2,3}
It	matches	any	string	containing	a	sequence	of	two	or	three	p's.

6
p{2,	}
It	matches	any	string	containing	a	sequence	of	at	least	two	p's.

7
p$
It	matches	any	string	with	p	at	the	end	of	it.

8
^p
It	matches	any	string	with	p	at	the	beginning	of	it.

Examples

Following	examples	will	clear	your	concepts	about	matching	characters.
Sr.No Expression	&	Description

1
[^a-zA-Z]
It	matches	any	string	not	containing	any	of	the	characters	ranging	from
a	through	z	and	A	through	Z.

2
p.p
It	matches	any	string	containing	p,	followed	by	any	character,	in	turn
followed	by	another	p.

3
^.{2}$
It	matches	any	string	containing	exactly	two	characters.

4
(.*)
It	matches	any	string	enclosed	within		and	.

5
p(hp)*
It	matches	any	string	containing	a	p	followed	by	zero	or	more	instances

of	the	sequence	php.

Predefined	Character	Ranges

For	your	programming	convenience	several	predefined	character	ranges,	also
known	as	character	classes,	are	available.	Character	classes	specify	an	entire
range	of	characters,	for	example,	the	alphabet	or	an	integer	set	−
Sr.No Expression	&	Description

1
[[:alpha:]]
It	matches	any	string	containing	alphabetic	characters	aA	through	zZ.

2
[[:digit:]]
It	matches	any	string	containing	numerical	digits	0	through	9.

3
[[:alnum:]]
It	matches	any	string	containing	alphanumeric	characters	aA	through
zZ	and	0	through	9.

4
[[:space:]]
It	matches	any	string	containing	a	space.

PHP's	Regexp	POSIX	Functions
PHP	currently	offers	seven	functions	for	searching	strings	using	POSIX-style
regular	expressions	−
Sr.No Function	&	Description

1

ereg()

The	ereg()	function	searches	a	string	specified	by	string	for	a	string
specified	by	pattern,	returning	true	if	the	pattern	is	found,	and	false
otherwise.

2

ereg_replace()

The	ereg_replace()	function	searches	for	string	specified	by	pattern	and
replaces	pattern	with	replacement	if	found.

3

eregi()

The	eregi()	function	searches	throughout	a	string	specified	by	pattern
for	a	string	specified	by	string.	The	search	is	not	case	sensitive.

4

eregi_replace()

The	eregi_replace()	function	operates	exactly	like	ereg_replace(),
except	that	the	search	for	pattern	in	string	is	not	case	sensitive.

5

split()

The	split()	function	will	divide	a	string	into	various	elements,	the
boundaries	of	each	element	based	on	the	occurrence	of	pattern	in
string.

6

spliti()

The	spliti()	function	operates	exactly	in	the	same	manner	as	its	sibling
split(),	except	that	it	is	not	case	sensitive.

7

sql_regcase()

The	sql_regcase()	function	can	be	thought	of	as	a	utility	function,
converting	each	character	in	the	input	parameter	string	into	a	bracketed
expression	containing	two	characters.
	
	
	

1)PHP	-	Function	ereg()
	

Syntax
int	ereg(string	pattern,	string	originalstring,	[array	regs]);

Definition	and	Usage
The	ereg()	function	searches	a	string	specified	by	string	for	a	string	specified
by	pattern,	returning	true	if	the	pattern	is	found,	and	false	otherwise.	The	search
is	case	sensitive	in	regard	to	alphabetical	characters.
The	optional	input	parameter	regs	contains	an	array	of	all	matched	expressions
that	were	grouped	by	parentheses	in	the	regular	expression.

Return	Value
It	returns	true	if	the	pattern	is	found,	and	false
otherwise.

Example
Following	is	the	piece	of	code,	copy	and	paste	this	code	into	a	file	and	verify
the	result.
<?php
			$email_id	=	"admin@tutorialspoint.com";
			$retval	=	ereg("(\.)(com$)",	$email_id);
	
			if($retval	==	true)

{

						echo	"Found	a	.com
";

}

			else

{

						echo	"Could	not	found	a	.com
";

}

			$retval	=	ereg(("(\.)(com$)"),	$email_id,	$regs);
	
			if($retval	==	true)

{

						echo	"Found	a	.com	and	reg	=	".	$regs[0];

}

			else

{

						echo	"Could	not	found	a	.com";

}

?>

This	will	produce	the	following	result	−

	

2)	PHP	-	Function	ereg_replace()
	

Syntax
string	ereg_replace	(string	pattern,	string	replacement,	string	originalstring);

Definition	and	Usage
The	ereg_replace()	function	searches	for	string	specified	by	pattern	and
replaces	pattern	with	replacement	if	found.	The	ereg_replace()	function
operates	under	the	same	premises	as	ereg(),	except	that	the	functionality	is
extended	to	finding	and	replacing	pattern	instead	of	simply	locating	it.
Like	ereg(),	ereg_replace()	is	case	sensitive.

Return	Value
After	the	replacement	has	occurred,	the	modified	string	will	be
returned.
If	no	matches	are	found,	the	string	will	remain	unchanged.

Example
Following	is	the	piece	of	code,	copy	and	paste	this	code	into	a	file	and	verify
the	result.
<?php
			$copy_date	=	"Copyright	1999";
			$copy_date	=	ereg_replace("([0-9]+)",	"2000",	$copy_date);
	
			print	$copy_date;
?>

This	will	produce	the	following	result	−

	

	

3)PHP	-	Function	eregi()
	

Syntax
int	eregi(string	pattern,	string	string,	[array	regs]);

Definition	and	Usage
The	eregi()	function	searches	throughout	a	string	specified	by	pattern	for	a
string	specified	by	string.	The	search	is	not	case	sensitive.	Eregi()	can	be
particularly	useful	when	checking	the	validity	of	strings,	such	as	passwords.
The	optional	input	parameter	regs	contains	an	array	of	all	matched	expressions
that	were	grouped	by	parentheses	in	the	regular	expression.

Return	Value
It	returns	true	if	the	pattern	is	validated,	and	false
otherwise.

Example
Following	is	the	piece	of	code,	copy	and	paste	this	code	into	a	file	and	verify
the	result.
<?php
			$password	=	"abc";
	
			if	(!	eregi	("[[:alnum:]]{8,10}",	$password))

{

						print	"Invalid	password!	Passwords	must	be	from	8	-	10	chars";

}

			else

{

						print	"Valid	password";

}

?>

This	will	produce	the	following	result	−
Invalid	password!	Passwords	must	be	from	8	-	10	chars
	

	

	

4)PHP	-	Function	eregi_replace()
	

Syntax
string	eregi_replace	(string	pattern,	string	replacement,	string	originalstring);

Definition	and	Usage
The	eregi_replace()	function	operates	exactly	like	ereg_replace(),	except	that
the	search	for	pattern	in	string	is	not	case	sensitive.

Return	Value
After	the	replacement	has	occurred,	the	modified	string	will	be
returned.
If	no	matches	are	found,	the	string	will	remain	unchanged.

Example
Following	is	the	piece	of	code,	copy	and	paste	this	code	into	a	file	and	verify
the	result.
<?php
			$copy_date	=	"Copyright	2000";
			$copy_date	=	eregi_replace("([a-z]+)",	"&Copy;",	$copy_date);
	
			print	$copy_date;
?>

This	will	produce	the	following	result	−

	

	

	

	

	

5)PHP	-	Function	split()
	

Syntax
array	split	(string	pattern,	string	string	[,	int	limit])

Definition	and	Usage
The	split()	function	will	divide	a	string	into	various	elements,	the	boundaries	of
each	element	based	on	the	occurrence	of	pattern	in	string.
The	optional	input	parameter	limit	is	used	to	signify	the	number	of	elements
into	which	the	string	should	be	divided,	starting	from	the	left	end	of	the	string
and	working	rightward.
In	cases	where	the	pattern	is	an	alphabetical	character,	split()	is	case	sensitive.

Return	Value
Returns	an	array	of	strings	after	splitting	up	a
string.

Example
Following	is	the	piece	of	code,	copy	and	paste	this	code	into	a	file	and	verify
the	result.
<?php
	
			$ip	=	"123.456.789.000";	//	some	IP	address
			$iparr	=	split	("\.",	$ip);
	
			print	"$iparr[0]	
";
			print	"$iparr[1]	
"	;
			print	"$iparr[2]	
"		;
			print	"$iparr[3]	
"		;
	
?>

This	will	produce	the	following	result	−

	

	

7)PHP	-	Function	sql_regcase()
	

Syntax
string	sql_regcase	(string	string)

Definition	and	Usage
The	sql_regcase()	function	can	be	thought	of	as	a	utility	function,	converting
each	character	in	the	input	parameter	string	into	a	bracketed	expression
containing	two	characters.
If	the	alphabetical	character	has	both	an	uppercase	and	a	lowercase	format,	the
bracket	will	contain	both	forms;	otherwise	the	original	character	will	be
repeated	twice.

Return	Value
Returns	a	string	of	bracketed	expression	alongwith	convered
character.

Example
Following	is	the	piece	of	code,	copy	and	paste	this	code	into	a	file	and	verify
the	result.
<?php
			$version	=	"php	4.0";
	
			print	sql_regcase($version);
?>

This	will	produce	the	following	result	−

PERL	Style	Regular	Expressions
Perl-style	regular	expressions	are	similar	to	their	POSIX	counterparts.	The
POSIX	syntax	can	be	used	almost	interchangeably	with	the	Perl-style	regular
expression	functions.	In	fact,	you	can	use	any	of	the	quantifiers	introduced	in	the
previous	POSIX	section.
Lets	give	explanation	for	few	concepts	being	used	in	PERL	regular	expressions.
After	that	we	will	introduce	you	wih	regular	expression	related	functions.
Meta	characters

A	meta	character	is	simply	an	alphabetical	character	preceded	by	a	backslash
that	acts	to	give	the	combination	a	special	meaning.
For	instance,	you	can	search	for	large	money	sums	using	the	'\d'	meta	character:
([\d]+)000,	Here	\d	will	search	for	any	string	of	numerical	character.
Following	is	the	list	of	meta	characters	which	can	be	used	in	PERL	Style
Regular	Expressions.
Character	Description
.														a	single	character
\s													a	whitespace	character	(space,	tab,	newline)
\S													non-whitespace	character
\d													a	digit	(0-9)
\D													a	non-digit
\w													a	word	character	(a-z,	A-Z,	0-9,	_)
\W													a	non-word	character
[aeiou]								matches	a	single	character	in	the	given	set
[^aeiou]							matches	a	single	character	outside	the	given	set
(foo|bar|baz)		matches	any	of	the	alternatives	specified

Modifiers

Several	modifiers	are	available	that	can	make	your	work	with	regexps	much
easier,	like	case	sensitivity,	searching	in	multiple	lines	etc.
Modifier	Description
i	Makes	the	match	case	insensitive
m	Specifies	that	if	the	string	has	newline	or	carriage
return	characters,	the	^	and	$	operators	will	now
match	against	a	newline	boundary,	instead	of	a
string	boundary
o	Evaluates	the	expression	only	once
s	Allows	use	of	.	to	match	a	newline	character
x	Allows	you	to	use	white	space	in	the	expression	for	clarity
g	Globally	finds	all	matches
cg	Allows	a	search	to	continue	even	after	a	global	match	fails

PHP's	Regexp	PERL	Compatible	Functions
PHP	offers	following	functions	for	searching	strings	using	Perl-compatible
regular	expressions	−
Sr.No Function	&	Description

1

preg_match()

The	preg_match()	function	searches	string	for	pattern,	returning	true	if
pattern	exists,	and	false	otherwise.

2

preg_match_all()

The	preg_match_all()	function	matches	all	occurrences	of	pattern	in
string.

3

preg_replace()

The	preg_replace()	function	operates	just	like	ereg_replace(),	except
that	regular	expressions	can	be	used	in	the	pattern	and	replacement
input	parameters.

4

preg_split()

The	preg_split()	function	operates	exactly	like	split(),	except	that
regular	expressions	are	accepted	as	input	parameters	for	pattern.

5

preg_grep()

The	preg_grep()	function	searches	all	elements	of	input_array,
returning	all	elements	matching	the	regexp	pattern.

6

preg_	quote()

	

Quote	regular	expression	characters
	

	

	

	

	

1)PHP	-	Function	preg_match()
	

Syntax
int	preg_match	(string	pattern,	string	string	[,	array	pattern_array],	[,	int	$flags	[,	int	$offset]]]);

Definition	and	Usage
The	preg_match()	function	searches	string	for	pattern,	returning	true	if	pattern
exists,	and	false	otherwise.
If	the	optional	input	parameter	pattern_array	is	provided,	then	pattern_array	will
contain	various	sections	of	the	subpatterns	contained	in	the	search	pattern,	if
applicable.
If	this	flag	is	passed	as	PREG_OFFSET_CAPTURE,	for	every	occurring	match
the	appendant	string	offset	will	also	be	returned
Normally,	the	search	starts	from	the	beginning	of	the	subject	string.	The	optional
parameter	offset	can	be	used	to	specify	the	alternate	place	from	which	to	start	the
search.

Return	Value
Returns	true	if	pattern	exists,	and	false	otherwise.

Example
Following	is	the	piece	of	code,	copy	and	paste	this	code	into	a	file	and	verify	the
result.
<?php
			$line	=	"Vi	is	the	greatest	word	processor	ever	created!";
			//	perform	a	case-Insensitive	search	for	the	word	"Vi"
	
			if	(preg_match("/\bVi\b/i",	$line,	$match))	:
						print	"Match	found!";
						endif;
?>

This	will	produce	the	following	result	−
Match	found!

2)PHP	-	Function	preg_match_all()

Syntax
int	preg_match_all	(string	pattern,	string	string,	array	pattern_array	[,	int	order]);

Definition	and	Usage
The	preg_match_all()	function	matches	all	occurrences	of	pattern	in	string.
It	will	place	these	matches	in	the	array	pattern_array	in	the	order	you	specify
using	the	optional	input	parameter	order.	There	are	two	possible	types	of	order	−

PREG_PATTERN_ORDER	−	is	the	default	if	the	optional	order
parameter	is	not	included.	PREG_PATTERN_ORDER	specifies	the	order
in	the	way	that	you	might	think	most	logical;	$pattern_array[0]	is	an	array
of	all	complete	pattern	matches,	$pattern_array[1]	is	an	array	of	all	strings
matching	the	first	parenthesized	regexp,	and	so	on.
PREG_SET_ORDER	−	will	order	the	array	a	bit	differently	than	the
default	setting.	$pattern_array[0]	will	contain	elements	matched	by	the
first	parenthesized	regexp,	$pattern_array[1]	will	contain	elements
matched	by	the	second	parenthesized	regexp,	and	so	on.

Return	Value
Returns	the	number	of	matchings.

Example
Following	is	the	piece	of	code,	copy	and	paste	this	code	into	a	file	and	verify	the
result.
<?php
			$userinfo	=	"Name:	John	Poul	
	Title:	PHP	Guru";
			preg_match_all	("/(.*)<\/b>/U",	$userinfo,	$pat_array);
	
			print	$pat_array[0][0]."	
	".$pat_array[0][1]."\n";
?>

This	will	produce	the	following	result	−
John	Poul
PHP	Guru

	

	

3)PHP	-	Function	preg_replace()

Syntax
mixed	preg_replace	(mixed	pattern,	mixed	replacement,	mixed	string	[,	int	limit	[,	int	&$count]]);

Definition	and	Usage
The	preg_replace()	function	operates	just	like	POSIX	function	ereg_replace(),
except	that	regular	expressions	can	be	used	in	the	pattern	and	replacement	input
parameters.
The	optional	input	parameter	limit	specifies	how	many	matches	should	take
place.
If	the	optional	parameter	$count	is	passed	then	this	variable	will	be	filled	with
the	number	of	replacements	done.

Return	Value
After	the	replacement	has	occurred,	the	modified	string	will	be	returned.
If	no	matches	are	found,	the	string	will	remain	unchanged.

Example
Following	is	the	piece	of	code,	copy	and	paste	this	code	into	a	file	and	verify	the
result.
<?php
			$copy_date	=	"Copyright	1999";
			$copy_date	=	preg_replace("([0-9]+)",	"2000",	$copy_date);
	
			print	$copy_date;
?>

This	will	produce	the	following	result	−
Copyright	2000
	

	

	

	

	

4)PHP	-	Function	preg_split()
	

Syntax
array	preg_split	(string	pattern,	string	string	[,	int	limit	[,	int	flags]]);

Definition	and	Usage
The	preg_split()	function	operates	exactly	like	split(),	except	that	regular
expressions	are	accepted	as	input	parameters	for	pattern.
If	the	optional	input	parameter	limit	is	specified,	then	only	limit	number	of
substrings	are	returned.
flags	can	be	any	combination	of	the	following	flags	−

PREG_SPLIT_NO_EMPTY	−	If	this	flag	is	set,	only	non-empty	pieces
will	be	returned	by	preg_split().
PREG_SPLIT_DELIM_CAPTURE	−	If	this	flag	is	set,	parenthesized
expression	in	the	delimiter	pattern	will	be	captured	and	returned	as	well.
PREG_SPLIT_OFFSET_CAPTURE	−	If	this	flag	is	set,	for	every
occurring	match	the	appendant	string	offset	will	also	be	returned.

Return	Value
Returns	an	array	of	strings	after	splitting	up	a	string.

Example
Following	is	the	piece	of	code,	copy	and	paste	this	code	into	a	file	and	verify	the
result.
<?php
			$ip	=	"123.456.789.000";	//	some	IP	address
			$iparr	=	split	("/\./",	$ip);
	
			print	"$iparr[0]	
";
			print	"$iparr[1]	
"	;
			print	"$iparr[2]	
"		;
			print	"$iparr[3]	
"		;
?>

This	will	produce	the	following	result	−

	
	
	
	
	
	
	
	

5)PHP	-	Function	preg_grep()
	

Syntax
array	preg_grep	(string	$pattern,	array	$input	[,	int	$flags]);

Definition	and	Usage
Returns	the	array	consisting	of	the	elements	of	the	input	array	that	match	the
given	pattern.
If	flag	is	set	to	PREG_GREP_INVERT,	this	function	returns	the	elements	of	the
input	array	that	do	not	match	the	given	pattern.

Return	Value
Returns	an	array	indexed	using	the	keys	from	the	input	array.

Example
Following	is	the	piece	of	code,	copy	and	paste	this	code	into	a	file	and	verify	the
result.
<?php
			$foods	=	array("pasta",	"steak",	"fish",	"potatoes");
	
			//	find	elements	beginning	with	"p",	followed	by	one	or	more	letters.
			$p_foods	=	preg_grep("/p(\w+)/",	$foods);
	
			print	"Found	food	is	"	.	$p_foods[0];
			print	"Found	food	is	"	.	$p_foods[1];
?>

This	will	produce	the	following	result	−
Found	food	is	pastaFound	food	is

	
	
	
	
	
	
	
	
	
	

	
PHP	-	Function	preg_quote()
	

Syntax
string	preg_quote	(string	$str	[,	string	$delimiter]);

Definition	and	Usage
preg_quote()	takes	str	and	puts	a	backslash	in	front	of	every	character	that	is	part
of	the	regular	expression	syntax.

Return	Value
Returns	the	quoted	string.

Example
Following	is	the	piece	of	code,	copy	and	paste	this	code	into	a	file	and	verify	the
result.
<?php
			$keywords	=	'$40	for	a	g3/400';
			$keywords	=	preg_quote($keywords,	'/');
	
			echo	$keywords;
?>

This	will	produce	the	following	result	−
\$40	for	a	g3\/400

	
	
	
	
	
	
	
	
	

PHP	-	Error	&	Exception	Handling
Error	handling	is	the	process	of	catching	errors	raised	by	your	program	and	then
taking	appropriate	action.	If	you	would	handle	errors	properly	then	it	may	lead	to
many	unforeseen	consequences.
Its	very	simple	in	PHP	to	handle	an	errors.

Using	die()	function
While	writing	your	PHP	program	you	should	check	all	possible	error	condition
before	going	ahead	and	take	appropriate	action	when	required.
Try	following	example	without	having	tmptest.xt	file	and	with	this	file.
<?php
			if(!file_exists("tmptest.txt"))	{
						die("File	not	found");
			}else	{
						$file	=	fopen("tmptest.txt","r");
						print	"Opend	file	sucessfully";

}

			//	Test	of	the	code	here.
?>

This	way	you	can	write	an	efficient	code.	Using	above	technique	you	can	stop
your	program	whenever	it	errors	out	and	display	more	meaningful	and	user
friendly	message.

Defining	Custom	Error	Handling	Function
You	can	write	your	own	function	to	handling	any	error.	PHP	provides	you	a
framework	to	define	error	handling	function.
This	function	must	be	able	to	handle	a	minimum	of	two	parameters	(error	level
and	error	message)	but	can	accept	up	to	five	parameters	(optionally:	file,	line-
number,	and	the	error	context)	−
Syntax
error_function(error_level,error_message,	error_file,error_line,error_context);

Sr.No Parameter	&	Description

1
error_level
Required	-	Specifies	the	error	report	level	for	the	user-defined	error.
Must	be	a	value	number.

2
error_message
Required	-	Specifies	the	error	message	for	the	user-defined	error

3
error_file
Optional	-	Specifies	the	file	name	in	which	the	error	occurred

4
error_line
Optional	-	Specifies	the	line	number	in	which	the	error	occurred

5
error_context
Optional	-	Specifies	an	array	containing	every	variable	and	their	values
in	use	when	the	error	occurred

Possible	Error	levels

These	error	report	levels	are	the	different	types	of	error	the	user-defined	error
handler	can	be	used	for.	These	values	cab	used	in	combination	using	|	operator

Sr.No Constant	&	Description Value

1
.E_ERROR
Fatal	runtime	errors.	Execution	of	the	script	is	halted

1

2
E_WARNING
Non-fatal	runtime	errors.	Execution	of	the	script	is	not	halted

2

E_PARSE

3 Compile-time	parse	errors.	Parse	errors	should	only	be
generated	by	the	parser.

4

4

E_NOTICE
Runtime	notices.	The	script	found	something	that	might	be
an	error,	but	could	also	happen	when	running	a	script
normally

8

5
E_CORE_ERROR
Fatal	errors	that	occur	during	PHP's	initial	startup.

16

6
E_CORE_WARNING
Non-fatal	runtime	errors.	This	occurs	during	PHP's	initial
startup.

32

7
E_USER_ERROR
Fatal	user-generated	error.	This	is	like	an	E_ERROR	set	by
the	programmer	using	the	PHP	function	trigger_error()

256

8

E_USER_WARNING
Non-fatal	user-generated	warning.	This	is	like	an
E_WARNING	set	by	the	programmer	using	the	PHP
function	trigger_error()

512

9
E_USER_NOTICE
User-generated	notice.	This	is	like	an	E_NOTICE	set	by	the
programmer	using	the	PHP	function	trigger_error()

1024

10

E_STRICT
Runtime	notices.	Enable	to	have	PHP	suggest	changes	to
your	code	which	will	ensure	the	best	interoperability	and
forward	compatibility	of	your	code.

2048

11

E_RECOVERABLE_ERROR
Catchable	fatal	error.	This	is	like	an	E_ERROR	but	can	be
caught	by	a	user	defined	handle	(see	also
set_error_handler())

4096

12

E_ALL
All	errors	and	warnings,	except	level	E_STRICT 8191

(E_STRICT	will	be	part	of	E_ALL	as	of	PHP	6.0)

All	the	above	error	level	can	be	set	using	following	PHP	built-in	library	function
where	level	cab	be	any	of	the	value	defined	in	above	table.
int	error_reporting	([int	$level])

Following	is	the	way	you	can	create	one	error	handling	function	−
<?php
			function	handleError($errno,	$errstr,$error_file,$error_line)	{
						echo	"Error:	[$errno]	$errstr	-	$error_file:$error_line";
						echo	"
";
						echo	"Terminating	PHP	Script";
	
						die();

}

?>

Once	you	define	your	custom	error	handler	you	need	to	set	it	using	PHP	built-in
library	set_error_handler	function.	Now	lets	examine	our	example	by	calling	a
function	which	does	not	exist.
<?php
			error_reporting(E_ERROR);
	
			function	handleError($errno,	$errstr,$error_file,$error_line)	{
						echo	"Error:	[$errno]	$errstr	-	$error_file:$error_line";
						echo	"
";
						echo	"Terminating	PHP	Script";
	
						die();

}

	
			//set	error	handler
			set_error_handler("handleError");
	
			//trigger	error
			myFunction();
?>

Exceptions	Handling
PHP	5	has	an	exception	model	similar	to	that	of	other	programming	languages.
Exceptions	are	important	and	provides	a	better	control	over	error	handling.
Lets	explain	there	new	keyword	related	to	exceptions.

Try	−	A	function	using	an	exception	should	be	in	a	"try"	block.	If	the
exception	does	not	trigger,	the	code	will	continue	as	normal.	However	if
the	exception	triggers,	an	exception	is	"thrown".
Throw	−	This	is	how	you	trigger	an	exception.	Each	"throw"	must	have	at
least	one	"catch".
Catch	−	A	"catch"	block	retrieves	an	exception	and	creates	an	object
containing	the	exception	information.

When	an	exception	is	thrown,	code	following	the	statement	will	not	be	executed,
and	PHP	will	attempt	to	find	the	first	matching	catch	block.	If	an	exception	is
not	caught,	a	PHP	Fatal	Error	will	be	issued	with	an	"Uncaught	Exception	...

An	exception	can	be	thrown,	and	caught	("catched")	within	PHP.	Code
may	be	surrounded	in	a	try	block.
Each	try	must	have	at	least	one	corresponding	catch	block.	Multiple	catch
blocks	can	be	used	to	catch	different	classes	of	exceptions.
Exceptions	can	be	thrown	(or	re-thrown)	within	a	catch	block.

Example

Following	is	the	piece	of	code,	copy	and	paste	this	code	into	a	file	and	verify	the
result.
<?php
			try	{
						$error	=	'Always	throw	this	error';
						throw	new	Exception($error);
	
						//	Code	following	an	exception	is	not	executed.
						echo	'Never	executed';
			}catch	(Exception	$e)	{
						echo	'Caught	exception:	',		$e->getMessage(),	"\n";

}

	
			//	Continue	execution
			echo	'Hello	World';
?>

In	the	above	example	$e->getMessage	function	is	used	to	get	error	message.
There	are	following	functions	which	can	be	used	from	Exception	class.

getMessage()	−	message	of	exception
getCode()	−	code	of	exception
getFile()	−	source	filename
getLine()	−	source	line
getTrace()	−	n	array	of	the	backtrace()
getTraceAsString()	−	formated	string	of	trace

Creating	Custom	Exception	Handler

You	can	define	your	own	custom	exception	handler.	Use	following	function	to
set	a	user-defined	exception	handler	function.
string	set_exception_handler	(callback	$exception_handler)

Here	exception_handler	is	the	name	of	the	function	to	be	called	when	an
uncaught	exception	occurs.	This	function	must	be	defined	before	calling
set_exception_handler().
Example
<?php
			function	exception_handler($exception)	{
						echo	"Uncaught	exception:	"	,	$exception->getMessage(),	"\n";

}

			set_exception_handler('exception_handler');
			throw	new	Exception('Uncaught	Exception');
	
			echo	"Not	Executed\n";
?>

Check	complete	set	of	error	handling	functions	at	PHP	Error	Handling	Functions
	
	
	
	
	
	
	

PHP	-	Bugs	Debugging

	
Programs	rarely	work	correctly	the	first	time.	Many	things	can	go	wrong	in	your
program	that	cause	the	PHP	interpreter	to	generate	an	error	message.	You	have	a
choice	about	where	those	error	messages	go.	The	messages	can	be	sent	along
with	other	program	output	to	the	web	browser.	They	can	also	be	included	in	the
web	server	error	log.
To	make	error	messages	display	in	the	browser,	set	the	display_errors
configuration	directive	to	On.	To	send	errors	to	the	web	server	error	log,	set
log_errors	to	On.	You	can	set	them	both	to	On	if	you	want	error	messages	in
both	places.
PHP	defines	some	constants	you	can	use	to	set	the	value	of	error_reporting
such	that	only	errors	of	certain	types	get	reported:	E_ALL	(for	all	errors	except
strict	notices),	E_PARSE	(parse	errors),	E_ERROR	(fatal	errors),	E_WARNING
(warnings),	E_NOTICE	(notices),	and	E_STRICT	(strict	notices).
While	writing	your	PHP	program,	it	is	a	good	idea	to	use	PHP-aware	editors	like
BBEdit	or	Emacs.	One	of	the	special	special	features	of	these	editors	is	syntax
highlighting.	It	changes	the	color	of	different	parts	of	your	program	based	on
what	those	parts	are.	For	example,	strings	are	pink,	keywords	such	as	if	and
while	are	blue,	comments	are	grey,	and	variables	are	black.
Another	feature	is	quote	and	bracket	matching,	which	helps	to	make	sure	that
your	quotes	and	brackets	are	balanced.	When	you	type	a	closing	delimiter	such
as	},	the	editor	highlights	the	opening	{	that	it	matches.
There	are	following	points	which	need	to	be	verified	while	debugging	your
program.

Missing	Semicolons	−	Every	PHP	statement	ends	with	a	semicolon	(;).
PHP	doesn't	stop	reading	a	statement	until	it	reaches	a	semicolon.	If	you
leave	out	the	semicolon	at	the	end	of	a	line,	PHP	continues	reading	the
statement	on	the	following	line.
Not	Enough	Equal	Signs	−	When	you	ask	whether	two	values	are	equal
in	a	comparison	statement,	you	need	two	equal	signs	(==).	Using	one
equal	sign	is	a	common	mistake.
Misspelled	Variable	Names	−	If	you	misspelled	a	variable	then	PHP
understands	it	as	a	new	variable.	Remember:	To	PHP,	$test	is	not	the	same
variable	as	$Test.
Missing	Dollar	Signs	−	A	missing	dollar	sign	in	a	variable	name	is	really

hard	to	see,	but	at	least	it	usually	results	in	an	error	message	so	that	you
know	where	to	look	for	the	problem.
Troubling	Quotes	−	You	can	have	too	many,	too	few,	or	the	wrong	kind
of	quotes.	So	check	for	a	balanced	number	of	quotes.
Missing	Parentheses	and	curly	brackets	−	They	should	always	be	in
pairs.
Array	Index	−	All	the	arrays	should	start	from	zero	instead	of	1.

Moreover,	handle	all	the	errors	properly	and	direct	all	trace	messages	into
system	log	file	so	that	if	any	problem	happens	then	it	will	be	logged	into	system
log	file	and	you	will	be	able	to	debug	that	problem.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

PHP	-	Date	&	Time
	

Dates	are	so	much	part	of	everyday	life	that	it	becomes	easy	to	work	with	them
without	thinking.	PHP	also	provides	powerful	tools	for	date	arithmetic	that	make
manipulating	dates	easy.

Getting	the	Time	Stamp	with	time()
PHP's	time()	function	gives	you	all	the	information	that	you	need	about	the
current	date	and	time.	It	requires	no	arguments	but	returns	an	integer.
The	integer	returned	by	time()	represents	the	number	of	seconds	elapsed	since
midnight	GMT	on	January	1,	1970.	This	moment	is	known	as	the	UNIX	epoch,
and	the	number	of	seconds	that	have	elapsed	since	then	is	referred	to	as	a	time
stamp.
<?php
			print	time();
?>

This	will	produce	the	following	result	−
1480930103

This	is	something	difficult	to	understand.	But	PHP	offers	excellent	tools	to
convert	a	time	stamp	into	a	form	that	humans	are	comfortable	with.

Converting	a	Time	Stamp	with	getdate()
The	function	getdate()	optionally	accepts	a	time	stamp	and	returns	an
associative	array	containing	information	about	the	date.	If	you	omit	the	time
stamp,	it	works	with	the	current	time	stamp	as	returned	by	time().
Following	table	lists	the	elements	contained	in	the	array	returned	by	getdate().
Sr.No Key	&	Description Example

1
seconds
Seconds	past	the	minutes	(0-59)

20

2
minutes
Minutes	past	the	hour	(0	-	59)

29

3
hours
Hours	of	the	day	(0	-	23)

22

4
mday
Day	of	the	month	(1	-	31)

11

5
wday
Day	of	the	week	(0	-	6)

4

6
mon
Month	of	the	year	(1	-	12)

7

7
year
Year	(4	digits)

1997

8
yday
Day	of	year	(0	-	365)

19

9
weekday
Day	of	the	week

Thursday

10
month
Month	of	the	year

January

11
0
Timestamp

948370048

Now	you	have	complete	control	over	date	and	time.	You	can	format	this	date
and	time	in	whatever	format	you	wan.
Example

Try	out	following	example
<?php
			$date_array	=	getdate();
	
			foreach	($date_array	as	$key	=>	$val){
						print	"$key	=	$val
";

}

			$formated_date		=	"Today's	date:	";
			$formated_date	.=	$date_array['mday']	.	"/";
			$formated_date	.=	$date_array['mon']	.	"/";
			$formated_date	.=	$date_array['year'];
	
			print	$formated_date;
?>

This	will	produce	following	result	−
seconds	=	10
minutes	=	29
hours	=	9
mday	=	5
wday	=	1
mon	=	12
year	=	2016
yday	=	339
weekday	=	Monday
month	=	December
0	=	1480930150
Today's	date:	5/12/2016

Converting	a	Time	Stamp	with	date()
The	date()	function	returns	a	formatted	string	representing	a	date.	You	can
exercise	an	enormous	amount	of	control	over	the	format	that	date()	returns	with
a	string	argument	that	you	must	pass	to	it.
date(format,timestamp)

The	date()	optionally	accepts	a	time	stamp	if	omitted	then	current	date	and	time
will	be	used.	Any	other	data	you	include	in	the	format	string	passed	to	date()	will
be	included	in	the	return	value.
Following	table	lists	the	codes	that	a	format	string	can	contain	−

Sr.No Format	&	Description Example

1
a
'am'	or	'pm'	lowercase

pm

2
A
'AM'	or	'PM'	uppercase

PM

3
d
Day	of	month,	a	number	with	leading	zeroes

20

4
D
Day	of	week	(three	letters)

Thu

5
F
Month	name

January

6
H
Hour	(12-hour	format	-	leading	zeroes)

12

7
H
Hour	(24-hour	format	-	leading	zeroes)

22

8
G
Hour	(12-hour	format	-	no	leading	zeroes)

12

9
G
Hour	(24-hour	format	-	no	leading	zeroes)

22

10
I
Minutes	(0	-	59)

23

11
J
Day	of	the	month	(no	leading	zeroes

20

12
l	(Lower	'L')
Day	of	the	week

Thursday

13
L
Leap	year	('1'	for	yes,	'0'	for	no)

1

14
M
Month	of	year	(number	-	leading	zeroes)

1

15
M
Month	of	year	(three	letters)

Jan

16
R
The	RFC	2822	formatted	date

Thu,	21	Dec	2000
16:01:07	+0200

17
N
Month	of	year	(number	-	no	leading	zeroes)

2

18
S
Seconds	of	hour

20

19
U
Time	stamp

948372444

20
Y
Year	(two	digits)

06

21
Y
Year	(four	digits)

2006

22
Z
Day	of	year	(0	-	365)

206

23
Z
Offset	in	seconds	from	GMT

+5

Example

Try	out	following	example
<?php
			print	date("m/d/y	G.i:s
",	time());

			print	"Today	is	";
			print	date("j	of	F	Y,	\a\\t	g.i	a",	time());
?>

This	will	produce	following	result	−
12/05/16	9.29:47Today	is	5	2016f	December	2016,	at	9.29	am

Hope	you	have	good	understanding	on	how	to	format	date	and	time	according	to
your	requirement.	For	your	reference	a	complete	list	of	all	the	date	and	time
functions	is	given	in	PHP	Date	&	Time	Functions.
	
	
	
	
	
	
	
	

PHP	&	MySQL
Advertisements

Previous	Page

Next	Page		

PHP	will	work	with	virtually	all	database	software,	including	Oracle	and	Sybase
but	most	commonly	used	is	freely	available	MySQL	database.

https://www.tutorialspoint.com/php/php_date_and_time.htm
https://www.tutorialspoint.com/php/php_and_ajax.htm

What	you	should	already	have	?
You	have	gone	through	MySQL	tutorial	to	understand	MySQL	Basics.
Downloaded	and	installed	a	latest	version	of	MySQL.
Created	database	user	guest	with	password	guest123.
If	you	have	not	created	a	database	then	you	would	need	root	user	and	its
password	to	create	a	database.

We	have	divided	this	chapter	in	the	following	sections	−
Connecting	to	MySQL	database
	

	
MySQL	Database	Connection

Opening	Database	Connection
PHP	provides	mysql_connect	function	to	open	a	database	connection.	This
function	takes	five	parameters	and	returns	a	MySQL	link	identifier	on	success,
or	FALSE	on	failure.
Syntax
connection	mysql_connect(server,user,passwd,new_link,client_flag);

Sr.No Parameter	&	Description

1
server
Optional	−	The	host	name	running	database	server.	If	not	specified
then	default	value	is	localhost:3306.

2
user
Optional	−	The	username	accessing	the	database.	If	not	specified	then
default	is	the	name	of	the	user	that	owns	the	server	process.

3
passwd
Optional	−	The	password	of	the	user	accessing	the	database.	If	not
specified	then	default	is	an	empty	password.

4

new_link
Optional	−	If	a	second	call	is	made	to	mysql_connect()	with	the	same
arguments,	no	new	connection	will	be	established;	instead,	the
identifier	of	the	already	opened	connection	will	be	returned.

5

client_flags
Optional	−	A	combination	of	the	following	constants	−

MYSQL_CLIENT_SSL	−	Use	SSL	encryption
MYSQL_CLIENT_COMPRESS	−	Use	compression	protocol
MYSQL_CLIENT_IGNORE_SPACE	−	Allow	space	after
function	names
MYSQL_CLIENT_INTERACTIVE	−	Allow	interactive
timeout	seconds	of	inactivity	before	closing	the	connection

NOTE	−	You	can	specify	server,	user,	passwd	in	php.ini	file	instead	of	using
them	again	and	again	in	your	every	PHP	scripts.	Check	php.ini	file	
configuration.
	

PHP.INI	file	Configuration
	

The	PHP	configuration	file,	php.ini,	is	the	final	and	most	immediate	way	to
affect	PHP's	functionality.	The	php.ini	file	is	read	each	time	PHP	is	initialized.in
other	words,	whenever	httpd	is	restarted	for	the	module	version	or	with	each
script	execution	for	the	CGI	version.	If	your	change	isn.t	showing	up,	remember
to	stop	and	restart	httpd.	If	it	still	isn.t	showing	up,	use	phpinfo()	to	check	the
path	to	php.ini.
The	configuration	file	is	well	commented	and	thorough.	Keys	are	case	sensitive,
keyword	values	are	not;	whitespace,	and	lines	beginning	with	semicolons	are
ignored.	Booleans	can	be	represented	by	1/0,	Yes/No,	On/Off,	or	True/False.
The	default	values	in	php.ini-dist	will	result	in	a	reasonable	PHP	installation	that
can	be	tweaked	later.
Here	we	are	explaining	the	important	settings	in	php.ini	which	you	may	need	for
your	PHP	Parser.

short_open_tag	=	Off
Short	open	tags	look	like	this:	<?	?>.	This	option	must	be	set	to	Off	if	you	want
to	use	XML	functions.

safe_mode	=	Off
If	this	is	set	to	On,	you	probably	compiled	PHP	with	the	--enable-safe-mode
flag.	Safe	mode	is	most	relevant	to	CGI	use.	See	the	explanation	in	the	section
"CGI	compile-time	options".	earlier	in	this	chapter.

safe_mode_exec_dir	=	[DIR]
This	option	is	relevant	only	if	safe	mode	is	on;	it	can	also	be	set	with	the	--with-
exec-dir	flag	during	the	Unix	build	process.	PHP	in	safe	mode	only	executes
external	binaries	out	of	this	directory.	The	default	is	usrlocal/bin.	This	has
nothing	to	do	with	serving	up	a	normal	PHP/HTML	Web	page.

safe_mode_allowed_env_vars	=	[PHP_]
This	option	sets	which	environment	variables	users	can	change	in	safe	mode.
The	default	is	only	those	variables	prepended	with	"PHP_".	If	this	directive	is
empty,	most	variables	are	alterable.

safe_mode_protected_env_vars	=	[LD_LIBRARY_PATH]
This	option	sets	which	environment	variables	users	can't	change	in	safe	mode,
even	if	safe_mode_allowed_env_vars	is	set	permissively

disable_functions	=	[function1,	function2...]
A	welcome	addition	to	PHP4	configuration	and	one	perpetuated	in	PHP5	is	the
ability	to	disable	selected	functions	for	security	reasons.	Previously,	this
necessitated	hand-editing	the	C	code	from	which	PHP	was	made.	Filesystem,
system,	and	network	functions	should	probably	be	the	first	to	go	because
allowing	the	capability	to	write	files	and	alter	the	system	over	HTTP	is	never
such	a	safe	idea.

max_execution_time	=	30
The	function	set_time_limit()	won.t	work	in	safe	mode,	so	this	is	the	main	way
to	make	a	script	time	out	in	safe	mode.	In	Windows,	you	have	to	abort	based	on
maximum	memory	consumed	rather	than	time.	You	can	also	use	the	Apache
timeout	setting	to	timeout	if	you	use	Apache,	but	that	will	apply	to	non-PHP
files	on	the	site	too.

error_reporting	=	E_ALL	&	~E_NOTICE
The	default	value	is	E_ALL	&	~E_NOTICE,	all	errors	except	notices.
Development	servers	should	be	set	to	at	least	the	default;	only	production	servers
should	even	consider	a	lesser	value

error_prepend_string	=	[""]
With	its	bookend,	error_append_string,	this	setting	allows	you	to	make	error
messages	a	different	color	than	other	text,	or	what	have	you.

warn_plus_overloading	=	Off
This	setting	issues	a	warning	if	the	+	operator	is	used	with	strings,	as	in	a	form
value.

variables_order	=	EGPCS
This	configuration	setting	supersedes	gpc_order.	Both	are	now	deprecated	along
with	register_globals.	It	sets	the	order	of	the	different	variables:	Environment,
GET,	POST,	COOKIE,	and	SERVER	(aka	Built-in).You	can	change	this	order
around.	Variables	will	be	overwritten	successively	in	left-to-right	order,	with	the
rightmost	one	winning	the	hand	every	time.	This	means	if	you	left	the	default
setting	and	happened	to	use	the	same	name	for	an	environment	variable,	a	POST
variable,	and	a	COOKIE	variable,	the	COOKIE	variable	would	own	that	name	at
the	end	of	the	process.	In	real	life,	this	doesn't	happen	much.

register_globals	=	Off
This	setting	allows	you	to	decide	whether	you	wish	to	register	EGPCS	variables
as	global.	This	is	now	deprecated,	and	as	of	PHP4.2,	this	flag	is	set	to	Off	by
default.	Use	superglobal	arrays	instead.	All	the	major	code	listings	in	this	book
use	superglobal	arrays.

gpc_order	=	GPC
This	setting	has	been	GPC	Deprecated.

magic_quotes_gpc	=	On
This	setting	escapes	quotes	in	incoming	GET/POST/COOKIE	data.	If	you	use	a
lot	of	forms	which	possibly	submit	to	themselves	or	other	forms	and	display
form	values,	you	may	need	to	set	this	directive	to	On	or	prepare	to	use
addslashes()	on	string-type	data.

magic_quotes_runtime	=	Off
This	setting	escapes	quotes	in	incoming	database	and	text	strings.	Remember
that	SQL	adds	slashes	to	single	quotes	and	apostrophes	when	storing	strings	and
does	not	strip	them	off	when	returning	them.	If	this	setting	is	Off,	you	will	need
to	use	stripslashes()	when	outputting	any	type	of	string	data	from	a	SQL
database.	If	magic_quotes_sybase	is	set	to	On,	this	must	be	Off.

magic_quotes_sybase	=	Off
This	setting	escapes	single	quotes	in	incoming	database	and	text	strings	with
Sybase-style	single	quotes	rather	than	backslashes.	If	magic_quotes_runtime	is
set	to	On,	this	must	be	Off.

auto-prepend-file	=	[path/to/file]
If	a	path	is	specified	here,	PHP	must	automatically	include()	it	at	the	beginning
of	every	PHP	file.	Include	path	restrictions	do	apply.

auto-append-file	=	[path/to/file]
If	a	path	is	specified	here,	PHP	must	automatically	include()	it	at	the	end	of
every	PHP	file.unless	you	escape	by	using	the	exit()	function.	Include	path
restrictions	do	apply.

include_path	=	[DIR]
If	you	set	this	value,	you	will	only	be	allowed	to	include	or	require	files	from
these	directories.	The	include	directory	is	generally	under	your	document	root;
this	is	mandatory	if	you.re	running	in	safe	mode.	Set	this	to	.	in	order	to	include
files	from	the	same	directory	your	script	is	in.	Multiple	directories	are	separated
by	colons:	.:usrlocal/apache/htdocs:usrlocal/lib.

doc_root	=	[DIR]
If	you.re	using	Apache,	you.ve	already	set	a	document	root	for	this	server	or
virtual	host	in	httpd.conf.	Set	this	value	here	if	you.re	using	safe	mode	or	if	you
want	to	enable	PHP	only	on	a	portion	of	your	site	(for	example,	only	in	one
subdirectory	of	your	Web	root).

file_uploads	=	[on/off]
Turn	on	this	flag	if	you	will	upload	files	using	PHP	script.

upload_tmp_dir	=	[DIR]
Do	not	uncomment	this	line	unless	you	understand	the	implications	of	HTTP
uploads!

session.save-handler	=	files
Except	in	rare	circumstances,	you	will	not	want	to	change	this	setting.	So	don't
touch	it.

ignore_user_abort	=	[On/Off]
This	setting	controls	what	happens	if	a	site	visitor	clicks	the	browser.s	Stop
button.	The	default	is	On,	which	means	that	the	script	continues	to	run	to
completion	or	timeout.	If	the	setting	is	changed	to	Off,	the	script	will	abort.	This
setting	only	works	in	module	mode,	not	CGI.

mysql.default_host	=	hostname
The	default	server	host	to	use	when	connecting	to	the	database	server	if	no	other
host	is	specified.

mysql.default_user	=	username
The	default	user	name	to	use	when	connecting	to	the	database	server	if	no	other
name	is	specified.

mysql.default_password	=	password
The	default	password	to	use	when	connecting	to	the	database	server	if	no	other
password	is	specified.
	

Closing	Database	Connection
Its	simplest	function	mysql_close	PHP	provides	to	close	a	database	connection.
This	function	takes	connection	resource	returned	by	mysql_connect	function.	It
returns	TRUE	on	success	or	FALSE	on	failure.
Syntax
bool	mysql_close	(resource	$link_identifier);

If	a	resource	is	not	specified	then	last	opend	database	is	closed.
Example

Try	out	following	example	to	open	and	close	a	database	connection	−
<?php
	
			$dbhost	=	'localhost:3036';
			$dbuser	=	'guest';
			$dbpass	=	'guest123';
			$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			if(!	$conn)	{
						die('Could	not	connect:	'	.	mysql_error());

}

	
			echo	'Connected	successfully';
			mysql_close($conn);
?>

−	Learn	how	to	use	PHP	to	open	and	close	a	MySQL	database	connection.
	
	

Create	MySQL	Database	Using	PHP	−	This	part	explains	how	to	create
MySQL	database	and	tables	using	PHP.

	
Create	MySQL	Database	Using	PHP
	

Creating	a	Database
To	create	and	delete	a	database	you	should	have	admin	privilege.	Its	very	easy	to
create	a	new	MySQL	database.	PHP	uses	mysql_query	function	to	create	a
MySQL	database.	This	function	takes	two	parameters	and	returns	TRUE	on
success	or	FALSE	on	failure.
Syntax
bool	mysql_query(sql,	connection);

Sr.No Parameter	&	Description

1
Sql
Required	-	SQL	query	to	create	a	database

2
Connection
Optional	-	if	not	specified	then	last	opend	connection	by
mysql_connect	will	be	used.

Example

Try	out	following	example	to	create	a	database	−
<?php
			$dbhost	=	'localhost:3036';
			$dbuser	=	'root';
			$dbpass	=	'rootpassword';
			$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			if(!	$conn)	{
						die('Could	not	connect:	'	.	mysql_error());

}

	
			echo	'Connected	successfully';
	
			$sql	=	'CREATE	Database	test_db';
			$retval	=	mysql_query($sql,	$conn);
	
			if(!	$retval)	{
						die('Could	not	create	database:	'	.	mysql_error());

}

	
			echo	"Database	test_db	created	successfully\n";
			mysql_close($conn);

?>

Selecting	a	Database
Once	you	establish	a	connection	with	a	database	server	then	it	is	required	to
select	a	particular	database	where	your	all	the	tables	are	associated.
This	is	required	because	there	may	be	multiple	databases	residing	on	a	single
server	and	you	can	do	work	with	a	single	database	at	a	time.
PHP	provides	function	mysql_select_db	to	select	a	database.It	returns	TRUE	on
success	or	FALSE	on	failure.
Syntax
bool	mysql_select_db(db_name,	connection);

Sr.No Parameter	&	Description

1
db_name
Required	-	Database	name	to	be	selected

2
Connection
Optional	-	if	not	specified	then	last	opend	connection	by
mysql_connect	will	be	used.

Example

Here	is	the	example	showing	you	how	to	select	a	database.
<?php
			$dbhost	=	'localhost:3036';
			$dbuser	=	'guest';
			$dbpass	=	'guest123';
			$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			if(!	$conn)	{
						die('Could	not	connect:	'	.	mysql_error());

}

	
			echo	'Connected	successfully';
	
			mysql_select_db('test_db');
			mysql_close($conn);
	
?>

Creating	Database	Tables
To	create	tables	in	the	new	database	you	need	to	do	the	same	thing	as	creating
the	database.	First	create	the	SQL	query	to	create	the	tables	then	execute	the
query	using	mysql_query()	function.
Example

Try	out	following	example	to	create	a	table	−
<?php
	
			$dbhost	=	'localhost:3036';
			$dbuser	=	'root';
			$dbpass	=	'rootpassword';
			$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			if(!	$conn)	{
						die('Could	not	connect:	'	.	mysql_error());

}

	
			echo	'Connected	successfully';
	
			$sql	=	'CREATE	TABLE	employee('.
						'emp_id	INT	NOT	NULL	AUTO_INCREMENT,	'.
						'emp_name	VARCHAR(20)	NOT	NULL,	'.
						'emp_address		VARCHAR(20)	NOT	NULL,	'.
						'emp_salary			INT	NOT	NULL,	'.
						'join_date				timestamp(14)	NOT	NULL,	'.
						'primary	key	(emp_id))';
			mysql_select_db('test_db');
			$retval	=	mysql_query($sql,	$conn);
	
			if(!	$retval)	{
						die('Could	not	create	table:	'	.	mysql_error());

}

	
			echo	"Table	employee	created	successfully\n";
	
			mysql_close($conn);
?>

In	case	you	need	to	create	many	tables	then	its	better	to	create	a	text	file	first	and
put	all	the	SQL	commands	in	that	text	file	and	then	load	that	file	into	$sql
variable	and	excute	those	commands.

Consider	the	following	content	in	sql_query.txt	file
CREATE	TABLE	employee(
			emp_id	INT	NOT	NULL	AUTO_INCREMENT,
			emp_name	VARCHAR(20)	NOT	NULL,
			emp_address		VARCHAR(20)	NOT	NULL,
			emp_salary			INT	NOT	NULL,
			join_date				timestamp(14)	NOT	NULL,
			primary	key	(emp_id));
<?php
			$dbhost	=	'localhost:3036';
			$dbuser	=	'root';
			$dbpass	=	'rootpassword';
			$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			if(!	$conn)	{
						die('Could	not	connect:	'	.	mysql_error());

}

	
			$query_file	=	'sql_query.txt';
	
			$fp	=	fopen($query_file,	'r');
			$sql	=	fread($fp,	filesize($query_file));
			fclose($fp);
	
			mysql_select_db('test_db');
			$retval	=	mysql_query($sql,	$conn);
	
			if(!	$retval)	{
						die('Could	not	create	table:	'	.	mysql_error());

}

	
			echo	"Table	employee	created	successfully\n";
			mysql_close($conn);
?>

	
	
	
	

Delete	MySQL	Database	Using	PHP	−	This	part	explains	how	to	delete
MySQL	database	and	tables	using	PHP.

	

Deleting	MySQL	Database	Using
PHP
	

Deleting	a	Database
If	a	database	is	no	longer	required	then	it	can	be	deleted	forever.	You	can	use
pass	an	SQL	command	to	mysql_query	to	delete	a	database.
Example

Try	out	following	example	to	drop	a	database.
<?php
			$dbhost	=	'localhost:3036';
			$dbuser	=	'root';
			$dbpass	=	'rootpassword';
			$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			if(!	$conn)	{
						die('Could	not	connect:	'	.	mysql_error());

}

	
			$sql	=	'DROP	DATABASE	test_db';
			$retval	=	mysql_query($sql,	$conn);
	
			if(!	$retval)	{
						die('Could	not	delete	database	db_test:	'	.	mysql_error());

}

	
			echo	"Database	deleted	successfully\n";
	
			mysql_close($conn);
?>

WARNING	−	its	very	dangerous	to	delete	a	database	and	any	table.	So	before
deleting	any	table	or	database	you	should	make	sure	you	are	doing	everything
intentionally.

Deleting	a	Table
Its	again	a	matter	of	issuing	one	SQL	command	through	mysql_query	function
to	delete	any	database	table.	But	be	very	careful	while	using	this	command
because	by	doing	so	you	can	delete	some	important	information	you	have	in
your	table.
Example

Try	out	following	example	to	drop	a	table	−
<?php
			$dbhost	=	'localhost:3036';
			$dbuser	=	'root';
			$dbpass	=	'rootpassword';
			$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			if(!	$conn)	{
						die('Could	not	connect:	'	.	mysql_error());

}

	
			$sql	=	'DROP	TABLE	employee';
			$retval	=	mysql_query($sql,	$conn);
	
			if(!	$retval)	{
						die('Could	not	delete	table	employee:	'	.	mysql_error());

}

	
			echo	"Table	deleted	successfully\n";
	
			mysql_close($conn);
?>

	
Insert	Data	To	MySQL	Database	−	Once	you	have	created	your
database	and	tables	then	you	would	like	to	insert	your	data	into	created
tables.	This	session	will	take	you	through	real	example	on	data	insert.

	

Insert	Data	into	MySQL	Database

Data	can	be	entered	into	MySQL	tables	by	executing	SQL	INSERT	statement
through	PHP	function	mysql_query.	Below	a	simple	example	to	insert	a	record
into	employee	table.

Example
Try	out	following	example	to	insert	record	into	employee	table.
<?php
			$dbhost	=	'localhost:3036';
			$dbuser	=	'root';
			$dbpass	=	'rootpassword';
			$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			if(!	$conn)	{
						die('Could	not	connect:	'	.	mysql_error());

}

	
			$sql	=	'INSERT	INTO	employee	'.
						'(emp_name,emp_address,	emp_salary,	join_date)	'.
						'VALUES	("guest",	"XYZ",	2000,	NOW())';
	
			mysql_select_db('test_db');
			$retval	=	mysql_query($sql,	$conn);
	
			if(!	$retval)	{
						die('Could	not	enter	data:	'	.	mysql_error());

}

	
			echo	"Entered	data	successfully\n";
	
			mysql_close($conn);
?>

In	real	application,	all	the	values	will	be	taken	using	HTML	form	and	then	those
values	will	be	captured	using	PHP	script	and	finally	they	will	be	inserted	into
MySQL	tables.
While	doing	data	insert	its	best	practice	to	use	function
get_magic_quotes_gpc()	to	check	if	current	configuration	for	magic	quote	is	set
or	not.	If	this	function	returns	false	then	use	function	addslashes()	to	add	slashes
before	quotes.

Example
Try	out	this	example	by	putting	this	code	into	add_employee.php,	this	will	take
input	using	HTML	Form	and	then	it	will	create	records	into	database.
<html>
	
			<head>
						<title>Add	New	Record	in	MySQL	Database</title>
			</head>
	
			<body>
						<?php
									if(isset($_POST['add']))	{
												$dbhost	=	'localhost:3036';
												$dbuser	=	'root';
												$dbpass	=	'rootpassword';
												$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
												if(!	$conn)	{
															die('Could	not	connect:	'	.	mysql_error());

}

	
												if(!	get_magic_quotes_gpc())	{
															$emp_name	=	addslashes	($_POST['emp_name']);
															$emp_address	=	addslashes	($_POST['emp_address']);
												}else	{
															$emp_name	=	$_POST['emp_name'];
															$emp_address	=	$_POST['emp_address'];

}

	
												$emp_salary	=	$_POST['emp_salary'];
	
												$sql	=	"INSERT	INTO	employee	".	"(emp_name,emp_address,	emp_salary,
															join_date)	".	"VALUES('$emp_name','$emp_address',$emp_salary,	NOW())";
	
												mysql_select_db('test_db');
												$retval	=	mysql_query($sql,	$conn);
	
												if(!	$retval)	{
															die('Could	not	enter	data:	'	.	mysql_error());

}

	
												echo	"Entered	data	successfully\n";
	
												mysql_close($conn);
									}else	{
												?>
	
															<form	method	=	"post"	action	=	"<?php	$_PHP_SELF	?>">
																		<table	width	=	"400"	border	=	"0"	cellspacing	=	"1"
																					cellpadding	=	"2">
	
																					<tr>
																								<td	width	=	"100">Employee	Name</td>
																								<td><input	name	=	"emp_name"	type	=	"text"
																											id	=	"emp_name"></td>
																					</tr>
	
																					<tr>
																								<td	width	=	"100">Employee	Address</td>
																								<td><input	name	=	"emp_address"	type	=	"text"
																											id	=	"emp_address"></td>
																					</tr>
	
																					<tr>
																								<td	width	=	"100">Employee	Salary</td>
																								<td><input	name	=	"emp_salary"	type	=	"text"
																											id	=	"emp_salary"></td>
																					</tr>
	
																					<tr>
																								<td	width	=	"100">	</td>
																								<td>	</td>
																					</tr>
	
																					<tr>
																								<td	width	=	"100">	</td>
																								<td>
																											<input	name	=	"add"	type	=	"submit"	id	=	"add"
																														value	=	"Add	Employee">
																								</td>
																					</tr>
	
																		</table>
															</form>
	
												<?php

}

						?>
	
			</body>
</html>

	
	

Retrieve	Data	From	MySQL	Database	−	Learn	how	to	fetch	records
from	MySQL	database	using	PHP.

Getting	Data	From	MySQL	Database

Data	can	be	fetched	from	MySQL	tables	by	executing	SQL	SELECT	statement
through	PHP	function	mysql_query.	You	have	several	options	to	fetch	data	from
MySQL.
The	most	frequently	used	option	is	to	use	function	mysql_fetch_array().	This
function	returns	row	as	an	associative	array,	a	numeric	array,	or	both.	This
function	returns	FALSE	if	there	are	no	more	rows.
Below	is	a	simple	example	to	fetch	records	from	employee	table.

Example
Try	out	following	example	to	display	all	the	records	from	employee	table.
<?php
			$dbhost	=	'localhost:3036';
			$dbuser	=	'root';
			$dbpass	=	'rootpassword';
	
			$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			if(!	$conn)	{
						die('Could	not	connect:	'	.	mysql_error());

}

	
			$sql	=	'SELECT	emp_id,	emp_name,	emp_salary	FROM	employee';
			mysql_select_db('test_db');
			$retval	=	mysql_query($sql,	$conn);
	
			if(!	$retval)	{
						die('Could	not	get	data:	'	.	mysql_error());

}

	
			while($row	=	mysql_fetch_array($retval,	MYSQL_ASSOC))	{
						echo	"EMP	ID	:{$row['emp_id']}		
	".
									"EMP	NAME	:	{$row['emp_name']}	
	".
									"EMP	SALARY	:	{$row['emp_salary']}	
	".
									"--------------------------------
";

}

	
			echo	"Fetched	data	successfully\n";
	
			mysql_close($conn);
?>

The	content	of	the	rows	are	assigned	to	the	variable	$row	and	the	values	in	row
are	then	printed.
NOTE	−	Always	remember	to	put	curly	brackets	when	you	want	to	insert	an
array	value	directly	into	a	string.
In	above	example	the	constant	MYSQL_ASSOC	is	used	as	the	second
argument	to	mysql_fetch_array(),	so	that	it	returns	the	row	as	an	associative

array.	With	an	associative	array	you	can	access	the	field	by	using	their	name
instead	of	using	the	index.
PHP	provides	another	function	called	mysql_fetch_assoc()	which	also	returns
the	row	as	an	associative	array.

Example
Try	out	following	example	to	display	all	the	records	from	employee	table	using
mysql_fetch_assoc()	function.
<?php
			$dbhost	=	'localhost:3036';
			$dbuser	=	'root';
			$dbpass	=	'rootpassword';
	
			$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			if(!	$conn)	{
						die('Could	not	connect:	'	.	mysql_error());

}

	
			$sql	=	'SELECT	emp_id,	emp_name,	emp_salary	FROM	employee';
			mysql_select_db('test_db');
			$retval	=	mysql_query($sql,	$conn);
	
			if(!	$retval)	{
						die('Could	not	get	data:	'	.	mysql_error());

}

	
			while($row	=	mysql_fetch_assoc($retval))	{
						echo	"EMP	ID	:{$row['emp_id']}		
	".
									"EMP	NAME	:	{$row['emp_name']}	
	".
									"EMP	SALARY	:	{$row['emp_salary']}	
	".
									"--------------------------------
";

}

	
			echo	"Fetched	data	successfully\n";
	
			mysql_close($conn);
?>

You	can	also	use	the	constant	MYSQL_NUM,	as	the	second	argument	to
mysql_fetch_array().	This	will	cause	the	function	to	return	an	array	with	numeric
index.

Example
Try	out	following	example	to	display	all	the	records	from	employee	table	using
MYSQL_NUM	argument.
<?php
			$dbhost	=	'localhost:3036';
			$dbuser	=	'root';
			$dbpass	=	'rootpassword';
	
			$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			if(!	$conn)	{
						die('Could	not	connect:	'	.	mysql_error());

}

	
			$sql	=	'SELECT	emp_id,	emp_name,	emp_salary	FROM	employee';
			mysql_select_db('test_db');
			$retval	=	mysql_query($sql,	$conn);
	
			if(!	$retval)	{
						die('Could	not	get	data:	'	.	mysql_error());

}

	
			while($row	=	mysql_fetch_array($retval,	MYSQL_NUM))	{
						echo	"EMP	ID	:{$row[0]}		
	".
									"EMP	NAME	:	{$row[1]}	
	".
									"EMP	SALARY	:	{$row[2]}	
	".
									"--------------------------------
";

}

	
			echo	"Fetched	data	successfully\n";
	
			mysql_close($conn);
?>

All	the	above	three	examples	will	produce	same	result.

Releasing	Memory
Its	a	good	practice	to	release	cursor	memory	at	the	end	of	each	SELECT
statement.	This	can	be	done	by	using	PHP	function	mysql_free_result().	Below
is	the	example	to	show	how	it	has	to	be	used.
Example

Try	out	following	example
<?php
			$dbhost	=	'localhost:3036';
			$dbuser	=	'root';
			$dbpass	=	'rootpassword';
	
			$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			if(!	$conn)	{
						die('Could	not	connect:	'	.	mysql_error());

}

	
			$sql	=	'SELECT	emp_id,	emp_name,	emp_salary	FROM	employee';
			mysql_select_db('test_db');
			$retval	=	mysql_query($sql,	$conn);
	
			if(!	$retval)	{
						die('Could	not	get	data:	'	.	mysql_error());

}

	
			while($row	=	mysql_fetch_array($retval,	MYSQL_NUM))	{
						echo	"EMP	ID	:{$row[0]}		
	".
									"EMP	NAME	:	{$row[1]}	
	".
									"EMP	SALARY	:	{$row[2]}	
	".
									"--------------------------------
";

}

	
			mysql_free_result($retval);
			echo	"Fetched	data	successfully\n";
	
			mysql_close($conn);
?>

While	fetching	data	you	can	write	as	complex	SQL	as	you	like.	Procedure	will

remain	same	as	mentioned	above.

	
	

Using	Paging	through	PHP	−	This	one	explains	how	to	show	your	query
result	into	multiple	pages	and	how	to	create	the	navigation	link.

	

	
Using	Paging	through	PHP
Its	always	possible	that	your	SQL	SELECT	statement	query	may	result	into
thousand	of	records.	But	its	is	not	good	idea	to	display	all	the	results	on	one
page.	So	we	can	divide	this	result	into	many	pages	as	per	requirement.
Paging	means	showing	your	query	result	in	multiple	pages	instead	of	just	put
them	all	in	one	long	page.
MySQL	helps	to	generate	paging	by	using	LIMIT	clause	which	will	take	two
arguments.	First	argument	as	OFFSET	and	second	argument	how	many	records
should	be	returned	from	the	database.
Below	is	a	simple	example	to	fetch	records	using	LIMIT	clause	to	generate
paging.

Example
Try	out	following	example	to	display	10	records	per	page.
<html>
	
			<head>
						<title>Paging	Using	PHP</title>
			</head>
	
			<body>
						<?php
									$dbhost	=	'localhost:3036';
									$dbuser	=	'root';
									$dbpass	=	'rootpassword';
	
									$rec_limit	=	10;
									$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
									if(!	$conn)	{
												die('Could	not	connect:	'	.	mysql_error());

}

									mysql_select_db('test_db');
	
									/*	Get	total	number	of	records	*/
									$sql	=	"SELECT	count(emp_id)	FROM	employee	";
									$retval	=	mysql_query($sql,	$conn);
	
									if(!	$retval)	{
												die('Could	not	get	data:	'	.	mysql_error());

}

									$row	=	mysql_fetch_array($retval,	MYSQL_NUM);
									$rec_count	=	$row[0];
	
									if(isset($_GET{'page'}))	{
												$page	=	$_GET{'page'}	+	1;
												$offset	=	$rec_limit	*	$page	;
									}else	{
												$page	=	0;
												$offset	=	0;

}

	

									$left_rec	=	$rec_count	-	($page	*	$rec_limit);
									$sql	=	"SELECT	emp_id,	emp_name,	emp_salary	".
												"FROM	employee	".
												"LIMIT	$offset,	$rec_limit";
	
									$retval	=	mysql_query($sql,	$conn);
	
									if(!	$retval)	{
												die('Could	not	get	data:	'	.	mysql_error());

}

	
									while($row	=	mysql_fetch_array($retval,	MYSQL_ASSOC))	{
												echo	"EMP	ID	:{$row['emp_id']}		
	".
															"EMP	NAME	:	{$row['emp_name']}	
	".
															EMP	SALARY	:	{$row['emp_salary']}	
	".
															"--------------------------------
";

}

	
									if($page	>	0)	{
												$last	=	$page	-	2;
												echo	"Last	10	Records	|";
												echo	"Next	10	Records";
									}else	if($page	==	0)	{
												echo	"Next	10	Records";
									}else	if($left_rec	<	$rec_limit)	{
												$last	=	$page	-	2;
												echo	"Last	10	Records";

}

	
									mysql_close($conn);
						?>
	
			</body>
</html>

	
Updating	Data	Into	MySQL	Database	−	This	part	explains	how	to
update	existing	records	into	MySQL	database	using	PHP.

	

Updating	Data	into	MySQL	Database
	

Data	can	be	updated	into	MySQL	tables	by	executing	SQL	UPDATE	statement
through	PHP	function	mysql_query.
Below	is	a	simple	example	to	update	records	into	employee	table.	To	update	a
record	in	any	table	it	is	required	to	locate	that	record	by	using	a	conditional
clause.	Below	example	uses	primary	key	to	match	a	record	in	employee	table.

Example
Try	out	following	example	to	understand	update	operation.	You	need	to	provide
an	employee	ID	to	update	an	employee	salary.
<html>
	
			<head>
						<title>Update	a	Record	in	MySQL	Database</title>
			</head>
	
			<body>
						<?php
									if(isset($_POST['update']))	{
												$dbhost	=	'localhost:3036';
												$dbuser	=	'root';
												$dbpass	=	'rootpassword';
	
												$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
												if(!	$conn)	{
															die('Could	not	connect:	'	.	mysql_error());

}

	
												$emp_id	=	$_POST['emp_id'];
												$emp_salary	=	$_POST['emp_salary'];
	
												$sql	=	"UPDATE	employee	".	"SET	emp_salary	=	$emp_salary	".
															"WHERE	emp_id	=	$emp_id"	;
												mysql_select_db('test_db');
												$retval	=	mysql_query($sql,	$conn);
	
												if(!	$retval)	{
															die('Could	not	update	data:	'	.	mysql_error());

}

												echo	"Updated	data	successfully\n";
	
												mysql_close($conn);
									}else	{
												?>
															<form	method	=	"post"	action	=	"<?php	$_PHP_SELF	?>">
																		<table	width	=	"400"	border	="	0"	cellspacing	=	"1"
																					cellpadding	=	"2">
	

																					<tr>
																								<td	width	=	"100">Employee	ID</td>
																								<td><input	name	=	"emp_id"	type	=	"text"
																											id	=	"emp_id"></td>
																					</tr>
	
																					<tr>
																								<td	width	=	"100">Employee	Salary</td>
																								<td><input	name	=	"emp_salary"	type	=	"text"
																											id	=	"emp_salary"></td>
																					</tr>
	
																					<tr>
																								<td	width	=	"100">	</td>
																								<td>	</td>
																					</tr>
	
																					<tr>
																								<td	width	=	"100">	</td>
																								<td>
																											<input	name	=	"update"	type	=	"submit"
																														id	=	"update"	value	=	"Update">
																								</td>
																					</tr>
	
																		</table>
															</form>
												<?php

}

						?>
	
			</body>
</html>

	
Deleting	Data	From	MySQL	Database	−	This	part	explains	how	to
delete	or	purge	existing	records	from	MySQL	database	using	PHP.

	

Deleting	Data	from	MySQL	Database
	

Data	can	be	deleted	from	MySQL	tables	by	executing	SQL	DELETE	statement
through	PHP	function	mysql_query.
Below	is	a	simple	example	to	delete	records	into	employee	table.	To	delete	a
record	in	any	table	it	is	required	to	locate	that	record	by	using	a	conditional
clause.	Below	example	uses	primary	key	to	match	a	record	in	employee	table.

Example
Try	out	following	example	to	understand	delete	operation.	You	need	to	provide
an	employee	ID	to	delete	an	employee	record	from	employee	table.
<html>
	
			<head>
						<title>Delete	a	Record	from	MySQL	Database</title>
			</head>
	
			<body>
						<?php
									if(isset($_POST['delete']))	{
												$dbhost	=	'localhost:3036';
												$dbuser	=	'root';
												$dbpass	=	'rootpassword';
												$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
												if(!	$conn)	{
															die('Could	not	connect:	'	.	mysql_error());

}

												$emp_id	=	$_POST['emp_id'];
	
												$sql	=	"DELETE	FROM	employee	WHERE	emp_id	=	$emp_id"	;
												mysql_select_db('test_db');
												$retval	=	mysql_query($sql,	$conn);
	
												if(!	$retval)	{
															die('Could	not	delete	data:	'	.	mysql_error());

}

	
												echo	"Deleted	data	successfully\n";
	
												mysql_close($conn);
									}else	{
												?>
															<form	method	=	"post"	action	=	"<?php	$_PHP_SELF	?>">
																		<table	width	=	"400"	border	=	"0"	cellspacing	=	"1"
																					cellpadding	=	"2">
	
																					<tr>
																								<td	width	=	"100">Employee	ID</td>
																								<td><input	name	=	"emp_id"	type	=	"text"

																											id	=	"emp_id"></td>
																					</tr>
	
																					<tr>
																								<td	width	=	"100">	</td>
																								<td>	</td>
																					</tr>
	
																					<tr>
																								<td	width	=	"100">	</td>
																								<td>
																											<input	name	=	"delete"	type	=	"submit"
																														id	=	"delete"	value	=	"Delete">
																								</td>
																					</tr>
	
																		</table>
															</form>
												<?php

}

						?>
	
			</body>
</html>

	
Using	PHP	To	Backup	MySQL	Database	−	Learn	different	ways	to	take
backup	of	your	MySQL	database	for	safety	purpose.

	
	

Perform	MySQL	backup	using	PHP

It	is	always	good	practice	to	take	a	regular	backup	of	your	database.	There	are
three	ways	you	can	use	to	take	backup	of	your	MySQL	database.

Using	SQL	Command	through	PHP.
Using	MySQL	binary	mysqldump	through	PHP.
Using	phpMyAdmin	user	interface.

Using	SQL	Command	through	PHP
You	can	execute	SQL	SELECT	command	to	take	a	backup	of	any	table.	To	take
a	complete	database	dump	you	will	need	to	write	separate	query	for	separate
table.	Each	table	will	be	stored	into	separate	text	file.
Example

Try	out	following	example	of	using	SELECT	INTO	OUTFILE	query	for
creating	table	backup	−
<?php
			$dbhost	=	'localhost:3036';
			$dbuser	=	'root';
			$dbpass	=	'rootpassword';
	
			$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			if(!	$conn)	{
						die('Could	not	connect:	'	.	mysql_error());

}

			$table_name	=	"employee";
			$backup_file		=	"tmpemployee.sql";
			$sql	=	"SELECT	*	INTO	OUTFILE	'$backup_file'	FROM	$table_name";
	
			mysql_select_db('test_db');
			$retval	=	mysql_query($sql,	$conn);
	
			if(!	$retval)	{
						die('Could	not	take	data	backup:	'	.	mysql_error());

}

	
			echo	"Backedup		data	successfully\n";
	
			mysql_close($conn);
?>

There	may	be	instances	when	you	would	need	to	restore	data	which	you	have
backed	up	some	time	ago.	To	restore	the	backup	you	just	need	to	run	LOAD
DATA	INFILE	query	like	this	−
<?php
			$dbhost	=	'localhost:3036';
			$dbuser	=	'root';
			$dbpass	=	'rootpassword';

	
			$conn	=	mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			if(!	$conn)	{
						die('Could	not	connect:	'	.	mysql_error());

}

			$table_name	=	"employee";
			$backup_file		=	"tmpemployee.sql";
			$sql	=	"LOAD	DATA	INFILE	'$backup_file'	INTO	TABLE	$table_name";
	
			mysql_select_db('test_db');
			$retval	=	mysql_query($sql,	$conn);
	
			if(!	$retval)	{
						die('Could	not	load	data	:	'	.	mysql_error());

}

			echo	"Loaded		data	successfully\n";
	
			mysql_close($conn);
?>

Using	MySQL	binary	mysqldump	through	PHP
MySQL	provides	one	utility	mysqldump	to	perform	database	backup.	Using
this	binary	you	can	take	complete	database	dump	in	a	single	command.
Example

Try	out	following	example	to	take	your	complete	database	dump	−
<?php
			$dbhost	=	'localhost:3036';
			$dbuser	=	'root';
			$dbpass	=	'rootpassword';
	
			$backup_file	=	$dbname	.	date("Y-m-d-H-i-s")	.	'.gz';
			$command	=	"mysqldump	--opt	-h	$dbhost	-u	$dbuser	-p	$dbpass	".	"test_db	|	gzip	>	$backup_file";
	
			system($command);
?>

Using	phpMyAdmin	user	interface
If	you	have	phpMyAdmin	user	interface	available	then	its	very	easy	for	your	to
take	backup	of	your	database.
To	backup	your	MySQL	database	using	phpMyAdmin	click	on	the	"export"	link
on	phpMyAdmin	main	page.	Choose	the	database	you	wish	to	backup,	check	the
appropriate	SQL	options	and	enter	the	name	for	the	backup	file.
	

	
	
	
	
	

PHP	&	AJAX
	

What	is	AJAX	?
AJAX	stands	for	Asynchronous	JavaScript	and	XML.	AJAX	is	a	new
technique	for	creating	better,	faster,	and	more	interactive	web	applications
with	the	help	of	XML,	HTML,	CSS	and	Java	Script.
Conventional	web	application	transmit	information	to	and	from	the	sever
using	synchronous	requests.	This	means	you	fill	out	a	form,	hit	submit,
and	get	directed	to	a	new	page	with	new	information	from	the	server.
With	AJAX	when	submit	is	pressed,	JavaScript	will	make	a	request	to	the
server,	interpret	the	results	and	update	the	current	screen.	In	the	purest
sense,	the	user	would	never	know	that	anything	was	even	transmitted	to
the	server.

For	complete	learning	on	AJAX,	please	refer	to	MY	AJAX	Book

PHP	and	AJAX	Example
To	clearly	illustrate	how	easy	it	is	to	access	information	from	a	database	using
Ajax	and	PHP,	we	are	going	to	build	MySQL	queries	on	the	fly	and	display	the
results	on	"ajax.html".	But	before	we	proceed,	lets	do	ground	work.	Create	a
table	using	the	following	command.
NOTE	−	We	are	assuming	you	have	sufficient	privilege	to	perform	following
MySQL	operations.
CREATE	TABLE	`ajax_example`	(
			`name`	varchar(50)	NOT	NULL,
			`age`	int(11)	NOT	NULL,
			`sex`	varchar(1)	NOT	NULL,
			`wpm`	int(11)	NOT	NULL,
			PRIMARY	KEY		(`name`)

)

Now	dump	the	following	data	into	this	table	using	the	following	SQL
statements.
INSERT	INTO	`ajax_example`	VALUES	('Jerry',	120,	'm',	20);
INSERT	INTO	`ajax_example`	VALUES	('Regis',	75,	'm',	44);
INSERT	INTO	`ajax_example`	VALUES	('Frank',	45,	'm',	87);
INSERT	INTO	`ajax_example`	VALUES	('Jill',	22,	'f',	72);
INSERT	INTO	`ajax_example`	VALUES	('Tracy',	27,	'f',	0);
INSERT	INTO	`ajax_example`	VALUES	('Julie',	35,	'f',	90);

Client	Side	HTML	file
Now	lets	have	our	client	side	HTML	file	which	is	ajax.html	and	it	will	have
following	code
<html>
			<body>
	
						<script	language	=	"javascript"	type	=	"text/javascript">
									<!--
												//Browser	Support	Code
												function	ajaxFunction(){
															var	ajaxRequest;		//	The	variable	that	makes	Ajax	possible!
	
															try	{
																		//	Opera	8.0+,	Firefox,	Safari
																		ajaxRequest	=	new	XMLHttpRequest();
															}catch	(e)	{
																		//	Internet	Explorer	Browsers
																		try	{
																					ajaxRequest	=	new	ActiveXObject("Msxml2.XMLHTTP");
																		}catch	(e)	{
																					try{
																								ajaxRequest	=	new	ActiveXObject("Microsoft.XMLHTTP");
																					}catch	(e){
																								//	Something	went	wrong
																								alert("Your	browser	broke!");
																								return	false;

}

}

}

	
															//	Create	a	function	that	will	receive	data
															//	sent	from	the	server	and	will	update
															//	div	section	in	the	same	page.

	

															ajaxRequest.onreadystatechange	=	function(){
																		if(ajaxRequest.readyState	==	4){
																					var	ajaxDisplay	=	document.getElementById('ajaxDiv');
																					ajaxDisplay.innerHTML	=	ajaxRequest.responseText;

}

}

	
															//	Now	get	the	value	from	user	and	pass	it	to
															//	server	script.

	

															var	age	=	document.getElementById('age').value;
															var	wpm	=	document.getElementById('wpm').value;
															var	sex	=	document.getElementById('sex').value;
															var	queryString	=	"?age="	+	age	;
	
															queryString	+=		"&wpm="	+	wpm	+	"&sex="	+	sex;
															ajaxRequest.open("GET",	"ajax-example.php"	+	queryString,	true);
															ajaxRequest.send(null);

}

									//-->
						</script>

	

						<form	name	=	'myForm'>
									Max	Age:	<input	type	=	'text'	id	=	'age'	>	

									Max	WPM:	<input	type	=	'text'	id	=	'wpm'	/>
									

	
									Sex:	<select	id	=	'sex'>
												<option	value	=	"m">m</option>
												<option	value	=	"f">f</option>
									</select>

	

									<input	type	=	'button'	onclick	=	'ajaxFunction()'	value	=	'Query	MySQL'/>

	

						</form>
	
						<div	id	=	'ajaxDiv'>Your	result	will	display	here</div>
			</body>
</html>

NOTE	−	The	way	of	passing	variables	in	the	Query	is	according	to	HTTP
standard	and	the	have	formA.
URL?variable1=value1;&variable2=value2;

Now	the	above	code	will	give	you	a	screen	as	given	below
NOTE	−	This	is	dummy	screen	and	would	not	work.

Max	Age:		

Max	WPM:	
Sex:

Your	result	will	display	here

Server	Side	PHP	file
So	now	your	client	side	script	is	ready.	Now	we	have	to	write	our	server	side
script	which	will	fetch	age,	wpm	and	sex	from	the	database	and	will	send	it	back
to	the	client.	Put	the	following	code	into	"ajax-example.php"	file.
<?php
	
			$dbhost	=	"localhost";
			$dbuser	=	"dbusername";
			$dbpass	=	"dbpassword";
			$dbname	=	"dbname";
	
			//Connect	to	MySQL	Server
			mysql_connect($dbhost,	$dbuser,	$dbpass);
	
			//Select	Database
			mysql_select_db($dbname)	or	die(mysql_error());
	
			//	Retrieve	data	from	Query	String
			$age	=	$_GET['age'];
			$sex	=	$_GET['sex'];
			$wpm	=	$_GET['wpm'];
	
			//	Escape	User	Input	to	help	prevent	SQL	Injection
			$age	=	mysql_real_escape_string($age);
			$sex	=	mysql_real_escape_string($sex);
			$wpm	=	mysql_real_escape_string($wpm);
	
			//build	query
			$query	=	"SELECT	*	FROM	ajax_example	WHERE	sex	=	'$sex'";
	
			if(is_numeric($age))
			$query	.=	"	AND	age	<=	$age";
	
			if(is_numeric($wpm))
			$query	.=	"	AND	wpm	<=	$wpm";
	
			//Execute	query
			$qry_result	=	mysql_query($query)	or	die(mysql_error());
	
			//Build	Result	String
			$display_string	=	"<table>";
			$display_string	.=	"<tr>";
			$display_string	.=	"<th>Name</th>";
			$display_string	.=	"<th>Age</th>";
			$display_string	.=	"<th>Sex</th>";
			$display_string	.=	"<th>WPM</th>";
			$display_string	.=	"</tr>";

	
			//	Insert	a	new	row	in	the	table	for	each	person	returned
			while($row	=	mysql_fetch_array($qry_result))	{
						$display_string	.=	"<tr>";
						$display_string	.=	"<td>$row[name]</td>";
						$display_string	.=	"<td>$row[age]</td>";
						$display_string	.=	"<td>$row[sex]</td>";
						$display_string	.=	"<td>$row[wpm]</td>";
						$display_string	.=	"</tr>";

}

			echo	"Query:	"	.	$query	.	"
";
	
			$display_string	.=	"</table>";
			echo	$display_string;
?>

Now	try	by	entering	a	valid	value	in	"Max	Age"	or	any	other	box	and	then	click
Query	MySQL	button.

Max	Age:		

Max	WPM:	
Sex:

Your	result	will	display	here

If	you	have	successfully	completed	this	lesson	then	you	know	how	to	use
MySQL,	PHP,	HTML,	and	Javascript	in	tandem	to	write	Ajax	applications.

	
	
	
	
	
	
	
	
	
	
	

	

PHP	&	XML

XML	is	a	markup	language	that	looks	a	lot	like	HTML.	An	XML	document	is
plain	text	and	contains	tags	delimited	by	<	and	>.There	are	two	big	differences
between	XML	and	HTML	−

XML	doesn't	define	a	specific	set	of	tags	you	must	use.
XML	is	extremely	picky	about	document	structure.

XML	gives	you	a	lot	more	freedom	than	HTML.	HTML	has	a	certain	set	of	tags:
the	<a>	tags	surround	a	link,	the	<p>	starts	paragraph	and	so	on.	An	XML
document,	however,	can	use	any	tags	you	want.	Put	<rating></rating>	tags
around	a	movie	rating,	<height></height>	tags	around	someone's	height.	Thus
XML	gives	you	option	to	device	your	own	tags.
XML	is	very	strict	when	it	comes	to	document	structure.	HTML	lets	you	play
fast	and	loose	with	some	opening	and	closing	tags.	But	this	is	not	the	case	with
XML.

HTML	list	that's	not	valid	XML

			Braised	Sea	Cucumber
			Baked	Giblets	with	Salt
			Abalone	with	Marrow	and	Duck	Feet

This	is	not	a	valid	XML	document	because	there	are	no	closing		tags	to
match	up	with	the	three	opening		tags.	Every	opened	tag	in	an	XML
document	must	be	closed.

HTML	list	that	is	valid	XML

			Braised	Sea	Cucumber
			Baked	Giblets	with	Salt
			Abalone	with	Marrow	and	Duck	Feet

Parsing	an	XML	Document
PHP	5's	new	SimpleXML	module	makes	parsing	an	XML	document,	well,
simple.	It	turns	an	XML	document	into	an	object	that	provides	structured	access
to	the	XML.
To	create	a	SimpleXML	object	from	an	XML	document	stored	in	a	string,	pass
the	string	to	simplexml_load_string().	It	returns	a	SimpleXML	object.
Example

Try	out	following	example	−
<html>
			<body>
	
						<?php
									$note=<<<XML
	
									<note>
												<to>Gopal	K	Verma</to>
												<from>Sairamkrishna</from>
												<heading>Project	submission</heading>
												<body>Please	see	clearly	</body>
									</note>
	
									XML;
									$xml=simplexml_load_string($note);
									print_r($xml);
						?>

	

			</body>
</html>

It	will	produce	the	following	result	−

NOTE	−	You	can	use	function	simplexml_load_file(filename)	if	you	have
XML	content	in	a	file.
For	a	complete	detail	of	XML	parsing	function	check	PHP	Function	Reference.

https://www.tutorialspoint.com/php/php_function_reference.htm

Generating	an	XML	Document
SimpleXML	is	good	for	parsing	existing	XML	documents,	but	you	can't	use	it	to
create	a	new	one	from	scratch.
The	easiest	way	to	generate	an	XML	document	is	to	build	a	PHP	array	whose
structure	mirrors	that	of	the	XML	document	and	then	to	iterate	through	the	array,
printing	each	element	with	appropriate	formatting.
Example

Try	out	following	example	−
<?php
			$channel	=	array('title'	=>	"What's	For	Dinner",
						'link'	=>	'http://menu.example.com/',
						'description'	=>	'Choose	what	to	eat	tonight.');
	
			print	"<channel>\n";
	
			foreach	($channel	as	$element	=>	$content)	{
						print	"	<$element>";
						print	htmlentities($content);
						print	"</$element>\n";

}

	
			print	"</channel>";
?>

It	will	produce	the	following	result	−
<channel>
			<title>What's	For	Dinner</title>
			<link>http://menu.example.com/</link>
			<description>Choose	what	to	eat	tonight.</description>
</channel>

	
	
	
	
	
	
	

	

Object	Oriented	Programming	in
PHP
We	can	imagine	our	universe	made	of	different	objects	like	sun,	earth,	moon	etc.
Similarly	we	can	imagine	our	car	made	of	different	objects	like	wheel,	steering,
gear	etc.	Same	way	there	is	object	oriented	programming	concepts	which	assume
everything	as	an	object	and	implement	a	software	using	different	objects.

Object	Oriented	Concepts
Before	we	go	in	detail,	lets	define	important	terms	related	to	Object	Oriented
Programming.

Class	−	This	is	a	programmer-defined	data	type,	which	includes	local
functions	as	well	as	local	data.	You	can	think	of	a	class	as	a	template	for
making	many	instances	of	the	same	kind	(or	class)	of	object.
Object	−	An	individual	instance	of	the	data	structure	defined	by	a	class.
You	define	a	class	once	and	then	make	many	objects	that	belong	to	it.
Objects	are	also	known	as	instance.
Member	Variable	−	These	are	the	variables	defined	inside	a	class.	This
data	will	be	invisible	to	the	outside	of	the	class	and	can	be	accessed	via
member	functions.	These	variables	are	called	attribute	of	the	object	once
an	object	is	created.
Member	function	−	These	are	the	function	defined	inside	a	class	and	are
used	to	access	object	data.
Inheritance	−	When	a	class	is	defined	by	inheriting	existing	function	of	a
parent	class	then	it	is	called	inheritance.	Here	child	class	will	inherit	all	or
few	member	functions	and	variables	of	a	parent	class.
Parent	class	−	A	class	that	is	inherited	from	by	another	class.	This	is	also
called	a	base	class	or	super	class.
Child	Class	−	A	class	that	inherits	from	another	class.	This	is	also	called	a
subclass	or	derived	class.
Polymorphism	−	This	is	an	object	oriented	concept	where	same	function
can	be	used	for	different	purposes.	For	example	function	name	will	remain
same	but	it	make	take	different	number	of	arguments	and	can	do	different
task.
Overloading	−	a	type	of	polymorphism	in	which	some	or	all	of	operators
have	different	implementations	depending	on	the	types	of	their	arguments.
Similarly	functions	can	also	be	overloaded	with	different	implementation.
Data	Abstraction	−	Any	representation	of	data	in	which	the
implementation	details	are	hidden	(abstracted).
Encapsulation	−	refers	to	a	concept	where	we	encapsulate	all	the	data	and
member	functions	together	to	form	an	object.
Constructor	−	refers	to	a	special	type	of	function	which	will	be	called
automatically	whenever	there	is	an	object	formation	from	a	class.

Destructor	−	refers	to	a	special	type	of	function	which	will	be	called
automatically	whenever	an	object	is	deleted	or	goes	out	of	scope.

Defining	PHP	Classes
The	general	form	for	defining	a	new	class	in	PHP	is	as	follows	−
<?php
			class	phpClass	{
						var	$var1;
						var	$var2	=	"constant	string";
	
						function	myfunc	($arg1,	$arg2)	{

[..]

}

[..]

}

?>

Here	is	the	description	of	each	line	−
The	special	form	class,	followed	by	the	name	of	the	class	that	you	want	to
define.
A	set	of	braces	enclosing	any	number	of	variable	declarations	and	function
definitions.
Variable	declarations	start	with	the	special	form	var,	which	is	followed	by
a	conventional	$	variable	name;	they	may	also	have	an	initial	assignment
to	a	constant	value.
Function	definitions	look	much	like	standalone	PHP	functions	but	are
local	to	the	class	and	will	be	used	to	set	and	access	object	data.

Example

Here	is	an	example	which	defines	a	class	of	Books	type	−
<?php
			class	Books	{
						/*	Member	variables	*/
						var	$price;
						var	$title;
	
						/*	Member	functions	*/
						function	setPrice($par){
									$this->price	=	$par;

}

}

	
						function	getPrice(){
									echo	$this->price	."
";

}

	
						function	setTitle($par){
									$this->title	=	$par;

}

	
						function	getTitle(){
									echo	$this->title	."	
";

}

}

?>

The	variable	$this	is	a	special	variable	and	it	refers	to	the	same	object	ie.	itself.

Creating	Objects	in	PHP
Once	you	defined	your	class,	then	you	can	create	as	many	objects	as	you	like	of
that	class	type.	Following	is	an	example	of	how	to	create	object	using	new
operator.
$physics	=	new	Books;
$maths	=	new	Books;
$chemistry	=	new	Books;

Here	we	have	created	three	objects	and	these	objects	are	independent	of	each
other	and	they	will	have	their	existence	separately.	Next	we	will	see	how	to
access	member	function	and	process	member	variables.

Calling	Member	Functions
After	creating	your	objects,	you	will	be	able	to	call	member	functions	related	to
that	object.	One	member	function	will	be	able	to	process	member	variable	of
related	object	only.
Following	example	shows	how	to	set	title	and	prices	for	the	three	books	by
calling	member	functions.
$physics->setTitle("Physics	for	High	School");
$chemistry->setTitle("Advanced	Chemistry");
$maths->setTitle("Algebra");
	
$physics->setPrice(10);
$chemistry->setPrice(15);
$maths->setPrice(7);

Now	you	call	another	member	functions	to	get	the	values	set	by	in	above
example	−
$physics->getTitle();
$chemistry->getTitle();
$maths->getTitle();
$physics->getPrice();
$chemistry->getPrice();
$maths->getPrice();

This	will	produce	the	following	result	−
Physics	for	High	School
Advanced	Chemistry
Algebra
10
15
7

Constructor	Functions
Constructor	Functions	are	special	type	of	functions	which	are	called
automatically	whenever	an	object	is	created.	So	we	take	full	advantage	of	this
behaviour,	by	initializing	many	things	through	constructor	functions.
PHP	provides	a	special	function	called	__construct()	to	define	a	constructor.
You	can	pass	as	many	as	arguments	you	like	into	the	constructor	function.
Following	example	will	create	one	constructor	for	Books	class	and	it	will
initialize	price	and	title	for	the	book	at	the	time	of	object	creation.
function	__construct($par1,	$par2)	{
			$this->title	=	$par1;
			$this->price	=	$par2;

}

Now	we	don't	need	to	call	set	function	separately	to	set	price	and	title.	We	can
initialize	these	two	member	variables	at	the	time	of	object	creation	only.	Check
following	example	below	−
$physics	=	new	Books("Physics	for	High	School",	10);
$maths	=	new	Books	("Advanced	Chemistry",	15);
$chemistry	=	new	Books	("Algebra",	7);
	
/*	Get	those	set	values	*/
$physics->getTitle();
$chemistry->getTitle();
$maths->getTitle();
	
$physics->getPrice();
$chemistry->getPrice();
$maths->getPrice();

This	will	produce	the	following	result	−
		Physics	for	High	School
		Advanced	Chemistry
		Algebra
		10
		15
		7

Destructor
Like	a	constructor	function	you	can	define	a	destructor	function	using	function
__destruct().	You	can	release	all	the	resources	with-in	a	destructor.

Inheritance
PHP	class	definitions	can	optionally	inherit	from	a	parent	class	definition	by
using	the	extends	clause.	The	syntax	is	as	follows	−
class	Child	extends	Parent	{
			<definition	body>

}

The	effect	of	inheritance	is	that	the	child	class	(or	subclass	or	derived	class)	has
the	following	characteristics	−

Automatically	has	all	the	member	variable	declarations	of	the	parent	class.
Automatically	has	all	the	same	member	functions	as	the	parent,	which	(by
default)	will	work	the	same	way	as	those	functions	do	in	the	parent.

Following	example	inherit	Books	class	and	adds	more	functionality	based	on	the
requirement.
class	Novel	extends	Books	{
			var	$publisher;
	
			function	setPublisher($par){
						$this->publisher	=	$par;

}

	
			function	getPublisher(){
						echo	$this->publisher.	"
";

}

}

Now	apart	from	inherited	functions,	class	Novel	keeps	two	additional	member
functions.

Function	Overriding
Function	definitions	in	child	classes	override	definitions	with	the	same	name	in
parent	classes.	In	a	child	class,	we	can	modify	the	definition	of	a	function
inherited	from	parent	class.
In	the	following	example	getPrice	and	getTitle	functions	are	overridden	to	return
some	values.
function	getPrice()	{
			echo	$this->price	.	"
";
			return	$this->price;

}

	
function	getTitle(){
			echo	$this->title	.	"
";
			return	$this->title;

}

Public	Members
Unless	you	specify	otherwise,	properties	and	methods	of	a	class	are	public.	That
is	to	say,	they	may	be	accessed	in	three	possible	situations	−

From	outside	the	class	in	which	it	is	declared
From	within	the	class	in	which	it	is	declared
From	within	another	class	that	implements	the	class	in	which	it	is	declared

Till	now	we	have	seen	all	members	as	public	members.	If	you	wish	to	limit	the
accessibility	of	the	members	of	a	class	then	you	define	class	members	as	private
or	protected.

Private	members
By	designating	a	member	private,	you	limit	its	accessibility	to	the	class	in	which
it	is	declared.	The	private	member	cannot	be	referred	to	from	classes	that	inherit
the	class	in	which	it	is	declared	and	cannot	be	accessed	from	outside	the	class.
A	class	member	can	be	made	private	by	using	private	keyword	infront	of	the
member.
class	MyClass	{
			private	$car	=	"skoda";
			$driver	=	"SRK";
	
			function	__construct($par)	{
						//	Statements	here	run	every	time
						//	an	instance	of	the	class
						//	is	created.

}

	
			function	myPublicFunction()	{
						return("I'm	visible!");

}

	
			private	function	myPrivateFunction()	{
						return("I'm		not	visible	outside!");

}

}

When	MyClass	class	is	inherited	by	another	class	using	extends,
myPublicFunction()	will	be	visible,	as	will	$driver.	The	extending	class	will	not
have	any	awareness	of	or	access	to	myPrivateFunction	and	$car,	because	they
are	declared	private.

Protected	members
A	protected	property	or	method	is	accessible	in	the	class	in	which	it	is	declared,
as	well	as	in	classes	that	extend	that	class.	Protected	members	are	not	available
outside	of	those	two	kinds	of	classes.	A	class	member	can	be	made	protected	by
using	protected	keyword	in	front	of	the	member.
Here	is	different	version	of	MyClass	−
class	MyClass	{
			protected	$car	=	"skoda";
			$driver	=	"SRK";
	
			function	__construct($par)	{
						//	Statements	here	run	every	time
						//	an	instance	of	the	class
						//	is	created.

}

	
			function	myPublicFunction()	{
						return("I'm	visible!");

}

	
			protected	function	myPrivateFunction()	{
						return("I'm		visible	in	child	class!");

}

}

Interfaces
Interfaces	are	defined	to	provide	a	common	function	names	to	the	implementers.
Different	implementors	can	implement	those	interfaces	according	to	their
requirements.	You	can	say,	interfaces	are	skeletons	which	are	implemented	by
developers.
As	of	PHP5,	it	is	possible	to	define	an	interface,	like	this	−
interface	Mail	{
			public	function	sendMail();

}

Then,	if	another	class	implemented	that	interface,	like	this	−
class	Report	implements	Mail	{
			//	sendMail()	Definition	goes	here

}

Constants
A	constant	is	somewhat	like	a	variable,	in	that	it	holds	a	value,	but	is	really	more
like	a	function	because	a	constant	is	immutable.	Once	you	declare	a	constant,	it
does	not	change.
Declaring	one	constant	is	easy,	as	is	done	in	this	version	of	MyClass	−
class	MyClass	{
			const	requiredMargin	=	1.7;
	
			function	__construct($incomingValue)	{
						//	Statements	here	run	every	time
						//	an	instance	of	the	class
						//	is	created.

}

}

In	this	class,	requiredMargin	is	a	constant.	It	is	declared	with	the	keyword	const,
and	under	no	circumstances	can	it	be	changed	to	anything	other	than	1.7.	Note
that	the	constant's	name	does	not	have	a	leading	$,	as	variable	names	do.

Abstract	Classes
An	abstract	class	is	one	that	cannot	be	instantiated,	only	inherited.	You	declare
an	abstract	class	with	the	keyword	abstract,	like	this	−
When	inheriting	from	an	abstract	class,	all	methods	marked	abstract	in	the
parent's	class	declaration	must	be	defined	by	the	child;	additionally,	these
methods	must	be	defined	with	the	same	visibility.
abstract	class	MyAbstractClass	{
			abstract	function	myAbstractFunction()	{

}

}

Note	that	function	definitions	inside	an	abstract	class	must	also	be	preceded	by
the	keyword	abstract.	It	is	not	legal	to	have	abstract	function	definitions	inside	a
non-abstract	class.

Static	Keyword
Declaring	class	members	or	methods	as	static	makes	them	accessible	without
needing	an	instantiation	of	the	class.	A	member	declared	as	static	can	not	be
accessed	with	an	instantiated	class	object	(though	a	static	method	can).
Try	out	following	example	−
<?php
			class	Foo	{
						public	static	$my_static	=	'foo';
	
						public	function	staticValue()	{
									return	self::$my_static;

}

}

			print	Foo::$my_static	.	"\n";
			$foo	=	new	Foo();
	
			print	$foo->staticValue()	.	"\n";
?>

Final	Keyword
PHP	5	introduces	the	final	keyword,	which	prevents	child	classes	from
overriding	a	method	by	prefixing	the	definition	with	final.	If	the	class	itself	is
being	defined	final	then	it	cannot	be	extended.
Following	example	results	in	Fatal	error:	Cannot	override	final	method
BaseClass::moreTesting()
<?php
	
			class	BaseClass	{
						public	function	test()	{
									echo	"BaseClass::test()	called
";

}

	
						final	public	function	moreTesting()	{
									echo	"BaseClass::moreTesting()	called
";

}

}

	
			class	ChildClass	extends	BaseClass	{
						public	function	moreTesting()	{
									echo	"ChildClass::moreTesting()	called
";

}

}

?>

Calling	parent	constructors
Instead	of	writing	an	entirely	new	constructor	for	the	subclass,	let's	write	it	by
calling	the	parent's	constructor	explicitly	and	then	doing	whatever	is	necessary	in
addition	for	instantiation	of	the	subclass.	Here's	a	simple	example	−
class	Name	{
			var	$_firstName;
			var	$_lastName;
	
			function	Name($first_name,	$last_name)	{
						$this->_firstName	=	$first_name;
						$this->_lastName	=	$last_name;

}

	
			function	toString()	{
						return($this->_lastName	.",	"	.$this->_firstName);

}

}

class	NameSub1	extends	Name	{
			var	$_middleInitial;
	
			function	NameSub1($first_name,	$middle_initial,	$last_name)	{
						Name::Name($first_name,	$last_name);
						$this->_middleInitial	=	$middle_initial;

}

	
			function	toString()	{
						return(Name::toString()	.	"	"	.	$this->_middleInitial);

}

}

In	this	example,	we	have	a	parent	class	(Name),	which	has	a	two-argument
constructor,	and	a	subclass	(NameSub1),	which	has	a	three-argument
constructor.	The	constructor	of	NameSub1	functions	by	calling	its	parent
constructor	explicitly	using	the	::	syntax	(passing	two	of	its	arguments	along)

and	then	setting	an	additional	field.	Similarly,	NameSub1	defines	its	non
constructor	toString()	function	in	terms	of	the	parent	function	that	it	overrides.
NOTE	−	A	constructor	can	be	defined	with	the	same	name	as	the	name	of	a
class.	It	is	defined	in	above	example.
	
	
	
	
	
	
	
	
	
	
	
	
	
	

PHP	For	C	Developers
	

The	simplest	way	to	think	of	PHP	is	as	interpreted	C	that	you	can	embed	in
HTML	documents.	The	language	itself	is	a	lot	like	C,	except	with	untyped
variables,	a	whole	lot	of	Web-specific	libraries	built	in,	and	everything	hooked
up	directly	to	your	favorite	Web	server.
The	syntax	of	statements	and	function	definitions	should	be	familiar,	except	that
variables	are	always	preceded	by	$,	and	functions	do	not	require	separate
prototypes.
Here	we	will	put	some	similarities	and	differences	in	PHP	and	C

Similarities
Syntax	−	Broadly	speaking,	PHP	syntax	is	the	same	as	in	C:	Code	is	blank
insensitive,	statements	are	terminated	with	semicolons,	function	calls	have
the	same	structure	(my_function(expression1,	expression2)),	and	curly
braces	({	and	})	make	statements	into	blocks.	PHP	supports	C	and	C++-
style	comments	(/*	*/	as	well	as	//),	and	also	Perl	and	shell-script	style	(#).
Operators	−	The	assignment	operators	(=,	+=,	*=,	and	so	on),	the
Boolean	operators	(&&,	||,	!),	the	comparison	operators	(<,>,	<=,	>=,	==,
!=),	and	the	basic	arithmetic	operators	(+,	-,	*,	/,	%)	all	behave	in	PHP	as
they	do	in	C.
Control	structures	−	The	basic	control	structures	(if,	switch,	while,	for)
behave	as	they	do	in	C,	including	supporting	break	and	continue.	One
notable	difference	is	that	switch	in	PHP	can	accept	strings	as	case
identifiers.
Function	names	−	As	you	peruse	the	documentation,	you.ll	see	many
function	names	that	seem	identical	to	C	functions.

Differences
Dollar	signs	−	All	variables	are	denoted	with	a	leading	$.	Variables	do	not
need	to	be	declared	in	advance	of	assignment,	and	they	have	no	intrinsic
type.
Types	−	PHP	has	only	two	numerical	types:	integer	(corresponding	to	a
long	in	C)	and	double	(corresponding	to	a	double	in	C).	Strings	are	of
arbitrary	length.	There	is	no	separate	character	type.
Type	conversion	−	Types	are	not	checked	at	compile	time,	and	type
errors	do	not	typically	occur	at	runtime	either.	Instead,	variables	and
values	are	automatically	converted	across	types	as	needed.
Arrays	−	Arrays	have	a	syntax	superficially	similar	to	C's	array	syntax,
but	they	are	implemented	completely	differently.	They	are	actually
associative	arrays	or	hashes,	and	the	index	can	be	either	a	number	or	a
string.	They	do	not	need	to	be	declared	or	allocated	in	advance.
No	structure	type	−	There	is	no	structure	in	PHP,	partly	because	the	array
and	object	types	together	make	it	unnecessary.	The	elements	of	a	PHP
array	need	not	be	of	a	consistent	type.
No	pointers	−	There	are	no	pointers	available	in	PHP,	although	the
tapeless	variables	play	a	similar	role.	PHP	does	support	variable
references.	You	can	also	emulate	function	pointers	to	some	extent,	in	that
function	names	can	be	stored	in	variables	and	called	by	using	the	variable
rather	than	a	literal	name.
No	prototypes	−	Functions	do	not	need	to	be	declared	before	their
implementation	is	defined,	as	long	as	the	definition	can	be	found
somewhere	in	the	current	code	file	or	included	files.
Memory	management	−	The	PHP	engine	is	effectively	a	garbage-
collected	environment	(reference-counted),	and	in	small	scripts	there	is	no
need	to	do	any	deallocation.	You	should	freely	allocate	new	structures	-
such	as	new	strings	and	object	instances.	IN	PHP5,	it	is	possible	to	define
destructor	for	objects,	but	there	is	no	free	or	delete.	Destructor	are	called
when	the	last	reference	to	an	object	goes	away,	before	the	memory	is
reclaimed.
Compilation	and	linking	−	There	is	no	separate	compilation	step	for	PHP
scripts.
Permissiveness	−	As	a	general	matter,	PHP	is	more	forgiving	than	C
(especially	in	its	type	system)	and	so	will	let	you	get	away	with	new	kinds

of	mistakes.	Unexpected	results	are	more	common	than	errors.
	
	
	
	
	
	
	
	
	
	
	
	

PHP	For	PERL	Developers
	

This	chapter	will	list	out	major	similarities	and	differences	in	between	PHP	and
PERL.	This	will	help	PERL	developers	to	understand	PHP	very	quickly	and
avoid	common	mistakes.

Similarities
Compiled	scripting	languages	−	Both	Perl	and	PHP	are	scripting
languages.This	means	that	they	are	not	used	to	produce	native	standalone
executables	in	advance	of	execution.
Syntax	−	PHP's	basic	syntax	is	very	close	to	Perl's,	and	both	share	a	lot	of
syntactic	features	with	C.	Code	is	insensitive	to	whitespace,	statements	are
terminated	by	semicolons,	and	curly	braces	organize	multiple	statements
into	a	single	block.	Function	calls	start	with	the	name	of	the	function,
followed	by	the	actual	arguments	enclosed	in	parentheses	and	separated	by
commas.
Dollar-sign	variables	−	All	variables	in	PHP	look	like	scalar	variables	in
Perl:	a	name	with	a	dollar	sign	($)	in	front	of	it.
No	declaration	of	variables	−	As	in	Perl,	you	don.t	need	to	declare	the
type	of	a	PHP	variable	before	using	it.
Loose	typing	of	variables	−	As	in	Perl,	variables	in	PHP	have	no	intrinsic
type	other	than	the	value	they	currently	hold.	You	can	store	either	number
or	string	in	same	type	of	variable.
Strings	and	variable	interpolation	−	Both	PHP	and	Perl	do	more
interpretation	of	double-quoted	strings	("string")	than	of	singlequoted
strings	('string').

Differences
PHP	is	HTML-embedded	−	Although	it	is	possible	to	use	PHP	for
arbitrary	tasks	by	running	it	from	the	command	line,	it	is	more	typically
connected	to	a	Web	server	and	used	for	producing	Web	pages.	If	you	are
used	to	writing	CGI	scripts	in	Perl,	the	main	difference	in	PHP	is	that	you
no	longer	need	to	explicitly	print	large	blocks	of	static	HTML	using	print
or	heredoc	statements	and	instead	can	simply	write	the	HTML	itself
outside	of	the	PHP	code	block.
No	@	or	%	variables	−	PHP	has	one	only	kind	of	variable,	which	starts
with	a	dollar	sign	($).	Any	of	the	datatypes	in	the	language	can	be	stored
in	such	variables,	whether	scalar	or	compound.
Arrays	versus	hashes	−	PHP	has	a	single	datatype	called	an	array	that
plays	the	role	of	both	hashes	and	arrays/lists	in	Perl.
Specifying	arguments	to	functions	−	Function	calls	in	PHP	look	pretty
much	like	subroutine	calls	in	Perl.	Function	definitions	in	PHP,	on	the
other	hand,	typically	require	some	kind	of	list	of	formal	arguments	as	in	C
or	Java	which	is	not	the	csse	in	PERL.
Variable	scoping	in	functions	−	In	Perl,	the	default	scope	for	variables	is
global.	This	means	that	top-level	variables	are	visible	inside	subroutines.
Often,	this	leads	to	promiscuous	use	of	globals	across	functions.	In	PHP,
the	scope	of	variables	within	function	definitions	is	local	by	default.
No	module	system	as	such	−	In	PHP	there	is	no	real	distinction	between
normal	code	files	and	code	files	used	as	imported	libraries.
Break	and	continue	rather	than	next	and	last	−	PHP	is	more	like	C
langauge	and	uses	break	and	continue	instead	of	next	and	last	statement.
No	elsif	−	A	minor	spelling	difference:	Perl's	elsif	is	PHP's	elseif.
More	kinds	of	comments	−	In	addition	to	Perl-style	(#)	single-line
comments,	PHP	offers	C-style	multiline	comments	(/*	comment	*/)	and
Java-style	single-line	comments	(//	comment).
Regular	expressions	−	PHP	does	not	have	a	built-in	syntax	specific	to
regular	expressions,	but	has	most	of	the	same	functionality	in	its	"Perl-
compatible"	regular	expression	functions.

	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
PHP	-	Form	Introduction
	

Dynamic	Websites
The	Websites	provide	the	functionalities	that	can	use	to	store,	update,	retrieve,
and	delete	the	data	in	a	database.

What	is	the	Form?
A	Document	that	containing	black	fields,	that	the	user	can	fill	the	data	or	user
can	select	the	data.Casually	the	data	will	store	in	the	data	base
Example

Below	example	shows	the	form	with	some	specific	actions	by	using	post
method.
<html>
	
			<head>
						<title>PHP	Form	Validation</title>
			</head>
	
			<body>
						<?php
	
									//	define	variables	and	set	to	empty	values
									$name	=	$email	=	$gender	=	$comment	=	$website	=	"";
	
									if	($_SERVER["REQUEST_METHOD"]	==	"POST")	{
												$name	=	test_input($_POST["name"]);
												$email	=	test_input($_POST["email"]);
												$website	=	test_input($_POST["website"]);
												$comment	=	test_input($_POST["comment"]);
												$gender	=	test_input($_POST["gender"]);

}

	
									function	test_input($data)	{
												$data	=	trim($data);
												$data	=	stripslashes($data);
												$data	=	htmlspecialchars($data);
												return	$data;

}

						?>
	
						<h2>Tutorials	Point	Absolute	classes	registration</h2>
	
						<form	method	=	"post"	action	=	"/php/php_form_introduction.htm">
									<table>
												<tr>
															<td>Name:</td>
															<td><input	type	=	"text"	name	=	"name"></td>

												</tr>
	
												<tr>
															<td>E-mail:</td>
															<td><input	type	=	"text"	name	=	"email"></td>
												</tr>
	
												<tr>
															<td>Specific	Time:</td>
															<td><input	type	=	"text"	name	=	"website"></td>
												</tr>
	
												<tr>
															<td>Class	details:</td>
															<td><textarea	name	=	"comment"	rows	=	"5"	cols	=	"40"></textarea></td>
												</tr>
	
												<tr>
															<td>Gender:</td>
															<td>
																		<input	type	=	"radio"	name	=	"gender"	value	=	"female">Female
																		<input	type	=	"radio"	name	=	"gender"	value	=	"male">Male
															</td>
												</tr>
	
												<tr>
															<td>
																		<input	type	=	"submit"	name	=	"submit"	value	=	"Submit">
															</td>
												</tr>
									</table>
						</form>
	
						<?php
									echo	"<h2>Your	Given	details	are	as	:</h2>";
									echo	$name;
									echo	"
";
	
									echo	$email;
									echo	"
";
	
									echo	$website;
									echo	"
";
	
									echo	$comment;
									echo	"
";
	
									echo	$gender;
						?>
	

			</body>
</html>

It	will	produce	the	following	result	−

	
	
	
	
	
	
	
	
	

PHP	-	Validation	Example
	

Required	field	will	check	whether	the	field	is	filled	or	not	in	the	proper	way.
Most	of	cases	we	will	use	the	*	symbol	for	required	field.

What	is	Validation	?
Validation	means	check	the	input	submitted	by	the	user.	There	are	two	types	of
validation	are	available	in	PHP.	They	are	as	follows	−

Client-Side	Validation	−	Validation	is	performed	on	the	client	machine
web	browsers.
Server	Side	Validation	−	After	submitted	by	data,	The	data	has	sent	to	a
server	and	perform	validation	checks	in	server	machine.

Some	of	Validation	rules	for	field
Field Validation	Rules

Name Should	required	letters	and	whitespaces

Email Should	required	@	and	.

Website Should	required	a	valid	URL

Radio Must	be	selectable	at	least	once

Check	Box Must	be	checkable	at	least	once

Drop	Down	menu Must	be	selectable	at	least	once

Valid	URL
Below	code	shows	validation	of	URL
$website	=	input($_POST["site"]);
	
if	(!preg_match("/\b(?:(?:https?|ftp):\/\/|www\.)[-a-z0-9+&@#\/%?=~_|!:,.;]*[-a-z0-
9+&@#\/%=~_|]/i",$website))	{
			$websiteErr	=	"Invalid	URL";

}

Above	syntax	will	verify	whether	a	given	URL	is	valid	or	not.	It	should	allow
some	keywords	as	https,	ftp,	www,	a-z,	0-9,..etc..

Valid	Email
Below	code	shows	validation	of	Email	address
$email	=	input($_POST["email"]);
	
if	(!filter_var($email,	FILTER_VALIDATE_EMAIL))	{
			$emailErr	=	"Invalid	format	and	please	reenter	valid	email";

}

Above	syntax	will	verify	whether	given	Email	address	is	well-formed	or	not.if	it
is	not,	it	will	show	an	error	message.
Example

Example	below	shows	the	form	with	required	field	validation
<html>
	
			<head>
						<style>
									.error	{color:	#FF0000;}
						</style>
			</head>
	
			<body>
						<?php
									//	define	variables	and	set	to	empty	values
									$nameErr	=	$emailErr	=	$genderErr	=	$websiteErr	=	"";
									$name	=	$email	=	$gender	=	$comment	=	$website	=	"";
	
									if	($_SERVER["REQUEST_METHOD"]	==	"POST")	{
												if	(empty($_POST["name"]))	{
															$nameErr	=	"Name	is	required";
												}else	{
															$name	=	test_input($_POST["name"]);

}

	
												if	(empty($_POST["email"]))	{
															$emailErr	=	"Email	is	required";
												}else	{
															$email	=	test_input($_POST["email"]);
	
															//	check	if	e-mail	address	is	well-formed
															if	(!filter_var($email,	FILTER_VALIDATE_EMAIL))	{
																		$emailErr	=	"Invalid	email	format";

}

}

}

	
												if	(empty($_POST["website"]))	{
															$website	=	"";

}

												else	{
															$website	=	test_input($_POST["website"]);

}

	
												if	(empty($_POST["comment"]))	{
															$comment	=	"";
												}else	{
															$comment	=	test_input($_POST["comment"]);

}

	
												if	(empty($_POST["gender"]))	{
															$genderErr	=	"Gender	is	required";
												}else	{
															$gender	=	test_input($_POST["gender"]);

}

}

	
									function	test_input($data)	{
												$data	=	trim($data);
												$data	=	stripslashes($data);
												$data	=	htmlspecialchars($data);
												return	$data;

}

						?>
	
						<h2>Absolute	classes	registration</h2>
	

						<p>*	required	field.</p>
	
						<form	method	=	"post"	action	=	">?php
									echo	htmlspecialchars($_SERVER["PHP_SELF"]);?>">
									<table>
												<tr>
															<td>Name:</td>
															<td><input	type	=	"text"	name	=	"name">
																		*	<?php	echo	$nameErr;?>
															</td>
												</tr>
	
												<tr>
															<td>E-mail:	</td>
															<td><input	type	=	"text"	name	=	"email">
																		*	<?php	echo	$emailErr;?>
															</td>
												</tr>
	
												<tr>
															<td>Time:</td>
															<td>	<input	type	=	"text"	name	=	"website">
																		<?php	echo	$websiteErr;?>
															</td>
												</tr>
	
												<tr>
															<td>Classes:</td>
															<td>	<textarea	name	=	"comment"	rows	=	"5"	cols	=	"40"></textarea></td>
												</tr>
	
												<tr>
															<td>Gender:</td>
															<td>
																		<input	type	=	"radio"	name	=	"gender"	value	=	"female">Female
																		<input	type	=	"radio"	name	=	"gender"	value	=	"male">Male
																		*	<?php	echo	$genderErr;?>
															</td>
												</tr>

	

												<td>
															<input	type	=	"submit"	name	=	"submit"	value	=	"Submit">
												</td>

	

									</table>

	

						</form>
	
						<?php
									echo	"<h2>Your	given	values	are	as:</h2>";
									echo	$name;
									echo	"
";
	
									echo	$email;
									echo	"
";
	
									echo	$website;
									echo	"
";
	
									echo	$comment;
									echo	"
";
	
									echo	$gender;
						?>
	
			</body>
</html>

It	will	produce	the	following	result	−

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	

PHP	-	Complete	Form
	

This	page	explains	about	time	real-time	form	with	actions.	Below	example	will
take	input	fields	as	text,	radio	button,	drop	down	menu,	and	checked	box.

Example
<html>
	
			<head>
						<style>
									.error	{color:	#FF0000;}
						</style>
			</head>
	
			<body>
						<?php
									//	define	variables	and	set	to	empty	values
									$nameErr	=	$emailErr	=	$genderErr	=	$websiteErr	=	"";
									$name	=	$email	=	$gender	=	$class	=	$course	=	$subject	=	"";
	
									if	($_SERVER["REQUEST_METHOD"]	==	"POST")	{
												if	(empty($_POST["name"]))	{
															$nameErr	=	"Name	is	required";
												}else	{
															$name	=	test_input($_POST["name"]);

}

	
												if	(empty($_POST["email"]))	{
															$emailErr	=	"Email	is	required";
												}else	{
															$email	=	test_input($_POST["email"]);
	
															//	check	if	e-mail	address	is	well-formed
															if	(!filter_var($email,	FILTER_VALIDATE_EMAIL))	{
																		$emailErr	=	"Invalid	email	format";

}

}

	
												if	(empty($_POST["course"]))	{
															$course	=	"";
												}else	{
															$course	=	test_input($_POST["course"]);

}

	
												if	(empty($_POST["class"]))	{

															$class	=	"";
												}else	{
															$class	=	test_input($_POST["class"]);

}

	
												if	(empty($_POST["gender"]))	{
															$genderErr	=	"Gender	is	required";
												}else	{
															$gender	=	test_input($_POST["gender"]);

}

	
												if	(empty($_POST["subject"]))	{
															$subjectErr	=	"You	must	select	1	or	more";
												}else	{
															$subject	=	$_POST["subject"];

}

}

	
									function	test_input($data)	{
												$data	=	trim($data);
												$data	=	stripslashes($data);
												$data	=	htmlspecialchars($data);
												return	$data;

}

						?>

	

						<h2>Absolute	classes	registration</h2>
	
						<p>*	required	field.</p>
	
						<form	method	=	"POST"	action	=	"<?php	echo	htmlspecialchars($_SERVER["PHP_SELF"]);?>">
									<table>
												<tr>
															<td>Name:</td>
															<td><input	type	=	"text"	name	=	"name">
																		*	<?php	echo	$nameErr;?>

															</td>
												</tr>
	
												<tr>
															<td>E-mail:	</td>
															<td><input	type	=	"text"	name	=	"email">
																		*	<?php	echo	$emailErr;?>
															</td>
												</tr>
	
												<tr>
															<td>Time:</td>
															<td>	<input	type	=	"text"	name	=	"course">
																		<?php	echo	$websiteErr;?>
															</td>
												</tr>
	
												<tr>
															<td>Classes:</td>
															<td>	<textarea	name	=	"class"	rows	=	"5"	cols	=	"40"></textarea></td>
												</tr>
	
												<tr>
															<td>Gender:</td>
															<td>
																		<input	type	=	"radio"	name	=	"gender"	value	=	"female">Female
																		<input	type	=	"radio"	name	=	"gender"	value	=	"male">Male
																		*	<?php	echo	$genderErr;?>
															</td>
												</tr>
	
												<tr>
															<td>Select:</td>
															<td>
																		<select	name	=	"subject[]"	size	=	"4"	multiple>
																					<option	value	=	"Android">Android</option>
																					<option	value	=	"Java">Java</option>
																					<option	value	=	"C#">C#</option>
																					<option	value	=	"Data	Base">Data	Base</option>
																					<option	value	=	"Hadoop">Hadoop</option>
																					<option	value	=	"VB	script">VB	script</option>
																		</select>
															</td>
												</tr>
	
												<tr>
															<td>Agree</td>
															<td><input	type	=	"checkbox"	name	=	"checked"	value	=	"1"></td>
															<?php	if(!isset($_POST['checked'])){	?>
															*	<?php	echo	"You	must	agree	to	terms";?>

															<?php	}	?>
												</tr>
	
												<tr>
															<td>
																		<input	type	=	"submit"	name	=	"submit"	value	=	"Submit">
															</td>
												</tr>
	
									</table>
						</form>
	
						<?php
									echo	"<h2>Your	given	values	are	as	:</h2>";
									echo	("<p>Your	name	is	$name</p>");
									echo	("<p>	your	email	address	is	$email</p>");
									echo	("<p>Your	class	time	at	$course</p>");
									echo	("<p>your	class	info	$class	</p>");
									echo	("<p>your	gender	is	$gender</p>");
	
									for($i	=	0;	$i	<	count($subject);	$i++)	{
												echo($subject[$i]	.	"	");

}

						?>
	
			</body>
</html>

It	will	produce	the	following	result	−

	
	
	
	
	
	
	
	
	

PHP	-	Login	Example
	

PHP	login	with	session
Php	login	script	is	used	to	provide	the	authentication	for	our	web	pages.	the
Script	executes	after	submitting	the	user	login	button.

Login	Page
Login	page	should	be	as	follows	and	works	based	on	session.	If	the	user	close
the	session,	it	will	erase	the	session	data.
<?php
			ob_start();
			session_start();
?>
	
<?
			//	error_reporting(E_ALL);
			//	ini_set("display_errors",	1);
?>
	
<html	lang	=	"en">
	
			<head>
						<title>Tutorialspoint.com</title>
						<link	href	=	"css/bootstrap.min.css"	rel	=	"stylesheet">
	
						<style>
									body	{
												padding-top:	40px;
												padding-bottom:	40px;
												background-color:	#ADABAB;

}

	
									.form-signin	{
												max-width:	330px;
												padding:	15px;
												margin:	0	auto;
												color:	#017572;

}

	
									.form-signin	.form-signin-heading,
									.form-signin	.checkbox	{
												margin-bottom:	10px;

}

	
									.form-signin	.checkbox	{
												font-weight:	normal;

}

	
									.form-signin	.form-control	{
												position:	relative;
												height:	auto;
												-webkit-box-sizing:	border-box;
												-moz-box-sizing:	border-box;
												box-sizing:	border-box;
												padding:	10px;
												font-size:	16px;

}

	
									.form-signin	.form-control:focus	{
												z-index:	2;

}

	
									.form-signin	input[type="email"]	{
												margin-bottom:	-1px;
												border-bottom-right-radius:	0;
												border-bottom-left-radius:	0;
												border-color:#017572;

}

	
									.form-signin	input[type="password"]	{
												margin-bottom:	10px;
												border-top-left-radius:	0;
												border-top-right-radius:	0;
												border-color:#017572;

}

	
									h2{
												text-align:	center;
												color:	#017572;

}

						</style>
	

			</head>

	

			<body>
	
						<h2>Enter	Username	and	Password</h2>
						<div	class	=	"container	form-signin">
	
									<?php
												$msg	=	'';
	
												if	(isset($_POST['login'])	&&	!empty($_POST['username'])
															&&	!empty($_POST['password']))	{

	

															if	($_POST['username']	==	'tutorialspoint'	&&
																		$_POST['password']	==	'1234')	{
																		$_SESSION['valid']	=	true;
																		$_SESSION['timeout']	=	time();
																		$_SESSION['username']	=	'tutorialspoint';
	
																		echo	'You	have	entered	valid	use	name	and	password';
															}else	{
																		$msg	=	'Wrong	username	or	password';

}

}

									?>
						</div>	<!--	/container	-->
	
						<div	class	=	"container">
	
									<form	class	=	"form-signin"	role	=	"form"
												action	=	"<?php	echo	htmlspecialchars($_SERVER['PHP_SELF']);
												?>"	method	=	"post">
												<h4	class	=	"form-signin-heading"><?php	echo	$msg;	?></h4>
												<input	type	=	"text"	class	=	"form-control"
															name	=	"username"	placeholder	=	"username	=	tutorialspoint"
															required	autofocus></br>
												<input	type	=	"password"	class	=	"form-control"
															name	=	"password"	placeholder	=	"password	=	1234"	required>
												<button	class	=	"btn	btn-lg	btn-primary	btn-block"	type	=	"submit"
															name	=	"login">Login</button>
									</form>

	

									Click	here	to	clean	Session.
	
						</div>
	
			</body>
</html>

Logout.php
It	will	erase	the	session	data.
<?php
			session_start();
			unset($_SESSION["username"]);
			unset($_SESSION["password"]);
	
			echo	'You	have	cleaned	session';
			header('Refresh:	2;	URL	=	login.php');
?>

It	will	produce	the	following	result	−

	
	
	
	
	
	
	
	
	

	

	
PHP	-	Facebook	Login

We	can	use	Facebook	login	to	allow	the	users	to	get	access	into	the	websites.
This	page	will	explain	you	about	login	with	facebook	PHP	SDK.

Login	With	Facebook
Need	to	go	https://developers.facebook.com/apps/	and	click	on	add	a	new
group	button	to	make	the	app	ID.
Choose	Website
Give	an	app	name	and	click	on	Create	New	Facebook	App	ID
Click	on	Create	app	ID
Click	on	Skip	Quick	Test

On	Final	stage,	it	will	show	as	below	shown	image.

https://developers.facebook.com/apps/

fbconfig.php	file	overview
Now	download	zip	from	here
Now	open	fbconfig.php	file	and	add	you	app	ID	and	app	Secrete

FacebookSession::setDefaultApplication('your	app	ID','App	Secrete	');
//	login	helper	with	redirect_uri
			$helper	=	new	FacebookRedirectLoginHelper('You	web	address');

Finally	fbconfig.php	file	as	shown	below	−
<?php
	
			session_start();
	
			//	added	in	v4.0.0
			require_once	'autoload.php';
			use	Facebook\FacebookSession;
			use	Facebook\FacebookRedirectLoginHelper;
			use	Facebook\FacebookRequest;
			use	Facebook\FacebookResponse;
			use	Facebook\FacebookSDKException;
			use	Facebook\FacebookRequestException;
			use	Facebook\FacebookAuthorizationException;
			use	Facebook\GraphObject;
			use	Facebook\Entities\AccessToken;
			use	Facebook\HttpClients\FacebookCurlHttpClient;
			use	Facebook\HttpClients\FacebookHttpable;
	
			//	init	app	with	app	id	and	secret
			FacebookSession::setDefaultApplication('496544657159182','e6d239655aeb3e496e52fabeaf1b1f93');
	
			//	login	helper	with	redirect_uri
			$helper	=	new	FacebookRedirectLoginHelper('http://www.tutorialspoint.com/');
	
			try	{
						$session	=	$helper->getSessionFromRedirect();
			}catch(FacebookRequestException	$ex)	{
						//	When	Facebook	returns	an	error
			}catch(Exception	$ex)	{
						//	When	validation	fails	or	other	local	issues

}

	
			//	see	if	we	have	a	session
			if	(isset($session))	{
						//	graph	api	request	for	user	data
						$request	=	new	FacebookRequest($session,	'GET',	'/me');
						$response	=	$request->execute();

https://www.tutorialspoint.com/php/facebook.zip

	
						//	get	response
						$graphObject	=	$response->getGraphObject();
						$fbid	=	$graphObject->getProperty('id');											//	To	Get	Facebook	ID
						$fbfullname	=	$graphObject->getProperty('name');			//	To	Get	Facebook	full	name
						$femail	=	$graphObject->getProperty('email');						//	To	Get	Facebook	email	ID
	
						/*	----	Session	Variables	-----*/
						$_SESSION['FBID']	=	$fbid;
						$_SESSION['FULLNAME']	=	$fbfullname;
						$_SESSION['EMAIL']	=		$femail;
	
						/*	----	header	location	after	session	----*/
						header("Location:	index.php");
			}else	{
						$loginUrl	=	$helper->getLoginUrl();
						header("Location:	".$loginUrl);

}

?>

Login	page	Overview
Login	page	is	used	to	login	into	FB
<?php
			session_start();
			session_unset();
	
			$_SESSION['FBID']	=	NULL;
			$_SESSION['FULLNAME']	=	NULL;
			$_SESSION['EMAIL']	=		NULL;
			header("Location:	index.php");							
?>

Index.php
Index	page	is	as	shown	below.
<?php
			session_start();
?>
<html	xmlns:fb	=	"http://www.facebook.com/2008/fbml">
	
			<head>
						<title>Login	with	Facebook</title>
						<link
									href	=	"http://www.bootstrapcdn.com/twitter-bootstrap/2.2.2/css/bootstrap-combined.min.css"
									rel	=	"stylesheet">
			</head>
	
			<body>
						<?php	if	($_SESSION['FBID']):	?>						<!--		After	user	login		-->
	
									<div	class	=	"container">
	
												<div	class	=	"hero-unit">
															<h1>Hello	<?php	echo	$_SESSION['USERNAME'];	?></h1>
															<p>Welcome	to	"facebook	login"	tutorial</p>
												</div>
	
												<div	class	=	"span4">

	

															<ul	class	=	"nav	nav-list">
																		<li	class	=	"nav-header">Image

	

																		<img	src	=	"https://graph.facebook.com/<?php
																					echo	$_SESSION['FBID'];	?>/picture">
	
																		<li	class	=	"nav-header">Facebook	ID
																		<?php	echo		$_SESSION['FBID'];	?>
	
																		<li	class	=	"nav-header">Facebook	fullname

	

																		<?php	echo	$_SESSION['FULLNAME'];	?>
	
																		<li	class	=	"nav-header">Facebook	Email

	

																		<?php	echo	$_SESSION['EMAIL'];	?>
	
																		<div>Logout</div>

	

															

	

												</div>
									</div>
	
									<?php	else:	?>					<!--	Before	login	-->
	
									<div	class	=	"container">
												<h1>Login	with	Facebook</h1>
												Not	Connected
	
												<div>
															Login	with	Facebook
												</div>
	
												<div>
															<a	href	=	"http://www.tutorialspoint.com"	
																		title	=	"Login	with	facebook">More	information	about	Tutorialspoint
												</div>
									</div>
	
						<?php	endif	?>
	
			</body>
</html>

It	will	produce	the	result.	Before	trying	this	example,	please	logout	your	face
book	account	in	your	browser.

Logout	Facebook
Below	code	is	used	to	logout	facebook.
<?php
			session_start();.
			session_unset();
	
			$_SESSION['FBID']	=	NULL;
			$_SESSION['FULLNAME']	=	NULL;
			$_SESSION['EMAIL']	=		NULL;
			header("Location:	index.php");							
?>

	
	
	
	
	
	
	
	
	
	
	
	

PHP	-	PayPal	Integration
	

PayPal	is	a	payment	processing	system,	We	can	integrate	PayPal	with	websites
by	using	with	php.

PayPal	integration	file	system
PayPal	integration	file	system	included	4	files	as	shown	below.

constants.php	−	This	file	has	included	API	user	name,	password	and
signature.
CallerService.php	−	This	file	has	included	PayPal	Services,	which	is	used
to	call	PayPal	services.
confirmation.php	−	This	file	has	included	a	form	with	minimum	fields
required	to	make	payment	process	and	it	will	return	payment	success	or
failure.
PayPal_entry.php	−	This	page	has	used	to	send	the	user	the	data	to
PayPal.	It	acts	as	an	adapter	between	PayPal	and	user	form.

The	user	has	to	download	a	PayPal	SDK	file	from	here	and	exact	a	zip	file.	The
zip	file	contains	four	php	files,	We	don't	need	to	change	any	file	except
constants.php
The	constants.php	file	contains	code	as	shown	below	−
<?php
			define('API_USERNAME',	'YOUR	USER	NAME	HERE');
			define('API_PASSWORD',	'YOUR	PASSWORD	HERE');
			define('API_SIGNATURE',	'YOUR	API	SIGNATURE	HERE');
			define('API_ENDPOINT',	'https://api-3t.paypal.com/nvp');
			define('USE_PROXY',FALSE);
			define('PROXY_HOST',	'127.0.0.1');
			define('PROXY_PORT',	'808');
			define('PAYPAL_URL',	'https://www.PayPal.com/webscr&cmd=_express-checkout&token=');
			define('VERSION',	'53.0');
?>

The	user	will	declare	User	Name,	password	and	signature	in	above	syntax	which
are	placed	in	constants.php.	This	is	an	experimental	example	so	the	last	amount
will	be	added	to	sandbox's	account.
	
	
	
	
	
	
	
	

https://www.tutorialspoint.com/php/paypal.zip

	
	
	
	
	
	

PHP	-	MySQL	Login
This	tutorial	demonstrates	how	to	create	a	login	page	with	MySQL	Data	base.
Before	enter	into	the	code	part,	You	would	need	special	privileges	to	create	or	to
delete	a	MySQL	database.	So	assuming	you	have	access	to	root	user,	you	can
create	any	database	using	mysql	mysqladmin	binary.

Config.php
Config.php	file	is	having	information	about	MySQL	Data	base	configuration.
<?php
			define('DB_SERVER',	'localhost:3036');
			define('DB_USERNAME',	'root');
			define('DB_PASSWORD',	'rootpassword');
			define('DB_DATABASE',	'database');
			$db	=	mysqli_connect(DB_SERVER,DB_USERNAME,DB_PASSWORD,DB_DATABASE);
?>

Login.php
Login	PHP	is	having	information	about	php	script	and	HTML	script	to	do	login.
<?php
			include("config.php");
			session_start();
	
			if($_SERVER["REQUEST_METHOD"]	==	"POST")	{
						//	username	and	password	sent	from	form
	
						$myusername	=	mysqli_real_escape_string($db,$_POST['username']);
						$mypassword	=	mysqli_real_escape_string($db,$_POST['password']);
	
						$sql	=	"SELECT	id	FROM	admin	WHERE	username	=	'$myusername'	and	passcode	=	'$mypassword'";
						$result	=	mysqli_query($db,$sql);
						$row	=	mysqli_fetch_array($result,MYSQLI_ASSOC);
						$active	=	$row['active'];
	
						$count	=	mysqli_num_rows($result);
	
						//	If	result	matched	$myusername	and	$mypassword,	table	row	must	be	1	row

	
						if($count	==	1)	{
									session_register("myusername");
									$_SESSION['login_user']	=	$myusername;
	
									header("location:	welcome.php");
						}else	{
									$error	=	"Your	Login	Name	or	Password	is	invalid";

}

}

?>
<html>
	
			<head>
						<title>Login	Page</title>
	
						<style	type	=	"text/css">
									body	{
												font-family:Arial,	Helvetica,	sans-serif;
												font-size:14px;

}

	
									label	{
												font-weight:bold;
												width:100px;
												font-size:14px;

}

	
									.box	{
												border:#666666	solid	1px;

}

						</style>
	
			</head>
	
			<body	bgcolor	=	"#FFFFFF">

	

						<div	align	=	"center">
									<div	style	=	"width:300px;	border:	solid	1px	#333333;	"	align	=	"left">
												<div	style	=	"background-color:#333333;	color:#FFFFFF;	padding:3px;">Login</div>

	

												<div	style	=	"margin:30px">
	
															<form	action	=	""	method	=	"post">
																		<label>UserName		:</label><input	type	=	"text"	name	=	"username"	class	=	"box">

																		<label>Password		:</label><input	type	=	"password"	name	=	"password"	class	=	"box"	/>

																		<input	type	=	"submit"	value	=	"	Submit	">

															</form>
	
															<div	style	=	"font-size:11px;	color:#cc0000;	margin-top:10px"><?php	echo	$error;	?></div>

	

												</div>

	

									</div>

	

						</div>
	
			</body>
</html>

welcome.php
After	successful	login,	it	will	display	welcome	page.
<?php
			include('session.php');
?>
<html">
	
			<head>
						<title>Welcome	</title>
			</head>
	
			<body>
						<h1>Welcome	<?php	echo	$login_session;	?></h1>
						<h2>Sign	Out</h2>
			</body>
	
</html>

Logout	page
Logout	page	is	having	information	about	how	to	logout	from	login	session.
<?php
			session_start();
	
			if(session_destroy())	{
						header("Location:	login.php");

}

?>

session.php
Session.php	will	verify	the	session,	if	there	is	no	session	it	will	redirect	to	login
page.
<?php
			include('config.php');
			session_start();
	
			$user_check	=	$_SESSION['login_user'];
	
			$ses_sql	=	mysqli_query($db,"select	username	from	admin	where	username	=	'$user_check'	");
	
			$row	=	mysqli_fetch_array($ses_sql,MYSQLI_ASSOC);
	
			$login_session	=	$row['username'];
	
			if(!isset($_SESSION['login_user'])){
						header("location:login.php");

}

?>

	
	
	
	
	
	
	
	
	
	
	
	

	
PHP	-	Ajax	Search
Ajax	is	used	to	communicate	with	web	pages	and	web	servers.	Below	example
demonstrate	a	search	field	using	with	Ajax.
<html>
			<head>
	
						<style>
									span	{
												color:	green;

}

						</style>
	
						<script>
									function	showHint(str)	{
												if	(str.length	==	0)	{
															document.getElementById("txtHint").innerHTML	=	"";
															return;
												}else	{
															var	xmlhttp	=	new	XMLHttpRequest();

	

															xmlhttp.onreadystatechange	=	function()	{
																		if	(xmlhttp.readyState	==	4	&&	xmlhttp.status	==	200)	{
																					document.getElementById("txtHint").innerHTML	=	xmlhttp.responseText;

}

}

															xmlhttp.open("GET",	"php_ajax.php?q="	+	str,	true);
															xmlhttp.send();

}

}

						</script>

	
			</head>
			<body>
	
						<p>Search	your	favourite	tutorials:</p>
	
						<form>
									<input	type	=	"text"	onkeyup	=	"showHint(this.value)">
						</form>
	
						<p>Entered	Course	name:	</p>
	
			</body>
</html>

Above	code	opens	a	file,	name	called	as	php_ajax.php	by	using	with	GET
method,	so	we	need	to	create	a	file,	name	called	as	php_ajax.php	in	the	same
directory	and	out	put	will	be	attached	with	txtHint.

php_ajax.php
It	contained	array	of	course	names	and	it	returns	the	value	to	web	browser.
<?php
			//	Array	with	names
			$a[]	=	"Android";
			$a[]	=	"B	programming	language";
			$a[]	=	"C	programming	language";
			$a[]	=	"D	programming	language";
			$a[]	=	"euphoria";
			$a[]	=	"F#";
			$a[]	=	"GWT";
			$a[]	=	"HTML5";
			$a[]	=	"ibatis";
			$a[]	=	"Java";
			$a[]	=	"K	programming	language";
			$a[]	=	"Lisp";
			$a[]	=	"Microsoft	technologies";
			$a[]	=	"Networking";
			$a[]	=	"Open	Source";
			$a[]	=	"Prototype";
			$a[]	=	"QC";
			$a[]	=	"Restful	web	services";
			$a[]	=	"Scrum";
			$a[]	=	"Testing";
			$a[]	=	"UML";
			$a[]	=	"VB	Script";
			$a[]	=	"Web	Technologies";
			$a[]	=	"Xerox	Technology";
			$a[]	=	"YQL";
			$a[]	=	"ZOPL";
	
			$q	=	$_REQUEST["q"];
			$hint	=	"";
	
			if	($q	!==	"")	{
						$q	=	strtolower($q);
						$len	=	strlen($q);
	
						foreach($a	as	$name)	{

	

									if	(stristr($q,	substr($name,	0,	$len)))	{
												if	($hint	===	"")	{
															$hint	=	$name;
												}else	{
															$hint	.=	",	$name";

}

}

}

}

}

			echo	$hint	===	""	?	"Please	enter	a	valid	course	name"	:	$hint;
?>

It	will	produce	the	following	result	−

	
	
	
	
	
	
	
	
	

PHP	-	Ajax	XML	Parser
	

Ajax	XML	Example
Using	with	Ajax	we	can	parser	xml	from	local	directory	as	well	as	servers,
Below	example	demonstrate	how	to	parser	xml	with	web	browser.
<html>
			<head>
	
						<script>
									function	showCD(str)	{
												if	(str	==	"")	{
															document.getElementById("txtHint").innerHTML	=	"";
															return;

}

	
												if	(window.XMLHttpRequest)	{
															//	code	for	IE7+,	Firefox,	Chrome,	Opera,	Safari
															xmlhttp	=	new	XMLHttpRequest();
												}else	{	
															//	code	for	IE6,	IE5
															xmlhttp	=	new	ActiveXObject("Microsoft.XMLHTTP");

}

	
												xmlhttp.onreadystatechange	=	function()	{
															if	(xmlhttp.readyState	==	4	&&	xmlhttp.status	==	200)	{
																		document.getElementById("txtHint").innerHTML	=	xmlhttp.responseText;

}

}

												xmlhttp.open("GET","getcourse.php?q="+str,true);
												xmlhttp.send();

}

						</script>
	
			</head>
			<body>
	
						<form>
									Select	a	Course:

									<select	name	=	"cds"	onchange	=	"showCD(this.value)">
												<option	value	=	"">Select	a	course:</option>
												<option	value	=	"Android">Android	</option>
												<option	value	=	"Html">HTML</option>
												<option	value	=	"Java">Java</option>
												<option	value	=	"Microsoft">MS	technologies</option>
									</select>
						</form>
	
						<div	id	=	"txtHint">Course	info	will	be	listed	here...</div>
	
			</body>
</html>

The	above	example	will	call	getcourse.php	using	with	GET	method.
getcourse.php	file	loads	catalog.xml.	getcourse.php	is	as	shown	below	−
<?php
			$q	=	$_GET["q"];
	
			$xmlDoc	=	new	DOMDocument();
			$xmlDoc->load("catalog.xml");
	
			$x	=	$xmlDoc->getElementsByTagName('COURSE');
	
			for	($i	=	0;	$i<=$x->length-1;	$i++)	{

=

						if	($x->item($i)->nodeType	==	1)	{
									if	($x->item($i)->childNodes->item(0)->nodeValue	==	$q)	{
												$y	=	($x->item($i)->parentNode);

}

}

}

			$cd	=	($y->childNodes);
	
			for	($i	=	0;$i<$cd->length;$i++)	{
						if	($cd->item($i)->nodeType	==	1)	{
									echo(""	.	$cd->item($i)->nodeName	.	":	");
									echo($cd->item($i)->childNodes->item(0)->nodeValue);
									echo("
");

}

}

?>

Catalog.xml
XML	file	having	list	of	courses	and	details.This	file	is	accessed	by	getcourse.php
<CATALOG>
			<SUBJECT>
						<COURSE>Android</COURSE>
						<COUNTRY>India</COUNTRY>
						<COMPANY>TutorialsPoint</COMPANY>
						<PRICE>$10</PRICE>
						<YEAR>2015</YEAR>
			</SUBJECT>
	
			<SUBJECT>
						<COURSE>Html</COURSE>
						<COUNTRY>India</COUNTRY>
						<COMPANY>TutorialsPoint</COMPANY>
						<PRICE>$15</PRICE>
						<YEAR>2015</YEAR>
			</SUBJECT>
	
			<SUBJECT>
						<COURSE>Java</COURSE>
						<COUNTRY>India</COUNTRY>
						<COMPANY>TutorialsPoint</COMPANY>
						<PRICE>$20</PRICE>
						<YEAR>2015</YEAR>
			</SUBJECT>
	
			<SUBJECT>
						<COURSE>Microsoft</COURSE>
						<COUNTRY>India</COUNTRY>
						<COMPANY>TutorialsPoint</COMPANY>
						<PRICE>$25</PRICE>
						<YEAR>2015</YEAR>
			</SUBJECT>
</CATALOG>

It	will	produce	the	following	result	−

	
	
	
	
	
	
	
	
	
	
	
	

	
PHP	-	Ajax	Auto	Complete	Search

Auto	Complete	Search
The	Auto	complete	search	box	provides	the	suggestions	when	you	enter	data	into
the	field.	Here	we	are	using	xml	to	call	auto	complete	suggestions.	The	below
example	demonstrate,	How	to	use	auto	complete	text	box	using	with	php.

Index	page
Index	page	should	be	as	follows	−
<html>
			<head>
	
						<style>
									div	{
												width:240px;
												color:green;

}

						</style>
	
						<script>
									function	showResult(str)	{

	

												if	(str.length	==	0)	{
															document.getElementById("livesearch").innerHTML	=	"";
															document.getElementById("livesearch").style.border	=	"0px";
															return;

}

	
												if	(window.XMLHttpRequest)	{
															xmlhttp	=	new	XMLHttpRequest();
												}else	{
															xmlhttp	=	new	ActiveXObject("Microsoft.XMLHTTP");

}

	
												xmlhttp.onreadystatechange	=	function()	{

	

															if	(xmlhttp.readyState	==	4	&&	xmlhttp.status	==	200)	{
																		document.getElementById("livesearch").innerHTML	=	xmlhttp.responseText;
																		document.getElementById("livesearch").style.border	=	"1px	solid	#A5ACB2";

}

}

}

	
												xmlhttp.open("GET","livesearch.php?q="+str,true);
												xmlhttp.send();

}

						</script>
	
			</head>
			<body>
	
						<form>
									<h2>Enter	Course	Name</h2>
									<input	type	=	"text"	size	=	"30"	onkeyup	=	"showResult(this.value)">
									<div	id	=	"livesearch"></div>
									More	Details	
						</form>
	
			</body>
</html>

livesearch.php
It	is	used	to	call	the	data	from	xml	file	and	it	will	send	the	result	to	web
browsers.
<?php
			$xmlDoc	=	new	DOMDocument();
			$xmlDoc->load("autocomplete.xml");
			$x	=	$xmlDoc->getElementsByTagName('link');
			$q	=	$_GET["q"];
	
			if	(strlen($q)>0)	{
						$hint	=	"";
	
						for($i	=	0;	$i>($x->length);	$i++)	{
									$y	=	$x->item($i)->getElementsByTagName('title');
									$z	=	$x->item($i)->getElementsByTagName('url');
	
									if	($y->item(0)->nodeType	==	1)	{
												if	(stristr($y->item(0)->childNodes->item(0)->nodeValue,$q))	{

	

															if	($hint	==	"")	{
																		$hint	=	"item(0)->childNodes->item(0)->nodeValue	.	"'	target='_blank'>"	.
																		$y->item(0)->childNodes->item(0)->nodeValue	.	"";
															}else	{
																		$hint	=	$hint	.	"
<a	href	=	'"	.
																		$z->item(0)->childNodes->item(0)->nodeValue	.	"'	target='_blank'>"	.
																		$y->item(0)->childNodes->item(0)->nodeValue	.	"";

}

}

}

}

}

			if	($hint	==	"")	{
						$response	=	"Please	enter	a	valid	name";
			}else	{
						$response	=	$hint;

}

			echo	$response;
?>

autocomplete.xml
It	contained	auto	complete	data	and	accessed	by	livesearch.php	based	on	tittle
field	and	Url	filed
<pages>
	
			<link>
						<title>android</title>
						<url>http://www.tutorialspoint.com/android/index.htm</url>
			</link>
	
			<link>
						<title>Java</title>
						<url>http://www.tutorialspoint.com/java/index.htm</url>
			</link>
	
			<link>
						<title>CSS	</title>
						<url>http://www.tutorialspoint.com/css/index.htm</url>
			</link>
	
			<link>
						<title>angularjs</title>
						<url>http://www.tutorialspoint.com/angularjs/index.htm	</url>
			</link>
	
			<link>
						<title>hadoop</title>
						<url>http://www.tutorialspoint.com/hadoop/index.htm	</url>
			</link>
	
			<link>
						<title>swift</title>
						<url>http://www.tutorialspoint.com/swift/index.htm	</url>
			</link>
	
			<link>
						<title>ruby</title>
						<url>http://www.tutorialspoint.com/ruby/index.htm	</url>
			</link>
	
			<link>
						<title>nodejs</title>
						<url>http://www.tutorialspoint.com/nodejs/index.htm	</url>
			</link>
	
</pages>

It	will	produce	the	following	result	−

	
	
	
	
	
	
	

PHP	-	Ajax	RSS	Feed	Example
RSS
Really	Simple	Syndication	is	used	to	publish	often	updated	information	from
website	like	audio,	video,	images,	etc.	We	can	integrate	RSS	feeds	to	a	website
by	using	Ajax	and	php.	This	code	demonstrates	how	to	show	RSS	feeds	in	our
site.

Index.html
Index	page	should	be	as	follows	−
<html>
			<head>
	
						<script>
									function	showRSS(str)	{
												if	(str.length	==	0)	{
															document.getElementById("output").innerHTML	=	"";
															return;

}

	
												if	(window.XMLHttpRequest)	{
															xmlhttp	=	new	XMLHttpRequest();
												}else	{
															xmlhttp	=	new	ActiveXObject("Microsoft.XMLHTTP");

}

												xmlhttp.onreadystatechange	=	function()	{
															if	(xmlhttp.readyState	==	4	&&	xmlhttp.status	==	200)	{
																		document.getElementById("output").innerHTML	=	xmlhttp.responseText;

}

}

	
												xmlhttp.open("GET","rss.php?q="+str,true);
												xmlhttp.send();

}

						</script>
	
			</head>
	
			<body>
						<p>Please	Select	an	option	to	get	RSS:</p>
	
						<form>
									<select	onchange	=	"showRSS(this.value)">
												<option	value	=	"">Select	an	RSS-feed:</option>

												<option	value	=	"cnn">CNN</option>
												<option	value	=	"bbc">BBC	News</option>
												<option	value	=	"pc">PC	World</option>
									</select>
						</form>
						

	
						<div	id	=	"output">RSS-feeds</div>
	
			</body>
</html>

rss.php
rss.php	has	contained	syntax	about	how	to	get	access	to	rss	feeds	and	return	rss
feeds	to	web	pages.
<?php
			$q	=	$_GET["q"];
	
			if($q	==	"cnn")	{
						$xml	=	("http://rss.cnn.com/rss/cnn_topstories.rss");
			}elseif($q	==	"bbc")	{
						$xml	=	("http://newsrss.bbc.co.uk/rss/newsonline_world_edition/americas/rss.xml");
			}elseif($q	=	"pcw"){
						$xml	=	("http://www.pcworld.com/index.rss");

}

			$xmlDoc	=	new	DOMDocument();
			$xmlDoc->load($xml);
	
			$channel	=	$xmlDoc->getElementsByTagName('channel')->item(0);
	
			$channel_title	=	$channel->getElementsByTagName('title')
			->item(0)->childNodes->item(0)->nodeValue;
	
			$channel_link	=	$channel->getElementsByTagName('link')
			->item(0)->childNodes->item(0)->nodeValue;
	
			$channel_desc	=	$channel->getElementsByTagName('description')
			->item(0)->childNodes->item(0)->nodeValue;
	
			echo("<p>"	.
						$channel_title	.	"");
			echo("
");
			echo($channel_desc	.	"</p>");
	
			$x	=	$xmlDoc->getElementsByTagName('item');
	
			for	($i	=	0;	$i<=2;	$i++)	{
						$item_title	=	$x->item($i)->getElementsByTagName('title')
						->item(0)->childNodes->item(0)->nodeValue;
	
						$item_link	=	$x->item($i)->getElementsByTagName('link')
						->item(0)->childNodes->item(0)->nodeValue;
	
						$item_desc	=	$x->item($i)->getElementsByTagName('description')
						->item(0)->childNodes->item(0)->nodeValue;
	
						echo	("<p>"	.

									$item_title	.	"");
						echo	("
");
						echo	($item_desc	.	"</p>");

}

?>

It	will	produce	the	following	result	−

	
	
	
	
	
	
	
	

	
	
	
	
	

PHP	-	XML	Introduction
	

What	is	XML?
XML	is	a	mark-up	language	to	share	the	data	across	the	web,	XML	is	for	both
human	readable	and	machine	readable.	Example	of	share-able	xmls	are	RSS
Feeds.	XML	parsers	are	useful	to	read	and	update	the	data	by	using	web
browsers.

Types	of	XML
Tree	based
Event	based

XML	Parse	Extensions
XML	parse	Extensions	are	works	based	on	libxml.	The	following	xml	parsers
are	available	in	the	php	core.

Simple	XML	parser
DO	XML	parser
XML	parser
XML	Reader

Simple	XML	parser
The	Simple	XML	parser	also	called	as	tree	based	XML	parser	and	it	will	parse
the	simple	XML	file.	Simple	XML	parse	will	call	simplexml_load_file()	method
to	get	access	to	the	xml	from	specific	path.

DOM	parser
DOM	Parser	also	called	as	a	complex	node	parser,	Which	is	used	to	parse	highly
complex	XML	file.	It	is	used	as	interface	to	modify	the	XML	file.	DOM	parser
has	encoded	with	UTF-8	character	encoding.

XML	parse
XML	parsing	is	based	on	SAX	parse.	It	is	more	faster	the	all	above	parsers.	It
will	create	the	XML	file	and	parse	the	XML.	XML	parser	has	encoded	by	ISO-
8859-1,	US-ASCII	and	UTF-8	character	encoding.

XML	Reader
XML	Reader	parse	also	called	as	Pull	XML	parse.	It	is	used	to	read	the	XML
file	in	a	faster	way.	It	works	with	high	complex	XML	document	with	XML
Validation.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

PHP	-	Simple	XML
	

The	simple	XML	parser
The	simple	XML	parser	is	used	to	parse	Name,	attributes	and	textual	content.
The	simple	XML	functions	are	shown	below	−

simplexml_load_file()
This	function	accepts	file	path	as	a	first	parameter	and	it	is	mandatory.
simplexml_load_file(($fileName,$class,$options,$ns,$is_prefix)

simplexml_load_string()
This	function	accepts	the	string	instead	of	file	reference.
simplexml_load_string($XMLData,$class,$options,$ns,$is_prefix)

simplexml_import_dom()
This	function	accepts	DOM	formatted	XML	content	and	it	converts	into	simple
XML.
simplexml_load_string($DOMNode,$class)

The	following	example	shows,	How	to	parse	a	xml	data	file.
<?php
			$data	=	"<?xml	version	=	'1.0'	encoding	=	'UTF-8'?>
	
			<note>
						<Course>Android</Course>
						<Subject>Android</Subject>
						<Company>TutorialsPoint</Company>
						<Price>$10</Price>
			</note>";
	
			$xml	=	simplexml_load_string($data)	or	die("Error:	Cannot	create	object");
?>
<html>
	
			<head>
						<body>
	
									<?php
												print_r($xml);
									?>
	
						</body>
			</head>
	
</html>

It	will	produce	the	following	result	−
SimpleXMLElement	Object	([Course]	=>	Android	[Subject]	=>	Android	[Company]	=>	TutorialsPoint
[Price]	=>	$10)

We	can	also	call	a	xml	data	file	as	shown	below	and	it	produces	the	same	result
as	shown	above	−
<?php
			$xml	=	simplexml_load_file("data")	or	die("Error:	Cannot	create	object");
			print_r($xml);
?>

	
	
	

	
	
	
	
	
	
	
	
	
	
	

PHP	-	Simple	XML	GET
XML	Get	has	used	to	get	the	node	values	from	xml	file.	The	following	example
shows,	How	to	get	the	data	from	xml.

Note.xml
Note.xml	is	xml	file,	It	can	accessed	by	php	file.
<SUBJECT>
			<COURSE>Android</COURSE>
			<COUNTRY>India</COUNTRY>
			<COMPANY>TutorialsPoint</COMPANY>
			<PRICE>$10</PRICE>
</SUBJECT>

Index.htm
Index	page	has	rights	to	get	access	the	xml	data	by	using	implexml_load_file().
<?php
			$xml	=	simplexml_load_file("note.xml")	or	die("Error:	Object	Creation	failure");
?>
	
<html>
			<head>
	
						<body>
	
									<?php
												echo	$xml->COURSE	.	"
";
												echo	$xml->COUNTRY	.	"
";
												echo	$xml->COMPANY	.	"
";
												echo	$xml->PRICE;
									?>
	
						</body>
	
			</head>
</html>

It	will	produce	the	following	result	−

Get	Node	Values
The	below	code	is	having	information	about	how	to	get	node	values	from	xml
file	and	XML	should	be	as	follows	−
<?xml	version	=	"1.0"	encoding	=	"utf-8"?>
<tutorialspoint>
	
			<course	category	=	"JAVA">
						<title	lang	=	"en">Java</title>
						<tutor>Gopal</tutor>
						<duration></duration>
						<price>$30</price>
			</course>
	
			<course	category	=	"HADOOP">
						<title	lang	=	"en">Hadoop</title>.
						<tutor>Satish</tutor>
						<duration>3>/duration>
						<price>$50</price>
			</course>
	
			<course	category	=	"HTML">
						<title	lang	=	"en">html</title>
						<tutor>raju</tutor>
						<duration>5</duration>
						<price>$50</price>
			</course>
	
			<course	category	=	"WEB">
						<title	lang	=	"en">Web	Technologies</title>
						<tutor>Javed</tutor>
						<duration>10</duration>
						<price>$60</price>
			</course>
	
</tutorialspoint>

PHP	code	should	be	as	follows
<html>
			<body>
	
						<?php
									$xml	=	simplexml_load_file("books.xml")	or	die("Error:	Cannot	create	object");
	
									foreach($xml->children()	as	$books)	{
												echo	$books->title	.	"
	";
												echo	$books->tutor	.	"
	";
												echo	$books->duration	.	"
	";
												echo	$books->price	.	"<hr>";

}

						?>
	
			</body>
</html>

It	will	produce	the	following	result	−

PHP	-	SAX	Parser	Example
	

SAX	parser	has	used	to	parse	the	xml	file	and	better	for	memory	management
than	sample	xml	parser	and	DOM.	It	does	not	keep	any	data	in	memory	so	it	can
be	used	for	very	large	files.	Following	example	will	show	how	to	get	data	from
xml	by	using	SAX	API.

SAX.xml
XML	should	be	as	follows	−
<?xml	version	=	"1.0"	encoding	=	"utf-8"?>
<tutors>
			<course>
						<name>Android</name>
						<country>India</country>
						<email>contact@tutorialspoint.com</email>
						<phone>123456789</phone>
			</course>
	
			<course>
						<name>Java</name>
						<country>India</country>
						<email>contact@tutorialspoint.com</email>
						<phone>123456789</phone>
			</course>
	
			<course>
						<name>HTML</name>
						<country>India</country>
						<email>contact@tutorialspoint.com</email>
						<phone>123456789</phone>
			</course>
</tutors>

SAX.php
Php	file	should	as	follows	−
<?php
			//Reading	XML	using	the	SAX(Simple	API	for	XML)	parser
	
			$tutors			=	array();
			$elements			=	null;
	
			//	Called	to	this	function	when	tags	are	opened
			function	startElements($parser,	$name,	$attrs)	{
						global	$tutors,	$elements;
	
						if(!empty($name))	{
									if	($name	==	'COURSE')	{
												//	creating	an	array	to	store	information
												$tutors	[]=	array();

}

									$elements	=	$name;

}

}

	
			//	Called	to	this	function	when	tags	are	closed
			function	endElements($parser,	$name)	{
						global	$elements;
	
						if(!empty($name))	{
									$elements	=	null;

}

}

	
			//	Called	on	the	text	between	the	start	and	end	of	the	tags
			function	characterData($parser,	$data)	{
						global	$tutors,	$elements;
	
						if(!empty($data))	{
									if	($elements	==	'NAME'	||	$elements	==	'COUNTRY'	||		$elements	==	'EMAIL'	||		$elements	==
'PHONE')	{

												$tutors[count($tutors)-1][$elements]	=	trim($data);

}

}

}

	
			//	Creates	a	new	XML	parser	and	returns	a	resource	handle	referencing	it	to	be	used	by	the	other	XML
functions.
			$parser	=	xml_parser_create();
	
			xml_set_element_handler($parser,	"startElements",	"endElements");
			xml_set_character_data_handler($parser,	"characterData");
	
			//	open	xml	file
			if	(!($handle	=	fopen('sax.xml',	"r")))	{
						die("could	not	open	XML	input");

}

	
			while($data	=	fread($handle,	4096))	//	read	xml	file	{
						xml_parse($parser,	$data);		//	start	parsing	an	xml	document

}

	
			xml_parser_free($parser);	//	deletes	the	parser
			$i	=	1;
	
			foreach($tutors	as	$course)	{
						echo	"course	No	-	".$i.'
';
						echo	"course	Name	-	".$course['NAME'].'
';
						echo	"Country	-	".$course['COUNTRY'].'
';
						echo	"Email	-	".$course['EMAIL'].'
';
						echo	"Phone	-	".$course['PHONE'].'<hr/>';
						$i++;

}

?>

It	will	produce	the	following	result	−

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

PHP	-	DOM	Parser	Example
	

A	HTML	Dom	parser	written	in	PHP5.X	versions.	Dom	Parser	is	very	good	at
dealing	with	XML	as	well	as	HTML.	Dom	parser	travels	based	on	tree	based
and	before	access	the	data,	it	will	load	the	data	into	dom	object	and	it	will	update
the	data	to	the	web	browser.	Below	Example	shows	how	to	get	access	to	the
HTML	data	in	web	browser.
<?php
			$html	=	'
						<head>
									<title>Tutorialspoint</title>
						</head>
	
						<body>
									<h2>Course	details</h2>
	
									<table	border	=	"0">
												<tbody>
															<tr>
																		<td>Android</td>
																		<td>Gopal</td>
																		<td>Sairam</td>
															</tr>
	
															<tr>
																		<td>Hadoop</td>
																		<td>Gopal</td>
																		<td>Satish</td>
															</tr>
	
															<tr>
																		<td>HTML</td>
																		<td>Gopal</td>
																		<td>Raju</td>
															</tr>
	
															<tr>
																		<td>Web	technologies</td>
																		<td>Gopal</td>
																		<td>Javed</td>
															</tr>
	
															<tr>

																		<td>Graphic</td>
																		<td>Gopal</td>
																		<td>Satish</td>
															</tr>
	
															<tr>
																		<td>Writer</td>
																		<td>Kiran</td>
																		<td>Amith</td>
															</tr>
	
															<tr>
																		<td>Writer</td>
																		<td>Kiran</td>
																		<td>Vineeth</td>
															</tr>
												</tbody>
									</table>
						</body>
			</html>
			';
			/***	a	new	dom	object	***/
			$dom	=	new	domDocument;
	
			/***	load	the	html	into	the	object	***/
			$dom->loadHTML($html);
	
			/***	discard	white	space	***/
			$dom->preserveWhiteSpace	=	false;
	
			/***	the	table	by	its	tag	name	***/
			$tables	=	$dom->getElementsByTagName('table');
	
			/***	get	all	rows	from	the	table	***/
			$rows	=	$tables->item(0)->getElementsByTagName('tr');
	
			/***	loop	over	the	table	rows	***/
			foreach	($rows	as	$row)	{
						/***	get	each	column	by	tag	name	***/
						$cols	=	$row->getElementsByTagName('td');
	
						/***	echo	the	values	***/
						echo	'Designation:	'.$cols->item(0)->nodeValue.'
';
						echo	'Manager:	'.$cols->item(1)->nodeValue.'
';
						echo	'Team:	'.$cols->item(2)->nodeValue;
						echo	'<hr	/>';

}

?>

It	will	produce	the	following	result	−

	
	
	
	
	
	
	
	
	
	
	

	

PHP	-	Frame	Works
	

Frame	Work	is	collection	of	software	or	program,	that	trigger	off	easy	coding
and	implementing	the	code.	It	helps	to	programmer	to	achieve	goals	in	short
period	of	time.	If	PHP	code	is	integrated	with	frame	works,	you	can	do	anything
with	php	coding	skills.

Some	of	frame	works
FuelPHP

Fuel	PHP	works	based	on	Model	View	Control	and	having	innovative	plug	ins.
FuelPHP	supports	router	based	theory	where	you	might	route	directly	to	a	nearer
the	input	uri,	making	the	closure	the	controller	and	giving	it	control	of	further
execution.

CakePHP

Cake	PHP	is	a	great	source	to	build	up	simple	and	great	web	application	in	an
easy	way.	Some	great	feature	which	are	inbuilt	in	php	are	input	validation,	SQL
injection	prevention	that	keeps	you	application	safe	and	secure.
Features

Build	Quickly
No	need	to	configure
MIT	licence
MVC	Model
Secure

FlightPHP

Flight	PHP	is	very	helpful	to	make	RESTful	web	services	and	it	is	under	MIT
licence.

Symfony

Symfony	is	for	highly	professional	developer	to	build	websites	with	PHP
components	such	as	Drupal,	PHPBB,	laravel,	eX,	OROCRM	and	piwik.

yiiFramework

YiiFramework	works	based	on	web	2.0	with	high	end	security.	It	included	input
Validation,	output	filtering,	and	SQL	injection.

Laravel

Laravel	is	most	useful	for	RESRful	Routing	and	light	weight	bled	tempting
engine.	Laravel	has	integrated	with	some	of	great	components	of	well	tested	and
reliable	code.

Zend

Zend	is	Modern	frame	work	for	performing	high	end	web	applications.	This
works	based	on	Cryptographic	and	secure	coding	tools.

Codeigniter

Codeigiter	is	simple	to	develop	small	fool	print	for	developer	who	need	simple
and	elegant	tool	kit	to	create	innovative	web	applications.

Phalcon	PHP

Pholcon	PHP	works	based	on	MVC	and	integrated	with	innovative	architecture
to	do	perform	faster.

PHPixie

PHPixie	works	based	on	MVC	and	designed	for	fast	and	reliability	to	develop
web	sites.

Agavi

Agavi	is	a	powerful	frame	work	and	follows	MVC	model.	It	enables	to
developer	to	write	clean	and	maintainable	code.

	
	
	
	

Core	PHP	vs	Frame	Works	PHP
	

We	assume	that	Core	PHP	means	solving	a	Mathematical	problem	by	using
paper	and	pen.	Frame	work	means	solving	Mathematical	problem	by	using	a
calculator.

Core	PHP-Solving	Mathematical	Problem
Only	some	students	can	achieve	results	by	using	paper	and	pen	as	same	as	in
PHP.	Only	a	few	of	the	developers	can	write	the	code	in	an	easy	way	and
reliable	format.

Framework	-	Solving	Mathematical	problem
Everyone	can	achieve	the	result	by	using	the	calculator	as	same	as	in	PHP.	Even
beginners	can	write	the	code	in	easy	way	and	reliable	format.
The	main	problem	with	core	PHP	is	when	developers	write	own	logic,	it	is
difficult	to	make	it	out	for	the	result	so	most	of	the	developers	are	choosing
innovative	frameworks.

Frame	Work
Most	of	the	frameworks	are	reliability,	consistence	and	time	saver.	Some	of	the
innovative	frameworks	are	having	the	rich	set	of	functionalities,	so	developer	no
need	to	write	whole	code,	Developers	needs	to	access	the	code	by	using
framework	and	develop	a	PHP	web	application.	Frameworks	don't	give	the
solutions	for	bad	code	writers,	but	it	gives	reliability	while	writing	code.

Enhance	Projects
Everyone	wants	to	move	into	sophisticated	technologies.	If	any	website	or	web
applications	have	developed	in	Core	PHP,	it	is	difficult	to	enhance	the	website
components,	but	if	website	or	web	applications	has	developed	in	Frame	Work
PHP,	it	is	very	easy	to	enhance	the	features.

Has	Core	PHP	Been	BAD?
It's	not	at	all	bad.	Core	PHP	helps	you	write	the	code	and	understand	the	code.
when	the	developer	at	begin	stage,	we	strongly	recommended	to	learn	Core	PHP,
cause	we	don't	want	to	see	you	as	a	bad	developer.	According	to	World	theory,
easy	always	gives	best	result	with	strong	base.	As	per	the	world	theory,	if	you
know	core	PHP,	you	would	reach	your	goal	by	using	framework	PHP.
	
	
	
	
	
	
	
	
	
	
	
	
	
	

PHP	-	Design	Patterns
Microsoft	design	pattern	Theory	is,	"The	document	introduces	patterns	and	then
presents	them	in	a	repository,	or	catalogue,	which	is	organized	to	help	you	locate
the	right	combination	of	patterns	that	solves	your	problem".

Examples	of	Design	patterns
Singleton

A	Class	has	one	instance,	It	provides	a	global	access	point	to	it,	Following	code
will	explain	about	singleton	concept.
<?php
			class	Singleton	{
						public	static	function	getInstance()	{
									static	$instance	=	null;
	
									if	(null	===	$instance)	{
												$instance	=	new	static();

}

									return	$instance;

}

						protected	function	__construct()	{

}

	
						private	function	__clone()	{

}

	
						private	function	__wakeup()	{

}

}

	
			class	SingletonChild	extends	Singleton	{

}

	
			$obj	=	Singleton::getInstance();
			var_dump($obj	===	Singleton::getInstance());
	

			$anotherObj	=	SingletonChild::getInstance();
			var_dump($anotherObj	===	Singleton::getInstance());
			var_dump($anotherObj	===	SingletonChild::getInstance());
?>

Above	Example	implemented	based	on	static	method	creation	is	getInstance()
Factory

A	Class	Simple	Creates	the	object	and	you	want	to	use	that	object,	Following
example	will	explain	about	factory	design	pattern.
<?php
			class	Automobile	{
						private	$bikeMake;
						private	$bikeModel;
	
						public	function	__construct($make,	$model)	{
									$this->bikeMake	=	$make;
									$this->bikeModel	=	$model;

}

	
						public	function	getMakeAndModel()	{
									return	$this->bikeMake	.	'	'	.	$this->bikeModel;

}

}

	
			class	AutomobileFactory	{
						public	static	function	create($make,	$model)	{
									return	new	Automobile($make,	$model);

}

}

	
			$pulsar	=	AutomobileFactory::create('ktm',	'Pulsar');
			print_r($pulsar->getMakeAndModel());
	
			class	Automobile	{
						private	$bikeMake;
						private	$bikeModel;
	
						public	function	__construct($make,	$model)	{

									$this->bikeMake	=	$make;
									$this->bikeModel	=	$model;

}

	
						public	function	getMakeAndModel()	{
									return	$this->bikeMake	.	'	'	.	$this->bikeModel;

}

}

	
			class	AutomobileFactory	{
						public	static	function	create($make,	$model)	{
									return	new	Automobile($make,	$model);

}

}

			t$pulsar	=	AutomobileFactory::create('ktm',	'pulsar');
	
			print_r($pulsar->getMakeAndModel());
?>

The	main	difficulty	with	factory	pattern	is	it	will	increase	the	complexity	and	it
is	not	reliable	for	good	programmers.
Strategy	pattern

Strategy	pattern	makes	a	family	algorithm	and	encapsulates	each	algorithm.
Here	each	algorithm	should	be	interchangeable	within	the	family.
<?php
			$elements	=	array(
						array(
									'id'	=>	2,
									'date'	=>	'2011-01-01',
),
						array(
									'id'	=>	1,
									'date'	=>	'2011-02-01'
)

);

	
			$collection	=	new	ObjectCollection($elements);
	
			$collection->setComparator(new	IdComparator());
			$collection->sort();
	
			echo	"Sorted	by	ID:\n";
			print_r($collection->elements);
	
			$collection->setComparator(new	DateComparator());
			$collection->sort();
	
			echo	"Sorted	by	date:\n";
			print_r($collection->elements);
?>

Model	View	Control
The	View	acts	as	GUI,	Model	Acts	as	Back	End	and	Control	acts	as	an	adapter.
Here	three	parts	are	interconnected	with	each	other.	It	will	pass	the	data	and
access	the	data	between	each	other.

	
	
	
	
	
	
	
	
	

	
	
	

